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Travaux de recherche

Je présente ici mes travaux de recherche, dans l’ordre chronologique. Je commence avec les deux
papiers qui présentent les résultats de ma thèse.

(P1) Existence of periodic orbits for geodesible vector fields on closed
3-manifolds. Ergodic Theory and Dynamical Systems 30, no. 6, 1817 - 1841,
2010.

(P2) Minimal Følner foliations are amenable. En collaboration avec Fernando
Alcalde Cuesta. Discrete and Continuous Dynamical Systems - Series A, Vol. 31,
no. 3, 2011.

Le papier (P1) correspond à la première partie de ma thèse dédiée à la question de l’existence
d’orbites périodiques pour les flots géodésibles. J’ai montré leur existence sous certaines hypothèses
supplémentaires. Dans les preuves, j’utilise la technique des courbes pseudoholomorphes due à Hofer
[Hof93]. Après ma thèse, Klaus Niederkrüger et moi avons utilisé cette technique pour montrer
l’existence d’orbites périodiques pour les flots de Reeb en dimension plus grande que 3, sous la
présence de sous-variétés feuilletées par la structure de contact. Le résultat fait l’objet du papier :

(P3) The Weinstein conjecture in the presence of submanifolds having a
Legendrian foliation. En collaboration avec Klaus Niederkrüger. Journal of
Topology and Analysis, Volume 3, Issue 4, 405-421, 2011.

Le papier (P2) correspond à la deuxième (et dernière) partie de ma thèse, il s’agit d’étudier deux
propiétés de moyennabilité pour des feuilletages (où pour les pseudogroupes). Une condition est
locale (c’est la condition dite de Følner) et l’autre est globale. Mes résultats on été améliorés lors de
ma collaboration avec Fernando Alcalde Cuesta. Nous avons écrit un deuxième papier ensemble :

(P4) Averaging sequences. En collaboration avec Fernando Alcalde Cuesta. Pacific
Journal of Mathematics, Vol. 255, No. 1, 1-23, 2012.

Voici la liste de mes autres travaux :
(P5) The dynamics of generic Kuperberg flows. En collaboration avec Steve

Hurder. Astérisque, Vol. 377, 1-250, 2016.

(P6) Two proofs of Taubes’ theorem on strictly ergodic flows. En colla-
boration avec Victor Kleptsyn. À parâıtre dans les mémoires de la conférence
II Reunión de Matemáticos Mexicanos en el Mundo (MMM2014).

(P7) Aperiodicity at the boundary of chaos. En collaboration avec Steve
Hurder. À parâıtre dans Ergodic Theory and Dynamical Systems.

(P8) Equivalence of Deterministic walks on regular lattices on the plane.
En collaboration avec Raúl Rechtman. Physica A, Vol. 466, 69 - 78, 2017.
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(P9) The trunkenness of a volume-preserving vector field. En collaboration
avec Pierre Dehornoy. À parâıtre dans Nonlinearity.

(P10) Perspectives on Kuperberg flows. En collaboration avec Steve Hurder.
À parâıtre dans les mémoires de la conférence 31st Summer Conference on Topo-
logy and its Applications.

Dans ce texte je présente des résultats tirés des papiers (P5), (P7) et (P9). Le papier (P10) est
une compilation de questions autour des flots de Kuperberg, il est cité dans ce texte.

Je vais donc utiliser quelques lignes pour vous raconter les résultats des articles (P6) et (P8),
avant d’introduire mon mémoire. Dans (P6) nous avons trouvé deux preuves alternatives de l’énoncé
suivant, qui a été originalement prouvé par C. H. Taubes [Tau09] en utilisant des invariants de
Seiberg-Witten. Nous disons qu’un champ de vecteurs est strictement ergodique si son flot admet
une unique mesure invariante et si cette mesure est un volume.

THÉORÈME. Soit X un champ de vecteurs sur S3 strictement ergodique. Alors l’hélicité de X
est nulle.

L’hélicité est définie dans la Section 2.1, il s’agit d’un invariant de conjugaison pour les flots
qui préservent un volume.

Dans l’article (P8) nous établissons une équivalence entre deux modèles discrets de propagation
de gaz dans un réseaux, appelés en anglais Lorenz lattice gases. Ils ont des propriétés remarquables.
Notre papier donne une recette pour passer d’un modèle à un autre sur des réseaux réguliers du
plan.

Tous mes papiers peuvent être consultés dans ma page web :

www.matem.unam.mx/rechtman/publications.html



Introduction

Dans ce mémoire je présente des résultats reliés à l’étude des flots en dimension 3. Le mémoire
est divisé en deux chapitres. Le premier est dédié à mon travail pour comprendre l’ensemble minimal
du piège de Kuperberg, ou dit d’une autre façon, l’ensemble minimal des seules exemples connus de
flots lisses sans points fixes et sans orbites périodiques sur S3. Dans le second, j’explique comment
construire une quantité appelée tronc associée à un flot sur S3 muni d’une mesure invariante, qui est
préservée par conjugaison topologique. Ce résultat s’inscrit dans la démarche consistant à trouver
des invariants pour les flots provenant d’invariants pour les nœuds.

Les résultats présentés dans le premier chapitre ont été obtenus en collaboration avec Steve
Hurder, avec qui j’ai commencé à collaborer lors de mon postdoctorat à Chicago. Nous nous
sommes donné la tâche de comprendre l’ensemble minimal du piège de Kuperberg. La première
observation importante pour ce faire est que la construction dépend de certains choix, je cite
É. Ghys [Ghys95] :

Par ailleurs, on peut construire beaucoup de pièges de Kuperberg
et il n’est pas clair qu’ils aient la même dynamique.

Les choix donnent toujours un piège dont le flot est C∞, sans orbites périodiques et avec un
unique ensemble minimal, mais nous ne savons pas si l’ensemble minimal est le même pour tous
les choix possibles. En effet, une question qui reste ouverte est de savoir s’il y a des choix pour
lesquels l’ensemble minimal est de dimension 1. Dans notre travail, nous imposons des hypothèses
supplémentaires à la construction du piège qui nous permettent de montrer que l’ensemble minimal
est de dimension topologique 2 et d’en déduire d’autres propiétés dynamiques du flot. Nous appelons
ces choix génériques, car il s’agit de demander que deux propiétés de la construction soient de
nature quadratique. Nous appelons les flots obtenus des flots de Kuperberg génériques. Je présente
ces hypothèses brièvement dans la remarque 1.2.1 et avec plus de détails dans la section 1.6.

Il faut mentionner que dans la catégorie des flots linéaires par morceaux, Greg et Krystyna Ku-
perberg parviennent à construire un piège de Kuperberg dont l’ensemble minimal est de dimension
1 [KK96]. Aussi, si un piège de Kuperberg est tel que son ensemble minimal est de dimension 1,
l’ensemble minimal est contenu dans un esemble invariant de dimension topologique 2 qui a la
même structure que l’ensemble minimal du cas générique.

Comment étudier un ensemble minimal ? Quels sont les aspects importants ?
Une première approche est de se faire une image de cet ensemble minimal, de le visualiser.

Finalement c’est un ensemble plongé dans R3 et 3 est encore une petite dimension. J’ai essayé
dans ce mémoire d’expliquer l’image que nous nous sommes faite de cet ensemble, la section 1.3.2
donne une façon de comprendre comment il est structuré. Tout n’y est pas dit, j’ai décidé de ne pas
rentrer dans certaines complications et détails. Il s’agit donc d’une image idéalisée de l’ensemble,
qui permet de comprendre les autres aspects que nous avons décidé d’étudier.

Une seconde approche naturelle est la théorie de la forme. Introduite par Borsuk [Bor68], elle
permet d’étudier certains aspects des ensembles plongés dans un espace euclidien, en étudiant des
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10 Introduction

suites de voisinages de plus en plus petits. Nous avons été guidés par une question de K. Kuperberg :
est ce que la forme de l’ensemble minimal est stable ? Comme expliqué dans la section 1.4.1, nous
savons que la réponse à cette question est négative (dans le cas d’un flot de Kuperberg générique).
Le concept d’ensemble «movable» est un autre concept important dans la théorie de la forme. Nous
ignorons si l’ensemble minimal des flots de Kuperberg génériques est «movable». Je conjecture que
oui.

Nous comprenons donc comment visualiser cet ensemble minimal exceptionnel (c’est-à-dire
transversement un ensemble de Cantor) de dimension topologique 2. Il est, par minimalité, locale-
ment homogène, mais il n’est pas globalement homogène. Comme expliqué dans le théorème 1.3.5,
l’ensemble ne forme pas une lamination, mais il contient un ouvert dense de dimension 2 qui est
une lamination L avec des feuilles ouvertes. Nous pouvons donc considérer la dynamique de cette
lamination et la comparer à la dynamique du flot restreint à l’ensemble minimal.

Cet approche nous a permis de construire des pseudogroupes agissant, soit dans un rectangle
presque transverse au flot, soit dans une transversale à la lamination L. Il s’agit, par leur nature et
par la construction, de pseudogroupes différents mais semblables, avec des ensembles de générateurs
similaires. Le premier de ces pseudogroupes est décrit brièvement dans la section 1.4. En utilisant
la notion d’entropie pour les pseudogroupes, introduite par Ghys, Langevin et Walczak [GLW88],
nous avons étudié ces pseudogroupes. Dans la section 1.4.2, j’explique quelques-uns des résultat
obtenus.

Les pseudogroupes utilisés dans [P5] ont tous la propiété que le nombre de points séparés par
des mots de longueur n (avec un ensemble de générateurs fixé) crôıt comme l’exponentielle de
nα, pour un certain α ∈ (0, 1). Ils sont donc tous d’entropie nulle, mais d’entropie lente positive
(les définitions sont données dans la section 1.4.2). Cette affirmation s’étend au flot restreint à
l’ensemble minimal : le flot est d’entropie topologique nulle, mais a une entropie lente positive. Le
fait que l’entropie topologique du flot soit nulle est aussi une conséquence d’un théorème de Katok
[Kat80], comme remarqué par É. Ghys [Ghys95].

Avec l’objectif de trouver de flots à entropie topologique positive près des flots de Kuperberg,
nous avons étudié des déformations de la construction du piège dans [P7]. Nous avons donc trouvé
une famille C∞ à un paramètre contenant un flot de Kuperberg et des flots à entropie positive. La
construction et quelques idées des preuves forment le contenu de la section 1.5.

Le flot de Kuperberg est donc une bifurcation dans l’espace des flots sur une variété fermée de
dimension 3. Il s’agit d’une situation non générique, mais ce flot doit probablement être entouré
d’autres bifurcations parmi lesquelles il pourrait y avoir des bifurcations génériques. Je ne sais pas
en ce moment, si l’étude d’un voisinage du piège parmi les bifurcations est abordable.

Par ailleurs, les pièges à entropie topologique positive construites dans [P7] contiennent une
famille dénombrable d’ensembles invariants dont la dynamique transverse est conjuguée à un fer à
cheval. Comment ceux-ci dégénèrent-ils vers l’ensemble minimal du piège de Kuperberg ? Le temps
de retour à ces ensembles tranverses invariants devient de plus en plus long quand on s’approche
du piège de Kuperberg, mais j’ignore si c’est l’unique cause de la bifurcation. Il me semble donc
intéressant de comprendre ce processus.

Les résultats du deuxième chapitre ont été obtenus en collaboration avec Pierre Dehornoy. Nous
avons construit une quantité associée à un champ de vecteursX muni d’une mesure invariante µ, qui
est préservée par conjugaison. Nous appelons cette quantité un invariant de (X,µ). Ce problème est
motivé par une observation de Helmholtz [Hel1858] : si Xt est un champ de vecteurs non-autonome
qui satisfait les équations d’Euler (dans le cas plus simple de ces équations) et si on note φt son
flot, alors rot(Xt) est l’image sous φt de rot(X0). Comme φt est un difféomorphisme qui préserve
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un volume, un invariant appliqué à rot(X0) nous donne une quantité qui ne dépend pas du temps
pour les solutions de l’équation d’Euler.

L’invariant le plus connu est l’hélicité, il est défini quand la mesure invariante µ est un volume.
Grâce aux travaux d’Arnold [Arn73], nous avons une interprétation topologique de cet invariant :
dans S3 (ou un domaine simplement connexe de R3), l’hélicité cöıncide avec le nombre d’enlacement
asymptotique. Ce nombre est défini de la façon suivante. Prenons deux points x1, x2 ∈ S3 et deux
nombres t1, t2 ∈ R. On considère les courbes k(xi, ti), pour i = 1, 2, formées par le segment
d’orbite entre xi et φti(xi) suivi d’un arc (court) entre ces deux points. On peut montrer [Vog02]
que pour presque toute paire de points et pour presque toute paire de nombres réels, on obtient
deux courbes fermées simples et disjointes. Nous pouvons donc calculer leur nombre d’enlacement
`(k(x1, t1), k(x2, t2)). L’hélicité est alors égale à∫ ∫ (

lim
t1,t2→∞

`(k(x1, t1), k(x2, t2))
t1t2

)
dµdµ.

Si µ est une mesure ergodique, nous n’avons pas besoin d’intégrer. Cette interprétation nous dit que
l’hélicité est un invariant asymptotique : elle peut être obtenue comme la limite d’un invariant des
entrelacs. Il semble donc naturel d’imiter cettte construction pour d’autres invariants de nœuds ou
entrelacs, pour trouver d’autres invariants asymptotiques. Cette voie a été explorée par Gambaudo
et Ghys [GG01], Baader [Baa11] et Baader et Marché [BM12], pour différents invariants des nœuds.
Mais tous les invariants obtenus par ces auteurs sont proportionnels à l’hélicité.

Récemment, Kudryavtseva [Kud14, Kud16] et Enciso, Peralta-Salas et Torres de Lizaur [EPT16]
ont montré sous différentes hypothèses, que tout invariant dont la dérivée de Fréchet est l’intégrale
d’un noyau continu, est une fonction de l’hélicité. Donc, si l’on cherche de nouveaux invariants, ils
ne peuvent pas être trop réguliers.

Nous avons décidé d’étudier un invariant des nœuds appelé le tronc, introduit par Ozawa
[Ozw10]. Cet invariant est construit en comptant le nombre de points d’intersections entre un
nœud et les niveaux d’une fonction hauteur. Dans le cas de S3, une fonction hauteur à deux points
singuliers et tout autre niveau est une sphère. Une adaptation naturelle au cas des champs de
vecteurs est le flux géometrique à travers les niveaux de la fonction. Il s’agit de mesurer par rapport
à une mesure invariante, le passage infinitésimal à travers la surface sans considérer l’orientation.

L’invariant qui en résulte, est un invariant par conjugaison topologique, et il admet une in-
terprétation asymptotique : dans le cas d’une mesure ergodique, il s’agit de la limite du tronc de
k(x, t) divisé par t, pour presque tout x ∈ S3. Je présente dans le chapitre 2 les résultats que
nous avons obtenus concernant cet invariant, en particulier, nous pouvons montrer qu’il n’est pas
proportionnel à l’hélicité. Dans la section 2.1, j’ai décidé d’inclure le calcul qui nous permet de
montrer cette dernière affirmation.
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Chapter 1

A minimal set

A 3-dimensional closed manifold has Euler characteristic zero, meaning that it admits a non-
singular vector field. There is one known way to build C∞ or real analytic flows without fixed
points and without periodic orbits that applies to any of these manifolds: using Kuperberg plugs. A
plug allows to modify a flow inside a flow-box, trapping orbits and introducing at least a minimal
set.

K. Kuperberg’s construction appeared in 1993, published in 1994 [Kup94]. The article was
then followed by a Séminaire Bourbaki exposition by É. Ghys [Ghys95], a Sugaku lecture by S.
Matsumoto [Mat95] and a paper by Greg and Krystyna Kuperberg [KK96]. Each of these papers
gives different insights into the dynamics of Kuperberg flows, I will explain briefly some of them
in Section 1.2.2. Regarding the minimal set of the flow inside the plug, it was known that there is
only one minimal set.

In [P5], S. Hurder and I went into the details of these flows, trying to understand what the
minimal set looks like. I will give here an informal description of it and cite the main results of
our work, mainly related to its shape properties and some types of entropy of the flow. To my
knowledge, our work gives the first explicit example of an exceptional minimal set of a flow that
has topological dimension 2 and is not obtained from a suspension of a diffeomorphism. This
minimal set has amazing properties, some of them explained below. We developed a set of ad-hoc
techniques for studying it. I ignore if any of these can be applied to other minimal sets.

The chapter is organized as follows. Sections 1.1 and 1.2 are a brief introduction to the problem
and the results on Kuperberg flows previous to our work. Section 1.2 is divided into the original
construction by K. Kuperberg explained in Section 1.2.1 and some known results on their dynamics
other than aperiodicity explained in Section 1.2.2. In Section 1.3.2 and its subsections, I tried to
give a picture of the minimal set. In Section 1.3.1, I start by explaining the structure of two special
orbits of the flow, then in Section 1.3.2 I use these two orbits to decompose a dense subset of the
minimal set whose dimension is 2. This is not a formal exposition since it avoids several minor
complications and I refer for the proofs of the facts used to [P5].

In the paper [P5] we used several pseudogroups acting on a rectangle that is almost transverse
to the flow of the Kuperberg plug to study the dynamics beyond aperiodicity. Even if in this text
I don’t present any proof using pseudogroups, I included in Section 1.4 the rectangle and some of
the maps we studied in [P5]. These maps then appear in the discussions in Sections 1.4.2 and 1.5.

Section 1.5 corresponds to the results obtained in [P7]. Kuperberg flows have topological en-
tropy zero, as a consequence of Katok’s theorem on C2-flows [Kat80]. The question that motivated
the results in [P7] was if there are positive topological entropy flows arbitrarily near the Kuper-
berg flows. The answer is yes in the C1-topology by more general results on 3-dimensional flows.
Since the Kuperberg examples are explicit, it seemed that we could work in the C∞-topology.

13



14 CHAPTER 1. A MINIMAL SET

The answer is again yes: we found an explicit construction of a 1-parameter family containing a
Kuperberg flow and flows of positive topological entropy. I give the construction highlighting the
difference with the original construction by K. Kuperberg and explain the main ideas in the proof.

1.1 The Seifert conjecture, a story beyond Wilson, Schweitzer
and Kuperberg

In 1950, Seifert proved that vector fields close to a vector field tangent to the Hopf fibration
have periodic orbits. He asked if any non-singular vector field on the three sphere S3 had a periodic
orbit, the positive answer to this question became known as the Seifert conjecture.

Some years later, in 1966, F. W. Wilson built a plug that allows to obtain on any closed
3-manifold a non-singular vector field with a finite number of periodic orbits [Wil66, PW77] (the
construction in the second paper is simpler). At this point, the problem was how to destroy those
periodic orbits and there was a possible path: to build a plug without periodic orbits.

To fix ideas, let me define a plug. A 3-dimensional plug is a manifold P endowed with a vector
field X satisfying the following properties: the manifold P is of the form D × [−2, 2], where D is
a compact 2-manifold with boundary ∂D. Let ∂

∂z be the vertical vector field on P , where z is the
coordinate on [−2, 2]. The vector field X on P must satisfy the conditions:

(P1) vertical near the boundary: X = ∂
∂z in a neighborhood of ∂P ; thus, D×{−2} and D×{2}

are the entry and exit regions of P for the flow of X , respectively;
(P2) entry-exit condition: if a point (x,−2) is in the same trajectory as (y, 2), then x = y.

That is, an orbit that traverses P , exits just in front of its entry point;
(P3) trapped orbit: there is at least one entry point whose entire forward orbit is contained in

P ; we will say that its orbit is trapped by P and we call the set of entry point with trapped
orbit the trapped set;

(P4) tameness: there is an embedding i : P → R3 that preserves the vertical direction on the
boundary ∂P .

A plug is aperiodic if there is no closed orbit for X . After Wilson’s result an aperiodic plug will

Figure 1.1: A plug trapping a periodic orbit

allow to build a vector field without periodic
orbits. Indeed, we can use such a plug to de-
stroy the periodic orbits one by one. Consider
one periodic orbit, it suffices to embed the ape-
riodic plug in a flow-box intersecting the peri-
odic orbit in such a way that the periodic orbit
gets trapped inside the plug, thus it will no
longer be periodic. This can be done by con-
ditions (P1), (P3) and (P4). Condition (P2)
guarantees that there are no new periodic or-
bits after surgery: there are no periodic orbits
inside the plug and if an orbit intersects the
plug and is not trapped, the entry-exit condi-
tion implies that it will stay periodic or non-
periodic after surgery. Repeating this process
at most finitely many times, gives an aperiodic
flow on any closed 3-manifold.

The first aperiodic plug was built by P. Schweitzer [Sch74] in 1974, though the flow is only C1.
The aperiodic plug that is C∞ (an even real analytic) was built by K. Kuperberg in 1993 [Kup94].
Notice that almost 20 years passed between the two constructions, in the meantime J. Harrison
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managed to make a C2 version of Schweitzer’s plug [Har88] and there are a couple of papers trying
to prove that it is impossible to build an aperiodic plug with a smooth flow. But how to prove
that there are no aperiodic plugs in the Cr category for r > 2?

Let me highlight one of the main differences between Schweitzer’s and Kuperberg’s construction.
Condition (P3) in the definition of a plug implies that a trapped orbit has to accumulate on an
invariant set, thus a plug contains a minimal set for the flow. Schweitzer’s construction starts
with a minimal set: the main idea is to substitute the periodic orbits in the Wilson plug with two
copies of the Denjoy minimal set. The differentiability problem comes from this set. J. Harrison
changed the embedding of the minimal set to make the flow C2. Kuperberg’s construction focuses
on destroying the periodic orbits of the Wilson plug, there is some minimal set in the plug, but not
too much was known about it before our work. I will cite Matsumoto to describe K. Kuperberg’s
construction:

We therefore must demolish the two closed orbits in the Wilson Plug beforehand.
But producing a new plug will take us back to the starting line. The idea of Kuperberg
is to let closed orbits demolish themselves. We set up a trap within enemy lines and
watch them settle their dispute while we take no active part.

After Schweitzer’s construction the idea to prove that it was impossible to build a C∞ aperiodic
plug focuses on the minimal set inside the plug (the starting point of his construction). I want to
mention a paper by M. Handel [Han80], in which he proves that if the trapped orbits of a plug
accumulate on a minimal set whose dimension is 1 and this is the only invariant set for the flow in
the plug, then the minimal set is surface-like: the flow restricted to the minimal set is topologically
conjugated to the minimal set of a flow on a surface. He considers also the case of a minimal set
whose topological dimension is two, but he makes the assumption that there is a disk-like section
of the minimal set. In Kuperberg’s plug the minimal set is not the only invariant set of the plug,
as proved by S. Matsumoto (see Theorem 1.2.3), and when it has topological dimension 2 it does
not admits a disk-like section.

There is also a paper by R. J. Knill that embeds Denjoy minimal sets in C∞-flows on S3,
but these are not isolated as any neighborhood contains periodic orbits [Kni81]. Hence, until
K. Kuperberg’s construction, the idea was to look at the possible minimal sets for an aperiodic
plug.

It seems a good moment to comment on two (difficult) questions. The first one is on the
dimension of the minimal set of the Kuperberg plug. We proved in [P5] that, under some extra
assumptions on the construction, this set has topological dimension two. We do not know if there
are smooth Kuperberg flows whose minimal set has dimension 1. I have tried to build them without
success. Can one prove that a minimal set with dimension 1 and unstable shape cannot be isolated
(meaning that any neighborhood should contain periodic orbits)? The answer to this question is
yes if the minimal set is a solenoid as proved by E. S. Thomas [Tho73].

Secondly, consider the case of volume preserving flows on 3-manifolds. We are at the stage of
knowing that there are examples with a finite number of periodic orbits and C1 examples without
periodic orbits on any closed 3-manifold. These were built by G. Kuperberg [Kup96]. Is it possible
to build a C∞ volume preserving aperiodic plug? Can we a priori say something about its minimal
or invariant sets?

1.2 Kuperberg’s construction and previous results
As mentioned above, K. Kuperberg’s idea is to destroy the periodic orbits in the modified

Wilson’s plug using the plug itself, or let the periodic orbits demolish themselves. So I start
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explaining how to build Wilson’s plug (actually a modified version of the original plug). The
construction of the self-insertions that destroy the periodic orbits is explained in Section 1.2.1.

Consider the rectangle

R = [1, 3]× [−2, 2] = {(r, z) | 1 ≤ r ≤ 3 &− 2 ≤ z ≤ 2}.

Choose a C∞-function g : R → [0, g0] for g0 > 0, which satisfies the “vertical” symmetry condition
g(r, z) = g(r,−z). Also, require that g(2,−1) = g(2, 1) = 0 and that g(r, z) > 0 otherwise. Define
the vector fieldWv = g· ∂∂z which has two singularities, (2,±1) and is otherwise everywhere vertical,
as illustrated in Figure 1.2.

Figure 1.2: Vector field Wv

Next, choose a C∞-function f : R → [−1, 1]
which satisfies the following conditions:

(W1) f(r,−z) = −f(r, z) [anti-symmetry in z].

(W2) f(ξ) = 0 for ξ near the boundary of R.

(W3) f(r, z) ≥ 0 for −2 ≤ z ≤ 0.

(W4) f(r, z) ≤ 0 for 0 ≤ z ≤ 2.

(W5) f(2,−1) = 1 and f(2, 1) = −1.

Next, define the manifold with boundary

W = [1, 3]× S1 × [−2, 2] ∼= R × S1 (1.1)

with cylindrical coordinates x = (r, θ, z). That is,
W is a solid cylinder with an open core removed,
obtained by rotating the rectangle R, considered as
embedded in R3, around the z-axis.

Extend the functions f and g above to W by
setting f(r, θ, z) = f(r, z) and g(r, θ, z) = g(r, z), so
that they are invariant under rotations around the

z-axis. The modified Wilson vector field W on W is defined by

W = g(r, θ, z) ∂
∂z

+ f(r, θ, z) ∂
∂θ

. (1.2)

Let Ψt denote the flow of W on W. Observe that the vector field W is vertical near the boundary
of W, and is horizontal for the points (r, θ, z) = (2, θ,±1). Also, W is tangent to the cylinders
{r = cst.}. The flow Ψt on the cylinders {r = cst.} is illustrated by Figure 1.3.

Figure 1.3: W-orbits on the cylinders {r = cst.}
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Define the closed subsets:

R ≡ {(2, θ, z) | −1 ≤ z ≤ 1} [The Reeb Cylinder ]
A ≡ {z = 0} [The Center Annulus]
Oi ≡ {(2, θ, (−1)i)} [Periodic Orbits, i=1,2 ]

∂−h W ≡ {(r, θ,−2)} [The Entry Region]
∂+
hW ≡ {(r, θ, 2)} [The Exit Region]

Then O1 is the lower boundary circle of the Reeb cylinder R and O2 is the upper boundary circle.
The flow Ψt has exactly two periodic orbits O1 and O2, the maximal invariant set inside the plug is
the Reeb cylinder R and satisfies the entry-exit condition (P2) as a consequence of the symmetry
in the function g and condition (W1). Finally, observe that the trapped set are the points with
r = 2 in the entry region of W.

Figure 1.4: W-orbits in the cylinder {r = 2} and in W

1.2.1 The Kuperberg plug K
The construction of the Kuperberg Plug begins with the modified Wilson Plug W with vector

Figure 1.5: Embedding of Wilson Plug W as a
folded figure-eight

fieldW. The first step is to re-embed the man-
ifold W in R3 as a folded figure-eight, as shown
in Figure 1.5, preserving the vertical direction.

The fundamental idea of the Kuperberg
Plug is to construct two insertions of W into it-
self, in such a way that the two periodic orbits
will be trapped by these self-insertions. More-
over, the insertions are made so that the result-
ing space K is again embedded in R3. A key
subtlety of the construction arises in the precise
requirements on these self-insertions. As with
the construction of the modified Wilson Plug,
the description of this construction in the works
[Kup94, Ghys95, Mat95] is qualitative, as this

suffices to prove the aperiodicity of the resulting flow. As explained in [P5], other properties of
the dynamics of the flow Φt in the resulting plug K are strongly influenced by the precise nature
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of these maps, so some hypotheses were added to the construction. We call a plug satisfying these
hypotheses a generic Kuperberg plug. In Remark 1.2.1 at the end of this section I briefly explain
the generic hypotheses and in Section 1.6 I give a compilation of the generic hypotheses.

After the embedding presented in Figure 1.5, the construction continues with the choice in the
annulus [1, 3] × S1 of two closed regions Li, for i = 1, 2, which are topological disks. Each region
has boundary defined by two arcs: for i = 1, 2, α′i is the boundary contained in the interior of
[1, 3]× S1 and αi in the outer boundary contained in the circle {r = 3}, as depicted in Figure 1.6.

Figure 1.6: The disks L1 and L2

Consider the closed sets Di ≡ Li× [−2, 2] ⊂
W, for i = 1, 2. Note that each Di is homeo-
morphic to a closed 3-ball, that D1 ∩ D2 = ∅
and each Di intersects the cylinder {r = 2} in
a rectangle. Label the top and bottom faces of
these regions by

L±1 = L1 × {±2} , L±2 = L2 × {±2} . (1.3)

The next step is to define insertion maps
σi : Di → W, for i = 1, 2, in such a way
that the periodic orbits Oi flow Ψt intersect
σi(L−i ) in points corresponding to W-trapped
entry points for the Wilson plug W. Consider
two disjoint arcs β′i in the inner boundary cir-
cle {r = 1}, that are in front of the arcs αi
when the plug is embedded as in Figure 1.5.

For i = 1, 2, choose orientation preserving diffeomorphisms σi : α′i → β′i and extend these maps to
smooth embeddings σi : Di →W, as illustrated in Figure 1.7, which satisfy the conditions:

(K1) σi(α′i × z) = β′i × z for z ∈ [−2, 2], the interior arc α′i is mapped to a boundary arc β′i;
(K2) for Di = σi(Di), D1 ∩ D2 = ∅;
(K3) σ1(L−1 ) ⊂ {z < 0} and σ2(L+

2 ) ⊂ {z > 0};
(K4) For every x ∈ Li, the image σi(x× [−2, 2]) is an arc contained in a trajectory of W;
(K5) Each slice σi(Li × {z}) is transverse to the vector field W, for all −2 ≤ z ≤ 2;
(K6) Di intersects the periodic orbit Oi and not Oj , for i 6= j.
For i = 1, 2, the components of the boundary of the embedded regions Di = σi(Di) ⊂ W that

are transverse to W are labeled by
L±i = σi(L±i ) . (1.4)

Note that the arcs σi(x×[−2, 2]) in condition (K3) are line segments from σi(x×{−2}) ∈ L−i to
σi(x×{2}) ∈ L+

i which follow theW-trajectory and traverse the insertion from the bottom face to
the top face. SinceW is vertical near the boundary of W and horizontal at the two periodic orbits,
we have that the arcs σi(x× [−2, 2]) are vertical near the inserted curve σi(α′i) and horizontal at
the intersection of the insertion with the periodic orbit Oi. Thus, the embeddings of the surfaces
σi(Li×{z}) make a half turn upon insertion, for each −2 ≤ z ≤ 2. The turning is clockwise for the
bottom insertion i = 1 as illustrated in Figure 1.7 and counter-clockwise for the upper insertion
i = 2, which is illustrated in Figure 1.9.

The embeddings σi are also required to satisfy two further conditions, which are the key to
showing that the resulting Kuperberg flow Φt is aperiodic:

(K7) For i = 1, 2, the disk Li contains a point (2, θi) such that the image under σi of the
vertical segment (2, θi)× [−2, 2] ⊂ Di ⊂W is an arc of the periodic orbit Oi of W.

(K8) Radius Inequality: For all x = (r′, θ′, z′) ∈ Li × [−2, 2], let (r, θ, z) = σi(r′, θ′, z′) ∈ Di,
then r′ > r unless x = (2, θi, z).
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Figure 1.7: The image of D1 under σ1

Figure 1.8: The radius inequality

The Radius Inequality (K8), illustrated in
Figure 1.8, is one of the most fundamental con-
cepts of Kuperberg’s construction. This is an
“idealized” case, as it implicitly assumes that
the relation between the values of r and r′ is
“quadratic” in a neighborhood of the special
points (2, θi), which is not required in order
that (K8) be satisfied. This “quadratic condi-
tion” is part of the generic hypotheses on the
construction (see Remark 1.2.1 and Hypothesis
1.6.3).

The Radius Inequality (K8) is a monotone
condition that allows to keep track of the be-
havior of the orbits in the Kuperberg plug. It is
this condition that is violated in the construc-
tion in Section 1.5.

The embeddings σi : Li × [−2, 2] → W, for
i = 1, 2, can be constructed by first choosing
smooth embeddings of the faces σi : L−i → W
so that the image surfaces are transverse to the
vector field W on W and satisfy the conditions
(K1), (K5) for z = −2, (K7) and (K8). Then
we extend the embeddings of the faces L−i to
the sets Li × [−2, 2] by flowing the images us-
ing a reparametrization of the flow of W, so
that we obtain embeddings of Li × [−2, 2] sat-
isfying conditions (K1) to (K8), as pictured in
Figure 1.7 for the bottom insertion.

Finally, define K to be the quotient man-
ifold obtained from W by identifying the sets

Di with Di. That is, for each point x ∈ Di identify x with σi(x) ∈ W, for i = 1, 2, as illustrated
in Figure 1.9. The restricted Ψt-flow on the inserted disk Di = σi(Di) is not compatible with the
image of the restricted Ψt-flow on Di. Thus it is necessary to modify W on each insertion Di,
by replacing the vector field W on the interior of each region Di with the image vector field, so
that the dynamics in the interior of each insertion region Di reverts back to the Wilson dynamics
on Di. As for the insertion of plugs, the flow has to be reparametrized near the boundary of the
insertion so that the resulting flow is C∞. Let K be the resulting vector field and Φt its flow.

REMARK 1.2.1 (The generic hypotheses). Under the name generic hypotheses, we added in
[P5] a set of conditions to the constructions of the modified Wilson plug W and the Kuperberg
plug K that allowed us to study the dynamics of the flows beyond aperiodicity. Some of these are
technical assumptions, but they can be classified into two classes:

— The function g in the construction of the modified Wilson plug W is zero only at the points
(2,±1) of the rectangle and the speed at which it goes to zero near this points is specified in
the generic hypotheses: we ask g to be a quadratic function of the distance to these points
(in a small neighborhood).

— The Radius Inequality (K8) is required to be quadratic near the special points, as suggested
by Figure 1.8.

These assumptions are used to prove that the minimal set in the plug has topological dimension
2 (see Chapter 17 of [P5]), to give explicit computations of the topological entropy of the flow
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Figure 1.9: The Kuperberg Plug K

restricted to the minimal set (see Chapter 12 of [P5]) and to justify the description of the minimal
set (see Chapter 18 of [P5]).

Recently, D. Ingebretson used the generic hypotheses to interpret the minimal set as the minimal
set of an iterated function system and compute its Hausdorff dimension [HI].

1.2.2 Notation and basic results on the dynamics
In this section, I introduce notations that will be used throughout this chapter. The notation

used here is the same as in [P5]. Introduce the sets:

W′ ≡ W− {D1 ∪ D2} , Ŵ ≡ W− {D1 ∪ D2} . (1.5)

The compact space Ŵ ⊂W is the result of “drilling out” the interiors of D1 and D2.
For x, y ∈ K, we say that x ≺K y if there exists t ≥ 0 such that Φt(x) = y. Likewise, for

x′, y′ ∈W, we say that x′ ≺W y′ if there exists t ≥ 0 such that Ψt(x′) = y′.
Let τ : W → K denote the quotient map, which for i = 1, 2, identifies a point x ∈ Di with its

image σi(x) ∈ Di. Then the restriction τ ′ : W′ → K is injective and onto. Let (τ ′)−1 : K → W′
denote the inverse map, which followed by the inclusion W′ ⊂ W, yields the (discontinuous) map
τ−1 : K→W. For x ∈ K, let x = (r, θ, z) be defined as the W-coordinates of τ−1(x) ⊂W′. In this
way, we obtain (discontinuous) coordinates (r, θ, z) on K. In particular, let r : W′ → [1, 3] be the
restriction of the radius coordinate on W, then the function is extended to the radius function of
K, again denoted by r, where for x ∈ K set r(x) = r(τ−1(x)).

The flow of the vector field W on W preserves the radius function on W, so x′ ≺W y′ implies
that r(x′) = r(y′). However, x ≺K y need not imply that r(x) = r(y). The points of discontinuity
for the function t 7→ r(Φt(x)) play a fundamental role in the study of the dynamics of Kuperberg
flows.

Figure 1.10, copied from Ghys’ paper [Ghys95], is fundamental for the understanding of the
Kuperberg plug K. Indeed, an orbit in K can be chopped into segments of W-orbits, or in other
words into segments of orbits in Ŵ whose endpoints lie in the boundary ∂Ŵ. Thus, up to iden-
tification of L±i with L±i , Figure 1.10 contains all the information needed to follow the K-orbits.
This is the technique used to study the dynamics inside K, as explained below or in any of the
references [Ghys95, KK96, Kup94, Mat95, P5].
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Figure 1.10: Ŵ with some Wilson arcs

Let ∂−h K ≡ τ(∂−h W\(L
−
1 ∪L

−
2 )) and ∂+

h K ≡
τ(∂+

hW\(L
+
1 ∪L

+
2 )) denote the bottom and top

horizontal faces of K, respectively. That is, the
entry and exit regions of K. Points x′ ∈ ∂−h W
and y′ ∈ ∂+

hW are said to be facing, we write
x′ ≡ y′, if x′ = (r, θ,−2) and y′ = (r, θ, 2) for
some r and θ. The entry/exit property of the
Wilson flow is then equivalent to the property
that x′ ≡ y′ if [x′, y′]W is an orbit from ∂−h W
to ∂+

hW whenever r(x′) 6= 2. There is also a
notion of facing points for x, y ∈ K, if either of
two cases are satisfied:

— For x = τ(x′) ∈ ∂−h K and y = τ(y′) ∈
∂+
h K, if x′ ≡ y′ then x ≡ y.

— For i = 1, 2, with x = σi(x′) and y =
σi(y′), if x′ ≡ y′ then x ≡ y.

Consider the embedded disks L±i ⊂ W de-
fined by (1.4), which appear as the faces of the

insertions in Ŵ in Figure 1.10 that are transverse to the vector field W. Their images in the
quotient manifold K are denoted by:

E1 = τ(L−1 ) , S1 = τ(L+
1 ) , E2 = τ(L−2 ) , S2 = τ(L+

2 ) . (1.6)

Note that τ−1(Ei) = L−i , while τ−1(Si) = L+
i . The transition points of an orbit of K are those

points where the orbit intersects E1, E2, S1, S2 or a boundary component ∂−h K or ∂+
h K. They are

then either primary or secondary transition points, where x ∈ K is:
— a primary entry point if x ∈ ∂−h K or a primary exit point if x ∈ ∂+

h K;
— a secondary entry point if x ∈ E1 ∪ E2 or a secondary exit point if x ∈ S1 ∪ S2.

If a K-orbit contains no transition points, then it lifts under τ−1 to a W-orbit in W flowing from
∂−h W to ∂+

hW.
The special points for the flow Φt are the images, for i = 1, 2,

p(i) = τ(Oi ∩ L−i ) ∈ Ei , p(i) = τ(Oi ∩ L+
i ) ∈ Si . (1.7)

Then p(i) ≡ p(i) for i = 1, 2 and by the Radius Inequality (K8), we have r(p(i)) = r(p(i)) = 2 for
i = 1, 2. The two K-orbits containing these points are the special orbits Si for i = 1, 2.

A W-arc is a closed segment [x, y]K ⊂ K of the flow of K whose only transition points are
the endpoints {x, y}. The open interval (x, y)K is then the image under τ of a unique W-orbit
segment in W′, denoted by (x′, y′)W where τ(x′) = x and τ(y′) = y Let [x′, y′]W denote the
closure of (x′, y′)W in Ŵ, then we say that [x′, y′]W is the lift of [x, y]K and is an arc of orbit as in
Figure 1.10. Note that the radius function r is constant along [x′, y′]W .

The level function along an orbit indexes the discontinuities of the radius function. Given
x ∈ K, set nx(0) = 0 and for t > 0 define

nx(t) = # {(E1 ∪ E2) ∩ Φs(x) | 0 < s ≤ t} −# {(S1 ∪ S2) ∩ Φs(x) | 0 < s ≤ t} . (1.8)

That is, nx(t) is the total number of secondary entry points, minus the total number of secondary
exit points, traversed by the flow of x over the interval 0 < s ≤ t. Thereafter, nx(t) changes
value by ±1 at each t > 0 such that Φt(x) is a transition point and whether the value increases or
decreases, indicates whether the transition point is an entry or exit point.
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The level function is the main tool for studying the dynamics of Φt. Consider an orbit in K and
assume that is not a Wilson orbit, meaning that it contains a certain number of transition points.
Cutting the orbit at these points gives a sequence of W-arcs that lift to pieces of orbit in Ŵ (as in
Figure 1.10). We understand completely all the possible pieces in Ŵ, thus what is important is to
understand how these pieces concatenate to form an orbit in K.

The level function measures how “deep” the orbit goes: how many entries has passed, without
crossing the corresponding exit points. This allows to follow the orbit and understand the behavior
of the radius coordinate. In Section 1.3.2 the level function is used in a fundamental way to
understand the structure of the minimal set.

Clearly the main result on K is:

THEOREM 1.2.2. K endowed with the vector field K is an aperiodic plug.

The proof uses strongly the level function. The Radius Inequality (K8) is only used for proving
that there are no periodic orbits inside the plug. We refer to any of the papers [Ghys95, KK96,
Kup94, Mat95, P5] for a proof.

I also like to state a result by S. Matsumoto on the dynamics of the plug (see Proposition 7.5
of [P5] for a proof).

THEOREM 1.2.3. The trapped set of K contains an open set with non-empty interior.

In particular, Theorem 1.2.3 implies that there is a “big” invariant set. In the next section
I describe the minimal set, first as the closure of the special orbits, then as the closure of a
2-dimensional set M0 obtained by flowing the Reeb cylinder τ(R) in K. The proof of Theorem
1.2.3 implies that there is an invariant set that is larger than M0, that is an invariant set that
contains properly M0. In Chapter 16 of K we describe the orbits of this invariant set.

1.3 The minimal set under the generic hypotheses
The aim of this section is to give a description of the minimal set under the generic hypotheses

(see Remark 1.2.1 and Section 1.6). I start by explaining how the special orbits, that is the orbits
obtained after the Kuperberg surgery from the periodic orbits of the Wilson plug, behave. As
remarked previously, an orbit in the Kuperberg plug K is a concatenation of segments of Wilson
orbits whose endpoints are in the boundary of Ŵ (see Figure 1.10). These segments ofW-orbits are
quite simple, thus to understand orbits in K one has to understand the rules of concatenation. The
two special orbits have similar structure, I just treat the case of one of them. Once the structure
of these is orbits is settled, the structure of the minimal set comes naturally.

The objective is to give a visual explanation of the objects mentioned above. By doing so,
I will skip some complications. Some of the minor ones are the appearance of “bubbles” in the
minimal set (see Chapters 15 and 18 of [P5]), the fact that the construction of K is not completely
symmetric (see Chapter 9 of [P5] for a proof that the non-symmetry has minor effects on the
dynamics). The more important one, is not proving that the generic hypotheses imply that the
minimal set has topological dimension 2, as proved in Chapter 17 of [P5].

1.3.1 The special orbits
The minimal set of the plug K is obtained as the closure of any of the special orbits S1 or S2,

these are the orbits in K that contain the arcs O′i = Oi ∩W′ of the periodic orbits of the Wilson
plug W. That is

Si = K(O′i) = {Φt(x) |x ∈ O′i, t ∈ R},
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observe that the endpoints of O′i ate the special points p(i) and p(i) defined in (1.7), for i = 1
and 2. What follows explains why the periodic orbits of Wilson are not longer periodic after the
surgery, but it is not a proof of the aperiodicity of the plug. The explanation implies also that
Si ⊂ S1 for i = 1, 2 and when carried out for S2 (I do not give the details) we get that S1 = S2
is a minimal set. Proving that this set is the only minimal set in the plug is a harder task: it
involves understanding the asymptotic behavior of every orbit that is entirely contained in K. In
Proposition 7.1 of [P5], it is proved that the ω-limit of every point in K whose orbit stays in K
contains S1, while its α-limit contains S2. Thus Σ = S1 = S2 is the unique minimal set.

We recall first from Figure 1.3 of the Wilson plug that the cylinder {r = 2} contains the two

Figure 1.11: The cylinder {r = 2} in W′

periodic orbits Oi for i = 1, 2. Consider the cylinder {r = 2} in W′ containing the segments of orbit
O′i for i = 1, 2. Since this cylinder intersects both insertions, in Figure 1.11 I erased two regions of
the rectangle, one intersecting O1 and the other O2, corresponding to each insertion. Observe that
these two regions are basically rectangles, with two of their sides tangent to the vector field and
two transverse to the vector field. The transverse sides are either in the entrance of the insertions
L−i or in the exit of the insertions L+

i , for i = 1, 2.
The orbit segment O′1 intersects the bottom entrance L−1 and the bottom exit L+

1 . Condition
(K7) implies that the intersection with L−1 is at the special point p(1) that is identified with the
point p′(1) = (2, θ1,−2) ∈ L−1 ∩ {r = 2}. That is σ1(p′(1)) = p(1), τ(p(1)) = τ(p′(1)) and
r(p′(1)) = 2. By abuse of notation, let p(1) be the corresponding point in E1 ⊂ K. Likewise, the
intersection of O′1 with L+

1 is at the special point p(1) that is identified with the point p′(1) =
(2, θ1, 2) ∈ L+

1 ∩ {r = 2}. That is σ1(p′(1)) = p(1), τ(p(1)) = τ(p′(1)) and r(p′(1)) = 2. By abuse
of notation, let p(1) be the corresponding point in S1 ⊂ K.

In general, I will use the same notation for points in L±i and their images under τ in Ei and Si
for i = 1, 2. The corresponding points in L±i are marked with a prime.

The positive K-orbit of a point in τ(O′1) continues after crossing E1 at p(1) as a trappedW-orbit
in the cylinder {r = 2}, that is theW-orbit of p′(1). Since theW-orbit of p′(1) accumulates on O1,
it intersects infinitely many times L−1 . Then the image under τ of this orbit intersects E1 = τ(L−1 )
infinitely many times. Let p(1; 1, 1) be the first intersection. Denote by p′(1; 1, 1) ∈ L−1 the point
such that τ(p′(1; 1, 1)) = p(1; 1, 1), then the Radius Inequality (K8) implies that r(p′(1; 1, 1)) > 2.

We need the following important result (we refer to Propositions 6.5 and 6.7 of [P5]):
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PROPOSITION 1.3.1. Let x be a primary or secondary entry point with r(x) > 2, let x be the
exit point facing x (x ≡ x). Then x is in the same K-orbit as x and the K-orbit of x contains the
ordered collection of W-arcs in the W-orbit of x′ that are in W′, where τ(x′) = x.

The proposition implies that the orbit S1 will make a (a priori) complicated trajectory from
p(1; 1, 1) ∈ E1 ⊂ K before reaching S1 at the facing point p(1; 1, 1) (this point is not necessarily
the first intersection of the orbit with the secondary exit region S1). Condition (K4) implies that
p(1; 1, 1) and p(1; 1, 1) belong to the same Wilson orbit that is contained in the cylinder {r = 2}.

The above description can be applied repeatedly to S1, always in the positive direction. From
p(1; 1, 1) the orbit makes a turn around the cylinder {r = 2} and intersects E1 at a point p(1; 1, 2)
that is above p(1; 1, 1) and below p(1), as illustrated in Figure 1.23. Since r(p(1; 1, 2)) > 2,
Proposition 1.3.1 applies once more implying that p(1; 1, 2) ∈ S1 facing p(1; 1, 2) belongs to the
orbit S1. We can then continue forever: from p(1; 1, 2) follows a W-arc that makes a turn around
the cylinder {r = 2} to a point p(1; 1, 3) ∈ E1, with r(p(1; 1, 3)) > 2. Then Proposition 1.3.1
guarantees that p(1; 1, 3) ∈ S1 is in S1, etc.

Since the W-orbit of p′(1) accumulates on the periodic orbit O1, the forward K-orbit of p(1) ∈
E1 ⊂ K accumulates on τ(O′1) ⊂ S1. That is, recursively we obtain points p(1; 1, `) for ` ≥ 1 in E1
that belong to the special orbit S1 and accumulate on p(1). The Radius Inequality (K8) implies
that r(p(1; 1, `)) is an increasing sequence converging to 2 as `→∞ (at least for ` big enough the
sequence is increasing).

REMARK 1.3.2. We have obtained that the ω-limit of the points in S1 contains O′1 and thus
contains S1. In other words, S1 ⊂ S1.

Figure 1.12: The intersection of the orbit of
p′(1; 1, 1) with the cylinder {r = r1}

Now let us fill the gap between p(1; 1, 1)
and p(1; 1, 1), the same explanation applies to
the segments of orbit between p(1; 1, `) and
p(1; 1, `) but gets increasingly complicated as
` grows since the radius of the starting point
p(1; 1, `) is closer to 2. I will give an explana-
tion for ` equal to 1 and 2.

As entry point p(1; 1, 1) has radius greater
than 2, thus the point p′(1; 1, 1) ∈ L−1 ⊂W has
radius r1 greater than 2. We have two possibil-
ities, either the cylinder {r = r1} intersects the
insertions or it does not. Assume that it does
not as in Figure 1.12. Then the entire Wilson
orbit of p′(1; 1, 1) is contained in W′ and hence
the image under τ of the W-orbit of p′(1; 1, 1)
is a segment of K-orbit joining p(1; 1, 1) ∈ E1
to p(1; 1, 1) ∈ S1.

From p(1; 1, 1) the orbit S1 makes one turn around the cylinder {r = 2} and it intersects E1
at the point p(1; 1, 2). Proposition 1.3.1 implies that p(1; 1, 2) ∈ S1 belongs to the orbit S1. I will
now explain how to fill the gap between these two points. The Radius Inequality (K8) implies that
r2 = r(p(1; 1, 2)) > 2. We have the same two possibilities as above, either the cylinder {r = r2}
intersects the insertions or it does not (here I will assume that the insertions are symmetric in the
sense that either the cylinder intersects both insertions or none). The latter case is the simple one



1.3. THE MINIMAL SET UNDER THE GENERIC HYPOTHESES 25

Figure 1.13: The intersection of the orbit of p′(1; 1, 2) with the cylinder {r = r2}

as treated for p(1; 1, 1). Now assume that the cylinder {r = r2} intersects both insertions and also
that the W-orbit of p′(1; 1, 2) intersects both insertions, as in Figure 1.13.

The intersection of theW-orbit of p′(1; 1, 2) with W′ is a collection ofW-arcs between transition
points, contained in the cylinder {r = r2}. The second part of Proposition 1.3.1 means that the
image under τ of all these arcs is contained in S1 and in the same order. Let us call these arcs Aj
for 1 ≤ j ≤ n for some finite n (n is finite since the W-orbit of p′(1; 1, 2) is finite, in Figure 1.13
we have n = 5).

Clearly the image under τ of the arcs above does not completely fill the gap between p(1; 1, 2)
and p(1; 1, 2), since it is not a connected set. To do so, we need to understand what happens
between the endpoint of an arc Aj and the starting point of the following arc Aj+1.

Figure 1.14: The intersection of the orbit of
p′(1; 1, 2; 1, 1) with the cylinder {r = r2,1}

Let us follow the orbit from p(1; 1, 2) =
τ(p′(1; 1, 2)). We start by the image under τ of
the first arc A1. The assumptions imply that
the endpoint of this arc is a point in E1 that we
denote by p(1; 1, 2; 1, 1). Let p′(1; 1, 2; 1, 1) ∈
L−1 be the corresponding point. Observe that
the Radius Inequality (K8) implies that r2 <
r2,1 = r(p(1; 1, 2; 1, 1)). Again there are two
possibilities: either the cylinder {r = r2,1} in-
tersects the insertions or not. If not, the image
under τ of theW-orbit p′(1; 1, 2; 1, 1) goes from
p(1; 1, 2; 1, 1) to the facing point p(1; 1, 2; 1, 1) ∈
S1 joining A1 to A2. If yes we have to iterate
the description. Since each time that the orbit
intersects a secondary entry point the radius
grows, eventually it gets to a cylinder that does

not intersects any of the insertions. So assume, to make the discussion shorter, that we are in the
second case, as in Figure 1.14.

Recapitulating, under the assumptions made, we have

p(1; 1, 1) τ(W−orbit)−−−−−−−→ p(1; 1, 1) W−arc−−−−→ p(1; 1, 2) τ(A1)−−−−→ p(1; 1, 2; 1, 1) τ(W−orbit)−−−−−−−→ p(1; 1, 2; 1, 1),
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where p(1; 1, 2; 1, 1) ∈ S1 is the starting point of the arc τ(A2) and it is facing p(1; 1, 2; 1, 1) by
condition (K4).

Now τ(A2) has its starting point in S1 and its endpoint either in E1 or in E2 (in Figure 1.12
the endpoint of A2 is in L−1 with τ(L−1 ) = E1). Repeating the above description we fill in the
orbit segment between the endpoint of τ(A2) and the starting point of τ(A3). We can thus join
the collection of arcs τ(Aj) and find the K-orbit segment from p(1; 1, 1) to p(1; 1, 1).

The above description applies without any significant changes to the backward orbit of O′1.
Indeed the backward orbit of a point in O′1 intersects L+

1 in the special point p(1) facing p(1) as
in Figure 1.11. This point is identified with p′(1) ∈ L+

1 that has radius 2 and the intersection
of the backward W-orbit of this point with W′ is mapped under τ to parts of S1. Since this W-
orbit accumulates in backward time on O2, then τ(O′2) is contained in the α-limit of S1 and thus
S2 ⊂ S1. Also, recursively, in the backward direction, we can fill the gaps to describe the entire
orbit.

This is a first explanation of how the orbit S1 is composed. In the rest of this section, always
add “the image under τ” to the sets considered. I will explain basically the same construction of
S1, but in a new set of diagrams. For this we consider the level sets of S1. We need the following
result (see Proposition 10.1 in [P5]).

PROPOSITION 1.3.3. For i = 1, 2, there is a well-defined level function

n0 : S1 ∪ S2 → N = {0, 1, 2, . . .}, (1.9)

such that n−1
0 (0) = τ(O′1 ∪ O′2).

Figure 1.15: Level 0 and 1 of S1 with gaps

The level zero of n0|S1 is the arc τ(O′1) with
endpoints p(1) and p(1), represented by the
horizontal segments in Figure 1.15. The level
one is composed by (the image under τ of) two
semi-infinite W-orbits: the forward W-orbit of
p′(1) and the backwardW-orbit of p′(1), repre-
sented by the two vertical lines in Figure 1.15.
Observe that the vertical lines are not contin-
uous: the dotted parts correspond to the arcs
that are not in the intersection of these twoW-
orbits with W′. In other words, in the left hand
side vertical line the continuous segments cor-
respond (from top to bottom) to the arcs from
p(1) to p(1; 1, 1), from p(1; 1, 1) to p(1; 1, 2),
from p(1; 1, 2) to p(1; 1, 3) and in general from
p(1; 1, `) to p(1; 1, ` + 1) for ` ≥ 1 and un-
bounded. The right hand side vertical line is
the backward orbit of p(1) that repeatedly in-
tersects the second insertion.

Let me point out one aspect in this new
set of flattened diagrams. In the plug K the
left hand side vertical continuous segments in
Figure 1.15 correspond to arcs that accumulate

on the horizontal segment τ(O′1), while the right hand side vertical continuous segments accumulate
on τ(O′2).
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The level 2 of S1 is composed by all the finite W-orbits starting at the intersections of the two
level 1 orbits with E1 and E2. Thus by (the image under τ of) a countable collection of finite
W-orbits. Observe that since these are finite Wilson orbits, we just need to consider the starting

Figure 1.16: Level 0, 1 and 2 of S1 with gaps

point in the entrance of the insertions E1 ∪ E2, Proposition 1.3.1 implies that they will contain
the facing points in the exit of the insertions S1 ∪ S2. I represent in Figure 1.16 these orbits as
the border of horizontal tongues, because of their shape inside W (as in Figures 1.2 and 1.3).
Again the dotted parts are the segments that are not in the intersection with W′ and thus do not
belong to S1. As we travel downwards along the two level one W-orbits the tongues that appear
at level 2 get longer, since the radius of their starting point gets closer to 2 and thus eventually
they intersect the insertions. In Figure 1.16 (and Figure 1.17 below), the assumption is that the
W-orbit of p′(1; 1, 1) does not intersects the insertions and theW-orbit of p′(1; 1, 2) does intersects
the insertions. Then the intersection of the W-orbit of p′(1; 1, 2) with W′ is composed of the arcs
Aj for 1 ≤ j ≤ k and k finite. In Figure 1.16 the value of k is 3.

At any level n greater than 2, we consider the W-orbits of the points in the intersection of the
W-orbits at level n− 1 with the entry regions E1 and E2. Recursively we obtain the diagram, in
Figure 1.17, representing levels 0 to 4. This situation repeats again at any level, adding to the
complexity of the diagram in Figure 1.17.

Observe that this set of diagrams explain the concatenation of pieces of Wilson orbits that form
the special orbit S1, but do not reflect how the orbit is embedded in K. The embedding is quite
complicated by the nature of the maps σi, for i = 1, 2. In particular, the width of the tongues
that appear is roughly the same and equals the width of the Reeb cylinder, as a consequence of
the shape of Wilson orbits. I will come back to this point in Section 1.3.2.

In Figure 1.17, I marked a set of points: every finite W-orbit intersects the annulus {z = 0}
at a single point. Condition (W1) implies that at this point the vector field W is vertical and by
condition (K3) this point is in W′ (since all the finite Wilson orbits we are considering have radius
greater than 2). For a finite W-orbit we will call this point its tip.

Consider thus the set of tips contained in S1 and their lifts to W′. We obtain a countable set
of points in the annulus {z = 0}, whose radii are arbitrarily close to 2. Hence the closed set S1
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Figure 1.17: The tree diagram for S1 with marked tips

contains points in τ(R′) the image of the Reeb cylinder in K.

We finish this section pointing out some conclusions:
— Si ⊂ Sj for all i, j = 1, 2, thus S1 = S2 = Σ is the minimal set.
— Σ contains points in τ(R′).

We are faced with a dichotomy: either the tips in S1 ∪S2 accumulate on a Cantor set in the circle
{z = 0, r = 2} contained in τ(R′) or they accumulate on the whole circle. Theorem 17.1 in [P5]
states that under the generic hypotheses (see Remark 1.2.1 and Section 1.6), the tips accumulate
on the whole circle, implying that Σ has topological dimension 2. A description of this set, more
precisely a dense dimension 2 subset of Σ is given in the following section. We do not know if there
is a smooth Kuperberg plug for which the minimal set has dimension 1. In the piecewise linear
category, G. Kuperberg and K. Kuperberg [KK96] construct a plug with a 1-dimensional minimal
set.

1.3.2 M0, a dense subset of the minimal set
In this section I describe a dense dimension 2 subset of Σ for a generic Kuperberg flow, that

is denoted by M0. The set M0 is obtained by flowing inside K the notched Reeb cylinder τ(R′)
and the description is very similar to the decomposition of S1 by levels explained in Figures 1.15,
1.16 and 1.17. Before starting, I need to introduce two types of surfaces in W: finite and infinite
propellers.

For a moment, we will work in the Wilson plug. Consider a curve γ in the entry region ∂−h W
of the plug. We parametrize it as γ(t) with t ∈ [0, 1] and we assume that:

— r(γ(0)) = 3;
— r(γ(1)) < r(γ(t)) for t ∈ [0, 1);
— r(γ(1)) ≥ 2.

The propeller Pγ is obtained by flowing γ inside the Wilson plug. In the following figures we
assume that γ is transverse to the cylinders {r = cst.}, just to make the figures simpler.
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Figure 1.18: Finite propeller inside W

If r(γ(1)) > 2 this is a simple game. Indeed
the W-orbit of every point in γ is finite, as it
exits the plug in some finite time. The finite
propeller Pγ is the compact surface composed
by the finite orbits of the points γ(t) for t ∈
[0, 1]. It has the shape of a tongue that turns
in the positive θ-direction as in Figure 1.18.
Its boundary is composed by γ in the entry
region of the plug, the facing curve γ in the
exit region of the plug, the orbit of γ(0) that is
just a vertical segment in the vertical boundary
of the plug and the orbit of γ(1). Observe that
the orbit of γ(1) gets longer as the radius of
γ(1) tends to 2.

If r(γ(1)) = 2 it is not so simple since the
forward orbit of γ(1) is trapped. We consider
in this case the forward orbits of the points in

the curve γ and the backward orbits of the points in the facing curve γ, for all times for which the
orbits are defined. Equivalently, we consider the union of finite propellers Pγs for s ∈ [0, 1) and
γs ⊂ γ the curve obtained as γ([0, s]) and the two semi-infinite orbits: the forward orbit of γ(1)
and the backward orbit of the facing point γ(1). The infinite propeller Pγ is an open surface that
turns infinitely many times around the Reeb cylinder. Observe that we do not consider its closure
that consists of the union of Pγ and the Reeb cylinder R.

Figure 1.19: R′ ⊂W

Propellers are the blocks to build the sur-
face M0 in the Kuperberg plug. To describe
M0 we divide it by levels, Proposition 10.1 from
[P5] states:

PROPOSITION 1.3.4. There is a well-
defined level function

n0 : M0 → N = {0, 1, 2, . . .}, (1.10)

such that n−1
0 (0) = τ(R′).

Let Mk
0 ⊂M0 be the set of points at level at

must k, I describe next these sets for k = 0, 1, 2.

The level zero set is the image under τ of
the notched Reeb cylinder R′ = R∩W′. In W′
it is easy to visualize it (as in Figure 1.19), in K
it is a little bit more difficult. Figure 1.20 is an
attempt to represent this set as it is embedded

in K ⊂ R3. What the map σ1 does to this cylinder is to choose a vertical segment in the cylinder
({θ = θ1} in condition (K7)), turns it to make it tangent to part of the boundary of the cylinder
that got erased by the lower notch. Analogously, σ2 chooses a vertical segment in the cylinder
({θ = θ2} in condition (K7)), turns it to make it tangent to part of the boundary of the cylinder
that got erased by the upper notch. The directions of the flow force the two turns to be in opposite
directions.

Observe that R′ ∩ L−1 is a vertical line that we call the curve γ (as in Figure 1.19) and let
γ′ be the corresponding curve in L−1 (as in Figure 1.21). That is σ1(γ′) = γ and τ(γ′) = τ(γ).
Analogously we have a curve λ ∈ L−2 and λ′ ∈ L−2 .
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Figure 1.20: τ(R′) ⊂ K

Figure 1.21: γ′ in L−1

Figure 1.22: Flattened M1
0

Since L−1 and L−2 are subsets of the entry
region of W, consider the two infinite propellers
Pγ ⊂W generated by the curve γ′ and Pλ gen-
erated by λ′ in W. The set M1

0 of points with
level at most one consists of the image under τ
of the Reeb cylinder and the two infinite pro-
pellers Pγ and Pλ. Each of these propellers
intersects infinitely many times the insertions,
thus P ′γ = Pγ ∩W′ and P ′λ = Pλ ∩W′ have
infinitely many notches each.

In analogy with Figure 1.15, Figure 1.22 is a
flattened diagram of M1

0. The horizontal band
is the notched Reeb cylinder R′, whose lower
boundary is O′1 and whose upper boundary is
O′2, union the boundaries of the notches. The
two vertical bands correspond to P ′γ (the lower
one) and P ′λ (the upper one), parts of their
boundaries are contained in S1 and S2 respec-
tively. The set M1

0 in K is embedded differently,
since the two infinite propellers turn around the
Reeb cylinder that is itself embedded as in Fig-
ure 1.20. I wont attempt to draw an image of
this.

The set M2
0 consists of M1

0 union the image
under τ of a countable set of finite propellers.
Indeed each notch in P ′γ or P ′λ has to be filled
with a propeller. The intersection of τ(P ′γ) with
Ei for i = 1, 2 consist of a countable family
of curves, that by the Radius Inequality (K8)
are contained in the set {r > 2}. Each one
of these curves in E1 corresponds to a point
p(1; 1, `) for ` ≥ 1 and unbounded, the first two
curves are illustrated in Figure 1.23. Each one
of these curves corresponds to a curve in L−i , for
i = 1, 2, that generates a finite propeller. The
image under τ of these propellers is contained
in M2

0. Analogously for τ(P ′λ). Each of these
propellers adds a finite tongue to Figure 1.22,
that gets longer as we travel along the level one
infinite propellers. The finite propellers might
have notches, since if they are long enough they
will intersect the insertions. The tongues at
level 1 are the horizontal tongues attached to
the flattened infinite propellers in Figure 1.24
(where just τ(P ′γ) and some of its ramifications
are illustrated).

The level three set M3
0 is obtained from M2

0
by filling the notches of the level 2 propellers
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with finite propellers. Analogously Mk
0 is obtained from Mk−1

0 by filling the notches of the level
k − 1 propellers with finite propellers. This process continues and gives the surface M0.

Under the generic hypotheses, the closure of M0 is the minimal set Σ. This means that the
“boundary” of M0 that consists of the orbits S1 and S2 is dense in its interior. In Chapter 18 of
[P5] we prove that Σ = M0 is a zippered lamination, roughly meaning that the interior has the
structure of a lamination (transversely Cantor) and the boundary is dense in the interior of the
leaves. The definitions of interior and boundary for Σ are made precise in [P5]. I summarize the
description in the last two sections with the following statement.

Figure 1.23: Curves in τ(P ′γ) ∩ E1

THEOREM 1.3.5 (Theorems 17.1 and 19.1 of [P5]). For a generic Kuperberg flow M0 = Σ is
the minimal set of the plug. The set Σ has topological dimension 2 and is stratified:

— it has an open 2-dimensional subset that forms a lamination with open leaves;
— it has an open 1-dimensional subset that is dense in the previous set.

REMARK 1.3.6. Observe from Figure 1.24 that M0 has the structure of a tree whose branches
correspond to the propellers and can be rooted by the choice of a point in τ(R′). The growth of this
tree is then the growth of the leaves in the lamination of Theorem 1.3.5 and is studied in Chapter
14 of [P5]. The growth is closely related to the growth of words in the pseudo?group G∗K , introduced
in the next section.

1.4 Pseudogroups
A novel tool introduced in [P5] that is used to study the dynamics of the flow, are the pseu-

dogroups and pseudo?group acting on an almost transverse rectangle. In a pseudo?group we
consider only compositions of a (symmetric) generating set, but we do not ask for the condition
on union of maps to be in the pseudo?group, as for pseudogroups. This section corresponds to
parts of Chapter 9 of [P5], where all details and proofs can be consulted. I introduce here the main
maps, that arise in the discussions in Sections 1.4.2 and 1.5 related to entropy.

In the plugs W and K we can consider the rectangles {θ = cst.}, one of them in K is depicted
in Figure 1.25.
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Figure 1.24: Flattened M0

Figure 1.25: A rectangle R0 in the Kuperberg Plug K
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We must be careful to chose a value θ0 so that the rectangle R0 = {θ = θ0} ⊂ W does not
intersect either Di nor Di for i = 1 and 2. Let R0 be the corresponding rectangle in K, we use the
same notation since τ is bijective when restricted to such a rectangle. I will ask one more thing
to this rectangle, that it lies between the two insertions as in Figure 1.25, so that from the upper
part (z > 0) points flow to the upper insertion and from the bottom part (z < 0) points flow to
the lower insertion.

Observe that, either in W or in K, the vector field is tangent to the rectangle near the boundary
and also at the line {z = 0}. Let ωi ∈ R0 be the intersection of the periodic orbit Oi with R0
when considering the rectangle in W or the intersection of the arc O′i with R0 when considering
the rectangle in K, for i = 1, 2.

A finite W-orbit, that is an orbit going from the entrance to the exit of the plug W, if it
intersects R0, it does so in a symmetric pattern with respect to the line {z = 0}. In this case, the
construction of the flow implies that the intersection consists of a finite sequence of points contained
in the vertical line of constant radius (the value of the radius is determined by the orbit). We have
to consider two situations, either the orbit is tangent to R0 at the line {z = 0} or not, in both
situations the points in the intersection of the orbit with R0 are paired: for each point (r,−z) in
the intersection, (r, z) is also in the intersection (for z 6= 0).

We can define a first return map Ψ̂ for the flow Ψt, that will have discontinuities (I refer to
Chapter 9 of [P5] for a complete discussion of the discontinuities and other properties of this map).
The domain of Ψ̂ is the set:

Dom(Ψ̂) ≡ {ξ ∈ R0 | ∃ t > 0 such that Ψt(ξ) ∈ R0 and Ψs(ξ) /∈ R0 for 0 < s < t} . (1.11)

The radius function is constant along the orbits of the Wilson flow, so that r(Ψ̂(ξ)) = r(ξ) for all
ξ ∈ Dom(Ψ̂). Also, note that the points ωi for i = 1, 2 are fixed-points for Ψ̂ and for all other
points ξ ∈ R0 with ξ 6= ωi, points climb up that is z(Ψ̂(ξ)) > z(ξ).

Here I will consider just two types of first return maps for the flow Φt, instead of considering the
general first return map that is too complicated for a succinct discussion. For i = 1, 2, let Uφ+

i
⊂ R0

be the subset consisting of points ξ such that the K-arc [ξ, η]K contains a single transition point
x ∈ Ei and its intersection with R0 is only at the endpoints ξ and η. Note that for such ξ, we see
from Figures 1.10 and 1.25, that its K-orbit exits the surface Ei as theW-orbit of a point x′ ∈ L−i
with τ(x′) = x, flowing upwards from ∂−h W until it intersects R0 again. If the K-orbit of ξ enters
Ei but exits through Si before crossing R0, then it is not considered to be in the set Uφ+

i
, since its

orbits contains more than one transition point before returning to R0. Let φ+
i : Uφ+

i
→ Vφ+

i
. As

the K-arcs [ξ, η]K defining φ+
i do not intersect A, the restricted map φ+

i is continuous. The sets
Uφ+

i
and Vφ+

i
are sketched in the left hand side illustration in Figure 1.26.

For i = 1, 2, let Uφ−
i
⊂ R0 be the subset of R0 consisting of points ξ such that the K-arc [ξ, η]K

contains a single transition point x ∈ Si and its intersection with R0 is only at the endpoints ξ and
η. Then let φ−i : Uφ−

i
→ Vφ−

i
. Again, as the K-arcs [ξ, η]K defining the maps φ−i do not intersect

A, the restricted map φ−i is continuous. The sets Uφ−
i

and Vφ−
i

are sketched in the right hand side
illustration in Figure 1.26.

We comment on some details of the regions in Figures 1.26 (a) and (b). For the map φ+
i ,

i = 1, 2, the domain contains a neighborhood of the point ωi. Flowing the domain Uφ+
i

forward to
Ei and then applying the map σ−1

i we obtain a set Ũφ+
i
⊂ L−i containing points with r-coordinate

equal to 2. Observe that the Radius Inequality implies that the maximum radius of points in Ũφ+
i

is bigger than the maximum radius of points in Uφ+
i

. The first intersection of the W-orbits of
points in Ũφ+

i
with R0 is thus a region containing points with r-coordinate equal to 2 and since
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(a) Domains of φ+
1 , φ

+
2 (b) Domains of φ−

1 , φ
−
2

Figure 1.26: Domains and ranges for the maps {φ+
1 , φ

+
2 , φ

−
1 , φ

−
2 }

these points climb slower than other points, the region folds at {r = 2}. Similar considerations
apply to the maps φ−i for i = 1, 2.

Observe that each map φ+
i for i = 1, 2 corresponds to a flow through a transition point which

increases the level function nx(t) by +1, so the inverse of φ+
i decreases the level function by −1.

The map φ−i decreases the level by −1 and its inverse increases the level by +1.
Next, define the subset of R0 contained in the domain of the Wilson map Ψ̂:

R∗0 = {(r, π, z) ∈ Dom(Ψ̂) | r ≥ 2} \ {ω1, ω2}

Proposition 1.3.1 implies (but it is not completely trivial) that there is a subset Uψ of R0 that
contains R∗0 such that the restriction of Ψ̂ to Uψ is a map representing part of the dynamics of
the Kuperberg flow: if Φ̂ is the first return map to R0 of the Kuperberg flow, then ψ = Ψ̂|Uψ is a
power of Φ̂ (I refer to Lemma 9.6 in [P5]).

We have established the existence of five special elements, {φ+
1 , φ

−
1 , φ

+
2 , φ

−
2 , ψ}, each of which

reflects aspects of the dynamics of the flow Φt.

DEFINITION 1.4.1. Let G∗K denote the collection of all maps formed by compositions of the
maps {Id, φ+

1 , φ
−
1 , φ

+
2 , φ

−
2 , ψ} and their restrictions to open subsets in their domains.

Note that G∗K is not necessarily a pseudogroup since it might not be true that φ : U → V is a
homeomorphism in G∗K whenever there is a cover of U by open sets {Ua}a∈I such that φ|Ua ∈ G∗K for
all a ∈ I. The reason for not imposing this condition, is that many dynamical properties for flows
admit corresponding versions for local maps defined by compositions of maps in this generating
set, but not if we allow for arbitrary unions as for pseudogroups.

The importance of G∗K is that its orbits are syndetic in the orbits of the flow. This property
allowed us to estimate the growth of the tree-like surface M0 (Figure 1.24), give explicit compu-
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tations for the entropy of the flow and the laminated entropy of M = M0 (I refer to Chapters 14,
20, 21 and 22 of [P5]).

1.4.1 Shape of the minimal set
In this section, I present results in [P5] regarding topological properties of the minimal set Σ

for a generic Kuperberg flow. The space Σ is compact and connected, so is a continuum. The
natural framework for the study of topological properties of spaces such as Σ is using shape theory.
For example, Krystyna Kuperberg posed the question whether Σ has stable shape? Stable shape
is defined below and is about the nicest property one can expect for an exceptional minimal set.
Theorem 1.4.5 below shows that Σ does not have stable shape. The proof of this result follows
from the equality Σ = M0 for a generic flow and the structure theory developed in Section 1.3.2.
It is a constructive proof: we describe in Chapter 23 of [P5] a system of generators for the first
homology groups of a shape approximation (an example of such a generator is in Figure 1.27).

Shape theory studies the topological properties of a topological space Z using a form of Čech
homology theory. The definition of shape for a space Z embedded in the Hilbert cube was in-
troduced by Borsuk [Bor68, Bor75]. We give a brief definition of the shape of a compactum Z
embedded in a metric space X, following the work of Mardešić and Segal [MS82].

DEFINITION 1.4.2. A sequence U = {U` | ` = 1, 2, . . .} is called a shape approximation of
Z ⊂ X if:

1. each U` is an open neighborhood of Z in X which is homotopy equivalent to a compact
polyhedron;

2. U`+1 ⊂ U` for ` ≥ 1 and their closures satisfy
⋂
`≥1

U ` = Z.

Suppose that X,X ′ are connected manifolds, that U is a shape approximation for the compact
subset Z ⊂ X and U′ is a shape approximation for the compact subset Z′ ⊂ X ′. The compacta
Z,Z′ are said to have the same shape if the following conditions are satisfied:

1. There is an order-preserving map φ : Z → Z and for each n ≥ 1 a continuous map
fn : Uφ(n) → U ′n such that for any pair n ≤ m, the restriction fn|Uφ(m) is homotopic to
fm as maps from Uφ(m) to U ′n.

2. There is an order-preserving map ψ : Z → Z and for each n ≥ 1 a continuous map
gn : U ′ψ(n) → Un such that for any pair n ≤ m, the restriction gn|U ′ψ(m) is homotopic
to gm as maps from U ′ψ(m) to Un.

3. For each n ≥ 1, there exists m ≥ max{n, φ ◦ψ(n)} such that the restriction of gn ◦ fψ(n) to
Um is homotopic to the inclusion as maps from Um to Un.

4. For each n ≥ 1, there exists m ≥ max{n, ψ ◦ φ(n)} such that the restriction of fn ◦ gφ(n) to
U ′m is homotopic to the inclusion as maps from U ′m to U ′n.

DEFINITION 1.4.3. Let Z ⊂ X be a compact subset of a connected manifold X. Then the
shape of Z is defined to be the equivalence class of a shape approximation of Z as above.

It is a basic fact of shape theory that this definition does not depend upon the choice of shape
approximations and that two homotopic compacta have the same shape.
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Figure 1.27: A pseudo-orbit as generator of the homology of the shape approximation

DEFINITION 1.4.4. A compactum Z has stable shape if it is shape equivalent to a finite
polyhedron. That is, there exists a shape approximation U such that each inclusion ι : U`+1 ↪→ U`
induces a homotopy equivalence and U1 has the homotopy type of a finite polyhedron.

Some examples of spaces with stable shape are compact manifolds and more generally finite
CW -complexes. A less obvious example is the minimal set for a Denjoy flow on T2 whose shape
is equivalent to the wedge of two circles. In particular, the minimal sets of the aperiodic C1-
flow constructed by Schweitzer have stable shape, [Sch74]. The main result concerning generic
Kuperberg flows is the following.

THEOREM 1.4.5. The minimal set Σ of a generic Kuperberg flow does not have stable shape.

Another important definition in shape theory is the following.

DEFINITION 1.4.6. A compactum Z ⊂ X is said to be movable in X if for every neighborhood
U of Z, there exists a neighborhood U0 ⊂ U of Z such that, for every neighborhood W ⊂ U0 of Z,
there is a continuous map ϕ : U0× [0, 1]→ U satisfying the condition ϕ(x, 0) = x and ϕ(x, 1) ∈W
for every point x ∈ U0.

The notion of a movable compactum was introduced by Borsuk [Bor69], as a generalization of
spaces having the shape of an absolute neighborhood retract (ANR’s) and is an invariant of the
shape of Z. It is a standard result that a compactum Z with stable shape is movable. The movable
property distinguishes between the shape of a Hawaiian earring and a Vietoris solenoid; the former
is movable and the latter is not.

Showing the movable property for a space requires the construction of a homotopy retract ϕ
with the properties stated in the definition, whose existence can be difficult to achieve in practice.
There is an alternate condition on homology groups, weaker than the movable condition, which is
much easier to check.

PROPOSITION 1.4.7. Let Z be a movable compacta with shape approximation U. Then the
homology groups satisfy the Mittag-Leffler Condition: For all ` ≥ 1, there exists p ≥ ` such that
for any q ≥ p, the maps on homology groups for m ≥ 1 induced by the inclusion maps satisfy

Image {Hm(Up;Z)→ Hm(U`;Z)} = Image {Hm(Uq;Z)→ Hm(U`;Z)} . (1.12)
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The above form of the Mittag-Leffler condition can be used to show that the Vietoris solenoid
formed from the inverse limit of coverings of the circle is not movable.

I can now state an additional shape property for the minimal set of a generic Kuperberg flow.

THEOREM 1.4.8. Let Σ be the minimal set for a generic Kuperberg flow. Then the Mittag-
Leffler condition for homology groups is satisfied. That is, given a shape approximation U = {U`}
for Σ, then for any ` ≥ 1 there exists p > ` such that for any q ≥ p

Image{H1(Up;Z)→ H1(U`;Z)} = Image{H1(Uq;Z)→ H1(U`;Z)}. (1.13)

The strategy for the proof of Theorem 1.4.5 is to construct a shape approximation U for M0 so
that the conditions of Proposition 1.4.9 below are satisfied. This uses the properties of the level
function n0 defined in Proposition 1.3.4 and the double propellers introduced in Chapter 13 of [P5].
Double propellers provide a tool to build a set of neighborhoods of M0 in which only propellers up
to a certain fixed level can be distinguished. This provides a set of neighborhoods with sufficiently
nice behavior so that we are able to exhibit a generating set of the first homology groups of the
shape approximation, one is sketched in Figure 1.27 (the dotted curves represent small jumps in
E1 ∪ E2 ∪ S1 ∪ S2). The proof of Theorem 1.4.8 follows from the description of the homology
groups.

PROPOSITION 1.4.9. Let U = {U` | ` = 1, 2, . . .} be a shape approximation of Z ⊂ X, such
that for k > 0

— the rank of H1(Uk;Z) ≥ 2k,
— for all ` > k the rank of the image H1(U`;Z)→ H1(Uk;Z) is 3.

Assume that for any shape approximation of V = {V` | ` = 1, 2, . . .} the rank of the homology
groups H1(V`;Z) is strictly greater than 3, then Z does not have stable shape.

To finish this section I will state two conjectures, the first one about the minimal set of the
Kuperberg plug and the second one about general minimal sets.

CONJECTURE 1.4.10. For a generic Kuperberg flow the minimal set is movable.

A proof needs a better description of the generators of the homology groups of a shape ap-
proximation, maybe changing the shape approximation. The second conjecture is motivated by
the fact that the number of generators of the first homology groups of the shape approximation
of M0 proposed in [P5] grows exponentially with respect to the levels distinguished by the shape
approximation and then also grows exponentially with respect to length. These generators are
ε pseudo-orbits of the flow (that is pieces of orbits joined together by jumps of size bounded by ε).

CONJECTURE 1.4.11. If an exceptional minimal set of a flow has unstable shape then the
rank of the first homology groups of a shape approximation grows exponentially.

In [BS90], the growth of the number of separated pseudo-orbits is related to the topological
entropy of a flow. Thus if the conjecture is true and these generators can be interpreted as pseudo-
orbits, a relation between shape and entropy type invariants could be explored.

1.4.2 Entropy of the minimal set
As mentioned in the introduction to this chapter, as a consequence of Katok’s theorem on

C2-flows on 3-manifolds [Kat80], the topological entropy of a Kuperberg flow is zero. Indeed,
Katok’s theorem gives an upper bound of the topological entropy by the growth of the number
of periodic orbits with respect to the period. Hence any aperiodic flow has topological entropy
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zero. In [P5] we use G∗K , introduced in Definition 1.4.1, to make an explicit computation of the
topological entropy. This computation revealed chaotic behavior for the flow, but such that it
evolves at a very slow rate and thus it does not result in positive topological entropy. We proved
that, under some extra hypotheses, such generic Kuperberg flows have positive slow entropy and
that the rates of chaotic behavior grow at a precise subexponential, but non-polynomial rate, as
discussed in Chapter 21 of [P5].

To make the discussion more precise, let me give the definitions.
Define the entropy of the flow Φt using a variation of the Bowen formulation of topological

entropy [Bow71] for a flow on a compact metric space (X, dX). The definition we adopt is symmetric
in the role of the time variable t. Two points p, q ∈ X are said to be (ϕt, T, ε)-separated if

dX(ϕt(p), ϕt(q)) > ε for some − T ≤ t ≤ T .

A set E ⊂ X is (ϕt, T, ε)-separated if all pairs of distinct points in E are (ϕt, T, ε)-separated.
Let s(ϕt, T, ε) be the maximal cardinality of a (ϕt, T, ε)-separated set in X. Then the topological
entropy is defined by

htop(ϕt) = 1
2 · limε→0

{
lim sup
T→∞

1
T

log(s(ϕt, T, ε))
}
. (1.14)

Moreover, for a compact space X, the entropy htop(ϕt) is independent of the choice of metric dX .
A relative form of the topological entropy for a flow ϕt can be defined for any subset Y ⊂ X,

by requiring that the collection of distinct (ϕt, T, ε)-separated points used in the definition (1.14)
be contained in Y . The restricted topological entropy htop(ϕt|Y ) is bounded above by htop(ϕt).

I recall now the definition of entropy for pseudo?groups as introduced by Ghys, Langevin and
Walzcak in [GLW88]. Let (X, dX) be a compact metric space and

G(1)
X = {ϕ0 = Id, ϕ1, ϕ

−1
1 , . . . , ϕk, ϕ

−1
k }

be a set of local homeomorphisms of X, with their inverses. Let GX denote the pseudogroup
generated by the collection of maps G(1)

X . Let G∗X ⊂ GX denote the pseudo?group generated by the
compositions of maps in G(1)

X (as remarked after Definition 1.4.1, this might not be a pseudogroup).
Let G(n)

X ⊂ G∗X be the collection of maps defined by the restrictions of compositions of at most n
elements of G(1)

X .
For ε > 0, say that x, y ∈ X are (G∗X , n, ε)-separated if there exists ϕ ∈ G(n)

X such that x, y are
in the domain of ϕ and dX(ϕ(x), ϕ(y)) > ε. In particular, if the identity map is the only element
of G(n)

X which contains both x and y in its domain, then they are (G∗X , n, ε)-separated if and only
if dX(x, y) > ε.

A finite set E ⊂ X is said to be (G∗X , n, ε)-separated if each distinct pair x, y ∈ E is (G∗X , n, ε)-
separated. Let s(G∗X , n, ε) be the maximal cardinality of a (G∗X , n, ε)-separated subset of X.

Define the entropy of G∗X by:

hGLW (G∗X) = lim
ε→0

{
lim sup
n→∞

1
n

ln(s(G∗X , n, ε))
}
. (1.15)

The property 0 < hGLW (G∗X) <∞ is independent of the choice of metric on X.

The third entropy type invariant I want to introduce is the slow entropy of a map, first defined in
the works of Katok and Thouvenot [KT97]. We adapted this idea for the action of a pseudo?group
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G∗X . For 0 < α < 1, define the α-entropy of G∗X , or just the slow entropy, by

hαGLW (G∗X) = lim
ε→0

{
lim sup
n→∞

1
nα

ln(s(G∗X , n, ε))
}

(1.16)

where 0 ≤ hαGLW (G∗X) ≤ ∞. If hαGLW (G∗X) > 0 and 0 < β < α, then hβGLW (G∗X) =∞. Analogously,
one can define the slow entropy of a flow, by changing 1/T for 1/Tα in (1.14).

The strategy in [P5] is to relate the flow entropy to the entropy of the pseudo?group G∗K . Esti-
mating the entropy of G∗K is equivalent to understanding how the tree M0 grows (see Remark 1.3.6).
This is done by estimating the number of admissible words in the generators {Id, φ+

1 , φ
−
1 , φ

+
2 , φ

−
2 , ψ}

and their inverses (I refer to Chapter 14 in [P5]). We prove that, for a generic Kuperberg flow, the
number of words is a subexponential function of the length and thus the entropy of G∗K is zero.

The computation suggests that there are exponentially many separated points, but the time
that the flow or the pseudo?group take to separate them is very long. We thus decided to study
the slow-entropy of the holonomy pseudo?group of the lamination that we denote by GM. I won’t
go into the details here, but this pseudo?group is generated by {Id, φ+

1 , φ
+
2 , ψ} and their inverses.

It turned out that to obtain that hαGLW (G∗M) > 0 for α = 1/2, we needed an extra hypothesis on
the radius function defined by the insertions, that we baptized as slow-growth. Theorem 21.10 of
[P5] states

THEOREM 1.4.12. Let Φt be a generic Kuperberg flow. If the insertion maps σj have “slow
growth”, then h

1/2
GLW (G∗M) > 0.

That the slow entropy of the lamination is positive implies (via a computation similar to the
one carried out in Chapter 20 of [P5]), that the slow entropy of the flow Φt is positive.

The words in the generators {Id, φ+
1 , φ

+
2 , ψ} used to prove Theorem 1.4.12 correspond to an

exponentially growing family of loops that appear as generators of the first homology groups in
the shape approximation used to prove Theorem 1.4.5. These two properties of Σ look very much
a like. I wonder if there is a general relation between the shape of a minimal set and the (slow)
entropy of the flow.

CONJECTURE 1.4.13. Assume that a flow of a closed 3-manifold M has an exceptional min-
imal set Σ whose shape is not stable, then the slow entropy of the flow is positive.

The assumption that the shape of Σ is not stable implies that the topological type of its
shape approximations keep changing as they become increasingly fine, while the assumption that
every orbit of the flow in Σ is dense implies a type of recurrence for the topology of the shape
approximations. The problem is then asking if these assumptions are sufficient to guarantee that
the topological type of the approximations exhibit a form of self-similarity in their topological type,
which implies that there are exponential separation of the points in the orbit of the flow, at some
possibly subexponential. This is closely related to Conjecture 1.4.11.

1.5 Positive entropy in a C∞-neighborhood of a generic
Kuperberg plug

As remarked above, the topological entropy of a Kuperberg is zero, but the computations in
[P5] revealed some chaotic behavior. In [P7] we study a C∞-perturbation of a generic Kuperberg
flow and we prove the following theorem.
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THEOREM 1.5.1. There exists a C∞ 1-parameter family of plugs Kε for ε ∈ (−1, a) for a > 0
such that:

1. The plug K0 is a generic Kuperberg plug;
2. For ε < 0, the flow in the plug Kε has two periodic orbits that bound an invariant cylinder,

every other orbit belongs to the wandering set and thus the flow has topological entropy zero;
3. For ε > 0, the flow in Kε has positive topological entropy and an abundance of periodic

orbits.
The proof of Theorem 1.5.1 for ε < 0 uses the same technical tools as developed in the previous

works [Kup94, KK96, Ghys95, Mat95] for the study of the dynamics of the Kuperberg plug K0. The
proof for ε > 0 uses in a fundamental way the technique of relating the dynamics of a Kuperberg-
like flow to the dynamics of its return map to an almost transverse rectangle, by introducing
suitable pseudogroups as in Section 1.4.

I will not go into the details of the proof, but I explain the construction of the plugs Kε and
give the main ideas to understand their dynamics. These plugs are constructed exactly as K in
Section 1.2.1 except that conditions (K7) and (K8) on the embeddings σεi (in place of σi) are
replaced by the following parametrized radius inequality. The embeddings σεi satisfy conditions
(K1) to (K6) and are also required to satisfy two further conditions:

(K7ε) For i = 1, 2, the disk Li contains a point (2, θi) such that the image under σεi of the
vertical segment (2, θi) × [−2, 2] ⊂ Di ⊂ W is contained in {r = 2 + ε} ∩ {θ−i ≤ θ ≤ θ+

i },
and for ε = 0 it is contained in {r = 2} ∩ {θ−i ≤ θ ≤ θ

+
i } ∩ {z = (−1)i}.

(K8ε) Parametrized Radius Inequality: For all x′ = (r′, θ′,−2) ∈ L−i , let (r, θ, z) = σεi (r′, θ′,−2) ∈
Lε−i , then r < r′ + ε unless x′ = (2, θi,−2) and then r = 2 + ε.

Observe that for ε = 0, we recover the Radius Inequality of Kuperberg, one of the most
fundamental concepts of Kuperberg’s construction. Figure 1.28 represents the radius inequality
for ε < 0, ε = 0, and ε > 0. Note that in the third illustration (c) for the case ε > 0, the insertion
has a vertical shift upwards. This is not required by conditions (K7ε) and (K8ε), but it is used to
prove the third part of Theorem 1.5.1.

(a) ε < 0 (b) ε = 0 (c) ε > 0

Figure 1.28: The modified radius inequality for the cases ε < 0, ε = 0 and ε > 0

The case ε < 0

In the case ε < 0, the self-insertions do not penetrate far enough as to trap the periodic orbits.
Condition (K8ε) implies that the radius always grows at secondary entry points (without any
exceptions). For these plugs Proposition 1.3.1 is still valid. As a corollary we obtain that the
Kε-orbits containing the arcs Oεi = Oi ∩W′ε of the Wilson periodic orbits are periodic. Here

W′ε = W− (σε1(D1) ∪ σε2(D2)) ,
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in analogy with the definition of W′ (1.5). As stated in Theorem 1.5.1, these two orbits are the
only two periodic orbits of the flow in Kε. The proof of this last assertion is basically the same as
the proof of the aperiodicity of K = K0.

What I want to point out about this case is that it gives another way of understanding the
minimal set of the original Kuperberg plug K = K0. In fact, the two periodic orbits of Kε for
ε < 0 bound an invariant cylinder Cε that is obtained by flowing inside Kε the notched Reeb
cylinder R′ε = R ∩W′ε. Indeed repeating the analysis in Section 1.3.2 we first point out that
Proposition 1.3.4 is valid and we can consider as level 0 the set τε(R′ε) (where τε is defined as τ).
This set intersects each entrance of an insertion along a curve contained in the region {r > 2} and
thus each curve generates a finite propeller that is at level 1 (see Figure 1.18 for an illustration of
a finite propeller in W).

As ε increases to zero, the length of these two level 1 propellers grows and when ε = 0 the
propellers become infinite. Hence for ε small enough, these two propellers at level 1 intersect the
insertions and thus give birth to propellers at level 2, etc. So we can build the cylinder Cε as
we built M0 in Section 1.3.2. The main difference is that for Cε the process stops: the level 1
propellers are finite and thus intersect the insertions a finite number of times and this repeats at
any level, and the maximum level attained in Cε is upper bounded by a number that depends only
on ε. The set Cε is thus the union of the notched Reeb cylinder τε(R′ε) and a finite number of
finite propellers.

A flattened illustration of Cε is basically the same as Figure 1.24, except that the two vertical
level one propellers τ(P ′γ) and τ(P ′λ) are finite propellers, implying that the process described by
Figures 1.22 and 1.24 stops. The length of the two level 1 propellers increases as ε increases to
zero, thus the complexity of the flattened diagram increases. We thus obtain an approximation of
M0 by embedded cylinders in R3.

The case ε > 0

The Radius Inequality in this case is illustrated in Figure 1.28 (c). Along the vertical line
{r = 2} the r′-coordinate is bounded below by 2 − ε, while the vertical line {r = 3} does not
intersects the insertion. This implies that there are values (between 2 + ε and 3), let me call one
of them a, of the radius such that along the vertical line {r = a} the r′-coordinate is bounded
below by a. In [P7] we assume (for simplicity) that there is a unique such value, denoted by rε
(see Lemma 1.6.5 and Hypothesis 1.6.6 in the following section for a precise statement). Thus
for points with r > rε, we have that the radius coordinate grows at secondary entry points. This
implies that Proposition 1.3.1 is valid when the hypothesis r > 2 is replaced by r > rε.

We can thus repeat the construction of the maps φ+
1 , φ+

2 , φ−1 and φ−2 in Section 1.4 and
understand their action on points with radius coordinate bigger than rε.

In order to prove Theorem 1.5.1 for ε > 0 we consider words in the generators {Id, φ+
1 , Ψ̂} and

their inverses, for Ψ̂ as in (1.11). The proof then follows in two steps:
1. find a set V0 ⊂ R0 (for R0 as in Section 1.4) for which there exists `(ε) ∈ N such that for

every k ≥ `(ε) and ϕk = Ψ̂k ◦ φ+
1 we have that

— Uk = ϕk(V0) ∩ V0 6= ∅;
— ϕk(Uk) ∩ Uk has two connected components.

2. proving that the invariant set of the maps ϕk, for each k ≥ `(ε), is an invariant set of the
flow and that the return times to these set are bounded.

The first point guarantees the existence of a countable number of horseshoe like dynamics in the
pseudo?group generated by {Id, φ+

1 , Ψ̂}. The second one says that these horseshoes are embedded
in the flow and the fact that the return times are bounded, allows to conclude that the topological
entropy of the flow is positive. The vertical shift in Figure 1.28 is used to prove this second point.
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We do not understand how these horseshoes change as ε → 0 and disappear in the plug K0.
One thing I understand is that the return times to the invariant sets grow as ε decreases, but the
aspect that is not clear is what happens with all the periodic orbits in the plugs Kε for ε > 0. Is
it just that their lengths blow up?

The bifurcation that is made explicit in Theorem 1.5.1 is highly not generic, but it might be
surrounded by some type of generic bifurcations in the space of non-singular vector fields. Can we
say something about nearby bifurcations?

1.6 Generic hypotheses
The construction of aperiodic Kuperberg flows involve multiple choices, which do not change

whether the resulting flows are aperiodic, but do impact other dynamical properties of these flows.
In this section, I present the assumptions made in the works [P5, P7], that are grouped under the
word generic in the previous sections. In [P10] we discuss properties of the flow that depend on the
generic hypotheses and discuss possible situations that can arise if these assumptions are dropped.
This section thus gives a quick list of the hypotheses that were briefly explained in Remark 1.2.1.
We discuss first the case for the traditional Kuperberg flows and afterward discuss the variations
of the construction to obtain the family Kε as in Section 1.5.

Recall that the modified Wilson vector field on W is given in (1.2) by

W = g(r, θ, z) ∂
∂z

+ f(r, θ, z) ∂
∂θ

where the function g(r, θ, z) = g(r, z) is the function g : R → [0, g0] which is non-negative, vanishing
only at the points (2,±1) and symmetric about the line {z = 0}. The function f(r, θ, z) = f(r, z)
is assumed to satisfy the conditions (W1) to (W5).

Figure 1.3 illustrates the dynamics of the flow of W restricted to the cylinders {r = cst.} in
W, for various values of the radius. It is clear from these pictures that the interesting part of the
dynamics of this flow occurs on the cylinders with radius near to 2 and near the periodic orbits Oi
for i = 1, 2.

The points (2,±1) ∈ R are the local minimum or maximum for the function g and thus its
matrix of first derivatives must also vanish at these points and the Hessian matrix of second
derivatives must be positive semi-definite. The generic property for such a function is that the
Hessian matrix for g at these points is positive definite. In the works [P5, P7], a more precise
version of this was formulated:

HYPOTHESIS 1.6.1. The function g satisfies the following conditions:

g(r, z) = g0 for (r − 2)2 + (|z| − 1)2 ≥ ε20 (1.17)

where 0 < ε0 < 1/4 is sufficiently small. Moreover, we require that the Hessian matrices of second
partial derivatives for g at the vanishing points (2,±1) are positive definite. In addition, we require
that g(r, z) is monotone increasing as a function of the distance

√
(r − 2)2 + (|z| − 1)2 from the

points (2,±1).

Many of the results in [P5, P7] require this generic hypotheses for their proofs, as it allows
making estimates on the speed of ascent for the orbits of the Wilson flow near the periodic orbits.

The choices for the embeddings σi : Di → W, for i = 1, 2, as illustrated on Figures 1.7 and
1.8, are more wide-ranging and have a fundamental influence on the dynamics of the resulting
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Kuperberg flows on the quotient space K. We first impose a “normal form” condition on the inser-
tions, which does not have significant impact on the dynamics, but allows a more straightforward
formulation of the other properties of the insertion maps.

Let (r, θ, z) = σi(x′) ∈ Di for i = 1, 2, where x′ = (r′, θ′, z′) ∈ Di is a point in the domain of
σi. Let πz(r, θ, z) = (r, θ,−2) denote the projection of W along the z-coordinate. We assume that
σi restricted to the bottom face, σi : L−i → W, has image transverse to the vertical fibers of πz.
This normal form can be achieved by an isotopy of a given embedding along the flow lines of the
vector field W, so does not change the orbit structure of the resulting vector field on the plug K.

The above transversality assumption implies that πz ◦ σi : L−i → W is a diffeomorphism into
the face ∂−h W, with image denoted by Di ⊂ ∂−h W. Then let ϑi = (πz ◦ σi)−1 : Di → L−i denote
the inverse map, so we have:

ϑi(r, θ,−2) = (r(ϑi(r, θ,−2)), θ(ϑi(r, θ,−2)),−2) = (Ri,r(θ),Θi,r(θ),−2) . (1.18)

We can then formalize in terms of the maps ϑi the assumptions on the insertion maps σi.

HYPOTHESIS 1.6.2 (Strong Radius Inequality). For i = 1, 2, assume that:
1. σi : L−i →W is transverse to the fibers of πz;
2. r = r(σi(r′, θ′, z′)) < r′, except for (2, θi, z′) and then z(σi(2, θi, z′)) = (−1)i;
3. Θi,r(θ) = θ(ϑi(r, θ,−2)) is an increasing function of θ for each fixed r;
4. Ri,r(θ) = r(ϑi(r, θ,−2)) has non-vanishing derivative for r = 2, except for the case of θi

defined by ϑi(2, θi,−2) = (2, θi,−2);
5. For r sufficiently close to 2, we require that the θ derivative of Ri,r(θ) vanish at a unique

point denoted by θ(i, r), with θ(i, 2) = θi.
Consequently, each surface L−i is transverse to the coordinate vector fields ∂/∂θ and ∂/∂z on W.

The illustration of the image of the curves {r′ = 2} and {r′ = 3} on Figure 1.8 suggests that
these curves have “parabolic shape”. We formulate this notion more precisely using the function
ϑi(r, θ,−2) defined by (1.18) and introduce the more general hypotheses they may satisfy. Recall
that ε0 > 0 was introduced in Hypothesis 1.6.1.

HYPOTHESIS 1.6.3. For i = 1, 2, 2 ≤ r0 ≤ 2 + ε0 and θi − ε0 ≤ θ ≤ θi + ε0, assume that

d

dθ
Θi,r0(θ) > 0 ,

d2

dθ2Ri,r0(θ) > 0 ,
d

dθ
Ri,r0(θi) = 0 . (1.19)

where θi satisfies ϑi(2, θi,−2) = (2, θi,−2). Thus for 2 ≤ r0 ≤ 2 + ε0, the graph of Ri,r0(θ) is
convex upwards with vertex at θ = θi.

Hypothesis 1.6.3 implies that all of the level curves {r′ = c}, for 2 ≤ c ≤ 2 + ε0, have parabolic
shape, as the illustration in Figure 1.8 suggests.

We can now define what is called a generic Kuperberg flow in the work [P5].

DEFINITION 1.6.4. A Kuperberg flow Φt is generic if the Wilson flow W used in the construc-
tion of the vector field K satisfies Hypothesis 1.6.1 and the insertion maps σi for i = 1, 2 used in
the construction of K satisfies Hypotheses 1.6.2, and Hypotheses 1.6.3.

That is, the singularities for the vanishing of the vertical component g · ∂/∂z of the vector field
W are of quadratic type and the insertion maps used to construct K yield quadratic radius functions
near the special points.
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Recall that the insertion maps for the variations from a Kuperberg flow as introduced in Sec-
tion 1.5 are denoted by σεi : Di →W, for i = 1, 2. It is assumed that these maps satisfy the modified
conditions (K7ε) and (K8ε). The illustrations of the radius inequality in Figure 1.28 again suggest
that the images of the curves {r′ = c} are of “quadratic type”. For ε < 0 there is no need to make
any further assumptions in the construction in order to obtain Theorem 1.5.1. In contrast, for
ε > 0 we need the analog of the generic hypotheses in Definition 1.6.4 and the existence of the
radius rε as discussed in Section 1.5 and below.

We again assume the insertion maps σεi : L−i →W are transverse to the fibers of the projection
map πz : W → ∂−h W along the z-coordinate. Then we can define the inverse map ϑεi = (πz ◦
σεi )−1 : Di → L−i and express the inverse map in polar coordinates as:

ϑεi(r, θ,−2) = (r(ϑεi(r, θ,−2)), θ(ϑεi(r, θ,−2)),−2) = (Rεi,r(θ),Θε
i,r(θ),−2) . (1.20)

Then the level curves r′ = c pictured in Figure 1.28 are given by the maps θ′ 7→ πz(σεi (c, θ′,−2)) ∈
∂−h W.

We note a straightforward consequence of the Parametrized Radius Inequality (K8ε). Recall
that θi is the radian coordinate specified in (K8ε) such that for x′ = (2, θi,−2) ∈ L−i we have
r(σεi (2, θi,−2)) = 2 + ε. I refer to Lemma 6.1 in [P7].

LEMMA 1.6.5. For ε > 0 there exists 2 + ε < rε < 3 such that r(σεi (rε, θi,−2)) = rε.

We then add an additional assumption on the insertion maps σεi for i = 1, 2 which specifies the
qualitative behavior of the radius function for r ≥ rε.

HYPOTHESIS 1.6.6. If rε is the smallest 2 + ε < rε < 3 such that r(σεi (rε, θi,−2)) = rε.
Assume that r(σεi (r, θi,−2)) < r for r > rε.

The conclusion of Hypothesis 1.6.6 is implied by the Radius Inequality for the case ε = 0, but
does not follow from the condition (K8ε) when ε > 0.

We can now formulate the analog of Hypothesis 1.6.2, which imposes uniform conditions on
the derivatives of the maps ϑεi , for the plugs Kε with ε > 0. Recall that 0 < ε0 < 1/4 was specified
in Hypothesis 1.6.1 and we assume that 0 < ε < ε0.

HYPOTHESIS 1.6.7 (Strong Radius Inequality). For i = 1, 2, assume that:
1. σεi : L−i →W is transverse to the fibers of πz;
2. r = r(σεi (r′, θ′, z)) < r + ε, except for x′ = (2, θi, z) and then r = 2 + ε;
3. Θε

i,r(θ) is an increasing function of θ for each fixed r;
4. For 2 − ε0 ≤ r ≤ 2 + ε0 and i = 1, 2, assume that Rεi,r(θ) has non-vanishing derivative,

except when θ = θi as defined by ϑεi(2 + ε, θi,−2) = (2, θi,−2);
5. For r sufficiently close to 2 + ε, we require that the θ derivative of Rεi,r(θ) vanishes at a

unique point denoted by θ(i, r).

Note that Hypotheses 1.6.6 and 1.6.7 combined imply that rε is the unique value of 2+ε < rε < 3
for which r(σεi (rε, θi,−2)) = rε. We can then formulate the analog of Hypothesis 1.6.3.

HYPOTHESIS 1.6.8. For 2− ε0 ≤ r0 ≤ 2 + ε0 and θi − ε0 ≤ θ ≤ θi + ε0, assume that

d

dθ
Θε
i,r0

(θ) > 0 ,
d2

dθ2R
ε
i,r0

(θ) > 0 ,
d

dθ
Rεi,r0

(θi) = 0 . (1.21)

where θi satisfies ϑεi(2, θi,−2) = (2, θi,−2). Thus for 2− ε0 ≤ r0 ≤ 2 + ε0, the graph of Rεi,r0
(θ) is

convex upwards with vertex at θ = θi.
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Finally, we have the definition of the generic Φεt flows of the plugs Kε, as introduced in Sec-
tion 1.5 and studied in [P7].

DEFINITION 1.6.9. The flow Φεt is generic if the Wilson flow W used in the construction of
the vector field Kε satisfies Hypothesis 1.6.1 and the insertion maps σεi for i = 1, 2 used in the
construction of Kε satisfies Hypotheses 1.6.7, and Hypotheses 1.6.8.
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Chapter 2

Trunkenness, an asymptotic
invariant for flows

This chapter covers the results of my work with P. Dehornoy [P9]. The problem we address
is the construction of new invariants of volume-preserving vector fields on S3, or on compact do-
mains of R3, up to volume-preserving diffeomorphisms. This problem is motivated by at least
two physical situations. First if v is the velocity field of a time-dependent ideal fluid satisfying
the Euler equations (ideal hydrodynamics) then its vorticity field curl v is transported by the flow
of v [Hel1858]. Second if B is the magnetic field of an incompressible plasma (ideal magnetody-
namics), then B turns out to be transported by the velocity field as long as the latter does not
develop singularities [Wol58]. In these contexts, invariants of curl v or B up to volume-preserving
diffeomorphisms yield time-independent invariants of the system.

Not so many such invariants exist. The first one was discovered by W. Thomson [Tho1867]: if
the considered field has a periodic orbit or a periodic tube, then its knot type is an invariant (this
remark led to the development of knot theory by P. G. Tait [Tait1877]). However it may not be
easy to find periodic orbits and even then such an invariant only takes a small part of the field
into account.

The main known invariant is called helicity. It is defined by the formula Hel(v) =
∫
v ·u, where

u = curl−1(v) is an arbitrary vector-potential of v. It was discovered by Woltjer, Moreau and
Moffatt [Wol58, Mor61, Mof69]. Helicity is easy to compute or to approximate since it is enough to
exhibit a vector-potential of the considered vector field, to take the scalar product and to integrate.
The connection with knot theory was sketched by Moffatt [Mof69] and deepened by Arnold [Arn73]
as follows. Denote by kX(p, t) a loop starting at the point p, tangent to the vector field X for a
time t and closed by an arbitrary segment of bounded length. Denote by Lk the linking number of
loops. Arnold showed that for almost every p1, p2, the limit lim

t1,t2→∞

1
t1t2

Lk(kX(p1, t1), kX(p2, t2))
exists (see also [Vog02] for a corrected proof). Moreover, if X is ergodic the limit coincides almost
everywhere with Hel(X) (for a non-ergodic vector field, one has to average the previous limit to
obtain the helicity).

The idea of considering knot invariants of long pieces of orbits of the vector field was pursued by
Gambaudo and Ghys [GG01] who considered ω-signatures of knots, Baader [Baa11] who considered
linear saddle invariants, and Baader and Marché [BM12] who considered Vassiliev’s finite type
invariants. In every case, it is shown that limt→∞

1
tnV (kX(p, t)) exists, where V is the considered

invariant and n a suitable exponent called the order of the asymptotic invariant. However all these
constructions have the drawback that they do not yield any new invariant for ergodic vector fields,
since the obtained limits are all functions of the helicity.

47
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Recently, it was proved by Kudryavtseva for vector fields obtained by suspending an area-
preserving diffeomorphism of a surface [Kud14] and for non-vanishing vector fields [Kud16] and
then by Enciso, Peralta-Salas and Torres de Lizaur [EPT16] for arbitrary volume-preserving vector
fields, that every invariant that is regular integral (in the sense that its Fréchet derivative is the
integral of a continuous kernel) is a function of helicity. I will not state the precise statements.
These results give a satisfactory explanation of why most constructions yield invariants that are
functions of helicity for ergodic vector fields. However they do not rule out the existence of other
invariants, but imply that such invariants cannot be too regular.

An example of such another invariant is the asymptotic crossing number considered by Freed-
man and He [FH91]. The advantage is that it is not proportional to helicity, but the disadvantage
is that it is hard to compute, even on simple examples.

In [P9] we consider a less well-known knot invariant called the trunk (see Definition 2.0.1 below).
It was defined by Ozawa [Ozw10], building on the concept of thin position that was introduced by
Gabai [Gab87] for solving the R-conjecture. Less famous than the invariants previously studied
in the context of vector fields, the trunk has the advantage that its definition relies on surfaces
transverse to the considered knot, so that it is easy to transcript in the context of vector fields.
The invariant depends on an invariant measure for the flow of the vector field that may or may
not be a volume and is invariant under homeomorphisms that preserve this measure. Given a
µ-preserving vector field X and a surface S, the geometric flux through S is the infinitesimal
volume that crosses S in both directions (see Definition 2.0.4), we denote it by Flux(X,µ, S). Our
invariant is a minimax of the geometric flux, where one minimizes over all height functions and
maximizes over the levels of the considered height function.

To motivate our definition, I will start by defining the trunk of a knot. Let K be a knot,
embedded in R3. The standard height function on R3 is the function hz : R3 → R, (x, y, z) 7→ z.
Every level h−1

z (t) is a 2-dimensional plane. A height function on R3 is a function obtained by
precomposing hz by an orientation preserving diffeomorphism, that is, a function of the form

h : R3 → R
(x, y, z) 7→ hz(φ(x, y, z))

for φ an orientation preserving diffeomorphism of R3. In particular, a height function is a function
whose levels are smooth planes. A height function h is said to be in Morse position with respect
to K if the restriction of h to K is a Morse function. In this case there are only finitely many points
at which K is tangent to a level of h. We denote this set of functions by height Morse functions.

DEFINITION 2.0.1. Assume that K is an embedded knot in R3 that is in Morse position with
respect to hz. The trunk of the curve K relatively to hz is

tkhz (k) := max
t∈R

]{K ∩ h−1
z (t)}.

The trunk of a knot K is then defined by

Tk(K) := min
h height

Morse function

tkh(K) = min
h height

Morse function

max
t∈R

]{K ∩ h−1(t)}.

One can define the trunk of knot by fixing the height function and changing the embedding of
the knot K in R3, see [Zup12].

EXAMPLE 2.0.2. A knot is trivial if and only if its trunk equals 2. Indeed the embedding as
the boundary of a vertical disk shows that the trunk is less than or equal to 2 and every embedding
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in Morse position of the trivial knot has to intersect some horizontal plane in at least two points.
Conversely, if the trunk of a knot is equal to 2, then it admits an embedding that intersects every
horizontal plane in at most two points. The union of the segments that connect these pairs of points
is a disk bounded by the knot, implying that the knot is trivial.

EXAMPLE 2.0.3. For p, q in N, the torus knot T (p, q) can be realized as the closure of a braid
with q strands, yielding Tk(T (p, q)) ≤ 2q. By symmetry one also gets Tk(T (p, q)) ≤ 2p. Actually,
one can prove Tk(T (p, q)) = 2 min(p, q), see Remark 1.2 in [Ozw10].

Figure 2.1: The trunk of the trefoil knot

We use Definition 2.0.1 to define the trunk-
enness of a vector field with respect to an in-
variant measure. The main question then con-
cerns the analog of the number of intersection
points of a surface with a curve when the curve
is replaced by a vector field. A natural answer
is the geometric flux. If X is a vector field that
preserves a measure µ given by a volume ele-
ment Ω, one can then consider the 2-form ιXΩ.
For S a piece of oriented surface that is posi-
tively transverse toX, the integral

∫
S
ιXΩ com-

putes the instantaneous volume that crosses S.
In other words, by Fubini Theorem we have
µ(φ[0,t](S)) = (

∫
S
ιXΩ) · t. On the other hand

if S is negatively transverse to X we have
µ(φ[0,t](S)) = −(

∫
S
ιXΩ) · t. Therefore in this

case, for any surface S, the instantaneous vol-
ume crossing S is given by

∫
S
|ιXΩ|. Now if the

measure µ is not given by integrating a volume
form one cannot consider the above integral,

but the quantity µ(φ[0,t](S)) still makes sense for any piece of surface S.

DEFINITION 2.0.4. For X a vector field that preserves a measure µ and a surface S, the
geometric flux of (X,µ) through S is

Flux(X,µ, S) := lim
ε→0

1
ε
µ(φ[0,ε](S)).

This definition generalizes the number of intersection points of a knot with a surface. Indeed
one can see an embedding k of a knot K as a vector field with a particular invariant measure in
the following way: consider a non-singular vector field Xk that is tangent to k at every point and
denote by φtk the induced flow. Since k is closed, φk is Tk-periodic for some Tk > 0. The Dirac
linear measure associated to Xk is defined by

µk(A) = Leb({t ∈ [0, Tk], φtk(x) ∈ A})

where A is a measurable set and x an arbitrary point on k. The measure µk is Xk-invariant and
has total mass Tk. In this setting, for S a surface that intersects k in finitely many points, a
point p in the set k ∩ S has µk-measure zero and thus cannot be detected by the measure. But by
definition of µk the set φ[0,ε]

k (p) is an arc of k of µk-measure ε and since k ∩ S is made of finitely
many points, for ε small enough, the set φ[0,ε]

k (k ∩ S) has µk-measure exactly ε · ]{k ∩ S}. In other
words, one has

]{k ∩ S} = lim
ε→0

1
ε
µk(φ[0,ε]

k (k ∩ S)).
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As µk is concentrated on k, we thus have

]{k ∩ S} = lim
ε→0

1
ε
µk(φ[0,ε]

k (S)) = Flux(Xk, µk, S), (2.1)

so the geometric flux indeed generalizes the number of intersection points.
We now mimic for vector fields the definition of the trunk of a knot. In order to have a well-

defined maximum, in what follows we assume the vector fields are on a compact domain D3 ⊂ R3

or on the 3-sphere S3 = R3 ∪∞. In the later case, we define the standard height function

h0 : S3 → [0, 1]

(x, y, z) 7→ 1− 1
1 + x2 + y2 + z2 .

The levels h−1
0 (0) and h−1

0 (1) consist of the points (0, 0, 0) and ∞ respectively and every other
level h−1

0 (t) is a 2-dimensional sphere centered at the origin. A height function on S3 is then a
function obtained by precomposing by an orientation preserving diffeomorphism φ of S3, that is,
a function of the form h : S3 → [0, 1], (x, y, z) 7→ h0(φ(x, y, z)).
DEFINITION 2.0.5. Let X be a vector field whose flow preserves a measure µ on a compact
domain of R3 or on S3 and h a height function. We set

tksh(X,µ) := max
t∈[0,1]

Flux(X,µ, h−1(t)) = max
t∈[0,1]

lim
ε→0

1
ε
µ(φ[0,ε](h−1(t))).

The trunkenness of (X,µ) is defined as

Tks(X,µ) := inf
h height
function

tksh(X,µ) = inf
h height
function

max
t∈[0,1]

Flux(X,µ, h−1(t))

= inf
h height
function

max
t∈[0,1]

lim
ε→0

1
ε
µ(φ[0,ε](h−1(t))).

Note that we can only consider an infimum instead of a minimum as in the case of knots. In
Theorem 2.0.11 we study the implications of having a height function achieving the trunkenness.

If the invariant measure µ is given by the integration of a volume form Ω, we get the alternative
definitions

tksh(X,Ω) = max
t∈[0,1]

∫
h−1(t)

|ιXΩ|, and Tks(X,Ω) = inf
h height
function

max
t∈[0,1]

∫
h−1(t)

|ιXΩ|.

From Definition 2.0.5 it is straightforward that the trunkenness of a vector field is invariant
under diffeomorphisms that preserve the measure µ. More is true, the trunkenness is invariant
under homeomorphisms that preserve µ.
THEOREM 2.0.6. Assume that X1 and X2 are vector fields on S3 or on a compact domain
of R3 that preserve a probability measure µ and that there is a µ-preserving homeomorphism f that
conjugates the flows of X1 and X2. Then we have

Tks(X1, µ) = Tks(X2, µ).

What we do in [P9] is to prove several properties of this new invariant. The first one is a
continuity result, that is more easily stated in terms of currents, but we also provide corollaries
that do not rely on this vocabulary. Given a vector field X and a measure µ, we can define a
normal 1-current C(X,µ): for α any differential 1-form C(X,µ)(α) =

∫
α(X)dµ, where the integral

is taken on the ambient space. We consider the space of normal currents endowed with the mass
topology (see [Mor00]).
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THEOREM 2.0.7. The trunkenness is a continuous functional on the space of normal currents.

COROLLARY 2.0.8. Suppose that (Xn, µn)n∈N is a sequence of measure-preserving vector fields
such that (Xn)n∈N converges to X in the C0-topology and (µn)n∈N converges to µ in the weak-∗
sense. Then we have

lim
n→∞

Tks(Xn, µn) = Tks(X,µ).

Now for p a point in the ambient manifold and t > 0, denote by kX(p, t) the closed curve
obtained by concatenating the orbit segment between p and φtX(p) and a short path between these
two points. As for the asymptotic linking number, there is a system of short paths such that
we obtain a simple closed curve for µ-almost all points and almost all times [Vog02]. The next
corollary states that the trunkenness is an asymptotic invariant in the sense of Arnold [AK98] and
its order is 1.

COROLLARY 2.0.9. Assume that X is a µ-preserving vector field and that X is ergodic with
respect to µ, then for µ-almost every p the limit

lim
t→∞

1
t
Tk(kX(p, t))

exists and is equal to Tks(X,µ).

Theorem 2.0.7 allows to compute the trunkenness of Seifert flows on S3, as explained in Sec-
tion 2.1. These computations in turn show that the trunkenness is not dictated by helicity, even
in the case of ergodic vector fields, thus contrasting with most previously known knot-theoretical
constructions.

THEOREM 2.0.10. There is no function f such that for every ergodic volume-preserving vector
field X on S3 one has Tks(X,µ) = f(Hel(X,µ)).

Finally we address the question of what happens if for a non-singular vector field on S3 there
is a function that achieves the trunkenness, or in other words if the infimum in Definition 2.0.5 is
a minimum.

THEOREM 2.0.11. Let X be a non-singular vector field on S3 preserving the measure µ and h
a height function such that

Tks(X,µ) = max
t∈[0,1]

Flux(X,µ, h−1(t))

Then X has an unknotted periodic orbit.

One of the main motivations for constructing topological invariants of a vector field X is to
find lower bounds on the energies Ep(X) :=

∫
|X|p dµ. Indeed since a topological invariant yields

a time-independent invariant of the physical system, an energy bound in terms of a topological
invariant will also be time-independent, although the energy may vary when the vector field is
transported under (volume-preserving) diffeomorphisms. Such energy bounds exist for the helicity
and for the asymptotic crossing number. We do not know whether the trunkenness bounds the
energy, a possible path towards finding an inequality between the trunk and the energy is to relate
the trunk to the crossing number that is itself related to helicity.
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2.1 Independence of helicity
As mentioned in the introduction, the helicity is a well-known invariant of vector fields up

to volume-preserving diffeomorphism. In this section, all vector fields are on the sphere S3 and
preserve a volume form, that we denote by Ω. For X such a vector field, Cartan’s formula implies
that ιXΩ is a closed 2-form and since the ambient manifold is simply connected it is exact. We
may then write ιXΩ = dα, for α some differential 1-form. The helicity of X can be defined as

Hel(X) :=
∫
S3
α ∧ dα,

and does not depends on the choice of the primitive α [AK98].
As we recalled in the introduction, most known asymptotic invariants are in fact proportional to

the helicity [Arn73, GG01, Baa11, BM12]. The goal of this section it to prove that the trunkenness
of a vector field is not a function of its helicity. In order to do so we compute the trunkenness and
the helicity of a vector field that preserves the invariant tori of a Hopf fibration of S3.

Considering S3 as the unit sphere {(z1, z2) ∈ C2, |z1|2+|z2|2 = 1}, the Seifert flow of slope (α, β)
is the flow φα,β given by

φtα,β(z1, z2) := (z1e
i2παt, z2e

i2πβt),

generated by the vector field Xα,β . This flow preserves the standard volume form, that is, the
volume form ΩHaar associated to the Haar measure of S3. The flow has two distinctive periodic
orbits corresponding to z1 = 0 and z2 = 0 that are trivial knots in S3. The tori |z1/z2| = r for
0 < r < ∞ are invariant and the flow on each one of them is the linear flow of slope α/β. If α/β
is rational, put α/β = p/q with p, q ∈ N coprime. Then every orbit of φα,β , different from the two
trivial ones, is a torus knot of type T (p, q).

The helicity of φα,β is equal to αβ. To compute it in the rational case (α, β) = (p, q) with
p, q coprime, observe that all the orbits except two are periodic of period 1. The linking number
of an arbitrary pair of such orbits is pq. Therefore the asymptotic linking number (also called
asymptotic Hopf invariant) equals pq and, by Arnold’s Theorem [Arn73], so does the helicity. For
the general case of (α, β) not necessarily rational, it is enough to use the continuity of the helicity,
since Xα,β can be approximated by a sequence of Seifert flows with rational slope.

PROPOSITION 2.1.1. The trunkenness of the Seifert flow φα,β with respect to the standard
volume form ΩHaar is equal to 2 min(α, β).

Proof. Let us first prove Tks(Xα,β ,ΩHaar) ≤ 2β. For this it is enough to exhibit a height function h
that yields tksh(Xα,β ,ΩHaar) = 2β. First define ∞ = (0, 1) and 0 = (0,−1) in S3 ⊂ C2 and take
the stereographic projection to identify

{(z1, z2) ∈ C2 , |z1|2 + |z2|2 = 1} ' R3 ∪ {∞}.

Take now as h the standard height function h0 of R3 ∪ {∞}. The spheres are centered at 0 ∈ R3

that corresponds to the point (0,−1) ∈ S3 ⊂ C2, hence the orbit z1 = 0 intersects twice each level
sphere h−1

0 (t). The middle sphere, S = h−1
0 (1/2), contains the other special orbit z2 = 0 and is

the only sphere that intersects all the orbits of φα,β . Then the function t 7→
∫
h−1

0 (t) |ιXα,βΩHaar|
has a maximum for t = 1/2.

For computing
∫
S
|ιXα,βΩHaar|, we remark that the 2-sphere S has the orbit (ei2παt, 0) as an

equator, that the flow is positively transverse to the northern hemisphere and negatively trans-
verse to the southern hemisphere. Then the integral

∫
S
|ιXα,βΩHaar| is equal to twice the flux

of Xα,β through any disk bounded by the curve (ei2παt, 0). Consider the flat disk D in S3

bounded by (ei2παt, 0). The first return time to D is constant and equal to 1/β, so the flux
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multiplied by 1/β gives the total volume of S3, that is 1. Therefore Flux(Xα,β ,ΩHaar, D) is
equal to β and we obtain tksh0(Xα,β ,ΩHaar) =

∫
S
|ιXα,βΩHaar| = 2β. By symmetry, we then

have Tks(Xα,β ,ΩHaar) ≤ 2 min(α, β).

For proving the converse inequality Tks(Xα,β ,ΩHaar) ≥ 2 min(α, β), we approximate Xα,β (in
the C∞-topology) by a sequence (Xpn/rn,qn/rn)n∈N, where pn, qn, rn are integer numbers. Theo-
rem 2.0.8 yields

Tks(Xα,β ,ΩHaar) = lim
n→∞

Tks(Xpn/rn,qn/rn ,ΩHaar).

As the trunkenness is an order-1 invariant (which means that it is multiplied by λ if the vector
field is multiplied by λ), we only have to prove Tks(Xp,q,ΩHaar) = 2 min(p, q) for p, q two coprime
natural numbers.

Since every orbit of Xp,q is periodic, we can consider a sequence (Kn)n∈N of collections of
periodic orbits whose induced normalized linear Dirac measures µn converge to ΩHaar. We take
Kn to be an n-component link all of whose components are torus knots T (p, q). Actually Kn is a
cabling with n strands on T (p, q), so by Zupan’s theorem [Zup12], the trunk of Kn is 2nmin(p, q).
Since the period of each component of Kn is 1, the total length of Kn is n and we get

Tks(Xp,q,ΩHaar) = lim
n→∞

Tks(Xp,q, µn) = lim
n→∞

2 min(p, q) = 2 min(p, q).

Proof of Theorem 2.0.10. The previous computations show that for a Seifert flow Xα,β on S3

we have Hel(Xα,β ,ΩHaar) = αβ and Tks(Xα,β ,ΩHaar) = 2 min(α, β). There is no real func-
tion g such that min(α, β) = g(αβ), so there is no function g such that Tks(Xα,β ,ΩHaar) =
g(Hel(Xα,β ,ΩHaar)).

However the Seifert flows are not ergodic with respect to ΩHaar. Indeed, the foliation of S3 by
invariant tori is invariant, so that it is easy to construct an invariant set with arbitrary measure.
Still, a theorem of Katok [Kat73] states that the vector field Xα,β can be perturbed (in the C1-
topology) into an ergodic one. Starting from X1,8 and X2,4 and applying Katok’s argument, we
obtain two ergodic volume-preserving vector fields X ′1,8 and X ′2,4. By continuity, their trunknesses
are close to 2 and 4 respectively, while their helicities are close to 8. At the expense of multiplying
the X ′1,8 and X ′2,4 by a constant, we can assume that their helicities are exactly 8. However their
trunknesses are still close to 2 and 4, hence different.

The formula Tks(Xα,β ,ΩHaar) = 2 min(α, β) is also interesting to compare with Kudryavtseva’s
and Encisco-Peralata-Salas-Torres de Lizaur’s theorems: the function (α, β) 7→ 2 min(α, β) is con-
tinuous but not differentiable, so that trunkenness is a continuous vector field invariant, but it is
not integral regular in the sense of [Kud16, EPT16].
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