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Chapter 1

Introduction

Numerous scientific domains express a need for high-performance computing (HPC), which has
intensified in recent decades. While still evolving, the technologies of single-processor machines are
insufficient. Parallelism is a natural solution to meet the needs of the largest simulation applications.
At the same time, the size of supercomputers available to the academic community has grown steadily.
The modern hierarchical computing infrastructures are hard to program and to use efficiently, partic-
ularly for extreme-scale computing. Consequently, looking for new solutions that are able to properly
handle such environments is an active field of research. The increase in computational power and
the development of numerous algorithmic and methodological tools have combined to make numerical
simulation a discipline in its own right. Thus, the development of parallel software and hardware
methods and solutions has become a major focus of academic and industrial research. Although many
domains benefit from the spin-offs of numerical simulation innovations, this field is at the crossroads
of many domains and therefore not very structured and insufficiently identified yet.

During the second half of the twentieth century, numerical simulation was mainly aimed at reducing
costs and delays, supplementing experiments whose modeling was well controlled. At the end of the
twentieth century, it has contributed to technical innovation, allowing to take into account increasingly
complete physical models and to access information that is difficult to obtain by measurements. Today,
it also helps to develop new physical models, for example by integrating the combined effects of simple
phenomena by calculation. Many scientific and technical projects are developed within the framework
of a collaborative approach between theory, simulation and experimentation (for example, CEA1,
implements this approach). The comparison of the simulation versus the experimentation can lead to
a questioning of the physical model as well as the numerical methods. It is also possible to develop
numerical devices or experiments numerically without carrying out full-scale real-world experiments
whose costs are often prohibitive.

I realized much of my research work in such a context, in interaction with several scientific fields.
My contributions concern the improvement of computational methods from the point of view of
parallelization, the design of optimized algorithms and implementations for specific machines, but
also on the upgrade of some numerical schemes. In the various simulation codes on which I have
been involved, it has been required to adapt or renovate calculation schemes for efficient execution
on machines with a large number of cores. My inputs contribute throughout the entire chain, from
modeling, to efficient implementation on large supercomputers. The studies I carried out were done in
close interaction with the designers and users of the simulation codes so that the results are effective
and usable in production. This would not have been possible without mutual efforts of understanding
and adaptation with my collaborators: physicists, mathematicians, and computer scientists.

The document is composed of three main chapters plus a final one enclosing conclusions and
perspectives. Although my scientific work is not limited to Gysela, I chose here to focus a large part
of the document on this application in order to simplify the contextual setting and to allow me to get
into some of the details.

Chapter 2 concerns various studies carried out to make the best use of the today’s supercomputers.
After a short description of the physical problem in Gysela, the numerical methods are described,

1French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and
innovation in four main areas: defence and security, nuclear and renewable energies, technological research for industry,
fundamental research in the physical sciences and life sciences.
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and then I discuss the improvements required to exploit the biggest academic calculators in Europe.
In its beginnings, the Gysela code treated the so-called Gyrokinetic Vlasov equation coupled to a
Poisson solver without any additional operator. This was a 5D-Vlasov equation using cylindrical
geometry with (r, θ, ϕ) the space variables and (v‖, µ) the velocity variables. The semi-Lagrangian
method was chosen to solve the Vlasov part. At that time, this choice was original because it differs
from the Eulerian and Lagrangian approaches that were quite standard for this kind of code. In the
early 2000s, the collaborations between several INRIA teams, the LPMIA at Nancy University and the
CEA IRFM clearly spurred this choice. Since 2005, the major digital bottlenecks have been cleared
step by step and the scalability on the largest accessible parallel machines has been consolidated.
In 2006, the reduced 4D version of the code performed well on 128 processors. The definition of
the local splines method [9, 14, 35] allowed to enhance the parallel scalability while preserving the
numerical quality in a set of applications among which Gysela. In 2007, thanks to an adapted
MPI+OpenMP parallelism, I obtained a relative efficiency of 82% on 4096 cores for a strong scaling of
a cylindrical Gysela-5D case on a BULL/INTEL itanium2 machine. More recently, these splines have
been challenged by high-order Lagrange interpolators [81] which are currently used in simulations. In
2010, a Grand Challenge2 achieved 81 % of relative efficiency on 8192 cores on a SGI machine (18th
position at top500 list3) at the CINES computing facility. On the other hand, a simulation close to
the non-dimensional parameters of the ITER Tokamak 4 (International Thermonuclear Experimental
Reactor) was carried out, using 272 billion grid points in 5D space. The code version, available then,
incorporated many novelties in terms of physics to achieve realistic setting: heat source, collisionality,
toroidal geometry. A 60MW power source forced the plasma out of thermodynamic equilibrium,
generating turbulence and self-organization that we could follow during 1 ms. This simulation required
6.1 million CPU hours, which was performed during 31 days on 8192 cores. By introducing two new
domain decompositions and additional parallel algorithms, it has been possible to globally reduce the
volume of communications within and at the end of the Poisson solver, thus shortening restitution
time. The major issue for achieving good scalability beyond 8k was then pushed back beyond 65k
cores [26, 29, 91, 92]. Then, a different bottleneck appeared, the memory scalability was not excellent
whenever performing big physical cases. When doubling the number of cores for a given simulation
setting, the memory footprint was far from halved. Many very large physical cases were impossible to
run because of memory exhaust. By introducing more complex algorithms, by adding communications,
it has been possible to make the memory costs associated with the 3D structures scalable along with
the number of cores. In 2013, the memory scalability was significantly improved [4,26,22,29,83]. The
adaptation to the IBM BlueGene/Q machine has also led to extending the scalability limits. Gysela
is a member of the Hi-Q club (Highest Scaling Codes on JUQUEEN) with 91% relative efficiency on
458 752 cores (Weak scaling) on the whole super-calculator Blue Gene Juqueen (Juelich, Germany).
Works to get better reproducibility and to improve the validation and robustness of the code have
been conducted [19]. Thanks to its very good scalability and its portability (the code is deployed
on ten computers permanently), Gysela frequently uses 8k to 32k cores. In addition, a simulation
often takes several weeks. The annual consumption of computing time is steadily increasing and is
currently over 90 million mono-processor hours per year (figures for 2016/2017). Recently, in order
to make the best use of the latest INTEL and IBM architectures, I was able to optimize several parts
of the code so that several threads could be executed on each computing core. Although Gysela is
well balanced in terms of distributing computations between execution units, it seems that computing
resources are less homogeneous than before, due to competition over resources: caches, sharing of
computational units by the threads running on the same core, NUMA effects [18]. This implies that
the structure of the code will have to be revised in the near future to match the rapid evolution. Task-
based programming is a way that I am currently investigating. Also, synchronizations induced by the
management of parallelism (BSP model) weigh more and more on large platforms and the task-based
approach will partially remedy the problem. In any case, the gyrokinetic codes are good candidates to
test, as soon as they appear, the exaflopic machines (able to perform 1018 floating point operation per
second). Moreover, the gyroaverage operator is a cornerstone of the gyrokinetic theory and represents
a significant cost in Gysela. This operator transforms the so-called guiding-center distribution into
the actual particle distribution. It is essential to adapt the code to the next generations of machines
so that the gyroaverage becomes scalable. Several works with multiple collaborators have led to great
progress on the accuracy and speed of calculation of this operator [5,17,80,83], for which overlapping
communications by calculations is a key component.

Along with the efforts for achieving good parallelization, I also contributed to the numerical meth-
ods in several applications to improve the precision or the realism of the simulations, but also to

2https://www.cines.fr/wp-content/uploads/2014/02/GazetteGD2010.pdf
3https://www.top500.org/system/176897
4https://www.iter.org

https://www.cines.fr/wp-content/uploads/2014/02/GazetteGD2010.pdf
https://www.iter.org
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accelerate the calculations. While Chapter 2 of the document is focusing on parallel computing,
Chapter 3 summarizes works in closer connection with the field of applied mathematics. The imple-
mentation of specific test cases within Gysela and the adaptation of numerical methods in the Vlasov
and Poisson solvers make it possible to better preserve certain invariants and improve the precision
of the code [7, 89]. Incidentally, I designed and contributed to the implementation of a continuous
integration platform to ensure systematic tests leading to better code robustness for users [19]. A
series of theoretical studies have established that the alignment of physical structures around the
magnetic field lines can be used to reduce the number of necessary mesh points in the direction which
is parallel to the field lines. I implemented a new numerical method with aligned interpolation for
Gysela in close collaboration with the designers of the Selalib library (a group of mathematicians).
This approach based on a fine understanding of the physical processes effectively saves a lot of mesh-
ing points and thus reduces the cost of simulations [1, 85]. An hypothesis was originally made in the
Gysela code concerning the geometry of the poloidal plane (plane which is transverse to the field
lines): the polar coordinate system was chosen to represent a circular plasma. This was appropriate
a few years ago to model the plasma of the Tore Supra Tokamak (CEA IRFM) which was circular.
This is no longer the case today, as the current Tokamaks have a more sophisticated geometry: with
X-point, double X-point, snowflake configuration. On the other hand, Gysela has long taken as a
simplifying hypothesis (for a better robustness of numerical methods) the existence of a central hole
in the poloidal plane around the point r = 0 (at magnetic axis). Advances have led to a much better
modeling of the poloidal plane and improves the realism of the simulations, the central hole has now
disappeared from most simulations [27, 81]. In addition, methods for modeling non-circular plasma
are being evaluated.

Chapter 4 focuses on work on the development of parallel algorithms and the implementation
of optimization techniques dedicated to new architectures. Studies on various applications are high-
lighted. I draw some insights from lessons learned on these new computing devices. A parallel solution
for petroleum exploitation was developed on a cluster of GPUs (RTM methods - Reverse Time Mi-
gration). The memory access patterns and the management of CPU-GPU and MPI communications
play a major role, they were the main bottlenecks [8, 31, 87]. Nevertheless, speedups are substantial
on GPUs compared to the conventional architectures for this application. But the adaptation of the
initial code and the maintenance of several versions (CPU cluster + GPU cluster) remain a cost in
human resources that can not be neglected. In addition, a Vlasov-Poisson model, not so far from
Gysela equations, was studied on a single GPU card. The organization of memory access and the
development of very fine-grained algorithms are important to focus on from the performance point of
view [30]. The overhaul of the original code was inevitable. From these experiments, we deduce that
considering a solution using GPU in an application of the same size as Gysela would require rewrit-
ing the code in depth. Indeed, it is hard to design algorithms with sufficiently adaptive graininess
of the computations to match specific hardware requirements. I realized some optimization works on
some Gysela kernels on the Intel KNC coprocessor that appeared in 2012 (also called Xeon Phi). A
major problem here is to adequately vectorize, because it is an essential condition to obtain reduced
execution times. Some memory-bound and compute-bound kernels were accelerated by a factor of two
on the coprocessor compared to the INTEL Sandy Bridge [2, 20], which was a good result. Again,
the access patterns to the memory represent a real challenge, a lot more than for a standard CPU
architecture, as well as the fine management of the data locality within the cache. Because of many
difficulties, it is not easy to achieve good performance levels in a large number of routines for a large
production application such as Gysela. More recently, the appearance of production platforms us-
ing Intel KNL processors, the next generation after KNCs, have changed the landscape of the HPC.
These computing devices are quite close to traditional architectures (they do not need a host device as
KNC and GPU do), but with higher peak performance and noticeable energy efficiency improvements.
Auto-tuning techniques have also helped to address some of the challenges that these machines offer
for the Gysela code [82].

The very last chapter 5 gives a conclusion of the previous chapters, and outlines some of the
research projects I plan for the years to come. One of the constant problem facing the parallel
application developer is to find a compromise between efficiency, portability and code readability.
The complexities of hardware, of applications and the difficulty to choose a programming model
remain major issues. My aim is to help Gysela cross over the obstacles and to end up soon running
on an Exascale machine.

A reader interested in applied mathematics in the first place could start with the introduction
given at the beginning of Chapter 2 up to p.10- 17, and then jump directly to Chapter 3 p. 56-92. On
the contrary, a reader most interested in high-performance computing can surely skip the reading of
Chapter 3.



Chapter 2

Parallel solutions for
numerical simulations

Compared to serial computing, parallel computing is much better suited for modeling, simulating
and understanding complex, real world phenomena. First, throwing more resources (processing com-
ponents) at a task is able to shorten its time to completion thus reducing from several months on a
single processor to a few hours on a large supercomputer. Second, many problems are so large or so
complex that it is impractical or even impossible to solve them on a single computer, especially given
the limited computer memory. But in order to use parallel computers, mathematical methods and
parallel algorithms have to be designed carefully, and one should also keep up with hardware upgrade
along time. Four main lines of actions can improve our use of supercomputers evolution nowadays:
adapt parallel software to the still increasing number of cores, exploit processors more efficiently (e.g
optimizing the use of cache memory and instruction set), design architecture-friendly algorithms and
try to target portability of performance, look for algorithms and numerical schemes delivering more
results per arithmetic operation (mesh adaptivity, high-order methods, mixed-precision). Along this
line, this chapter is devoted to the presentation of the main parallel solutions that I designed the last
few years for the Gysela code. This exemplifies how research on parallel algorithms permits to go for
larger and more realistic plasma physics simulation. The first part is dedicated to a brief description
of the context: main trends in HPC over the past years, the main physics aims in Gysela, the mag-
netic configuration of the tokamak, the gyrokinetic model and major numerical schemes. Next, the
improvements of the efficiency of the central Vlasov and Poisson solvers are detailed. These contribu-
tions have permitted the Gysela users to target larger simulations employing more cores, but have
also allowed us to reduce restitution time. Algorithms and solutions are given concerning the memory
scalability and the calculation of the gyroaverage operator. Parallelization and performance issues are
explained. As a conclusion of this chapter, additional references are mentioned; they highlight some
of my other works focusing on parallel algorithmic that are not related at all to Gysela.

2.1 High-Performance Computing

2.1.1 Introduction

High-Performance Computing is employed to solve complex issues in computational and data-intensive
sciences. For problems where experiments are impossible, dangerous, or too costly, HPC permits
predictive modeling and analysis of massive quantities of data. Throughout the past 20-years, high-
tech industries such as transportation, aerospace, nuclear energy, and petroleum have adopted and
used HPC to accurately represent multiscale phenomena, to simulate, and to gain insights to better
predict and understand large or complex systems. Furthermore, in the field of simulation, HPC has
the potential to suggest new experiments not foreseen before.

Although some excitement exists about the largest supercomputers and on specific benchmarks,
such as TOP500 [189], there is a much deeper commitment from international scientific community in
HPC. Many actors and organizations have spent much resource developing tools, methods, schemes,
software and applications which are nowadays part of the foundation of HPC ecosystem. The past
twenty years have shown a large increase in both the use and scale of parallel machines. In 1997,
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the ASCI Red system at Sandia Labs broke the one Terascale1 barrier on the TOP500 (LINPACK
benchmark) with a bit more than 9,000 cores. It was the beginning of the Terascale era. After a while,
in 2008, Roadrunner machine reached PFLOPS (1015 FLOPS). Peta-scale systems usually have more
than 100,000 computing cores and an interconnected multi-socket, multi-core architecture. Compared
to Tera-scale situation, significantly higher parallelism is required for peta-scale algorithms to perform
well without significant overheads.

2.1.2 Trends

�� ��Higher is worse

�� ��Lower is better

Figure 1: Trends of FLOPS vs memory/network access on HPC servers, SC’16, John McCalpin

During the last several decades, some trends have been at the forefront of the HPC systems evolu-
tion. First, the memory wall is figuring out the processor/memory performance gap that has grown
steadily over the years. If memory latency and bandwidth become insufficient to provide processing
elements with enough instructions and data to continue computation, they are stalled waiting on the
data to be delivered. The trend of placing more and more cores on chip exacerbates this situation,
since each processing units enjoys a relatively narrower channel to shared memory resources (e.g.
memory, network). Fig. 1 illustrates how the number of FLOPS is increasing per byte received by
memory access or through the network, these curves are disappointing for HPC users. In addition,
the relative latencies of memory access and network are also raising compared to FLOPS. As a conse-
quence, there are more and more memory-bound applications, and there are many applications that
achieve less than 5% of computational peak performance, whereas it was commonplace back into the
year 2000 to reach more than 50% of computational peak. This implies that application designers
and developers should revise their algorithms to reduce memory moves, to increase computational
intensity (FLOPS performed per byte), and possibly to establish communication avoiding methods.
Such objectives are quite challenging, it is a research topic. It calls into question the current pro-
gramming models, libraries and runtime systems used as well. We need much less synchronizations
within applications, to introduce more overlapping opportunities to hide latencies, to exhibit finely
dependencies between processing activities to improve the load balance because some computation
kernels can stall occasionally. Equally, a great need for performance modeling tools is experienced,
accurate description of byte moves is critical, while counting floating point operations becomes less
important than it used to be.

A second major trend is the power wall issue. Since 2004, the increase of clock frequency in CPU
has stalled. The power wall refers to a hard limit on frequency due to the handling of power dissipation
of CPU heat with inexpensive techniques. To go beyond this physical limit, chip manufacturers have
focused on bundling several processing units together into one chip (multicore approach), possibly
with a lower clock frequency. Another solution is to build special-purpose processors such as general-
purpose graphics processing units (GPGPU) or accelerators. These two solutions improve performance
at the cost of increased programming and optimization complexities. On top of that, the costs of
moving the data in and out of a central processor are becoming prohibitive. Then, developers are
invited to write algorithms that save power, and to move forward on data centric programming to
better exploit recent and future machines. To put it another way, performance optimization has

1terascale refers to methods for using supercomputers capable of performing at least 1 TFLOPS, i.e. 1012 FLOPS.
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thus shifted from computing to data access. This shift of emphasis towards memory optimization
also demands significant system support, from tools to compiler technologies, and from modeling
to new programming paradigms. Programming models must evolve to encompass all aspects of the
data management and computation; it requires upcoming programming abstractions where ideally
compute, data and communication will play an equal role.

The constantly evolving HPC technologies is leading many actors of the community to periodically
rethink how applications and software are written to take advantage of the last available parallel sys-
tems. Many contributions shown in this document typically go in this direction of adapting algorithms
and numerical schemes to minimize overheads on the most up-to-date supercomputers.

2.1.3 Exascale target

The Terascale to Petascale transition has been quite smooth. For many applications this passage
was incremental, the same global framework and tools remained valid. One had to remove scalability
bottlenecks as the number of distributed processors and the partitioning of data increased. There
was however no disruptive change as was the case of the transition from the vector processing era to
distributed memory processing (around 1992). The path to Petascale included the introduction of
small scale threading (e.g., using OpenMP with a few cores), exposing vectorizable code to compilers,
and going to GPU accelerators in some cases. But these features did not force a complete redesign
for most codes. Instead, application developers could incrementally refactor the most important
computational kernels to run well and leave much of less computation intensive code untouched.

After passing through the Petascale era2, the upcoming exascale target (1018 FLOPS) means big
changes in supercomputers’ architecture. These shifts are currently undergoing, mainly increasing the
levels of parallelism to millions of processing units on a single supercomputer, large growth of on-node
concurrency, increased penalty for having any sequential execution regions in the code. China, USA,
Japan and Europe are investing billions of dollars each for demonstrating their ability to setup such
exaflop machines around 2022. Exascale forces radical changes in how hardware is designed (power
consumption is a major issue), in how we update the application codes or design new ones, and in
how we glue application codes to hardware together (compilers, I/O, middleware, and related software
tools). There are indications that we need to introduce new control layers and system software support
(e.g. to support asynchronous tasking) and change significant parts of existing HPC application.
Understanding the advantages to be gained by going to exascale, based on the past experiences is
of utmost importance, because the costs associated to exascale computing are so large. Among all
costs to design and build new processors, network and software stack, there is the question of power
consumption for exascale machine. The Cray C90 used 0.5 MW of power in 1991 (16 GFLOPS),
while by 2003 the ASCI/Q used 3 MW while being 2,000 times faster (30 TFLOPS), increasing the
performance per watt 300 fold. However, first exascale systems are expected in 2022 to lie in the range
of 20 MW up to 30 MW per machine for one EFLOPS. The improvement in term of raw performance
per watt compared to ASCI/Q would be 4000 fold, which is a good point, nevertheless power feeding
systems should be sized carefully. The power consumption is already so massive that some operators
of large machines in the US are required to notify the electricity provider before they execute certain
applications. A segmentation fault in a large application can cause a surge in power consumption and
power-outages.

Already now, we are facing several challenges in making exascale computing a practical reality.
These challenges arise both in the hardware realm and in the software, and will call for deep changes in
the ways we build and use high-performance computers [101]. These are sufficiently complex, and inter-
related, that a new methodological approach is called for in how the various research disciplines – from
computer engineering to applied mathematics and computer science, and ultimately to the applications
– interact as they pursue their own research agendas. One current trend is to develop and deploy a “co-
design” methodology, in which the designs of hardware, numerical schemes, algorithms, programming
models, and software tools are carried out in a tightly coupled and iterative fashion. To efficiently
use HPC systems, it is not a wishful thinking to really invest time for getting closer to such co-design
approach and to foster strong collaborations with nearby disciplines. It is common to see applications
using less than 2% of peak performance of modern supercomputers (see HPCG benchmark results3),
fruitful intertwined research and developments can really help to improve this status and to target
the best usage of supercomputers. Much of my contributions described in this document typically
goes in this direction, developing strong interdisciplinary works spanning mathematical modeling,
high-performance computing, optimization and physics.

2one PFLOPS means 1015 FLOPS.
3http://www.hpcg-benchmark.org
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2.2 Physics and numerical settings of Gysela

2.2.1 Physics

Main objectives

The tokamak is a magnetic confinement device being developed to contain the hot plasma needed for
producing controlled thermonuclear fusion power. It is the leading candidate for a practical fusion
reactor on earth. Magnetic fields are used for confinement because no solid material is able to accept
the high temperature and fluxes of the hot plasma. The world’s largest tokamak project is ITER4

(International Thermonuclear Experimental Reactor) currently being constructed in Saint-Paul-lez-
Durance, in southern France. First plasma is scheduled in 2025, it is expected to produce an output
power of 500 megawatts. ITER will bridge the gap between today’s smaller-scale experimental fusion
devices and the demonstration fusion power plants of the future. Physicists will be able to study
plasma under conditions similar to those expected in a future power plant and test technologies such
as heating, control, diagnostics, cryogenics and remote maintenance.

Understanding and control of turbulent transport in thermonuclear plasma’s in magnetic confine-
ment devices is a major goal. This aspect of first principle physics plays a key role in achieving the
level of performance expected in fusion reactors. In the ITER design, the latter was estimated by
extrapolating an empirical law, which obviously is not enough. The simulation and understanding of
the turbulent transport in fusion plasma within tokamak remains therefore an ambitious endeavor.
Indeed, we do not have yet achieved a deuterium-tritium plasma in which the reaction is sustained
through internal heating, which is an ITER goal.

The fusion energy community has been engaged in high-performance computing (HPC) for a long
time. Among classical applications running on large facilities, the gyrokinetic simulations are one of
the time hungriest (thousands up to millions of CPU-hours each simulation) and we then need large
amounts of computational time that are typically provided by advanced computational facilities [132].
Computer simulation is and will remain a key tool for investigating several aspects of fusion energy
technology to better learn about burning plasma experiments. Some of the key issues to address
realistic simulations are: efficient and robust numerical schemes, realistic physics sub-models, accurate
geometric description, good parallelization algorithms to use large supercomputers.

To better explain the physics inside tokamaks, a set of turbulent transport dynamics can be
investigated with the so-called gyrokinetic global codes. In order to provide reliable physical results,
the used schemes should be adapted to lower the noise induced by the numerical methods. Gysela is
a global nonlinear electrostatic code which solves the gyrokinetic equations in a five dimension phase
space with a semi-Lagrangian method. With the older versions of Gysela, one can model mainly
the so-called Ion Temperature Gradient instability for one ion species with adiabatic electrons using
flux-driven heat sources. Newer versions of Gysela include more physics with kinetic electrons or
multi-species capabilities, but these novelties do not invalidate the various studies with the previous
reduced setting presented in this document. Also, impurity sources in tokamak plasmas can have
a deleterious impact on plasma performance, by diluting the fusion fuel and because they lead to
radiative energy losses. A development has been engaged to integrate impurities in Gysela since
2012, the full ion and impurity species (two distribution functions) are evolved, coupled to quasi-
neutrality with adiabatic electrons.

One important aim of gyrokinetic theory, and applications based on it, is to predict turbulent
transport in fusion plasma. Some difficulties exist that are highlighted hereafter, some of them are
quite common in the field of numerical HPC simulation. Hence validation and proper comparison
between numerical results and experimental outputs originating from actual tokamak experiments are
really an issue. This can be done mainly in two ways. The first one is based on a comparison of
calculated and measured turbulent fluxes (or transport coefficients). The second approach consists
in confronting other statistically averaged quantities such as the turbulence intensity, spectra or bi-
coherence to experimental data, whenever available. However, if any mismatch exists between observed
quantity and numerical output, there are many places (physics model, numerical scheme, code bug)
where the error can be located. Another important physics ingredient is to properly model a fusion
plasma defined as an open system. A tokamak plasma is essentially composed of an autonomous
system with sources and sinks and complex boundary conditions that include some uncertainties and
multiscale/multiphysics phenomena. A very fine balance sheet has to be established for conserving
numerically invariant quantities. Checking the codes and improve robustness of numerical schemes is
a real challenge. A trade-off should be made to both incorporate submodels with realistic physics and
have ways to verify the numerical results. Also, the background geometry of the magnetic confinement
configuration is not trivial and introduces a very strong anisotropy. Large gradients exist along some

4https://www.iter.org

https://www.iter.org
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directions that should be properly represented, magnetic topology and boundary conditions are serious
constraints. In addition, multiscale dynamics develop in space and time. Thus, this setting is quite
demanding in terms of robust and inexpensive numerical schemes, but also efficient parallel algorithms
to operate large machines. The numerous issues and unknowns we encounter for tokamak modeling
imply that research activities are really tightly coupled and need pragmatic solutions in Physics, in
Applied Mathematics and in Computational Science.

2.2.2 Gyrokinetic setting

In the Gysela code, one is interested in turbulence modeling with a global code that considers a
large part of the plasma within the tokamak core. The flux-driven approach is considered with
imposed localized source and sinks which induces the property that the distribution function and the
profiles are left to freely evolve in time with the least possible artificial constraints (to avoid wrong
assumptions). An important hypothesis is also that we consider no separation between equilibrium
and fluctuations, i.e. a full-f code that differs from the so-called delta-f codes that assume a fake
equilibrium underneath. Within this setting, complex self-organization turbulence can take place
within the simulations. Our gyrokinetic model considers as main unknown a distribution function f
that classically represents the density of ions at a given phase space position. This function depends
on time and on five other dimensions.

Figure 2: A tokamak magnetic configuration using a toroidal coordinate system (r, θ, ϕ). The geometry
of the torus can be described by its minor radius a and major radius R0 (at the magnetic axis r = 0)

The coordinate system we consider is as follows (see Fig. 2 for an illustration). First, 3 di-
mensions in space xG = (r, θ, ϕ) with r and θ the polar coordinates in the poloidal cross-section
of the torus, while ϕ refers to the toroidal angle. Second, velocity space has two dimensions: v‖
being the velocity along the magnetic field lines and µ the magnetic moment corresponding to
the action variable associated with the gyrophase. In a single species model, we are considering
a collection of identical particles having charge q 6= 0 and mass m > 0, immersed in a static
magnetic field B(x) The magnetic moment µ = mv2

⊥/(2B) is an adiabatic invariant with v⊥ the
velocity in the plane orthogonal to the magnetic field. The computational domain is defined on
r ∈ [rmin, rmax], θ ∈ [0, 2π], ϕ ∈ [0, 2π], v‖ ∈ [vmin, vmax], µ ∈ [µmin, µmax]. Let us consider the
gyro-center coordinate system (xG, v‖, µ) , then the non-linear time evolution of the 5D guiding-
center distribution function f(xG, v‖, µ, t) is governed by the so-called gyrokinetic equation which
reads [139,142] in its conservative form:

B∗||
∂f

∂t
+∇∇∇ ·

(
B∗||

dxG
dt

f

)
+

∂

∂v‖

(
B∗||

dv‖
dt

f

)
= B∗|| (Dr(f) +Kr(f) + C(f) + S(f)) (2.1)

where Dr and Kr are respectively a diffusion term and a Krook operator [166] applied on a radial
buffer region, C corresponds to a collision operator (see [64] for more details) and S refers to source
terms (detailed in [69]). Hence, a heat source is mandatory in view of exploring the long time, typically
on energy confinement times, behavior of turbulence and transport. The scalar B∗|| corresponds to
the volume element in guiding-center velocity space. The expressions of the gyro-center coordinates
evolution dxG/ dt and dv‖/ dt are not given here (details provided at p.57). The main information is
that they depend on the 3D electrostatic potential φ(xG) and its derivatives. In this Vlasov/Boltzmann
gyrokinetic equation, µ acts as a parameter because it is an adiabatic motion invariant. Let us denote
by Nµ the number of µ values, we have Nµ independent equations of form (2.1) to solve at each time
step. The function f is periodic along θ and ϕ. Vanishing perturbations are imposed at the boundaries
in the non-periodic directions r and v‖.
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Gysela is a global nonlinear electrostatic code which solves the gyrokinetic equations with a
semi-Lagrangian method [10,139]. We combine this with a second order in time Strang splitting
method. Detailed explanations about the way we solve the Vlasov/Boltzmann Eq. (2.1) are presented
in [3, 35,139], some information are also shown in Section 3.1.

We now sketch the parallel domain decomposition used by this solver in the most standard con-
figuration. Large data structures are used in Gysela, the main ones are: the 5D data f , and the
3D data representing the electric potential φ. Let Nr, Nθ, Nϕ, Nv‖ be respectively the number of
points in each dimension r, θ, ϕ, v‖. In the Vlasov/Boltzmann solver, we grant the responsibil-
ity of each value of µ to a given set of MPI processes [35] (a MPI communicator). We fix that
there are always Nµ sets, such as only one µ value is assigned to each communicator. Within each
set, a 2D domain decomposition allows us to assign to each MPI process a subdomain in (r, θ) di-
mensions. Thus, a MPI process is then responsible for the storage of the subdomain defined by
f(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, v‖ = ∗, µ = µvalue). The parallel decomposition is initially
set up knowing local values istart, iend, jstart, jend, µvalue. They are derived from a classical block
decomposition of the r domain into pr pieces, and of the θ domain into pθ subdomains. The numbers
of MPI processes used during one run is equal to pr × pθ × Nµ. The OpenMP paradigm is used in
addition to MPI (#T threads in each MPI process) to bring another level of fine-grained parallelism.

Quasi-Neutrality equation

The quasi-neutrality equation and parallel Ampere’s law close the self-consistent gyrokinetic Vlasov-
Maxwell system. However, in an electrostatic code, the Maxwell field solver reduces to the numerical
resolution of a Poisson-like equation (theoretical foundations are presented in [142]). In tokamak
configurations, the plasma quasi-neutrality (denoted QN) approximation is currently assumed [139,
142]. Besides, in Gysela code, electrons are assumed adiabatic (in most of the cases), i.e. electron
inertia is ignored. Hence, the QN equation reads in dimensionless variables

− 1
n0(r)

∇⊥ .
[
n0(r)
B0
∇⊥φ(r, θ, ϕ)

]
+

1
Te(r)

[φ(r, θ, ϕ)− 〈 φ 〉FS(r)] = ρ̃(r, θ, ϕ) (2.2)

where ρ̃ is defined by

ρ̃(r, θ, ϕ) =
1

n0(r)

∫ ∫
Jv J0 (f − feq)(r, θ, ϕ, v‖, µ) dv‖ dµ . (2.3)

with feq representing local ion Maxwellian equilibrium. The perpendicular operator ∇⊥ is defined
as ∇⊥ = (∂r, ∂θ/r). The radial profiles n0(r) and Te(r) correspond respectively to the equilibrium
density and the electron temperature. B(r, θ) represents the magnetic field with B0 being its value
at the magnetic axis. Jv = 2π B∗||(r, θ, v‖)/m is the jacobian in velocity space. J0 which denotes the
Bessel function of first order is an approximation of the gyro-average operation5. 〈·〉FS denotes the flux
surface average defined as 〈 ·〉FS =

∫ ·Jx dθdϕ/
∫ Jx dθdϕ with Jx the jacobian in space of the system.

The presence of this non-local term 〈 φ 〉FS(r) couples (θ, ϕ) dimensions and makes the parallelization
yet more complex. We employ a solution based on FFT to overcome this problem; this method
assumes polar coordinates and does not fit all geometries [163]. The QN solver includes two parts.
First, the function ρ̃ is derived taking as input function f that comes from the Vlasov/Boltzmann
solver. In Eq. (2.3) specific methods are used to evaluate the gyroaverage operator J0 on (f−feq) [91].
Second, I introduced new approaches to derive 3D electric potential φ using parallel algorithms to
solve QN equation [93,29]. Furthermore, the extension of these methods to toroidal setting instead of
cylindrical one was described in [7, 3]. These studies will be summarized in Section 2.4.

In the following, we will refer to several data as 3D field data. They are produced and dis-
tributed over the parallel machine shortly after the QN solver. These field data sets, namely:
φ, ∂rJ0 φ, ∂θJ0 φ, ∂ϕJ0 φ, are distributed on processes in a way that is caused by the parallel domain
decomposition fixed for the Vlasov/Boltzmann solver. Indeed, they are inputs for the Eq. (2.1), and
they play a major role in the terms dxG/ dt and dv‖/ dt. In some early versions of Gysela (older
than 2011) the whole 3D field data were known redundantly on each MPI process, whereas on the
recent versions the 3D field data are well distributed with a specific parallel domain decomposition
that will be detailed in the following.

2.2.3 Semi-Lagrangian and time integration methods

Two types of methods are most commonly used to solve the Vlasov-Poisson system. On the one hand,
Lagrangian (or Particle-In-Cell) methods [107] discretize the distribution function into a finite number

5in Fourier space J0 operator depends on two variables k⊥ and µ, with k⊥ being the transverse component of the
wave vector, see Section 2.4.2 for details.
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Figure 3: Basic algorithm for the Semi-Lagrangian method (Fig. from [139])

of macro-particles. The evolution of these macro-particles then follows the equations of motion derived
from Vlasov6, while a grid is necessary only in real space in order to solve the Poisson equation.
Lagrangian methods allow for efficient computations with a numerical cost, parameterized by the
number of particles, that can be tuned depending on the expected accuracy. The main drawback of
such methods is the numerical noise due to the sampling of the distribution function, which requires
advanced noise reduction methods (see for instance [156] for state-of-the-art noise reduction techniques
in gyrokinetic simulations). On the other hand, Eulerian methods solve the Vlasov equation on a
fixed grid in phase-space using finite differences, finite volumes or spectral methods to discretize the
operators in the Vlasov equation. The key issues for Eulerian methods is that the discretization of
the operators leads to a CFL7 condition restricts the time step.

The semi-Lagrangian method is a mix between the Lagrangian and Eulerian methods, which tries
to eliminate the main drawbacks of each method. This method was first developed for meteorological
studies (see [183] for a review) and was more recently adapted to plasma simulations [182]. In order
to avoid the statistical noise observed in Lagrangian codes, a fixed “Eulerian” grid in phase-space is
used. On the other hand, to take advantage of the conservation of the distribution function along
trajectories by the Vlasov equation, the characteristics of the equation are used to compute the time
evolution of the distribution function. The basic algorithm for the backward semi-Lagrangian method
is described in Fig. 3 [182]. For every grid point at a given time step, the characteristic curves are
integrated backward to find the value of the distribution function at the foot of the characteristic. As
this point X∗ is hardly ever on the grid, an interpolation must be performed to compute the value
of the distribution function. It has been shown [136,129,105] that cubic spline interpolation provides
a good compromise between accuracy (low diffusivity) and numerical cost. Gysela combines semi-
Lagrangian scheme and cubic spline interpolation as interpolation operator in the usual setting. The
Vlasov equation is solved using the Strang splitting [186] combined with semi-Lagrangian scheme,
insuring second order accuracy of the numerical scheme. Let r̂θ denotes the shift operator associated
to 2D advection equation solving in (r, θ) directions during one time step ∆t. Similarly, ϕ̂ and v̂‖
denote the shift operators respectively in ϕ and v‖ directions. Then, the splitting of Vlasov solver can
be summarized by (v̂‖/2, ϕ̂/2, r̂θ, ϕ̂/2, v̂‖/2).

The time integration scheme currently used is a predictor-corrector of order 2 in time. Let us denote
time as tn = n∆t. The prediction step advances the distribution function fn = f(tn) to fn+1/2 using
electric potential φn (at time tn). Knowing fn+1/2, the corresponding potential φn+1/2 is evaluated.
Finally, we use both fn and φn+1/2 to compute fn+1. Thus, at each time step, we solve twice the set
of Vlasov/Poisson equations. In 2010, I replaced the initial Leapfrog [139] integration scheme by this
predictor-corrector scheme. With the Leapfrog approach (order 2 in time also), numerical instabilities
may show up during simulations (sawtooth-like oscillation can be observed on mass and total energy
diagnostics). Furthermore, the computational cost is similar for both methods.

2.2.4 Main parts of the code

The application can be seen as a collection of physical submodels and a set of solvers that are combined
to model and mimic a set of physics phenomena taking place inside a plasma of tokamak. Here is a
list of the major components of the Gysela code :

• Vlasov/Boltzmann solver - Vlasov/Boltzmann equation is a transport equation posed in the
phase space (see Eq. (2.1)). The solver uses a semi-Lagrangian approach and a Strang splitting
as main ingredients. It is mixed with some of the components (related to Right-Hand Side
computations) that follows, in that sense it should be called Boltzmann solver. Its role is to

6we will discuss here mainly the method for solving the left-hand side of Eq. (2.1) with no right-hand side; additional
methods have to be considered to treat the right-hand side.

7the Courant-Friedrichs-Lewy (CFL) condition is a prerequisite for convergence while solving PDE; the time step
must be less than a threshold in many explicit time-marching schemes, otherwise the simulation behaves incorrectly.
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move the distribution function f one time step forward. Within the Vlasov/Boltzmann solver,
the following steps are embedded :

– Advections - At left-hand side, directional advections are solved (1D and 2D). Computa-
tion of the feet of characteristics and interpolation are the main components.

– Sources - Source terms are used to model the external heating of the plasma. These terms
are injected as a right-hand side of Eq. (2.1).

– Collisions - Core plasmas are widely believed to be collisionless, but evidence from exper-
imental side and from modeling have contributed to strongly alter this idea. Collisions are
included through a reduced Fokker-Planck collision operator. The collisions appear in the
right-hand side of Eq. (2.1).

– Diffusions - In order to model radial boundary conditions, diffusion operators are used on
buffer regions (mainly close to internal/external radial boundaries). Buffer regions represent
a very small radial fraction of the minor radius.

• Field solver

– Poisson solver - The QN solver relies on an efficient 2D Poisson solver. It gives the 3D
electric potential φ generated by the distribution of particles at a time step taking as input
the distribution function f . Immediately following the Poisson solver, derivatives of φ are
produced.

– Derivatives computation - The derivatives of gyroaveraged electric potential (generated
by the Field solver) are used to establish the particle trajectories inside the Vlasov solver.
The derivatives of J0 φ are computed along the r, θ and ϕ directions.

• Diagnostics - Physically relevant quantities are computed at a given time frequency in the
code. This part, named Diagnostics, derives and outputs some files taking as input distribution
function and electric potential.

The Vlasov/Boltzmann solver that includes the Sources/Collisions/Diffusions operators are the
first computation intensive part of the code. For large physical cases, the solving of Eq. (2.1) represents
usually more than 90% of the computational cost.

Figure 4: Numerical scheme for one time step of Gysela

The execution of the application is decomposed in an initialization phase, iterations over time,
and an exit phase. Fig. 4 illustrates the numerical scheme used during a time step: fn represents
the distribution function, φn the electric potential and En the electric field which corresponds to
the derivatives of φn. The Vlasov-solver step performs the evolution of fn over time and the Field-
solver step computes En+1. Periodically, diagnostics are activated that export meaningful results
extracted from fn+1, En+1 and save the results in HDF5 files. This scheme is a simplified view,
the time integration (predictor-corrector) scheme induces that the Vlasov and Field solvers are called
two times per time step (one needs to compute intermediate time step n+ 1

2 ). To be more specific,
predictor-corrector method is used within the Vlasov/Boltzmann step and implies that intermediate
quantities fn+1/2, φn+1/2, En+1/2 are produced then discarded.

2.3 Vlasov solver

In this section, the main progress achieved over the last years concerning the parallel solutions, the
performance and the scalability over large platforms of the Vlasov solver are described. First, we
will go through local splines method that in the first place made it possible to scale well on several
hundreds of processors with a good level of accuracy. Second, an alternative approach is presented that
requires larger communication cost, due to a redistribution of the main 5D data over the processors,
but permits to enlarge the time step size. Third, we highlight the gains achieved in the Vlasov solver
thanks to simultenous multi-threading and fine-grained OpenMP parallelization.
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2.3.1 Local cubic splines

Context

Initially, one of the first setup of Gysela was using a cylindrical geometry8 and a single µ value.
The code was written in Fortran 90 and parallelized using MPI only. Mainly, there were simple
parallelization strategies for the Vlasov and Poisson solvers. The scalability was poor for core counts
larger than 64 [139].

If one takes the cubic splines over the whole (r, θ) plane, it does not provide a good locality property
for the interpolations needed for advections along (r, θ). Indeed, all the values of the distribution
function for a given poloidal cut (r = ∗, θ = ∗, ϕ = value, v‖ = value) are necessary to interpolate f
in this poloidal cut. The need comes from the sparse linear system to solve that involve all the f
values over the poloidal plane to derive the spline coefficients. To overcome this problem of strong
dependencies, we proposed a solution that enables us to interpolate on quasi independent small 2D
patches of the (r, θ) plane. Thus, we decompose global 2D cut into patches, each patch being devoted
to a set of processes. One patch computes its own local cubic spline coefficients by solving reduced
linear systems. Some adapted boundary conditions are imposed at the interface of the patches to
obtain a C1 global solver which gives numerical results very close to the sequential solver that uses
classical global splines. Moreover, thanks to a restrictive condition on the time step, the inter-process
communications are only done between logically adjacent sets of processes, which enable us to improve
communication speed. This approach has been successfully applied for two parallel applications: in
the LOSS code [9,14] and the version adapted for GPU [30] (standard Vlasov-Poisson equations), and
in Gysela [35] (gyrokinetic setting).

Description

We introduce now an interpolation technique, based on a cubic spline method, in one dimension
[9, 14, 35]. With a 2D tensor product of this spline method, interpolations on a 2D subdomain are
achievable. In order to apply the r̂θ operator of Gysela, we used this 2D extension. Nevertheless,
we explain here only the 1D case to simplify the explanations.

Let us consider a function f which is defined on a global domain [xmin, xMax] ⊂ IR. This domain is
decomposed into several subdomains called generically [xmp , xMp−1]; each subdomain will be devoted
to one MPI process p. In the following, we will use the notation xi = xmp + ih, where h is the
cell size: h = (xMp

− xmp)/K and K the number of cells on a subdomain (K ∈ IN). Let us now
restrict the study of f : x 7→ f(x) on the interval [xmp , xMp

] (in order to decouple computations) with
Mp = mp +K. The projection s of f onto the cubic spline basis reads

f(x) ' s(x) =
∑K+1
ν=−1 ηνBν(x),

where Bν is the cubic B-spline. The interpolating spline s is uniquely determined by (K + 1) interpo-
lating conditions and the Hermite boundary conditions at both ends of the interval in order to obtain
a C1 global approximation

f(xi) = s(xi), ∀i = mp, ...,Mp, f ′(xmp) ' s′(xmp), f ′(xMp
) ' s′(xMp

). (2.4)

The only cubic B-spline not vanishing at point xi are Bi±1(xi) = 1/6 and Bi(xi) = 2/3. Hence (2.4)
yields

f(xi) = 1/6 ηi−1 + 2/3 ηi + 1/6 ηi+1, i = mp, . . . ,Mp. (2.5)

On the other hand, we have B′i±1(xi) = ±1/(2h), and B′i(xi) = 0. Thus the Hermite boundary
conditions (2.4) become

f ′(xmp) ' s′(xmp) = − 1
2h

ηmp−1 +
1

2h
ηmp+1, f ′(xMp) ' s′(xMp) = − 1

2h
ηMp−1 +

1
2h

ηMp+1.

Finally, η = (ηmp−1, ...ηMp+1)T is the solution of the (K + 3)× (K + 3) system Aη = F , where F
and A are

F =
[
f ′(xmp), f(xmp), ..., f(xMp

), f ′(xMp
)
]T
, A =

1
6



−3/h 0 3/h 0 · · · 0

1 4 1 0
...

...
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... 0 1 4 1
0 0 0 −3/h 0 3/h


.

8the magnetic-field curvature effects due to toroidal geometry is lacking in the cylindrical configuration.
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A classical LU algorithm is used to solve the tridiagonal linear system Aη = F (known as the
Thomas algorithm).

Approximation of the interface derivatives In order to get accurate numerical simulations, one
has to take care of the approximation of the derivatives at the interface of the subdomains. Various
approximations were considered and evaluated. In order to recover the approximation of these interface
derivatives obtained by a classical global cubic splines interpolation, a new formula can be derived to
evaluate f ′(xmp) and f ′(xMp):

f ′left(xi) =
j=10∑
j=1

γ̃+
j fi+j ; f ′right(xi) =

j=−1∑
j=−10

γ̃−j fi+j ; f ′(xi) = f ′left(xi) + f ′right(xi).

We refer the reader to [9,14] for the details obtaining this approximation and numerical values of
coefficients γ−j and γ+

j .

Properties. Within the simulation we expect to interpolate on the interval [xmp−1, xMp
] instead of

[xmp , xMp−1] to avoid extra communication when interpolation is located a little bit out of the local
domain. In order to extend the interpolation capability on one process, we compute an extra ηmp−2

coefficient. We impose the property that mpi =Mpj for pi and pj two adjacent processes that share
the grid point xmpi . With these minor modifications, each process has the responsibility to modify
the values of grid points in the interval [xmp , xMp−1], and have the capability to interpolate onto the
extended interval [xmp−1, xMp

]. In the 2D splitting phase, where the local splines are used, it means
that the displacement of one single grid point on the border of a subdomain must not exceed the
elementary cell width. This constraint can be restrictive and constitutes the main drawback of the
method, since it is not possible to consider big shift (in r or θ) during a single advection in the 2D
splitting phase. The computation of the ηmp−2 coefficient is deduced from (2.5) with i = mp−1. The
value f(xmp−1) is transmitted from a neighboring process.

Communication pattern. In a parallel implementation of the local spline method, communications
are required between adjacent processes to build the right-hand side term F . On a local process,
the known values are f(xi)i∈[mp,Mp−1]. For processes located at the borders of the global domain
(xmin = xmp or xMax = xMp

), boundary conditions (compact or periodic) are considered to retrieve
the values of f needed outside the domain. Hereafter, we enumerate the data lacking on the local
process to get F (excluding specific problems that arise at the global domain boundaries):

a) Values of f(xmp−1), f ′left(xmp) are received from a neighboring process.

b) Values of f(xMp
), f ′right(xMp

) are received from a neighboring process.

c) The quantities f ′right(xmp) and f ′left(xMp
) are computed on the local process and send to pro-

cesses that need them.

Concerning the third item, we choose practically a large enough K to have only local calculations
to compute f ′right(xmp) and f ′left(xMp

). K ≥ Kmin = 32, leads to a relatively small overhead and
provides good numerical stability.
In the case of a 2D interpolation, the F term is a matrix instead of a vector. The assembly of F
requires communications with the 8 neighboring processes. On one process and for a 2D patch of size
K1 × K2, the number of double precision real numbers to receive is 4 (K1 + K2 + 4). This amount
of communication could be compared to the interpolation cost of the K1 × K2 points in a patch,
which is in Θ(K1K2). For K1 and K2 greater to Kmin = 32, the ratio of communication cost over
computation cost remains small enough on current machines.

Limitation. Numerical experiments with the local spline method for the 2D splitting on physical
test cases have shown a bottleneck in Gysela. The shifts in direction θ are often too large and above
the limit we fixed (the width of one cell). It was not feasible to keep this configuration, so we were
compelled to remove completely the θ parallelization in the algorithm and just keep the parallelization
along r dimension. Another solution would have been to improve the interpolation capacity of each
process to larger subdomains. But in such case, extra costly communications would be required.

Benchmarks

In addition to MPI, the OpenMP programming model can be combined to obtain a hybrid paradigm
to exploit levels of parallelism at a finer grain, without heavy code manipulation. The hybrid approach
is suitable for clusters of nodes where MPI provides communication capability across processes and
OpenMP exploits loop level parallelism within a process. Each advection within the Vlasov solver
has been parallelized with OpenMP, as well as the field solver. At that time (2007), the numerical
experiments were performed on a cluster of IBM 16-core nodes located in Bordeaux, France. Each
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Time Effic. Time Effic. Time Effic. Time Effic.

Nb. processes 1 (nbt=1) 8 (nbt=1) 64 (nbt=8) 128 (nbt=16)

advections 1D (ϕ) 334.7 100 40.87 102 5.38 99 2.66 98

advections 1D (v‖) 305.6 100 40.22 95 5.04 95 2.52 95

advection 2D (r, θ) 709.5 100 99.67 89 12.94 85 6.86 81

Total advections 1349.8 100 180.76 93 23.37 90 12.04 88

Total field solver 33.1 100 9.95 42 1.50 33 0.78 33

Table 1: Strong scaling - Efficiency and computation time in seconds for a single time step of a medium
4D test case Nr = 256,Nθ = 256,Nϕ = 128,Nv‖ = 64,Nµ = 1 (nbt the number of threads within each
MPI process, and [Nb. procs/nbt] the number of MPI processes)

node hosted a Power5 processor and offered 27GB of shared memory. In Table 1, we show performance
for a 4D Gysela case with Nµ = 1. The MPI parallelization on variable θ is not active; so in the given
test case with Nr = 256, the (r, θ) domain could be decomposed up to only procr = 8 subdomains.
The maximum number of cores that we could use is then procrNµ = 8. The hybrid paradigm usage
increases this maximum number to 128 (one could use up to 16 threads per node), thus improving
our capability to use more computing resources.

In Table 1, the 1D advections are perfectly parallel and scalable, because no overhead in computa-
tion nor in communication is triggered. However, the 2D advections requires a communication step to
transmit boundary coefficients and derivatives to use local splines. Furthermore, the 2D interpolation
on patches induces a small computation overhead in comparison to a global spline sequential method.
These two facts explain why the efficiency decays whenever procr and number of processes increases
from 1 to 8. The field solver, because of a too much simple parallelization has not a good speedup
(this issue will be studied later). Nevertheless, computation time for this field solver remains small
compared to others. The main advantages of the hybrid MPI+OpenMP approach is to allow one to
use more cores for a given test case. These early results (2007) demonstrated the overall possibility
for the Gysela application to scale well up to 128 cores with only a single µ (i.e. a 4D test case,
instead of multiple µ for a standard 5D test case). This would suggest that the scalability for a 5D
setting should be nice up to a few thousands of cores.

2.3.2 Transpose algorithm

Context

The parallelization based on local splines [14,35] does not support large displacements (several grid
cells typically) in the (r, θ) plane during one single time step. Using a toroidal setting (classical since
2009 in Gysela) instead of cylindrical one, drift velocities in the poloidal plane have quite high
values along (r, θ) (some displacements of more than 10 cells during one advection). Then, to support
large time steps and to shorten global execution time, a transposition of the distribution function
inside each µ value is appropriate. Our evaluation shows that somewhat counter-intuitively, even
with a transposition, this strategy shows good performance even with large number of cores [18]. Let
us introduce the transpose algorithm and compare it to the local spline Gysela algorithm through
numerical experiments. The transpose algorithm is used by the 2D advection operator and removes a
CFL-like condition at the expense of extra communications.

Algorithms description

for time step n ≥ 0 do

Field solver, Derivatives’ computation, Diagnostics

1D Advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])
Local splines 2D Advection in (r, θ) (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])

V
la

so
v

so
lv

er

8>>>><>>>>:
1D Advection in v‖ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])

Algorithm 1: using local splines for 2D advection

The local spline version of Gysela [35, 139] used a MPI domain decomposition along dimensions
µ, r, θ. The µ dimension is at the highest level of parallelism and each µ-value constitutes a MPI
communicator. Indeed, there is no advection along µ direction, thus Vlasov solving consists in solving
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for time step n ≥ 0 do

Field solver, Derivatives’ computation, Diagnostics

1D Advection in v‖ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
Transpose of f

2D Advection in (r, θ) (∀(µ, ϕ, v‖) = [local],∀(r, θ) = [∗])
Transpose of f

1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])V
la

so
v

so
lv

er
8>>>>>>>><>>>>>>>>:

1D Advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])

Algorithm 2: transpose of distrib. function for 2D advection
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Figure 5: Strong scaling - Local spline
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Figure 6: Strong scaling - Transpose

Nµ independant equations. Then, within each communicator dedicated to one µ, a domain decom-
position in r and θ is used to distribute the distribution function among MPI processes. OpenMP
is used to exploit the parallelism available in the inner loops. We use the following notation: local
indicates that in a given dimension each MPI process owns a parallel sub-domain, conversely * states
that each MPI process possesses all points along a specified direction (typically needed for standard
cubic spline interpolations). In Algorithm 1, one can see that a single domain decomposition is valid
for all advections, nevertheless the advection along (r, θ) has to be handled in a special way. Local
cubic splines have been designed in order to perform interpolation on 2D sub-domains during the
2D advection in (r, θ). Typically, only a ghost zone of 3 points is needed at each border of a local
sub-domain in r and θ with this approach. These local splines generate few communications between
processes while preserving accuracy of the interpolation. However, it limits the displacement during
one time step in (r, θ) to one grid cell at the maximum. This introduces a CFL-like condition that
prevents use of large time steps [9].

An alternative to local splines is presented now where the MPI domain decomposition is switched
between advections as shown in Algorithm 2. The 4D distribution function (for a given µ value) is
transposed just before and after the 2D advection along (r, θ). Each process exchange data to change
its sub-domain from (r= local, θ= local, ϕ=∗, v‖=∗, µ= local) to a new sub-domain (r=∗, θ=∗, ϕ= local, v‖=

local, µ = local). Even if it implies larger communication volumes, this solution enables one to make
use of standard 2D cubic spline over the whole domain (r=∗, θ=∗) for a given (v‖, ϕ, µ) tuple. Hence,
the CFL-like condition is removed. Furthermore, other advection schemes that need to consider the
whole domain (r = ∗, θ = ∗) are now feasible. Communications of the transpose step have good locality
properties, the message exchanges are done inside a µ-communicator that groups together adjacent
processes leading usually to improved network bandwidth. The numerical accuracy is close for the
previous and the new solution.

Some values, as the J0 φ-derivatives, are computed from φ. They should be provided as an input
to each advection step with the appropriate parallel domain decomposition. Therefore, switching from
Algo. 1 to Algo. 2 also requires to adapt the communication scheme to send the appropriate J0 φ-
derivatives to each MPI process. In Algo. 1, the domain decomposition of these derivatives matches
the main code decomposition (r= local, θ= local, ϕ=∗, v‖=∗, µ= local), they are used equally into 1D and
2D advections. However, in Algo. 2, the new transposed 2D advection algorithm needs additional
communications to get the J0 φ-derivatives on the domain decomposition (r = ∗, θ = ∗, ϕ = local, v‖ =

local, µ= local). The costs of these additional communications will be exhibited further below.
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Experimental evaluation

Timing measurements of this subsection have been realized on the Curie machine at the French
GENCI-TGCC-CEA computing center in 2013. Each computing node is a dual socket Intel Xeon E5-
2680 (Sandy Bridge): 2×(8 cores, 2.7 GHz, 20 MiB shared L3-cache, DDR3 1600 Mhz memory) with
64 GiB of RAM. Let us mention that the thread level for MPI is set to MPI THREAD FUNNELED

in Gysela, essentially because MPI THREAD MULTIPLE mode is not available or not benefical in
our context on most of the platforms we use.

For a strong scaling experiment, we choose a domain size of Nr ×Nθ ×Nϕ ×Nv‖ ×Nµ = 512 ×
512 × 128 × 128 × 32, representing 1 TiB of data for a single distribution function. Fig. 5, 6, 7 and
8 show a strong scaling from 2k cores up to 65k cores (16 threads per MPI process). Let us notice
that these curves are plotted with a logarithmic scale for abcissa. On Fig. 5, one can observe a good
global scaling behavior for the elapsed time of one entire run (thick black line). The Vlasov solver and
diagnostics computations are processing 5D data and represent the biggest part of computation time;
they are approximately divided by a factor two whenever the number of cores is doubling, which is an
excellent behavior. On the other hand, the field solver and the part that gets derivatives of the electric
potential are dealing with 3D data. These computation kernels are less computation intensive and
do not provide as much parallelism as the others. However, field solver and derivatives computations
have relatively low execution times (see Section 2.4).

Let us compare these execution times obtained by the local splines (Algo 1) shown in Fig. 5 with
the transpose version (Algo 2) shown in Fig. 6. First, Algo. 2 introduces an overhead due to the
transpose communications that represents from 1% up to 20% of the Vlasov solver in production
runs compared to the local spline reference time (see Fig. 9 as well). As it can be observed, the
overheads are not directly and linearly related to core counts. Another way to say this, transpose
communication times are scaling quite well on modern architectures (IBM BlueGene/Q architecture
has also been checked [26]). Second, the derivatives computation step transmits a larger amount
of data with Algo. 2, because the derivatives are distributed to each MPI process according to two
different domain decompositions. This increase is significant, but it remains a low overhead relatively
to the biggest computational parts (Vlasov solver, diagnostics). The relative efficiencies of Fig. 7
and 8 for the two algorithms are very similar. For the entire application this efficiency is competitive
and larger than 60% at 65536 cores in this strong scaling benchmark. Practically, let us notice that
physicists run the code between 1k up to 8k cores commonly for this type of domain size. Typically,
we avoid the cases with 32k and 64k cores presented in Fig. 7 and 8. Thus, we mainly target high
parallel efficiency for production runs in order to maximize the number of results one can get within
the amount of CPU hours that users obtain every year on several supercomputers.

On Fig. 9, 10 and 11, a zoom on the time measurement of the new method compared to the
original algorithm is given. Both computations and communications are accounted for in the curves
(rationale is that separation of computation versus communications measurements is not easy for
subroutines that finely mix both steps). Concerning the 2D advection part, the difference of the new
method compared to the original one tends to decrease considering a high number of cores. The
derivatives computation does not scale well because the amount of communication (J0 φ derivatives
on a 3D sub-domain) is increasing along with the number of cores, even if this growth is sub-linear.
To oversimplify, the communication pattern is an hybridization between a MPI scatter and a set of
MPI broadcasts of a 3D sub-domain. Finally, we are pleased with these timings for both algorithms
as long as their costs stay well below those of the main costly steps.
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Figure 7: Strong scaling - Local spline
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The expense of this transpose method is an overhead per time step (Fig. 11) that can be up
to 12% of the run time (due to the increase by 20% of the Vlasov solver). However, the transpose
approach permits to gain more than a factor 10 on the time step in removing the CFL-like condition.
Definitely, it seriously shortens global execution time for typical runs. Production runs of Gysela
now exclusively use the transpose algorithm.

Discussion

The transpose method is a great step forward for the Gysela application, we will discuss in the
following paragraphs whether it can bring a benefit to other codes also.

In scientific parallel computing, two communication patterns are useful among others: Halo com-
munication pattern and Redistribution of multi-dimensional arrays. On the one hand, many stencil-
based applications in HPC use domain decomposition to distribute the work among different processing
elements. Decomposed sub-domains logically overlap at the boundaries and can, depending on the
numerical schemes, be updated with neighbor values located on neighbor processing elements. The
overlapping regions are called halo (or ghost) regions. They need to be updated with data from neigh-
bor regions during a halo communication step. For example, Halo communication strategy together
with domain decomposition is classically used by explicit methods to solve PDEs.

On the other hand, the operation of remapping multi-dimensional array (also called transpose
method) on computing elements is a common tool. The goal of such a method is to reorganize the
data distribution of a multi-dimensional array (of dimension n) across all or a part of the processes.
At start all the elements over m dimensions (m < n) of the multi-dimensional array are stored in
the local process and the other n−m dimensions are distributed over the processes typically using
a domain decomposition. After the transpose step and several communications between processes,
the domain decomposition has been switched, each process owns a very new subdomain of the multi-
dimensional array. Often, this transpose is required because the numerical scheme expects that at
a specific stage, all the the components over one or several dimensions are locally known in the
process. A well designed redistribution communication schedule aims to minimize node contentions
and maximize network bandwidth utilization. Data redistribution using message passing approach
has been extensively studied in literature. Numerous fields use this communication pattern including
Climate and weather forecasting, Geophysics, Computational fluid dynamics, but also FFT libraries
for 3D Fourier transform notably. Also, it is common that an explicit method requires impractical
small time steps to keep the error low and an implicit method takes much less computational time
due to larger time steps. From the parallel computation point of view, an implicit method is often
more difficult to parallelize than an explicit method because the solution at a point is dependent on
those in the entire domain (no spatial locality). Nevertheless, implicit method is able to reduce the
total number of time steps and therefore possibly shorten the total time to solution.

The communication pattern of halo is sparse, whereas the transpose operation involves a dense
one. Then, the overall cost of a single halo exchange of a few cells is expected to be a lot cheaper
than a transpose step on a multi-dimensional array using many computing units of a supercomputer.
Nevertheless, affording the cost of a transpose gives the opportunity to consider alternative efficient
numerical schemes. Examples exist in the literature where the transposition permits to employ prof-
itable schemes with good scaling on parallel machines [21, 113, 114, 161, 174, 177, 184]. In Gysela
case, we have seen that transposition strategy managed to reduce time to solution. It allows us to
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take larger time steps, and at the same time the overhead in term of communication time remains
limited. This conclusion should be also true for other applications that are suffering from stringent
CFL condition, thus restricting the time step. Naturally, the ratio of communication time dedicated
to the transpose over the useful computations time is a key factor. This ratio should be evaluated on
a given target parallel system and target application in order to evaluate the trade-off.

In order to reach exascale, new hardware design approaches are expected to completely change
many well accepted idioms for optimization and parallelization. We are told network and memory
accesses will not follow the growth of computing power both in term of performance and energy
consumption [120] and that, as a result, algorithms will have to be changed for example by recomputing
some data so as to reduce stress on these parts. The transpose-based algorithm is one example of
optimization that is favorable in terms of computation at the expanse of network bandwidth use. This
statement should however be balanced by two observations. First, we can cope with a tripling of this
relative cost without incurring a severe penalty on the total execution time. Second, the main problem
expected regarding exascale networks is related to latency, it is not so clear for bandwidth. In any
case, we will have to keep track of performance ratio of halo vs. transpose with the new hardware
architectures. We are now considering a pipelined version of the transpose communication pattern
in order to partially overlap communication costs with the 2D advection computations (unpublished
work of postdoc Y. Asahi). Using the current programming model to express such a pipeline might
however make the code difficult to read and switching to a task-based model where computations are
automatically scheduled when the data becomes available will help a lot.

2.3.3 Simultaneous multi-threading

Context

Trends While the clock-rate of processors has reached a maximum, vendors have to introduce new
features so as to keep increasing the floating point operations per second (FLOPS) they can execute.
These features include vector units, fused multiply-add, simultaneous multi-threading (SMT) and an
increased number of cores. This increasing complexity makes reaching a significant ratio of processors
peak FLOPS more and more difficult. We identify specific problems that arise in Gysela with the
Haswell processor (arrival of this hardware in 2015 on supercomputers) and solutions we have adopted.
Amongst those is the use of SMT that now provides a noticeable gain whereas it was not so clear with
previous processors. We now describe the adaptation of the code for balance load whenever using
both SMT and good deployment strategy. It led us to a significant reduction that can be up to 38%
of the execution times [18].

Haswell micro-architecture Haswell is based on a 22 nm production process and a new micro-
architecture replacing that used in Sandy Bridge. Haswell introduces a huge number of new integer
and floating-point vector instructions (AVX2 extension). For example, the fused multiply-add (FMA)
combines an addition and a multiplication and is especially important for the HPC market. Indeed it
must be used to reach the announced peak FLOPS performance of the processor.

Figure 12: Sandy Bridge CPU Core Pipeline
Functionality, extract from [154]

Figure 13: Haswell CPU Core Pipeline Functionality,
extract from [154]

Fig. 13 presents the pipeline of the Haswell architecture compared to that of Sandy Bridge
in Fig. 12. A noticeable change is the addition of two new units to the pipeline: a (vector) inte-
ger dispatch port (Port 6) and a memory port (Port 7). In addition, the Haswell floating-point units
(Port 0 and Port 1) have been upgraded compared to Sandy, they now have the capability to perform
both additions and multiplications. This enables to leverage both units even for applications not
perfectly balanced in term of multiply/add. The addition of new execution units combined with the
improved capabilities of the existing ones means that it becomes more realistic for the scheduler to
submit close to its maximum of 4 µ-operations per cycle thus improving the parallelism at this level.

As with any kind of parallelism, the difficulty with this design is for the code to expose enough
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in-fly µ-operations from which the scheduler can choose. This is why simultaneous multi-threading9

(SMT) is more and more important to feed all units (also known as a reduction of horizontal waste).
In addition, using multiple hardware threads makes it possible to hide latencies related to data access
by switching to another thread that is not waiting for data (reduction of vertical waste). All in all, this
results in an outright doubling of peak FLOPS in Haswell vs. Sandy which requires for the memory
interface to be improved similarly. The L1 bandwidth has been doubled compared to the previous
generation, as well as the interface between the L1 and L2 cache. In the following experimental study,
we use the Jureca machine from Jülich/Germany (2016). This supercomputer hosts 1872 compute
nodes. Each node contains two intel Xeon E5-2680 v3 Haswell CPUs (2× 12 cores, 2.5 GHz).

Performance metrics
From the user’s point of view, the impact of SMT is typically measured by calculating the relative

speed-up attained, e.g. the code is sped up by x% using SMT compared to one thread per core
configuration. In order to measure the core-level effects of SMT, a useful quantity to analyze is the
utilization level of the core’s execution units. In particular, it is of utmost importance to access a
significant fraction of micro-operation slots (executing units) that are available to execute an instruc-
tion. If the number of instructions performed per cycle (IPC) is high, then the execution units are
being kept busy doing useful work. We will measure IPC in some important kernels of Gysela. Let
us notice that on Haswell processor, IPC can reach a maximal value of 4. This is due to instruction
retirement and decode units that can treat up to 4 micro-operations per cycle [141].

Direct benefits of SMT

To evaluate SMT, we choose a domain size of Nr ×Nθ ×Nϕ ×Nv‖ ×Nµ = 512× 256× 128× 60× 32
in this section. Due to Gysela internal implementation choices, we are constrained to choose, inside
each MPI process, a number of threads as a power of two (this constraint has been removed during
year 2016). Let us remark, that the application performance increases by avoiding very small power
of two (i.e. 1, 2). Haswell node that we target is made of 24 cores. That is the reason why we choose
to set 8 threads per MPI process for the runs shown hereafter. This configuration will allow us to
compare easily an execution with or without SMT activated.

In the following, the deployment with 3 MPI processes per node (one compute node, 24 threads, 1
thread per core) is checked against a deployment with 6 MPI processes per node (one compute node,
48 threads, 2 threads per core, SMT used). Strong scaling experiments are conducted with or without
SMT, timing measurements are shown in Table 2. Let us assume that processes inside each node is
numbered with an index n going from 0 to 2 without SMT, and 0 to 5 whenever SMT is activated.
For process n, threads are pinned to cores in this way: logical cores id from 8n up to 8n+ 7.

Number of Exec. time Exec. time Benefit of

nodes/cores (1 th/core) (2 th/core) SMT

22/ 512 1369s 1035s -24%
43/1024 706s 528s -25%
86/2048 365s 287s -21%
172/4096 198s 143s -28%

Table 2: Time measurements for a strong scaling experiment with SMT activated or deactivated, and
gains due to SMT. Minirun of 8 times steps.

The different lines show successive doubling of the number of cores used. The first column gives
the CPU resources involved. The second and third columns highlight the execution time of mini runs
comprising 8 time steps (excluding initialization and output writings): using 1 thread per core (without
SMT), or using 2 threads per core (with SMT support). The last column points out the reduction
of the run time due to SMT comparing the two previous columns. As a result, the simultaneous
multi-threading with 2 threads per core gives a benefit of 21% up to 28% over the standard execution
time (deployment with one thread per core). While an improvement is expected with SMT, as already
reported by others (e.g. [155,187]), this speedup is quite high for a HPC application.

We have investigated the most intensive computation parts of the code with Paraver tools (www.
bsc.es/paraver) thanks to a collaboration with BSC/Spain through the H2020 EoCoE project (2015-
2018). The tools are based on traces capturing the detailed behavior of the different MPI processes and
threads along time. Calls to the MPI and OpenMP runtime can be enriched with hardware counters,
so we were able to measure the instructions and cycles for each computation region. We observe
that for each intensive computation kernel the number of instructions per cycle (IPC) accumulated
over the 2 threads on one core with SMT is always higher than the IPC obtained with one thread

9multiple hardware threads are handled by each core

www.bsc.es/paraver
www.bsc.es/paraver
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Figure 14: Snippet of a run with 2 threads per core (SMT), Top: Paraver useful duration plot, Bottom:
Parallel functions plot

per core without SMT. For these kernels, the accumulated IPC is comprised between 1.4 and 4 for
two threads per core with SMT, whereas it is in the range of 0.9 up to 2.8 with one thread per core
without SMT. These IPC numbers should be compared to the number of micro-operations achievable
per cycle, 4 on Haswell. Thus, we use a quite large fraction of available micro-operation slots. Two
factors explain the boost in performance with SMT. First, SMT hides some cycles wastes due to data
dependencies and long latency operation (e.g memory accesses). Second, SMT enables to better fill
available execution units. It provides a remedy against the fact that, within a cycle, some issue slots
are often unused (for example due to memory or network lantencies).

Optimizations to increase SMT gain

The Paraver tool gives us the opportunity to have a view of OpenMP and MPI behaviors at a very
fine scale. The visual rendering informs rapidly the user of an unusual layout and therefore hints to
look on some regions with unexpected patterns. On the Fig. 14 is plotted a snippet of the timeline of
a small run with SMT (2 threads per core, 24 MPI processes, 8 threads per MPI process, meaning 4
nodes hosting 48 threads within each node). We can extract the following information:

a) The 2D advection kernel (first computationally intensive part of the code) is surprisingly full of
small black holes (idleness).

b) There are several synchronizations during this timeline between MPI processes that are notice-
able. As several moderate load imbalances are also visible, a performance penalty can be induced
by these synchronizations. See for example 2D advection and Transpose steps (Useful duration
plots), there is much black color at the end of these steps. This is due to final MPI barriers.
Nevertheless the impact is relatively low in this reduced test case because the tool reported a
parallel efficiency of 97% over the entire application indicating that only 3% of the iteration time
is spend on the MPI and OpenMP parallel runtimes. The impact is stronger on larger cases,
because load imbalance is bigger.

c) The transpose steps show a lot of black regions (threads remaining idle). Fig. 15 zooms into
the transpose kernel execution for the MPI ranks showing larger communication times for the
higher ranks despite they use the same communication pattern (in this plot, one colored bar
represents one entire MPI process, no distinction by thread). At the end of the phase, all the
ranks are synchronized by the MPI Barrier. The useful duration plot shows this delay is caused
by a larger duration of the initial computation phase on only few MPI processes. Checking the
hardware counters indicate the problem is related with a different IPC where the fast processes
are getting twice the IPC of the delayed ones. This behavior illustrates well that SMT introduces



version: May 18 2018 27

heterogeneity of the hardware that should be handled by the application even if the load is well
balanced between threads.

Figure 15: Zoom on the Transpose kernel (only MPI ranks are displayed), Top: Paraver MPI calls
plot, Bottom: useful duration plot

These inputs from the Paraver visualization helped us to determine some code transformations to
make better use of unoccupied computational resources. The key point was to point out the cause of
the problem, the improvements were not so difficult to put into place. The upgrade are described in
the following list. The Table 3 and Fig. 16 exhibits associated measurements.

a) The 2D advection kernel is composed of OpenMP regions. There is mainly an alternation of two
distinct OpenMP kernels. The first one fills the input buffers to prepare the computation of 2D
spline coefficients for a set of N poloidal planes (corresponding to different ϕ, v‖ couples). The
second kernel computes the spline coefficients for the same N poloidal planes and performs the
advection itself that encompasses an interpolation operator. Yet, there is no reason for having
two separate OpenMP regions encapsulated in two different routines, apart from historical ones.
Thus, we decided to fuse these OpenMP regions in a single large one. This modification avoids
the overheads due to entering and leaving the OpenMP regions multiple times. Also the implicit
synchronization at the beginning and end of each parallel region are removed. Thus, avoiding
synchronization leads to a better load balance by counteracting the imbalance originating mainly
from the SMT effects.

b) Some years ago, with homogeneous computing units and resources, the workload in Gysela was
very balanced between MPI processes and inside them, between threads. Thus, even if some
global MPI barriers were present within several routines, they induced negligible extra costs
because every task was executed synchronously with the others. In latest hardware, there is
heterogeneity coming from cache hierarchy, SMT, NUMA effects or even dynamic clock frequency
scaling. The penalty due to MPI barriers is now a key issue, and thread idle time is visible on
the plot. We removed several useless MPI barriers. As a result, we see for example in Fig. 16
that, now, diffusion is sandwiched between the transpose step and the 2D advection, without
global synchronization.

c) The transpose step is compounded of three sub-steps: copy of data into send buffers, MPI
non-blocking send/receive calls with a final wait on pending communications, copy of receive
buffers into target distribution function. On the Fig. 14, it is worth noticing that only the
first thread of each MPI process is working, i.e. only the master thread is performing a useful
work. To improve this, we added OpenMP directives to parallelize all the buffers’ copies. This
modification increases the extracted memory bandwidth and the thread occupancy. On the Fig.
16, the bottom plot shows that the transpose step is now partly parallelized with OpenMP.

Thanks to these upgrades, there is much less black (idle time) in Fig. 16 compared to Fig. 14. Still,
MPI communications induce idle time for some threads in the transpose step and in the field solver.
This can not be avoided within the current assumptions done in Gysela. Table 3 also illustrates the
achieved gain in term of elapsed time. If one compares to Table 2, the timings are reduced with one or
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Figure 16: Snippet of a run with 2 threads per core (SMT), after optimizations are done, Top: Paraver
useful duration plot, Bottom: Parallel functions plot

two threads per core. Comparing one against two threads per core, the SMT gain is still greater than
20% (almost the same statement as before optimization). Now, if we accumulate the gain resulting
from SMT and from the optimizations, we end up with a net benefit on execution time of 32% up to
38% depending on the number of nodes.

Number of Exec. time Exec. time Benefit of Benefit vs.

nodes/cores (1 th/core) (2 th/core) SMT Table 1

22/ 512 1266s 931s -26% -32%
43/1024 631s 474s -25% -33%
86/2048 320s 239s -25% -34%
172/4096 164s 124s -25% -38%

Table 3: Time measurements and gains achieved after optimizations that remove some synchroniza-
tions and some OpenMP overheads. Minirun of 8 times steps.

2.3.4 Conclusion

We have introduced the local spline method to be used with Semi-Lagrangian scheme for Vlasov equa-
tion. It employs patches decomposing the velocity and space domains, each patch being devoted to
a process. Some adapted Hermite boundary conditions allow to reconstruct a good approximation of
the global solution. Moreover, this kind of strategy allows to avoid a time consuming part (communi-
cation costs between processes) which is the transposition step. Several numerical results demonstrate
the accuracy and the good scalability of the method. The local spline method shows good behavior
for simulations of a high intensity beam in periodic or alternating gradient focusing fields (paraxial
Vlasov equation on the 4D transverse phase space), but also on the Gysela application in the simple
4D cylindrical setting. However, local splines show strong limitation whenever large displacements
appear with realistic toroidal geometry.

In this latter situation, a good implementation of the transpose algorithm helps reducing this
pseudo-CFL condition and represents a scalable and robust solution to handle different physics regimes
(including 5D simulation with toroidal geometry). Global execution times are satisfactory with trans-
pose: Gysela achieves a good parallel computation scalability up to 64k cores combining several levels
of parallelism and a hybrid OpenMP/MPI approach. Overheads related to extra communication costs
remain reasonable for now. The expanse of network bandwidth use needs to be put in perspective
of exascale challenges. Overlapping these communications will be addressed soon to alleviate the
pressure over network throughput.

Simultaneous multi-threading of Haswell architecture enables a program to better use each core
efficiently with multiple threads. Therefore, by using multiple threads on a single core, we are able to
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increase the accumulated throughput of all available integer units and floating-point units, especially
in the Vlasov solver. In Gysela code, it leads to a significant reduction of the execution time, larger
than 20% in typical cases. Some adaptations of MPI and OpenMP usage to avoid synchronization
that conflicts with threads and SMT further improve performance. All in all, this leads to large gain in
execution time whenever one uses several thousands of cores, compared to the initial version without
SMT we notice an improvement from 32% up to 38% depending on the test case.

We observe that SMT technology and modern memory organization and management introduce
observable benefits, but also introduces heterogeneity of the hardware throughput. Well balanced ap-
plications such as Gysela should revise their parallelization strategy in order to deal with this kind of
imbalance due to hardware characteristics at a very fine grain of parallelism. We currently investigate
task parallelism to go further in improving load balancing and in removing global synchronization
in-between global steps.

2.4 Field solver

The Vlasov solver is the main hotspot of the application that represents a large fraction of total
execution time. However, the field solver is also able to become a bottleneck on very large parallel
machine if the computations are not well distributed or if the amount of communications grows too
much within the field solver or in-between Vlasov and field solvers. As the Vlasov solver came close
to an excellent parallel efficiency in 2011, the field solver started becoming a limiting factor. This
Section describes a set of numerical schemes and parallel algorithms that were co-designed to achieve
higher, sustainable levels of performance up to a large number of cores. Thus, we continued to push
forward parallel scalability considering the persistent growth in the size of supercomputers.

2.4.1 Introduction

A parallel gyrokinetic code needs to finely couple a parallel Vlasov solver with a parallel field solver
to be an efficient method. The role of a quasi-neutrality (QN) solver is to give the electric potential
φ taking as an input the particles density, whereas the Vlasov solver moves the particle density
forward in time. Moreover, the numerical resolution of the QN equation requires the solving of
a 3 dimensional equation, involving domain decomposition and communications that may penalize
an efficient parallel implementation [35]. One of the possible ways to treat numerically the quasi-
neutrality equation consists in the use of Fast Fourier Transform, other choices are multigrid or use
of a direct solver for a finite element method for example. Even if the FFT approach is not adapted
to general geometries [163], in periodic direction they remains a fast, simple and accurate method
for polar coordinates (and a circular plasma). First, one solves Nϕ independent 2D Laplacian type
equations in the poloidal plane. Second, a simple 1D ordinary differential equation has to be solved
on the average of the electric potential on the magnetic surface along the toroidal dimension ϕ.

I proposed an adapted communication scheme to reduce the communication cost between the
Vlasov solver and the QN solver. As a consequence, a global parallelized gyrokinetic solver is then
obtained, the performance of which is presented in the following. We will consider here cylindrical
setting instead of toroidal setting introduced more recently and explained later on [3,7], this choice will
allow us to match the background of the papers on which is based this Section, i.e. [26,29,91,92,93].
Mainly, the difference of toroidal vs cyclindrical is that with cylindrical setting: Jx the jacobian in
space of the system does not depend on θ, and that: 〈·〉FS denoting the flux surface average degenerates
into the average along θ, ϕ directions.

The rest of the Section is organized as follows: First, we present the QN equation together with
the gyroaverage operator. Then, we describe various methods, and their impact on the Gysela
performance.

2.4.2 Using 2D FFT in the field solver and solution to avoid it

Quasi-Neutrality equation

In tokamak configurations, the plasma quasi-neutrality approximation is assumed in many cases [139,
142]. This leads to ni = ne where ni (resp. ne) is the ionic (resp. electronic) density. Under some
assumptions, electron inertia can be ignored, which means that an adiabatic response of electrons are
supposed. The QN solver includes two computation parts. First, the function ρ̃ is derived taking
as input function f through Eq. (2.3) (p.15). Specific methods, that will be described afterwards,
are used to evaluate the gyroaverage operator J0 on (f − feq) included in Eq. (2.3). Second, the 3D
potential φ is found in computing discrete Fourier transforms of ρ̃, followed by solving of tridiagonal
systems and inverse Fourier transforms in order to treat Eq. (2.2) (p.15).



30 version: May 18 2018

Gyroaverage operator

Let us now detail the computation of ρ̃. Starting from the ionic guiding center distribution function
f = f(r, θ, ϕ, v//, µ), we can obtain the ionic density on the particle coordinates thanks to a gyroaverage
operator, one of the cornerstone of the gyrokinetic theory. The gyroaverage operator transforms the so-
called guiding-center distribution into the actual particle distribution. It enables to take into account
effects relative to the finite Larmor radius, which is the radius of gyration of the gyro-center (motion
which is faster than the turbulence we are looking at). After some computations in Fourier space, this
operator makes appear the Bessel operator and leads to (2.3) (p.15). In the sequel, we focus on the
computation of g = g(r, θ, ϕ) satisfying

ḡ(r, θ, ϕ) = J0(k⊥
√

2µ)g(r, θ, ϕ) (2.6)

Please note that J0 depends on µ value, this point will be important for several parallel algorithms.
The numerical resolution of such a problem is based on a Padé approximation which is currently
performed for the Bessel function J0

J0(k⊥
√

2µ) ≈ 1

1 + (k⊥
√

2µ)2

4

. (2.7)

This approximation is correct for small wavenumbers k⊥ and keeps J0 finite in the opposite limit
|k⊥| → +∞. Injecting the Padé approximation (2.7) in (2.6), a Fourier transform enables to use the
equivalence between (ik⊥) and ∇⊥. Finally, we can obtain g by solving the following implicit equation[

1− µB

2ωc2mi
∇2
⊥

]
ḡ(r, θ, ϕ) = g(r, θ, ϕ).

Numerical methods for gyroaveraging

Let us consider a function f which is defined on a global domain [r0, rNr] ⊂ IR. In the following,
we will use the notation ri = r0 + i dr, where dr is the mesh size: dr = (rNr − r0)/(Nr + 1). Let
us now restrict the study of g : r → g(r) on an interval [r0, rNr], Nr ∈ IN, where all ri are known.
Our goal is to get the gyroaverage ḡ from a known g function. Let us do a Fourier transform in
variable θ. Each k Fourier mode of ḡ is the solution of the equation of the following equation (after
some approximations [10,139]):[

1− µB0

2ω2
c mi

(
∂2

∂r2
− k2

r2
)
]
ḡ k(r, ϕ) = g k(r, ϕ) .

We assume that we have Neumann boundary conditions, and that g1
m = g2

m and gNr
m =

gNr−1
m. In the code, the hypothesis B0 = 2ω2

c mi is done in a set of simplified geometries where B
is considered constant in the poloidal plane. It gives the following system to solve for each ϕ:

α+β2 α 0
α β3 α 0

. . . . . . . . .
0 α βNr−2 α

0 α α+βNr−1




ḡk2 (ϕ)
ḡk3 (ϕ)

...
ḡkNr−2(ϕ)
ḡkNr−1(ϕ)

 =


gk2 (ϕ)
gk3 (ϕ)

...
gkNr−2(ϕ)
gkNr−1(ϕ)

 (2.8)

with 
ζ = 1

∆r2

α = −µ2 ζ
βj = 1 + µ

2 (2 ζ + k2

r2
j

)
(2.9)

The solving of system (2.8) allows one to apply the gyroaverage operator on function g. A LU
decomposition is done once for the tridiagonal matrix of system (2.8). The matrices L and U are
used every time a gyroaveraging is needed with a computational complexity of Θ(Nr) for the solving
procedure and Θ(Nr log(Nθ)) for the Fourier transforms.

Solver based on 2D Fourier transform (initial method)

The QN equation (2.2) can be solved in the Fourier space [139] along the two periodic directions (θ, ϕ)
taking as input the values of ρ̃. Let φ and ρ̃ be defined in terms of Fourier expansion as:

φ(r, θ, ϕ) =
∑
u

∑
w φ̂

u,w(r)ei u θei w ϕ

ρ̃(r, θ, ϕ) =
∑
u

∑
w ρ̂

u,w(r)ei u θei w ϕ
(2.10)
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In this wave number representation, the QN equation could be written as:

−∂
2φ̂u,w(r)
∂r2

− [
1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂φ̂u,w(r)

∂r
+
(
u2

r2
+

(1− δu=0,w=0)
Zi Te(r)

)
φ̂u,w(r) = ρ̂u,w(r)

Let Nr be the number of radial points. We want to compute each φ̂u,w such as:
m2 o2 0
p3 m3 o3 0

. . . . . . . . .
0 pNr−2 mNr−2 oNr−2

0 pNr−1 mNr−1




φ̂u,w2 (r)
φ̂u,w3 (r)

...
φ̂u,wNr−2(r)
φ̂u,wNr−1(r)

 =


ρ̂u,w2 (r)
ρ̂u,w3 (r)

...
ρ̂u,wNr−2(r)
ρ̂u,wNr−1(r)

 (2.11)

with 
pi = −( 1

∆r2 − α(ri)
2∆r ) where α(ri) = 1

r + 1
n0(ri)

dn0(ri)
dr

mi = 2
∆r2 + m2

r2
i

+ (1− δu=0,w=0) 1
Zi Te(ri)

oi = −( 1
∆r2 + α(ri)

2∆r )
ρ̂u,wi = ρ̂u,w(ri)

(2.12)

We assume here vanishing Dirichlet boundary conditions in r direction 10: φ̂u,w1 (ϕ) = φ̂u,wNr (ϕ) = 0. The
system (2.11) is solved using a LU decomposition of the matrix (the decomposition can be computed
only once).

Solver based on 1D Fourier transform (new method)

The previous formulation of the QN solver using 2D Fourier transforms has a main drawback from
a parallelization point of view. In order to solve the equation (2.11) for a given couple (u,w), one
must compute 2D FFTs that require to know all values of ρ̃ in dimensions θ and ϕ. Then, systems
are solved along dimension r, thus the 3 dimensions are tightly coupled. There is no simple domain
decomposition of ρ̃ that leads to the design of a QN solver with a good load balance and that induces
few communication with such 2D FFTs. The manageable algorithms perform global transpositions
of ρ̂ and φ̂ before or after FFT transforms (as it is shown in Algo. 3 hereafter). These transpositions
constitute an overhead that one should avoid. So, we are looking for another method that does not
need to consider all values in one of the three dimensions, and then uncouples the dimensions (r, θ, ϕ).

The main advantages of the method that follows (from a work distribution point of view) is to
consider only 1D FFTs in θ dimension and to uncouple hardly all computations in ϕ direction. The
equation (2.2) averaged on (θ, ϕ) dimensions gives :

−∂
2 〈φ〉θ,ϕ (r)
∂r2

− [
1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈φ〉θ,ϕ (r)

∂r
= 〈ρ̃〉θ,ϕ (r) (2.13)

A Fourier transform in θ direction gives:

φ(r, θ, ϕ) =
∑
u φ̂

u(r, ϕ)ei u θ

ρ̃(r, θ, ϕ) =
∑
u ρ̂

u(r, ϕ)ei u θ
(2.14)

The equation (2.2) can then be rewritten as:

for u > 0 :

−∂
2φ̂u(r, ϕ)
∂r2

− [
1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂φ̂u(r, ϕ)

∂r
+
u2

r2
φ̂u(r, ϕ) +

φ̂u(r, ϕ)
Zi Te(r)

= ρ̂u(r, ϕ) (2.15)

for u = 0 :
∂2 〈φ〉θ (r, ϕ)

∂r2
− [

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈φ〉θ (r, ϕ)

∂r
+
〈φ〉θ (r, ϕ)− 〈φ〉θ,ϕ (r)

Zi Te(r)
= 〈ρ̃〉θ (r, ϕ) (2.16)

The equation (2.13) allows one to directly find out the value of 〈φ〉θ,ϕ (r) from the data 〈ρ̃〉θ,ϕ (r).
Let us define the function Υ(r, θ, ϕ) as φ(r, θ, ϕ)−〈φ〉θ,ϕ (r). Substracting equation (2.13) to equation
(2.16) leads to

−∂
2 〈Υ〉θ (r, ϕ)

∂r2
− [

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈Υ〉θ (r, ϕ)

∂r
+
〈Υ〉θ (r, ϕ)
Zi Te(r)

= 〈ρ̃〉θ (r, ϕ)− 〈ρ〉θ,ϕ (r) (2.17)

Let us notice that φ̂0(r,ϕ)=〈Υ〉θ(r,ϕ)+〈φ〉θ,ϕ(r). So, the solving of equations (2.13) and (2.17) allows
one to compute 〈φ〉θ,ϕ(r),〈Υ〉θ(r,ϕ) and φ̂0(r,ϕ) from the quantities 〈ρ̃〉θ(r,ϕ) and 〈ρ̃〉θ,ϕ(r). Then, the

10in the GYSELA code, Neumann boundary conditions are also available.
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equation (2.15) is sufficient to compute φ̂u>0(r, ϕ) from ρ̃. Let us notice that one has the equality
φ̂u>0(r, ϕ) = Υ̂u>0(r, ϕ). The different equations are solved using a LU decomposition in the same
way that we have done previously in system (2.11), decomposition of the matrix is computed only
once. Moreover, variable ϕ acts as a parameter in equation (2.15), this allows what was expected:
computations can be parallelized. This approach is able to replace the one based on 2D FFTs with
now an effective parallelization along ϕ.

2.4.3 Algorithms for the QN solver

Hereafter, two algorithms are proposed to solve the QN equation based on the description of the
methods given in the last paragraphs. These algorithms will be denoted by 2d fft and p1d fft. To
distribute computation of part 1, all algorithms use a single formulation to obtain ρ̃ data structure
from integrals on f . Techniques described in the previous subsections are used to compute the part 2
that derives φ. Each solution will be presented in a peculiar paragraph. We assume two main
hypothesis concerning the data distribution: i) initially each process knows the value of a block
f(r = local, θ = local, ϕ = ∗, v// = ∗, µ = value), ii) at the end the whole 3D data φ will be known
on all processes. In forthcoming works, we will remove the latter hypothesis to only produce blocks
φ(r = local, θ = local, ϕ = ∗) on each process. But data dependencies in Gysela prevent us to do so
as a first stage (see 2.4.4 for the second stage).

Partial parallel algorithm with 2D FFT

The algorithm that follows (Algo. 3, p.32), focuses singly on the parallelization of part 1. The
part 2, that performs the φ computation, uses an non-parallelized approach with 2D FFTs. The data
structure ρ̃1 and ρ̃2 store partial results in order to obtain ρ̃.

1 Input : local block f(r = local, θ = local, ϕ = ∗, v// = ∗, µ)

2

3 (* part 1 *)
55 Computation : ρ̃1 by integration in dv// of f
6 (parallelization in µ, r, θ)
7 Send local data ρ̃1(r = local, θ = local, ϕ = ∗, µ)

8 Redistribute ρ̃1 / Synchronization
9 Receive block ρ̃1(r = ∗, θ = ∗, ϕ = local, µ = ∗)

10 for local ϕ values do in parallel
11 (parallelization in ϕ)
12 Computation : ρ̃2 for a given ϕ by application of operator J0 on ρ̃1

13 Fourier transform in θ, Solving of LU systems in r
14 Computation : ρ̃ for a given ϕ by integration in dµ of ρ̃2

15 Send local data ρ̃(r = ∗, θ = ∗, ϕ = local)

16 Broadcast of ρ̃ / Synchronization
17 Receive global data ρ̃(r = ∗, θ = ∗, ϕ = ∗)
18

19 (* part 2, not parallelized with MPI *)
20 Computation : 2D FFTs of ρ̃ on dimensions (θ,ϕ)
21 Computation of ρ̂
22 Computation : Solving of LU systems on dim. r ,
23 Computation of φ̂
24 Computation : 2D inverse FFTs 2D on dim. (θ,ϕ)
25

26 Outputs : φ(r = ∗, θ = ∗, ϕ = ∗)

Algorithm 3: Partial parallelization of QN solver (2d fft)

Let #P be the number of processes. The 5D data f has size (Nr Nθ Nϕ Nv‖Nµ), whereas the 3D
data ρ̃ has size (Nr Nθ Nϕ). Because of the 2D FFTs, the computation complexity of part 2 is in
Θ(Nθ Nϕ Nr ln(Nθ) ln(Nϕ)). The data structures ρ̃ and φ have size Θ(Nθ NϕNr). We have chosen to
perform the part 2 redundantly on each process. The parallelization of part 2 would imply adding
communication to redistribute data after line 21 and before line 24. The parallelization with these
extra communication can not be scalable on many processes because of communication over complexity
costs ratio. This Algo. (3) will be taken as a reference to evaluate the other algorithms presented
afterwards.

The communications in part 1 consist in a global transposition of data f (line 8) and a broadcast of
distributed data ρ̃ (line 16). The respective costs in term of global volume exchanged are Nθ Nϕ Nr Nµ

double precision floating point values for the first one and Nθ Nϕ Nr (#P− 1) for the second one.
The method that evaluates the gyroaverage operator introduced in section 2.4.2 requires that we know,
for a given couple (ϕ, µ), all values ρ̃1(r= ∗, θ= ∗, ϕ, µ). Furthermore, we have to integrate over dµ
(line 14) to get ρ̃ ; to avoid extra communication, it is safe to put all ρ̃1(r = ∗, θ = ∗, ϕ, µ = ∗) on
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the same process in order to perform the integrals locally. So, with our gyroaveraging method (that
couples r and θ dimensions), the parallel algorithm we have introduced induces small communication
cost and good load balance. It mainly uses a parallel loop in ϕ at line 10.

We now assume that ρ̃1, which is the output of part 1 computations, is distributed along with
ϕ over the parallel machine because of previous arguments about the constraints of gyroaverage11.
As we expect that each process finally knows the data φ, then a global communication will transfer
parts of locally computed φ structure between processes. With these hypothesis, the communication
cost of Nθ Nϕ Nr (#P− 1) is best reduced. So, from our actual knowledge, the proposed algorithm for
part 1, does the minimum possible volume of communication together with a reasonable computation
distribution. The parallel overhead is low for this solution and it is difficult to further reduce it.

Full parallel algorithm with 1D FFT

The last algorithm version f1d fft, presented here, describes a full parallel algorithm (excluding a
small redundant computation line 23). We will use the intermediate function Υ(r, θ, ϕ) = φ(r, θ, ϕ)−
〈φ〉θ (r, ϕ). The main idea is to compute 〈φ〉θ,ϕ on its own, and also to perform the computations
〈Υ〉θ(r=∗,ϕ) in parallel. At the end we combine the results to get φ(r = ∗, θ = ∗, ϕ). The amount
of communication added at line 18 is O(Nr Nϕ #P). This is negligible when one considers other
communication costs. Nevertheless, a synchronization of processes is also induced.

1 Input : local block f(r = local, θ = local, ϕ = ∗, v// = ∗, µ)

2

3 (* part 1*)
4 Computation : ρ̃1 by integration in dv// of f
5 (parallelization in µ, r, θ)
6 Send local data ρ̃1(r = local, θ = local, ϕ = ∗, µ)

7 Redistribute ρ̃1 / Synchronization
8 Receive block ρ̃1(r = ∗, θ = ∗, ϕ = local, µ = ∗)
9 for local ϕ values do in parallel

10 (parallelization in ϕ)
11 Computation : ρ̃2 for a given ϕ by application of operator J0

12 Fourier transform in θ, Solving of LU systems in r
13 Computation : ρ̃ for a given ϕ by integration in dµ of ρ̃2

14 Computation : accumulation of ρ̃ values to get 〈ρ̃〉θ (r = ∗, ϕ)

15

16 (* part 2*)
17 Send local data 〈ρ̃〉θ(r=∗,ϕ=local)

18 Broadcast of 〈ρ̃〉θ / Synchronization
19 Receive 〈ρ̃〉θ(r=∗,ϕ=∗)

20 Computation : Solving of LU system to find 〈φ〉θ,ϕ from 〈ρ̃〉θ, eq. (2.13)
21 for local ϕ values do in parallel
22 (parallelization in ϕ)
23 Computation : 1D FFTs of ρ̃ on dimension (θ)
24 Computation : Solving of LU systems for φ̂ modes (u > 0), eq. (2.15)
25 Computation : Solving of LU system for 〈Υ〉θ(r=∗,ϕ), eq. (2.17)
26 Computation : Adding 〈φ〉θ,ϕ to 〈Υ〉θ(r=∗,ϕ) gives φ̂0(r=∗,ϕ)

27 Computation : inverse 1D FFTs on φ̂0 and φ̂u>0 to get φ(r=∗,θ=∗,ϕ)

28 Send local data φ(r = ∗, θ = ∗, ϕ = local)

29 Broadcast of values / Synchronization
30 Receive global data φ(r = ∗, θ = ∗, ϕ = ∗)
31 Outputs : φ(r = ∗, θ = ∗, ϕ = ∗)

Algorithm 4: Full Parallelization of QN solver (f1d fft)

Performance Analysis

Numerical experiments (2009-2010) were performed on a cluster of 932 nodes owned by CCRT/CEA,
France. Each node hosted eight Itanium2 1.6Ghz cores and offered 24GB of shared memory. Per-
formance of the different versions of the QN solver for one 5D test case are presented in Table 4
(Nr = 256,Nθ = 64,Nϕ = 256,Nv‖ = 16,Nµ = 32). Note that the Vlasov solver of the GYSELA code uses a
parallelization based on a domain decomposition in dimension µ and r (not possible to parallelize
along θ at this time). So, the number of cores #P is given by the product of pµ the number of µ
values with pr the number of block in dimension r. The number of µ values in the presented test case
is pµ = 32, then our parallel program uses a minimum of 32 cores. Then, the relative speedups shown
in Table 4 considers as a reference the execution times on 32 cores of four computation nodes.

In order to give fine performance results, we will subdivide the algorithms into small recognizable
parts. The computation of ρ̃ (part 1) consists in a communication part and parallelized integral

11this strategy could be revised since the work of N. Bouzat in 2016 that considers a gyroaverage operator based on
Hermite interpolation (see Section 2.6).
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calculations. For the different versions, the solver that gives φ depending on ρ̃ (part 2) could be
decomposed into communication steps plus two types of computation: the redundant ones and the
parallel ones. Finally, one can have a look to time costs of the QN solver considering three measures:
i) the time spent in communication (the larger timing among all processes is given in Table 4), ii) the
time spent in sequential computations (each process has exactly the same work to do), iii) the time
spent in parallel tasks (the maximum among all processes is taken).

Nb. procs. (#P) 32 128 256

pr 1 4 8

Algo. 2d fft

comm 0.350 s 0.687 s 0.767 s

solve seq 4.208 s 4.613 s 4.535 s

solve par 3.908 s 1.076 s 0.555 s

Rel. speedup solve par+ seq 1.0 1.4 1.6

Total 2d fft 8.444 6.299 5.771

Rel. speedup 2d fft 1.0 1.3 1.5

Algo. f1d fft

comm 0.377 s 0.593 s 0.668 s

solve seq 0.003 s 0.006 s 0.018 s

solve par 4.078 s 1.039 s 0.528 s

Rel. speedup solve par+ seq 1.0 3.9 7.7

Total f1d fft 4.375 s 1.603 s 1.178 s

Rel. speedup f1d fft 1.0 2.7 3.7

Table 4: Comparison of the algorithms introduced. Time measurements for one call to the QN solver
in seconds and relative speedup are given (compared to performance on 32 cores).

The execution time measurements of algorithms 2d fft and f1d fft are given in Table 4. For the
reference algorithm 2d fft, there is only one computation part that is parallelized: the ρ̃ computation
(part 1). The timing results shows this part is scalable. A major problem is that the solve seq
becomes the dominant calculation as soon as #P goes above a threshold. The Amdhal’s law limits
the overall performance of this algorithm with usual parameter sets. As a consequence, the relative
speedup on 256 cores, 1.5 compared with 32 cores as a reference, is extremely low. The communication
part is partly responsible for that; it has an overall cost in Θ(Nθ Nϕ Nr Nµ+ Nθ Nϕ Nr (#P− 1)) that
increases with #P.

The f1d fft algorithm improves definitely the previous 2d fft algorithm. A reduced amount of
work to perform (1D FFT instead 2D FFT) is observed in the first column for #P = 32. In the
f1d fft algorithm, almost all computations are parallelized and the speedup of the computation part
(solve par+ seq) is impressive: 7.7 compared to 8 in the ideal case. The remaining parallel overhead
comes from the small sequential computation of solve seq and above all communication comm. This
QN solver is efficient and reduces on 256 cores the recorded time of 5.7 s with 2d fft to 1.2 s with
f1d fft.

One could think about using other methods such as multigrid or a direct solver for the part 2 of
the solver. However, it will not diminish the cost of communications required for the calculation of
ρ̃ and for the final broadcast. Hence, we cannot expect that using alternate methods to yield a large
enhancement of the parallel performance as long as communication costs remain steady.

Conclusion

Parallelizations of a quasi-neutral Poisson solver have been shown. The parallel performance of two
solving methods is demonstrated. The last method achieves good scalability up to 256 cores (MPI
only approach, no OpenMP here). Thus, we were able to remove a major performance bottleneck
from the field solver and this paved the way for running the application on hundreds of processors.

Nevertheless, the communication induced by the coupling of the quasi-neutral solver and the Vlasov
code remains quite high. More work has to be done in order to reduce these communication costs
to further improve this solver. Avoiding the final broadcast of φ which is a 3D data structure is a
possible solution (see next Section). In addition, combining MPI with OpenMP will help to further
reduce the costs (see hereafter).

2.4.4 Highly scalable field solver

The parallel solution proposed in the previous Section for QN solver improves a lot the scalability
compared to initial status. Nevertheless, beyond thousands of cores, the field solver is still one of
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the main bottleneck for the scalability of the application. The communications gathering data at
the beginning of the field solver and the broadcast at the end are costly. Furthermore, several 3D
data structures are replicated on each MPI process that increases artificially the memory footprint.
This memory problem is painful and it practically prohibits many large physical cases because of
memory exhaust issues. I proposed some improvements that are described in this Section to solve
these difficulties and also to add OpenMP in addition to MPI [29].

Data distribution issues

In the Vlasov solver and at the beginning of QN solver each process knows the values of a subdo-
main f(r = [istart, iend], θ = [jstart, jend], ϕ= ∗, v‖ = ∗, µ= µvalue). At the end of the QN solver, the
field φ is an output that one would like to distribute over the parallel machine. In previous Section
and paper [91], we had simplified the problem of data dependencies and provided an unsophisticated
solution: broadcasting the entire φ data structure to all processes. Then, in each MPI process, the
derivatives of gyroaveraged electric potential are computed redundantly. Nevertheless, this strategy
leads to a bottleneck for large platforms (typically more than 4k cores). Indeed, the broadcast in-
volves growing communication costs along with the number of processes, and the sequential treatment
of derivatives computation (Amdahl’s law) becomes also problematic. These two overheads are un-
necessary, even they greatly simplify the implementation of several subroutines and reduces also the
complexity of data management. Now, we will only consider a subdomain of φ to be sent to each
process. Also, a distributed algorithm computes the derivatives of J0 φ, as you will see in Algo. 6.

1 Input : local block f(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, v‖ = ∗, µ = µvalue)

2 (* task 1*)
3 Computation : ρ̃1 by integration in dv‖ of f /* parallel in µ, r, θ */
4 Send local data ρ̃1(r = [istart, iend]), θ = [jstart, jend], ϕ = ∗, µ = µvalue)

5 Redistribute ρ̃1 / Synchronization
6 Receive block ρ̃1(r = ∗, θ = ∗, ϕ = [sϕstart, s

ϕ
end], µ = [sµstart, s

µ
end])

7 (* task 2*)
8 for ϕ = [sϕstart, s

ϕ
end] and µ = [sµstart, s

µ
end] do /* parallel in µ, ϕ */

9 Computation : from ρ̃1 at one ϕ, compute ρ̃2 applying J0

10 (Fourier transform in θ, Solving of LU systems in r) ∀µ ∈ [sµstart, s
µ
end]

11 Computation : ρ̃3 for a given ϕ by integration in dµ of ρ̃2

12 if [sµstart, s
µ
end] 6= [0, Nµ − 1] then

13 Send local data ρ̃3(r = ∗, θ = ∗, ϕ = [sϕstart, s
ϕ
end])

14 Reduce Sum ρ̃ += ρ̃3 / Synchronization
15 Receive summed block ρ̃(r = ∗, θ = ∗, ϕ = [gstart, gend])

16 (* task 3*)
17 for ϕ = [gstart, gend] do /* parallel in ϕ */
18 Computation : accumulation of ρ̃ values to get 〈ρ̃〉θ (r = ∗, ϕ)

19 Send local data 〈ρ̃〉θ(r=∗,ϕ=[gstart,gend])

20 Broadcast of 〈ρ̃〉θ / Synchronization
21 Receive 〈ρ̃〉θ(r=∗,ϕ=∗)

22 (* task 4*)
23 Computation : Solving of LU system to find 〈φ〉θ,ϕ from 〈ρ̃〉θ,ϕ, eq. (2.13)
24 for ϕ = [gstart, gend] do /* parallel in ϕ */
25 Computation : 1D FFTs of ρ̃ on dimension (θ)
26 Computation : Solving of LU systems for φ̂m modes (∀m > 0), eq. (2.15)
27 Computation : Solving of LU system for 〈Υ〉θ(r=∗,ϕ), eq. (2.17)
28 Computation : Adding 〈φ〉θ,ϕ to 〈Υ〉θ(r=∗,ϕ) gives φ̂0(r=∗,ϕ)

29 Computation : inverse 1D FFTs on φ̂0 and φ̂m>0 to get φ(r=∗,θ=∗,ϕ)

30 Send local data φ(r = ∗, θ = ∗, ϕ = [gstart, gend]) to the Nµ communicators
31 Broadcast of values / Synchronization
32 Receive global data φ(r = ∗, θ = ∗, ϕ = [qstart, qend])

33 Outputs : φ(r = ∗, θ = ∗, ϕ = [qstart, qend])

Algorithm 5: Parallel algorithm for the QN solver

Parallel algorithm descriptions

The Algo. 5 describes a scalable parallel algorithm of the QN solver. It improves previous approaches
of Algo. 4 in introducing a better work distribution, and also in reducing the amount of the final
communication. The main idea of the algorithm is to get 〈φ〉θ,ϕ for solving Eq. (2.17), and then to
uncouple computations of φ̂m along the ϕ direction in the QN solver. Finally, each locally computed
φ(r, θ, ϕ) values are sent to the process that is responsible for it. This algorithm has parameters:
mappings (domain decompositions) s, g and q that will be detailed. The computation sequence is:
integrate f over v‖ direction (task 1), compute right-hand side ρ̃ in summing over µ (task 2), perform
averages 〈ρ̃〉θ(r=∗,ϕ=∗) and 〈ρ̃〉θ,ϕ(r=∗) (task 3), solve QN equation and produces φ slices (task 4).
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1 Input : local block φ(r = ∗, θ = ∗, ϕ = [qstart, qend])

2 (* task 1*)
3 for ϕ = [qstart, qend] and µ = µvalue do /* parallel in µ, ϕ */
4 Computation : A0(r = ∗, θ = ∗, ϕ) = J0 φ(r = ∗, θ = ∗, ϕ)
5 A1(r = ∗, θ = ∗, ϕ) = ∂A0(r=∗,θ=∗,ϕ)

∂r

6 A2(r = ∗, θ = ∗, ϕ) = ∂A0(r=∗,θ=∗,ϕ)
∂θ

7 Send local data A0|A1|A2(r = ∗, θ = ∗, ϕ = [qstart, qend])

8 Redistribute A0|A1|A2 inside µ communicator/ Synchronization
9 Receive blocks A0|A1|A2(r = [istart, iend], θ = [jstart, jend], ϕ = ∗)

10 (* task 2*)
11 for r = [istart, iend], θ = [jstart, jend], µ = µvalue do /* parallel in µ, r, θ */
12 Computation : A3(r, θ, ϕ = ∗) = ∂ϕ

∂A0(r,θ,ϕ=∗)
13 Outputs : A0|A1|A2|A3(r = [istart, iend], θ = [jstart, jend], ϕ = ∗)

Algorithm 6: Parallel algorithm to get derivatives of the potential

The Algo. 6 follows immediately the QN solver. It applies the gyroaverage operator on dis-
tributed φ data and then computes its derivatives along spatial dimensions. These 3D fields are
named A1, A2, A3 in the algorithm. They are redistributed in a communication step in order to cor-
rectly feed the Vlasov solver. In the task 2, derivatives along ϕ direction are computed (all values are
known along ϕ).

Mapping functions

The two presented algorithms use three different mappings to distribute computations and data on
the parallel machine. These mappings concern ϕ and µ variables and are illustrated in Fig. 17 and 18
for a large testbed and a small one respectively. Let #C be the number of cores used for a simulation
run and #P be the number of MPI processes. The number of threads #T per MPI process is fixed,
so we have #C = #P #T. Each rectangle on the Figs. 17 and 18 represents a MPI process. A
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Figure 17: Mappings of µ, ϕ (Nµ = 32,Nϕ = 16) on processes, large testbed (#P = 1024)

process filled in dark or light gray has computations to perform, whereas the white color denotes an
idle process. These mappings also implicitly prescribe how communication schemes exchange data
during the execution of the two algorithms. We give here a brief description of these mappings:

• Mapping S - It defines the ranges ϕ ∈ [sϕstart, s
ϕ
end] and µ ∈ [sµstart, s

µ
end]. In the task 2 of QN

solver, we use this mapping to distribute the computation of the gyroaverage J0. The maximal
parallelism is then obtained whenever each core has at most one gyroaverage operator to apply.
We have considered in the example shown in Fig. 17 that each MPI process hosts #T = 8 threads,
so that a process can deal with 8 gyroaveraging simultaneously (sµend − sµstart + 1 = 8). This
distribution is computed in establishing a block distribution of domain [0,Nµ − 1]× [0,Nϕ − 1]
over #C cores.

• Mapping G - It defines the range [gstart, gend] for the ϕ variable. A simple block decomposition
is used along ϕ dimension. For a large number of cores, this distribution gives to processes 0
to Nϕ − 1 the responsibility to compute the Nϕ slices of φ data structure (task 4 of the QN
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Figure 18: Mappings of µ, ϕ (Nµ = 8,Nϕ = 16) on processes, small testbed (#P = 8)

solver). For a small testbed (see Fig. 18), this mapping is identical to S mapping ([sµstart, s
µ
end] =

[0, Nµ − 1]). Then, we save the communication step in task 2 of QN solver.

• Mapping Q - The mapping Q defines the range ϕ ∈ [qstart, qend] in each MPI process. Inside
each µ communicator, it creates a block decomposition along ϕ dimension. It is designed to carry
out the computation of the gyroaverage of φ, together with the computation of its derivatives
(Algo. 6). These calculations depend on the value of µ. It is cost effective to perform them
inside µ communicators: we need to only locally redistribute data inside the µ communicator at
the end of Algo. 6 in order to prepare the input 3D data fields for the Vlasov solver.

Communication costs

A fine communication costs analysis [29] can be conducted. Algo. 5 and 6 have an overall cost in
Θ(Nr Nθ Nϕ Nµ) floats. In short, the annoying #P multiplication factor has been suprressed.

2.4.5 Large scale experiments

Performance - scalability on Jaguar Machine

Timing measurements were performed on CRAY-XT5 Jaguar machine (DOE, USA) during year 2011.
This machine had 18 688 XT5 nodes hosting dual hex-core AMD processors, 16 GB of memory. Table 5
reports timing of the QN solver extracted from GYSELA runs. Nµ remains constant while pr and pθ
are increased. A small case was run from 256 cores to 4096 cores. The parameters are the following:

Nr = 128, Nθ = 256, Nϕ = 128, Nv‖ = 64, Nµ = 32 .
In Table 6, timings for a bigger test case are presented. Its size is

Nr = 512, Nθ = 512, Nϕ = 128, Nv‖ = 128, Nµ = 32 .
For this second case, the parallel testbed was composed of 4k cores up to 64k cores. In the tables,
the io[1-4] steps state for communications associated with task[1-4] respectively, whereas comp[1-4]
stand for computation costs relative to task[1-4]. The Vlasov solver of the GYSELA code is parallelized
using a domain decomposition in µ, r, θ. The number of processes #P equals Nµ × pr × pθ.
General observations We map a single MPI process per node. The main idea for this OpenMP
parallelization has been to target ϕ loops. This approach is efficient for the computation task 1 of
the QN solver. But in the tasks 3, 4, this strategy competes with the MPI parallelization that also
uses the ϕ variable for its domain decomposition. Thus, above Nϕ cores, no parallelization gain is
expected. This fact is not the hardest constraint up to now: communication costs are the critical
overhead, much more than computation distribution for these tasks (see Table 6). An additional
improvement has been to add a parallelization along the µ direction in task 2. Even if this change
adds a communication step (io2) that can be avoided, it is worthwhile on large platforms. Notably,
we see that comp2 scales beyond Nϕ = 128 cores in Table 6.
Comments for the small case In Table 5, the communication costs for exchanging ρ̃1 values (io1 -
task 1) is reduced along with the involved number of nodes. This is explained by the fact that the
cumulative network bandwidth increases with a larger number of nodes, while the amount of data
exchanged remains the same. The communication cost associated with io3 is mainly composed of
synchronization of nodes and broadcasting the 2D slice 〈ρ̃〉θ (r = ∗, ϕ = ∗). The io4 communication
involves a selective send of φ slices to each process; and one can note the same decreasing behavior
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Nb. cores 256 1k 4k

Nb. nodes 32 128 512

comp1 2300 ms 580 ms 100 ms

io1 300 ms 160 ms 90 ms

comp2 170 ms 43 ms 13 ms

io2 0 ms 0 ms 8 ms

comp3 0 ms 0 ms 2 ms

io3 17 ms 42 ms 43 ms

comp4 4 ms 3 ms 4 ms

io4 100 ms 40 ms 35 ms

Total time 2900 ms 870 ms 300 ms

Relative eff. 100% 83% 60%

Table 5: Time measurements for one call to
the QN solver - Small case

Nb. cores 4k 16k 64k

Nb. nodes 512 2k 8k

comp1 2200 ms 570 ms 95 ms

io1 450 ms 300 ms 470 ms

comp2 320 ms 180 ms 180 ms

io2 30 ms 60 ms 70 ms

comp3 3 ms 2 ms 3 ms

io3 150 ms 140 ms 130 ms

comp4 30 ms 30 ms 30 ms

io4 180 ms 100 ms 65 ms

Total time 3400 ms 1400 ms 1000 ms

Relative eff. 100% 61% 21%

Table 6: Time measurements for one call to
the QN solver - Big case
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Figure 19: Small case - timings - Jaguar
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Figure 20: Big case - timings - Jaguar
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Figure 21: Small case - efficiency - Jaguar
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Figure 22: Big case - efficiency - Jaguar

depending on the number of cores observed for io1. The comp1 calculation is a big CPU consumer as
it scales well with the number of cores. The comp3 is negligible time and comp4 is a small computation
step, time measurements are nearly constant for all number of cores shown. As already said, Nϕ cores
is the upper bound of the parallel decomposition here. The relative efficiency for the overall QN solver
is 60% at 4k cores which is a good result for this solver that collects/redistributes data between all
cores.
Comments for the big case The relative speedups shown in Table 6 consider as a reference the execution
times on 4k cores. Communication costs are larger than in the small test case. Badly, comp2 and comp4
do not scale well (the case is not big enough). Only comp1 and io4 parts behave as one can expect.
In future works, we expect improving the scalability of this algorithm: reduction of communication
costs is the first candidate (we investigate compression methods). Even if improvements can be found,
a good property of this solver is that the execution time globally decreases along with the number
of cores. We see in Fig. 22 that this cheap cost of the QN solver brings a good overall scalability.
GYSELA reaches 78% of relative efficiency at 64k cores. in Fig. 19 and 20, timings for short runs of
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Figure 23: Weak scaling, timings - domain size
512×1024×128×128×Nµ with Nµ ∈ [2− 56]
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Figure 24: Weak scaling, efficiency - domain size
512×1024×128×128×Nµ with Nµ ∈ [2− 56]

GYSELA are presented (initialization step is omitted). The field solver and derivatives computation
of the gyroaveraged φ are low compared to Vlasov solver and diagnostics costs. Then, their limited
scalability at high core counts does not impact significantly the scalability of the overall code. Let us
remark the excellent scalability for the small case (Fig. 21) with 97% of overall efficiency at 4k cores.

Performance - scalability on Juqueen Machine

Architecture The experiments we describe now have been conducted in 2013 on Blue Gene/Q machines
JUQUEEN at JSC/IAS, Jülich, Germany. The Blue Gene/Q architecture is based on 209 TeraFlop/s
peak performance racks grouping 1024 nodes each. JUQUEEN is composed of 24 racks ranking #5 in
the November 2012 Top500 list [189]. Each compute node contains a single 17-cores processor running
at 1.6 GHz. One core is dedicated to the operating system while the others are available for the user
code. The cores support Simultaneous MultiThreading (SMT) and can handle up to 4 hardware
threads each and execute up to two instructions per cycle, one logical instruction and one floating
point instruction. Each core has its own four-wide SIMD floating point unit capable of executing up to
height operations per cycle resulting in 12.8 GFlop/s. Each node contains 16 GB of 1.33 GHz memory
and 32 MB of L2 cache (16 ×2 MB banks). The theoretical peak memory bandwidth is 42.6 GB/s,
but running the stream benchmark shows an effective bandwidth of 30 GB/s. The Blue Gene/Q
network is a re-configurable 5D mesh or torus. Each node is connected to two neighbors in each of
the 5 dimensions via a full duplex 1.8 GB/s link resulting in 18 GB/s accumulated bandwidth for each
node. When making a reservation, a rectangular partition of the full machine is electrically isolated
and attributed to the user. This prevents any interaction between two users especially in terms of
performance.

Specific improvements for Blue Gene/Q This paragraph presents our efforts [26] to increase the
computational efficiency of Gysela on Blue Gene/Q. First, a fine analysis led us to use 64 threads
by process (4 threads by core). The rationale is quite similar to the one presented in Sections 2.3.3
and 4.3, the use of SMT maximizes the number of instructions that a core can process each cycle.
Second, in order to increase the efficiency when using more than 16 threads per process (quite unusual
back at this time), we analyzed the parallel loops. Some loops do not scale well, because at some
point, the are less iterations than available threads. We identified three parallel loops concerned by
this problem. We were able to introduce novel parallel algorithms based on nested loop parallelization
ensuring that over 64 parallelizable iterations are yielded. Third, when analyzing the performance,
we also identified two global communications whose performance did not reach our expectations. The
first communication is used to transpose back and forth the data from a distribution in r, θ and µ to
a distribution in ϕ, v‖ and µ, just before and after the 2D advection of the Vlasov solver (transpose
algorithm of Section 2.3.2). The second communication is also used to redistribute the data from the
r, θ and µ distribution into a specific distribution (along ϕ, µ variables) onto a subset of processes
within the Field solver. We managed to reduce significantly time dedicated to these communications
by evaluating/benchmarking several communications schemes and selecting one among the most non-
blocking ones. Also, we suppressed the global MPI collectives whenever possible.

Weak scaling A weak scaling test is illustrated in Figs. 23 and 24 using a test case with the
following parameters: Nr=512, Nθ=1024, Nϕ=128, Nv‖=128, Nµ taking several values from Nµ=2
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to 56. In this test, the ratio of communication over computation remains almost constant for the
different number of cores considered for almost all parts of the code, which is an interesting property.
However, in the Field solver and Derivatives computation, the communication costs tends to grow a
little bit more than linearly in the number of cores. It explains partly why the relative efficiency of
these parts drop a bit along with the number of cores. Another reason is that these regions include a lot
of complex communication schemes that involve large amount of transfer compared to computations
to be done. All other parts behave quite perfectly in terms of relative efficiency. We end up with a
very good relative efficiency of 92% for 458k cores and 1832k threads (the whole machine) compared
to 16k cores for the weak scaling test. This experiment has been performed in the framework of a
PRACE preparatory access (April 2012 - Nov. 2012), and through a dedicated CPU allocation via
our collaboration with Juelich (G8-Exascale NUFUSE project in 2013). This was the largest scaling
experiment we ever launched.

Thanks to the new parallel algorithms designed for the Field solver, we avoid the storage of
complete 3D field data in memory of each process, but we need only distributed 3D data instead. Each
thread inside a MPI process share these reduced amount of 3D data. In addition to this favorable
data distribution, another modification has occurred in the present version: a set of different 3D and
2D data buffers have been removed and replaced by a shared large 1D array which is recycled for
several uses. Table 7 shows the memory consumption. It can be observed that the memory scalability
is greatly improved. At 65k cores, there is more than a factor 2 between the memory consumption of
the two versions. The overall memory consumption has also diminished.

Memory scalability

Nb. cores 4k 8k 16k 33k 65k

Previous version

3D data struct. 2.79 2.75 2.73 2.72 2.72

All data struct. 11.55 8.07 6.38 5.48 5.02

Nb. cores 4k 8k 16k 33k 65k

Present version

3D data struct. 1.07 0.82 0.58 0.39 0.24

All data struct. 9.50 5.83 3.93 2.86 2.27

Table 7: Memory footprint (GB) by node, big case. Left side: previous, Right side: new version

Conclusion

We have described the parallelization of a quasi-neutral Poisson solver used into a full-f gyrokinetic
5D simulator, for which the parallel performance of the numerical method has been demonstrated. It
achieves a good parallel computation scalability up to 458k cores (Weak scaling) and has a reduced
impact on overall execution time on 65k cores (Strong scaling). Several levels of parallelism and
a hybrid OpenMP/MPI approach are combined. The coupling of the quasi-neutral solver and the
Vlasov code were improved in reducing communication costs and introducing better computation
distribution compared to previous approaches [35,91,139]. The modifications result also in savings in
the memory occupancy, which is a big issue when Gysela users wish to run very large cases. Further
improvements in terms of memory footprint will be shown in the next Section. What we learned
throughout the different solutions evaluated for the Poisson solver is that taking all constraints to
scale up to 1832k threads require a very fine analysis of the possible numerical schemes, the data flow
and all the associated costs: computations, amounts of memory, communications and so on. Also,
each time a parallel bottleneck is pushed away, another one appears at a larger scale. This means
we have to regularly revise the assumptions and the structure of the code in order to reach better
scalability. There is a kind of duty to deal with the complexity of managing readability of the code,
parallel efficiency and user support all at once. There is no programming model or framework that can
really handle that comprehensively. A set of homemade verification tools and a continuous integration
platform have helped us a lot to handle code evolution more smoothly [19], which also reduced the
time devoted to debugging.

2.5 Improving memory scalability

2.5.1 Introduction

The architecture of supercomputers will considerably change in the next decade. Since 2004, CPU
frequency does not increase anymore. The problem due to processor’s power consumption and heat
dissipation forms what is now known as the “Power Wall”. Consequently the on-chip parallelism is
dramatically increasing to offer more performance. Instead of doubling the clock-speed every 18-24
month, the number of cores per compute node follows the same law. These new parallel architectures
are expected to exhibit different Non Uniform Memory Access (NUMA) levels. One trend for a fraction
of these machines is to offer less and less memory per core. Amount of memory available per core
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has been identified as one of the exascale challenges [181] and is one of our main concerns hereafter.
The NVRAM and 3D-stacked DRAM technologies could possibly modify this issue in a near future,
but this is not yet clear. In this Section we especially focus on the memory consumption of Gysela.
This is a critical point to simulate ever-growing physical cases while using a constrained amount of
available memory.

The goal of the work presented here is to analyze and to reduce the memory footprint of Gysela to
improve its memory scalability. Even if an application scales well and can already use a large amount
of cores, the study of the memory consumption becomes critical. In fact, the larger the simulation,
the more the cost of structures which do not scale becomes the main limiting factor to handle bigger
problems (a kind of Amdhal’s law). Brief state of the art is given in [4,83] about possible approaches.
It is an important aim because in 2011 we were not able to launch very big case due to the memory
footprint of Gysela per node beeing too large for any existing supercomputers, while the main dis-
tributed data structure (distribution function) can fit into memory. The memory overheads associated
to parallel management were to high. We present a tool which provides a way to generate memory
traces for a parallel application and a visualization of the associated memory allocations/deallocations
in off-line mode. Another tool allows us to predict the memory peak depending on input parameters.
This is helpful in a production context to check whether the needs of a future simulation fit into
available memory. Another topic is to define a methodology and a versatile and portable library to
assist the developer to optimize memory usage in scientific parallel applications. In the following, we
introduce the method we apply to decrease the memory footprint of Gysela [4,83]. Then, we briefly
describe the dedicated module implemented to generate a trace file of allocation/deallocation process.
It also illustrates the visualization and prediction tool capabilities to handle the data of the trace file.
The enhanced memory scalability of Gysela is illustrated.

2.5.2 Analysis of memory footprint

During a Gysela run, each MPI process is associated with a single µ value and is responsible for a
part of the distribution function as a 4D array and the electric field as a 3D array. The remaining
of the memory consumption is mostly related to arrays used to store precomputed fields, arrays that
store intermediate results for diagnostics, MPI user buffers to concatenate data for MPI send/receive
calls and user buffers to store temporary results within OpenMP regions. The biggest arrays are
allocated during the initialization of Gysela and are deallocated at the end of the application.

In order to better understand the memory behavior of Gysela, we have logged each allocation
(allocate statement) by storing the array name, type and size. Using these data we have performed a
strong scaling study presented in Table 8 (16 threads per MPI process). This study consists in running
the application with a large enough mesh, evaluating the memory consumption (for each MPI process)
and then increasing step by step the number of MPI processes used for the simulation. Let say we
use x Giga Bytes of memory per process. for a given simulation with n processes. In the ideal case,
one can expect that the same simulation with 2n processes would use x

2 Giga Bytes of memory per
process. In this case, the memory scalability is considered perfect. But in practice, this is generally
not the case because of memory overheads that do not scale.

Number of cores 2k 4k 8k 16k 33k
Number of MPI processes 128 256 512 1024 2048

4D structures 209.2 107.1 56.5 28.4 14.4
67.1 % 59.6 % 49.5 % 34.2 % 21.3 %

3D structures 62.7 36.0 22.6 19.7 18.3
20.1 % 20.0 % 19.8 % 23.7 % 27.1 %

2D structures 33.1 33.1 33.1 33.1 33.1
10.6 % 18.4 % 28.9 % 39.9 % 49.0 %

1D structures 6.6 3.4 2.0 1.7 1.6
2.1 % 1.9 % 1.7 % 2.0 % 2.3 %

Total per MPI process in GBytes 311.6 179.6 114.2 82.9 67.4

Table 8: Strong scaling: allocation sizes (in GB per MPI process) of data allocated during initialization
stage and percentage with respect to total size for each kind of data

Table 8 shows the evolution of the memory consumption along with the number of cores for
a single MPI process. The percentage of memory consumption compared with the total memory
of the process is given for each type of data structure. The dimensions of the mesh are set to
Nr = 1024, Nθ = 4096, Nϕ = 1024, Nv‖ = 128, Nµ = 2. This mesh is bigger than the meshes used in
production nowadays, but match further needs, especially those expected for kinetic electron physics.
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The last case with 2048 processes requires 67.4 GB of memory per MPI process. We often launch a
single MPI process per node, and we can notice that the memory required is largest than, for example
the 64 GB of a Bull Helios 12 node or the 16 GB of an IBM BG/Q node. Table 8 also illustrates that
2D structures and many 1D structures do not benefit from parallelization. In fact, the memory cost
of the 2D structures does not depend on the number of processes at all, but rather on the mesh size
and the number of threads. On the last case with 33k cores, the cost of the 2D structures is the main
bottleneck, as it takes 49 % of the whole memory footprint. Finally, we can point out that memory
overheads observed in large simulations are due to various reasons. Additional extra memory is needed,
for example, to store briefly some coefficients during an interpolation (for the Semi-Lagrangian solver
of the Vlasov equation). Several MPI buffers are used whenever the application deals with the sending
and the receiving of temporary data. Often, before using MPI subroutines, a copy to reorganize and
change the shape of data is required to send or receive them. But these overheads can be reduced. To
improve the memory scalability we need to precisely understand the memory consumption of Gysela.

2.5.3 A method and tools to reduce the memory footprint

Step-by-step reduction of memory footprint

There are at least two ways to reduce the memory footprint of a parallel application. On one hand, we
can first increase the number of nodes used for the simulation, since the size of data structures which
benefit from a domain decomposition will decrease along with the number of MPI processes. On the
other hand, we can manage more finely the array allocations in order to reduce the memory costs that
do not scale with the number of threads/MPI processes and to limit the impact of all allocated data
at the memory peak. In fact, this approach consists in reducing the impact of memory overhead at
the memory peak, and therefore improves the memory scalability of the application.

To achieve the reduction of the memory footprint and to push back the memory bottleneck, we
choose to focus on the second approach. In the original version of the Gysela code, most of the
variables are allocated during the initialization phase. This procedure is rightful for structures which
are for persistent variables in opposition to temporary variables that can be dynamically allocated. In
this configuration, one can determine at the beginning of the simulation the memory space required
without actually executing a complete simulation. This allows a user to know if the case can be
submitted. Secondly, it avoids execution overheads due to dynamic memory management. But a
disadvantage of this approach is that variables used locally in one or two subroutines consume their
memory space during the whole execution of the simulation. As the memory space becomes a critical
point when a large number of cores are employed, we have allocated a large subset of these variables
as temporary variables with dynamic allocation. This has reduced the memory peak with a negligible
impact on the execution time. However, one issue with dynamic allocations is the ability to predict
the memory space required to run a simulation. Thanks to the prediction tool described hereafter, we
recover this advantage while doing dynamic allocations. Furthermore, the new prediction tool is used
in combination with the IMPR method. It was applied to reduce the memory peak of Gysela:
1 Step 0 Choose the target configuration of the application (input parameter set),
2 Step 1 Locate the moment of the memory peak during the execution,
3 Step 2 Identify the data structures allocated at the memory peak,
4 Step 3 Evaluate which one can be deallocated. If none of them can be simply deallocated,

reconsider the algorithms used and try to improve them,
5 Step 4 After adding deallocations or modifying algorithms, go back to “Step 0”.

Method 7: Incremental Memory Peak Reduction - IMPR method

The Step 0 of this method has a direct impact on the other steps. From the point of view of the
memory consumption in Gysela, the crucial parameters are the size of the mesh and the number of
MPI processes. Depending on these parameters, the memory peak settles at a specific location. The
prediction tool presented later on allows us to take the data from a run of reference and to change
them offline to explore different configurations easily.

In Step 1, the location of the memory peak means to locate the lines of the source code and the
call stack where the maximum memory consumption is reached. In order to identify the allocated
data structure in Step 2, we need to track the allocations/deallocations of all data structures used
during a run which will be done with the dedicated library.

For Step 3, the developer has to pay attention to the data dependencies to understand which
arrays can potentially be removed whenever the memory peak occurs. There are different ways to
diminish memory consumption. You can decide to reuse an existing temporary array, or to do more

12http://www.top500.org/system/177449
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computation instead of saving a result in memory, or you can notice data duplication that can be
avoided, or you can notice that some allocated buffers can be deallocated during a short time slot. If
you does not succeed, a way of reducing the memory consumption is to change the algorithm and/or
the numerical scheme. In the Gysela framework, we have mainly target the data structures that
penalize the application at large scale (because they do not benefit of domain decomposition).

Once the source code is modified in Step 4, one can occasionally observe a shift of the memory
peak in time. So, for the next iteration of the method, one can focus on another part of the application.
We loop back to the Step 0 until the footprint is low enough.

Let us notice that in order to use the prediction tool in offline mode, a strong assumption must
hold: all memory allocations of the application must be independent of any variables that can vary by
a non-deterministic process. In other words, given an input set of parameters, the memory behavior
of the application is unique and deterministic (it does not depend on environment or intractable
process). This assumption is fulfilled in the Gysela application. If this assumption is not true
for a given application, it would require to perform the different steps of the method without the
prediction tool. To follow up the memory consumption of Gysela and to measure the memory
footprint reduction, two different tools have been developed: a FORTRAN module to generate a
trace file of allocations/deallocations (part of MTM library [83] developed by F. Rozar, PhD) and a
visualization + prediction Python script which exploits the trace file. The information retrieved from
the execution of Gysela thanks to the instrumentation module is crucial for this memory analysis.

Trace File

Various data structures are used in Gysela and in order to handle their allocations/deallocations, a
dedicated FORTRAN module was developed to log them into a file: the dynamic memory trace. As
in the current implementation the MPI processes have almost the same dynamic memory trace, we
analyze a single trace file for the allocations/deallocations of MPI process 0.

Overview of generic tools In the community of performance analysis tools dedicated to parallel
applications, different approaches exist. Almost all of them rely on trace files. A trace file collects
information from the application to represent one aspect of its execution: execution time, number of
MPI messages sent, idle time, memory consumption and so on. In order to obtain these information,
the application has to be instrumented. The instrumentation can be made at 4 levels: in the source
code, at compilation time, at link-time or during execution (just in time). The Scalasca performance
tool [135] is able to instrument at compilation time. This approach has the advantage to cover
all the code parts of the application and it allows the customization of the retrieved information.
This systematic approach gives a full detailed trace but the main purpose of Scalasca is to locate
the bottleneck of an application, not to study the memory scalability. Also by using automatic
instrumentation, it can be difficult to retrieve the expression of an allocation, like we do in our library.
The tool set EZTrace [103] offers the possibility of intercepting calls to a set of functions. This tool
can quickly instrument an application thanks to a link with third-party libraries at link-time. The
same issue occurs in Scalasca. The Pin [164] tools, DynamoRIO [111] or Maqao [126] use the Just In
Time (JIT) approach to instrument the application during the execution. The advantage here is the
genericity of the method. Any program can be instrumented this way, but in this approach, retrieving
the expression of the size of an allocation is also an issue.

Implementation The dedicated tools we have developed allow us to measure the performance of
Gysela, from the memory point of view. These tools permit to deal with the memory scalability issue
unlike the previous generic tools. The source code is instrumented thanks to a FORTRAN module
to generate a trace file at the execution. A visualization tool has been developed to deal with the
provided trace file. It offers a global view of the memory consumption and an accurate view around
the memory peak to help the developer identify problems and then reduce the memory footprint. The
terminal output of the post processing script gives valuable information about the arrays allocated
when the memory peak is reached. Given a trace file, we can also extrapolate the memory consumption
as a function of the input parameters. This allows one to investigate the memory scalability. As far
as we know, there is no equivalent tool to profile the memory behavior in the HPC community. The
instrumentation module offers an interface, take and drop, which wraps the calls to allocate and
deallocate. For each allocation and deallocation, the module logs the name of the array, its type,
its size and the expression of number of elements. The expression is required to make prediction
afterwards, during a post-mortem analysis.

Visualization tool

In order to address the memory consumption issues, we have to identify the parts of the code where
the memory usage reaches its peak. The log file can be large, i.e several Mega Bytes. A Python tool
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Figure 25: Evolution of the dynamic memory
consumption during Gysela execution

Figure 26: Allocation and deallocation of arrays
used in different Gysela subroutines

helps the developer to understand the memory cost of the handled algorithms, and gives him some
hints about how and where it is meaningful to decrease the memory footprint. This information is
provided through two kinds of plots.

Fig. 25 plots the dynamic memory consumption in GB along time. The X axis represents the
chronological entry/exit of instrumented subroutines. The Y axis gives memory consumption in GB.
The number of subroutines plotted on the graph has been shortened in order to improve the readability.
In Fig. 26, the X axis remains identical to the previous Fig., while the Y axis corresponds to the names
of the array. Each array is associated with a horizontal line of the picture. The allocation of an array
matches a rectangle, filled in dark or light gray color in its corresponding line. The width of rectangles
depends on the subroutines where allocation/deallocation happens. In Fig. 25 one can locate in which
subroutine the memory peak is reached. in Fig. 26 one can then identify the arrays that are actually
allocated when the memory peak is reached.

Prediction tool

To anticipate the memory requirements when running a given simulation, we need to predict the
memory consumption with any given input parameter set. Thanks to the expressions of array size
and the value or expression of numerical parameters contained in the trace file, we can model the
memory behavior off-line. The idea here is to reproduce allocations from the trace file with a given
input set of parameters. By changing the input parameters, our Python prediction tool precisely
establishes the Gysela memory consumption for a MPI process on larger meshes. It also gives the
possibility to calibrate the quantity of computational resources required by a given simulation case.
The prediction tool allows us to explore machine configurations which do not exist yet, such as the
exascale ones.

2.5.4 Applying the method on Gysela

Achieving memory reduction step-by-step

In order to reduce the memory footprint of Gysela, we follow the IMPR method. We are willing to
cut down the memory peak at each iteration of this method. The code changes we consider consist of
moving allocations/deallocations of a set of data structures and in changing some algorithms. To track
the changes concerning the location of the memory peak and the amount of memory usage after each
optimization step, a reference run has been defined that uses 64 MPI processes and 16 threads per
process, leading to a total of 1024 cores. In this subsection, we will use for our analysis the maximum
of memory consumption given for one MPI process. The mesh of the reference case is set to

Nr=512, Nθ=1024, Nϕ=128, Nv‖=128, Nµ=2 . (2.18)

Originally, a large fraction of the data structure allocations in Gysela are done at application
startup. These persistent data structures are allocated in the initialization step and deallocated in the
exit step. In this original setting, a Gysela specific wrapper logs some of the allocate function calls.
The name, the size and the dimensions of each allocated data structure are recorded in a trace file
during the Gysela initialization. In this persistent allocation approach, these information are added
up to give directly the maximum of memory consumption soon after the application launch. However,
this is no longer true when we insert the dynamic management of the data structure allocations.
Starting with the persistent allocation trace file, we obtain Table 8. It appears that 1D and 2D
structures represent a large amount of the memory usage for a large run. With this original version,
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Gysela exhibits a maximum memory consumption of 14.14 GB. In the following, we will observe and
reduce this peak memory consumption focusing on the reference case.

Let us consider a first optimization looking at data structures allocated that appear in trace
files. Several 1D and 2D data structures that store intermediate computations take most of the
memory space. We remove the initial allocation for these data and bring the allocation/deallocation
combination closer to the usage of these data structures. The aim is to move the allocations of
these data structures as close as possible to their utilization. We keep in mind that frequent calls
to allocation/deallocation primitives can lead to execution time overheads. We introduced some
dynamic management of allocations for 1D and 2D data structures avoiding most inner loops region.
The maximum memory consumption is then 13.53 GB.

Subsequently, we investigate a second memory optimization looking at data structures allocated
at the memory peak. We notice that some 2D arrays which store the spline coefficients are allocated
during the whole run while they are used only during the Vlasov solving step (the main computation
kernel). In the same way than the previous optimization, we move the allocations/deallocations of
the spline coefficients closer to their effective use, in order to decrease the memory peak (not located
in the Vlasov solver). This modification reduces the memory peak down to 11.89 GB.

In the third phase of IMPR Method, we again list the data structures allocated at the memory
peak. In this list, some 2D arrays store matrices that are used in the subroutines that compute
the gyroaverage operator. Those matrices store precomputed values to accelerate the computation
of the gyroaverage operator (precomputations are done at each Gysela startup). Two changes are
performed: moving the allocations/deallocations of those 2D arrays near their usage and setting these
arrays to their correct values just before use. Although the dynamic management of allocation and
the setting of these structures introduce a small overhead in execution time, this allows us to decrease
the memory peak to 11.63 GB.

After these successive improvements, we have reduced the memory peak by 17% on the reference
case. As our goal is to deal with larger meshes, we expect to provide a way to reach a better reduction.
The next step described in the following subsection will highlight part of the data dependencies of
Gysela. We will identify an array that can be deallocated during a slot time to shift the memory
peak location.

Further memory optimizations using data dependencies

We again consider the IMPR Method to alleviate memory usage. The visualization tool generates
the pictures of Fig. 27. These pictures are intentionally simplified to improve readability. The curves
(upper part) that give memory consumption along with the time help the developer to locate the
memory peak in the advec2D subroutine (a part of the Vlasov solver). In the lower part of Fig. 27, the
biggest allocated data structures are shown. One can wonder which of these data can be deallocated.

After an accurate analysis of the advec2D subroutine, we notice that inside the 2D advection step,
a transposition of the main unknown (4D distribution function) is done to achieve the computation
of splines coefficients on the poloidal plane. By the way, we noticed that at the memory peak, the
transposed data structure (named ftransp\%values) and the original distribution function (named
fnb\%values) contain the same information stored into two different containers. Then we manage
to deallocate fnb\%values temporarily during the memory peak. No extra computations is required
here, but the readability of the code is altered a little bit with this change. We then obtain the outputs
of Fig. 28. Practically, the memory peak is reduced to 10.66 GB. This improvement is characterized
by a move of the memory peak. If one compares Figs. 27 and 28, it is noticeable that the memory
peak is located in a different subroutine.

Memory scalability

The Table 9 details the strong scaling test using the latest stable release-v5.0 of Gysela that includes
the new dynamic allocation scheme and the algorithmic improvements. The prediction tool allows us
to reproduce the Table 8 on the initially targeted mesh Nr = 1024, Nθ = 4096, Nϕ= 1024, Nv‖ = 128,
Nµ= 2. Table 9 shows the memory consumption at the memory peak. It is obtained by keeping the
mesh size constant and changing the number of MPI processes. For this strong scaling study in the
Gysela framework, we have to modify the domain decomposition setting in the r and θ directions to
increase the number of MPI processes. Our prediction script replays the allocations/deallocations of
the trace file by recomputing the size of each array considering the new domain decomposition. The
numbers given in Table 9 are obtained thanks to the prediction tool and moreover, they were checked
with different test cases such as the bigger one that uses 33k cores.

As one can see on the biggest case (33k cores), the consumption of the 2D structures is reduced
to 20.8%. Also the memory gain on this case is of 50.8% on the global consumption compared to
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Table 8. The 4D structures contain the most relevant data used during the computation and they
consume most of the memory as they should. The memory overheads have been globally reduced,
which improves the memory scalability of Gysela and allows us to run larger simulations.

Based on the feedback of different runs, the tools integrated in Gysela and explained here do
not introduce too much execution time overheads. Nevertheless, the origin of these overheads can be
identified as, firstly the cost of input/output activities on disk, and secondly the more frequent calls
to the allocate subroutine. The study and reduction of overheads due to dynamic allocators will be
the purpose of future works.

Using prediction tool for production runs

Before launching a simulation on a supercomputer, it is helpful to know how to check the set of
important parameters for a given parallel application. Indeed, the waiting time in queue before the
job can start may be quite long (several days) when a lot of computing resources are requested.
Therefore, one may wonder if the application will start with well-designed parameters and if it will
exceed the available memory. With the prediction tool, it is possible to evaluate for a given mesh size
and an input parameter file if a Gysela simulation can be run (i.e fit into the available memory)
or not. To illustrate this point, we have made a larger reference run on the Juqueen machine and
saved the associated memory trace file. The Juqueen machine is an IBM BlueGene/Q with 16 GB of
memory per node. Moreover to be able to exploit most of the computational capacity of this machine,
we commonly use 64 threads per node (16 cores).

In this large reference run, we use 256 MPI processes and 64 OpenMP threads (4k cores). Usually
a Gysela run is set such that a single MPI process is launched per node. We also choose this setting
for the other tests described in this subsection. The mesh for this run is given by

Nr=256, Nθ=256, Nϕ=128, Nv‖=64, Nµ=4 . (2.19)

Using the trace file of this run, the behavior of the memory consumption of Gysela can be

Figure 27: Original run on 1024 cores, visualization
of the memory trace

Figure 28: Run performed after improvement, visu-
alization of the memory trace
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Number of cores 2k 4k 8k 16k 33k
Number of MPI processes 128 256 512 1024 2048

4D structures 207.2 104.4 53.7 27.3 14.4
79.2% 71.5% 65.6% 52.2% 42.0%

3D structures 42.0 31.1 18.6 15.9 11.0
16.1% 21.3% 22.7% 30.4% 32.1%

2D structures 7.1 7.1 7.1 7.1 7.1
2.7% 4.9% 8.7% 13.6% 20.8%

1D structures 5.2 3.3 2.4 2.0 1.7
2.0% 2.3% 3.0% 3.8% 5.1%

Total per MPI process in GBytes 261.5 145.9 81.8 52.3 34.2

Table 9: Strong scaling: memory allocation size and percentage with respect to the total for each kind
of data at the memory peak

Nb procs MPI
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128

512

2048 Nb threads O
penMP

16

32

64

128

Go
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hhhhhhhhhhhhhhhMPI procs

OpenMP threads
16 32 64 128

32 38.47 39.36 41.12 44.64
128 16.78 16.79 16.80 22.60
512 12.51 12.52 12.53 18.26

2048 11.24 11.24 11.26 17.07

Figure 29: The memory peak (GB) along with nb of MPI procs and nb of OpenMP threads

predicted. We would like to find out a list of possible deployments able to handle the following target
mesh:

Nr=1024, Nθ=1024, Nϕ=128, Nv‖=64, Nµ=4 . (2.20)

We change the parameters of the mesh directly in the trace file and also the number of MPI
processes and the number of OpenMP threads. Scanning a set of values, we output the memory peak
per MPI process with the prediction tool. The obtained results are plotted on Fig. 2.5.4. With the 16
GB available on a Juqueen node, one can observe that beyond 512 processes and below 64 threads,
the Gysela code fit into the memory and can handle the targeted mesh.

Some data structure used by the application for which the parallelism is induced by the domain
decomposition of the mesh can take advantage of this decomposition. This means that the cost of
this kind of structure decreases as the number of process increases. On Fig. 2.5.4, one can notice that
the behavior of the memory consumption along the MPI process axis is consistent with the expected
behavior. While the application uses a larger number of processes, the memory costs tend to diminish.
But, a saturation effect arises between 128 and 2048 MPI processes. This is due to some arrays that do
not scale along with the number of subdomains in (r, θ). After an analysis of the memory consumption
along time, it appears that the memory peak is not located in the same subroutine for both cases for
64 and 128 threads.

2.5.5 Conclusion

The work described in this Section focuses on a memory modeling and tracing module and some post
processing tools which enable us to improve greatly the memory scalability of Gysela. With this
framework, the understanding of the memory footprint behavior along time is achievable. Also, the
generated trace file can be reused to extrapolate the memory consumption for different input sets of
parameters in offline mode; this aspect is important both for end-users who need greater resolutions
or features with greedy memory needs, and for developers to design algorithms for exascale machine.

With these tools, a reduction of 50.8% of the memory peak has been achieved and the memory
scalability of the Gysela has been improved. The designed set of tools provides the post processing
scripts to visualize the trace file and to perform predictions. To use the prediction feature, the
pattern of the memory footprint must depend only on an input set of parameters, not on computed
values during the execution. However the visualization script does not require this assumption. As
our method leads the developer to allocate his data structures dynamically, studying the different



48 version: May 18 2018

allocators in the user space to optimize the execution time overhead would be desirable to minimize
data movements and reuse cache memory if possible.

2.6 Gyroaverage operator

The current gyroaverage implementation used in Gysela has been improved in 2015-2016, enhancing
the precision of the operator thanks to Hermite interpolation [5,17,83] instead of Padé approximation
(quick description already given p.30, the work has been done in collaboration with V. Grandgirard,
M. Mehrenberger, F. Rozar, C. Steiner). One main advantage of this approach is to avoid going back
and forth in the Fourier space like it was the case for Padé approximation. Thereupon this method
is much more local in space (one does not anymore all points allong θ direction locally), which is
beneficial for parallelization purposes. In the present Section, a new parallelization scheme for the
gyroaverage operator is described [15, 80] (cooperative work with N. Bouzat, M. Mehrenberger, J.
Roman). It mainly avoids costly transpositions of the full 5D function using halo exchange instead.
Though the computational cost remains the same, the communication cost is much smaller. The
overall algorithm is also improved by cleverly interleaving communications and computations, thus
allowing for a reduction of communication costs and a more efficient thread parallelization. The
execution time of the gyroaverage is up to twice as fast as before. The benefit of an improved scheme
providing the overlap of communications by computations is also shown.

2.6.1 Initial setting

Context

The gyroaverage operator mimics the cyclotronic motion projected in the r×θ poloidal plane. The
gyroaverage operator represents a costly part of two main components: within the diagnostics to get
the gyroaverage on the whole distribution function, and in the field solver – despite the speedup is
expected to be smaller in this second component. In the diagnostics, the data distribution is such
that the r and θ dimensions are distributed among the MPI processes and the ϕ and v‖ dimensions
are entirely contained in each process. Thus, each process knows the value of a block f(r= local, θ=
local, ϕ= ∗, v// = ∗, µ= value). In the previous implementation of the gyroaverage operator, a Padé
approximation method was used. It requires the whole r × θ plane to be stored locally in memory
because of Fourier transform along the θ direction and finite differences along r. Therefore, it was
necessary to transpose the whole distribution function between MPI processes before and after the
computation of the gyroaverage. The method based on Hermite interpolation does not have this
strong constraint, as gyroaverage can be computed only with values close to the target point, which
permits us to avoid the costly transpositions. Moreover it does not damp the small variations of the
function as the Padé approximation did for large k⊥ρ, accuracy is enhanced [83, p. 93].

The use of the Fourier transform reduces the gyroaveraging operation by a multiplication in the
Fourier space by the Bessel function. Good approximations of the Bessel function have been pro-
posed such as the widely used Padé expansion. The Padé approximation enables to recover a good
approximation for small radii [116]. However, for a larger Larmor radius and ordinary wave-numbers,
the Padé approximation truncates the oscillations of the Bessel function, over-damps the small scales,
and then introduces bias. Also the use of Fourier transform is not applicable in general geometry
as we would like to employ in a near future; therefore it can not be employed in realistic tokamak
equilibrium. These two limitations are overcome using an interpolation technique on the gyro-circles,
which is the background of this study [5, 17].

Description of Hermite based gyro average

We will now describe the numerical framework and approximations that are made for the gyroaverage
operator. Let us consider a Larmor radius ρ, a grid in polar coordinates r × θ (poloidal plane) and a
function f defined over this grid. The gyroaverage operator Jρ consists, for each point P of the plane,
in a weighted integral of the value of f over the circle of radius ρ and center P . In a discrete space,
this translates as a mean of NL points uniformly distributed on the circle of Larmor and interpolated
with the Hermite method. The precision of the operator directly depends on NL. An example is
shown in Fig. 30 for NL = 5. To compute the gyroaverage at the point •, NL points N are placed on
the circle of radius ρ =

√
2µ. As these points are unlikely to coincide with a mesh point, an Hermite

interpolation is performed for each of them using the values at the four corners � of the cell in which
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they are contained. Thus the gyroaveraged value of f at a point (ri, θj) of the grid writes

Jρ(f)(ri, θj) ' 1
NL

NL∑
k=1

H(f)(xk, yk) (2.21)

with H being the Hermite interpolation function, xk = ricos(θj)+ρcos(θj+k 2π
NL

) and yk = risin(θj)+
ρsin(θj + k 2π

NL
) being the coordinates of the points on the Larmor circle in Cartesian coordinates.

When one of these points is outside the mesh, a radial projection is done on the closer border (inner
or outer). Given one of the NL points N of coordinate (r̃, θ̃), the computation of the interpolation
H requires the value, the derivatives in r and θ and the cross-derivatives of each of the corners of
the containing cell. The 2D interpolation behaves as if two 1D interpolations along r and θ were
performed. First, an interpolation along r is performed from the two corners of each θ side of the
cell, θ1 and θ1 + 1, to the points of same respective θ coordinate and same r coordinate as the target
point (r = r̃). Then a second interpolation along θ is performed from these two new points to reach
the target point (r̃, θ̃). The coefficients used for the Hermite interpolation are detailed in [5, 17].

Figure 30: Computation of the gyroaverage.

Gysela implementation

We will now go through the implementation of the numerical scheme. For a given point, the computa-
tion of the gyroaverage requires a certain set of points which coefficients in the Hermite interpolation
are stored in the matrix Mcoef . Each line i of the matrix corresponds to the coefficients of the value
and three derivatives of all the points used in the interpolation of the point (r=ri, θ=0). These coef-
ficients are also valid for every θ-value thanks to radial symmetry. Furthermore, Mcoef is sparse as
for each ri, only a few cells (gray cells in Fig. 30) along the Larmor circle center in (r=ri, θ=0) are
involved in the gyroaverage. Their number depends on NL, ρ =

√
2µ and r.

In the actual implementation, Mcoef is represented as an array of dimension Nr where each cell
contains: an array of indexes indicating which point is involved in the interpolation for the given r and
of an array of corresponding coefficients. The size of Mcoef is then at most of 36NrNL elements [80].
Gysela simulations usually use NL = 8. Once the initialization is done and Mcoef is computed, the
gyroaverage operator is called several times during each time step on the whole poloidal plane. A
matrix Mfval is built at the beginning of a call by computing the derivatives at each point of the
plane registered in Mcoef . In short, the number of operations to compute the gyroaverage of one
point depends, in most cases and for a given r value, on the number of different points involved
in the interpolations of the NL points on the Larmor circle (see [80]). The cost of gyroaveraging
one poloidal plane is then Θ(NLNrNθ), so the total cost for the full 5D distribution function is
Θ(NLNrNθNϕNv‖Nµ).

In Gysela the distribution of data is twofold. A MPI process Pi,j , located on the i-th r row and
j-th θ column of MPI processes, either has data D1(r = ∗, θ = ∗, ϕ = ϕτi → ϕτi+1, v‖ = vτj → vτj+1, µ =
µτi,j) or D2(r = rτi → rτi+1, θ = θτj → θτj+1, ϕ = ∗, v‖ = ∗, µ = µτi,j) where rτi = i × (Nr/Nprocr) and
similarly for θj , ϕi and vj . Nprocr is the number of MPI processes in the radial direction. Several
processes share the same µτi,j . The gyroaverage, as implemented in previous version, requires the
full poloidal plane in local memory, i.e. distribution D1. However the data distribution when the
operator is called is D2. It thus requires a costly transposition of the full distribution function before
the gyroaverage and after as the computation performed subsequently requires the D1 distribution.
This is the reason why a gyroaverage operator which can handle directly D2 distribution and avoiding
transpose can drastically reduce the volume of communication. It also gives possible solutions for the
future where Gysela would possibly consider only D2 and never D1. In addition, this technique can
be well combined with non-uniform mesh (that we target for the future) and Lagrange interpolants
that will be presented in Section 3.3.4.
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Data: Distribution function f , Nlϕ and Nlv‖
Result: Gyroaveraged distribution function J0.f

1 begin
2 ftmp = transpose forward(f)
3 OpenMP parallel zone
4 for i : 0→ NlϕNlv‖ − 1 do

5 preprocess(ftmp(i))
6 gyroaverage(ftmp(i))
7 postprocess(ftmp(i))

8 f = transpose backward(ftmp)

Algo. 8: Hermite gyroaverage in diagnostics

Algo. 8 shows how the basic Hermite interpolation gyroaverage based on transpositions was
integrated in Gysela into the diagnostic before modification. Nlϕ and Nlv‖ are the dimensions of
the local subdomain in ϕ and v‖. ftmp exactly corresponds to f but using distribution D1. During
the preprocessing step 5, the function to be gyroaveraged is built from the 5D distribution function.
The same goes for the post-process step 7 where some macro-data are gathered on the gyroaveraged
function (e.g fluid momentum, velocity integrals over v‖ and µ).

2.6.2 Parallelization with Halo Exchange

This section details the new solution for the gyroaverage operator using Hermite interpolation. The
algorithm has been changed to fit data distribution D2, and some optimizations have been done for
the parallelization. The numerical analysis and core computations remain the same as before while
communication schemes are improved in diagnostics.

Halo and ghost points

In order to compute the gyroaverage with only a r × θ patch of data in local memory, it is necessary
to exchange a few data between processes.

Indeed, the computation of the gyroaverage for points on the border of a r × θ patch requires
a certain number of values from other MPI processes depending on the Larmor radius and on the
discretization of the mesh. Considering Fig. 31, the • point of process 2 requires values and derivatives
from points � located on the processes 1, 3 and 4. � point also requires neighboring points to
compute their derivatives as seen in 2.6.1. The number of exchanged points also depends on the
r coordinate of the point to be gyroaveraged. The closer it is to the inner circle of the plane, the
narrower the meshing in θ becomes and so the more cells the Larmor circle is likely to intercept. The
more cells the Larmor circle intercepts, the larger the halo will be and thus the communication. The
computation still mainly depends on NL but now also loosely relies on the Larmor radius.

The halo consists of all the points located on neighbor processes (ghost points) needed by a process
to be able to apply the gyroaverage on its local subdomain. Its size must be as small as possible so that
its communication cost would be smaller than the cost of a full transposition. Otherwise the main gain
we target would be lost. For each specific subdomain, the number of ghost points in dimension r is
Nghost r, and Nghost θ in dimension θ, Nderiv is the number of points used to compute the derivatives
(here two). The formula for these quantities and the size of the halo are given in [15,80] (illustration
is given Fig. 32).

It is worth noticing that the current implementation does not take into account cases with very
small rmin, or where the poloidal plane is divided between a large number of processes in θ. In
these cases the Larmor circle of a corner of a patch intercepts cells further away than neighboring
subdomains. Larmor circle intercepts too many subdomains for small r values as the mesh narrows
along θ near the center. This limitation should be handled soon by decimating points near r = 0 to
diminish the cost of communications at this location.

Block communication and OpenMP parallelization

Several optimizations for communications and for the parallelization of the computation can be done.
Let us recall that for a process Pi,j , we have the data distribution D2(r = rτi → rτi+1, θ = θτj →
θτj+1, ϕ = ∗, v‖ = ∗, µ = µτi,j); in our setting it means that every process has to compute the gyroav-
erage for Nϕ ×Nv‖ patches.

Until now, all the communications were performed during the transposition steps (see Algo. 8),
before and after the computation. The same could be done by exchanging the halos for every poloidal
plane beforehand, but Gysela consumes much memory and the gyroaverage operator is called within
the part of the code where the memory peak is reached. Then, it is preferable to exchange the halos
only when the corresponding planes are about to be processed. However, to reduce the initialization
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Figure 31: Data distribution over MPI pro-
cesses and gyroaverage example.

Receive 1

Send 1

Send 2

r

θ

Rece

Nghost_θ Nlθ

Nghost_r

Nlr ive 2

Figure 32: Subdomain representation (local
points are in gray) and halo communication
scheme.

costs of each communication, it is also interesting to perform them by grouping the halos of several
poloidal planes together. Thus, once the communication has ended, several planes (a block) are ready
to be gyroaveraged and they can be computed in parallel in a multi-threaded loop. The size of a block
of halos can be tailored so that it is a trade-off between memory footprint, thread parallelization,
communication performance and readibility of the code. Implementation is detailed in Algo. 9.

During the initialization step 6, the local subdomains of the current block are copied in the tempo-
rary array fblock which is big enough to store the local subdomains plus their halos received during the
communication step 7. Step 11 performs the backward operation, retrieving the gyroaveraged local
subdomains and storing them back into the function f as well as gathering data via the post-process
for the diagnostic. For a given iblock, the vi and ϕi refers to the v‖ and ϕ coordinates of the planes
composing the block according to the formula

vi = modulo(iblock × bs+ i, Nϕ), ϕi = (iblock × bs+ i)÷Nϕ,
where bs is the size of a block. We will denote Nblock =

NϕNv‖
bs . In step 10, the gyroaverage operator

used is the same as the one described in Section 2.6.1, but it is applied to a function whose size
corresponds to the local subdomain size plus the halo. In our implementation, we ensure that each
plane of the block is initialized by the thread which gyroaverages it in order to maximize memory
locality and affinity.

Data: Distribution function f , block size bs, Nghost r, Nghost θ, Nlr and Nlθ
Result: Gyroaveraged distribution function J0.f

1 begin
2 Declare fblock = array(bs, Nlr + 2Nghost r, Nlθ + 2Nghost θ)

3 for iblock : 0→
NϕNv‖
bs − 1 do

4 OpenMP parallel processing
5 for i : 0→ bs− 1 do
6 fblock(i) = preprocess(f(rmin → rmax, θmin → θmax, ϕi, vi, µ))

7 send receive halo(fblock)
8 OpenMP parallel processing
9 for i : 1→ bs do

10 gyroaverage(fblock(i))
11 f(rmin → rmax, θmin → θmax, ϕi, vi, µ) = postprocess(fblock(i))

Algo. 9: Halo based gyroaverage, processed by block

Concerning the communication step 7, one process exchanges data with the processes which are
before and after it in r (down and up), with those before and after him in θ (left and right) and
finally with the four other neighboring processes ”in the corners”. The number of communications
can be reduced from eight to four by avoiding the corners using the scheme pictured at Fig. 32.
For readability, only the r down and θ left phases have been pictured. First, each process sends
and receives the requested data to its neighbors in r (in green), second it sends and receives its data
in θ plus some of those received during the previous step (in red). Thus the communications with
the processes located in the corners are avoided at the cost of a synchronization in the middle of the
communication phase. The communications are carried out using the MPI Sendrecv() routine to send
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the halos for all the planes of a block in one step. A communication scheme using non-blocking MPI
routines has also been evaluated, but proves to be less performing in the benchmark we conducted.
In the end, the new implementation is expected to be faster as the communication costs are reduced
compared to the original version based on transposition though the computational cost is a bit higher.
The memory footprint is also reduced as the function distribution was previously fully duplicated,
whereas now, we only need one buffer fblock(i) with relatively small size.

Performance results

In the following, the performance of the new solution, described in Section 2.6.2, is compared to the
one of the original approach of Section 2.6.1. The simulations presented here were performed (2016)
on the Poincaré cluster located at Maison de la Simulation, France. Nodes are composed of two
Intel(R) Xeon(R) E5-2670 with 8 cores and 32GB of shared memory each. In this study, we consider
NL constant and equal to 8 as it is the value which is used in usual production runs.

The free parameter of the new parallel algorithm is the block size, i.e. the number of poloidal
planes for which halo exchange is performed in one communication and for which computation is
parallelized at thread level. It is interesting to study the block size which allows to achieve the best
performance, it has been done [80]. Fig. 33 shows the execution times of the gyroaverage operator for
the previous version and for the new one. The mesh size is (1024× 1024× 64× 32× 1) with µ = 4.0
and a block size equal to 128. The number of cores is changed by increasing alternatively the number
of MPI processes along r and θ. The number of threads per process is constant and equal to 8. The
halo based version is almost twice as fast compared to original transposition based version.

Figure 33: Strong scaling and comparison of execution time of the Hermite gyroaverage based on
transposition and the gyroaverage based on halo exchange within diagnostics.

Benchmarks tend to show an equal amount of communication and computation time for large
numbers of cores. Thus, it would be interesting to be able to absorb these communication costs by
performing them concurrently with the computation.

2.6.3 Overlapping communication with computation

This section details how the performance of the gyroaverage is improved by overlapping communica-
tions and computations in the operator. It is performed through finer grain parallelization, one thread
doing communication, while the other threads are computing.

Algorithm, complexity and expected speedup

As seen in Section 11, large production simulations usually show communication times and compu-
tation times which are relatively close one to each other. It is then possible to further improve the
algorithm and decrease execution time by performing communications and computations simultane-
ously. Similar and more complete analyzes are performed in [119] and solutions for a good calibration
of the parameters of the overlapping are suggested.

Using the improved blocked version of the Hermite gyroaverage (Section 2.6.2), the idea is to
start the initialization and communication of the next block while performing the computation of the
current one. The different steps are detailed in Algo. 10. At line 3 the different blocks to be processed
are built. Lines 14 and 15 consists in the initialization and communication of the current data block.
Lines 19 and 20 represents the computation and post-processing of the previous data block. There is
one more iteration in the iblock loop than the total number of blocks so that the first iteration only
performs the communication for the first block to initialize the macro-pipeline.
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Data: Distribution function f , block size bs
Result: Gyroaveraged distribution function J0.f

1 begin
2 Lϕv‖ = {∅}

3 for iblock : 0→
NϕNv‖
bs − 1 do

4 Ltmp = {∅}
5 for i : 0→ bs− 1 do
6 vi = modulo(iblock × bs+ i, Nϕ)
7 ϕi = (iblock × bs+ i)÷Nϕ
8 Ltmp = Ltmp ⊕ f(rmin → rmax, θmin → θmax, ϕi, vi, µ)

9 Lϕv‖ (iblock) = Ltmp

10 for iblock : 0→
NϕNv‖
bs do

11 OpenMP parallel processing

12 if iblock 6=
NϕNv‖
bs then

13 OpenMP thread 1
14 preprocess(Lϕv‖ (iblock))

15 async send receive halo(Lϕv‖ (iblock))

16 if iblock 6= 0 then
17 wait comm(Lϕv‖ (iblock − 1))

18 OpenMP threads 2 → n
19 gyroaverage(Lϕv‖ (iblock − 1))

20 postprocess(Lϕv‖ (iblock − 1))

21

Algo. 10: Patched gyroaverage with overlapping

There are three ways algorithms with overlap can behave according to the relative size of the
different execution times. Either the computation of a block and the communication of a block have
the same duration (a), or communication is longer than computation (b), or computation is longer
than communication (c). We consider preprocess and postprocess times to be included in the com-
munication and computation times, respectively, assuming they are negligible. An excellent behavior
is obtained for cases where communication and computation have the same execution times (a). In
this case the global execution time can be ideally decreased by almost a factor 2 with overlapping.

Implementation

The implementation of the algorithm with overlapping is based on OpenMP thread parallelization.
It requires MPI communications that can be performed in the background during computations.
OpenMPI and IntelMPI, which are the main MPI implementations that Gysela currently uses on
most of the clusters, do offer non-blocking communication routines; however these are not really
asynchronous. It means that the pending communications mainly progress whenever a MPI function
is called. An implementation with MPI Isend and MPI Irecv was first tried but quickly dropped as
the communications mostly occurred during the MPI Wait though a lot of computation was done since
the call to the send routine.

OpenMP parallel section

{
{

}

}1st block
comm.

2nd block
comm.

1st block init.
2nd block init.

}1st block 
comput.

{Last block
comm.

}1st block post-
process
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Figure 34: Behavior of the OpenMP threads (thread
number in abcissa, time in ordinate) in the main loop
for the algorithm with overlapping

Versions µ values
2.6667 8.

Transp. version 81.74s 81.14s
Halo version 36.91s 51.75s

Overlap version 32.66s 44.40s

Table 10: Total execution time of the 9 calls
to the diagnostic on a typical production
run with two µ values

To get the expected overlapping behavior and design a portable approach, the communications are
performed by a dedicated thread (usually called master thread in OpenMP terminology). Moreover
the loop scheduling of OpenMP has been set to dynamic, i.e. once a thread is done with its assigned
loop iteration, it requests others to the scheduler. This way, no index of the parallelized loop is
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assigned beforehand to the master thread so the computation can be performed entirely even if the
communications are longer. And in the case where the communications are shorter, this scheduling
allows the master thread to join the computation loop once it has performed the communications.
However, this could lead to a loss of cache locality as one plane is no longer pre-processed, computed
and post-processed by the same thread. Indeed, OpenMP static scheduling ensures that a thread is
assigned the same loop indexes in any loop which has the same first and last index, which is not the
case for the dynamic scheduling. Fig. 34 pictures the scheduling of the work load between the threads
in the case where the communication time for a block is shorter than computation time.

Performance results

In the following, the performance of the solution with overlapping, is compared to that presented in
Sections 2.6.2 and 2.6.1. The dimensions of the mesh used are (1024 × 1024 × 64 × 32 × 1). The
performance detailed in this section were performed on the Helios cluster located at the IFERC center
in Rokkasho, Japan which has an architecture very close to that of the Poincaré machine (Intel(R)
Xeon(R) E5-2680 instead of E5-2680).

Tab. 11 shows how the version with overlapping of the gyroaverage scales with the number of cores
and is compared to the halo version. The algorithm with overlapping is faster than the halo algorithm
and scales in a similar way. The speedup results behave as expected in previous sections: the time
gained over the halo version when the optimal block size of 64 (few blocks) is used is around 10%, and
it reaches 100% with numerous small blocks of size 4. Moreover, one can see that the performance of
the version with overlapping seems to be much less dependent on the block size. It is a big benefit to
use the same size for any value of µ (see Section 11) without having to seek for optimal block size.

Version and Number of cores
block size 64 128 256 512 1024

Halo version (4) 20.67s 10.16s 5.21s 2.83s 1.56s
Overlap version (4) 11.55s 5.73s 2.62s 1.39s 0.95s
Halo version (64) 12.23s 6.27s 3.02s 1.67s 1.01s

Overlap version (64) 11.39s 5.66s 2.65s 1.43s 0.98s

Table 11: Scaling of the execution time of the gyroaverage operator for the halo and version with
overlapping with different block sizes (between parenthesis).

Evaluating the efficiency of the improvements detailed in this paper on an overall Gysela execution
requires a test case with several µ values, similar to usual production runs. Table 10 shows the
total time spent in the diagnostic in which the halo and overlap gyroaverage algorithms have been
implemented. The execution covers 24 time steps, and the diagnostic is performed every 3 time
steps. The improvement achieved by the halo version is great but highly depending on the value of µ.
Nonetheless, µ never takes a value above 16 in production runs and the halo version still demonstrates
improvements at this point. The performance gain achieved by the new implementations is effective,
as the total execution time of diagnostic take 5.7% of the total time in the transposition’s version,
down to 2.7% in the halo version and down to 2.4% in the version with overlapping.

The gain in terms of memory is also significant. Indeed, in the transposition’s version, the trans-
positions were performed on a copy of the distribution function, thus making the memory footprint of
same magnitude as the size of the function to be gyroaveraged. With the halo version, the memory cost
of the operator is only the amound needed by one block of poloidal plane; given NP MPI processes,
this represents one NP -th of the size of the function to be gyroaveraged. The version with overlapping
uses twice as much memory because it stores two blocks of data in parallel for the macro-pipeline,
but it has still a smaller footprint than the transposition’s version.

Discussion

The parallelization algorithm detailed above gives good results in terms of speedup and memory usage.
The communication costs are well diminished and they are also partially overlapped. Also, the hermite
scheme that we consider obtains better accuracy compared to previous Padé approximation. However,
as an extension, we would like to consider the situation where rmin is small. Considering MPI processes
on the inner border of the plane and the gyroaverage of their points located at (rmin ≈ 0, θ = ∗),
the problem is that the Larmor circle will intercept cells further away than neighboring subdomains
in θ direction. The current implementation is not ready for that. We are going to solve this issue in
reducing the number of points near rmin to diminish the communication cost (based on the work [81]).
A non-uniform mesh will cover the poloidal plane (see Section 3.3.4), and tiles will be used to subdivide
this non-uniform mesh. The tiles will be dispatched over several MPI process, this strategy will replace
the uniform rectangular r × θ patches with a basic block domain decomposition. We will handle the
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center, in the vicinity of r = 0, with a single tile. This will solve the problems arising near magnetic
axis in terms of large communication costs. The price to pay is to overhaul the current basic uniform
mesh and the existing parallel domain decomposition (work in-progress by N. Bouzat).

2.7 Conclusion

Achieving high sustained performance on large machines requires attention to several factors. First,
scalable algorithms and implementation are needed, i.e restitution time is reduced in inverse pro-
portion to the number of computing elements. Second, one expect a good per-core performance on
contemporary hardware (GPU or CPU). Third, memory consumption should not exhibit large parallel
overheads in order for one application to be able to run large cases whenever a sufficiently high number
of nodes are available. Fourth, one ought to consider a set of actions to check the accuracy and health
of the code on a regular basis. In this chapter, we had a walkthrough of solutions to improve parallel
algorithms in the Vlasov, Poisson and Gyroaverage solvers of the Gysela application. Performance
bottlenecks have been incrementally removed. Hybrid programming with MPI+OpenMP helped us
a lot to access several levels of parallelism, to achieve more flexibility in term of deployment, while
allowing some memory savings. A fine memory study with specific method and tool has enabled to
reach an extreme scale on the largest european supercomputer Juqueen. The topic of sequential opti-
mizations is not covered here even if several actions have been achieved to improve memory accesses
and a fine computation organization within the code, a fraction of these works will be approached
in Section 4. The question of testing and having ways to check numerical results even for a complex
parallel code will be raised in the next Chapter 3.

For effective use of parallel systems, it is essential to obtain a good match between algorithm re-
quirements and architecture resources. As the processor technology evolves rapidly, to design adapted
parallel algorithms is a work that never comes to an end. Thus, Gysela ought to evolve and adapt
to many-core or GPU setting soon. It will need to switch to other programming models and runtime
systems to tackle such challenges. This aim will require an even larger interdisciplinary approach
compared to the current status.

The optimization of the checkpoint-restart procedures, the implementation of non-blocking writes
on the parallel file system, and improvements of IO efficiency were studied in Gysela [25,26,79], but
not displayed here. Here is a list of studies concerning parallel algorithms that I also conducted while
not presented in this document and not related to Gysela [13, 21,23,28,32,34,38,39,41].



Chapter 3

Importance of numerical schemes
in scientific applications

In order to provide reliable results, the methods and schemes should be tuned to lower the error
induced by the numerical methods and also to enhance the accuracy if ever possible. The works
described in this chapter address improvements that go along these directions and give the opportunity
to better describe physics phenomena [1,27,81,85]. Furthermore, reproducibility of results is a strong
requirement in most fields of research for experimental results to be called science. For results obtained
through simulation software using high-performance computing (HPC) this translates as code quality
demands. But codes tend to evolve at a very fast pace which often leads to the introduction of
subtle bugs with new features all at once. In this framework, paying careful attention to the quality
traceability of software is important. Automated testing of the code offers a way to help correct defects.
This explains the rationale that pushed us to design specific measurements, establish mathematical
relations that permit to characterize the correctness of our simulation results. These checks were
accompanied further by putting into place a continuous integration platform (hosted by Inria) that
automatically checks on a HPC machine a set of medium-sized Gysela cases [19].

In the first Section, a study will show how we improved conservation properties in Gysela. Sec-
ond, the aligned method is presented that permits to diminish execution time and to enhance accuracy.
The third Section deals with adapting the geometry of the poloidal plane to get more realistic sim-
ulations and describes a way to access to non-circular shaped plasma. At last, we give some physics
achievements over the recent years with Gysela, and we draw some conclusions and perspectives.

3.1 Improving conservation properties

In gyrokinetic turbulent simulations, the knowledge of some stationary states can help reducing nu-
merical artifacts. Considering long-term simulations, the qualities of the Vlasov solver and of the
radial boundary conditions have an impact on the conservation properties. In order to improve mass
and energy conservation mainly, the following methods are investigated here: fix the radial bound-
ary conditions on a stationary state, use a 4D advection operator that avoids a directional splitting,
interpolate with a delta-f approach. The combination of these techniques in Gysela led to a net
improvement of the conservation properties in 5D simulations.

3.1.1 Introduction

Inaccurate description of the gyrokinetic equilibrium can yield nonphysical excitation of zonal flow
oscillations [98]. Moreover, as stated in [152,98,124,151], it is important to define the initial condition
using a relevant gyrokinetic equilibrium, especially in the context of collisionless full-f simulations
and long-term simulations. However, at long simulation times, irrespective of the choice for the
initial state (local or canonical Maxwellian), the turbulence robustly develops with identical statistical
properties [124]. In the following, accuracy aspects are investigated for the Vlasov solver used in the
Gysela code. If proper care is not taken for both the Vlasov solver and the gyrokinetic initial
equilibrium, one can observe that some conservation properties are not satisfied, for example total
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“The scientist does not study nature because it is useful;
he studies it because he delights in it,
and he delights in it because it is beautiful.”

Jules Henri Poincaré
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mass or energy. Adaptations we have done on the radial boundary conditions permit to avoid abnormal
particle gains and losses. Then, several new features are presented: an operator splitting (linear versus
non-linear terms), a more accurate computation of particle displacement fields that are part of the
semi-Lagrangian scheme, a 4D interpolation scheme, a delta-f interpolation technique. Afterwards,
numerical and experimental investigations show how the solutions we propose fix several problems.
This study reinforces trust in the Gysela code and allows one to better understand the role of some
separate components of the solvers. Also, we see that radial boundary conditions have a crucial role
with toroidal geometry. Moreover, understanding the external radial boundary condition is especially
important for physics purposes. Indeed, the so-called scrape-off layer1 has its own physics and needs
a specific submodel. A long-term goal, currently undergoing, is to couple Gysela with another
submodel (or code) that will mimic the SOL physics specifically.

Gyrokinetic Vlasov equation

Let z = (r, θ, ϕ, v‖, µ) be a variable in the 5D phase space, the distribution function of the guiding-
center is f(z, t). The gyrokinetic Vlasov equation reads (no Source nor Collisions here, simplified
version compared to Eq. (2.1) p.14):

∂tf +
1
B∗‖
∇z ·

(
dz
dt
B∗‖f

)
= 0

The time evolution of the gyro-center coordinates (x, v‖, µ) are (collision-less electrostatic):

dxi

dt
= v‖b

∗ ·∇xi + vEsGC ·∇xi + vDs ·∇xi (3.1)

m
dv‖
dt

=− µb∗ ·∇B − eb∗ ·∇(J0 φ) +
mv‖

B
vEsGC ·∇B (3.2)

where xi corresponds to the i-th covariant coordinate of x, B is the magnetic field (notation B is the
magnitude of B), J stands for the plasma current density. Vacuum permittivity is denoted µ0. The
B∗‖ and b∗ terms are defined as:

B∗‖ = B +
mv‖

eB
µ0b · J (3.3)

b∗ =
B

B∗‖
+
mv‖

eB∗‖

µ0J

B
(3.4)

The advection terms are:

vEsGC ·∇xi = viEsGC =
1
B∗‖

[J0 φ, x
i], b∗ ·∇xi = b∗i =

B ·∇xi

B∗‖
+
mv‖

eB∗‖

µ0J ·∇xi

B
,

vEsGC ·∇B = − 1
B∗‖

[B, J0 φ], vDs ·∇xi = viDs =

(
mv2
‖ + µB

eB∗‖ B

)
[B, xi] .

The Poisson bracket is defined by [F,G] = b·(∇F×∇G). The term vEGC represents the electric E × B
drift velocity of the gyro-centers and vD the curvature drift velocity. The Jacobian in phase space is
Jx.Jv with Jx the jacobian in configuration space and Jv =2π B∗||(r, θ, v‖)/m the jacobian in velocity
space. Some references concerning the framework and related works are [10,65,66,95,132,139].

Quasi-neutrality equation

Description of the QN equation
In an electrostatic code, the field solver reduces to the numerical solving of a Poisson-like

equation [142]. In tokamak configurations, the plasma quasi-neutrality (denoted QN) approximation
is currently made (see description p. 15). We note n0 the initial equilibrium density (integral over
phase space - except r - of a reference equilibrium distribution function fref that will be defined
afterwards2). We recall the QN equation already given by Eq. (2.2) (p. 15).

− 1
n0(r)

∇⊥ .
[
n0(r)
B0
∇⊥φ(r, θ, ϕ)

]
+

1
Te(r)

[φ(r, θ, ϕ)− 〈 φ 〉FS] = ρ̃(r, θ, ϕ) (3.5)

1also called SOL which is the plasma region close to the vessel wall and characterized by open field lines.
2In the following, fref will also be denoted feq and refers to a canonical Maxwellian.
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where ρ̃ is defined by

ρ̃(r, θ, ϕ) =
1

n0(r)

∫ ∫
Jv J0 (f − fref)(r, θ, ϕ, v‖, µ) dv‖ dµ. (3.6)

with 〈.〉FS(r) the average on the flux surface labeled by r, and fref representing a reference distribution
function. By assumption φ=0 for this distribution function f=fref . Let us formally define what are
the flux surface operator (denoted 〈 g 〉FS) and the (θ, ϕ)-average operator (denoted ḡ) applied on a
given function g

ḡ (r) = 1
4π2

∫ ∫
g dθ dϕ,

〈 g 〉FS(r) = h(r)
∫ ∫ Jx(r, θ) g dθ dϕ (3.7)

with h(r) = 1
4π2

R
Jx(r,θ) dθ

Within the Gysela setting we use in this work, we assume the following conservation property is well
preserved at any time step (mass conservation)∫ ∫ ∫

Jx(r, θ) n0(r) ρ̃ dr dθ dϕ = 0. (3.8)

Let us remark that the variables φ, f , ρ̃ depend also on time t. The function fref is fixed at startup
very close to the initial distribution function f t=0, and fref do not change over time.

Description of the QN solver
We now describe the extension that handles the toroidal setting instead of the cylindrical one given

earlier. The equation (3.5) can be written as

Pφ+
1
Te

[φ− 〈 φ 〉FS] = ρ̃ (3.9)

where P is defined as

P = − 1
n0(r)

∇⊥ · (n0(r)∇⊥) =−
{
∂2

∂r2
+
[

1
r

+
1

n0(r)
dn0(r)

dr

]
∂

∂r
+

1
r2

∂2

∂θ2

}
By applying the (θ, ϕ)-average operator to the previous equation (3.9) and by using the fact that
〈 φ 〉FS = 〈 φ 〉FS then:

Mφ̄+
1
Te

[
φ̄− 〈 φ 〉FS

]
= ¯̃ρ (3.10)

where
M = −

{
∂2

∂r2
+
[

1
r

+
1

n0(r)
dn0(r)

dr

]
∂

∂r

}
One has the relations Mφ̄=Pφ̄ and M〈 φ 〉FS =P〈 φ 〉FS. Let Υ be Υ = φ − φ̄ then, by subtracting

(3.10) to (3.9), and by using appropriate boundary conditions (we will discuss in next subsection
what kind of boundary conditions we use), we obtain an equation on Υ(r, θ, ϕ) (∀θ ∈ [0, 2π] and
∀ϕ ∈ [0, 2π]): 

(
P + 1

Te

)
Υ(r, θ, ϕ) = %(r, θ, ϕ)

with % = ρ̃− ¯̃ρ ∀r ∈ [rmin, rmax]

Υ(rmin, θ, ϕ) and Υ(rmax, θ, ϕ) are given
by boundary conditions.

(3.11)

First, the unknown Υ can be solved in this equation without knowing 〈 φ 〉FS and φ̄. Second, to
have access to the main unknown φ, we would like now to compute 〈φ 〉FS and φ̄ (because φ = Υ + φ̄).
The equation (3.10) can be rewritten as

P (φ̄− 〈 φ 〉FS

)
+ P〈 φ 〉FS+
1
Te

[
φ̄− 〈 φ 〉FS

]
= ¯̃ρ (3.12)

Then, using the fact that 〈Υ 〉FS = 〈 φ 〉FS − 〈 φ̄ 〉FS = 〈 φ 〉FS − φ̄, the previous equation leads to the
following system (omitting boundary condition issues):

P〈 φ 〉FS = ¯̃ρ+
(
P +

1
Te

)
〈Υ 〉FS (3.13)
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We solve this equation (3.13) to get 〈 φ 〉FS. We obtain the expression of the electric potential φ as3:

φ(r, θ, ϕ) = Υ(r, θ, ϕ) + 〈 φ 〉FS(r)− 〈Υ 〉FS(r)︸ ︷︷ ︸
φ̄(r)

(3.14)

To summarize, the solving of (2.2) can be replaced by the solving of two simpler equations: (3.11)
then (3.13). First, we solve (3.11) in Υ. The variable ϕ plays the role of a parameter, we can solve a
set of 2D Poisson-like equations (in the poloidal plane). Each 2D problem reduces to a projection in
Fourier space in θ direction and then finite differences in the radial direction. Second, equation (3.13)
is treated as a differential equation only depending on the radial direction. Third, a sum is performed
to get φ (with (3.14)). See also Section 2.4 for further details.

New boundary conditions
A first set of boundary conditions (denoted bc1) is Dirichlet at rmin and rmax. In (3.11), we

impose Υ(rmin, θ, ϕ) = 0 and Υ(rmax, θ, ϕ) = 0 (∀θ ∈ [0, 2π], ∀ϕ ∈ [0, 2π]). Concerning (3.13), we set
〈 φ 〉FS(rmin) = 〈 φ 〉FS(rmax) = 0 (we have then also φ̄(rmin) = φ̄(rmax) = 0). These conditions are
easy to set up but there is one major drawback, the same potential (flux averaged) is forced at rmin

and rmax which does not allow for the system to freely set a global radial gradient for 〈 φ 〉FS from
rmin to rmax. We will exemplify soon why it is a problem in term of physics.

A second set of boundary conditions (denoted bc2) alleviates the constraint on the radial gradient
of 〈φ〉FS. As previously, we impose Υ(rmin, θ, ϕ) = 0 and Υ(rmax, θ, ϕ) = 0 (∀θ ∈ [0, 2π], ∀ϕ ∈ [0, 2π]).
Although this assumption simplifies the solver, the impact on the solution has not been yet evaluated.
Then, we fix a Neumann condition at rmin and Dirichlet at rmax for Eq. (3.13): ∂

∂r 〈φ〉FS(rmin) = 0 and
〈 φ 〉FS(rmax) = 0. Let us assume that rmin is small enough (i.e near 0) and therefore that Jx(rmin, θ)
does not depend on θ. In this configuration (verified in practice) for r small enough, φ̄(r) ≈ 〈φ 〉FS(r)
thanks to Eq. (3.8). We end up with some interesting properties:{

∂rφ̄(rmin) ≈ ∂r〈 φ 〉FS(rmin) = 0
φ̄(rmax) = 〈 φ 〉FS(rmax) = 0 .

To show the impact of boundary conditions on a simulation, let us consider a simulation in which
ITG turbulence has grown up. We consider the distribution function and associated ρ̃ at one given
time step. In Fig. 35, we plot the φ̄(r) function using the two different boundary conditions for the
same right-hand side ρ̃ (close to rmin and rmax, ρ̃ is zero, whereas in the center of the radial domain
where the turbulence is located, ρ̃ is non zero). For bc1, the radial derivative of φ̄(r) is non-zero at low
r, that gives a net poloidal flow (because vEGC has non-zero θ component) near rmin. However, in bc2

configuration φ̄(r) is nearly constant near rmin, then the spurious flow along θ direction disappears,
which is desirable.
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Figure 35: φ̄(r) profiles for a ITG simulation at a given time step (turbulence has already grown up)
using bc1 and bc2. Radial derivative at rmin is wrong for original bc1.

Defining proper radial boundaries

We have already described Vlasov and quasi-neutrality solvers that are two main components of the
Gysela code. Let us notice the computational domain is not formally closed in the radial and

3Remark: In slab geometry (old versions of Gysela), we used to suppose 〈 φ 〉FS = φ̄ and 〈Υ 〉FS = 0.
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velocity directions. We will describe which changes have been done to prevent particles from escaping
the computational domain at radial boundaries.

Description of the problem
The situation with eddies, turbulence located near the radial boundaries rmin or rmax is difficult

to handle. It commonly leads to electric potential structures that generate fluxes of particles in or out
the computational domain. Taking this into account in the mass and energy balance is tricky. Also,
the derivatives of φ have to be evaluated at rmin and rmax for computing displacements of particles,
it is complex to get them accurately.

Thus, we have retained the following practical solution: to impose the distribution function equal
to a reference function in the vicinity of radial boundaries. The reference distribution function that we
consider is a stationary solution of the Vlasov equation corresponding to a vanishing electric potential.
It follows that simple radial boundary conditions for Vlasov and QN solvers are accessible, for example
Dirichlet and Neumann are both possible. Also, as ρ̃ (see Eq. (3.6)) will then be zero in the vicinity
of rmin and rmax, the φ potential is likely to be nearly constant in this area. Then, the influx/outflux
of particles due to electric potential through radial boundaries of the computational domain should
be null (not because of physics phenomena, but due to the new boundary conditions). This solution
improves the setup of both Vlasov and QN solver and helps to close the computational domain in
radial direction. Hereafter, we describe a method that one can use to force the distribution function
near the radial boundaries.

Adapting the Vlasov solver at radial boundaries
Let us decompose f as the sum of an equilibrium function feq and a perturbation δf :

f = feq + δf

We will see afterwards how to build such a feq function. We define a radial mask function H(r) (see
also Fig. 36){ H(rmin) = H(rmax) = 0

∀r ∈ [rmin, rmax], 0 ≤ H(r) ≤ 1
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Figure 36: The mask function H (abscissa is radius r)

This function is smooth and equal to 1 almost everywhere except in the vicinity of radial boundaries.
Near rmin and rmax, the function H smoothly drops to zero. With the distribution function f , one
can define:  δf = f − feq

f† = feq +H δf
δf† = (1−H) δf

(3.15)

With this formulation, we have the property: f = f† + δf† . The main benefit is that: f† is equal to
feq at radial boundaries, and f† is equal to f in the center of the radial domain. The improvement of
radial boundary conditions consists in using f† in the Vlasov solver instead of f (because f† is equal
to feq at rmin, rmax and feq is invariant by Vlasov equation).

Practically, the method consists in removing δf† from f to get f† before the Vlasov step, and then
solving Vlasov on f† only. As δf† function contains a (1 − H) factor, δf† is zero almost everywhere
except in the vicinity of rmin and rmax. The δf† function is designed to contain a relative small set
of particles that are likely to escape the computational domain. We discard these particles from the
Vlasov solver on purpose. After the Vlasov step, we add back δf† to f† to recover f and the same total
number of particles. According to this procedure, δf† does not evolve in time through Vlasov solver,
we can interpret this quantity as a reservoir of particles that has left the computational domain (the
domain is truly open at rmax).

Please note that the reference feq of Eq. (3.15) can be changed occasionally during a simulation
in order to fit the macroscopic evolution of parameters such as temperature/density profiles. This
approach closes the computational domain in radial direction, as the particles are trapped into δf†
when they approach the radial boundary limits. Then, mass conservation is obtained, the main
drawback concerns the physics model that is altered near rmin and rmax.
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Adapting the QN solver at radial boundaries
For the quasi-neutrality solver, we would like to avoid large derivatives of the potential φ in the

vicinity of radial boundaries. To achieve this goal, we are considering the previous decomposition
f = f† + δf† . The f† function is built in order to be equal to feq near rmin and rmax. Then, we
would like to use f† and discard the δf† contribution in the right-hand side (RHS) of the QN equation.
However, we have also to take into account the δf† part in order that the total mass is unchanged.
As we want to consider δf† as something that does not participate anymore in the dynamics of the
system we transform this quantity in a passive mass in the RHS of QN equation. To do that, we just
have to rewrite Eq. (3.6) in the following way:

ρ̃(r, θ, ϕ) = ci +
1

n0(r)

∫
Jv dµ

∫
dv‖J0 (f† − feq), (3.16)

with

ci =

∫ Jv Jx J0 (feq − f†) dv‖ dµ dr dθ dϕ∫ Jx n0(r) dr dθ dϕ
.

The term ci is built to recover mass conservation defined in Eq. (3.8) (see also [167] for a focus
on this problem in a reduced setting). These changes alter locally the electric potential, near rmin

and rmax. Nevertheless, the energy balance is preserved, conservation of total energy remains true.
In practice, the term ci is expected to be relatively small4, because it represents the fraction of the
particles that has left the computational domain through radial boundaries, it is small in practice.
Numerical results: conservation issues in a toroidal 4D simulation

Let us consider a simulation with a single value µ 6= 0. Due to magnetic curvature/gradient, the
drift velocities at large v‖ transport some turbulent eddies straight to rmin and rmax. In this config-
uration, we will look at the impact of the solutions we have just proposed for boundary conditions,
versus the original code setting. The test case and initial conditions will be given in the upcoming
Section 3.1.4.
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Figure 37: Evolution of the mass for a 4D
toroidal test case, µ = 3. The mass is normal-
ized to 1 at t = 0.
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Figure 38: Evolution of the energies for a 4D
toroidal test case, µ = 3.

The specific treatment of radial boundary conditions improves the time evolution of energy con-
servation (as shown in Fig. 38). The energy curves report the relative energy: the energy at time step
t minus the energy at time step 0. Ideally, the total energy should remain 0 throughout the simula-
tion. The curve denoted “total energy - improved bc” is closer to zero than the original one denoted
“total energy - original”. In the early time steps (from 0 up to 2000 Ω−1), total energy conservation
is improved significantly: the total energy in the original version (black squares) rapidly departs from
0, whereas with the new boundary conditions the total energy (black thick curve) remains closer to
zero. We will see afterwards that other reasons explain why total energy is not well conserved after
t = 2000 Ω−1.

The impact on mass conservation is however negligible (see Fig. 37), meaning that mainly particles
with large velocity modulus are concerned by the new boundary conditions (they represent a small
percentage of the total mass, but quite a significant part of kinetic energy).
Numerical results: distribution function cut in a toroidal 4D simulation

We can now have a closer look at the distribution function itself. In Fig. 39, the poloidal cross
section of δf = f−feq is shown at a specific location in phase space (v‖ = −5 vth0, ϕ = 0, t = 64 Ω−1,
zoom on the center of poloidal cross section). A structure characterized by negative values of δf goes
through the center of the poloidal cross section (top-down flow). On the left hand side, the original

4One can also consider to set ci to zero, the conservation of Eq. (3.8) is no more assured but the possible impact of
ci on the radial profile of φ is decreased (Eq. (3.10)).
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Figure 39: Poloidal cross section (in x, y coordinates) of δf with a zoom on the center of the domain,
location in phase space : v‖ = −5 vth0, ϕ = 0, µ = 3, t = 64 Ω−1. Left plot: original code, right plot:
improved boundary conditions.

code has an external boundary in the center of the grid (white disk) that absorbs some of these negative
values and a kind of tail is generated (this is a wrong behavior that leads to particle gains). On the
right hand side, the improved boundary conditions imply that many particles are trapped before they
reach the central disk. These trapped particles create fine holes and bumps (located all around the
center). They are not taken into account in the Vlasov solver (because we use δf† during Vlasov solve
instead of δf ), but they are kept in the distribution function to compute macroscopic values (such as
kinetic energy, mass, . . . ). Hence, these particles do not flow out the computation domain which is a
good property. This process of collecting particles is not due to the physics model, but an artificial
mechanism that we add to avoid numerical issues (it alters locally the transport process).

3.1.2 New numerical schemes

A set of new features are presented now: an operator splitting (linear versus non-linear terms), the
accurate precomputation of some displacements that are part of the semi-Lagrangian scheme, the 4D
interpolation scheme, the delta-f interpolation technique. The objectives were twofold:
• to evaluate pros and cons compared to the directional Strang splitting that is used in the current

version of the Gysela code,
• to combine this 4D advection with a delta-f approach for the interpolation.

Global separation of linear/nonlinear terms

The equations (3.1) and (3.2) can be split into two parts, using the same kind of procedure as
described in [151]. The first part includes the nonlinear terms that depend on the electric potential.
The second part comprises all other terms. One can solve these two parts separately. On the first
hand, the nonlinear operator is described by (3.19), (3.20), on the second hand, the linear operator
is presented in (3.17), (3.18).

Linear operator L
dxi

dt
= v‖b

∗ ·∇xi + vDs ·∇xi (3.17)

m
dv‖
dt

= −µ b∗ ·∇B (3.18)

Nonlinear operator N
dxi

dt
= vEsGC ·∇xi (3.19)

m
dv‖
dt

= −e b∗ ·∇(J0 φ) +
mv‖

B
vEsGC ·∇B (3.20)

The linear operator exhibits large displacements at large modulus of parallel velocity, and also
induces shear flows. These features can interfere with the nonlinear dynamics that possibly involves
small displacements. Moreover, as the dynamics generated by the two operators are different, the
accuracy problems have possibly not the same characteristics for the two operators; and the limitations
(CFL-like conditions) on the time step are also not the same. Ideally, one should be able to fix the
numerical scheme and time step of linear and nonlinear operators independently in order to achieve a
given accuracy.
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The current semi-Lagrangian scheme implemented in Gysela code uses Strang splitting in the
Vlasov solver. This is a directional splitting already described p. 15. For this setting we have
divergence-free property of the full advection field of the Vlasov gyrokinetic equation, but not for each
substep of the directional splitting (we do not add specific sources as proposed in [150]). Even if the
scheme is not conservative from a mathematical point of view, we have noticed that errors do not
accumulate much in our gyrokinetic simulations, and that mass is well conserved over long simulation
times. Conservative approaches have also been tried out in semi-Lagrangian framework [95, 117],
but up to now we have encountered some difficulties on the three following points: to guarantee the
divergence-free property at discrete level, to preserve stationary states, to deal with radial boundary
conditions.

Another point, we have remarked that the Strang splitting may lead to some troubles at high
parallel velocities. Indeed, during one single directional substep, some large shifts in ϕ, r and θ appear
in the linear terms at high |v‖| (typically several spatial cells). Then, for not so large ∆t, the evaluation
of electric fields E that depends on spatial location is not done at the exact spatial position at each
substep of the directional splitting. To correct this, a possibility is to take smaller time step to recover
small displacements in the linear operator and then a reasonable accuracy in the evaluation of E. The
splitting between linear and nonlinear parts corrects this problem. The nonlinear operator is applied
alone, thus the linear operator and its large shifts at high v‖ modulus does not interact badly with
the nonlinear solver. This approach is a little bit more expensive than the previous approach in term
of computational cost. But it is counter-balanced by the fact that one can take a larger time step ∆t.

Precomputation of particle trajectories

The foot of a characteristic ending at a grid position (ri, θj , ϕk, v‖ l) is needed for the advection in
the semi-Lagrangian method. Since the fields acting on particles for the linear part L do not depend
on time t, one can approximate the foot of a particle trajectory - denoted (ri, θj , ϕk, v‖ l)? - once for
all, for a given time step ∆t. We have used Runge-Kutta time integration scheme RK2 with a small
time step to precompute these particle trajectories backward in time. This approach is possible for
the linear terms, but not for non-linear terms N that depend on φ(t). Let us choose a δt, such as
M δt = ∆t with M ∈ N∗ and M large enough. One can build a series as follows (using a α field
deduced from (3.17) and (3.18) at p.62):

rn+ 1
2

θn+ 1
2

ϕn+ 1
2

v
n+ 1

2
‖

 =


rn

θn

ϕn

vn‖

− δt

2
α


rn

θn

ϕn

vn‖

 and


rn+1

θn+1

ϕn+1

vn+1
‖

 =


rn

θn

ϕn

vn‖

− δt α

rn+ 1

2

θn+ 1
2

ϕn+ 1
2

v
n+ 1

2
‖

 .

The initial condition is set to r0 = ri, θ0 = θj , ϕ0 = ϕk, v0
‖ = v‖ l. After M steps of Runge-Kutta

iterations, it gives 
ri
θj
ϕk
v‖ l


?

=


rM

θM

ϕM

vM‖

 .

Because these trajectories can be computed only once when the simulation starts, M can be
taken quite large (we will assume M = 64 in the following). These precomputations do not impact
significantly the global simulation time. We just need to store the results of these precomputations
in memory and/or on the parallel file system. Other time integration schemes have been tried: RK3,
RK4, and also larger values of M , no significant impact was observed in term of accuracy.
One of the main benefit of this method is: the feet of the characteristics are determined more accurately
than the Taylor expansion of α that is used in the current version of Gysela, because the time step
δt is a much smaller time step than ∆t. One should also mention that this approach resembles to the
subcycling technique [97] that is able to limit particle motion to one cell per cycle in PIC codes, and
also improves accuracy and simplifies sorting.

Interpolations by tensor product in 4D

In this Subsection, we will describe a strategy that performs 4D interpolations using tensor product
of cubic B-splines. Let us consider a one-dimensional function g which is defined on a global domain
[xmin, xmax] ⊂ IR. Suppose that we know the values (g(xi))∀i=[0,N ] and we want to interpolate this
discretized g function with cubic splines. The projection s of g onto the cubic splines basis reads

g(x) ' s(x) =
N+1∑
ν=−1

ηνBν(x),
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where Bν is the cubic B-spline. The interpolating spline s is uniquely determined by (N + 1) interpo-
lating conditions

g(xi) = s(xi), ∀i = [0, N ],

and by the boundary conditions on the first derivative at both ends of the interval in order to obtain
a C1 global approximation (periodic boundary conditions or others are also possible but not described
here)

f ′(x0) ' s′(x0), f ′(xN ) ' s′(xN ).

The ην coefficients are the solution of a linear system. A LU decomposition is used to find these
unknowns (ην)ν∈[−1,N+1] depending on the inputs (g(xi))i∈[0,N ]. Practically, as Bν are compactly
supported, the interpolation of g at a single location x is computed with the formula:

g(x) ' s(x) =
m0+2∑

ν=m0−1

ηνBν(x),

with m0 = bN x− xmin

xmax − xmin
c .

Let us consider now a 4D function g that will be projected on s in cubic spline basis. Using a tensor
product of cubic B-spline in 4D, one can construct spline coefficients ην0,ν1,ν2,ν3 , with νd ∈ [0, Nd],
∀d = 0, 1, 2, 3 . These new η coefficients can be found by using LU decompositions (four LU decom-
positions, one for each dimension). The interpolations in four dimensions are computed using the
following expression (with md well chosen depending on xd and on the discretization):

s(x0, x1, x2, x3) =
m0+2∑

ν0=m0−1

m1+2∑
ν1=m1−1

m2+2∑
ν2=m2−1

m3+2∑
ν3=m3−1

ην0,ν1,ν2,ν3 Bν0(x0)Bν1(x1)Bν2(x2)Bν3(x3)

Four-dimensional numerical scheme

The usual way to perform a single time step in the Gysela code consists of a series of directional
advections: (v̂‖/2, ϕ̂/2, r̂θ, ϕ̂/2, v̂‖/2). Let us now consider an avoidance of this Strang splitting. Let
us suppose that we advance in time only the linear part L and the feet of the characteristics are
computed for all grid points in phase space (see 3.1.2). The Algo. 11 sketches the corresponding 4D
numerical scheme. Parallelization of the computations will not be detailed here.

1 Compute the spline coeff. ηn of the 4D function fn;
2 for All grid points (ri, θj , ϕk, v‖ l) do
3 Get precomp. foot of characteristic (ri, θj , ϕk, v‖ l)?;
4 Interpolate fn at location (ri, θj , ϕk, v‖ l)?;
5 fn+1(ri, θj , ϕk, v‖ l)← the interpolated value;

Algo. 11: 4D numerical scheme (given µ value)

Let us remark that the N operator uses the directional splitting method and not 4D advections.
It implies large computational costs to estimate 4D displacement fields for operator N that we wish
to avoid. In contrast, the 4D displacement fields for the linear operator L is computed once at the
beginning, so that its overall computational cost becomes negligible for long simulation runs.

The parallel domain decomposition that we have designed for this scheme is along r and θ directions
(MPI parallelization). In the parallel setting (pid the index of the process), only local points located in
[rminpid , r

max
pid ]×[θminpid , θ

max
pid ] are taken into account at line 2. If the foot of one characteristic falls outside

the local domain, communications are generated to ask the process able to perform this interpolation
to send back the result. In addition to this MPI approach, a OpenMP fine grain parallelization has
been set up on the ϕ loop.

Delta-f interpolation strategy

The delta-f interpolation strategy is one of the goals that is targeted to achieve the conservation of
invariant/equilibrium states. The Algo. 12 describes how we have used delta-f techniques to improve
the interpolation accuracy.

This algorithm requires that feq is invariant for the Vlasov equation. If feq verifies this prop-
erty, the value of feq at the foot of any characteristic is equal to the value of a given grid points,
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1 If needed, update feq;
2 Compute the spline coeff. ηn of the 4D function δf

n=fn−feq;
3 for All grid points (ri, θj , ϕk, v‖ l) do
4 Get precomputed foot (ri, θj , ϕk, v‖ l)?;
5 Interpolate δfn at location (ri, θj , ϕk, v‖ l)?;
6 fn+1(ri, θj , ϕk, v‖ l)← interp. δfn value + feq(ri, θj , ϕk, v‖ l);

Algo. 12: 4D delta-f scheme (given µ value)

i.e feq(ri, θj , ϕk, v‖ l)? = feq(ri, θj , ϕk, v‖ l). With such method, we are able to conserve perfectly an
the equilibrium state feq. Furthermore, if we suppose that fn is near feq, δnf is small. The first
Algo. 11 will generate interpolation errors that grow along with the spatial derivatives of feq. The
new Algo. 12 has smaller interpolation errors that are only proportional to derivatives of δf . Please
note that one may need to update the feq function if this function is too far from f (first line of the
algorithm). However, in the simulations we consider here, we do not need to perform this step, as f
remain close to feq.

Remark: The same delta-f scheme could also have been combined with the Strang splitting we
have usually. But, as feq is not preserved at each directional substep, special care should be taken.

Global algorithm for one time step

To sum up the different approaches that will be compared afterwards, a global algorithm for the
time stepping is presented in Algo. 13 and 14. The Algo. 13 is the original algorithm with the
Strang splitting and the time integration scheme described p. 16. The Algo. 14 corresponds to the
new approach with L/N splitting, the 4D interpolation in the L operator, and possibly the delta-f
interpolation inside the L operator.

1 φn ← QN solver on fn;
2 fn+1/2 ← Strang split of (L+N )(fn, φn) over ∆t/2;
3 φn+1/2 ← QN solver on fn+1/2;
4 fn+1 ← Strang split of (L+N )(fn, φn+1/2) over ∆t;

Algo. 13: Time stepping without L/N splitting

1 f? ← L(fn) over ∆t/2;
2 φ? ← QN solver on f?;
3 f† ← Strang split of N (f?, φ?) over ∆t/2;
4 φ† ← QN solver on f†;
5 f ] ← Strang split of N (f†, φ†) over ∆t;
6 fn+1 ← L(f ]) over ∆t/2;

Algo. 14: Time stepping with L/N splitting

Algo. 14 is therefore more expensive than Algo. 13. First, the number of steps shown is a bit
larger (6 versus 4). Second, the linear operator in the new version requires 4D interpolations which
are a bit more expensive (algorithmic cost) compared to the original directional splitting. Thus, the
new Algo. 14 (with delta-f interpolation) roughly doubles execution time compared to original Algo.
13. The memory footprint is also increased in Algo. 14, by less than a factor two, because the feet of
the characteristics in operator L are temporarily stored in memory.

3.1.3 Gyrokinetic simulations - reduced settings

In this Section, we evaluate the new methods presented previously on several simple test cases. In the
following, the default timing unit is the ion cyclotron period Ω−1 = mi/(ZieB).

Unperturbed motion of particles

We are interested in numerical methods that are able to conserve equilibrium states of the Vlasov
equation. First, it is a property that ensures a good level of accuracy of the Vlasov solver in full-
scale simulations, but, second, such invariant property is also important by itself in order to establish
reference scenarii to test/verify the code. This aspect is crucial for large HPC codes with a lot a feature
combined all together. It helps detect bugs by checking violations against invariance. Generally
speaking, conservation properties are crucial to distinguish correct execution from bad one for a
scientific simulation code. In addition, this also is helpful for debugging purposes.

We focus in this Section on gyrokinetic models with one single µ value and with µ 6= 0 (i.e. non
drift-kinetic models, the case with µ = 0 is simpler [89] and is not considered here). Let us assume
the following hypothesis: considering the global separation of linear/nonlinear terms, we discard N
and keep only L. The quasi-neutrality solver is also switched off. Therefore, we use no field solver,
(equivalent to impose φ=0). In this configuration, we estimate essentially the quality of the initial
distribution function and the quality of the Vlasov solver for the linear terms (L operator), as we will
see afterwards.
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Test case 1

Description of the test case. Let us consider an initial distribution function that should be a
steady state for the Vlasov equation. An equilibrium solution of the collisionless gyrokinetic equation
must satisfy some conditions. In an axisymmetric toroidal configuration, a gyrokinetic Vlasov equi-
librium is defined by three constants of motion: the magnetic moment µ, the energy E=mv2

‖/2+µB(r,θ)

(assuming φ is null), and the canonical toroidal angular momentum Pϕ=e ψ(r)+mIv‖/B(r,θ) (where I is
a constant used in the definition of B=

I
B (eϕ+ r

q(r)R0
eθ)). The ψ(r) function is defined thanks to the

safety factor q(r) by the relation: dψ/dr=−B0 r/q(r).
Let us assume that we have set up an initial equilibrium. One can estimate both the accuracy of

this equilibrium and of the Vlasov solver by:

• measuring the difference between the initial function and the distribution function at a given
time step after several Vlasov solving steps.

• a convergence study in time and space discretizations for a simulation that includes several
Vlasov solving steps.

For the sake of simplicity and to reduce the computational costs, the simulations presented in
this Section are set up to Nµ = 1. Let us initialize a simulation using a steady state. For an
axisymmetric equilibrium, the distribution function is constant along the ϕ direction. It should
remain constant using the L operator. Our goal is to quantify the numerical error induced by the
numerical scheme, knowing that the difference to the initial distribution function should remain zero.
The test case setting is characterized by (with ρ? the gyroradius normalized to the plasma size):
µ=3., ρ?=.01, Nr=256, Nθ=256, Nϕ=16, Nv‖=128. The initial distribution function finit = feq is taken as :

∀Pϕ∈[−∞,Pϕ1 ], feq(E,µ,Pϕ) = 0

∀Pϕ∈[Pϕ2 ,∞], feq(E,µ,Pϕ) = e−E

∀Pϕ∈[Pϕ1 ,Pϕ2 ], feq(E,µ,Pϕ) = e−E 1
2 (1+cos(

π (Pϕ2−Pϕ)
Pϕ2−Pϕ1

))

where Pϕ1 and Pϕ2 are well chosen in order to localize the large gradient of the distribution function
in the middle the radial profile. We will look at the norms up(t) = ‖f t − feq‖p with p = 1,∞. The
thermal velocity is denoted vth. The timing unit is the ion cyclotronic time Ω−1.

Figure 40: Time evolution of a steady state distribution function without 4D interpolation and without
delta-f interpolation techniques, poloidal cut at v‖ = 0, ϕ = 0 (ideally f t − feq remains zero)

Figure 41: Time evolution of a steady state distribution function without 4D interpolation and without
delta-f interpolation techniques, poloidal cut at v‖ = 4.5 vth, ϕ = 0 (ideally f t − feq remains zero)

Poloidal cuts are presented in Fig. 40, with (v‖=0, ϕ=0 fixed) at t=0 and t=200. These correspond
to simulations using standard approach with Strang splitting, none of the new numerical schemes is
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used. One can observe on this illustration that numerical artifacts develop on f t in a poloidal cut at
v‖ = 0. These approximation errors come from the interpolation operator and from the computation
of the feet of characteristics. These errors are small compared to the mean value of f t, but errors can
be located where f t is close to zero (relative error is large).

On Fig. 41, a poloidal cut at v‖ = 4.5 vth is presented. Let us consider energetic particles, some
of them are able to encounter radial boundaries. This Fig. shows that numerical problems arise
at external boundary (right plot, t = 200). The difficulty is the following: in the semi-Lagrangian
scheme one looks for the position of one given particle back into the past and estimates the value
of distribution function at this location. If this particle was outside the computational domain one
time step ago, one has however to approximate the value of the distribution function with an ad-hoc
procedure. As the equilibrium function feq is not defined outside the computational domain5, our
method is to stick escaping particles to the last radius r = rmax. It is this procedure that induces the
biggest numerical perturbation originating on the external boundary condition.

Using 4D advection technique combined with delta-f interpolation, the numerical artifacts shown
in Fig. 40 and 41 do not appear at all (thus it is not shown here). Indeed, the interpolation during
the advection is performed on the distribution function δtf = f t − feq, and δtf is equal to zero at the
beginning of the simulation. The δtf function remains exactly zero over all time step. This approach
solves perfectly the problem of preserving the invariant state feq.

Test case 2

Description of the test case. The previous test case was focusing on preserving a steady state
solution, but in practice the distribution function used in a realistic simulation can often be represented
as the sum of a steady state solution plus a perturbation f = feq + δf . There are multiple methods
and several criteria to establish the best feq to use, we will not discuss this issue here. However, the
following case will focus on the benefits brought by delta-f interpolation technique to represent the
time evolution of a small perturbation over of a steady state solution of Vlasov. Let us define finit as
feq + δ0

f with feq reads
∀Pϕ∈[−∞,Pϕ1 ], feq(E,µ,Pϕ) = 0

∀Pϕ∈[Pϕ2 ,∞], feq(E,µ,Pϕ) = e−E

∀Pϕ∈[Pϕ1 ,Pϕ2 ], feq(E,µ,Pϕ) = e−E 1
2 (1+cos(

π (Pϕ2−Pϕ)
Pϕ2−Pϕ1

))

and δt=0
f is a smooth perturbation which is localized in the area of a single point P i = (E i, P iϕ, θi).

The δt=0
f function does not depend on ϕ, this test case is axisymmetric and at any time step the

solution is identical for each ϕ value. On Fig. 42, the feq and δt=0
f =f t=0−feq functions are plotted.

Figure 42: Initial state of test case 2, poloidal cuts at v‖ = 0.75vth, t = 0

After a few time steps, the distribution function δt=20
f is shown in Fig. 43. In the left panel,

the original version of the code is used, whereas in the right panel the 4D advections with delta-f
interpolation schemes are switched on. Without the delta-f approach, artifacts spoil the signal: in the
center at r = rmin, and also in the regions where the cubic splines have difficulties fitting the f slope.
With the delta-f interpolation, these problems disappear. There is no difficulty to handle feet of the
characteristics outside the domain because it is assumed that one has δf = 0 outside, which is a well
known value. The artifacts due to the slope of feq do not arise because the interpolation operator
acting on δtf does not see this slope.

To conclude, the delta-f interpolation method tends to reduce the numerical error. The main
drawback is that we assume that: the distribution function is very near an equilibrium function at

5there is no great impediment, it would be possible to define a specific extension to define feq outside.
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Figure 43: State at t = 20, poloidal cuts at v‖ = 0.75vth of original code (left), modified version with
delta-f interpolation (right)
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Figure 45: Evolution of the energies for a 4D
toroidal test case, µ 6= 0

radial boundaries (δf almost zero). The efficiency of the method is increased if one can compute a
steady state function close to the current distribution function.

3.1.4 Gyrokinetic simulations - full-scale 4D settings

In the previous paragraphs, the field solver of non-linear terms were switched off. Now, we consider
a full-scale case including non-linear terms and quasi-neutrality solver, giving access to non-linear
physics. The simulation presented earlier p. 61 is the reference framework on top of which we will
evaluate here a set of new methods. The improved boundary conditions is switched on in all the
experiments presented hereafter.

Description of the setting

For the sake of simplicity, we will describe in this section only 4D experiments (with µ 6= 0). The
initial distribution function finit has been chosen close to an equilibrium feq in order to maximize
the benefit of the delta-f interpolation approach. The initial distribution function finit is equal to
feq plus a small perturbation (a bath of modes). The distribution feq is a function of the three
motions invariants only, Pϕ, E , µ. The feq is computed such that the radial profile of temperature Ti(r)
(averaged over θ, ϕ dimensions) and density ni(r) match the ones we prescribed in input. The radial
gradients of these profiles are chosen so that Ion Temperature Gradient (ITG) instability develops.
The turbulence drive is ensured by thermal baths at the radial edges in rmin and rmax that are
imposed during the whole simulation. Some of the key parameters of the following simulation are:
µ=0.4, ρ?=.02, aspectratio=3, Nr=128, Nθ=128, Nϕ=64, Nv‖=92.

Impact of the Linear/Non-Linear splitting

Let us evaluate the improvements brought by all the techniques described in Section 3.1.2. First, the
new splitting introduces a clear separation between linear terms and non-linear terms, which improves
quantitatively the time integration of particle trajectories. Second, the precomputation of particles
displacements leads to an improved localization of the foot of characteristics in the semi-Lagrangian
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1) for a 4D toroidal test case, µ 6= 0.
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Figure 49: Zoom on the first time steps, energies for
a 4D toroidal test case, µ 6= 0

scheme, and then on the accuracy of the Vlasov solver. Third, the 4D advection avoids the possible
discrepancy due to the directional splitting occurring at too large time steps.

The combination of these three techniques significantly improves the energy conservation property,
as shown in Fig. 45 (relative total energy is set to zero at t = 0). The total energy obtained with these
techniques (black thick line) is closer to zero than the total energy previously observed (black plain
squares). However, potential energy and mass curves (Fig. 44) are almost not modified. We deduce
that these modifications mainly correct the particle trajectories of particles that have high |v‖|.

Impact of the delta-f interpolation approach

We consider the delta-f interpolation in addition to the previous setting.
With delta-f version, the mass remains almost at the reference initial value on the period from t = 0
to t = 2000 (see Fig. 46 and a zoom on early time steps in Fig. 48). This is a quite desirable behavior.
However, once we reach the non-linear saturation phase (t > 2000), the mass conservation begins to
degrade. Furthermore, Fig. 49 shows a zoom on the energies during the beginning of the simulation.
The total energy of delta-f interpolation version (black thick line) is a lot better than the previous
simulation (black squares). Overall, in order to simulate fine phenomena that develop close to a steady
state (for example t < 1000 here), the delta-f interpolation technique seems to be required.

Let us analyze more precisely the mass curves. Each of the operators L and N should theoretically
conserve the mass independently. One can track during a simulation how much each operator degrades
the mass. On specific simulations, we took a time step sufficiently low in order to have well converged
simulations in time and space. In these simulations, we have observed:

• the operator L induces mass conservation errors (without delta-f strategy) in the beginning of
the simulation before the saturation phase (meaning t ≤ 2000 here). These errors are larger
than those of operator N . Using the delta-f approach, these errors caused by L are reduced by
several orders of magnitude.

• the operator N is predominantly responsible for the lack of conservation of the mass in the
saturation phase (meaning t ≥ 2000 here).
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Figure 50: Evolution of the mass for a 5D toroidal
test case
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Figure 51: Evolution of the energies for a 5D
toroidal test case

The framework of this work is not a conservative approach that would enforce mass or energy
conservation (this kind of approach has been proposed in other simulation codes). Therefore, we
just observe these quantities as indicators of the quality of a simulation. In Fig. 47, even with the
improvement we have put in place, the relative total energy is not perfectly constant in time. The
main reasons are the following: the toroidal setting (as opposed to slab geometry) introduces more
complex particle trajectories, the high energetic particles carry much energy (they contribute much
to kinetic energy) and are also difficult to handle (they need a small time step to be well tracked), the
filamentation in phase space occurs together with numerical diffusion degrading the total energy.

In Figs. 50 and 51, a reference 5D case in the original version of the code is compared to the same
case with the new version of the code that includes specific treatment for boundary conditions, operator
splitting (separation of linear/non-linear operators), delta-f interpolation in 4D. It is noteworthy that
the analysis of the different improvements that have been carried out for the 4D simulations in the
previous Sections are also true in 5D setting.

3.1.5 Conclusion

Several numerical schemes have been investigated to improve the conservation properties expected
in a gyrokinetic code. The semi-Lagrangian code Gysela was enhanced by these schemes in terms
of energy conservation, mass conservation and in preserving some stationary states. The first tech-
nique targeted the radial boundary conditions. Radial boundaries were adapted in order to prevent
particles from escaping the computational domain. Second, the Vlasov solver has been split into two
separate steps: the linear part and the non-linear part. This change improved energy conservation
and the modeling of the fastest particles. Third, a 4D advection technique combined with a delta-f
interpolation scheme and an accurate precomputation of the feet of characteristics allow: first, a bet-
ter representation of a distribution function close to a stationary state, second, a net improvement
on energy and mass conservations. The long-time stability of such systems is a challenging area in
applied mathematics. Having a set of methods to check and ensure a set of conservation properties
helps a lot to build confidence in the numerical methods and in the simulation tool.

It would be a major contribution to add collision operator in this framework. A possible mechanism
to extend this work would be to switch cleverly between a local Maxwellian as reference distribution
function in the collision operator [190] and a canonical Maxwellian for the Vlasov operator. Another
means would be to use a better equilibrium that takes into account both operators [108].

3.2 Aligned interpolation method

3.2.1 Introduction

In a tokamak, due to the large confining magnetic field, a fast homogenization of the different physical
quantities occurs along the magnetic field lines; this leads to very smooth and small variations along
the field lines, whereas the scale length of the variations is very small (comparable to the gyro-radius)
in a perpendicular direction. This strong anisotropy should be taken into account for more efficient
simulations. It is typically done by using field aligned coordinates in many gyrokinetic codes. The
fundamental idea is to use coordinates that follow field lines. With such coordinates a flux tube (a
tube with a surface parallel to B), which is bent by magnetic curvature and twisted by magnetic
shear, is mapped into a rectangular domain. However this approach has the drawback of needing a
non-conformal correction after one turn, either in the poloidal or the toroidal direction, which yields
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a break of symmetry. More importantly, field-aligned coordinates become singular when approaching
the separatrix6 (see Fig. 52) in a divertor configuration, with potentially serious consequences on the
robustness of the numerical algorithm that employs them.

Figure 52: 3D view of 1/4 torus in a
TOKAM3X simulation, the electric po-
tential fluctuations are shown.

A very promising alternative, which is very flexible in
regard to the choice of coordinates, has been introduced by
Hariri-Ottaviani [146]. The main idea is to compute the
derivatives locally along the field lines, getting the needed
values for finite differences by interpolation to the inter-
section points of a field line with the poloidal planes. We
are interested here in a thorough numerical investigation
of this idea in the context of gyrokinetic simulations us-
ing semi-Lagrangian methods. Then, we adapted this ap-
proach to the semi-Lagrangian context. We have validated
this method on the constant oblique advection equation
and then on 4D and 5D models with oblique magnetic field
in cylindrical and toroidal geometries. The strength of this
method is that one can reduce the number of points in the
longitudinal/parallel direction (along the field lines). Nu-
merical experiments show that field-aligned interpolation

leads to considerable memory savings for the same level of accuracy; substantial extra savings are also
expected in much larger reactor-scale simulations (ongoing work).

Firstly, we give the numerical algorithms that are employed for performing interpolation and
differentiation in a “field-aligned” fashion. Second, we will describe the constant velocity oblique
advection to show the main feature of the method. Finally, the Gysela setting in toroidal geometry
(circular tokamak) is presented and the aligned method is benchmarked against a standard (i.e. non-
aligned) version. The work shown here [1] has been carried out through a collaboration involving CEA
(V. Grandgirard, M. Ottaviani, myself), IPP-Garching (Y. Guçlu, E. Sonnendrücker) and University
of Strasbourg (M. Mehrenberger).

Figure 53: Aligned method aim: interpolate along field line that show
smooth variations in the (θ, ϕ) plane. Electric potential plotted here.

3.2.2 Description of the numerical tools

To describe the 2D field-aligned interpolation method, we consider a magnetic flux surface at r = r0,
parameterized by the angular coordinates (θ, ϕ) ∈ [0, 2π]× [0, 2π]. This setting is natural in toroidal
geometry. Our goal is to interpolate a sufficiently regular function g(θ, ϕ), 2π-periodic in both coordi-
nates, at an arbitrary location (θ?, ϕ?). We assume that the values g(θi, ϕj) are known on the uniform
2D grid (θi, ϕj) = (i∆θ, j∆ϕ) with ∆θ = 2π/Nθ, ∆ϕ = 2π/Nϕ and (i, j) ∈ [0..Nθ − 1]× [0..Nϕ − 1].
By periodicity we can extend this to (i, j) ∈ ZZ2. There exists a unique index j? ∈ ZZ and 0 ≤ β < ∆ϕ
such that ϕ? = ϕj? + β . We then define

ϕj?+k = ϕj? + k∆ϕ, k = ς, .., ξ .

We will use information stored in the 1D slices g(θ = ∗, ϕ = ϕj?+k)k=ς,..,ξ to perform the aligned
interpolation at (θ?, ϕ?). Let us define a function fieldlineθ(θ, ϕ, j) that gives a θ-value that corre-
sponds to the intersection of the field line (or an approximation of the field line) that passes by the
point (θ, ϕ) and the line (θ = ∗, ϕj). This function is the cornerstone of the method, as it provides a
way to interpolate using values that are close to each other, because the locations of these values are

6Boundary between closed and open field lines, separating the toroidally confined region from the region where field
lines connect to material surfaces.
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aligned to the physical structures. The fieldlineθ function is chosen such as all interpolated points
hk are aligned on a single field line.

The first stage of the method is to compute %θ?,ϕ?(k)k=ς,..,ξ by interpolating g at positions
(fieldlineθ(θ?, ϕ?, j? + k), ϕj?+k)k=ς,..,ξ. We currently employ cubic splines to interpolate along the θ
direction on the 1D slices g(θ = ∗, ϕ = ϕj?+k)k=ς,..,ξ. The formula for fieldlineθ that we have been
using so far is the linear approximation

fieldlineθ(θ
?, ϕ?, j? + k) = θ? + ι(r0) (ϕj?+k − ϕ?) ,

which is the equation of a straight line. This expression is a good approximation in the case of
the circular tokamak we consider with Gysela (because of its medium-large aspect-ratio). If this
assumption is not fulfilled, one can take a more accurate description for the field line. The fieldlineθ
function can be easily changed in the code: it is effectively a parameter of the method. The impact
on the simulation would be a small additional cost compared to the very cheap linear approximation,
along with an improvement in the accuracy of the method.

(θ*,φ*)

θ

φ

φ
j*

φ
j*+1

φ
j*-1

Figure 54: Illustration of the aligned interpolation scheme for a target point at position (θ?, ϕ?); the
squares are located at (θ = fieldlineθ(θ?, ϕ?, j?+k), ϕ = ϕj?+k)k=ς,..,ξ; the values at square positions
are interpolated using values known at black small points; the value at the red circle position (θ∗, ϕ∗)
is interpolated using values known at the square positions.

The second stage of the method consists in interpolating g(θ?, ϕ?) using the values aligned on the
parallel direction we just get: %θ?,ϕ?(k)k=ς,..,ξ. To achieve this, we use Lagrange polynomials of degree
2d+1 taking ς=−d, ξ=d+1. The pseudo-code implementation of the scheme is presented in Algo. 15,
and an illustration is given in Fig. 54.

Input : g, theta?, phi?

Output : g†

1 for j = 0, Nϕ do
2 η(i = ∗, j)← spline coefficients for g(i = ∗, j)
3 for j = 0, Nϕ do
4 for i = 0, Nθ do

// foot of characteristics phi?, theta?

// are computed beforehand

5 ϕ? ← phi?(i, j); θ? ← theta?(i, j);
6 j? ← index of the left grid
7 point close to ϕ? ;
8 for k = −d, d+1 do
9 θk ← fieldlineθ(θ

?, ϕ?, j? + k);
10 %k ← 1D spline interpolation along θ
11 at θk using η(i = ∗, j? + k);

12 g†(i, j)← 1D Lagrange interpolation
13 using values (%k)k=−d,d+1

Algo. 15: Aligned interpolation in 2D

Input : g, ε
Output : dg/dϕ

1 for j = 0, Nϕ do
2 η(i = ∗, j)← spline coefficients for g(i = ∗, j)
3 for j = 0, Nϕ do
4 for i = 0, Nθ do
5 for k = −d, d+1 do
6 θ+k ← fieldlineθ(θi, ϕj + ε, j + k);

7 θ−k ← fieldlineθ(θi, ϕj − ε, j + k);

8 %+
k ← 1D spline interpolation along θ

9 at θ+k using η(i = ∗, j + k);

10 %−k ← 1D spline interpolation along θ

11 at θ−k using η(i = ∗, j + k);

12 %+ ← 1D Lagrange interpolation at (θi, ϕj + ε)

13 using values (%+
k )k=−d,d+1;

14 %− ← 1D Lagrange interpolation at (θi, ϕj − ε)
15 using values (%−k )k=−d,d+1;

16
dg
dϕ

(i, j)← %+−%−
2ε

Algo. 16: Derivatives along ϕ, aligned scheme

Field-aligned computation of derivatives

In the Gysela code, we need to evaluate φ derivatives with respect to ϕ of the electric poten-
tial φ(r, θ, ϕ). It is essential to compute the non-linear terms appearing in the advection equations,
but also in the diagnostics that compute a set of macroscopic physical variables. In order to do
so with a reduced number of points in the ϕ direction (authorized by the aligned interpolation ap-
proach), a scheme has to be designed to get an accurate approximation of these derivatives. We
have evaluated two alternatives to estimate ∂φ/∂ϕ: the first one relies on separately computing the
polar derivative ∂φ/∂θ and the parallel derivative b · ∇φ, and then performing a projection using
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the formula ∂φ/∂ϕ =
[
b · ∇φ− (bθ/r)∂φ/∂θ

]
R/bϕ; the second one performs a field-aligned interpola-

tion similar to Algo. 15 to compute two accurate values of φ(r, θ, ϕ± ε), and then employs the finite
difference formula ∂φ/∂ϕ(r, θ, ϕ) ≈ [φ(r, θ, ϕ+ ε)− φ(r, θ, ϕ− ε)] /2ε. Algo. 16 describes the second
solution, which is effectively used in the Gysela code since we observed higher accuracy for this
approach in actual simulations.

3.2.3 Constant velocity oblique advection

To exemplify how the method works we will now go through a simple transport equation in a setting
that includes a strong anisotropy.

Equation

Here the oblique magnetic field B whose norm is B (which depends on r) writes

B = Bb, b = bz ẑ + bθθ̂, bθ =
c√

1 + c2
, bz =

1√
1 + c2

, c =
ιr

R
,

and is parameterized by B0 := Bbz and the rotational transform iota which satisfies

ι =
bθ/r

bz/R
=

1
q
,

where q is called the safety factor7. To demonstrate the advantages of the aligned interpolation that
we introduce, we intend to solve the constant oblique advection equation which is a lot more simple
to manipulate and understand than the full gyrokinetic setting:

∂tf + vb · ∇f . = 0, (3.21)

This equation is a subpart of the gyrokinetic equations (fast motion along field lines) if one focuses
on advection terms along (θ, ϕ) variables. We will use an interpolation that is aligned along the
direction of the magnetic field b. Note that another possible strategy would be to adapt the grid
to magnetic field lines (see [109, 143] for example); one strength of the present approach is that the
location grid points does not need to be changed, which permits to ease the implementation in an
existing code. Also, the aligned approach may or may not be activated depending on the physical
case under consideration giving the user more flexibility.

Numerical scheme

Writing ϕ = z
R , we have to solve for g := g(t, θ, ϕ) = f(t, r, θ, Rϕ, v), the constant oblique advection

equation (3.21). We have

∂tf + v∇‖f = ∂tf + v
bθ
r
∂θf + vbz∂zf = 0,

which leads to
∂tg + v

bθ
r
∂θg + v

bz
R
∂ϕg = ∂tg + ṽ (ι∂θg + ∂ϕg) = 0, (3.22)

with ṽ = vbz
R , and g is 2π periodic in θ and ϕ.

Let ∆t ∈ R+, and t` = `∆t, ` ∈ N. We have the relation

g(t` + ∆t, θ, ϕ) = g(t`, θ − ιṽ∆t, ϕ− ṽ∆t).

Let Nθ, Nϕ ∈ N∗, and θi = 2πi
Nθ

, ϕj = 2πj
Nϕ

, which can be defined for i, j ∈ R. We suppose to know
values g`,i,j ' g(t`, θi, ϕj), for i = 0, . . . , Nθ−1, j = 0, . . . , Nϕ−1. By periodicity, we assume i, j ∈ Z.

Numerical results

In the case of constant oblique advection, we have to solve (3.22). We consider an initial function
with a well defined helicity8 g(0, θ, ϕ) = g0(mθ − nϕ), so that

b · ∇f =
(
m
bθ
r
− nbz

R

)
g′0(mθ − nϕ) = k‖g

′
0(mθ − nϕ),

7When ι = 0, we are close to the setting of the classical drift kinetic model given in [139,115] for example.
8magnetic helicity is a measure of twist and linkage of magnetic field lines. It gives the extent to which the field lines

wrap and coil around one another.
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where
k‖ :=

bz
R

(n− ιm) =
bz
qR

(m− qn) .

In order to have b · ∇f bounded, we look for situations where

|m− qn| ≤ 1,

as in real tokamaks, it is assumed that k‖ will typically be in the range of [− 1
q R ,

1
q R ]. For simplicity

purposes, We will use in the sequel g0 = sin.
The displacement due to advection equation has a main parameter ∆t. An extended set of various

∆t will be investigated because the error of one given numerical scheme depends on it. We choose
a value for safety factor which is a non-rational surface case, q =

√
2. We look at four important

configurations (targeting gyrokinetic simulations) for the initial functions with k‖ close to 0 or 1.

A : (n = −5, m = −7) k‖ ≈ 0.07 1
q R

B : (n = −24, m = −34) k‖ ≈ −0.06 1
q R

C : (n = −5, m = −6) k‖ ≈ 1.07 1
q R

D : (n = −24, m = −33) k‖ ≈ 0.94 1
q R

(3.23)

In Figs. 55 and 56, the abscissa of the plots are Nϕ, and the ordinate are the L∞ norm which
is the maximum of the difference of the function computed after one time step versus the analytical
function which is here

g(∆t, θ, ϕ) = sin(m (θ −∆t)− n (ϕ− q∆t)) .

The maximum (L∞-norm) is over all the grid points. We show the results of the aligned versus
the standard (non-aligned) scheme. Some parameters are fixed for this study: Nθ = 400, q =

√
2,

∆t = 0.9.
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Figure 55: Error in L∞-norm compared to the analytical solution for advection Nθ = 400, q =
√

2,
n = −5 and m = −7, k‖ ≈ 0.07 (left), versus m = −6, k‖ ≈ 1.07 (right)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
1

10
2

10
3

E
r
r
o
r

Nφ

n=24, m=34, Nθ=400, k//=-0.06/qR

standard advection
aligned advection

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
1

10
2

10
3

E
r
r
o
r

Nφ

n=24, m=33, Nθ=400, k//=0.94/qR

standard advection
aligned advection

Figure 56: Error in L∞-norm compared to the analytical solution for advection Nθ = 400, q =
√

2,
n = −24 and m = −34, k‖ ≈ −0.06 (left), versus m = −33, k‖ ≈ 0.94 (right)

For left-hand side plots on Figs. 55-56, k‖ is near 0 and the aligned method is very accurate, even if
one takes a low value for Nϕ. If one considers now the right-hand side plots, k‖ is close to 1

qR . Even
if the aligned method gives lower error than standard method, the error is bigger at small Nϕ than
with lower k‖.

Fig. 55 considers lower frequency than Fig. 56. The behavior in the two cases are similar except
that there is a shift of the curves along the ϕ direction. This is expected, and what is interesting is
that the aligned method behaves well (low error is achieved) even with low Nϕ values. In Fig. 57, the
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Figure 57: Error in L∞-norm compared to the analytical solution for advection Nθ = 2000, q =
√

2,
n = −24 and m = −34, k‖ ≈ −0.06 (left), versus m = −33, k‖ ≈ 0.94 (right)

discretization along θ has been refined (Nθ = 2000) compared to Fig. 56. The asymptotic error (at
large Nϕ) is lowered. The aligned method for k‖ close to zero (left-hand side plot) is very accurate
with an L∞ error lower than 10−6. As the gain of the aligned method is effective to improve accuracy
or to reduce the number of points in ϕ direction, we will now look to the integration achieved within
Gysela and associated results.

3.2.4 Aligned interpolation within Gysela

Parallel algorithms

The Algo. 17 sketches the main features concerning the Vlasov solver that we are interested in. The
usual way to perform a single Vlasov solving in the Gysela code consists of a series of directional
advections: (v̂‖/2, ϕ̂/2, r̂θ, ϕ̂/2, v̂‖/2). This solver uses two parallel domain decompositions for the
distribution function f . The 1D advections along ϕ and v‖ are performed with a first domain decom-
position that retains all points of f along these two dimensions (ϕ, v‖) locally in the MPI process.
Then, a transpose of the distributed data structure f is performed that involves large collective com-
munications. Then, the 2D advection along both r and θ dimensions can be done, this step uses
a domain decomposition along ϕ, v‖ and µ directions. After a second transposition of f , two 1D
advections are again performed.

1D advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
1D advection in ϕ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
Transpose f ;

2D advection in (r, θ) (∀(µ, ϕ, v‖) = [local], ∀(r, θ) = [∗]);
Transpose f ;

1D advection in ϕ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
1D advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);

Algo. 17: Standard Gysela Vlasov solver

1: 1D advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
2: Transpose f + halo in ϕ;

3: 2D aligned advec. (comm.) in (θ, ϕ) (∀(µ, ϕ, v‖) = [local], ∀(r, θ) = [∗]);
4: 2D advection in (r, θ) (∀(µ, ϕ, v‖) = [local], ∀(r, θ) = [∗]);
5: 2D aligned advec. (comm.) in (θ, ϕ) (∀(µ, ϕ, v‖) = [local], ∀(r, θ) = [∗]);
6: Transpose f + halo in ϕ;

7: 1D advection in v‖ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗]);

Algo. 18: New aligned Vlasov solver

In order to depart from the original algorithm to accommodate the aligned strategy, one can
list the different constraints that must be taken into account. First, to use the aligned advection
approach in the (θ, ϕ) plane, it is of utmost importance to treat these two directions in a single step.
Second, 2D advections in (r, θ) can not be suppressed or transformed into a simple advection along
the r direction, because the non-linear terms in r and θ interact tightly (displacements in θ, r are
intertwined). Third, to evaluate a new algorithm and a new Strang splitting, we should not undermine
the existing parallelization strategy (to keep it simple within the Gysela code).

The proposed Algo. 18 fulfills these constraints. The advections along v‖ are unchanged. The
aligned advections along (θ, ϕ) (lines 3, 5) replace the previous advections along the ϕ direction. A
first part of the advective terms along the θ direction are treated line 3 in the new aligned advection
along (θ, ϕ). The 2D advection along (r, θ) (line 4) is modified in order to keep the other terms (second
complementary part) in the θ direction. Compared to the standard algorithm, the communications
included in the 2D aligned advection constitute a reasonable overhead. Another overhead comes from
the computation of the 2D interpolations themselves that replace 1D interpolation along ϕ direction.
A sketch of the 2D aligned interpolation is given in Algo. 19. The solution presented here improves
the previously published solution [1] that induced more memory/computation/communications costs.
Indeed, some extra steps, e.g. reassemby of (θ = ∗, ϕ = ∗) planes, have been removed. In the new
version Algo. 19, ghost zones are transfered along ϕ direction in order to compute locally interpolations
during (θ, ϕ) advections avoiding extra transposition communication steps. Typically, we use Lagrange
5th polynomial for the 1D aligned interpolation in Algo. 15. It follows that we work with 3 or 4
ghost points at each local ϕ boundary. In practice, each MPI process initiates a communication
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at beginning of Algo. 19 with its two neighbors along ϕ direction to retrieve f values in the form
f
(
(µ, v‖) = [local], (r, θ) = [∗], ϕ = value

)
.

We then have a robust parallel solution that does not require an entire overhaul of the Gy-
sela code. Nevertheless some extra communications are created that we measure in the follow-
ing discussion. We now describe in detail the equations to be solved at each step of Algo. 18.

Input : f ((µ, ϕ, v‖) = [local], (r, θ) = [∗]), displacement fields
Output : f† ((µ, ϕ, v‖) = [local], (r, θ) = [∗])
Transfer ghost zones of f along ϕ directions for the local
subdomain (typically 3 or 4 extra points at each ϕ-boundary);

for all local points P in (µ, ϕ, v‖) = [local], ∀(r, θ) = [∗] do
P ? ← get foot of the characteristics of point P (using
displacement fields);

if P ? is inside the local domain;

then

f†(P )← 2D interpolation along (θ, ϕ) of f(P ?);
else

send P ? coordinates to responsible process and
get f(P ?) asynchronously;

Wait all pending asynchronous communications

Algo. 19: New aligned advection along (θ, ϕ)

Following [7] we define b∗(x, v‖) := B/B∗‖ + (v‖/B∗‖)(J/B), where J(x) = ∇×B is the equilibrium
plasma current, and reformulate the phase-space flow field as

u(t,x, v‖, µ) = v‖b∗ + vD + vE , (3.24a)

a‖(t,x, v‖, µ) = −b∗ · ∇
(
µB + J0 φ

)
+
v‖

B
vE · ∇B, (3.24b)

where v‖b∗ represents the streaming velocity, vD the curvature drift velocity and vE the E×B drift
velocity:

vD(x, v‖, µ) :=
v2
‖ + µB

B∗‖B
b×∇B, vE(t,x, v‖, µ) :=

1
B∗‖

b×∇J0 φ.

After normalization, the 5D gyrokinetic Vlasov equation with flow field is expressed with toroidal
coordinates (r, θ, ϕ) and decomposed into three separate advection equations:

A. 1D advection along v‖, which is left untouched compared to the original algorithm,

∂tf + a‖∂v‖f = 0;

B. 2D advection on a magnetic flux surface (θ, ϕ), where field-aligned interpolation is used,

∂tf +
[
v‖b∗ · ∇θ

]
∂θf +

[
(v‖b∗ + vD + vE) · ∇ϕ] ∂ϕf = 0;

C. 2D advection on a poloidal plane (r, θ), where a subset of terms along θ are retained,

∂tf +
[
(v‖b∗ + vD + vE) · ∇r] ∂rf +

[
(vD + vE) · ∇θ

]
∂θf = 0.

An illustration is given in Fig. 58, where we plot the streamlines for the advection field of Equation B,
in the limit of vanishing electric field (vE = 0). We consider the same geometrical parameters of the
test-cases in the next section (namely a = 40, [rmin, rmax] = [0.1 a, a], and R0 = 3 a), and we set qø = 1
(safety factor at magnetic axis r = 0) and qa = 2.5 in our parabolic safety factor profile q(r), which
yields a local value q(rp) = 1.45375. For brevity we set µ = 0, select a single magnetic flux surface
at r = rp, and focus on four different values of v‖ ∈ {−2,−1, 1, 2}. We recall that all velocities are
normalized to the thermal velocity vT0 . For comparison we also plot the streamlines of the magnetic
field passing through the same points at ϕ = 0: as expected, the misalignment between the advection
velocity and the magnetic field grows with v‖, but remains reasonably small throughout this range of
meaningful velocities. Finally, in the background is shown a set of straight lines with dθ/dϕ ≡ ι(rp)
(as shown previously in Fig. 54), which approximates the magnetic field on this flux surface: these
are used for field-aligned interpolation of the distribution function f .
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Figure 58: Equation B in Gysela’s operator splitting (aligned advection in (θ, ϕ) coordinates): we
compare the streamlines of the advection field assuming vE = 0 (dashed blue lines) to the streamlines
of the magnetic field (solid red lines). In the background we plot a set of straight lines with dθ/dϕ ≡
ι(r) (solid gray lines) that approximate the magnetic field on this flux surface. For this comparison
we have chosen r = rp and µ = 0, and we calculate the advection field for four different values of
v‖ ∈ {−2,−1, 1, 2}. The safety factor is q(rp) = 1.45375.

Numerical results

In order to have accurate and converged simulations, in this section we use a setup with a relatively
large value of ρ? = 1/40 (ρ? beeing the gyroradius normalized to the plasma size), and we consider a
single µ-value of µ = 0. We investigate two physical cases with geometrical parameters

a = 40, rmin = 0.1 a, rmax = 1.0 a, R0 = 3 a ,

that differ in their safety factor profiles q(r). The parallel velocity domain is truncated at vmax = 6.3.
Benchmarks have been realized with the 4D toroidal version of the Gysela code, on a fine computa-
tional domain of size

Nr = 256, Nθ = 256, Nϕ =< not fixed >, Nv‖= 48.

In order to keep the time integration error low compared to interpolation errors, a small time
step ∆t = 1 was chosen.

A first case with an almost constant safety factor q(r), slowly varying between q(0) = 1 and
q(a) = 1.1, is illustrated by Figs. 59, 61, and 62. A second case with a safety factor strongly depending
on r, varying between q(0) = 1 and q(a) = 2.5, is illustrated by Figs. 60, 63, and 64. The second case
could be slightly more difficult to handle for the aligned approach, because the b direction depends on
the r position and on q(r). Indeed, for each hyper-plane at a given r, the aligned advection algorithm
uses possibly a different direction than for another r value. Figs. 59 and 60 report the time evolution
of the electrostatic energy (integrated over the domain). Figs. 61 and 63 show the electrostatic energy
on the magnetic flux surface at r = 127∆r ≈ rp = 0.55a, at time t = 1672. Figs. 62 and 64 show the
electrostatic energy on the poloidal plane at ϕ = 0, also at time t = 1672.

One can see on Fig. 59 that the standard approach with Nϕ = 128 gives a similar result compared
to the aligned method with Nϕ = 32. The two other curves with standard method and Nϕ = 32
and Nϕ = 64 are not converged along the ϕ direction and give substantially different potential energy
dynamics. Figs. 61 and 62 corroborate this fact by showing different cuts of the electric potential. In
Fig. 61, the two graphs at middle and bottom position show quite identical structures. It is important
to notice that we have reconstructed finely the graph with Nϕ = 32 in order to recover a fine resolution
on the plots (through 4 aligned interpolations per original grid point, leading to a virtual Nϕ = 128).
In order to do that, we use Algo. 15 with (θ?, ϕ?) being the grid points on the fine mesh. As stated in
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Figure 59: Potential energy plots for aligned or
standard strategies. Toroidal configuration with al-
most constant safety factor along r.

Figure 60: Potential energy plots for aligned or
standard strategies. Toroidal configuration with
safety factor depending on r coordinate.

Section 3.1 (see also [7]), global conservation of mass and energy in toroidal geometry is quite difficult
to achieve in practice, due to boundary conditions within Gysela. Therefore, these quantities have
not been used to estimate the benefits of the aligned method here.

Figs. 60, 63 and 64 show results for the second simulation with a strongly varying safety factor.
Conclusions are quite analogous to the first simulation. On the left-hand side, one can see elongated
structures along the parallel direction, which constitute the rationale that justifies why the aligned
method reduces interpolation approximation errors. For these two simulations, we conclude that the
aligned approach works well and permits to reduce by a factor of 4 the number of grid points in the ϕ
direction for these cases at ρ? = 1/40 (ρ? beeing the gyroradius normalized to the plasma size). We
also expect that, as ρ? is further reduced to approach the ITER values of the order of 10−3 [104], the
benefit of aligned method will increase. Thus, our method could allow larger savings in the number
of grid points along toroidal direction when employed in the context of realistic simulations of reactor
scale devices.

Execution times comparison

As a matter of comparison between the standard and aligned methods, Table 12 gives typical execution
times of Gysela for four short runs that employ the same configuration and grid size already described
in Section 3.2.4 (Nr = 256, Nθ = 256, Nv‖ = 48). For the aligned scheme we take Nϕ = 32, while
for the standard scheme we consider three different simulations with Nϕ ∈ {32, 64, 128}. The time
breakdown of specific regions of the code are shown in addition to the total run time.

Execution Time Aligned Nϕ=32 Standard Nϕ=32 Standard Nϕ=64 Standard Nϕ=128
advections 38.2 17.0 35.0 68.8

transposes + advec. comm. 10.1 5.9 11.9 22.6
others 17.3 15.8 25.5 45.0

total run time 65.8 38.6 72.4 136.4

Table 12: Time (in seconds) of a short Gysela run in the same configuration described in Section 3.2.4.

Let us compare the timings for the aligned and standard methods at Nϕ = 32. Firstly we observe
that the execution times for the transposes and advection communications are higher with the aligned
scheme. This is explained by the fact that i) there are ghost zones along ϕ direction (Algo. 19)
required in addition to the original algorithm, ii) there are several additional communications to
transmit feet of characteristics and asynchronous send/receive of distribution function values. The
advection steps are also more expensive with the aligned scheme, because two 1D advections along ϕ
per call to the Vlasov solver are replaced by two 2D aligned advections along (θ, ϕ).

Nevertheless, one can see that the aligned strategy with Nϕ = 32 is already competitive against
the standard approach with Nϕ = 64 in terms of total run time, with the big benefit of requiring
approximately two times less memory to store the distribution function. Section 3.2.4 has shown that
the aligned approach with Nϕ = 32 is more accurate than the standard approach with Nϕ = 64 (at
least in the linear phase), we can conclude that there is a clear gain of field-aligned interpolation in
Gysela. This aligned approach will be helpful to handle kinetic electron simulations.



version: May 18 2018 79

Figure 61: Toroidal configuration with q(a) =
1.1: flux-surface cross-section of electric poten-
tial at r ≈ rp and t = 1672. Standard sim-
ulation with Nϕ = 32 (top), Aligned simula-
tion with Nϕ = 32 (middle), Standard simulation
with Nϕ = 128 (bottom).

Figure 62: Toroidal configuration with q(a) =
1.1: poloidal cross-section of electric potential
at ϕ = 0 and t = 1672. Standard simulation
with Nϕ = 32 (top), Aligned simulation with
Nϕ = 32 (middle), Standard simulation with
Nϕ = 128 (bottom).

3.2.5 Conclusion

We have described a semi-Lagrangian method based on field-aligned interpolation, for the solution of
the gyrokinetic Vlasov equation. The application of interest is the numerical simulation of magnetically
confined plasmas in fusion devices. Thanks to the smooth variation of the solution in the direction
of the magnetic field, field-alignment enhances the accuracy of the interpolation. Then, considering a
given level of accuracy, this allows one to reduce the number of discretization points along the toroidal
direction Nϕ.

The scheme were implemented into two semi-Lagrangian codes, Selalib and Gysela, mainly con-
sidering the 4D gyrokinetic Vlasov equation in the zero-Larmor-radius limit, but also on standard
gyrokinetic simulations (results not presented here). In our benchmarks against the standard (non-
aligned) scheme, we have observed large reductions in memory footprint, as well as a reduction of
number of points needed along toroidal direction. Our estimates [1] suggest that these gains will be
even larger in reactor-scale simulations (small ρ? value).

Field-aligned interpolation does not pose any constraint on the 2D poloidal grids, and the use of
magnetic flux coordinates is not necessary. Accordingly, the magnetic axis, as well as the X-point in a
divertor configuration, do not pose theoretical problems. Therefore the presented algorithms are able
to be extended to more complex magnetic geometries.

3.3 Realistic geometry in the poloidal plane

3.3.1 Aim for describing complex geometry

A tokamak is a toroidal device for plasma confinement in which a strong toroidal magnetic field is
imposed by a system of external coils, while a poloidal magnetic field is generated by a strong toroidal
current flowing through the plasma. The sum of these toroidal and poloidal fields results in a helical
geometry of the magnetic field lines. In the region we are interested in, which is the confined plasma
in the core of the tokamak, the magnetic field lines are closed and are wrapped around closed surfaces.
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Figure 63: Toroidal configuration with q(a) =
2.5: flux-surface cross-section of electric poten-
tial at r ≈ rp and t = 1672. Standard sim-
ulation with Nϕ = 32 (top), Aligned simula-
tion with Nϕ = 32 (middle), Standard simulation
with Nϕ = 128 (bottom).

Figure 64: Toroidal configuration with q(a) =
2.5: poloidal cross-section of electric potential
at ϕ = 0 and t = 1672. Standard simulation
with Nϕ = 32 (top), Aligned simulation with
Nϕ = 32 (middle), Standard simulation with
Nϕ = 128 (bottom).

These so-called magnetic surfaces are nested around the plasma center and can usually be considered
axisymmetric and described by a constant section around the torus. The shape of the magnetic
surfaces has a strong impact on the physics involved in the confinement of the plasma [99]. Therefore,
in order to accurately describe the transport processes in a tokamak plasma, a fine description of the
geometry of magnetic surfaces is helpful to reduce computation costs or improve accuracy.

The strong magnetic field in a tokamak means that the motion of particles will be restricted
in the direction perpendicular to the magnetic field lines, but free along this (so-called parallel)
direction. Moreover, the large perturbations along the magnetic field lines play an important role in
transport processes and must be included in the model. Thus, it appears that even small discretization
errors can corrupt numerical results, for instance by causing a parallel heat flux to leak into the
transverse direction [137]. These issues are particularly critical when modeling nonlinear phenomena
such as turbulence, which is frequently studied in the fusion community through the development of
gyrokinetic codes [132]. As a first approach, many gyrokinetic codes adopted a simplified description
of the geometry of magnetic surfaces, for instance using basic polar coordinates, which implies that
realistic tokamak geometries were not taken into account. Since several years, an ongoing effort has
been initiated to include more realistic geometries. As a long-term objective, we expect to design
a new Vlasov solver for Gysela which would extend the code’s capability to perform simulations
in complex tokamak geometry (within the last closed magnetic surface for X-point, double null, or
D-shaped plasma) while providing a fine description of this geometry.

3.3.2 Reduced setting for testing diffeomorphism

Classical finite element method (FEM) with straight lines describing the edges are not adapted to
the complex geometry of magnetic surfaces in a tokamak, where curved elements appear necessary
for an accurate description of these surfaces. In order to advance towards the long-term objective
of designing a gyrokinetic Vlasov solver in complex geometry, we worked on the feasibility of using
diffeomorphism/mapping in a simplified setting. The Vlasov solver is implemented on a simplified and
reduced phase space (1D in space and 1D in velocity), instead of the 5D phase space of gyrokinetic
codes. This reduced model is directly relevant for Gysela, as mapped meshes would be used – at
least as a first step – to generate the 2D meshes describing magnetic surfaces in the poloidal plane.
We consider a Vlasov-Poisson problem modeling the focusing of a heavy ion beam in an axisymmetric
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geometry around its optical axis. The advantage of this basic model is that numerical experiments can
be performed in a small-sized phase space domain using simple Dirichlet boundary conditions. Since
the solution remains very localized, one can easily investigate different mesh geometries with flexibility
concerning boundary conditions. Moreover, as in the case of gyrokinetic simulations, small-scale
filamentation develops in phase-space, which must be correctly captured by the solver independently
of the chosen mesh. The aim of the paper we wrote [27] and briefly summarized here was to validate
numerically the Vlasov solver for different underlying meshes, as well as to measure the impact of the
chosen mesh on the computational costs.

Diffeomorphisms and mapping techniques provide methods to go from a reference coordinate sys-
tem (e.g. (s, t) ∈ [0, 1]2) to a physical coordinate system (e.g. (x, y) ∈ Ω). To do so, one has to choose
a shape function or a mapping to go from the reference system to the physical system. A common
example is the use of a polar mapping to map a rectangular grid onto a circular domain. In our
context, we choose to work on a uniform grid in the reference coordinate system.

The need of an accurate representation of the geometry is not an exclusive matter of a specific
application domain but is quite common in scientific computing. Diffeomorphisms associated to
finite elements have proved to be useful to deal with complex geometries. The idea is to perform a
shape transformation in order to map a computational domain, for example a rectangular grid, to a
potentially complex geometrical domain. At a given mesh resolution, a well chosen diffeomorphism
adapted to the geometry can reduce numerical errors. In this context, the use of B-splines, NURBS
and isoparametric approaches may provide powerful tools. The inconvenient of B-spline mappings
is the inverse problem: given a point in the physical domain, what is the corresponding parametric
point? Iterative algorithms are needed to perform this inverse mapping. Another idea is to use an
analytic inverse, whenever it is possible, for example in the case of a polar grid. The present work
focuses on two isoparametric meshes: an oval mesh with an analytic inverse mapping and a mesh
defined by Bézier elements which are a specific type of NURBS or B-splines.

Our reference test case is the study of beam focusing using the paraxial Vlasov-Poisson model [128].
This model is common in accelerator physics and describes the propagation of a particle beam along a
linear optical axis. While the beam is considered stationary, the propagation velocity in the direction z
of the optical axis is assumed constant (thus z is formally replaced by time in the equations). We also
assume that the beam is symmetric around its optical axis. Therefore, we solve the Vlasov-Poisson
system in cylindrical geometry with the radius r as the only space coordinate and vr the velocity in
the radial direction. In order to avoid issues with boundary conditions around r = 0, we consider a
symmetric domain in r with the condition f(−r, vr) = f(r,−vr) where f is the particle distribution
function in phase-space.

Following the normalization in [40], we solve the Vlasov equation coupled with a Poisson equation.
We consider the case where a proton beam is focused by applying a periodic external electric field. As
an initial distribution function, we will use the semi-gaussian (gaussian in velocity, localized in space)
formulation (details are given in [27]). In order to solve the 2D Vlasov-Poisson system in complex
geometry, we have used the LOSS code previously implemented [14,9,30], extending it for the paraxial
beam test case and for various geometries to a new version named ISOLOSS. The ISOLOSS code uses
a semi-Lagrangian numerical scheme, the time integration is performed using a predictor-corrector
scheme.

3.3.3 Results for ISOLOSS code and diffeomorphisms

Analytic mapping

As a first step, we consider the case where the mapping is performed by a fully analytic diffeomorphism.
This diffeomorphism maps a rectangle (s, t) ∈ [0, 1] × [0, 2π[ (in the reference space) to an ellipse in
the physical space. The following parametric equations are taken as a mapping function:

x(s, t) = rmax × s× cos(t) y(s, t) = vmax × s× sin(t)

The inverse mapping is also given by analytical expressions:

s(x, y) =

√
y2

v2
max

+
x2

r2
max

t(x, y) =



arctan( yx ) if x > 0 and y ≥ 0
arctan( yx ) + 2π if x > 0 and y < 0
arctan( yx ) + π if x < 0
π
2 if x = 0 and y > 0
3π
2 if x = 0 and y < 0

The computational cost of moving forward and backward from the reference space to the physical
space is quite low. A direct or inverse mapping represents a fraction of the cost induced by one 2D
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Figure 65: The Semi-Lagrangian method in complex geometry: (1) map the position in the reference
space into physical space, (2) follow the characteristic backward in physical space, (3) map the obtained
position back in the reference space to perform the interpolation

interpolation. Therefore, as we shall see in the numerical experiments, the overhead in the ISOLOSS
code is not so large compared to the original solution that does not require a diffeomorphism.

Bezier mapping

A Bézier surface (also known as Bézier patch) of order (n,m) is defined by several control points
(ki,j)i∈[0,n],j∈[0,m]. It maps the unit square [0, 1]2 into a surface embedded within a space of the same
dimensionality as the control points. In our application, we take the control points ki,j in R2 in order
to represent a 2D geometry. A Bézier surface is parametric and the equations describing it depend on
parameters that are not explicitly part of the geometry. Hence, a point P of coordinates (s, t) on the
patch is localized at the following position in the physical space:

P(s, t) =
n∑
i=0

m∑
j=0

Bni (s)Bmj (t) ki,j with Bni (u) =
(
n

i

)
ui(1− u)n−i .

Bni (u) are known as the Bernstein basis of polynomials of degree n. As a first step, we decide to
use biquadratic Bézier patches. In our work, the main issue is the inverse mapping of positions from
physical space to reference space, whereas the direct mapping from reference space to physical space
is very simple. The inverse mapping transformation has to be performed for each grid point during
the advection step. There is no generic analytical solution for curved elements and this operation
happens to be costly. Several ideas and solutions that we have tested for inverse mapping calculation
are inspired from computer graphics papers [134,172]. We typically have chosen to use Newton method
and clipping algorithm in this work but we will not describe them in detail (please see [27]). It is a
quite fast iterative method with a few iterations. The semi-Lagrangian method must be adapted to use
mapping techniques. In the approach chosen here, we keep the expressions of the advection equations
in the physical space, rather than rewriting these equations in the reference space. Therefore, it is
necessary to move backward and forward between the reference space and the physical space. Fig. 65
outlines the adapted semi-Lagrangian method when using parametric surfaces.

From a given position (s, t) in the reference space, we map the corresponding position in physical
space. The characteristics are then followed backward in physical space, and the foot of the character-
istics must be mapped back into the reference space before performing the cubic spline interpolation.
The main issue in this algorithm is the inverse mapping of positions from physical space to reference
space. This transformation has to be performed for each grid point during the advection step. An-
other issue when solving the Vlasov-Poisson system on an isoparametric mesh is the computation of
velocity integrals to obtain the density, needed to solve the Poisson equation, we will not discuss this
point here. There are also ways to reduce the computational costs associated to retrieving the Bézier
patch surrouding a given location (see [27]).

Experimental results

Numerical results We consider the evolution of a non stationary beam. The underlying uniform 2D
grid used for the simulation consists in 218 points covering entirely or partially the spatial domain
(r, vr) ∈ [−6, 6]× [−2.5, 2.5]. We intend to compare the speed and accuracy on three geometries:

a) Original LOSS : no diffeomorphism is employed and this case corresponds to the initial simulator
configuration. The computational grid is rectangular and its size is 512 × 512.

b) Analytical mapping : an analytic shaping function maps an oval in phase space to a reference
domain [0, 1]× [0, 1]. The reference domain has a uniform grid mesh of size 1024 × 256 with a
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larger number of points in the angle direction. Especially in this configuration, the periodicity
along the angle direction has to be taken into account.

c) Bezier mapping : a set of Bézier patches are built; the shape of the computational domain is
in-between the shapes of the previous oval and rectangle configurations. The reference domain
has a 512 × 512 size.

The different computational grids are sketched in Fig. 66 where an undersampling has been applied
in order to improve readability.
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Figure 66: Three computational grids are tested for the paraxial beam problem: (a) regular Cartesian
grid, (b) oval grid associated to an analytical inverse mapping, (c) grid defined by Bézier elements
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Figure 67: Final state of the distribution function in phase space in the three configurations
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Figure 68: Final state of the density function ρ(r)
in the three configurations
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Figure 69: Evolution in time of the Rrms quantity
in the three geometry configurations

The final state of the distribution function is shown in Fig. 67 for the different computational
grids. For each configuration, the simulator manages to follow the evolution of filamentation. The
distributions functions are quite similar, but the analytic mapping exhibits some clear differences
with the two other settings. The aspect and singularity of the oval mapping close to the center of
the domain clearly trigger numerical problems. These problems are also illustrated in Fig. 68 where
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the final state of density ρ(r) is presented in the three geometries. The Bézier and the original curves
almost overlay, but the analytic curve has a different behavior at the peak of the density (r = 0) and
on the lateral small shoulders. The Rrms quantity is displayed in Fig. 69, it measures the effective
beam focalization. The three configurations give nearly identical Rrms curves over time. Finally,
we conclude that diffeomorphisms do not decrease accuracy directly, but care must be taken to well
choose the mapping function.
Performance issues

Performance of the different geometry settings has been investigated on a desktop computer. A
3.0 GHz Intel Core 2 Duo E8400 processor was used to run numerical experiments on only one core.
In Table 13, the timings of each part of the code for one simulation of 16384 time steps are gathered.
The Field solve column sums time used to compute the density ρ density and the self-consistent
field. The Spline coeff. column corresponds to computing spline coefficient before interpolation
can be done. The Advection column comprises the trajectories computation to find the origins of the
characteristics and the interpolation costs. The Total column sums the first columns, ignoring the
preprocessing phase of the simulation and the diagnostics.

Field solve Spline coeff. Advection Total
Original LOSS 2.3 16.4 78 97

Analytical mapping 10.1 18.4 115 143
Bezier mapping 9.2 17.3 275 301

Table 13: Timings (seconds) for 2 geometry settings and simulation over 1024 time steps

The field solver and ρ calculation take much more time when a mapping is employed. This is due
to the fact that without mapping the computation ρ(r) is very light, as it is only a sum of f(r, v) along
dimension v; whereas with mapping there are extra calculations to be done. The computation of spline
coefficients takes nearly the same amount of time in each case. The computation costs are almost
identical and cache effects are the critical factor that modulates slightly the costs of computing spline
coefficients. Concerning the advection step, the cost of the inverse mapping explains the observed
differences in computation time. The analytic inverse mapping involve a 50% time increase compared
to the original LOSS code, and Bézier inverse mapping leads a 250% time increase.

If we look forward to the application of this technique in the GYSELA code, this overhead must be
rescaled. The 2D interpolations represents approximately 5%-10% of the execution time in a GYSELA
run. A rough estimate of the overhead induced by implementing the Bézier setting in the GYSELA
Vlasov solver is thus 13%− 26%. Other overheads should also be considered for the field solver using
the upgraded geometry setting, but no simple estimate of this cost can be proposed.

The semi-Lagrangian scheme combined with isoparametric analysis successfully solves the Vlasov
equation on a reduced beam test case. Small-scale filamentations in phase-space are well captured
by the new solver. Quantitative analysis shows that only minor issues in accuracy are caused by the
mesh geometry, except if domain is too much refined close to r = 0. Although the overhead in term
of execution time may appear quite large, it can in fact be reasonable if the advantages brought by a
more accurate description of the domain geometry outweigh this penalty. In the following, we expect
to overcome the main issues remaining: adapted solution near magnetic axis r = 0, improved analytic
mapping to have realistic plasma configuration and low inverse mapping overhead. In addition, we
target to have the grid lines truly aligned with magnetic surfaces (the same as we have currently in
Gysela). It prevents spurious flows along radial direction that may happen if the radial and angle
directions are mixed in the poloidal plane. Another point that will be under consideration in the next
part is that a non-uniform grid and dedicated solution can help to solve problems arising at r = 0.

3.3.4 Avoiding central hole and introducing reduced polar grid

In the present work (described partly in [81]), a new variant for the interpolation method is proposed
that can handle the mesh singularity in the poloidal plane at r = 0 (polar system is used for the
moment in Gysela). Also, the hole in the center of poloidal plane for r < rmin is suppressed
which enhances realism of Gysela simulations. Then, we introduced a non-uniform meshing of the
poloidal plane instead of uniform one in order to save memory and computations. The interpolation
method, the gyroaverage operator, and the Poisson solver are revised in order to cope with non-uniform
meshes. A mapping (in exactly the same spirit that the one described in the previous paragraph)
that establish a bijection from polar coordinates to more realistic plasma shape is used to improve
realism. Convergence studies were performed [81] to establish the validity and robustness of our new
approach. This study is going further beyond what was presented earlier in p.59 and the following
pages. We are now expecting to remove completely the rmin boundary condition.



version: May 18 2018 85

Avoiding r = 0 singularity

Original polar mesh
We fix Nr, the number of points in the radial direction and Nθ, the number of points in the

poloidal direction. The original polar mesh, as it is defined in Gysela, is such as ri = rmin + i∆r
with rmin > 0, i ∈ J0, Nr − 1K, ∆r = rmax−rmin

Nr−1 , and also θj = j 2π
Nθ

with j ∈ J0, Nθ − 1K. It is worth
noting that rmin and rmax act as boundary conditions. For each operator that is applied within the
poloidal domain, specific ad-hoc approaches are setup to handle what is happening in the central hole
r ∈ [0, rmin]. We do not detail here the set of ad-hoc boundary conditions (see [3]).

Enhancing r=0 handling for Field solver
Following the work of [159], we have set rmin = ∆r

2 and rmax = rmin + (Nr − 1)∆r so that

∆r= rmax−rmin
Nr−1 = rmax−∆r

2
Nr−1 , which leads to ∆r= rmax

Nr− 1
2
, and the radial points are ri = rmin + i∆r=

(i+ 1
2 )∆r, i = 0, . . . , Nr − 1.

Let us first consider 2D Poisson equation on a disk Ω = {(r, θ) : 0 < r < rmax with rmax ∈
R and 0 ≤ θ ≤ 2π} where Ω is described by a uniform circular mesh Ωk. To overcome the singularity
problem at r = 0, one of the trick consists in taking r ∈ [rmin, rmax] with rmin = ∆r/2 and a half-
integered grid in radial direction and an integered grid in poloidal direction. We choose to stay with
finite differences to solve this problem. In this section, we consider the 2D Poisson equation in polar
coordinates on a domain Ω,

∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2

∂2f

∂θ2
= R(r, θ) (3.25)

with Dirichlet boundary conditions f(r = rmax, θ) = g(θ) on ∂Ω. Note that the boundary values are
defined on the grid points and fi,j = f(ri, θj), Ri,j = R(ri, θj). Using the centered difference method
to discretize, one has:

fi+1,j − 2fi,j + fi−1,j

(∆r)2
+

1
ri

fi+1,j − fi−1,j

2∆r
+

1
r2
i

fi,j+1 − 2fi,j + fi,j−1

(∆θ)2
= Ri,j (3.26)

but also at i = 0, the following equation is solved:

f1,j − 2f0,j + f−1,j

(∆r)2
+

1
r0

f1,j − f−1,j

2∆r
+

1
r2
0

f0,j+1 − 2f0,j + f0,j−1

(∆θ)2
= R1,j (3.27)

The trick is that the coefficient of f−1,j is canceled in this last equation because r0 = ∆r
2 . The

scheme does not need any extrapolation for f−1,j , so no pole condition is needed. I integrated a variant
with Fourier transform along θ and second order in r (see [160]) into the field solver of Gysela with
success. We no more have the Dirichlet nor Neumann boundary conditions at rmin. This eliminates
spurious artifacts at this location on the electric potential which is a keypoint for turbulence modeling.
Differences of previous and new solution is presented in Fig. 70, 71, 72, 73 with a zoom at a given
time step on the region r = 0 to highlight the artifacts. It is important to notice that the settings of
the two compared simulations are strictly identical, even rmin value is exactly the same.

Figure 70: Electric Potential - Neu-
mann at rmin (old), artifact in the
center

Figure 71: Electric Potential - Lai
& Wang trick at rmin (new), artifact
removed
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Figure 72: Electric Potential - Neumann
at rmin (old), artifact in the center

Figure 73: Electric Potential - Lai &
Wang trick at rmin (new), artifact re-
moved

Enhancing r=0 handling for Vlasov solver
The issue for r close to 0 within Vlasov solver is mainly located in advection step in the poloidal

plane (r, θ). Indeed, one has to perform interpolations at r < rmin, but also the calculation of foot
location has to deal with an evaluation also at r = rmin with reasonable accuracy.
We propose to switch from the usual interpolation scheme near the magnetic axis to a bilinear in-
terpolation along x, y (Cartesian coordinates). Thus, we remove the dependency along θ direction
induced by polar coordinates and then avoid the singularity at r = 0. In order to go from usual
interpolation for r � 0 to bilinear interpolation near r = 0, we use a simple linear combination. The
weighting coefficients wcenter(r), wlarge r(r) for this linear combination depend on r value. We impose
the constraint wcenter(r) + wlarge r(r) = 1,∀r.

interpolate(r, θ) =wcenter(r) bilinear interpolate(r, θ) +
wlarge r(r) 2D cubic splines interpolation(r, θ)

The kind of weighting functions we employ are shown in Fig. 74. The bilinear interpolation is based
on only 4 values located at (r1, π/8), (r1, 3π/8), (r1, 5π/8) and (r1, 7π/8).

cubic splines 2D 
interpolation in (r,θ)

smooth transition from 
2D splines to  bilinear

bilinear interpolation 
in (x,y) for  r ∈ [0,rmin] 
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Figure 74: Linear combination of two interpolation operators

Figure 75: No interp. in [0, rmin] (old), artifact at

r = 0

Figure 76: Interp. in [0, rmin] (new), expected behav-

ior at r = 0

Some illustrations of the new solution with mixed interpolators are given in Figs. 75, 76. Let
us notice than the simulations performed use the new methods both in Vlasov and Poisson solvers.
The improvements are valuable because one observes a unpolluted solution near the center with usual
Gysela settings. Nevertheless, the behavior at r = 0 could be even better if we invest in a higher
order interpolator in the center. This solution has been integrated and adopted by the Gysela users.
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It removes many issues associated with artificial boundary conditions that was set at rmin in the past.
For example, physicists have no more needs for artifical diffusion operator along r and θ direction in
a buffer region sticked to rmin boundary.

Lagrange interpolants

Semi-Lagrangian solvers need an interpolation scheme as an inner component. In the literature, me-
teorology community for weather forecast models and plasma physics community have investigated a
number of numerical schemes. Most commonly, cubic splines is employed in practice. However, this
approach induces 1) costs due to the LU decomposition which are not trivial to vectorize on modern
architectures and 2) a synchronization between spline coefficient derivation and effective interpola-
tions that one may want to avoid. Alternate approaches as high-order Lagrange interpolants have
started gaining interest recently. Such a local and compact stencil method fit well the current pro-
cessor architectures. Hence, computations tend to be cheaper and cheaper in comparison to memory
accesses and FLOPs achieved by high-order methods tends to increase along with the order [157,176].
Then one can afford a bit more computations if the number of memory accesses remains low. But
high-order (order larger than 4) are expected in order to get closer to spline accuracy [127]. Neverthe-
less, very high-order can lead to other problems especially with data that include sharp gradients or
high frequency in space phenomena: Runge’s phenomenon, spurious oscillations, or artificial under-
shoot/overshoot. These kinds of issues happen less frequently with cubic splines that tends to foster
smoothness because of C1 regularity. Furthermore, as soon as spurious oscillations appear, they tend
to remain in the computational domain if no specific processes amortize them.

Lagrange interpolants have been tested within the advections of Gysela. Mainly we considered
polynomials of degree 5 and 7 that are the best compromises so far. Let g be a discrete function
(defined on x ∈ [xq, xr]).

Lqr(x) =
r∑
j=q

Lqrj (x), Lqrj (x) = g(xj)
k=r∏

k=q, k!=j

(x− xk)
(xj − xk)

One has the following properties:

• ∀j ∈ [q, r], Lqr(xj) = g(xj),

• One considers q − r + 1 points (6 or 8) for Lqr, degree of the polynomial is q − r (5 or 7)

With tensor product, we have also access to 2D interpolation for the 2D advections along (r, θ).
Assuming the cache memory is large enough, one can estimate the average cost of the interpolation
needed for each grid point in each advection. In Table 3.3.4, the needs in term of floating-point
operation is summarized, whereas Table 3.3.4 gives some execution times associated with the different
interpolation choices (domain size was 256 × 256 × 128 × 128 × 8, number of nodes is 64 on INTEL
Broadwell or INTEL KNL - Marconi machine - 2017).

Kind of interpolation Mem. load Mem. store Multiply Add Divide
1D spline 1 1 26 16 1

1D Lagrange 8-pts 1 1 44 35 0
1D Lagrange 6-pts 1 1 30 25 0

2D spline 1 1 60 40 2
2D Lagrange 8-pts 1 1 144 124 0
2D Lagrange 6-pts 1 1 90 74 0

Broadwell machine KNL machine
Interpolation 1D advections 2D advections Total time 1D advections 2D advections Total time

spline 109 120 615 175 142 842
Lagrange 8-pts 72 67 527 92 90 720
Lagrange 6-pts 62 61 513 80 84 716

The timings show that Lagrange interpolants permit to reduce the execution times compared to
the splines. The Lagrange 6-pts saves more than 45% (Broadwell and KNL) on advection timings
versus splines. This result is quite counterintuitive if one considers the costs in term of floating-point
operations (Table 3.3.4). Nevertheless, the algorithm for Lagrange approach is much simpler and
needs less intermediate data structures than the splines do. In addition, vectorization by the compiler
of the most inner loop is much easier with Lagrange, and this is a key element on modern architectures.
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Introducing reduced/non-uniform grid

Changing the mesh of the poloidal plane while keeping a polar coordinate system should allow us
first, to loosen the meshing in order to reduce the typical concentration of points near the center
r = 0 and second, to have the mesh match more closely the magnetic surfaces of the plasma. We
should then have an improvement in execution time by reducing the overall number of points as well
as an improvement in accuracy thanks to the grid being closer to the typical pattern of simulated
phenomena. The non-uniform meshing will also allows us to focus on a specific location of the plane
that we want to solve by using more points there and only solving roughly elsewhere (for specific
physics experiments).

New non-uniform polar mesh
The new poloidal grid that we want to use is sketched in Fig. 77. The idea is to have, for each

different circle labeled by r coordinate, a different number of points in the θ direction. For each one
of the ri we choose a number of points along θ: Nθ[i] , and a grid spacing: ∆θ [i]. For instance, in Fig.
77 (p.88), the first layer (inner circle) has four points Nθ[1] = 4, the second to fourth layers have eight
points Nθ[2,3,4] = 8 and the remaining layers have sixteen points Nθ[5−7] = 16. This allows either to
have a density of grid point which is nearly uniform, or to model finely a subset of the plane which
is better solved with more grid points. This meshing or quite similar approaches have already been
used in a set of papers [149,168,169], but the settings or equations were different. Therefore, we have
mainly only retained the meshing strategy while redesigning the operators.

Mapping
The previous approach can be combined with a general mapping, the polar mapping being only

a special case. We focus here on mappings with analytical formula and whose inverse can also be
expressed by a formula (to shorten execution time) which was one of the concluding points of [27].
This is of course the case for the polar mapping, but we can also find other more general cases, that
can have relevance for the description of the geometry of a tokamak. We consider here the case of a
large aspect ratio tokamak equilibrium, and the mapping that derives from it, as in [100, 130]. For a
large aspect ratio mapping [100], one can take the formula

x = R0 + r cos(ω)− δ(r)− E(r) cos(ω) + T (r) cos(2ω)− P (r) cos(ω)
y = r sin(ω) + E(r) sin(ω)− T (r) sin(2ω)− P (r) sin(ω),

where δ, E, T stand for Shafranov shift, elongation and triangularity. The P notation corresponds to
a relabeling of the surfaces. To simplify, we take here P = 0, T = 0, ω = θ, together with E(r) = E0r
and δ(r) = δ0r

2; this clearly restricts the range of accessible geometries, but enables one to get an
explicit and simple formula for the inverse. We get

x = R0 − δ0r2 + (1− E0)r cos(θ)
y = (1 + E0)r sin(θ). (3.28)

Figure 77: New poloidal grid.
The number of points in θ di-
rection (angle) depends on the
radial position (distance to the
center).

r0 r1 r2 ...

∆θ[2]

∆θ[1]

Figure 78: Interpolation of
a point • of the poloidal
plane with a stencil of
16 points � (Lagrange of
order 3).
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Figure 79: New mapped
grid using large aspect ratio
equilibrium, with non-uniform
meshing along θ.
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The inverse mapping can be explicitly given

ỹ =
y

1 + E0
, x̃ =

x−R0

1− E0
, δ̃0 =

2δ0
1− E0

, r =

 2
(
x̃2 + ỹ2

)
1− δ̃0x̃+

√
(1− δ̃0x̃)2 − δ̃2

0(x̃2 + ỹ2)

1/2

,

θ = atan2(ỹ, x̃+
δ̃0
2
r2) .

We refer to [143,144] for some other works concerning the semi-Lagrangian method combined with
a mapping. Fig. 79 shows a non-uniform grid combined with this specific mapping.

2D Interpolation
The interpolation along (r, θ) is defined as a tensor-product of 1D interpolation operators. Lagrange

interpolation along r and θ directions is used. We mostly use the value of points located closely to
targeted coordinates, but some specific conditions have to be taken into account. If the radial position
r goes above rmax then a Dirichlet condition is used. If r is located in the interval r ∈ [0, ∆r

2 [, the
interpolation scheme has to be adapted because we are crossing the most inner radius of the grid; we
basically continue the stencil on the radially opposite side (as if we were considering negative values of
r). Considering a non-uniform mesh, we need to take into account the cases where the interpolation
stencil covers several radii having different number of points along θ. An illustration of the algorithm
used is shown in Fig. 78. We always use the closest known points, leading to a good accuracy. To adapt
the interpolation calculation to non-uniform meshes, one only need to first perform the interpolation
in θ before the one along r direction. It allows to easily take into account that the number Nθ[i]
depends on radius ri. The Algorithm and detailed scheme are given in [81]. Convergence studies have
been conducted that demonstrate that the interpolation behaves correctly on a non-uniform mesh
with results close to what is observed for uniform mesh (if mesh is well chosen). Then, advection
and gyroaverage operators that are based on interpolation are also accurate numerically (additional
convergence studies have been done with success in [81]).

Field solver
From Eqs. (3.26), (3.27), we have designed a new Poisson solver using finite difference approach

along θ and r for non-uniform meshes (second order in space). A key point to setup this solver was to
use Lagrange interpolation to reconstruct missing values because of the non-uniformity of the mesh in
the right hand side . The Poisson solver relies now on a sparse solver, and CPU time depends tightly
on the performance of the library used. This solution is worthwhile [81], but we expect to improve
it in the near future: to reduce execution time and memory footprint, to go to higher order along θ
dimension.

Discussion
Several operators of the Gysela application have been redesigned to cope with non-

uniform/reduced grid in the poloidal plane. In addition, a diffeomorphism (mapping technique) has
been put into place to model realistic plasma instead of circular configuration. The positive results of
this proof-of-concept study justifies that we should try to assemble these new components into a new
gyselaX prototype which is foreseen for 2019. The reduced mesh should subdivide the poloidal plane
into a set of tiles with a fixed ∆θ in each tile. We wish to have very efficient algorithm on each small
tile, i.e. non-uniformity should not add negative impact on performance compared to the current
version. In addition, we want to move to HPC task-based programming models (instead of OpenMP
loop parallelism) and split the computational work into small units of computation called tasks asso-
ciated to tiles. Each task requires data as input and produces output data. Tasks inputs and outputs
are connected according to data dependencies that are explicitly given. In this framework, a runtime
is responsible for scheduling task according to their dependencies and the targeted hardware. This
approach offers several advantages compared to the usual statically scheduled fork-join model or bulk
synchronous model. First, it enables one to express task-parallelism in addition to data parallelism, by
decoupling some workloads, load balancing can be improved and execution time be reduced. Second,
it eases performance portability in the case of work imbalance between processing units (whether on
homogeneous or heterogeneous hardware). Third, it helps removing the costly global or collective
barriers in large scale application by providing a way to convey synchronization at micro-scale instead
of macro-scale. Fourth, we will be able to specialize some algorithms for specific regions of space
(specific tiles) and to embed them into peculiar tasks. Thus, one can have an efficient algorithm for
most of the poloidal plane (majority of tiles will have efficient implementations with regular/uniform
cells), and some specialized procedure for managing boundary conditions and frontiers in some tiles.
Also, the workload that should not be identical among the tasks will be balanced automatically by
the runtime.
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3.4 Physics results over the past years in Gysela

Gysela’s physics results over the past years are briefly summarized hereafter (extra information is
available in [140]). These achievements would not have been accessible without the joint research and
development in the fields of applied mathematics, numerics and HPC. Help and involvement of several
partners have been a springboard for improving the code, among them I should mention the strong
cooperation with: Bordeaux-Nancy-Strasbourg universities, INRIA (France), IPP (Germany).

Several years ago, the gyrokinetic simulations indicated quantitative differences with the results
of a number of reference fluid simulations [125]. If differences and more accuracy of the gyrokinetic
approach were to be expected, the importance of the changes – especially for the ITER configuration
– indicated that gyrokinetics was an essential model for carrying out simulations of magnetically
confined plasmas. Gysela draws on the achievements of the physics group of CEA/IRFM concerning
fluid simulations, notably based on the skills gained in designing two previous codes: TRB [133],
ETAI3D [173] and TOKAM2D [179]. An important point inherited from former studies is to consider
that the controlling parameter of magnetic fusion experiments is the energy flux. In this context,
the transport processes are building up on the plasma temperature profile between the center and
the periphery. The case is analogous to that of a residential heater for which the gradient of the
temperature from the radiator to the outside depends strongly on the quality of the house’s heat
insulation. The simulations describing this transport impose a so-called global approach, that is to
say that one has to consider the whole volume of the plasma to be really relevant. Another important
component is to represent with enough accuracy a volumetric heat source, this was done through the
flux-driven approach. Gysela was able to access this setting and associated physics around 2010.
In this regime we found in gyrokinetic simulations evidence of avalanche transport [62, 68, 69, 121].
It is characterized by convection of heat on large scales with high intermittency, similar to periodic
relaxations.

The study of transport effects in a forced flow was developed gradually with Gysela. To begin
with, the confinement of thermal energy, the cornerstone of the ITER experimental program, was ex-
amined in the Gysela simulations. Turbulence appears to self-organize via a wide range of processes.
It has been shown that there is a transport that conflict with confinement. This transport develops
from the center to the periphery and depends on the distance to an instability threshold. Due to the
intrinsic stiffness of the problem, only the regimes near marginality are really of interest and are espe-
cially well addressed by flux-driven systems. The organization of these events, their spatial structure,
the elements triggering these relaxations (or blocking them) constitute an important field of research
which mobilizes a part of the resources of the Gysela team. Within Gysela, the interplay of several
phenomena (avalanches, zonal flows ...) can be triggered at mesoscale. This possibility is not offered
by many gyrokinetic codes.

The self-organizing elements of turbulent transport are characterized by transverse flows (i.e.
within the magnetic flux surface, but perpendicular to the magnetic field). The transport induced
by these flows is beneficial for confinement. Consequently, on initial examination, the higher the
fraction of turbulent energy dedicated to these flows, the greater the losses of confinement will be
reduced (a beneficial effect) up to a certain extent. Gysela allows modeling precisely these flows.
In particular, the symmetry of the tokamak imposes a law of conservation on the momentum. The
Gysela team have shown that the conservation of toroidal momentum, is rightfully observed in the
simulations [65]. On this occasion, it was also proved that this momentum, generated in opposite
dipoles was transported by avalanches together with heat. This study determined a rather modest
momentum confinement time and thus showed the key role of the boundary conditions and the driving
role of the momentum dipoles in the overall properties of the plasma [55,62].

In addition to toroidal momentum, an important part of the plasma dynamics is carried by flows
developping on flux surfaces, with a strongly sheared poloidal component (transversely to the toroidal
flows aforementioned). These so-called zonal flows also participate in the self-organization of tur-
bulent transport by shearing avalanches, thus weakening the coherence of the latter, and reducing
the efficiency of transport. A dynamic organisation between zonal flows and avalanches is commonly
observed, limiting the avalanche transport efficiency to mesoscales. This avalanche regulation physics
constitutes a complex dynamical system that involves several actors who feedback on themselves.
On the other hand, the main damping mechanism known is related to collisions (even if collisionless
plasma hypothesis is quite usual for hot plasma). It has also become very important to model the
collisions and to reproduce in the simulations some of the physics of collisional transport. Several
steps have been taken in Gysela in this direction, with operators of collisions increasingly thorough.
After a first generation favoring the effect of collisions for a single species of particle and along a
single velocity direction [64, 49, 45], a new stage was reached in 2017 with an operator acting in all
directions of velocity and valid for collisions between different species. The transport of impurities is
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one of the important transport aspects for plasmas like those of ITER and WEST (tokamak hosted by
CEA/IRFM). Among the impurities, tungsten plays a decisive role. In the plasma facing components
9 of current tokamaks there is tungsten in the areas most exposed to plasma. It has a harmful impact
for the performance of the tokamak due to radiative losses. Beyond a concentration of the order of
1/10000, its presence limits the temperature of the plasma by radiating the available energy. It is
therefore imperative to ensure a high purity of the plasma and to understand and control the transport
of tungsten. This control ought to be effective from the periphery of the plasma (where the source
of tungsten is located) up to the center (where its presence will limit the performance). The physics
of tungsten transport is characterized by a comparable role in amplitude of collisional and turbulent
transport. Collision operators built into Gysela provide access to the involved mechanisms. The
upgrade of Gysela to handle two species instead of a single species in 2013 made it possible to study
this physics. More specifically, the competition between the collisional transport and the turbulent
transport has been examined, it can exhibit synergetic or couteracting effects [123,45,190].

One of the objectives of the study of confinement in plasmas is to find efficient scenarios where
turbulent transport is controlled. Thanks to experimental know-how, a set of regimes where turbulent
transport is reduced was found by the fusion community. Transport barriers fall within this framework,
which consists of layers with large temperature gradients over a narrow radial region characterized by
a strong reduction in turbulence. Two types of barriers have been identified, the external transport
barriers (ETB) close to the periphery of the plasma, called H-mode, which have not been reproduced
so far in simulations10 and internal transport barriers (ITB). The external barrier is already a key
element for the reference scenario of ITER. However, internal barriers may play a future role in
achieving a thermonuclear regime (they are considered as advanced scenarii for ITER operation). It is
therefore important to address the issue of turbulence control in Gysela simulations. Three turbulent
transport regulation mechanisms were examined. Firstly, the forcing of a polarization of the plasma
made it possible to trigger a transport barrier in a gyrokinetic simulation. The heating mechanism
associated with the polarization phenomenon has also triggered relaxation events of the transport
barrier [56]. We thus observe a fine combination of the beneficial aspect of the transport barriers with
the harmful aspect of the relaxations of the barriers. This ambivalent result, which corresponds to
the experimental reality, is found in the mechanism of turbulence control by flows generated by fast
particles in the plasma (from heating or fusion reactions). In this case, the effects of reducing the
turbulent transport appear transiently, often followed by opposite effects. Implementing this type of
turbulence control remains an important research topic and simulation is an important tool. Finally,
a self-organization of transverse avalanche flows was observed in simulations with Gysela. The so-
called “staircases” develop in particular schemes of self-organization of turbulence. It constitutes a set
of weak barriers in fairly regular schematic, characterized by relaxations of small amplitudes and thus
an improvement of the confinement. The characterization with Gysela of an improved confinement
regime allowed finding signatures of this regime in the experiments [50].

The experiments with the WEST tokamak have just started at the IRFM. They are done in a
toroidal volume whose ratio between the small radius and the large radius (named aspect ratio) is
greater than in the majority of existing tokamaks elsewhere (average is A = 3, WEST is A = 5).
The impact of this control parameter on plasma confinement has not been studied experimentally.
Exploring this effect was therefore a modeling challenge before experiments in WEST began. To carry
out this study, the know-how of the Gysela team was mobilized to study quasi-stationary discharges
that is to say by adjusting heating sources to expected losses. This study led to the demonstration
of an improvement in confinement in the WEST-specific aspect ratio in contrast with the empirical
studies which seemed rather to extrapolate a reverse effect. The first transport studies on WEST,
that will come soon, are expected to invalidate or confirm the simulation results. The study of the
self-organization of turbulence leading to these global properties is in progress.

This overview of the physical results of Gysela shows that this research tool has made it possible
to study confinement under several aspects: heat transport, large scale flows and impurities, proximity
to marginal threshold, all of which are decisive factors in anticipating and understanding the future
experiments in ITER. This research is thus closely associated with the major issues of magnetic
confinement fusion.

Verification and benchmark of Gysela against other codes started a long time ago because nu-
merical and physical verification is a major concern for complex codes. A difficulty in full-f code is
the delicate choice of the initial distribution function. Therefore, the impact of the initial state on
turbulence and transport has been addressed. For two strongly different initial states, it has been
found that the steady turbulent regime exhibits nearly identical statistical properties [122, 124]. The
code has been also benchmarked in the linear and non-linear regimes against other codes as well as

9the components taped to the wall that see the plasma.
10excepting a controversial recent paper [112].



92 version: May 18 2018

against theoretical predictions. At each stage, whenever it was possible, comparisons with analytical
results have been performed: the linear results of the 4D drift-kinetic version have been validated with
the linear dispersion relation results [139], neoclassical results have been recovered with our simplified
collision operator [64, 63], the radial force balance equation has been recovered analytically from the
conventional first order gyrokinetic equations [65] and successfully recovered numerically [64, 139],
local conservation equations for density, energy and toroidal momentum have been derived [55, 65],
GAMs and EGAMs11 and effects of fast particles have been investigated by means of analytical theory
and numerical simulations [59,61,106].

Conventional verification tests for gyrokinetic codes have been also successfully reproduced [10].
The Projection on Proper elements (PoPe) method [48] has already proven its capability to verify
kinetic codes of plasma turbulence. We foresee in the near future to use this method in order to
investigate the accuracy of Gysela, as well as to test model reduction methods. All along the im-
provement of the physics of the code, turbulence analysis have been confronted with other gyrokinetic
code results [62, 67, 76]. Finally, in terms of validation, the code has been confronted to tokamak
experiments, qualitatively, but also quantitatively with a comparison with Tore Supra (CEA/IRFM
tokamak) results [50, 131, 185]. Overall results obtained in physics have been enabled by a major
commitment of physicists, mathematicians and computer scientists.

In order to consider kinetic electrons, which bring much more physics than adiabatic electrons
that we have as for now, there is still progress to be made. If one considers that the ratio of Larmor
radii between ions (deuterium) and electrons is about 60, one should increase the mesh size by a
factor 603 and decrease the time step by a factor 60. Then, achieving a global flux-driven simulation
with both kinetic ions and electrons remains a challenge in term of CPU time. Exascale resources
are really needed to step forward in this direction. To go along this path, new efficient numerical
schemes (see Section 3.3.4), new physics modeling (modeling scrape-off layer more precisely) and
new programming approaches (task programming, adaptive graininess of computation, overlap of
main communication hot spots, vectorization, see Section 2.6) are currently investigated. Preliminary
physics results have been achieved on the trapped electron mode (TEM) and the transition between
ITG and TEM instabilities is currently under investigation.

3.5 Conclusion

Conservation properties have been studied to better understand the overall behavior of a gyrokinetic
code. Some techniques permitted to enhance energy conservation, mass conservation and to better
preserve some stationary states. Accuracy was improved in a subset of cases where boundary condi-
tions have been specifically modified. This work has improved the confidence users can have in the
code and it has allowed for the definition of verification procedures for automated regression testing.
Furthermore, I contributed to the design of the field-aligned method which is a numerical scheme that
exploits properties of the physics processes to diminish the amount of stored data. Without requiring
in-depth modifications of the plasma physics code, it led to an improvement both in term of accuracy
and in term of reducing the execution time and memory consumption. The new expected physics to
come, kinetic electrons that are very demanding, will directly benefit from this contribution. Sev-
eral operators of the Gysela application have been redesigned to cope with non-uniform/reduced
grid in the poloidal plane. In addition, a diffeomorphism (mapping technique) has been put into
place to model realistic plasma (within the last closed magnetic surface) instead of previous circular
configuration. Successful convergence studies have been performed within this new framework. The
encouraging results of this proof of concept study justify that we should try to assemble these new
components within an efficient framework to lower the execution time and to prove it is competi-
tive. In this regard, task-parallelism is what we are targeting to face both the challenge of increasing
complexity of the hardware and the difficulty to manage a non-uniform mesh. High-order Lagrange
interpolators reveal to be a fast and accurate alternative compared to cubic spline. Clearly mathe-
matical researches impact and interact strongly with high-performance computing field. And these
two topics are tightly coupled to physics modeling. In Section 3.4, we gave a set of physics results
that have been achieved thanks to this joint work.

Other works I did about numerical schemes are not presented in this document [5, 6, 11, 12, 24,
33, 37]. Such studies provide a way to check and verify HPC code, but they also trigger paths to
reduce execution time or improve accuracy. These are important cirteria for parallel simulation tools
that require large amounts of CPU time on supercomputers (i.e. energy and money). Support for
joint works between applied mathematicians and computer scientists should be promoted to design
algorithms and numerical schemes that have both good numerical and fine performance behaviors.

11geodesic acoustic modes: oscillations of the electric field whose importance in tokamak plasmas is due to their role
in the regulation of turbulence.



Chapter 4

Towards exascale

Since several years now performance of parallel applications is usually far less than the achievable
theoretical peak performance (many HPC applications achieve less than 5% of computational peak).
Theoretical modeling and profiling tools can help to understand which level of performance one can
expect for a given kernel on a particular hardware. Nevertheless, these FLOPs depend on the mix
of integer/float operations and vectorized/scalar calculations, but they depend also on memory re-
quirements of the computations, and other constraints. One of these tools is the roofline analysis1, it
requires a deep knowledge of the floating point operations done within the kernel, and also requires
to take care of the specificities of the targeted architecture. Optimizing a code to extract much of the
computational power requires detailed consideration of the the specific computer on which the code
is to be run. Thus, performance portability is also a real issue, that comes in addition to the work of
optimizing a single kernel on a given architecture. In this chapter, several studies are presented that
show some aspects that should be handled in order to target the porting of existing application on
novel architectures for HPC, such as GPU or many-core processors. As the semiconductor industry
continues its march to exascale computing, HPC systems are becoming more complex. Within a pro-
cessor, there are an increasing number of cores but also a broad array of on-chip resources ranging from
memory, network, compute elements, vectorized units, inputs-outputs. The capabilities of networks,
both in term of latency and bandwidth can not compete with the high CPU speed. We encounter
difficulties to fully harness the hardware capabilities. We will see three example of applications that
have been ported, optimized for accelerators. Some issues and a range of solutions will be highlighted.

4.1 Oil exploration applications on a GPU cluster

4.1.1 Introduction

The challenge that the oil and gas industry must face for hydrocarbon exploration requires the devel-
opment of leading edge technologies to recover an accurate representation of the subsurface. Seismic
modeling and reverse time migration (RTM) based on the full wave equation discretization are tools
of major importance because they give an accurate representation of complex wave propagation areas.
The recent development in graphics processing unit (GPU) technologies with unified architecture and
general-purpose languages coupled with the high and steadily increasing performance throughput of
these components made general-purpose processing on GPUs (GPGPUs) an attractive solution. In
the analysis presented in [8] and summarized hereafter, we describe the algorithmic approach specific
to GPUs and expose implementation details and performance results of a real-world industrial appli-
cation. This collaborative work has been conducted with R. Abdelkhalek and H. Calandra from Total
company and O. Coulaud and J. Roman from INRIA.

Numerical Seismic modeling aims at simulating seismic wave propagation in a geological medium
in order to generate synthetic seismograms that are the seismograms that a set of sensors would
record, given an assumed structure of the subsurface. Among the numerous approaches to seismic
modeling, direct methods based on approximating the geological model by a numerical mesh are
of particular interest. Besides, Reverse time migration is a technique for creating seismic images,
providing imaging of so-called turning and prismatic waves. RTM was introduced in the 1980s, but

1combination of theoretical and practical modeling of the performance of an application on a target architecture [192].
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despite showing promising imaging capabilities, its high computational cost prevented it from being
used in practice, until recent advances in HPC technologies. RTM is based on the simulation of
waves propagation: both source’s and receivers’ wavefields are propagated respectively forward and
backward in time. These wave-fields are then compared using an imaging condition for corresponding
time steps in order to form the subsoil image to detect oil deposit.

Governing equations
The three-dimensional (3D) acoustic wave Equation (4.1) links the pressure field u(x, y, z, t) to the

density ρ(x, y, z) and the velocity c(x, y, z),

1
c2 ρ

∂2u

∂t2
= ∇.

(
1
ρ
∇u
)
. (4.1)

Using finite difference methods to solve the wave equation is one way among others to tackle direct
methods. The way this equation is derived, among a regularly meshed domain: we write a cascaded
first-order spatial difference expression to compute the second time difference of the wavefield:
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The ∂− and ∂+ symbols denote the spatial difference operators that are centered halfway between
grid points either forward or backward in the direction of the spatial difference. We use operators
with a 3D stencil width of 8. So, for example, the first derivative of u with respect to x evaluated at
(i+ 1/2)∆x is written as
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∂x
u
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1
2

)
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)

=
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n=0

an[u((i+ 1 + n)∆x)− u((i− n)∆x)], (4.3)

where the an coefficients are the eighth-order finite difference operator optimized coefficients. When
the density is considered to be constant in all the domain, Equation (4.1) is simplified to 1

c2
∂2u
∂t2 = ∆u.

This approximation is especially carried out during migration process. The discretization of this
equation is carried out with a second-order-in-time leapfrog scheme and an eighth-order centered
difference scheme in space with either Taylor or optimized coefficients, which leads in 2D to

Un+1
i,j = 2Uni,j − 2Un−1
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[
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]
. (4.4)

Discretization of these equations on CPU is now briefly sketched. At each grid point, the stencil is
applied to compute the Laplacian value. Thus, to update one grid point, 25 data read accesses are
performed from the wave-field’s last update (Un) and one from (Un−1). Data are contiguous along
x-axis. When a domain is too large to fit into the cache size (almost always), data accesses along
y-axis and z-axis become expensive. In specific cases (constant density) cache blocking technique is
used along y-axis. In Algo. 20, we need to loop over all the grid points twice. During first sweep,
three 3D arrays are filled with the forward first derivatives along each axis. Then, backward first
derivatives are computed using these arrays and the density array. The stencil is then twice as large
as in the constant density case.

Algo 20 describes the sequential variable density seismic modeling CPU implementation. The
reference CPU implementation that we use to evaluate our GPU accelerated solution is parallel. It
is based on a standard domain decomposition along x, y and z. Ghost nodes are exchanged via non-
blocking Message Passing Interface (MPI) communications. Ghost node thickness is determined by
the stencil used to solve the wave equation: four planes in the constant density case and eight planes
in the variable density case.

In practice, because the simulated domain cannot extend infinitely, damping zones are added at the
borders of the domain to avoid reflections. In these zones, we use perfectly matched layers (PMLs) to
simulate nonreflecting boundaries. This classical technique is based on a modified wave equation with
a solution decreasing exponentially in the damping layers. PML numerical implementation requires
solving two coupled discretized equations: the first one updates the pressure wavefield array and the
second updates an artificial damping function array.
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for time = tstart to tend do
add source term;
forall domain grid points do

compute forward first derivatives;
forall domain grid points do

compute backward first derivatives;
update wavefield;

save seismogram;

Algo. 20: Variable density seismic modeling

for time = tstart to tend do
add source term;
forall domain grid points do

take forward time step;
save boundaries(time);

for time = tend to tstart do
read saved boundaries(time);
forall domain grid points do

backward time step source wavefield;
add receiver term;
forall domain grid points do

backward time step receiver wavefield;
forall domain grid points do

apply imaging condition;

Algo. 21: Reverse Time Migration algorithm
The RTM algorithm is listed in Algo. 21. It relies on the constant density approach to simulate

the source wavefield (in both the forward and the backward phases) and the receivers wavefield.
The imaging condition applied during backward recursion consists in the accumulation of the cross-
correlation between source and receiver wavefields over the time iterations. The work described here
treat the wave propagation in a variable density domain on a cluster of GPU with PML boundary
conditions. This configuration within a production code was a novelty in 2011.

4.1.2 Graphics processing unit implementation

Architecture and global setting

We used NVIDIA Tesla S1070 blades which are composed of four Tesla 10 (T10) GPUs embedded
with 4 GB of memory per GPU. Each pair is connected to a host node via a PCIe 2.0 bus, acting as
coprocessors or computing devices. Each T10 GPU can be seen as a set of 30 multiprocessors. Each
multiprocessor is composed of eight streaming processors running in a single instruction, multiple data
like way. The processors inside a multiprocessor have access to 16,384 32-bit registers (divided among
processors) and to 16-kB shared memory space that can be seen as a cache memory with very low
latency (4 clock cycles per read/write if no conflict). All the GPU’s processors have read/write access
to the off-chip global memory (nearly 4 GB) but with a higher latency up to 600 clock cycles. We
focus on the Compute Unified Device Architecture (CUDA) that we used for our implementations.
CUDA defines a thread hierarchy in order to organize threads in a geometric topology. Thus, threads
are grouped into 1D, 2D, or 3D thread blocks. These blocks rearrange into 1D or 2D grids. This
topology matches the thread organization to the GPU structure. Threads of the same block are run
on the same multiprocessor, making them able to have access to the multiprocessor’s shared resources
(same shared memory space, texture, and constant memory cache) and to coordinate their activities
by using a barrier function. Each thread is then identified according to its thread ID and the block ID
of the block it belongs to. Threads of consecutive thread IDs are grouped into warps of 32 threads.

Framework and constraints

The concept of occupancy is of major importance when designing CUDA kernels. Occupancy is
defined as the ratio of active warps per multiprocessor to the maximum number of active warps
(32 for the T10 GPU). The number of active warps is defined by the availability of shared resources
inside the multiprocessor. Other important metrics are the global memory accesses and the instruction
throughputs to be compared with the theoretical peaks to get the memory over instruction throughput
ratios. These ratios help us understand the limitations of each kernel implementation.

Host-graphics processing unit communication

For the pressure field to be updated at a given iteration tn+1, pressure field updates at iterations tn−1

and tn are required. Data in the GPU global memory are persistent across different kernel launches.
Time evolution of the wavefield is then performed in the GPU memory by logically swapping tn and
tn+1 arrays. Only the ghost nodes2 need then to be exchanged between host and GPU at each time
step when partitioning the domain among several GPUs. Exchanging only ghost nodes instead of
the whole domain, although requiring more programming effort, largely reduces the amount of data
exchange and thus computing time. For example, transferring a whole 3D 528× 2548× 1067 domain
to/from GPU takes approximately 0.1 s, which is equivalent to the time needed for a single constant
density modeling time iteration for this domain. Our implementation allows decomposing the domain

2back to 2011, MPI communications could not be initiated directly between GPUs, as CUDA-aware MPI and
GPUDirect RDMA allow it now.
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along the three axes. However, the location of the ghost nodes to be exchanged (which depends on
the domain decomposition geometry) has a strong impact on the CPU-GPU communication time. In
fact, exchanging contiguous data in the physical memory (corresponding to a decomposition along the
slowest varying dimension) is much faster than any other ghost node exchange. This is illustrated in
Table 14. We compare the time needed to transfer all the ghost nodes (eight-element width) of a 512×
512× 512 data volume, from host to device and from device to host, when using different techniques.
CUDA API provides routines to perform linear memory, 2D and 3D data transfers between the host
and the device. We started by considering a single transfer of the whole data cube (Single Transfer).
Then we used 2D memory copies in a loop along the slowest varying direction to transfer only the ghost
nodes (MemCpy2D). This reduces the total size of transferred data but largely increases the number
of transfers and thus latency time. More than 70% of the total transfer time was spent transferring
the two ghost node sides where data was the least contiguous (left and right – or x-direction – in
our implementation). To reduce this cost, we considered a third strategy on the basis of rearranging
data of these ghost nodes by performing a transposition on the GPU side (MemCpy2D+Transpose).
This technique showed to be the best approach because it was 2.33× faster than the previous one for
CPU-to-GPU data transfers and 3 faster for GPU-to-CPU data transfers. Using 3D memory copies
either to transfer the whole data cube (Single MemCpy3D) or to transfer only the ghost nodes (Partial
Transfer 3D) showed poor performance.

Transfer technique HtoD DtoH
Single Transfer 90.9 96.3
MemCpy2D 63.3 96.3
MemCpy2D+Transpose 27.2 31.2
Single MemCpy3D 93.5 98.3
Partial Transfer 3D 55.4 215.6

Table 14: Host-GPU transfer time (ms) using different techniques from host to device (HtoD) and
from device to host (DtoH).

Computing kernel design

We designed mainly three kernels dedicated to : i) constant density modeling, ii) variable density
modeling, iii) Reverse time migration. Several techniques and strategies have been applied in order
to shorten the execution time (not detailed here): maximizing occupancy, padding to ensure global
memory coalescing, reducing registers and shared memory use, boundary condition treatment, CPU-
GPU communications. Therefore, several variants of the kernels and variants of subpart of the kernels
have been setup and benchmarked. Among all optimizations done, several ones were really worthy.
First, to limit frequent memory access, we used shared memory: data are first copied to shared memory
(texture fetches in 2D, global memory in 3D), then read by threads of the same block. This classical
technique reduces global memory accesses for the same data but increases and puts pressure on shared
memory use. Second, to limit pressure on shared memory and thus increase occupancy, we adopted a
novel strategy: instead of dedicating a thread to each grid point, we used a sliding window algorithm,
sliding over planes in the z−direction. We used shared memory to store the (x, y, z=zcurrent) plane
to be updated, so that all the threads can compute Laplacian value along x− and y−direction. For
the z−direction, each thread loads into float4 registers the four pressure values under and over the
current plane. At each loop iteration, corresponding to a shift along z−direction, wavefield values are
shifted. Thus, at a given iteration, only the (x, y, z= zcurrent+4) plane is read from global memory.
Third, the kernel managing PML boundary conditions was split into two kernels launched one after
the other. It permitted to reduce register use and then improve occupancy. Fourth, some dedicated
kernels has been setup to manage boundary conditions especially, other kernels deal with the inner
domain. This way, a conditional is avoided within the kernels (the conditional is at the level of the
caller to the kernel) and it also limits the register use. Fifth, for RTM implementation the domain
to be updated on the GPU is decomposed into streams. Each stream consists in a data transfer from
host to GPU, a kernel launch, and a data transfer from GPU to CPU. While executing a stream’s
kernel, the data corresponding to the next stream are transferred, thus overlapping the cost of the
communication.

4.1.3 Benchmarks

Graphics processing unit cluster test bed

The GPU cluster test bed is composed of 10 Xeon bisocket quad-core nodes (INTEL) coupled with
five NVIDIA Tesla S1070 servers. Each node is connected via one PCIe gen 2.0 bus to the Tesla
server. The Tesla server is composed of four T10 GPUs. Each node has access to two GPUs via the
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same bus. All the GPU computing times indicated hereafter, take into account the kernel execution
time as well as the CPU-GPU communication needed to initiate and finish the kernel. We now review
and analyze some performance results. The reference time is the time to process the entire domain
without using any subdomain decomposition: the CPU reference time is given by running a sequential
implementation on a single CPU core, and the GPU reference time is given by using one GPU card.

Constant and variable density modeling

We consider a 3D test case (hereafter referred to as 3DModel) of grid dimensions 521×254×1067 with
∆x=12.5, ∆y=12.5, and ∆z=10 in meters. Results reported in Table 15 show that the CPU/GPU
time ratio decreases with the number of subdomains increasing because the computing time decreases
and the communication time becomes more predominant (both CPU-GPU and MPI communications
are involved). Yet, only computing time is reduced when using GPUs.

From Fig. 80, many of the factors that may impact our seismic modeling variable density code
performance may be inferred. In this Fig., the time required for one time iteration is reported and
decomposed into MPI communication time, host-GPU communication time, and GPU kernels’ ex-
ecution time. Several measures, corresponding to different domain decomposition geometries, are
reported for the 3DModel. As a rule of thumb, we can notice that decomposing along the slowest
varying dimension is the most effective strategy. In fact, it reduces the overhead of both MPI and
host-GPU transfers because, in both cases, contiguous data are exchanged.

Constant density Variable density
Number of subdomains CPU time GPU time Ratio CPU time GPU time Ratio
1 3.89 0.146 26.71 8.83 0.205 43.07
2 1.59 0.083 19.15 5.09 0.130 39.07
4 0.94 0.046 20.43 2.11 0.078 26.98
8 0.47 0.034 15.16 1.06 0.053 20.03

Table 15: Modeling averaged time in seconds for one iteration on 3DModel.

Figure 80: Variable density average time step for different domain decomposition geometries.

Reverse time migration

We report in Table 16 detailed times and speedup of the RTM when increasing subdomains number.
FWD time refers to the time spent during the forward sweep, whereas BWD time refers to the
backward sweep where the source and the receivers wavefields are propagated backward in time and
the imaging condition (correlation of the two wavefields) is performed. The RTM implementation
involves more host-GPU communications than the modeling. This reduces the obtained CPU/GPU
time ratio very significantly. The results reported are obtained when using four CUDA streams in the
forward sweep and two in the backward sweep. Stream implementation showed to be 1.4 faster than
the non-streamed implementation.

CPU GPU Ratio
Number of subdomains FWD BWD Total FWD BWD Total FWD BWD Total
1 923.9 1802.1 2726.0 74.0 92.8 166.8 12.5 19.4 16.3
2 526.9 953.3 1480.2 47.1 73.4 120.5 11.2 13.0 12.3
4 269.9 490.4 760.2 32.6 61.2 93.8 8.3 8.0 8.1
8 122.0 190.6 312.6 25.3 52.3 77.6 4.8 3.6 4.0

Table 16: RTM exec. times in s for one shot (3700 iterations) on a 288× 118× 338 domain.
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Discussion

We ported a seismic modeling application and reverse time migration on a GPU cluster. We com-
pared our GPU implementation with the original CPU version on several test cases and obtained a
performance increase of 16 for RTM and up to 43 for modeling. This shows that GPGPU solutions are
worth being used in a large-scale industrial context. GPGPU is paving the way for many-core CPU
systems, fine-grained parallelism constraints are likely to be similar, and concepts and approaches
developed for GPUs may be useful in the many-core era.

We observed that the CUDA compute capability together with the GPU device have a large
impact on performance. Auto-tuning techniques would be suitable to adapt and tune the best kernel
depending on a peculiar system. Such kind of auto-tuning has been worthwhile for optimizing kernels
in this work [82]. In addition, it is expected that the kernels are updated/upgraded when a new
generation of GPUs appears.

Keeping equivalent versions of a GPU and a CPU implementation of several kernels is quite
challenging. Maintenance, support and development are much more complicated in such context.
High-level programming language (HMPP, OpenACC) can help a bit but portability, readability,
efficiency and maintenance issues remain a challenge.

4.2 Vlasov-Poisson application on GPU

4.2.1 Introduction

Context

The work described here [30] highlights adjustments needed for a semi-Lagrangian Vlasov-Poisson
code to tackle a GPU device. It followed a former study made on the loss code described in a set
of papers [9,14,35]. A classical approach in the semi-Lagrangian community involves the use of cubic
splines to achieve the numerous interpolations induced by this scheme. The local spline method,
already presented in Chapter 1, allows one to decouple computations for parallelizing them. Only
relatively small MPI inter-processor communication costs were induced and these codes scaled well
over hundreds of cores. A mixed-precision method has been setup to reduce execution time and
improve the overall performance on GPU, as we shall see.

Equations

We consider a reduced model for two physical dimensions, corresponding to x and vx such as
(x, vx) ∈ R2. The 1D variable x represents the configuration space and the 1D variable vx stands
for the velocity along x direction. Moreover, the self consistent magnetic field is neglected (vx consid-
ered to be relatively small). The Vlasov-Poisson system then reads:

∂f

∂t
+ vx .∇xf + (E + vx ×B) .∇vxf = 0, (4.5)

−ε0∇2φ = ρ(x, t) = q

∫
f(x, vx, t)d vx, E(x, t) = −∇φ. (4.6)

where f(x, vx, t) is the particle density function, ρ is the charge density, q is the charge of a particle
(only one species is considered) and ε0 is the vacuum permittivity, B is the applied magnetic field.
Eq. (4.5) and (4.6) are solved successively at each time step. The density ρ is evaluated in integrating f
over vx and Eq. (4.6) gives the self-consistent electrostatic field E(x, t) generated by particles. The
physical domain is defined as D2

p = {(x, vx) ∈ [xmin, xMax]× [vxmin , vxMax ]}. For the sake of simplicity,
we will consider that the size of the grid mapped on this physical domain is a square indexed on
D2
i = [0, 2j−1]2. Periodic extensions is implemented as boundary condition. For the sake of simplicity,

we focus here on the very classical linear Landau damping test case (with k=0.5, α=0.01) which
highlights the accuracy problem one can expect in Vlasov-Poisson simulation. The initial distribution
function is given by

f(x, vx, 0) =
e−

vx
2

2√
2π

(1 + α cos(k x)) .

Numerical scheme

The Vlasov Equation (4.5) can be decomposed by splitting. It is possible to solve it, through the
following elementary advection equations:

∂tf + vx∂xf = 0, (x̂ operator) ∂tf + v̇x∂vxf = 0. (v̂x operator)
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Each advection consists in applying a shift operator. A splitting of Strang is employed to get a second
order accuracy in time. We took the sequence (x̂/2, v̂x, x̂/2), where the factor 1/2 means a shift over
a reduced time step ∆t/2. Algo. 22 shows how the Vlasov solver of Eq. (4.5) is interleaved with the
field solver of Eq. (4.6).

Local spline method

Each 1D advection (along x or vx) consists in two substeps (Algo. 23). First, the density function f
is processed in order to derive the cubic spline coefficients. The specificity of the local spline method
(already described18) is that a set of spline coefficients covering one subdomain can be computed
concurrently with other ones. Thus, it improves the standard approach that requires a coupling
between all coefficients along one direction. Second, spline coefficients are used to interpolate the
function f at specific points. This substep is intrinsically parallel whether with the standard spline
method or with the local spline method: one interpolation involves only a linear combination of four
neighboring spline coefficients.

In Algo. 23, xo is called the origin of the characteristic. With the local spline method, we gain
concurrent computations during the spline coefficient derivation (line 2 of the algorithm). Our goal
is mainly to port Algo 23 onto GPU, we need then a highly parallel form adapted to the CUDA
framework.

Input : ft
Output: ft+∆t

// Vlasov solver, part 1
1 1D Advection, operator x̂

2 on f(., ., t)

// Field solver
2 Integrate f(., ., t+∆t/2) over vx
3 to get density ρ(., t+∆t/2)
4 Compute φt+∆t/2 with Poisson solver
5 using ρ(., t+∆t/2)

// Vlasov solver, part 2
6 1D Advection, operator v̂x (use φt+∆t/2)
7 1D Advection, operator x̂

2

Algo. 22: One time step

Input : f
Output: f
forall vx do

a(.)← spline coeff. of sampled function f(., vx)
forall x do

x0 ← x− vx.dt
f(x, vx)← interpolate f(x0, vx) with a(.)

Algo. 23: Advection in x dir., dt time step

4.2.2 Specific improvements for GPGPU

Improvement of numerical precision

In 2009, one had to consider mostly single precision (SP) computations to get good performance out
of a GPU. The double precision (DP) was much slower than single precision (SP) on the available
GPU devices at this time. However, it remains true nowadays that SP calculation behave faster than
DP on many computing units. In addition, the use of double precision increases pressure on memory
bandwidth by a factor two. In many targeted physical configurations, using SP without caution leads
to unacceptable numerical results [30].

It turns out that we were able to modify the scheme to reduce numerical errors even with only SP
operations during the advection steps. To do so, a new function δf(x, vx, t) = f(x, vx, t)− fref(x, vx)
is introduced. Working on the δf function could improve accuracy if the values that we are working
on are sufficiently close to zero. Then, the reference function fref should be chosen such that the δf
function remains relatively small (in L∞ norm). Let us assume that fref is a constant along the x

dimension. For the Landau test case, we choose fref(vx) = 1√
2π

e−
vx

2

2 . As the function fref is constant
along x, the x-advection applied on fref leaves fref unchanged. Then, it is equivalent to apply x̂
operator either on function δf or on function f . Working on δf is worthwhile (x̂ operator): for the
same number of floating point operations, we increase accuracy in working on small differences instead
of large values. Concerning the v̂x operator however, both fref and f are modified. For each advected
grid point (x, vx) of the f? function, we have (vox is the foot of the characteristic):

f?(x, vx) = f(x, vox) =δf(x, vox) + fref(vox), δf?(x, vx) = f?(x, vx)− fref(vx) ,
δf?(x, vx) = δf(x, vox)− (fref(vx)− fref(vox)).

Working on δf instead of f changes the operator v̂x. We now have to interpolate both δf(x, vox) and
(fref(vx)−fref(vox)). In doing so, we increase the number of computations (only in v̂x operator); because
in the original scheme we had only one interpolation per grid point (x, vx), whereas we have two in the
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new scheme. In spite of this cost increase, we enhance the numerical accuracy using δf representation
(see Fig. 81). A sketch of the δf scheme is shown in Algo 24.

Input : δf t
Output: δf t+∆t

1D advection on δf , operator x̂
2

Integrate δf(., ., t+∆t/2) + fref(.)
to get ρ(., t+∆t/2)

Compute φt+∆t/2,
with Poisson solver on ρ(., t+∆t/2)

1D advection on δf , operator v̂x
→ stored into δf

Interpolate fref(vx)− fref(vox)
→ results added into δf

1D advection on δf , operator x̂
2

Algo. 24: One time step, δf scheme

Input : ft in global memory of GPU
Output: ft+dt in global memory of GPU

// A) Load from global mem. to shared mem.
Each thread loads 4 floats from global mem.
Floats loaded are stored in shared memory
Boundary conditions are set (extra floats are read)
Synchro.: 1 thread block owns n vectors of 32 floats
// B) LU Solver
1 thread over 8 solves a LU system (7 are idle)
Synchro.: 1 block has n vectors of spline coeff.
// C) Interpolations
Each thread computes 4 interpolations
// D) Writing to GPU global memory
Each thread writes 4 floats to global mem.

Algo. 25: Skeleton of an advection kernel
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Figure 81: Electric energy for Landau
test case 10242, using δf representation
or standard representation.

Data placement

We perform the computation on data δf of size (2j)2. Typical domain size varies from 128× 128 (64
KB) up to 1024 × 1024 (4 MB). The whole domain fits easily in global memory of current GPUs.
In order to reduce unnecessary overheads, we decided to avoid transferring 2D data δf between the
CPU and the GPU as far as we can. So we kept data function δf onto GPU global memory. CUDA
computation kernels update it in-place. For diagnostics purposes only, the δf function is transferred
to the RAM of the CPU at a given frequency.

Spline coefficients computation

Spline coefficients (of 1D discretized functions) are computed on patches of 32 values of δf . A smaller
patch would introduce significant overhead because of the cost of first derivative computations on the
patch borders [35]. A bigger patch would increase the computational grain which is a bad thing for
GPU computing that favors scheduling large number of threads. The 2D domain is decomposed into
small 1D vectors (named “patches”) of 32 δf values. To derive the spline coefficients, tiny LU systems
are solved. The assembly of right hand side vector used in this solving step can be summarized as
follows: keep the 32 initial values, add 1 more value of δf at the end of the patch, and then add two
derivatives of δf located at the borders of the patch. Once the right hand side vector is available (35
values), two precomputed matrices L and U are inverted to derive spline coefficients (using classical
forward/backward substitution). We decided not to parallelize this small LU solver: a single CUDA
thread is in charge of computing spline coefficients on one patch That point could be improved in the
future in order to use several threads instead of one.

Parallel interpolations

On one patch, 32 interpolations need to be done (except at domain boundaries). These interpolations
are decoupled. To maximize parallelism, one can even try to dedicate one thread per interpolation.
Nevertheless, as auxiliary computations could be factorized (for example the shift vx.dt at line 4 of
Algo. 23), it is relevant to do several interpolations per thread to reduce global computation cost.
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The number of such interpolations per thread is a parameter that impacts performance. This blocking
factor is denoted K.

Data load

The computational intensity of the advection step is not that high. During the LU phase (spline
coefficients computation), each input data is read and written twice and generates two multiplications
and two additions in average. During the interpolation step, there are four reads and one write per
input data and also four multiplications and four additions. The low computational intensity implies
that we could expect shortening the execution time in reducing loads and writes from/to GPU global
memory. So, there is a benefit to group the spline computation and the interpolations in a single
kernel. Several benchmarks have confirmed that with two distinct kernels (one for building splines
and one for interpolations) instead of one, the price of load/store in the GPU memory increases. Thus,
we now describe the solution with only one kernel.

Domain decomposition and fine grain algorithm

We have designed three main kernels. Let us give short descriptions: KernVA operator v̂x on δf(x, vx),
KernVB adding fref(vx)−fref(vox) to δf(x, vx), KernX operator x̂ on δf(x, vx). The main steps of KernVA
or KernX are given in Algo. 25. The computations of 8n threads acting on 32n real number values
are described (it means K=4 hardcoded here).
First A) substep reads floats from GPU global memory and puts them into fast GPU shared memory.
When entering the B) substep, all input data have been copied into shared memory. Concurrently in
the block of threads, small LU system are solved (but 87% of the threads stays idle). Spline coefficients
are then stored in shared memory. In substep C), each thread computes K = 4 interpolations using
spline coefficients. This last task is the most computation intensive part of the simulator. Finally,
results are written into global memory.

4.2.3 Performance

Machine

In order to develop the code and perform small benchmarks, a cheap personal computer has been
used (in 2009). The CPU is a dual-core E2200 Intel (2.2Ghz), 2 GB of RAM, 4 GB/s peak bandwidth,
4 GFLOPS peak, 1 MB L2 cache. The GPU is a GTX260 Nvidia card: 1.24 Ghz clock speed, 0.9 GB
global memory, 95 GB/s peak bandwidth, 750 GFLOPS peak, 216 cores.

Substeps in one time step CPU (deltaf 4B) GPU (deltaf 4B)

X Advection 5123 µs (1.0 ) 172 µs (29.7 )

V Advection 4850 µs (1.0 ) 144 µs (33.7 )

Field computation 133 µs (1.0 ) 93 µs (1.4 )

Complete Iteration 10147 µs (1.0 ) 546 µs (18.6 )

Table 17: Small 2562 Landau test case- time breakdown
within a time step (speedup in parentheses) averaged over
5000 calls

Substeps in one time step CPU (deltaf 4B) GPU (deltaf 4B)

X Advections 79600 µs (1.0 ) 890 µs (90 )

V Advections 89000 µs (1.0 ) 1000 µs (89 )

Field computation 1900 µs (1.0 ) 180 µs (11 )

Complete Iteration 171700 µs (1.0 ) 2250 µs (76 )

Table 18: Large 10242 Landau test case - Time breakdown
within a time step (speedup in parentheses) averaged over
5000 calls

Benchmark

Let us first have a look on performance of the δf scheme. We consider the small testbed (E2200-
GTX260), and a reduced test case (2562 domain). The simulation ran on a single CPU core, then on
the 216 cores of the GTX260. Timing results and speedups (reference is the CPU single core) are given
in Table 17. The speedup is near 30 for the two significant computation steps, but is smaller for the
field computation. The field computation part includes two substeps: first the integral computations
over the 2D data distribution function, second a 1D Poisson solver. The timings for the integrals are
bounded up by the loading time of 2D data from global memory of the GPU (only one addition to do
per loaded float). The second substep that solves Poisson equation is a small sequential 1D problem.
Furthermore, we loose time in launching kernels on the GPU (25 µs per kernel launch included in
timings shown).
In Table 18, we look at a larger test case with data size equal to 10242. Compared to a single CPU
core, the advection kernels have speedups from 75 to 90 for a GPU card (using 260 000 tiny threads).
Here, the field computation represents a small computation compared to the advections and the low
speedup for the field solver is not a real penalty. A complete iteration reaches a speedup of 76 on
GPU over CPU. But one should mitigate this result by the fact that an OpenMP parallelization on a
multi-core CPU would have lowered this speedup by almost a factor 2 on 2 cores.
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4.2.4 Discussion

It turns out that δf method is a valid approach (under some assumptions on the reference fref)
to perform a semi-Lagrangian Vlasov-Poisson simulation using only 32-bit floating-point precision
instead of classical 64-bit precision. A very fine grain parallelization of the advection step is presented
that scales well on thousands of threads. Such kind of very fined-grain algorithm is also expected to
exploit foreseen exascale devices. We have discussed the kernel structure and the trade-offs made to
accommodate the GPU hardware.

The application is bounded up by memory bandwidth because computational intensity is small. It
is well known that algorithms of high computational intensity are able to be efficiently implemented
on GPU. We have shown an algorithm of low computational intensity that can also benefit from GPU
hardware. Our GPU solution reaches a significant speedup of overall 76 compared to a single core
CPU execution. Optimizations done are dedicated to GPU. In practice, it means that we kept and
maintain separate codes for the two versions of the main kernels: CPU (OpenMP+Fortran version)
and GPU (CUDA+C+Fortran version).

4.3 Xeon Phi to accelerate applications

4.3.1 Introduction

Context

Adapting the code to new parallel architectures is a key issue. It is important to understand new
hardware, their advantages and limitations. This Xeon Phi coprocessor is the first one (KNC), largely
commercialized, that implements the Many Integrated Cores (MIC) architecture. This architecture is
appealing, as the compiling and execution steps are quite similar to those of standard intel processors,
and the theoretical peak performance and memory bandwidth are high. Furthermore, we had the
opportunity to get an access to the Helios machine dedicated to Fusion community (Japan), where
such devices were available (starting in 2014). This work [2,20] describes the challenges presented by
porting parts of the Gysela code to the intel Xeon Phi coprocessor, as well as opportunities for
optimization, vectorization and tuning that can be applied to many other applications.
To simplify our study, we have extracted a mini-application from the Gysela code with a reduced
code line count, and with less physics submodels. The mini-application is much easier to modify in
order to optimize and to tune the code. We tried a top-down approach to improve the performance of
the costly computational part located in a single subroutine. Many standard optimization techniques
were investigated on this subroutine, but the investigations was too rough and tedious, we did not
reach the level of performance that one can expect from Xeon Phi (KNC).
Then, we investigated a bottom-up approach to overcome the performance limitation we observed. To
finely study the optimization aspects, we designed very small computation kernels, easy to modify,
that are representative of the costly part of the mini-application. The description of these kernels, the
optimizations we have done on them and benchmarks results we obtained, are summarized hereafter.
Finally, the lesson learned from the porting of the tiny computation kernels has been used to globally
improve the performance of the mini-application. Finally, optimized kernels were integrated back into
the mini-application.

Hardware and setting

The benchmarks presented in this study have been mostly obtained on the Helios machine on IFERC
computing facility (Rokkasho, Japan). The hardware we used consists of Xeon Phi cards with 60
cores (1.052 GHz), where each core is capable of executing four concurrent threads. The chip handles
an instruction set that operates on 512 bits wide vector registers. Because of the in-order execution
model and a latency of vector instructions which is greater than 2 on this Xeon Phi, one needs 2
to 4 threads per core to get good performance. Each core executes alternatively these threads in a
round-robin manner in order to hide the instructions, pipelines and memory latencies. Also thread
pinning plays a significant role to achieve performance. High latencies to access cache memory are
observed on Xeon Phi in combination with smaller cache sizes (compared to CPU) brought us to
the conclusion that efficient cache reuse strategies are much more difficult to implement on Xeon Phi
(KNC) than on Sandy Bridge. The host processor (Sandy Bridge, intel Xeon E5-2600), i.e the host
on which the Xeon Phi is plugged, consists of two 2.7 GHz processors with eight cores each and with
two admissible threads per core.
We chose the so-called “native” or “symmetric mode”, similar to CPUs programming models and not
the “offload” mode which is closer to the CPU+GPU model with a host interacting with a coprocessor.
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The reason this “native” model is available for Xeon Phi (KNC) while there is no such model for GPU
accelerators is that the Xeon Phi runs a complete operating system whereas GPUs are operated by
the system running on the host. In this model, each coprocessor is seen as a separate node and
the MPI application can be deployed on both the CPU and MIC nodes. The largest advantage of
this strategy resides in its ease of use: the application developer stays within the well known MPI
programming framework. The hardware non-homogeneity (CPU versus Phi) also leads to possible
load imbalance issues. Depending on the computation and for a given load, the execution time will
likely be different on the host and on the coprocessor. For the native mode, as the large majority
of MPI applications distributes equally the same computations with the same load on the different
nodes, some tasks will finish earlier than others then leaving their computing unit idle. A strategy to
alleviate this would consist in modifying the MPI application such that different groups of MPI tasks
can have different loads. Runtime system like StarPU, XKaapi, ompSs, PaRSEC can help reducing
the imbalance also. Indeed, once the developer has expressed the parallelism of his application as a
set of tasks, the runtime system schedules them dynamically on the available computing units and
performs the required data transfers.

Challenges

The types of problems the Xeon Phi (KNC) is well suited for are intensive numerical computations.
Additionally, for better performance the computations can use one of the highly optimized vector
math libraries that were implemented using assembly language constructs tuned specifically for the
Xeon Phi architecture, or very well vectorized code.
Also, local CPU caches should be used as much as possible. Maintaining locality of data in caches
is a key factor to achieve performance. This is a major difficulty because the L2 cache is about 25
MB over all 60 cores on the Xeon Phi (and over the possibly 240 threads), which means much less
cache memory per core than on the Sandy Bridge host. One can already notice the impressive factor
four in memory bandwidth and factor 5.8 in peak performance which separates the Sandy Bridge
(single socket) from the Xeon Phi. On the other hand, the memory per core shrinks by a factor 30
from 4GB/core to 130MB/core. Additionally, the peak performance per core also shrinks from 21.6
GFlops/s to 16.6 GFlop/s. These peak performance numbers both assume the usage of the vectorized
fused multiply-add assembly instruction, i.e. one addition and one multiplication are performed on
all the elements of the vector registers given in parameter.
As we will see, to reach a certain level of performance, the parallelization effort is much more important
on the Xeon Phi (KNC) compared to Sandy Bridge.

4.3.2 Application framework

Numerical scheme & algorithmic analysis

We have chosen to present here configurations with only a single µ = 0 value. It means, we consider
the 4D drift-kinetic model which is the backbone of the 5D gyrokinetic models and relevant to build
numerical schemes. To simplify the analysis and avoid possible problems directly due to MPI commu-
nication that had bad performance on this KNC cluster, we considered a mini-application that does
not use MPI at all and is only parallelized using the OpenMP paradigm. Such a mini-app offers more
flexibility than the original application while retaining key algorithms and performance characteris-
tics [148].
We now investigate an alternative of the the classical Strong splitting of Gysela with a a series of
directional advections: (v̂‖/2, ϕ̂/2, r̂θ, ϕ̂/2, v̂‖/2). This alternative consists in 4D advection, Algo. 26
is very close to Algo. 11 presented earlier (p.64). The OpenMP parallelization and SIMD vectorization
is one of the challenge together with the fact this kernel is computation intensive.

η(r = ∗, θ = ∗, ϕ = ∗, v‖ = ∗)← compute spline coeff. from the
4D function fn(r = ∗, θ = ∗, ϕ = ∗, v‖ = ∗);

for All grid points (ri, θj , ϕk, v‖ l) do
(ri, θj , ϕk, v‖ l)? ← foot of characteristic that ends at (ri, θj , ϕk, v‖ l) ;
Interpolate fn at location (ri, θj , ϕk, v‖ l)? using η coeff.;
fn+1(ri, θj , ϕk, v‖ l)← the interpolated value;

Algo. 26: 4D advection scheme with semi-Lagrangian scheme

Let us briefly summarize the algorithmic complexity of the two approaches: splitting scheme
(denoted Split), 4D advection scheme (denoted Nosplit). To oversimplify this short analysis, we will
focus only on the interpolation operator, and the spline coefficients computation. We leave aside the
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cost due to the computation of the feet of the characteristics. Also, we assume that we have a constant
displacement field for the advection (no costly computation required). Let us denote Nall the number
of points in the domain, i.e. Nall = NrNθNv‖ Nϕ.
For the Split case, each 1D advection requires: 7Nall floating point operations (it means 3 additions
and 4 multiplications per grid point and Nall read memory accesses, and the same amount of write
memory accesses. The 1D spline coefficients derivation costs 10Nall FLOP (a solver performs a single
sweep down and up, using a small LU decomposition). We assume that each advection is performed
with a very good locality in cache memory that prevents from loading the same memory reference
two times during a single advection, especially the spline coefficients remain in the cache. The 2D
advection implies: 35Nall FLOP, Nall read memory accesses, and the same amount of write memory
accesses. The 2D spline coefficients derivation leads to 10Nall FLOP. Finally, the splitting scheme,
with 5 advections, has the following cost: 113Nall FLOP, 5Nall in both read and write memory
accesses.
Concerning the NoSplit case, the computational cost of the 4D interpolator is quite high: 595Nall
FLOP. The spline coefficients derivation using a tensor product in four dimensions leads to 20Nall
FLOP. Considering memory accesses, the distribution function fn is accessed at least one time to
compute the spline coefficients. The spline coefficients are first written (lines 1 and 2 of Algo. 26) and
then read in order to compute the interpolations. Finally, the interpolation result is written (line 6).
So in total, the algorithm performs 2Nall read memory accesses (at least) and 2Nall write memory
accesses, and means 615Nall FLOP.
If one compares both methods, the Nosplit case computes 6 times more FLOP but performs less
memory accesses. At first approximation, the 1D and 2D advections are mainly memory-bound
kernels (as we will see afterwards), whereas the 4D approach is clearly CPU-bound. For computing
units that can perform a very large number of FLOP per transferred byte (as the Xeon Phi is), the
4D approach is better suited than the splitting approach. In the following, we will mainly target the
4D algorithm for the porting on Xeon Phi which seems to be best suited.

Profiling and improvement strategy

In practice, we have used the OpenMP paradigm on a shared memory node throughout all the codes
presented hereafter. A small run with this mini-app using 4D advections on one single Sandy Bridge
node takes 10 hours for the following domain size: Nr = 128, Nθ = 256, Nϕ = 32, Nv‖ = 64 with 4000
time steps. A profiling of the application using a single process with 16 threads has been performed on
the Sandy Bridge partition with the Scalasca toolkit. As a result 98% of the run time is concentrated
in one single routine and can be split into:

• Spline construction 10%
• Vlasov Solver (4D advection) 89% split into:

– Computation of the feet of the characteristics 41%
– Interpolations with 4D stencil using spline coefficients and feet 59%

We first tried a top-down approach to improve the performance of the 4D interpolation kernel.
We extracted the most computation intensive part of the kernel in a single subroutine of less than
200 lines of code. Then, a lot of optimization techniques were carried on on this subroutine to get a
vectorization of parts of the kernel and cache-friendly behavior. We have sped up the initial version by
a factor 2 on medium test cases on the Xeon Phi (domain size 128×128×64×32, 45s for one advection
step with the initial version and 25s after some improvements have been done). Nevertheless, on a
Sandy node with 16 cores and a similar test case, the code is eight times faster (3.3s per advection
step) than on one Xeon Phi (KNC) device (25s). Even though we have explored many techniques, we
failed to reach the level of performance one can expect from Xeon Phi (i.e. Sandy should have been
two times slower than Phi on well optimized/vectorized code).
Therefore, we switched to a different approach further discussed in the following. In this bottom-up
approach, we start with the study of small kernels that can reach high performance on Phi. And
then, from this experience we build up more complex kernels while trying to keep the same level of
performance.

4.3.3 Evaluating Xeon Phi with simple kernels

Description of simple advection kernels

The choice of interpolation method in a semi-Lagrangian scheme is crucial. It determines the numerical
quality of the scheme and its computational cost. The tensor product is employed in this work
to achieve multi-dimensional interpolations. Therefore, we need to fix first the method for the 1D
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interpolation. We will investigate the cubic spline scheme, which is known to be a well-balanced
compromise between cost and quality for plasma simulations. Nevertheless, cubic splines lead to
rather complex computational kernel. Thus, we have chosen to first look at Lagrange polynomials.
The Lagrange interpolator is simpler and thus gives us the opportunity to easily investigate several
optimization alternatives. In addition the 3th degree (4 points) Lagrange polynomial is close to cubic
spline in terms of computational cost (except that we do not need to compute spline coefficients) and
in terms of data access pattern. That will give us hints to optimize cubic splines afterwards. We will
focus on 4 kernels based on Lagrange polynomials of order 4 using tensor product in 1, 2, 3 and 4
dimensions. Then, we will tackle 4D spline interpolation. We intend to evaluate the interpolation
kernels within the semi-Lagrangian scheme. In order to address this issue, we define a much simpler
equation than the gyrokinetic setting described earlier as well as an analytical test case. The advection
equation that we consider is the following (with D ∈ [1..4] depending on the kernel under evaluation):

∂tf + v ∂xf = 0, x ∈ [0, 2π]D, t ≥ 0 . (4.7)

We assume a constant velocity field v =
(
v1 . . . vD

)T .
The simplest interpolation kernel is shown on Fig. 82. The function access f is an accessor to

get/set the value of a distribution function. The input distribution function is f0 (at time t), the
output is f1 (time t + ∆t). The variables coeff[1-4] are set depending on the velocity field. For
the sake of simplicity, the velocity is assumed to be small (or ∆t small) in order to have a foot of
characteristic in the left or right cell near the departure point (x1, x2, x3, x4). The kernel in Fig. 83
performs the same calculation as Fig. 82 but using dedicated intrinsics [153], that enables to use Xeon
Phi SIMD instruction set.

� �
#pragma omp p a r a l l e l for c o l l a p s e (3 )

for ( x1=0; x1<Nx1 ; x1++) {
for ( x2=0; x2<Nx2 ; x2++) {
for ( x3=0; x3<Nx3 ; x3++) {

#pragma vec to r nontemporal ( f 1 )
#pragma vec to r always

for ( x4=0; x4<Nx4 ; x4++) {
a c c e s s f ( f1 , x4 , x3 , x2 , x1 ) = // OUTPUT data f1

coe f 1 ∗ a c c e s s f ( f0 , x4−1,x3 , x2 , x1 ) + // INPUT data f 0
coe f 2 ∗ a c c e s s f ( f0 , x4 , x3 , x2 , x1 ) +
coe f 3 ∗ a c c e s s f ( f0 , x4+1,x3 , x2 , x1 ) +
coe f 4 ∗ a c c e s s f ( f0 , x4+2,x3 , x2 , x1 ) ;

} } } }� �
Figure 82: Lagrange 1D code - with directives

� �
#pragma omp p a r a l l e l for c o l l a p s e (3 )

for ( x1=0; x1<Nx1 ; x1++) {
for ( x2=0; x2<Nx2 ; x2++) {
for ( x3=0; x3<Nx3 ; x3++) {
for ( x4=0; x4<Nx4 ; x4++) {

ptread = &( a c c e s f ( f0 , x4 , x3 , x2 , x1 ) ) ;
// read input data
tmpr2 = mm512 load pd ( ptread ) ;
tmpr1 = mm512 loadunpacklo pd ( tmpr1 , ptread −1);
tmpr1 = mm512 loadunpackhi pd ( tmpr1 , ptread −1+8);
tmpr3 = mm512 loadunpacklo pd ( tmpr3 , ptread +1);
tmpr3 = mm512 loadunpackhi pd ( tmpr3 , ptread +1+8);
tmpr4 = mm512 loadunpacklo pd ( tmpr4 , ptread +2);
tmpr4 = mm512 loadunpackhi pd ( tmpr4 , ptread +2+8);
// 1+2+2+2=7 f l o p per loop i t e r a t i o n
tmpw = mm512 mul pd ( tmpr1 , c o e f f 1 ) ;
tmpw = mm512 fmadd pd ( tmpr2 , co e f f 2 , tmpw ) ;
tmpw = mm512 fmadd pd ( tmpr3 , co e f f 3 , tmpw ) ;
tmpw = mm512 fmadd pd ( tmpr4 , co e f f 4 , tmpw ) ;
// w r i t e output data
mm512 store pd (&( a c c e s s f ( f1 , x4 , x3 , x2 , x1 ) ) , tmpw ) ;� �
Figure 83: Lagrange 1D code - with intrinsics

Fig. 84 shows the interpolation with the 2D tensor product of Lagrange polynomial (order 3). The
number of FLOP grows from 7 in the inner loop of Fig. 82 to 35 in Fig. 84.

� �
#pragma omp p a r a l l e l for c o l l a p s e (3 )

for ( x1=0; x1<Nx1 ; x1++) {
for ( x2=0; x2<Nx2 ; x2++) {
for ( x3=0; x3<Nx3 ; x3++) {

#pragma vec to r nontemporal ( f 1 )
#pragma vec to r always

for ( x4=0; x4<Nx4 ; x4++) {
a c c e s s f ( f1 , x4 , x3 , x2 , x1 ) =

coe fb1 ∗ ( coe fa1 ∗ a c c e s s f ( f0 , x4−1,x3−1,x2 , x1 ) +
coe fa2 ∗ a c c e s s f ( f0 , x4 , x3−1,x2 , x1 ) +
coe fa3 ∗ a c c e s s f ( f0 , x4+1,x3−1,x2 , x1 ) +
coe fa4 ∗ a c c e s s f ( f0 , x4+2,x3−1,x2 , x1 ) ) +

coe fb2 ∗ ( coe fa1 ∗ a c c e s s f ( f0 , x4−1,x3 , x2 , x1 ) +
coe fa2 ∗ a c c e s s f ( f0 , x4 , x3 , x2 , x1 ) +
coe fa3 ∗ a c c e s s f ( f0 , x4+1,x3 , x2 , x1 ) +
coe fa4 ∗ a c c e s s f ( f0 , x4+2,x3 , x2 , x1 ) ) +

coe fb3 ∗ ( coe fa1 ∗ a c c e s s f ( f0 , x4−1,x3+1,x2 , x1 ) +
coe fa2 ∗ a c c e s s f ( f0 , x4 , x3+1,x2 , x1 ) +
coe fa3 ∗ a c c e s s f ( f0 , x4+1,x3+1,x2 , x1 ) +
coe fa4 ∗ a c c e s s f ( f0 , x4+2,x3+1,x2 , x1 ) ) +

coe fb4 ∗ ( coe fa1 ∗ a c c e s s f ( f0 , x4−1,x3+2,x2 , x1 ) +
coe fa2 ∗ a c c e s s f ( f0 , x4 , x3+2,x2 , x1 ) +
coe fa3 ∗ a c c e s s f ( f0 , x4+1,x3+2,x2 , x1 ) +
coe fa4 ∗ a c c e s s f ( f0 , x4+2,x3+2,x2 , x1 ) )

} } } }� �
Figure 84: Lagrange 2D code - with directives
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Benchmark of simple kernels an solutions to get fast kernels

We compare the performance of several kernels on a Xeon Phi(KNC) in native mode, against one
Sandy Bridge node (two sockets, 16 cores). In theory, the Phi can outperform Sandy by a factor 3
on compute-bound kernels (considering ratio of peak processing performance, the peak is established
according to intel specification sheet), and a factor 2 for memory-bound kernels (ratio of the stream
benchmark performance). Table 19 shows the obtained results. The first two kernels (Lagrange 1D

Kernel/archi. Processing perf. Memory bandwidth
Lagrange 1D Phi 46 GFLOPS (5% peak) 106 GB/s (81% stream)

Sandy 25 GFLOPS (7% peak) 57 GB/s (81% stream)
Lagrange 2D Phi 250 GFLOPS (25% peak) 111 GB/s (85% stream)

Sandy 134 GFLOPS (39% peak) 59 GB/s (84% stream)
Lagrange 3D Phi 228 GFLOPS (23% peak) 25 GB/s (19% stream)

Sandy 156 GFLOPS (46% peak) 17 GB/s (25% stream)
Lagrange 4D Phi 160 GFLOPS (16% peak) 4.3 GB/s (3.3% stream)

Sandy 145 GFLOPS (42% peak) 3.9 GB/s (5.6% stream)

Table 19: Performance of interpolation kernels

and 2D) are dominated by the memory bandwidth constraint. They achieve on both architectures
more than 80% of the maximal bandwidth, which is very satisfactory. The measurement of maximal
bandwidth was established with stream benchmark (triad operator) and we measure 70 GB/s on
Sandy, 130 GB/s on Phi. Practically, one can thus achieve the expected speedup of Phi over Sandy on
a memory-bound kernel.
The 3D and 4D interpolation kernels are clearly compute-bound, they have several hundreds of FLOP
per grid points to perform. The Lagrange 3D implementation has good performance, but the Phi gets
a 1.5 speedup over Sandy which is not the expected 2 or 3. The Lagrange 4D kernel is not fast enough
for the Phi implementation. The performance is close to the Sandy one, while one can expect a good
speedup for this kind of kernel (Phi was designed to tackle computation intensive algorithms). By
replacing the complex accesses for memory reads by simpler but fake accesses, performance is improved
a lot (but the results are wrong of course). This simple test shows that a major problem comes from
the 4D stencil that implies complex memory access pattern. Several techniques have been tested to
optimize and tune the performance of the interpolation kernels and to achieve the results obtained in
Table 19. In the following we summarized quickly some of the different investigated techniques and
approaches to fasten the code.
For Memory-bound kernels, prefetch mechanism is important. In practice, it means loading data in
advance thanks to ad-hoc directives or intrinsics. It reveals to be crucial to scan of a large set of
possible combinations of prefetch parameters. It is also interesting to tune the kernels in order to
work on aligned data. We have studied the memory access pattern in the inner loop to avoid any
cache trashing, this is also a key factor. On Phi, we can observe large variations of execution time from
one run to the other (10% is common). Then, interpreting the impact of any optimization requires to
get good statistics with a large number of runs.
For Compute-bound kernels, Cache blocking (loop tiling) is crucial to save computation time. As caches
are small on Phi, designing algorithms that are cache friendly is quite a hard task. Nevertheless, we
manage to save execution time with proper loop tiling on the 3D kernels (50% gain). Splitting the
body of a 10-40 lines loop into multiple loops of less than 10 lines of code each (if it is semantically
correct) has led to effective speedups. The positive effects are much stronger on Phi than on Sandy
Bridge. For these 3D and 4D kernels, we observe that the best performance is achieved on Phi with
170 up to 240 threads. This very fine grain parallelism has to be compared to the 16 threads that are
sufficient on Sandy (2 sockets). Small modifications in the code can lead to vectorization with bad
performance at some location. Whenever this kind of event happens, the code can slow down by a
factor of 4 suddenly. Sensitivity to compiler version and vectorization problem is really high, as far
as performance is concerned.

Discussion

A partial conclusion of this study is that achieving performance even on a simple kernel is a challenge
on Phi (KNC). Compared to the relative easiness to get a reasonably efficient code on Sandy, the
programmer has a lot of constraints to fulfill on Phi. The developer has to interact finely with the
compiler and profiling tools to improve the performance to an acceptable level. If it is possible to
take care of some of the important points on a simplified kernel code, it can be very difficult to satisfy
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some constraints throughout a long program. The non exhaustive list of theses points could be:
good vectorization, fine grain parallelism (threads), data alignment, cache blocking (adapted to small
caches), prefetching, loop splitting. Applying these hints in a long code, in which the computation
time is distributed over several routines, is not simple. These optimization issues can pose a serious
challenge to programmers that want to fully use the hardware.

4.3.4 Evaluating Xeon Phi with a Gysela kernel

Description of Gysela kernel

This part builds up on the experience gained on simple kernels to target a more realistic kernel that
uses a 4D tensor product of splines instead of Lagrange polynomials and a variable displacement
field for the feet of characteristics. The kernel we design in this section is not a synthetic kernel
anymore but is instead a complete implementation of Algo. 26 (p.103) intended to be included in the
Gysela code. Designing a complete kernel increases the amount of code that has to be optimized
compared to the small (typically less than 150 lines of code) kernels, this is the first source of increased
complexity. Another complexity comes from the use of a variable displacement field for the feet of
the characteristics. In the previous simple kernels we took purposely a very small displacement. This
shift generates an indirect access which induces a cost and prevent from using efficient prefetching.
Also, this computation of the foot mixes floating-point (for the values) and integer (for the location)
calculations that depend on each other. A sketch of the code is presented in Fig. 85 for the outer
loops and Fig. 86 for the innermost kernel.

� �
1 do i t h b l k =0, nb b lk th ! l oop b l o c k i n g in t h e t a
2 do i vpar =0, Nvpar
3 ca l l f eet computat ions with openmp ( . . . )
4 !$OMP PARALLEL DO COLLAPSE(2)
5 do i p h i =0, iNphi
6 do i t h=i t h b l k ∗ th b s i z e , ( i t h b l k +1)∗ th b s i z e −1
7 ca l l i n t e r p o l a t i o n s v e c t o r i z e d k e r n e l ( . . . ) ;
8 end do
9 end do

10 end do
11 end do� �

Figure 85: Advection kernel external loops

� �
1 #d e f i n e R BSIZE 8
2 subroutine i n t e r p o l a t i o n s v e c t o r i z e d k e r n e l ( . . . , s p l i n e c o e f f . )
3 do i r o u t e r =0, Nr , R BSIZE
4 ! r e t r i e v e g r i d c e l l c o n t a i n i n g the foo t , compute s p l i n e b a s i s
5 ! d i r$ simd
6 do i r i n n e r =0,R BSIZE−1
7 i r=i r o u t e r+i r i n n e r
8 r f o o t = . . . ; t h f o o t = . . . ; vpa r f oo t = . . . ; p h i f o o t = . . . ;
9 i r s t a r = map on grid ( r f o o t )

10 i t h s t a r = map on grid ( t h f o o t )
11 i v p a r s t a r = map on grid ( vpa r f oo t )
12 i p h i s t a r = map on grid ( p h i f o o t )
13 s b a s i s ( 1 : 1 6 ) = c o m p u t e s p l i n e b a s i s (∗ s t a r ,∗ f o o t )
14 end do
15 ! i n t e r p o l a t e in combining s p l i n e b a s i s and s p l i n e c o e f f .
16 psum ( 0 : R BSIZE−1) = 0 .
17 do <n e s t o f f o u r l o o p s>
18 ! d i r$ simd
19 do i r i n n e r =0,R BSIZE−1
20 c o e f f = load s p l i n e c o e f f . l o ca t ed at ∗ s t a r ( with unit s t r i d e )
21 psum( i r i n n e r ) = psum( i r i n n e r ) + c o e f f ( . . . ) ∗ s b a s i s ( . . . )
22 end do
23 end do
24 f 1 ( i r o u t e r : i r o u t e r+R BSIZE−1, i th , iph i , ivpar )=psum ( 0 : R BSIZE−1)
25 end do
26 end subroutine i n t e r p o l a t i o n s v e c t o r i z e d k e r n e l� �

Figure 86: Advection kernel inner loop nest

For the design of the advection kernel, we have several constraints coming from the Gysela
mini-app and from the Phi hardware. We targeted a set of good properties: cache friendly, fine
grain parallelism, computations in the innermost loop that are well vectorized by SIMD directives.
Regarding the part of the kernel presented in Fig. 85, the strategies applied include a blocking for
the loop in the θ dimension. It has been split in two loops (lines 1 and 6) in order to improve cache
locality. The outermost loops along θ blocks (line 1) and v‖ (line 2) directions are not parallelized
with OpenMP, instead, the loops along ϕ (line 5) and inside blocks of θ (line 6) are. Thus, several data
are shared between the threads that fit into cache memory, which is not the case if parallelization
would occur at outer loops. This improves the use of cache memory (in the inner loops) which is a
crucial element for the Phi. Similarly, we interlaced inside this loop nest the feet computations
and the interpolations in order to reuse the data shared by these routines and to improve temporal
locality. Due to the high number of threads on Phi, getting sufficient loop counts requires the domain
size along the OpenMP parallelized dimensions to be large enough.

The part of the kernel presented in Fig. 86 corresponds to the part executed by a single thread
where the parallelism comes for SIMD vectorization. The loop along r has been blocked with the
iteration along r blocks appearing at line 3 so as to help vectorization by having the innermost loop
the same size as that of a processor vector. This vectorization is further favored by iterating over
small arrays the size of a vector such as psum (line 16) in the code to accumulate results inside a
loop. The upper bound of the loop along r blocks (line 3) is fixed at compile time which accelerates
computations on Phi a lot (not true on Sandy). The body of the iterations inside these blocks has



108 version: May 18 2018

been split in two parts (lines 6 and 19) which enables the compiler to apply better optimizations as
seen in the previous section. The loading of spline coefficients (line 20) has also been tuned in order
to read in memory with unit-stride. Finally, the choice amongst the possible SIMD directives (i.e.
vector or simd) has been made by testing both as their impact on performance is hard to predict.

Benchmark

In order to evaluate this kernel in a way that can be compared with the previous section, we first focus
on the interpolation part only (spline coefficients are computed during initialization). To reach that
goal, simplified precomputed feet are used which lead to incorrect results but induce no computing
cost. Table 20 shows the results of a benchmark with a domain of size Nr = 128, Nθ = 128, Nϕ = 128,
Nv‖ = 64. 80 GFLOPS are obtained on Phi which is more than twice the 33 GFLOPS obtained on Sandy.
Given the ratio of performance between the two architecture this shows that the optimization for the
Phi are indeed well done. Reaching this level of performance however required a huge investment
in time. The reason was that each optimization reduces execution times just a little bit (sometimes
it is even hard to measure). But once all of these optimization are active simultaneously, there
is a net performance improvement. The percentage of the theoretical attainable hardware peak is

Kernel/archi. Processing perf. Memory bandwidth
Advec 4D (without foot comp.) Phi 80 GFLOPS (7% peak) 2.7 GB/s (2% stream)

Sandy 33 GFLOPS (9% peak) 1.1 GB/s (1.6% stream)

Table 20: Performance of advection kernel (236 threads on Xeon Phi and 16 on Sandy Bridge)

however not as good as that of the kernels presented in the previous section. This is most likely due
to the integer computations and memory indirections required for this version. In addition, all the
memory accesses for the advection kernel cannot be well aligned (the foot can be located anywhere).
It is worth noting that the present results have been obtained with a domain size well suited to the
Phi. The performance in GFLOPS is decreasing for smaller domain sizes. This dependency on input
parameters is not as sensitive on Sandy. The pressure and the constraints on the computing units and
the cache hierarchy seem to be higher on Phi than on Sandy and a small imbalance can lead to severe
performance issue on Phi. Finally, additional issues come from the compiler version. From one version
to another, the intel compiler does not employ the same SIMD instructions and optimizations for a
given code. We have noted that a well optimized code can suffer a large slowdown (factor 3 has been
observed) when changing the compiler version.

Splitting versus no-splitting

Let us now come back on the analysis done in subsection 4.3.2. The Strang splitting scheme with
four 1D advections and one 2D advection (Split) is clearly memory-bound and this scheme has been
used for a long time in Gysela. On the other hand, the most recent 4D advection scheme (Nosplit)
leads to a larger number of floating-point operations but requires ideally less memory transfers. Now
that several tuning operations have been done on the 4D kernel, the Nosplit version has reached a
quite high optimization level on Sandy Bridge architecture. After this work on the 4D kernel, we
observe on Sandy Bridge that the Nosplit case is slightly faster than the Split case. The execution
time is reduced by 1% to 20% depending on the domain size. The 4D advection is now an interesting
solution because, despite its expensive computations, execution time is better than for the splitting
scheme. This gain is even larger for large domain sizes. On the one hand, the Nosplit case exhibits
much more compact kernels in term of the number of code lines. This is definitely an advantage
from the software engineering point of view. On the other hand, the Nosplit case also has drawbacks.
First, it requires temporary buffers to store the feet of the characteristics (extra memory consumption).
Second, tiling sizes have to be specifically tuned for each new machine in order to benefit from maximal
cache effects. Considering the communication costs of the NoSplit case in a future application using
a MPI parallelization, as the parallel algorithm is not yet known, it is difficult to make accurate
predictions. Nevertheless, the constraints and data dependencies are quite similar to those of the Split
case, therefore we do not expect that the amount of communications will be completely different.

Discussion

The final obtained performance was satisfactory as the computing time for 4D kernel was twice as fast
on Xeon Phi (KNC) as on a dual-socket Sandy bridge node. But the other parts of the Gysela code
are also difficult to vectorize/optimize/parallelize for the Xeon Phi. To port the whole production
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version of Gysela code on such architecture would require a large effort of overhauling the application.
All along the optimization process we went through, the performance evaluation have been performed
on both the Sandy Bridge and the Phi computing units. For the best cases with the simplest kernels,
we managed to reach similar fractions of the peak performance on Phi as on Sandy Bridge. In other
cases however, and especially when the code complexity builds up, we did not manage to reach that
goal.
Regardless the final result, the investment in terms of code engineering to reach these performance
levels is very large. The level of parallelism to extract is much higher than on Sandy Bridge: 177 and
up to 236 OpenMP threads are required on Phi versus 16 on Sandy Bridge. Extracting this fine grain
parallelism is difficult for some kernels, especially for small domain sizes. Many other aspects have to
be looked at, including vectorization, prefetching, data alignment, cache locality, cache trashing and
memory access patterns while these have much less impact on Sandy Bridge. In addition, compiler
optimizations are very important to get good performance but are very difficult to predict. Some
good practice can help such as loop splitting, but no golden rule can be extracted and in practice,
one often has to look at the generated assembly code to assess its quality. This problem is further
amplified by the fact that the same code can yield very different performance results depending on
the compiler version. Part of these conclusions are also valid for Xeon Phi KNL, the latest version of
Xeon Phi. However, good performance were much easier to achieve because of hardware improvements,
and vectorizing compiler enhancement on KNL [77]. Such considerations are relevant to anticipate
strategies for optimizing future exascale devices, and the main issue of performance portability.

Conclusion

Exascale architectures are foreseen to be supercomputers based on different building blocks as the last
three decades. Since several years, the number of many-core systems is rising, whether as accelera-
tors or co-processors, which are mostly Nvidia GPUs or the Intel Xeon Phi3. This is driving related
improvements in power efficiency, which is necessary in the run-up to exascale. Also, pressures on effi-
ciency, performance, scalability, and programmability for such machines are mounting. Floating point
performance-driven world are becoming less and less relevant, whereas metrics like data movement
is already critical, and will continue to remain as such. Since 2010, most of the parallel applications
do not make great use of the resources and run at a small fraction of the peak performance because
all processing units are really complex to exploit: vectorization is required, complex memory hierar-
chy, communication and memory access costs become prominent, compiler tricks and sophisticated
deployment strategy are key elements. For many production codes it will take years to restructure
them for reaching efficiency on the new architectures.
We have reached a turning point. There are still a lot of unknowns for the upcoming architectures and
programming models, some awaited difficulties, but also some trends that should continue in the years
to come and that we may trust. The ratio between the computation capacity, the communication over
the network, the memory bandwidth and latency evolves rapidly and the codes should follow and
adapt their algorithms to these changes (e.g. communication-avoiding algorithms, communication-
computation overlap). The use of SIMD instructions is clearly a tidal wave that programming models,
compilers and applications have to handle carefully to eventually get performance [77]. Mixed-precision
algorithms that segregate computations with single precision versus double precision typically are and
will remain useful. These can be smartly combined with the vectorization and should bring some
speedups if applicable. The collective communications and data movements have large relative costs
that can be mitigated by data centric computing or task programming approaches. Also, depending
of the targeted architecture, one will expect the granularity of computation can be tuned. This aspect
has a large impact on the existing programs but also at the level of algorithms. New algorithms
can already been designed to go in this direction. Portability of efficiency is also difficult to achieve,
because hardware and systems have some fine specificities that have to be taken into account. One
way to deal with this issue is to articulate the program around identified kernels. The algorithms
of the kernels can be parameterized and auto-tuned through specific tools such as BOAST [191] for
example. Thus, one can ensure that the most sensible parts can be well optimized. Another approach
would be to use the principle of separation of concerns (SoC) that aims at separating a computer
program into distinct sections. One section could be related to the logic and the algorithms, another
section could describe the optimization or the details of the targeted hardware, another section could
manage data movements. An added value is the ability to improve or modify one section of code
without having to know the details of the other sections. Kokkos is representative of this kind of

3Intel has announced that it abandons its next-generation Xeon Phi chip, code-named Knights Hill, in favor of a new
microarchitecture specifically designed for exascale. It is foreseeable than certain technologies used in Xeon Phi will be
recycled in next generations of processors, and that many-core will not disapear.
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approach and proposes a C++ library for HPC applications. One interesting point is the ability for
testing many different data structures that are described in a specific section and optimizing them,
without modifying the main program. Nowadays, large HPC codes are often employing a wide set
of technologies, e.g. MPI calls, OpenMP or OpenACC directives, SIMD directive, IO library, Linear
Algebra libraries, and so on. Efforts should be initiated to deal with code complexity, whether with
new programming models, or with a set of good practices that permits to avoid all the issues of devel-
oping, maintaining a code, deploying it on the parallel machine with such a large number of products
and dependencies. Also, I/O bottleneck in HPC is becoming worse as the amount of data flowing
within application continues to grow. Applications rely on parallel file systems (PFS) to obtain good
I/O performance. Recently two new players have come: SSD and NVRAM technologies. These fast,
non-volatile storage technologies, can act as a cache for accessing PFS, but also as an extension of the
main memory with different characteristics. In addition, such persistent storage should allow HPC
applications to keep very large data sets temporarily before post-processing, helping for the so-called
in-situ or in-transit processing. There is a need for having an abstract view of these memory and
storage hierarchies in order to better manage the data transfer across the various levels, to achieve
it more transparently and more efficiently compared to today. Efficient tools and software stacks are
also lacking. Compression techniques can also be valuable and complementary in this context. Most
of the previous topics related to exascale area are quite exciting and challenging. But as technology
is moving fast, the adaptation of libraries, software stacks and applications should keep pace and be
ready to adapt swiftly with the most current supercomputers.



Chapter 5

Perspectives

Efficiency, portability, readability
One of the constant challenge facing the parallel application developer is to find a compromise be-
tween efficiency, portability and code readability. The complexities of hardware, of applications and
the difficulty to choose a programming model have also to be taken into account. A possible solution
to these many-faceted difficulties would be to choose a good enough programming model that largely
abstracts the low-level architectural details to increase portability, readability. But this, without mask-
ing everything to the point of not being able to express effective algorithms and get performance. For
production applications, one delicate question is the availability on supercomputers of the tools asso-
ciated to this programming model, the quality of support, the guarantee of sustainability. I currently
investigate a solution based on MPI + a task-based programming model (typically using OpenMP 4.5
and associated runtime) for Gysela that should replace the MPI+OpenMP (loop parallelism) ap-
proach which is of common use in many applications. Combined to this change, a structuring of the
application around a set of well defined kernel is also of importance. It will permit specialization
of some kernels for specific configurations, related to an application feature or related to hardware
constraints. PhD of N. Bouzat (2015-2018) focuses on this subject, other collaborations are related:
J. Bigot (Maison de la Simulation), J . Richard (INRIA Avalon), J. Roman (INRIA Hiepacs) and
M. Mehrenberger (INRIA Tonus).

Combining numerical schemes, switching kernels
One may want to change the computation kernels according to some circumstances. For example,
the selection criteria can be a function of space, a function of time or be based on performance
measurements even other constraints of use (e.g. CFL or boundary conditions). The decision may be
taken at compile time or dynamically during runtime. The semi-Lagrangian method is not optimal
in some cases in terms of numerical precision and/or in terms of computational cost. A possible way
to make a good use of this approach would be to have the Eulerian scheme and the semi-Lagrangian
scheme implemented into different kernels. The switching between these would happen depending on
a multiple criteria (space, time, performance, system dynamics, linear versus non-linear part). This
kind of kernel breakdown and clever kernel selection had already proven to be a valuable choice in the
oil application described in Section 4.1 for shortening execution time. This approach can be combined
with auto-tuning techniques to automate the choice of kernels. Furthermore, next-generation systems
demand a more detailed analysis of the interplay among execution time and other metrics. Metrics
such as power, performance, energy may all be targeted together and traded against one another.

Unsplit 4D advection
The 4D advection operator for semi-Lagrangian simulation has already proved worthwhile several
times and happens to be quite popular [7,20,158,193] (see also Sections 3.1 and 4.3). This scheme is
appealing on several aspects compared to Strang directional splitting: execution time, compactness,
less sensitivity on the time step, higher computational intensity. Investigations should continue in
order to establish if one can achieve good scalability at a large number of cores with this scheme, and
estimate the benefit in term of accuracy.
In addition, I am considering the possibility to have mesh refinement in phase space and 4D advection
can be a great lever. Mesh refinement in Gysela would permit more accurate description of the
external radial boundary of the plasma, and less accuracy near the magnetic axis. This objective can
help diminishing execution time, but more importantly it will enable physicists to model the scrape-
off layer (SOL) where small grid cells are required. The 4D advection can be combined with Strang
splitting for glueing patches with different resolutions together. It can also be a valuable choice to
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“Every block of stone has a statue inside it
and it is the task of the sculptor to discover it.”

Michelangelo
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replace completely the Strang splitting to avoid the hurdles associated with directional splitting in
this setting.

Shaped plasma
Shaping of magnetic flux surfaces in tokamaks have an influence on turbulence. Magnetic field shaping
in tokamaks is mainly due to elongation, triangularity, shift for the core plasma simulation. I have
developed some techniques to upgrade Gysela in order to take into account this refined geometry
instead of circular plasma currently handled (see Section 3.3). Overhauling the application is targeted
to go along this path. This improvement will allow for greater realism in term of physics. Non-
uniform meshing will also allow for memory saving with an adaptive method which is also a topic I
like [12,28,41,96]. A collaboration is already underway with M. Mehrenberger (University of Strasbourg)
and E. Sonnendrücker (IPP, Germany) to handle complex poloidal geometries [5, 17, 27, 81].

Kinetic electrons, huge simulations
Considering kinetic electrons as an additional species in Gysela leads to large costs. Computational
grid has to be increased a lot and very fast electrons induces a sharp reduction of the time step.
Field-aligned interpolations help to diminish a bit the grid size along ϕ dimension (see Section 3.2)
but even with this support, global full-f simulations are extremely demanding in term of CPU time.
Introducing new levels of parallelism is mandatory to handle huge poloidal planes (at least 4096×4096
points in the (r, θ) plane typically). Investigation of parallel algorithms with domain decomposition
along the 5 dimensions have began to prepare simulations with kinetic electrons. Furthermore, the
collision operator will possibly exceed Vlasov in term of costs in this new setting, this may cause a
paradigm shift for the parallelization choices. The new parallelization of the gyroaverage operator is
a step towards this goal (see Section 2.6).

Addressing new architectures
Auto-tuning techniques can be employed to generate optimized versions automatically together with
keeping readability of the code. A collaboration with INRIA Corse team has started on this subject
to improve the portability of performance on several architectures of a reduced set of kernels [82].
Kernels should ideally be able to use several grain sizes in order to fit to architectures or runtimes
that obtain good parallel performance with certain kernel sizes and/or with some knowledge on the
shared resources. In this regards, CPU, GPU and many-core architectures have their own constraints.
This implies that many algorithms have to be overhauled and parameterized with that in mind. A
good target would be to improve performance portability through automatic adaptation of parallelism
granularity depending on a platform description and/or auto-tuning techniques. All in all, adapting
algorithms and numerical schemes is unavoidable to maintain the pace of performing well on modern
architectures [2, 8, 18,20,26].

Exascale
One issue for upcoming architectures is about dealing with large data flow through deep storage
hierarchy, which is a major topic whenever considering big amount of data and several levels of storage.
A second issue concerns strategies and tools for task programming and load balancing on many-core’s
clusters. It is important to improve core utilization in dynamically revising the deployment of several
application’s parts. Vectorization and mixed precision algorithms are topics that I want to keep up
exploring [30, 77]. Investigating separation of concerns (SoC) approaches for HPC is interesting to
distinguish between the conception of algorithms on one side, to the effective memory access patterns
on the other side. This could help a lot for designing and maintaining complex codes on complex
machines, for improving readibility while accessing a good level of performance. Several fields are
involved in building an application that satisfies all the constraints for exascale: application domain,
mathematics, algorithmic, runtime systems, middleware, hardware. Much coordination and trade-offs
are anticipated among the different domains in order to fulfill at best the numerous criteria.

Then, applications will need to be agile in evaluating and adopting technologies that are most
promising along the way. It will even require exploration of new computing paradigms as we move
to extreme parallelism and heterogeneity (all the parameters of the programing environment, and
the specifications of the hardware is not yet fixed and known). Investing in new control layers and
system software support (e.g., for asynchronous heterogeneous tasking and data movement) is critical
for addressing the disruption of large on-node heterogenous parallelism [180]. One key component
to help for this issue is the concept of mini-application. A mini-application attempts to capture
meaningful aspects of a fraction of a large application. The goal is to provide a sufficiently small set
of code lines (e.g. less than 2000 lines of code) in order to try different strategies, various algorithms
or schemes quickly and at a relative low human cost. Indeed, this is much important to converge
towards good solutions satisfying numerous constraints at a reasonable cost, but also to have means
to keep the pace of change in software/hardware. The success of a mini-application framework lies
in both flexibility and simplicity of execution. It is a self-contained program that embodies essential
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performance characteristics of a part of the main application [148]. A well-written mini-app will allow
that improvements obtained on it be included easily into the main application. One way to do that
is to have common kernels (small sets of code lines encapsulating computationally intensive parts)
shared by the mini-app and the main application. Lastly, preparing an application for a transition
from petascale to exascale systems will require a large investment in terms of software research and
development and agile capabilities.
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V. Grandgirard, G. Latu, Ch. Passeron, and Y. Sarazin. Self organisation of plasma turbulence:
impact on radial correlation lengths. Journal of Physics: Conference Series, 561(1):012008, 2014.

[55] J. Abiteboul, Ph. Ghendrih, V. Grandgirard, Th. Cartier-Michaud, G. Dif-Pradalier, X. Garbet,
G. Latu, Ch. Passeron, Y. Sarazin, A. Strugarek, O. Thomine, and D. Zarzoso. Turbulent
momentum transport in core tokamak plasmas and penetration of scrape-off layer flows. Plasma
Physics and Controlled Fusion, 55(7):074001, 2013.

http://dx.doi.org/10.1063/1.4937373


118 version: May 18 2018

[56] A. Strugarek, Y. Sarazin, D. Zarzoso, J. Abiteboul, A. S. Brun, Th. Cartier-Michaud, G. Dif-
Pradalier, X. Garbet, Ph. Ghendrih, V. Grandgirard, G. Latu, Ch. Passeron, and O. Thomine.
Unraveling quasiperiodic relaxations of transport barriers with gyrokinetic simulations of tokamak
plasmas. Phys. Rev. Lett., 111:145001, Oct 2013.

[57] A. Strugarek, Y. Sarazin, D. Zarzoso, J. Abiteboul, A. S. Brun, Th. Cartier-Michaud, G. Dif-
Pradalier, X. Garbet, Ph. Ghendrih, V. Grandgirard, G. Latu, Ch. Passeron, and O. Thomine.
Ion transport barriers triggered by plasma polarization in gyrokinetic simulations. Plasma Physics
and Controlled Fusion, 55(7):074013, 2013.

[58] F. Orain, M. Becoulet, G. Dif-Pradalier, G. Huijsmans, S. Pamela, E. Nardon, Ch. Passeron,
G. Latu, V. Grandgirard, A. Fil, A. Ratnani, I. Chapman, A. Kirk, A. Thornton, M. Hoelzl, and
P. Cahyna. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic
perturbations. Physics of Plasmas, 20(10):102510, 2013.

[59] D. Zarzoso, Y. Sarazin, X. Garbet, R. Dumont, A. Strugarek, J. Abiteboul, Th. Cartier-Michaud,
G. Dif-Pradalier, Ph. Ghendrih, V. Grandgirard, G. Latu, Ch. Passeron, and O. Thomine. Impact
of energetic-particle-driven geodesic acoustic modes on turbulence. Phys. Rev. Lett., 110:125002,
Mar 2013.

[60] X. Garbet, D. Esteve, Y. Sarazin, J. Abiteboul, C. Bourdelle, G. Dif-Pradalier, Ph. Ghendrih,
V. Grandgirard, G. Latu, and A. Smolyakov. Turbulent acceleration and heating in toroidal
magnetized plasmas. Physics of Plasmas, 20(7):072502, 2013.

[61] R. J. Dumont, D. Zarzoso, Y. Sarazin, X. Garbet, A. Strugarek, J. Abiteboul, Th. Cartier-
Michaud, G. Dif-Pradalier, Ph. Ghendrih, J-B. Girardo, V .Grandgirard, G. Latu, Ch. Passeron,
and O. Thomine. Interplay between fast ions and turbulence in magnetic fusion plasmas. Plasma
Physics and Controlled Fusion, 55(12):124012, 2013.

[62] S. Ku, J. Abiteboul, P.H. Diamond, G. Dif-Pradalier, J.M. Kwon, Y. Sarazin, T.S. Hahm, X. Gar-
bet, C.S. Chang, G. Latu, E.S. Yoon, Ph. Ghendrih, S. Yi, A. Strugarek, W. Solomon, and
V. Grandgirard. Physics of intrinsic rotation in flux-driven ITG turbulence. Nuclear Fusion,
52(6):063013, 2012.

[63] X. Garbet, J. Abiteboul, A. Strugarek, Y. Sarazin, G. Dif-Pradalier, Ph. Ghendrih, V. Grandgi-
rard, C. Bourdelle, G. Latu, and A. Smolyakov. Thermodynamics of neoclassical and turbulent
transport. Plasma Physics and Controlled Fusion, 54(5):055007, 2012.

[64] G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph.
Ghendrih, G. Latu, A. Strugarek, S. Ku, and C. S. Chang. Neoclassical physics in full distribution
function gyrokinetics. Physics of Plasmas, 18(6):062309, 2011.

[65] J. Abiteboul, X. Garbet, V. Grandgirard, S. J. Allfrey, Ph. Ghendrih, G. Latu, Y. Sarazin, and
A. Strugarek. Conservation equations and calculation of mean flows in gyrokinetics. Physics of
Plasmas, 18(8):082503, 2011.

[66] Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, Ph. Ghendrih, G. Latu, A. Stru-
garek, G. Dif-Pradalier, P.H. Diamond, S. Ku, C.S. Chang, B.F. McMillan, T.M. Tran, L. Villard,
S. Jolliet, A. Bottino, and P. Angelino. Predictions on heat transport and plasma rotation from
global gyrokinetic simulations. Nuclear Fusion, 51(10):103023, 2011.

[67] L. Villard et al. Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour.
Plasma Physics and Controlled Fusion, 52(12):124038, 2010.

[68] Y. Sarazin, A. Strugarek, G. Dif-Pradalier, J. Abiteboul, S. Allfrey, X. Garbet, Ph. Ghendrih,
V. Grandgirard, and G. Latu. Flux-driven gyrokinetic simulations of ion turbulent transport
at low magnetic shear. Journal of Physics: Conference Series, 260(1):012017, 2010. http:
//stacks.iop.org/1742-6596/260/i=1/a=012017.

[69] Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, Ph. Ghendrih, G. Latu, A. Stru-
garek, and G. Dif-Pradalier. Large scale dynamics in flux driven gyrokinetic turbulence. Nuclear
Fusion, 50(5):054004, 2010.

[70] X. Garbet, J. Abiteboul, Y. Sarazin, A. Smolyakov, S. Allfrey, V. Grandgirard, Ph. Ghendrih,
G. Latu, and A. Strugarek. Entropy production rate in tokamak plasmas with helical magnetic
perturbations. Journal of Physics: Conference Series, 260(1):012010, 2010.

http://stacks.iop.org/1742-6596/260/i=1/a=012017
http://stacks.iop.org/1742-6596/260/i=1/a=012017


version: May 18 2018 119

[71] V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-Pradalier,
X. Garbet, Ph. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrucker, and L. Villard. Global full-f gy-
rokinetic simulations of plasma turbulence. Plasma Physics and Controlled Fusion, 49(12B):B173,
2007.

[72] Y. Sarazin, V. Grandgirad, G. Dif-Praladier, E. Fleurance, X. Garbet, Ph. Ghendrih, P. Bertrand,
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Strasbourg, Nov 2016. https://publication-theses.unistra.fr/public/hdr/2016/2016_
Grandgirard_Virginie.pdf.

[141] D. Hackenberg, R. Schone, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. An Energy Efficiency
Feature Survey of the Intel Haswell Processor. In Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE International, pages 896–904, May 2015.

[142] T. S. Hahm. Nonlinear gyrokinetic equations for tokamak microturbulence. Physics of Fluids,
31(9):2670–2673, 1988.

[143] A. Hamiaz, M. Mehrenberger, A. Back, and P. Navaro. Guiding center simulations on curvilinear
grids. ESAIM: Proc., 53:99–119, 2016. http://dx.doi.org/10.1051/proc/201653007.

[144] A. Hamiaz, M. Mehrenberger, H. Sellama, and E. Sonnendrücker. The semi-lagrangian method
on curvilinear grids. Communications in Applied and Industrial Mathematics., 7(3):99–137,
2016.

[145] G. W. Hammett and Fr. W. Perkins. Fluid moment models for Landau damping with application
to the ion-temperature-gradient instability. Phys. Rev. Lett., 64(25):3019–3022, 1990.

[146] F. Hariri and M. Ottaviani. A flux-coordinate independent field-aligned approach to plasma
turbulence simulations. Computer Physics Communications, 184(11):2419 – 2429, 2013. http:
//dx.doi.org/10.1016/j.cpc.2013.06.005.

[147] R. Hatzky, Tr. Minh Tran, A. Könies, R. Kleiber, and S. J. Allfrey. Energy conservation in a
nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in theta-
pinch geometry. Physics of Plasmas, 9(3):898–912, 2002.

[148] M.-A. Heroux, D.-W. Doerfler, P.-S. Crozier, J.-M. Willenbring, H.-C. Edwards, A. Williams,
M. Rajan, E.-R. Keiter, H.-K. Thornquist, and R.-W. Numric. Improving performance via mini-
applications - SANDIA REPORT SAND2009-5574, September 2009. http://www.cs.sandia.
gov/~maherou/docs/MantevoOverview.pdf.

[149] B. Holman and L. Kunyansky. A second-order finite difference scheme for the wave equation on
a reduced polar grid, 2015.
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