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13.2.2018



Contents

1 Soft Confotronics 7
1.1 The Toolbox of Confotronics . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Non-Linearity and Frustration : The Confotronic Flip-Flop 11
1.1.2 Emergence of Bistablility and Cooperativity in a Filament 11
1.1.3 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.4 Global Constraints: Positive and Negative Cooperativity . 14

1.2 Microtubule Confotronics . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Microtubules as Anisotropic Lattices . . . . . . . . . . . . 17
1.2.2 Microtubules as Switchable Lattices . . . . . . . . . . . . 17
1.2.3 Variable Sign Interactions and Collective Zero Modes . . 22

1.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Tanglotronics 24
2.1 Nano-Motors and Polymer Entanglement . . . . . . . . . . . . . 24
2.2 Topology and Actuation of Tanglotron Units . . . . . . . . . . . 26

3 Animotion: Hydrodynamic Modes in Solids and the “Wheel
Within” 32
3.1 What are Animas? . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Principles of Animotion . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Static Frustration and Zero Modes . . . . . . . . . . . . . 38
3.3.2 Dynamic Frustration . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Two Types of Animotion . . . . . . . . . . . . . . . . . . 39
3.3.4 Interactions with Stimuli . . . . . . . . . . . . . . . . . . 40

3.4 Toroidal Animotion . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 The Toroidal ZEEM . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Frustration and Emergence of Torque (*) . . . . . . . . . 43
3.4.3 Dynamics (*) . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Type 1 Animotion (*) . . . . . . . . . . . . . . . . . . . . 45
3.4.5 Type 2 Animotion (*) . . . . . . . . . . . . . . . . . . . . 46
3.4.6 The Motile Spaghetti (*) . . . . . . . . . . . . . . . . . . 47

3.5 Animas as Motors . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2



4 Projects in the Making: DNA Nanomotors, Anima Motors ,
Confotronic Fibers 51

4.1 Animotion and Fiberdrives . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Optical Driving, Down-Scaling, First Devices . . . . . . . 52

4.1.2 Making of Open Anima Fibers . . . . . . . . . . . . . . . 52

4.2 Sythetic Confotronics and Artificial Axons . . . . . . . . . . . . . 53

4.2.1 DNA Nanomachines I: The DNA HYPER-drive . . . . . . 53

4.2.2 DNA Nanomachines II: Synthetic Confotronic Fibers . . . 55

A APPENDICES 57

A.1 Toy-Model of Confotronics . . . . . . . . . . . . . . . . . . . . . . 57

A.1.1 Switchable unit . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.2 Elimination of Elastic Variables and Effective Interaction 58

A.1.3 Dynamics: Reaction -Diffusion Paradigm . . . . . . . . . 60

A.1.4 Confotronic Autowaves, Traveling Fronts . . . . . . . . . 61

A.1.5 Traveling Pulses . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Animas as Motors . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Preface

This text is about shapes in motion. More precisely, it is about how shapes give
rise to their own motion. When I look back at the work reviewed here, to my
own defense I can only say that I was mainly guided by an aesthetic feeling of
beauty of shapes in motion.

Why are we, as humans, so naturally attracted to moving shapes? Of course
it is hardwired in our genes - our very survival depends on understanding and
predicting the patterns of shapes in motion around us. The corresponding
endorphine rush inside our pleasure centers is genetically programmed, as much
as the one for love.

That at least is what science says, stealing the last hideouts of mystery,
crunching it , turning it into knowledge and technology. Luckily, while mystery
is always on the run, it never really disappears. It merely migrates, feeding on
our mental capacity to perceive it in some other spot.

In this picture here you see what mystified me for years.
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Figure 1: Kaleidocycle: A paper object able of moving inside out in an “impos-
sible” way.

It mystified some other people before as well. Its inventor, Paul Schatz,
called it “der umstülpbare Würfel” and first turned its motion into technology
by making a mixer out of it. M.C. Escher, reshaped it into its final geometry.
He also made it stunningly beautiful and known to the rest of the world by
putting his “Escher tilings” on it. After having a brief, coincidental encounter
with this object in the 1990-ies I have experienced a puzzling, spiritual feeling,
that in some distant future I will understand and harness it for a new tech-
nology. In the years that followed I have periodically revisited the object in
my memory. For long I could not remake it or figure out what it was (before
Internet emerged), but I always found myself drawing energy from the memory
of our first encounter.

Now, I am not sure if I understood this object right. In order to make it
more ideal and beautiful (to my senses), I smoothed it out and eliminated all
of its edges. What remained in my mind was a smooth toroidal object, but
one undergoing a smooth, continuous motion - a constant flux along its surface.
Later on I managed to recreate this animated motion -“animotion”- and built
working engines that realized it. I will tell you more about these engines , called
“animas” and their “animotion” in Chapter 3.

You will also find animotion ,in a disguised form, within the collective “wob-
bling mode” of microtubules (Chapter 1). Somehow, ironically, that kaleidocy-
cle, from Fig. 1, infected my thinking and all I could ever come up with was a
(veiled) realization of it, wherever I looked. But I am fine with that, because of
all the pleasurable adventures and sidetracks I experienced on the way there.

Talking of pleasure , you might be surprised to hear that both shape and
motion are born out of frustration. If there were no conflicting forces, and
no stresses acting on a thing - at least transiently- it would not start moving.
Nor would it take any other shape than that of a sphere (or a random blob).
Of course the concept of frustration is not merely poetic , but has some very
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concrete meaning in physics. To be specific, by frustration I mean the inability
of an object to reach its preferred state (e.g. free energy minimum) in the
context of a conflicting surrounding that prevents it from doing so.

In the following, I promise you shapes, some motion, a bit of delightful
frustration and at the end we will together “reinvent the wheel” and embed
it inside of a material. If you bear with me and follow the slightly ridiculous
invitation, I promise a hilarious, but meaningful resolution of this outrageous
claim.
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Outline

Shape and motion are born by frustration.

Computation is a son of a switch.

If there is any single thread in this manuscript (beyond subjective aesthetics),
then it is to create active, information processing objects with all their functions
intrinsically woven and encoded within their fabric. There are three main di-
rections of thinking, pointing towards complementary technologies, that will be
in our focus in the following Chapters (1-4). I nicknamed them “confotronics”
, “tanglotronics” and “animotion”. Hoping to convince you that they are not
only worth calling names but also worthwhile studying, let me explain what I
mean.

Confotronics (Chapter 1) deals with the interaction of elastically and con-
formationally switchable units. It originates from studies of switchblade bio-
logical lattices - like switchable monomers in bacterial flagella or microtubules.
Though it might sound far fetched, my main reason for studying confotronics is
its potential to realize tiny, synthetic nano-axons, carrying conformational infor-
mation pulses, and bridge between polymer physics and self-organized artificial
intelligence.

Unlike confotronics which is concerned with elastic and geometric couplings
between units, tanglotronics (Chapter 2) deals with a topological coupling
between them. More concretely, in its current realization, it describes how active
entanglement generating units change the properties of polymeric materials like
active gels and rubbers. The main current aim of tanglotronics is towards active
materials and shape-invariant topological nano-machines.

Finally animotion (Chapter 3) is a surprising, active, frustration and topol-
ogy driven motion of an “embedded wheel” within the material. If you find this
cryptic, just hold on to see the “fiberdrive” in the last section. I am sure you
will be somehow delighted, at least by the “hot-spaghetti-motor” and “fish-line-
loop-motor”, inventions that you can try out at home. In this context we will
ask the questions: Is it possible to merge the wheel and axle into a single el-
ement and embed the mechanism into the material? And can we build rotary
engines out of a single piece of responsive material?

Surprisingly, the answer to both questions is an enthusiastic: Yes!
In the last Chapter 4 we finally conclude with an outlook on the ongoing

and future projects.
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Chapter 1

Soft Confotronics

This first Chapter deals with the newly emerging field of what I tentatively call
“confotronics”. In itself it presents the basic skeleton of a unified approach to
soft switchable lattice systems in biology. Our basic idea is to learn from Nature
and eventually make our own synthetic confotronic systems for information
processing and transmission in the future.

1.1 The Toolbox of Confotronics

Soft confotronics is the investigation of conformational states of large assem-
blies of soft switchable units, typically bio-molecules forming regular functional
superstructures. Through their interaction, the discretely switchable individual
monomer units give rise to new complex phenomena, only present in the assem-
bled superstructures and perform biological tasks that a single unit cannot.

A large zoo of confotronic systems is found in the living cell, where allosteric
protein assemblies like viral capsids and filament lattices collectively switch
states (and shapes) due to their complex mechanical inter-monomer interactions.
The biggest plethora of confotronic examples is found in classical biological
filaments: For instance DNA bases can flip , tilt and interact with the orientation
of the sugar phosphate backbone , giving rise to discrete “A”, “B” and “Z” forms
of DNA. These DNA states are highly cooperative and are “copied” from one
base-pair to the neighbors.

It is a bit less known that besides the genes, the cytoskeleton is the sec-
ond vast playground of confotronics. Microtubule’s elementary units (tubulin
dimers) act as curvature switchable elements [47] and actin filaments can switch
their inter-unit twist [31]. The propensity for unit multistability in these cases
seems to be encoded in monomer’s molecular complexity (rearranging hydrogen
bonds and ion bridges). However , even some very generic interactions along
the backbone like tail bridging (cf. below), or geometrical constraints including
confinement to surfaces[95] can break the symmetry and uniqueness of filament’s
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Figure 1.1: Problems of confotronics: propagation of conformational informa-
tion and inter-unit coupling

ground state. In many cases multistability cannot be simply averaged out on
biologically relevant scales (nanometers to microns) especially when strong pos-
itive cooperativity between the units comes into play. This in particular means
that many aspects of such switchable filaments cannot be described with simple,
classical models of semiflexible polymers (“worm like chains”).

At this point , one could naturally ask if we can somehow view confotronic
phenomena in a unified manner. Can we crystallize out basic principles and
identify an essential ”toolbox of confotronics”? Staying away from atomistic
details we shall look for a picture that is more conceptual and coarse grained in
spirit, yet still detailed enough to get an idea how to rebuild confotronic systems
synthetically in not so far future from now. In its spirit the theory of confotronics
developed here attempts to go beyond the common phenomenological models of
cooperative units [101, 102] where the type and sign of interactions are a priori
assumed. Instead, ideally confotronics aims at predicting the interactions, from
known (elastic) forces in the system. We might not completely succeed at this
point with the purest form of this program. Yet the aim of eliminating arbitrary
ad hoc assumptions and applying an elastic coarse-graining approach shall at
least be stated here.

When it comes to general principles, there seem to be a few basic motifs and
laws that govern most of confotronics.

Maybe the most basic principle can be stated as:

Principle 0: Neighboring units conformations cannot not interact!
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Figure 1.2: Examples of confotronic systems in (living and dead) Nature: a) Vi-
ral capsid proteins switch conformation and undergo collective rearrangements.
b) Shape memory alloys undergo collective lattice transitions upon temperature
change. c) At high salt DNA can dynamically switch from right to left handed
form (B->Z -DNA switching). d) Actin monomers undergo angular switching
leading to actin ring supercoiling. e) hemoglobin tetramers undergo coopera-
tive switching to bind oxigen in sigmoidal fashion. f) Bacterial flagellin filaments
undergo cooperative (“polymorphic”) transitions to helical states. g) The mini-
malistic bacteria spiropasma undergo active conformational transitions of their
cytoskeletal sheet (found on the inside of their membranes). By undergoing a
yet unspecified lattice switch that induces a right-left-helical kink and actively
propagates along their body they manage to rapidly swim. This is the only
documented example of a an active/dissipative confotronic machine.
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Although this statement feels somehow trivial ,at first glance, it is deeply en-
coded in the nature of the mechanical interaction. It says that it is not possible
to reshape one unit without affecting an other neighboring one in some way.
Switching/reshaping units can either promote or inhibit the switching of their
neighbors , depending on geometry. This inevitable interaction is however only
important on larger scales if a second requirement is fulfilled. The second prin-
ciple seems to be:

Principle 1: Nature is digital : monomer units are (frustrated) bistable
switches.

Bistability, i.e. the existence of two or more discrete states of the units is a basic
motif. Confotronic molecular units behave a bit like a mechanical light switch
and toggle between two (or more) well defined states. In this mechanical analog
there is a hidden component called ”spring toggle mechanism”. It combines a
spring with a bunch of hinges to generate bistability of the mechanism. Like in
the light switch, also in Nature, it is crucial that the spring and the other parts
of mechanisms are in mechanical conflict i.e. in frustration. Biological filaments
are often equipped with stressed polymeric backbone cross-linkers that display
similar features to its mechanical analogue. Nature seems to be frustrated and
“digital” in a similar way.

Principle 2: Anisotropy steers easy signaling directions

To tune how one switch affects the neighboring one Nature very often tends
to weaken elastic variables along some specific directions so that the conforma-
tional signal can travel along this “easy” direction. Anisotropy and bistability
synergistically superimpose to increase the interaction strength to very large
distances.

Principle 3: Geometric constraints induce variable sign interactions

Principle 0 states that there is always some form of interaction, yet the sign and
the strength of this interaction are not specified a priory. It appears that most
interactions are “generically” cooperative i.e. have a positive in sign , as Monod
,Wyman and Changeux have correctly recognized for symmetry reasons [101].
But this is only one side of the coin and the full story is much more interesting.
To obtain anti-cooperative interactions Nature can use tricks by introducing
certain global geometric constraints. If the geometry is right, switching “on”
one unit can lead to the switch “off” of another unit somewhere far away.

Principle 4: Global constraints lead to collective variables

By using topological tricks Nature can create soft collective variables - so called
zero elastic energy modes (ZEEMs) - that even in absence of explicit anisotropy
couple many monomers together. The monomers tend to lose their individuality
and immerse into a global soliton like excitation.

In the following we will illustrate these basic principles with some conceptual
examples. From them one can build a rather general and functional “theory of
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confotronics” of which we present only some anecdotal fragments. A sketched
outline of how a confotronic model (in a simple 1D medium) works, starting
from elasticity to active autowaves (akin action potential in neuronal axons)
can be found in the Appendix A.

1.1.1 Non-Linearity and Frustration : The Confotronic
Flip-Flop

On the molecular scale -with all its (bio) chemical repertoire of interactions- it
is rather easy for Nature to generate bistable elements. But how can bistability
appear on a more coarse grained level, e.g. of larger molecules or continuous
materials? The short answer is through a nonlinearity and mechanical frustra-
tion.

One particularly ubiquitous motif is something that we could call the ”con-
fotronic flip-flop”. It consists of an arrangement of two non-linear units that are
not individually switchable (monostable units) but when “glued” together they
become collectively bistable. We can think of it as a tri-layered structure with
two outer layers which individually prefer a contracted state and a middle layer
which is inextensible. When such a structure bends with a centerline curvature
κ to one side there is a contractile/tensile strain of the order ε ≈ ±κd where
d is the distance between the centerline and the outer layers. The ± refers to
two different layers depending on which sign the (signed) curvature κ. If both
outer layers are identical and have the same energy given by g (ε) then the total
energy is simply their sum gtot (κd) = g (+κd) + g (−κd) .Such a system become
bi-stable when gtot has a maximum at κ i.e. ∂gtot

∂κ |κ=0 = 2 ∂g∂κ |κ=0 < 0 . This

implies a convexity of g i.e. ∂g
∂κ |κ=0 < 0. Remarkably, a bi-stability of g is not

really required , only its convexity around zero - a significantly weaker require-
ment. Further below we will see some examples but one could note that many
systems when they consist of at least two non-linear and inflicting units could
exhibit bi-stability.

1.1.2 Emergence of Bistablility and Cooperativity in a Fil-
ament

Another, more concrete example for frustration induced bi-stability is a semi-
flexible filament decorated with elastic “tails”cf. Fig. 1.3. These tails span
along filament’s surface and pairwise connect distant points at some typical dis-
tance d. Let’s say that they have some spring constants k (per unit length),
and the filament’s central core (backbone) has a bending stiffness B. When the
filament is straight, the springs are in their extended (prestressed) state with
length d and and have an energy Ech ∼ 1

2kd
2 . The core, on the other hand,

with its bending energy Ebend = 1
2Bκ

2 is still in its ground state with vanish-
ing curvature κ = 0. If however , the chains become overextended they have
the tendency to buckle the filament at the expense of bending the backbone.
It is easy to work out the filament undergoes a buckling transition form once
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Figure 1.3: a) A semiflexible filament with elastic tails that cross-link points
along its backbone becomes bistable. If the cross-linking point intervals overlap
in addition (red chains) the curvature switching becomes cooperative.

the chains become too extended k > kcrit = 12Bd−3. Close to the buckling
transition k ' kcrit and on length scales � d the energy can be expanded as

Eb ≈
kd3

2

∫ [
C1

(
kcrit
k
− 1

)
κ2 + C2d

2κ4

]
ds

with C1,C2 > 0 numeric constants. Such a system is bistable and displays
curved sections of with switchable curvature

κ ∝ (±)

√
1− kcrit/k

d
.

If the chains attachment interval do not overlap the curvature switching is
local and non-cooperative on distances larger then d. However , in the more
generic case when they do overlap (cf red chains in Fig. 1.3) it is easy to see
that there is an additional cooperative coupling term emerging

Ecouple ≈
H

2

∫
κ′2ds (1.1)

with H ∝ kd5 a higher order ”hyper-stiffness” constant. Note that the latter
gives rise to a persistence of curvature, rather than the usual persistence of
tangent angle (as in common semiflexible chain models).
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Figure 1.4: Two filaments are coupled with elastic springs forming a simple
two chain bundle. The shear and bending degrees of freedom become strongly
coupled and lead to long range deformation effects.

This rather neat toy model is less academic than one would think. Classical
biofilaments , like microtubules have naturally built-in long amorphous polymer
tails that can span in their stretched state to nearest neighbors or beyond. Fur-
thermore , actin filaments and microtubules often interact with other polymer
tail forming proteins that come as integral part of the cytoskeleton (calledf “tau”
proteins, “MAPs”, “formins” etc.). Switchability, in particular of microtubules
might partially relate to the tails.

1.1.3 Anisotropy

Let’s now have a look how elastic anisotropy comes affects interactions and
consider again a simple model [92, 93, 94], cf. Figs 1.4: two glued together,
semiflexible filaments that are cross-linked by soft spring connections. In addi-
tion to the bending energy per length ∼ Bθ′2, with θ (s) the tangent angle at
position s and B the bending stiffness (twice that of of a single chain), there
is also an inter-chain shear deformation, call it τ (s) . The latter gives a sec-
ond elastic contribution, the shear energy ∼ Kτ2. For our simple two filament
bundle of lateral width w, the elastic shear constant is given by K ∼ w2k with
the elastic spring constants k (per unit length) of the individual cross-linking
connectors. The total energy can then be written as

E =
1

2

∫
Bθ′2 (s) +Kτ2 (s) ds (1.2)

In the limit where the axial stretching of the two filaments can be neglected
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the shear deformation at any given location s along the contour can be expressed
in terms of θ

τ (s) = θ (s)− θ̄ (1.3)

with the average angular orientation

θ̄ = L−1

∫
θ (s) ds.

The energy 1.2 with the constraint 1.3 can be interpreted (for weak angular
deformations θ � 1) as a that of a semiflexible filament under strong (internal)
“tension” K [94]. The latter is quite peculiar as it is not applied from the
outside but rather behaves as an internal ”self-tension” that acts with respect
to the mean internal orientation θ̄. This gives rise to long range curvature-
curvature interactions. For instance it is easy to see that if a fixed curvature κ0

is imposed within a certain arc region of length l around some position s0, it
will automatically induce opposite curvature in its proximal regions, cf Fig. 1.4
b. Far away from s0 the shear and bending deformations decay exponentially

θ′ ∝ τ ∼ κ0l exp (−|s− s0|/l)

with a characteristic screening length scale set by

λ =
√
B/K.

If the arc is short, l� λ , its total energy

Earc ∼
√
BKκ2

0l
2

scales quadratically with its length in contrast the more classical semi-flexible
chain models where Earc ∝ l. For longer fixed curvature arcs the shear energy
dominates over bending and grows even quicker with Earc ∼ Kκ2

0l
3. Each piece

of the arc interacts with any other one in a non local manner and it becomes
increasingly costly to form longer arcs (the energy density Earc/l grows in a size
dependent manner). This striking non- extensivity of energy is a signature of
curvature cooperativity along the chain.

1.1.4 Global Constraints: Positive and Negative Cooper-
ativity

The simple example from previous section violates the Monod-Wyman-Changeux
(MWC) [101, 103] rule of thumb that suggests that interactions are (generically)
positive for symmetry reasons. The interactions between two same curved re-
gions above are in fact competitive rather than cooperative. Contrary to the
common belief allostery in a symmetric arrangement of identical subunits can
be both positive or negative. The sign of interaction strongly depends on local
and global geometry of the system. A somehow typical example for how the
interaction can flip sign can be seen in Fig. 1.1.4. Such and similar schematic
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Figure 1.5: The sign of interaction depends on the geometry. Top row: If the
two switches are in the outer filament (1) they cooperate. Bottom row: When
they are on the inside they compete.
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models with global coupling and negative cooperativity can be found in [96].
A more interesting and realistic system with variable sign of interaction - the
switchable microtubule model [47, 48, 97, 46]- we will discuss in the following
section.

1.2 Microtubule Confotronics

After this excursion in general , but rather simplified principles of confotronics,
let’s have a look at a concrete example from Nature: the microtubules.

Microtubules are cytoskeletal protein filaments of eukaryotic cells fulfilling
different structural and mechanical functions in the cell: microtubules act as
”cellular bones” strongly influencing the cell shape, constitute the main routes
for molecular motor mediated intracellular cargo transport [49, 50] and perform
other important tasks like stirring the cytoplasm [51]. Besides, they play a
central role in the assembly of the mitotic spindle during cell division and are
at the heart of the functioning of cilia and flagella [52]. This versatility of
microtubules in a variety of biological functions mainly relies on their unique
high stiffness and on their dynamics of assembly and disassembly. The high
rigidity of microtubules (similar to hard plastic) is due to their structure that is
known in exquisite detail from 3D electron microscopy reconstructions [53, 54] :
microtubules are hollow tubes whose walls are formed by assembly of a variable
number of parallel protofilaments (linear stacks of tubulin dimer units, abr. by
PFs). The PFs themselves are built by head-to-tail self association of the αβ-
tubulin heterodimer protein subunit (yielding a polarity to microtubules) whose
structure has been resolved by electron crystallography [55, 56].

They have been in biophysical focus for several decades but the confusing and
mutually contradicting results regarding their elasticity have shed some doubts
on their understanding in the framework of classical semiflexible models. At the
current stage the switchability of its elementary subunit (the tubulin-dimer)
offers the simplest explanation for the observed complexity [46, 47, 48]. The
principal result of such a “confotronic theory” of microtubules is that they can
spontaneously form large scale cooperative superhelices of micron size pitches
and diameters. The cooperativity of fluctuating internal degrees of freedom in
combination with the cylindrical microtubule symmetry, that gets broken by an
instability, lead to a helical state with very unique characteristics in the world of
macromolecules. One of them is that microtubules can have a degenerate ground
state and permanently reshape even if we grip them by the ends [47, 46]. A
second implication is that microtubules can switch conformations when acted
upon sufficiently large forces and torques[48]. According to the confotronic
model they can then live in kinetically stabilized, metastable states which are
mechanically strongly altered and bear very large curvatures (of the order of
inverse microns).

We will outline the confotronic microtubule model from an elementary per-
spective. The reader interested in the more differentiated biological details we
refer to the review article[47].
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1.2.1 Microtubules as Anisotropic Lattices

A first theoretical attempt to cope with some aspects of the microtubule me-
chanical complexity was the ”soft shear model” (SSM) or ”anisotropic composite
material model” [80, 84, 93, 94]. In this model the microtubule is considered as a
mechanically anisotropic structure [80, 84] with the tubulin protofilaments act-
ing as strong fibers that are rather weakly mutually linked with easily shearable
inter-protofilament bonds. Some specific equilibrium statistical and mechanical
properties of the SSM were investigated in [93, 94].

Although, in detail it does not reproduce all the experimental anomalies[47]
the model has some nice physical features. In particular it develops a linear
response theory of switchable (or binding) proteins along an anisotropic lattice.
The model predicts how the binders/switches distort the lattice and thereby
mutually interact at a larger distance (up to a ˜micron). Any local lattice de-
formation gives rise to a long distance curvature relaxation [94] and can lead
to a long range interaction along the microtubule contour (cf. the anisotropic-
toy-model from previous section). This aspect of the ”soft shear model” is in
phenomenological agreement with cooperative deformations induced by enzymes
like katanin. Interestingly, the model also predicts a length-dependent persis-
tence length which approximately resembles the measured behavior [84, 85].

1.2.2 Microtubules as Switchable Lattices

While the soft shear model does bring in some cooperativity / non-locality in the
description of microtubules it does not fully account for all the findings. In fact
a mounting experimental evidence points toward a higher degree of complexity:
an intrinsic curvature switch of the microtubule lattice.

A model for spontaneous microtubule curving behavior was proposed in
[47, 46] and later extended to active motor induced curving in [48]. In a nutshell,
in such a model the tubulin dimer is treated as a bistable entity and modeled by
a two state variable σn (s) = 0, 1 which corresponds to the straight and curved
state at each lattice site. The n = 1, ...N is the circumferential protofilament
index (N is typically 10-15) and s ∈ [0, L] is the longitudinal position variable
along the MT centerline.

The model is based on the following assumptions:

(I) The tubulin unit (dimer) fluctuates between 2 states - straight and curved
- with an energy difference ∆G > 0 favoring the curved state (see Fig. 1.8).
The energy density resulting from the switching of tubulin dimers is then given
by

etrans (s) = −∆G

b

∑N

n=1
σn(s)

with b ≈ 8nm the dimer unit length.

(II) There is an Ising type nearest-neighbor cooperative interaction of units
states along the protofilament axis with an interaction energy J > 0 favoring
nearest neighbor units (on the same protofilament) to be in the same state. This
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Figure 1.6: Two types of elementary deformations on the microtubule lattice :
The S-let inducing a shear deformation that produces an S-shaped microtubule
lattice deformed over a length scale λ that depends of the lattice elastic con-
stants. A V-let is a compressive/tensile deformation along the microtubule axis
and produces a V-like deformation - a kinked shape curving over the distance
λ.
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Figure 1.7: The empirical evidence for tubulin bistability: (a) A single taxol
stabilized protofilament can coexist in a straight and a slightly curved state (re-
production from [72]) (b) Microtubules in gliding assay experiments can switch
to a stable circular state and move on circular tracks (from [89][90]). Micro-
tubules are occasionally observed to switch back and forth between the circular
and straight states. (c) End-attached microtubules form a three-dimensional
helicoid structure with a 15µm pitch (from [74]).
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leads to the interaction energy density of the form

einter (s) = −(J/b)
∑N

n=1
(2σn (s)− 1) (2σn (s+ b)− 1)

.
(III) Finally the microtubule lattice is also an elastic medium associated with

an elastic energy density. The material strain deformations ε are related to the
centerline curvature vector ~κ via ε = −~κ · ~r with ~r the radial material vector
in the cross-section. For a swichtable lattice the actual deformation energy
depends on the switching-induced preferred strain εpre. It can be written as

eel (s) =
Y

2

∫ Ro

Ri

∫ 2π

0

(ε− εpre)2
rdrdα

where the integration goes over the cross-section with Ri and Ro the inner and
outer microtubule radii respectively. The prestrain εpre (s, r, α) ∼ ±εPFσn (s)
is a function of the switching state σn and the induced prestrain on the protofil-
ament level εPF (see Fig. 1.8). The latter can be extracted from experiments
to be εPF ≈ 10−2. Collecting all energy contributions together the total elastic
+ polymorphic energy of the MT is then given by

EMT =

∫ L

0

(eel + etrans + einter) ds. (1.4)

The ground state such a model can be determined by the interplay of the first
two terms eel and etrans. The last term einter rules over cooperativity and
determines how uniform the lattice states are along the microtubule contour.

Figure 1.8: Strains and deformations in the polymorphic tube model. Each
tubulin dimer can fluctuate between a straight state σ = 0 and a curved state
σ = 1 of intrinsic curvature κPF . The curved tubulin dimer generates a positive
prestrain +εPF on its inner part and an equal but negative prestrain −εPF on
its outer part.

There are two interesting consequences of this model that we should mention
in passing (more details are in the attached papers). The first is that micro-
tubules under certain conditions can exhibit large scale helical ground states.
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(a)

(b)

Figure 1.9: Interesting consequences of the switchable microtubule model: A)
The helical zero energy mode of a clamped microtubule. B) Curvature switching
and hysteresis when microtubules glide on kinesin motor carpets.

Most notably these ground states, that correspond to different orientations of
the helix, are degenerate and the microtubule can hop between them. The cor-
responding effective potential looks like a Mexican hat, see Fig 1.9. The elastic
zero-mode resulting from such a potential, gives rise to a collective (thermal)
rearrangement dynamics that might confuse any experimenter trying to mea-
sure the microtubule persistence length or investigate its elastohydrodynamic
relaxations.

The second , very notable consequence is that microtubules can forcibly
switch from a straight into a curved state when molecular motors act upon
them [48]. When bent by an external torque and then released again , they
can end up in a metastable , highly curved state. In this more elaborate model
the Mexican-hat potential becomes concave around zero and has a rather deep
dimple at its top that competes with the ridge states (i.e. curved lattice states)
at the hat perimeter. In spite of this metastability, the curved microtubule state
can still persist for several minutes until it relaxes again to the initial straight
tube state.
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1.2.3 Variable Sign Interactions and Collective Zero Modes

The mentioned models of microtubules fit smoothly into our initial paradigm
of a confotronic polymer in that there are switchable units (or conformation-
modifying, lattice-binding entities) represented by a binary state variable σ =
0, 1. Now, unlike in the initial simpler cases, microtubules are more than 1-d
lines. Topologically they are more of a cylinder, parametrized by the arc-length s
and an azimuthal angle φ. This second variable makes microtubule confotronics
much more interesting than that of a line. The switching variablesσ(s, φ), which
are now a function of two coordinates s and φ are coupled in an interesting an
more complex way than in the 1-d case. It turns out that the coupling energy
between two points on the surface, (s1, φ1) and (s2, φ2) , is of the generic form

Ec ∼ − exp

(
−|s1 − s2|

λ

)
·
∣∣eiφ1σ(s1, φ1) + eiφ2σ(s2, φ2)

∣∣2 (1.5)

The first, exponentially decaying term is intuitive. The decay length along
the microtubule contour, λ depends on the concrete form of the theory (i.e. on
coupling terms like J, elastic constants of the lattice, etc) but the exponential
form of the decay is no surprise. The real interesting thing is the second term
which says that the individual switches interact as complex numbers. These
complex entities have an amplitudeσ and a phase eiφ1 set by their azimuthal
position on the lattice. If we rotate them all by another angle ∆φ and transform
them like σ(s, φ) → σ(s, φ + ∆φ) it has no influence on the interaction energy.
This of course is the “Mexican hat”, zero energy mode described above.

The sign of the coupling is also interesting. If the units switch to the same
state on the same side of the lattice (eiφ1 ≈ eiφ2) , they tend to cooperate. If
they are on the opposite sides they cancel each other (eiφ1 ≈ −eiφ2) and thus
compete. This naturally leads to a clustering of switched units on one side of
the lattice and to a broken symmetry and lattice curvature.

On a more course-grained, the superposition of the discrete switches gives
rise to a collective “polarization” variable attached to each cross-section

P (s) =

N∑
n=1

eiφnσ (s, φn)

where φn = 2πn/N and N the number of units at each cross-section. The
polarization P can be seen as an embedded vector pointing perpendicular to
the microtubule axis along the Frenet- normal to the centerline. The emergent
microtubule curvature κ is proportional to the polarization’s magnitude κ ∼ |P | .
The rearrangement of the polarization P (and thus the curvature κ) we have
previously called the “wobbling mode”. It is probably the hallmark signature
of a whole class of frustrated confotronic models on tubular lattices. It relates
to the toroidal ZEEM (zero elastic energy mode) that we utilize as an active
“embedded wheel” to make novel machines in Chapter 3.
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1.3 Outlook

In this Chapter we have outlined a tentative framework for soft confotronics
based on some concrete examples. For a more mathematical walk-through the
methods (on a concrete 1D example) see also the Appendix A at the end. The
thinking we have developed here should help us to go beyond a pure description
of biological systems into a practical utilization and fabrication of synthetic
confotronic systems1.

1These could one day transmit and process information on the molecular scale. The syn-
thetic confotronic fiber - a man made filament of interconnected switchable units- when cou-
pled to an external source of energy could behave rather similar to our brain’s neuronal axons.
This analogy , that we are currently pursuing in experiments could some day lead to synthetic
axons transmitting confotronic signals at large speeds on nano-scopic scales. Thoughts and
projects on our lab grown, DNA based nano-mechanical units and confotronic fibers of them
are outlined in the last Chapter.
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Chapter 2

Tanglotronics

We have seen how confotronics deals with geometric and elastic communication
of units. Going beyond geometry, it is sometimes desirable to establish a less
rigid and “more forgiving” coupling between nanoscopic units. By “more for-
giving” I mean that two units that we couple to each other need not be in any
particular, exact geometric arrangement to be able to communicate. Take for
instance a usual copper conductor, coupling between some electronic elements in
a circuit. For the mutual interaction of the elements, it does not matter how we
move around a resistor, capacitor or transistor in space and bend the conductor
as long as the wire connectivity is the same. Confotronics does not have this
feature a priori built in : e.g. bending a microtubule changes the state of the
monomers and their interactions. The field of mathematics dealing with struc-
tural “forgiveness” (or shape invariance) is called topology. In the following we
will develop the concept of tanglotrons -topologically coupled active units that
perturb the topological state of a polymeric material and consequently induce
actuation on the macroscopic scale.

2.1 Nano-Motors and Polymer Entanglement

Many rotary engines exist in Nature [3] with the most prominent examples
being the ATP-synthase [4, 5], the flagellar motor of bacteria [6] and various
DNA- topoisomerases [7]. Also several artificial directed rotors based on various
operational principles have been developed [8, 9, 11, 10, 3] and new rotary
engine designs continue to be proposed and light up our imagination in nano-
engineering [12, 2].

Thus Nature “knows” and “makes” molecular motors. Remarkably, it also
utilizes polymer topology for eons as well. Living organisms naturally harness
the principle of topological energy storage in our genomes [7, 29, 30, 29]. DNA
double strand untwisting energetically shifts the threshold for DNA opening
and activates genes. DNA untwisting (negative supercoiling), also provides an
additional energy source for chromosome folding and compaction throughout
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(a)

(b)

Figure 2.1: The tanglotron principle and its utility: a) The operation of the
rotary motor is coupled to polymer chains. They entangle and spatially col-
lapse causing volume change and mechanical actuation. b) Direct coupling of
a molecular motor to a much bigger object is generally difficult , inhibiting the
motor’s operation. However, using the soft, topological coupling via polymer
chains enables the operation of the motor and actuation (rotation) of the big-
ger object to decouple in time and happen at their individual characteristic
timescales.
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the living realm.
Now , lets say we have a functioning molecular motor at our hands, for

instance a synthetic one like the Feringa’s rotary photo engine [10], and we
want make it perform a useful task on its environment. One can think of many
ways of coupling a rotary unit to its surroundings - in theory. But in practice
any hard , rigid coupling tends to suppress the kinetics and strongly affects the
practical functionality of the nanomotor. This is because , synthetic molecular
motors (including the Feringa motor) are delicate entities that easily jam or
break when rigidly coupled to anything much bigger than them. The central
idea presented here, is to attach soft polymer chains to the device, capture and
conserve the motor generated rotations by topology. This in a nutshell is what
I call the tanglotron unit. An active rotary (nano)motor coupled to a number
of polymer chains buffering and storying the energy of motor rotation.

2.2 Topology and Actuation of Tanglotron Units

A tanglotron is cyborg-hybrid between an active rotary motor unit and a passive
polymer entanglement unit. The original idea [41] is related to the concept of
molecular motors operating in closed DNA ring geometries [2]. As there is no
other practical way to couple such DNA rotary engines with the rest of the world,
attaching polymer side chains for topologically harnessing motor rotations seems
a logical necessity. The evolution of the initial idea [41] eventually ended in
the collaboration with an experimental group and the synthesis of the first
dynamically entangling polymer (“tanglotron”) gel [42], see Fig. 2.2.

To understand how and why these gels contract we dive a bit into conceptual
theory. In a nutshell , when polymer chains, having a finite length and thickness
, are forced to wind around each other many times, they “run out of length” for
larger excursions and thus tend to compactify. In this process of entanglement
they lose their configurational entropy and thus act as free energy storage.

Of course there is quite a large body of theoretical knowledge about polymers
entanglement (in thermal equilibrium). In fact, entanglement and its effect on
the visco-elasticity of polymer networks is the classical problem in polymer
science [13, 14, 15]. In a usual polymer melt, spontaneous, thermally induced
polymer entanglements are created and destroyed in a dynamic fashion, by the
so-called process of polymer ”reptation”. During mechanical shearing of a dense
melt of long polymers, the relaxation of transient polymer entanglements is also
the main cause of dynamic stress relaxation [13, 14, 15]. So in a sense, the
concept of dynamic, transient entanglements is at the core of polymer physics.

The other classical problem, of fixed ,statically frozen-in, topological entan-
glement has also attracted a lot of theoretical interest. A number of simplified,
two dimensional [16, 18, 17, 19, 20] and less tractable three dimensional models
[21, 22] for the entanglements of flexible polymer chains have been developed in
the past. Motivated by single DNA molecule probing experiments [23] apply-
ing torques on the molecular scale by magnetic tweezers, the problem of DNA
supercoiling [24], DNA braiding [26] and its untwisting [25] has been studied
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Figure 2.2: Tanglotron concept [41] and its realizations [42]: a) A tanglotron
nano-gel consisting of only two chains attached to a Feringa motor. b) Contrac-
tion of a tanglotron gel in simulation and experiment. The gel collapses upon
fueling the nano-motors (via UV light) by a factor 8 in volume.

(b) Gel contractionEntanglement

(a)

Swollen gel Entangled 
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theoretically.
Unfortunately, these previously developed theories do not quite work out

for a tanglotron device and a new theory had to be built for it from scratch.
The reason is that the active (motor) generated torque, usually exceeds the
thermal energy scale. It acts so violently on the polymer chains that the basic
assumptions of classical entanglement theory become invalid. One could say
that tanglotronics deals with extreme forms of entanglement that are out of
bounds of the existing models.

To see why this makes a difference, consider the basic idea from classical
polymer entanglement theory: a single entanglement costs some small amount
energy of the order of ∼ kBT . If our active motor device is powerful enough to
inject one , it can also inject two, ... and eventually infinitely many entangle-
ments. But of course a pair of finite polymer chains cannot support infinitely
many entanglements. Thus, an upper storage capacity of the sister chains has
to be woven into any practically working theory of a tanglotron.

Another important aspect is the geometric arrangement of the polymer
sister-chains. At even moderate torques, the chain configuration abruptly switches
from entropic blob-like coils (as considered in classical polymer models) into a
rather ordered double-helix like arrangement in the tanglotronic case. Here we
see an interesting, rather general motif behind topological interactions in real
materials: If topology is driven to its extremes (i.e. the density of entangle-
ments large) it “condenses” and reemerges as pure geometry. This makes the
treatment of tanglotron gels different but also much simpler than one would
naively anticipate.

Let us consider a minimalistic model in a computer simulated tanglotron
gel, like in Fig. 2.3, consisting of many reticulated motors interconnected with
polymer chains. When each motor generates a torque M , it pairwise entangles
the connected chains and densifies them into a compact helical braided structure.

How densely do the chains pack inside of these braids? How many entan-
glements do they contain? To mathematically approach the answers, one can
write down the two basic, antagonistic interactions in the system.

First, there is an excluded volume interaction between the monomers for-
bidding the monomers at positions xi to interpenetrate. It can be formally
represented as a hard core potential with Vhc(x1, x2) = 0 for |xi − xj | > b and
Vhc(xi, xj) =∞ for |x1 − x2| ≤ b.

Second, the motor torque M couples to the number of mutual entanglements
that the sister-chains entrap.

The latter can be expressed in terms of the sister-chains’ configurations in
terms and their Gaussian linking number:

Lk ({xi} , {xj}) =
∑
i

∑
j

(xi − xj)
|xi − xj |3

(xi+1 − xi)× (xj+1 − xj) (2.1)

This is the discretized version of the Gaussian linking number integral for
two continuum curves. It is a remarkable 4-body functional of the two n-
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(b)

(c) (d)

(a)

(e)

Figure 2.3: Tanglotron gels in silico and elements of its theory. a) Simulation
of the entanglement process at fixed volume. Voids are opening up due to
chain collapse. b) The schematics of topological interactions between different
nodes. The motors 1-4 compete with motor 0 for the available chain length of
chains A-D that are absorbed in their respective braids. A failure of motors 1-4
to operate is partially compensated by absorption of chains by motor 0 in its
braid. c) The compacted braid structure of two braided sister-chains (red and
blue) resembles a helix. d) The regular helix picture of the sister-chain braid. e)
The Gaussian linking interaction of two chains is a 4-body interaction involving
tuples of neighboring dimers (links) on two chains. The interaction is distance
(dij) and tangent (ti) dependent in an irreducible way.
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tuples{xi}i=1,..n and {xj}j=1,..nof sister chain monomer coordinates. The cor-
responding entanglement contribution to the energy can then be written as

Eent = −M · Lk

The statistical mechanics, configurational properties and essentially all the
physics of the system are encoded in the partition function function given by
the path integral

Z =

∫ ∫
e−β( 1

2

∑
i6=j Vhc(xi,xj)−M ·Lk({xi},{xj}))D {xi}D {xj}

where β = 1/kBT and D(...) denotes path integration over the variable (...).
If we could somehow evaluate it directly we would know everything about

the system. However the innocent looking linking number Lk is a very subtle
operator making the evaluation intractable in general. Where is the entangle-
ment actually located in Eq.2.1? Because of the many body nature of the Lk
operator the entanglement is actually a bit of everywhere. It lives a delocalized
life- somehow similar to a quantum particle- though not in real space, but on a
subset of ordered pair of pairs (quadruplets) of sister chain monomers as Eq.2.1
says.

But fortunately, in our limit M & 1kBT where (statistically) ordered braids
form we can simplify the problem. In this limit we can assume a helical reference
state of the braid and we can expand any fluctuation around it as a perturba-
tion. The path integral becomes “local” and factorizes , in the sense that all
particles behave similarly and group together in small, well defined groups (or-
dered quadruplets). This line of thinking, developed in [41] works extremely
well, as seen in comparisons with simulations and leads to rather simple results.
For instance the linking number density (per N monomers in one sister chain)
is given by

〈Lk(M)〉
N

= γ − kBT

πM
(2.2)

where γ ≈ 0.3 is a geometric constant resulting from the dense packing condi-
tion of the sister chains. The volume fraction of a tanglotron gel can also be
calculated for large torques

〈ρ〉 ≈ c0 − c1
kBT

M
(2.3)

with c0 ' c1 ' 1 dimensionless numerical constants of order unity.
We see that the gel is rapidly getting denser with M increasing beyond the

thermal scale. Under increasing torques, i.e. for larger entanglement numbers,
the two chains ,having a fixed length, can only have small spacial excursions
away from their central axis and thus take less and less volume.

These asymptotic theoretical results for the linking number and density are
corroborated by equilibrium simulations. And still, it seems somehow surpris-
ing that tanglotron gels as described here, behave as equilibrium objects, in
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the sense that the active motor merely acts as a chemical potential on the en-
tanglements. The reason is intuitive. The motors and the chains eventually
reach a stress balance in which the motors cannot turn any more as they are
prevented by the diverging free energy of the chains. In this stress balance
state, the motors will in practice still dissipate energy , but the whole system
can still be approximately, formally described by a thermodynamic free energy.
The approximation lies in neglecting the local heating of the solvent by motors
operation.

A truly non-equilibrium development of the tanlotron idea, called the tan-
gloplex, is to make the chains bind to the motor only transiently. In such a
system ,that is in one instance outlined in the perspectives section (in form of
the “DNA HYPER-drive”), the dynamics and dissipative processes in the chains
and the motors become crucial. The “tangloplex” development opens the door
towards even richer active and dynamically responsive materials.

As often true in life: in order to get somewhere we need to let go. This is
even more true for the pending tanglotron to tangloplex evolution and the pos-
sibility of unbinding of the polymer chains. Still, the modest quasi-equilibrium
tanglotoron gel materials fabricated so far have quite some appeal , at least
as a starting point for polymer based, topological nano-technology that shall
nucleate around it.
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Chapter 3

Animotion: Hydrodynamic
Modes in Solids and the
“Wheel Within”

In this part we describe a surprising geometric paradigm that liberates soft
machines from their dependence on the wheel and axle by internalizing ac-
tive rotation within the material. The ”embedded wheel” motif allows us to
transform many stimuli responsive materials into self-organized, continuously
morphing, single-piece engines. Illustrating the concept, we show how common
elastic fibers, including rubber, plastic and even spaghetti can be converted into
rotary motors and self-propellers when driven out of equilibrium.

3.1 What are Animas?

A scientist from another universe discovers that his butter bread always falls
onto its butter side. Remembering that his cat always falls on its legs, he comes
up with a brilliant idea: He tapes the peanut-butter bread onto the back of
the cat and generates an engine that lights up his universe and solves all its
energy problems. Or so it goes in the classic buttered-cat paradox [143]. The
system consisting of the cat and the butter-bread is apparently frustrated by
construction and driven by the antagonism of its two sub-components. The
only possibility it has - at least in the universes where cats and breads always
fall in the same way - is to turn. This chapter is about mechanical peanut-
butter-bread-cat analogues in our own world. It is also about various forms of
frustration and how they give rise to continuous motion in dissipative, driven
materials. For the fainthearted reader, discouraged by the prospect of facing
frustration let it be said that that motion and frustration are inseparable. In
fact, all natural shape and motion are borne by frustration. In the realm of
physical materials, frustration denotes the inability of a system as a whole to
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reach a stress-free equilibrium, in any state, at any time, in the mechanical or
in the thermodynamic sense. In the following we will develop the concept of
animas - mechanically frustrated active objects, that structurally encode their
own motion. We will see that animas are active objects, similar to classical
(macroscopic and molecular) motors, that utilize and dissipate energy in order
to move in a continuous manner. Like the butter-bread-cat they give us the
intuitive look and feel of an impossible object. Yet they are real, easy to make
and understand.

Figure 3.1: Cat and butter bread system: Cat falls on its lags. Bread on its
butter side. Together they can only perpetually spin.

The prototypical example of a continuous motion-encoding object is the
wheel and axle system. Once the wheel is tightly fitted onto the axle, it ex-
hibits a natural mode of motion - its rotation around the axle. Here we will
consider elastic material gadgets and machines reminiscent of the wheel, that
however consist of only a single component and despite their simplicity display
a continuous cyclic motion.

The general idea behind is to generate and then actively drive cyclic contin-
uum zero-modes in elastic objects with internally trapped mechanical prestrains.
It is well known to condensed matter physicists and formalized in the ”hydro-
dynamic Goldstone theorem”[149] that whenever a continuous symmetry of a
system is broken, there is a ”symmetry restoring” deformation that can be ap-
plied to the object leaving its energy unchanged. For the Möbius tape this
motion corresponds to sliding the oppositely curved regions uniformly along the
length. It is somehow less known, and often overlooked in this respect, that
frustrated elastic objects with hydrodynamic modes are rather common around
us: from wrinkles in excess angle cones, over ribbons, to edge stressed sheets,
see Fig. 3.2.

In Nature we often find zero energy modes on the micro scale, as evidenced
by the universal joint reshaping of the bacterial flagellum hook[144], the wob-
bling motion microtubules[46] or the propulsion of left-right-handed kinks along
the contractile sheet of the bacterium spiroplasma [145]. Some of these zero
energy modes can even become actively driven in a directed manner by a non-
equilibrium processes. Such motile or ’animated’ zero elastic energy modes we
will in the following pictorially call the “animodes”. An elastic object with
an actively moving animode we might call an anima and the corresponding
shape and energy preserving continuous deformation resulting from the action
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Figure 3.2: Various prestressed elastic objects exhibiting one or several zero elas-
tic energy modes (ZEEMs). When driven out of equilibrium by an energy flux
generating dynamic frustrations these objects turn into embedded “animated
material” motors (animas).
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of the animode we will in the following simply call animotion. First working
examples of animas undergoing active animotion in toroidal geometries were
demonstrated by us recently in [146] and consisted of a fiber closed in a circular
loop. In that case the animode consists of a spontaneous, thermally driven,
axial rotation of the fiber around its centerline .

3.2 Examples

Animas are not an abstract concept and are in fact rather easy to make if
you know how. Animotion is so natural that it happens spontaneously in an
emergent, self-organized manner. In this spirit, let us start out with some
examples.

Did you ever wonder why initially straight sausages bend while being baked
on the pan? At first sight, it looks like a transient thermo-elastic phenomenon,
something possibly worth investigating.

A more exciting experiment (accessible for vegetarians among us as well):
Take a piece of dry (uncooked) spaghetti and place it onto a flat, hot plate or
a pan. You will be stunned by the observation: It rolls across the surface! This
“motorization of spaghetti” is a mundane manifestation of the more general
phenomenon of self-organized animotion. It also forms the basis for what we
call the fiberdrive motor[146] (see also the attached manuscript).

Animotion is conceptually far more general than the spinning sausage and
spaghetti which are merely its simplest practically working realization.

Another prototypical anima example is that of an intrinsically straight elastic
rod closed into a loop. Placing a nylon ring onto a hot plate of a about 160-180
C, after a short warm up of about a second the ring starts to turn 1, see Fig 3.2.
Note, that it does not rigidly ”rotate” in a classical sense. What you observe is
not rotation , it is real animotion. Note also that it has a definite directionality
for any given material. For nylon and PVDF fibers, the upper portion of the
ring fiber , as seen from above, moves to the outside. If you are slightly more
skilled, and can handle PDMS rubber in your lab it is advisable to perform the
same experiment with the rubber (curing it in a 0.5-1 mm capillary tube). What
you observe is that the rubber ring turns now the opposite way with respect to
the nylon ring. The reason why the ring turns is explained in sections below
(and the attached manuscript) and depends on the sign of thermal expansion
coefficient.

In analogy with the spaghetti, you can perform the same experiment also
with a straight open piece of nylon fiber. After placing the fiber onto a slightly
hot plate2 the fiber bends slightly and begins to rapidly ”rotate” and ”roll” on
the surface. The fiber becomes quite agile and turns into a bidirectional motor

1As a material it is most advisable to use piece of nylon fishing line fiber, 0.3 to 0.8 mm
in diameter (for medium size to large fishes). Then close it into a loop of some 3-5 cm radius
with a piece of PVDF shrink tube or brass tube connector for fishing lines.

2Start with 110-130 C, then increase temperature slowly (over a minute or two) up to 180C
to avoid to rapid deformations which might sometimes destroy the sample.
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PDMS Nylon

Figure 3.3: A polymer ring on a hot plate. Right panel : PDMS rubber ring
turns outside-in (as seen from top) on a hot Teflon pan with a typical frequency
of 1Hz. Nylon rings turn in the opposite direction (inside-out).

that can switch direction when hindered to move in one direction. You might
want to confine it with two parallel obstacles (e.g. microscopy glass slides) to
prevent it from falling down from the plate and to enjoy the spectacle for longer.
Again , as in the case of the anima ring , the open fiber is not actually rotating
and rolling , but rather constantly reshaping in its own reference frame (note
the slight curvature it displays). It performs animotion again, but this time the
animode is not imposed by geometry as for the ring but rather emerges through
a self-induced-buckling on the plate. As mentioned, you can also perform the
experiment with a piece of spaghetti , but by its very nature the spaghetti
will eventually prefer to cook and seize to move (unlike the very durable nylon
fibers). Nevertheless , with spaghetti you can make another remarkable ob-
servation. After moving on the plate for some seconds you can place it on a
room temperature cold (˜20 C) glass or metal surface. The hot spaghetti now
moves even more vigorously, till it eventually thermalizes with the plate (and
the room). It is also notable and inherent to the phenomenon that on the cold
surface the spaghetti will invert its movement direction with respect to its the
curvature (normal vector) direction.

Active animotion is rather elegant and easy to achieve for fibers but interest-
ingly is not restricted to fibers only. Thin sheets can display an actively driven
animode as well. The probably simplest example is a rolling hollow , photo-
elastic cylinder excited by a light source pointed at an inclined angle [147], see
Fig. 3.2. Similar design can be achieved by a thermoelastic sheet on a hot plate.
In this case , the anima has to break the symmetry and structurally polarize by
a first tumbling event. In both cases, these simple animas are marginally stable
, in the sense that has only a single, straight contact line with the substrate.
Their operation, stemming from the small weight imbalance between the, light
facing, bulged and more round part, requires gravity for its operation. It can
consequently develop only rather minor forces that scale with (a small fraction
of) their gravity force.

A more elaborate version of a sheet anima is that of a three-fold symmetric
“C3” Möbius tape (linking number 3/2 instead of the usual 1/2). Placing such
an object on a hot plate generates directed animotion , that depending on the
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Figure 3.4: a) Fiber animas roll on hot plates. The direction of “rolling” an-
imotion depends on the material properties. b) For nylon the rolling is to the
“outside” of the formed arc.
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(a)

(b)

Figure 3.5: Sheet animas: a) A light responsive cylindrical sheet illuminated
from the left. b) A plastic thermo responsive ”C3-Möbius strip” heated from
from bottom undergoes animotion.

material can go one or the other way.

3.3 Principles of Animotion

After our excursion through examples it should be clear that we are surrounded
by animotion. Here we disseminate the basic geometric and physical ingredi-
ents for active animotion in elasto-responsive systems: static and dynamic
frustration.

3.3.1 Static Frustration and Zero Modes

For an continuum elastic object to display a zero elastic energy mode (ZEEM)
,different from a trivial rotation, it must store internal stresses that lead to
symmetry breaking. That is, the object should display built-in mechanical frus-
tration that we will refer to as built-in or static frustration. For the anima ring
or the C3-Möbius sheet anima from the previous section, the static frustration
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is topologically frozen into the sample- by the constraint of closure. This is cer-
tainly the simplest way to introduce prestrain and in turn symmetry breaking of
an initially symmetric and unstressed sample (straight filament and flat sheet).
However , one can think of more subtle and fine-tuned, non-topological methods
of introducing arbitrary prestrains. This can be accomplished by permanently
shrinking or swelling different portions of the object, like for instance in an edge
crumpled disk. In this case a swollen perimeter leads to disk buckling and the
emergence of a zero elastic energy mode.

3.3.2 Dynamic Frustration

To initiate active motion of the object along the ZEEM we require a source
of energy, more accurately, a flux , to drive the system out of thermodynamic
equilibrium. The term flux , can stand for a heat flux (from a hot surface to
the cold air), a flux of humidity (water or other solvents through air), or flux
of ions, or even flux of photons from a light source. If the direction of the flux
with respect to the elastic object and the response of the object to the flux-
induced-stimulus meets certain symmetry conditions the object starts to move
continuously.

3.3.3 Two Types of Animotion

Depending on how the two types of frustrations emerge, one can distinguish
two types of animas. For type 1 animas the static frustration is there first ,
before the dynamic frustration, and together with the drive gives rise to the
dynamic frustration. The zero eigenvalue of the ZEEM, that is always present
at first, becomes now purely imaginary, the ZEEM turns into an animode and
the object performs animotion. A typical example here is the toroidal fiberdrive.
It displays a zero mode even before the drive sets it.

In type 1 animas the motion onset occurs in a continuous fashion once the
drive can overcome the dissipation. In case 2, initially there is no static frustra-
tion , but it only co-emerges with the dynamic frustration once the drive sets
in. A typical example is the linear fiberdrive. In contrast type 1, in a type 2
anima the system needs to buckle first and break the symmetry. The animode
emerges by spontaneous symmetry breaking without originating from a ZEEM.
This happens only after crossing a certain threshold of driving power and typ-
ically with a rapid, discontinuous velocity of motion at the onset. A central
characteristics distinguishing type 1 and type 2 animas is that the former (type
1) is a unidirectional engine, while the latter (type 2) is a bidirectional one ,
that can flip its direction typically randomly after being stalled. In general,
from practical point of view, the type 2, bidirectional animas will be simpler to
build, even on smaller scales, as their prestrain emerges spontaneously. How-
ever their bidirectional nature will render them far less useful as an engine. The
unidirectional, type 2, animas will require some more assembly effort (like e.g.
fiber circularization) but are much more naturally suited as robust engines.
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3.3.4 Interactions with Stimuli

To become active , the material has to be ”smart” and respond to an external
driving stimulus. The stimulus, that we for simplicity assume to be a scalar
quantity T can be anything from temperature, over a chemical’s concentration
in the solution or the intensity of light. In the simplest case the stimulus can
induce an isotropic prestrain (eigenstrain, cf. [152]) proportional to the driving
field: εii = αT where α is the coupling coefficient and εij the elastic strain tensor
3. An important requirement for animotion is that the scalar stimulus field T
must be out of equilibrium. That means in particular that it displays gradients
and directional fluxes along these gradients. If we think of T as temperature of
a hot plate in cold air, there will be a heat flux opposing the stimulus’ gradient
∇T . In the simplest case, of a uniformly heated plate, the stimulus gradient is
uniform within the plane and points everywhere along the plane’s normal - in the
z-direction. In the case of directional parallel light stimulation , the gradients in
the light intensity field will appear through the absorption within the material
itself. The directly illuminated side of the semitransparent or opaque object
will get more photons, absorb them so that less photons arrive on its shadowy
side.

When acted upon the stimulus gradient, different layers of material sample
will respond with different stains at different depths. That is, a stimulus gradient
leads to a strain gradient along the same direction. It is easy to see that a
material with a negative stimulus coupling coefficient α<0 (like e.g. nylon upon
heating) will curve in the direction opposing the flux and form a concave bridge
or ”cave”. Similarly , a positive stimulus coupling coefficient α>0 (like heated
rubber) will lead to a bend in the direction of the flux and form a convex valley,
here simply called a ”vex”. So , for any specific material every section of it will
tend to ”cave” or ”vex” towards or away from the gradient. If however the
closure constraint forbids or constrains such deformations, they will project in
another direction and this frustrated projection initiates animotion.

The geometry and active mechanics of vexing or caving contact points in
intricate geometries can become really complicated. This is particularly true
for 2d sheets (cf. the C3Möbius tape), that display an intrinsic coupling of
Gaussian curvature with the in-plane stretching. Fortunately, to understand the
emergence of the animode we have a simple prototype that is still elementary
enough to study - the toroidal animotion of the “fiberdrive”.

3We will focus here on this elementary, isotropic , linear coupling case. Note that many of
the assumptions we made, like the isotropy of the material and material expansion, or a scalar
stimulus are not really necessary and are chosen to keep it simple. Generalizations to vectorial
stimuli (like the e.g. polarization vector of light) , anisotropic coupling of the material to the
vectorial stimulus, as well as the stimulus affecting not only the prestrains but also the elastic
moduli are possible, opening up some avenues towards vast and interesting playgrounds.
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"vexing" "caving"

Figure 3.6: Stimulus response, vexing and caving. A material sample can react
to an energy flux (red arrows) in two ways: it can become convex and bend
away (“vexing”) or concave, bending towards the flux (“caving”).

3.4 Toroidal Animotion

In an nutshell , toridal animotion happens because the lower part of the torus
contracts or extends and thus “wants” to vex or cave (depending on the mate-
rial). If the material contracts (extends) upon heating, the lower portion of the
torus migrates towards the inside (outside) of the torus. That sets the direc-
tion of animotion. Physically, this the simple (and extremely robust) essence
of toroidal animotion. To understand it deeper in the following sections and
in an appendix (at the end) I develop the backbone of a future theory and a
classification of different types of animas. The theoretically less inclined reader
can skip the starred (*) chapters down to.

3.4.1 The Toroidal ZEEM

Consider a torus, made out of a stimulus responsive, isotropic and linearly
elastic material rod (think of rubber or nylon rod) closed in a circular loop.
The stimulus, here assumed to be temperature T , gives rise to a temperature
profile within the material and has a flux ∇T . The latter we assume here
for simplicity to be symmetric around the torus symmetry axis (the z-axis),
i.e. all torus sections behave in same manner. Consider a single section of
the torus and a coordinate system attached to the material. Along the two
embedded coordinate axes ,call them e1 and e2, we will have a temperature
profile that in first approximation we assume to be a linear gradient. The two
corresponding co-moving gradient components, projected onto the co-moving
axes, we denote with θ1 =e1 · ∇T and θ2 =e2 · ∇T. The internal coordinate
frame can dynamically reorient with respect to the outer, lab-fixed frame , ex

and ez by a uniform “rotation” of all cross-sections by an angle Φ(t) (evolving
with time t) like

e1= cos(Φ)ex + sin(Φ)ez

e2 = −sin(Φ)ex + cos(Φ)ez
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Figure 3.7: The geometry of toroidal animotion. The internal temperature
profile Tint of each cross-section is decomposed in two modes. The thermal z-
mode is pumped by the heat flux p normal to the substrate (represented by the
red horizontal line). The x-mode emerges from the z-mode by frame rotation
(animotion) with the angle Φ.
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Note that this Φ−“rotation” of the cross-section is not a rigid body motion
of the whole object. It is rather a continuous deformation and reorientation of
the whole torus along its ZEEM. Parametrising the torus Xtor = (x, y, z) with
two angles θ, ϕ and the distance ρ ≤ r

x(ρ, θ, ϕ) = (R+ ρ cos θ) cosϕ

y(ρ, θ, ϕ) = (R+ ρ cos θ) sinϕ

z(ρ, θ, ϕ) = ρ sin θ

the elastic displacement field −→u of the toroidal ZEEM can be written as

−→u ZEEM (ρ, θ, ϕ) =
∂
−→
X tor (ρ, θ, ϕ+ εΦ)

∂Φ
(3.1)

where εΦ stands for an infinitesimally small motion along the ϕ coordinate.
This displacement field can be written down more explicitly , but it is already
clear that this is no naive, simple rotation. The toroidal ZEEM a new beast in
town.

3.4.2 Frustration and Emergence of Torque (*)

The body-fixed temperature gradients θi naturally give rise to eigen-strain gra-
dients ∇εezz along the long toroid axis and intrinsic eigen-curvatures

κei = ei · ∇εezz = αei · ∇T

where α is the thermal expansion coefficient (with units K−1). These internal
frame (preferred) “eigen” curvatures κe1, κ

e
2, relate to the external frame eigen-

curvatures κex, κ
e
z in the same way that the two coordinate systems transform

:

κe
1 = cos(Φ)κe

x + sin(Φ)κez

κe2 = −sin(Φ)κe
x + cos(Φ)κe

z (3.2)

with the inverse transform:

κe
x= cos(Φ)κe

1 − sin(Φ)κe
2

κez = sin(Φ)κe
1 + cos(Φ)κe

2 (3.3)

The upper index e in κe1, κ
e
2 and κex, κ

e
z indicates that we are dealing with the

preferred eigen-curvatures that the rod would assume if it was free to reorient in
space. However, the rod is not free. It is closed in a torus, lying in a plane with
normal ez. This imposes a strict condition on the actually assumed curvature
(written without index) in the external frame. This actual curvature is given
by

κx = 1/R (3.4)

κz = 0 (3.5)
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where R is the (large axis) radius of curvature of the torus. The mismatch be-
tween the preferred value of a variable κi and its actual, assumed value, i.e. the
quatity (κi − κei ) , can also be called the “frustration”. It has a corresponding
“frustration energy” given by Ei = K

2 (κi − κei )2 with K = BL an elastic con-
stant, given by the bending stiffness B of the torus of contour length L = 2πR.
Having two orthogonal modes, the total frustration energy is the sum of the
mode energies in both of the coordinate systems:

E =
K

2

[
(κ1 − κe1)2 + (κ2 − κe2)2

]
(3.6)

E =
K

2

[
(κx − κex)2 + (κz − κez)2

]
(3.7)

For given preferred material eigen-curvatures κe1/2 and the actual, imposed cur-
vatures κ1/2, Eq. 3.5, inverting the transformation in Eq. 3.2 and inserting in
Eq. the energy simplifies

2E(Φ)/K = (κe1)
2

+ (κe2)
2

+
1

R2
− 2

R
(κe1 cos Φ− κe2 sin Φ) (3.8)

For vanishing eigen-curvatures κe1 = κe2 = 0 (i.e. if there is no heat flux) the
energy is independent of Φ as expected from toroid’s ZEEM (that is parametrized
by Φ). However with non-vanishing eigencurvatures κei (e.g. when we heat from
below) the ZEEM is “broken” and the toroid assumes a fixed, unique Φ in its
equilibrium state. The system would also stay in that (quasi) equilibrium if it
was not constantly driven and dissipating.

3.4.3 Dynamics (*)

The mechanical dynamics of the toroid anima with non-vanishing κei results
from a balance of torques acting on the variable Φ. On the one side there is the
elastic torque M = −∂E/∂Φ resulting from the energy (Eq. 3.8)

Mel (Φ) =
K

R
(κe1 sin Φ + κe2 cos Φ) (3.9)

In addition to the elastic torque, when the toroid is moving there is typically
also a dissipative torque

Mdiss = ξ
dΦ

dt
+ Csign(Φ̇) (3.10)

One can think of the first term as as an effective, internal or external, Stokes-like
friction with a friction constantξ. The second, slightly inelegant but in practice
rather important term is the solid, coulomb type friction. It is independent of
the velocity magnitude but depends on the direction of motion , signified by
the sign of dΦ

dt term. This dry friction typically acts at the interface between
the object and the substrate. Furthermore, most glassy, plastic materials, like
nylon, also exhibit an internal dry friction at low velocities.
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For the sake of simplicity we omit here the dry friction term and balancing
the two torques we get the dynamic equation

dΦ

dt
= τ−1

e (k1 sin Φ + k2 cos Φ) (3.11)

with k1/2 = Rκe1/2 the eigen-curvatures in non-dimensional form and τe =

R2ξ/K = Lξ
4π2B a characteristic “elasto - hydrodynamic” timescale governing

the relaxation to the mechanical equilibrium.

When we switch-on the active drive, like heating the torus from the bottom,
the the internal eigen-curvature modes k1/2 themselves become dynamic. With
an upwards (heat) energy flux, the two modes increase with a “pumping rate”
p ∝ α∆T according to their current projections on the z-direction (direction
of heat flux). Counterbalancing the energy influx, the k1/2 modes also have
to spontaneously decay by giving off heat to their environment. This happens
with a rate rk1/2 proportional to their own magnitude. Taken together, it is
intuitive to asume (and can be formally shown by solving diffusion-advection
type equations, see [146]) that the modes evolve as

dk1

dt
= p sin Φ− rk1 (3.12)

dk2

dt
= p cos Φ− rk2 (3.13)

3.4.4 Type 1 Animotion (*)

The system of 3 equations 3.11-3.13 govern the dynamics of the intrinsic curva-
ture in the co-moving frame. To solve them , we can rewrite them in the external,
lab-fixed frame, with the corresponding scaled eigen-curvatures kz/x = Rκ0

z/x.

Defining the angular frequency ω = dΦ
dt from Eq.3.10 the Eqs. 3.11-3.13 simplify

to

ω = τ−1
e kz (3.14)

dkx
dt

= − rkx − ωkz (3.15)

dkz
dt

= p− rkz + ωkx (3.16)

The first equation originates from the mechanical torque balance, while
the second and third are “thermodynamic” (diffusion-advection like) in nature.
Taken all three dynamic equations , we have an interesting steady state obtained
by setting dkx,y/dt = 0 :

kz = τeω, kx = −τer−1ω2

p = rτeω + r−1τeω
3 (3.17)
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From the last equation we see that (in absence of dry friction) there is motion
for arbitrary small drive p. Close to the onset , at small drive p→ 0 , where ω
is small as well, we have then simply

ω(p) ≈ p

rτe
(3.18)

Inverting the drive p→ −p leads also to an inversion of animotion direction
i.e. angular velocity switches sign, ω → −ω. This is a typical behavior for type
1 animas. Their direction of motion is set by the geometry and (in the case of
negligible dry friction ,as assumed here), the motion is present for any arbitrary
small magnitude of the stimulus p.

3.4.5 Type 2 Animotion (*)

What happens if we do not impose the symmetry of stimulus flux , to be from
the bottom , but let say radially from the inside to the outside of the toroid?
Such an arrangement can for instance be reached by inserting a hot cylinder
in the inner “hole” of the torus, radiating the heat flux from the inside to the
outside. In such a case the mechanical equation 3.11 stays unchanged and only
the thermo-elastic equations 3.12 and 3.13 become modified by the change of
flux orientation to

dk1

dt
= p cos Φ− rk1 (3.19)

dk2

dt
= − p sin Φ− rk2 (3.20)

Transforming again from the body-fixed to the lab-fixed frame we obtain

dkx
dt

= p− rkx − ωkz (3.21)

dkz
dt

= − rkz + ωkx (3.22)

where ω still obeys 3.14. The new equations 3.21,3.22 are very similar to
3.15,3.16 , with roles of the two modes flipped. However in combination with
3.14 the steady state now becomes

ω
(
p− r2τe − τeω2

)
= 0 (3.23)

The system now behaves dramatically different. For p < r2τe the only solution
is ω = 0, i.e the system is static and no motion is possible. For pcrit = r2τe it
exhibits a pitchfork bifurcation, the static solution becomes unstable and two
new stable branches,ω+and ω−,emerge

ω±(p) = ±
√
p/τe − r2 (3.24)
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Therefore, beyond a critical pumping p > pcrit (sufficiently large to overcome
dissipation) the system breaks the symmetry and displays an animode in one
of the two directions. This bi-directionality and the presence of a threshold are
the defining characteristics of type 2 animas.

In our concrete, radially heated torus case, we have an interesting particu-
larity: when we invert the sign of p we also dramatically change the dynamic
behavior of the system (as p comes in first power). This, behavior which is not
quite general for all type 2 animas (as we will see in next section), physically
comes from the fact that when we heat from the inside of the torus and the
material prefers to contract upon heating (i.e. a “caving” material) the heated
part stays stably at its original position (in the middle). In this case, statically
stable case, obviously no motion is observed. Only when the hot part on the
inside likes to expand (i.e. when we are dealing with a “vexing” material) do
we get a dynamic frustration which leads to the onset of animotion.

3.4.6 The Motile Spaghetti (*)

As we discussed in a previous chapter even a cylindrically symmetric object can
become an anima if it is forced to stay in plane and driven in the z-direction.
In this case the actual in-plane curvature κx is free to adjust to the preferred
in-plane eigen-curvature κex, i.e. κx = κex . The out of plane curvature on the
other hand, necessarily vanishes i.e. κz = 0. Together this gives rise to an
elastic energy of the form

E =
K

2
(κez)

2

with the resulting elastic torque

M = −Kκezκex

Compare these expressions to their closed toroid equivalent Eq. 3.7 where both
eigen-curvatures enter and both actual curvatures are constrained.

Going through the exercise of balancing torques like in 3.93.10, dropping
again the dry friction, the equations for the (scaled) eigen-curvatures in the
lab-frame become

ω = −τ−1
e kzkx (3.25)

dkx
dt

= − rkx − ωkz (3.26)

dkz
dt

= p− rkz + ωkx (3.27)

The Eqns. 3.263.27 are of course identical4 to Eqs. 3.153.16 as the kinematics of
inducing strain in z-direction (the p term), dissipating heat (the r term) and the

4In absence of an intrinsic, closure imposed radius R = L/2π the scaling of the variables
kx, kz and the timescaleτe can be done by the filament’s length L instead.
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mode advection (the ω term). Only the torque-balance equation 3.25 deviates
from its toroid counterpart 3.14 by an additional −kx term. Solving for the
steady state we obtain

ω
(
rτe
(
r2 + ω2

)2 − p2r2
)

= 0 (3.28)

The branch ω = 0 is stable for sub-critical pumping |p| < pcrit with pcrit =√
rτe. For |p| > pcrit the ω = 0 branch is unstable while two new branches

ω±(p) = ±

√
rp2

τe
− r2 (3.29)

emerge. Again, with the bi-directionality and symmetry breaking involved, we
are dealing with a type 2 anima. Interestingly , when we compare the kinematic
relation Eq. 3.29 to the one in Eq. 3.24 from the toroidal type 2 anima case
difference in the exponent of the p term stands out. In the present case , Eq.
3.29, inverting the direction of the pumping does not change the physics (p
comes in the second power). Regardless if we are cooling or heating from below:
upon sufficient pumping , the fiber is rotating and rolling bi-directionally in
plane.

3.5 Animas as Motors

From the previous examples we have learned that there are two distinct classes
of animas: those who run easily and uni-directionally (type 1) and those, bi-
directional ones that need to break a symmetry to decide which way they run
(type 2 animas). The distinction is not a mere mathematical subtlety. It touches
upon the practical utility of the anima as motors. A device that inverts its
direction upon weak opposition in its surrounding is dynamically less robust
than an object that turns unidirectionally and without any threshold5. For
the physics of the two types of animas considered as motors is referred to the
Appendix, where I give the torque-velocity relation for various types of anima
devices.

5The “without threshold” statement for type 1 animas has however to be taken with a
grain of salt and is true only in absence of an external torque and in absence of dry friction.
So far we have ignored dry friction which can naturally induce a threshold even in a system
that does not break symmetry. Although dry friction has something of an analytical nuisance
-due to its singular velocity independent nature- it is basically always present. It is often
even dominant over other forms of friction on the macroscopic scale and small speeds. Not
surprisingly dry friction modifies the onset of animotion, such that there is always a minimal
pumping threshold that needs to overcome the constant friction force. Leaving technical
details to later work one can still state, that apart from the shift of onset, animotion keeps
its character regardless of particular type of friction.
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3.6 Outlook

We have explored here a novel paradigm that we called animotion. When look-
ing back at what it “really” means, it actually represents a new form of active
“wheel within the material”. From the examples above we have seen the prac-
tical feasibility of embedding the wheel and driving mundane polymer fibers as
motors. These fibers turn into robust, one-piece motors (“fiberdrives”) when
driven away from equilibrium due to dynamic frustration emerging within the
material. We have seen that zero elastic energy modes (ZEEMs) are truly
ubiquitous in elastic material samples and generating dynamic frustration to
drive them can be as easy as placing a spaghetti on a hot stove. The model
that we developed above suggests that many other driving mechanisms should
potentially induce animotion. In fact, the energy pumping rate p (initially rep-
resented by a heat flux) could be substituted by any flux normal to the plane.
Fluxes that can couple to the material’s strain, could in principle be anything
from solvent, ionic/pH, electrical fluxes to optical illumination gradients that
we are exploring in particular these days. The insight that we can now fully
dispense with the ancient wheel and axle, utilize intrinsic ZEEMs and make
them perform animotion instead, opens some exciting new perspectives on soft
machines. The anima motors, made from mundane plastic, rubber and even
starch call for rethinking the very meaning of a “smart material” . In fact the
concept of animotion shifts the spotlight from microscopic material properties
to mathematical ideas of symmetry and topology. Through them the physical
material acquires a novel form of collective smartness, residing in none of its
individual parts, yet globally encoded in their delicate interplay.

Considering the enormous simplicity and robustness of animotion it appears
to be a likely mechanism to stumble upon by evolutionary chance. From ex-
perience we learn that rarely we can come up with something really simple
and functional that Nature did not explore already. Now here is a tantalizing
thought. Owing to their unusual filamentous shapes filoviruses including the
marburg and ebola virus might display some form of gradient driven surface
rolling motility (possibly driven by humidity or ion gradients). The hypothe-
sis, of filovirus animotion, right or wrong, is too scary to be ignored easily and
certainly requires further attention.
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Figure 3.8: A tantalizing ramification: Ebola virus animotion and propulsion
on surfaces?
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Chapter 4

Projects in the Making:
DNA Nanomotors, Anima
Motors , Confotronic Fibers

Looking forward, there are some concepts that have crystallized out and call for
further development in various directions. Among them, three really stand out
and should bear fruit in future: a) concepts of confotronics and their implemen-
tation (in particular the synthetic ones yet to come), b) further generalization
of the tanglotron coupling and c) practical continuum material (anima) mo-
tors. My plans for future can be subdivided in ”improvements” of ideas and
conceptually ”new directions”.

4.1 Animotion and Fiberdrives

To build truly complex continuum machines from smart materials it seems in-
evitable to think broader, beyond the pure material properties and reflect on ma-
terial geometry and topology. In the future we will develop deeper the newly pro-
posed paradigm -animotion - allowing us to build complex continuum machines,
in particular circular motors from single pieces of smart, responsive materials.
The general idea to induce and actively drive cyclic continuum zero-modes in
elastic objects with internally trapped mechanical prestrains was demonstrated
to be practical and conceptually sound. One example already outlined above is
the closed torus operated as a motor (fiberdrive). This seems to be the first ,
but certainly not the only instance of such a continuously deforming object. As
a second example, one can think of sheets and ribbons. Their practical utility ,
torque and power density will also be investigated in near future.
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4.1.1 Optical Driving, Down-Scaling, First Devices

Over the past two years, we have demonstrated that the fiberdrive can be driven
by a heat source. This can be seen as a proof of concept but somewhat inelegant
and brute force approach. It is practically preferable to work with other sources
of energy like electrical fields or light. One interesting hint that electrical fields
could be utilized to operate the fiberdrive is our finding that besides nylon and
silicone rubber also PVDF fibers exhibit the thermoelastic rotation (comparable
to that of nylon). PVDF has several amazing properties and stands out among
polymers : it is piezo, pyro- and ferro-electric. This could open the path towards
electrically driving single PVDF fibers once its semi-crystalline lamelar domains
have been properly poled (oriented). Another alternative and even more promis-
ing path is to embed photo-switchable azo-benzene molecules within a polymer
matrix and utilize light as an energy source. Recently, in collaboration with a
newly recruited chemist Amparo Ruiz and a motivated master student we have
managed to synthesize the necessary material components. With quite some
excitement we are looking forward to test soon the first optical fiberdrive.

It appears that when scaled down animas could play a similarly important
role in micro and nano-mechanics as the wheel has played in the macroscopic
machines. The favorable scaling was first demonstrated in the thermic drive
case, where we found that fibers of 100 micron or less rotate with frequencies of
tens of Hz. In future we will closer explore the laws and practical (engineering)
limits of anima fiber down-scaling and put it to practical use, at least a a proof of
concept level . In simple microfluidic channels optical versions of the fiberdrive
could act as light driven rotary mixers and pumps.

4.1.2 Making of Open Anima Fibers

Another interesting project is to build open amima fibers that even in absence
of drive exhibit a zero elastic energy mode (ZEEM).

There are indeed microscopic fibers that behave in that way including bac-
terial flagella and microtubules. The hope that we can really make such an
object is based on recent theoretical considerations but also some interesting
macrosopic experiments that we have performed. In them we have demon-
strated that when putting tensile prestress on a cylindrical tube’s outer layers
(i.e. the ”skin”) while keeping the core of it unperturbed , there is a novel
elastic instability that leads to self-buckling and the formation of a continuous
ZEEM. It behaves similar to the ZEEM seen in a rod closed in a torus (cf. the
fiberdrive) but without the necessity to have the two ends topologically closed
(i.e. to form a complete torus). I

Through their spontaneous , zero-mode curvature , such ”ZEEM fibers”
could significantly improve the torque and power output of a fiberdrive device
(cf. above) and more generally act as novel scalable universal joints transmitting
torques ”around the corner” in future soft machines. From the practical side,
we will try to make a higher throughput procedure to generate larger lengths
(meters) of anima fibers and think about the prospects for their industrial utility
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and larger scale production.

4.2 Sythetic Confotronics and Artificial Axons

4.2.1 DNA Nanomachines I: The DNA HYPER-drive

In the tanglotron project we have utilized a form of the Feringa photo engine to
generate macroscopic motion and store free energy in entanglements. Despite its
beauty, the Feringa engine is rather chemically fragile, susceptible to oxidation
and can be effectively only used in organic solvents, which severely limits its
versatility and in particular biocompatibility. To overcome these shortcomings
we plan to build a DNA rotary nano-engine, that will be fast (faster than 1 Hz)
, powerful (torques of several kT) and electrically driven (voltages of few Volts).
In fact the construction of such a device is currently on the way in our lab.

The basic idea for this novel motor ,that we will in following call the HYPER
drive (or the Hybridization Pawl Electric Ratchet), is conceptually simple, see
Fig.3.2. The DNA motor generates torques at the interface between two sur-
faces, one being a gold electrode and the other a plastic micro-bead. The basic
structural element of the HYPER drive is a DNA cruciform (Holliday junction),
here referred to as the ”zipper”, that acts as a translational and rotational pawl
of the ratchet mechanism. The operation of the zipper rotates the two ”legs”
via an electric field driven branch migration process. At the same time the
zipper extrudes and pulls off the ”feet” sequences from the short sticker strands
attached to the upper surface (the bead).

The branch migration is induced by changing the polarity of the electrode
surface to which the DNA strands are chemically bonded. When the electrode is
at positive potential (w.r.t. a reference electrode at infinity) the DNA is pulled
towards the electrode’s surface. The electrostatic interaction, that happens over
the typical scale of a Debye length, leads to a branch migration of the cruciform.
The cruciform reshapes such that its 2 branches parallel to the surface become
extend and the 2 orthogonal ones contracted accordingly. This process leads
to a combined rotation and retraction of the legs. Switching the potential to
negative reverts the branch migration process, effectively pushing the DNA away
from the surface while generating a rotation of opposite sign (w.r.t. the negative
potential case).

Through a proper choice of signal shape of the of the electrode potential
(frequency, amplitude and asymmetry) the construct becomes a rotary ratchet
that can generate an effective rotation of the bead relative to the electrode
surface. A full rotation happens over timescales of several branch migration
cycles each one of which being in the range of 10-100 microseconds.

Once completed the HYPER drive will be the first really fast and physical
field driven DNA based motor. Being fabricated out of DNA it would have a
number of important and useful features. It would work in water , under close
to physiological conditions . Furthermore, it would be fully compatible with and
able to interface to the growing number of available nano-structures generated
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Figure 4.1: Power stroke cycle of the HYPER drive induced by periodically
oscillating polarity of the gold electrode (lower surface). Based on the Brownian
ratchet effect, the nano-device generates a continuous rotation of the upper
surface (DNA-oligo covered bead) with respect to the electrode.
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Figure 4.2: The axon and its envisioned confotronic counterpart: A synthetic
confotronic fiber based on DNA Holliday junction geometry.

by the emerging field of DNA nanotechnology.

Finally, a number of HYPER drives could act cooperatively in small groups
(10s of motor units) . We estimate an approximate addition of torques under
certain parameter conditions. In particular in a certain range of electric field
driving frequencies, ionic strength, pH, temperature, sizes of beads and motor
grafting densities the HYPER drives will beneficially cooperate and significantly
increase torques between the surfaces beyond that of a single unit.

4.2.2 DNA Nanomachines II: Synthetic Confotronic Fibers

Many biofilaments in Nature act as molecular information processing machines
through cooperative (allosteric) coupling in their conformational dynamics. The
central biophysical question in such systems is how do the protein monomer units
establish their conformational interactions and coordinate their response to ex-
ternal stimuli. In a currently running project with colleagues at IPCMS and a
PhD student we are attempting to recreate allostery in a synthetic system from
scratch. We are assembling DNA based nanostructures forming dimers (soon
oligomers and polymers) with the intrinsic ability to signal and ”copy” confor-
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mational information between neighboring units. We are beginning to investi-
gate the allosteric switching behavior of single DNA nanofibers using gel elec-
trophoresis and magnetic tweezers force spectroscopy. Our ultimate long term
vision is to create first ”confotronic fibers” i.e. artificial mechano-nanowires able
of transmitting molecular information over long distances beyond one micron.

The approach that we follow is to utilize ideas from DNA nanotechnology
which is a rapidly growing field of interdisciplinary science. We in particular
use the concepts of nano-origami[34] for assembling virtually arbitrary branched
DNA structures out of simple single strand oligomers.

Our basic switchable monomer unit is a 4 arm Holliday junction that can
undergo a switch between a stacked and an open state. Connecting such a unit
to second identical one leads to a conformational coupling dictated by the ge-
ometry and mutual connection of the two units. We expect to see a very strong
cooperativity of our DNA dimers and oligomer constructs in near future. Ob-
serving a cooperative domino-like cascade switching of a whole long fiber (by
MT) will be an exciting event that we expect to observe in the course of the
experiment. Once this goal is reached we plan to couple the monomer switching
step to a non-equilibrium reaction, that will lead to an active autonomous prop-
agation of the switching signal. Thus we will attempt to build a DNA analogue
of an active neuronal fiber (axon) on the molecular scale.

As once said “There is nothing more practical than a theory”. One could
add to that: There is nothing more human(e) than technology1.

1Of course the converse is true as well (making technology the most morally-bi-modal
feature/bug of mankind).
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Appendix A

APPENDICES

A.1 Toy-Model of Confotronics

Here we consider a simple but paradigmatic example for conceptual confotronics:
Monomers are characterized by an internal switching variable ”σ” that is
governed by a bistable potential U(σ). These non-linear switching variables
are coupled to each other via linear elastic degrees of freedom, call them
”h”, in the medium they are embedded in. If we now consider the switches
σ as frozen-in and formally calculate their elastic response function within the
surrounding medium we can effectively integrate out the linear elastic medium
from the system. That is, we can eliminate most degrees of freedom and we
are left with only the switching variables σ and their longer range , elasticity
induced effective interactions. At this level of coarse-graining we can then
introduce dissipative dynamics and consider how switching-fronts and pulses
propagate along these 1D systems.

The resulting dynamics is similar to autowaves in dissipative soliton sys-
tems. Such solitons have a definite velocity, set by the switching energy on the
one hand and dissipation (fluid friction) on the other. Interestingly there is an
analogy with the action potential propagation along neuronal axons. If confor-
mational transitions of this sort can be realized within a switchable polymer one
could rebuild an axon axon analogue based on a different information carrying
mechanism with similar speeds of information transmission, yet nanoscopically
small.

A.1.1 Switchable unit

Let’s play through the program above on a very simple 1D filament of switchable
units: Consider a monomer with internal conformational states described by a
binary switching variable σ . The latter is a continuous variable but energetically
prefers two values σ ≈ ±1 where +1 reprents the ”on” state and -1 the ”off” state
of the monomer. The two monomer states can in general have in different free
energies in a bistable free energy landscape U (σ). The shape of this potential
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suppresses intermediate states between σ1 and σ2. For the sake of concreteness
we can think of U of a quartic polynomial with a form like

U

U0
=

x4

4
− 1 + a

3
x3 +

a

2
x2 (A.1)

x =
σ + 1

2
(A.2)

Here for convenience we redefined the Ising type variable σ into (binary type)
x - moving now in the range between 0 and 1 (rather than -1 and +1). The
shape of U is controlled by the parameter1 a.

A.1.2 Elimination of Elastic Variables and Effective Inter-
action

Now lets consider the interaction of two such switches,σ1 and σ2 that are em-
bedded in an elastic medium and spatially separated by some vector ∆~r =
~r1 − ~r2. The quantity that captures their interaction is the coupling energy
E (σ1, σ2,∆~r) = −J (∆~r)σ1σ2. The distance- and medium-dependent coupling
parameter J , gives rise to positive cooperativity when J > 0 and negative one
for J < 0.

How does such a coupling J(∆~r) look like in concrete cases?
In a minimalistic model system we can consider a filament consisting of

units which can switch their height in lateral direction to the filament axis
-parametrized by the arc-length s (cf the Fig. 3.2, at the beginning of the
manuscript). The units have preferred height depending on their switching
variable σ:

hσ (s) =
h+ + h−

2
+
h+ − h−

2
σ (s) (A.3)

That says that the internal (confotronic) variable σ gives rise to an external
(elastic) variable h

Let us for simplicity consider a material with a Poisson ration ν = 0, for
which the switch of height does not lead to a longitudinal length change in
the perpendicular direction(s). If now a particular monomer switches its state
and thus height to h (s) and its neighbor has a different height h (s+ b) then
in addition to the height change h − hσ from preferred one, there is also an

additional shear deformation τ of the order h(s+b)−h(s)
b ≈ dh

ds . This leads to an
elastic deformational energy of the form

Eel.def. =
1

2

∫
Y (h− hσ)

2
+ µb2

(
dh

ds

)2

ds

1In the a ∈ (0, 1) range U (x) has two local minima, at x = 0 and 1 (σ = ±1) respectively
and a barrier in-between them at x = a, with the barrier energy (w.r.t. the x = 0 state)

of Ux=a − Ux=0 = U0
6
a3 (1− a) . The energetic difference between the two states is ∆U =

Ux=1 − Ux=0 = U0
6

(
a− 1

2

)
. For a = 1

2
the two states have equal energies and the potential

becomes symmetric around the x=1/2 axis.
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Here Y is the Young modulus, µ = Y/2 the shear modulus and b the lattice
constant (distance of neighbors along s). For an imposed monomer state (and
thus hσ (s)) we can write down the Euler-Lagrange equation (from the first
variation of the elastic energy)

λ2h′′ − h = −hσ

with the characteristic decay length of deformationλ = b
√
µ/Y . For the most

general preferred deformation hσ (s) the solution can be written down as

h (s) =

∫ +∞

−∞
hσ (ξ)G (s− ξ) dξ (A.4)

with the spatial deformation propagator (or elastic Green’s function) given
by

G (s− ξ) =
1

2λ
exp

(
−|s− ξ|

λ

)
(A.5)

Using the relations∫
G (s− ξ)G (s− ξ′) ds =

(|ξ′ − ξ| /λ+ 1)

4λ
e−|ξ

′−ξ|/λ∫
G′ (s− ξ)G′ (s− ξ′) ds =

(− |ξ′ − ξ| /λ+ 1)

4λ
e−|ξ

′−ξ|/λ

and reinserting them into the interaction energy we obtain the elastic energy in
its practical form

E = − Y
4λ

∫ ∫
hσ (ξ) e−|ξ−ξ

′|/λhσ (ξ′) dξdξ′ +
Y

2

∫
h2
σ (ξ) dξ

This expression decomposes into two terms. The second, self-energy term is
the energy penalty of switching of any point-switch (hσ (ξ) ) coming from the
infinite elastic medium distortions. The rest is the pure interaction energy term

Eint = −
∫ ∫

j (ξ − ξ′)σ1 (ξ)σ2 (ξ′) dξdξ′ with

j (ξ − ξ′) =
(h+ − h−)

2
Y

16λ
e−|ξ−ξ

′|/λ

Note that we have completely eliminated the elastic variable h from the
picture. The only quantities remaining are the switches σ and their spatial in-
teraction operator j. The switches are dressed in elastic variables which however
become invisible in this representation.

For two short blocks of length b � λ (or simply monomers) at a distance
x from each other the two-monomer-interaction energy from above can be ap-
proximated as:

Jb (x) ≈ (h+ − h−)
2
b2Y

16λ
e−

x
λ (A.6)
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We see that for this elementary model the interaction energy is positive, in
the Ising jargon ”ferromagnetic”. Note also that (at least in this simple 1D
case) , J is quickly decaying on the characteristic elastic screening length λ.

To simplify the picture even further, it is practical to perform a little bit
of further coarse-graining. The simplification consist of assuming a continuum
approach, considering gradients like ”dσds ” instead of discrete lattice values. Fur-
thermore, zooming-out to length scales beyond the elastic coupling length λ,
the height field h can be considered as slaved to σ, i.e. determined by the local
value σ (s) at the same position2. In such a coarse-grained limit, reintroducing
the switching potential U we can write the energy of the system as

E =

∫
U (σ) ds+ Eint (A.7)

The interaction energy can be approximated by a squared gradient measuring
the spacial variation of σ

Eint =
K

2

∫ (
dσ

ds

)2

ds

with K effective the confotronic stiffness. Noting that in our course-grained pic-
ture , the characteristic (mechanical screening) length λ replaces the monomer
scale b and becomes the only relevant length scale here, the stiffness K can be
approximated by assuming two neighboring coarse grained blocks of size b ≈ λ
in Eq. A.6

K ≈ (h+ − h−)
2
λ2

16
Y (A.8)

A.1.3 Dynamics: Reaction -Diffusion Paradigm

To finally formulate the dynamic equations of motion, besides the energy A.7,
we need to specify a concrete source of dissipation. We can assume the simplest
form of power dissipation resulting from the local motion of the elastic variable
h ≈ hσ (s) (which here is locked-in toσ) through the fluid of vicosity η. The

Rayleigh dissipation functional can be here written as Rdiss = η
2

∫ (
dh
dt

)2
ds

and in terms of σ

Rdiss =
η (h+ − h−)

2

8

∫ (
dσ

dt

)2

ds

With σ̇ = dσ/dt , the equation of motion is then given by δRdiss
δσ̇ = − δEδσ or

η (h+ − h−)
2

4
σ̇ = K

d2σ

ds2
− ∂U

∂σ
(A.9)

2Mathematically , this is a consequence of the Greens-function becoming a delta function
G (x) ≈ δ (x) for λ→ 0.
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Rescaling both sides of Eq. A.9 and switching to the (0-1-range) variable
x = σ+1

2 we obtain

ẋ = D
d2x

ds2
+ f (x) (A.10)

and we recognize a reaction diffusion equation , with the (elasto-hydrodynamic)
“diffusion constant”

D =
λ2Y

4η

and a ”reaction term” given from differentiating Eq. A.1

f (x) = f0x (a− x) (x− 1) (A.11)

with

f0 =
1

t0
=

U0

η (h+ − h−)
2

a characteristic relaxation frequency defining the relaxation time t0.
Note here, that unlike the standard stochastic mass-diffusion, our diffusion

process here is a fully deterministic, elasto-hydrodynamic deformation spread.
The ”reaction term” lookalike f stems from a mechanical restoring force acting
on the switching variable x (i.e. σ). Yet, apart from this difference in interpre-
tation, the equation A.10 shares much common physics with a classical reaction
diffusion equation. This analogy seems very attractive as it opens up the pos-
sibility of seeing the confotronic fiber as an ”excitable medium” able of trans-
mitting autowaves down its contour. The autowaves, which are also sometimes
referred to as ”dissipative solitons”, are out-of.equilibrium, non-linear moving
excitations in a reaction diffusion equation or more generally in a system of
several coupled equationsA.10.

A.1.4 Confotronic Autowaves, Traveling Fronts

Looking at Eq. A.10 we see that the product of the elasto-diffusion constant D
and the relaxation time t0 sets on the other hand a characteristic length-scale

l0 =
√
Dt0 = λ

√
Y (h+ − h−)

2

4U0

that together with t0 gives rise to a characteristic velocity scale

v0 = l0/t0 =
λ
√
Y U0

2η (h+ − h−)
.

Thus a stiffer elastic medium and deeper switching pontential ,with Y and
U0 larger (i.e. for stronger driving forces) as well as lower viscosity η or smaller
displacements h± (lowever dissipation) naturally give rise to larger velocities.
For a typical system with monomer size b of few nm and λ in the range of 10nm
we can estimate U0 ∼ 10kT/10nm = 4pN, Y ∼ 100MPa (modulus of typical
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proteins), (h+ − h−) ∼ 1nm , η = 10−3Pa · s (typical aqueous solvent) we get
U0 ∼ 4pN , l0 ∼ 25nm , t0 ∼ 2.5× 10−10s and v0 ∼ 100ms . This velocity is very
high , but what is its actual meaning ?

To answer that, we note that the equation of the form A.10 with A.11 appears
in the context of a simplified model of nerve impulse propagation along axons
and is also known as the Nagumo equation [151]. It posses traveling front
solutions of the form:

x (s, t) =

(
1 + exp

(
−s+ ct√

2l0

))−1

(A.12)

as can be checked by direct insertion. For 0 < a < 1/2 ,where the x = 1
(σ = −1) state is more favorable, a switch propagates from x = 0 to x = 1 state
with the speed

c =
√

2

(
1

2
− a
)
v0

For a > 1/2 the x = 0 state becomes more favorable and the propagation
direction inverts (c < 0). For a = 1/2 the two states have equal energies and
naturally in the absence of any driving force the front does not propagate i.e.
c = 0.Taking the characteristic velocity v0 estimate from above and a typical
case of a = 1

4 we get c ∼ 35ms . This notable speed3 is comparable to velocities
of nerve impulses traveling along axons.

A.1.5 Traveling Pulses

In our confotronic system simple a traveling front (TF) can be transmitted if
the system is prepared in a metastable state. But once the system has switched
to the energetically lower state it would need to be reset to the initial state to
operate once again. This would put serious limitations to the actual usefulness
of such a fiber in applications of information transmission at the nanoscale. Can
one do better that generating a one way TF? An other type of autowaves are
traveling pulses (TPs), like those running along our neuronal axons. TPs are
intrinsically “resetting” themselves by running through a transient excitation -
deexcitation cycle. Could one regenerate such a TPs in a confotronic system?
It turns out that a simple one variable diffusion-reaction equation is not able
to transmit TPs [150]. It does not have enough dynamic complexity. However
a slight modification of the Nagumo system which involves a second spacio-
dynamic variable turns out to be complex enough to generate TP.

Imagine a system described by Eq. A.10 which is now coupled to a chemical
energy reservoir, like ATP4 If we assume that ATP can bind to one conformation

3It is so high that we might even leave the low Reynolds number regime (Re∼ 1 for the
given l0, v0 and η). This indicates that the for traveling front propagation along a confotronic
filament the (here neglected) inertial effects of the solvent along the chain might become
relevant.

4ATP is an ubiquitous energy source throughout living nature. ATP is split spontaneously
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and induce the preference to switch to the other state, the coupled equations
for the fraction of binding sites occupied with ATP by A

ẋ = D
d2x

ds2
+ f (x)−A

Ȧ = c1x− c2A

The constants c1 and c2 are related to the binding rate of ATP to the x = 1
state and the spontaneous decay of ATP binding respectively5.

This extension of the Nagumo equation is also known as the Nagumo-
FitzHugh model and is the generic toy model for axonal spikes.

A.2 Animas as Motors

From the previous examples (in the chapter on animotion) we have learned
that there are two distinct classes of animas: those who run easily and uni-
directionally (type 1) and those, bi-directional ones that need to break a sym-
metry to decide which way they run (type 2 animas). The distinction is not a
mere mathematical subtlety. It touches upon the practical utility of the anima
as motors. A device that inverts its direction upon weak opposition in its sur-
rounding is dynamically less robust than an object that turns unidirectionally
and without any threshold6.

The general motility behavior of animas is essentially characterized by their
dissipative “kinematic” relation. By this we mean the relation between the
energy “pumping” rate (represented by p ), the energy “dumping” rates in
form of friction or heat dissipation (cf. τeand r) and the induced velocity (ω).
Examples of such kinematic relations are Eqs.3.183.24 and 3.29. Going beyond
the pure kinematics, animas true single piece motors that can be characterized
by a dynamic relation or “motor equation”. The dynamic relation describes the
connection between all energy in- and out-fluxes with the generalized force it
can apply to its surroundings. For animas whose animodes are associated with
angular variables this generalized force is in fact a torque. The dynamic relation

into ADP and a phosphate group P, reducing its free energy (at sufficiently low concentration
of ATP).

5Note that in general these two constants need not obey any thermodynamic relation,
as the possibility of ATP chemical breakup (hydrolysis) pushes the system away from the
equilibrium.

6The “without threshold” statement for type 1 animas has however to be taken with a
grain of salt and is true only in absence of an external torque and in absence of dry friction.
So far we have ignored dry friction which can naturally induce a threshold even in a system
that does not break symmetry. Although dry friction has something of an analytical nuisance
-due to its singular velocity independent nature- it is basically always present. It is often
even dominant over other forms of friction on the macroscopic scale and small speeds. Not
surprisingly dry friction modifies the onset of animotion, such that there is always a minimal
pumping threshold that needs to overcome the constant friction force. Leaving technical
details to later work one can still state, that apart from the shift of onset, animotion keeps
its character regardless of particular type of friction.
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can be obtained by simply adding an additional (external) torque term to the
torque balance, i.e. to the right hand side of Eqn. 3.10. For the three anima
types from above the dynamic relations for the scaled torque m = LM

4π2B can be
expressed as:

m = ω − pr

τe(ω2 + r2)
(A.13)

for the type 1 anima ring drive from below. For the ring driven from inside
(type 2 anima) we have

m = ω − pω

τe(ω2 + r2)
(A.14)

Finally for the fiber/spaghetti (type 2) anima we obtain similarly:

m = ω − p2rω

τe(ω2 + r2)2
(A.15)

These dynamic relations contain the corresponding kinetic relations as spe-
cial cases for vanishing external torque m = 0. For large toques of any sign
|m| � 1 the angular velocity in all three cases follows the external torque
m ' ω. That is, large torques can overcome any internal drive and dictate the
motion. This finding is unsurprising, as the animas respond only passively in
this regime. The real beauty lies in the subtle differences of the second terms on
the r.h.s., that show up for smaller torques for which the internal drive competes
with the external torque.
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Figure A.1: The dynamic relation of typical type 1 animas (e.g. torus on a hot
surface).
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Figure A.2: The dynamic relation of a typical type 2 anima - the spaghetti
motor.
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[2] I.M.Kulić, R. Thaokar and H. Schiessel, Twirling DNA rings - Swimming
nanomotors ready for a kickstart, Europhys. Lett. 72, 527 (2005)

[3] Balzani, Venturi & Credi, Molecular Devices and Machines, Wiley-VCH
(2003)

[4] J. M. Berg, J. L. Tymoczko and L. Stryer . Biochemistry. 5th edition. W.
H. Freeman

[5] Direct observation of the rotation of F1-ATPase, H. Noji, R. Yasuda, M.
Yoshida, and K. Kinosita, Nature, 386, 299-302 (1997).

[6] H.C. Berg & R.A. Anderson, Bacteria Swim by Rotating their Flagellar
Filaments, Nature 245, 380 (1973);

[7] A. Maxwell and A. D. Bates, DNA topology, Oxford University Press,
2005

[8] C. Mao, W. Sun, Z. Shen and N. C. Seeman,A nanomechanical device
based on the B–Z transition of DNA, Nature, 397, 144-146 (1999)

[9] H. Yan, X. Zhang, Z. Shen and N. C. Seeman, A Robust DNA Mechanical
Device Controlled by Hybridization Topology, Nature 415, 62–65 (2002)

[10] N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada and B. L.
Feringa, Light-driven monodirectional molecular rotor, Nature 401, 152-
155 (1999)

[11] T. R. Kelly, H. De Silva and R. A. Silva, Unidirectional rotary motion in
a molecular system, Nature 401, 150 1999.

[12] J-M. Lehn, Conjecture: Imines as Unidirectional Photodriven Molecular
Motors—Motional and Constitutional Dynamic Devices, Chem. Eur. J.,
12: 5910–5915 (2006)

66



[13] P. G. de Gennes, Scaling concepts in polymer physics. Cornell University
Press, Ithaca (1979)

[14] De Gennes, P. G. Entangled polymers. Physics Today 36 (6): 33–31.
(1983).

[15] M. Doi & S. Edwards, The Theory of Polymer Dynamics, Clarendon Press
(1999)

[16] F. Spitzer, Some Theorems Concerning 2-Dimensional Brownian Motion,
Trans. Am. Math. Soc. 87, 187-97 (1958)

[17] S. Prager and H.L. Frisch, Statistical Mechanics of a Simple Entanglement,
J. Chem. Phys. 46, 1475 (1967)

[18] S.F. Edwards, Statistical mechanics with topological constraints: I, Proc.
Phys. Soc. London 91, 513 (1967)

[19] J. Rudnick and Y.Hu, The winding angle distribution of an ordinary ran-
dom walk, J. Phys. A: Math. Gen. 20 4421-4438 (1987).

[20] A. Grosberg and H. Frisch, Winding angle distribution for planar ran-
dom walk, polymer ring entangled with an obstacle, and all that:
Spitzer–Edwards–Prager–Frisch model revisited, J. Phys. A 36, 8955
(2003)

[21] C. Walter, G.T. Barkema, and E. Carlon, The equilibrium winding angle
of a polymer around a bar, J. Stat. Mech. P10020 (2011)

[22] J.F. Marko, Linking topology of tethered polymer rings with applications
to chromosome segregation and estimation of the knotting length, Phys.
Rev. E 79, 051905 (2009)

[23] T. R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon and V. Cro-
quette, The Elasticity of a Single Supercoiled DNA Molecule, Science 29,
1835 (1996)

[24] J. F. Marko and E. D. Siggia, Fluctuations and supercoiling of DNA,
Science 265, 506 (1994); Statistical mechanics of supercoiled DNA,Phys.
Rev. E 52, 2912 (1995)

[25] J.-C. Walter, M. Baiesi, E.Carlon and H. Schiessel, Unwinding Dynamics
of a Helically Wrapped Polymer, Macromolecules 47, 4840 (2014)

[26] J.F. Marko, Supercoiled and braided DNA under tension, Phys. Rev. E
55, 1758 (1997)

[27] Ball, R. C., Doi, M., Edwards, S. F. & Warner, M. Elasticity of entangled
networks, Polymer 22,1010–1018 (1981); P. G. de Gennes, Sliding gels,
Physica A 271,231–237 (1999);

67



[28] Harada, A. & M.Kamachi,Complex formation between poly(ethylene gly-
col) and a-cyclodextrin, Macromolecules 23, 2821–2823 (1990); Oku-
mura,Y. & Ito, K., The polyrotaxane gel: a topological gel by figure-
of-eight cross-links, Adv. Mater 13,485–487 (2001)

[29] T.C. Boles, J.H. White, and N.R. Cozzarelli, Structure of plectonemically
supercoiled DNA, J. Mol. Biol.213(1990), no. 4, 931–51

[30] N.R. Cozzarelli, T. Christian-Boles, and James H. White, Primer on the
topology and geometry of DNA supercoiling, DNA Topology and its Bio-
logical Effects (1990), 139–184
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