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Preface 
This dissertation traces my academic activities that were undertaken since my PhD thesis in defence 

back in December 1996. 

From 1997 to 1999, during my research fellowship at the Division of Informatics in the University of 

Edinburgh, I was a member of the Perception, Action and Behaviour unit that was directed by Bob 

Fisher. This unit has been conducting world class research in 3D computer vision - more specifically on 

the analysis of 3D scanned object data. This fascinating topic punctuated my research activities for a 

while.  During my lectureship in the department of computing science at the University of Glasgow 

from 2000 to 2002, I continued to work on this theme, intensifying my focus on 3D data acquired with 

human full body scan data. As an emerging technology at that time, it gave me a chance to propose 

some pioneering works related to this topic. It also sparked my interest in biometry. I carried on with 

this research after moving into the College of Information Technology in the University of Dubai in 

2003. I was also able to extend the scope of the initial framework of human body shape analysis to 

encompass a wider class of objects and give direction to a new research, noticeably in the field of 

medical imaging.  

In 2009, my entry into the Department of Electrical and Computer Engineering in Khalifa University 

(KU) marked a new phase in my journey of initiating new and cutting-edge research activities. As a 

case in point, the launch of the post-graduate program in KU coupled with the advent of research 

funding institutes in the UAE that year provided a great impetus to explore new research avenues and 

investigate new projects, noticeably in 2D and 3D image analysis as well as their applications in medical 

imaging and biometry. It also gave me an opportunity to establish substantial international 

collaborations.  

Inevitably, it is not feasible to cover all the works undertaken during the aforementioned phases. I 

have voluntarily preferred to highlight research activities that I believe have had a stronger impact 

than others, and for which my contribution has been beyond significant, while trying my best to 

produce a coherent document for the reader.  

This dissertation comprises three parts. The first part is summary of the dissertation in French. The 

second part provides a general overview of my personal and academic profile, which includes a history 

of appointments, scholarship activities, administrative services, teaching activities and a selected list 

of publications. The third part is a monograph that entails the compilation of my main research 

projects. This part is intended to be self-contained in that it provides a compact yet comprehensive 

overview about the problems addressed, the proposed methodology and the original contributions.  

The reader can also use it as a roadmap to consult the representative papers reported in the appendix.  

We conclude this section with an overview about potential future research directions.  
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Préface  
 
Cette thèse retrace les activités académiques que j’ai entreprises depuis l’obtention de mon doctorat. 
De 1997 à 1999, mon affiliation comme chercheur post-doc à la division d'informatique dans 
l'Université d'Edinburgh m’a tout d’abord permis de mener des recherches sur l'analyse de données 
d'objets scannés en 3D. Ce sujet fascinant a rythmé mes activités pendant plusieurs années. J’ai 
ensuite continué à travailler sur ce thème au sein du département de sciences informatiques de 
l'Université de Glasgow de 2000 à 2002 en m’intéressant plus particulièrement aux images 3D 
obtenues avec des scanners dédiés aux corps humains. L’étude de cette technologie, émergente à 
l'époque, m'a permis d’une part de proposer quelques travaux pionniers sur ce sujet et a suscité 
d’autre part mon intérêt pour la biométrie. J'ai donc poursuivi cette recherche en intégrant le collège 
des technologies de l'information de l'Université de Dubaï en 2003. Cette période de mon parcours 
académique fut l’occasion d’étendre la portée du cadre d'analyse, initialement centré sur la forme du 
corps humain, en englobant une classe plus large d'objets et d’entamer une nouvelle recherche dans 
le domaine de l'imagerie médicale. 
 
En 2009, mon affiliation au département de génie électrique et informatique de l'Université de Khalifa 
marque une nouvelle étape dans mon parcours académique. Le lancement du programme de 
troisième cycle à l’Université couplé à l'avènement des instituts de financement de recherche dans les 
Emirates Arabes Unies ont en effet généré une grande impulsion pour explorer de nouvelles voies de 
recherche et étudier de nouveaux projets, notamment dans l'analyse d'images 2D et 3D. Ces nouveaux 
travaux ont été l'occasion d'établir des collaborations internationales importantes. 
 
Ce résumé comprend une version courte de mon curriculum vitae faisant état de mon profil personnel 
et académique. Une compilation de mes principaux projets de recherche fournit ensuite un aperçu 
compact mais complet des problèmes abordés, de la méthodologie proposée et des différentes 
contributions. 
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2. Activités de recherches   
 

Mes activités de recherche en vision par ordinateur couvraient différents aspects de l'analyse et de 
l'interprétation d'images. Une grande partie de mes contributions a été consacrée à la représentation, 
un concept que je décris comme l'élaboration d'un cadre de calcul optimal pour encoder les données 
visuelles afin d'assurer une solution efficace pour un problème donné en vision par ordinateur. 
 
Ma première contribution à cet égard s’inscrit dans le projet pionnier sur les modèles de Conception 
Assistée par Ordinateur (CAO) d'objets manufacturés utilisant des scans 3D en forme de nuage de 
points. Cette recherche devait permettre aux concepteurs CAO de construire de nouveaux modèles à 
partir d'images 3D en introduisant de manière interactive de nouvelles spécifications sur le modèle 
sous forme de contraintes géométriques. Les méthodes courantes au moment de l'étude employaient 
des algorithmes génétiques. De telles approches facilitent la mise en œuvre des contraintes 
géométriques mais demandent un temps de calcul prohibitif (échelle d'heures) que les concepteurs 
CAO n’ont pas. Nous avons ainsi proposé une nouvelle approche combinant représentation vectorielle 
du modèle objet et contraintes géométriques. Il en résulte un modèle d'optimisation efficace et un 
nouveau paradigme permettant d'aborder le problème avec une optimisation quadratique standard. 
Les résultats de cette recherche sont présentés dans l’article de [Werghi ,1999]  
 
Un autre projet traitant de la segmentation d’images 3D représentant des formes humaines propose 
une nouvelle représentation robuste fondée sur le diagramme de Reeb-graphe. Cette nouvelle 
représentation incorpore un ensemble de contraintes topologiques locales pour résoudre les 
problèmes de variabilité et de données de la posture et de bruit [Werghi,2006]. Ce cadre a été étendu 
dans un travail ultérieur à une classe plus large comprenant les objets articulés et tubulaires [Werghi, 
2006a]. 
 
Une grande partie de mes recherches a été consacrée à la conception de représentations appropriées 
pour l'analyse de maillages triangulaires. Dans ce contexte, j'ai contribué à développer le concept 
d'histogramme géométrique, la première structure d'histogramme proposée comme descripteur de 
forme locale pour les maillages triangulaires [Ashbrook, 1998]. Pour pallier au manque de structure 
ordonnée, j'ai ensuite proposé le concept des anneaux de facettes ordonnées (ORF) [Werghi, 2011 ; 
werghi, 2011b ; Werghi, 2012]. L’ORF permet de générer des structures ordonnées sur des maillages 
triangulaires qui peuvent être déployées localement et globalement. L’ORF a été adapté à plusieurs 
tâches de traitement des surfaces faciales, notamment le recadrage, la compression, l'alignement et 
la détection du nez. L'ORF a également formé la fondation du mesh-LBP [Werghi, 2015], un nouveau 
concept qui a permis d'étendre les modèles binaires locaux [Ojala, 2002] aux maillages triangulaires. 
Ce concept a été appliqué avec succès dans différentes applications comprenant la reconnaissance de 
relief [Werghi, 2015 ; Werghi, 2015a ; Tortorici, 2017] et la reconnaissance de visage 3D [Werghi, 
2015b ; Werghi, 2016]. 
 
Dans une autre contribution reliée au domaine de l'imagerie médicale, toujours dans le cadre de la 
représentation, j'ai proposé un système de diagnostic assisté par ordinateur pour évaluer la gravité 
d'une pathologie oculaire appelée opacification postérieure de la capsule [Aruna, 2014]. L'approche 
est fondée sur un nouveau concept, baptisé « rugosité multi-échelle ». Cette approche permet d'éviter 
les problèmes de segmentation de l'image émanant de la texture irrégulière et bruitée caractérisant 
les images PCO. 
 
L'avènement récent des paradigmes d'apprentissage en profondeur fut l’occasion d’étudier des 
approches basées sur la reconnaissance de visages et sur l’imagerie médicale. Dans un travail récent 
[Hayat, 2017], j'ai contribué à développer un système de réseau neuronal convolutif qui apprend à 
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enregistrer et à représenter simultanément les visages. Le système proposé a pour but d’améliorer de 
façon significative les performances de reconnaissances faciales.  
 
Dans un autre projet, j’ai proposé une nouvelle contribution concernant la détection des polypes dans 

les images de coloscopie. Les polypes sont des protubérances qui se développent au niveau du tractus 

intestinal. Leur détection et leur élimination précoces sont cruciales pour une meilleure prévention 

du cancer colorectal. Dans ce contexte, nous avons proposé une méthode de transfert d'apprentissage 

utilisant des architectures standards (AlexNet et VGGNet) comme extracteur de primitives. Les 

vecteurs de primitives obtenus sont alors déployés comme entrées des classifications classiques telles 

que le SVM et le Softmax.  Le suivi des polypes est un autre aspect qui a été étudié dans cette 

recherche. Les mécanismes de suivi classiques n'utilisent l'information d'intensité qu'à des fins de 

suivi. Cependant, dans cette thèse, nous avons expliqué que l'ajout de la contribution de couleur avec 

l'intensité pourrait conduire à un meilleur système de suivi. L'algorithme utilise trois formats de 

couleurs indépendants et une transformation affine. Les résultats de cette recherche ont été diffusés 

dans [bilal, 2017]. 

 
Pour la prochaine étape de mes travaux, je prévois de poursuivre une recherche multidisciplinaire 
couvrant l'analyse et l'interprétation de données 2D et 3D. Il sera également question de cibler des 
modèles et des applications d'interface homme-machine innovants. Compte tenu des progrès récents 
dans l'acquisition de vidéos 3D, plusieurs nouveaux scénarios d'interaction machine-personnes 
peuvent être envisagés. Les domaines d'application potentiels comprennent entre autres la gestion 
de l'identité, la réadaptation médicale, le divertissement et les soins aux personnes âgées. Avec la 
prolifération rapide des téléphones intelligents, les applications mobiles multimodales intelligentes 
intégrant et personnalisant les modèles d'interface constituent une autre direction prometteuse. 
La récupération d'informations multimédias basées sur le contenu devrait être un sujet de grand 
intérêt dans un avenir proche. En effet, avec la disponibilité généralisée des numériseurs 3D et le 
domaine en plein essor de la technologie multimédia, de vastes collections de modèles multimédias 
hybrides peuvent être facilement construites et connectées à Internet pour différentes applications 
dans différents secteurs. Le développement de structures et de mécanismes adaptés aux besoins du 
client pour interroger et extraire des informations de ces bases de données hétérogènes constitue un 
défi intéressant. 
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I. Curriculum Vitae  
 

Name:    Naoufel  

Surname:  Werghi 
Address:  Khalifa University,   POBOX 127788, Abu-Dhabi, UAE 

Email:    Naoufel.Werghi@kustar.ac.ae 

Tel:    971 50 427 1945 

Current Position:  Associate Professor 

 

Education 
 
1996:   PhD in Image Processing and Robotics, University of Strasbourg, France. 
1993:   Masters in Instrumentation and Control, University of Rouen, France.  
1992:     Eng. Diploma Electrical Engineering, Ecole Nationale Ingenieurs Monastir, Tunisia. 
 
 

Professional Appointments 
 

2012-Present:  Associate Professor, Department of Electrical and Computer Engineering, Khalifa 

University, UAE. 

2009-2011: Assistant Professor, Department of Electrical and Computer Engineering, Khalifa 

University, UAE 

2003-2008: Assistant Professor, College of Information Technology, University of Dubai UAE. 

2000-2002:  Assistant Professor, Department of Computing Sciences, University of Glasgow,  

1997-1999:  Research Fellow, Division of Informatics, University of Edinburgh, UK. 

1996:                   Adjunct Lecturer (ATER), National College of physics, University of Strasbourg, 

France. 

 

Research Interests  
 

2D/3D image data analysis and interpretation with application on smart systems, medicine, and 

biometry 

 

 

Visiting Professorships  
 

June 2017: University of Canberra, Australia. 

June 2016: Institute Mines-Telecom, University Lille1, France  

June-2015:      Zayed Institute the Pediatric Surgical Innovation, Washington DC  

May-2013:   Korean Advanced Institute of Sciences and Technology, South Korea. 

June-2011:         Media Integration Communication Center, University of Florence, Italy. 

March 2001:      Department of Computer and Electrical Engineering, University of Louisville, USA. 
 

 

 

mailto:Naoufel.Werghi@kustar.ac.ae
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Teaching activities 
 

Programming, Artificial Intelligence, Data structure & algorithms, Software engineering 

 

 

Awards  
 

2017 Award for the BEST STUDENT PAPER in the International Workshop on Representation, 

Analysis and Recognition of Shape and Motion from Image data, RFMI 2017 for the paper 

titled Defining Mesh-LBP Variants for 3D Relief Patterns Classification. Paper presented by 

my PhD student Claudio Tortoricci. 

 

2011    Award for the BEST PAPER in the International Conference on Computer Vision Theory and 

Applications, Portugal, for the paper titled THE SPIRAL FACETS - A Unified Framework for the 

Analysis and Description of 3D Facial Mesh Surfaces. Paper presented by my colleague 

Harish Bhaskar. 

 

Research Grants  
 
 

Year Title Fund Source Role Affiliation 

2017 Towards a computer-aided diagnostic  

system for the early detection of prostate 

cancer using diffusion weighted-magnetic 

resonance imaging 

156000 DHS AJF PI Khalifa 

University  

2016 Automatic polyp detection in endoscopy 

videos 

152571 DHS AJF PI Khalifa 

University 

2015 Hamama: Context-aware cloud-based robot 

assistance for informal care 

195000 DHS KU Co-

PI 

Khalifa 

University 

2015 Computer-Aided Diagnosis System for the 

early and automated detection of Infantile 

Dysmorphic Syndromes in the UAE 

1674000 

DHS 

KU PI Khalifa 

University 

2014  Computer-Aided Diagnosis System for the 

early detection of Cervix Cancer from Pap 

Smear images. 

150 000 

DHS 

TFF PI Khalifa 

University 

2014 People identification from Partially Hidden 

3D Facial Images 

160 000 

DHS 

NRF* PI Khalifa 

University 

2014 Detecting Down Syndrome in Infants Using 

Facial 2D and 3D Images 

190 000 

DHS 

KU PI Khalifa 
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University 

2014 Defining the Ancestral Lineages of Arabian 

Tribes using Mitochondrial DNA towards 

defining Arab Haplotypes for Fine Mapping 

of Disease Gene 

195 000 

DHS 

KU Co-

PI 

Khalifa 

University 

2013 3D Face Matching for Incomplete 3D facial 

images 

195 000 

DHS 

KU PI Khalifa 

University 

2013 Engineering Personalized Medicine in the 

United Arab Emirates 

2400 000 

DHS 

KU Co-

PI 

Khalifa 

University 

2012 A Grading System for Assessing Posterior 

Capsule Opacifiaction using Medical  Images 

194 500 

DHS 

NRF PI Khalifa 

University 

2012 Algorithms for Watermarking Images 196 000 

DHS 

KU Co-

PI 

Khalifa 

University 

2009 People Recognition and Identification Based 

on 3D Facial Images 

181 000 

DHS 

EF PI Khalifa 

University 

2001 Automatic Segmentation and Fitting  of 

Human Body Shapes from 3D Images 

55 000  GBP ESPRC  PI University 

of Glasgow 

2000 Automatic Segmentation of 3D images 3 000 GPB CTF PI University 

of Glasgow 

1999 Reconstruction of Built Environments for 

Virtual Reality Applications using 

Architectural  knowledge 

75 000 GPB ESPRC Co-

PI 

University 

of 

Edinburgh 

 

 

 

AJF: Al-Jalila foundation UAE: http://www.aljalilafoundation.ae/ 

KU: Khalifa University  

TFF: Terry Fox Foundation: http://www.terryfox.org/ 

NRF: National Research Foundation, UAE 

EF: Emirates Foundation  

EPSRC: Engineering and Physical Research Council, UK 

CTF: Carnegie Trust for the Universities of Scotland, UK https://www.carnegie-trust.org/ 

 

 

http://www.aljalilafoundation.ae/
http://www.terryfox.org/
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Scholarship Activities  

PhD supervision  

Year Student Title   Affiliation  

2016-

Present 

C.Tortoricci  Detecting and Interpreting 3D Facial Patterns from 

Multi-modal Data 

Khalifa University 

2016-

Present  

B. Aldelail  Action and Gesture Recognition 

under Dynamic Illumination 

Conditions 

Khalifa University  

2014 F. Taher Early Detection of Lung Cancer Based on Sputum 

Color Images Analysis 

Khalifa University 

2004 Y. Xiao Automatic Segmentation and Fitting of Whole 

Human Body Shape  

University of 

Glasgow 

 

Master thesis supervision 

Year Student Title   Affiliation  

2017-

Present 

R. AlKadi A Computer-Aided Diagnostic  System for the 

Early Detection of Prostate Cancer using 

Diffusion Weighted- Magnetic Resonance 

Imaging 

Khalifa University 

2017-

Present 

M. Almufti Machine Learning Techniques for the 

Classification of Synthetic Aperture Radar 

Images 

Khalifa University 

2017-

Present 

E. 

Alhadhrami 

Feature Extraction for Moving Target 

Classification using Radar Doppler Echoes 

 

Khalifa University 

2017 S. Salahat Detection of Calcification in Abdominal Aortic 

Aneurysms 

Khalifa University  

2017 B.  Taha Automatic Polyp Detection in Endoscopy Videos Khalifa University  

 

2013 N. 

Mdimegh 

3D Triangular Mesh Watermarking using 

Ordered Ring Facets 

Nat. School of 

Engineering Souuse 

 

2013 N. Bnouni 3D Face Identification By Fusion of Spiral Facets 

descriptors 

Nat. School of 

Engineering Sousse 

2011 H. 

Boukadida 

Facial Landmark Detection and Facial Surface 

Alignment  using 3D Images 

 

University of Tunis,    

2011 Y. Megubli Extraction of Facial Descriptors from 3D Images University of Tunis,   

Tunisia 

2007 F.  Alkirbi PCO Assessment using  Digital Images University of Sharjah 
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PhD Examination     

Year Student Title   Affiliation  

2017 Y. Abukheil Mapping and Navigation Techniques for 

Non-Invasive Active Endoscopic Capsules 

Khalifa University 

2016 E. Basaeed Remote-sensing Image Segmentation using 

Convolutional Neural Network and Its Applications 

to Pan-sharpening and Detection 

Khalifa University 

2010 M.Rehayem Segmentation and Fitting for Geometric Reverse 

Engineering 

Orbero University 

 

Research Associate Supervision 

 

Year R.A Project   Affiliation  

2015 A.Elkatheeb Computer-Aided Diagnosis System for Early 

Detection of Cervix Cancer from Pap Smear 

images. 

Khalifa University 

2015  M.Chendeb Computer-Aided Diagnosis System for Early and 

Automated Detection of Infantile Dysmorphic 

Syndromes 

Khalifa University 

2014 C. Tortotici  People Identification from Partially Hidden 3D 

Facial Images 

Khalifa University  

2013 M.Chendeb Detecting Down Syndrome in Infants using 

Facial 2D and 3D Images 

Khalifa University 

 A. Vivekanand Design and Implementation of a Grading System 

for Assessing Posterior Capsule Opacifiaction 

using Medical Digital Images 

Khalifa University 

2012 S. Khalifa 3D Face Matching for Incomplete 3D Facial 

Images 

Khalifa University 

 

Faculty Promotion Evaluation  

Dr. Dr. Young-Ji Byon, Khalifa University, UAE, 2016 

Dr. Mahmud S. Alkoffash, Al-Balqa Applied University, Jordan, 2016 

Dr. Basel AlMourad   Zayed University, UAE, 2014   

 

Journal Paper Review 

IEEE Trans. Image Processing  

IEEE Trans. Information Forensics and Security 

               IEEE Trans. Pattern Analysis and Machine Intelligence,  

 IEEE Trans. Neural Networks and Learning Systems  

 IEEE Trans. Multimedia 

 



Habilitation à Diriger les Recherches   Naoufel Werghi 

 Page 19 of 57 
 

Conference committees 

Co-publication chair of IEEE International conference image processing, ICIP 2020 

 

Member of the Steering committee of the Representation, analysis and recognition of shape and 

motion from Image data (RFMI), 2016, 2017 

 

Chair of the “Image Processing and Multimedia Systems” track in the 56th IEEE Midwest symposium 

on circuits and systems, Columbus, Ohio, 2013. 

 

 

Session chair in: 

 

IEEE Conference, Men, Systems and Cybernetics, Shunghu, China 2008 

 

International Conference on Machine Vision Applications, Tokyo, Japan, 2007 

 

International Conference on Computer Vision Theory and Applications, Portugal,  2006 

 

 

Administrative Experience and University Services  

 

Khalifa University: 2009-Present  

2011-2014 Deputy Chair of Postgraduate studies 

Chair of the Research committee in the Electrical and Computer Engineering   

Department 

Library Liaison coordinator in the Electrical and Computer Engineering Department

   

2010-2011          Final year project coordinator the department of computer engineering 

  Member of the Educational Experience committee  

Member of the final year project committee in the college of engineering 

 

University of Dubai: 2003:2008 

2004-2008 Member of the Research Committee, 

2005-2006 Member of the Undergraduate committee 

2004-2007 Member of the General Education committee 

 

University of Glasgow: 2000-2002 

Department of computing sciences:  

Course coordinator of C++ course 

  Coordinator of the departmental seminars 
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II. Teaching activities  
My teaching activities were initiated at the University of Strasbourg, France during my PhD.  I worked 

as a Teaching Assistant for two years (94-95 at the Institute of Science and Technologies. During my 

stint, I ensured the implementation of lectures and practical works in C programming and assembly 

language, tutorials and practical works in electronics as well as signal processing.  I developed the 

entire teaching material, including lectures, tutorials and practical works.   

During 95-96 I was appointed as a Lecturer at the National Higher Education School of Physics in the 

University of Strasbourg, France. Apart from ensuring the smooth completion of practical works in 

automation and control, I was also involved in monitoring and assessing students.   

During my Research fellowship (97-99) at the Division of Informatics in the University of Edinburgh 

(UK) I ensured tutorials and practical works in machine vision and computational vision. I also 

contributed in supervising undergraduate and MSc students.    

In 2000, I was appointed as the Assistant Professor at the Department of Computing Sciences in the 

University of Glasgow.  My teaching encompassed C++ programming and Computer-Graphics.  In all 

these courses, I developed the lecture materials, tutorial as well as laboratory sessions.  I also 

developed a special workshop for the computer graphic course intended to prepare students for their 

final projects.  In 2002, I co-developed a new module on digital image processing. 

In the College of Information Technology in the University of Dubai, I taught Artificial Intelligence, 

Multimedia Technology, Java and C++ programming, Data Structure and Algorithms.  I was responsible 

for developing all the related material, including lectures, laboratory sessions and assessments. I also 

supervised more than ten final year projects. 

In 2009, I moved to the Department of Electrical and Computer Engineering at the Khalifa University, 

where I have been teaching Artificial Intelligence Software Engineering  for undergrad students, and 

Pattern Recognition for the PhD program.  I have been also in charge of coordinating these courses 

across the two campuses of Khalifa University.  In addition, I have been maintaining homogeneity 

between the two campuses in terms of course content, delivery, assessment methods and outcome 

coverage.  Furthermore, I have been in charge of supervising both junior and final year projects. 
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III. Publications 
 

Referred Journals  

A. Reda, A. Shalaby, M. Elmogy, A.Abou Elfotouh, F. Khalifa, M. Abou El-Ghar, E. Hosseini-Asl, G. Farb, 

N. Werghi, A. El-Baz,  A Comprehensive Non-invasive Framework for Diagnosing Prostate Cancer”.   

Computers in Biology and Medicine, pp-148-158, 2017 

 

N. Werghi, C. Tortorici, S. Berretti, A. Del Bimbo, ‘’ Boosting 3D LBP-based Face Recognition by Fusing 

Shape and Texture Descriptors on the Mesh’’, IEEE Trans. on Information Forensics & Security, 11 (5), 

pp.964-979, 2016. 

 

N. Werghi, S. Berretti, A. Del Bimbo, “The mesh-LBP: a Framework for Extracting Local Binary Patterns 

from Discrete Manifolds”, IEEE transactions on image processing, Vol. 24, No.1, pp. 220-235, 2015. 

 

N. Werghi, C. Tortorici, S. Berretti, A. Del Bimbo, “Local Binary Patterns on Triangular Meshes: Concept 

and Applications”, Computer Vision and Image Understanding, 139, pp.161-177, 2015. 

 

S. Berretti, N. Werghi, A.D. Bimbo P. Pala, “Selecting stable keypoints and local descriptors for person 

identification using 3D face scans”, The Visual Computer, springer, pp. 31-41, 2014. 

 

A. Vivekanand, N. Werghi, H. Al-Ahmad, “Multi-scale Roughness Approach for Assessing Posterior 

Capsule Opacification”, IEEE Journal of Biomedical and Health Informatics, Vol.18, No.6, pp.1923 – 

1931, 2014. 

 

 F. Taher, N Werghi, H. Al-Ahmad, C Donner, “Extraction and Segmentation of Sputum Cells for Lung 

Cancer Early Diagnosis”,  Algorithms 6 (3), 512-531, 2013. 

 

Taher, N. Werghi, Hussain Al-Ahmad, C.Donner , "Automatic Sputum Color Image Segmentation for 

Lung Cancer Diagnosis”, KSII Transactions on Internet and Information Systems, (TIIS) 7 (1), 68-80 2012 

 

S. Berretti,  N. Werghi,  A.D. Bimbo P. Pala,   Matching 3D Face Scans using Interest Points and Local 

Histogram Descriptors”, Computers & Graphics, Elsevier, 37 (5), p.509-525  2013. 

 

N. Werghi, M. Rahayem, J.  Kjellander. “An ordered topological representation of 3D triangular mesh 

facial surface: Concept and applications”, EURASIP Journal on Advances in Signal Processing, pp.1-20, 

2012. 

 

F. Taher, N. Werghi, H. Al-Ahmad, R. Sammouda, “Lung Cancer Detection by Using Artificial Neural 

Network and Fuzzy Clustering Methods”, American Journal of Biomedical Engineering, Vol. 2, No. 3, 

pp,136-142, 2012. 

 

M Rahayem, N Werghi, J Kjellander, “Best ellipse and cylinder parameters estimation from laser 

profile scan sections”, Optics and Lasers in Engineering, 50 (9), 1242-1259, 2012. 

 

N.Werghi, “Assessing the Regularity of 3D Triangular Mesh Tessellation Using a Topological Structured 

Pattern”, Computer-Aided Design and Applications, Vol. 8, No.5, pp.633-648, 2011. 

http://scholar.google.ae/citations?view_op=view_citation&hl=en&user=G_2Xpm0AAAAJ&sortby=pubdate&citation_for_view=G_2Xpm0AAAAJ:4OULZ7Gr8RgC
http://scholar.google.ae/citations?view_op=view_citation&hl=en&user=G_2Xpm0AAAAJ&sortby=pubdate&citation_for_view=G_2Xpm0AAAAJ:4OULZ7Gr8RgC
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N. Werghi, H. Boukadida and Y. Meguebli, “The spiral facets: A unified framework for the analysis and 

description of 3D facial mesh surface”, 3D Research, Springer, Vol.1, No.3, pp.1-11, 2010. 

 

N. Werghi, R. Sammouda, F. Alkirbi, “An unsupervised learning approach based on a Hopfield-like 

network for assessing Posterior Capsule Opacification from digital images”, Pattern Analysis and 

Applications, Springer, 13 (4), pp. 383-396, 2010. 

 

N. Werghi, Y. Xiao, P. Siebert, “A Functional-Based Segmentation of Human Body Scans in Arbitrary 

Postures,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 36, No.1,  pp. 153-165,  2006. 

 

N. Werghi, “A Robust Approach for Constructing a Graph Representation of Articulated and Tubular-

like Objects from 3D Scattered Data”, Pattern Recognition Letters, Elsevier, Volume 27, No.6, pp. 643-

651, April 2006. 

 

N. Werghi, “A Discriminative 3D Wavelet-based Descriptors: Application to the Recognition of Human 

Body Postures”, Pattern recognition letters, Elsevier, Vol.26, No.5, pp.663-677, 2005.  

 

N. Werghi, “Segmentation and Modelling of Full Human Body Shape From 3D Scan Data: A Survey”, 

IEEE Transactions on Systems, Man, and Cybernetics, Vol.37, No.6, November 2007. 

 

N. Werghi, Y. Xiao, P. Siebert, “Labeling of Three Dimensional Human Body Scans: A Topological 

Approach”, International Journal of Image and Graphics, Vol. 7, No. 2, pp. 255-272, 2007.    

 

N. Werghi, R.B. Fisher, C.Robertson, A. Ashbrook,  “Shape Reconstruction Incorporating Multiple Non-

Linear Geometric Constraints,  Constraints Journal,  Kluwer,  Vol.7,  No.2,  pp. 117-149, 2002. 

 

N. Werghi, R.B. Fisher, C.Robertson, A. Ashbrook.  Faithful Recovering of Quadric Surfaces From 3D 

Range Data By Global Fittin, International Journal of Shape Modeling, Vol.6, No.1, pp.65-78, 2000.  

 

N. Werghi, R.B. Fisher, C.Robertson, A. Ashbrook, “Object Modeling by Incorporating Geometric 

Constraints”, Computer-Aided Design, Elsevier, Vol.31, No.6, pp.363-399, May 1999.  

 
 

Conferences  

C. Tortorici, N. Werghi, S. Berretti,  “Defining Mesh-LBP Variants for 3D Relief Patterns Classification”,  

7th  International Workshop on Representation, analysis and recognition of shape and motion from 

Image data, Savoi, France, 2017.    BEST STUDENT PAPER AWARD. 

 

M. Hayat, S. H. Khan, N.Werghi, R. Goecke, “Joint Registration and Representation Learning for 

Unconstrained Face Identification.  IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 2017, pp. 2767-2776 

 

M.C. El Rai, C. Tortorici, H. Al-Muhairi, M. Linguraru, N. Werghi, ‘’3D Constrained local model with 

independent component analysis and non-gaussian shape prior”, IEEE International Conf. Image 

Processing, 2016, pp.3204-3208, USA. 
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 I. Reda, A. Shalaby, F. Khalifa, M. Elmogy, A. Aboulfotouh, M. Abou El-Ghar, E. Hosseini-Asl, N. 

Werghi, R. Keynton, A. El-Baz, “Computer-Aided Diagnostic Tool for Early Detection of Prostate 

Cancer”, IEEE International Conf.  Image Processing, 2016, pp.3213-3217, USA 

 

 N. Werghi, C. Tortorici, S. Berretti, A. Del Bimbo, Representing 3D Texture on Mesh Manifolds for 

Retrieval and Recognition Applications, IEEE Conf. Computer Vision and Pattern Recognition, pp. 

2521-2530, USA, 2015. 

 

N. Werghi, C. Tortorici, S. Berretti, “Boosting 3D LBP-based Face Recognition by Fusing Shape and 

Texture Descriptors on the Mesh”, IEEE International Conf.  Image Processing, 2015, Quebec City, 

Canada, 2015. 

 

M.C. El-Rai, N Werghi, C Tortorici, H Al-Muhairi, HA Safar, “Landmark Detection from 3D Mesh Facial 

Models for Image-based”, IEEE Conf. Engineering in Medicine and Biology Society, Milan, Italy, 2015. 

 

A.El Khatib, N. Werghi, H.Al-Ahmad, “Automatic polyp detection: A comparative study” IEEE Conf. 

Engineering in Medicine and Biology Society, Milan, pp.2669-2672, 2015. 

 

Z. Qian, N.Werghi, et al , “Ensemble Learning for the Detection of Facial Dysmorphology”,  Proc. IEEE 

Engineering in Medicine and Biology,  Chicago, USA, 2014.  

 

N. Werghi, S. Berretti, A.D. Bimbo P. Pala, “Local Descriptors matching or 3D Face Recognition.” IEEE 

International, Conference on Image Processing, ICIP 2013, Melbourne, Australia, October 2013. 

 

 N. Werghi, H. Bhaskar, M. K. Naqbi, Y. Meguebli, H. Boukadida, “The Spiral Facets: A Compact 3D 

Facial Mesh Surface Representation and Its Applications”, Lecture Notes on Communications in 

Computer and Information Science, Vol.274, Communications, Springer-Verlag. 2013 

BEST PAPER AWARD 

 

N.Werghi,  C.Donner, F.Taher,  H.AlAhamad, “Detection and segmentation of sputum cell for early 

lung cancer detection” IEEE International Conference on Image Processing, Orlando, USA 2012. 

 

N.Werghi, “An unsupervised learning approach based on Hopefiled-like network for assessing 

posterior capsule opacifiaction”,  Proc. International  Conference on Machine Vision Applications, 

pp.416-419,  Japan, 2007, 

 

Y. Xiao, N.Werghi, P. Siebert, “Topological Segmentation of Discrete Human Body Shapes in Various 

Postures Based on Geodesic Distance”, Proc.  International Conference on Pattern Recognition, 

pp.131-135, Cambridge, UK, August, 2004. 

 

 Y. Xiao, N.Werghi, P. Siebert,  “A Topological approach based on Discrete Reeb-Graph for the  

Segmentation of Human  Body Scans”. Proc. IEEE Int. Conference on 3D Imaging and modeling, pp. 

pp. 378- 385, Canada, 2000 

 

N. Werghi, “Recognition of Human Body Posture from a Cloud of 3D Data Points Using Wavelet 

Transform Coefficients”, Proc. International Conference on Automatic Face and Gesture 

Recognition,2002,USA, 



Habilitation à Diriger les Recherches   Naoufel Werghi 

 Page 24 of 57 
 

 

N. Werghi, R.B. Fisher, A. Ashbrook, C. Robertson, “Faithful recovering of quadric surfaces from 3D 

range data”, International Conference on 3-D Digital Imaging and Modelling   pp.280-289., Los 

Alamitos, CA, USA, 1999. 

 

N. Werghi, R.B. Fisher, A. Ashbrook, C.Robertson,  “Modelling Objects Having Quadric Surfaces 

Incorporating Geometric Constraints.  Proc. European Conference on Computer Vision, pp.185-201, 

Germany, June 1998.  

 

 A. P. Ashbrook, R. B. Fisher, C. Robertson, N. Werghi,  “Finding Surface Correspondence for Object 

Recognition and Registration Using Pairwise Geometric Histograms”,   Proc European Conference on 

Computer Vision,  pp.674-686, Friburg, Germany, June,  1998.  

 

A. P. Ashbrook, R. B. Fisher, C. Robertson, N. Werghi,   “Segmentation of Range Data into Rigid 

Subsets using Planar Surface Patches”, . Proc. Int. Conference on Computer Vision, pp. 201-206, 

Bombay, India, January, 1998.  

 

N. Werghi, C.Doignon, G.Abba,   “Ellipse Fitting and Three-Dimensional Localization of Objects Based 

on Elliptic Features”,  Proc. IEEE International Conference on Image Processing. Vol.1, pp.57-60, 

Lausanne, Switzerland, September 1996.  

 

 C.Doignon, N. Werghi, G.Abba, E.Ostertag,  “Localization of Objects by a Monocular Vision System 

for Robotic Task”, Proc. International Conference on Intelligent Autonomous Systems (IAS-4); IOS 

press,  pp. 513-520, Karlsruhe, German, March 1995. 
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1. Research projects 
This section describes the selected research projects I have been undertaking since my PhD thesis until 

now. These projects encompass different aspects and applications of 2D/3D image analysis and 

interpretation.  While it seems difficult to put these diverse projects under a single umbrella, I believe 

that, in many of them, the notion of representation has been a common factor.  The concept of 

representation might have different definitions or interpretations, but in the computer vision field, I 

believe it can be described as the process of elaborating of an optimal computational framework to 

encode visual data in order to ensure an effective and efficient solution for a given computer vision 

problem, within a given application context. 

The introduction will account about the first circumstance in which I have been acquainted to this 

concept, and more generally the computer vision discipline. We will also briefly elaborate on the 

concept of representation so as to understand why it has marked a signification portion of my research 

contributions. Afterwards, we will go through a selection of research projects I have been undertaking, 

emphasizing for most of them, the representation aspect. For some projects, the notion of 

representation might not seem capital, yet I think it is actually approached, though in an indirect 

manner. We will elaborate on this point whenever it is appropriate. We will expose also at the end 

some ongoing and future research.  In the last section we conclude with some reflections. 

1.1 Introduction: The Representation concept  

My first exposure to the concept of representation was during my PhD thesis, which I have been 

conducting at the GRAVIR research group (Groupe de Recherche en Automatique et Vision 

Robotique), in the University of Strasbourg.  The thesis was about detecting and locating objects in a 

robot manipulator scene. It came in the context of research project investigated by the research group 

about the control of robot manipulator by means of visual feedback. Basically, the system 

encompasses a manipulator with a camera mounted on its end-effector as illustrated in Fig-1. Video 

stream is processed by a machine vision module (CYCLOPE which controls the robot axes in closed-

loop fashion). 

 

Fig-1: The robot vision system. 

During the very first stage of the literature survey, I came across the book “Vision: A Computational 

Investigation into the Human representation and Processing of Visual Information” by David Marr, 

whom is considered as the founder of the computer vision sciences.  Going through the book, I 

discovered that the computer vision, as a concept, sparked out within a context quite similar to my 

PhD thesis, long years ago.  In the sixties, David Marr, as an expert of the human visual system, has 
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been invited by the artificial intelligence group in the MIT, at Massachusetts, seeking his help for  

designing a manipulator robot equipped with a visual perception capacity allowing it to sense its 

environment and enabling it to perform specific basic tasks. Seemingly, this invitation came after 

several unsuccessful attempts. According to David Marr, the disappointments of the first researchers 

in robotics resulted from skipping a capital step. They wanted to go directly from the statement of a 

problem to its solution, without having a prior scientific knowledge to build efficient algorithms on the 

visual perception. Marr developed his theory around three theses that greatly influenced the thinking 

of computer vision.  The first is that the science of the artificial vision exists, that it must be developed 

and that once it has progressed sufficiently, the problems posed by the vision in robotics can be solved. 

The second is that the science of vision is not very different in the case of man's vision of what it will 

be in that of vision in robotics. The third is that it is as futile to imitate nature in the case of vision as 

it would have been to build an airplane using the shape and structure of bird feathers. In contrast, the 

laws of aerodynamics explain the flight of birds and allow to build planes.  In his discussion around the 

early fundamental questions about the potential paradigms for approaching the vision and the 

algorithms that can emulate the human vision properties (e.g. detection of contours, inference of the 

depth and the third dimension, etc.), Marr coined the problems related to the nature, the form and 

the structure of the visual data on which the algorithm acts with the term  “The representation”.  He 

illustrated the fundamental role of the representation and its implications with arithmetic operations, 

showcasing how the complexity of such operations increases dramatically when we switch from a 

given number representation to another. We can exemplify this concept with a simple problem that I 

love to give to my students in the introductory lecture of my Artificial intelligence class. The example 

is about performing an algorithm that subtracts 1329 from 2431. The astonishing reaction at a such 

trivial question quickly dissipates when they are asked to solve this problem using the Roman system 

for integers representation, i.e. subtract MCCCXXIX from MMCDXXXI.  Here, the students realize that 

the problem is not trivial as they have thought in the beginning, and that the algorithm solving this 

problem has in fact a quite higher level of difficulty than its counterpart in the first representation.  As 

Marr explained in his book, the difficulty of the problem here does not lie in the nature of the problem 

itself (perform a subtraction) but rather in the representation adopted for solving it.  Marr advocacy 

on the essential and the subtle role played by the representation can be summarized in this quote “If 

one thinks that the purpose of studies in the field of information processing is to formulate and 

understand particular problems on the treatment of the information, then it is the structure of these 

problems that is the central problem. not the mechanisms through which they are implemented”. 

This exposure to the concept of representation, as advocated by David Marr, at the early stage of my 

research career, influenced to a large extent the orientation of my subsequent research. Looking at 

the compilation to the representative works of my research activities up to now, reported in Fig-2, we 

can easily notice that the majority of my original contribution (column 3) is related to shape 

representation.   It is also noticeable that most of the works related to shape recognition adopted a 

basic minimum distance classifier (e.g nearest neighbour). This trend reflects the rational that an 

appropriate representation of the information treated in a given recognition task can bring down the 

complexity of the classification task, allowing thus the usage of the aforementioned simple 

classification paradigm.  We notice also that machine learning paradigm has not been adopted till a 

recent date, in the last two works related to 2D face recognition and medical image classification. 

Actually, the employment of the advance deep learning paradigm, in these works, came in the rational 

of benefiting of the capacity of such system for deriving an appropriate representation by learning, 

when the manually crafted representation showed limited potential for addressing related problems.  
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                                                                                        (a) 

                   

   (b)               (c)       

Fig-2: (a): Representative list of my works, the problems they are addressing, the original contributions and the 

employed classification paradigm when applicable.  (b): These works can be mapped into three themes: Shape 

modelling, shape analysis, and shape recognition.  (c): Finer categorization, whereby the shape recognition is 

split into two sub-categories according the adopted classification paradigm. 
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1.2 Computer-Aided Design Using Range Data Incorporating Geometric 

Constraints 

During my research fellowship at the University of Edinburgh, I worked on developing novel methods 

for the semi-automatic construction of CAD object models from 3D images.  The objective of this 

research was to enable CAD designers constructing new models from 3D images by interactively 

introducing new specifications on the model on the form of geometric constraints on the object 

model. Current methods at the time of the project investigation employed genetic algorithms. Such 

approaches facilitate the implementation of the geometric constraints but is ridden with a prohibitive 

computational time (scale of hours) that the CAD designers cannot afford.  We proposed a novel 

approach blending a vector representation of the object model and the accompanying geometric 

constraints with an efficient optimization framework. This new paradigm allows to approach the 

problem with a standard quadratic optimization in which the objective function is defined as follows:  

𝐹(�⃗�) + ∑(𝐶𝑘(�⃗�))
2

𝑚

𝑘=1

 

  𝐹(�⃗�)  = �⃗�𝐻�⃗�;                𝐶𝑘(�⃗�) =     �⃗�𝐴𝑘�⃗�  +  𝐵𝑘�⃗�     +  𝐷𝑘       

(�⃗�) is the vector encompassing the model parameters. 𝐹(�⃗�) is the model-data fitting function, and 

𝐶𝑘(�⃗�) is a quadratic vector function representing the kth constraint.  

In this paradigm we demonstrated that the above function can be efficiently optimized using the 

standard Levenberg-Marquardt algorithm, whereby the computation time of the model parameters 

is brought down from hours to seconds, thus allowing the CAD designer to proceed within an 

interactive time frame. Findings of this research have been disseminated in [werghi99] and received 

138 citations so far. 

1.3 Surface correspondences for object registration and recognition using 

geometric histograms  

During my research fellowship at the University of Edinburgh, I also contributed towards developing 

a new shape descriptor for triangular mesh surfaces. This descriptor, dubbed the geometric histogram, 

is a 2D accumulator that counts the co-occurrences of two geometrical measurements, namely the 

angle and the distance between pairs of facets in a given neighbourhood around a central facet (See 

Fig-3 for a full description). We used this descriptor in surface registration and recognition 

[ashbrook98]. This work received as many as 107 citations. More recently, we showcased the utility 

of geometric histograms in 3D face recognition by matching geometric histograms around key points 

on the facial surface [berretti13]. 

 



Habilitation à Diriger les Recherches   Naoufel Werghi 

 Page 30 of 57 
 

 

Fig-3 :(a): The geometric measurements used to characterize the relationship between two facets include ti and 

tj. (b) A facet t1 and its neighbour facets. (c): For each pair (t1, ts), s=1:10, the angle α between the two facets' 

normals, the minimal and maximal of the perpendicular distance from the plane of t1 to the facet ts are 

computed. (d): The pairs (α, d) derived from these measurements are entered in a 2D accumulator, thereby 

obtaining a distribution that characterizes the relationship between the facet t1 and its neighbours. (e): Gray 

level mapping of the geometric histogram. 

 

1.4 Functional segmentation of objects from point cloud data 

This project, initiated in the department of computing sciences at the University of Glasgow, aimed at 

designing a robust framework for decomposing a fully scanned object (the scan encapsulates the 

entire shape) into its functional components. The object comes in a noisy 3D point cloud and exhibiting 

irregular density. We commenced with the category of human body scans for which, this framework 

can find applications in the apparel industry, entertainment and medicine.  We proposed to address 

this problem using a topologic framework based on the Reeb-graph. In its continuous form the 

brancges of the Reeb-graph encode the body parts. Meanwhile in case of its discreet variant, the 

branches are encoded with nodes representing a connected group of points (level-sets) that share the 

same value of a given scalar function on the surface manifold (Fig-4). We adopted the geodesic 

distance from a reference point as a scalar function on the body surface in order to accommodate any 

arbitrary posture. The noisiness of the data that was causing the ideal discreet Reeb graph (Fig-4-c) to 

degenerate into a disorganized graph was addressed by defining appropriate topological patterns to 

differentiate between genuine body joints, and false joints caused by holes and gaps.  Such a paradigm 

makes the segmentation quite robust even for extremely corrupted cases (Fig-4-f). This new paradigm 

entails the advantage of a linear computational complexity implementation. Part of this research has 

been disseminated in [werghi06]. 

In a subsequent work [werghi06a], we generalised this topological framework to accommodate a large 

class of articulated and tubular-like objects whilst preserving the robustness against data corruption 

(Fig-5-a) and showcasing its application for point cloud data segmentation for different categories of 

objects (Fig-5-b). 
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(f) 

Fig-4: (a): Reeb graph of a torus. (b): Reeb graph of a human body shape. (c): Discrete Reeb graph. (d) Geodesic 

distance function on the body surface. (e) Level sets. (f) Top: Segmentation of HB scans in standing and arbitrary 

postures. Bottom: Segmentation of corrupted HB scans.  

 

 

(a) 

 

(b) 

Fig-5: (a) Top: Samples of corrupted object points clouds.  Bottom: Visualization of topological structure 

embedded in their associated DRG and encoded as skeleton-like tree structure where each branch denotes a 

ramification from the main body of the object.  (b) Examples of segmented objects. 



Habilitation à Diriger les Recherches   Naoufel Werghi 

 Page 32 of 57 
 

1.5 Recognizing human body posture from point cloud data  

In continuation with the topic on human body scan data, I investigated the problem of recognizing the 

body posture in a point cloud format.  Such semantic information would contribute to bridging the 

gap between full human body technology and numerous potential applications. One of the proposed 

approaches was to define an optimal set of 3D descriptors in the sense of Fisher’s linear discrimination; 

that is, set of descriptors minimizing the intra-class distance whilst maximising the inter-class distance.  

Here, we successfully extended the 2D wavelet shape descriptors developed by Shen and Ip [chen99] 

to the 3D case. We did this by projecting the 3D spherical harmonics transformation applied to point 

cloud into a 1D space,  obtaining thus  a sort of  radial function encoding the posture shape.  From this 

function, we derived a set of wavelet transform coefficients (WTCs)  computed suing  an orthogonal 

family of wavelets.  In the last stage, we selected the best discriminative descriptors, from the WTCs 

using a discriminative power criterion based on the Fisher’s linear discrimination principle.  Tested on 

a set of 32 postures (illustrated in Fig-6), our descriptor representation outperformed two other 

standard features, namely, the 3D Fourier coefficients (FC) and the 3D Zernike coefficients (ZC). In 

particular, our proposed features exhibited a remarkable capacity in differentiating between close 

postures. Table-1 depicts some relevant examples. We disseminated this work in [werghi02b, 

werghi05]. 

 

 

     Fig-6: 32 posture models. 

 

Table-1: Examples of pairs of close postures and their related separations distances for each of the FC, ZC and 

the WC. 
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1.6 Shape analysis on the mesh manifold: representation tools and 

applications  

A large portion of my research has been dedicated to the design of an appropriate representation for 

analysing triangular mesh manifold data. The concept of investigating such a problem was ignited 

while revisiting the concept of geometric histogram that was previously described in Sec-1.3. The 

endeavour was to extend this descriptor into a multi-scale analysis tool. However, one major 

impediment was the lack of intrinsic order in the triangular mesh manifold.  In its standard 

representation, a triangular mesh manifold is encoded in an array of facets and array of vertices.  The 

arrangement of these facets and vertices in the arrays is totally random and thus, do not exhibit any 

useful spatial structure or order. This is in contrast with the case of pixels in image for which, the 

arrangement made in row and columns is persevered within the 2D array data structure. This 

fundamental structural difference between the 2D image and the mesh manifold makes the extension 

of the 2D image analysis techniques into the mesh manifold quite problematic, unlike its counterpart 

in the 1D-to-2D case. We thought that Investigating a local, and if possible, global ordered as well as 

structured support for encoding triangular mesh manifold will open-up new outlets in the analysis of 

this modality, which currently finds application in myriad fields such as animation, medical imaging, 

computer-aided design, and remote sensing.  We therefore deemed such a new niche of research 

quite relevant for bridging the gap between 3D shape digitalization technology and its related 

applications. 

In this project, we proposed a novel representation dubbed Order Ring Facets (ORF) [werghi12]. This 

representation was inspired by observing the arrangement of facets laying on a convex contour (each 

face has exactly one edge on that contour) on the mesh; in other words, facets that share only one 

edge with that contour. We noticed that these facets can be segmented into two categories, namely, 

facets pointing outside the contour (Fout facets), and facets pointing inside the contours (Fin facets). 

In Fig-6-a, these facets are highlighted in blue and red, respectively1. Setting an initial circular 

arrangement of the Fout facets and considering the pair-wise adjacency between Fout and Fin facets, 

we repeated the process of filling the gap between each pair of consecutive Fout facets, with a 

sequence of facets that shared a vertex on the contour (yellow facets in Fig-7-b).  In doing so, we 

obtain a ring of ordered facets, as illustrated in Fig-7c. It is also possible to build a subsequent ring 

using the outer contour of the existing ring, for which the Fin facets are represented by those obtained 

by the aforementioned gap filling procedure. Here, the Fout facets are those that are one-to-one 

adjacent to them (Fig-7-d). By iterating this procedure, we construct a sequence of concentric rings 

whereby the circular ordering is propagated during each iteration. 

 

(a)                                  (b)                                         (c)                                      (d) 

Fig-7: Ordered Ring Facets construction: (a) Facet laying on a convex contour are segmented into Fout (blue) and 
Fin (red) which point outside and inside the contour, respectively. (b) We fill the gap between each pair of Fout 
facets after ordering them in a circular fashion (e.g. clockwise).  (c) We obtain a ring of facets that are ordered 
in circular fashion. (d). Four facets are extracted from outer contour of the constructed ring to be used in the 
subsequent ring construction. 

                                                           
11 For sake of simplicity, the notation used here is slightly different than the one mentioned in related papers. 
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The ORF can be generated around a central facet when setting its edges as the initial contour. The ORF 

thus forms and denotes an ordered and structured neighbourhood of that facet (Fig-8-a). The facets 

can also be arranged in spiral-wise fashion (Fig-8-b). 

     

      (a)                     (b)                                            (c)                (d) 

Fig-8.  (a) ORFs generated around a seed facet.   (b) Facet arranged in a spiral-wise fashion. (c) Samples of 3-ring 

ORFs and their 3 and 3. (d)  Computation of 3 on a facial mesh surface; the irregularities detected at the dark 

spots areas can be noticed. 

One of the interesting aspects of the ORF is that in an ideal regular mesh, (where the valence of each 

vertex is six), the number of facets n across the rings follows the following arithmetic progression 

n(i+1) = n(i) + 12. In a 3-ring ORF, for instance, the progression is [12, 24, 36]. Such a property 

facilitated the establishment of a simple criterion for evaluating the local regularity of the mesh. Here 

we proposed the following criterion: 

𝑟 = ‖̂𝑟  −  𝑟 ‖/‖̂𝑟 ‖ 

where ̂𝑟 is vector that represents the ideal sequence of the number of facets across  r rings, and  𝑟  
denotes the actual sequence. Fig. 8-c depicts examples of 3-ring ORFs exhibiting different 3 and 3, 
along with an instance illustrating the detection of irregular tessellation (Fig-8-d).  In addition to its 
simplicity, this criterion has a low computational complexity when compared to other standard 
methods. We showcased this performance in [werghi11]. 
 
We also demonstrated that facets across at ORF rings are located virtually at the same geodesic 
distance from the seed facet and hence, can be used to extract iso-geodesic contours and compute 
iso-geodesic distances on the mesh with linear algorithmic complexity O(n), where n denotes the 
number facets in the ORF rings.  The ORF framework has been also adapted in other several facial 
mesh surface-processing tasks, such as nose detection, cropping, compression, and alignment (see 
Fig-9).  Additional details on these tasks are outlined in the VSAPP2011 conference paper 
[Werghi2011b], which received the best paper award, as well as in the journal paper [werghi2012]. 
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(a)                                                                                    (b) 

 
       (c) 
Fig-9. (a) Computation of the geodesic path: From a source facet, the ORFs are expanded till they reach the 
destination facet. The geodesic path is then extracted by tracing back the source facet. (b) Face cropping is 
performed by generating several ORFs from the nose tip neighbourhood and merging them. (c) Examples above 
illustrate facial poses and symmetry planes and are derived by applying the principal component analysis on the 
ORF rings.  

 
 
 
The ORF formed also the foundation for extending the local binary pattern (LBP) [ojala02] to the mesh 
manifold. In its simplest form, an LBP denotes an 8-bit binary code obtained by comparing a pixel’s 
value with the value of each pixel in its 3x3 neighbourhood. The outcome of this comparison is 1 if the 
difference between the central pixel’s value and its neighbour pixel’s counterpart is less or equal than 
a certain threshold; and 0 otherwise. The local description can be refined and extended at different 
scales by adopting circular neighbourhoods at diverse radii and using pixel sub-sampling (see Fig-10).    
 

                                       (c)     
Fig-10: (a) Computation of basic LBP code from a 3x3 neighbourhood. Each pixel, starting from the upper left 
corner, is compared with the central pixel to produce 1 if its value is greater than a threshold; and 0 otherwise. 
The result is an 8-bit binary code. (b) Example of a central pixel with circular neighbourhood. (c) Example of 2-
ring ORF generated from the central facet fc. 

 
 
The circular arrangement of facets across the ring sequence within the ORF structure allows a 
straightforward adaptation of the LBP into the mesh manifold in its generalized multi-resolution 
format.  Let h(f) denote a scalar function defined on the mesh that can incarnate either a geometric 
(e.g., curvature) or photometric (e.g., colour) information. The mesh-LBP operator is defined as 

follows: 
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where r is the ring number, and m represents the number of samples computed at each ring. The 
parameters r and m control the radial resolution and the azimuthal quantisation, respectively. The 

discrete function (k) is introduced for the purpose of deriving different LBP variants. For 

example,(k) = 2k results in the mesh counterpart of the basic LBP operator firstly suggested by Ojala 

et al. [27]; with (k) = 1, we obtain the sum of the digits composing the binary pattern. For m=12, the 

number of mesh-LBP pattern values is 13 and 4096, for (k) = 1 and (k) = 2k, respectively.  
 
The obtained operator, which we dubbed mesh-LBP, presents a novel framework for analysing 3D 
geometric texture as a property of the surface, distinct from the global shape, and characterized by 
the presence of repeatable geometric patterns (see Fig-11-a-b-c). These patterns can be viewed as 
geometric corrugations of the surface that change the local smoothness and appearance of the surface 
rather than altering the overall shape. Fig-11-d depicts some examples of mesh-LBP pattern computed 
for two different types of surfaces.  
 

 
                                        (a)                      (b)                            (c) 

 
               r=2, m=12         r=5,m=12         r=8,m=12       r=1,m=12       r=2,m=12          r=3,m=12 
      (d) 
Fig-11: Example 3D objects with different 3D textures: (a) 3D geometric texture characterized by repeatable 
patterns of the mesh surface; (b) 3D photometric texture attached to the triangular mesh. In this case, the 
textural information is most present in the photometric appearance of the mesh rather than in the geometric 
appearance; (c) Combination of 3D geometric and photometric texture on 3D mesh manifold. (d) Examples of 
three mesh-LBP patterns that are computed on a texture and facial surfaces. The scalar function used is the 
Gaussian curvature and the mean curvature for the first and second surface, respectively. 
 

 
We describe surface variations on the manifold over a given surface area with a 2D histogram by 
stacking 1D histograms of the mesh-LBP values across different radial resolutions r.  Fig-12 depicts 
some shape texture samples that were collected from a public object dataset. 
 
 

 
Fig-12: Top: 3D texture samples from ten 3D texture classes. Bottom: The corresponding histograms obtained 
with h(f) set to the mean curvature, α(f) =1 and mesh-LBP  parameters r=1:7 , m=12.  For each r value, we 
compute a 13-bin 1D histogram accumulating the frequency of the different mesh-LBP values. By stacking-up 
the 1D histograms, we obtain a 7x13 2D histogram.  Bottom: The 2D histograms are illustrated as a gray-level 
images. 
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 The mesh-LBP framework preserves the simplicity and the elegance characterizing the original LBP 
while accommodating the extension of its different variants developed for 2D image analysis to the 
mesh manifold including closed surfaces. It also relieves the surface data from normalization and 
registration procedures that are necessitated when using depth images. 
 
Naturally, exploiting mesh-LBP for the classification and retrieval for 3D shape texture patterns was 
the first application we investigated.  In this context, we demonstrated the superiority of mesh-LBP 
descriptors over other standard shape descriptors in terms of texture discrimination and retrieval.  
Fig-13 depicts the confusion matrix pertaining to the classification performance of the mesh-LBP and 
other standard descriptors when applied to the 10 classes as depicted in Fig-12. 
 
 
 
 

 
 

(k) = 1                          (k) = 2k  
 
 
Fig-13: Confusion matrices reporting the distances between all the instances of ten classes  shown in Fig-12 (30 
instances per class).Top: Diffusion matrix obtained with Geometric histograms, the spin image and the mesh-
HOG using the mean curvature (H), the Gaussian curvature (K) and the shape index (SI).  Bottom: Confusion 
matrices obtained with the mesh-LBP using the same descriptors, H, K, and SI as scalar functions.  The 
classification accuracy is reported at the top of each matrix. 

 
 
The ability of the mesh-LBP to retrieve shape texture has been also compared with other standard 
descriptors. The experiment entails the search of each probe within a gallery surface, and 
subsequently assessing the detection as well as retrieval capacity of the different descriptors. Fig-14 

shows some samples of texture retrieval results. The results were obtained with (k) = 2k using six 
different scalar functions on the mesh. Additional details on the mesh-LBP are mentioned in 
[werghi2015, werghi2015a]. Moreover, we made the Mesh-LBP code available for the scientific 
committee2. 
 
 
 
 
 
 
 
 
 

                                                           
2Code avalable at : http://uk.mathworks.com/matlabcentral/fileexchange/authors/538543 
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---------------------------------------------- Standard descriptors ---------------------------------------------------- 

 

 

 

------------------------------------------- mesh-LBP descriptors  ----------------------------------------------------------- 

 

 

 

 

Fig-14: Examples of texture retrieval results. The figure illustrates the mapping of the distance between the 

probes (framed samples in the first row) and the different object surfaces in the gallery.  The detected regions 

are highlighted in blue.  
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In a recent work [tortorici2017], we extended several LBP variants, such as the Median LBP, the centre-
symmetric LBP, the completed LBP, among many others, to the mesh manifold. We extracted a total 
set of 48 novel mesh-LBP variants which were evaluated on a public dataset of 3D textured surfaces 
presented at the SHREC'17 contest [biasotti17]. The dataset consists of 720 surfaces grouped in 15 
classes of 48 elements each. Every class was created by acquiring a single pattern in different poses 
and applying a series of surface deformation and mesh tessellation alteration (Fig-15).  The testing of 
our texture retrieval method using the novel variants demonstrated a quite superior performance 
when compared to other state-of-the-art methods. We presented this work in the most recent 
International Workshop on Representation, Analysis and Recognition of Shape and Motion from 
Image Data 2017 for which, our PhD Student Claudio Tortorici received the best student paper award. 
 
 

 
 
Fig-15: surface samples from the SHREC’17 dataset.  

 

1.7 3D Face recognition   

Face has affirmed itself as one of the most important biometric traits owing to the fact that facial 
images or videos are collectable in an easy and non-intrusive manner. In fact, while their accuracy 
might not be as high as fingerprint and iris, they do have the capital advantage of not requiring the 
cooperation of the subject, a requirement which is of great interest in several scenarios such as 
surveillance and gateless access applications. Notably, automatic face recognition confronts several 
challenges including pose changes, illumination variations, facial expressions and occlusions. In order 
to resolve these problems, face recognition using 3D scans has been proposed as an alternative or 
complementary solution to conventional 2D face recognition approaches that use still images or 
videos.  Nowadays, most face scans (if not all) encompass the facial shape in the form of a triangular 

mesh surface and the facial appearance in the form of a 2D image mapped to the mesh.   
 
In a first contribution in the 3D face recognition, we developed an original approach based on the idea 
of capturing local information of the facial surface around a set of 3D keypoints that were detected at 
multiple scales in accordance to differential surface measurements. The keypoints detection is 
performed by adapting the meshDOG algorithm to the facial case (Fig-16-a). Subsequently, 3D local 
descriptors are extracted at the neighbourhood keypoints as local signatures and are employed within 
a keypoints matching scheme.  We compared three types of local descriptors namely, Histogram of 
Gradients (HOG), the Histogram of Orientations (SHOT), and the Geometric Histograms.  The matching 
scheme does not make any assumption about the correspondence of detected keypoints to specific 
landmarks on the face; therefore, it can support the comparison of probe and gallery scans even in 
cases where probe scans represent merely a part of the face. To improve the accuracy of keypoints 
correspondences, we introduced a spatial constraint using the RANSAC algorithm.  The experiments 
conducted on BU-3DFE, Gavab and FRGC v2.0 datasets proved that our method is capable of 
competing with state-of-the-art method, evidencing a distinct advantage in cases of probes involving 
large missing parts.  Further details about this work are in [berretti13]. 
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     (a) 

 
   (b)      (c) 

 
   (d)      (e) 
Fig-16: Top: Keypoints detected using the meshHOG at different scales.  Matching of scans of the same and 
different subjects is reported in (b) and (c), respectively. All the detected keypoints are illustrated as “+”. Lines 
indicate matching keypoints (in green), and inliers matching after RANSAC (in red). In case the scan involves the 
same subject in (b), 61 inlier matches are identified. For scans of different subjects in (c), 18 matches are 
detected. (d) Identified a match between partial face scan and neutral full scan.   (e)  Identified a match between 
a facial expression scan and a neutral full scan (faces are flipped for sake of visualization). 
 
In the second research, we investigated the adaptation of mesh-LBP concept for 3D face recognition. 
Our proposed paradigm is inspired from the standard LBP-based face representation propounded by 
Ahonen et al [ahonen06] in the context of 2D face recognition. In their method, the facial image was 
divided into a grid of rectangular blocks after which, histograms of LBP descriptors are extracted from 
each block and concatenated to produce a global signature of the face (Fig-17). In order to extend this 
scheme to the face surface manifold, we part the facial surface into a grid of regions (the counterpart 
of these blocks in the 2D-LBP), compute their corresponding histograms, and then group them into a 
single structure. The proposed  method entails  therefore following stages: 1) Construction of a grid 
of points on the face surface to obtain an ordered set of regions; 2) Computation of an histogram of 
the mesh-LBP descriptors over the surface regions centred at each point of the grid; 3) Aggregation of 
the regional histograms into a structure encoding either a global or partial description of the face; 4) 
Performing facial matching.  
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Fig-17: LBP-based 2D face signature (source: www.scholarpedia.org/article/Local_Binary_Patterns). 
 
 

 

 
 
Fig-18: Construction of the face grid; (b) on the left scan, partition of the grid points to a top (T), middle (M) 
and bottom (B) band.  Middle scan: All the points in the three bands (TMB), right scan: Only the points in the 
top and middle (TM) bands are depicted. (c) Construction of the partial grid on two rotated probe scans and a 
gallery scan. 

 
Grid-point construction  

In the first step (Fig-18-a), we computed the plane formed by the nose tip and the inner-corner of two 
eyes as landmark points. We choose these three landmarks because they are the most accurate 
detectable landmarks on the face in addition to their robustness to facial expressions. From these 
three landmarks, we derive, via a simple geometric computation, an ordered and regularly spaced set 
of points on that plane (shown in the middle of Fig-18-a; the nose tip and the inner corner of eyes are 
marked in red). Subsequently, the plane is tilted slightly by a constant amount to augment its 
alignment with the face orientation. Next, we projected this set of points on the face surface, along 
the plane’s normal direction. The outcome of this procedure is an ordered grid of points which defines 
an atlas for the regions dividing the facial surface (Fig-18-a-right). To accommodate the effects of facial 
expressions, we segmented the grid points into three bands (Fig-18-b), dubbed as top (T), middle (M) 
and bottom (B), so that we can consider the full grid (TMB) or the top and middle bands (TM) only 

http://www.scholarpedia.org/article/Local_Binary_Patterns
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during the face matching. The TM option allows us to neutralise, albeit to a certain extent, the shape 
changes manifesting at the lower part of the face caused by the mouth in particular. The TMB and the 
TM grids comprises of 35 and 26 points. Around each grid point, we extract a neighbourhood of facets 
using the ORF centred at that grid point. For a yaw rotated pose resulting in a partial scan that does 
not allow for the extraction of either of the two eyes’ inner-corner landmarks, we adopted a lateral 
grid, and constructed upon the plane defined by one eye inner-corner, an eye outer corner and the 
nose ridge. Covering one side of the face, the grid contains 22 points. For the gallery scans, we 
constructed TMB grid as well as the left and right lateral grids (Fig-18-c). 
 
Regional Mesh-LBP histograms computation  

In the second step, we compute a multi-resolution mesh-LBP descriptor for each facet within the 
regions, considering different shape-valued and appearance value functions on the mesh. For 
instance, Fig-19-a-b depicts the mesh-LBP patterns computed for the Mean curvature and the gray 

level at a different radial resolution, for (k) = 1.  
 

 
(a) 

 
(b) 

 
(c) 

Fig-19: Mesh-LBP computed for an azimuthal resolution m=12 and seven radial resolution r=1..7, with the scalar 
function Mean curvature (a), Gray-level (b), as well as by interleaving the mesh-LBP of the Mean-curvature and 
the gray-level (c). 

 
In addition, we considered three different fusion variants of the mesh-LBP patterns. In the first variant, 
we concatenated the two mesh-LBP regional histograms corresponding to a shape and a gray-level 

function. For example, considering an azimuthal quantization m = 12 and (k) = 1, we obtained a 13-
bins histogram for each function, thus leading to a one-dimensional 26-bins histogram for each radial 
resolution r; that is a r ×26 histogram (Fig-20-b). In the second variant, we used a 2-D accumulator that 
accounts for the co-occurrences of mesh-LBP patterns corresponding to a shape and gray-level 
function. For the aforementioned parameters’ values, we obtained an r × 13 × 13 histogram (Fig-20-
c). In the third variant, the fusion was performed at the LBP pattern level, instead of the histogram 
level, as for the first two. Here, the mesh-LBP pattern was constructed by interleaving digits from the 
shape function mesh-LBP with a gray-level mesh-LBP (Fig-19-c). 
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(a)                                                                     (b)                                                         (c) 

 

Fig-20: Examples of regional histogram variants obtained with m = 12,r =1..7, and (k) = 1.  (a):  7 × 13unimodal 
histogram corresponding to a shape function. (b):  7 × 26 histogram obtained by concatenating two 7×13 
histograms corresponding to a shape function and a gray-level function. (c) A 2D section of a 7 × 13 × 13 
histogram obtained with a shape function and a gray-level function.  

 

Global Face Histogram 

The global histogram that represents the entire face signature is constructed by aggregating the set 
of regional histograms computed over the grid regions (Fig-21). Given the 35 regions derived from this 

face grid, the size of the global histogram in a non-fusion mode is 35 × 13× 7 and 35× 1125× 7 for (k) 

= 1 and (k) = 2k   , respectively. Using the first fusion variant, the size of the global histogram is 35 x 
26 x7. A video  demonstrating the construction of a global histogram can be watched in the following 
link: https://www.youtube.com/watch?v=8UBsIJRKWPM 
 
 

 
 
Fig-21:  Global histogram is computed by concatenating the regional histograms.  

 
Face Matching  

We performed face matching using a very basic, minimum distance classifier that employs a simple 

distance metrics between histograms (e.g. 2 and cosine distance). Our aim was to demonstrate the 

discrimination capability of the mesh-LBP face signature in addition to its great ability to be 

incorporated in face recognition even without employing machine learning classifier.  The 

performance of our face recognition method was assessed with the BU-3DFE and Bosphorus datasets. 

The experiments conducted with BU-3DFE database underpinned the enhancement in recognition 

performance made possible by our fusion framework. They also proved its superiority with regard to 

the closest approach. Results obtained using the Bosphorus database demonstrated a competitive 

https://www.youtube.com/watch?v=8UBsIJRKWPM
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accuracy as compared to the state of the art solutions, with an increment for some specific expression 

category subsets. For instance, it attained 100% accuracy for the neutral, surprise, the Upper Face 

Action Unit, and the Combined Action Unit categories within the Bosphorus databases.  The Yaw pose, 

for which, we could not exceed 72% accuracy, was the only category that presented mediocre 

performance. Additional details about this research can be found in [werghi2015b] and [werghi2016]. 

 

1.8 2D face recognition  

While face recognition for frontal and moderate pose variations seems to have attained maturity, 

recognition of faces in extreme pose variation, exhibiting significant occlusion and missing data, which 

is often encountered in real-life scenarios, continues to pose a big challenge. The deficient 

performance of our 3D face recognition for the aforementioned Yaw pose is one such example.  

Elaborating a manually-crafted face representation that can effectively tackle face images acquired in 

uncontrolled environments, which often suffers from low quality and extreme head rotation, is not a 

straightforward task.  With the recent advent of deep learning paradigms, we thought of approaching 

such a problem with a data-driven approach by designing a convolutional neural network (CNN) 

system that could learn a simultaneous registration and representation of facial data. The proposed 

CNN is composed of two interconnected modules (Fig-22)). First, a registration module that learns a 

set of transformation parameters in order to optimally register a facial image. Second, a 

representation module that learns a distinctive feature encoding of the registered face image. These 

two modules are connected with the output of the registration module that is being input to the 

representation module. 

 
 

Fig-22: Joint face registration and representation. 

 

The registration module deploys a Spatial Transformer Network [jaderberg15]] that computes the 

parameters of the entire affine transformation in order to bring the face into its canonical pose.  The 

registered face image then serves an input to the subsequent representation module. Here, we opted 

for the pre-defined VGG-16 architecture which has proven its superiority by getting tested on public 

benchmarks. The entire face encoding system comprising of the registration and the representation 

module was trained using the publicly available face dataset that is reported in [parkhi15].  

 

The person recognition module was designed using a one-versus-all-rest binary support vector 

machine classifier, so that a discriminative SVM model was learnt for each subject. Thus, a logistic 

regressor was subsequently used to obtain the decision value in order to evaluate the matching of 

query face data to the enrolled subjects within the gallery.  We also noted that the query and enrolled 

subject are represented by several media representations (static images, video frames); thus, there is 

a need to address the aspect of fusion in the classification. Here, we adopted a decision-fusion 

approach wherein the decision outcomes of different media are combined using the Bayesian 
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Classifier Combination model proposed in [kim12]. The bloc diagram of the whole system is illustrated 

in Fig-23. 

 

 
   Training phase     Testing phase 
Fig-23: Bloc diagram of the system depicting the subject-specific classifier within the training bloc in addition to 

the decision fusion in the testing bloc. 

 

The system has been tested on three public challenging datasets, namely, the IJB-A, the YouTube 

Celebrities, and COX datasets. Our proposed system demonstrated neat superiority as compared to 

state of the art methods, whereby it achieved relative performance boosts of 3.6%, 21.6% and 12.8%, 

respectively. The other interesting outcome of our work is that it highlights another piece of evidence 

on the importance of data representation.  We showed that our proposed features, which encoded 

the face registration and the presentation, significantly improve the performance of all other state of 

the art methods when they substituted their own features.  Complete details about this work can be 

found in [hayat17]. 

 

 

1.9 Assessing Posterior Capsule Opacification 

In the field of medical images, I have been working on the problem of assessing Posterior capsule 

opacification (PCO), which is a common complication arising after cataract surgery in patients who 

have undergone the extra capsular cataract extraction surgery. PCO is caused by the growth of lens 

epithelium cells (LECs) that remain within the posterior capsular area of the eye following the cataract 

surgery. These cells develop as different types of PCO, namely, pearls, fibrosis, and wrinkles as 

illustrated in Fig-24.   

 

 

Fig-24: PCO image samples: (a) clear eye capsule, (b) pearls PCO, (c) fibrosis PCO, and (d) wrinkles PCO. 

Assessing the efficacy of clinical trials performed to reduce or inhibit PCO requires both a quantitative 

and qualitative analysis that can accurately evaluate PCO in the eye's capsule. Human assessment is 

often corrupted by bias, subjectivity and inaccuracy. This tends to happen, for instance, when 

comparing PCO progression by studying images taken before and after the treatment, and when 

comparing the severity of PCO. In contrast to previous works which approached the problem by 
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attempting to evaluate the proliferations of LEC cells using segmentation paradigms - which is quite 

problematic given the high level of irregularity characterizing the PCO texture - we were able to bypass 

the segmentation problem and proposed a novel PCO quantification based on the concept of  

“roughness”. This concept is defined as multiscale roughness assessment undertaken at each pixel 

over a neighbourhood of concentric rings. The roughness assessment produces a “roughness” image, 

that goes into a clustering stage whereby the pixels are classified into four distinct PCO level classes, 

namely, clear (grade 0), mild (grade1), moderate (grade 2), and severe (grade 3). Subsequently, the 

PCO score is calculated based on the number of pixels falling within each cluster weighted by the 

severity grade of that cluster (Fig-25). 

 

(a)                        (b)                         (c)                              (d) 

Fig-25: Steps of proposed method: (a) Original PCO image, (b) Pre-processed image, (c) Roughness image, (d) 

Clustered image,  where the  blue, green cyan, and white colours indicate severe, moderate, mild, and clear, 

respectively. 

Our method demonstrated a better performance when compared to the state of the art methods, 

with the exception of EPCO  [tetz13] method, for which, our method got a slightly lower score. 

However, the EPCO method is manually operated, as opposed to our method which is fully automatic.  

More details about this research are outlined in [aruna14].  

 

1.10 Automatic detection of polyps in colonoscopy images 

In this research, we proposed a novel contribution towards the detection of polyps in colonoscopy 
images. Polyps are protrusions that develop at the intestinal tract (See examples in Fig-26). Their early 
detection and removal is crucial  for a better prevention of colorectal cancer. In this context, manual 
clinical inspection to detect polyps is currently the preferred technique. However, this technique is 
plagued with many limitations, such as the dependence on the examiner’s level of expertise and the 
equipment limitations that could lead to false or missed polyps. Here, computer-aided detection 
system can be a complementary tool to make a more accurate detection wherein it can support the 
medical expert to have a better validation whilst also helping in the follow-up process. 
B. 

 
Fig-26: Polyp samples. 

 

In this work, we proposed to leverage a CNN as a Transfer Learning (TL) scheme. The proposed 

approach relies on pre-trained architectures that have been trained on colossal natural images 

(ImageNet). In contrast to conventional methods which either perform fine-tuning or train the CNN 

from scratch, we utilize the output features of CNN as an input in order to train a machine learning 
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classifier such as Support Vector Machine (SVM) and SoftMax. The polyp image samples are first 

divided into patches. Next, the learned weights from pre-trained nets are utilised to extract deep 

features from the them  to be used in the decision-making process. Moreover, data augmentation 

approaches have also served as database enlargement techniques where adequate sample sizes for 

training and testing were obtained. The efficacy of the presented framework is demonstrated on a 

public database named CVCColonDB3 wherein the experimental results indicate that our methodology 

is quite competitive with the state of the art methods; it scores the best recall score of 96% and 

precision score of 92.7%, which is only slightly lower than the best score (93%) recorded up to the 

preparation of this document. More details about this work can be found in [bilal17].  

 

Tracking polyps is another aspect that has been investigated in this research. Conventional tracking 

mechanisms make use of intensity information only for the purpose of tracking. However, in this 

thesis, we elucidated that adding the colour contribution along with the intensity one could lead to a 

better tracking system. The algorithm employs three independent colour format and affine 

transformation for modelling the problem where steepest descent (SD) algorithm is used for 

optimization. Since the three selected colour signals are independent, each contribution in the 

algorithm could be implemented separately, such as using three cores implying that the speed of the 

algorithm is not affected. Results of this research have been disseminated in [bilal17a] 

 

1.11 Detection of cervix cancer using pap-smear images  

The transfer learning scheme developed for polyp detection has been tested on other medical image 

analysis applications, namely, single cell microscopic pap-smear images (Fig-27). The endeavour here 

is to design a computer-aided diagnosis tool that facilitates the early detection of cervix cancer.  

 

 
 
Fig-27: Samples of pap-smear images showing seven different cervix cells 

 

Rather than adopting the conventional process of segmenting the cell into nucleus and cytoplasm and 

then crafting-out features to train a classifie, we considered the whole cell image as an input for a CNN 

network.  We tested the AlexNet and the VggNet architecture on the public Herlev pap smear 

database4.  A comparison with state of the art methods illuminates the superiority of our method 

across all metrics of two-class classification (normal- abnormal) and the best recall score for thee-class 

classification (normal-intermediate-abnormal). More details about this work can be found in 

[bilal17b]. 

 

 

 

 

                                                           
3http://mv.cvc.uab.es/projects/colon-qa/cvccolondb 
4http://mde-lab.aegean.gr/index.php/downloads 
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2. Current and Future Research  
In this section we will expose, current ongoing research, near-future envisaged projects, and 

envisaged feature in the long term. 

2.1 Medical imaging  

Currently, we are investigating a medical imaging project that focuses on the detection of prostate 

cancer from Magnetic Resonance Imaging (MRI) images.  Prostate cancer is one of most frequently 

diagnosed malignant form of cancer and the second leading cause of cancer-induced death in men 

after lung cancer.  Early and accurate detection will enable clinicians to initiate early intervention and 

begin appropriate treatment in a timely manner, thereby potentially reducing the mortality rate. 

We proposed an approach using diffusion-weighted magnetic resonance image (DW-MRI) acquired at 

different b-values following a classic 3-stage paradigm: 1) prostate area detection; 2) prostate 

description; and 3) classification. The prostate detection is performed using an active shape model. 

Then apparent diffusion coefficients (ADC) are computed for each b-value across the different scan 

slices.  Subsequently, a cumulative distribution function (CDF) related to each b-value is constructed 

from these ADC maps. The so-obtained CDFs constitute a global feature that is used to distinguish 

between benign and malignant prostate tumours. For this purpose, auto-encoder classifiers are 

trained and then used for each b-value.  The proposed CAD system was tested on datasets of 53 

subjects, obtaining an accuracy of 100% on “leave-one-subject-out” mode for the b-700 value.  The 

results of this primary investigation have been disseminated in [reda17].    

We are currently investigating a more general framework which can bypass the problematic stage of 

prostate segmentation.  In addition, apart from evaluating the performance of each b-value input 

separately, we will investigate a score-level fusion of the different classifiers associated with the b-

values. Thirdly, we envisage going beyond an overall detection (making decisions as to whether the 

case presents malignancy scan-wise or slice-wise) towards a more refined and accurate framework 

with the ability to localise malign regions in each slice.  Such a system will be more helpful to the 

clinician with regard to the selection of the biopsy location.  

2.2 Convolution on the mesh manifold  

This current research comes with the extension line of shape analysis on the mesh manifold work 

described in section 1.6. 

The convolution operation is at the base of many computations in Mathematics, Physics, and 

Engineering. In particular, its discrete version has found large application in image analysis, where it 

is naturally used to perform image filtering, in a broad sense. For example, convolution of the image 

with differently formed masks allows operations that go from edge detection (Sobel mask), to 

smoothing (Gaussian mask), derivatives (Laplacian mask), and so on. The easiness in performing 

convolutions on the image domain directly derives from the grid structure of images, which allows the 

definition of masks and the effective implementation of the convolution with multiplications, sums 

and shifts. 

The capability of the convolution operation of extracting meaningful patterns from an image and its 

effective computation are also at the base of its extensive use of CNN. Since 2012, when a CNN 

architecture resulted the best ranked method in the ImageNet Large Scale Visual Recognition 

Challenge surpassing by a large extent other competitors CNNs have become, de-facto, the standard 

tool to address a large spectrum of problems in the fields of Computer Vision, Pattern Recognition and 
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Image Processing.   Starting from the above evidences, extensions and adaptations of the CNN model 

have been tried in other domains [bronstein17]. Among them, the mesh manifold support is of 

particular interest since it is largely used for modelling 3D objects either obtained synthetically or 

acquired with 3D scanners.  As described earlier, direct application of the convolutional operation to 

such domain is not possible, due to the lack of the regular grid structure as it is the case in images. 

This determined the emergence of different solutions that redefined CNN for volumes [wu15], 

surfaces [sinha:2016,xie15,fang15], and point clouds [qi17].   

The common trait of all these architectures is the application of the convolution operation to the input 

images through a series of convolutional layers using filters with different size, shift amount (stride) 

and padding. After, non-linearity layers usually introduced with Rectified Linear Units (ReLu). Down-

sampling is also performed using some form of pooling (for example, max pooling basically takes a 

filter and a stride of the same length, and outputs the maximum number in every sub-region that the 

filter convolves around).    

Replicating convolution and pooling on the mesh will be at the base of any CNNs extension to such 

domain.  We envisage developing a new framework that enables computing convolutions on the mesh 

support. This will open the way to a wide spectrum of filtering operations in this domain. Here, we will 

capitalize on the Ordered Ring Facets representation (ORF) [werghi12] that, given a facet on the mesh, 

allowed us to provide a local ordering of its neighbours. With this ordering, and a local reference 

frame, extension of the convolution becomes possible by emulating the 2D-like shift operation.  The 

possibility to inherit the order from the ORF allows to define a shift operator on the mesh surface. 

While on the image the neighbours of a pixel are given by the Cartesian coordinates derived by the 

grid structure of the image itself, with the ORF we use polar coordinates, i.e., radius r and quantized 

angle θ. Therefore, the convolution between a given mesh M and a filter F is defined as follow: 

𝑀 ∗ 𝐹 = ∑ ∑ 𝑚𝑟,𝜃.

𝜃𝑟

 𝑓𝑟,𝜃 

Where 𝑚𝑟,𝜃   and 𝑓𝑟,𝜃 are, respectively, a scalar function computed on the mesh and the filter values, 

both at radius r and angle . In images, the convolution is performed at each pixel: neighbour pixels 

are multiplied by the filter values; in our proposed approach, instead, the convolution is performed 

on the facets, therefore filter values have to be determined at each facet of the ring. Here, we need 

to address two problems 1) defining a filter function on the mesh, and 2) browsing the filter across 

the mesh manifold.  

For the first problem, a first solution would be to define the filter over a polar coordinate support then 

mapping it to the ORF structure which benefits from a polar coordinate-like structure, whereby the 

ring number and the index of the facet in that ring cab be identified to the radius r and to the angle , 

respectively.  Fig.29 depicts examples of Gabor filter instance mapped on the mesh.  Yet there are 

other issues related to the mesh resolution and the support scale that still need to be investigated. 
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 (a)

 

 

  

(b) 

 

Fig-29:   Gabor filter images. (b):  corresponding Gabor filters on the mesh mapped on a  3-ring ORF.  

Regarding browsing the filter across the mesh manifold, we plan also to capitalize on the ordered 

structure of the ORF. The ordering of the facet across the rings, allows to slide the filter in a spiral-

wise fashion, across the mesh manifold, at a different strand values. Fig-30 depicts an example 

illustrating this concept. 

                                                                                                                     

                                                            

                                    

                                                                                      

Fig-30:  Left: Example of an ORF region of a 3-ring size. Right:  sliding of a 1-ring filter support at 

decreasing strands of 6, 4, and 1, respectively. 

2.3 Subject retrieval based on eyewitness’s visual description.   

In criminology and police investigation, facial sketches (called also facial composite) are commonly 

used in searching and identifying suspects in crimes, in the absence of the suspect(s) photos [jain12]. 

In addition to identification, facial composite can be used as additional evidence, to assist investigation 

at checking leads, and to defuse warning of vulnerable population against serial offenders. Currently, 

the identification procedure uses legal sketches and composite sketches. Legal sketches are sketches 

drawn by forensic artists referring to the description provided by a witness. Composite sketches are 

sketches of faces rather built using software allowing an operator to select and combine different 

elements of the face.    
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The current procedure of suspect identification based on witness description as currently adopted by 

authorities does not yet seem to profit from all the available resources.  In particular the face database 

maintained by legal authorities and which are continuously fed from network of cameras deployed at 

access control points and public places. Performance-wise, the current procedures suffer from several 

shortcomings.  Legal sketches production is subjective and depends on the artist skills.  Facial 

composite software, while offer comprehensive construction functionalities, they often produce a 

mismatched outcome. Moreover, both categories use 2D face reconstruction, which does not 

accurately reflect the actual 3D shape features of the subject. Recently some methods proposed to 

match the face sketch to mugshots (photos of person taken after being arrested) [klare11, klare13] 

and composite sketches to mugshots [yuen07, han13]. In both of these two schemes, witness 

description goes through a human interpretation stage, namely the expert artist for the face sketch, 

and the software operator for the composite sketch. Both face sketch and composite sketch are 

therefore subjected to reconstruction error as illustrated in the examples shown in Fig-31 

 

                                            5 

Fig-31 Two examples showing real face, a face sketch and composite sketch. We can easily notice the difference 

between these two types of reconstruction and the real instances.  

 

We plan to develop a new framework, whereby rather than adopting a face reconstruction, we 

propose a face retrieval approach where the input is set of textual description compiling the group of 

facial feature and traits provided by an eye-witness. These will be used to interrogate a face database 

and retrieve a set of potential suspects. The system pipeline is as shown in Fig-32. 

 

The rationale behind this novel approach is that performing a direct match between the verbal 

description and the face database eliminates the reconstruction error produced in the face sketch and 

the composite sketch. In addition, by considering a 3D face image database, the approach has higher 

capacity in retrieving facial trait and features that are not preserved in 2D images because of the loss 

of geometry by projection.  

Achieving such system requires addressing several challenges. First, the representation of witness 

verbal description into appropriate numerical descriptors and defining the mechanisms for in such a 

conversion. Second, how to perform the automatic annotation of a large face database? That is, given 

a specific subject, how we can automatically map the 3D face data to the different facial attributes? 

Third, how to perform the comparison between the query descriptors and the database counterparts 

and what optimal metric can be adopted for this purpose? 

                                                           
5 Courtesy  S.Klum et al , ‘’Sketch Based Face Recognition: Forensic vs. Composite Sketches’’ Int. Conf. Biometrics 2013 
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Fig-32: Suspect retrieval process pipeline.  

 

2.4 Middle and long-term research projects. 

For the next stage, I plan to carry on with a multi-disciplinary research spanning 2D/3D data analysis 

and interpretation as well as targeting innovative human-machine interface models and applications. 

Considering the recent advancements in 3D video acquisition and their continuous cost reduction, this 

technology can potentially be deployed on several machine-people interaction scenarios in a cost-

effective manner. Potential areas of application include identity management, medical rehabilitation, 

entertainment, and elderly care, among many others. With the rapid proliferation of smart phones, 

smart multi-modal mobile applications integrating and customizing the aforementioned interface 

models is another promising area of research and development. Such an application would be of great 

interest for people residing in remote areas as well as for emergency consultations.   

 

Retrieval of content-based multimedia information is expected to be a topic that generates great 

interest in the near future. In effect, with the widespread availability of 3D digitizers and the 

exponentially growing field of multimedia technology, large collections of hybrid multimedia models 

can be readily built and connected to the internet for different applications and in different sectors. 

Developing properly customized structures and mechanisms for the purpose of interrogating as well 

as retrieving information from such heterogeneous databases will present a worthwhile challenge for 

researchers.     
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3. Conclusion  
Coming to the conclusion of this report, I hope I have shown how central is the problem of 

representation for a wide spectrum of problems and applications in computer vision. I introduced at 

the beginning this concept and reported the motivation and the rational that guided me during my 

research activities, hoping that it would help the reader grasp the logic and the nature of my research 

contributions.   

While I did not elaborate much on the reasons explaining the diversity of the contexts and the 

applications that characterize my research, I presume that one can easily link it to the different 

academic environments I have been in throughout my academic career as well as the adaptations 

made in response to funding opportunity requirements.   

Although I tried to position the representation at the heart of my contributions, one cannot go without 

having the impression that, for the most recent contributions, the representation concept tended to 

be shadowed by the machine learning paradigms. I believe, however, that this trend actually reflects 

a shift to some extent from the expert-designed representation to the engineered representation or 

learned representation. This shift, from my perspective, did not come about by choice, but rather as a 

constraint for the sake of addressing the related challenges and pushing the frontiers of the state of 

the art, noticeably with regard to the performance.  This shift will remain bounded, as highlighted in 

the aforementioned statement, by many factors which, in my opinion, will keep data 

representation, and the manual feature design quite relevant, and a fortiori indispensable.  Indeed, 

the design of deep learning architecture, is a manual process, where some components represent 

hard coded feature extraction (e.g. pooling layer) set by the architecture designer and are not meant 

to be learned by training.  Second, looking at the different applications and their related data, for 

example in our current research projects, described in sections 2.1 and 2.2, it is evident that a deep 

learning treatment of this data in its raw format is not feasible, and that working out an appropriate 

presentation of the data is actually needed. The data representation becomes imperative when 

dealing with multi-modality problems requiring a proper fusion and aggregation framework.   
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Abstract

This paper deals with the constrained reconstruction of 3D geometric models of objects from range data. It describes a new technique of
global shape improvement based upon feature positions and geometric constraints. It suggests a general incremental framework whereby
constraints can be added and integrated in the model reconstruction process, resulting in an optimal trade-off between minimization of the
shape fitting error and the constraint tolerances. After defining sets of constraints for planar and special case quadric surface classes based on
feature coincidence, position and shape, the paper shows through application on synthetic model that our scheme is well behaved. The
approach is then validated through experiments on different real parts. This work is the first to give such a large framework for the integration
of geometric relationships in object modelling. The technique is expected to have a great impact in reverse engineering applications and
manufactured object modelling where the majority of parts are designed with intended feature relationships.q 1999 Elsevier Science Ltd.
All rights reserved.

Keywords:Reverse engineering; Geometric constraints; Constrained shape reconstruction; Shape optimization

1. Introduction and related work

The use of constraints in object modelling is an important
topic in the CAD literature. In this area, engineering
concepts and shape constraints are transformed into shape
models through mechanisms of checking, incorporating and
solving constraints in the modelling process. Constraints in
this area include specification of the geometric relationships
between object features as well as engineering constraints
(dimensions, material strength and machining parameters)
[1,2].

Finding geometric configurations that satisfy the
constraints is the crucial issue and much research has been
dedicated to different mechanisms for constraint solving.
There are two main strategies for solving constraint
problems according to the classification mentioned in Ref.
[3]. The first strategy, referred as the instance solver, uses
specific values of the constraints and looks for geometric
configurations satisfying these constraints. In the second
strategy, the generic solver investigates first whether the
geometric elements could be placed given the constraints

independently of their values. After checking that the
problem is well-constrained, the specific placements of the
geometric elements are then determined. In CAD literature,
these two strategies have been implemented through differ-
ent approaches.

The numerical approaches given in Refs. [4–7] are typi-
cal instance solvers. Constraints are translated into a set of
algebraic equations and are usually solved simultaneously
by means of iterative techniques, for instance the Newton–
Raphson algorithm. This approach can deal with general
cases, over-constrained systems and inconsistent constraint
problems. A good initial value is required for such solvers
and the algorithm should be applied with care since it may
face an ill-conditioned problem.

Symbolic methods [8–11] are hybrid methods in the
sense that they can involve both the generic solver strategy
and instance solver strategy. These methods also transform
the geometric constraints into algebraic equations but
instead of numerical techniques, general symbolic methods
are first used to put the set of equations into a new form
which is easy to solve. The set of equations is sequentially
reduced by solving the simplest one at each step as far as
possible. The final set can be then solved numerically.
Compared to numerical approaches, they are not subject
to numerical instabilities and can locate all solutions to
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the constraint equations. However, they tend to be compu-
tationally expensive. This often restricts the types of
geometric elements and types of constraints allowed to be
involved.

A more recent approach solves the constraints through
sequential geometric constructions, as most configurations
in engineering drawing are solvable by ruler, compass and
protractor. These approaches can be roughly divided into
two categories: the rule-based [12–14] and graph-based
[15–20] approaches. In the first category constraints are
expressed by rules or predicates. The procedure starts
from an initial set of predicates defining the constraints
and sequentially derives a new set of predicates by applying
logical reasoning techniques, with the predicates conver-
ging towards defined positions for all the characteristic
features. However since only constructive geometries can
be handled by these methods they may not be very efficient
for large systems of constraints.

The graph-based approaches handle the problem in a
more methodical way. They start by forming a graph repre-
sentation of the problem. In this graph each node represents
a geometric element and the edges linking these nodes indi-
cate the constraints between the associated geometric
elements. Each edge is labelled with the constraint’s type.
In a first phase the graph is analysed and if it is well-
constrained a set of sequential construction steps are derived
from it. This phase depends only on the type and the number
of constraints, so it is considered a generic constraint solver.
In the second phase the construction steps are carried out
integrating the actual values of the constraints to derive the
solution shape.

In the Computer Vision community, constraints are
mainly used in model-based recognition and localization
of objects or environments more generally. They are used
as a priori information to reduce the search space between,
for example, the model features (already stored and known
CAD models) and the extracted features from visual sensor
output (grey level image, 3D range data, etc.) [21–26].
Some of the approaches for object recognition in particular
[27,28] use a notion of graph representation close to the one
used in the graph-based approaches for constraint solving,
where the nodes represent object primitives (e.g. points,
lines, etc.) and the arcs present geometric relationships
between them (e.g. adjacency, parallelism, perpendicular-
ity, etc.).

Constraints can be defined over the geometric and topo-
logical relationships between the object model features
(the a priori information) and the extracted features from
the input data. These relationships are derived either from
the properties of the geometric transformation between the
vision sensor frame and the scene frame or the transforma-
tion between two vision sensor frames (stereo-vision) or the
intrinsic structure of the objects [29].

So we can conclude that when computer vision applica-
tions deal with model-based recognition and localization,
the definition and the concept of constraints are wider

than those considered in CAD applications, although they
may share the same terminology.

There is one area where Computer Aided Design and
Computer Vision share a similar interpretation of geometric
constraints, namely reverse engineering referred to as 3D
geometric model reconstruction within the vision commu-
nity. Reverse engineering is typically concerned with parts
and industrial objects, whereas 3D geometric model recon-
struction is a larger field which includes built environments.
But the two terms point to the same goal, which is the
transformation of a real object (in the large sense of the
word) to a model and concept. In parts manufacturing
reverse engineering deals with measuring an existing object
so that a surface or solid model can be deduced in order to
take advantage of CAD/CAM technologies. It is also often
necessary to produce a copy of a part when no original
drawings or documentation are available. In other cases
we may want to re-engineer an existing part, when analysis
and modifications are required to construct a new improved
product. Even though it is possible to turn to a computer-
aided design to fashion a new part, it is only after the real
object is made and evaluated that we can see if the object fits
with real world. For this reason designers rely on real 3D
objects (real scale wood or clay models) as starting points.
This procedure is particularly important to areas involving
aesthetic design e.g. automobile industry or generation of
custom fits to human surfaces such as helmets, space suits or
prostheses.

A review of the main research in the CAD community
[30–33] and the Vision community [34–36] (for reconstruc-
tion from single range images) and [37–40] (for reconstruc-
tion from multiple range images) revealed that the
exploitation of geometric constraints has not been fully
investigated. This lack was noted in the survey work of
Varady et al. [41].

The first motivation behind considering geometric
constraints in this work is that models needed by industry
are generally designed with intended feature relationships
so this aspect should be exploited rather than ignored. The
consideration of these relationships is actually necessary
because some attributes of the object would have no sense
if the object modelling scheme did not take into account
these constraints. For example, take the case when we
want to estimate the distance between two parallel planes:
if the plane fitting results gave two planes which are not
parallel, then the distance measured between them would
have no significance. Furthermore exploiting the available
known relationships would be useful for reducing the effects
of registration errors and mis-calibration, thus improving
the accuracy of the estimated part features’ parameters
and consequently the quality of the modelling.

The second motivation is that generally in the manufac-
turing process, once the part is produced many improve-
ments are carried manually to optimize the part and make
it fit with the real world (e.g. fit with another part, adjust the
part to fit particular customer). These improvements could
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be represented by new constraints on the shape of the part.
By integrating these constraints into the CAD process the
work piece optimization would be reduced and hence many
cycles in the part production process would be saved. In
other cases, such improvement could not be achieved by
hand due to the complexity of the object or when we want
to extend the application of the process to complex environ-
ments such as buildings or industrial plants.

From a CAD viewpoint the way with which the constraint
problem is handled is close to the numerical constraint
solver. However it differs radically from this scope on two
levels. First on the level of the components of the problem.
In our case we have already a real object whose shape we
are trying to reconstruct, hence the object real data is used to
constraint the shape. Thus, the solution has to satisfy proxi-
mity to measured points as well as the constraints. Second
the numerical technique used to find the solution overcomes
ill-conditioning problems.

The approach for incorporating geometric relationships in
object modelling has to tackle two problems. The first is
how to represent the constraints. The second is how to inte-
grate these constraints into the shape fitting process. These
two aspects are not entirely independent, the shape fitting
technique imposes restrictions on the constraint representa-
tion and vice versa.

A first step in the direction of incorporating constraints
for assuring the consistency of the reconstruction was done
by Porrill [42]. He linearized a set of nonlinear constraints
and combined them with a Kalman filter, as applied to wire
frame model construction. Porrill’s method takes advantage
of the recursive linear estimation of the Kalman filter, but
guarantees satisfaction of the constraints only to linearized
first order. Additional iterations are needed at each step if
more accuracy is required. This last condition has been
taken into account in the work of De Geeter et al. [43] by
defining a “Smoothly Constrained Kalman Filter”. The key
idea of their approach is to replace a nonlinear constraint by
a set of linear constraints applied iteratively and updated by
new measurements in order to reduce the linearization error.
However, the characteristics of Kalman filtering make these
methods essentially adapted for iteratively acquired data
and many data samples. Moreover, there was no mechanism
for determining how successfully the constraints were satis-
fied and only lines and planes were considered in both of the
above works.

The constraints considered by Bolle et al. [44] in their
approach to 3D object position covered only the shape of the
surfaces. They chose a specific representation for the treated
features: plane, cylinder and sphere.

Compared to Porrill’s and De Geeter’s work, our
approach avoids the drawbacks of linearization, since the
constraints are completely implemented. Moreover, our
approach covers a larger category of feature shapes. Regard-
ing the work of Bolle [44], the type of constraints which can
be held by our approach go beyond the restricted set of
surface shapes and cover also the geometric relationships

between object features. The proposed approach has been
successfully applied first on polyhedral objects [45]. To our
knowledge the work appears the first to give such a large
framework for the integration of geometric relationships for
object reconstruction in the field of reverse engineering.

Although this work is mainly intended for object model-
ling, it can also find many other many useful applications,
e.g. in object localisation. In registration tasks, the features
represented in different views need to be put into a single
reference frame. For this purpose the transformation
between different views is recovered by matching between
the related frames. Since a reference frame is built from
object features, e.g. normals of surfaces which are supposed
to be orthogonal, the estimation of the surfaces has to satisfy
the orthogonality constraints. The proposed paradigm may
be extended as well to any constrained built environment
application like creating “as built” CAD models of an indus-
trial plant for planning new building work. A current
method uses a motorised camera head to create highly
detailed panoramic images which are then used to extract
CAD models. Since the different captured parts of a plant
(pipes, reservoirs, etc.) have many geometric relationships
between them, using these constraints in the reconstruction
process will help to have a consistent whole model. The
same is true as well for modelling different compartments
of buildings or cities. The current methods of extracting,
matching and estimation of large scale buildings’ features
from aerial images have reached reasonable level. This
make the application of our method for modelling different
compartments of buildings or cities possible as well.

The organisation of the rest of paper will be as follows:
the next section gives some preliminaries on planes and
quadric surfaces and gives the parameterization of such
surfaces. The aim is to make clear the relationship between
the constraint formulation and the surface representations.
We then state the problem and develop the proposed
approach. Next we define and classify the different types
of constraints. Lastly, we demonstrate the process on several
synthetic and real objects to evaluate the accuracy, the
convergence, repeatability and consistency of the approach.

2. Preliminaries

This section gives a brief overview about constraining
planes, general quadrics and some particular quadric shapes.
A full treatment of these surfaces can be found in Ref. [46].
While the material contained here is largely elementary
geometry, we present it in order to make clear how the set
of constraints used for each surface type and relationship
relate to the parameters of the generic quadric.

2.1. The line

A line is defined by the following equations:

x 2 x0

l
� y 2 y0

m
� z2 z0

n
�1�
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where~X0 � �x0; y0; z0�T is an arbitrary point of the line and
the vector~p� �l;m;n�T defines the orientation of the line.

2.2. The plane

A plane surface can be represented by this equation:

f �x; y; z� � nxx 1 nyy 1 nzz1 d � 0 �2�
where~n� �nx; ny;nz�T is the unit normal vector to the plane
and d is the distance to the origin. A plane can have two
different representations�~n; d� and�2~n;2d�. This ambigu-
ity is easily removed by orienting the normal toward the
outside of the object.

GivenN data points the best parameters which satisfy (2)
in the least squares sense are those minimizing the criterion:

XN
i�1

f �xi ; yi ; zi�2 � ~pTH~p �3�

where~p� �nx;ny; nz;d�T is the parameter vector andH is
the data matrix defined by

H �
XN
i�1

~hi
~hT

i ; ~hi � �xi ; yi ; zi ;1�T �4�

H is symmetric and positive definite.

2.3. The quadrics

A general quadric surface is represented by the following
quadratic equation:

f �x; y; z� � ax2 1 by2 1 cz2 1 2hxy1 2gxz1 2fyz1 2ux

1 2vy1 2wz1 d � 0

�5�
which can be written:

XTAX 1 2XTB 1 C � 0 �6�
where

A�
a h g

h b f

g f c

2664
3775; B� �u; v;w�T; C � d;

X � �x; y; z�T:

�7�

The type of the quadric depends on the discriminant of the
quadricD, the cubic discriminantD:

D �

a h g u

h b f v

g f c w

u v w d

������������

������������
D �

a h g

h b f

g f c

��������
�������� �8�

and the cofactors ofD:

A � bc2 f 2
; B � ac2 g2 C � ab2 h2

F � gh2 af ; G � hf 2 bg; H � gf 2 ch:
�9�

Similarly to the plane case, the best parameters which
satisfy (5) forN data points in the least squares sense are
those minimizing the criterion:

XN
i�1

f �xi ; yi ; zi�2 � ~pT
XN
i�1

~hi
~hT

i

 !
~p� ~pTH~p �10�

where ~p� �a;b; c;h;g; f ; u; v;w; d�T and hT
i � �x2

i ; y2
i ; z2

i ;

2xiyi ; 2xizi ; 2yizi ; 2xi ; 2yi ; 2zi ; 1�.

2.4. The cylinder

The quadric is a cylinder whenD � D � 0; uA 1 vH 1
wG � 0 andA 1 B 1 C . 0. The equation of the cylinder
axis is

x 2
uf
F

1=F
�

y 2
vg
G

1=G
�

z2
wh
H

1=H
: �11�

This means that the cylinder axis has the direction vector
�1=F;1=G; 1=H�T and passes through the point~X0 �
��uf =F�; �vg=G�; �wh=H��T: The axis orientation corre-
sponds to the eigenvector related to the null eigenvalue of
the matrixA. The two other eigenvalues are positive.

2.4.1. The circular cylinder
For a circular cylinder, we can show that the parameters

of the quadric should also satisfy the following conditions:

agh1 f �g2 1 h2� � 0 cfg1 h�f 2 1 g2� � 0

bhf 1 g�h2 1 f 2� � 0
u
f

1
v
g

1
w
h
� 0:

�12�

The matrixA (see (7)) has two identical eigenvaluesl
and the radius can be expressed by

r2 � �u2f =F 1 v2g=G 1 w2h=H 1 d�=l: �13�
A circular cylinder may be also represented by the cano-

nical form:

�x 2 x0�2 1 �y 2 y0�2 1 �z2 z0�2 2 �nx�x 2 x0�

1 ny�y 2 y0�1 nz�z2 z0��2 2 r2 � 0 �14�
where~X0 � �x0; y0; z0�T is an arbitrary point on the axis,~n�
�nx; nz;ny�T is a unit vector along the axis andr is the radius
of the cylinder.

This form has the advantage of having a minimal number
of parameters. However its implementation in the optimiza-
tion algorithm may cause some complexity, indeed it is not
possible with this form to get separate terms for the data and
the parameters as in (10) (which allows the data terms to be
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computed off line). Consequently this may increase the
computational cost dramatically.

The expansion of (14) and the identification with (5)
yields

a� 1 2 n2
x b� 1 2 n2

y c� 1 2 n2
z h� 2nxny

g� 2nxnz f � 2nynz:

�15�

2.5. The cone

A cone surface satisfiesD ± 0, D � 0. The apex of the
cone is given by:

~X0 � A21B: �16�
The axis of the cone corresponds to the eigenvector related
to the negative eigenvalue of the matrixA. The two other
eigenvalues are positive.

2.5.1. Circular cone
For a circular cone the parameters of the quadric equation

have to satisfy the following conditions:

af 2 gh
f

� bg2 hf
g

� ch2 fg
h

: �17�

As for the cylinder case, a circular cone equation has a
more compact form:

��x 2 x0�2 1 �y 2 y0�2 1 �z2 z0�2�cos2�a�2 �nx�x 2 x0�

1 ny�y 2 y0�1 nz�z2 z0��2 � 0

�18�
where�x0; y0; z0�T is the apex of the cone,�nx;ny; nz�T is the
unit vector defining the orientation of the cone axis anda is
the semi-vertical angle. The quadric equation parameters
can thus be expressed explicitly as a function of the above
terms by:

a� n2
x 2 cos2a b� n2

y 2 cos2a c� n2
z 2 cos2a

h� nxny g� nxnz f � nynz: �19�

For the same reasons as mentioned in the cylinder case, the

compact form of the cone equation is not adequate for the
optimization algorithm. Nevertheless it is useful to impli-
citly impose the conic circularity constraints.

2.6. The sphere

A sphere is characterized by equal coefficients forx2, y2

andz2 terms and vanishing coefficients for the cross product
termsxy, xzandyz, so the parametersh, g andf are all equal
to zero. The equation of a sphere can be written as:

a�x2 1 y2 1 z2�1 2ux1 2vy1 2wz1 d � 0: �20�
The centre of the sphere is:

~X0 � �2u=a;2v=a;2w=a�T �21�
and the radius is:

r2 � u2 1 v2 1 w2 2 ad

a2 : �22�

3. The geometric constraints

The set of constraints associated with a given object can
be divided mainly into two categories. The first one is the
surface intrinsic constraints covering the geometric proper-
ties which reflect the specific shapes of the surfaces. Exam-
ples of these constraints will be given in the next subsection.
The second category named the feature extrinsic constraints,
defines the geometric and topological relationships between
the different object features.

3.1. Specific shape constraints

In the text below, when we say that an equation (or set of
equations) can be used as a constraint, we mean that the
property f �~p� � 0 can be used to define a constraintC�~p�
on the object parameters~p by letting

C�~p� � f �~p�:

3.1.1. Circularity of a cylinder
The circularity of a cylinder can be imposed using either

Eq. (12) or (15). The last equations have the advantage of
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Table 1
Relationships between features

Point Line Plane Quadric surface

Point Coincident separation Inclusion separation Inclusion separation Inclusion separation
Line – Coincident relative

orientation
separation

Inclusion relative
orientation
separation

Inclusion relative/orientation
separation

Plane – – Coincident relative
orientation
separation

Relative orientation/separation

Quadric surface – – – Coincident relative/orientation
separation



imposing implicitly the circularity constraints of the cylin-
der and avoid the problem when one of the parameters
�f ;g; h� vanishes. Besides, they make concrete the geometric
relationships between the cylinder and other object features
as we will see in Section 5.5 (the half cylinder).

3.1.2. Circularity of a cone
This property can be expressed using either Eq. (17) or

(19). Similarly to the cylinder case the last equations are
more convenient.

3.1.3. Sphere constraint
To require that an ellipsoidal patch represents a perfect

sphere, Eq. (20) can be used.

3.2. Feature extrinsic constraints

These constraints reflect the geometric or topological
relationships between the different features of one object.
Table 1 summarizes the relationships that we have consid-
ered. We notice here that points and lines in this table may
be either physical features of the object like cone apexes and
edges or implicit features like centres, axes of symmetry.
This list is not exhaustive and the classification may not be
unique. Nevertheless it covers a large number of constraints
in manufactured objects.

3.2.1. Coincidence constraints
It is common that a part contains features which are asso-

ciated with the same geometric entity (Fig. 1(a)) or which
coincide at the same position (Fig. 1(b)). In the first case
these constraints are implicitly imposed by considering the
same parameters for each feature. In the second case the

parameters associated to each feature are equated and the
resulting equations have then to be satisfied.

3.2.2. Inclusion constraints
A particular feature point may be included in an object

feature e.g. line, plane or quadric patch. The inclusion
constraint requires that the point satisfies the feature’s
equation.

A feature line may be included in a plane or a particular
quadric surface. Fig. 2 shows an example of this in cylin-
ders. By considering Eqs. (1) and (2), the condition that a
line should lie in a plane is:

nxl 1 nym1 nzn� 0

nxx0 1 nyy0 1 nzz0 1 d � 0
:

(
�23�

A necessary and sufficient condition that a line be
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Fig. 1. (a) The two edgesE1 andE2 belong to the same infinite line. The two facesP1 andP2 lie in the same infinite plane. (b) The centres of the circles Cir1 and
Cir2 coincide at the same pointC. The cylinders Cyl1 and Cyl2 have a common axis.

Fig. 2. (a) The axis of the cylinder patch Cyl is included in the planeP. (b)
The line associated with the edgeE is included in the cylinder Cyl.



included in a cylinder surface is that the line and the cylin-
der have the same orientation and an arbitrary point of the
line �X0;Y0;Z0�T satisfies the cylinder equation. Thus, from
Eqs. (1), (5) and (11) these conditions can be expressed by

�l;m; n�T � �1=F; 1=G;1=H�T

f �X0;Y0;Z0�T � 0:
:

(
�24�

A line is included in a cone if and only if the orientation
vector of the line satisfies the homogeneous equation of the
cone (Eq. (5)) without theu, v, w andd terms) and it passes
through the cone summit. This is formulated then by

fhomogeneous�~p� � 0

�X0;Y0;Z0� � cone summit
:

(
�25�

3.2.3. Relative orientation constraint
There are many orientation relationships which can be

deduced and exploited in a given part. In particular, the
two common particular cases of parallelism and orthogon-
ality (Fig. 3(a)). The presence of these two characteristics is
easily detected in an object. More generally, given a pair of
features (Fi,Fj) whose orientations are defined respectively
by two vectors�~ni ; ~nj� which make an anglea , the relative
orientation constraint is expressed by:

~nT
i ~nj � cos�a�: �26�

3.2.4. Relative separation constraint
The relative separation between features can be exploited

when the distance between parallel features (Fig. 3(b)) is
already known or needs to be imposed or when the object
presents a symmetry aspect leading to some separation
distance relationships (Fig. 3(c)). We will take as example
the case of planes. Given a pair of parallel planes (Pi,Pj)
separated by the algebraic distanced (Fig. 3(b)), this

constraint is expressed by:

di 1 dj � d �27�
where di and dj are the distance parameters associated
respectively toPi andPj. The planes are oriented in opposite
directions.

Given two pairs of parallel planes (Pi,Pj) and (Pk,Pl) sepa-
rated by the same distance (Fig. 3(c)), the constraint is
expressed then by:

di 1 dj � dk 1 dl : �28�

3.3. Other constraints

There are also other type of constraints like those
imposed directly on the surface parameters as a conse-
quence of the surface representation e.g. the representation
of a plane by Eq. (2) requires that the sum of the squared
elements of the normal be equal to one. Such constraints
will be referenced as the unit constraints.

4. Optimization of shape satisfying the constraints

Given sets of 3D measurement points representing
surfaces belonging to a certain object, we want to estimate
the different surface parameters, taking into account the
geometric relationships between these surfaces and the
specific shapes of surfaces as well.

A state vector~p is associated to the object, which includes
all set of parameters related to the different patches. The
vector ~p has to best fit the data while satisfying the
constraints. ConsiderF�~p� to be an objective function defin-
ing the relationship between the measured data points and
the parameters. Such function is generally a minimization
criterion (e.g. sum of least squares residuals, maximum like-
lihood function, etc.).
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Fig. 3. (a) Each pair of planes (P1,P2,P3) makes an angle of 908, the axis of the cylinderCyl is orthogonal toP1. (b) The planes (P1,P2) are separated by distance
d. (c) Each pair of parallel planes of the hexagonal prism is separated by the same distance.



ConsiderCk�~p�; k � 1…M; the set of constraint functions
defining the geometric constraints whereCk�~p� is a vector
function associated with constraintk. The problem can then
be stated as follows:

minimize F�~p�;
subject to the constraints Ck�~p� # tk; k � 1…M:

�29�
Heret k represents the tolerance related to the constraintCk.
Ideally the tolerances have zero values, but practically, for
geometric constraints they are assigned certain values which
reflects the geometric inaccuracies in the relative locations
and shapes of features. It is up to the designer to set the
tolerances, however an appropriate definition of the toler-
ances for a given object can be set up by using the scheme
developed by Requicha [47].

When faced with an optimization problem it is necessary
to know the characteristics of the components of the
problem since techniques that solve the problem more effi-
ciently depend mainly on these characteristics. The compo-
nents of the problem are the objective function and the
constraint functions. The characteristics to be investigated
are the properties of these functions which include, linearity,
smoothness or continuity, differentiability and up to what
degree and the form of these functions, quadratic, sum of
squared terms, etc.

The computation time of the technique should be taken
into account as well. For a reverse engineering task that uses
an interactive user environment, designers could not afford
to spend hours waiting to get the optimized shape. So a
reasonable processing time (in the order of minutes) is a
necessary requirement for the optimization technique.

In order to define the appropriate approach let us examine
first the components of the problem, the objective function
and the constraint functions.

4.1. The objective function

ConsiderS1;…;SN to be the set of surfaces and~p1;…; ~pN

the set of parameter vectors related to them. Each vector~pi

has to minimize a given surface fit error criterionJi asso-
ciated with the surfaceSi. The set of the parameter vectors
has then to minimize the following object function:

J � J1 1 J2 1 …JN: �30�
By considering a polynomial description of the surfaces,

each surfaceSi can be represented by:

~hT
i ~pi � 0 �31�

where~hi is the measurement vector with each component of
the formxaybzg for some�a;b;g�.

The advantage of this formulation is that it leads to a
compact quadric expression of the objective function
because of the linearity (with respect to the parameters) of
surface (Eq. (31)). Indeed, givenmi measurements, the least

squares criterion related to this equation is

Ji �
Xmi

l�1

�~hlT

i ~pi�2 � ~pT
i Hi~pi ; Hi �

Xmi

l�1

�~hl
i
~hlT

i � �32�

where Hi represents the sample covariance matrix of the
surfaceSi. By concatenating all the vectors~pT

i into one
vector ~p� �~pT

1 ; ~p
T
2 ;…; ~pT

N�T Eq. (30) can be written as a
function of the parameter vector~p and we get the following
objective function:

F�~p� � J � ~pTH~p; H �

H1 �0� · �0�
�0� H2 · �0�
�0� · · �0�
�0� · �0� HN

26666664

37777775:
�33�

Under the above form, the objective equation contains
separate terms for the data and the parameters. The data
matrixH can be thus computed off-line before the optimi-
zation.

The inconvenience of the polynomial representation (31)
of the surfaces is that it may over-parametrize the surface.
For example a circular cone and circular cylinder have 10
parameters if they are represented by the quadric equation
(5) whereas they actually need only 7 parameters (see (14)
and (18)). Furthermore, the reduced representation imposes
implicitly the circularity constraint consequently there is no
need to formulate this constraint within a constraint func-
tion. However, the implementation of the reduced form in
the optimization algorithm may cause some complexity,
indeed because of the nonlinearity of the these forms, it
has not been possible to get an objective function with
separated terms for the data and the parameters. Thus, the
data terms could not be computed off-line. This may
increase the computational cost dramatically.

The objective function could be taken as the likelihood of
the range data given the parameters (with a negative sign
since we want to minimize). The likelihood function has the
advantage of accounting for the statistical aspect of the
measurements. As a first step, we have chosen the least
squares function. The integration of the data noise charac-
teristics in the LS function can be done afterwards with no
particular difficulty, leading to the same estimation of the
likelihood function in the case of the Gaussian distribution.

4.2. The constraint functions

The geometric constraints include some linear constraints
(e.g. the relative separation constraint) and mainly nonlinear
constraints (e.g. relative orientation constraint).

A matrix representation can hold all the types of the
constraints mentioned earlier. It leads to a compact form
and avoid expressions with many variables. As it will be
shown later in the experiment sections, a close examination
of the nonlinear constraints shows that they can be
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represented by expressions containing cross-product terms
of at most 2 parameters. Thus they can represented by the
quadratic vector function:

~pTA~p 1 BT~p 1 C �34�
where A and B are, respectively, a square matrix and a
vector having the same dimension than the parameter vector
~p; C is a scalar. This representation can also include linear
constraints by setting the matrixA to zero. In the following
sections the constraint functions will use the matrix and
vector notation defined in Appendix A.

4.2.1. Example
The slot shown in Fig. 4 contains three surfaces. The two

parallel surfaces (S1,S2) have been associated with a single
normal vector~n1 and the surfaceS3 is oriented by the normal
~n3: The three surfaces are then defined, respectively, by
�~n1;d1�; �~n1;d2� and �~n3; d3�: The parameters of the slot
can be then encapsulated in the vector
~p� �~nT

1 ; d1; d2; ~n
T
3 ;d3�T. The fixed distance constraint

between the surfacesS1 and S2 and the orthogonality
constraint between (S1,S2) and S3 are represented, respec-
tively, by:

d2 2 d1 � d

~nT
1~n3 � 0:

The first constraint is linear and can be put into the form

BT~p 1 C � 0; B� �0; 0;0;21;1; 0;0;0; 0�T;
A� �0�; C � 2d:

The second constraint is nonlinear and can written under the
quadratic form:

~pTA~p� 0 A�

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

266666666666666666666664

377777777777777777777775
B� �0�; C � 0:

4.3. The optimization techniques

Optimization techniques fall into two broad branches
namely, Operation Research techniques and the recent
evolutionary techniques.

Evolutionary computation techniques [48,49] have been
having increasing attraction for their potential to solve
complex problems. In short they are stochastic optimization
methods. They are conveniently presented using the meta-
phor of natural evolution: they start from a randomly gener-
ated set of points or solutions of the search space
(population of individuals). Then this set evolves following
a process close the natural selection principle. At each stage
a new set of population is generated using simulated genetic
operations such as mutation or crossover. The probability of
survival of the new solutions depends on how well they fit a
given evaluation function. The best are kept with high prob-
ability and the worst are discarded. This process is repeated
until the set of solutions converges to the one best fitting the
evaluation function.

The main advantages of the evolutionary techniques is
that they do not have much mathematical requirements
about the optimization problem. They are 0-order methods,
in the sense that they operate only on the objective function
and they can handle linear or nonlinear problems,
constrained or unconstrained.

The main drawback of these techniques is that they are
highly time consuming. This is due to the fact that to ensure
convergence, the number of generated solutions has to be
high, and at each iteration all the solutions have to be eval-
uated. This increases the computation time dramatically.

In CAD applications these techniques, and in particular,
the genetic algorithms have been used in product shape
design [50], manufacturing feature extraction [51], descrip-
tion capture from range data [52] and design specification
and evaluation [53].

The second branch of the optimization techniques are the
classical operation research techniques. They are more
mature than the evolutionary techniques. They involve
search techniques, numerical analysis and differential
tools. Most of these techniques use an iterative scheme. A
reasonable initialisation causes significant speedup in
convergence. A detailed review and analysis of these opti-
mization techniques could be found in Refs. [54,55].
Descent methods, for instance the Newton–Raphson mini-
mization was used in constraint solving [5,6] and surface
meshing [56]. Quadratic programming and sequential
quadratic programming were used for curve and surface
optimization [57,58].
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Fig. 4. A slot with two parallel planes orthogonal to a third plane.



4.3.1. Which technique should be adopted?
We believe that the evolutionary techniques are suitable

mainly to the optimization cases where objective functions
and constraints are very complex, presenting hard-handled
aspects such nonlinearity, non-differentiability, or do have
not explicit forms. Indeed the earlier mentioned character-
istics of these techniques allow them to by-pass these
problems.

As our optimization problem does not have these
problems, the operational research techniques are more
appropriate. This argument is supported by the time-
consuming characteristic of the evolutionary techniques,
where the average scale of the processing time is of the
order of hours. This characteristic makes these methods
not appropriate for interactive user environment and
impractical for a static verification and checking of the
results when experiments have to be repeated many times.
The other important reason for opting for search techniques
is that we can obtain a reasonable initial estimate of the
model parameters. This initial solution is the estimation of
the model parameters without considering the constraints.
This estimation is not far away from the optimal one since it
is obtained from the real object prototype.

4.3.2. The optimization algorithm
Theoretically a solution of the problem stated in (29) is

given by finding the set�~p; l1; l2;…; lM� minimizing the
following equation:

E�~p� � F�~p�1
XM
k�1

lkCk�~p� �35�

F�~p� � ~pTH~p

Ck�~p� � ~pTAk~p 1 BT
k
~P 1 Ck:

Under the Khun–Tucker conditions [54, Chapter 9],
namely that the objective function and the constraint func-
tions are continuously differentiable and the gradients of the
constraint functions are linearly independent, the optimal
set �~p; l1; l2;…;lM� minimizing (35) is solution of the
system:

2F
2~p

1
XM
k�1

lk
2Ck

2~p
� 0: �36�

In some particular cases it is possible to get a closed form
solution for (36) such as the generalized eigenvalues meth-
ods. This depends on the characteristics of the constraint
functions and whether it is possible to combine them effi-
ciently with the objective function. When the constraints are
linear (having the formA~p 1 B� 0) the standard quadratic
programming methods could be applied to solve this
system.

However the geometric constraints are mainly nonlinear.
Generally it is not trivial to develop an analytical solution
for such problem. In this case an algorithmic numerical

approach could be of great help taking into account the
increasing capabilities of computing.

Now if we look to the objective function and the
constraint functions in (35) we see that they are explicitly
defined in function of the parameters, they are smooth,
differentiable and they both have a quadratic structure.
From (32) we can notice that each submatrixHi of H in
(33) is the sum of cross-product terms~hl

i
~hlT

i . ThusHi as well
asH is positive definite. Consequently the objective func-
tion is convex. Such functions could be efficiently mini-
mized. Besides it has the important property that its
minimum is global. If the constraint functions are also
convex, the optimization problem (35) would be a convex
optimization problem forlk . 0: For such problem an opti-
mal solution exists, moreover this solution corresponds to
the solution of the system (36) defined by the Khun–Tucker
conditions [59, Sections 27 and 28].

The constraint functions are not necessarily convex since
their related matrixA is not necessarily positive definite.
However the squared constraint function will have a
Hessian matrix which is positive and definite, so is a convex
function. The whole optimization functionE�~p� in (35) will
be then a convex function. So by considering the squared
constraint function the problem would be to determine the
set�~p; l1; l2;…; lM� minimizing:

E�~p� � F�~p�1
XM
k�1

lk�Ck�~p�2�; lk . 0: �37�

To provide a numerical solution of this problem we have
been investigating an approach in the framework of sequen-
tial unconstrained minimization. The basic idea is to attach
different penalty functions to the objective functionF�~p� in
such a way that the optimal solutions of successive uncon-
strained problems approach the optimal solution of the
problem (37). Indeed the term

PM
k�1 lk�Ck�~p�2� could be

seen as a penalty function controlling the constraints satis-
faction. The scheme is then increment the set ofl k itera-
tively, at each step minimize (37) by a standard non-
constrained technique, update the solution~p, and repeat
the process until the constraints are satisfied. For equal
values ofl k, Fiacco and McCormick [60] have shown that
the solutions of (37) converge towards the same solution of
the problem (29) whenl k tends to infinity.

In more detail the proposed algorithm is: We start with a
parameter vector~p�0� that minimizes the least squares objec-
tive function and attempt to find a nearby vector~p�1� that
minimizes (37) for small values ofl k. Then we iteratively
increase the set ofl k slightly and solve for a new optimal
parameter~p�n11� using the previous~p�n�: At each iterationn,
the algorithm increases eachl k by a certain amount and a
new ~p�n� is found such that the optimization function is
minimized by means of the standard Levenberg–Marquardt
algorithm (see Appendix C). The parameter vector~p�n� is
then updated to the new estimate~p�n11� which becomes the
initial estimate at the next values ofl k. The algorithm stops

N. Werghi et al. / Computer-Aided Design 31 (1999) 363–399372



when the constraints are satisfied to the desired degree or
when the parameter vector remains stable for a certain
number of iterations. A simplified version of the algorithm
is illustrated in Fig. 5(a) in which a singlel is associated to
the constraints.

A computational problem associated with this algorithm
emerges whenl k becomes too large. This problem arises in
the Hessian matrix of the optimization function (37)
involved in Levenberg–Marquardt algorithm. This matrix
become ill-conditioned for high values ofl k. This aspect
could be detected from the expression of this matrix:

Hess�E�~p�� � 2H 1
XM
k�1

4lkCk�~p�Ak 1 RTDR �38�

where

RT � 2C1

2~p
2C2

2~p
…2CM

2~p

� �

D �

2l1 0 … 0

0 2l2 … 0

..

. ..
. ..

. ..
.

0 … 0 2lM

266666664

377777775:

The rank ofR is equal toM since we assume that the deri-
vatives of the constraint functions are linearly independent.

RTDR will have also a rank equal toM and sinceD is a
diagonal matrix, theM non-null eigenvalues values ofRTDR
will depend onl k. More exactly, each eigenvalue has the
form s kl k wheres k is some coefficient. Thus the norm of
RTDRwill increase asl k increases. This is not the case with
the other terms of the Hessian matrix (38). Indeed,H is
independent ofl k and the productlkCk�~p� in the other term
is expected either to vanish or to remain stable since the
constraint valueCk�~p� decreases asl k increases. SoM
eigenvalues of the Hessian matrix (38) will increase with
l k whereas the othersN 2 M remain independent and not
affected. Consequently asl k values increase and become
large the condition number of the Hessian matrix of the
optimization function increases and the matrix become ill-
conditioned. Consequently the computation of the inverse of
the Hessian matrix in the Levenberg–Marquardt algorithm
will suffer from high numerical instability and this approach
will no longer be appropriate. Broyden et al. [61] have
developed a method to overcome this numerical problem.
Their method is applied with penalty function having equal
weight for all the constraints. We have extended the appli-
cation of this method to different weights of the constraints.
The details are developed in Appendix D.

The initialization of the parameter vector is crucial to
guarantee the convergence of the algorithm to the desired
solution. For this reason the initial vector was the one
which best fitted the set of data in the absence of constraints.
This vector can be obtained by estimating each surface’s
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Fig. 5. (a)optim1–batch constraint optimization algorithm. (b)optim2–sequential constraint introduction optimization algorithm.



parameter vector separately and then concatenating the
vectors into a single one. Naturally, the option of minimiz-
ing the objective functionF�~p� alone has to be avoided since
it leads to the trivial null vector solution. On the other hand,
the initial valuesl k have to be not too small in order to avoid
the above trivial solution and to give the constraints a
certain weight. Practically this condition should be applied
only to the unit constraints (e.g. the normals of the plane
surfaces or quadric axis have to be unit). A convenient value
for the initial l k is:

l0
k � F�~p�0��

Ck�~p�0��
�39�

where ~p�0� is the initial parameter estimation obtained by
concatenating the unconstrained estimates. This ensures
the objective function and the penalty functions have similar
values at the first minimization.

Another option of the algorithm consists of adding the
constraints incrementally. At each step a new constraint is
added to the constraint functionC�~p� and then the optimal
value of~p is found according to the scheme shown in Fig.
5(b). For each new added constraintCk�~p�;lk is initialized at
l0

k, whereas~p is kept at its current value.

5. Experiments

The experiments were carried out on both synthetic and
real data. The real data was acquired from test objects with a
3D triangulation range sensor. The range measurements
were already segmented into point sets associated with
surfaces by means of therangeseg [62] program.

The first experiments aimed to check the behaviour and
the convergence of the algorithm. These experiments were
applied on surfaces extracted from a single view of polyhe-
dral objects. Through these experiments the performances
of the batch version of the algorithm (optim1) and the
sequential version (optim2) were compared (see section
“The step model object”).

In the second series of experiments (second subsection)
we have gone further in complexity, firstly on the level of
types of features. Thus, objects containing quadric features
were examined. Secondly the range data was collected and
registered from different views. Thus, the data was addition-
ally corrupted by the registration errors. So one objective
was to test the robustness of the algorithm toward the
complexity of the features (thus the diversity of the
constraints) and the registration errors.

At first, objects containing single quadric feature were
studied. Section 5.5 (half cylinder) deals with the cylinder
case. Multi-quadric objects were examined afterwards
(Sections 5.7 (multi-quadric object 1) and 5.8 (multi-
quadric object 2)). For the first category we have compared
results issued from a single view with those obtained from
multiple views. For both categories we checked the impact

of constraint satisfaction on the quality of object shape
attribute estimation.

Other tests were carried out in order to give answers to the
following questions:

1. What happens when some features are left uncon-
strained? What is the impact on the other constrained
features and more generally on the object shape estima-
tion? Reciprocally what is the impact of the constrained
features on the non-constrained ones?

2. How stable is the algorithm?
3. How optimal is the solution?
4. What happens if some constraints are invalid or incon-

sistent?

Experiments carried on the synthetic polyhedral object
(step model object) will give preliminary answers to ques-
tion 1. Trials on real multi-quadric objects (Sections 5.7
(multi-quadric object 1) and 5.8 (multi-quadric object 2))
will bring additional confirmation.

Answers to questions 2, 3, 4 will be developed in the
experiments of Section 5.8 (multi-quadric object 2).

5.1. Application to polyhedral objects

Polyhedral objects involve mainly relative orientation
constraints and relative separation constraints. ConsiderN
plane surfaces defining a polyhedral object represented by a
parameter vector~p.

Given a pair of planes (Pi ;Pj) whose normals�~ni ; ~nj�
make an angleai;j , the angle constraint (26) is expressed by:

Cangle�i;j� �~p� � �~pTAi;j~p 2 2cos�ai;j��2 � 0 �40�

whereAi,j is anN × N matrix which according to the nota-
tion of Appendix A is defined byAi;j � L�r ;s;2� wherer ands
are, respectively, the indices of the first element of~ni and~nj

in the parameter vector~p.
The separation constraints (27) and (28) are, respectively,

expressed by (see Appendix A):

Cdist�i;j� �~p� � �~iT�r ;s�~p 2 d�2 � 0 �41�

Cdist�i;j;k;l� �~p� � �~iT�r ;s;t;l�~p�2 � 0 �42�

wherer,s,t,l represent the indices of the distance parameters
di ;dj ;dk;dl in the parameter vector~p:

Additionally, the unit constraint has to be taken into
account since the plane’s orientation is defined by a unit
normal. For a given surface planePi, whose normal is~ni ;

this constraint is expressed by:

Cuniti �~p� � �~pTUi~p 2 1�2 � 0 �43�
whereUi is anN × N matrix which, according to the nota-
tion of Appendix A is defined byUi � U(r,r12), wherer is the
index of the first element of~ni in the parameter vector~p:
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5.2. The step model object

The first series of tests used a synthetic step model object.
This object contains sets of parallel planes. The prototype
object is composed of eight faces. We have studied the case
when five faces are visible (Fig. 6(a)). For this view we
assigned a single normal to each set of parallel planes.
Three normals~n1; ~n2; ~n5 are associated, respectively, to
surfaces (S1,S4), (S2,S3), and S5. So, there are three angle
constraints (orthogonality of each two normals) and the
three unit vector constraints.

The set of visible surfaces is defined by the parameter vector

~p� �~nT
1 ; d1; d4; ~n

T
2 ;d2;d3; ~n

T
5 ;d5�T:

Using the paradigm the Section 4.1 (representation of the
objective function), the objective function associated with
this object is expressed by:

F�~p� � ~pTH~p; H �
G1;4 �0�5;5 �0�5;4
�0�5;5 G2;3 �0�5;4
�0�4;5 �0�4;5 G5

2664
3775 �44�

where

G1;4 �
H1 1 H4 h1 h4

hT
1 N1 0

hT
4 0 N4

2664
3775;

G2;3 �
H2 1 H3 h2 h3

hT
2 N2 0

hT
3 0 N3

2664
3775 G5 �

H5 h5

hT
5 N5

" # �45�

andHk �
PNk

i �Xk
i ��Xk

i �T;hk �
PNk

i Xk
i :

Xk
i is a data point which belongs to the plane surfaceSk

andNk is the number of points of the planeSk.
The normals~n1; ~n2; ~n5 are orthogonal and have to be unit

so we set the following constraint functions:

Cunit1�~p� � �~pTU1~p 2 1�2 � 0 �46�

Cunit2�~p� � �~pTU2~p 2 1�2 � 0 �47�

Cunit5�~p� � �~pTU5~p 2 1�2 � 0 �48�

N. Werghi et al. / Computer-Aided Design 31 (1999) 363–399 375

Fig. 6. (a) The step model object. (b) Variation of the unit constraint error as a function of the relatedl . (c) Variation of the angle constraint error�~n1; ~n2� as a
function of the relatedl . (d) Error of the estimated orientation of the normal~n1 (the error is represented by the angle between the estimated normal and the
actual one).



Cangle1�~p� � Cangle�1;2� �~p� � �~pTA1;2~p 2 2cos�p=2��2 � 0

�49�

Cangle2�~p� � Cangle�1;5� �~p� � �~pTA1;5~p 2 2cos�p=2��2 � 0

�50�

Cangle3�~p� � Cangle�2;5� �~p� � �~pTA2;5~p 2 2cos�p=2��2 � 0:

�51�
Since the unit constraints are used mainly to avoid the null
solution, a singlel is associated to them. The optimization
function is then

E�~p� � ~pTH~p 1 l1�Cunit1 1 Cunit2 1 Cunit5��~p�
1 l2Cangle1�~p�1 l3Cangle2�~p�1 l4Cangle3�~p�:

The results shown below are the average of 100 trials. At
each trial the surfaces’ points are randomly corrupted with a
Gaussian noise of 3 mm standard deviation. Thenoptim1
andoptim2 are applied to the same set of data points.

Fig. 6 shows some results obtained with the algorithm

optim1. These results represent the variation and the beha-
viour of some constraint functions during the algorithm with
respect of their associatedl . Other results represent the
variation of the estimation error of some of the object para-
meters e.g. one surface’s normal. The actual normals are
known since the object is simulated.

Fig. 6(b) shows the decrease of the unit constraint func-
tion (46) asl1 increases, similarly for the angle constraint
function (50) which decreases as the associated weightl3

increases in Fig. 6(c). We notice that both functions are
decreasing nearly linearly at a logarithmic scale. This
suggests that it is possible to enforce the constraint to any
level of tolerance until the numerical accuracy of the algo-
rithm is compromised. The orientation error related to the
surface normal~n1 and represented here by the angle formed
by the actual normal and the estimated one decreases and
stabilizes to a relatively low value (around 0.068) in Fig.
6(d). This error is computed as follows: at each iteration
of the algorithmoptim1 the estimated normal~n1 is extracted
from the solution~p and then the error with respect to the
actual simulated~n1 is computed. At each iteration the values
of the differentl change, but the orientation error is mapped
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Fig. 7. Variation of the angle constraint valueCangle1 (50) at the four steps of the algorithm. Step 1 (a) Only the unit constraints are considered in the
optimization function (see (52)). Step 2 (b) The angle constraint functionCangle1 is added to the optimization function (see (53)). Step 3 (c) Addition of the
constraint functionCangle2 and Step 4 (d) Addition of the constraint functionCangle3 :



as function ofl1 just to show its variation although it is not
depending onl1 in particular.

Similar behaviour is observed for the other parameter
vectors but they are not shown here to save space. This
first observation of the constraints behaviour and the para-
meter estimation is encouraging because it means that the
part’s shape and position stabilizes as a whole. This fact will
be confirmed in next experiments with other objects.

The three figures Figs. 7–9 illustrate, respectively, the
variation of the angle constraints valuesCangle1 (49),
Cangle2 (50) andCangle3 (51) during the application of the
sequential versionoptim2. The optimization process has
four steps, first the unit constraints are inserted then the
three angle constraints are applied one by one. So that at
the first step the optimization function is:

E�~p� � ~pTH~p 1 l1�Cunit1 1 Cunit2 1 Cunit5��~p�: �52�
In the second step it will be

E�~p� � ~pTH~p 1 l1�Cunit1 1 Cunit2 1 Cunit5��~p�

1l2Cangle1�~p� �53�

and so on.

The figures shows clearly the significant decrease of the
constraint value when the related constraint function is
added to the optimization function. It is seen also that
once the constraint is satisfied the addition of the other
constraints only affects the level to tolerance previously
reached by a very small degree.

In Fig. 7, it is noticed that at the end of step 2 (Fig. 7(b))
the constraintCangle1 is well satisfied although the two others
are not yet. Similarly, Fig. 8(c) shows that at the end of step
3 the constraintCangle2 is well satisfied while the constraint
Cangle3 is not yet implemented.

Fig. 9 shows that during steps 2 and 3 (whenCangle1 and
Cangle2 are applied) the constraintCangle3 almost keeps stable
at a reasonable value. This means that the satisfaction of
some constraints is not performed at much cost to the uncon-
strained features.

Fig. 10 shows the variation of the estimation error of one
normal ~n1 along the four steps of the algorithm. Similar
results are obtained for the other normals. Similar to experi-
ment withoptim1, Fig. 10(d) shows that at the end of the
optimization the error in~n1 estimation stabilizes at a low
value. The same is noticed for the other normals.

So the experiments carried out on the step model object
have provided evidence of the applicability of both versions

N. Werghi et al. / Computer-Aided Design 31 (1999) 363–399 377

Fig. 8. Variation of the angle constraint valueCangle2 (50) at the four steps of the algorithmoptim2.



optim1 and optim2 of the algorithm. Both versions offer
high satisfaction of the constraints, moreover the estimated
orientation of the object surfaces extracted from the algor-
ithm’s solutions are close to the actual one in both versions.
This goes towards saying that the satisfaction of object
shape requirements is not performed at the expense of object
localization, although the purpose of the algorithm is not to
recover the object localization.

However,optim2 is more time-consuming thanoptim1
(aroundN times, whereN is the number of constraints).
So, since both estimation ofoptim1 andoptim2 are accep-
table, we have preferred to useoptim1 for the rest of the
work.

5.3. The tetrahedron

The second polyhedral object tested is a real tetrahedron.
The data has been extracted from a view representing three
visible facesS1, S2, S3 (Fig. 11). The parameter vector is~p�
�~pT

1 ; ~p
T
2 ; ~p

T
3�T:

In this view, the object surfaces have three angle
constraints represented by the three angles 908, 908 and
1208 between the three surface normals, as well as the
unit vector constraints. So we define the following

constraint functions:

Cunit1�~p� � �~pTU1~p 2 1�2 � 0 �54�

Cunit2�~p� � �~pTU2~p 2 1�2 � 0 �55�

Cunit3�~p� � �~pTU3~p 2 1�2 � 0 �56�

Cangle1�~p� � Cangle�1;2� �~p� � �~pTA1;2~p 2 2cos�2p=3��2 � 0

�57�

Cangle2�~p� � Cangle�1;3� �~p� � �~pTA1;3~p 2 2cos�p=2��2 � 0

�58�

Cangle3�~p� � Cangle�2;3� �~p� � �~pTA2;3~p 2 2cos�p=2��2 � 0:

�59�
The application of the paradigm developed in Section 4.1
(representation of the objective function) is straightforward
for this object and we get easily the following optimization
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Fig. 9. Variation of the angle constraint valueCangle3 (51) at the four steps of the algorithmoptim2.
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Fig. 10. Variation of the orientation error in the estimation of�~n1� at the four steps of the algorithmoptim2.

Fig. 11. A top view of the tetrahedron and the extracted surfaces.



function:

~pTH~p 1 l1

X3
l�1

Unit1�~p�1
X4
l�2

llCanglel21
�~p� �60�

where

H �
G1 �0�4 �0�4
�0�4 G2 �0�4
�0�4 �0�4 G3

2664
3775

and Gk have the same structure as in Eq. (45). All the
constraints were applied simultaneously according to algo-
rithm optim1. The results are the average of 100 trials. At
each trial the initial vector~p�0� is corrupted by a uniform
deviation of scale 5%. These 100 trials are a quantitative
criterion for testing the stability of the algorithm with
respect to the perturbations in the initial value of the solu-
tion. Here again all the different constraints values decrease
during the optimization. This is illustrated through the two
examples shown in Fig. 12(a) and (b) where the unit

constraintCunit1 (54) and the angle constraintsCangle1 (57)
are mapped in function of their associated weighting values
l1 andl2. Fig. 12(c) represents the variation of the objective
function (the least squares function)~pTH~p during the opti-
mization process; it increases slightly then it stabilizes. Fig.
12(d) shows the evolution of the sum of all the constraints
during the algorithm application. Since at each iteration of
the algorithmoptim1 thel k values increase, the variation of
the objective function and the sum of the constraints during
the optimization is mapped in function of one of thel k (l2).

It is seen that the sum of the constraint values converges
to zero at the end of the optimization. It is also noticed that
the constraint values could be decreased further while the
least squares error remains stable. Thus, the final part shape
now satisfies the shape constraints at a slight increase in the
least squares fitting error.

5.4. Application to surfaces having quadric surfaces

Compared to polyhedral objects this category has more
complex constraints since the objects contain different types
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Fig. 12. (a) Decrease of the unit constraint function (54) with respect tol1. (b) Decrease of the angle constraint function (57) with respect tol2. (c) and (d)
variation of the objective function~pTH~p and the sum of all the constraint functionsC�~p� � P3

l�1 Unitl �~p�1
P4

l�2 Anglel21�~p� during the optimization. These
functions are mapped in function ofl2 just to show their evolution all along the optimization process but they do not depend specifically onl2.



of surfaces and consequently more geometric features. So,
besides the constraints related to the plane surfaces other
constraints defining properties and relationships between
quadric features could be defined as well as relationships
between quadric features and plane features. The objects
studied in this section contain cylindrical, conical and sphe-
rical patches. In this section, the constraints’ expressions
will use the notation of Appendix A.

Also, for all objects, the results of the proposed approach
have been compared with object estimation methods which
do not consider constraints, in particular the least squares
technique applied to each surface separately.

5.5. The half cylinder

This object is composed of four surfaces. Three patches
S1, S2 and S3 have been extracted from two views repre-
sented in Fig. 13(a) and (c). These surfaces correspond
respectively to the base planeS2, lateral planeS1 and the
cylindrical surfaceS3 (Fig. 13(b)). The parameter vector is
~p� �~pT

1 ; ~p
T
2 ; ~p

T
3�T; where~p1 � �~nT

1 ;d1�T; ~p2 � �~nT
2 ; d2�T and

~p3 � �a; b; c;h;g; f ;u; v;w;d�T: The least squares error
function is given by:

F�~p� � ~pTH~p; H �
H1 O�4;4� O�4;10�

O�4;4� H2 O�4;10�

OT
�4;10� OT

�4;10� H3

26664
37775 �61�

whereH1, H2 andH3 are the data matrices related respec-
tively to S1, S2 and S3. This object has the following
constraints:

1. S1 andS2 are perpendicular.
2. The cylinder axis is parallel toS1’s normal.
3. The cylinder axis lies on the surfaceS2.
4. The cylinder is circular.

Constraint 1 is expressed by the following condition:

Cang�~p� � �~nT
1~n2�2 � �~pTL�1;5;2�~p�2 � 0:

Constraint 2 is satisfied by equating the unit vector~n in (14)
to S1’s normal ~n1: Constraints 3 and 4 are represented,
respectively, by:

Caxe�~p� � �~iT8~p 2 ~pTL�5;15;2�~p�2 � 0

Ccirc�~p� �
X6
k�1

Ccirck
�~p� � 0:

See Appendix B for details.
Finally the normals~n1 and ~n2 have to be unit. This is

represented by:

Cunit�~p� � �~pTU�1;3�~p 2 1�2 1 �~pTU�5;7�~p 2 1�2 � 0:

Thus, the optimisation function is:

E�~p� � ~pTH~p 1 l1Cunit�~p�1 l2Cang�~p�1 l3Caxe�~p�
1 l4Ccirc�~p�:

5.5.1. Experiments
In the first test, algorithmoptim1 has been applied to data

extracted from a single view (Fig. 13(c)). In Fig. 14 the
behaviour of the different constraints during the optimiza-
tion have been mapped as a function of the associatedl k as
well as the least squares residual (61) and the sum of the
constraint functions. The figures show a nearly linear loga-
rithmic decrease of the constraints. It is also noticed that at
the end of the optimization all the constraints are highly
satisfied. The least squares error converges to a stable
value and the constraint function vanishes at the end of
the optimization. The figures also show that it is possible
to continue the optimization further until a higher tolerance
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Fig. 13. Two views of the half cylinder and the extracted surfaces.



is reached, however this is limited by the numerical accu-
racy of the machine.

In the second test, registered data from view 1 (Fig. 13(a))
and view 2 (Fig. 13(c)) was used. The registration was
carried out by hand. Results similar to the first test were
obtained for the constraints.

Tables 2 and 3 present the values of some object char-
acteristics obtained from an estimation without considering
the constraints and from the presented optimization algo-
rithm. These are shown for the first and second test respec-
tively.

The characteristics examined are the angle between plane
S1 and planeS2, the distance between the cylinder axis’s
point X0 (see Section 2.4 (the cylinder) (14)) and the plane
S2 and the radius of the cylinder. The comparison of the
tables’ values for the two approaches show the clear
improvement made by the proposed technique. This is
noticed in particular for the radius for which the actual
value is 30 mm, although the extracted surface covers
considerably less than a half of a cylinder. As we
constrained the angle and distance relations, we expect
these to be satisfied and they are to almost an arbitrarily
high tolerance, as seen in Fig. 14. The radius was not
constrained but the other constraints on the cylinder have
allowed the least squares fitting of the unconstrained para-
meters to achieve a much more accurate estimation of the
cylinder radius in both cases.

5.6. Multi-quadric objects

The third series of tests have been carried out on more
complicated objects with several quadric surface patches.
For these objects, all of the surfaces have been considered.
The registration of the different views was done manually,
thus the registered is expected to be corrupted by an addi-
tionally systematic error. By this way we can judge the
performances of the algorithm in the presence of such
errors.

5.7. Multi-quadric object 1

This object (Fig. 15) comprises two lateral planesS1 and
S2, a back planeS3, a bottom planeS4, a cylindrical surface
S5 and a conic surfaceS6. The cylindrical patch is less than a
half cylinder (40% arc), the conic patch occupies a small
area of the whole cone (less than 30%).

The vector parameter for this object is~pT �
�~pT

1 ; ~p
T
2 ; ~p

T
3 ; ~p

T
4 ; ~p

T
5 ; ~p

T
6� where~pi is the parameter vector asso-

ciated to the surfaceSi.
The surfaces of the object have the following constraints:

1. S1 makes an angle of 12081 with S2.
2. S1 andS2 are perpendicular toS3.
3. S1 andS2 make an angle of 1208 with S4.
4. S3 is perpendicular toS4.
5. The axis of the cylindrical patchS5 is parallel toS3’s
normal.
6. The axis of the cone patchS6 is parallel toS4’s normal.
7. The cylindrical patch is circular.
8. The cone patch is circular.

The first four angle constraints are grouped into a single
angle constraint function:

Cangl�~p� �
X4
i�1

Cangli �~p�:

Constraints 5 and 6 are imposed by associating the
normals~n3 and ~n4, respectively, to the unit vectors of the
cylinder axis and the cone axis (see paragraphs circular
cylinder and circular cone in Section 2 (preliminaries).

The circularity of the cylinder and the cone are expressed,
respectively, by:

Ccirccyl
�~p� �

X6
k�1

Ccirccylk
�~p�
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Table 2
Improvement in shape and placement parameters with and without constraints from data from single view of the half cylinder object

View2 Angle (S1,S2) (degree) Distance (Xo,S2) (mm) Radius (mm)

Without constraints 90.84 6.32 26.98
With constraints 90.00a 0.00a 29.68
Actual values 90 0 30

a Means that the estimated value has been constrained to be the true value.

Table 3
Improvement in shape and placement parameters with and without constraints from data merged from two views of the half cylinder object

Registered view1 and view2 Angle (S1,S2) (degree) Distance (Xo,S2) (mm) Radius (mm)

Without constraints 89.28 2.23 30.81
With constraints 90.00a 0.00a 30.06
Actual values 90 0 30

a Means that the estimated value has been constrained to be the true value.

1 We consider the angle between normals.



Ccirccone
�~p� �

X6
k�1

Ccircconek
�~p�:

See Appendix B for the development of all these constraints.
Finally the unit constraints on the surface normals have to

be taken into account. This leads to the following unit
constraint function:

Cunit�~p� � �~pTU�1;3�~p 2 1�2 1 �~pTU�5;7�~p 2 1�2

1 �~pTU�9;11�~p 2 1�2 1 �~pTU�13;15�~p 2 1�2:

The complete optimisation function is then given by the
expression:

E�~p� � ~pTH~p 1 l1Cunit�~p�1 l2Cang�~p�1 l3Ccirccyl
�~p�

1 l4Ccirccone
�~p�:

5.7.1. Experiments
Since the surfaces cannot be recovered from a single

view, four views (Fig. 15) have been registered by hand.
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Fig. 14. Shape optimization of the half cylinder object. (a)–(d): Decrease of the different constraints with respect to the relatedl ; (e), (f): variation of least
squares function and the constraint function.



One hundred estimations were carried out. At each trial 50%
of the surface’s points are selected randomly. Thus the algo-
rithm starts with a different initialization each time. The
results shown in this section are the average of these estima-
tions. So by examining the mean of the estimations we can
have a judgement on the algorithm convergence.

The results regarding the algorithm convergence are
shown in Fig. 16. All of the constraint functions vanish
and are highly satisfied.

The angles between the different fitted planes are presented

in Table 4. It should be noticed that all the angles converge to
theactualvalues.Tables5and6contain theestimatedvaluesof
some attributes of the cylinder and the cone. The values show
that each of the axis constraints are perfectly satisfied, the
estimated radius and the cone half anglea improve when the
constraints are introduced. We notice the good shape improve-
ment, relative to the unconstrained least squares method,
given by a reduction of bias of about 22 mm and 38, respec-
tively, in the radius and the half angle estimation. The stan-
dard deviation of the estimations have been reduced as well.
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Fig. 15. Four views of the multi-quadric object 1.

Table 4
The surface’s relative angle estimation with and without constraints

Angle (S1,S2) (S1,S3) (S1,S4) (S2,S3) (S2,S4) (S3,S4)

Without constraints 119.76 92.08 121.01 87.45 119.20 90.39
With constraints 120.00a 90.00a 120.00a 90.00a 120.00a 90.00a

Actual values 120 90 120 90 120 90

a Means that the estimated value has been constrained to be the true value.

Table 5
The cylinder characteristic estimates with and without constraints

Cylinder parameters Angle (axis,S3’s normal) Radius Standard deviation of radius

Without constraints 2.34 37.81 0.63
With constraints 0.00a 59.65 0.08
Actual values 0 60 0

a Means that the estimated value has been constrained to be the true value.



The radius estimation is within the hoped tolerances,
a systematic error of about 0.5 mm is quite nice.
However the cone half angle estimation involves a larger
systematic error (about 1.88). Two factors may contribute to
this. The registration error may be too large since the regis-
tration was done by hand and the limited area of the cone
patch which covers less then 30% of the whole cone. It is
known that when a quadric patch does not contain enough
information concerning the curvature, the estimation is very
biased, even when robust techniques are applied, because

it is not possible to predict the variation of the surface
curvature.

5.7.2. Leaving some features unconstrained
We have also investigated whether leaving some of the

features unconstrained affects the estimation since one can
worry that the satisfaction of the other constraints may push
the unconstrained surfaces away from their actual positions.
To investigate this, we have left the angles between the pair
of planes (S1,S2) and (S1,S3) unconstrained. The results are
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Fig. 16. Shape optimization of multi-quadric object 1. (a)–(d): Decrease of the different constraint functions with respect to the associatedl k. (e),(f): variation
of least squares error and the sum of all the constraint values during the optimization.



shown in Table 7. We see that the estimated unconstrained
angles are still close to the actual ones and the accuracy is
improved compared to the non-constrained method.

5.8. Multi-quadric object 2

This object (Fig. 17) contains six plane surfaces
S1;S2;S3;S4;S5;S6; a cylindrical surfaceS7 and a spherical
surface S8. The surfacesS1;S2;S3;S4;S5 form a square
prism, the surfaceS5 is a square plane surface.

The cylindrical patch is a whole cylinder and the spheri-
cal patch occupies a half sphere.

The surfaces of the object have the following relationships:

1. S1, S3 are parallel.
2. S2, S4 are parallel.
3. S5, S6 are parallel.

4. S1, S3 are orthogonal toS2, S4.
5. S5, S6 are orthogonal toS1, S3 andS2, S4.
6. S1, S3 andS2, S4 are separated by the same distance.
7. The cylinder axis is parallel toS1, S2, S3 and S4 and

orthogonal toS5, S6.
8. The cylinder axis is located midway betweenS1 andS3

and midway betweenS2 andS4.
9. The cylindrical patch is circular.

10. The sphere centre lies on the cylinder axis.
11. The radius of the cylinder is equal to the radius of

sphere.
12. The length diagonal of surfaceS5 is equal to the cylinder

diameter.

The constraints 1, 2 and 3 allow a single normal to be
associated with each of the pair of planes (S1,S3), (S2,S4)
and (S5,S6). Consequently the parameter vector of the object
could be defined as:

~p� �~nT
1 ;d1;d3; ~n

T
2 ;d2; d4; ~n

T
5 ;d5;d6; ~p

T
7 ; ~p

T
8�T

where ~n1 is the normal associated to the pair of planes
(S1,S3), d1 is the parameter distance ofS1, d3 is the parameter
distance ofS3; ~n2 is the normal associated to the pair of
planes (S2,S4), d2 is the parameter distance ofS2, d4 is the
parameter distance ofS4; ~n5 is the normal associated to the
pair of planes (S5,S6), d5 is the parameter distance ofS5, d6 is
the parameter distance ofS6; ~p7 is the parameter vector
associated to the cylindrical patchS7 and~p8 is the parameter
vector associated to the spherical patchS8.

The constraints 4 and 5 are expressed by:

Cangl�~p� �
X3
i�1

Cangli �~p�:

The 6th constraint is formulated by:

Cdist�~p� � �~iT�4;5;9;10�~p�2 � 0:

N. Werghi et al. / Computer-Aided Design 31 (1999) 363–399386

Table 6
The cone characteristic estimates with and without constraints

Cone attributes Angle (axis, S4’s normal) a Standard deviation ofa

Without constraints 6.08 26.01 0.30
With constraints 0.00a 31.83 0.13
Actual values 0 30 0

a Means that the estimated value has been constrained to be the true value.

Table 7
Improvement of non-constrained angle estimates

Angle (S1,S2) (S1,S3) (S1,S4) (S2,S3) (S2,S4) (S3,S4)

Without constraints 119.76 92.08 121.48 87.45 119.20 90.39
With constraints 119.99 90.33 120.00a 90.00a 120.00a 90.00a

Actual values 120 90 120 90 120 90

a Means that the estimated value has been constrained to be the true
value.

Fig. 17. Four views of the multi-quadric object 2.

Table 8
Mean estimates ofS1 andS3 normal and LS error in the two types of solutions

~ni ~n1 ~n3 Angle �~n1; ~n3� (degree) LS error

1st case 0.5316
0.6733 – – – 9.07
0.5139

2nd case 0.5316 0.5316
– 0.6733 0.6733 0.00 9.06

0.5139 0.5139



The 7th constraint is imposed by associating the normal~n5

to the unit vector of the cylinder axis (see paragraph circular
cylinder in Section 2 (preliminaries)).

The constraints 8–12 are expressed, respectively, by:

Caxe_pos�~p� � �22~pTL�1;22;2�~p 1 iT�4;25�~p�2

1 �22~pTL�6;22;2�~p 1 iT�9;210�~p�2 � 0

Ccirc�~p� �
X6
k�1

Ccirck
�~p� � 0

Csphcenter
�~p� � �~pTT�11;12;22;23�~p�2

1 �~pTT�11;13;22;24�~p�2 1 �~pTT�12;13;23;24�~p�2 � 0

Cequradius
�~p� � �~iT�25;30�~p 1 ~pTU�27;29;22;24�~p�2 � 0

Cmedian�~p� � �~pT�I�4;1� 2 2U�22;24��~p 1 2~iT25~p�2 � 0:

Finally the unit constraints related to the planes’ normals
and the unit constraint of the coefficienta of the sphere are
grouped into the following unit constraint:

Cunit�~p� � �~pTU�1;3�~p 2 1�2 1 �~pTU�6;8�~p 2 1�2

1 �~pTU�11;13�~p 2 1�2 1 �~pTU�26;26�~p 2 1�2:
The optimization function is then:

E�~p� � ~pTH~p 1 l1Cunit�~p�1 l2Cangl�~p�1 l3Cdist�~p�
1 l4Caxe_pos�~p�1 l5Ccirc�~p�1 l6Csphcenter

�~p�
1 l7Cequradius

�~p�1 l8Cmedian�~p�:
The details concerning the formulation of all the above

constraints are in Appendix B.

5.8.1. Experiments
The surfaces of the objects were recovered from four

views shown in Fig. 17 and the registration of the range
data was done by hand. Similarly to the previous object
100 trials were performed. At each of them 50% of the
surfaces’s points are selected randomly leading to a different
initialisation each trial. In all the trials, the decrease of all
the constraint errors and the high level of satisfaction of the
constraints at the end of the optimization for a slight
increase of the least squares error is essentially similar to
that observed in the previous experiments and so similar
graphs are not shown here.

Through these different tests and trials we have been
investigating:

1. How stable is the convergence of the algorithm?
2. How close is the estimation to the actual optimal value?
3. What are the effects of leaving some features uncon-

strained?
4. What is the effect of constraint invalidity?
5. What is the effect of constraint inconsistency?

Lastly, some results concerning the global shape
improvement of the object model will be presented.

5.8.2. Stability of the convergence
The previous experiments performed each over 100 trials

have shown that the mean of the estimated shapes obtained
form these trials converges close to the actual solution
which satisfies the constraints. The initial solution in each
trial has a different value since the data points are selected
randomly. This experiment aims to check the sensitivity of
the algorithm with respect to the initial value, to test the
stability of the convergence of the algorithm with respect
to changes in the initial estimation. One way is to do so is to
compute the difference between the maximum and the mini-
mum value of each parameter in the set of different solu-
tions. A second way is to examine statically the “closeness”
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Fig. 18. (a) Maximum (1 ) and minimum (W) value for each parameter scaled by the absolute value of the mean. (b) Relative standard deviation of the
parameters.



of the different estimates to the mean solution, known in the
statistic terminology as the distribution of the solutions.
This distribution could be obtained by computing the
variance of each parameter from the solutions issued from
the 100 trials. Fig. 18(a) shows the maximum and the mini-
mum value (scaled by the absolute value of the mean) for
each parameter. The extrema of the different parameters
vary at a very low scale around the mean solution, in a
range lower than 2%. The same is noticed in the standard
deviations of the parameters illustrated in Fig. 18(b). This
aspect is further confirmed in the distribution of the least
squares errors of the different estimations shown in Fig. 19.
The related relative variance is 1.94%.

5.8.3. Closeness to the actual optimal solution
By actual optimal solution we mean the estimate obtained

from a process where the constraints are implicitly built into
the least squares model. The solution provided in this case
always completely satisfies the constraints. So one may ask
how close is the estimate issued from our approach to this
optimal solution. As we have mentioned previously, such an

ideal and elegant formulation is difficult or impossible to
achieve for many objects due to the complexity and to the
nonlinearity of the geometric constraints. In fact one
purpose and motivation of our approach is to overcome
this problem. Nevertheless it is possible for some simple
particular cases to combine the constraints with the least
squares error.

So, in order to make a comparison with the optimal solu-
tion a sub-part of the multi-quadric object 2 was considered.
It is composed of the two parallel planesS1 and S3. The
objective is to estimate the planes’ orientation taking into
account the parallel constraints. For the first case, the paral-
lel constraint is implicitly considered by associating one
normal to both planes. The optimization function is then:

~nTH~n 1 l�1 2 ~nT~n�
whereH is the appropriate data matrix. The second term of
the function is the unit constraint. A closed form solution is
provided by the eigenvalue method.

In the second case each plane was assigned a different
normal vector. The equality of the two normals has to be
satisfied through the optimization process. According to our
approach the objective function is:

~nT
1H1~n1 1 ~nT

3H3~n3 1 l1�1 2 ~nT
1~n1�2

1 l2�1 2 ~nT
3~n3�2 1 l3�1 2 ~nT

1~n3�2:
One hundred tests were applied for each of the two cases.

The average of the results are summarized in Table 8. The
estimations are similar in the two cases. This shows that
both solutions converge to the same value and almost
equally minimize the least squares error. The LS of the
second solution is slightly lower than the optimal solution
one. This is because in the optimal case the constraint is
perfectly satisfied so the least squares error has to absorb all
the error. The same convergence of the two solutions is
further confirmed from the distribution of the angle�~n; ~nc�;

N. Werghi et al. / Computer-Aided Design 31 (1999) 363–399388

Fig. 19. Distribution of the least squares errors.

Fig. 20. (a) Distribution of the estimation difference. (b) Distribution of the LS residuals difference.



where~nc is the mean of~n1 and~n3; and the distribution of the
difference between the LS error related to each of them, LS
and LSi (Fig. 20). These distributions are issued from 100
trials.

5.8.4. Leaving some features unconstrained
Another series of tests has been performed without

considering the median constraint (constraint 12). This is
in order to check if this will affect the position of the four
plane surfaces with respect to the cylinder axis and therefore
the estimation of the edge of the square surfaceS5. Results

are shown in Table 9 with the previous results for compar-
ison. It is noticed that the radius estimation is not affected
but the incorporation of the additional constraints slightly
reduces the diagonal length error.

5.8.5. Invalidity of the constraints
Suppose that one or more constraints do not reflect the

actual relationships between features and therefore are inva-
lid. What would be the behaviour of the algorithm? Will
these “false constraints” be satisfied? What could be the
resulting estimated model?
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Table 9
Comparison of the estimation without median constraints with previous results

Distance (S1,S3) Distance (S2,S4) Diagonal ofS5 Cylinder radius

Without constraints – – – 14.64
With all constraints 21.17 21.17 29.94 14.97
Without median constraint 21.15 21.15 29.91 14.97
Actual values 21.28 21.28 30.02 15.01

Fig. 21. (a) Constraint error function and least squares error function for valid constraints. (b) Constraint error and least squares error functionfor invalid
constraints (3rd test).



To answer these questions, some angle constraints were
set to incorrect values. Three tests was carried out, in the
first the angle�~n1; ~n2� was set top/3, in the second the angle
�~n1; ~n5� was set top/3 and in the third test both angles
�~n1; ~n5� and �~n2; ~n5� were set top/3 (the right values are
p/2 for both angles).

In all these tests the behaviour and the convergence of the
algorithm were qualitatively similar to those of the previous
experiments. The algorithm converges, the least squares
error stabilizes and all the constraints are satisfied at the
end of the process although the least squares error is greater
than the valid constraints case (Fig. 21). Table 10
summarizes the estimated model characteristics in each of
the three tests.

An examination of Table 10 leads to the following
observations:

1. In all of the three tests the cylinder and the sphere char-
acteristics are not affected by the invalid constraints.

2. The normal~n1 which is involved in each of the invalid
constraints is affected in three tests.

3. The normal~n2 is changed in the first and third test where
it is involved in the invalid constraints whereas it is
unchanged in the second test where it is not involved.

4. The normal~n5 is kept unchanged in all the tests even in
those where it is involved in the inconsistent constraints.

From these observations we can deduce that invalid
constraints affect the object feature’s locations by shifting
the involved features toward positions where the invalid
constraints are satisfied. Consequently, this will increase
the least squares error (Fig. 21). The locations and the
characteristics of the surfaces which are not involved in
the invalid constraints are not affected (the sphere and the
cylinder). However the normal~n5 seems not to satisfy this
rule since its orientation stays unchanged for all the cases
where it is involved in an inconsistent constraint. This is
explained by the fact that unlike~n1 and ~n2, ~n5 is also
involved in other constraints, in particular it is constrained
to have the same orientation as the cylinder axis. The satis-
faction of this constraint keeps it collinear to the cylinder

axis and prevents its orientation from being affected. Thus
the algorithm satisfies the invalid constraints in which~n5 is
involved by acting on the other normals involved in these
constraints.

5.8.6. Inconsistency of the constraints
In this test we investigated what would be the behaviour

of the algorithm when some constraints are inconsistent and
have a conflict between them. For this purpose we intro-
duced two additional inconsistent angle constraints by
imposing the angles�~n1; ~n2� and �~n1; ~n5� to bep/3, which
conflicts with the two other consistent constraints defining
each pair of�~n1; ~n2� and�~n1; ~n5� as orthogonal vectors. The
trial carried out with these inconsistent constraints revealed
that the algorithm converges normally (Fig. 22) both the
least squares and the constraint functions stabilizing at the
end of the algorithm. From Fig. 22(a) we notice that the
angle constraints are not satisfied. This is obvious because
it is not possible to satisfy conflicting constraints simulta-
neously. The converging value of the constraint function
(the sum of all the constraints (Fig. 22(b)) and the angle
constraints error are practically equal at the end of the opti-
mization process. This shows that the other consistent
constraints are satisfied. This suggests that an inconsistent
set of constraints can be detected by observing the con-
vergence of the constraint error rather than its reduction to
zero.

5.8.7. Global shape improvement
The different tables shown in this section compare the

geometric characteristics of the object issued from an opti-
mization with constraints and an optimization without and
show the improvement of the object characteristics esti-
mates when constraints are applied. The results presented
in the tables are the average of the 100 estimations. The
angles between each pair of surfaces (S1,S2), (S1,S5) and
(S2,S5) were set as constraints and the constraints were
nearly perfectly satisfied. From Table 11 we notice the satis-
faction of the square property of the prism, illustrated by the
equality of the two distances separating (S1,S3) and (S2,S4),
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Table 10
The object characteristic estimates for invalid constraints and true constraints (last row)

~n1 ~n2 ~n5 Rcyl Rsph Axecyl Centresph

�~n1; ~n2� � p=3 2 0.61 2 0.58 0.72 0.72 86.30
2 0.47 0.52 2 0.02 14.97 14.97 2 0.02 2 87.38
2 0.62 2 0.62 2 0.69 2 0.69 17.44

�~n1; ~n5� � p=3 2 0.08 2 0.46 0.72 0.72 86.31
2 0.60 0.72 2 0.02 14.97 14.97 2 0.02 2 87.41
2 0.78 2 0.50 2 0.69 2 0.69 17.44

�~n1; ~n5� � p=3 2 0.02 0.05 0.72 14.97 14.97 0.72 86.31
�~n2; ~n5� � p=3 2 0.68 0.72 2 0.02 2 0.02 2 87.42

2 0.72 2 0.68 2 0.69 2 0.69 17.44
True constraints 2 0.52 2 0.45 0.72 14.97 14.97 0.72 86.30

2 0.67 0.73 2 0.02 2 0.02 2 87.38
2 0.51 2 0.50 2 0.69 2 0.69 17.44



their values which is close to the actual length of the edge of
the square planeS5 and closeness of the estimated value of
the diagonal ofS5 to the actual value when the constraints
are considered. The distances between these last surfaces for
an optimization without constraints is not mentioned in this
table since the estimated surfaces are not parallel.

The improvement of the quadric surfaces estimation is
confirmed again for this object (Tables 12 and 13). The
radius estimation error is less than 0.04 mm for both the
cylinder and the sphere. The standard deviations of the
cylinder and the sphere radius have been significantly
reduced as well.

6. Conclusion

This work presents a framework for the reconstruction of
object models incorporating geometric constraints. It can
hold a large number of varied constraint types and incorpo-
rates them integrally without the need for linearization. The
geometric constraints are formulated quadratic matrix func-
tions which are continuous, differentiable and ensure a
compact expression of the constraints and easy handling
by the optimization process.

The proposed optimization algorithm belongs to sequen-
tial nonlinear programming. Theoretically, the characteris-
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Table 11
Improvement of the prism characteristic estimates

Distance (S1,S3) Distance (S2,S4) Diagonal ofS5

With constraints 21.17 21.17 29.95
Standard deviation/mean 0.03% 0.03% 0.03%
Actual values 21.28 21.28 30.02

Table 12
Improvement of the cylinder characteristic estimates

Cylinder parameters Angle (axis,S5’s normal) Radius (mm) s /mean (radius)

Without constraints 1.55 14.64 0.12%
With constraints 0.00a 14.97 0.03%
Actual values 0 15.01 0

a Means that the estimated value has been constrained to be the true value.

Table 13
Improvement of the sphere characteristic estimates

Sphere parameters Distance (centre, cylinder axis) Radius (mm) s /mean (radius)

Without constraints 1.36 16.02 0.11%
With constraints 0.00a 14.97 0.03%
Actual values 0 15.01 0

a Means that the estimated value has been constrained to be the true value.

Fig. 22. Results for inconsistent constraints. (a) The sum of the angle constraints’ error. (b) The sum of all the constraint functions. (c) The least squares error.



tics of the objective function and the constraint functions
satisfy the requirements for an efficient application of the
algorithm. The availability of a good initial solution
obtained from the measurement data ensures the conver-
gence of the algorithm towards the optimal solution.
However, the last condition makes it inappropriate for
constrained object design applications where a reasonable
initial solution is not available. The practical difficulties of
the algorithm manifested in the ill-conditioned Hessian
matrix in the Levenberg–Marquardt algorithm is overcome
by using an appropriate numerical technique.

The constraints can be integrated in a batch form at once
or sequentially. In the sequential version the addition of a
new constraint does not affect the satisfaction of the
previously implemented constraints.

The experiments carried out on the different objects
empirically confirm the convergence of the algorithm. The
parameter optimization search does produce shape fitting
that satisfies almost perfectly the constraints. They show
in particular that the least squares error grows slightly as
the constraints are applied and the weighting values
increased, but this stabilizes above certain values of thel k

while the constraint errors are still decreasing. Thus it is
possible to satisfy the constraints up to the desired tolerance
without seriously affecting the quality of the data fitting.

The above observations suggest that the proposed
approach allows flexibility in the incorporation of the
constraints, as well as in their satisfaction. The sequential
version of the constraint implementation allows a human
reverse engineer to supply them interactively whereas the
batch form of constraint incorporation is suitable for being
inferred by a knowledge-based system reasoning from
general engineering principles. The stabilization of the
increase of the least squares error while the constraint errors
are still decreasing asl k increases offers the possibility that
the user can control the degree of satisfaction of the
constraints and to set the tolerances as high as necessary.

Regarding the slight increases of the LS error, we have to
bear in mind that the increase of the least-squares residuals
value may not reflect a bad estimation in the case when
measurement errors are systematic, e.g. miscalibration and
registration error. This last type of error is expected in our
data since the registration process is performed by hand. We
believe that the slight increase of the least squares error as a
consequence of the constraints satisfaction is a result of the
object being located more accurately. Future work could
investigate a more robust form for the objective function
involving the data noise statistics.

The different trials applied on the multi-quadric objects
empirically confirm the stability of the convergence of the
algorithm. The low values of the parameters’ variances
illustrates the stability of the solution provided by the opti-
mization search process. On the level of the object shape,
this aspect is reflected by the small values of the standard
deviations of the object shape characteristics. The tests have
shown as well that the proposed approach leads to an

estimate which is close to the optimal solution (e.g. the
solution given when the constraints could be combined
with the least squares error). The experiments also show
that applying the constraints to only some features does
not seriously affect the estimation of the unconstrained
surfaces. The estimation is still improved compared to the
case of unconstrained optimization.

The examination of some constraint invalidity cases has
shown that the constraints are always satisfied whether they
are valid or not and the behaviour of the algorithm is typically
the same. The satisfaction of invalid constraints leads to the
relocation of the involved and less constrained features
(having more degrees of freedom) toward positions where
the inconsistency is removed. However this will result in a
false object model. The trial performed with constraint incon-
sistencies case revealed the same behaviour regarding the
convergence of the algorithm but the inconsistent constraints
are not satisfied at the end of the optimization. This suggests
that constraint validity and consistency checking have to be
done before starting the optimization process.

Regarding the model estimation accuracy, the compari-
son of the object dimension estimates with those from
unconstrained fitting confirms that the proposed approach
improves the quality of the model construction to a high
degree. For the second-quadric object the radius of the
cylinder and the sphere have an estimation error in the
range of 0.04 mm, the edge of the square prism has an
estimation error around 0.1 mm. The radius of the cylinder
patch estimated from the registered half cylinder has an
estimation error around 0.01 mm. For a single a view it is
less than 0.5 mm. The same range of error is obtained for the
radius of the cylinder patch of the first multi-quadric object.

Results for the cone patches are reasonable for the cone
object, the half angle estimation error is less than 0.58, but less
satisfactory for the first multi-quadric object. This is mainly
due to the relatively small area of the conic patch. In fact, the
comparison of the estimation error for the quadric surfaces
shows that the larger the quadric patch, the smaller the estima-
tion error. We intentionally chose to work with small patches
because unconstrained fitting surface techniques fail to give
reasonable estimates in this case (see the radius estimate in
Table 5) even with robust algorithms due to the “poorness” of
the information embodied in the patch.

Regarding the constraint representation, it is noticed that
some constraints involve a large number of equations, in
particular for the circularity constraint. One solution is to
implicitly impose those constraints through the representa-
tion of the quadric equation��X 2 X0�T�I 2 ~n~nT��X 2
X0�2 r2 � 0� for the cylinder and ��X 2 X0�T�~n~nT 2
cos2�a���X 2 X0� � 0� for the cone, where~n is the unit
orientation vector of the cylinder or the cone axis,X0 is a
point on the cylinder axis in the cylinder case and is the apex
for the cone case. The main problem encountered with this
representation is the complexity of the related objective
function and the difficulty of separating the data terms
from the parameter terms. It will be also worthwhile
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investigating some topological constraints between surfaces
which have a common intersection.

Although the experiments presented in this work were
performed on single objects, the proposed approach can
optimize multiple objects simultaneously. Generally indus-
trial parts are designed to fit to each other, so geometric
relationships between the parts may be considered and the
resulting constraints can be incorporated as well in the opti-
mization process.

Another area we are starting to investigate is how one might
automatically identify inter-surface relationships that can have
a constraint applied. In manufacturing objects, simple angular
and spatial relationships are given by design. So, it should be
straightforward to define simple Mahalanobis distance tests
that hypothesize standard feature relationships, subject to the
feature’s statistical position distribution. With this analysis, a
computer program could propose a variety of constraints that a
human could either accept or reject, after which shape recon-
struction could occur.

It is very likely that the consideration of the constraints
tends to shift the object localization towards the actual posi-
tion. The experiments carried out with the synthetic poly-
hedral objects provides evidence for this. It seems that the
incorporation of the constraints compensate up to certain
degree for the effect of the systematic errors and allows
better estimation, although the authors have not yet a theo-
retical proof of this interpretation. This issue was partially
justified in the work of Bolle et al. [44], but only for the
intrinsic constraints, namely the circularity of the cylinder
and perfect sphere. By considering a larger set of
constraints, the proposed framework generalizes the
concept of object localization considering the constraints

and make a step toward a framework which unifies object
localization and object modelling.

All the algorithm procedures have been implemented
with C11. The computation time for the reconstruction
on a 200 MHz Sun Ultrasparc workstation is typically few
minutes or less (1–5 min), which is suitable for CAD work.
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Appendix A. Notation

~ir is a vector in which all the elements are zero except the
rth element which is equal to 1.
~i�r ;s� is a vector in which all the elements are zero except

the rth and thesth elements which are equal to 1.
~i�r ;2s� is a vector in which all the elements are zero except

the rth and thesth elements which are equal to 1 and2 1
respectively.
~i�r ;s;t;l� is a vector in which all the elements are zero except

for the rth, sth tth, andlth elements which are equal to 1, 1,
2 1 and 2 1, respectively.

M(r,s) is a diagonal matrix in which all the elements are
zero except therth and thesth elements which are equal to 1
and 2 1, respectively.

U(r,s) is a diagonal matrix defined by:

U�r ;s� �
U�i; i� � 1 if r # i # s

U�i; i� � 0 otherwise
:

(

I(r,s) a symmetric matrix defined by:

I�r ;s� �
I �i; j� � I �j; i� � 1 for r # i # s; r # j # s

I �i; j� � 0 otherwise
:

(

U(r,s,p,t) is a diagonal matrix defined by:

U�r ;s;p;t� �
U�i; i� � 1 if r # i # s

U�i; i� � 21 if p # i # t

U�i; i� � 0 otherwise

:

8>><>>:
L(r,s,p) a symmetric matrix defined by:

Appendix B. Constraints definition

B.1. The half cylinder

Constraint 3 is represented by two conditions: axis vector
~n is orthogonal toS2’s normal~n2; and one point of the axis
satisfiesS2’s equation. The first condition is guaranteed by
constraint 2 since~n2 is orthogonal to~n1: For the second
condition the pointX0 in Section 2.4 (the cylinder) has to
satisfy the equation:

Caxe�~p� � �XT
0 ~n2 1 d2�2 � 0:

N. Werghi et al. / Computer-Aided Design 31 (1999) 363–399 393

L�r ;s;p� �
L�i; j� � L�j; i� � 1=2 for r # i # r 1 p; s # j # s1 p

L�i; j� � L�j; i� � 0 otherwise
:

(
T(r,s,p,t) a symmetric matrix defined by:

T�r ;s;p;t� �
T�r ; t 1 5� � T�t 1 5; r� � T�s;p� � T�p; s� � 1=2

T�r ; t� � T�t; r� � T�s;p 1 5� � T�p 1 5; s� � 21=2:
:

(



Using Eqs. (9) and (15) this equation can be written as

Caxe�~p� � �2�u; v;w�T~n2 1 d2�2 � �~iT8~p 2 ~pTL�5;15;2�~p�2 � 0:

The cylinder circularity constraint is implicitly defined by
the Eq. (15). From these equations we extract the following
constraints on the parameter vector~p :

Ccirc1
�~p� � �~iT9~p 1 ~pTU�1;1�~p 2 1�2 � 0

Ccirc4
�~p� � �~iT12~p 1 ~pTL�1;2;0�~p�2 � 0

Ccirc2
�~p� � �~iT10~p 1 ~pTU�2;2�~p 2 1�2 � 0

Ccirc5
�~p� � �~iT13~p 1 ~pTL�1;3;0�~p�2 � 0

Ccirc3
�~p� � �~iT11~p 1 ~pTU�3;3�~p 2 1�2 � 0

Ccirc6
�~p� � �~iT14~p 1 ~pTL�2;3;0�~p�2 � 0:

We group these six constraints into a single one:

Ccirc�~p� �
X6
k�1

Ccirck
�~p� � 0:

B.2. Multi-quadric object 1

The first four angle constraints lead to six equations
involving the surface normals:

~nT
1~n2 � cos�2p=3� � 20:5 ~nT

2~n3 � cos�p=2� � 0

~nT
1~n3 � cos�p=2� � 0 ~nT

2~n4 � cos�2p=3� � 20:5

~nT
1~n4 � cos�2p=3� � 20:5 ~nT

3~n4 � cos�p=2� � 0:

A vector formulation of these equations as a function of~p is:

Cangl1�~p� � �~pTL�1;5;2�~p 1 0:5�2 � 0

Cangl4�~p� � �~pTL�5;9;2�~p�2 � 0

Cangl2�~p� � �~pTL�1;9;2�~p�2 � 0

Cangl5�~p� � �~pTL�5;13;2�~p 1 0:5�2 � 0

Cangl3�~p� � �~pTL�1;13;2�~p 1 0:5�2 � 0

Cangl6�~p� � �~pTL�9;13;2�~p�2 � 0:

These equations are then grouped into

Cangl�~p� �
X6
i�1

Cangli �~p� � 0:

The circularity of the cylinder and the cone are ensured
using the set of Eqs. (15) and (19), respectively. This gives
the following constraints on the parameter vector~p for

the cylinder:

Ccirccyl1
�~p� � �~iT17~p 1 ~pTU�9;9�~p 2 1�2

Ccirccyl4
�~p� � �~iT20~p 1 ~pTL�9;10;0�~p�2

Ccirccyl2
�~p� � �~iT18~p 1 ~pTU�10;10�~p 2 1�2

Ccirccyl5
�~p� � �~iT21~p 1 ~pTL�9;11;0�~p�2

Ccirccyl3
�~p� � �~iT18~p 1 ~pTU�11;11�~p 2 1�2

Ccirccyl6
�~p� � �~iT22~p 1 ~pTL�10;11;0�~p�2

and the following constraints for the cone:

Ccirccone1
�~p� � �~iT�27;228�~p 2 ~pTM�13;14�~p�2

Ccirccone4
�~p� � �~iT30~p 2 ~pTL�13;14;0�~p�2

Ccirccone2
�~p� � �~iT�27;229�~p 2 ~pTM�13;15�~p�2

Ccirccone5
�~p� � �~iT31~p 2 ~pTL�13;15;0�~p�2

Ccirccone3
�~p� � �~iT�28;229�~p 2 ~pTM�14;15�~p�2

Ccirccone6
�~p� � �~iT32~p 2 ~pTL�14;15;0�~p�2:

The above sets are then grouped in two circular constraints,
respectively:

Ccirccyl
�~p� �

X6
k�1

Ccirccylk
�~p� � 0

Ccirccone
�~p� �

X6
k�1

Ccircconek
�~p� � 0:

B.3. Multi-quadric object 2

The orthogonality constraints (4 and 5) between planes
are formulated as:

~nT
1~n2 � ~nT

1~n5 � ~nT
2~n5 � 0

which can be written in the following vector formulation.

Cangl1�~p� � �~pTL�1;6;2�~p�2 � 0

Cangl2�~p� � �~pTL�1;11;2�~p�2 � 0

Cangl3�~p� � �~pTL�6;11;2�~p�2 � 0

and grouped into a single angle constraint function

Cangl�~p� �
X3
i�1

Cangli �~p� � 0:
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The 6th constraint can be expressed according to

d1 1 d3 � d2 1 d4

and then formulated by

Cdist�~p� � �~iT�4;5;9;10�~p�2 � 0:

Since we assume that the cylinder axis is parallel to the
planesS1;S2;S3;S4; the distance from the cylinder axis to
one of these planes could be defined as the distance from
one particular pointX0 of the axis and the given plane. The
8th constraint can be formulated by:

d�X0;S1� � d�X0;S3�; d�X0;S2� � d�X0;S4�:
Taking into account thatS1, S3 have opposite orientation as
well asS2, S4, these equations can be written as:

XT
0 ~n1 1 d1 � 2XT

0 ~n1 1 d3; XT
0 ~n2 1 d2 � 2XT

0 ~n2 1 d4

leading to:

2XT
0 ~n1 1 d1 2 d3 � 0; 2XT

0 ~n2 1 d2 2 d4 � 0:

By consideringX0 as defined in Section 2.4 (the cylinder)
and by using the set of Eqs. (9) and (15) the last equations
are written as:

22�u; v;w�T~n1 1 d1 2 d3 � 0;

22�u; v;w�T~n2 1 d2 2 d4 � 0

whereu, v, w are the cross coefficients of the cylinder equa-
tion. A vector formulation of these equations is then given
by:

Caxe_pos1�~p� � �22~pTL�1;22;2�~p 1 iT�4;25�~p�2 � 0

Caxe_pos2�~p� � �22~pTL�6;22;2�~p 1 iT�9;210�~p�2 � 0:

The cylinder axis position constraint is then:

Caxe_pos�~p� � Caxe_pos1�~p�1 Caxe_pos2�~p� � 0:

The cylinder circularity constraint (9th constraint) is impli-
citly defined by the Eq. (15) and taking into account the
constraint 7 which assumes that the cylinder axis is the
same as normal~n5 these equations are written as:

Ccirccyl1
�~p� � �~iT16~p 1 ~pTU�11;11�~p 2 1�2

Ccirccyl4
�~p� � �~iT19~p 1 ~pTL�11;12;0�~p�2

Ccirccyl2
�~p� � �~iT17~p 1 ~pTU�12;12�~p 2 1�2

Ccirccyl5
�~p� � �~iT20~p 1 ~pTL�11;13;0�~p�2

Ccirccyl3
�~p� � �~iT18~p 1 ~pTU�13;13�~p 2 1�2

Ccirccyl6
�~p� � �~iT21~p 1 ~pTL�12;13;0�~p�2

grouped then into a single constraint:

Ccirc�~p� �
X6
k�1

Ccirck
�~p� � 0:

The 10th constraint is satisfied if the centre of the sphere
(21) satisfies the cylinder axis Eq. (11). We can show easily
that by assuming the constraint 7, by using the set of Eqs. (9)
and (15) and by requiring the coefficienta of the sphere to
be unit, Eq. (11) leads to the following equations:

nx5
�vs 2 vc� � ny5

�us 2 uc�

nx5
�ws 2 wc� � nz5

�us 2 uc�

ny5
�ws 2 wc� � ny5

�vs 2 vc�
whereus means the coefficientu related to the sphere equa-
tion, etc. Thus, these equations can be written using the
vector form:

�~pTT�11;12;22;23�~p�2 � 0

�~pTT�11;13;22;24�~p�2 � 0

�~pTT�12;13;23;24�~p�2 � 0

and the constraint 10 can then be stated as:

Csphcenter
�~p� � �~pTT�11;12;22;23�~p�2 1 �~pTT�11;13;22;24�~p�2

1 �~pTT�12;13;23;24�~p�2

� 0:

The 11th constraint is imposed by equating the sphere
radius Eq. (22) to the cylinder radius Eq. (13). Requiring
again the coefficienta of the sphere to be unit and by using
the set of Eqs. (9) and (15) this equality can be written using
the vector form:

Cequradius
�~p� � �~iT�25;30�~p 1 ~pTU�27;29;22;24�~p�2 � 0:

The 12th constraint imposes a fixed position of the four
plane surfacesS1;S2;S3;S4 with respect to the cylinder
axis. It is formulated as:��

2
p �d1 1 d3� � 2rcylinder:

By squaring this equation and by using the set of Eqs. (9)
and (15) it can be written as:

�d1 1 d3�2 � 2�u2
c 1 v2

c 1 w2
c 2 d2

c�:
Thus this constraint can be put using the vector form:

Cmedian�~p� � �~pT�I�4;1� 2 2U�22;24��~p 1 2~iT25~p�2 � 0:

Appendix C. Levenberg–Marquardt algorithm

Here are the main steps of the Levenberg–Marquardt
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algorithm applied to a simple optimization function:

E�~p� � F�~p�1 C�~p�

a � a0 % initialization
Edecrease� big value
while Edecrease. e % a threshold

Do GE � Grad�E�~p� � 2

2~p
�E�~p��

Loop: HE � Hessian�E�~p� � 22

22~p
�E�~p��

HE � HE 1 a�diag�HE��
solveHEd~p� 2GE

~pupdated� ~p 1 d~p
Edecrease� E�~pupdated�2 E�~p�
if Edecrease. 0

increasea
go to Loop

else

~p� ~pupdated

decreasea

end if

end while

Here is a simple example of an optimization function and
its derivatives:

E�~p� � F�~p�1 C�~p�

F�~p� � ~pTH~p the least-squares function

C�~p� � l�~pTA~p 2 1�2 the weighted constraint function

GE � 2H~p 1 4lA~p�~pTA~p 2 1�

HE � 2H 1 l�4�~pTA~p 2 1�AT 1 8�A~p��A~p�T�:
From this example we can notice the usefulness of the
matrix formulation: the optimization function is compact,
its derivatives are easy to compute using elementary matrix
algebra rules and all the data terms are encapsulated intoH
(which needs to be calculated only once).

Appendix D

Solving the linear systemHEd~p� 2GE in the Leven-
berg–Marquardt algorithm has numerical perturbations
due to the ill-conditioned matrixHE for large values ofl k.
The key of the solution proposed to overcome this problem
consist in splitting the system in two subsystems. The matrix
associated with one of the subsystems will hold the matrix
components which are sensitive tol k variations, the other
matrix will hold the components which are not. Thus, both
of the matrices will be well-conditioned. The two systems
will be then solved consecutively and separately.

Let us set the coefficienta in Levenberg–Marquardt
algorithm to zero without loose of generality. The system
HEd~p� 2GE could be written more explicitly as:

�L 1 RTDR�d~p� 2GE �D1�
where

L � 2H 1 4
XM
k�1

lkCk�~p�Ak �D2�

RT � 2C1

2~p
2C2

2~p
…

2CM

2~p

� �

D �

2l1 0 … 0

0 2l2
… 0

..

. ..
. ..

. ..
.

0 … 0 2lM

266666664

377777775
GE � 2H~p 1 RT7C

7C � �2l1C1�~p�; 2l2C2�~p�;…;2lMCM�~p��T:
As mentioned, the matrixL is well behaved since its condi-
tion number remains stable when the values ofl k increase,
whereas the condition number ofRTDR increases withl k.

Consider the matrixS� D21(RRT)21R. By multiplying
Eq. (D1) on both sides bySwe get a system ofM equations:

�SL1 R�~dp� 2SGE �D3�
whenl k values increase and become largeiSi tends towards
zero whereasiRi remains stable since it is independent ofl k

so we getiSLi p iRi and thus the system (D3) can be
approximated by

Rd~p� 2SGE: �D4�
So now with this system ofM equations andN (size ofd~p)
unknowns we can extractM components ofd~p: The rank of
R is equal toM so we can find an orthogonal matrixQ such:

QRT �
U

�0�

" #
�D5�

whereU is an (M,M) upper triangular non-singular matrix.
SinceQQT � I, (D4) can be written as

RQTQd~p� 2SGE: �D6�
By splitting Qd~p into �d~z1; d~z2� whered~z1 and d~z2 have a
size of, respectively,M andN 2 M we get from (D6):

UTd~z1 � 2SGE �D7�
and thend~z1 could be deduced from this equation. Now it
remains to computed~z2:

Consider the matrixV whose columns are the basis of the
null space ofR. We haveRV� [0]. By multiplying (D1) by
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VT we get:

VTLd~p� 2VTGE: �D8�
Now sinceRV� RQTQV � �0� by using (D5) and splitting
QV into �JT

1 ; J
T
2 �T; whereJ1 andJ2 are, respectively, (M,M)

and (N 2 M,M) matrices we get

�UT
; �0�T�

J1

J2

" #
� �0�:

This implies thatJ1 � [0] since U is non singular andJ2

could be set to an arbitrary value sayI. Then we can set
QV � ��0�T; IT�T:

The system (D8) can be written:

VTQTQLQTQd~p� 2VTGE

�QV�T�QLQT�Qd~p� 2VTGE

��0�T; IT�QLQT
d~z1

d~z2

" #
� 2VTGE:

If we denote the matrixQLQT by W such as:

W �
W11 W12

W21 W22

" #
we get:

��0�T; IT�
W11 W12

W21 W22

" #
d~z1

d~z2

" #
� 2VTGE

from which we extract the system

W22d~z2 � 2VTGE 2 W21d~z1 �D9�
anddz2 can be then computed.

The computation of the termSGE in (D7) is expensive.
Practically it is faster to use a simplified expression. From
(D2) we get

SGE � D21�RRT�21R�2H~p 1 RT7C� �D10�

� D21�2�RRT�21RH~p 1 7C�

� D21�2�RQTQRT�21RQTQH~p 1 7C�

� D21�2�U21
; �0��QH~p 1 7C�:

By splittingQH~p into �~lT1 ;~lT2�T where~l1 and~l2 have, respec-
tively, sizes ofM andN 2 M we get

SGE � D21�2U21~l1 1 7C� �D11�
andd~z1 can be then computed with

UTd~z1 � 2D21�2U21~l1 1 7C�: �D12�
Similarly the expression ofVTGE in (D9) can be simpli-

fied:

VTGE � VT�2H~p 1 RT7C� �D13�

� 2VTH~p; sinceRV� �0�

� 2VTQTQH~p

� 2��0�T; IT�
~l1
~l2

24 35
� 2~l2

and the computation ofdz2 is the performed with the follow-
ing system

W22d~z2 � 22~l2 2 W21d~z1: �D14�
Onced~z2 andd~z1 are computed thed~p vector is deduced

with

d~p� QTdz: �D15�
To recapitulate, the resolution of the equationHEd~p�

2GE in the Levenberg–Marquardt algorithm has to be
performed through the following steps:

(1) ComputeD, fC, R.
(2) ComputeQ andU from Rusing elementary geometric
transformation (e.g. Householder transformation [63, p.
224]).
(3) ComputeQH~p and extract~lT1 and~l2:
(4) Computed~z1 from (D12).
(5) ComputeW� QLQT and extractW22 andW21.
(6) Computed~z2 from (D14).
(7) Computed~p from (D15).
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Abstract. Pairwise geometric histograms have been demonstrated as

an e�ective descriptor of arbitrary 2-dimensional shape which enable ro-

bust and e�cient object recognition in complex scenes. In this paper we

describe how the approach can be extended to allow the representation

and classi�cation of arbitrary 2

1

2

- and 3-dimensional surface shape. This

novel representation can be used in important vision tasks such as the re-

cognition of objects with complex free-form surfaces and the registration

of surfaces for building 3-dimensional models from multiple views. We

apply this new representation to both of these tasks and present some

promising results.

1 Introduction

Finding a correspondence between two or more surfaces is a frequently en-

countered problem in many computer vision tasks. When surface based descrip-

tions are used for object recognition, the hypothesis that a particular object is

in a scene is con�rmed by �nding a good correspondence between scene and

model surfaces [6]. When constructing geometric models of objects by merging

multiple range images taken from di�erent viewpoints, the surfaces described

by each range image require registration into a common coordinate frame [3, 1].

This can be done by �nding the correspondence between portions of the object's

surface which is common to two or more views.

In this paper we present a novel representation for arbitrary 2

1

2

- and 3-

dimensional surface data which enables correspondences to be found reliably

and e�ciently. The representation is based on pairwise geometric histograms

which have previously been demonstrated as a representation for 2-dimensional

shape data for object recognition applications [4].

The approach that we are proposing determines whether two surfaces have

a correspondence as follows:



1. Each of the surfaces is approximated by a triangular mesh. The details of this

approximation and the algorithms we have employed for this are presented

in Section 3.1.

2. Each triangular mesh facet is represented by a pairwise geometric histogram

which records the relationship between this facet and the surrounding facets

within some speci�ed neighbourhood. This representation is discussed in

Section 3.2.

3. Correspondences between individual facets are found by matching their re-

spective geometric histograms. These local correspondences provide hypo-

theses for the correspondence between the two surfaces. The metric employed

for matching geometric histograms is described in Section 4.

4. The global surface correspondence is found by �nding consistent local hypo-

theses using a probabilistic Hough transform. This is discussed in Section

5.

2 Background

A number of approaches to the problem surface registration have been de-

veloped from the \iterated closest point" (ICP) algorithm proposed by Besl and

McKay [2]. These algorithms have been popular for registering multiple views

of an object for model construction and for re�ning pose in object recognition

tasks. The central idea behind this algorithm is that by forming correspond-

ences between points on one surface and their nearest neighbours on another

and then minimising the distances between them, the registration of the two

surfaces is improved. If this process is iterated the registration of the surfaces

often converges. The approach is computationally expensive because of its use

of raw surface point data and because of the iterative nature of the algorithm.

A more serious problem is that the algorithm is not guaranteed to converge,

sometimes getting caught in local minima, and typically requires good initial

alignment of the surfaces to get a reasonable solution. One of the advantages

of the ICP approach is that, because it uses all of the surface data available,

when it does converge the registration can be very accurate. The algorithm is

also suitable for arbitrary classes of surface.

Other researchers have used interest points on the surface instead of all of the

surface data and formed correspondences by matching geometric descriptors of

those points. Thirion [13] proposes the use of extremal points on 3-dimensional

surfaces which can be characterised by a number of properties such as their

curvature. Interest points with similar properties are treated as potential cor-

respondents and the transformation that aligns the surfaces is determined from

triplets of corresponding pairs. Recently, Johnson and Hebert [9] have proposed a

novel interest point descriptor which allows point correspondences to be formed

between surfaces. In their approach the interest points are de�ned by the ver-

tices of a polygonal mesh �tted to the surface. At each vertex the geometric

relationship with all of the other mesh vertices are recorded in a 2-dimensional

spin-image which is invariant to rigid transformations of the surface. Interest

point correspondences are found by identifying points with similar spin-images.



Local surface features such as edges and surface patches have also been used

to determine the correspondence between two surfaces [5]. Initially all features

on the �rst surface are considered as potential correspondents of features of the

same class on the second surface. The number of potential correspondences is

then quickly reduced using approaches based on geometric constraints such as the

interpretation tree. Each pair of matched features provides a constraint on the

transformation that aligns the surfaces and these are used to determine the best

global alignment. The motivation for using features is to reduce the amount of

data to be processed whilst maintaining valuable information needed to perform

matching and constrain the alignment transformation. The disadvantage is that

a particular choice of features can limit the scope of the algorithm to particular

classes of surfaces.

3 A Novel Surface Shape Representation

3.1 Surface Reconstruction and Approximation

Initially a given surface S, acquired using a range sensor, is described by a set

of points samples P = fp

1

; : : : ; p

N

g. The points may represent a single view of

the surface or a number of di�erent views, for example from di�erent viewpoints

around an object. The point set is then used to construct a triangular mesh

approximation

^

S to the original surface, where

^

S = ft

1

; : : : ; t

M

g and t

i

is a

triangular facet of the mesh.

It is important to clarify at this stage that the only requirement of the mesh

is that it is a good approximation of the surface shape. No assumptions are

made about the actual distribution of facets over the surface as this is unlikely

to be repeatable. To minimise the amount of memory and computation needed

to solve the correspondence problem, the mesh should also contain the smallest

number of facets needed to give a good approximation of the surface.

A number of algorithms have been proposed for reconstructing a triangular

faceted mesh from a set of points. In the work presented here an initial, regu-

lar mesh was constructed from the sampled point data using a reconstruction

algorithm by Hoppe et al [8]. The resulting regular mesh was then re�ned to min-

imise the number of facets whilst maintaining most of the surface shape using a

surface simpli�cation algorithm by Garland and Heckbert [7].

There are a number of advantages in using a triangular mesh to approx-

imate the surface to be represented instead of more complex features such as

quadric patches, the most obvious being e�ciency. Constructing a mesh is also

signi�cantly more straightforward than segmenting a surface into more complex

features. A second important issue is scope. Any surface can be approximated by

a triangular mesh but selecting a �xed set of features can impose limitations on

the types of surfaces that can be described. Another important issue is that of

stability. If surface patches are assigned to di�erent classes based on their shape

then borderline cases can result in sudden changes in the representation because

of slightly di�erent viewing conditions or noise.



The disadvantage of using a triangular mesh is that it requires many fa-

cets to describe surfaces with high curvature to a high degree of accuracy. By

statistically modelling the shape error introduced by the triangular shape ap-

proximation, it is still possible to obtain a good shape representation when only

a relatively small number of facets are used.

3.2 Histogram Construction

A pairwise geometric histogram h

i

is constructed for each triangular facet t

i

in

a given mesh which describes its pairwise relationship with each of the other

surrounding facets within a prede�ned distance. This distance controls degree

to which the representation is a local description of shape. The histogram is

de�ned such that it encodes the surrounding shape geometry in a manner which

is invariant to rigid transformations of the surface data and which is stable in

the presence of surface clutter and missing surface data.

Figure 1(a) shows the measurements used to characterise the relationship

between facet t

i

and one of its neighbouring facets t

j

. These measurements are

the relative angle, �, between the facet normals and the range of perpendicu-

lar distances, d, from the plane in which facet t

i

lies to all points on facet t

j

.

These measurements are accumulated in a 2-dimensional frequency histogram,

weighted by the product of the areas of the two facets as shown in Figure 1(b).

The weight of the entry is spread along the perpendicular distance axis in propor-

tion to the area of the facet t

j

at each distance. To compensate for the di�erence

between the measurements taken from the mesh and the true measurements for

the original surface, the entry is blurred into the histogram. For the work presen-

ted here a Gaussian blurring function has been used, but we intend to investigate

more appropriate error models in the future. Certainly the scale of the blurring

function relates to the coarseness of the mesh. The complete pairwise geometric

histogram for facet t

i

is constructed by accumulating these entries for each of

the neighbouring facets.

For clarity, an example of a pairwise geometric histogram is presented in Fig-

ure 2(a). This has been constructed for the highlighted facet on the hemispherical

mesh presented in Figure 2(b). Note that the representation only depends upon

the surface shape and not on the placement of facets over the surface. This inde-

pendence on the placement of the facets is important because recovering exactly

the same mesh for the same surface under di�erent viewing conditions is very

unlikely, particularly if there is some surface occlusion.

4 Generating Correspondence Hypotheses

Given two surface meshes,

^

S

A

and

^

S

B

, the geometric histogram representation

allows correspondences between all facets, t

A

i

and t

B

j

, from each of the meshes

to be determined. A match for facet t

A

i

is determined by �nding the best match

between its respective pairwise geometric histogram and all of the histograms
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Fig. 1. (a) The geometric measurements used to characterise the relationship between

two facets t

i

and t

j

. (b) The entry made into the pairwise geometric histogram to

represent this relationship.

representing the facets in surface

^

S

B

. These local correspondences are treated as

hypotheses for the correspondence between the two surfaces S

A

and S

B

.

The similarity, D

ij

, between two pairwise geometric histograms h

i

and h

j

is

de�ned using the Bhattacharyya metric. This is given by the expression:

D

ij

=

X

�;d

p

h

i

(�; d)

q

h

j

(�; d) (1)

The Bhattacharyya metric is appropriate when the error on the data can be

described using a Poisson distribution. This is a reasonable assumption for meas-

ured frequency distributions such as a geometric histogram [12]. A derivation of

this metric is presented in Appendix A.

5 Hypothesis Veri�cation

Each pair of matched mesh facets provides evidence that the surfaces to which

they belong have the same shape, at least locally, and can therefore be registered.

The transformation that aligns the paired facets also provides a constraint on

the transformation that aligns the complete surfaces. The problem then is to

determine whether there is enough evidence to support these hypotheses and, if

so, to determine the transformation that aligns the surface data.

We have used an approach taken by other researchers in which N-tuples

of matched features, in our case paired mesh facets, are used to estimate the
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Fig. 2. (a) The geometric histogram that characterises the relationship between high-

lighted facet and the other facets in the mesh in (b).

alignment transformation. These estimates are then accumulated in a Hough

transform resulting in a peak where there is consistency. As an improvement

to this scheme we have adopted a probabilistic approach in which the error on

the estimated transformation is integrated into the Hough accumulator [11]. This

error is determined by statistically modelling the error between the facets and the

true surface and propagating this error through the transformation estimator.

Initially 2-tuples of paired facets are used to estimate the rotation component

of the alignment transformation and votes are placed in a 3-dimensional Hough

transform. The number of 2-tuples can be very large so only a proportion of

the largest paired facets are used. If a signi�cant peak is found in this space

then 3-tuples of paired facets are used to estimate the translation component

of the alignment transformation. Again, only a proportion of the largest facets

are used to allow fast operation. If a signi�cant peak is found in the translation

space then the hypothesis that the surfaces can be registered is accepted.

6 Experiments

Two applications of the proposed surface representation are presented here. The

�rst application is the registration of two di�erent views of an object with a

complex surface. The second application is the identi�cation and localisation

of known objects in a scene. All of the data were acquired using a laser stripe

range scanner with an accuracy of approximately 0.1mm. The pairwise geometric

histogram parameters selected for both of these experiments are presented in

Table 1.



Quantisation of Relative Angle Axis 20 bins

Quantisation of Perpendicular Distance Axis 20 bins

Maximum Perpendicular Distance � 100mm

Maximum Relative Angle

�

2

radians

Table 1. The pairwise geometric histogram parameters used in the experiments presen-

ted here.

6.1 Registration of Free-form Surfaces

In this experiment the objective is to �nd the correspondence between two sur-

faces constructed from di�erent views of an object. The surface meshes, presen-

ted in Figure 3, describe the surface of a farm animal model and consist of 1000

facets each. It should be noted that the model has quite complex, free-form sur-

faces which are di�cult to describe using features such as quadric patches or

edges.

Fig. 3. The triangular meshes for two di�erent views of the surface of a farm animal

model.

Figure 4(a) presents the two surfaces in their registered positions. Certainly,

from a qualitative point of view, the registration seems to have been successful.

This is emphasised by the inter-meshing of the two surfaces on the rear leg of

the model shown in close-up in Figure 4(b). The fact that this inter-meshing is

not visible over all of the surface suggests that there is some registration error,

however.

Only the largest 5% of the facets were matched and used to determine the

alignment transformation. The entire registration process took approximately

4 minutes 24 seconds on a 200MHz Sun Ultra. A breakdown of these times is

presented in Table 2.



(a) (b)

Fig. 4. (a) The two meshed surfaces in their registered positions. (b) A close-up of the

rear leg of the model. The light and dark shades of grey represent the two di�erent

surfaces.

Triangular Mesh Construction 110 seconds

Geometric Histogram Construction 212 seconds

Geometric Histogram Matching 6 seconds

Resolving Hypotheses 126 seconds

Table 2. A breakdown of the time to complete the registration for each of the main

algorithm stages.

6.2 Object Recognition and Pose Estimation

The objective of this experiment is to identify known objects in a scene and

estimate the pose of those objects. The object models, presented in Figure 5,

have been constructed from multiple views to produce a complete 3-dimensional

description of all of the surfaces. Each model is represented by 1000 facets.

Figure 6 presents a scene containing two of the known models. The scene has

been captured with a single range image and represented by 1000 facets.

The classi�cation of each of the scene facets is presented in Figure 7. In each

of the three images the scene facets which best match a facet from the respective

model have been drawn. It can be seen that most of the facets have been classi-

�ed as belonging to the correct models. Most of the incorrectly classi�ed facets

lie very close to surface discontinuities where the recovery of the surface nor-

mal is very poor. This is largely due to the mesh construction algorithm which

has problems preserving discontinuities in the range data. There are also some

problems with the classi�cation of the underside of the cylinder model. This is

likely to be because this surface is almost parallel to the viewing direction which

makes recovery of the surface normal prone to error.



Model 3Model 2Model 1

Fig. 5. The three model objects used in the recognition experiment.

Figure 8 presents the results of the recognition of pose estimation process.

The original scene data is shown in the darker shade and the recognised mod-

els are shown in their estimated positions in the lighter shade. The algorithm

has both determined the objects present in the scene and formed a reasonable

estimation of their positions.

All of the facets were matched and then the largest 5% from each class were

used to determine the model poses. The entire object recognition process took

approximately 14 minutes 3 seconds on a 200MHz Sun Ultra. A breakdown of

these times is presented in Table 3.

Triangular Mesh Construction 54 seconds

Geometric Histogram Construction 96 seconds

Geometric Histogram Matching 329 seconds

Resolving Hypotheses 364 seconds

Table 3. A breakdown of the time to complete the recognition process for each of the

main algorithm stages.

7 Conclusions

The problem of �nding a correspondence between two or more surfaces has

been investigated by a number of researchers and several solutions have been

proposed. The most reliable approaches are based on �nding point-feature or



Fig. 6. The scene data used in the recognition experiment.

surface-feature correspondences between the surfaces being registered and using

these to estimate the transformation that aligns the complete surfaces.

In this paper we have proposed a novel representation for surface data which

enables local surface correspondences to be determined. This representation is

invariant to rigid transformations of the surface data and, because of its stat-

istical nature, allows errors in the approximation of the surfaces by triangular

meshes to be modelled.

Having established local correspondences we have shown that the transform-

ation that aligns complete surfaces can be determined using a Hough voting

scheme. The advantage of using Hough voting is that it is possible to model

transformation errors present in the local correspondences by adopting a prob-

abilistic Hough transform.

To demonstrate the e�ectiveness of the new representation and the algorithm

that determines the alignment transformation, we have presented two experi-

ments. In the �rst experiment two surfaces of a complex curved surfaced object

taken from di�erent viewpoints are successfully registered. In the second exper-

iment, known objects are successfully identi�ed and located in a scene.
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(a) (b) (c)

Fig. 7. (a),(b) & (c) present the scene facets which best match facets in Models 1, 2

& 3 respectively.

A Derivation of the Similarity Metric

In this section the derivation of a statistical metric for comparing binned meas-

urements is presented. Given a random variable X , a statistical measure of the

distance D between the endpoints X = x and X = x + �x of a short line is

obtained by normalising by the standard deviation �.

D =

�x

�

(2)

In general then, the statistical distance between any two points X = s and

X = m can be determined by the de�nite integral:

D =

Z

m

s

dx

�

(3)

For N independent measurements the statistical distance is given by a sum of

squared components:

D

2

=

X

i

(

Z

m

i

s

i

dx

i

�

i

)

2

(4)

It is well known that binned data conforms to a Poisson distribution and that

the variance of a Poisson variable is equal to its mean. A statistical distance

metric for binned data is then obtained by substitution of �

i

=

p

x

i

.

D

2

=

X

i

(

Z

m

i

s

i

dx

i

p

x

i

)

2

(5)



Fig. 8. The identi�cation and localisation of the two objects in the scene. The scene

data is presented in the darker shade and the models in the lighter shade. The second

image presents the scene from a di�erent view-point.

= 4

X

i

(

p

s

i

�

p

m

i

)

2

(6)

Removing the constant factor in this expression gives the statistical metric pro-

posed by Matusita [10] which is known as the Matusita distance.

D

matusita

=

X

i

(

p

s

i

�

p

m

i

)

2

(7)

Expanding this expression gives:

D

matusita

=

X

i

s

i

+

X

i

m

i

�

X

i

p

s

i

p

m

i

(8)

If both m and s are normalised, or when using this metric to compare a single

scene histogram with a set of normalised model histograms, this is simply:

D

matusita

= const�

X

i

p

s

i

p

m

i

(9)

Removing the constant results in the Bhattacharyya distance.

D

bhattacharyya

=

X

i

p

s

i

p

m

i

(10)
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A Functional-Based Segmentation of Human Body
Scans in Arbitrary Postures

Naoufel Werghi, Member, IEEE, Yijun Xiao, and Jan Paul Siebert, Member, IEEE

Abstract—This paper presents a general framework that aims to
address the task of segmenting three-dimensional (3-D) scan data
representing the human form into subsets which correspond to
functional human body parts. Such a task is challenging due to the
articulated and deformable nature of the human body. A salient
feature of this framework is that it is able to cope with various
body postures and is in addition robust to noise, holes, irregular
sampling and rigid transformations. Although whole human body
scanners are now capable of routinely capturing the shape of the
whole body in machine readable format, they have not yet realized
their potential to provide automatic extraction of key body mea-
surements. Automated production of anthropometric databases is
a prerequisite to satisfying the needs of certain industrial sectors
(e.g., the clothing industry). This implies that in order to extract
specific measurements of interest, whole body 3-D scan data must
be segmented by machine into subsets corresponding to functional
human body parts. However, previously reported attempts at au-
tomating the segmentation process suffer from various limitations,
such as being restricted to a standard specific posture and being
vulnerable to scan data artifacts. Our human body segmentation
algorithm advances the state of the art to overcome the above lim-
itations and we present experimental results obtained using both
real and synthetic data that confirm the validity, effectiveness, and
robustness of our approach.

Index Terms—Human body shape analysis, Reeb graph, scat-
tered 3-D range data segmentation, 3-D surface topology, 3-D
whole-body scanners.

I. INTRODUCTION

THE PAST FEW years have witnessed the emergence of
three-dimensional (3-D) imaging technology that enables

full scanning of the human body (HB) surface with reasonable
measurement accuracy as well as at an acceptable computa-
tional cost. This advance facilitates the exploitation of the HB
form in various areas such as anthropometrical research [1]–[3],
clothing design [4]–[6], and virtual human animation [7], [8].
Although the raw data generated by the HB scanner requires
substantial main memory and storage resources, it contains little
semantic information. To achieve effective and efficient use of
body scan data, it is often necessary to partition the whole scan
data set into subsets corresponding to the principal body parts.
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This segmentation provides the basis for a high-level represen-
tation of the scan data and is a prerequisite for further semantic
analysis. For example, in medical applications, the segmenta-
tion process provides an Atlas for extracting data belonging to
limbs that can then be used to support further analysis such as
fitting generic limb models. These models can then be used to
automate specific clinical protocols, such as spinal curvature as-
sessment. Applications dealing with the estimation of HB mo-
tion from range image sequences [9], can exploit scan data seg-
mentation when initializing the parameters of a HB tracking al-
gorithm. HB scan segmentation is also useful for online garment
shopping applications [5], [6] as it can contribute toward pro-
viding accurate body measurements and sizing.

Many attempts to devise a framework for the segmentation
of objects that are human-like in shape have been reported in
the literature [10]–[13]. Most of this previous work is based
on contour-based segmentation techniques whereby points
of discontinuity in the range data are first detected and then
dynamically grouped into contours using various techniques,
such as energy-minimization, when processing deformable
curves [14]. However, automatic segmentation of real HB data
is a more challenging problem, firstly because the body shape
is both articulated and deformable and secondly because the
scan data is by nature nonuniformly sampled and may exhibit
gaps and may be corrupted by noise. It was therefore necessary
to explore new techniques in order to formulate approaches
that would be better able to cope with these challenges. In his
pioneering work, Nurre [15] approximated the body structure
by a stick-template representing the head, the two arms, the two
legs and the torso. His goal was to segment the body into six
segments corresponding to these parts. This approach combines
a global shape description, namely moments analysis, and local
criteria of proximity which are derived from a priori knowledge
of the relative positions of the body parts in the standard posture
(standing body with arms held at the sides). The range data
is organized into slices of data points. The horizontal slices
are stacked vertically and the data points are assigned to the
different body parts according to the slice’s topology and its
position in the body. While this work achieved considerable
progress toward the automatic decomposition of HB scan
data, it has been criticized for imposing the requirement to
limit body poses to a strict standard posture and for its lack
of robustness against noise, gaps in the data, and variations in
shape and posture of the HB. There have been many subsequent
attempts to improve Nurre’s approach. For example, Decker
et al. [16] improved the localization of the key landmarks
of the HB by applying differential operations on slice shape
attributes. Although a degree of improvement resulted, this

1083-4419/$20.00 © 2005 IEEE
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approach could not remedy the limitations of Nurre’s approach.
Recently, Wang et al. [17] proposed a new approach based on
a Fuzzy logic framework, however, this again was restricted
to standing postures. Their segmentation technique involved
local curvature analysis of the slices and operates on mesh data
that has undergone several preprocessing stages. The overall
performance of this approach remains identical to that of Nurre.

From the above it is evident that the approaches developed so
far are restricted by their underlying assumptions, and none of
these has been able to overcome the standard posture restriction.
Furthermore, most of these approaches suffer from instability
when applied within real applications that must cope with noisy
and corrupted 3-D HB scan data. In addition, to date no evi-
dence citing the repeatability of these previous algorithms has
been reported in the literature. By definition, HB scan data seg-
mentation must be of practical utility, it must be robust to vari-
ation in the body surface shape stemming from biological fac-
tors such as age, genetics, etc. It must also cope with changes
of body posture as well as with the diversity of the scan data
sources. While ad hoc techniques might work for special cases,
they cannot address the above stringent requirements. In a re-
cent publication [18], the authors presented an approach that
successfully addressed some of the previously discussed issues.
However this approach can only deal with moderate variations
around the standard posture.

In this paper we propose a general topological analysis frame-
work that offers a systematic way to segment HB body data. The
salient feature of this framework is that it can cope with body
shape variations, posture changes, rigid transformations and di-
verse sources of scan data. Furthermore, our approach does not
require any pre-processing stages, operates on 3-D point-cloud
data, and does not rely on local feature analysis, which would
be vulnerable to deficiencies in the scan data.

The novel aspects of this paper are 1) the extension of the
Reeb graph concept to sets of scattered data points, which rep-
resents an extension to the work of Biasotti et al. [19] which
explores the use of Reeb graph applied to polygonal meshes;
2) a simple and efficient technique for computing the geodesic
distance map of HB shape (and generally of a three-dimensional
shape) with respect to a source point; 3) a robust technique, for
constructing the discrete Reeb graph (DRG), which can cope ef-
fectively with data deficiencies; and 4) a new functional surface
segmentation method based on the concept of the DRG applied
to the HB surface.

The remainder of this paper is organized as follows. Section II
describes the theoretical foundations of our approach, namely
Morse theory, the Reeb graph and geodesic distance. Section III
describes the implementation of the segmentation approach and
the mechanisms involved. Section IV validates our proposed
framework via experimental results. Finally, in Section V, we
provide a summary of the main findings of this paper and make
suggestions for future research.

II. MORSE THEORY AND THE REEB GRAPH

Morse theory can be thought of as generating the classical
theory of critical points (maxima, minima and saddle points)
of smooth functions on a smooth manifold. Specifically Morse

theory states that for a generic function defined on a closed com-
pact manifold, the nature of its critical points determines the
topology of the manifold. Morse functions are generic functions
whose critical points are nondegenerate (Hessian matrix of the
function at the critical point is nonsingular). For a Morse func-
tion, the critical points determine the homology groups of the
manifold, which in turn fully describe its topology. Moreover
the way the manifold is embedded can be coded using a Reeb
graph, as proposed by Reeb [20] to represent the evolution and
arrangement of level-set curves on a manifold. A Reeb graph
describes the configuration of and relationship between critical
points and provides a way to understand the intrinsic topolog-
ical structure of a shape. Morse theory and the Reeb graph have
been used in many applications such as shape matching [21],
shape coding [22]–[24], surface compression [25], volume vi-
sualization [26], terrain analysis [27] and 3-D skeletonization
[28], [29]. The last publication cited is particularly close to our
work. We will describe and compare in detail the related ap-
proaches in Section III-F.

A Reeb graph can be defined as follows.
Definition 1: Let be a real-valued function on a compact

manifold . The Reeb graph of is the quotient space of the
graph of in by the equivalence relation “ ” defined by

if and and
are in the same connected component of .

Roughly speaking, the two pairs and
are represented as the same element in the

Reeb graph if the values of are the same and if they belong
to the same connected component of the inverse image of

or . Actually one element in the Reeb graph of a
compact manifold represents all points having the same value
under a real function. The Reeb graph is a representation of
the evolution and arrangement of these groups of points, also
called level-sets. Fig. 1(a) illustrates an example of a Reeb
graph for a torus. The function is the “height” function which
here simply returns the value of the coordinate of a point .
In the corresponding Reeb graph, a point in a branch represents
isovalued and connected points on the manifold. From bottom
to top, the level-sets on the torus expand, split, merge and then
become smaller. The Reeb graph gives an intuitive description
of the evolution of level-sets, where diamond points denote the
level-sets passing through saddle points on the torus. By ap-
plying the Reeb graph to a HB, we get a tree-like representation
as illustrated in Fig. 1(b). Extremal points lie on the head top,
hand tips and the bottom of the feet. Saddle points are located
at the armpits and groin. Moreover, the branches in the Reeb
graph reflect the body parts of the human figure, i.e., arms,
legs, torso, and head. Therefore, if we succeed in retrieving
the level-sets in these branches, we can partition the input
point-cloud data into sub-sets approximately corresponding to
the body parts of the human shape.

A. The Morse Function

For standard postures such the one shown in Fig. 1(b), where
the human figure stands in the measuring platform with arms
held at the sides and legs separated, the simple height function

that returns the z coordinate of a point , is an op-
timal choice because the orientations of the body parts in such
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Fig. 1. (a) Reeb graph of a torus. (b) Reeb graph of a HB shape. (c) Discrete Reeb graph.

postures are orthogonal to the cross-sectional planes inferred by
the height function. For nonstandard postures where the human
figure is not constrained to be in a standing position, both the
arms and legs as well as the whole body can have arbitrary orien-
tations. The only constraint is that the body limbs must be sepa-
rated from each other everywhere except at their joints. For such
postures, the simple height function cannot guarantee a Reeb
graph faithful to the HB anatomy. This limitation emanates from
the fact that the height function is not invariant under rigid trans-
formation or under deformation inferred by whole body trans-
formation or body part movement. Therefore, to be capable of
handling nonstandard postures, it is imperative that the Morse
function be invariant under these transformations, i.e., a func-
tion that keeps the same value as long as the topology of the sur-
face is preserved. The curvature function could be a candidate
as it is invariant under rotation and only very slightly affected
by body movements. However, it is very sensitive to noise and
data deficiencies that would lead to highly unstable Reeb graph
structures. Therefore, it is not appropriate for our application
which must handle scattered noisy scan data that might be cor-
rupted by many deficiencies such as holes, gaps and nonuniform
sampling. To find a function that overcomes these problems, we
employed the geodesic distance [31] defined as the length of the
shortest path connecting two points. The geodesic distance is
invariant to the rotations and transformations produced by body
movements and is resistant to data corruption and perturbation.
Thus the geodesic distance metric underpins a stable Reeb graph
with respect to these aspects. The function defined as

(1)

where returns the geodesic distance from a point
to a source point , is a reasonable candidate for a Morse func-
tion. However the location of the source point might affect, to a
certain extent, the structure of the Reeb graph as will be shown
later.

Another candidate for a Morse function is the function de-
fined as

(2)

This function represents the sum of the geodesic distances be-
tween the point X and all the points on the body surface. In ad-

dition to being resistant to geometric transformations and de-
formations produced by body movements, this function is not
related to any source point and therefore guarantees a stable
Reeb graph. Intuitively, the function presents low values for
points located at the center of the body (torso area), for which
the distance to other points is relatively small, and high values
for points located at the body extremities. On the other hand,
this function is computationally expensive when compared to

as it will be described in Section III-A.

B. The DRG

Classical Morse theory is concerned with only nondegenerate
critical points of smooth functions (Morse functions) on smooth
manifolds. The notion of the Reeb graph in its standard form is
defined with respect to smooth and continuous surfaces. There
have been several successful attempts to extend the Reeb graph
to discrete surfaces e.g., [19], but the surface data is required
to be organized into polygonal meshes. In practice, our data
format does not comply with this requirement, as it consists
of an unorganized cloud of 3-D data points which have been
corrupted by noise, gaps and nonuniform sampling. We present
a Reeb-graph extraction technique that is compatible with this
type of data. For clarification of terminology, hereafter we refer
to Reeb graph extracted from such data as the DRG to distin-
guish it from the classical Reeb graph. The concept of the DRG
is described in the following definitions.:

Definition 2 (Connectivity of Point Sets): Two point sets
and are defined as

connected if and such that .
denotes the distance between points and and

is a given threshold. The above definition also holds for the
connectedness between two points for the particular case where
the sets P and Q contain a single point each.

Definition 3 (Connective Point Set): A point set is con-
nective if subset and and are connected.
Here denotes the complement of in C. Definition 3 defines
a “tight” point set in which all the points are connected.

Definition 4 (Level-Set Curve): A level-set curve is an iso-
valued connective point set, that is a group of points, that share
the same Morse function value, and which forms a connective
point set.

Dentition 5: A Discrete Reeb graph is a non-oriented two-
dimensional (2-D) graph, where a node represents a level-set
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curve and where an edge represents a connection (in the sense
of Definition 2) between two adjacent level-set curves.

Based on the above definitions, the construction of the DRG
involves the following tasks.

Step 1: Establishing Level-Sets: Level-sets are groups
of iso-valued data points defined as

, where is the Morse function
and is a set of discrete equidistant values.

Step 2: Establishing Level-Set Curves: Each level-set is de-
composed into a group of level-set curves, using the criteria out-
lined in Definition 3, and where the threshold is set to which
stands for the minimum distance between a pair of points.

Step 3: Building the Connectivity Between Nodes: Two
nodes in two adjacent level sets ( and ) are linked if their
corresponding level-set curves are connected, according to Def-
inition 2. However, the related threshold is set to , where

is a parameter used to tune the precision of the connection.
By following the above steps, we can construct progressively

a graph containing all the nodes and their associated links.
Fig. 1(c) depicts a DRG of the HB shape. This graph has the
appearance of a discrete version of the graph in Fig. 1(b), where
the continuous branches are replaced with successively linked
nodes. The DRG extends the concept of Reeb graph to discrete
surfaces, and thus permits topological analysis of scan data.

III. THE SEGMENTATION

The segmentation process involves three tasks, namely: 1)
computing the Morse function; 2) extracting the level-sets; 3)
decomposing these level-sets into connected level-set curves;
and 4) extracting the different branches. Task 3 in essence
comprises DRG construction. The implementation of these
tasks within the segmentation process and the complexity of
the overall algorithm depend on the adopted Morse function.
When the simple height function is used (i.e., when dealing
with standard postures), the four tasks are carried out within
a single stage in one pass algorithm. When the function is
used, tasks 1 and 2 are performed simultaneously. Alternatively,
when the function is employed the four tasks are executed
consecutively. The following sections will shed light on these
aspects.

A. Computation of the Morse Function and

Both Morse functions and involve the computation of
geodesic distances. In the literature, Dijkstra’s algorithm [30]
has been the most popular tool for computing geodesic distances
between a group of points and a source point. In addition, it pro-
vides the path from any point to the source point. However, this
algorithm implies a significant computational cost. Indeed, it re-
quires that the group of points be organized in a graph, where
a node is associated to each point and edge represents a con-
nection between pair of points, according to a proximity cri-
terion. The construction of such graph infers a computational
complexity that can go up , where is the number of
points. Dijkstra’s algorithm itself, in its optimal implementa-
tion, infers a complexity of , where is the
number of edges in the graph. For these reasons and because

finding the paths to a source point is not required in our applica-
tion, we preferred not to use this algorithm. Instead, we devel-
oped an efficient algorithm based on a wavefront propagation
technique. It is based on the following principle: Given a wave
centered on a manifold, then all the points on the wavefront have
the same geodesic distance to the wave center and thus form a
level-set. Our wavefront propagation algorithm operates on a
binary voxel grid since it is easy to define a neighborhood in
voxel space and to then traverse connected voxels. Due to these
well-behaved properties, wavefront-propagation on a voxel grid
can have a very simple mathematical form as follows:

where is the wavefront generated on the th iteration of the
algorithm; is the source voxel; . is the
complement set of . denotes the morphological dilation op-
erator and is a 3 3 3 structuring element composed of 27
1-valued voxels. The wavefront starting position is located at
the source voxel associated with the source point and the wave-
front then iteratively spreads on the voxelised surface from this
location. In each iteration, the wavefront is the level-set con-
taining voxels of the same geodesic distance to the source point.
The attractive aspect of this technique is that it simultaneously
extracts the level-sets while it computes the function. It is
easy to prove that the computational complexity in each itera-
tion is , where is the number of voxels in . There-
fore, the complexity of the whole algorithm is , where
is the number of all 1-valued voxels. This linear complexity al-
lows efficient calculation of geodesic distances and level-sets.
Therefore the computation of the function is carried out by
simply applying the above algorithm after selecting a source
point. Fig. 2(a) illustrates wavefront-propagation applied on a
simple ellipsoid surface. Row 1 in Fig. 2 depicts grey level map-
ping of the function, related to a posture instance, and cor-
responding to different locations of the source point, namely
the head (column f), the torso(columns g, h, i, and j), the knee
(column k), and the hand (column l). The grey level varies from
white (which corresponds to the minimum value, at the source
point) to the black (largest value). Row 2 depicts the corre-
sponding level-sets. We can observe that while the level-set ori-
entations follow the body limbs in all cases, they do present
some dissimilarities, particularly at the junction areas.

The computation of the function is more complex as it in-
volves for each data point the sum of geodesic distances from
that point to all the points in the body surface. The discrete ap-
proximation of in (2) is

(3)

Using (1), the above equation can be rewritten as
. This indicates that the computation of at

a given point requires computing the function for all the
1-valued voxels. Making thus the complexity of the whole
algorithm that calculates the function for all the points to be

.
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Fig. 2. (a): Wavefront propagation on a simple elliptic surface. (b), (c), (d) Level-sets of � function, related to an L-Shaped object, and corresponding to source
points located at the junction, the middle and the extremity of a branch respectively. (e) Level-sets of � function. Row 1: grey level mapping of the � function for
different source point locations (indicated by the arrows). Rows 2 and 3: corresponding level-sets’ patterns and DRGs, respectively. Row 4: grey level mappings
of the � function, the corresponding levels-sets’ patterns and DRGs related to two different postures.

B. Source Point Location and Its Effect on the Level-Sets and
the DRG

While the exhibits nice properties in terms of efficiency
and ease of implementation, an effective deployment of this
function for constructing the DRG, and for performing the sepa-
ration between branches, depends to some extent on the location
of the source point however. Ideally, the use of geodesic distance
would permits us to extract level-sets that maintain a consistent
orientation relative to the HB pose. Locally, this would result in
the recovery of “slices” parallel to the principal axes of human
limbs. Unfortunately, this desirable behavior is compromised at
areas comprising junctions (and also within the neighborhood
of the source point) and the patterns resulting from such cor-
ruption are dependent on the location of the source point it-
self. Fig. 2(b), (c), and (d) illustrates this effect on a simple
L-shaped object, showing the different level-sets that are pro-
duced by the function corresponding to three different source
points located at respectively: the junction area, the middle, and
the extremity of one branch. By observing their corresponding
patterns at junction areas clear dissimilarities become apparent.

The disparity between the level-set’s behaviors in the three cases
makes their decomposition into subsets, and the correspondence
of these subsets to the their associated branches, unlikely to re-
sult in an identical separation between these branches. For the
purpose of comparison, we show in Fig. 2(e) level-sets of the
function for the same object. We notice that the level-sets, seem-
ingly behave like those related to the junction-located source
point case. Indeed, both of them exhibit a degree of symmetry
at the junction area.

Regarding the reconstruction of the DRG, ideally, we would
like to have a DRG structure that is similar to the “standard” HB
DRG depicted in Fig. 1(c). This structure reflects the anatomy
of the HB shape, and thereby facilitates the identification of the
branches. However, the stability of this structure is guaranteed
only for source points selected at the central area of the body,
that is the torso-head area. Fig. 2 (row 3) illustrates this aspect.
It shows a group of DRGs obtained for different source point
locations. We can observe that for cases where the source point
is located within the torso-head area a DRG structure is gener-
ated which is close to the standard form displayed in Fig. 1(c).
On the other hand, in those cases where the source point is lo-
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Fig. 3. Histogram of the distances between the most closest pairs of scan data points. (a) Cyberware scanner. (b) Wick & Wilson scanner.

cated at the hand and the knee, the recovered DRG appears to
have become corrupted. These observations suggest that in order
to obtain a standard DRG the source point must be selected at
the neighborhood of the medial axis of the body (i.e., the torso
axis). While we do not have a theoretical basis for this hypoth-
esis, we believe that it is linked to the fact that the satisfaction of
that condition infers a symmetric distribution of the function
with respect to the medial axis of the body. As the grey level
mappings show, in Fig. 2(row1), cases exhibiting a symmetric
distribution of the function induce a standard form of DRG,
as opposed to cases where the symmetry of the function is
severely violated (row 1, columns k and l, for source points lo-
cated at the knee and the hand).

In contrast to the function, the function which by defi-
nition has no dependance on a source point, exhibits a centered
and a symmetric distribution (Fig. 2, row 4, a and d) from which
it is possible to infer a stable DRG as shown in (Fig. 2, row 4,
c and f). Therefore, when a function is employed, a suitable
source point can then be obtained via manual selection or auto-
matically using simple heuristic methods. One plausible method
is the following: 1) compute the function for an arbitrary
source point; 2) search for the point at which is closest to the
average value; and 3) repeat 1) and 2) until the location of the
source point converges. The point of convergence will be then
located nearby the geodesic center of mass, in the torso-head
area, and can therefore be selected as a suitable source point.

C. Threshold Setting

Setting the appropriate range of the threshold involved in
step 2 and step 3 of the DRG construction should be performed
with care since large values might introduce “short-circuit”
edges in the DRG while small values can render the graph
excessively sparse. In either case, the topological integrity
of the HB shape might not be preserved. In our application,
however, since the global geometry of the HB shape is known,
some constraints can be used in the second case to eliminate
false segments (some criteria related to this aspect are proposed
in Section III-D1). Therefore we have to care only about the
maximum value allowed for the threshold. For this purpose we

used a practical approach which consists of first estimating the
resolution of the scan data. This was conducted as follows.
We determined the set of closest pairs of data points (i.e.,
nearest neighbor tuples) over a large area of the scanned data.
Then we set the resolution to the weighted average deduced
from the related distance histogram (the term distance here
refers to the distance between the pairs of points). Fig. 3 shows
two distance histograms corresponding to two portions of scan
surface obtained from two HB scanners, namely a Cyberware
scanner and a Wicks & Wilson scanner (these scanners are
discussed in Section IV). The corresponding resolutions are

mm and mm, respectively. The expression of
the threshold can then be defined as , with the minimum
value of K being set to 2. This value would normally lead to the
most precise segmentation, however at the expense of increased
computational time. A larger value of K, might reduce the accu-
racy of the segmentation, though our experiments (Section IV)
showed that a reasonable topology-preserving segmentation
can be obtained with up to , as long as the the separation
between the body parts is larger than the threshold .

D. DRG Construction

The scan data is first organized into a voxel grid. The size of
voxel is where is the threshold outlined in Step
2. When the height function is adopted (i.e., when dealing with
standard postures), a group of iso-valued data points comprising
a “slice” of points is obtained by intersecting a plane of a certain
height with the body surface. When dealing with nonstandard
postures, the or is computed for each point in the voxel
grid. For the function, the level-sets are implicitly extracted
in this stage as described in Section III-A, whereas for the
function they are extracted subsequently. Each level-set of data
points is then decomposed into level-set curves and the DRG is
constructed according to Steps 2 and 3 described in Section II-B.

1) DRG Analysis and Branch Extraction: In this stage, the
DRG is analyzed to detect critical nodes and to extract the
branches corresponding to body parts. For the sake of clarity
we shall describe the methodology for the case of a standard
posture where the height function is employed. The general
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Fig. 4. (a) Three slices representing a portion of clean data. Each slice contains a single level-set curve (group of linked points), thus each slice is mapped into
a single node in the DRG (b). (c) Data corruption causes each slice to decompose into several level-set curves. This results in a disorganized graph (d). In this
example, the original nodes L ;L , and L have degenerated respectively into (l ; l ); (l ; l ) and (l ; l ; l ). (e): Three primary patterns in DRG.

principles of the methodology remain valid for the other Morse
functions and we shall point out any dissimilarities where these
arise.

While it appears to be straightforward to detect the critical
nodes in a DRG related to clean and well organized scan data
[such as that depicted in Fig. 1(c)], this task is not trivial for real
scan data. The data deficiencies (noise, holes and gaps) produce
topological disturbances that lead to “false” critical nodes. This
results in a corrupted tree structure as illustrated in Fig. 4. For
simplicity, the example shown in this figure covers only a por-
tion of three adjacent slices. In “clean” data, each slice consists
of an organized set of connected points 4(a). Thus, each slice
represents a single level-set curve. This will result in a DRG
composed of three nodes 4(b). For real data, a slice might be
composed of several level-set curves because of data corruption,
leading thus to several nodes per slice. The example in Fig. 4(c)
shows three level-set curves for slice 1 and two level-set curves
for each of slice 2 and slice 3. The three initial nodes
have degenerated into seven nodes . Setting the con-
nections amongst the nodes as the final step of the algorithm (as
described in step 3, Section II–B) leads to a disorganized graph
[4(d)] that results, at the scale of the whole scan, in the DRG
degenerating into a chaotic graph. The challenge therefore is
to be able to recover the topological structure of the measured
HB from such a corrupted graph. This problem is tackled as
follows: Firstly, the nodes in the DRG are arranged level-by-
level, and a link can only exist between two nodes in adjacent
levels. This property cannot be damaged by the decomposition
of nodes. Secondly, we have identified three primary topological
configurations that appear in the DRG and have termed these as
O-type, -type and Y-type patterns respectively [Fig. 4(e)]. For
example, the group of nodes , and

represent a Y-type, an O-type and a -type, respec-
tively. O-type patterns comprise two saddle nodes connected by
two branches and this pattern reflects data anomalies (wholes,
gaps) because the topology of the human form cannot produce
such a topological configuration. Indeed, this argument also ap-
plies to Y-type patterns since a standard posture cannot gen-
erate a Y-type configuration. Therefore, O-t and Y-type occur-
rences in the DRG originate only as a result of deficient data.
The -type and Y-type patterns are topologically identical how-
ever, since each comprises one saddle node and one leaf branch.
Therefore, in order to distinguish between them, we introduce
topographic information, namely, the direction of the height
function, to allow a down/up ( -type/Y-type) leaf branch cate-

gorization. Given the preceding, if O-types and Y-type patterns
occur in the DRG, we know that they are caused by data corrup-
tion. In order to distinguish genuine -type patterns from false
ones that have been produced by data deficiencies, we assume
that the size of a leaf branch associated to a true -type pattern
must not be smaller than the size of the smallest body part. This
assumption is reasonable since the scan data is unlikely to con-
tain gaps or holes at the scale of the body limbs, as such cases
can be easily prevented by some form of quality control during
the data acquisition phase.

Based on these considerations, the following criteria are
used to identify “true” -type patterns which comprises “true”
branches and saddle nodes: 1) a ‘true’ branch is downward and
must satisfy: where

denotes the maximum/minimum value of
a branch in the height direction, and is a threshold that
represents the minimum length allowed for a branch and 2) a
“true” saddle node has at least two branches.

The strategy followed to reject false critical nodes and iden-
tify ‘true’ branches for nonstandard postures remains the same
except that the categories of patterns in the DRG will be reduced
to only two types, namely the O-type (caused by data noise)
and either the -type or the Y-type, depending on which orien-
tation the level sets are constructed. We choose to construct the
level-sets in the orientation of the increasing geodesic distances,
thus allowing only O-type and -type patterns in the DRG.
Therefore, the branch orientation in criterion 1 is amended to
upward and the Morse function is set to the function or
function depending on which one is adopted. Criterion 2 re-
mains unchanged, however.

E. The Segmentation Algorithm

The very constrained configuration of the HB in standard-pos-
tures and the simplicity of the height function in terms of compu-
tation permit the simultaneously extraction of level-sets with the
construction and analysis of the DRG to extract the branches.
The segmentation algorithm, named here Algorithm 1 (shown
below), contains only a one-pass search from the bottom to the
top of the scan data. In this pass, the critical nodes representing
the bottom of the feet, groin, hand tips, armpits and head top are
detected, and the ‘true’ branches between these critical nodes
are extracted. The identification of branches corresponding to
the body parts then becomes very simple, whereby the branches
between the groin and bottom of the feet correspond to legs and
the branches between armpits and hand tips correspond to the
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arms. The reminder of the data corresponds to torso and head.
For nonstandard postures, the Morse function and the level-sets
are first computed (in one stage for the function and in two
stages for the function) and thereafter, Algorithm 1 is applied
(after setting the ‘true’ orientation of the branches to up) to ex-
tract the critical nodes and the true branches.

Algorithm 1: Notation
Slice: A level-set
Node: A level-set curve in a slice.
Class: A group of connected nodes.
Class(Node): The Class containing the Node.
Branch: A ‘true’ branch connected to a ‘true’ saddle node.
f : The Morse function (height function for standard postures) and �S

function or � function for nonstandard postures
Code:

For each slice
Group data points into level-set curves

For each level-set curve
Assign a node to this level-set curve
If it is the 1-st slice

Class(node) := fthis nodeg

Else
Extract the group of nodes (l1; l2; . . . ; lm), connected
to node, from the previous slice
If m = 0

Class(node) := fthis nodeg

Else
From fClass(li); i = 1; 2; . . . ; mg select the

classes verifying:

fCj : jfmax(Cj)� fmin(Cj)j > hlim; j = 1; 2; . . . ; n; (n � m)g

If n � 2

For each Cj

Branchk = Cj ; k := k + 1

End For
End If

Class(node) = fClass(node)g fClass(l1)g � � � fClass(lm)gg

End If
End If

End for
End for

F. Summary of the Approach and Comparison With 3-D
Skeletonization

The HB scan segmentation approach involves four tasks and
the implementation depends on the adopted Morse function.
Table I summarizes the different versions. Of the different tasks,

TABLE I
STAGES AND TASKS INVOLVED IN THE DIFFERENT VERSIONS OF THE

SEGMENTATION PROCESS. THE FIRST COLUMN INDICATES THE EMPLOYED

MORSE FUNCTION. THE SECOND COLUMN LISTS THE NUMBER OF INFERRED

STAGES. THE THIRD COLUMN INDICATES THE TASKS INVOLVED IN EACH STAGE

the computation of the Morse function is the most time con-
suming. The height function implies the simplest implementa-
tion, because it does not infer any computation. This permits
us to perform all of the tasks in a single stage. Conversely, the

function requires the sequential execution of the four tasks,
and represents the most costly implementation . The
computational time related to this function is of the order of
several hours on a Pentium IV, 1.7 Ghz computer. The
function, exhibits a reasonably tolerable computational cost.
It exhibits an overall complexity of O(N). Despite the fact that
the infers a stable DRG, we prefer the function, because
of the considerable disparity in terms of computational cost.
Furthermore, our experiments showed that the two versions are
similar in performance. The presented algorithm operates on
a voxel grid and the number of voxels containing data points
is small compared with the number of raw data points in the
scan. However, it is straightforward to recover segmented raw
HB scan data points from the segmented voxel data structure.

The approach of Verroust and Lazarus [29], mentioned
previouslyinthispaper, is theclosest tooursintermsoftheoretical
background.Althoughboth approaches involvesimilar concepts,
namely, geodesic distance and level-sets, there are several
fundamental differences, namely the objective of our task and
thecomplexityandrobustnessofourrespective implementations.
In the following section, we shall detail these aspects, while
emphasizing the characteristics of our approach.

Firstly, regarding the task undertaken, the two approaches
target different objectives, namely skeleton construction and
functional-based segmentation. Regarding implementation,
the skeletonization process in [29] involves five stages: 1)
establishing a neighborhood graph, where nodes represent
data points, and an edge between a pair of nodes represents a
connection between the corresponding pair of points, according
to the m-nearest points rule; 2) computing a geodesic graph
out of the neighborhood graph—this graph is actually a tree
composed of geodesic paths joining the data points to a source
point. The Dijkstra algorithm is used to compute the geodesic
paths as well as the geodesic distances between the data points
and the source point; 3) extracting level-sets of isovalued
points using the geodesic graph; 4) Partitioning each level-set
into subsets corresponding to the different branches of the
surface; and 5) computing the centroids of connected subsets
in each level-set and joining them, via the geodesic graph, to
construct the skeletal curves. The approach was implemented
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on powerful Indy machines. In this process the extraction of
the level-sets goes through the construction of a neighborhood
graph and the use of Dijkstra’s algorithm. This results in a high
computational complexity. Indeed, although the neighborhood
graph algorithm is optimized, its complexity is estimated to
be , where is the number of data points and is the
average of the number of points contained in the neighborhood
of each point. The value of is not small given the potentially
very large number of points in the raw scan data. Dijkstra’s
algorithm has a complexity of where is the
number of edges in the neighborhood graph. Proceeding as in
[29], to determine the level-sets in our application, will induce
an intolerable computational cost. Based on the preceding
implementation, we estimate that to process one HB containing
13 000 points would require approximately 20 h to execute on a
Pentium IV, 1.7-GHz computer. In the contrary, the version
of our approach where the extraction of the level-sets infers a
complexity of , N being the number of 1-valued voxels,
takes around 70 s to achieve the segmentation of the whole
scan. Yet the most important feature of our work with respect
to [29] is its robustness. Indeed, it is not clear how the approach
in [29] can cope with an irregular sampling distribution of
data points, data corruption and deficiencies. Since in order to
obtain a valid skeleton, faithful to the body anatomy, each ob-
tained subset (stage 4 of the skeletonization process, mentioned
above) must correspond to a branch and thereby: 1) contain a
single connected component and 2) form a closed curve. The
non satisfaction of condition 1, results in false branches in the
skeleton. The authors in [29] showed an instance of this case
related to a body scan, presenting false branches, at the level of
the feet, caused by the irregular distribution of the data points
and the presence of gaps. The violation of condition 2, causes
the centroid to be shifted (stage 5) from its actual location at
the branch axis implying thus a distorted curve. The resulting
skeleton will not then reflect correctly the actual body template.
Cases such as those depicted in Fig. 9(b) and (c) for instance,
cannot be accommodated by the approach in [29]. Actually, the
authors in [29] recognized that the validity of their approach
is conditional upon having data points that are regularly dis-
tributed on the object surface. Our approach, on the contrary,
copes rather effectively with different types of data corruption
due to the mechanisms implemented in the DRG analysis that
eliminate false branches while preserving correct connectivity.
Regarding segmentation accuracy, it appears that operating on
raw data points and the use of Dijkstra’s algorithm as in [29]
improves segmentation accuracy because this approach is able
to extend the computation of the to the interior of the edges
of the geodesic graph by interpolating the endpoint values
of the edge. This in turn permits a finer mapping of the
function. While this result appears to be attractive, as it allows
the possibility of further refining the level-sets and improving
the accuracy of the segmentation, it is also very likely that this
benefit will be cancelled by the corruption of the level-sets at
the junction areas of the body (see Section III-B). It must also
be noted that this limitation applies equally to our approach.
Nevertheless the established thresholds, namely , and

, involved respectively in setting connections between pair

of points and level-set curves, permit us to control to a limited
extent the accuracy of the segmentation in our approach.

IV. EXPERIMENTS

A series of experiments were conducted using real and syn-
thetic data to test the validity of our approach. The performance
and the robustness of the corresponding algorithms were as-
sessed with respect to: 1) variation of the HB shape; 2) varia-
tion of scan source; 3) severe corruption of the scan data; and 4)
variation of the HB posture.

Real-world HB scan data was collected from different
sources, namely the Cyberware website [32], the CAESAR
project website [3] and the HB scanner located within EdVEC,
Edinburgh Virtual Reality Centre [34]. The scans of the first
two sources were acquired by Cyberware whole body scanners
WB4 [32]. This scanner, uses laser-based technology in which
a laser beam is projected on the body. The beam profile is
captured by different cameras around the body and 3-D points
are then extracted from each camera view to be combined into
a single 3-D point cloud representing the body surface. The
acquisition time of this scanner is approximately 17 s. The set
of collected scans contains 25 scans of different individuals
including males and females (only 4 are shown in this paper).
Each scan contains of the order of 13 000 data points. The
third source is a Wicks & Wilson HB scanner [33], which is
based on a Moire fringing technology where fringe patterns,
projected onto the body surface, are captured by four cameras,
with a moving mirror system providing another four viewing
positions. The sets of 3-D points extracted from each camera
(triangulating with the fringe projector) are combined together
to form the whole scan. The scanning time of this device is
around 8 s, yet the person is required to stand very still during
the scanning. Furthermore, the space inside the scanner is
very limited and allows little freedom of body movement. For
these reasons, it was difficult to perform scans for nonstandard
postures. However, we did manage to obtain a few nonstandard
postures and collected a set of ten scans (seven are shown
in the paper) related to three different male individuals. The
number of points in each scan is approximately 11 000 points.
Synthetic HB scans were obtained using POSER software
[35]. The data sets were generated by randomly sampling the
surface of four different models (two men and two women, two
with clothes and two without). 16 simulated scans were then
extracted representing human figures in different non standard
postures. First, we conducted preliminary tests in order to: 1)
compare the performance of the algorithm versions related to
the and Morse functions and 2) assess the appropriateness
of the threshold selection with respect to (described
in Section III-C) and used to establish connections between
adjacent level-set curves. Fig. 5 shows trials made with two
postures, using the version (a) and the version (b) and we
can observe that the segmentation results are not significantly
different. Threshold setting was investigated out as
follows: We segmented a HB scan (in standard posture) several
times, each with a different threshold , with K varying
from 2 to 7. These tests were carried out with the algorithm
version that utilizes a height function. Fig. 6 (Rows and 1 and
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Fig. 5. Cyberware scan and a Wick & Wilson scan segmented using
respectively a � -based version (a) and a �-based version (b) of the approach.

Fig. 6. Rows 1 and 2: A Wick & Wilson HB scan and Cyberware scan
segmented using a sequence of six thresholds ranging from d = 2� to d = 7�,
where � is the scanner resolution estimated in Section III-C. Row 3: A Wick
& Wilson HB scan segmentation results corresponding to six thresholds
�d; � = 1; . . . ; 6; d = 2�.

2) shows that the overall segmentation appears to be similar
throughout the trial. However, by examining the zoomed areas
around the armpit we can observe a decrease in the segmen-
tation accuracy as the threshold becomes larger (a decrease
in segmentation accuracy is clearly visible for ). This
behavior is caused by “short-circuit” edges between nodes of
the arm and nodes of the torso. These short-cuts occur when the
distance separating the arm and the torso becomes relatively
small compared to the threshold . Threshold setting was
investigated as follows. We set the threshold to the best
precision and we segmented a nonstandard posture six
times, each with a different value of varying from 1 to 6.
The segmentation was carried out with the -based version of
the approach. The results are depicted in Fig. 6 (row 3). The
observation of the zoomed area around the right armpit, across
the different trials reveals a slight improvement in the accuracy,
as increases until it reaches . Beyond that value it
appears to stabilize.

Next, we applied the segmentation algorithm to a collection
of scans obtained from different sources, including real and syn-
thetic data. Because of space constraints we show principally the
results related to nonstandard postures. Exhaustive results cor-
responding to standard postures have been published in [18].

Fig. 7. Segmentation of HB scans acquired with the Cyberware scanner (1, 2,
3) and Wicks & Wilson scanner (4, 5, 6).

Fig. 7 depicts images of the scanned persons, in a standard pos-
ture taken during the scanning process and the corresponding
segmented scans. These scans were acquired with the Cybeware
scanner (1, 2, 3) and the Wicks & Wilson scanner (4, 5, 6). We
can observe that the scans are segmented with reasonable accu-
racy. The scan 3 in Fig. 7 corresponds to that of a fully dressed
person. The corresponding surface presents many irregularities
caused by wrinkles, in comparison to other scans which present
smooth surfaces. Despite the surface irregularity, the segmen-
tation result is reasonable and confirms that the algorithm can
cope with ill-conditioned (non smooth) surfaces.

For nonstandard postures, validation experiments were per-
formed using the second version of the algorithm, that involves
the Morse function . A first series of tests were performed
on HB scans, related to people in a seated posture, and col-
lected from the CAESAR website [3]. The Results are depicted
in Fig. 8(a). We can see that all the data sets are clearly seg-
mented into five subsets corresponding to the arms, legs and the
torso, despite the sitting posture of the subjects and the variety
of body shapes. A second series of tests was conducted over
several scans acquired from Wick & Wilson scanner [33], the
results are depicted in Fig. 8(b), which also shows images of
the scanned persons. The results reveal reasonable segmenta-
tions that produce correctly separated body parts.

Because of the current shortage of real scans of nonstandard
postures we had to resort to computer-simulated data sets in order
to examine additional postures. A first set of artificial postures
was obtainedas follows: We conformed a parameterizedHBtem-
plate to a Cyberware HB scan and then animated the conformed
model by varying the template parameters. Some instances from
this set are shown after segmentation in Fig. 8(c). The results il-
lustrate correct segmentation for all the samples. The second set
was obtained by generating 16 synthetic scan models in different
postures using Poser software [35]. These data were obtained by
randomly sampling the animated mesh models, thus generating
scattered data point sets of similar properties to real scan data.
The scans were extracted from four different models comprising
a man and a woman, in both dressed and undressed states. The
dressed models included the hair. Fig. 8(d) and (e) shows the 16
scans and the segmentation results. We can see that all the data
sets are clearly decomposed into the five principal parts for all
the different postures, illustrating the robustness of the algorithm
with respect to rigid transformation and deformation. Fig. 8(e)
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Fig. 8. (a) Segmented real scans corresponding to setting postures acquired withe the Cyberware scanner. (b) Segmented Wick & Wilson scans related to
nonstandard postures. (c) Segmentation results of an animated Cyberware scan. (d) and (e) Segmentation results of simulated scans corresponding respectively to
scans of naked and dressed characters.

in particular, illustrates the robustness of the algorithm to false
branches. Indeed, if we examine for instance, the head of the
dressed woman, we can observe wrinkles and waves character-
izing the hair surface. These features are likely to cause false
critical nodes that consequently generate false branches. How-
ever, our algorithm did not fail when applied to this data set. Also
we can observe that fingers are not segmented separately, even
though some of them appear to be partially detached from the
handandthereforedisposedtogenerate truebranches in theDRG.
This is explained by the fact that the first criterion established in
Section III-D1 states that a true branch must have a length above
a given threshold, which is set here to the size of smallest body
part, namely the arm. Therefore branches inferred by body parts
smaller than the arm, such as the fingers and the head will be
discarded by the algorithm.

A. Robustness With Respect to Data Deficiencies

It is also worth mentioning that these results were obtained
with poorly scanned data as illustrated in Fig. 9(a), which shows

a zoomed area around the groin. The nonregular sampling of
the data and the presence of gaps and holes are clearly visible.
To further test the robustness of the segmentation algorithm, we
corrupted the data by creating large holes in a group of scans rep-
resenting a variety of postures. The results presented in Fig. 9(b)
and (c) reveal a consistent segmentation over all of the corrupted
scans: all of these scans are properly decomposed into the five
body parts, despite the presence of large gaps. These results con-
firm that the algorithm is capable of discarding effectively the
O-type critical nodes described in Section III-D1. In another ex-
periment we corrupted the scan data by adding Gaussian noise
of different amplitudes to the data points. A representative set
of the associated segmented scans are depicted in Fig. 10. These
validation trials illustrate, therefore, the robustness of our ap-
proach against noise disturbance and severe data deficiencies.

V. CONCLUSIONS

This paper presents a topological framework for the segmen-
tation of HB scans. The framework extends the Reeb graph con-
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Fig. 9. (a) Zoomed image illustrating the distribution of the scan data. (b), (c)
Segmented HB scans corrupted by large holes.

Fig. 10. Segmented HB scans corrupted with a Gaussian noise of different
amplitudes.

cept to unorganized clouds of data points by defining connec-
tivity notions. Compared to work previously reported in th elit-
erature describing on HB segmentation, our framework is dif-
ferentiated by the following features: 1) it handles directly the
raw scan data without the need of any preprocessing or pre-for-
matting stages; 2) it involves only topology-based techniques;
3) it can cope with arbitrary postures; 4) it offers different con-
figurations in order to accommodate different categories of HB
posture; and 5) no post-processing stage is required. With re-
spect to other 3-D skeletonization frameworks, our approach is
distinguished by the following aspects: 1) intrinsic robustness,
that allows it to cope with data deficiencies and severe corrup-
tions; 2) an efficient implementation; and 3) it provides a so-
lution to the problem of locating the source point, by using a
source-point independent Morse function, although at the ex-
pense of additional computational cost.

The scan sets used in the experiments were collected from dif-
ferent sources and cover a rich variety of HB shapes and profiles
including some severely damaged scans. The results confirm the
robustness of the approach with respect to the diversity of scan
sources, diversity of the body shapes, rigid transformations, ir-
regular distribution, and corruption of the scan data.

From a quantitative point of view, the experiments confirm
the reliability and the repeatability of the two algorithms. In the
152 segmentation trials (58 are shown in this paper), the algo-

rithms always segment the scan into five connected and com-
pact parts that respect the topology of the HB. Cases of severe
under-segmentation, over-segmentation, or cases where a seg-
mented part contains disjoint subparts (e.g., from the arm and
the leg), never occurred.

While the results show overall reasonable segmentations, it
would appear to be difficult to achieve what would be considered
a “perfect” segmentation to a human observer because of the
ill conditioned behavior of the level-sets at the junctions areas.
In fact, we believe that to achieve human segmentation perfor-
mance would require techniques that go beyond our middle-
level processing approach. Nevertheless, the segmentation pro-
vided by our approach could be used as a starting point for finer
processing and analysis. One might also ask to what extent the
joint areas detected by our approach can be used to locate actual
useful body landmarks, which are used for instance in garment
sizing. While our approach is suitable for delimiting the locale
of such landmarks, detecting their precise location may be lit-
erally beyond the grasp of purely scan-based approaches, since
these landmarks often correspond to bony points below the skin,
which are usually detected and located by palpation. There is
some hope that a 2-D/3-D approach to landmark detection based
on combining both 2-D image features and 3-D surface features
used in conjunction with explicit statistical knowledge, as en-
capsulated in an active appearance model, may provide a route
to a more complete analysis of the human form. To this end,
we propose that the techniques presented here could provide a
useful means of constraining the search space by providing an
initial annotation of the body.

Being based on topological analysis, our framework is intrin-
sically not qualified to handle postures where limbs are joined
together, for example closed legs, or arms touching the torso.
Dealing with such cases requires that the contours of discon-
tinuities between joined parts of the body be detected and la-
beled, using local surface analysis and differential geometry
techniques or explicit model fitting. The work developed in [12],
for example, could perhaps afford an appropriate framework for
handling the above cases.

It is quite plausible that our framework can be extended to
deal with other variety of 3-D shapes. The approach should in-
tegrate mechanisms to accommodate with change of scale and
shape. Some directions that can be explored are: 1) using mul-
tiple source points for the Morse function , analyzing the re-
sulting DRGs, and establishing criteria to reject those degen-
erate graphs; and 2) a fast implementation of the function as
it infers a stable DRG; in addition it can be adapted for a multi-
scale segmentation approach, in the absence of any prior knowl-
edge about the object size.
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Abstract

This paper describes an approach for constructing a graph representation of 3D objects and more particularly of articulated and tubu-
lar-like objects. For objects without cavities, this representation is a tree structure that encodes the object template while being invariant to
global and local rigid transformation. The approach described in this paper has some interesting aspects: (1) It operates on raw 3D scattered
data points, without any pre-processing stage. (2) It has low computational cost. (3) It is robust against irregular data point distribution and
data deficiencies. This graph representation can be used in various applications such as object coding, recognition, and segmentation.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

3D object shape abstraction and encoding has been
receiving an increasing attention in the recent years. It is
fuelled by the advances in 3D shape imaging technologies
and the proliferation of 3D object model databases, where
3D shape representation plays a fundamental role in model
retrieval and shape matching. In the literature (Tangelder
and Veltkamp, 2004) shape representation can be broadly
categorized in three categories, namely, feature based rep-
resentations, graph based representations, and other repre-
sentations. Feature based representations encompass only
pure geometry information of the object. In contrast, graph
based representations, which use a graph showing how
shape components are linked together, embed in addition
to some geometric information, topological and structural
meanings that are quite suitable for high level processing.
Graph based representations include three families,
namely, model graph, skeletons, and Reeb-graph. Model

graph representations are especially suitable for man-made
objects (i.e. CAD/CAM models) and are generally difficult
to apply for models of natural shape. Skeletons can be
applied to wider shapes including animal and human
shapes. Skeleton constructions have been approached using
the medial axis model (Chuang et al., 2000; Näf et al., 1996;
Siddiqi et al., 2002; Bouix et al., 2005) and the distance
transform (Gavani and Silver, 1999; Sanniti di Baja and
Svensson, 2002; Svensson and Sanniti di Baja, 2002).

Reeb-graph, introduced by Reeb (1946), is a particular
skeleton determined using a continuous scalar function
defined on an object surface. The main characteristics of
a Reeb-graph are (1) one-dimensional graph structure
and (2) invariance to both global and local geometric
transformations. These characteristics make it suitable for
articulated objects. Reeb-graph has been used in many
applications such as shape coding (Tai et al., 1998), shape
matching (Hilaga et al., 2001), surface compression (Bias-
otti et al., 2002), and human-body scan segmentation (Xiao
et al., 2003a,b, 2004). In this paper we propose a method
for constructing and visualizing a Reeb-graph of a 3D
object. Compared to previous methods, our method is
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characterized by the following features: (1) It operates on
raw 3D data, i.e. cloud of scattered data points (in contrast
to methods that require mesh-model data). (2) It is robust
against data deficiencies such as irregular distribution
reflected by gaps and holes. (3) It has low computational
costs. The approach targets objects having tubular-like
shapes or a blending of generalized cylinder shapes and
assumes that the surface of the object is topologically
continuous.

The rest of the paper is organized as follows: Section 2
gives an overview of the approach. Sections 3–6 describe
the different stages of the approach. Experimental results
are discussed in Section 7. Finally, in Section 8, conclusions
are drawn and further research work is suggested.

2. Overview of the approach

The approach operates on a set of 3D scattered data
points representing the object shape. It involves four main
stages. These are depicted in Fig. 1.

2.1. Computation of the level-sets

In this step, a scalar function map is computed over the
set of the data points of the object surface (b) and level-sets
representing isovalued points (points having the same sca-
lar function value) are extracted (c).

2.2. Construction of a connectivity graph

Here, each level-set is decomposed into subsets of con-
nected data points according to a given connectivity crite-

ria. We call these subsets level-set curves. The level-set
curves are then mapped into a connectivity graph (d),
where a node represents a level-set curve and an edge rep-
resents a connection between two adjacent level-set curves,
i.e. level-set curves belonging to two adjacent level-sets.
The nodes in that graph are arranged by ascending hori-
zontal levels which represent the values of the scalar func-
tion at the level-sets determined in stage 1. Thus, nodes
corresponding to level-set curves which are part of the
same level-set will be placed at a same level.

2.3. Extraction of joints and branches

In this stage, the connectivity graph is analyzed to locate
the joint nodes and to segment the connectivity graph into
groups that correspond to the object branches (e). This
stage outputs a particular Reeb-graph, namely, a tree struc-
ture (f) in which nodes represent the branches and edges
represent the joint nodes. The tree structure reflects the
assumption that the object does not contain holes.

2.4. Visualization

The Reeb-graph of the object is automatically visualized
(g) using the tree-structure obtained in the previous stage.
This graph encodes the object branches and parts while
describing the evolution of the scaler function across them.

3. Computation of the level-sets

Given a set of data points V and a scalar function:
F : X 7! R where X 2 R3 is a data point, level-sets in dis-

Fig. 1. (a) A 3D object. (b) Grey level mapping of the scalar function on the object surface. (c) Level-sets of the scalar function. (d) The connectivity graph.
(e) Determination of the joint nodes and the branches. (f) The tree structure. (g) Visualization of the Reeb-graph.
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crete space are formally defined by {X 2 V,F(X) = Ck}
where Ck,k = 1 : m is a set of discrete values ranging from
the minimum value to the maximum value of the function
F in the domain V. To ensure a stable representation, the
scalar function should be invariant with respect to rigid
transformations. The curvature function satisfies this con-
dition, however, it is highly sensitive to noise and data
corruption. A function employing the geodesic distance
(Mitchell et al., 1987) is more appropriate as such dis-
tance is quite resistant to data corruption in addition to
be invariant to rigid transformations. We utilize the func-
tion defined by F(X) = gd(X,S) which returns the geodesic
distance from a point X to a source point S. In the liter-
ature, the Dijkstra algorithm (Cormen et al., 1990) has
been the most popular tool for computing geodesic dis-
tances between a group of points and source point. How-
ever it has a high computational cost. So we rather
developed an efficient algorithm, tailored for our applica-
tion. The algorithm deploys a wavefront propagation
technique, which is based on the following principle:
Given a centred wave on a manifold, all the points on
the wavefront have the same geodesic distance to the
wave centre and form thus a level-set. The wavefront
propagation algorithm operates on a binary voxel grid
since it is easy to define a neighborhood in voxel space
and to traverse connected voxels. Due to these well-
behaved properties, wavefront-propagation on a voxel
grid can have a very simple mathematical form as fol-
lows:

W 0 ¼ fvsg;
W iþ1 ¼ ðW i � e� ðW i � eÞ \ SiÞ \ �Si;

�

where Wi is the wavefront generated on the ith iteration of
the algorithm; vs is the source voxel; Si is the set of all 1-val-
ued voxels visited at the iteration i and located at the same
geodesic distance from the source voxel vs. �Si is the comple-
ment set of Si. � denotes the morphological dilation oper-
ator and e is a 3 · 3 · 3 structuring element composed of 27
1-valued voxels. At the beginning, the wavefront is the
source voxel associated to the source point, then the wave-
front iteratively spreads on the voxelised surface. In each
iteration, the wavefront is the level-set containing voxels
with the same geodesic distance. The attractive aspect of
this technique is that it simultaneously extracts the level-
sets while computing the scalar function F. It is easy to
prove that the computational complexity in each iteration
is O(ni), where ni is the number of voxels in Wi. Therefore
the complexity of the whole algorithm is O(N), where N is
the number of all 1-valued voxels.

The source point S can be selected manually or deter-
mined automatically following these steps: (1) Choose a
source point at random from the set of data points. (2)
Compute the geodesic distance map. (3) Choose the point
corresponding to the maximum geodesic distance value.
For articulated and tubular-structured objects, such point
will be located at the extremity of the object parts. This pre-

sents the advantage of maximizing the range of the geode-
sic distance.

4. Construction of a connectivity graph

For a perfect data, a level-set would be a compact set of
connected points. For real data characterized by a non-
uniform distribution and gaps, the level-set is rather frag-
mented into sets of connected points. These sets, which
we call level-set curves, are conceptualized by the following
definitions.

Definition 1 (connectivity of point sets). Two point sets
P = {pi}, i = 1, . . . ,m and Q = {qj}, j = 1, . . . ,n are defined
as connected if $pi 2 P and $qj 2 Q such that jpi � qjj 6 s.
Where jpi � qjj denotes the distance between points pi and
qj and s is a given threshold. The above definition also
holds for the connectedness between two points for the
particular case where the sets P and Q contain a single
point each.

Definition 2 (connective point set). A point set C is connec-
tive if " subset X � C and X 5 ;,X and X are connected.
Here X denotes the complement of X in C. Definition 2
defines a �tight� point set in which all the points are
connected.

Definition 3 (Level-set curve). A level-set curve is an iso-
valued connective point set, that is a group of points, that
have the same scalar function value, and which forms a
connective point set.

At the implementation level, the threshold s used in Def-
inition 1 is set to the resolution of the 3D data points. The
resolution is estimated as follows: we determine the distri-
bution of the distance values of the most closed pairs (i.e.
nearest neighbor tuples) of data points over a large set of
data. This will permit to construct the 3D density histo-
gram. The median value or the weighted average are rea-
sonable estimates of the resolution, but more elaborated
techniques can be used however (Scott and Sain, 2004).

The connectivity graph is an oriented graph where a node
represents a level-set curve and where an edge represents a
connection between two adjacent level-set curves, (i.e. two
level-set curves belonging to two adjacent level-sets).

The connection between the two level-set curves is estab-
lished according to Definition 1. Ideally, when we assume a
clean data, the connectivity graph will be reduced to a tree
structure. But practically, the deficiencies of the data pro-
duce topological disturbance that causes false joint nodes.
This results in a corrupted graph structure. Fig. 2 shows
an example illustrating this aspect in more details. For sim-
plicity, the example represents a cylinder-like shape and
covers only a portion of three adjacent level-sets. If we
assume an ideal data, each level-set consists of an orga-
nized set of connected points Fig. 2(a). So each one will
represent a single level-set curve. This will result in a graph
composed of three nodes (Fig. 2(b)). For real data, a
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level-set might be composed of several level-set curves
because of data corruption, leading to several nodes per
level-set. The example in Fig. 2(c) shows three level-set
curves for level-set 3 and two level-set curves for each of
level-set 1 and level-set 2. The three initial nodes
L1,L2,L3 have degenerated into seven nodes l1, l2, . . . , l7.
Setting afterwards the connections among the nodes (leads
to a disorganized graph Fig. 2(d)). Therefore, at the scale
of the object the connectivity degenerates into chaotic
graph representing false joint nodes and false branches.
The challenge therefore, is to be able to determine the cor-
rect joints and branches from such degenerated graph to
obtain a representation faithful to the topological structure
of the object. This will be described in the next section.

5. Extraction of joint nodes and branches

The strategy adopted in this stage is based on the follow-
ing analysis: in the connectivity graph we identified three
primary topological patterns. These patterns are called
O-type, k-type and Y-type. For example, The group of
nodes (l7, l4, l2, l1), (l6, l4, l1, l3), and (l6, l5, l3, l1) represent a
k-type, an O-type, and a Y-type, respectively. O-type com-
prises two joint nodes connected by two branches. This
pattern reflects data corruption (gaps, missing data)
because we assumed that the object does not contain cavi-
ties and therefore this pattern is simply ignored. The k-type
and Y-type are topologically identical as each represents
three branches that meet at the joint node. We can reduce
the number of patterns to a single one by considering a
topographic constraint when constructing the connectivity
graph. Indeed, by arranging the nodes in ascending levels,
where these levels represent the values of the geodesic func-
tion at the different level-sets, and by placing at each level
the nodes associated to level-set curves which belong to a
same level-set, only Y-type patterns can figure in the con-
nectivity graph. To distinguish genuine Y-types from false
ones which are inferred by data deficiencies, we impose the
length of a branch (evaluated in terms of inferred number
of levels) associated to a true Y-type to be above a mini-
mum value.

Based on these considerations, the following criteria are
used to identify a �true� Y-type which consists of �true�
branches and a joint node: (1) A �true� branch is upward
and must satisfy: jLmax(branch) � Lmin(branch)j > Llim

where Lmax/Lmin(branch) denotes the maximum/minimum
levels inferred by the branch in the connectivity graph. Llim

is a threshold that represents the minimum length allowed
for a branch. (2) A true joint node has at least two branches.

The setting of Llim value is very crucial. In effect a low
value might generate false branches whereas a high value
causes actual branches to be lost. Here we note that a gen-
uine choice of Llim should stand on a prior knowledge of
the relative sizes of the object�s segments. For example
when dealing with animal shapes, we know that the mini-
mum size of a functional part cannot be less one tenth of
the whole size. A reasonable value of Llim can then be set
based on that proportion.

Based on the details described above, the detection of
the true joint nodes is accomplished using the algorithm
given below. This algorithm browses the connectivity
graph level by level starting from the highest level that cor-
responds to the level-set associated with the maximum
value of the geodesic distance function. In a second phase
the true branches are extracted based on the locations of
extreme nodes and joint nodes. Having located the joint
nodes and branches, a tree structure is constructed after-
wards where nodes represent branches and edges represent
joint nodes linking the branches.

Notation:

Branch: A group of connected nodes.
Branch(Node): The Class containing the Node.
For each level in the connectivity graph

For each node at that level
Extract from the upper level the group of nodes
(l1, l2, . . . , lm) connected to that node
If m = 0

Add this node to the list of extreme nodes
Branch(node) := {this node}

Else

Fig. 2. (a) Three level-sets representing a portion of clean data. Each level-set contains a single level-set curve (group of linked points), resulting thus in a
connectivity graph containing three nodes (b). (c) Data corruption causes each slice to decompose into several level-set curves. This results in a
disorganized graph (d). In this example the original nodes L1, L2 and L3 have degenerated respectively into (l1, l2), (l3, l4) and (l5, l6, l7).
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From the set: {Branch(li), i = 1, . . . ,m} select the
Branches verifying: {Bj : jLmax(Branch(lj)) �
Lmin(Branch(lj))j > Llim, j = 1, . . . ,n} (n 6 m)

If nP 2
add the nodes lj, j = 1, . . . ,n to the list of
Joint nodes

End If

Branch(node) = {Branch(node)} [
{Branch(l1)} [ � � � [ {Branch(lm)}}

End If

End for
End for

6. Visualization

In this stage, the topological structure embedded in the
Reeb-graph of the object is visualized. The tree structure
outputted by the previous stage is browsed in a depth first
fashion. At each visited node, the associated branch is
mapped into a 2D curve where the x-coordinate and the
y-coordinate represent a level-set curve and its correspond-
ing level in the connectivity graph. We have to mention
here that the orientation of the 2D curve reflects only the
evolution of the geodesic distance at the associate branch
and does not contain geometrical information as it is the
case in skeletons.

7. Experiments

We applied our approach to a variety of objects
acquired from different sources. Fig. 3 shows results
obtained with animal shapes. These models were acquired
from Princeton Benchmark.1 We can observe that the
resulting graphs reflect correctly the topology of the mod-

els. The graphs of the dog and the camel present each a
main branch and five ramifications that correspond to
the limbs and the tail. The graph of the horse shows only
four ramifications as the corresponding model does not
include a tail. One might ask if using a smaller values of
Llim (Section 5) would permit to detect finer details of the
shape (e.g. the hears of the dog or the horse). This is pos-
sible under ideal conditions (i.e. dense and clean data),
however practically because of data irregularities, lowering
the Llim might cause undesired noise branches in the graph.
To ease these effects, one solution would be to clean-up the
data and increase the resolution in a pre-processing stage.

Fig. 4 shows three models of blood vessels, composed of
three, five and eight branches respectively. These models
where obtained from the CVMT Lab.2 The second row
in Fig. 4 depicts the corresponding graphs. We can see that
all the trees exhibit a correct representation in terms of
structure and number of branches. We conducted other tri-
als on the third blood vessel model to assess the stability of
the representation with respect to rigid transformations
and change of source point location. The results are
depicted in Fig. 5. In the first trial (a) we applied random
rotation of the model and kept the same source point.
The corresponding tree remains unchanged. This illustrates
the invariance of the geodesic distance function to rigid
transformations. In the two other trials (b) and (c) we
rotated the model and changed the location of the source
points. While the resulting trees look having different con-
figuration, they do preserve the same number of branches
and nodes, reflecting thus the stability of the representation
with respect to the topological structure of the model. In a
second series of experiments we tested the robustness of the
approach with respect to data deficiencies. It is worth to

Fig. 3. Instances of objects and their graph representations.

1 http://shape.cs.princeton.edu.

2 Computer Vision and Media Technology Lab, Aalborh University,
Denmark. www.cvmt.dk.
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mention that the data used in the experiments are charac-
terized by irregular distribution as shown by the zoomed
area of the camel in Fig. 7. Firstly we corrupted some
objects by a boundary noise as depicted in the first row
of Fig. 6. The second row shows the corresponding trees
exhibiting a correct structure. To further check the robust-
ness of our method we intentionally corrupted some mod-
els by creating artificial holes at different locations of their
surfaces (Fig. 7). Despite these severe alterations, the
approach produced correct graphs as depicted by the
figure. These results illustrate particularly that the connec-
tivity graph analysis described in Section 5 succeeds in
rejecting the O-type nodes in the connectivity graph.

Other experiments have been conducted on both syn-
thetic and real articulated objects to test how the approach
cope with shape deformation. Fig. 8: first row, shows
instances of a synthetic object having undergone various
deformation. The next row depicts the resulting trees (the
first four trees). We can see that all the trees have the same
structure. Some trees shows different orientations for some
branches, but this does not reflect any geometric proper-
ties. The third row in Fig. 8 shows animated instances of
a frog. These instances were generated using the animation
software Poser.3 The next rows depicts the corresponding

Fig. 4. Instances of blood vessels and their graph representations.

Fig. 5. Grey level mappings of the geodesic function corresponding to different source points (marked by a ‘‘+’’) for a rotated blood vessel model and the
resulting graph representation.

3 www.curiouslabs.com.
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Fig. 6. Object corrupted by a boundary noise and their corresponding DRG�s.

Fig. 7. Objects corrupted by artificial holes and their corresponding graphs.

Fig. 8. Row 1: instances of a synthetic objects. Row 2: their corresponding graphs. Row 3: instances of a frog model in different shapes. Row 4: the
corresponding trees.
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trees. The stability of the tree representation is clearly
noticed. Fig. 9 illustrates instance of shape that our method
cannot handle. The object presents cavities, which infer
topological discontinuities. Such discontinuities are not
detected by our algorithm which appears to consider the
segments forming a cavity as a single segment. We plan
to address this issue in future work.

The last bunch of tests has been conducted to illustrate
the usefulness of our approach in a particular application
namely object segmentation. We developed a simple seg-
mentation method based on that graph representation.
Basically the method consists in mapping the branches of
the tree with the model data. We would like to note the
aim was not to develop a complete segmentation frame-
work but rather to demonstrate the usefulness and the
applicability of our approach. The tests were conducted
with a variety of synthetic and real objects. Results are
depicted in Fig. 10. We can see that the different segments
in each object have been retrieved. The extraction is not
accurate however as it can be seen for instance in the first
synthetic object (H-shape) in row 1, and also in the horse
and the second blood vessel. We believe that a more thor-

ough segmentation approach involving analysis of the
level-sets around the joint nodes of the graphs would yield
better segmentation.

The approach has been implemented with Matlab on a
1.2 GHz Pentium III machine. The code, however, is not
optimized. To give an idea about the running time, the
graph construction of the third blood vessel model (which
contains 14,960 points) took about 8 s.

8. Discussion and conclusion

In this paper we proposed an approach for automati-
cally constructing a topological representation of 3D
objects. The main features of this approach are: (1) It oper-
ates on crude 3D scattered data. (2) It is robust against
irregular data point distributions and severe data deficien-
cies such as gaps. (3) It involves an efficient technique that
computes simultaneously the geodesic function and the
associated level-sets. This technique demonstrates a novel
algorithm characterized by a low computational costs.
The experiments conducted on a variety of objects and
shapes confirmed the effectiveness and the robustness of
the approach. We illustrate the applicability of the pro-
posed graph representation in object segmentation. Yet it
can be also exploited for data registration and object
recognition.

Compared to Reeb-graph based methods, our approach
is more efficient due to the fast technique used for comput-
ing the level-sets. It is also more robust as it can cope with
severe data alteration as it has been illustrated in the exper-
iments. To the best of our knowledge we are not aware of
any other Reeb-graph construction technique that can han-
dle effectively such altered data.

With respect to skeleton construction, our approach is
not qualified to compete with other approaches (e.g. the

Fig. 9. A complex shape presenting cavities and the corresponding graph.

Fig. 10. Examples of segmented models.
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medial-axis technique), as it is a graph construction
approach intended essentially to deliver a representation
that encompasses only topological and a structural infor-
mation. However in the medial-axis construction
approaches, reported in the literature so far, it is not clear
how and to what extent they can cope with instances of
data deficiencies such the ones we did test in our experi-
ments (Fig. 7). Our assumption is that unless detected
and handled properly such gaps will cause distorted axes
that might result on incorrect skeleton.

Our approach presents some limitation however. It
needs some user intervention to set adequate value of Llim

(Section 5). So far the approach cannot handle objects pre-
senting topological continuities (e.g. cavities). We plan to
address these issues in the future. For the scalar function
in particular, we need to investigate source point-invariant
functions. This work can be also further explored in other
directions. We plan to investigate the extension of our
approach to skeleton extraction. Such extraction will
inherit the robustness of our approach against severe data
deficiencies.
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Abstract

This paper deals with the recognition of human body postures from a cloud of 3D points acquired by a human body

scanner. Motivated by finding a representation that embodies a high power of discrimination between posture classes, a

new type of 3D shape descriptors is suggested, namely wavelet transform coefficients (WC). These features can be seen

as an extension to 3D of the 2D wavelet shape descriptors developed by (Shen, D., Ip, H.H.S., 1999. Pattern Recog-

nition, 32, 151–165). The WC is compared with other 3D shape descriptors, within a Bayesian classification framework.

Experiments with real scan data show that the WC outperforms other standard 3D shape descriptors in terms of dis-

crimination power and classification rate.

� 2004 Elsevier B.V. All rights reserved.

Keywords: 3D Human body scan data; 3D Human posture recognition; 3D Shape descriptors; Wavelet transform; Bayesian

classification

1. Introduction

The emergence of 3D imaging technology that

enables full scanning of the human body surface

with reasonable measurement accuracy and

acceptable computational cost is a recent phenom-
enon. This advance facilitates the exploitation of

the human body form in various areas such as

anthropometrical research (e.g., Jones and Rioux,

1997; Paquet et al., 2000), clothing design (e.g.,

Jones et al., 1995; Pargas et al., 1996; Dekker

et al., 1998; Cordier et al., 2003) and virtual human

animation (e.g., Sun et al., 2001; Starck et al.,

2002). The raw data delivered by the human body

scanner requires substantial main memory and
back-up storage resources but it contains too little

semantic information to be useful for potential

applications. The recognition of body posture

has a major role in many applications requiring

automatic processing of the scanner data. Auto-

matic segmentation techniques of the human body
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scanner data usually use prior information on the

human body posture (e.g., Dekker et al., 1998;

Cordier et al., 2003; Xiao et al., 2003). Applica-

tions that exploit scanned human body data in

TV and cinema production involve the fitting of
a generic model to the scanned data to obtain a

realistic model that, for instance, can be integrated

into a movie sequence. Here, the identification of

the posture from the scanner data is useful as a

good initialization for iterative techniques that

may be involved in the fitting algorithm, in partic-

ular to guarantee and accelerate the convergence

of the algorithm.
The work presented in this paper describes a

method of recognizing human body postures from

3D scanner data by adopting a model-based ap-

proach. The problem is stated as follows. Given

a set of posture models and a query posture, find

which posture model corresponds to the query

posture. The paradigm followed to solve this prob-

lem is built upon three premises: representation,
feature extraction and classification. The emphasis

in this paper is on representation and feature

extraction.

2. Representation

In shape recognition techniques, objects are
represented by numerical features, which are

grouped into vectors, to remove data redundancy

and reduce data dimension. The data we deal with

consist of scattered 3D points that represent the

surface shape of the human body. Most of the

human body scanners provide a complete data set

that covers the entire body surface. This encour-

ages investigation of global features that can be
exploited in 3D shape identification. Moments as

global 2D shape features have been used exten-

sively in image analysis and description. Attention

has been mainly oriented towards moments that

are invariant with respect to translation, rotation

and scale. Such moments were first proposed by

Hu (1962). After that, a variety of moments were

developed. Examples include, statistical moments
(Chim et al., 1999), orthogonal moments, such as

Legendre moments, Fourier–Mellin moments,

Zernike moments and pseudo-Zernike moments.

It has been shown that orthogonal moments are

less redundant, less sensitive to noise and more

informative than geometrical moments (Teague,

1980). A good survey of 2D moments can be found

in (Teh and Chin, 1988) and (Belkassim et al.,
1991). However, less study has been done of the

3D case. One reason for this is that most of the

3D imaging devices do not provide a complete

data set in terms of surface coverage. Being sensi-

tive to missing data and occlusions, global features

are not suitable for such cases. Nevertheless, there

have been some attempts to define frameworks for

the construction of 3D moments. Sadjadi and
Hall (1980) pioneered the development of 3D geo-

metric moment invariants. Their framework built

a family of three invariant moments with degrees

up to the second order. Using complex moments,

Lo and Don (1989) constructed a family of 12

invariant moments with orders up to the third de-

gree. Their moments were mainly used to estimate

3D transformations and their performance was
not assessed for classification. In addition, these

moments are not derived from a family of

orthogonal functions, and they are therefore sub-

ject to correlation and redundancy. Motivated

rather by computational efficiency, Sheynin and

Tuzikov (2001) proposed a computational frame-

work for the calculation of Cartesian moments.

However, their approach is restricted to polyhe-
dral objects. The desirable properties of orthogo-

nal moments, in terms of sensitivity to noise and

information redundancy, motivated the develop-

ment of families of orthogonal 3D moments.

Examples include 3D Zernike moments (Cantera-

kis, 1997) and 3D Haar moments (Schael, 1997).

These efforts, however, did not provide experimen-

tal frameworks for testing these moments. 3D
shape descriptors based on the 3D discrete Fourier

Transform were proposed by Vranic and Saupe

(2001) for model retrieval applications. However,

the discriminative power of this type of feature

was not assessed.

In this work, we present a new family of 3D

shape descriptors, namely the wavelet-based

descriptors. The performance of these features is
evaluated and compared with 3D Zernike mo-

ments and 3D Fourier descriptors. In a previous

study Werghi and Xiao (2002), it was shown that
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3D geometric moments proposed by Lo et al.

(1998) are far less powerful than the wavelet-based

3D shaped descriptors in terms of their discrimina-

tive capabilities.

2.1. Wavelet-based representation

The wavelet was introduced by Morlet and

Grossman (1984) as a time-scale analysis tool for

non-stationary signals. It was further developed

by many authors (e.g., Mallat, 1989; Daubechies,

1990; Meyer, 1997; Jaffard et al., 2001) and rapidly

found applications in many areas. A wavelet func-
tion is a function that is well localized in the space

and frequency domains. From a mother function

w(r), a family of wavelet functions

wa;bðrÞ ¼
1

a
w

r � b
a

� �
; a > 0

is derived. This family is obtained by shifting the

wavelet mother by b (the shifting parameter) and

by dilating (stretching) it with a (the scaling

parameter). The wavelet transform at the scale a

and shift b isZ 1

�1
f ðrÞwa;bðrÞdr

The wavelet transform embodies information

about the regularity and the spectrum of the fre-

quency around the position b at the scale a. From
this perspective, it is a local operator. However, by

varying the parameter b along the domain of the

function f(r), a global description of the function

can be obtained. Consider f(r,h,/), a 3D binary

representation for the cloud of 3D data points in

spherical coordinates, which in its discrete form,

can be seen as spherical voxel representation of

the 3D data.
In order to analyse the distribution of the cloud

of points over the space (r,h,/), the following

function is used:

F ðrÞm;n ¼
Z 2p

0

Z p

0

f ðr; h;/ÞUm;nðh;/Þr2 sin hdhd/;

0 6 m 6 n ð1Þ

This function integrates the distribution

f(r,h,/)Um,n(h,/) over the sphere of radius r.

Um,n, 0 6 m 6 n are the set of spherical harmonics

of order m and n. These functions are defined on

the unit sphere and form an orthogonal family

(Ferrers, 1877). Their expression is Um,n =

ejm/Vn(h), where Vn(h) is a polynomial function
of order n in cosh and sinh.

F(r)m,n 0 6 m 6 n, represent the projections of

the distribution f(r,h,/) over the space of the

spherical harmonics. Therefore, they describe the

spectrum of f(r,h,/) with respect to h and /. To
make the description of the distribution complete,

we must also analyse the set F(r)m,n in terms of

the radius r. For this, we propose wavelet-based
analysis in which the function F(r)m,n is projected

on an orthogonal family of wavelet functions.

The set of projections forms a unique representa-

tion of F(r)m,n and therefore of the distribution

f(r,h,/). From that set, a group of features are

selected according to the criteria described in Sec-

tion 3.1.

Consider the projections of F(r)m,n on the family
of wavelet functions wa,b.

Cm;n
a;b ¼

Z 1

0

F ðrÞm;nwa;bðrÞdr

¼
Z 1

0

Z 2p

0

Z p

0

f ðr; h;/Þwa;bðrÞejm/V nðhÞr2

� sin hdhd/dr ð2Þ

Cm;n
a;b , also called the wavelet transform coefficients,

represent according to (2) the projections of the

distribution f(r,h,/) on the orthogonal family

Lm;n
a;b ¼ wa;bðrÞUm;nðh;/Þ. It can be shown that:

hLm;n
a;b ; ðL

m0 ;n0

a0 ;b0 Þ
	i ¼ Kdaa0dbb0dmm0dnn0 , where * denote

the complex conjugate, d is the Kroneker symbol

(dij = 1 if i = j, 0 otherwise) and K is a constant.

Therefore, the coefficients Cm;n
a;b can be seen as a

special type of 3D moments derived from the

orthogonal family Lm;n
a;b . The orthogonal wavelet

family we used is built with the Meyer�s wavelet

(Meyer, 1997). In addition to their orthogonality,

Meyer�s wavelet family exhibit high regularity in

both the space and frequency domains. Because

Cm;n
a;b is a complex entity, the feature considered

here is rather its norm defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hCm;n

a;b ; ðC
m0;n0

a0;b0 Þ
	i

q
.
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2.2. Feature invariance

For translation and scale invariance, the human

body scan data is first rasterized into a voxel grid.

Then the centre of mass of the scan data is aligned
with the centre of the grid. The scale invariance is

obtained by scaling the 3D points� coordinates so
that the data volume defined by the moment

m000 ¼
P

x

P
y

P
zf ðx; y; zÞ is equal to V0, where

V0 is a predetermined value.

For the rotational invariance, we must know

that, within the scanner device, the rotation of the

body has only one degree of freedom (Fig. 1(a)),
that affects only the spherical coordinate /. There-
fore, rotational invariance has to be proved only

with respect to this coordinate. Consider a rotation

that changes the / value by an amount c: we can

show that the coefficient related to the rotated body

is Cm;n
a;b e

jmc. The coefficient module is thereforeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hCa;b;m;nejmc; C	

a;b;m;ne
�jmci

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hCa;b;m;n; C

	
a;b;m;ni

q
¼

kCa;b;m;nk.
However, this property has an unwelcome as-

pect, namely that the symmetric postures may

have close feature values. This symmetry problem

is alleviated by considering a pair of symmetric

postures as belonging to a single class. The correct

posture can be checked afterwards using simple

heuristic methods.

2.3. Feature extraction

The Cartesian voxel grid is transformed into a

spherical voxel grid using the transformation x =

rsin(h)cos(/), y = rsin(h)sin(/), z = rcos(h). The

distribution of the 3D data points is now repre-

sented by the function f(r,h,/). Because the data
points� space is confined to be within a sphere of

a given radius, S, and the set of features should

be finite, the parameters a and b should have a

finite range. Generally a dyadic discretization is

adopted for the scale and shift parameters of a

wavelet transform. The parameters a and b are

set as follows:

a ¼ S2�p; p ¼ 0; 1; 2; 3 ð3Þ

b ¼ qa=2; q ¼ 0; 1; . . . ; 2pþ1 ð4Þ

Fig. 1. (a) A standard posture of a human body in a reference frame (x,y,z) attached to the scanner. A rotation of the whole human

body is constrained to be around the z axis, affecting only the angle /. (b) The body parts� orientations are hierarchically defined. The

rotation R21 between R1 (reference attached to the left upper arm) and R2 (reference attached to the left lower arm) defines the

orientation of the lower left arm with respect to the upper left arm, and this orientation is defined by the rotation R10 between R1 and

R0 (principal reference).
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The scaling parameter a takes the values S, S/2,

S/4, S/8, as scales below S/8 cover a very reduced

space that reveals little significant information.

The shifting parameter b is varied in proportion

to the scale parameter and within the range
[0,S]. This makes 34 pairs (a,b).

The first four spherical harmonic functions are

used, namely, U0,0 = 1, U0,1 = cosh, U1,1 = ej/sinh,
and U1,2 = �3ej/sinhcosh. This gives a total num-

ber of wavelet features (WC) Cm;n
p;q of 34 · 4 = 136.

However, this number will be reduced by removing

the redundant features as described in the Section

3.1.
Computation of the wavelet coefficients is imple-

mented using the Matlab Wavelet package. First,

the function F(r)m,n (1) is calculated by means of

a standard integral discretization technique. Then,

the wavelet transform (2) is calculated using the

Matlab cwt function, which approximates the con-

tinuous wavelet transform. More details can be

found in the Matlab documentation.

2.4. 3D Zernike coefficient features

Zernike moments have been extensively used in

2D image analysis for their good performance with

regard to noise resilience, information redundancy

and reconstruction capability (Teh and Chin,

1988; Khotanzad and Hong, 1990). This was a
motivation to put them into our trial and compare

them with the wavelet features.

2D Zernike moments are obtained by projecting

the image function on the Zernike polynomials,

which form a complete orthogonal basis. These

functions are complex polynomials defined over

the unit disk by

zp;lðrÞ ¼ Rp;lðrÞejlh ð5Þ

where the radial function Rp,l(r) is defined for p

and l integers with p P l P 0 by

Rp;lðrÞ¼

Pðp�lÞ=2
t¼0

ð�1Þtðp� tÞ!
t! 1

2
ðpþlÞ� t

� �
! 1

2
ðp�lÞ� t

� �
!
rp�2t

if p� l even

0

if p� l odd

8>>>>>><
>>>>>>:

The first few non-zero polynomials are as follows:

R0;0 ¼ 1; R2;2 ¼ r2; R4;0 ¼ 6r4 � 6r2 þ 1

R1;1 ¼ r; R3;1 ¼ 3r2 � 2r; R4;2 ¼ 4r4 � 3r2

R2;0 ¼ 2r2 � 1; R3;3 ¼ r3; R4;4 ¼ r4

The extension of the Zernike functions to the 3D

case is obtained by substituting the angular expo-
nential function in (5) with the spherical harmon-

ics Um
n ðh;/Þ

zm;np;l ¼ Rp;lUm;nðh;/Þ ð6Þ

zm;np;l form a family of orthogonal functions. Indeed,

it can be easily shown that hzm;np;l ; ðz
m0;n0

p0;l0 Þ
	i ¼

Kdp;p0dl;l0dm;m0dn;n0 . By projecting the data distribu-

tion f(r,h,/) on the basis zm;np;l , we obtain a set of

coefficients, called 3D Zernike coefficient features

(ZC), expressed by

Zm;n
p;l ¼ hF ðr; h;/Þ; zm;n	p;l i

¼
Z 1

0

Z p

0

Z 2p

0

F ðr; h;/ÞZm;n	
p;l sin hd/dhdr

ð7Þ

Like the wavelet features, the Zernike features are
invariant with respect to a tilt rotation affecting the

angle /. By combining the first four spherical har-

monics U0,0,U0,1,U1,1,U1,2 with the first 36 non-

zero polynomials, Rp,l, 144 Zernike features are

obtained. From this collection, the best discrimi-

native features are selected using the technique de-

scribed in Section 3.1.

The computation of the Zernike features was
implemented using the Matlab package. The inte-

grals in (7) are simply replaced by summations.

The explicit forms of the Zernike polynomials

make the discretization of that expression trivial.

2.5. 3D Fourier coefficients

In Cartesian coordinates, the 3D Fourier trans-

form coefficients (FC) of a 3D discrete function

F(i, t,k) defined over the voxel grid of size N

(�N/2 i, t,k  N/2), are expressed as
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FCuvw ¼ 1ffiffiffiffiffiffi
N 3

p
Xi¼N=2�1

i¼�N=2

Xt¼N=2�1

t¼�N=2

Xk¼N=2�1

k¼�N=2

F ði; t; kÞ

� e�j2pN ðiuþtvþkwÞ:

Theoretically the frequency parameters u, v, w

have unlimited range, but in practice they are

bounded in �K 6 u,v,w 6 K, where K depends

on some prior assumption on the spectrum of the

function F(i, t,k). Because in our application pos-

ture changes are inferred by the movements of

body limbs, and given that each limb occupies a
large area of the posture space (approximately

one sixth of the whole space), the spectrum of

the posture data distribution is concentrated in

the low frequencies. Based on this, K was set to 3.

Because we are interested in the norm of the

Fourier coefficients, and taking into account the

fact that the coefficients FCuvw occur in complex

conjugate pairs (except for FC000), the number of
FC features is ((2K + 1)3 + 1)/2, thus forming a

vector of 172 features for K = 3. Note also that

the FC coefficients are not invariant with respect

to rotation. Approaches utilizing the Fourier

transform must first align the data to the canonical

reference, defined by the principal axes.

3. The classification

The classification problem is stated as follows.

Given a set of posture classes C1, . . . ,CN and given

a query posture Q, to which class does the posture

Q belong? The query posture is represented by an

observation feature vector of dimension d,

X = [x1,x2, . . . ,xd]. For each class Ci, consider the
discriminative functions di(X). The observed fea-

ture vector is associated with the class Ci if

di(X) > dj(X) for all j5 i. The optimal discrimina-

tive function, in Bayes� sense, is that defined as

the posteriori conditional probability function

P(CijX), expressed according to Bayes� rule by

P ðCijX Þ ¼ P ðX jCiÞPðCiÞ
P ðX Þ . Because any monotonically

increasing function of P(CijX) leads to identical

classification, the following function is preferred:

di(X) = ln(P(XjCi)P(Ci)). This expresses the sepa-
ration distance as the logarithm of the product

of the likelihood of the class Ci with respect to X

and the prior probability function P(Ci). Assuming

that P(XjCi) is a normal distribution Nðli;RiÞ de-
fined by pðX jCiÞ¼ 1

2pjRi j1=2
exp½� 1

2
ðX �liÞ

TR�1
i ðX�

liÞ� and that all the classes have equal prior

probability, the expression of the discriminative

function can be brought to

diðX Þ ¼ � 1

2
ðX � liÞ

TR�1
i ðX � liÞ �

1

2
ln jRij ð8Þ

The statistics (li,Ri) of a class Ci are obtained from

a training process using the standard EM tech-

nique (Redner and Walker, 1984).

3.1. Selection of discriminative features

Naturally, not all the features contribute effec-

tively to the classification. To avoid redundancy,

only features having reasonable discriminative

power are selected. The discriminative power is as-

sessed by the interclass distance defined as a metric
for measuring the separation between two classes.

A selection criterion based on that metric is there-

fore utilized in the search for the optimal set of fea-

tures. Feature selection has been the subject of

intensive work in the literature (Fukunaga,

1990). There are two main categories of technique:

the first operates on feature vectors, the second

treats each feature individually. We adopted a
technique belonging to the second category. It is

sub-optimal but relatively efficient. The selection

algorithm is as follows: given a set of features

{x1,x2, . . . ,xh} and given a selection criterion J,

(1) compute the selection criterion value J(k) for

each feature xk, k = 1, . . . ,h;
(2) rank the features in descending order with

respect to J; and

(3) select the top-ranked features.

There are various schemes for determining the

optimal number of features to be selected. One

method consists in rejecting the features for which

the discriminative power criterion is below a cer-

tain lower bound (e.g., the minimum value of the
separation distance between two classes). The opti-

mal number can also be determined by means of

training trials, in which the number of features is

gradually increased until it reaches a value beyond
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which the classification performance does not im-

prove. Section 4.2 will describe experiments illus-

trating this method.

3.2. The interclass distance

The selection criterion is closely related to the

classification method and therefore it should be

defined in the same framework. The interclass dis-

tance between two classes Ci and Cj having condi-

tional probability density functions P ðxk;CiÞ ¼
Nðlk

i ; r
k
i Þ and P ðxk;CjÞ ¼ Nðlk

j ; r
k
j Þ with respect

to the feature xk can be evaluated by the following
probabilistic separation:

dk
ij ¼

1

2

rk
j

rk
i
þrk

i

rk
j
�2

 !
þ1

2
ðlk

i �lk
j Þ

2 1

ðrk
i Þ

2
þ 1

ðrk
j Þ

2

 !

ð9Þ

This expression indicates that the larger the differ-

ence between the means with respect to the vari-

ances, the wider the separation between the two

classes. The criterion that evaluates the discrimina-

tive power of the feature xk is the sum of the inter-

class distances between each pair (9) for all the

classes. Therefore, given N classes, the expression

of the criterion is

JðkÞ ¼
XN
i¼1

XN
j¼iþ1

dk
ij ð10Þ

The larger J, the better the feature xk discriminates

between the classes.
The criterion (10) is then used to rank the three

categories of feature: the wavelet features (WC),

the Zernike features (ZC), and the Fourier features

(FC). This process involved 32 classes correspond-

ing to the postures shown in Fig. 3. The generation

of this training data is described in Section 4.

Fig. 2(a–c) shows the criterion (10) mapped as a

function of the ranked features. The variation of
the mappings appears to categorize the features

into two groups characterized respectively by high

and low decreasing rate of the discriminative
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Fig. 2. The discriminative power and its rate of decrease mapped as a function of the ranked features, for the WC (a, d), ZC (b, e) and

FC (c, f).
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power. The WC has a larger number of features in

the first group compared with ZC and FC. Note

that very few ZC and FC features have as high a
discriminative power as WC. Fig. 2(d–f) illustrates

the decreasing rate of the criterion (10) mapped as

a function of the ranked features for each of the

three types. The decreasing rates at the 20th fea-

ture are approximately 68%, 84% and 89% for

WC, ZC and FC respectively. This shows again

that the discriminative power remains reasonably

high for a relatively large number of WC features,
compared with ZC and FC, for which the discrim-

inative power becomes more than 80% weaker

after the 20th feature. These preliminary observa-

tions suggest that WC features are potentially

more discriminative than those of ZC and FC.

This was confirmed experimentally.

Table 1 shows the best 12 and the worst 12 WC
features. Although the interpretation of these ta-

bles is not straightforward, some remarks can be

made. For example, all the good features in Table

1(A) have a relatively large scale parameter, above

S/8. Most of their shift parameters are around S/4.

In spherical coordinates, this means that these fea-

tures operate in areas around the sphere of radius

S/4. These areas are indeed the most sensitive to
posture changes, inferred by the gestures of the

arms and legs.

For the worst features (Table 1(B)), note that

they all share the same lowest scale parameter

Fig. 3. The posture models labelled from 0 to 31.

Table 1

The best 12 WC features ranked in descending order (panel A); the worst 12 WC features ranked in ascending order (panel B)

(Panel A)

Feature C1;1
2;2 C1;1

3;0 C1;1
0;1 C1;1

3;6 C0;0
2;2 C1;1

3;7 C1;1
3;4 C0;1

2;2 C0;0
3;3 C1;1

3;5 C0;0
2;3 C0;0

1;1

J · 10e5 9.10 8.76 6.77 6.10 5.84 5.47 5.05 4.95 3.66 3.53 3.49 3.38

(Panel B)

Feature C0;1
3;11 C1;2

3;14 C1;1
3;14 C1;1

3;16 C0;0
3;14 C1;2

3;12 C1;1
3;12 C0;0

3;12 C1;2
3;16 C1;2

3;11 C1;2
3;15 C1;2

3;14

J · 10e4 1.22 1.95 2.02 2.11 2.15 2.25 2.34 2.47 2.73 2.79 2.80 2.85
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value, namely (S/8), and that most of them have a

relatively large shift parameter value close to S.

This indicates that these features operate at a

low scale, in the very periphery of the scan data

space; therefore, they embed poor information
about the posture.

4. Experiments

A series of experiments was conducted to assess

the performance of the WC, ZC and FC features

in terms of power discrimination and classification
rate. The experimental data consists of 32 different

posture models. This set was generated as follows:

a real 3D human body scan collected from the

Cyberware website (http://www.cyberware.com)

was fitted to a hierarchical jointed structure model

satisfying the kinematics constraints of the human

body. In this model, a body segment location (po-

sition and orientation) is defined relative to the
upper segment in the body hierarchy. For exam-

ple, the position and orientation of the right lower

arm are defined with respect to a reference at-

tached to the right upper arm (Fig. 1(b)). The rel-

ative orientations of the human body segments

define the parameters that control the posture.

By varying these parameters, a variety of postures

with a reasonable human appearance was ob-
tained, and 32 different posture models were gener-

ated (Fig. 3). The statistical characteristics of the

posture models were determined as follows. For

each posture, 30 training data sets were generated,

the posture parameters of each sample were per-

turbed with Gaussian noise and the full data set

was rotated randomly around the z axis, thus

affecting the / coordinate. The mean and the var-

iance of the model vectors were computed for the

30 feature vectors associated with the training sets.

This perturbing technique led to more realistic sta-

tistics than corrupting each 3D data point individ-

ually, because in real conditions, the noise in
posture parameters is inferred mainly by the

body�s movements.

4.1. Comparison of the discriminative power

The discriminative power of the WC, ZC and

FC features was assessed by testing their capabil-

ities in discriminating close postures. For this
purpose, eight pairs of close postures were se-

lected. They are shown in Table 2 and labelled

(0,7), (2,4), (2,11), (3,7), (4,11), (8,12), (9,15)

and (20,21). In a first stage, the three top-ranked

features, according to the criterion (10), were

tested. The features� values were plotted for the

30 training samples of each posture in the pair,

and thus the distributions corresponding to each
pair of postures could be compared visually. Figs.

4 and 5 depict the results related to the pairs

((0,7), (2,4), (2,11), (3,7)) and ((4, 11), (8,12),

(9,15), (20,21)) respectively. The distribution of

the WC features looks reasonably separated for

all the pairs of postures except the pair (8,12),

for which the corresponding distributions are

very close to each other; however, they are distin-
guishable and do not overlap. For the ZC fea-

tures, the four pairs (2,11), (4,11), (9,15) and

(20,21) show separated distributions. The pair

(0,7) shows a close distribution, whereas the dis-

tributions related to the pairs (2,4), (3,7) and

(8,12) overlap. The FC features show a modest

separation for the pairs (4,11) and (9,15), and

overlapping distributions for the remaining pairs.

Table 2

Pairs of close postures (first row) and their related separation distance involving the three top-ranked features of the WC, ZC and FT

(0,7) (2,4) (2,11) (3,7) (4,11) (8,12) (9,15) (20,21)

FC 16 2 13 0 72 54 82 6

ZC 64 3 438 8 356 7 544 136

WC 201 306 984 45 635 39 533 477
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The above observations are confirmed by Table 2
(rows 2, 3 and 4) containing the separation dis-

tance calculated for each of the eight pairs of

close postures, over the three types of feature.

The separation distance:
P3

k¼1d
k
ij involved the

three top-ranked features, and where dk
ij is the

distance defined in Eq. (9). In the table, we note

that the WC have a much higher score than the

FC or the ZC. Except for the pairs (8,12) and
(9,15), where they are ranked second, yet close

to the first ranked one.

The results of the first trial suggest that WC fea-
tures appear to be more capable of distinguishing

close postures than ZC and FC features. However,

this judgment may not be totally fair because the

three top-ranked features used in the fist trial were

selected based on a criteria that was defined upon a

scheme involving all the postures. Therefore, they

are not necessarily the optimal features for differ-

entiating the subset of eight pairs of close postures.
Therefore, a second experiment was conducted

involving the 50 top-ranked features from each

Fig. 4. Distribution of the three best WC features, ZC features and FC features for the pairs of close postures (0,7) (2,4), (2,11) and

(3,7).
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category. The separation distance between close
postures was computed for groups of k features,

where k = 1,2, . . . , 50. The separation distance,

involving k features is then dk ¼
Pk

t¼1d
t
ij. Note

that for this implementation, the summation form

is more appropriate than a matrix form as the lat-

ter may involve the inversion of an ill-conditioned

covariance matrix. Fig. 6 shows the separation dis-

tance dk mapped as a function of the number of
features for the eight pairs of postures. At first

sight, the WC features appear to exhibit the best

performance. The increase rate of the separation

distance for the WC is clearly larger than that
for the ZC and the FC. This is illustrated by the

increasing gap between the WC mapping and the

ZC and FC mappings.

For the five close pairs (0,7), (2,4), (2,11), (3,7)

and (20,21), the WC features exhibit the largest

separation, whatever the number of features in-

volved. For a number of features larger than 29,

the WC case presents the largest separation dis-
tance for all the pairs.

The three types of feature show a similar behav-

iour with respect to the variation of the increase

Fig. 5. Distribution of the three best WC features, ZC features and FC features for the pairs of close postures (4,11), (8,12), (9,15) and

(20,21).
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rate of the separation distance. Instances of this

behaviour are illustrated in Fig. 7 showing the in-
crease rate corresponding to the WC, ZC and FC

features for the pairs of postures (0,7) and (2,4).

This behaviour is characterized by a fluctuating

variation, which is surprising on initial examina-

tion, as one would expect a monotonic variation,

based on the fact that the number of features pro-

gresses according to the ranking established

according to the selection criteria. We believe that
the roots of this behaviour can be traced first to

the sub-optimality of the ranking progress, and

second to the fact that the ranking was issued from

a process that involved all the pairs of postures,

and therefore, it might not be optimal for the spe-

cific postures.

4.2. Comparison of the classification rate

In these experiments, a set of query postures

were matched to the posture models, and the per-

formances of the WC, ZF and FC features were

assessed by evaluating the rate of successful classi-

fications. Query postures were obtained in the

same way as the posture models; that is, by using

30 randomly perturbed and rotated versions for
each artificially generated posture, producing a

set of 30 · 32 query samples. These experiments

aimed at comparing the feature performance and

also assessing the optimality of the feature selec-

tion and ranking process described in Section

3.1. The scheme consisted of repeatedly determin-

ing the classification rate for a group of features,

starting with the group of the seven top-ranked
features. Then, at each trial, the number of fea-

tures was incremented by one (adding the next

top-ranked feature to the group), and this process

was repeated until the number of features reached

50. The classification rate was then plotted as a

function of the number of features, permitting

examination of its evolution. The results are

shown in Fig. 8. We observe that WC outper-
formed ZC and FC for all the features, with a

maximum rate of 98% reached with 32 features.

For the ZC and FC cases, the maximum rates were

90% and 86%, with 36 and 42 features respectively.

We also noted an overall enhancement in the clas-

sification performance as the number of features

Fig. 6. Variation of the discriminative distance between the pairs of close postures (0,7), (2,4), (2,11), (3,7), (4,11), (8,12), (9,15) and

(20,21) mapped as a function of the number of features.
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increased. However, the classification rate varia-

tion presents fluctuations that start at the 11th fea-

ture for the WC and at the 10th for ZC and FC.

This behaviour is similar to that observed in the
experiments conducted on close postures in Sec-

tion 4.1 (Fig. 7). This confirms the sub-optimality

of the feature selection technique.

We also noted that after a certain number of

features, the classification rate became stable for

the three types of feature. At that stage, increasing

the number of features no longer improved the
performance, as the discriminative power of the

features became increasingly weaker.

5. Conclusion

This work has described a methodology for rec-

ognizing human body postures from 3D scanner
data. It proposes new 3D shape descriptors based

on the wavelet transform. These features,

exploited within a model-based approach, demon-

strated high discriminative power compared with

the Zernike and Fourier features. Using the three

best features, WC features were able to differenti-

ate seven of eight pairs of close postures, whereas

ZC features and FC features could not differenti-
ate more than four and one respectively. The

good performance of WC was also confirmed for

Fig. 7. Increase rate of the separation distance corresponding to the pairs of postures (0,7) and (2,4) for three types of feature.

Fig. 8. Classification rate of the WC, ZC and FC features

mapped as a function of the number of features.
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a larger number of features. The mapping of the

separation distance as a function of the number

of features shows that WC has the highest increase

rate, well above those of FC and ZC. The experi-

ments conducted on a set of 32 posture models
confirmed the high performance of the WC, which

achieved a top rate of 98% compared with 90%

and 86% for the ZC and the FC respectively.

Naturally, the set of posture models can be

enriched by a greater variety of postures. The

method we adopted remains very applicable. How-

ever, a question may arise as to the number of dif-

ferent postures that can be recognized. We believe
that this is linked first, to what extent the recogni-

tion process can differentiate between close pos-

tures, and second, to the ability to set a metric to

measure the closeness of the postures. The para-

metric description of the posture in terms of the

orientation of each body segment can be used for

that purpose. What remains is to determine the

minimum changes in posture parameters that
would produce a distinguishable new posture.

We are currently investigating this.
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The Mesh-LBP: A Framework for Extracting Local
Binary Patterns From Discrete Manifolds

Naoufel Werghi, Member, IEEE, Stefano Berretti, Member, IEEE, and Alberto del Bimbo, Member, IEEE

Abstract— In this paper, we present a novel and original
framework, which we dubbed mesh-local binary pattern (LBP),
for computing local binary-like-patterns on a triangular-mesh
manifold. This framework can be adapted to all the LBP variants
employed in 2D image analysis. As such, it allows extending
the related techniques to mesh surfaces. After describing the
foundations, the construction and the main features of the mesh-
LBP, we derive its possible variants and show how they can
extend most of the 2D-LBP variants to the mesh manifold. In the
experiments, we give evidence of the presence of the uniformity
aspect in the mesh-LBP, similar to the one noticed in the
2D-LBP. We also report repeatability experiments that confirm,
in particular, the rotation-invariance of mesh-LBP descriptors.
Furthermore, we analyze the potential of mesh-LBP for the
task of 3D texture classification of triangular-mesh surfaces
collected from public data sets. Comparison with state-of-the-
art surface descriptors, as well as with 2D-LBP counterparts
applied on depth images, also evidences the effectiveness of the
proposed framework. Finally, we illustrate the robustness of the
mesh-LBP with respect to the class of mesh irregularity typical
to 3D surface-digitizer scans.

Index Terms— Local binary patterns, ordered ring facets, mesh
manifold, 3D texture analysis.

I. INTRODUCTION

THE Local Binary Pattern (LBP) is a local shape descrip-
tor that has been introduced by Ojala et al. [1], [2]

for describing 2D textures in still images. Its computational
simplicity and discriminative power attracted the attention
of the image processing and pattern recognition commu-
nity, and rapidly it has found other applications in visual
inspection [3], [4], remote sensing [5]–[7], face recogni-
tion [8]–[11], facial expression recognition [12], and motion
analysis [13], [14]. However, all the LBP-based methods
developed so far operate either on photometric information
provided by 2D color images or on geometric information
in 2D depth images. The few solutions that extract surface
features directly in 3D (typically in the form of surface
normals), resort to the 2D case by converting the 3D extracted
features to depth values, and then use ordinary LBP processing
on depth images [15]–[17].
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The triangular mesh manifold is a simple, compact and
flexible format for encoding 3D shape information, which
is widely used in many fields, such as animation, medical
imaging, computer-aided design and many others. The recent
advances in shape scanning and modeling have also allowed
the integration of both photometric and geometric information
into a single support defined over a 2D mesh-manifold. Despite
the abundance and the richness of the mesh manifold modality,
to the best of our knowledge, there is no a computational
support that allows the computation of LBP on this format.
One factor that plagued the development of an LBP-based
description on the mesh is the lack of an intrinsic order in the
triangular mesh manifold, since the LBP requires an ordered
support for its computation. On the contrary, computation of
LBP on 2D images benefits from the implicit ordering of the
pixels in the 2D image array.

Providing such a framework for computing LBP on a mesh
could be of great interest for describing 3D texture reflecting
the presence of repeatable geometric patterns on the mesh
surface (this being a completely separate concept from photo-
metric texture). In fact, there are many applications that require
local surface shape analysis and interpretation of 3D textured
surfaces. In quality control, texture description can be used for
detecting local surface pattern defection. In medicine, most of
the imaging data (e.g., ultrasound, microscopic images) are
shifting to a 3D mesh format. Many diagnostic rules related
to these modalities need description and classification of some
organs local surfaces. More generally, texture description on
the mesh is useful for any application that needs 3D texture
analysis, classification, and retrieval. For example, a typical
scenario in the last application is to have a sample of specific
3D texture pattern and detect regions which match that model
in a gallery of surfaces.

Motivated by these facts, in this paper we address the
challenge of computing LBP on a mesh manifold by proposing
an original computational framework, which we called mesh-
LBP that allows the extraction of LBP-like patterns directly
from a triangular mesh manifold, without the need of any
intermediate representation in the form of depth images. With
this framework, we can therefore build on the current 2D-LBP
analysis methods, extending them to mesh manifolds as well
as to the modality that also embeds photometric information
into mesh models. To motivate our solution and to relate it to
the state of the art approaches, next we provide an overview of
the LBP literature, then the main features and the contribution
of our proposal are discussed.

A. LBP Overview and Related Work
In its original definition, the LBP operator [1] assigns labels

to image pixels by first thresholding the 3 × 3 neighborhood

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. (a) Computation of the basic LBP code from the 3×3 neighborhood
of a central pixel. Each pixel, starting from the upper-left corner is compared
with the central pixel to produce 1 if its value is greater or equal, 0 otherwise.
The result is an 8-bit binary code; (b) Example of a central pixel with a circular
neighborhood of a given radius.

of each pixel with the center value (i.e., each pixel in the
neighborhood is regarded as 1 if its value is greater or equal to
the central value, 0 otherwise), then considering the sequence
of 0/1 in the pixel neighborhood as a binary number according
to a positional coding convention. This is shown in Fig. 1(a),
where the upper left pixel in the neighborhood is regarded as
the most significant bit in the final code. This eight bits number
encodes the mutual relationship between the gray levels of the
central pixel and its neighboring pixels. The histogram of the
numbers obtained in such a way can then be used as a texture
descriptor. This operator is distinguished by its simplicity and
its invariance to monotonic gray-level transformations.

An extended LBP version that can operate on circular
neighborhood of different radii, also allowing sub-pixel alter-
ations was proposed later in [2] (see Fig. 1(b)). These ini-
tial formulations led subsequently to the definition of other
neighborhood variants, like the oriented elliptic neighbor-
hood LBP (elongated LBP) proposed by Liao et al. [18],
which accounts for anisotropic information, and the multi-
block LBP (MB-LBP) that compares the averages of the gray
level intensity of neighboring pixels rather than the value of
individual pixels, in order to capture macrostructural features
in the image [19]. Other versions have been proposed to
improve the discriminative power of the descriptor, such as
the improved LBP (ILBP) [20], in which pixel values are
compared with the average of the neighborhood, and the
extended LBP (ELPB) [21], which encodes, in addition to
the binary comparison between pixels values, the amplitude
of their difference using additive binary digits. To improve the
robustness of LBP, Tan et al. [22] introduced the so-called local
ternary pattern (LTP), which substitutes the original binary
code by a three-values code (1, 0 and −1) by means of a user-
defined threshold. This new operator addressed the sensitivity
to noise, though at the cost of the invariance to monotonic
gray-level transformations. A fuzzy-logic version of the LTP
was proposed later in [23], where a fuzzy membership function
substituted the crisp three-states association used in [22].
A more complete list and discussion on the many LBP variants
appeared in the literature can be found in [24].

Considering the case of 3D shape analysis, most if not
all the LBP-based approaches have been developed for face
recognition applications. Many of the techniques developed
in this context operate on standard depth images, where the
z-coordinate is mapped to a gray-level value. This format
allowed a straightforward application of the 2D-LBP operator
as it was demonstrated in the pioneering work of Li et al. [25].

Later, Huang et al. [26] proposed a 3D-LBP operator that
also encodes depth differences of neighboring pixels, and
more recently Huang et al. [27] extended the 3D-LBP to a
multiscale extended LBP (eLBP), which consists of several
LBP codes in multiple layers accounting for the exact gray
value differences between the central pixel and its neigh-
bors. Sandbach et al. [15] proposed a local normal binary
pattern (LNBP), which used the angle between normals at
two points rather than the depth value to obtain the local
binary code. Similar to this, in [16] the surface normals are
extracted in 3D, then the values of the normal components
along the direction of the three coordinate axes are interpreted
as depth values, and LBP is computed on these depth maps
reporting the values of the normal components. The idea of
exploiting surface normals is further extended in [17], where
azimuthal projection distance images are constructed. The
azimuthal equidistant projection is able to project normals
onto points in an Euclidean space according to the direction.
Though the projected information is not the depth, depending
on the normals of the 3D surface, 2D LBP are still computed
on the projection images. Fehr and Burkhardt [28] attempted
an LBP definition specifically tailored for volumetric data by
sampling a sphere of a given radius around a central voxel.
The approach is computationally expensive in that the rotation-
invariance is addressed with complex techniques involving
spherical correlation in the frequency domain.

B. Paper Contribution and Organization

From the analysis above, it emerges that since its introduc-
tion the LBP descriptor has attracted great interest for the
analysis of 2D images, mainly for its simple and efficient
computation and for the effective results that can be achieved
relying on the LBP theory. Recently, various attempts have
been done for extending the LBP framework to the case
of 3D meshes, but none of them succeeded in addressing
all the issues posed by the need for a simple and effective
processing directly performed on a mesh-manifold. Indeed,
existing solutions address the LBP extraction on 3D meshes
by resorting to the easier 2D case, through the projection of
3D meshes on 2D depth maps.

In this paper, we propose a framework that we call mesh-
LBP, for designing and extracting local binary patterns directly
from a 2D mesh-manifold. In addition to its originality, the
proposed framework is characterized by the following features:

• Effectiveness – The mesh-LBP operates directly on
3D triangular meshes, thus avoiding any expensive
pre-processing, such as registration and normalization,
required to obtain depth images;

• Generalization – By its ability of handling mesh data, this
framework can deal with a larger spectrum of surfaces
(e.g., closed, open, self-occluded) as compared to its
counterpart defined on depth images;

• Adaptability – This framework can be adapted to hold
most if not all the LBP variants proposed in the literature
for 2D and depth images;

• Simplicity – The mesh-LBP preserves the simplicity of
the original LBP, not requiring any surface parametriza-
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Fig. 2. Construction of an ordered ring: (a) Initial Fout facets on a
convex contour; (b) Bridging the gap between the pairs of consecutive
Fout facets with the Fgap facets; (c) The obtained ordered ring; (d) Ordered
ring constructed around a central facet.

tion, apart the standard mesh arrangement into facets
and vertex arrays, while keeping linear computational
complexity.

The rest of the paper is organized as follows: In Section II,
we introduce our framework by giving the foundation of the
mesh-LBP and presenting its multi-resolution extension; Some
mesh-LBP variants aiming to reduce the dimensionality of
the descriptor are introduced in Section III (a comprehensive
view of the mesh-LBP variants is provided in the Appen-
dix), together with solutions addressing the invariance of the
descriptor, and its robustness to irregular tessellations of the
mesh; Experimental evidence of the potential of the mesh-LBP
in different application scenarios and in comparison to state of
the art solutions is reported in Section IV; Finally, concluding
remarks and future research directions are drawn in Section V.

II. THE MESH-LBP

The construction of LBP-like patterns on a mesh, first
requires a scheme for constructing rings of facets around a
central one and for traversing them in an ordered fashion.

Let S = 〈V , F〉 be the triangular mesh representation of
an open or closed surface, where V and F are, respectively,
the sets of vertices and facets of the mesh. Let us start by
considering the general case of a convex contour on the mesh,
which we assume regular, i.e., each vertex has a valence of
six (we will show later that our framework can also cope with
meshes that do not comply with this ideal case). Consider the
facets that have an edge on that contour (Fig. 2(a)). We call
these facets Fout facets, as they seem pointing outside the
contour. Let us consider also the set of facets that are one-to-
one adjacent to the Fout facets and which are located inside
the convex contour. Each facet in this set, that we call Fin,
shares with its corresponding Fout facet an edge located on
the convex contour. Let us assume that the Fout facets are
initially ordered in a circular fashion across the contour. Given
that initial arrangement, we bridge the gap between each pair
of consecutive Fout facets, that is we extract the sequence
of adjacent facets, located between the two consecutive Fout
facets and which share their common vertex (the vertex on the
contour). We call these facets Fgap facets (see Fig. 2(b)). The
“Bridge” procedure reported in pseudocode in Algorithm 1 is

Algorithm 1 Bridge

Algorithm 2 GetRing

used to compute the Fgap facets. By iterating the process
of bridging the gap between two consecutive Fout facets
with the Fgap facets results in a ring of facets that are
ordered in a circular fashion (see Fig. 2(c)). The resulting
arrangement of the ring facets inherits the same direction
(clock-wise or anti-clockwise) of the initial sequence of Fout
facets. The “GetRing” procedure of Algorithm 2 describes the
ring construction, which is obtained by iterative calls to the
“Bridge” procedure. We dubbed such obtained ordered ring,
Ordered Ring Facets (ORF).

In the above discussion, we referred to the general case
where the ORF is constructed around a convex contour.
Actually, the usual case is constituted by an initial seed formed
by an individual facet (central facet), whose three edges
represent the initial convex contour. This case is considered
in this work, since it corresponds to the situation where
an ordered ring is constructed around the facets of a mesh
surface. In this particular case, the Fout set includes the three
facets adjacent to the central one, and the obtained ring is
composed of 12 ordered facets (i.e., the three Fout facets, plus
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the nine Fgap facets bridging the gap between consecutive
Fout facets), as shown in Fig. 2(d).

Let h( f ) : S → R be a scalar function defined on the
mesh S (e.g., photometric data or curvature). The circular
ordering of the facets obtained with ORF allows us to derive
a binary pattern (i.e., sequence of 0 and 1 digits) from it, and
thus to compute a local binary operator in the same way as in
the standard LBP. We define the basic mesh-LBP operator at a
central facet fc by thresholding its ordered ring neighbourhood
constituted by the 12 facets in the ORF:

meshL B P( fc) =
11∑

k=0

s(h( fk)− h( fc)) · α(k)

s(x) =
{

1 x ≥ 0

0 x < 0,
(1)

where α(k) is a weighting function. Different definitions of
the function α(k) permit us to obtain different binary patterns,
and thus different mesh-LBP values can be derived from
the central facet and its ring neighborhood. For example,
with α(k) = 2k the basic LBP operator firstly suggested by
Ojala et al. [1] is obtained; for α(k) = 1, the sum of the digits
of the pattern is computed (i.e., the number of digits equal
to 1). We remark here that for the present discussion it is not
necessary to detail the particular scalar function h( f ), whose
values are computed on the mesh facets. The effect of different
choices of this function will be investigated in Section IV.

A. Multi-Resolution Mesh-LBP

The mesh-LBP is extended to a multi-resolution framework
by deriving a sequence of concentric rings, which preserve the
ordering property. From the first ring, the sequence of facets
that are one-to-one adjacent to the Fgap facets are extracted
(Fig. 3(a)). This sequence, which inherits the order property
of the Fgap facets, constitutes the set of Fout facets for
the subsequent ring. So, by filling the gap between each two
consecutive facets of this sequence (Fig. 3(b)), a new ring,
which exhibits the same ordered structure of its predecessor
is obtained (Fig. 3(c)). By iterating this procedure, we build
a sequence of concentric ordered rings, which represent the
primitive entity for computing multi-resolution mesh-LBP
(Fig. 3(d)). Details of the procedure used for computing the
multi-ring structure are reported in Algorithm 3. In this case,
the “GetRing” procedure of Algorithm 2 is slightly modified,
so that it also returns the set of Fgap facets of the current ring
and the set of Fout facets of the subsequent ring (indicated
as NewFout).

It is worth mentioning that, when the regularity assumption
for the mesh is satisfied, the number of facets ν across the rings
evolves according to the following arithmetic progression from
ring i to ring i + 1:

νi+1 = νi + 12. (2)

This can be intuitively seen referring to Fig. 3: the
1st-ring comprises 12 facets (3 Fout plus 9 Fgap); 24 facets
are included in the 2nd ring (i.e., 9 Fout plus 15 Fgap);
36 facets in the third ring, and so on.

Fig. 3. Construction of multi-resolution mesh-LBP: (a) Extraction of the
next set of Fout facets, as the facets adjacent to Fgap which are not part of
the current ring; (b) Extracting the Fgap facets; (c) The second ordered ring
extracted; (d) Five concentric ordered rings. Notice that the first facet of each
ring (marked by 1) is located at the same relative position.

Algorithm 3 MultiRing

In a real mesh, because of mesh tessellation irregularities, it
might happen that the “GetRing” procedure gets trapped into a
closed loop resulting in NewFout facets being located on the
current ring or on duplicated instances. We fix such potential
anomalies by simply checking the consistency of the obtained
NewFout facets after each iteration. However, after this post-
processing procedure, the arithmetic progression of the number
of facets across rings is no longer satisfied, and this latter
case can be used as an indicator of the local mesh irregularity.
We will elaborate further on this aspect in Section III-C.

Given a multi-ring constructed around a central facet fc, a
multi-resolution mesh-LBP operator is derived as follows:

meshL B Pr
m( fc) =

m−1∑

k=0

s(h( f r
k )− h( fc)) · α(k), (3)

where r is the ring number, and m is the number of facets
uniformly spaced on the ring. The parameters r and m control,
respectively, the radial resolution and the azimuthal quantiza-
tion of the operator. In principle, any predefined number of
samples per ring can be used. In this work, we considered, in
almost all the cases, a number of samples per ring m = 12.
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III. MESH-LBP IMPLEMENTATION

In the following, we provide more insights on the
practical implementation of mesh-LBP. In particular, we
propose mesh-LBP variants to reduce the descriptor size
(Section III-A), together with solutions to make the mesh-
LBP descriptor invariant with respect to the selection of the
initial ORF facet (Section III-B), and to make it computable
on meshes with non-regular tessellation (Section III-C).

A. Reducing Descriptor Size

The LBP operator produces rather long histograms and is
therefore difficult to use as a region descriptor. A first solution
to this problem was obtained by using just “uniform” patterns
(i.e., binary patterns with a number of bitwise 0-1 transitions
equal at most to 2) instead of all the possible ones [2].

The problem of reducing the dimensionality of the
LBP descriptor also inspired the LBP variant called
center-symmetric (CSLBP) [29], which modifies the pixels
comparison scheme by computing the difference between
center-symmetric pairs of pixels rather than comparing each
pixel with the central pixel. This halves the number of com-
parisons for the same number of neighbors. In the context of
mesh-LBP, the same result can be obtained using the following
equation for the center symmetric mesh-LBP (mesh-CSLBP):

meshC SL B Pr
m( fc) =

m/2−1∑

k=0

s(h( f r
k )− h( f r

k+m/2)) · α(k).

(4)

This is illustrated in the case (d) of Table II in the Appendix.
In the experiments, we show the existence of the uniformity
aspect in the mesh-LBP patterns, and the capability of the
mesh-CSLBP of keeping virtually the same results than the
basic mesh-LBP, while reducing the computational cost.

B. Achieving Invariance to Facets Ordering

In order to make the mesh-LBP invariant to the ordering of
the facets in the ring and its traversal, two aspects should be
addressed: The position of the first facet (i.e., the first Fout
facet) in the ring, that is from which of the facets the ring starts
from; The direction of the ring traversal (clock-wise or anti-
clockwise). The last aspect can be easily fixed by orienting the
normals of the mesh-manifold. For the first aspect, when the
ORF are constructed around a central facet, three different
orderings of the facets inside each ring can be obtained,
depending from which of the three Fout facets, adjacent to
the central facet, the first ring starts from. Therefore three
different patterns can be derived from each ring. To address
this ambiguity several solutions can be used:
• Method-1: Performing a circular bit-wise shift of the

binary pattern, as was suggested in the standard LBP [2],
and selecting as initial facet that resulting in the minimum
LBP value. However, this method reduces the range of the
LBP values and might seriously affect the discriminative
power of the operator [30];

• Method-2: Adopting intrinsically rotation invariant
descriptors only. This set includes the number of tran-
sitions, the number of 1-valued bits (i.e., the sum of the

binary digits obtained when using α(k) = 1 variant), and
the number of 1-valued runs of a given length in the
binary patterns. This method preserves the range of the
LBP values, yet might still compromise the discrimina-
tion power, though to a less extent than the first method;

• Method-3: Considering all the binary pattern values that
originate by moving the initial facet along the ring, but
this solution creates redundancy and further burden the
computation;

• Method-4: Selecting the first facet with respect to a local
reference frame (LRF) determined based on the local
morphology of the ring neighborhood. For this purpose,
the method proposed by Tombari et al. [31], which
ensures a unique and unambiguous LRF can be used.
Afterwards, the nearest facet to the x or y axis of the
LRF can be selected as the first facet.

From the above, the method-4 looks the most reliable and
generic, but its implementation requires histograms construc-
tion, which might burden the computational complexity. For
this reason, we rather adopted a simpler yet practical solution,
tailored to our problem, and which consists of the following
steps: (i) First, we generate the sequence of rings starting from
any arbitrary adjacent facet to the central facet; (ii) Then, from
the obtained sequence of ordered rings, we select as a first
facet in each ring-r, the facet fi which satisfies the following
condition:

min
i

di st (co, cr
i ), fi ∈ ring-r, (5)

where dist (.) is the Euclidean distance, cr
i is the center of

facet fi in the ring-r (union of the Fout and Fgap facets),
and co is the centroid of the centers of the facets in the rings
weighted by their area; (iii) Finally, in each ring, we apply
a circular shifting to the current facets ordering to bring the
facet selected in step (ii) to the first position.

Fig. 4 shows the mesh-LBP maps obtained with the method-
1 and method-2 (the number of 1-valued bits in the pattern
has been used) listed above, and our proposed method for
selecting the first facet of a ring. The repeatability and behavior
obtained using the different methods can be appreciated.
In particular, the zoomed maps in Fig. 4(b), obtained for
a rectangular region at the base of the nose, show a clear
overall repeatability of the mesh-LBP (last column) obtained
with the proposed method. The minor disparities between the
three instances emanate from the mesh variability across the
scans, which in turn affects to some extent the binary patterns.
The same behavior is observed for the method-1 and -2.
In particular, we notice the reduced range of the pattern
values in method-1. For method-2, we can notice the limited
description ability reflected in the similar values observed at
the curve sides. On the opposite, our method looks the most
effective in detecting the shape variability at that neighbors.

C. Mesh Quality Assessment

One issue that can hamper the repeatability of the
mesh-LBP is the local irregularity of mesh tessellation, for
which the assumption of vertex valence of six does not hold,



WERGHI et al.: MESH-LBP: FRAMEWORK FOR EXTRACTING LBP 225

Fig. 4. Comparison of the mesh-LBP maps obtained with different methods for selecting the first facet of a ring (r = 1 and m = 12 are used). The maps
shown represent the face surface mesh after coloring each facet in the mesh with a color representing its mesh-LBP value. (a) mesh-LBP maps obtained using,
respectively, method-1, method-2 (number of 1s), and our proposed method, on three different face scans of a same subject; (b) A region at the base of the
nose of each scan in (a) is cropped (rectangular region framed in black), and the corresponding mesh-LBP maps are zoomed in. (The maps are best viewed
on the soft-copy version).

and consequently the regular progression of Eq. (2) is not
satisfied. This issue can be addressed in different ways:
• Adding a pre-processing stage that regularizes the density

of the mesh triangulation;
• Deriving iso-geodesic contours from the ordered rings

that act as a support region for computing mesh-LBP
operators;

• Applying the local density invariant smoothing, proposed
by Darom and Keller [32] to the ring vertices around the
central facet.

In our experiments, we rather used a simpler technique that
interpolates the scalar function used to compute mesh-LBP
across each ring, so as to obtain a sequence of samples that
matches the ideal progression.

We note that the progression of the number of facets across
the ordered rings (see Eq. (2)), also allows establishing a
simple criteria for assessing the local regularity of a triangular
mesh. Indeed, given a facet neighborhood comprising r rings,
we define the local irregularity criterion by:

δr = ‖�r − �̂r‖
‖�̂r‖

, (6)

where �̂r is a vector representing the ideal sequence of the
number of facets across an r -ring ORF (i.e., [12, 24, …, 12r])
according to the arithmetic progression of Eq. (2), and �r is
the actual sequence. Fig. 5(a) depicts examples of 3-ring ORF
exhibiting different �3 and δ3.

Intuitively, the idea behind the δr coefficient is that the
greater is the relative deviation between the actual number
of facets across the r rings with respect to its ideal number,
the more the mesh is irregular in the local surface spanned by
these r rings computed around a central facet. This criterion
can be used to assess the local regularity of a mesh, thus to
regularize the support region used in the computation of the
multi-resolution mesh-LBP. Fig. 5(b)-(c) depict, respectively,
a mesh sample and its corresponding map with the values of
δr originated using the local irregularity criterion. In the δr

map in (c), dark areas correspond to larger values of δr ; it

Fig. 5. (a) Examples of 3-ring ORF with their related �3 and δ3; (b) Sample
of a facial mesh showing local irregularities in the eye and nose regions;
(c) Corresponding map obtained by computing the local irregularity criterion
δr at each facet.

can be observed that dark areas correspond well to the most
irregular regions of the facial mesh in (b) (see, for instance,
the left nostril or the right eye).

With this criteria, once an irregular mesh region is detected,
a local mesh regularization approach can be applied to it
so as to recover the ideal mesh tessellation for mesh-LBP
computation. Using an opposite perspective, the value of δr

computed for the r -ring neighborhood of a facet can be used as
a criteria to assess the significance of the mesh-LBP computed
for the facet. According to this, 1−δr could be used to weight
the contribution of individual mesh-LBP values accumulated
in a global histogram descriptor: the more irregular the mesh
is in a facet neighborhood, the lower the contribution of
the corresponding mesh-LBP to the overall descriptor. In the
experiments, we found that, even without recurring to this
procedure, the mesh-LBP can actually cope to a large extent
with mesh irregularities.

IV. EXPERIMENTAL RESULTS

Experiments have two main goals: On the one hand, we
investigate the basic properties of the mesh-LBP descriptor,
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Fig. 6. Mesh models used in the uniformity experiment: (a) Portion of a
pot (MIT CSAIL textured 3D models); (b) Face surface (BU-3DFE); (c) Cat
model (TOSCA high-resolution).

evidencing the presence of mesh-LBP uniform patterns
(Section IV-A) and the repeatability of the descriptor
(Section IV-B); On the other, we evaluated the proposed
framework on the specific task of 3D texture classification:
first, we compare the different mesh-LBP surface functions
and operators, also in comparison with some of the mesh-
LBP variants (Section IV-C); then, we provide a comparative
analysis of the mesh-LBP descriptor with respect to state of
the art solutions which describe 3D meshes through surface
descriptors, or by applying the standard 2D-LBP on depth
images of the 3D meshes (Section IV-D); finally, the robust-
ness of the mesh-LBP to mesh irregularities is also shown
(see Section IV-E).

A. Uniform Patterns
By studying the statistics of the number of bitwise 0-1

transitions in the binary patterns, Ojala et al. [2] noticed that
the majority of the patterns in textured 2D images have a
number of transitions U equal at most to 2. These patterns
are called “uniform”. In our investigation, we considered
a representative set of three surface meshes collected from
different sources. The first surface is a portion of a pot object
from the “MIT CSAIL textured 3D models database” [33].
This object exhibits textured shape patterns on the surface. The
second surface represents a face scan from the “Binghamton
University 3D facial expression database” (BU-3DFE) [34],
and shows the case of an open surface. The third one is
a closed surface of a cat model from the “TOSCA high-
resolution database” [35]. These models are shown in Fig. 6,
from (a) to (c), respectively.

Four scalar functions (h(.) in Eq. (3)) on the mesh manifold
have been studied, namely, the mean curvature (H ), the
gaussian curvature (K ), the curvedness (C), and the angle
between facets normal (D). For each of these functions, we
computed the number of transitions U in the binary patterns
computed by using the mesh-LBP operator of Eq. (3), across
six levels of spatial resolution (r from 1 to 6), and using
12 samples for the azimuthal quantization (m = 12 at each r ).

The results, depicted in Fig. 7, show the percentage of
facets, exhibiting a number of transitions U less or equal
than 4. We can observe that this number exceeds 90% up to
the third ring, across the four scalar functions, for all the three
surfaces. The angle between normals is the function exhibiting
the largest score with an overall percentage above 80%. The
mean curvature and the curvedness show virtually the same
rates. Overall, all the scalar functions show a percentage of
U ≤ 4 above 70%. These observations provide evidence on the
existence of a “uniformity” aspect of the mesh-LBP computed
on triangular mesh manifolds, and thus the mesh-LBP has

Fig. 7. Percentage of facets whose mesh-LBP have a number of transitions U
less than or equal to 4 (legend: H - Mean curvature; K - Gaussian curvature;
C - Curvedness; D - Angle between facets normals).

the potential of adapting to the uniformity-driven description
suggested by Ojala et al. [2]. Based on the obtained results,
considering an azimuthal quantization of m = 12, that is 4096
possible patterns, we define the set of uniform patterns as the
set including all binary patterns for which U is at most equal
to 4. This set contains exactly 1123 patterns against 2973 for
the non-uniform patterns. Following the same partition scheme
of [2], where all the non-uniform patterns are grouped into a
single label, whereas a separate label is assigned to each non-
uniform pattern, the number of labels (or classes) is reduced
to 1234 for our mesh-LBP. We will adopt this partition in the
rest of the experiments. Notably, this partition will be used
for the mesh-LBP operator involving α(k) = α2(k) = 2k . For
α1(k) = 1 the distinction into uniform/non-uniform patterns
does not make too much sense since the number of patterns
is already small (13 patterns exactly).

B. Repeatability

Repeatability of mesh-LBP measures the capability of the
descriptor to assume comparable values when extracted from
corresponding facets of different instances (i.e., scans) of a
same 3D object. For this experiment, we acquired 32 facial
scans of a same subject with neutral or moderate facial
expressions. The four scalar surface functions reported in the
previous Section, namely, mean curvature, gaussian curvature,
curvedness and angle between facets normal have been used
for computing mesh-LBP. For each of these functions, we con-
sidered two different mesh-LBP operators, that is, α1(k) = 1,
α2(k) = 2k. A third mesh-LBP representation has been
obtained by applying the α2(k) operator just to the uniform
patterns (i.e., according to the results of Section IV-A, we
considered a pattern uniform if its number of transitions U is
U ≤ 4). Different spatial resolutions corresponding to eight
rings r = 1, . . . , 8, have been also accounted. To compute the
repeatability of mesh-LBP we followed an approach similar
to that proposed in [36] for 3D keypoints. With this solution,
first a scan is selected as reference, and each of the other scans
(probe) is aligned to the reference one using ICP registration.



WERGHI et al.: MESH-LBP: FRAMEWORK FOR EXTRACTING LBP 227

Fig. 8. Repeatability of mesh-LBP: (a) α1(k) = 1; (b) α2(k) = 2k ; (c) α2(k) = 2k applied to uniform patterns (i.e., number of transitions U ≤ 4).

Then, for each facet in the probe, the nearest neighbor facet in
the reference is found, whose mesh-LBP value is equal to the
mesh-LBP value of the probe facet (the nearest neighbor dis-
tance between facets is computed between the 3D coordinates
of their centroid). This operation is repeated for each facet
in the probe and the distances of the nearest neighbor facets
in the reference computed as above are recorded. Varying a
proximity radius around the facets, it is possible to count
the percentage of repeated mesh-LBP values between probe
and reference scans for each value of the radius. The overall
repeatability is finally obtained by iteratively using one of the
scan as reference, and all the remaining as probes.

Figs. 8(a)-(c) show the obtained average repeatability as a
function of increasing values of the proximity radius, respec-
tively, for the three used mesh-LBP descriptors. The plots
reported in the figure concern the mesh-LBP computed on
the 1st-ring, but a similar behaviour resulted for the rings at
increasing values of r. In general, we observe that the gaussian
curvature and the angle between facets normal show a similar
behaviour, obtaining the highest repeatability in all the cases.
The mean curvature and curvedness, instead, score similar
results each other, showing a lower performance especially for
the α1 and α2 operators. Interestingly, for all the scalar surface
functions, the best repeatability is obtained for the uniform
patterns U (see the plot (c) in the figure).

C. Discriminating 3D Texture Patterns

2D-LBP has been successfully used in a number of different
applications, the most notables being texture classification and
face recognition. We have shown that mesh-LBP inherits many
of the positive aspects of the standard LBP, further extending
the range of possible applications to the direct analysis of
3D triangular meshes. As a consequence, it is expected that
mesh-LBP can found application in a number of 3D scenarios,
inspiring also new one. In the following, we focus on the
problem of 3D texture classification. We remark here that
in this study textures are intended as 3D repeatable patterns
corrugating the object surface; This concept is completely
different and separated from the 2D texture, which is related
to the photometric appearance of the model and, if present,
is coded by a 2D image. In fact, 3D objects have been
analyzed for classification and retrieval purposes mainly using
their 3D shape. This is largely motivated by the almost
complete absence of 3D textures in CAD and synthetic models

used in the majority of benchmark datasets [35], [37], [38].
Instead, the 3D surface texture is of fundamental importance
to discriminate the 3D scans of real objects, which can
show very similar shapes, but be well differentiable based on
their 3D texture.

According to these considerations, in this experiment we
investigate the potential of the mesh-LBP for discriminating
texture patterns on 3D meshes. In so doing, our goal is to probe
the capability of mesh-LBP as a framework for 3D texture
classification, rather than to elaborate a proper method for such
task. For this purpose, we used surface samples exhibiting
a variety of 3D shape textures, collected from eight differ-
ent object models of the “MIT CSAIL textured 3D models
database” [33]. These objects are bagel, bird, gargoyle, head,
lion, owl, plaque and pot. All these models are characterized
by a reasonably uniform mesh, and we were able to identify
10 distinct 3D texture patterns from them, as reported in the
1st row of Fig. 9 (in particular, three texture patterns were
derived from the owl object). For each sample, we computed
a 1D-histogram of the mesh-LBP operator (Eq. (3)) using the
operator functions α1(k) = 1 and α2(k) = 2k , a varying
spatial resolution r = 1, . . . , 7, and an azimuthal quantiza-
tion m = 12. For the operator function α1, the resulting
mesh-LBP take values in [0,12] (i.e., in this case, the number
of 1-valued bits in a pattern of 12 bits is counted), and
these values are accumulated in a 1D histogram with 13 bins
for each ring. For the α2 operator, for which the range of
mesh-LBP is [0,4095], we adopted the uniform/non-uniform
mesh-LBP partition described in Section IV-A, that is 1123
bins are used for the uniform patterns, i.e., one bin for each
of the patterns having a number of transitions equal at most to
four, and one bin for all the remaining patterns (the 2973 non-
uniform ones). Based on this setting, two 2D histograms of
size (7,13) and (7,1124) are computed for each texture, which
are associated, respectively, with the α1 and α2 operators.
The histograms are computed for each sample surface by
considering an area of 19 rings around the central facets in
the computation of mesh-LBP, which is sufficient for covering
the 3D texture variation in each sample. To compute the
distance between two histograms H1 and H2, the complement
of the Bhattacharyya coefficient B(.), i.e.,

√
1− B(H1, H2)

was used.
We repeated the histogram computation for each model

using four scalar surface functions, namely, the mean
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Fig. 9. Top: 3D texture samples from the ten classes. Bottom: The corresponding histograms obtained with the angle between facets normal and the
α1 weighting function using 7 rings and 12 samples per ring (i.e., histograms with 7 rows and 13 columns). Each histogram bin cumulates the frequency
of a mesh-LBP pattern computed for all the facets of a sample surface (histograms are represented as gray-level images, where lighter pixels correspond to
histogram bins with higher values).

curvature, the gaussian curvature, the shape index (instead of
the curvedness) and the angle between facets normal. As an
example, Fig. 9 (2nd row) depicts the histograms of the first
type (i.e., α1 operator) obtained with the angle between facets
normal, and computed for the sample surfaces in the first
row. The histograms are obtained by reporting the frequency
of the mesh-LBP patterns computed for all the facets of the
sample surfaces (i.e., histograms are represented as gray level
images, where lighter pixels correspond to histogram bins
with higher values).

The assessment of the discriminative power of the dif-
ferent descriptors is performed as follows. For each texture
class, we considered 30 different instances and for each of
them the different descriptors have been computed. From the
set associated to each texture class, we evaluate the mean
and the variance. Since all the descriptors have a histogram
structure, the variance we consider here is the variance of
the Bhattacharyya distances between descriptor instances and
their mean. For each descriptor, we compute the distance
matrix of the ten texture classes, where each diagonal term is
the mean intra-class distance, and the non-diagonal term is the
distance between the mean of class i and the mean of class j .
The so-obtained 10 × 10 distance matrices provide a coarse
assessment of the discriminative power of the descriptors.

Figs. 10 and 11 depict, respectively, the distance matrices
related to the different mesh-LBP surface descriptors for
α1(k) = 1 and α2(k) = 2k . For the mesh-LBP descriptor,
we notice that the intra-class distance is quite below the
inter-class distance across all the different descriptors and the
two operator functions. To evidence this behavior, in the con-
fusion matrices reported for the different cases, we highlighted
the intra-class and inter-class distances that are less separated
(in gray and yellow, respectively), and so that are more
susceptible to be confused with each other. Even in the worst
cases, it can be observed that the ratio between the inter-class
distances and the corresponding intra-class distance is greater
than 2.33, for α1 and SI, and of 3.37 for α2 and SI. This is a
clear indication of the potential and the appropriateness of the
mesh-LBP descriptors for discriminating textured shapes.

Fig. 12 reports the distance matrices between all the classes’
instances (i.e., 30 instances for each of the 10 classes). Results
for the mesh-LBP computed with the scalar functions H,
K, SI and D, for the α1 and α2 operators are depicted
in the top and bottom row, respectively. In the mesh-LBP

Fig. 10. Distance matrices between the 3D texture classes. The α1 operator
is used in the mesh-LBP computation using the following descriptors (from
top): mean curvature (H ), gaussian curvature (K ), shape index (S I ) and angle
between facets normal (D). The intra-class and inter-class distances that are
less separated are highlighted in gray and yellow, respectively.

distance matrices, we can easily distinguish the 30×30 blocks
related to the inter-class distances between class pairs. This
observation confirms the discriminant capability of the mesh-
LBP descriptors. The classification accuracy, estimated as the
percentage of occurrences where the inter-class distance is
greater than the intra-class distance across all the classes is also
reported for each descriptor on top of the distance matrices.
A perfect classification of 100% is obtained in all the cases.

1) Mesh-LBP Variants: We conducted the same tex-
ture classification experiment with the mesh-CSLBP variant
(Eq. (4)). In this variant, we kept the same spatial resolution
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Fig. 11. Distance matrices between the 3D texture classes. In this case, the
α2 operator function is used in the mesh-LBP computation.

Fig. 12. Matrices reporting the distances between all the instances of the
texture classes (30 instances per class). Distances are computed for the mesh-
LBP obtained using H, K, S I, and D scalar surface descriptors (top row for α1
and bottom row for α2, respectively). The classification accuracy, estimated as
the percentage of occurrences where the inter-class distance is greater than the
intra-class distance across all the classes is also reported for each descriptor.

and the azimuthal quantization (r = 7, m = 12), but the mesh-
LBP patterns are now coded on 6 digits, setting thus their
ranges to [0,6] and [0,63] for α1 and α2, respectively. We also
adopted the uniform/non-uniform partition as for mesh-LBP,
though the resulting number of classes (i.e., the histogram
bins) is not significantly reduced (62 instead of 64). Fig. 13
depicts the distance matrices between all the 30 classes’
instances, computed with the four previously used scalar
functions (H, K, SI and D), together with their corresponding

Fig. 13. Distance matrices obtained for the mesh-CSLBP using H, K, S I
and D scalar surface descriptors (top row for α1 and bottom row for α2,
respectively), and their related classification accuracies.

Fig. 14. Distance matrices between the 3D texture classes computed with
the mesh-CSLBP, α1 operator, and the four descriptors.

accuracy rates. The 10 × 10 distance matrices related to α1
and α2 are also depicted in Fig. 14 and 15, respectively.

We notice that the accuracy rate is virtually 100% and
exactly 100% for α1 and α2, respectively, across the four
descriptors. Also, in the worst cases, the ratio between the
interclass distances and the corresponding intra-class distance
is scoring 2.4 for both α1 (SI ) and α2 (SI ). These scores
confirm the discriminant capability of the mesh-CSLBP,
though to a less extent than the mesh-LBP, for which the
corresponding ratios are 2.33 and 3.37. However, this inferior-
ity is expected because of the lower range of the mesh-CSLBP
pattern.
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Fig. 15. Distance matrices between the 3D texture classes computed with
the mesh-CSLBP, α2 operator, and the four descriptors.

2) Mesh-LBP Discriminative Power: In order to compare
quantitatively the different cases using a synthetic performance
indicator, the discriminative power of the mesh-LBP descrip-
tors and the mesh-CSLBP descriptors has been evaluated
according to the following criterion:

J =
M∑

i=1

M∑

j=i+1

Di j , (7)

where M is the number of texture classes. Di j is the
probabilistic-like inter-class separation between texture classes
i and j defined as follows:

Di j = 1

2
dist (H̄i , H̄ j )

2(
1

σ 2
Hi

+ 1

σ 2
Hj

)+ 1

2
(
σ 2

Hi

σ 2
Hj

+
σ 2

Hj

σ 2
Hi

− 2),

where (H̄i , H̄ j ) and (σHi , σHj ) are the mean histograms and
the variances of the texture classes i and j, respectively.

The criterion J computed for the different mesh-LBP and
mesh-CSLBP descriptors is reported in Table I. For both
variants, we notice that K and D score the best performance
for the α1 and α2 operators, respectively. The same ranking is
kept for the other descriptors H and SI .

D. Comparative Evaluation

In the following, we compared the mesh-LBP descriptors
performance, in terms of 3D texture classification, with other

TABLE I

DISCRIMINATIVE POWER J COMPUTED FOR THE DIFFERENT

MESH-LBP AND MESH-CSLBP DESCRIPTORS

standard 3D surface descriptors (Section IV-D.1) and the 2D-
LBP applied to depth images (Section IV-D.2).

1) 3D Surface Descriptors: In this analysis, we consid-
ered the following 3D surface descriptors: the Geometric
Histograms (GH) [39]; the Shape Distribution variants [40],
namely, the distance between a fixed point and one ran-
dom point on the surface (D1), the distance between two
random points on the surface (D2), the square root of the
area of the triangle between three random points on the
surface (D3), the cube root of the volume of the tetrahedron
between four random points on the surface (D4), and the
angle between three random points on the surface (A3);
the Spin-Images [41]; and the mesh-HOG [42]. Using these
descriptors, we performed the same experiments discussed
above for the mesh-LBP. The distance matrices between all
the classes’ instances are reported in Fig. 16. Comparing these
distance matrices with those obtained for the mesh-LBP using
different descriptors and reported in Fig. 12, it clearly emerges
the performance improvement obtained using the mesh-LBP
approach.

Similarly to the results presented for the mesh-LBP, we also
provide the distance matrices obtained between the different
texture classes. In this case, we report just the results for
the best competing solutions as resulted from Fig. 16, that
is, the descriptor D4, which resulted the best among the
Shape Distributions, and the Spin Images that resulted the
most effective among the other descriptors. In these matrices,
depicted in Fig. 17, the cases in which the intra-class distance
is greater than the corresponding inter-class distances are
highlighted in gray and red, respectively. It can be observed
that this case occurs for several pairs of texture classes for both
the matrices, whereas this is never the case for the distance
matrices obtained for the mesh-LBP descriptors, where the
intra-class distances are lower than the corresponding inter-
class distances across all the cases.

2) 2D-LBP on Depth Images: We conducted an additional
experiment to assess the mesh-LBP performance with respect
to the 2D-LBP counterpart applied on depth images [25].
For this purpose, we considered 30 depth image samples for
each texture surface (see Fig. 18). In each set, the samples
were constructed at different rotation angles, varying from
0 to 2π/3, around the surface’s principal orientation, to avoid
self-occlusion effects. For each sample, we computed multi-
resolution 2D-LBP patterns with nearly the same setting
than their mesh-LBP counterparts. That is, a radial resolution
varying from 1 to 7, and an azimuthal resolution of 8 across
all the radii. In addition, we adopted the local descriptors
H, K, SI, and C, rather than the depth value (e.g., z coordinate)
used usually in the standard 3D-LBP.
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Fig. 16. Matrices reporting the distances between all the instances of the texture classes (30 instances per class). Distances are computed for: Shape
Distributions (top); Geometric Histogram (bottom left); Spin Images (bottom middle); mesh-HOG (bottom right) computed for different surface scalar functions,
namely, H, K and SI. For each descriptor, the overall classification accuracy is also reported in percentage.

Fig. 17. Distance matrices for the Shape Distribution D4 and the Spin
Images. The cases in which the intra-class distance is greater than the
corresponding inter-class distances are highlighted (gray and red colors are
used for, respectively, the intra- and inter-class distances).

We computed, the classification rate for the three
2D-LBP variants, namely, the uniform LBP (u2), the rotation
invariant LBP (ri ) and the uniform rotation-invariant LBP
(riu2). Fig. 19 depicts the obtained classification rates and
the distance matrices for each variant. First, we notice the low
performance of the u2 variant, which naturally is expected
because its sensitivity to surface rotation. The ri and the riu2
show much better performance, but they remain lower than
their mesh-LBP counterpart across all the instances. We also
computed the distance matrices, showing inter-class and the
intra-class distances, between the different texture classes.
We reported only the results related to the best competing
variants, namely, Kriu2 and SIri , which are depicted in Fig. 20.

E. Robustness to Mesh Irregularities

Ideally, a mesh is formed entirely by equal-sized triangles
(not necessarily equilateral), and 6-valence vertices. As we
mentioned previously, though nowadays triangle mesh surfaces
acquired by shape digitizers have overall good quality in
terms of uniformity, they often contain areas of non-uniform
tessellation showing extremum triangles, such as needle or
flat triangles, and whereby the assumption of vertex valence

of six does not hold. These two aspects make the arithmetic
progression of the number of facets across the rings, expressed
in Eq. (2) no longer satisfied. We addressed this issue by
interpolating or sub-sampling the scalar function on the mesh
across the rings. In this experimentation, we wanted to assess
to what extent this procedure can cope with mesh irregularities
that can be encountered in real mesh data. To simulate the
two aforementioned aspects that corrupt the mesh uniformity,
we propose the following corruption procedure reported in
Algorithm 4.

The random perturbation consists of applying the following
transformation to one of the vertex of the facet:

t (v) = v + σ 
u, (8)

where σ is a random positive variable taking values in the
range [0.2, 0.8], and 
u is a unit vector collinear with the
line joining the vertex v to the middle point of its opposite
edge. The combination of this transformation and the edge
collapsing aims to obtain mesh irregularity instances close to
the ones encountered in real mesh data. The extreme case of
this corruption scheme is represented by meshes where 80%
of the facets and 50% of the edges have undergone vertex
perturbation and edge collapsing, respectively. Though real
mesh data rarely exhibit such extreme corruption, at least after
a basic pre-processing, considering such extreme cases, allows
us to best assess the extent to which the adopted interpola-
tion/subsampling procedure can address mesh irregularities.
We applied this corrupting procedure to the textured shape
surfaces included in the ten classes employed in the 3D texture
matching experiments discussed above. For each texture class,
we obtained 40 sets of mesh instances at increasing corruption
amplitudes. In turn, each set contains the 30 instances of
the class. Fig. 21 depicts an original mesh surface and four
samples of corrupted instances at different levels.

For each mesh corruption level, we performed the full
classification procedure involving all the 30 instances of each
class. The obtained classification rates are depicted in Fig. 22.
It can be observed that all the mesh-LBP descriptors keep a
classification accuracy above 99% up to the 30th corruption
level, and practically 100% up to the 20th level, especially
for the α(k) = 2k operator (Fig. 22(b)). For this category,
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Fig. 18. Depth images of 10 3D texture classes.

Fig. 19. Matrices reporting the distances between all the instances of the
texture classes computed from depth images (30 depth images per class) using
2D-LBP patterns. Distances are computed for the uniform LBP (u2), rotation
invariant (ri), and uniform rotation-invariant (riu2). The 2D-LBP patterns
were computed for each of the scalar functions H, K, S I and C. The overall
classification accuracy is also reported in percentage.

Fig. 20. Distance matrices for the 2D-LBP: Kriu2 and S Iri . Cases when
the intra-class distance is greater than the corresponding inter-class distances
are highlighted (gray and red colors are used for, respectively, the intra- and
inter-class distances).

we notice in particular that with gaussian curvature, the
descriptor keeps above 99% accuracy across all the corruption
levels, seconded by the Shape Index (SI), which is showing
similar performance up to the 37th level. In the first category
(Fig. 22(a)), the angle between facets normal is virtually
scoring 100% till the 29th level. Overall, the results indicate
a clear resistance of the mesh-LBP descriptors to mesh irreg-
ularities, and bring evidence of the validity of the proposed
interpolation/subsampling procedure.

Algorithm 4 Triangular Mesh Corruption Procedure

Fig. 21. The original mesh (left) and 4 corrupted instances at levels 1, 11,
21, and 31.

Fig. 22. Classification accuracy obtained for the different mesh corruption
levels: (a) α(k) = 1; (b) α(k) = 2k.

V. DISCUSSION AND CONCLUSIONS
In this paper, we presented mesh-LBP as a novel framework

for computing local binary patterns on triangular mesh man-
ifolds. This framework keeps the simplicity and the elegance
characterizing the original LBP and allows the extension of
all its variants, developed in 2D image analysis, to the mesh
manifold. The mesh-LBP reliefs object surface data from
normalization and registration procedure required when using
depth images, while it extends the spectrum of LBP analysis
to closed surfaces.

The experimental tests revealed that mesh-LBP exhibits a
“uniformity” aspect for the different types of scalar functions,
pretty similar to the one noticed in 2D-LBP. We also provided
a simple method for addressing rotation invariance that proved
to be effective as was confirmed by repeatability and the other
subsequent experiments.

Experiments on 3D texture classification showed clear evi-
dence of the appropriateness of the mesh-LBP descriptors
for such a task, and their superior discriminative power as
compared to other popular 3D descriptors. Experiments related
to the mesh-CSLBP variant showed that we can keep virtually
the same performance, while reducing the computational cost.
Regarding the choice of the scalar function, in summary, the
angle between facets normal and the gaussian curvature seem
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TABLE II

DIFFERENT VARIANTS OF THE LBP OPERATOR, GROUPED IN FOUR CATEGORIES, AND THE CORRESPONDING PATTERNS OBTAINED FOR THE

2D-LBP AND THE MESH-LBP ARE REPORTED. UNDER THE COLUMN “CLASS OF VARIATION”, WE EVIDENCE THE MAIN ASPECT

OF THE LBP COMPUTATION FRAMEWORK, WHICH IS VARIED BY A PARTICULAR SOLUTION

the more effective surface descriptors to be used within the
mesh-LBP framework as emerges throughout the different
experiments. The same experiments that were carried out
with depth image modalities, confirmed also the superiority
of our mesh-LBP, noting also the constraints on the depth
image construction procedure that we had to consider to obtain
the desired quality in terms of pattern visibility. It is also
noticeable, in particular, that the rotation invariant mesh-LBP
α1 outperforms its 2D-LBP ‘ri’ variant despite the lower size
of its associate histogram (13 against 36 for ‘ri’).

The re-sampling scheme of the scalar function over each
ORF ring proved to be an effective mechanism for addressing
mesh irregularities. In the related experiment, the gaussian cur-
vature and the shape index exhibited the best robustness score.

The comparison of the α1 and α2 operators does not provide
conclusive results, apart that they perform best with gaussian
curvature and the angle between facets normal, respectively.
However, the compactness of the descriptor obtained with the
α1 operator, and the resulting lower computational complexity
required to compare descriptors, vote for this solution espe-
cially in the cases where time constraints are relevant.

As future work, we plan extending the mesh-LBP to global
analysis. One potential approach is extracting ordered blocks
from the mesh surfaces and then construct from them, by
concatenation, a global histogram. We believe that mesh-LBP
will open-up new perspectives for mesh manifold analysis and

will be an appropriate complement to other mesh manifold
analysis techniques.

APPENDIX

In this appendix, we show that most, if not all, the different
LBP neighborhood and operator variants proposed in the
literature [24] can be easily derived from the ordered rings
structure of the mesh-LBP. In fact, one important feature of the
mesh-LBP is that the topology of the neighborhood from
which the descriptor is computed can be changed to accom-
modate the specificities of a given shape analysis application.
Some of the most effective and used LBP variants, their
structure and the related mesh-LBP patterns are summarized
in Table II, where the LBP variants are organized in four
categories, according to which aspect of the basic LBP compu-
tation framework is varied. In the following, we provide more
details about the definition and computation of the mesh-LBP
variants:

Browsing Path: Considering a set of directions D j , a
mesh-LBP operator can be defined which uniformly samples
m facets along the directions D j :

meshL B P
D j

m ( fc) =
m−1∑

k=0

s(h( f j
k )− h( fc)) · α(k). (9)

This directional extension of the mesh-LBP can be regarded
as a generalization to the mesh case of the Local Line
Binary Pattern (LLBP) [43], introduced in the context of face
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recognition to encode anisotropic information of neighbour-
ing pixels by computing LBP across vertical and horizontal
directions (Table II, case (a)). A variety of operators can
be further derived from Eq. (9) by combining the different
directional operators. Among these, the ORF framework can
be used to arrange the facets according to a spiral-wise
topology, thus allowing the derivation of the equivalent of
the Archimedean spiral-like LBP, as originally defined in [44]
(Table II, case (b)).

Contour/Initial Seed: Several LBP variants can be obtained
by using a non-circular neighbourhood of the central facet,
through a particular setting of the initial contour. For example,
selecting the set of Fin_root facets of Algorithm 3 in a bar-
like shape fashion produces elongated ORFs. This pattern can
be viewed as the mesh-LBP version of the elongated local
binary pattern (ELBP) proposed in [18] (Table II, case (c)).

Comparison Strategy: This category includes the variants
aiming to reduce the dimensionality of the LBP descriptor. The
uniform patterns and the central symmetric mesh-LBP (mesh-
CSLBP in Table II, case (d)) variants have been presented in
Section III-A and experimented in Section IV. More recently, a
dimensionality reduction method for LBP, denoted as orthogo-
nal combination of LBP (OC-LBP) has been proposed in [45].
In this case, the basic idea is to first split the neighboring
pixels of the original LBP operator into several non-overlapped
orthogonal groups, then compute the LBP code separately
for each group, and finally concatenate them together. The
same computation procedure can be used in the mesh-LBP
framework, resulting in an equivalent mesh-OCLBP operator.

Structural Element: The three-patch and four-patch LBP
(TPLBP and FPLBP, respectively) have been proposed by
Wolf et al. [10] as an extension of the center-symmetric
LBP (CSLBP) [29] for the purpose of extracting com-
plementary information to pixel-based descriptors. In the
mesh-LBP framework, we define a mesh-TPLBP like structure
by constructing ORF patches of w rings at the central facet,
and at m equally spaced facets on the r -th ring around the
central facet. The case (e) of Table II depicts a mesh-TPLBP
composed of ORF with 3-ring patches (w = 4), one at
the central facet and six at equally spaced positions on the
12-th ring (e.g., r = 12). Varying the parameters w, r and
m other mesh-TPLBP can be obtained as well. Formally, we
express the mesh-TPLBP operator as follows:

meshT P L B Pr,m,w( fc) =
m−1∑

k=0

s(Y ) · α(k)

wi th Y = d(Pk, Pfc )− d(Pk+δ mod m, P fc ),

where d(.) is any distance function between two patches
constructed on w rings (for example, d(.) can be the
L2 norm or the Bhattacharyya distance between the geometric
histogram [39] associated to the two patches); and δ controls
the arc-length distance between the patches of a pair.

The FPLBP construction follows a similar approach to
the three-patch solution, but considering four patches on two
concentric rings (see Table II, case (f)). The construction of
the mesh-FPLBP version of this operator follows virtually the
same steps of the mesh-TPLBP, except that two groups, rather
than one, of equally spaced ORF with w-rings are generated

at two different radii (e.g., the inner ring with radius r1, and
the outer ring with radius r2). The mesh-FPLBP operator is
defined as follows:

mesh F P L B Pr1,r2,m,w( fc) =
m/2−1∑

k=0

s(Y ) · α(k)

Y = d(P1
k , P2

k+δ mod m)− d(P1
k+m/2, P2

k+m/2+δ mod m).

Different variants of the mesh-FPLBP can be constructed
by tuning the parameters r1, r2, m, w and δ. An example is
shown in Table II, case (f), using r1 = 5, r2 = 10, m = 6,
w = 2 and δ = 0.
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a b s t r a c t

In this work, we propose and experiment an original solution to 3D face recognition that supports face
matching also in the case of probe scans with missing parts. In the proposed approach, distinguishing traits
of the face are captured by first extracting 3D keypoints of the scan and then measuring how the face
surface changes in the keypoints neighborhood using local shape descriptors. In particular: 3D keypoints
detection relies on the adaptation to the case of 3D faces of the meshDOG algorithm that has been
demonstrated to be effective for 3D keypoints extraction from generic objects; as 3D local descriptors we
used the HOG descriptor and also proposed two alternative solutions that develop, respectively, on the
histogram of orientations and the geometric histogram descriptors. Face similarity is evaluated by comparing
local shape descriptors across inlier pairs of matching keypoints between probe and gallery scans. The face
recognition accuracy of the approach has been first experimented on the difficult probes included in the
new 2D/3D Florence face dataset that has been recently collected and released at the University of Firenze,
and on the Binghamton University 3D facial expression dataset. Then, a comprehensive comparative
evaluation has been performed on the Bosphorus, Gavab and UND/FRGC v2.0 databases, where competitive
results with respect to existing solutions for 3D face biometrics have been obtained.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The humans' cognitive system has a peculiar attitude in recogniz-
ing faces with high accuracy, at least for familiar people in favorable
viewing conditions (i.e., good illumination, small occlusions, etc.).
Automatic identity recognition performed by machines has entered
the scene some decades ago with the aim to extend the human
capabilities by covering different and more general contexts. In
particular, face has affirmed itself as one of the most important
biometric trait due to the fact that images or videos of the face are
collectable in an easy and non-intrusive way, whereas other bio-
metrics, such as fingerprints or iris scans are impractical to implement
in many scenarios (e.g., in a surveillance setting). Impressively, recent
studies report that automatic face recognition can even outperform
the human performance in some particular conditions [1]. However,
the accuracy of automatic identity recognition based on faces still
suffers from many factors, such as pose changes, illumination varia-
tions, facial expressions and occlusions.

To solve these problems, face recognition using 3D scans of the
face has been recently proposed as an alternative or complementary

solution to conventional 2D face recognition approaches using still
images or videos, so as to allow accurate face recognition also in real-
world applications with unconstrained acquisition. Confirming this
recent research trend, several 3D face recognition approaches have
been proposed and experimented in the last few years (see the
survey in [2], and the literature review in [3–5] for a thorough
discussion). However, many of the works appeared in this field,
proposed conventional face recognition experiments, where both the
probe and gallery scans are assumed to be acquired cooperatively in
a controlled environment in which the whole face is precisely
captured and represented. These methods mainly focussed on face
recognition in the presence of expression variations, reporting very
high accuracy on benchmark databases like the Face Recognition
Grand Challenge (FRGC version 2.0) [6]. Recent studies also exploit
ethnicity, gender and age to improve the accuracy of 3D face
recognition [7,8]. Solutions enabling face recognition in uncoopera-
tive scenarios are now attracting an increasing interest. In such a
case, probe scans are acquired in unconstrained conditions that may
lead to missing parts (non-frontal pose of the face) or to occlusions
due to hair, glasses, scarves, hand gestures, etc. These difficulties are
further sharpened by the recent advent of 4D scanners (3D plus
time) [9–11], capable of acquiring temporal sequences of 3D scans. In
fact, the dynamics of facial movements captured by these devices can
be useful for many applications [12,13], but also increases the
acquisition noise and the variability in subjects' pose. In summary,
techniques supporting 3D partial face matching are gaining

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cag.2013.04.001

☆To comment on this article, please join the discussion on the Collage Authoring
Environment Google Group https://groups.google.com/group/collage-authoring-
environment.

n Corresponding author. Tel.: +39 55 4796415; fax: +39 55 4796493.
E-mail addresses: berretti@dsi.unifi.it, stefano.berretti@unifi.it (S. Berretti).

Computers & Graphics 37 (2013) 509–525



Author's personal copy

importance in making 3D face recognition techniques deployable in
more general contexts and, in perspective, in scenarios where 3D
dynamic acquisition is performed. However, the research in this
context is still preliminary also due to the limited number of
face databases that also comprise partial acquisitions of 3D faces
[14–16].

1.1. Related work

Below, we review the most recent methods for 3D face recogni-
tion, by limiting our analysis to the works that also propose and
evaluate solutions supporting partial match of 3D facial scans. In
particular, we focus on methods that were also evaluated on scans
acquired from non-frontal views of the face for which the recognition
problem is further complicated by artifacts that alter the geometry of
the acquired 3D surface in correspondence to the borders of the
missing regions, rather than to solutions that just cropped 3D full
face scans to simulate missing parts. In general, existing solutions can
be grouped as global and local; Multimodal approaches that combine
together 2D and 3D methods are also possible.

Global 3D face representations for partial face matching have
been proposed in a limited number of works. The first solutions
appeared in this category used the Iterative Closest Point (ICP)
algorithm [17]. The method proposed in [18], was global and multi-
modal trying to combine 3D shape and 2D texture to perform surface
and appearance-based matching. The surface matching component
was based on a coarse to fine alignment between a 2.5D probe and a
fully 3D face model (obtained by the fusion of five 2.5D scans). In the
coarse step, first three manually labeled generic points were used to
calculate the rigid transformation that aligns the 2.5D scan with the
3D model, then specific feature points are identified by finding
correspondence between shape index values of two scans. These
feature points are then used to define a grid of control points around
them. In the fine alignment step, a modified ICP algorithm is applied
on the grid of control points to refine the alignment between 2.5D
probes and 3D models. Good results were reported for neutral,
expressive and partial scans of a proprietary database of 200
individuals, though the computational cost does not scale to large
datasets. Following a similar idea, 3D face matching between 2.5D
probe scans and fully 3D models is proposed in [19]. Also in this case,
a coarse alignment is first performed based on the manual labeling of
three generic points in the two matching scans, then ICP fine
alignment is performed and the registration error is used to evaluate
the similarity between the two matching scans. Separate results for
scans acquired with moderate expressions, illumination changes and
left/right pose variations were reported on a database of 50 subjects.
The main limitations of the approach are in the scalability of ICP, and
the manual labeling required by the initial coarse alignment. A
canonical representation of the face is proposed in [20], where the
isometry invariance of the face surface is exploited to manage
missing data obtained by randomly removing areas from frontal face
scans. However, no side scans were used for recognition. In [21],
results on partial face matching removing quadrants of the FRGC v2.0
probes and using face crops around the nose tip are reported. This
approach relies on the symmetry of the 3D face scans in order to
identify the nose tip and register depth maps so as to derive a Pure
Shape Difference Map (PSDM) between pairs of matching scans.
Unfortunately, the symmetry hypothesis used for the registration and
fiducial points detection is often violated when side views of the face
are acquired in uncooperative scenarios. Instead, the experiments are
conducted by just removing parts of the face after the preprocessing
has been performed on the entire scans. The fact that the same part
of the face is removed from both probe and gallery scans in order to
generate the PSDM also reduces the concrete applicability of the
approach.

The approaches above provide a global modeling of both gallery
and probe scans, but more successful and scalable solutions use local
representations of the face. A possible way to solve locally the
problem of missing data in 3D face acquisition is to detect the
absence of regions of the face and use the existing data to reconstruct
the missing parts. The reconstructed scan can then be used as an
input to conventional 3D face recognition methods that assume that
the entire scan is available. This approach is followed in [22], focusing
on face occlusions induced by glasses, scarves, caps, or by the
subject's hand. A generic facial model and thresholding on facial
surface distances are used to detect occlusions. In this way, the
occluded areas are detected and the missing regions are restored
using information from the non-occluded parts. However, face
recognition accuracy was not evaluated. In [23,24], an inter-pose
face recognition solution is proposed which exploits the hypothesis
of facial symmetry to recover missing data in facial scans with large
pose variations. First, an automatic face landmarks detector is used to
identify the pose of the facial scan by marking regions of missing
data and roughly registering the facial scan with an Annotated Face
Model (AFM) [25]. Then, the AFM is fitted using a deformable model
framework that exploits facial symmetry where data are missing.
Wavelet coefficients extracted from a geometry image derived from
the fitted AFM are used for the match. Experiments have been
performed using the University of Notre Dame (UND) database [15],
with the FRGC v2.0 gallery scans and side scans with 451 and 601
rotation angles respectively as probes. Since it is based on the
left/right facial symmetry, this solution can work as long as half of
the face with respect to the yaw axis is visible in the scan.

Tackling the problem from an opposite perspective, some meth-
ods divide the face into regions and try to restrict the match to
uncorrupted parts of the face. Following this idea, the approach in
[26] accurately identifies the nose tip in order to extract multiple
overlapping regions around it. These regions are matched using the
ICP algorithm and the respective scores are combined together in
order to evaluate face similarity. This method is extended in [27] by
using a set of 38 regions that densely cover the face, and selecting the
best-performing subset of 28 regions to perform matching using the
ICP algorithm. A recognition experiment accounting for partial match
is reported that uses the left and right parts of the FRGC v2.0 probes.
However, the experiments only account for the case in which some
of the extracted regions are missing, rather than considering the
more general case where also parts of the regions can miss. A part-
based 3D face recognition method is proposed in [28], which
operates in the presence of both expression variations and occlu-
sions. The approach is based on the use of Average Region Models
(ARMs) for registration: The facial area is manually divided into
several meaningful components, such as eye, mouth, cheek and chin
regions, and registration of faces is carried out by separate dense
alignment of the regions with respect to the corresponding ARMs.
The dissimilarities between gallery and probe scans obtained for
individual regions are then combined to determine the final dissim-
ilarity score. Under variations, like those caused by occlusions, the
method can determine noisy regions and discard them. The perfor-
mance of this approach is tested on the Bosphorus3D face database
[16] that includes facial expressions, pose differences and occlusions.
However, a strong limitation of this solution is the use of manually
annotated landmarks that are required for both face alignment and
regions segmentation. Instead of using extended regions, in [29] the
face is represented by a collection of radial curves originating from
the nose tip. Face comparison is obtained by elastic matching of the
curves. A quality control allows the exclusion of corrupted radial
curves from the match, thus enabling the recognition also in the case
of missing data. Results of partial matching are given for the side
scans of the Gavab database [14].

Methods that perform face recognition based on regions, use
some landmarks of the face to identify the regions of interest for
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the match. However, facial landmarks are difficult to detect when
the pose significantly deviates from the frontal one. In addition,
since parts of the regions can be missing or occluded, the
extraction of effective region descriptors is hindered, so that
regions comparison is mostly performed using rigid (ICP) or elastic
registration (deformable models). Approaches that use keypoints of
the face promise to solve some of these limitations. Rather than
relying on the detection of specific regions of the face that can fail
in the presence of occlusions and missing parts, they assume that
detection of keypoints on the face surface and description of these
keypoints yield robust yet accurate representation of facial traits,
also in the presence of occlusions and missing parts. In doing so,
the number of keypoints is supposed to be sufficiently high. In this
perspective, the use of keypoints instead of facial landmarks is
advantageous. In fact, just few facial landmarks can be accurately
detected in an automatic way – from three to ten are at most
reported [30] – and detection of a larger number of landmarks is
difficult even through partial manual assistance. In the case of
partial face scans, up to half of these points are typically not
detectable, so that description of such points and of their relation-
ships is of limited effectiveness for face recognition. Differently, a
much larger number of keypoints are typically detected – from
tens to hundreds of keypoints can be easily derived – and their
distribution is rather sparse, not being constrained to specific
locations of the face. This makes keypoints more robust than
landmarks to missing parts and also allows the extraction of a
large number of local descriptors of the face. A first approach that
exploits keypoints of the face has been reported in [31], where a
3D keypoints detector and descriptor inspired by the Scale
Invariant Feature Transform (SIFT) [32] have been designed. This
detector/descriptor has been used to perform 3D face recognition
through a multi-modal 2D+3D approach that also uses the SIFT
detector/descriptor to index 2D texture face images. However,
results do not account for scans with pose variations and missing
parts. The 3D keypoints detector defined in [31] was further
generalized to the match of generic objects in [33]. Use of
keypoints for partial face matching has been recently reported
in [34,35]. In this approach, Multi-Scale Local Binary Patterns (MS-
LBP) and Shape Index (SI) are applied to face depth images,
and the scalar values obtained at each pixel are used to create
an MS-LBP map and an SI map. On both these maps, the SIFT
detector and descriptor are used to represent local variations of
the features extracted from the face. Finally, the matching scheme
accounts for local and global face features by combining local
matches between SIFT features, with global constraints originated
by facial components. Partial face matching results are presented
for the FRGC v2.0 scans where parts of the face are masked to
simulate missing parts. However, as pointed out by the authors,
the approach can deal automatically just with nearly frontal face
data as those included in the FRGC v2.0 dataset. In the case of
missing parts of the face due to large pose variations the approach
is likely to fail. Methods in [36,37] use keypoints detection for the
purpose of partial face matching, resulting the best performing
approaches in the track on 3D Face Models Retrieval of the
SHREC'11 competition [38]. In particular, in [36] an extension of
SIFT and index map based SIFT matching [34] is proposed. First,
feature points are detected on each 3D face scan using mesh SIFT
[39]; then, the quasi-daisy local shape descriptor [40] of each
feature point is obtained using multiple order histograms of
differential quantities extracted from the surface; Finally, these
local descriptors are matched by computing their orientation
angles. The number of matched points is used as similarity
between two face scans. In [37], first a PCA based shape model is
learned by registering a set of training scans to a reference
template model (using 12 manually annotated landmarks) and
subsequently warping the template on the training scans using a

non-rigid registration based on variational implicit functions. The
learned model is then fitted to probe and gallery scans to generate
model-based descriptions used to evaluate scans similarity. In this
approach, mesh SIFT is used to detect keypoints whose correspon-
dences in different scans permit to initialize the pose of probe and
gallery scans with respect to the model (anyway, a manual
initialization is required for about 2.5% of the scans). After pose
initialization, the model is fitted following a Bayesian strategy with
outliers detection and estimation. The result is an EM alike
optimization, where the model updates are alternated with outlier
updates, iteratively.

1.2. Contribution and organization

In this work, we propose an original 3D face recognition
approach which is also capable to perform recognition in the case
parts of the face scans are missing. We rely on the observation that
describing the face with local geometric information extracted at
the neighbors of keypoints allows partial face matching in which
no particular assumption about the number or locations of the
keypoints is necessary to perform sparse keypoints matching. In so
doing, the size of the support used to compute the local descriptor
at keypoint locations becomes crucial: small supports reduce the
effectiveness of the descriptor and large supports are more
sensible to missing parts that can alter the support itself. In
addition, discriminant facial features are not only related to local
characteristics of the face surface in the proximity of a set of
keypoints, but also to mutual relationships among the position of
the keypoints on the face.

Based on these premises, we propose a 3D face description
approach that relies on the detection of 3D keypoints on the face
surface and the description of the surface in correspondence to
these keypoints. In contrast to solutions where keypoints corre-
spond to meaningful face landmarks, such as the eyebrows, eyes,
nose, cheek and mouth [30], we do not exploit any particular
assumption about the position of the keypoints on the face
surface. Rather, we expect the position of keypoints to be influ-
enced by the specific morphological traits of the face of
each subject. In particular, we exploit the assumption of within
subject keypoints repeatability: the position of the most stable
keypoints – detected at the coarsest scales – do not change
substantially across facial scans of the same subject. According to
this, we propose an adaptation of the meshDOG [41,42] algorithm
to the specific case of 3D faces as 3D keypoints detector. In fact,
meshDOG has been introduced as 3D extrema detector for the case
of generic 3D objects, proving its effectiveness. However, to the
best of our knowledge, it has never been applied before to the case
of 3D face matching. Then distinguishing traits of a face scan are
captured by local descriptors at the detected keypoints. In parti-
cular, we experiment the meshHOG descriptor [41], and also
propose and experiment two different local descriptors, namely
the histogram of orientations (SHOT) and the geometric histogram
(GH), which exploit local properties of the mesh in different ways.
We point out that all the processing required to detect keypoints
and extract their local descriptors is performed on 3D meshes
without requiring any pose normalization or landmark detection.
In the comparison of two faces, local descriptors at the 3D
keypoints are matched in order to determine the keypoints
correspondences. Spatial constraints using RANSAC [43] are also
imposed to avoid outlier matches.

Our approach has been experimentally evaluated with a two-
fold objective. On the one hand, we verified the accuracy of
recognition on two datasets that include probes with extreme
variations in terms of facial expressions (The Binghamton University
3D facial expression dataset (BU-3DFE) [44]), and probes with up to
half of the face missing due to acquisitions with large pose
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variations (the 2D/3D Florence Face database (UF-3D) [45]). On the
other, we experimented our solution on three largely used bench-
mark datasets (namely Bosphorus, Gavab and UND/FRGC v2.0)
which allow the comparison of our solution with respect to state
of the art approaches.

The contribution of our approach and its novelty over existing
solutions using a similar framework, including keypoints extrac-
tion, local description and keypoints matching [31,36,39,46], can
be summarized as follows:

� Method—An original adaptation of the meshDOG detector to
the case of face meshes; The adaptation and comparison of
three mesh descriptors to the case of 3D faces and their use as
local representation at the keypoints; Proposal of the multi-ring
GH as the local descriptor at the keypoints, and its identifica-
tion as the most suitable descriptor to be combined with
meshDOG keypoints, providing accurate recognition both in
the presence of expression variations and large missing parts of
the face; A 3D keypoints matching that also encompasses
outliers removal using RANSAC.

� Experiments—This work contributes an original experimental
validation on the new UF-3D face dataset that has never been
used before for the purpose of 3D face recognition. Results
reported by our work on this dataset can be regarded as a
reference evaluation for future works aiming to test 3D face
recognition approaches on challenging scans with missing
parts; A thorough experimentation on the large and extreme
facial expressions included in the BU-3DFE; A comprehensive
comparative evaluation that includes the Bosphorus, Gavab and
UND/FRGC v2.0 datasets.

The remaining content of the paper is organized as follows: In
Section 2, we present the adaptation of the meshDOG detector to
the case of 3D faces, and we motivate and discuss the relevance of
detected keypoints; Local descriptors computed at the keypoints
are reported in Section 3; The way local keypoint descriptors are
matched in two scans under comparison, so as to permit identity
recognition is detailed in Section 4; A thorough experimental
validation and comparison are reported in Section 5; Finally,
results are discussed and future research directions are outlined
in Section 6.

2. 3D keypoints

Several keypoint detectors capable to identify salient points on 3D
meshes have been recently proposed. For a thorough comparative
evaluation the reader can refer to the recent report at the SHREC'11
contest [47] (track on “robust feature detection and description
benchmark”) and to the performance evaluation reported in [48].
Among these methods, the meshDOG detector [41,42] has been
proved to be superior, in terms of both repeatability of the detection
and accuracy of the matching, to other 3D keypoint detectors/
descriptors, like the Harris 3D [49], meshSIFT [39,46] and Shape
MSER [50] (see the results in [47] for a comparative analysis, and also
the comparison provided in [48]). In particular, the meshDOG
detector is proposed to perform feature detection, while the mesh-
HOG descriptor is used for the purpose of mesh matching between
generic 3D meshes. However, in the work of Zaharescu et al. [41], the
3D keypoints (extrema) were used for matching generic objects, like
3D reconstruction of the human body, reconstructed and synthetic
3D objects, using photometric surface information to extract the
object descriptors using meshHOG. To the best of our knowledge, the
meshDOG detector has never been used before for the purpose of 3D
face analysis. In the following, we present the adaptation of the

method so as to make it appropriate for extracting keypoints of 3D
face meshes.

2.1. meshDOG of face meshes

The keypoints detection starts by defining and computing a
scalar function f on a 3D mesh S. In principle, the function f can be
any scalar function f ðvÞ : S-R that for any vertex v∈S returns a
scalar value. This can comprise functions computed according to
the chromatic appearance of the mesh surface as well as functions
that consider properties of the surface like the mean or Gaussian
curvatures. In our case, we used the mean curvature at vertex v as
value of the function f(v). Though such function is not completely
intrinsic, and therefore not completely invariant to local isometric
deformations, in practice the keypoints detected using mean
curvature turned out to be more stable on 3D face data than
keypoints obtained using Gaussian curvature. One motivation for
this can be the average operation, which has the advantage to
smooth the noise effect that can be present in the computation of
principal curvatures. The choice of the mean curvature is also
supported in the recent survey on the evaluation of 3D keypoint
detectors by Salti et al. [48], where the mean curvature is reported
to provide better results than Gaussian curvature when combined
with the meshDOG detector. The same conclusion was also
reported by the authors of the meshSIFT approach [39,46], where
the mean curvature was used in the construction of their scale-
space extrema. According to [51], the mean curvature is computed
by first rotating the local neighborhood of a vertex so that the
normal of the current vertex is aligned with the Z-axis, and the
neighborhood can be described by XY only, instead of XYZ. Then, a
least-squares quadratic patch is fitted to the local neighborhood of
a vertex hðx; yÞ ¼ ax2 þ by2 þ cxyþ dxþ eyþ g, and the eigenvec-
tors and eigenvalues of the Hessian matrix are used to calculate
the principal and mean curvature of the vertex.

Once the function f (mean curvature) is computed for every
vertex of the mesh, the keypoints selection proceeds by processing
the values of the function f through three subsequent steps. In the
first step, the extrema of the Laplacian's function (DOG) across
scales are found using a one-ring neighborhood of each vertex.
Then, the extrema are sorted and thresholded based on a percen-
tage value of the overall number of extrema. Finally, in the third
step, only the extrema with some degree of cornerness are
retained, thus removing unstable extrema. Details of these steps
are given in the following.

Extrema of the scale-space. As first step, a scale-space repre-
sentation of the scalar function f defined on the mesh is con-
structed. At every scale, the function f is convolved with a Gaussian
kernel (see Eq. (A.3) for the definition of the convolution on the
mesh)

gsðxÞ ¼
expð−x2=2s2Þ

s
ffiffiffiffiffiffi
2π

p ; ð1Þ

where s is the standard deviation of the Gaussian (set equal to
s¼ 21=3eavg in our experiments, being eavg the average edge
length); and, at a vertex vi, x is the distance between neighboring
vertices to the vertex vi, that is ∥vj−vi∥.

The scale-space of f is built incrementally on N+1 levels, so that
f 0 ¼ f , f 1 ¼ f 0ngs, f 2 ¼ f 1ngs;…; f N ¼ f N−1ngs. The N Difference of
Gaussian (DOG) are then obtained by subtracting adjacent scales, e.
g., DOG1 ¼ f 1−f 0, DOG2 ¼ f 2−f 1;…;DOGN ¼ f N−f N−1. In so doing, it
is relevant to note that in building the scale space, the geometry of
the face does not change, but the different scalar functions fk and
DOGk defined on the mesh. A total of 96 convolutions (i.e., scales)
have been used in our work. Once the scale-space is computed, the
feature points are selected as the maxima of the DOG across scales.
In particular, a vertex is an extremum at a given scale k if its DOGk

S. Berretti et al. / Computers & Graphics 37 (2013) 509–525512



Author's personal copy

value is the maximum with respect to the DOGk values in the 1-
ring neighborhood at the same scale.

Percentage threshold. The extrema of the scale space obtained at
the previous step are then sorted according to their magnitude.
Only the top 1% of the sorted vertices are retained as extrema in
our setting.

Cornerness. The last step, aims to remove unstable extrema, by
retaining the features that exhibit corner characteristics. Following
[32], this can be done by computing the Hessian at each vertex v of
the mesh

HðvÞ ¼
dxxðvÞ dxyðvÞ
dyxðvÞ dyyðvÞ

" #
; ð2Þ

where dxx, dxy, dyx and dyy are the second partial derivative
computed along the x and y directions. In particular, partial
derivatives are estimated by applying the definition of directional

derivatives given in Eq. (A.1) twice, e.g., dxy ¼ ∇SD x!f ðvÞ � y!, where

the gradient is computed using Eq. (A.2). In this context, the

directions x! and y! represent a local coordinate system in the
tangent plane of the vertex v, typically the gradient direction for

x! and its orthogonal direction for y!. The ratio between the
largest λmax and the lowest λmin eigenvalues of the Hessian matrix
is a good indication of a corner response, which is independent of
the local coordinate frame. We typically use λmax=λmin ¼ 4 as a
minimum value to threshold responses.

An example of the scale-space construction is reported in
Fig. 1. In (a), a sample face scan is colored according to the values
of function fk at different scales (f0 being the mean curvature). In
(b), gray levels are used to represent the DOG values at different
scales (i.e., scales 2, 8, 16, 32, 64 and 128 are reported). The
Experiment 1 Code Item 2 can Experiment 1 Data Item 1, in order
to detect the 3D keypoints and generate the DOGk images.

2.2. Keypoints distribution

According to an agreed classification [48], meshDOG is an
adaptive-scale detector, in contrast to fixed-scale detectors which
find distinctive keypoints at a specific constant scale, given as a
parameter to the algorithm. The derivation of multiple DOG scales,
allows the identification of more stable keypoints, which are
typically located at highest scales, whereas keypoints detected in
the first DOG scales are likely to be unstable and more affected by
noise. As an example, the keypoints detected at some DOG scales

for a sample face scan are highlighted in red in Fig. 1(b). At the first
level of the scale-space (see DOG2 in Fig. 1(b)), the keypoints are
mainly localized in the mouth and eyes regions (these regions are
quite unstable with expressions) and around the nose and the
eyebrows (more stable regions under expression changes). As the
scale increases, keypoints are extracted by progressively smooth-
ing the mean curvature function, and they tend to be more
distributed on the face (see for example DOG64 and DOG128 in
Fig. 1(b)). At these latter scales, some keypoints are located in the
forehead, cheekbone and chin, with some keypoints close to the
pronasal and nasion (thus, these keypoints are located in regions of
the face that are much less affected by expression variations).
Some keypoints can be also detected at multiple different scales;
in such case, the keypoint occurring at the highest scale is
retained. In Fig. 2, two further examples of keypoints detected at
different scales are reported.

In general, meshDOG keypoints are located around areas
characterized by high local curvature, this being true throughout
the different scales. So, their semantic is related to the local
curvature properties of the mesh. Our idea is that the robustness
of the proposed approach comes from the combination of the
presence of many keypoints detected at different scales, with the
descriptiveness of local surface features (as discussed in Section 3).
The fact that the keypoints are many increases the possibility to
have a consistent number of matches also in the case of partial
scans. The fact that the keypoints are extracted at different scales
increases the probability to have keypoints detected in regions of
the face that are not affected by facial expressions so that their
descriptors are likely to be not altered in different scans of a same
subject. Differently, keypoints detected in noisy regions or regions
which are largely affected by expression changes are likely to not
match due to their different descriptors. So, our idea is that though
individual descriptors are not expression invariant, the overall
matching schema can cope with expression variations thanks to
the presence of keypoints that are located in regions of the face
that are less affected by facial expressions. For the same reason,
the approach can cope with missing parts and also occlusions,
provided that a sufficient number of matches can be determined
between probes and gallery scans. These considerations, moti-
vated us to use the keypoints detected in the last levels of the
scale-space. In particular, we considered for the purpose of local
descriptor computation only the keypoints that are detected in the
last 64 DOG scales (out of the 96 total scales used in the
experiments), thus discarding those keypoints that have been
detected only in the first 32 scales.

Fig. 1. (a) Face scans are colored according to the values of function fk at different scales (f0 being the mean curvature). (b) The 3D frontal acquisition (subject001 of the UF-3D
database) is reported, with the DOGk values at different scales, and the 3D keypoints detected at that scale (in red). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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3. Local face descriptors

In order to support face matching, we assume that distinguish-
ing traits of the face can be captured by describing the local
morphology of the face in regions centered at 3D keypoints. This
approach falls into the category of signature descriptors that
represent the 3D surface using the neighborhood (called the
support) of a given keypoint. A common problem faced by these
solutions is the need for an invariant local reference frame in order
to encode one or more geometric measurements computed
individually for each point (vertex) of the support. Typically, the
support is a spherical region whose radius determines the level of
locality of the descriptor. Small values of the radius yield very local
descriptors that capture the shape of the face in small regions
around keypoints. By progressively increasing the value of the
radius, the descriptor becomes more discriminant, although the
probability of including regions of the face affected by undesired
artifacts – such as missing parts or deformations caused by facial
expressions – increases as well.

Based on these considerations, in the following we propose
three different signatures to locally describe the 3D face at the
keypoints, namely the Histogram of Gradients (HOG) (Section 3.1),
the Histogram of Orientations (SHOT) (Section 3.2), and the Geo-
metric Histogram (GH) (Section 3.3).

3.1. Histogram of gradients

The histogram of gradients descriptor [41] for a vertex extre-
mum v is computed using a support region constituted by the
vertices that belong to the neighborhood ring of size r. For each
vertex from the neighborhood vi∈NrðvÞ, the gradient information
∇Sf ðviÞ is computed using Eq. (A.2). As a first step, a local
coordinate system is chosen, in order to make the descriptor
invariant to rotation. Then, a histogram of gradient is computed,
both spatially, at a coarse level, in order to maintain a certain high-
level spatial ordering, and using orientations, at a finer level. Since
the gradient vectors are three-dimensional, the histograms are
computed in 3D. Since for this descriptor we followed the work of
Zaharescu et al. [41], the reader is referred to that work for further
implementation details.

3.2. Histogram of orientations

A description of the local shape of the 3D face is accomplished
by developing on the idea of the 3D shape context descriptor
proposed in [52] and on the work of [53]. The derivation of this

signature first requires the definition of a local reference frame
capable to make the extracted signature independent from trans-
lation and rotation of the mesh.

Local reference frame. In order to guarantee translation and
rotation invariance of 3D face description and matching, each local
descriptor is computed with respect to a local reference frame
determined based on the local morphology of the face. For this
purpose, the method proposed in [54] is considered. This avoids
the descriptor computation over multiple rotations on different
azimuth directions by determining a repeatable normal axis and
an unique pair of directions lying on the tangent plane.

Given a keypoint located at vertex v; and a spherical neighbor-
hood of radius R centered on v, a weighted covariance matrix C of
the vertices within the neighborhood is computed as

C¼ 1
K

∑
i:di ≤R

ðR−diÞðvi−vÞðvi−vÞT ; ð3Þ

where di ¼ ∥vi−v∥, and K is a normalization factor computed as

K ¼ ∑
i:di ≤R

ðR−diÞ: ð4Þ

With respect to the usual computation of the covariance matrix, in
Eq. (3) a smaller weight is assigned to distant vertices, and the
centroid computation is replaced by the keypoint vertex v. A total
least squares estimation of the normal direction is obtained by
eigenvalue decomposition of the covariance matrix C of the vertex
coordinates within the support. The eigenvectors of C define
repeatable orthogonal directions in the presence of noise and
clutter. Eigenvectors of Eq. (3) need to be disambiguated to yield a
repeatable local reference frame. The idea is to orient each
eigenvector so that its sign is coherent with the majority of the
vectors it represents. If the three eigenvectors, given in decreasing
eigenvalue order, are indicated as xþ, yþ, and zþ (and their
opposite vectors with x−, y−, and z−), the disambiguated x-axis is
defined as

Sxþ ¼ fi : di≤R and ðpi−pÞ � xþ≥0g
Sx− ¼ fi : di ≤R and ðpi−pÞ � x−40g

x¼ xþ; jSþx j≥jS−x j
x−; otherwise:

(
ð5Þ

The same procedure is used to disambiguate the z-axis, whereas
the y-axis is obtained as the vector product z� x.

Local signature. Once the local reference frame is identified, a
spherical support around each keypoint v is considered and the
vertices of the mesh included in this spherical region contribute to
the computation of the local descriptor. The radial extent of this

Fig. 2. DOGk values at different scales and the 3D keypoints detected at that scale for a male subject in (a) and a female subject in (b). (a) subject002 and (b) subject003.
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sphere can be chosen independently from the radius R used for the
computation of the local reference frame, but in our solution we
considered the spherical support as having the same radius R used
for the computation of the reference frame (i.e., 15 mm in our
setting). This spherical volume is then divided along three dimen-
sions: radial, azimuthal and altitude.

Along the radial dimension, the sphere is divided into con-
centric shells. To avoid the quadratic growth of the shell volumes
with the shell index, a logarithmic parametrization of the shell
radii is used

ri ¼
1
s
loga as

i
s

� �
; ð6Þ

where ri is the radius of the shell of index i, s is the number of
shells, and a is a parametrization coefficient that controls the
growth of the shell radius (e.g., for a¼1 the growth is linear,
whereas with a¼2 the volume of the shell is kept constant at
different radius). The shells are then divided in the azimuthal
plane using sectors of constant angular width, and along the
elevation. In the experiments reported in Section 5, we used
a¼2, with three shells, four azimuthal sectors and two divisions
along the elevation angle, resulting in a coarse partition of the
volume around the keypoint into 24 spatial regions. Fig. 3 shows
the idea of the volumetric partitioning of the spherical space
around a keypoint (for the clarity of the plot just two shells are
reported).

Once the local support is partitioned into volumetric regions
(based on the unique 3D local reference frame), the histogram of
the normals of the mesh vertices within the support is used as
local descriptor (called SHOT in [53]). This histogram based
representation provides the filtering effect required to achieve
robustness to noise, and enhances the discriminative power of the
descriptor by introducing geometric information about the loca-
tion of the vertices within the support. As final step, all the local
histograms are grouped together to form the signature which
describes the mesh at the keypoint.

For each of the local histograms, mesh vertices contribute to
bins according to a function of the angle θi, formed by the normal
at each vertex within a volume of the support partition, nvi , and
the normal at the keypoint, nu. The cos θi function is used, in that
it can be computed efficiently using the dot product (i.e.,
cos θi¼nu � nvi ), and equally spaced binning on cos θi is equivalent
to a spatially varying binning on θi. This latter property results in a

coarser binning for directions close to the reference normal
direction and a finer one for orthogonal directions. In this way,
small differences in orthogonal directions to the normal that are
the most informative ones, cause a vertex to be accumulated in
different bins and thus leading to different histograms. Instead, in
the presence of quasi-planar regions this choice limits histogram
differences due to noise by concentrating the contributions of the
vertices in a fewer number of bins. In our experiments, we used 10
bins for each local histogram that combined with the partition into
24 volumetric regions, that results in a 240-dimensional signature
for the keypoint.

To avoid boundary effects in the local histograms due to small
differences of the spatial subdivision of the support, or to pertur-
bations of the local reference frame, each vertex contributes to
four histogram bins according to a quadrilinear interpolation
between neighbors bins. In particular, the neighbor bins are
represented by the neighboring bin in the local histogram and
the bins having the same index in the local histograms of the
neighboring volumes of the spatial partition. In doing so, each
vertex contributes to neighbors bins by the weight 1−d, where for
the local histogram, d is the distance of the current entry from the
central value of the bin; for elevation and azimuth dimensions, d is
the angular distance of the entry from the central value of the
closer volume along the dimension; for the radial dimension, d is
the Euclidean distance of the entry from the central value of the
closer volume along the radial dimension. Along each dimension, d
is normalized by the distance between two neighbor bins or
volumes. Finally, to achieve robustness to variations of the vertex
density, all the local histograms are concatenated into a whole
descriptor (signature) which is further normalized to sum up to 1,
so as to retain the local differences as a source of discriminative
information.

The local signature at a generic keypoint is expressed through a
normalized histogram G¼ ðg1;…; gNÞ where the size N of the
signature depends on the size of the local histograms and on the
number of volumes of the partition (i.e., the quantization along the
radial, azimuthal and elevation dimension) of the local reference
frame (N¼240 in our case). Given two signatures G¼ ðg1;…; gNÞ
and H ¼ ðh1;…;hNÞ extracted at two keypoints, their dissimilarity
is measured through the Chi-square distance χ2, given by

χ2ðG;HÞ ¼ 1
2

∑
N

n ¼ 1

½gn−hn�2
gn þ hn

: ð7Þ

The Experiment 2 Code Item 2 can be executed on the
Experiment 2 Data Item 1, in order to generate the SHOT signature
of a 3D face scan.

3.3. Multi-ring geometric histogram

The geometric histogram (GH) is a local geometric descriptor
proposed by Ashbrook et al. [55] and employed in surface align-
ment and matching. Basically, it is a 2D accumulator, or frequency
table that counts the frequencies of two geometrical measure-
ments, namely the angle and the distance between pairs of facets
in a given neighborhood of a keypoint. In the following, we
propose and describe a variation of the GH, which resulted more
suited to our framework. This variant, develops on the idea of
constructing the GH descriptor at a given keypoint in an incre-
mental way, by accounting for an ordered sequence of rings
defined around the keypoint. This idea is illustrated through the
two steps involved in the computation: Derivation of the ordered
ring facets in the neighborhood of the keypoint; Construction of
the discrete distributions in each ring. In doing so, it is relevant to
note that the GH descriptor is robust to translations and rotations
also avoiding the computation of a reference frame.

Fig. 3. Spherical local support around a keypoint. The volumetric partition of the
sphere along the radial, azimuthal and elevation dimensions is reported.
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Ordered ring facets. The Ordered Ring Facets (ORF) [56] is the
method used to identify the facets of the mesh which are comprised
in the neighborhood of a keypoint. In this approach, the neighbor-
hood construction around a central facet tc is performed through a
sequence of concentric rings of facets emanating from a root facet (i.
e., tc). The facets are arranged circular-wise within each ring. The size
of the neighborhood is simply controlled by the number of rings. This
mechanism allows an easy analysis of the GH variability, and thus of
the local geometry evolution, as the size of the neighborhood
increases. When the triangular mesh is regular and the facets are
nearly equilateral, the ORF rings form an approximation of iso-
geodesic rings around the central facet tc. The ORF construction has
a linear complexity. Fig. 4 depicts examples of ORF's with increasing
number of rings and their related GH's. In the experiments reported
in Section 5, we obtained good results by using 8 ORF as neighbor-
hood of the keypoints.

Discrete distribution. Consider a triangular mesh approximation
Ŝ ¼ ft1;…; tMg of an object surface. The discrete geometric dis-
tribution is constructed for each triangular facet ti in a given mesh

which describes its pairwise relationship with each of the other
surrounding facets within a predefined neighborhood. The range
of the neighborhood controls the degree to which the representa-
tion is a local description of shape. Here, we choose a neighbor-
hood range that encompasses the facets that share one or two
vertices with the central triangular facet (Fig. 5(b)). The distribu-
tion is defined such that it encodes the surrounding shape
geometry in a manner which is invariant to rigid transformations
of the surface data and which is stable in the presence of surface
clutter and missing surface data.

Fig. 5(a) shows the measurements used to characterize the
relationship between facet ti and one of its neighboring facets tj.
These measurements are the relative angle, α, between the facet
normals, and the range of perpendicular algebraic distances, d,
from the plane in which facet ti lies to all points on the facet tj. The
range of perpendicular algebraic distances is defined by ½dmin; dmax�,
where dmin and dmax are the minimal and the maximal of the
distance from the plane, respectively, in which ti lies to the facet tj.
These extreme entities are simply obtained by calculating the

Fig. 4. ORF neighborhoods with different sizes constructed at a facial keypoints near to the nose, and their corresponding GHs.

Fig. 5. (a) The geometric measurements used to characterize the relationship between two facets ti and tj. (b) A facet t1 and its neighbor facets. (c) For each pair
ðt1 ; tsÞ; s¼ 1;…;10, the angle α between the two facets' normals, the minimal and the maximal of the perpendicular distance from the plane of t1 to the facet ts are
computed. (d) The pairs (α;d) derived from these measurements are entered in a 2D accumulator, obtaining thus a geometric distribution that characterizes the relationship
between the facet t1 and its neighbors. (e) The geometric distribution can be visualized with a gray level mapping.
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distances to three vertices of the facet tj and then selecting the
minimal and the maximal distances.

Since the distance measurement is a range rather than a single
value, from each measurement ðα; dmin; dmaxÞ can be derived a
number of measurements ðα; dÞ (dmin ≤d≤dmax). This number
depends on the amplitude of the range ½dmin; dmax� and the resolution
adopted for the distance parameter d. The group of pairs ðα; dÞ,
extracted from the measurements related to a given facet and its
neighbors (Fig. 5(b) and (c)), are entered to a 2D discrete frequency
accumulator that encodes the perpendicular distance d and the angle
α (Fig. 5(d)). This accumulator has size N �M; where N andM are the
number of bins in the axis α and d, respectively. The values of the
accumulated matrix are also normalized so as to sum up to 1. The
accumulator can be visualized in a 2D plotting using a gray level
colormap (Fig. 5(e)), and stored in a matrix for subsequent processing.
This representation only depends upon the surface shape and not on
the placement of facets over the surface. This independence on the
placement of the facets is important as it guarantees the invariance of
the correspondence with respect to geometric transformations. A
possible variant of the geometric histogram is obtained by consider-
ing all the pairs of facets within Ntc , i.e., the set fðti; tjÞ; ti∈Ntc ;

tj∈Ntc g. The construction of this variant is computationally more
demanding as the number of histogram entries evolves quadratically
with respect to the number of facets in the neighborhood. Due to this,
in our experiment we considered the computation referred to the
central facet tc, using N¼8 and M¼20.

With respect to the computation of the central GH, we
introduced a variant which is related to the ORF definition. In
particular, in our approach, a GH is constructed on each of the
rings that constitute the ORF of a keypoint: This means that the GH
descriptor is actually given by a set of GH, constructed on the
sequence of rings which surround the keypoint. This improves the
descriptiveness of GH by capturing information on how the local
characteristic of the surface changes when the distance from the
keypoint increases. This multi-ring structure is also exploited
during the match. In particular, the normalized GH can be viewed
as a probability density function, and thus can be adapted to
probabilistic matching paradigms. To this end, the Bhattacharyya
distance (dB) is used as metric for evaluating the similarity
between GHs at each ring. According to this, given two GHs in
the form of 1D arrays of K ¼N �M elements, AðlÞ ¼ fa1;…; aKg and
BðlÞ ¼ fb1;…; bKg, their distance at ring-l is computed as

dBðAðlÞ;BðlÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ∑

K

k ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðak � bkÞ

ps
: ð8Þ

The overall distance between two multi-ring GH, computed on L
rings is then obtained by accumulating the distances between the
GHs at different rings, that is

dðA;BÞ ¼ ∑
L

l ¼ 1
dBðAðlÞ;BðlÞÞ: ð9Þ

The Experiment 2 Code Item 2 can be executed on the
Experiment 2 Data Item 1, in order to generate the GH descriptor
of a 3D face scan.

4. Face matching

Given two face scans, their comparison is performed by
matching the local shape descriptors at corresponding keypoints
under the constraint that a consistent spatial transformation exists
between inliers pairs of matching keypoints. To this end, local
shape descriptors at the keypoints detected in probe and gallery
scans are compared so that for each keypoint in the probe, a
candidate corresponding keypoint in the gallery is identified. In
particular, a keypoint kp in the probe is assigned to a keypoint kg in

the gallery, if they match each other among all keypoints, that is, if
and only if kp is closer to kg than to any other keypoint in the
gallery and kg is closer to kp than to any other keypoint in the
probe. For this purpose, distance between keypoints descriptors is
measured through the distances presented for the three local
descriptor HOG, SHOT and GH, discussed, respectively, in Sections
3.1–3.3. Finally, the candidate matches for which the second best
match is significantly worse are accepted (i.e., a match is accepted
if the ratio between the distance of the best match and the second
best match is lower than 0.7).

This analysis of proximity of keypoint descriptors results in
the identification of a candidate set of keypoint correspondences.
Identification of the actual set of keypoint correspondences must
pass a final constraint targeting the consistent spatial transforma-
tion between corresponding keypoints in the probe and
gallery scans. The RANSAC algorithm [43,57] is used to identify
outliers in the candidate set of keypoint correspondences. This
involves generating transformation hypotheses using a minimal
number of correspondences and then evaluating each hypothesis
based on the number of inliers among all features under that
hypothesis. In our case, we modeled the problem of establishing
correspondences between sets of keypoints detected on two
matching scans as that of identifying points in R3 that are related
via a rotation, scaling and translation transformation (RST trans-
formation). According to this, at each iteration, the RANSAC
algorithm validates sampled pairs of matching keypoints under
the current RST transformation hypothesis, updating at the
same time the RST transformation according to the sampled
points. In this way, corresponding keypoints whose RST transfor-
mation is different from the final RST hypothesis are regarded as
outliers and are removed from the match. Examples of the
application of RANSAC are reported in Fig. 6. In the figure, detected
keypoints are highlighted with a “+” symbol (in blue); correspond-
ing keypoints based on descriptors matching are connected by
green lines; finally, the inliers matching which pass the RANSAC
algorithm are shownwith a red line connection. It can be observed
as by applying the RANSAC algorithm just the matches that show a
coherent RST transformation among each other is retained.
This avoids matches of keypoints that are located in different
parts of the face of two scans. Cases in (a) and (b), respectively,
report the match between two scans of the same subject and of
different subjects. In Fig. 7, we also report the case in which scans
of the same subject with large missing parts (a) and with
expression (b) are matched against a full neutral gallery scan. It
can be observed as the number of inliers is still high compared to
that of different subjects, despite the large missing parts and
expression.

Once the set of inlier keypoints is established, the distance
between their descriptors is accumulated and averaged. Given a
probe and a gallery, the correspondences identified by the spatial
transformation hypothesis is a function ξ : ℵ↦ℵ that associates
with a keypoint descriptor CðpÞk in the probe, its corresponding
keypoint descriptor CðgÞξðkÞ in the gallery. For each keypoint descrip-
tor in the probe CðpÞk the distance to the corresponding keypoint
descriptor CðgÞξðkÞ in the gallery is evaluated (using Eq. (7) for SHOT or
Eq. (9) for GH), and these distances are finally averaged on the
total number of inlier matches Ni

D¼ 1
Ni

∑
Ni

k ¼ 1
DðCðpÞk ; CðgÞξðkÞÞ: ð10Þ

In this way, the distance between two face scans is regarded as a
pair 〈Ni;D〉. The number of matching inliers is used as measure of
distance. In the case two scans have the same number of inliers,
the distance D serves as disambiguation value.
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The Experiment 3 Code Item 2 can be executed on the
Experiment 3 Data Item 1 and Experiment 3 Data Item 2, in order
to compute the match between two 3D face scans using local
descriptors and RANSAC. An image showing the keypoints match-
ing is also generated.

About the computational complexity of the proposed matching
approach, it depends on two main cost factors: the matching of
local descriptors and the execution of the RANSAC algorithm. The
first term resulted the main source of cost, growing quadratically
with the number of keypoints in the two scans. All the three
descriptors presented in Section 3 are histogram based and so the
complexity in computing their match depends on the distance
measure and on the number of histogram bins.

5. Experimental results

The performance of the proposed approach has been evaluated
in a comprehensive set of experiments. For the sake of the
presentation and discussion, experiments have been divided and
organized into two parts:

1. The goal of the first session of experiments was to evaluate the
robustness of our 3D face recognition solution to probes
showing large facial expressions (from moderate to exagger-
ated), and extreme pose variations (side rotations of 901). To
this end, experiments were carried out on two datasets that are
specifically designed for investigating 3D face recognition in
the presence of facial expressions, The Binghamton University
3D Facial Expression database (BU-3DFE) [44], and missing
parts, The 2D/3D Florence Face dataset (UF-3D) [45]. In addition,
we provide an in depth investigation on the keypoints detec-
tion and repeatability, using the same datasets. Results of this
first session of experiments are reported in Section 5.1.

2. In the second session of experiments, the proposed approach is
evaluated on a variety of benchmark datasets that differ in the
number of scans, acquisition modalities and characteristics of
the scans in terms of missing parts, occlusions, and expressions.
The used databases are the Bosphorus [28], Gavab [14] and UND/
FRGC v2.0 [6]. These datasets have been used by many of the
existing 3D face recognition works, thus permitting a direct
comparison of our approach with state of the art solutions.
Section 5.2 reports results of this evaluation.

The datasets listed above largely differ in the scanners used
during acquisition (i.e., either laser or structured light scanners), so
that both 2.5D (only one z-value is possible at a given xy location)
and 3D acquisitions are involved (multiple z-values at the same xy
location are allowed). According to this, in the perspective of not to
restrict the proposed approach to any particular scenario, in the
experimentation we do not make any assumption about the type
of scans available in the probe or gallery sets (i.e., they can be
either 2.5D or 3D).

5.1. Performance evaluation

The objective of the results reported in this section is to verify
the performance of the proposed approach in the case of probes
with very large facial expressions (Section 5.1.1), and extreme side
rotations (Section 5.1.2). In so doing, we devised an identification
scenario where the effectiveness of recognition is measured
through the rank-k recognition rate (RR): a rank-k recognition
experiment is successful if the gallery face representing the same
individual of the current probe is ranked within the first k
positions of the ranked list. The rank-1 value has been reported
in our experiments.

Fig. 7. (a) Partial probe vs. full gallery same subject (34 inliers). (b) Expressive probe vs. neutral gallery same subject (47 inliers). (a) same subject: missing parts and (b) same
subject: expression.

Fig. 6. Matching of scans of same and different subjects are reported in (a) and (b), respectively. All the detected keypoints are shown with “+”. Lines indicate matching
keypoints (in green), and inliers matching after RANSAC (in red). In the case of scans of the same subject in (a), 61 inlier matches are identified; For scans of different subjects
in (b), 18 matches are detected. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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5.1.1. The BU-3DFE database
The BU-3DFE database was recently constructed at Binghamton

University [44]. It has been designed to provide 3D facial scans of a
large population of different subjects each showing a set of facial
expressions at various levels of intensity. There are a total of 100
subjects in the database, divided between female (56 subjects) and
male (44 subjects). The subjects are well distributed across different
ethnic groups or racial ancestries, including White, Black, East-Asian,
Middle-East Asian, Hispanic-Latino, and others. During the acquisition,
each subject was asked to perform the neutral facial expression as well
as the six basic facial expressions defined by Ekman [58], namely
anger, disgust, fear, happiness, sadness, and surprise. Each facial expres-
sion has four levels of intensity, respectively low, middle, high and
highest, except the neutral facial expression that has only one intensity
level. Thus, there are 25 3D facial expression scans for each subject,
resulting in 2500 3D facial expression scans in the database. As an
example, Fig. 8 shows the 3D scans of a sample subject showing the
six basic facial expressions at the low and medium levels of intensity.

Face recognition results. The BU-3DFE dataset has been used to
investigate the robustness of the proposed approach with respect
to facial expressions in a wide range of intensity variations, from
low to exaggerated. This allowed us to infer some evidence of the
facial variations that mostly affect face recognition. So far, the BU-
3DFE database has been used mainly to test facial expression
recognition methods, rather than the robustness of face recogni-
tion methods in the presence of expression variations. Actually,
face recognition experiments on the BU-3DFE were conducted in
[59,60], but only cumulated results were reported in these works,
without a detailed analysis for each expression/intensity. As a
consequence, for the large part of the methods reported in the
literature, there is no insight of the effect induced by different
expressions.

In our experiments, we randomly partitioned the dataset into a
training and a testing set. The scans of 20 subjects have been included
in the train set and have been used for tuning the parameters of the

3D keypoints detector (i.e., the number of DOG scales, the percentage
and cornerness thresholds, see Section 2) and the local descriptors (i.e.,
number of histogram bins for HOG, SHOT and GH descriptors, see
Section 3). A classic grid search approach has been used to this end
(this phase is mainly important for keypoints detection, since the
percentage and cornerness thresholds largely influence the number of
detected keypoints, which can vary of an order of magnitude or so).
These parameters have been used in the experiments carried out on
this dataset, on the UF-3D database (as reported in the next section)
and on the three databases used in Section 5.2. The scans of the
remaining 80 subjects have been included in the test set. In particular,
we considered the neutral scan of each subject as a reference scan and
included it in the gallery set (gallery with 80 neutral scans in total).
The probe set is composed of 24 expressive scans for each subject,
including for each expression the scans with low, medium high and
highest intensity level (see Fig. 8). With this selection, the probe set
includes 1920 expressive probe scans. The scans classified as showing
a low and medium expression intensity have moderate and natural
expressions, similar to those that are likely to occur in a real context.
Instead, scans classified in the BU-3DFE as having high and highest
expression intensity, present quite exaggerated expressions for the
large part of the subjects, and are more suited to verify the perfor-
mance of the approach in very difficult situations.

Using these probe and gallery sets, we performed recognition
experiments based on keypoints matching with each of the three
local descriptors presented in Section 3. Rank-1 recognition
accuracies are reported in Table 1, separately for the six expres-
sions, and for the low and medium intensity level (L1 & L2), and
the high and highest level (L3 & L4). From the table, it can be
observed that, as the overall performance is concerned, the SHOT
descriptor provides the best results among the three local descrip-
tors. Looking in to the performance of the SHOT descriptor, it
results that the expression that makes the recognition more
difficult is the surprise one at L1 & L2. This is confirmed also using
the HOG and GH descriptors. This is mainly due to the open mouth

Fig. 8. BU-3DFE: 3D face scans (with texture) of a sample subject showing the six basic facial expressions at the low, medium, high and highest level of intensity.
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that appears in the large part of subjects with this expression. The
effect of this is a modification of both the location of the detected
keypoints with respect to the neutral case, as well as a change of
the local descriptors. At L3 & L4 also faces with disgusted expres-
sion become difficult to be recognized. Furthermore, from this
analysis also results that the performance with the GH descriptor
seems to degrade more gracefully than for the other descriptors
when passing from L1 & L2 to L3 & L4.

5.1.2. The 2D/3D Florence face dataset
The 2D/3D Florence face dataset (UF-2D/3D)1 has been con-

structed at the Media Integration and Communication Center of the
University of Florence [45]. The dataset consists of high-resolution 3D
scans of human faces along with several video sequences of varying
resolution and zoom level. This dataset is designed to simulate, in a
controlled fashion, realistic surveillance conditions and to test the
efficacy of exploiting 3D models in real scenarios. In this work, we
used the 3D part of the dataset (UF-3D) that currently includes 53
subjects (14 females and 39 males, numbered from subject001 to
subject053) of Caucasian ethnicity. The age of the subjects ranges from
20 to 60, with the majority of the subjects (28) being student at the
School of Engineering of the University of Florence, aged between 20
and 30 years. The 3D scans of each subject are acquired in the same
session and include two frontal scans with neutral expression (named
as frontal1 and frontal2), and two scans where the subject is rotated of
901 on the left and right sides (named left and right, respectively). In
all the acquisitions, the subjects are required to assume a neutral
expression, though some scans exhibit moderate, involuntary, facial
expressions. The 3dMD face system [10] scanner has been used in the
acquisition, which produces one continuous point cloud from two
stereo cameras with a capture speed of about 1.5 ms at the highest
resolution, and a geometry accuracy lower than 0.2 mm RMS. As an
example, Fig. 9 reports the 3D face scans of two sample subjects.

Face recognition results. The UF-3D dataset allows us to evaluate
the recognition accuracy of the proposed solution in the case of
frontal neutral probes as well as for probes with extreme yaw
rotations. In particular, the left and right probes in this dataset
have been acquired with side rotation of 901, which results in
scans with half of the face missing, with consequent very challen-
ging recognition conditions. One neutral scan (“frontal1”) has been
selected as reference for each subject and included in the gallery.

The other neutral scan of each subject (“frontal2”) has been used as
probe in the “neutral vs. neutral” experiment. The left/right scans
have been used in two separate experiments aiming to test the
robustness of the proposed approach to partial face matching,
where large parts of the face are missing. It is relevant to note that
being the proposed approach based completely on 3D processing,
both keypoints detection and local description extraction can be
performed without the need of costly pose normalization solu-
tions that are required by other existing methods [23,24,29,35].

Results of this evaluation are reported in Table 2. It can be
observed that the proposed solution achieves a very high accuracy
in matching neutral frontal scans, with each of the three experi-
mented descriptors showing a similar behavior (in this case the
SHOT descriptor achieves the best results). For side scans, the
accuracy drops significantly with similar results obtained for the
left and right scans. The GH descriptor evidences the highest
accuracy in this experiment. To the best of our knowledge, the only
two other works reporting results on probes with yaw rotations of
901 are those in [36,46], though these two approaches were
experimented on the Bosphorus database. Direct comparison of
our solution with respect to [36,46] on the Bosphorus database is
given in Section 5.2.1.

Fig. 10 shows two examples of wrong recognition for probes
with large missing parts. In both the cases, the number of inliers
resulted too low to allow rank-1 recognition. For the case on the
left, this can be motivated by the presence of a facial expression
(see the open mouth) which is combined with a large part of the
face missing. In the case on the right, the main problem was
originated by the preprocessing operation, which closes holes in
the face scans. Due to the large extent of the hole, the hole filling
procedure fails in producing a consistent closing, thus altering the
face geometry and the keypoints extraction and description.

5.1.3. Localization and repeatability of 3D keypoints
The idea of representing the face by a sparse and adaptive set of

automatically detected keypoints relies on the assumption of
intra-subject keypoints repeatability: Keypoints extracted from
different facial scans of the same individual are expected to be
located approximately in the same positions of the face. Since
keypoints detection only depends on the geometry of the face
surface through its mean curvature (see Section 2), these key-
points are not guaranteed to correspond to specific meaningful
landmarks of the face. For the same reason, the detection of
keypoints on two face scans of the same individual should yield
to the identification of the same points of the face, unless the
shape of the face is altered by major occlusions or non-neutral
facial expressions.

To test the repeatability of keypoints detection, we used the 3D
scans of the BU-3DFE database selected for the experiments
reported in Section 5.1.1. We followed the approach proposed in
[31], and measured the correspondence of the location of key-
points detected in two face scans by performing ICP registration.
Accordingly, the 3D faces belonging to the same individual are
automatically registered and the errors between the nearest
neighbors of their keypoints (one from each face) are recorded.
Fig. 11 shows the results of our keypoint repeatability experiment,
by reporting the cumulative rate of repeatability as a function of
increasing values of the distance. The repeatability reaches a value
of 90% for frontal faces with neutral and non-neutral expressions
at a distance error of 5 mm (with an average number of 360
keypoints detected per scan). We remark that these results, and
those reported in the following about the number of detected
keypoints, have been obtained by computing 96 DOG scales, and
retaining the unique keypoints that are detected in the last 64
DOG scales (see also Section 2).

Table 1
BU-3DFE: rank-1 recognition rate (RR) for different expressive scans. Results are
reported separately for the HOG, SHOT and GH descriptors. For each descriptor, the
average for the low and medium expression intensity (L1 & L2), and for the high and
highest intensity level (L3 & L4) are reported, together with the average on all the
intensity (All column).

Expression Rank-1 RR

HOG SHOT GH

L1 &
L2 (%)

L3 &
L4 (%)

All
(%)

L1 &
L2 (%)

L3 &
L4 (%)

All
(%)

L1 &
L2 (%)

L3 &
L4 (%)

All
(%)

Angry 90.0 81.3 85.6 93.8 87.5 90.6 90.6 86.3 88.4
Disgust 87.5 75.6 81.6 90.6 78.8 84.7 85.0 79.4 82.2
Fear 88.8 78.8 83.8 91.9 85.6 88.8 84.4 80.0 82.2
Happy 88.1 80.6 84.4 90.0 79.4 84.7 85.6 79.4 82.5
Sad 90.6 82.5 86.6 94.4 90.0 92.2 90.6 85.0 87.8
Surprise 85.0 76.9 80.9 88.8 79.4 84.1 82.5 78.8 80.6

Overall 88.3 79.3 83.8 91.6 83.4 87.5 86.5 81.5 84.0

1 The database is publicly available and can be accessed upon request from the
following address: http://www.micc.unifi.it/masi/research/ffd/. The dataset is also
released within the Elsevier Collage Authoring Environment.
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Table 3 also reports the number of keypoints detected on the
face scans of the BU-3DFE and the UF-3D datasets. In particular,
separate values are given for the average, minimum and maximum
number of keypoints. As expected, it can be observed that the
largest number of keypoints is detected in the gallery and frontal
probes with neutral expression, whereas the number of detected
keypoints decreases for side scans. No remarkable differences are
observed for the number of keypoints detected on left or right
probes. Non-neutral expressions have a small impact on the
number of detected keypoints, which remains comparable to that
obtained for frontal neutral scans (in some cases, an increase in
the number of keypoints is observed).

From Table 3, it results that the number of detected keypoints is
quite large. In fact, an important trait of a keypoints detector is the
amount of repeatable keypoints it can provide to the subsequent
modules of an application. Detecting a small number of keypoints
cannot be enough to apply geometrical verification or outliers removal
steps, whereas too many may waste computational resources [48]. In
the case of meshDOG, the number of detected keypoints is the result
of the thresholds involved in the detection algorithm (see Section 2).

Of course, making these thresholds more selective, the number of
keypoints can be reduced. In our experiments, the number of key-
points reported in Table 3 represented a good compromise between
computational cost and accuracy of recognition. A number of detected
3D keypoints on 3D face scans of the order of hundreds are also
reported for the 3D keypoints detector defined by Mian et al. [31], and
for the meshSIFT detector [39,46]. These results seem to support our
findings. For example, in the meshSIFT, an average number of about
560 keypoints is reported by the authors, with a number of matching
at rank-1 of about 97. The recent survey on the evaluation of 3D
keypoint detectors [48], also reported that meshDOG tends to extract a
high number of keypoints, that accumulate around areas characterized
by high local curvature.

Fig. 9. UF-3D: 3D face scans of two sample subjects. For the left and right cases, the acquired scan is shown as well as its frontal view so has to evidence the missing amount
of the facial surface.

Table 2
UF-3D: rank-1 RR for frontal neutral and left/right probes.

Local descriptor Rank-1 RR Rank-1 RR

Overall (%) Frontal (%) Left (%) Right (%)

HOG 64.8 92.5 49.1 52.8
SHOT 69.2 96.2 54.7 56.6
GH 71.1 94.3 58.5 60.4

Fig. 10. UF-3D: Example of scans with missing parts that are not recognized when
matched against corresponding full gallery scans.

Fig. 11. Repeatability of keypoints.

Table 3
Number of detected keypoints per scan (average, min and max).

Dataset Number of keypoints

Name Scans Avg Min Max

UF-3D frontal 106 445 346 572
UF-3D left/right 106 205 130 396
UF-3D total 212 325 130 572

BU-3DFE neutral 80 327 265 402
BU-3DFE expressive 1920 361 292 464
BU-3DFE total 2000 360 265 464
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5.2. Comparative evaluation

In this section, the proposed approach is evaluated and com-
pared to state of the art solutions on three benchmark databases:
Bosphorus, Gavab and UND/FRGC v2.0. Based on the analysis of
Section 5.1, in the following we provide results of our approach
only for the GH descriptor. In fact, we found that the GH descriptor
provides a good balance of recognition performance between the
cases of probes with missing parts and probes with large facial
expressions.

5.2.1. The Bosphorus 3D face database
The Bosphorus database has been collected at the Boǧaziçi

University and made available during 2008 [16]. It consists of 3D
facial scans and images of 105 subjects acquired under different
expressions and various poses and occlusion conditions. Occlu-
sions are given by hair, eyeglasses or predefined hand gestures
covering one eye or the mouth. Many of the male subjects have
also beard and moustache. The majority of the subjects are
Caucasian aged between 25 and 35, with a total of 60 males and
45 females. The database includes a total of 4666 face scans, with
the subjects categorized as follows:

� About 34 subjects with up to 31 scans per subject (including 10
expressions, 13 poses, 4 occlusions and 4 neutral).

� About 71 subjects with up to 54 different face scans. Each scan
is intended to cover one pose and/or one expression type, and
most of the subjects have only one neutral face, though some of
them have two. Totally, there are 34 expressions, 13 poses,
4 occlusions and one or two neutral faces. In this set, 29
subjects are professional actors/actresses, which provide more
realistic and pronounced expressions.

Face recognition results and comparative evaluation. In our
experiments, we used the same experimental protocol proposed
in [36,46], thus allowing a direct comparison of the results. For
each subject, the first neutral scan was included in the gallery,
whereas the probe scans have been organized in different classes
as reported in Table 4 (the number of probes per class is also
indicated). The first class groups probe according to their facial
expression, distinguishing between neutral probes and expressive
probes categorized according to the six expressions defined by
Ekman [58], plus some not-classified probes. Probes where

subjects exhibit face action units are accounted in the second
class, by considering scans with Lower Face Action Unit (LFAU),
Upper Face Action Unit (UFAU), and Combined Action Unit (CAU).
Finally, the last class reports probes with missing parts due to Yaw
Rotation (YR), Pitch Rotation (PR) and Cross Rotation (CR), plus
probes with Occlusions (O). For the methods in [36,46] we provide
the rank-1 RR accuracy as reported in the respective publications.

From the table, we first note that the approach by Li et al. [36]
reports a detailed analysis for the different probe categories,
whereas in Smeets et al. [46] results are presented in a cumulative
way. Results show that our approach has overall performance
which are very close to state of the art solutions, and for some
category are even better. In particular, our solution performs
particularly well in recognizing scans with missing parts (see for
example the YR category). More in detail, our approach achieves
an accuracy of 45.7% on scans with 7901 left/right yaw rotations.
Results for these scans are not reported directly in [46]. However,
authors also reported the overall recognition in the case the 7901
scans are removed. So, it is possible to derive the accuracy of [46]
on 7901 scans to be around 25%.

We guess the lower performance achieved in [46] on scans
with very large missing parts are mainly due to the way local
descriptors are computed. In fact, in [46] the local support used for
the computation of the meshSIFT feature is quite large and
increases with the scale at which keypoints are detected. As a
result, keypoints detected at the highest scales, which in principle
are the most stable, have local descriptors which span a large part
of the face. This reduces the robustness of the descriptor to
missing parts. In our case instead, the local support is quite small
thanks to the descriptive capability of the multi-ring GH descrip-
tor, thus making our representation quite robust to missing parts
of the face.

5.2.2. Gavab database
The Gavab database [14] comprises facial scans with large pose and

expression variations, and noisy acquisitions. It includes 3D face scans
of 61 adult Caucasian individuals (45 males and 16 females). For each
individual, nine scans are taken that differ in the acquisition viewpoint
and facial expressions, resulting in a total of 549 facial scans. In
particular, for each individual, there are two frontal face scans with
neutral expression, two face scans where the subject is acquiredwith a
rotated posture of the face (around 7351 looking-up or looking-
down) and neutral facial expression, and three frontal scans in which
the person laughs, smiles, or shows a random expression. Finally, there
are also two side scans nominally acquired with a rotation of 7901
left and right. In our experiments, we used all the probes and
compared them against the gallery scans. The gallery includes, for
each subject, the scan named “frontal1” according to the experimental
protocol of this dataset.

Face recognition results and comparative evaluation. On this
dataset, our results are compared with those reported in [29,35]
that used a similar experimental setup. Table 5 summarizes the
evaluation using rank-1 RR. Results demonstrate that our approach
is capable of achieving or improving state of the art performance
for all the classes of scans. As a general behavior, a quite large
difference in recognizing left and right side scans can be noted for
this dataset (about 10%, 14% and 16% decrease, respectively, for our
work and the approaches in [29,35]). Measuring the yaw rotation
for the left and right side scans, we obtained an average angle of
about 501 and 701, respectively. These rotation angles are lower
than the nominal values reported in the database description, and
the difference of around 201 between left and right rotations
motivate the different recognition accuracy in the two cases.

Table 4
Bosphorus: rank-1 RR for different probe classes. Results of our approach are
compared with those reported in [36,46].

Probes (#) Li et al. [36] %
rank-1RR

Smeets et al. [46] %
rank-1RR

This work
rank-1RR

Neutral (194) 100.0 – 97.9
Anger (71) 88.7 – 85.9
Disgust (69) 76.8 – 81.2
Fear (70) 92.9 – 90.0
Happy (106) 95.3 – 92.5
Sad (66) 95.5 – 93.9
Surprise (71) 98.6 – 91.5
Other (18) – – 100.0

LFAU (1549) 97.2 – 96.5
UFAU (432) 99.1 – 98.4
CAU (169) 98.8 – 95.6

YR (735) 78.0 – 81.6
PR (419) 98.8 – 98.3
CR (211) 94.3 – 93.4
O (381) 99.2 – 93.2

All (4561) 94.1 93.7 93.4
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5.2.3. UND/FRGC v2.0 database
We performed experiments on the side facial scans of the ear

database from the University of Notre Dame (UND) [15], collections
F and G. This database was created for ear recognition purposes
and contains side scans with yaw rotations of 451, 601 and 901.
Similarly to [23], we used the 451 side scans (119 subjects, with 119
left and 119 right scans) and the 601 side scans (88 subjects, with
88 left and 88 rights scans). As noted in [23], even if these side
scans are marked as 451 and 601 by the creators of the database,
the measured average yaw angle of rotation is 651 and 801,
respectively. There is a partial overlap between subjects in the
UND and in the FRGC v2.0 databases, but not all subjects exist in
both the UND and FRGC v2.0. In fact, the number of common
subjects between the gallery scans (i.e., frontal scans in the FRGC
v2.0) and the 451 side scans is 39, and between the gallery scans
and the 601 side scans is 33. According to the partition of the
probes used in [23], in our experiments we considered the
following test datasets:

� DB45F: Gallery set has one frontal scan for each of the 466
subjects of the FRGC v2.0; Probe set has 451 left/right side scans
for each of the 39 subjects.

� DB60F: Gallery set has one frontal scan for each of the 466
subjects of the FRGC v2.0; Probe set has 601 left/right side scans
for each of the 33 subjects.

In both the cases, there is only one gallery scan per subject (466
scans in total), and the gallery coincides with that of the FRGC v2.0
dataset. In addition, all the subjects included in the probe set are
also present in the gallery set (the opposite is not always true). In
the following, we will also use UND45 left/right and UND60 left/
right to refer to the probe sets constituted by the 451 left/right side
scans and by the 601 left/right side scans, respectively.

Face recognition results and comparative evaluation. In the
following, we compare the proposed solution with the approaches
in [23] (automatic and manual) and [24] that have been evaluated
on the UND/FRGC v2.0 following the same experimental setup and
protocol. Results of the comparative evaluation are summarized in
Table 6 using rank-1 RR. Results are organized in three parts:

� UND45 left/right: At rank-1 the approach in [23] (manual)
results the most effective. We point out that the solution in
[23] can use both automatically and manually detected facial
landmarks in order to identify face regions used for face
alignment and recognition. Quite interestingly, the accuracy
of our solution is very close to the accuracy of the solution
relying on manual annotation [23], and higher than the
accuracy of the solution relying on automatic detection.

� UND60 left/right: These results evidence the large improve-
ment in the recognition accuracy (more than 20% at rank-1)
that our approach achieves with respect to the other solutions.

� UND left/right (451 plus 601), UND total: Overall, at rank-1, our
approach is competitive with the state of the art solution
recently reported in [24].

The comparative evaluation evidences that our solution is
capable of achieving and in some cases improve state of the art
results in the recognition of partial face scans. This is obtained
with a completely automatic solution and at a reasonable compu-
tational cost. We also evidence that, unlike the solution in [24], our
approach does not rely on any assumption of symmetry of the face
to reconstruct its global geometry, but only relies on the match of
descriptors extracted at detected keypoints of existing parts of the
face. This makes our solution more generally applicable.

6. Discussion and conclusions

In this work, we have proposed an original approach to 3D face
recognition based on the idea of capturing local information of the face
surface around a set of 3D keypoints detected at multiple scales
according to differential surface measurements. The approach, first
detects 3D keypoints of the face mesh, then local descriptors are
extracted at each keypoint and used to find keypoint correspondences
during the match. The approach makes no assumption about the
correspondence of detected keypoints to specific landmarks on the
face, and therefore it can support the comparison of probe and gallery
scans even in the case probe scans represent just a part of the face. To
improve the accuracy of keypoints correspondences, a spatial con-
straint is introduced using the RANSAC algorithm.

A preliminary evaluation carried out on the BU-3DFE and the
UF-3D datasets showed the viability of the approach in managing
moderate as well as exaggerated facial expressions and extreme
rotations of the scans, with consequent absence of large parts of
the face. This first round of experiments suggested us to use the
multi-ring GH descriptor in the subsequent comparative evalua-
tion that has been extended to the Bosphorus, Gavab and UND/
FRGC v2.0 databases. Results of this comparison showed that our
solution can compete with state of the art works evidencing a

Table 5
Gavab dataset: Comparison between methods reporting partial face matching
results on left/right scans. The rank-1 RR is reported (highest RR values are
evidenced in bold for each class).

Dataset Rank-1 RR

Name Scans Drira et al. [29] (%) Huang
et al. [35] (%)

This
work (%)

Frontal neutral 61 100.0 100.0 100.0
Frontal expressive 183 94.5 94.0 94.0
Neutral + expressive 244 94.7 95.5 95.1

Looking-down 61 100.0 96.7 95.1
Looking-up 61 98.4 96.7 96.7

Left side 61 86.9 93.4 93.4
Right side 61 70.5 78.7 83.6

Table 6
UND dataset: Comparison between methods reporting partial face match results on
the left and right scans of the UND probes. The RR at rank-1 is reported, with values
for individual experiments and their average (avg). The highest RR values for each
dataset are reported in bold.

Dataset Rank-1 RR

Perakis et al. [23] Passalis et al. [24]
(%)

This work
(%)

Name Scans Manual
(%)

Automatic
(%)

UND45 left 39 92.3 74.4 – 87.2
UND45
right

39 82.1 64.1 – 82.1

UND45 avg 78 87.2 69.2 – 84.6

UND60 left 33 42.4 42.4 – 66.7
UND60
right

33 42.4 45.5 – 69.7

UND60 avg 66 42.4 43.9 – 68.2

UND left
avg

72 69.4 59.7 74.6 77.8

UND right
avg

72 63.9 55.6 78.9 76.4

UND total
avg

144 66.7 57.6 76.8 77.1
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clear advantage in the case of probes with large missing parts. In
summary, our view is that the proposed approach presents some
interesting solutions in the perspective to make 3D face recogni-
tion deployable in real non-cooperative context of use: The
approach is fully-3D, reducing to the minimum the need for
preprocessing operations, not requiring any costly normalization
or alignment; The meshDOG keypoints combined with the multi-
ring GH descriptor as proposed in this work, provide a good
compromise between robustness to expression changes and miss-
ing parts of the face; The inclusion of a statistical technique for
outlier removal of matching keypoints largely improves the
recognition results.

In perspective, the proposed approach could be further
improved by fusing together the local descriptors proposed in this
work so as to exploit and combine their strengths. Furthermore,
the proposed framework can be easily adapted to include texture
information of the face surface, so as to define a multi-modal
solution that can combine together in a nativeway (i.e., at the level
of the function used for meshDOG detection) 2D and 3D data.

Acknowledgments

The authors thank Iacopo Masi at the University of Firenze for
making available the 2D/3D Florence face database, and Emiliano
Mazzoncini at the University of Firenze for writing part of the code
for meshDOG/meshHOG keypoint detection and description.

Appendix A. Operations on the mesh

In order to make this work self-comprehensive, in the follow-
ing we summarize the main operations performed on the mesh
surface that we used in the paper (according to the analysis in
[41]). In so doing, we consider uniformly sampled triangulated
meshes S, that is meshes whose facets are triangles of approxi-
mately the same area and whose vertices have a valence close to 6
(the vertex's valence being defined as the number of edges
incident on it). Simple mesh operations can be applied to trans-
form a non-uniform mesh into a uniform one [61].

A mesh S is viewed as a pair 〈V ; E〉, where V ¼ fvigi ¼ 1;…;N is the
set of mesh vertices (with vi we indicate the 3D point associated to
the vertex vi, i.e., vi∈R3), and E¼ feijg is the set of mesh edges
between adjacent vertices. The ring of a vertex ringðvi;nÞ is the set
of vertices that are at distance n from vi on S, where the distance n
is the minimum number of edges between two vertices. Thus
ringðvi;0Þ is the vertex vi itself, and ringðvi;1Þ is the set of direct
neighbors of vi. According to this, the neighborhood NnðviÞ is the
set of rings fringðvi; kÞgk ¼ 0;…;n. We further denote n!vi the unit
vector normal to the surface S at vertex vi, computed as the
average direction of the normals of the triangles incident to vi.

Given a scalar function f defined on the vertices of a mesh S,
that is f : S-R, the operations of directional derivative, gradient
and convolution of f on the discrete domain of the vertices of S can
be computed as reported in the following.

Discrete directional derivative. The discrete directional deriva-
tive of f on S along the direction of the edge eij

! (i.e., the direction of
the vector vivj

�! originating in vi and oriented from vi to vj) is
defined as

D
eij
!f ðviÞ ¼

1
∥vi−vj∥

� ðf ðvjÞ−f ðviÞÞ; ðA:1Þ

with vj∈ringðvi;1Þ, and using the fact that up to the first order
f ðvjÞ−f ðviÞ ¼ ∇Sf ðviÞ � ðvj−viÞ around vi.

Discrete gradient. The gradient operator ∇Sf ðviÞ of f at vertex
vi∈S is defined as (based on the directional derivatives on vi)

∇Sf ðviÞ ¼ ∑
vj∈ringðvi ;1Þ

ðwij � Deij!
f ðviÞÞ � uij

�!
; ðA:2Þ

where wij weights the contribution of D
eij
! and uij

�! is the normal-
ized projected direction of vij

! in the tangent plane at vi. Assuming
that S is uniformly sampled and thus that neighbors around vi are
equally spaced we get: wij ¼ 1=valðviÞ where valðviÞ is the valence
of vi (i.e., the number of edges incident on it). For non-uniformly
sampled meshes, the weights are a function of the angles between
the directions uij

�! around vi in the tangent plane at vi.
Discrete convolution. The convolution of the function f with a

kernel h on S is defined as

ðfnhÞðviÞ ¼
1
H
� ∑
vj∈NnðviÞ

hð∥vi−vj∥Þ � f ðvjÞ; ðA:3Þ

where the kernel weighs the neighboring vertices vj as a function
of their distances from vertex vi, and H ¼∑vj∈NnðviÞhð∥vi−vj∥Þ is a
normalization factor. Notice that, as for the discrete gradient, a
uniformly sampled mesh is assumed. As a consequence, contribu-
tions of neighboring vertices vj in the above expression are equally
weighted with respect to their spatial arrangements. In this work,
we used the above definition with the first ring only (i.e., n¼1, so
that the vertex vi and the vertices in its ringðvi;1Þ are considered).
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Boosting 3D LBP-Based Face Recognition by
Fusing Shape and Texture Descriptors on the Mesh

Naoufel Werghi, Senior Member, IEEE, Claudio Tortorici, Stefano Berretti, Member, IEEE,
and Alberto Del Bimbo, Senior Member, IEEE

Abstract— In this paper, we present a novel approach for
fusing shape and texture local binary patterns (LBPs) on a mesh
for 3D face recognition. Using a recently proposed framework,
we compute LBP directly on the face mesh surface, then we
construct a grid of the regions on the facial surface that can
accommodate global and partial descriptions. Compared with
its depth-image counterpart, our approach is distinguished by
the following features: 1) inherits the intrinsic advantages of
mesh surface (e.g., preservation of the full geometry); 2) does
not require normalization; and 3) can accommodate partial
matching. In addition, it allows early level fusion of texture
and shape modalities. Through experiments conducted on the
BU-3DFE and Bosphorus databases, we assess different variants
of our approach with regard to facial expressions and missing
data, also in comparison to the state-of-the-art solutions.

Index Terms— Mesh-LBP, feature and score fusion, 3D face
recognition.

I. INTRODUCTION

THE LAST decade has seen an extensive investigation of
3D face image usage for human identification. Adding to

shape information the intrinsic features characterizing facial
image, such as universal acceptance and non-invasiveness,
3D face image has emerged as promising modality addressing
the limitations of its 2D counterpart, such as pose and lumi-
nance variation, while opening-up new horizons for enhancing
the reliability of face-based identification systems. This trend
has been further fueled by the advances in 3D scanning tech-
nology, which provides now 3D textured scans encompassing
aligned shape and photometric data.

Since their introduction in the mid ’90, Local Binary
Patterns (LBP) [2] have been extensively used in 2D face
description and representation, and rapidly have been extended
to the 3D modality. 3D-LBP approaches advanced the state
of the art, and proved to be competitive with other classes
of methods. However, their application is hindered by the
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intrinsic limitations of the 2D image support. Indeed, most if
not all 3D-LBP approaches operate on depth images, in which
depth is mapped to a gray level via 2D projection. As such,
depth images require normalization to accommodate with pose
variation. Yet, they still remain vulnerable to self-occlusions
(caused for instance by the nostrils).

To address these problems, we propose a novel LBP-based
face representation that can be constructed over triangular
mesh manifolds. This representation, which is based on the
recently proposed mesh-LBP concept [1], preserves the full
3D geometry of the shape, thus relieving the recognition
process from the need for pose normalization (i.e., since mesh-
LBP descriptors are computed on the 3D mesh triangulation,
they are intrinsically independent from the mesh orientation
in the 3D space). In another hand, given the consensus on
the advantageous aspects of multi-modal face recognition [3],
LBP construction on the mesh allows boosting recognition by
offering an elegant framework for fusing, over a mesh support,
texture and shape information at data and feature level, in
addition to score and decision level, noticeably. To the best of
our knowledge, this work is the first one to propose texture and
shape fusion for face recognition using LBP constructed on
the mesh. We also point out that our contribution in this work
focuses mostly on the aspect related to the face description
and, as a matter of fact, we are employing a very basic
minimum distance classifier in the recognition pipeline. In the
remaining of this Section, we first summarize the works that
are most related to our solution (Sect. I-A), then we outline
the proposed approach and its main contributions (Sect. I-B).

A. Related Work

Many 3D face recognition approaches have been proposed
in the literature, and going through all of them is out of the
scope of this summary. Instead, in the following, we will focus
on existing methods that are relevant for the proposed solution,
which can be categorized according to three different aspects:
a) Methods that use local representations of the face, and thus
are capable of supporting partial face matching, as can occur in
the case of expression variations or missing parts (many recent
methods achive this goal relying on fiducial points of the
face); b) Approaches featuring face recognition by extending
the LBP framework to depth images and 3D modalities;
c) Multi-modal solutions that fuse together the 3D geometry
and the 2D photometric appearance of the face to improve
recognition. A more general and comprehensive review of
3D face recognition can be found in [3]–[6].

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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1) Local Methods Based on Fiducial Points: At a very broad
level, solutions for 3D face recognition can be grouped as
global, performing face matching based on the whole face,
and local that partition the face surface into regions and
extract appropriate descriptors for each of them [7]. Methods
in this latter category have recently gained an increasing credit,
mainly thanks to their capability of natively supporting partial
face match, as occurring in the case of scans with missing
parts or occlusions (the case of facial expressions is often
managed in a similar way, by excluding from the match
the parts of the face that are most affected by expression
variations). Among local approaches, effective results have
been reported by methods that detect fiducial points of the
face (being them either anthropometric landmarks, points of
a predefined grid, or sparse keypoints), and compute local
descriptors of surface patches centered at the fiducial points.
One of the first approaches following this framework was
proposed by Mian et al. [8], which designed a 3D key-
points detector and descriptor inspired by SIFT [9]. This
detector/descriptor was used to perform 3D face recognition
through a multi-modal 2D+3D approach that also used SIFT
to index 2D images of the face. However, results reported
for the method did not account for face scans with pose
variations and missing parts. In [10] and [11], the framework
of SIFT keypoints detector has been reformulated to operate
on 3D face meshes by defining the mesh-SIFT detector and
local descriptor. A scale-space analysis of the mesh is first
performed through subsequent smoothing of the 3D geometry,
then 3D keypoints are identified as the local extrema of the
mean curvature extracted from the smoothed versions of the
original mesh through the scales. Local descriptors are defined
at the keypoints using nine local regions (arranged according
to a daisy-like pattern), and computing for each of them a pair
of histograms (the shape-index and the angle between surface
normal descriptors are used). Effective local solutions based on
fiducial points have been recently reported also in [12]–[14].
In [12], Lin et al. used mesh-SIFT to detect feature points
on 3D face scans; Then, the quasi-daisy local shape descrip-
tor [15] at each feature point was obtained using multiple
order histograms of differential quantities extracted from the
surface; Finally, these local descriptors were matched by
computing their orientation angles. The same authors extended
this work in [13], by boosting the keypoints matching with the
Sparse Representation based Classifier (SRC) [16]. In [14],
Berretti et al. used a similar paradigm by considering different
varieties of histogram descriptors computed at mesh-DOG
3D keypoints [17]. The keypoints matching was also improved
using the RANSAC algorithm.

2) LBP-Based Solutions: Since the seminal work of
Ahonen et al. [18], [19], LBP-based solutions have shown their
effectiveness in face recognition from 2D still images [20].
Inspired by these works, the idea of extending LBP to the
3D geometry of the face has been explored in several studies.
Most, if not all, the LBP-based face recognition methods in
the literature operate on depth images. This format allowed
a straightforward application of the 2D-LBP operator as it
was demonstrated in the pioneering work of Li et al. [21].
Later, Huang et al. [22], [23] proposed the multi-scale

extended LBP (eLBP), which consists of several LBP codes
in multiple layers accounting for the exact gray value
differences between the central pixel and its neighbors.
Sandbach et al. [24] introduced the local normal binary
pattern (LNBP), which used the angle between normals at
two points, rather than the depth value to obtain the local
binary code. This novel LNBP concept has been adopted in
subsequent works in different variants. Li et al. [25] extracted
surface normals in 3D, then the values of the normal com-
ponents along the direction of the three coordinate axes are
interpreted as depth values, and LBP is computed on these
depth maps reporting the values of the normal components.
In a further extension, Sandbach et al. [26] constructed images
of azimuthal projection distance. The azimuthal equidistant
projection is able to project normals onto points in an
Euclidean space according to the direction. Though the pro-
jected information is not the depth, depending on the normals
of the 3D surface, 2D LBP are still computed on the projection
images. The 3D-LBP method proposed in [27] computed the
difference of the depth value or the angle between the normal
of a central vertex and the eight neighboring vertices on a
mesh. Using this descriptor, a region based representation of
the face similar to the one developed in [19] for 2D face recog-
nition is derived. This work includes the idea of using normals
computed on the mesh, but the mesh requires an elaborated
preprocessing in order to extract LBP constrained to the eight
vertices near to a central one. Also, the circular ordering proce-
dure of these vertices, necessary to perform LBP computation
is not revealed. In addition, multi-resolution LBP is not sup-
ported, and the partitioning of the face into regions is defined
based on a set of 48 landmarks manually annotated. More
recently, Bayramoglu et al. [28] combined a central symmetric
variant (CS-3DLBP) pattern, and a set of geometrical
features in a decision-level fusion using a robust random forest
classifier. This method operates on depth images and adopted
also surface normal orientation as a shape function. All the
aforementioned LBP-based methods, except [27], operate on
depth images, and therefore when dealing with a mesh model
as input have to convert it into a depth image via assiduous
normalization procedures. This makes handling incomplete
face scan resulting, for instance, from pose variation and
occlusion, quite problematic for these methods. Finally, while
the method of Tang et al. [27] constructs LBP patterns on
the mesh, it requires intense mesh preprocessing and lacks the
multi-resolution aspect of the original LBP.

3) Multi-Modal 2D-3D Solutions: Multi-modal methods try
to combine multiple processing paths (typically in 2D and 3D)
into a coherent architecture to solve critical aspects of individ-
ual methods. In [29], Chang et al. proposed applying PCA to
face depth images and 2D face images separately, and then
fusing the results together. In the work of Lu et al. [30],
ICP registration of the 3D face models was combined with
LDA applied to 2D face images to improve the robustness of
2D face matching in the presence of pose and illumination
variations. Beumier et al. [31] extracted central and lateral
profiles of the face and compared them in both 3D and 2D.
In the approach of Hüsken et al. [32], landmark positions used
to define the face regions were also detected on 2D texture
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images obtained with the 3D face scan. Mian et al. [33]
assembled a fully automated system performing: pose cor-
rection, automatic region segmentation to account for local
variations of the face geometry, quick filtering of distant
faces using SIFT and 3D Spherical Face Representation, and
matching of the remaining faces applying a modified ICP
to a few regions of the face (eyes, forehead, and nose) that
are less sensitive to face expressions. The similarity scores
provided by the two matching engines were fused into a single
similarity measure. An in-depth study of fusion strategies for
3D face recognition was carried out by Gökberk et al. [34]
that discussed and compared various techniques for classifier
combination, such as fixed rules, voting- and rank-based fusion
schemes, by fusing several off-the-shelf 3D and 2D features.
Soltana et al. [35] through extensive experimentation show that
individual 2D and 3D features are far from being distinctive for
discriminating human faces. They propose an adaptive score
level fusion strategy for multi-modal 2D-3D face recognition.
The strategy consists of an offline and an online weight
learning process, which automatically selects the most relevant
weights of all the scores for each probe face in each modality.

B. Contribution and Paper Organization

From the above analysis, it emerges that solutions locally
describing the face around fiducial points can perform 3D face
recognition in difficult conditions, thanks to their intrinsic
capability of managing partial match. On another side, there is
evidence that LBP is an effective descriptor of the face capable
of capturing local information. Last, multi-modal solutions
that fuse together shape and photometric information can
be used to boost further the recognition. In light of these
considerations, we propose in this work a method capable
of supporting recognition in the presence of missing parts,
occlusions and expressions. Our method encompasses the fol-
lowing stages: 1) Computation of LBP descriptors using both
shape and photometric information of the face mesh surface;
2) Construction of a grid of points on the face surface to obtain
an ordered set of regions (equivalent to blocks in the 2D case);
3) Computing a histogram at each region, then concatenating
the regional histograms into a structure encoding either a
global or partial description of the face; 4) Performing the
face matching by exploiting different fusion modalities. Our
work presents the following innovative aspects:

• We introduce an LBP-based face representation con-
structed over triangular mesh manifolds;

• Our method relieves the recognition process from face
pose normalization, while preserving the full geometry
of the facial shape;

• Operating on the mesh, with our approach the photomet-
ric appearance is processed directly attached to the mesh
and not on a separated planar image as in other multi-
modal methods, thus allowing an early level-fusion of the
texture and shape information;

• Our method uses a fixed set of fiducial points based
on a sampling grid of the face. The points of the grid
are obtained according to a predefined arrangement with
respect to three reference facial landmarks. This avoids

the need for elaborated processing required by keypoints
detectors.

The results obtained on the BU-3DFE and Bosphorus datasets
show the proposed method competes, and in some cases
overcomes, the state of the art solutions.

The rest of the paper is organized as follows: In Sect. II,
we give an overview on the mesh-LBP concept, focussing
on the descriptor computation and its properties; In Sect. III,
we present our face representation based on mesh-LBP; The
fusion modalities used to combine geometric and photometric
descriptors attached to the mesh are discussed in Sect. IV;
Experimental evaluation in comparison to state of the art
methods with results on two datasets is reported in Sect. V;
Finally, we discuss the main positive aspects of our framework
together with its current limitations in Sect. VI, where we also
draw possible directions for future work.

II. LBP DESCRIPTORS ON THE MESH

LBP construction on triangular mesh manifolds is a
recent concept introduced by Werghi et al. [1], [36]. Before
describing it, let us briefly remind about the standard LBP
construction. In its simplest form, an LBP is an 8-bit binary
code obtained by comparing a pixel’s value (e.g., gray level,
depth) with each pixel’s value in its 3 × 3 neighbour. The
outcome of this comparison is 1 if the difference between
the central pixel’s value and its neighbour pixel’s counterpart
is less or equal than a certain threshold, and 0 otherwise.
The so obtained local description can be refined and extended
at different scales by adopting circular neighbourhoods at
different radii and using pixel sub-sampling.

Werghi et al. [36] elegantly extended the LBP concept
to 2D-mesh manifolds by proposing a simple yet efficient
technique for constructing sequences of facets ordered in a
circular fashion around a central facet. The principle of the
approach consists in categorizing the facets on the contour
defined by a central facet’s edges in two categories, namely, the
Fout facet and the Fgap facets. An Fout facet (respectively,
an Fgap facet) shares an edge (respectively, a single vertex)
with a central facet (referred by fc in Fig. 1).

Starting with three—clockwise or anticlockwise—ordered
Fout facets ( f out1, f out2, and f out3 in Fig. 1), the con-
struction algorithm iteratively extracts the Fgap facets located
between each pair of consecutive Fout facets following the
same order in which the Fout facets have been initially
arranged, and closing the loop at the pair composed by
the last Fout facet (the third one) and the first one. The
outcome of this procedure is a ring of ordered facets arranged
clockwise or anticlockwise around the central facet. From
this ring, a new sequence of ordered Fout facets located on
the ring’s outer-contour can be extracted, thus allowing the
ring construction procedure to be iterated, and to generate a
sequence of concentric rings around the central facet (see the
illustrations on the bottom of Fig. 1).

Algorithms 1 and 2 summarize the computation of ordered
rings of facets.

The so obtained structure of ordered and concentric rings
around a central facet forms an adequate support for comput-
ing LBP operators (referred as mesh-LBP in [36]) at different
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Fig. 1. Ordered ring construction: From the initial Fout facets formed
by the three ordered facets f out1, f out2, and f out3 that are adjacent
to the central facet fc, a sequence of Fgap facets located between each
pair 〈 f out1, f out2〉, 〈 f out2, f out3〉, and 〈 f out3, f out1〉 are extracted. The
Fgap facets have exactly one vertex on the initial 3-edge contour of the
central facet fc, and they are dubbed so because they look like filling the gap
between the Fout facets. This procedure produces a ring of facets ordered
in a circular fashion around the central facet fc. By iterating this procedure,
using as new set of Fout facets the sequence of facets that share an edge on
the outer contour of the current ring, a sequence of rings of ordered facets
can be generated.

Algorithm 1 Bridge
Require: f outi , f outi+1 two consecutive Fout facets sharing

a vertex; f ini facet that shares an edge with f outi
Ensure: Fgapi set of consecutive f gap facets bridging the

gap between f outi and f outi+1

procedure BRIDGE( f outi , f outi+1, f ini )
Fgapi = [ ]
v ← vertex shared by 〈 f outi , f outi+1〉
g f ← facet adjacent to f outi , different from f ini

and containing v
prev ← f outi
while g f �= f outi+1 do

append g f to Fgapi

new_g f ← facet adjacent to g f , different from prev
and containing v

prev ← g f
g f ← new_g f

end while
end procedure

radial and azimuthal resolutions, while preserving the simplic-
ity of the original LBP. Let h( f ) be a scalar function defined
on the mesh, incarnating either a geometric (e.g., curvature) or
photometric (e.g., color or gray level) information. The mesh-
LBP operator at the facet fc is defined as follows [36]:

meshL B Pr
m( fc) =

m−1∑

k=0

s(h( f r
k )− h( fc)) · α(k),

s(x) =
{

1 x ≥ 0
0 x < 0,

(1)

where r is the ring number, and m is the number of facets
uniformly spaced on the ring. The parameters r and m
control, respectively, the radial resolution and the azimuthal
quantization. In practice, in our implementation, we used a
number of rings going from 1 to 7, with 12 facets per ring

Algorithm 2 GetRing
Require: Fout , set of n ordered facets, f out1, f out2, . . .,

f outn , lying on a convex contour; Fin, set of n ordered
facets, f in1, f in2, . . . , f inn , one-to-one adjacent to the
Fout facets and located inside the region delimited by
the convex contour (depending on the contour, Fin might
include duplicates)

Ensure: Ring, ring of ordered facets

procedure GETRING(Fout, Fin)
Ring = [ ]
for all 〈 f outi , f outi%n+1〉, i ← 1, . . . , n do

append f outi to Ring
Fgapi ← BRIDGE( f outi , f outi%n+1, f ini )
append Fgapi to Ring

end for
end procedure

for computing mesh-LBP descriptors. This choice reflects the
fact we have 12 facets in the first ring (regular mesh), and we
keep this number of samples in any subsequent ring of the
facet’s support. The discrete function α(k) is introduced for
the purpose of deriving different LBP variants. In this work,
we will consider two variants of α(k): for α(k) = 2k , we
obtain the mesh counterpart of the basic LBP operator firstly
suggested by Ojala et al. [2]; for α(k) = 1, we obtain the
sum of the digits equal to 1 composing the binary pattern.
In the experiments, we will refer to these two functions by α2
and α1, respectively. For the discrete surface function h( f ),
in this work we experimented the mean curvature (H ), the
curvedness (C), the Gaussian curvature (K ) and the shape
index (SI ), as shape descriptors, plus the gray level value (GL)
as photometric characteristic of the facets.

With reference to the computation of mesh-LBP, it is
relevant to note that the facets of the first ring can be ordered
in three different ways, depending on which of the three Fout
facets adjacent to the central facet fc is considered as the initial
one. To solve this ambiguity, the closest facet to the center of
mass of the fc’s neighbourhood is elected as the initial facet
of the ring. Subsequent rings inherit the ordering of the facets
from that established for the first ring. It can be also observed
that, by construction, patterns computed with the α1 function
do not depend on the choice of the initial facet of the ring
(i.e., the pattern value is determined just from the number
of digits set to 1, rather than from their position as instead
occurs for α2). In the ideal case of a regular mesh, the number
of facets ν at ring i is computed according to the arithmetic
progression νi+1 = νi + 12 (ν0 = 0). In the real case, to cope
with mesh tessellation irregularities as produced by 3D scanner
acquisitions, the scalar function h( f ) is interpolated and sub-
sampled across each ring, allowing thus to maintain a constant
azimuthal quantization. The authors in [36] showed that this
technique copes to a large extent with mesh irregularity.

A. Constructing and Comparing Mesh-LBP Descriptors

As for their 2D counterpart, the outputs of mesh-LBP opera-
tors of Eq. (1) computed across a mesh surface are not usually
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directly used in shape matching, but rather accumulated into
a discrete histogram constructed over a given neighborhood.
The size of the histogram depends on the radial and azimuthal
parameters r and m, as well as on the discrete function α. For
example, with r = 7 and m = 12 we will obtain the histogram
encompassing 7 × 13 and 7 × 4096 bins, for the α1 and α2,
respectively. In fact, in the first case, 13 different values of the
patterns are possible, being them coincident with the possible
number of digits set to 1 in the binary code (i.e., the number
of bit from 0 to 12 that to 1, which is also equal to the sum
of the bit values); in the case of α2, each digit in the pattern
is weighted according to its position, so that 4096 different
binary codes are possible (i.e., from 0 to 4095). The obtained
histogram bins can be arranged in a 1-D or 2-D accumulator,
and compared using χ2 distance:

d(H1, H2) = 1

2
·
∑

i

(H1(i)− H2(i))2

H1(i)+ H2(i)
, (2)

where H1 and H2 are two normalized histogram descriptors.
Good results have been obtained also using the cosine distance,
especially for the α1 variant.

Considering histograms obtained with the α1 and α2 func-
tions, it is evident the different size of the respective descrip-
tors. In particular, with an azimuthal quantization m = 12,
4096 mesh-LBP patterns are possible for α2, compared to the
13 different patterns for α1. This aspect has been investigated
in [36], showing that the majority of the α2 patterns have a
number of 0-1 transitions below 4. These patterns have been
called “uniform” following a similar property noticed first by
Ojala et al. [37] for 2D-LBP (in that case, for patterns of
eight bits, the uniformity was assumed for a number of 0-1
transitions not greater than 2).

In this work, we re-investigated the presence of uniform
patterns on face scan samples from the Bosphorus database,
using the mean curvature, curvedness and the gray level as
scalar functions. Again, we found that the mesh-LBP with a
number of 0-1 transitions less or equal than 4 form more than
95% of the total number of patterns across seven rings. The
detailed statistics are reported in Fig. 2, whereby we can see
the frequencies of the different 0-1 transitions in the mesh-
LBP patterns and the percentage of the transitions below or
equal to 4, across all the rings. In the bottom of Fig. 2,
we also visualize the facets corresponding to non-uniform
patterns. It is evident, there are a few non-uniform patterns,
and they are located mostly in non-rigid parts of the face,
which change with facial expressions. These results seem to
suggest that considering uniform patterns is sufficient. Thus,
considering four 0-1 transitions as the threshold for uniform
patterns, it results in exactly 1124 uniform patterns against
2972 non-uniform ones. Following the same partition scheme
of [37], where all the non-uniform patterns are grouped into a
single label, whereas a separate label is assigned to each non-
uniform pattern, the number of histogram bins (or classes)
is reduced to 1125 for our mesh-LBP. We will adopt this
partition in the rest of the paper for the α2 function. For α1, the
distinction into uniform/non-uniform patterns does not make
too much sense, since in this case the sum of the number of
digits set to 1 in the binary code is computed, rather than

Fig. 2. Top: distribution of the number of 0-1 transitions in the mesh-LBP
patterns using α2 and the scalar functions mean curvature (H), curvedness (C)
and gray level (GL). The mesh-LBP patterns have been computed for the seven
radial resolutions r = 1 : 7 (i.e., seven rings), and for an azimuthal resolution
m = 12 across all the rings. Note that number of odd transitions is always
zero because what is counted actually is both the 0-1 and 1-0 transitions, and
considering a circular arrangement of the binary digits. Middle: Percentage
of the mesh-LBP patterns, in the same variants, showing a number of 0-1
transitions below or equal to four. Bottom: Facets on an example face scan
having a non-uniform pattern obtained with mean curvature, for the radial
resolutions r = 1, 4 and 7.

the binary value given by the polynomial expansion of the
digits, as for α2. This results in only 13 possible different
patterns.

To have a visual insight on the capacity of mesh-LBP to
capture and discriminate local shape information, we consid-
ered first five fundamental shapes, namely, valley, ridge, pit,
peak, and saddle (see Fig. 3(a)), and computed their mesh-
LBP histograms using the mean curvature as scalar surface
function. Results are reported in Fig. 3(b)-(c) for the α1
and α2 (adopting the uniform/non-uniform pattern partition)
variants, respectively. We can notice that the pairs valley-ridge,
pit-peak show similar histograms, because of their symmetry
relationships, while they are quite distinguishable from each
other and from their saddle counterpart. For the facial shape,
we report in Fig. 4 representative mesh-LBP variants computed
with the geometric and photometric functions H and GL, at
seven different radial resolutions (r = 1, . . . , 7). We can easily
observe, across these different variants, patterns reflecting
facial features. Also we notice that, as the radial resolution
increases, these patterns exhibit a fine to coarse evolution
common to multi-resolution operators. In Fig. 5, we extend
this analysis to the case of within and between class variation
of the mesh-LBP descriptors, by reporting examples computed
on two sets of four instances corresponding to a same and
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Fig. 3. Fundamental shapes (a) and their mesh-LBP histograms obtained using the mean curvature descriptor with α1 (b), and α2 (c).

Fig. 4. Examples of mesh-LBP computed using the mean curvature (H ), and the gray level (G L) in combination with α1 and α2: (a) 〈H, α1〉; (b) 〈H, α2〉;
(c) 〈G L , α1〉; (d) 〈G L , α2〉; (e) F F3〈(H, G L), α1〉; (f) F F3〈(H, G L), α2〉. From left to right, the radial resolution r changes from 1 to 7 in each case.

different subjects. We can easily appreciate the stability of the
patterns across the sibling instances as opposed to the neat
variability observed across the non-related ones.

From Figs. 3, 4 and 5, both α1 and α2 categories exhibit
great potential to be employed in facial surface description.
While rotation invariance and low size properties of α1 give

it more favor than α2, there are no prior indicators that can
objectively indicate whether it can equate or outperform α2 in
terms of discriminating ability. The accentuated level of details
and granularity exhibited by the examples of α2 mesh-LBP
descriptors displayed in Fig. 4 and 5 seem rather to indicate
the opposite.
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Fig. 5. Examples of mesh-LBP descriptors for four instances of the same
subject (a), versus their counterparts related to four different subjects (b). The
mesh-LBP used here is 〈H, α1〉 computed at three radial resolutions r = 1,
3 and 7, from top to bottom of (a) and (b).

III. FACE REPRESENTATION

The previous analysis indicates that the mesh-LBP has some
useful properties that make it attractive for capturing the shape
and photometric information of a 3D surface. In order to
exploit such potential for deriving a suitable face represen-
tation, we have taken inspiration from 2D face recognition
methods that use standard LBP, and 3D methods based on
fiducial points of the face that showed their appropriateness in
supporting face recognition in the presence of facial expres-
sions, occlusions and missing parts of the face. In particular,
in the standard LBP-based face representation [19], a 2D
face image is divided into a grid of rectangular blocks, then
histograms of LBP descriptors are extracted from each block
and concatenated afterwards to form a global description of
the face. In so doing, image partitioning is performed easily
due to the natural ordering of image pixels.

To extend this scheme to the face manifold, we need firs
t to partition the facial surface into a grid of regions (the
counterpart of the blocks in the 2D-LBP), compute their
corresponding histograms, and then group them into a single
structure. Since partitioning of the 2D mesh manifold is not
straightforward, we rely on the idea of extracting a grid
of fiducial points of the face with predefined position, and
then use their neighborhood regions as local supports for
computing mesh-LBP. In more details, this is performed with
the following steps. First, the plane formed by the nose tip
and the two eyes inner-corner landmark points is initially

Fig. 6. (a) Construction of the face grid on the mesh; (b) On the left
scan, all the grid points are shown and partitioned into three bands, namely,
top (T), middle (M) and bottom (B), whereas on the right scan only the
points in the top and middle bands (TM) are shown; (c) Grid partition of a
depth image as used for the LBP method applied to depth images (3D-LBP);
(d) Construction of the partial grid on a two rotated probe scans and a gallery
scan.

computed (see Fig. 6(a), left). We used these three landmarks
as they are the most accurate detectable landmarks on the
face, and they are also quite robust to facial expressions. From
these landmarks we derive, via simple geometric calculation,
an ordered and regularly spaced set of points on that plane
(see Fig. 6(a), middle). Afterwards, the plane is tilted slightly,
by a constant amount, to make it more aligned with the face
orientation, and then we project this set of points on the face
surface, along the plane’s normal direction. The outcome of
this procedure is an ordered grid of points, which defines an
atlas for the facial regions that will divide the facial surface
(see Fig. 6(a), right). To account for the effects of facial
expressions, we segmented the grid points into three bands,
dubbed top (T), middle (M) and bottom (B). The TM option
allows us to neutralize to some extent the shape changes
manifesting at the lower part of the face, and caused by the
mouth in particular. The TMB and the TM grids contain
35 and 26 points, respectively. The three TMB bands are
shown on the left of Fig. 6(b), while the points comprised
by the TM bands only are shown on the right.

For a yaw rotated pose resulting on a partial scan that
does not allow the extraction of one of the two eyes inner-
corner landmarks, we adopted a lateral grid, constructed upon
the plane defined by one eye inner-corner, an eye outer-
corner and the nose ridge. The grid covers one side of the
face and contains 22 points. For the gallery scans, the TMB
grid and both the left and right lateral grids are constructed
(see Fig. 6(d)). Figure 6(c) instead, shows the partitioning of
a depth image into a grid of 5 × 5 blocs, which is used to
compare our method with the 3D-LBP counterpart operating
on depth images, as detailed in Sect. V-B.

Once the grid of points has been defined, we extract a
neighbourhood of facets around each point of the grid. Each
neighbourhood can be defined by the set of facets confined
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Fig. 7. (a) The numbered grid points; (b) and (c) report the intra-class distance and the criterion � computed at each grid point for the α1 and α2 mesh-LBP
variants, respectively.

within a geodesic disc or a sphere, centered at a grid point.
Then, we compute the multi-resolution mesh-LBP descriptor
using Eq. (1) at each grid point region, considering both
shape-valued (i.e., H , K , C , SI ) and texture-valued (i.e., GL)
functions. In the final step, the histograms of these descriptors
are computed and integrated into a single histogram describing
either the whole face or part of it (see Fig. 9(a)).

As primary assessment of the repeatability and the
discrimination capacity of the different grid points in face
matching we computed, for each grid point, the inter-class
distance and the intra-class distance of the corresponding
histogram. These two quantities have been obtained from,
respectively, 35 pairs of scans, each corresponding to the same
subject, and 35 scans corresponding to different subjects. Here,
we adopted the intra-class distance and the ratio �=inter-
class distance/intra-class distance as repeatability and dis-
crimination indicators, respectively. Figure 7(b) and Fig. 7(c)
depict the plot of these two indicators for each point of the
grid (numbered according to Fig. 7(a)), and for the α1 and α2
mesh-LBP variants, respectively. Each plot compares a group
of different descriptors including single and fusion variants
(these will be described in Sect. IV). We can notice that the
repeatability indicator shows virtually the same pattern across
the different histogram descriptors. The best repeatability
(i.e., lowest value) is observed at grid points around the nose
and inner-eye corners (grid points {1, 2, 15, 16, 17, 22}).
A similar behaviour is observed for the criterion �, whereby
the grid points {1, 2, 3, 15, 20, 22} exhibit the most discrim-
inative histograms (note that in this case the maximum of the
curves correspond to the most discriminative points).

When we examined the distributions of the intra-class
and the inter-class distances across the different grid points,
we found that those in the α2 variants exhibit more com-
pact and separated distributions when compared to their

α1 counterparts. Figure 8 depicts some distribution examples
illustrating this aspect. This suggested us that the α2 variants
have a higher discrimination, superior than α1, as it will be
confirmed in the experiments.

IV. FUSION SCHEMES

As a contribution of the proposed face representation,
we propose the fusion of shape and photometric descrip-
tors computed on the mesh. We further emphasize that the
photometric channel is elaborated on the mesh as gray level
attached to the triangles. No information is extracted from
the 2D domain of gray (or depth) images of the face, but all
the information is directly processed on the mesh manifold
domain. Therefore, rather than being a multi-modal solution,
the proposed approach can be regarded as a particular case
of 3D methods, where the gray level plays an interchangeable
role with standard shape surface descriptors.

In biometry applications, there are four levels of fusion
considered, namely, data, feature, score, and decision [38].
As mentioned by Al-Osaimi et al. [5], it is believed that
low-level fusion (data and feature) performs better than its
higher level counterparts (score and decision) [39]. Looking at
the spectrum of region methods fusing texture and 3D shape
modalities, we found much concentration in the score-level
category [21], [29], [33], [40], [41], as compared to the feature-
level [8], [21], [42]. The work of Li et al. [21] in particular,
fused LBP features derived from depth and texture image.

In our approach, we have investigated a score-level fusion
and three variants of feature-level fusion. We have chosen the
sum rule for the score-level, as it has been proven to be the
optimal one [43]. In the first variant of the feature-level fusion,
we concatenate the two mesh-LBP regional histograms, corre-
sponding to the shape and the texture functions. For example,
considering an azimuthal quantization m = 12 and α1,
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Fig. 8. Examples of intra-class and inter-class distribution computed at
grid points at the nose tip (leftmost plots), right inner eye corner (middle
plots), and mouth area (grid point 29 in Fig. 7, rightmost plots), for four
different mesh-LBP variants. We notice that α2 distributions exhibit more
separation and compactness than their α1 counterparts. The number of inter-
class looks larger than its intra-class counterparts, as it encompasses all the
pair combinations in the 35 subjects (34× 35/2).

we obtain a 13-bins histogram for each function, thus
leading to a one-dimensional 26-bins histogram for each radial
resolution r , that is a r × 26 histogram. In the second feature-
level fusion variant, we used a 2-D accumulator that counts
for the co-occurrences of the mesh-LBP corresponding to the
shape and the texture functions. For the same aforementioned
parameters’ values, we obtain an r × 13 × 13 histogram
(Fig. 9(b) depicts some examples). In the third variant, the
fusion is performed at the LBP pattern level, rather than the
histogram level, as for the first two. Here, the mesh-LBP
pattern is constructed by interleaving digits from the shape
mesh-LBP with a texture mesh-LBP. So, for an azimuthal

Fig. 9. (a) Global histogram construction: Region histograms are computed
and then concatenated into a global histogram; (b) Examples of regional
histogram variants obtained with m = 12 and r = 7 and α1: (left) A 7× 13
unimodal histogram corresponding to a shape function; (middle) A 7 × 26
histogram obtained by concatenating two 7× 13 histograms corresponding to
a shape function and a photometric function (gray level). This corresponds
to the first variant of feature-level fusion (F F1); (right) A 2D section of a
7 × 13 × 13 histogram obtained with a shape function and a photometric
function. This is the second variant we used of feature-level fusion (F F2).

quantification m = 12, the mesh-LBP pattern sequence is
bs

1 bt
2 bs

3 bt
4 bs

5 bt
6 bs

7 bt
8 bs

9 bt
10 bs

11 bt
12. The last variant has the

advantage to keep the related histogram to the same size
than its mono-feature counterpart. In the rest of the paper, we
will refer to these first, second and third feature-level fusion
variants by F F1, F F2, and F F3, respectively, whereas the
score-level fusion will be referred by SF .

V. EXPERIMENTS

We conducted a series of experiments aiming at studying
the behavior and performance of our fusion framework with
respect to facial expressions, missing face data resulting from
pose variation and occlusion, and the extent it improves the
recognition over the classic fusion performed on the depth
image. Our framework is assessed in comparison with the
best methods in the literature, adopting similar experimental
settings.

A. BU-3DFE Database

A first series of experiments was conducted with the
BU-3DFE database from Binghamton University [44]. This
database contains scans of 56 males and 44 females, acquired
in a neutral plus six different expressions (anger, disgust,
fear, happiness, sadness, and surprise). Apart of the neutral
expression, all the other facial expressions have been acquired
at four levels of intensity. This combination results in a total
of 2500 scans. We considered as gallery and probe the sets of
neutral scans and the expression scans, respectively. Scans in
this database contain both texture and shape data. Figure 10
depicts samples of the 3D facial expression instances, and a
2D image used for texture mapping in that database. The image
encompasses two face sides acquired from the two stereo pods
composing the face scanner used in the data collection.

The purpose of using the BU-3DFE is to assess the per-
formance of our method, in particular our fusion schemes,
with respect to facial expressions. On this dataset, we set
the radial resolution r and the azimuthal quantization m used
in computing mesh-LBP equal to 7 and 12, respectively.
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Fig. 10. BU-3DFE: (a) 3D face scans (with texture) of a sample subject
showing, from left, the neutral, anger, disgust, fear, happy, sad, and surprise
expressions (the level-1 of intensity is shown in each case); (b) The appearance
image acquired by the scanner with two 45◦ side views of the face.

The choice of 12 for m is justified by the fact that given
a generic central facet, the number of facets in its first ring
is always equal to 12 for regular meshes, regardless of the
resolution, as demonstrated in [36]. Choosing this value allows
then to account for all facets in the first ring. This number is
used for the subsequent rings, so as to have patterns taking
values in the same range. The number of rings r is related to
the resolution of the mesh. The rationale behind the choice of
r is to cover an area around a point of the sampling grid wide
enough to capture local surface information. With the mesh of
the BU-3DFE we found that r = 7 covers about 7mm around
the point making a good compromise between computation
efficiency and effectiveness of the description.

To account for the effects of facial expressions,
we considered the grid points partition into three bands,
dubbed top (T), middle (M) and bottom (B), as introduced
in Sect. III. Then, we tested our recognition approach
considering the full grid (TMB) and the top and middle
bands (TM) only (see Fig. 6(b)). The TM option allows us
to neutralize to some extent the shape changes manifesting
at the lower part of the face, and caused by the mouth in
particular. The TMB and the TM grids contain 35 and 26
points, respectively. For the choice of the local descriptors
we tested, in a preliminary experimentation, a variety of
descriptors that include the mean (H ) and the Gaussian (K )
curvatures, the curvedness (C), and the shape index (SI), in
combination with the α1 and α2 functions. We found that the
H and C descriptors perform best than the rest, so we will
report results related to these descriptors, mainly.

In the first experiment, we considered two grid configu-
rations, namely, the full grid encompassing the top, middle
and bottom band (TMB), and the partial grid including the
top and the middle band only (TM). The goal is to assess
to what extent excluding the bottom region of the face can
neutralize the facial expressions for different descriptors and
fusion modes. In order to emphasize this effect, we considered
only the first level of expression intensity (referred to as level-
1) of the BU-3DFE. Table I reports the rank-1 recognition
rates obtained for different combinations of α1, α2, H , C , and
the gray level GL as texture function, in both a unimodal and
a fusion scheme. The table shows also the recognition rate for
two types of histogram distances, namely, the cosine distance
(cos), and the chi-squared distance (χ2). First, we notice
that the TM grid produces better results across most of the
variants. This confirms the capacity of the TM grid matching
of reducing the effects of facial shape variation caused by
the mouth, while ensuring an overall acceptable recognition
accuracy. Looking at the combination between the operator α

TABLE I

BU-3DFE: RANK-1 RECOGNITION ACCURACY (IN PERCENTAGE)
OBTAINED WITH DIFFERENT VARIANTS OF OUR METHOD

FOR LEVEL-1 EXPRESSION INTENSITY

and the histogram distance, we observe that α1 and α2 are best
coupled with cos and χ2, respectively. So, in the subsequent
experiments, we used each variant with its best distance (i.e.,
cos with α1 and χ2 with α2). Regarding the fusion aspect,
we can notice the improvement induced by fusing shape and
texture at each instance of the aforementioned combinations.
In this context, we reported also results related to SI to
show the ample improvement brought by the fusion, which is
illustrated, for instance, in a jump in the accuracy from 82.43%
to 95.65%, and from 78.96% to 95.13% in the 〈T M B, cos〉
and 〈T M, χ2〉 variants, respectively. We also observe that
feature-fusion variants perform better than their score-level
counterparts. The variant using 〈F F1, T M, C, χ2〉, in partic-
ular, scored the best performance of 97.74%.

Referring to the computational cost and pattern repeatability,
the α1 variant is more appealing than α2. This also motivated
us to not include the F F2 fusion modality for α2, since this
would result in a high dimensionality of the fused descriptor
with a consequently high computational cost. Nevertheless,
α2 takes advantage, theoretically, in its discriminative power
given the wider range of its related patterns. While the results
confirm the superiority of the α2 variant overall, we notice that
at some instances, α1 performs better than α2. While we do
not have a definitive postulate explaining this consistency, we
believe that the most plausible one is the intrinsic repeatability
of the α1 variant.

In Table II, the probe scans are categorized into the six
different facial expressions, and recognition rates are reported
for each category separately. We also included results obtained
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TABLE II

BU-3DFE: RANK-1 RECOGNITION RATE (IN PERCENTAGE) OBTAINED FOR THE DIFFERENT EXPRESSION SUBSETS COMPARED TO [14]

with three variants of the interest-points method proposed
in [14] and which have been applied on the same database.
Methods in [42] and [45] also used the BU-3DFE database
for 3D face recognition, but they are not directly comparable
with our due to the different settings. The work in [45] limited
the analysis to consistently labeled scans with expression
intensities 3 and 4, that do not show large variations in
illumination and geometry (total of just 212 scans of 81
subjects out of 2500 scans of 100 subjects). The approach
in [42] is based on training multiple SVMs, thus dividing
the dataset into two halves of 1200 scans each, one used
for training and the other for test. Depending on the fact
the intensities 1-2 or 3-4 are used for training, the rank-1
recognition rate is 97.7% and 98.7%, respectively.

From Table II, we first notice the α2 variant of mesh-LBP
outperforms in all the cases the α1 variant. Compared to the
results of Table I, where at level-1 expression α1 and α2
score similar results. This seems to indicate a major robustness
of this latter variant to large and exaggerated expressions.
Secondly, we observe that our method outperforms [14] even
with variants using single modality (see scores related to
H , C and GL with α2). We notice, in particular, the almost
full recognition rate obtained for the surprise category. The
disgust category, which is the most radical expression, exhibits
the lowest rate (93.50% for lower level distortions). The distri-
bution of the best scores, highlighted in bold, clearly indicates
the recognition enhancement brought by the fusion schemes.
Also, we can observe that most of the best scores have been
obtained with the feature-level fusion variants, though the
score level fusion 〈α2, SF, H 〉 achieves similar results. This
observation is confirmed in the over-all results, whereby the
configurations using 〈α2, F F1, H 〉 and 〈α2, SF, H 〉 score the
best performance.

Fig. 11. Bosphorus: (a) Samples from the different categories of Bosphorus
scans; (b) A sample of the 2D image obtained with the single view scanner
used for this database.

B. Bosphorus Database
The Bosphorus database [46], contains 4666 scans of

105 subjects scanned in different poses, action units, and
occlusion conditions. Figure 11 shows some scan instances of
this database. Notice here that scans are obtained with a single-
view scanner, that is one stereo-pod. In particular, the dataset
is divided in multiple subsets corresponding to neutral and
expressive scans (the six fundamental expressions are consid-
ered, namely, anger, disgust, fear, happy, sad, surprise), scans
with Action Units (Lower Face Action Unit (LFAU), Upper
Face Action Unit (UFAU), and Combined Action Unit (CAU)),
scans with rotations (Yaw Rotation (YR), Pitch Rotation (PR),
and Cross Rotation (CR)), and scans with occlusions (O). Most
of the face instances are provided with a set of landmarks that
also includes the inner corner landmarks and the nose tip.
These three landmarks are those used to define the plane on
which the sampling grid of the face is defined (see Sect. III).
For the scans with rotation, the inner corner of one of the
eyes can be missing. In that case, the partial grid of points is
constructed (as illustrated in Fig. 6(d)).
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TABLE III

BOSPHORUS: RANK-1 RECOGNITION ACCURACY OBTAINED WITH A SELECTION OF OUR METHOD VARIANTS COMPARED TO [12] AND [14], AND THE
BEST TWO VARIANTS REPORTED [13]. THE MAXIMUM OBTAINED RECOGNITION RATE IN EACH SUBSET IS HIGHLIGHTED IN BOLD

Experiments on this dataset aim to test the proposed
approach on a larger dataset and in the presence of action
units, missing parts and occlusions, in addition to expressions.
On this dataset, we can also compare our approach with
respect to state of the art methods. In particular, we compared
with Li et al. [12], Berretti et al. [14], and Li et al. [13], which
share the idea of using keypoints matching, and use the same
experimental protocol. Actually, differently from our solution,
in these methods keypoints are regarded as points on the mesh-
manifold, which are stable over multi-scale differentiation, and
which are usually detected using the mesh-DOG operator [17].
Local descriptors constructed at these keypoints are compared
in order to find the best matches. In [12], multiple order
histograms of differential quantities constructed at each face
keypoint and its immediate neighbourhood points are used.
In [14], a similar paradigm is used by considering different
variety of histogram descriptors. The keypoints matching is
also improved using the RANSAC algorithm. In their second
version, Li et al. [13], boosted the keypoints matching with
the Sparse Representation based Classifier (SRC) [16]. The
approaches of Sandbach [26] and Bayramoglu [28] used also
the Bosphorus database, but their purpose and setting are
different from ours. First, these works assess expression recog-
nition; and second, they employed, respectively, AdaBoost
and Random Forest classifiers, and a 10-fold cross-validation
scheme, whereas our method used a simple minimum-distance
classifier. Besides, they do not consider pose scans in their
experiments because of the limitation of the depth images
with regard to this category. Therefore, to assess our fusion
paradigm on the mesh over its counterpart on the depth images,
we compared our method with the 3D-LBP operating on depth
images, considering the same aforementioned fusing schemes,
namely, score fusion (SF) of the depth and gray-level data, the
first and third feature fusion (F F1 and F F3) of Sect. IV. For
the setting of the 3D-LBP face description, the LBP patterns
have been computed on 5 rings (radii from 1 to 5) and with an
azimuthal resolution of 8. The global histogram is constructed
over a grid of 5 × 5 blocs in the depth image, as shown
in Fig. 6(c).

Table III depicts the comparison results. First we notice that,
despite the fusion scheme, the 3D-LBP on the depth image
scores quite below the other methods, for both histogram and
score fusion variants. We can notice that our method neatly
outperforms [12], [14], while it competes well with [13],
equating and outperforming it at several subsets, noticeably
at the Disgust and Surprise for expressions, LFAU for action
units, and at the Occlusion subset.

For the Pitch, and Occlusion subsets our scores are reason-
ably close to [13], whereas the Cross subset score is a bit
distant. The most critical case for our solution is represented
by the Yaw subset, where we obtain an accuracy of about 75%
for the 〈SF, H + GL〉 variant of α1. In order to investigate
more this most critical case, we broken-down the Yaw rotation
subset results, and we found that our method scores well up
to 20 degrees rotation as reported in Table IV. If we exclude
the 45-degrees results, we obtain an overall score of 86.66%.
Interestingly, the α1 variant resulted more robust than the
α2 for rotation angles of 30 and 45 degrees. Examining the
45-degree scans, we found that the recognition failures in this
category are probably due to surface corruption noticed at
many instances (Fig. 12 shows some samples). While they
do affect the global facial shape, such surface corruptions
alter mesh-LBP patterns, which are by principle sensitive to
surface artifacts, and consequently will be reflected on the grid
histograms.

For the intra-comparison side, referring to the different
fusion schemes and the α1 and α2 variants of our approach,
some considerations can be drawn. As emerged also in the
experiments on the BU-3DFE, fusion techniques combined
with the α2 variant seem more robust to expressions than
the corresponding α1 variants, though with a lower gap than
in Table II. This is motivated also by the lower intensity of
expressions in the Bosphorus dataset. The α2 variants also
show very high accuracy, equal or very close to 100%, on
the action unit subsets. The α1 variants, instead, are neatly
more competitive than their α2 counterparts in the case of
rotated scans (as also emerged for the larger rotation angles
in Table IV), with the much marked progress observed for the
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Fig. 12. Samples of the 45-yaw rotated scans failure cases. For each pair, the gallery scan is reported on the left, in the same pose of the probe scan shown
on the right.

TABLE IV

BOSPHORUS: RANK-1 RECOGNITION ACCURACY OBTAINED

FOR DIFFERENT Yaw ROTATION SUBSETS

Yaw subset. This can be mainly due to the intrinsic rotation
invariance, and thus repeatability of the patterns obtained
with α1, which is expected to be much relevant in this case.
Last, for the occlusion subset, comparable performance is
obtained with a slight prevalence of the α2 variants.

Table V reports an algorithmic complexity compari-
son between our method and the best variant of [13]
(HQMQ FGM). We can notice that up to the mesh-LBP
computation (for our method) and the keypoints detection
(for [13]) both methods have a same linear complexity. The
keypoint description and the grid construction have both
constant complexity. The last two stages, however, show some
difference. For the keypoint matching in [13], assuming all
galley subjects have a same number of keypoints K , and
considering the descriptor size as constant, the algorithmic
complexity can be approximated by O(K I G), where I is
the number of iterations in Orthogonal Matching Pursuit
algorithm (OMP) [47], involving a non-linear minimization
used in the keypoint matching, and G is the number of
subjects in the gallery. Considering the typical values of
K = 350 the algorithmic complexity can be estimated as
to O(350I G). Using a simple minimum distance classifier,
the algorithmic complexity of our method at the mesh-LBP
histogram matching is O(G). This indicates that the iterative
nature of the OMP algorithm, and the individual keypoint
matching in the last stage of (HQMQ FGM) variant in [13] is
quite computationally more demanding than its counterpart in
our method. For what concerns the size of the face signature,
in Li’s method it is m×K = 261×350 = 75600, being m the
keypoint descriptor size for the HQMQ variant. In ours, it is
35× 13× 7 = 3185, and 35× 1125× 7 = 275625 for the α1
and α2 variants, respectively. These figures, give advantage to
Li’s method when compared to our α2 variant.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented an original approach for con-
structing a multi-modal LBP-based face representation on a

TABLE V

COMPARISON OF THE ALGORITHM COMPLEXITY OF THE

METHOD HQMQ FGM IN [13] AND OUR METHOD

triangular mesh-model. It is the first approach of its kind
that integrates texture and shape information in LBP-patterns
derived from a mesh support. This marriage between mesh-
model and LBP-based face recognition will open-up new
horizons that go quite beyond the limits imposed by the
depth image constraints. We proposed a face representation
that encompasses a face-centric grid to which is attached, at
each point of it, LBP histograms constructed using geometric
and photometric data. Contrary to its depth-image counter-
part, this representation supports partial facial matching, and
does not require normalization. In addition, it preserves the
full geometry of the facial shape, which might be partially
lost in depth images because of self-occlusion. In addition,
we have showed that our framework can be easily adapted
to different fusion schemes, in particular the early stage
fusion.

Despite having used a basic minimum distance classifier, we
showcased the performance enhancement brought by our novel
3D face representation, and demonstrated that it can compete
to a reasonable extent with the best methods of the state of
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the art. Indeed, The experiments conducted with BU-3DFE
database showcased the boosting of the recognition perfor-
mance brought by our fusion framework, and its superiority
with regard to the most closest approach. Results obtained on
the Bosphorus database report competitive accuracy compared
to the state of the art solutions, with an increment for some
specific subsets.

Regarding the different variants of our method, including
different shape descriptors in the mesh-LBP computation,
the α1 and α2 weighting functions, and the varying fusion
schemes, some summary comments can be drawn. Among the
different surface descriptors we tested, the mean curvature (H )
resulted the most suited to be combined with mesh-LBP across
almost all the experiments. The mean curvature also resulted
the optimal option for fusing with the gray level appearance
of the surface’s facets, using either low-level fusion at the
feature level, or late fusion at the score level. The comparison
between the α1 and α2 variants of mesh-LBP does not come to
a univocal conclusion: the α1 variant is intrinsically invariant
to rotation and more efficient from a computational point of
view; the α2 variant, instead, takes advantage from the large
gamut of possible values, which makes it more discriminative
in most of the cases.

Looking at the performance of our method in the presence
of facial expressions, one valid question might raise on how
the methods achieve elevated scores for facial expression
cases, where the facial surface might undergo significant
changes compared to the neutral expression. We believe that
this robustness lies first on the choice of TM grid, which
discards the lower part of the face that is affected the most by
deformation. Also, we think that the small size we choose for
the grid regions (r = 7) made the representation fine enough
to preserve local variability up to large extent. Discarding non-
uniform-patterns for α2 contributes further to the robustness
to expressions, since these patterns are mostly located in non-
rigid parts of the face.

For what concerns the matching procedure, our method has
been employed in a global way, that is considering all the grid
points in the matching, without assessing the plausibility of
individual pairs of corresponding grid-points. Such procedure
is a fundamental part of the methods in [12]–[14], where
the plausibility of a pair of potential matching keypoints is
evaluated by comparing their related local descriptors. In fact,
the boosting of the performance in Li et al. method [13] as
compared to their first work in [12] is due to the Sparse
Representation based Classifier employed in keypoints match-
ing. However this is without compromising the computation
cost, as we have demonstrated it in the algorithmic complexity
comparison.

As future work, there are several aspects worth to explore.
First, the feature fusion methods we employed used two
descriptors, while the numerous descriptors we can derive
from the mesh, in addition to the texture, are appealing for
investigating a multiple-descriptor fusion. However, we think
that this needs to go beyond the standard concatenation and co-
occurrence schemes, and that a sound theoretical framework
would be necessary for accommodating such a fusion. Second,
we believe that integrating a robust mechanism, rather than the

simple minimum distance classifier, at the level of grid point
matching would considerably boost our method’s performance.
Third, investigating keypoints framework with mesh-LBP as
local descriptors would be novel blending worthwhile to
investigate. Finally, optimizing further the size of our face
signature, while keeping its discrimination power, noticeably
for the α2 variant.

Overall, we think that our contribution will pave the way for
applying the other techniques and methods developed within
the LBP-based face recognition directory.
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Abstract

Recent advances in deep learning have resulted in

human-level performances on popular unconstrained face

datasets including Labeled Faces in the Wild and YouTube

Faces. To further advance research, IJB-A benchmark was

recently introduced with more challenges especially in the

form of extreme head poses. Registration of such faces is

quite demanding and often requires laborious procedures

like facial landmark localization. In this paper, we pro-

pose a Convolutional Neural Networks based data-driven

approach which learns to simultaneously register and rep-

resent faces. We validate the proposed scheme on tem-

plate based unconstrained face identification. Here, a tem-

plate contains multiple media in the form of images and

video frames. Unlike existing methods which synthesize

all template media information at feature level, we propose

to keep the template media intact. Instead, we represent

gallery templates by their trained one-vs-rest discrimina-

tive models and then employ a Bayesian strategy which op-

timally fuses decisions of all medias in a query template. We

demonstrate the efficacy of the proposed scheme on IJB-A,

YouTube Celebrities and COX datasets where our approach

achieves significant relative performance boosts of 3.6%,

21.6% and 12.8% respectively.

1. Introduction

Owing to its wide range of potential applications, face

recognition has been rigorously researched in computer vi-

sion community. Challenges in face recognition are asso-

ciated with commonly occurring nuisances of facial data

which include head pose rotations, illumination variations

and expression deformations. In its initial days, facial

data was systematically captured in controlled environ-

ments and algorithms were developed to individually tackle

each of these nuisances [24]. Such algorithms could achieve

∗Equal contribution

impressive performance in constrained environments but

failed in real-life scenarios. To advance research in uncon-

strained face recognition, Labelled Faces in the Wild (LFW)

[15] and YouTube Faces (YTF) [39] datasets were released

in 2007 and 2011 respectively. At the time of their release,

the existing methods (developed using constrained data)

performed poorly on LFW and YTF. Since then, a large

focus of face recognition research has been on the devel-

opment of algorithms which achieve superior performance

on LFW and YTF. With the recent advances in deep learn-

ing, the current state of the art algorithms [33, 27] can now

achieve human level performance on these datasets. Uncon-

strained face recognition is however still considered largely

unresolved [22]. This is mainly because both LFW and YTF

have a well-know frontal selection bias. Specifically, face

images in both of these datasets were automatically detected

using Viola and Jones [34], which frequently fails for non-

frontal faces. The state of the art on YTF and LFW therefore

performs poorly in the presence of large head rotations and

extreme head poses [22, 6].

In this paper, we aim to address face recognition across

extreme head rotations. Registration of such facial im-

ages is quite a challenging task and often requires sophis-

ticated pre-processing steps such as landmark localization

and frontalization. We propose to automatically learn fa-

cial image registration along with feature encoding as part

of an end-to-end trainable Convolutional Neural Network.

The proposed network (Sec. 3) has two modules: a regis-

tration module to learn a set of transformation parameters,

and a representation module to learn meaningful feature en-

coding of input face images. The network is trained on 2.6

million images of 2622 subjects [27]. The proposed scheme

is then evaluated on IJB-A [22], YouTube Celebrities [20]

and COX [16] datasets for template based face identifica-

tion. The IJB-A benchmark is specifically quite challenging

and contains face images and video frames across extreme

head poses and profile views (see Fig. 4). The proposed

method achieves a significant performance boost on all of

the evaluated datasets (Sec. 5).
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The problem of face recognition is studied under veri-

fication and identification tasks. For verification, we com-

pute a one-one similarity of a given probe face to verify its

claimed identity. For identification, one-to-many similari-

ties of the probe are computed in order to find its best match

within a gallery of enrolled subjects. Face identification

is therefore more challenging compared with face verifica-

tion. Unconstrained face identification has however been

largely neglected over the past few years. This is mainly

because most of the research was driven by LFW and YTF

datasets and their evaluation protocols are defined for verifi-

cation only. In this paper, we address template based uncon-

strained face identification. A template may contain mul-

tiple heterogeneous medias in the form of still images or

video frames. Face identification from templates is relevant

in many commercial systems (e.g. FBI’s most wanted list)

where multiple images of an individual are simultaneously

available. Although a template contains more information,

it simultaneously poses challenges to effectively utilize this

information. Unlike existing methods which merge all tem-

plate media at feature level, we propose to keep it intact. To

leverage from this myriad of information, we train one-vs-

rest discriminative models for gallery templates (Sec. 4.3)

and employ a Bayesian approach which optimally fuses

classification decisions for medias of a given query template

(Sec. 4.4).

2. Related Work

A generic face recognition system has three major com-

ponents: i) registration of raw facial images, ii) feature en-

coding of the registered faces, and finally iii) classification

(verification or identification). In the existing literature,

techniques have been developed to individually deal with

each of these three components. For registration, 2D and

3D face alignment methods have been devised [27, 33, 1].

These methods usually warp automatically detected facial

landmarks onto a model face which has a canonical frontal

view. For facial feature representation, the descriptors can

either be manually designed or automatically learnt from

large scale facial data. Local Binary Patterns [25], His-

togram of Oriented Gradients [7] and Gabor wavelets [42]

are some popular examples of the designed features. Most

of the recent top performing face recognition methods em-

ploy features learnt from a large amount of training data

using a Convolutional Neural Network (CNN). Examples

include DeepFace [33], VGG-Face [27], FaceNet [30] and

DeepID [32]. DeepFace and VGG-Face are based on com-

mon CNN architectures whereas FaceNet and DeepID use

a specialized inception architecture. As a final step in fea-

ture learning, some of these methods employ metric learn-

ing (e.g. triplet loss embedding [29]) to learn optimal task

specific feature embedding (e.g. for face verification using

LFW and YTF datasets [33, 27]). After registration and

feature encoding, the final step is classification. Any off-

the-shelf classifier can be adapted for verification or iden-

tification. Different from previous works, this paper com-

bines registration and representation steps. We propose to

learn these as part of a single network. This avoids pre-

processing procedures such as landmark localization which

are not only computationally expensive but can also intro-

duce many challenges specially in scenarios with extreme

head poses (e.g. in IJB-A dataset).

With advancements in deep learning for image classifi-

cation [23, 18, 13], face recognition performances on YTF

and LFW datasets have reached human level [33, 30, 32, 27]

and began to saturate. To further advance research, IJB-A

dataset was introduced recently as a benchmark for uncon-

strained face recognition. Compared with the existing face

datasets, IJB-A is quite challenging since it contains a wide

range of appearance variations specially in the form of ex-

treme head poses and variable image quality (see examples

in Fig. 4). Since its release, the performances on IJB-A have

gradually improved. The top performing methods on IJB-

A employ learned feature representations from a large scale

external database. For example, CNN features in combina-

tion with triplet loss embedding are used in [4, 29]. Chen et

al. [3] use joint Bayseian metric learning along with CNN

features. Five pose-specific CNN models are trained from

facial data generated by 3D pose rendering in [1]. Features

from a bilinear CNN architecture are used in [4]. The cur-

rent top performing method [6] on IJB-A dataset uses a tem-

plate adaptation strategy in combination with learnt features

[27]. In order to compute a similarity score between two

templates X and Y , it trains two binary classifiers X and

Y . Classifier X is trained using the media in X as posi-

tive class against a large negative media set. Classifier Y
is trained in a similar fashion using the media in Y as the

positive class. The similarity score between X and Y is then

given by: 1

2
X (y) + 1

2
Y(x), where X (y) is the similarity of

template Y ’s media encoding (y) against classifier X .

The IJB-A evaluation protocols are for template based

face recognition, where both probe and gallery instances are

represented with multiple visual items. Prior to the release

of IJB-A dataset, image set classification based face recog-

nition has been actively researched [40, 21, 2, 37, 41, 43, 9,

10, 11, 12]. Similar to a template, an image set is an un-

ordered collection of multiple medias (such as mugshot im-

ages or video frames). While template (or image set) based

classification provides many promises in the forms of multi-

tude of data being readily available, it simultaneously poses

modeling challenges emanating from the heterogeneity of

such data in terms of both quality and content. A number of

methods have been proposed in the literature to effectively

model this information. For example, a template being rep-

resented on a non-linear manifold geometry (e.g. a point on

the Grassmannian manifold [38] or Lie Group of Rieman-
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nian manifold [37]) or by media combination (e.g. average

pooling [8, 26]). In this paper, instead of representing all

template medias by a single entity, we propose to keep it in-

tact. The proposed scheme proves to be quite effective (evi-

denced by its superior performance in Sec. 5) since it avoids

loss of any potential information contained in the template.

3. Joint Registration and Representation

Registration of a face to a canonical frontal view is quite

crucial for the subsequent feature representation and clas-

sification steps. While the recently proposed data driven

methods can automatically learn to represent faces, they

resort to specially engineered techniques for registration.

For example, DeepFace [33] warps a face to a canonical

3D model with the help of detected facial landmarks. In

this paper, we propose to learn face registration jointly with

the representation. For this purpose, we train a Convolu-

tional Neural Network (CNN) which consists of two inter-

connected modules (Fig. 2). First, a registration module

which learns a set of transformation parameters to optimally

register a facial image. Second, a representation module

which learns a distinctive feature encoding of the registered

face image. The two modules are connected with the output

of the registration module being input to the representation

module. These modules are described next.

3.1. Registration Module

Registration of facial images typically involves crop-

ping the most relevant facial region (with minimal back-

ground) and applying morphing operations on the cropped

region to transform it to a canonical frontal view. This

usually requires sophisticated facial pre-processing proce-

dures (such as automatic landmark localization) which can

be quite challenging, specially in the presence of extreme

head poses. In this paper, we propose to adapt a dynamic

learn-able mechanism, which automatically estimates a set

of optimal parameters to spatially transform a given input

face image. Our approach is CNNs based and deploys a

Spatial Transformer Network [17] which has three parts: a

localization network to regress a set of registration param-

eters. These parameters are then used by a grid generator,

which outputs a sampling grid. Finally, a sampler which

maps the input image onto the generated grid. The architec-

ture of the localization network is shows in Fig. 3. Note that

the first pooling layer implements mean pooling while the

rest perform max operation. A pooling filter of 2× 2 pixels

is used in all layers. Each parameter layer is followed by a

rectifier linear unit (ReLU) layer, except the final fully con-

nected (FC) layer which regresses the transformation pa-

rameters.

For a given input image, the localization network outputs

a set of six parameters of affine transformation, which are

used to generate the sampling grid. The pixel values of the

input image are then sampled onto the grid. This results in

affine transformations (cropping, translation, rotation, scal-

ing and skewing) of the input image. The registered face

image then becomes an input to the subsequent representa-

tion module (described next).

3.2. Representation Module

In order to learn facial feature encoding, we employ

VGG-16 [27]. It comprises of 8 convolutional and three

fully connected layers, each of which is followed by one

or more non-linearities (ReLU, pooling). With a relatively

simple architecture, VGG-16 has shown superior perfor-

mance on YTF and LFW benchmarks [27]. The com-

plete network (with both the modules) is then trained us-

ing the publicly available face dataset by Parkhi et al. [27].

The dataset has 2.6 million face images of 2622 subjects.

For training, the detected face regions (provided with the

dataset) are loosely cropped. A cropped image contains

full face region and may also have some background. The

amount of background region is more in case of non-frontal

and profile views. The registration module of the network

is therefore deployed to only focus on the relevant facial re-

gion of interest and ignore any background. The subsequent

representation module then learns a discriminative and dis-

tinctive feature encoding of the input face image. For an ef-

ficient training, we initialize the parameters of the represen-

tation module by VGG-Face model [27]. Parameters of the

registration modules are initialized by seperately training it

to output identity transformation parameters. After learning

the parameters of the network, we consider the output of

first fully connected layer of the representation module as

feature encoding for an input image.

4. Template based Face Identification

A template is a set of images or video frames of the

same subject. Face recognition from templates is relevant in

scenarios where historical records of observations is read-

ily available and should be leveraged to enhance systems

performance. It becomes directly applicable in many real

world commercial systems where multiple enrollments of

a subject are simultaneously available. Examples include

mugshots history of a criminal on the run in forensic search

scenarios, lifetime enrollment images in national databases

(passports, national identity cards and driver licenses) for

access control systems, and multiple images of a person of

interest in watch list scenarios (such as FBI’s most wanted

list). While multitude of heterogeneous data in a tem-

plates can be used to enhance face recognition performance,

it simultaneously introduces many modeling challenges to

make an effective use of this information. To leverage from

this information, we propose to learn a discriminative model

for each enrolled subject in the gallery and then deploy a
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score level fusion strategy for the probe templates. The de-

tails are given next.

4.1. Problem Description

For template based face identification, the gallery con-

tains N templates {T1, T1, T1, . . . TN} corresponding to N
enrolled subjects. Each template Ti = {x1, x2, . . . xM} has

M medias (a media is an image or a video frame). Note

that M is variable for each enrolled subject. At test time,

we are given a query template Tq , and the task is to find

its best match with one of the enrolled gallery templates, or

determine if Tq is not enrolled in the gallery.

4.2. Template Media Representation

Given a template Ti = {xm} : m = 1 · · ·M , we en-

code each media xm by feed forwarding it through our

trained Convolutional Neural Network model (as described

in Sec. 3). The output of the first fully connected layer of the

representation module is considered as the feature encoding

for the template media. Given multiple template media en-

codings, there are different strategies proposed in the liter-

ature to effectively model them. Most of them find a suit-

able single entity representation for all template media. For

example, all images and video frames in the template can

be represented by a point on a geometric surface such as

Grassmannian manifold [36], or Lie Group of Riemannian

manifold [37]. The template media can also be represented

by simply taking the mean of all media encodings [26, 8].

In this paper, instead of finding a single entity repre-

sentation for heterogeneous template data, we propose to

keep the media encodings intact. This helps avoid any loss

of potential information contained in the template. In or-

der to optimally use the multitude of data contained in the

gallery templates, we propose to learn person specific mod-

els for each of the enrolled subjects in the gallery (details in

Sec. 4.3). To optimally use the probe template data at classi-

fication, we employ a fusion strategy (details in Sec. 4.4). In

our experimental evaluations (Sec. 5.2), we show that keep-

ing the template media encodings intact is quite effective

and results in significant performance boost.

4.3. PersonSpecific Discriminative Models

For each of the enrolled subjects in the gallery, we learn

a discriminative model. For this purpose, we train a sim-

ple one-vs-rest binary SVM classifier. Specifically, to learn

the model parameters for a person, we consider feature en-
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codings of all template medias for that person as the posi-

tive class, whereas the encodings of the remaining subjects

are considered as the negative class. A binary SVM is then

trained to learn a hyper-plane which optimally discriminates

the two classes.

min
w

1

2
w

T
w + C

∑

t

(

max
(

0, 1− ℓtw
T
xt

))2

, (1)

where ℓt = {1,−1}. Following this procedure, we learn a

set of model parameters {wi} : i = 1 . . . N for N enrolled

subjects in the gallery.

4.4. Query Template Classification

At classification, we are given a query template Tq =
{xm} : m = 1 · · ·M , where xm is the encoding for

mth media in the template. The task is to find Tq’s best

match with the enrolled gallery templates. Using our learnt

person-specific models {wi} : i = 1 · · ·N , we can com-

pute a decision value dmi for the mth template media to be-

long to ith enrolled subject. This is given by

dmi =
1/

(

1 + exp−w
T

i
xm

)

∑N

i=1
1/

(

1 + exp−w
T

i
xm

) (2)

The above procedure gives us a set of decision values

{dmi } : m ∈ [1,M ], i = [1, N ]. In order to combine these

multiple decisions for all media in the query template, we

explore two schemes. First, a simple mean of decision val-

ues approach, where given {dmi }, the predicted class label

yq of the query template Tq is determined by,

yq = argmax
i

∑

m

dmi . (3)

Second, we employ a Bayesian approach inspired by the

Bayesian Classifier Combination (BCC) model proposed in

[19]. For each of the template media xm, we have a hid-

den true label yi ∈ [1, N ] which matches it with an enrolled

subject. We assume conditional independence between de-

cisions dmi given the actual label yi. Let us assume that yi
is generated by a multinomial distribution whose parame-

ters are denoted by p : p(yi = j|p) = pj , where pj rep-

resents the class probabilities (or proportions). Similarly, it

can be assumed that decisions dmi for each media are gen-

erated by a multinomial distribution whose parameters are

denoted by πm
j : p(dmi = k|yi = j) = πm

j,k. Note that

πm
j represents the rows of the confusion matrix πm corre-

sponding to each media representation. Therefore, the dis-

criminative ability of each media representation is encoded

in the Bayesian model.

The prior distributions for the parameters πm
j and p are

modeled by Dirichlet distributions with hyper-parameters α

and β:

p(πm
j |αm

j ) = Dir(πm
j ;αm

j ) (4)

p(p|β) = Dir(p;β) (5)

Here, αm
j = [αm

j,1 . . . α
m
j,N ] and β = [β1 . . . βN ]. Further,

we also define π = {πm
j : j ∈ [1, N ],m ∈ [1,M ]} and

α = {αm
j : j ∈ [1, N ],m ∈ [1,M ]}. Then, we can define

the joint posterior probability of the unobserved variables

conditioned on the observed class decisions as:

p(y,p,π|d) ∝

N
∏

i=1

{

pyi

M
∏

m=1

πm
yi,d

m

i

}

p(p|β)p(π|α)

(6)

The original BCC model [19] utilizes Gibbs sampling

for inference which is computationally expensive and slow

in convergence. To achieve an efficient approximate infer-

ence, we use the Variational Bayesian (VB) formulation of

Simpson et al. [31] which works similar to the Expecta-

tion Maximization (EM) algorithm. The VB approach an-

alytically approximates posterior distribution p(y,p,π|d)
(defined in Eq. 6) by a simpler and tractable distribution

q(y,p,π) which factorizes over its variables as follows:

q(y,p,π) = q(y)q(p)q(π) (7)

where,

q(yi = j) = Ey[yi = j] = ρi,j/

N
∑

k=1

ρi,k (8)

s.t. ρi,j = exp(Ep[ln pj ] +
M
∑

m=1

Eπ[lnπ
m
j,dm

i

]) (9)

q(p) ∝ Dir(p;β) (10)

q(πm
j ) ∝ Dir(πm

j ;αm
j ) (11)

where the hyper-parameters are updated as follows:

αm
j = α̂m

j +

[

N
∑

i=1

δJdm

i
=kKEy[yi = j]

]N

k=1

β = β̂ +

[

N
∑

i=1

Ey[yi = k]

]N

k=1

(12)

α̂m
j , β̂ denote the previous estimate of hyper-parameters.

Using the current estimates of expectations in Eq. 8, we up-

date the variational distribution in Eq. 7 (E-step). We then

update the expectations in Eq. 8 as follows (M-step):

Ep[ln pj ] =
Γ′(βj)

Γ(βj)
+

Γ′(
∑N

k=1
βk)

Γ(
∑N

k=1
βk)

(13)

Eπ[lnπ
m
j,dm

i

]) =
Γ′(αm

j,dm

i

)

Γ(αm
j,dm

i

)
+

Γ′(
∑N

k=1
αm
j,k)

Γ(
∑N

k=1
αm
j,k)

, (14)
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Figure 4: Sample Images of a person from IJB-A dataset.

Note the extreme head poses and variations in image reso-

lutions.

where Γ(·) is the standard gamma function used in the nor-

malization constant of Dirichlet distributions. The VB al-

gorithm for decision fusion works by iteratively updating

the hidden output variables (actual labels y) and the model

parameters (π,p).

5. Experiments

We extensively evaluate the performance of our pro-

posed method on three datasets: IJB-A [22], YouTube

Celebrities (YTC) [20] and COX [16]. For performance

evaluation and comparison with existing state of the art, we

use Cumulative Match Characteristics (CMC) and Decision

Error Trade off (DET) curves. These metrics are defined in

Sec. 5.2. Below, we first briefly describe the datasets used

in our experiments.

5.1. Datasets

IJB-A dataset: contains 5712 images and 2085 videos of

500 subjects (from diverse geographic locations) captured

in real life scenarios. While majority of other face recog-

nition datasets contain either still images or video frames,

IJB-A dataset contains both. The images and frames in

the dataset exhibit diversity in terms of ethnicity, country

of origin and head poses. The most challenging aspects of

the dataset are the appearance variations caused by extreme

head poses and variable image resolution. A few example

images of a subject are shown in Fig. 4. In the presence of

such extreme head rotations, automatic face detection fails

quite often. The media in the dataset was therefore manu-

ally annotated to generate facial bounding boxes [22]. This

avoids any frontal selection bias as a result of automated

face detection failures in the presence of extreme head poses

(e.g., in YTF and LFW datasets).

The IJB-A dataset is released with well-defined evalu-

ation protocols. For template based face identification, 10
random training and testing splits are provided. Each split

uses data of all 500 subjects with 333 subjects randomly

sampled into the training set and the remaining 167 sub-

jects form the testing set. The testing set contains probe and

gallery templates. In order to make evaluation further chal-

lenging, 55 (randomly sampled) out of 167 subjects are re-

moved from the gallery in the testing set. This corresponds

to scenarios where probe subjects are not enrolled in the

gallery. The probe templates of all 167 subjects are to be

searched against the gallery templates of only 112 subjects.

YouTube celebrities [20] dataset contains 1910 videos of

47 celebrities downloaded from YouTube. Since the videos

are acquired in real life situations, the resolution of the face

images is very low and automatic face detection [34] fails

for many videos. We therefore use tracking [28] to extract

face regions from video frames. The extracted face region

is then re-sized to 30 × 30 pixels. For template based face

identification, we use five fold cross validation experimental

protocol as in [14, 37]. Specifically, the complete dataset is

divided into five equal splits with minimal overlap. Each

split has nine templates (termed as image sets in [37, 14,

2]) per subject, three of which are used to form the gallery

whereas the remaining six are the probe templates.

COX [16] dataset contains 4000 uncontrolled low resolu-

tion video sequences of 1000 subjects. In order to capture

the videos, the subjects are asked to walk naturally inside

a gymnasium without enforcing any constraints on their fa-

cial expression, lighting conditions and head poses. For our

template based face identification experiments, we consider

the frames of each video as a template and follow a leave-

one-out strategy. Specifically, one template per subject is

held-out as probe whereas the remaining form the gallery.

For consistency, four runs of experiments are performed by

swapping the probe and gallery templates.

5.2. Results

Evaluation Metrics: Face identification performance is

commonly evaluated in terms of a Cumulative Match Char-

acteristics (CMC) curve. A CMC curve plots identification

rates corresponding to different ranks. A rank-k identifi-

cation rate is defined as the percentage of probe searches

whose gallery match is returned within the top-k matches.

For scenarios where probes are not necessarily enrolled in

the gallery, face identification performance is evaluated in

terms of a Decision Error Trade-off (DET) curve, which

plots False Negative Identification Rate (FNIR) vs False

Positive Identification (FPIR) rate as a function of a similar-

ity threshold for the top 20 candidates in the gallery. FPIR is

the proportion of non-mate (not enrolled) probe searches re-

turned above a similarity threshold. FNIR is the proportion
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Table 1: Performance Evaluation on IJB-A dataset.

Methods TPIR@FPIR=0.01 TPIR@FPIR=0.1 TPIR@Rank=1 TPIR@Rank=10

Bilinear-CNN [5] 14.2± 2.7 34.1±3.2 58.8± 2.2 −
Face Search [35] 38.3± 6.3 61.3± 3.2 82.0± 2.4 −
Deep Multipose [1] 52.0 75.0 86.4 94.7
Triplet Similarity [3] 55.6± 6.5 75.4± 1.4 88.0± 1.5 97.4± 0.6
Joint Bayesian [29] 57.7± 9.4 79.0± 3.3 90.3± 1.2 97.7± 0.7
VGG-Face [6, 27] 46.1± 7.7 67.0± 3.1 91.3± 1.1 98.1± 0.5
Template Adaptation [6] 77.4± 4.9 88.2± 1.6 92.8± 1.0 98.6± 0.3
This Paper 88.6± 4.1 96.0± 1.0 96.4± 0.8 100.0± 0.0

.

of mate (enrolled) probe searches which are returned either

below a similarity threshold or outside the top 20 ranks. For

DET, we report True Positive Identification Rates (TPIR) at

FPIR of 0.1 and 0.01, where TPIR= 1−FNIR.
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Figure 5: CMC curves on IJB-A dataset (best in colors).

Results on IJB-A Dataset: We compare the face iden-

tification performances on IJB-A benchmark in Table. 1.

The results for the existing methods are reported from [6].

Due to a standard evaluation protocol on IJB-A dataset,

the reported results are directly comparable. Our proposed

method achieves average rank-1 and rank-10 identification

rates of 96.4% and 100.0% respectively. For evaluations

in the presence of non-mate probe searches, our method

achieves average TPIR of 88.6% and 96.0% corresponding

to FPIR of 0.01% and 0.1% respectively. Compared with

the existing state of the art, the proposed method gains a

relative performance boost of 3.9% (rank-1), 1.4% (rank-

10), 8.8% (@FPIR=0.1) and 14.5% (@FPIR=0.01).

Results on YTC and COX Datasets: We further validate

the efficacy of our proposed method on YTC and COX

datasets. These datasets have been used in the literature

for performance evaluation of image set classification meth-

ods. For the purpose of this paper, an image set can be

considered as a template, as it contains multiple images or

video frames. In Figure 6, we compare the performance

of our method with a number of recently introduced image

set classification methods. These include Mutual Subspace

Method (MSM) [40], Discriminant Canonical Correlation

Analysis (DCC) [21], the linear version of the Affine Hull-

based Image Set Distance (AHISD) [2], Sparse Approxi-

mated Nearest Points (SANP) [14], Co-variance Discrim-

inative Learning (CDL) [37], Regularized Nearest Points

(RNP) [41], Set to Set Distance Metric Learning (SSDML)

[43], Non-Linear Reconstruction Models (NLRM) [9] and

Reverse Training (RT) [10]. For the compared methods,

we use standard implementations provided by the respective

authors. In order to encode facial images, we first use the

original features proposed in the respective papers. We also

evaluate the existing methods with our proposed features.

The experimental results summarized in Figure. 6 show that

our proposed method significantly outperforms the current

state of the art by achieving average rank-1 identification

rates of 90.1% and 83.6% on YTC and COX datasets re-

spectively.

5.3. Discussion

We believe two major aspects of the proposed method

contribute to its achieved superior performance. First,

its strong feature representation capability. The proposed

method learns to automatically register raw facial images

while simultaneously finding a distinctive feature represen-

tation. Below, we show the effectiveness of the proposed

features by evaluating them with existing methods. Second,

its capability to synthesize multitude of information in the

template media with proposed decision level fusion scheme.

We further elaborate these aspects next.

Facial Feature Encoding: In order to demonstrate the

effectiveness of our proposed learnt features, we evaluate

them in conjunction with the existing image set classifica-

tion methods in the literature. Specifically, instead of using

the original features proposed in their respective papers, we

use the facial features extracted by our method. By keeping

the rest of the pipeline for the compared image set classi-
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Figure 6: Rank-1 identification rates of different image set classification methods on YTC and COX datasets. Due to high

memory requirements, CDL could not be evaluated on COX dataset with learnt features. Figure best seen in colors.
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Figure 7: CMC curves for different methods on YTC and COX datasets using their original features (a) & (c), and our learnt

features (b) & (d). Figure best seen in colors.

fication methods fixed, our experimental results in Fig. 6

suggest that the performance of all methods significantly

improves in combination with our proposed features. Note

that due to large memory requirements, we were unable

to evaluate CDL using learnt features on the COX dataset

with available computational resources. CMC curves on the

YTC and COX datasets in Figure 7 demonstrate that a con-

sistent performance boost is achieved across all ranks.

Fusion - Feature vs Decision Level: For template (or im-

age set) based face identification, multitude of information

is present in the form of heterogeneous template media. Ef-

fectively utilizing this information is quite crucial to the

overall face identification performance. In the existing lit-

erature, different strategies have been devised to find a suit-

able representation for the template media. These include

a template represented by a point on a manifold geometry

[38, 37], representative exemplars (e.g. derived from affine

or convex hull models [2]) or by simply pooled media en-

codings [26, 8]. The existing methods therefore combine

the information from multiple template medias at feature

(media) level. In this paper, we keep the template media

intact and do not find any single entity representation. In-

stead, we propose to synthesize information from all tem-

plate medias at decision level. Even with the simple mean

of decision values approach, we achieve a rank-1 identifi-

cation rate of 94.2 ± 0.9 on IJB-A dataset. The proposed

scheme to fuse information at decision level, instead of fea-

ture level, therefore avoids any potential loss of information

and yields superior performance.

6. Conclusion

Template based face identification is pertinent in many

real-world applications where multiple images of a persons’

face are concurrently available, such as security and surveil-

lance systems, watch list scenarios and access control sys-

tems. We presented a simple yet effective strategy to handle

multitude of template media information. Unlike existing

methods, which combine this information at initial feature

level, we employed a Bayesian approach to fuse it later at

decision level. For registration of unconstrained face data

with extreme head poses, we presented a data driven ap-

proach to jointly learn registration with representation in a

single Convolution Neural Network. Effectiveness of the

proposed schemes is demonstrated by their significantly su-

perior performance on challenging unconstrained face iden-

tification benchmarks.
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Multiscale Roughness Approach for Assessing
Posterior Capsule Opacification
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Abstract—Posterior capsule opacification (PCO) is a common
complication in patients who have undergone cataract surgery, oc-
curring in up to 50% of patients by two to three years after the
operation. Assessment of PCO has been mainly subjective, mak-
ing it difficult to understand its progression over time or assess the
effectiveness of strategies used for the prevention of PCO. Fully au-
tomated PCO assessment systems developed so far offer objective
grades. However, they do not provide morphological PCO data use-
ful for an effective analysis of scores. This paper proposes a novel
method based on multiscale roughness estimation to detect and
quantify the PCO areas. This method is also characterized by its
robustness against monotonic illumination variations. Extensive
experimentation showcases a distinctive analysis and assessment
power of our method compared to other competitive methods. The
results show a high correlation of 84.6% with respect to clinical
scores

Index Terms—Computer-aided detection, entropy, illumination
variation, multiscale roughness, posterior capsule opacification
(PCO), segmentation.

I. INTRODUCTION

POSTERIOR capsule opacification (PCO) is a common
complication of cataract surgery in patients who have un-

dergone the extra capsular cataract extraction surgery. PCO is
caused by the growth of the lens epithelium cells (LECs) remain-
ing in the posterior capsular area of the eye after the cataract
surgery. These cells develop as different types of PCO, namely,
pearls, fibrosis, and wrinkles as shown in Fig. 1. Severe PCO
causes blurry vision, which may be worse than it was before
cataract surgery. Though PCO can be corrected by Nd:YAG laser
capsulotomy, the treatment apart from being expensive is associ-
ated with increased risk of retinal detachment [1]. Considerable
research has been done to study the influence of surgical tech-
niques, lens material, and design on the growth of PCO. How-
ever, the highly subjective clinical assessment of PCO makes it
difficult to assess the effectiveness of strategies suggested for
the prevention of PCO. Hence, there is a need for development
of a standard PCO quantification system, which ensures an ob-
jective and reliable assessment of PCO with minimal human
intervention.
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Fig. 1. PCO image samples: (a) clear eye capsule, (b) pearls PCO, (c) fibrosis
PCO, and (d) wrinkles PCO.

Digital images captured using retroillumination and
Scheimpflug photography helped computerize the image anal-
ysis. The basic idea is to detect and classify the PCO areas
in the digital image and then quantify PCO from the number
of classified pixels. A number of digital image analysis tech-
niques [2]–[4] have been proposed for the quantification of PCO.
However, these systems provide subjective scores due to human
involvement. PCO images demonstrate complex nondetermin-
istic texture, and in many cases, PCO areas can have similar
intensity and texture compared to the clear areas, depending
on the severity of PCO and inherent uneven illumination condi-
tions of retroillumination photography [5]. These factors further
increase the difficulty of segmentation of PCO images.

An ideal PCO quantification system should be capable of
handling a variety of PCO textures and provide morphologi-
cal details along with the quantification of PCO without human
intervention. The system should also be robust to illumination
variations as the captured PCO images vary widely with respect
to background illumination. In order to address these issues, this
paper proposes a method that computes the multiscale rough-
ness values for every pixel in the image. The roughness image
obtained is then clustered using histogram-based thresholding
technique. Finally, PCO percentage is computed from the num-
ber of pixels present in each cluster. The results obtained using
this method showed high correlation with respect to clinical
grading and other existing methods apart from being robust to
monotonic illumination variations.

The rest of the paper is organized as follows: Section II pro-
vides the background to the existing methods of PCO assess-
ment. Section III provides the details of the proposed method of
PCO assessment. Section IV comprises the experimental results
and comparison with the previous methods of PCO assessment.
The conclusions of our research work are presented in Section V.

II. BACKGROUND

Quantitative assessment of PCO has received the attention
of many researchers from both the medical and computer vi-
sion community. Tetz et al. [2] proposed an interactive system

2168-2194 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



1924 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 18, NO. 6, NOVEMBER 2014

called evaluation of PCO (EPCO) whereby the operator man-
ually traces the boundaries of the textured areas in the image.
Then, the operator assigns a color code with a score between
0 and 4 to each textured area in the image based on the sever-
ity of PCO. A PCO grade is then calculated by summing the
scores weighted by the fractional area of each zone. Though the
scores are highly influenced by operator bias, this system has
been widely used as a standard in clinical comparison studies.
The intensity-based thresholding technique developed by Wang
and Woung [6] is very sensitive to illumination variations. The
intensity-based segmentation techniques like k-means, fuzzy C-
means, and mean shift do not work for the segmentation of PCO
images as the PCO areas tend to exhibit intensity levels similar
to the clear areas. Hence, it becomes necessary to use texture
analysis for the segmentation of PCO images.

Searching for a particular pattern is not possible with the PCO
images, because they possess quite an un-deterministic nature.
Paplinski and Boyce [4] proposed that PCO areas in an image
are rich in texture. They calculated a set of conjugate images
from the original image using directional variance edge filters.
Gray-level co-occurrence matrices (GLCMs) are obtained from
the conjugate images. The thresholds obtained from the main di-
agonal of GLCM are used for the segmentation of PCO images.
However, the distribution of the gray levels in the image data is
very often not truly Gaussian; hence, it is not possible to find an
optimum threshold value automatically and best segmentation
results are observed when the thresholds are set manually [7].
Posterior Capsule Opacity (POCO) software [5] is based on the
same principle with a technique devised to find thresholds au-
tomatically. However, this software does not provide a measure
of severity of PCO; hence, it might result in high scores even
in some mild cases of PCO when a thin LEC membrane covers
most of the capsular area. Moreover the texture-based segmen-
tation methods were only able to detect the borders of pearls and
incapable of detecting the interiors of pearls as severe PCO, be-
cause the interior areas exhibit smooth texture, which is similar
to the neighboring clear areas.

Based on the fact that PCO areas are characterized by ran-
domness, statistical measures were used for the quantification of
PCO. Automated quantification of after cataract (AQUA) sys-
tem [8] and open-access systematic capsule assessment (OSCA)
system [9] have used entropy for texture analysis as this feature
measures the randomness of gray-level distribution. AQUA sys-
tem used entropy calculated from GLCM for texture analysis,
whereas OSCA system used local entropy calculated from the
intensity histogram of the region as a measure of randomness
of gray-level distribution. Additionally, OSCA system takes the
location of PCO areas into consideration when calculating PCO
scores, as the areas of PCO distant from the center of the visual
axis have a reduced effect on vision compared to PCO areas at
the center [10]. However, PCO scores based on entropy calcu-
lation are highly sensitive to illumination variations across the
image. It was proposed by Werghi et al. [11] that roughness can
be used as a texture measure to quantify PCO. They evaluated
the roughness using the concept of regions. Pixels are classified
into clusters based on their chromatic values and each class of
pixels is decomposed into regions. PCO score is computed from

the total number of regions. A limitation with this approach is
that the system might result in low PCO scores in some cases
of severe PCO when the PCO image exhibits a few number
of homogenous PCO regions but with large areas. Also, none
of these methods provide morphological details of PCO. The
morphological details of PCO are important for validating PCO
scores and identification of patients for an effective treatment
of PCO. Grewal et al. [12] introduced a new method for PCO
quantification using Pentacam, a rotating Scheimpflug imaging
system. However, unlike the retroillumination imaging system,
Scheimpflug system is not available at most ophthalmological
departments. Further the scatter light intensity measurements of
Scheimpflug system are influenced by the intraocular lens (IOL)
material as shown by Tanaka et al. [13], which would lead to
inaccuracies in PCO quantification results. Hence, this leaves
scope for further investigation of a method that can model the
complex texture of PCO.

III. PROPOSED METHOD

Our proposed method of PCO assessment consists of three
stages: preprocessing, estimation of multiscale roughness, and
classification.

A. Preprocessing

The images are obtained using the retroillumination photog-
raphy. Since the central area of the capsule is considered to be
visually significant [14], the central 60% of the area is treated
as the region of interest and the remaining area is set with the
average intensity level, after which the images are converted to
gray scale. The images captured using retroillumination photog-
raphy have characteristically uneven background illumination.
Hence, the background illumination is estimated by performing
morphological opening using a disk-shaped structuring element.
The size of the structuring element is chosen such that it does
not contain the details of the image. Finally, the preprocessed
image is obtained by subtracting the illumination estimate from
the original image.

B. Estimation of Point-Wise Multiscale Roughness

The proposed method uses roughness as a texture measure to
quantify PCO. It is based on the idea that a pixel in the interiors
of pearls may demonstrate smoothness in the immediate vicinity
but exhibit roughness when estimated over a larger area. Hence,
the multiscale roughness value for each pixel (x, y) in the im-
age is derived from the roughness values estimated over different
concentric rings surrounding the pixel as shown in Fig. 2, in an
attempt to simulate the human ability to visualize the unifor-
mity of a region at different scales. The bilinearly interpolated
neighboring pixel values are considered in the computation of
roughness values. The rings with larger radius contain larger
number of neighbors to capture a larger area.

This idea of multiscale descriptor has been inspired from the
Holder exponent representation, which is used as a regularity
descriptor to describe the salient features of an image. Holder
exponent is described by Liu and Li [15] using (1). α(x) is called
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Fig. 2. Circular neighborhoods of pixel (x, y) at radius r = 1, 2, and 3. The
neighboring pixel values are bilinearly interpolated.

the Holder exponent on x for a predefined measure μ defined
on a compact set Ω, if

∀x ∈ Ω,∃α(x), such that μ (Br (x)) ∼ rα , for small r (1)

where Br (x) is the ball of radius r centered on x.
They proposed different predefined measures for the com-

putation of Holder exponents through which different purposes
can be accomplished. Chakraborty et al. [16] have proposed a
new predefined measure for the segmentation of high-resolution
satellite images. They have estimated the intensity value for each
radius using linear regression analysis from the logarithmic plot
of neighboring pixel values against radius. The difference be-
tween the estimated intensity value and the actual neighboring
pixel intensity values for each radius is used as the predefined
measure. However, the same method cannot be applied to PCO
images, as linear regression analysis requires a data model that
is linear in the model coefficients that does not hold for PCO im-
ages. Hence, we used the measure of dispersion of neighboring
pixel intensity values on a particular ring from the mean value
as the predefined measure.

For a two-dimensional (2-D) image, let I(x, y) represent the
intensity value of the pixel (x, y) in the image. For each pixel
(x, y), R number of concentric rings of radius r, where r varies
from rmin to rmax , are considered. The predefined measure μrk

is the amount of dispersion of kth interpolated neighboring pixel
value from the mean intensity value on a ring of radius r and is
given by

μrk = |Prk − Mr | (2)

where
Prk is the kth interpolated neighboring pixel intensity value

on a ring of radius r,
Mr is the mean intensity value of the interpolated neighboring

pixels on a ring of radius r, and
μrk is the predefined measure.

Fig. 3. Steps of proposed method: (a) original PCO image, (b) preprocessed
image, (c) complement of roughness image, (d) segmented image using Otsu
method, and (e) final segmented image after filling holes. (d) and (e) Blue, green,
cyan, and white colors, respectively, indicate severe, moderate, mild, and clear
areas of PCO. Colors are best seen in the softcopy version.

Fig. 4. PCO percentage values obtained using Otsu and k-means segmentation
methods shown with line of equality.

The multiscale roughness value α of a pixel (x, y) in the image
is defined as

α =
1
N

rm a x∑

r=rm in

nr∑

k=1

log μrk

log r
(3)

where
nr is the number of interpolated neighboring pixels on a ring

of radius r and
N is the total number of interpolated neighboring pixels.
The choice of radius r used in the calculation of α is very

important. α calculated over large r captures the roughness of
large areas, but the details are neglected. When roughness values
are evaluated using small r, the interiors of the huge pearls could
not be detected as severe PCO.

The roughness image S is obtained from the point-wise
roughness values by normalizing the values to the range 0–255
using (4)

S (x, y) =
α (x, y) − αmin

αmax − αmin
× 255 (4)

where αmin and αmax are the minimum and maximum multi-
scale roughness values, respectively.

C. Classification

Once the original image has been transformed into roughness
image, the histogram-based thresholding method proposed by
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Fig. 5. Roughness images computed using proposed method with different multiscale radius values. (a) PCO gray-scale image with region of interest selected
(b) r = 1–3, (c) r = 1–5, (d) r = 1–7, (e) r = 1–9, (f) r = 1–11, and (g) r = 1–13. For better visualization, the complement of roughness image is shown.

TABLE I
ASSESSING AGREEMENT BETWEEN EPCO METHOD AND PROPOSED METHOD FOR DIFFERENT MULTISCALE RADIUS VALUES USING BLAND–ALTMAN ANALYSIS

Otsu [17] is used to segment the roughness image into four
clusters of different PCO severity as clear (grade 0), mild (grade
1), moderate (grade 2), and severe (grade 3). The advantage of
this method is that optimal thresholds are found automatically
from the histogram by minimizing the intraclass variance of the
different classes. However, it is possible that the interiors of
some pearls may still not be classified as severe PCO because of
smooth texture, which is quite similar to clear areas. But since
the borders of the pearls tend to be rough, it is highly probable
that the pearl border pixels are classified as severe PCO. The
binary image corresponding to severe PCO pixels is obtained
and morphological opening is applied on this binary image along
with a set of logical operations to fill the small holes in the image
that correspond to the pearl interior areas. The clusters are then
updated accordingly.

PCO score is calculated from the number of pixels falling in
each cluster of the region of interest, multiplied by the severity
grade of that cluster

PCO Score =
∑3

i=0 pi ∗ i
∑3

i=0 pi

(5)

where pi is the pixel count with a grade i.
Since grade 3 is the highest grade, the PCO percentage is

obtained by multiplying the PCO score obtained in (5) with
100/3.

The intermediate results obtained at different steps of the
proposed method are shown in Fig. 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A series of experiments were conducted using 43 real PCO
images. The images are obtained using digital retroillumination
imaging system. The patient is asked to place chin on a chin
rest and look at the illumination light. The technician centers
the recording optics on the posterior capsule under direct vision
and acquires the image. The image is inspected and stored in
jpeg format. The images we used in our experiments are the raw

images initially saved by the technician without undergoing any
quality enhancement processing.

To evaluate the results from the proposed method, they are
compared with the following methods.

1) Clinical grading—This is a subjective and discrete grad-
ing performed by clinicians with grades given as 1, 2, 3,
or 4, depending on the severity of PCO. The clinician staff
involved in the evaluation comprises of three practicing
consultants having more than 8 years of postqualifica-
tion experience and two senior consultants having more
than 25 years of experience. The scores related to the
43 PCO images were obtained as follows. The grading
was performed first by the three consultants in a double-
blind manner, meaning the grader neither knows the grades
given by other colleagues, nor the grades obtained in our
approach. The grading was performed in identical time
and space circumstances. Images that received grades with
disparities greater than 1 are examined by the two senior
consultants.

2) EPCO Software—This is a free software that is available
for download at [18] and has been used as a standard
in many PCO clinical comparison studies. This software
allows classification of PCO image into five areas of dif-
ferent PCO severity and the evaluated PCO scores are in
the range 0–4.

3) Global entropy method—AQUA software [8], which is
based on this method is also used in many clinical PCO
studies. The global entropy value of each preprocessed
image is computed from the GLCM of the preprocessed
image using (6) as defined in [19]

Hg = −
∑

i

∑

j

p (i, j) log (p (i, j)) (6)

where p (i, j) is the (i, j)th entry in a normalized GLCM.
4) Local entropy filtering method—The local entropy filter

as defined in [20] is applied on the preprocessed image
to evaluate irregularity around each pixel. The local en-
tropy of the 2 m+1 by 2n+1 neighborhood is computed
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Fig. 6. Comparison of segmented results of proposed method, segmentation by conjugate images method and local entropy filtering method with EPCO ground
truth. (b) Transparent, cyan, turquoise, light blue, and dark blue, respectively, indicate [0–4] regions of PCO severity. (c), (e), and (g) White, cyan, green, and blue,
respectively, indicate clear, mild, moderate, and severe PCO areas. Colors are best seen in the softcopy version.

TABLE II
PEARSON CORRELATION COEFFICIENTS TO MEASURE THE CORRELATION BETWEEN THE DIFFERENT PCO ASSESSMENT METHODS
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Fig. 7. Bland Altman plots to assess the agreement between (a) EPCO and proposed method and (b) global entropy and proposed method.

using (7)

H (i, j) = −
i+m∑

u=i−m

j+n∑

v=j−n

p (I (u, v)) log(p (I (u, v))

(7)
where I(u, v) is the intensity of the pixel (u, v) in the
image. p(I) is the probability mass function of the image
intensity within the local window. The chosen window
size is 9 × 9.

5) Number of regions method—PCO score is derived from
the number of regions computed in the image as proposed
in [11].

6) Segmentation by conjugate images—This texture-based
segmentation method, which is proposed by Paplinski
and Boyce [4], uses the GLCM derived from conjugate
images. However, this method does not yield automatic
thresholds and requires manual setting of thresholds.
Hence, it is only used for the sake of visual comparison
of segmented results where optimum thresholds are
chosen manually. Moreover, it is observed that the best
results are obtained when the images are subjected to the
preprocessing stage in Section III-A where background
illumination is eliminated.

The following aspects have been checked using the experi-
ments:

A. Choice of Segmentation Method

The roughness image obtained in Section III-B is segmented
into four clusters using both k-means and Otsu methods and
PCO percentage values of the 43 images obtained are compared.
The results showed a high correlation of 97.86% as shown in
Fig. 4; hence, any of these methods can be used for the sake
of segmentation. In the following sections, we have used Otsu
method for the segmentation purpose. The mean shift method is
not tested because of the complexity of calculation and also it of-
fers surplus regions. Also the results of mean shift segmentation
depend on the size of the window.

Fig. 8. Artificial illumination pattern.

B. Optimum Value of R (Number of Concentric Rings)
to Compute Roughness Image

We have tested the proposed method for different R with
rmin = 1 and rmax = 3, 5, 7, 9, 11, and 13. The roughness images
for different values of R are demonstrated in Fig. 5. It can be
observed that as the number of scales increases, the vicinity
of irregularity becomes wider; however, less scales result in a
noisy image.

The measure of agreement between the computed PCO per-
centage values for different R and EPCO method is studied us-
ing Bland–Altman analysis by plotting the difference between
the scores from the two methods against the mean value of the
PCO scores. The biases, upper and lower limits of agreement
are shown in Table I. Based upon these results, rmax = 9 is cho-
sen as the optimum maximum radius to compute the roughness
image.

C. Visual Correlation of Segmented Results With Respect
to Original Image and Other Existing Methods

Segmented results obtained using EPCO, proposed method,
Segmentation by conjugate images method and Local entropy
filtering method are shown in Fig. 6. Since severe PCO ar-
eas have got significant weightage in the PCO percentage, the
contour of the detected severe PCO areas using the different
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Fig. 9. Robustness of the proposed method and global entropy method against illumination changes, (a) proposed method without the elimination of background
illumination step, (b) proposed method with the elimination of background illumination step, (c) global entropy method without the elimination of background
illumination step, and (d) global entropy method with the elimination of background illumination step.

methods is also shown in Fig. 6. The first image in Fig. 6(a)
shows a clear eye without PCO, and thereby the segmented im-
age using the proposed method shows the maximum portion
of the capsule in white indicating clear eye except for reflec-
tion artifacts, which gives a PCO percentage of about 4.7%. It
should be noted here that the main aim of this research work is
to find a method, which could effectively detect the PCO and
clear areas. The problem of reflection artifacts is not dealt here;
though, it could be addressed by capturing multiple images of
posterior capsule in different directions of gaze as discussed by
Findl et al. in [21]. From the results, it is clear that the proposed
method not only identifies the large pearls as severe PCO but
effectively classifies the PCO areas into different severity based
upon the roughness. Local entropy filtering method results in
oversegmentation and hence provides high PCO scores even for
mild cases of PCO as shown in Fig. 6(g). Segmentation by con-
jugate images method requires the optimum thresholds to be
selected manually.

D. Agreement of Proposed Method With the Clinician’s
Assessment and Other Methods

In order to assess the validity of PCO percentage values es-
timated by the proposed method, the results are compared with
clinicians’ grading and other existing methods. PCO scores
from all the methods except Segmentation by Conjugate im-

ages method are compared using Pearson correlation analysis.
This is the standard tool used for the evaluation of correlation
between different assessment methods. The Pearson coefficient
ranges from −1.0 to +1.0, where +1.0 indicates a strong pos-
itive relation, −1.0 indicates a strong negative relation, and 0
indicates no relation. To assess the statistical significance of the
correlation, the p-values are also computed along with Pearson
coefficient. If the p-value is low (<0.05), then the correlation
is statistically significant and the calculated Pearson coefficient
can be used for analysis. The Pearson correlation coefficients of
all the methods and their corresponding p values are presented
in Table II. EPCO and Global entropy methods are widely used
in PCO assessment and prevention research studies [22]–[24].
In order to assess the agreement between the proposed method
and these methods, we have used Bland–Altman analysis, where
the differences between the PCO scores from two methods are
plotted against the averages of the PCO scores. From the biases,
upper, and lower limits of agreement indicated in Fig. 7, it can
be seen that the proposed method shows good agreement with
these methods. Since clinical grading range is crisp and discrete,
Bland–Altman analysis between clinical grading and proposed
method is not shown.

The results presented in Table II demonstrate that the pro-
posed method shows better correlation with clinical grading
compared to global entropy, number of regions, and local en-
tropy filtering methods. Though EPCO method exhibited a



1930 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 18, NO. 6, NOVEMBER 2014

little higher correlation with clinical grading compared to the
proposed method, it is to be noted that the proposed method is a
fully automated technique. EPCO system is manually operated,
which is time-consuming and provides biased results depend-
ing on the operator experience and illumination conditions under
which the images are acquired. Though global entropy method
provides an objective and quantitative score, it does not provide
the morphological details. Hence, the proposed method is bet-
ter than the existing methods of PCO quantification and could
become a standardized grading system for communication be-
tween clinicians.

E. Robustness of Proposed Method Against Changes
in Illumination

When estimating the roughness around a pixel the measure
of dispersion at a particular ring is calculated with respect to the
mean value of the neighboring pixels. So for any monotonous
changes in illumination of the image, the value remains stable.
To understand the robustness of the method to illumination, the
images are brightened by adding an offset to pixel intensity
values and the resultant sum is fixed to be within the range
0–255. The offsets that are tested are 30, 60, and −30. These
result in application of monotonic illumination across the image.
In order to check the robustness of the proposed method with
respect to variable illumination, we have created an artificial
illumination pattern as shown in Fig. 8. The original images are
multiplied with this artificial illumination pattern to result in
variable illumination across the image, apart from the uneven
background illumination inherent of the image.

A comparison of PCO percentages of the original images
and the illuminated images is shown in Fig. 9(a) and (b). The
results are demonstrated with and without the elimination of
background illumination step mentioned in Section III-A. For
comparison, the illumination invariance of the global entropy
method is also tested against different illumination changes and
presented in Fig. 9(c) and (d). From Fig. 9(a), it can be observed
that the proposed method is stable against monotonic illumi-
nation variations but less stable in case of uneven illumination
changes across the image. Fig. 9(c) demonstrates the stability of
global entropy method with monotonic illumination variations
but highly sensitive nature of this method with variable illu-
mination across the image. Fig. 9(b) and (d) demonstrates that
including the elimination of background illumination step in
the preprocessing stage results in more stable PCO percentage
values.

V. CONCLUSION

We proposed a novel method for PCO assessment introducing
the multiscale roughness concept. The PCO scores from the
proposed method compared well with that of clinicians’ grading
and other widely used methods like EPCO and global entropy.
The correlation between the proposed method and clinicians’
grading is 84.6%, which is high, considering the fact that the
clinicians employ a highly subjective grading range. In addition,
this method has addressed some key issues of PCO assessment
such as complete automatic detection and quantification of PCO

areas, ability to identify mild cases of PCO, and robustness
against illumination variations across the image.

The proposed software can be easily installed on any personal
computer running MATLAB. The system just requires digital
photographs obtained from the retroillumination imaging sys-
tem, which is widely available in the majority of ophthalmo-
logical departments. As the grading process is completely auto-
mated, this method could be adopted as a standardized grading
system for communication between clinicians. The objectivity,
reproducibility and reliability of the grading of PCO by this
method will help in effective referral of patients from periph-
eral and remote centers to PCO expertise centers for treatment.
Availability of morphological data along with the PCO percent-
age will ensure proper identification of patients who need an
effective treatment for PCO. The proposed method is imple-
mented in MATLAB on Windows 7 machine with Intel Xeon
E5-1607 processor. The average time required for the compu-
tation of PCO score of an image is 2.9 s, which permits the
clinician to conduct the PCO assessment in an acceptable inter-
active time. Efficiency can be further improved with a full C++
language implementation and can eventually be significantly
enhanced with a hardware implementation.

Since the proposed method is roughness based, it could not
effectively detect some regions in extreme PCO pearl cases
exhibiting very large pearl uniform areas. Another limitation
with this approach is that this method cannot handle images that
are severely corrupted by light artifacts. However, such images
can be rejected during the image acquisition. We plan to extend
the research to address these limitations as well as the detection
of type of PCO and computation of severity of PCO based on
its presence from the visual axis.
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ABSTRACT

Colorectal cancer is one of the major causes of cancer
deaths worldwide. To achieve early cancer screening, de-
tecting the presence of polyps in the colon tract is the pre-
ferred technique. In this paper, a deep learning approach for
identifying polyps in colonoscopy images is proposed. The
novelty of our technique stems from the fact that it fully em-
ploys a pre-trained Convolutional Neural Network (CNN) ar-
chitecture as a feature extractor. Contrary to the conventional
methods which either perform fine-tuning or train the CNN
from scratch, we utilize the CNN output features as an input
to train the Support Vector Machine (SVM) Classifier. The
efficiency of the presented framework is demonstrated on the
public CVC ColonDB, in which the experimental results in-
dicate that our methodology significantly outperforms other
competitive paradigms.

Index Terms— Automatic polyp detection, Deep learn-
ing, CNN, feature extractor.

1. INTRODUCTION

According to the Centers for Disease Control and Prevention
(CDC) in the United States, colorectal cancer (CRC) is the
third most common cancer in the world [1]. Colorectal can-
cer starts with small protrusions growing inside the colorec-
tal which could eventually lead to CRC [1]. These protru-
sions are known as polyps. Fig. 1 shows examples of polyps
with different shapes and appearances. It is the ability to de-
tect polyps and remove them in early stages that saves more
lives and results in better prevention of CRC [2]. The most
common method for this process is by visual inspection us-
ing endoscopic videos. However, clinical examination is not
sufficient enough as a final judgment since there are many
sources of error and false diagnosis. These sources of er-
rors could be correlated with the medical level of expertise
and the nature and appearance of the polyp itself. Indeed,
the variety of shapes and sizes in which the polyps appear,
and the limited field of view inside the colon, makes it diffi-
cult to the clinical examiner to keep continuous and consis-
tent evaluations on detecting the polyps and support diagno-
sis. Thus, its turned out essential to develop an automated

Fig. 1: Polyp samples from CVC-ColonDB database

system to support the physician to detect and classify polyps.
Several computer aided diagnosis (CAD) systems have de-
veloped to that end. Here we report the main works and we
refer the reader to [3] for a more exhaustive survey. Some
authors proposed to use texture features [4, 5], shape features
[6, 7] or feature fusion [8, 9] coupled with standard classi-
fiers. However, these methods still suffer from a high false
positive rate. In addition, defining optimal descriptors proper
for polyp presentation seemed to be quite complex and depen-
dent on the correct tuning of multiple parameters. To bypass
this problem, there has been a recent trend to use deep learn-
ing approaches to benefit from its powerful feature learning
capacity [10]. The authors of [11] have used and trained the
Convolutional Neural Network (CNN) from scratch to outper-
form the existing methods. However, this approach requires a
huge database for the CNN to learn features from the images.
In a subsequent work the same authors in [12] implemented
a fine tune CNN approach demonstrating a competitive per-
formance when compared to training a CNN from scratch.
The latter work represents a neat advance in terms of efficient
CNN usage. Indeed, training the CNN from scratch while
it creates abstract features more related to the database, is
time and computation demanding, and requires a huge labeled
database which might be impractical in real applications and
very costly. Fine tuning, while reducing the size of the data
needed, still requires substantial data training to get the pa-
rameters accurately tuned to a specific database.

In this work, we focus more on the CNN deployment
efficiency aspect, and propose a method that capitalizes on
the capacity of well-established convolution neural network
architecture for producing generic features, which can be
tailored for a specific classification application. The key
contributions in this work are (1) Efficient employment
of CNN architecture without the need for training from
scratch; (2) Accommodating partial polyp appearances in
the colonoscopy images; (3) Finding middle-layer features of



the computational architecture that can be more effective than
the end-layer features, as would be expected; (4) Evaluating
and showing the superiority of our approach when compared
with competitive methods.

The remainder of the paper will be organized as follows:
Section 2 introduces the proposed approach and its rational.
Section 3 describes the different experiments and the related
results. Section 4 concludes the paper.

2. THE PROPOSED METHOD

In image analysis, designing the appropriate features for
a given interpretation task has been a central problem in
computer vision and medical image understanding. Explicit
feature design extraction for medical images require subject-
matter expertise. In this process, the visual information on
which the physician relies in his assessment is not neces-
sarily reflected into a suitable computational representation.
Moreover, the practical considerations in the extraction and
the usage of these features make the reproducibility of such
related methods often problematic [13]. To overcome these
challenges, we propose a deep learning approach, whereby
Convolution Neural Network (CNN) is employed to replace
hand-crafted and customized features that are often strongly
sensitive to multiple parameters.

It is known that through a hierarchical unsupervised or
semi-supervised feature design, CNN’s can produce effec-
tive representation of the visual data [10]. Basically, a CNN
architecture is composed of a sequence of cascading layers
performing basic operations such as convolution, subsam-
pling, followed by another sequence of fully connected lay-
ers, which act similarly as a classic artificial neural network.

In another hand, training a CNN network from scratch
requires a large dataset. Such a process is quite tedious, in
addition large datasets cannot be afforded easily in medical
applications, including dataset of polyp detection. Apart of
the computational resources requirements, there is no system-
atic guidelines as for the optimal choice of the architecture in
terms of depth (number of layers) and structure.

An economic alternative is to use pre-trained CNN archi-
tectures, that are proven to have good performance through
training and validation over a huge database, and then tune,
via training conducted on a specific application dataset, the
pre-trained weights of the architecture. This procedure,
known as fine-tuning, which can be performed either across
the whole CNN or at specific layers.

IIn our approach, we advocate the hypothesis that a
trained CNN architecture embeds sufficiently rich feature
representations that can be utilized as an input to train a stan-
dard classifier, such as the Support Vector Machine(SVM),
relieving thus the system from laborious training from scratch
or fine tuning. Therefore a pre-trained CNN is then deployed
as a feature extractor for our specific image interpretation
task of polyp detection, as depicted in the block diagram in

Fig.2. There are several pre-trained CNN architectures that
can be investigated, such as GoogleNet [14] and VGGNet
[15]. In our method, we explored AlexNet [16]. This CNN
architecture was trained with 1.2 million images for 1000 dif-
ferent classes, thus the learned features are expected to span
a large spectrum of visual information. The main layers of
the AlexNet architecture is briefly described in Table 1. As

Fig. 2: Block diagram for the CNN as a feature extractor

Table 1: Summary of AlexNet architecture

Layer Type Input Kernel Stride Pad Output
Data Input image 227x227x3 N/A N/A N/A 227x227x3
conv1 Conv 227x227x3 11x11 4 0 96x55x55
pool1 Max pooling 55x55x96 3x3 2 0 96x27x27
conv2 Conv 27x27x96 5x5 1 2 256x27x27
pool2 Max pooling 27x27x256 3x3 2 0 256x13x13
conv3 Conv 13x13x256 3x3 1 1 384x13x13
conv4 Conv 13x13x384 3x3 1 1 384x13x13
conv5 Conv 13x13x384 3x3 1 1 256x13x13
pool5 Max pooling 13x13x256 3x3 2 0 256x6x6
FC6 fully connected 6x6x256 6x6 1 0 4096x1
FC7 fully connected 1x4096 1x1 1 0 4096x1
FC8 fully connected 1x4096 1x1 1 0 1000x1

aforementioned, features from first layers are too generic to
be employed as discriminative descriptors, so we investigated
features from the middle layers and onward, namely, Conv4
till FC8. The output from one of these layers will be a sort
of feature encoding for a full (or partial) colonoscopy image.
These features will be then fed into the subsequent classifier
block, SVM, as depicted in Fig. 2. An SVM converges to a
global and unique solution, and has the capacity to deal with
a high-dimension input without compromising the compu-
tational complexity, and thus can map the huge number of
feature vectors xi, i = 1...N , generated by the CNN. When
training an SVM, each feature vector is given a label either
polyp or non-polyp (abnormal, normal) to create the feature-
class pair {x, y}. Therefore, given L features {xi, yi} such
that i = 1...L, and yi ∈ {1,−1}, x ∈ <D, where D is the
vector size. A hyper-plane separating the two classes could
be written as

wTx+ b = 0 (1)

the w is known as a weight vector which is normal to the
separation hyper-plane, and b is a bias. In order to separate
the two classes with a hyper-plane, equation (2) should be
optimized

min(
1

2
wTw + C

L∑
i=1

ξi) (2)

subject to the constrain yi((wTxi) + b) >= 1 − ξi, where
ξi >= 0 for i = 1, ..., L, and C is the penalty parameter.
This will lead to the optimal hyper-plane that minimizes the



distance between itself and all the training examples. The op-
timal hyper-plane, allows a classification to be done according
to a decision function such as:

f(x) = sgn(wTx+ b) (3)

3. EXPERIMENTATION

To evaluate the performance of our method, CVC-ColonDB
[17] was used for training and testing. This database con-
sists of 15 short colonoscopy videos for different 15 cases.
It includes different polyp sizes, appearances and colors. We
conducted a series of extensive experiments on the specified
database that aimed to assess the performance of the CNN
as a feature extractor and its effectiveness in the detection
scenarios. In these experiments we studied the effects of 1)
Selecting features from different layers of the CNN, 2) The
image patch size, and 3) The polyp appearance in each patch,
that is the minimum portion of polyp area visible in a patch to
be considered as genuine case (true positive).

In the first experiment, the main focus is on the quality of
extracted features from the CNN. The features were employed
from different layers from the pre-trained CNN. AlexNet was
trained using the ImageNet database which consists of non-
medical images, therefore there is a need to know the best
layer that will provide the best features discriminating polyp
from non-polyp cases. As we mentioned earlier, we consid-
ered only deep layers, starting from Conv4. In this transfer
learning scheme, the layers up to the output features layers
are frozen and the output features are used to train the SVM
classifier. For example, considering Conv5, as the feature
output layer, we keep the weights across the layers conv1
to conv5 at their pre-trained values, while training the SVM
classifier. While this scheme reduces the number of trained
entities, the number of features remain large, as an example,
the dimension of the obtained feature vector from the fourth
convolution layer (C4) is 13x13x384 which is equal to 64896
features. In this experiment, the patch size was fixed to 16
patches/image, each patch is 100x100, making a total of 4800
patches, and we considered any polyp appearance to be a pos-
itive case meaning no threshold as for the minimum size of
its partial appearance. For training protocol, we adopted the
70%, 30% for training and testing, respectively. Fig.4.a de-
picts the obtained ROC curves related to the different output
layers. For instance, C5 refers to the features coming out from
the layer Conv5. Table 2 reports the best recall and precision
performance obtained for each layer. It is interesting to notice
that the top performance is obtained with features coming out
from a middle layer (conv5), which are less descriptive than
their deeper layered counterparts (e.g. FC8 - see Table 1).

In the second experiment, the effect of patch size on the
performance of the CNN as a feature extractor is investigated.
The patches are constructed by utilizing a sliding window
vertically and horizontally without any overlapping, dividing

thus the image into patches. The choice of optimal patch size
is a bit problematic. While reducing the patch size increases
the volume of samples used for training and testing, which is
good for the over-fitting problem, it increases also the num-
ber of small partial polyps, and thus jeopardizing the ability
to extract good features. On the other hand, the big patch size
reduces the probability of partial polyps in each patch but, at
the same time it reduces the size of the training samples. To
address this issue, we investigated the optimal size empiri-
cally by experimenting three patch sizes 200x200, 100x100,
and 50x50. Fig. 3. (a) depicts the three patch sizes on the
polyp images, respectively. Fig. 4.b shows the ROC curves
related to each patch size whereas the best recall and precision
values for experiment 2 are reported in Table 2.

(a)

(b)

Fig. 3: (a) samples of different patch size, (b) masks corre-
sponding to patch samples with small polyp portion.

In the third experiment, we studied the effect of the thresh-
old on the polyp area portion for considering a patch as con-
taining a polyp (positive sample) or not (negative sample).
The motivation behind this experiment is that in practical situ-
ations, these small polyp parts are not noticeable by the physi-
cians and thus should be considered rather than as a nega-
tive sample. The mask samples already reported in Fig. 3.
(b) illustrate examples of odd small polyp portion in a patch.
In this experiment, the patch size was fixed to 100x100 and
the features were taken after the fifth convolution layer (C5).
ROC curves obtained with different thresholds are depicted in
Fig 4.c. We notice that the best ROC curve corresponds to a
7% threshold. This is also reflected in the recall and precision
scores in Table 2.

Normally, one should test all the combinations of the
three parameters (CNN layer, patch size and polyp portion
threshold) to come out with a combination that achieves the
best performance. However, performing such exhaustive pro-
cedure needs to conduct 5 × 3 × 4 = 60 different training.
As a less demanding alternative, though sub-optimal, we
considered the best parameter in each of the previous three
experiments (Conv5 layer, 50 × 50, 7%), then re-evaluated
the performance of the system. We compared our method
with six state of the art methods that used the same database
[17, 18, 19, 20, 21, 22]. In [17] the authors proposed an
algorithm based on the polyp distinct shape and used a seg-
mentation algorithm, to minimize the number of most likely
polyp. Then, they utilized Sector Accumulation-Depth of
Valleys Accumulation (SA-DOVA) as a descriptor for the



detection process. In their subsequent work [20], they have
improved their methodolgy by focusing more on the pre-
processing stage where they tackled the effect of specular
lights and blood vessels. Furthermore, authors of [21] pro-
posed a system to handle the imbalance size between the
polyp and non-polyp samples. They have employed least-
squares analysis to learn different types of features. In [18],
the authors used Haar features, one layer of classification,
and a voting method to detect polyps. Then, in [19] they
implemented a two stage edge classification scheme to obtain
a refined edge map and the direction of the normal for the
polyp-like edges. Afterwards, a new voting scheme is applied
to the refined edge map to localize polyps by detecting curvy
boundaries. In a recent work, the authors in [22] augmented
their previous shape-based approach with context-clues infor-
mation derived around the polyp boundaries. Table 3 reports
the performances of the seven methods. We found that our
approach outperforms all the existing paradigms in terms of
recall with a score of 96%, concurrently, illustrating a very
close score in term of precision compared with the best value,
where the difference is only 0.3%.
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Fig. 4: ROC curves related to experiments 1(a), 2(b) and 3(c).

Table 2: The recall and precision values for each experiment

Experiment 1
Recall Precision

CNN feature

Conv4 74% 90.8%
Conv5 89.6% 86.3%

FC6 98.9% 76.5%
FC7 99.1% 76.1%
FC8 97.2% 77.9%

Experiment 2

patch size
200×200 79.8% 72.3%
100 × 100 65.3% 91.4%
50 × 50 99.4% 85.2%
Experiment 3

Threshold percent

5% 56.2% 95.4%
7% 96.3% 84.3%
9% 91.1% 87.4%
10% 90.4% 86.8%

Table 3: Recall and precision scores in percent by setting the
parameters according to the best results in each experiment
compared to other paradigms.

Method [17] [18] [21] [20] [19] [22] Ours

Recall 47.15 60 70.6 67.6 80 88 96
Precision 71.6 88 70.7 - 93 - 92.7

4. CONCLUSION

In this work, we have introduced a deep learning solution for
detecting polyps from colonoscopy. The novel deployment of
the AlexNet, a pre-trained architecture used as a feature ex-
tractor, along with a classical SVM classifier was proposed.
By adopting this approach, the system circumvents the high
computational complexity and high resource demand of CNN
required in training from scratch and fine-tuning. The series
of experiments conducted with the CVC colonDB database,
confirmed the rationale behind our hypothesis, which implies
that the features derived from a CNN architecture (pre-trained
by means of colossal datasets), embed sufficient discrimina-
tory information that could be tailored to our specific CVC-
ColonDB dataset. The comparison with state of the art meth-
ods clearly confirmed the boost of performance brought by
our method. For future work, we plan to deploy our method
on other polyp datasets including ASU-Mayo clinic database,
as well as other standard trained CNN architectures such as
VGGNet.
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T
his paper addresses the visual tracking
of polyps to finely capture the texture
and shape characteristics along a video en-

doscopy. Manual inspection of long videos en-
doscopy suffers from an estimated 9-28% miss
rate, hence the introduction of automatic polyp
detection and visual tracking of such abnormal
protrusions would open large prospects. The
aim of this work is to develop an appropriate
tool based on recent advances in deterministic
visual tracking techniques, so as to assist the di-
agnostic of colorectal cancer. To this end, our
method combines intensity and chromatic sig-
nals in the same framework - a novel similarity
function which embeds multiple signals - so as
to handle both the size, shape, color and illu-
mination variabilities. Furthermore, special at-
tention have been dedicated to two aspects in
this work, 1) the delimitation of the region-of-
interest when one has to deal with missing or
irrelevant image data, and 2) the real-time issue
for practical achievement.

1 Introduction
According to the World Health Organization, colorectal
cancer (CRC) is the second most common cancer both
for men and women in France, causing an estimated
11.4% of all cancer-related deaths every year for men,
and 13,7% for women [2]. A crucial element in the
prevention of CRC is the early detection and removal of
abnormal protrusions, called polyps (see Fig. 1), in the
colorectal tracts by means of regular endoscopy proce-

Figure 1: Examples of polyps with different shapes, sizes
and colors (ASU-Mayo Clinic database [1]).

dures. Endoscopies, however, involve manual inspection
of long videos by a specialist, a tedious process that
suffers from an estimated 9-28% miss rate [3].

The introduction of automatic polyp detection algo-
rithms, based on image analysis and machine learning
techniques, can assist specialists in inspecting endoscopy
videos, and thus can reduce the probability of missed
polyps. Looking at the polyp samples in Fig. 1, we can
see that polyps may appear with different shapes, sizes,
and colors. The variability may be due to both intrinsic
properties as well as external factors, such as lighting,
viewpoint, etc. This variability makes necessary to tar-
get methods with a large scale-invariant degree, robust
to changes in illumination, as well as general enough
to capture global discriminating features common to
diverse sets of polyps [1].

2 Contribution

Recently, an automatic polyps detection and classifi-
cation algorithm has been proposed by the Khalifa
University research center at Abu Dhabi, UAE [4]. It
is based on deep learning approach (pre-trained con-
volutional neural network and SVM classifier) and it
has been successfully validated with several clinical
databases. To go on further, detection and tracking
methods should be sufficiently efficient (fast and robust)
such that the latter can be performed in real-time or at
least within an interactive time frame, a practical trait
that has not been given much consideration in the liter-
ature. Hence, starting a collaborative research project
with the ICube laboratory of Strasbourg University and
CNRS, the expected main objective of this work is to
finely capture both the texture and shape character-
istics of the selected image regions and to track them
across the video frames so as to assist the diagnostic of
colorectal cancer.
Most of visual tracking techniques involve features-
based, simple geometrical-based, or grid-based refer-
ence region as input data to characterize the region-
of-interest (or ROI for short). Once polyps detection
is done, firstly one can look for closed contours to ac-
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curately circumscribe the segmented regions, and to
equally characterize the geometry of the borders of each
ROI, providing a measurement of the evolving shape.
Secondly, the color pixel distribution within the ROI
(normalized luminance intensity and color differences)
is encoded in a two-dimensional signal (per pixel), and
it is used herein to proceed the temporal coherency of
the tracking between successive frames, by means of
an image region alignment, whereas it is usually per-
formed with the luminance signal only. In this paper,
we present a visual tracking method involving the min-
imization of a similarity function based on both the
intensity and the chromatic signals inside the ROI, in
order to perform the expected alignment.

3 Methodology

3.1 Background and related work

An efficient tracking should take care of temporal con-
tinuities by relying on inter-frame dependencies [5] and
must allow as well to focus the analysis at regions which
are more likely to contain a close appearance, the so-
called region-of-interest (ROI) R, subjected to local
deformations and displacements, all gathered within an
appearance motion model and a vector p of parameters.
One of the most well-known region-based tracking meth-
ods is the Lucas-Kanade approach (LK) [6] which is
an image alignment carried out with the minimization
of errors at pixel level x between the current image I
warped back, I(W (x; p + ∆p)) and the reference ROI
(or template) T (x). The warp W (x; p) takes the pixel
x in the coordinate frame of the template T and maps
it to the sub-pixel location W (x; p) in the coordinate
frame of the image I. Nowadays many variants of
the LK algorithm are available and provide significant
improvements wrt to the original method, reducing
the computational cost with some pre-computations
steps [7], increasing the robustness wrt to illumination
changes [8], extending the inter-frames linear motion
model with parameter set p to non-linear models [9], or
considering other similarity functions, other than the
SSD (Sum of Squared Differences) like the Mutual In-
formation (MI) [10] or the Sum of Conditional Variance
(SCV) [8]. As this dense data-based technique leads
to deterministic computer algorithm (as opposed to
feature-based technique with outliers rejection, predic-
tive filtering and matching process between subsets of
features in adjacent frames [11]), it could be unpractical
indeed for real-time issue regarding the high resolution
of most visual sensors (Full HD and UHD) used by
endoscopic color cameras in the operating room. It is
therefore of prime importance to accurately delimitate
the ROI with the detected polyp image, to estimate the
incremental apparent motion (including deformations)
∆p whatever are the illumination changes, sizes and
shape variations.

3.2 Details of the method
To tackle above problems, we have combined 1)
the inverse compositional alignment technique with
I(W (x; p)) and T (W (x; ∆p)) in a 2) SSD criterion
with preconditioning of 3) normalized color images us-
ing 4) the Ohta representation of pixel colors inside
the region-of-interest R. The first three ingredients
have been already applied to tracking purposes; The
inverse compositional alignment is one of the least com-
putationally demanding iterative alignment algorithm,
and it has been recently be reformulated by Lui et al.
[12] to support a preconditioning step for dealing with
missing data in the ROI (specular effects, shadows, self-
occlusions,...).
According to Ohta et al. [13], the three color features
I1 = (R + G + B)/3 (intensity), and I2 = R − B and
I3 = (2G− R − B)/2 (the two chromatic signals) are
simple linear combinations of the (R,G,B) and are
orthogonal each other. These two properties are fully
exploited in our method to parallelize the warping pro-
cess (with the same motion model p for computing the
warping transformation W , the same bilinear interpola-
tion function, but not the same data) with the following
similarity function of that Inverse Color Compositional
(ICC) alignment:

CICC =
∑
x∈R

3∑
i=1

{Ti(W (x; ∆p))− Ii(W (x; p))}2 (1)

and to easily compute the pixel derivatives in the mini-
mization process.
To achieve fast computations of the successive align-
ments, one has to bring several efforts for the imple-
mentation issue; To that purpose, we have chosen to
fully parallelize the program execution by means of the
SIMD (Single Instruction Multiple Data) method for
multithreading programming with OpenMP [14].

4 Perspectives
We are being developping the polyps tracking with
Matlab software and video databases. This software
platform is currently used to analyze the bottleneck in-
structions inside the set of online steps, especially in the
iterative optimization of the alignment process, and it
is worth noting that the preconditoning stage proposed
by [12] is helpful to speed-up the convergence of the
algorithm. Moreover, the Ohta’s color representation
proves to be a good choice when one has to compute the
color errors and derivatives in a linear way. In the near
future, we plan to efficiently implement the algorithm
onto a dedicated multicore workstation by means of
SIMD programming.
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Abstract. Cervical cancer is the second most common and the fifth
deadliest cancer in women. In this paper, we propose a deep learning
approach for detecting cervix cancer from pap-smear images. Rather than
designing and training a convolutional neural network (CNN) from the
scratch, we show that we can employ a pre-trained CNN architecture
as a feature extractor and use the output features as input to train a
Support Vector Machine Classifier. We demonstrate the efficacy of such
a new employment on the Herlev public database for single cell pap-
smear, whereby the experimental results show that our proposed system
neatly outperforms other state of the art methods.

Keywords: Pap-smear classification · Deep learning · Convolutional
neural network

1 Introduction

For many years, cancer has been one of the biggest threats to human life, and the
number of new cases is expected to rise by about 70% over the next 2 decades
[2]. Cervical cancer, in particular, is the second most common and the fifth dead-
liest cancer in women [24]. The low rate of cancer survival is due to the fact that
the majority of cancer cases are detected at advanced stages. There is a con-
sensus in the medical community on the vital need of early detection of cancer
for effective treatment. Indeed, some studies reported that cervical cancer is the
most preventable disease with the incidence rates getting reduced by 80% [12]
through early detection, although this sharp increase in figures might have been
influenced by lead time bias and over-diagnosis [11]. Accurate and early cancer
detection is very important for timely diagnosis and effective treatment. In fact,
the inability to detect cancer in its early stages may cause the treatment to be
delayed to a more advanced stage with more severe implications for survival rates
and resource utilization. On the other hand, false detection of cancer may lead to
unnecessary invasive treatments that might be both physically and emotionally
traumatic to the patient, in addition to being costly to the health care system
c© Springer International Publishing AG 2017
M. Valdés Hernández and V. González-Castro (Eds.): MIUA 2017, CCIS 723, pp. 261–272, 2017.
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in terms of human and logistic resources. A variety of diagnostic tools are used
in screening depending on the type of cancer. These tools include chest x-ray,
computerized tomography (CT) scan, bronchoscopy, positron emission tomog-
raphy (PET) scans and microscopic images. This last modality utilized in the
detection of cervical cancer has the advantage of little or no side effects, as the
procedure employed for the acquisition of microscopic images is virtually non-
invasive. Screening for cervical cancer uses microscopic images of sample of cells
collected from the cervix area. The cells undergo Papanicolaou staining method
[4] which aims to visualize cells and cell components under the microscope allow-
ing to display the variations of cellular morphology, and to differentiate the main
cells from the debris cells.

The Pap smear slides usually contain both of single cells and clusters of cells.
Most of cells are found with high degree of overlapping. Similar to other cells in
human body, a cervical cell consists of two main components. One is the nucleus
located about the center of cell surrounded by the cytoplasm. Normally, nucleus
shape is small and almost round. Its intensity is darker than cytoplasm. In dys-
plastic cells, or abnormal cells, the cell will not grow and divide as it should.
This is referred as precancerous cell. A sample of normal and abnormal cells is
shown in Fig. 1. The dysplastic cells are categorized into mild, moderate, and
severe dysplastic. A high amount of the mild dysplastic cells will disappear with-
out becoming malignant, whereas severe dysplastic cells are likely to turn into
malignant cells. The squamous dysplastic cells generally have larger and darker
nuclei and tend to cling together in clusters. In severe dysplastic cells, nuclei
are large, with dark granules and usually deformed. In Pap Smear image analy-
sis, the cervical cells are divided into 7 classes, categorized by cell appearance,
especially related to the nucleus.

Fig. 1. Sample of cervical cell microscopic images. (a) Normal cells (b) Abnormal cells

Cervix cancer classification using pap-smear images adopts, basically, a three-
stage paradigm, namely cell detection, cell segmentation, and cell classification.
For cell detection, some methods, as explained in [28] employed contrast limited
adaptive histogram equalization and global thresholding applied to the red, green
and blue channels of the image. Automatic dell detection reached mature stage,
and does not present any particular challenge nowadays.

For the cell segmentation a variety of methods have been proposed. They can
be categorized into region-based methods and contour-based methods. In the
former, cell pixels are separated into nucleus and cytoplasm based on regional
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image pixel similarity (or dissimilarity). Methods in this category fall into grey
level histogram methods [20] and clustering methods using watersheds [13,19].
Threshold selection is a major issue with the gray-level histogram methods. Clus-
tering methods, though they are threshold-free, result in an over-segmentation
scenario as they fix the number of clusters to two (two clusters corresponding
to the nucleus and the cytoplasm), whereas the actual number might be larger
because of the color variability within the cell region. The watershed methods,
though more robust, present an intrinsic limitation arising from the fact that it
relies on the principle of touching regions exhibiting a narrow “neck” on the area
of contract. Consequently, nucleus exhibiting thick or blurred boundaries with
the cytoplasm cannot be detected reliably [26]. Contour-based methods detect
the contour in the image by marking the boundary of the nuclei with respect to
the cytoplasm. [27] used the concept of active contour, which is a kind of para-
meterized closed curve that iteratively deform until it fits the boundary edges.
However this method requires manual initialization. Other resent work employed
edge detector techniques [22] which work fine for clear single cell images, but their
performance degrades considerably for cases of non-homogeneous cell regions and
overlapping cells. And above all, these methods inherit the sensitivity to image
noise and artifacts that characterize edge detection operators.

Once the cell is segmented, features are extracted to be used as input for cell
classification. Jantzen et al. [14] proposed several important cell features that
are used for Pap smear image analysis, derived from the nucleus and cytoplasm
areas, and which include brightness, shorter diameter, longest diameter, elonga-
tion, roundness, perimeter, maxima, minima (the number of pixels with the max-
imum/minimum intensity value in a 3 × 3 neighborhood of the specific area). In
terms of the features that are extracted from both the cytoplasm and the nucleus
area, the nucleus position and the ratio nucleus size)/cytoplasm size are cal-
culated. Thus, a total of 20 features are considered important for the analysis of
Pap smear images. These feature has been used later in [22]. Recently Boral et al.
[5] Consolidated the set of features by novel color and texture features extracted
using Ripplet Type I transform, Histogram first order statistics and Gray Level
Co-occurrence Matrix Ripplet Type I transform, Histogram first order statistics
and Gray Level Co-occurrence Matrix.

In the classification stage, most approaches proposed machine learning meth-
ods [5,9,21,22,28]. Marinakis and Dounias [21] employed two classifiers in their
method namely 1-Nearest Neighbor and the Weighted (w) k-Nearest Neighbor
classifier. The wk-Nearest-Neighbor is used to give different weighting for the
features according to the distance to the test samples. To accommodate for the
huge number of features extracted from the pap-smear images, Ant Colony Opti-
mization method is utilized as a feature reduction mechanism, whereby Plissiti
et al. [28] proposed to use an unsupervised learning technique for the classifica-
tion of pap-smear images. They have focused on the nucleus features only and
applied different feature reduction methods to select a subset from the features.
The low dimensional features used in Spectral Clustering and fuzzy C-means
classifiers for the decision making process. Chen in [9] proposed and integrated
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system providing tolls for: selecting the cell, automatically detect the nucleus
and the cytoplasm regions, extracting 13 morphological and texture descriptors,
and using a Support Vector Machine (SVM) for classification. The same classifier
has been used in [22]. In the recent work [5], Bora et al. employed a majority-
voting fusion method including a Multilayer Perceptron (MLP), Random Forest
(RF) and Least Square Support Vector Machine (LSSVM).

In this work, we focus on the classification step where we propose a novel
approach for cervix cancer detection. Rather than designing a convolutional
neural network from the scratch, we employ a pre-trained CNN architecture
coupled with a support vector machine at the back-end, saving thus time and
resources. This employment of the pre-trained CNN architecture as a features
extractor is deeply instigated with different experiments, and thus comparing
the performance of the features across the different architecture layers outputs.
The closest work to our approach is [6] whom used a CNN as a feature extractor.
However, our method is distinguished by the following aspects:

– CNN was used to transfer different level of features from different layers con-
tradicting to the work in [6] where they assume the best features are obtained
from FC7 without any experimentation. Since there is a very few work imple-
mented on the classification of cervix cancer from pap-smear images using
deep learning, it turns out essential to perform more experimentation to
obtain a deeper understanding for this method.

– Two testing sets was performed in this work by employing the Herlev public
database where the other method emphasized more on their own generated
database.

– SVM classifier was utilized for the decision making process because of its
capability to handle high dimensional features where the other work used
least-squares SVM (LSSVM) and softmax regression classifiers.

– Since we are using SVM which is capable to manage huge number of fea-
tures, feature selection techniques was not empowered because the focus is
on the usage of the CNN as a feature extractor and the transferred features
from its different layers. However, the work in [6] have implemented Maximal
Information Compression Index as a feature selection to reduce the number
of features obtained from the CNN.

The evaluation of our paradigm illustrates the superiority of our method
when compared with state of the art methods. The remainder of the paper will
be organized as follows: Sect. 2 introduces the proposed approach and elaborates
on its rational. Section 3 describes the different experiments and the related
results. Section 4 concludes the paper.

2 The Proposed Method

In image analysis, designing the appropriate features for a given interpretation
task has been a central problem in computer vision and in medical image analy-
sis. Explicit feature design extraction in medical image analysis requires subject-
matter expertise. In this process, the visual information on which the physician
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relies in his assessment is not necessarily reflected into a suitable computational
representation. Moreover, the practical considerations in the extraction and the
usages of these features make the reproducibility of these related methods often
problematic [25]. To overcome these challenges we propose a deep learning app-
roach, whereby Convolution Neural Network (CNN) is employed to replace a
handcrafted and customized features, which would be strongly sensitive to mul-
tiple parameters.

It is known that through a hierarchical unsupervised or semi-supervised fea-
ture design, CNN’s can produce effective representation of the visual data [18].
Basically, a CNN deep learning architecture is composed of a sequence of cascad-
ing layers performing basic operations such as convolution, subsampling, followed
by another sequence of fully connected layers, which act similarly as a classic
artificial neural network. These fully connected layers can be replaced by a sup-
port vector machine classifier. In another hand, training a CNN network from
scratch requires a large data-set, which is a tedious process and often cannot be
afforded in medical applications, including database of pap-smear classification.
Also, in addition to requiring considerable computational resources, there is no
systematic guidelines as for the optimal choice of the architecture in terms of
depth (number of layers) and structure.

An economic alternative is to use pre-trained CNN architectures, that are
proven to have good performance through training and validation over a huge
database, and then tune, via training conducted on a specific application data-
set, the pre-trained weights of the architecture. This procedure, known as fine-
tuning, can be performed either across the whole CNN or at specific layers.
In this paradigm, the lower layers are kept the same since they have learned
generic features (e.g. edge, region) that are less dependent on the final application
[18], whereas the top layers are removed and the linear classifier is trained to
accommodate the new application-specific database.

In our approach, we advocate the hypothesis that a trained CNN architecture
embeds sufficiently rich feature representations that can be utilized as input
to train a standard classifier, such as the Support Vector Machine, relieving
thus the system from laborious training from scratch or fine tuning. Therefore a
pre-trained CNN is then deployed as a feature extractor for our specific image
interpretation task of pap-smear detection, as depicted in the block diagram in
Fig. 2. The database employed for training and testing include different patch
sizees of the pap-smear. Therefore, the resolution for the patches less than the
standard size 227 times227 adopted in AlexNet, was completed by empty regions
with a white background.

There are several pretrained CNN architectures that can be investigated, such
as GoogleNet [1] and VGGNet [29]. In our method, we explored AlexNet [16].
This CNN architecture was trained with 1.2 million images for 1000 different
classes, thus the learned features are expected to span a large spectrum of visual
information. The main layers of the AlexNet architecture is briefly described in
Table 1.
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Fig. 2. Block diagram for the CNN as a feature extractor

Table 1. Summary of AlexNet architecture

Layer Type Input Kernel Stride Pad Output

Data Input image 227× 227× 3 N/A N/A N/A 227× 227× 3

conv1 Conv 227× 227× 3 11× 11 4 0 96× 55× 55

pool1 Max pooling 55× 55× 96 3× 3 2 0 96× 27× 27

conv2 Conv 27× 27× 96 5× 5 1 2 256× 27× 27

pool2 Max pooling 27× 27× 256 3× 3 2 0 256× 13× 13

conv3 Conv 13× 13× 256 3× 3 1 1 384× 13× 13

conv4 Conv 13× 13× 384 3× 3 1 1 384× 13× 13

conv5 Conv 13× 13× 384 3× 3 1 1 256× 13× 13

pool5 Max pooling 13× 13× 256 3× 3 2 0 256× 6× 6

FC6 Fully connected 6× 6× 256 6× 6 1 0 4096× 1

FC7 Fully connected 1× 4096 1× 1 1 0 4096× 1

FC8 Fully connected 1× 4096 1× 1 1 0 1000× 1

Usually features from first layers are too generic to be employed as discrim-
inative descriptors (see Fig. 3). As a result, we investigated features from the
middle layers and onward, namely, Con4 till FC8. The output from one of these
layers will be a sort of feature encoding of the pap smear images. These features
will be then fed into the subsequent classifier block.

Here a fully connected neural network (ANN), a SoftMax classifier, or a
SVM can be used. We choose the SVM for the following reasons: SVM and
has the capacity to deal with a high-dimension input without compromising the
computational complexity, and thus, contrary to ANN or SoftMax, can map
the huge number of feature vectors across the different layers of the CNN. For
instance, in [23], the SVM has been deployed across all six layers from layer 1
to layer 7 except 6 of the ConvNet model, whereas softmax has been used only
at layer 5 and 7. Moreover, SVM classifier showed better overall discriminating
power on that model where recently it has been observed that coupling SVM
as a final layer improves the learning rate [17]. With regard to overfitting, the
SVM is assumed to be less sensitive to overfitting, at least in principle, because
of aforementioned feature dimensionality, in practice it provides mechanisms to
control overfitting through the C parameter. Having said that. Generally, over-
fitting remains a general problem that practically has to be dealt with for any
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Fig. 3. Visualization for the first convolutional layer weights. Since we have 96 weights
in the first layer of the AlexNet, the last 4 weights appeared black.

classifier [8]. In CNN specifically, the problem is more crucial because of the high
dimensionality that characterize their architecture. Several mechanism have been
proposed to address this issue, which include, dropout [15], data augmentation
[15], regularization [3] and stochastic pooling [30].

When training the SVM, each feature vector is given a label either −1 or
1 (normal, abnormal) to create the feature-class pair {x, y}. Therefore, given L
features {xi, yi} such that i = 1...L, and yi ∈ {1,−1}, x ∈ �D, where D is the
vector size. A hyper-plane separating the two classes could be written as

wTx + b = 0 (1)

the w is known as the weight vector which is normal to the separation hyper-
plane, and b is known as the bias. In order to separate the two classes with the
hyper-plane the following equation should be optimized

min(
1
2
wTw + C

L
∑

i=1

ξi) (2)

subject to the constrain yi(wTxi + b) >= 1 − ξi, where ξi >= 0 for i = 1, ..., L,
and C is known as the penalty parameter. This will lead to the optimal hyper-
plane that minimizes the distance between itself and all the training examples.
The optimal hyper-plane, allows a classification to be done according to a deci-
sion function such as:

f(x) = sgn(wTx + b) (3)

3 Experimentation

To evaluate the performance of our method, Herlev pap smear database was used
for training and testing. This database is publicly available and consists of 917
single cell images divided into 7 classes. Four categories are considered as abnor-
mal images with different severity namely light dysplastic, moderate dysplastic,
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Fig. 4. Sample images from the 7 classes of the Herlev pap smear database (a) car-
cinoma in situ, (b) severe dysplastic, (c) moderate dysplastic, (d) light dysplastic,
(e) normal columnar, (f) normal intermediate, (g) normal superficial.

severe dysplastic, and carcinoma in situ. The other three categories considered
as normal are normal columnar, normal intermediate, normal superficial (Fig. 4).
However, according to [10] when considering a two class classification problem,
the columnar class is not considered as a normal nor an abnormal. As a result,
the total number of normal class images is 144 while the total number of abnor-
mal cell images is 675.

We selected and transferred features from different layers of the CNN, from
shallow to deep layers, where the aim was to assess the performance of the CNN
as a feature extractor and its effectiveness in the detection scenarios on the
specified database. The main focus in the experiment is the quality, in terms of
classification power, of the extracted features from the CNN. The features were
deployed using different layers from the pre-trained CNN. AlexNet was trained
using the ImageNet database which consists of non-medical images, therefore
there is a need to know the best layer that will provide the best features dis-
criminating normal pap-smear cell images from the abnormal pap-smear ones.
As we mentioned earlier, we considered only deep layers, starting from Conv4.
In this transfer learning scheme, the layers up to the output features layers are
frozen and the output features are used to train the SVM classifier. For exam-
ple, considering conv5, as the feature output layer, we keep the weights across
the layers conv1 to conv5 at their pre-trained values, while training the SVM
classifier. While this scheme reduces the number trained entities, the number
of features remain large, as an example, the dimension of the obtained feature
vector from the fourth convolution layer (C4) is 13× 13× 384 which is equal
to 64896 features. The two-class classification problem was implemented where
the number of normal pap-smear cell images is 144, while the number of the
abnormal images is 675. For training protocol we adopted the 70%, 30% for
training and testing, respectively. Table 2 reports the best recall and precision
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performance from each layer. For instance, C5 in Table 2 refers to the features
coming out from the layer Conv5. It is interesting to notice that the top per-
formance is obtained with features coming out from a deep layer (fc7), which
are more descriptive than their shallow layers counterparts (e.g. Conv4 - see
Table 1).

Table 2. The recall and precision values for 2-class classification of pap-smear without
the columnar class.

Experiment 1

Recall Precision Accuracy

CNN feature Conv4 99.01% 99.02% 98.37%

Conv5 100% 98.54% 98.78%

FC6 99.5% 99.01% 98.6%

FC7 99.51% 99.5% 99.19%

FC8 98.6% 97.8% 97.9%

In another experiment, we tested our method on the data-set without remov-
ing the columnar class which results in having a number of 242 normal cell images
and 675 abnormal cell images. The recall, precision, and accuracy are reported
in Table 3.

Table 3. The recall and precision values for 2-class classification of pap-smear including
the columnar class.

Experiment 2

Recall Precision

CNN feature Conv4 94.1% 87.6%

Conv5 97.04% 89.14%

FC6 99.01% 85.2%

FC7 64.04% 96.3%

FC8 59.11% 95.24%

We compared our method with two state of the art methods that used the
same database and ignore the columnar class [7,14]. Table 4 reports the perfor-
mances of the two methods together with the results achieved by our method.
We found that our approach outperforms all the existing paradigms in terms of
recall, precision, specificity and accuracy with scores of 99.51%, 99.5%, 97.67%
99.19% respectively.
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Table 4. Recall, precision, specificity, and accuracy scores in percent by setting the
parameters according to the best results in each experiment.

Method [7] [14] Our method

Recall 95.11 - 99.51

Precision - - 99.5

Specificity 96.53 - 97.67

Accuracy 95.36 93.75 99.19

4 Conclusion

In this work we presented a deep learning solution for cervix cancer screening
using pap-smear images. In this application, we proposed a novel employment
whereby a pre-trained architecture, the AlexNet, is used as feature extractor,
then coupled with a classic SVM classifier. This approach relives the system
form the high computational and resource demanding training from the scratch
or even fine-tuning. The evaluation and testing conducted with the Herlev data-
base, confirmed the rational of our hypothesis that the features derived from
a CNN architecture (pre-trained by means of colossal datasets), embeds suffi-
cient discriminatory information to be tailored to our specific Herlev pap-smear
dataset. In the future work we plan to investigate further our approach on
other pap-smear datasets and other standard trained CNN architecture such
as VGGNet.
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10. Gençtav, A., Aksoy, S., Önder, S.: Unsupervised segmentation and classification of
cervical cell images. Pattern Recogn. 45(12), 4151–4168 (2012)

11. Gigerenzer, G., Wegwarth, O.: Five year survival rates can mislead. BMJ 346, f548
(2013)

12. Henschke, C.L., et al.: International early lung cancer action program investigators:
survival of patients with stage 1 lung cancer detected on CT screening. N. Engl.
J. Med. 335, 1763–1771 (2006)

13. Costa, J.A.F., Mascarenhas, N.D., de Andrade Netto, M.L.: Cell nuclei segmenta-
tion in noisy images using morphological watersheds. In: International Society for
Optical Engineering, vol. 3164, pp. 314–324 (1997)

14. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data
for pattern classification. In: Proceedings of NiSIS 2005: Nature Inspired Smart
Information Systems, EU Co-ordination, pp. 1–9 (2005)

15. Krizhevsky, A., Sutskever, I., Hinton, E.: Imagenet classification with deep convo-
lutional neural networks (2012)

16. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L.,
Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol.
25, pp. 1106–1114 (2012)

17. Berrada, L., Zisserman, A., Kumar, M.P.: Trusting SVM for piecewise linear CNNs.
In: Proceedings of International Conference on Learning Representations (2017, to
appear)

18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
19. Lezoray, O., Cardot, H.: Cooperation of color pixel classification schemes and color

watershed: a study for microscopic images. IEEE Trans. Image Process. 11(7),
783–789 (2002)

20. Mahanta, L.B., Nath, D.C., Nath, C.K.: Cervix cancer diagnosis from Pap smear
images using structure based segmentation and shape analysis. J. Emerg. Trends
Comput. Inf. Serv. 3(2), 245–249 (2012)

21. Marinakis, Y., Dounias, G.: Nature-inspired intelligent techniques for Pap smear
diagnosis: ant colony optimization for cell classification (2006)

22. Mbaga, A., ZhiJun, P.: Pap smear images classification for early detection of cer-
vicel cancer. Int. J. Comput. Appl. 118(7), 10–16 (2016)

23. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Proceedings of European Computer Vision Conference, pp. 818–833 (2014)

24. World Health Organization: Fact Sheet No. 297: Cancer, February 2006
25. Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research in signal process-

ing. IEEE Sig. Process. Mag. 26(3), 37–47 (2009)
26. Pawley, J.B.: Handbook of Biological Confocal Microscopy. Springer, Heidelberg

(2006)
27. Plissiti, M.E., Charchanti, A., Krikoni, O., Fotiadis, D.I.: Automated segmentation

of cell nuclei in PAP smear images, October 2006
28. Plissiti, M.E., Nikou, C., Charchanti, A.: Automated detection of cell nuclei in Pap

smear images using morphological reconstruction and clustering. IEEE Trans. Inf.
Technol. Biomed. 15(2), 233–241 (2011)



272 B. Taha et al.

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

30. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional
neural networks. CoRR abs/1301.3557 (2013)


	toc
	A Functional-Based Segmentation of Human Body Scans in Arbitrary
	Naoufel Werghi, Member, IEEE, Yijun Xiao, and Jan Paul Siebert, 
	I. I NTRODUCTION
	II. M ORSE T HEORY AND THE R EEB G RAPH
	Definition 1: Let ${\mbi f}$ be a real-valued function on a comp
	A. The Morse Function


	Fig.€1. (a) Reeb graph of a torus. (b) Reeb graph of a HB shape.
	B. The DRG
	Definition 2 (Connectivity of Point Sets): Two point sets $P =\{
	Definition 3 (Connective Point Set): A point set $C$ is connecti
	Definition 4 (Level-Set Curve): A level-set curve is an isovalue
	Dentition 5: A Discrete Reeb graph is a non-oriented two-dimensi
	Step 1: Establishing Level-Sets: Level-sets are groups ${\cal G}
	Step 2: Establishing Level-Set Curves: Each level-set is decompo
	Step 3: Building the Connectivity Between Nodes: Two nodes in tw

	III. T HE S EGMENTATION
	A. Computation of the Morse Function $\rho_s$ and $% \sigma$


	Fig.€2. (a): Wavefront propagation on a simple elliptic surface.
	B. Source Point Location and Its Effect on the Level-Sets and th

	Fig.€3. Histogram of the distances between the most closest pair
	C. Threshold Setting
	D. DRG Construction
	1) DRG Analysis and Branch Extraction: In this stage, the DRG is


	Fig.€4. (a) Three slices representing a portion of clean data. E
	E. The Segmentation Algorithm
	F. Summary of the Approach and Comparison With 3-D Skeletonizati
	TABLE I S TAGES AND T ASKS I NVOLVED IN THE D IFFERENT V ERSIONS

	IV. E XPERIMENTS

	Fig.€5. Cyberware scan and a Wick & Wilson scan segmented using 
	Fig.€6. Rows 1 and 2: A Wick & Wilson HB scan and Cyberware scan
	Fig.€7. Segmentation of HB scans acquired with the Cyberware sca
	Fig.€8. (a) Segmented real scans corresponding to setting postur
	A. Robustness With Respect to Data Deficiencies
	V. C ONCLUSIONS

	Fig.€9. (a) Zoomed image illustrating the distribution of the sc
	Fig.€10. Segmented HB scans corrupted with a Gaussian noise of d
	P. R. M. Jones and M. Rioux, Three dimensional surface anthropom
	E. Paquet, K. M. Robinette, and M. Rioux, Management of three-di

	The Civilian American and European Surface Anthropometry Resourc
	R. P. Pargas, N. J. Staples, and J. S. Davis, Automatic measurem
	D. Protopsaltou et al., A body and garment creation method for a
	F. Cordier, H. Seo, and N. Magnenat-Thalmann, Made-to-measure te
	J. Starck and A. Hilton, Human shape estimation in a multi-camer
	J. Starck, G. Collins, R. Smith, A. Hilton, and J. Illingworth, 
	M. Lin, Tracking articulated objects in real-time image sequence
	D. L. Borges and R. B. Fisher, Segmentation of 3-D articulated o
	D. Dion Jr., D. Laurendeau, and R. Bergevin, Generalized cylinde
	F. Ferrie, J. Lagarde, and P. Whaite, Darboux frames, snakes and
	E. Trucco, Inferring convex subparts from slice data, Patt. Reco
	M. Kass and D. Terzopoulos, SNAKES: Active contour models, Int. 
	J. H. Nurre, Locating landmarks on human body scan data, in Proc
	L. Dekker, I. Douros, B. F. Buxton, and P. Treleaven, Building s
	C. L. Wang, T. K. Chang, and M. Yuen, From laser-scanned to feat
	Y. Xiao, P. Siebert, and N. Werghi, A discrete reeb graph for th
	S. Biasotti, B. Falcidieno, and M. Spagnuolo, Extended reeb grap
	G. Reeb, Sur les points singuliers d'une forme de Pfaff complete
	M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii, Topology matc
	C. Tai, Y. Shinagawa, and T. Kunii, A Reeb graph-based represent
	J. C. Hart, Morse theory for implicit surface modeling, in Mathe
	Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, Surface coding b
	S. Biasotti, M. Mortara, and M. Spagnuolo, Surface compression a
	I. Fujishiro, T. Azuma, and Y. Takeshima, Automating transfer fu
	M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Sc
	M. Mortara and G. Patané, Affine-invariant skeleton of 3-D-shape
	A. Verroust and F. Lazarus, Extracting skeletal curves from 3-D 
	T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
	J. S. B. Mitchell, D. M. Mount, and C. H. Paradimitriou, The dis

	Cyberware Website (2005). [Online] . Available: http:www.cyberwa
	Wicks and Wilson Website (2005). [Online] . Available: http://ww
	Edinburgh Virtual Reality Center Website (2005). [Online] . Avai
	Poser Website (2005). [Online] . Available: http://www.curiousla

	A robust approach for constructing a graph representation of articulated and tubular-like objects from 3D scattered data
	Introduction
	Overview of the approach
	Computation of the level-sets
	Construction of a connectivity graph
	Extraction of joints and branches
	Visualization

	Computation of the level-sets
	Construction of a connectivity graph
	Extraction of joint nodes and branches
	Visualization
	Experiments
	Discussion and conclusion
	References

	A discriminative 3D wavelet-based descriptors: Application to the recognition of human body postures
	Introduction
	Representation
	Wavelet-based representation
	Feature invariance
	Feature extraction
	3D Zernike coefficient features
	3D Fourier coefficients

	The classification
	Selection of discriminative features
	The interclass distance

	Experiments
	Comparison of the discriminative power
	Comparison of the classification rate

	Conclusion
	References

	Introduction
	Contribution
	Methodology
	Background and related work
	Details of the method

	Perspectives
	Classification of Cervical-Cancer Using Pap-Smear Images: A Convolutional Neural Network Approach
	1 Introduction
	2 The Proposed Method
	3 Experimentation
	4 Conclusion
	References


