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Overview

The aim of this manuscript is to present a selection of the works by the author, together with several
collaborators, since her thesis. These works concern certain aspects of the following: the Riemann-
Hilbert problem, dynamics on character varieties and moduli of connections and vector bundles over
curves. What they have in common is that they all arise from questions related to isomonodromic
deformations of meromorphic connections on holomorphic vector bundles over Riemann surfaces (of
any genus g), defined in the sense of Malgrange.

However, the nature of the considered questions and used techniques are quite different, and
the presentation will be divided in three main chapters accordingly. Each chapter will have its own
detailed introduction, followed by a mostly self-contained exposition of the results with detailed
proofs. For interested readers discouraged by the resulting length, each of the brief summaries below
is followed by a minimal reading guide through the corresponding chapter, covering the main results,
the essential ones among the non-standard definitions, as well as further remarks and conclusions.
In order to obtain simply an overview of the considered problems and some of their perspectives, it
is sufficient to follow the grey columns in Tables 1–3.

Chapter 1 presents in a uniform way (at the dispense of full generality), a series of generalizations of
a result of Bolibruch in [Bol90] that were obtained in collaboration with I. Biswas and J. Hurtubise.
For any linear representation of the fundamental group of a given curve minus some points, one
can construct a meromorphic connection over the curve realizing the given representation as its
monodromy. The connection is moreover uniquely determined if one prescribes some auxiliary data
[Ber80]. But what can be said about the vector bundle underlying the connection? This Riemann-
Hilbert type question is not adressed directly. Rather, several results were achieved in the general
theme of showing via deformation theory that along deformations of irreducible connections over
curves obtained by varying the complex structure but fixing the monodromy and auxiliary data, the
locus of non generic vector bundles has at least the codimension one might expect. Here non generic
means for example not being a stable bundle when g > 1.

Introduction Definitions Main results Further

§ 1.1
T∥ § 1.3.3

κ(E) Def. 1.4.3
AtD(E) § 1.5

rank 2 § 1.7.1 (new proof)
rank r § 1.7.2

§ 1.7.3

Table 1: Quick reader’s guide for Chapter 1

Chapter 2 presents the collaboration [CH16] with G. Cousin, which consist in a generalization to
higher genus of previous works [Cou17] [CM16]. The germ of the universal isomonodromic deforma-
tion of a logarithmic connection on a stable n-pointed genus g-curve always exists in the analytic
category. The question is under which conditions it is the analytic germification of an algebraic
isomonodromic deformation. Up to some minor technical conditions, this turns out to be the case if
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and only if the monodromy of the connection has finite orbit under the action of the mapping class
group. A detailed study of the dynamics of this action in the particular case of reducible rank two
representations and genus g > 0 leads to the complete classification of the finite orbits in this case.

Introduction Tools and definitions Main results Further

§ 2.1

Γg,n–action § 2.3
Iso Def. 2.6.3
RH § 2.6

Splitting § 2.7.2, § 2.7.3

Dynamics § 2.5.3
Algebraization § 2.8.1, § 2.8.2

§ 2.5.4
§ 2.8.5

Table 2: Quick reader’s guide for Chapter 2

Chapter 3 presents results obtained in collaboration with F. Loray in [HL15]. They concern the
forgetful map from the moduli space of irreducible holomorphic sl2-connections over a curve of
genus two towards the (non-separated) moduli space of underlying vector bundles (including unstable
bundles). As a particularity of the genus 2 case, it can actually be studied, via hyperelliptic descent,
from the point of view of the forgetful map from the moduli space of certain logarithmic rank two
connections over the Riemann sphere towards the moduli space of underlying parabolic bundles.
The latter is well-known by [AL97, LS15] and the authors establish explicit links between it and
classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This provides an explanation
for a certain number of known geometric phenomena of the birational models of the Kummer surface
in the moduli spaces associated to the latter. Moreover, this allows to recover explicitly Bolognesi’s
Poincaré family on a two-cover of the Narasimhan-Ramanan moduli space. Several applications can
be deduced, such as an explicit version of the Hitchin fibration, as well as applications to unbranched
(in [HL15]) and branched (in [CDHL18]) projective structures, via isomonodromic deformations.

Introduction
Hyperelliptic descent

(main tool)
Main results Further

§ 3.1
elm § 3.2.2
Φ § 3.3
φ § 3.4.1

P3
NR § 3.5.2

P3
B → P3

NR § 3.5.4
Bun∗(X) § 3.6.2–§ 3.6.4
Hitchin § 3.6.6
Hejhal § 3.7.3, § 3.7.4

§ 3.7.5

Table 3: Quick reader’s guide for Chapter 3

List of publications. The complete list of publications of the author, as well as works currently
under review for publication, is the following.

[01] Stability of rank 2 vector bundles along isomonodromic deformations, Mathematische An-
nalen, 344(2):346–490, 2009. [Heu09]

[02] Universal isomonodromic deformations of meromorphic rank 2 connections on curves, An-
nales de l’Institut Fourier, 60(2):515–549, 2010. [Heu10]

[03] (with Biswas and Hurtubise) Isomonodromic deformations of logarithmic connections and
stability, Mathematische Annalen, 366(1-2): 121–140, 2016. [BHH16]

[04] (with Biswas and Hurtubise) Isomonodromic deformations and very stable vector bundles
of rank two, Communications in Mathematical Physics, 356(2):627–640, 2017. [BHH17]
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[05] (with Biswas and Hurtubise) Isomonodromic deformations of irregular connections and
stability of bundles, 13 pages, to appear in Communications in Analysis and Geometry,
ArXiv e-prints 1608.00780. [BHH18b]

[06] (with Biswas and Hurtubise) Isomonodromic deformations of logarithmic connections
and stable parabolic vector bundles, 25 pages, submitted for publication, ArXiv e-prints
1703.07203, 2018. [BHH18a]

[07] (with Cousin) Algebraic isomonodromic deformations and the mapping class group, 38
pages, submitted for publication, ArXiv e-prints 1612.05779, 2016. [CH16]

[08] (with Loray) Flat rank two vector bundles over genus two curves, 90 pages, to appear in
Memoirs of the AMS (2018), ArXiv e-prints 1401.2449. [HL15]

[09] (with Loray) Hitchin Hamiltonians in genus two, Analytic and Algebraic Geometry, Hy-
derabad conference proceedings, editors Aryasomayajula, Biswas, Morye, Parameswaran
(2017). [HL17]

[10] (with Calsamiglia, Deroin and Loray) The Riemann-Hilbert mapping for sl2-systems over
genus two curves, 35 pages, to appear in Bulletins de la SMF (2018), ArXiv e-prints
1602.02273. [CDHL18]

[11] (with Biswas) On the logarithmic connections over curves, Journal of the Ramanujan Math-
ematical Society, 28A(SPL):21–40, 2013. [BH13b]

[12] (with Biswas) Non flat extensions of flat vector bundles, International Journal of Mathe-
matics, 26(14): 1550114, 2015. [BH15]

[13] (with Biswas) Holomorphic Connections on Filtered Bundles over Curves, Documenta
Mathematica, 18:1473–1480, 2013. [BH13a]

[14] (with Biswas) Holomorphic connections on filtered vector bundles with given connection
on the graded bundle, Mathematical Proceedings of the Royal Irish Academy, 114(2):1–7,
2014. [BH14a]

[15] (with Biswas) Meromorphic connections on vector bundles over curves, Proceedings Math-
ematical Sciences, 124: 487–496, 2014. [BH14b]

Appearance of the publications in the manuscript. The papers [01] and [02] were issued
from the author’s thesis; their presentation is not the objective of the present memoir. They will
however be referred to and briefly summarized when needed, mostly in the first chapter. Indeed,
Chapter 1 presents [03]–[05] and briefly mentions [06], which all are generalizations of the main result
in [01] (which uses [02]). Chapter 2 presents [07]. Chapter 3 presents [08], which was announced in
[09], and briefly mentions [10] and [11].

Not presented in the main text are the collaborations [12]–[15] with I. Biswas. The construction
in [12] shows that for any curve C of genus g ≥ 2 and any r ≥ 3, there are vector bundles E → C
of rank r admitting a subbundle F ⊂ E such that both F and E/F are flat (admit holomorphic
connections), but E is not. This might seem counter-intuitive in view of [Sim92, Cor. 3.10], but the
key is of course to consider non-semistable bundles of degree zero. The papers [13]–[15] establish
sufficient conditions for the existence of different types of connections on a given vector bundle
E → C that preserve a given filtration of E. A complete characterization in terms of necessary and
sufficient conditions for the existence of filtration preserving connections remains however open. The
more general question of non-obvious necessary or sufficient conditions (other than being filtration-
preserving) for the existence of connections on vector bundles that are Griffiths-transversal with
respect to a given filtration seems to be completely open.
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Chapter 1

Isomonodromic deformations and
stability of vector bundles

1.1 Introduction

Take any triple of the form (E → X ,D ,∇), where E is a holomorphic vector bundle over a compact
Riemann surface X, D ⊂ X is a finite subset and ∇ is a logarithmic connection on E with polar
divisor at most D. The monodromy functor associates to it a representation

ρ∇ : π1(X \D, x0) −→ GL(Ex0) .

The monodromy functor produces an equivalence between the category of logarithmic connections
(E ,∇) on (X,D) such that the real parts of residues lie in [0 , 1), and the category of linear represen-
tations of π1(X \D, x0) [Del70]. Given a representation ρ, one can consider the set of all logarithmic
connections (E → X ,D ,∇) (with no condition on the residues) that produce the same monodromy
representation ρ∇ = ρ. All these connections are conjugated to each other by meromorphic gauge
transformations with possible poles over D, see for example [Sab07, Sec. II.3].

The classical Riemann–Hilbert problem considers X = P1 and can be formulated as follows:

Given a representation ρ : π1(P1 \D, x0) → GL(V ) with V ≃ Cr, is there a logarithmic
connection (E → P1 ,D ,∇) such that ρ = ρ∇ and E is the trivial bundle?

The answer to this problem is

1) positive if rank r = 2 [Ple64], [Dek79],
2) negative in general (r ≥ 3) [Bol90],
3) positive if ρ is irreducible [Bol92], [Kos92].

On the other hand, the fundamental group π1(P1 \D, x0) depends only on the topological and
not the complex structure of P1 \D. So given an initial connection, one can consider variations of
the complex structure without changing the monodromy representation. More precisely, consider
the Teichmüller space T0,n of the n–pointed Riemann sphere together with its universal Teichmüller
curve

p : (X = P1 × T0,n ,D) −→ T0,n ,

where n = deg(D). Since T0,n is contractible, the inclusion

(P1 ,Dt) := p−1(t) ↪→ (X ,D) , t ∈ T0,n ,
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induces an isomorphism π1(P1 \ Dt, xt) ≃ π1(X \ D, xt). By the Riemann–Hilbert correspondence
and Malgrange’s Lemma, we can associate to any logarithmic connection (E ,∇0) on P1 with polar
divisorD, its universal isomonodromic deformation: a flat logarithmic connection (E ,∇) over X with
polar divisor D that extends the given initial connection (E,∇0). The monodromy representation
for ∇|p−1(t) does not change as t moves over T0,n (see [Mal83a] or Section 1.3 for more details).

We are led to another Riemann–Hilbert problem:

Given a logarithmic connection (E ,∇0) on P1 with polar divisor D of degree n, is there a
point t ∈ T0,n such that the vector bundle Et = E|P1×{t} underlying the universal isomon-
odromic deformation (E ,∇) is trivial?

Denote Y := {t ∈ T0,n | Et is not the trivial bundle}. Under the assumption that Y ≠ T0,n, it is
known that Y forms a (possibly empty) divisor on T0,n (see e.g. [Sab07, Thm. I.5.3]). This divisor is
commonly referred to as the Malgrange Θ-divisor (e.g. in [BB+12, p. 118]) and corresponds to zeros
of the Miwa-τ -function [Mal04] (see also [Pal99]). The assumption Y ̸= T0,n is usually achieved by
requiring that the initial vector bundle E is the trivial bundle. The above Riemann-Hilbert problem
asks in which cases this requirement is justified. A partial answer is given by a theorem of Bolibruch.

Theorem 1.1.1 ([Bol90]). Let (E ,∇0) be an irreducible tracefree logarithmic rank two connection
with n ≥ 4 poles on P1. There is a proper closed analytic subset Y ! T0,n such that for all
t ∈ T0,n \ Y, the vector bundle Et = E|P1×{t} underlying the universal isomonodromic deformation
(E ,∇) of (E,∇0) is trivial.

From the Birkhoff–Grothendieck classification of holomorphic vector bundles on P1 it follows
immediately that the only semistable holomorphic vector bundle of degree 0 and rank r on P1 is the
trivial bundle O⊕r

P1 . This leads to the following more general question:

Given a representation ρ : π1(X \D, x0) → GL(V ), with V ≃ Cr, where X is a compact
connected Riemann surface, is there a logarithmic connection (E → X ,D ,∇) such that
ρ = ρ∇ and E is semistable of degree zero?

The answer to this problem is still

1) positive if rank r = 2 [EH01],
2) negative in general [EH01],
2) positive if ρ is irreducible [EV99].

On the other hand, we can ask the following: Let p : (X ,D) → Tg,n be the universal Teichmüller
curve.

Given a logarithmic connection (E ,∇0), with polar divisor D of degree n on a compact
connected Riemann surface X of genus g, is there an element t ∈ Tg,n such that the vector
bundle Et = E|Xt → Xt = p−1(t) underlying the universal isomonodromic deformation
(E ,∇) of (E ,∇0) is semistable?

Note that we necessarily have deg(Et) = deg(E). Again, Theorem 1.1.1 can be generalized:

Theorem 1.1.2 ([Heu09]). Let (E ,∇0) be an irreducible tracefree logarithmic rank 2 connection
with polar divisor D of degree n on a compact connected Riemann surface X of genus g such that
3g− 3+n > 0. Consider its universal isomonodromic deformation (E ,∇) over p : (X ,D) → Tg,n.

There is a proper closed analytic subset Ynms ! Tg,n such that for any t ∈ Tg,n \Ynms, the vector
bundle Et = E|Xt , where (Xt ,Dt) = p−1(t), is maximally stable.
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A maximally stable rank two bundle E → X (see Section 1.4) is automatically semistable if
g ≥ 1 or deg(E) is even. Surprisingly, Theorem 1.1.2 remains valid when the initial connection ∇0 is
allowed to have arbitrary non-Fuchsian singularities; in particular it is valid in the presence of irreg-
ular singularities [Heu09]. Note however that the parameter space of the universal isomonodromic
deformation then has strictly larger dimension than the Teichmüller space (see [Heu10], see also Sec-
tion 1.3). The reason, observed in [Heu10], behind the fact that the proof of Theorem 1.1.2 can be
adapted rather easily for non-Fuchsian singularties is that in the sl2-case, isomonodromic deforma-
tions of meromorphic connections are locally constant, i.e., near each point in X there exists a choice
of coordinates and a choice of frame of E such that the connection matrix of ∇ with respect to that
choice depends on at most one variable, given by a coordinate in the fiber over the corresponding
parameter t ∈ T . Note that a universal object for locally constant isomonodromic deformations (of
a given initial connection) can easily be constructed in arbitrary rank. We will call it the parallel
isomonodromic deformation (see § 1.3.3). Under suitable conditions, it can be seen as the restriction
of the universal isomonodromic deformation to a submanifold in the parameter space.

For g = 0, and irreducible tracefree rank two connections over P1 with four poles (counted
with multiplicity), the parameter space of universal/parallel isomonodromic deformations is one-
dimensional. They are closely related to solutions of Painlevé equations [FN80] [JMU81]. The locus
of non-maximally stable bundles then corresponds to the locus of non-trivial bundles and forms a
closed analytic subset. The result in [Heu09] implies that this analytic subset is proper. For the
special case corresponding to the third Painlevé equation, this has been independently proven in
[Nil09], see also [GH17, Chap. 4,8].

The proof in [Heu09] of Theorem 1.1.2 and its meromorphic version consists in a detailed analysis
of the family of Riccati-foliations induced by the universal isomonodromic deformation and relies
heavily on the fact that in rank two, a subbundle of E → X, assuming it is neither 0 nor E,
corresponds to a section σ of P(E), so that there is a natural isomorphism σ(X) ≃ X. It is not at
all clear how to generalize that proof to the case of bundles of arbitrary rank.

In § 1.7.1 we give a new proof of Theorem 1.1.2 and its non-Fuchsian version, not assuming
tracefreeness, but assuming for simplicity that the pair (X,Dred) is stable. This new proof reflects a
machinery in arbitrary rank developed in collaboration with I. Biswas and J. Hurtubise in [BHH16]
and [BHH18b]. The main idea is based on two observations.

Firstly, for various notions of stability of bundles, there exist semicontinuity results along families
of bundles, e.g. those due to Maruyama, Shatz, Atiyah-Bott, Laumon, and Gurjat-Nitsure (see
Section 1.4 and references therein).

Secondly, the Atiyah bundle associated to a vector bundle over X (or a general complex manifold),
first introduced in [Ati57], is a fundamental tool in the study of holomorphic connections. It is
particularly maniable in the sense that it admits a variety of equivalent definitions, and it admits
certain logarithmic and meromorphic generalizations (see Section 1.5). Its two predominant aspects
that we are concerned with, formulated here for the holomorphic case, are the following.

• A splitting of the Atiyah exact sequence associated to E → X is equivalent to the datum of a
holomorphic connection on E (see e.g. § 1.5.2).

• The first cohomology space of the Atiyah bundle associated to E → X classifies deformations
of the pair (E,X) to first order (see e.g. Section 1.6).

These two aspects are intertwined when considering the deformation of the pair (E,X) underlying
the universal isomonodromic deformation of an initial holomorphic connection on E → X.

In the rank 2 case, the machinery from [BHH16] and [BHH18b] can be adapted to investigate
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very stability ([Lau88], see also Section 1.4) of vector bundles along isomonodromic deformations.
This has been established in [BHH17] (see also § 1.7.1).

In arbitrary rank, but g > 0, we find the following (see § 1.7.2, including moreover a version of
the result in [BHH18b] concerning the general meromorphic case).

Theorem 1.1.3 ([BHH16]). Let X be a compact Riemann surface of genus g ≥ 1 and let D be
a reduced divisor on X of degree n ≥ 0. Let (E,∇0) be an irreducible logarithmic connection of
arbitrary rank over X, with polar divisor D.

Let p : (X ,D) → Tg,n be the universal Teichmüller curve and let E → X be the vector bundle
underlying the universal isomonodromic deformation of (E,∇0). Denote Et := E|p−1(t) for any t ∈
Tg,n. Define

Ynss := {t ∈ Tg,n | Et not semistable} , Yns := {t ∈ Tg,n | Et not stable} .

Then Ynss and Yns are closed analytic subsets of Tg,n satisfying

codim(Ynss,Tg,n) ≥ g , codim(Yns,Tg,n) ≥ g − 1.

In particular, Ynss is proper and Yns is proper if g > 1.

In the prepublication [BHH18a], not presented here, we established a version of Theorem 1.1.3,
studying parabolic (semi-) stability of vector bundles (see [MS80]), as well as parabolic very stability
in rank two, along isomonodromic deformations endowed with the parabolic structure naturally
induced from the connection as in [BB04]. Note that parabolic semistability of a parabolic vector
bundle is not a consequence of semistability of the underlying vector bundle. However, the proof of
Theorem 1.1.3 goes through after appropriate modifications.

Moreover, I only indicate that in [BHH16] we established a version of Theorem 1.1.3 studying
(Ramanan-)stability along isomonodromic deformations of logarithmic connections on principal G–
bundles, where G is a connected reductive complex algebraic group. We refer to [Ram75] and [Boa02]
for definitions of these notions, and remark that in the case G = GLrC, they are equivalent to the
corresponding notions for vector bundles of rank r.

1.2 Flat connections and monodromy

1.2.1 Connections

Let M be a complex manifold1 of complex dimension m > 0 and let Dred be a (possibly empty)
reduced effective normal crossing divisor on M . Denote by D1, . . . ,Dn the irreducible components
of Dred.

A meromorphic connection of rank r over M with polar divisor at most D =
∑n

i=1 niDi, where
the ni’s are positive integers, is a pair (E,∇), where E →M is a holomorphic vector bundle of rank
r over M , whose sheaf of sections we shall also denote by E, and ∇ is a C-linear morphism

∇ : E → E ⊗ Ω1
M (D) ,

which satisfies the Leibniz rule
∇(f · e) = f ·∇(e) + e⊗ df

1Here and throughout, by manifold we mean connected Hausdorff manifold, except explicit mention of the contrary.
The same holds for Riemann surfaces. The latter will moreover always be compact.
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for any f ∈ OX(U) , e ∈ E(U), where U ⊂ X is any open subset. We say that (E,∇) has polar
divisor D if (D is empty or) ∇ is not induced by a meromorphic connection on E with polar divisor
at most D −Di for some i ∈ !1, n".

If U is a connected open set of M such that E(U) admits a frame e, then ∇|U is of the form

e · Y +→ e · (d + Ω) · Y

for a matrix-valued meromorphic one-form Ω, the connection matrix of ∇ with respect to e.

A holomorphic connection is a meromorphic connection with empty polar divisor and a logarithmic
connection (E,∇) is a C-linear morphism

∇ : E → E ⊗ Ω1
M(logDred)

satisfying the Leibniz rule.

A connection (E,∇) is called flat if its curvature ∇2 is zero. Note that if ∇ is given with respect
to a frame e over U by the connection matrix Ω, then the curvature of ∇ over U is given by

e · Y +→ e · (dΩ+ Ω ∧ Ω) · Y ,

where we consider the natural exterior product of matrix-valued one-forms. In particular, if M
is of complex dimension one, any holomorphic, logarithmic or meromorphic connection over M is
automatically flat.

We will be particularly interested in connections of a certain type considered by Malgrange in
[Mal83b][Mal83a]. Those cover all meromorphic connections if m = 1, but the definition is more
restrictive if m > 1.

Definition 1.2.1 (Malgrange connections). A meromorphic connection (E,∇) on M with polar
divisor D =

∑n
i=1 niDi will be called a Malgrange connection if

• Dred =
∑n

i=1 Di is smooth (non-crossing),

• ∇ is induced by a C-linear morphism

E → E ⊗ Ω1
M (logDred)⊗OM (D −Dred) ,

which we abusively again denote by ∇, and
• if U ⊂ M is connected and open such that on U we have a frame e of E(U), as well as
coordinates (z1, . . . , zm) of M with Dred ∩U = Di ∩U = {z1 = 0} for some i ∈ !1, n", then the
evaluation at any point of Di ∩ U of the holomorphic matrix-valued one-form

Ω · zni
1 ,

where Ω is the connection matrix with respect to e, is non-zero.

Note that flat logarithmic connections with smooth polar divisor are automatically Malgrange
connections because then the residue along the polar divisor is well defined and flat, see [Sab07,
§ 0.14.b].

Definition 1.2.2 (Locally constant connections). A meromorphic connection (E,∇) on M with
polar divisor D =

∑n
i=1 niDi will be called locally constant if

• Dred =
∑n

i=1 Di is smooth (non-crossing),
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• ∇ is flat, and

• for each i ∈ !1, n", any point of Di admits a neighborhood U ⊂ M such that there exists a
choice of coordinates (z1, . . . , zm) on U which is convenient in the sense that Di∩U = {z1 = 0}
and there exists a frame e of E(U) such that the connection matrix Ω of (E,∇) is, with respect
to this frame and these coordinates, of the form

Ω(z1, . . . , zm) =
A(z1)

zni
1

dz1 , (1.1)

where A is a matrix-valued holomorphic function on U depending only on z1.

Note that locally constant connections are automatically Malgrange connections. The converse
does not hold in general. However, flat logarithmic connections with smooth polar divisor are auto-
matically locally constant, due to elimination of non-essential variables [YT76, Thm. 5]. Moreover,
Malgrange connections of rank one are automatically locally constant, as one can see for example by
following the argument in the proof of Theorem 1.3.5 in §1.3.4 applied to the connection matrix ω
near a pole of such a Malgrange connection of rank one.

Lemma 1.2.3. Let D ⊂ C × Cm−1 with m > 1 be a polydisc centered at 0 with coordinates (z, t).
Let (E,∇) be a flat meromorphic connection with polar divisor niD, where D = {z = 0} and ni > 1.
If, up to shrinking D to a smaller polydisc centered at 0, there exists a set of coordinates (z′, t) =
(f(z, t), t) which is convenient in the sense of Definition 1.2.2 and which in restriction to {t = 0}
coincides with (z, t), then the (ni − 1)-jet

f(z, t) mod zni ,

i.e., the Taylor series up to order ni− 1 of f with respect to z, does not depend on the choice of such
a z′.
Moreover, if in any neighborhood of 0 in D there is a set of coordinates (ẑ, t) = (g(z, t), t) which
in restriction to {t = 0} coincides with (z, t) and such that g(z, t) ≡ f(z, t) mod zni, then up to
shrinking D, the coordinates (ẑ, t) are also convenient in the sense of Definition 1.2.2.

Proof. Let z′′ = h(z′, t) be a set of coordinates with h|t=0 = id. If the (ni − 1)-jet of h admits
non-zero partial derivatives with respect to some tk with k ∈ {1, . . . ,m − 1}, then for any frame,
the connection matrix of (E,∇) with respect to (z′′, t) admits a non-zero dtk-component in its polar
part. In particular, if (z′′, t) is convenient, then it coincides with (z′, t) up to order ni − 1.

For the second part of the statement, note that since (z′, t) is convenient and coincides with (ẑ, t)
up to order ni − 1, the connection matrix of (E,∇), with respect to some frame (e1, . . . , er) and the
coordinates (ẑ, t), is, up to shrinking D, of the form

Ω =
1

ẑℓ
A(ẑ, t)dẑ +

m−1∑

k=1

Bk(ẑ, t)dtk

with holomorphic A, Bk. By flatness of (E,∇), it satisfies the integrability condition dΩ = −Ω∧Ω .
Hence the system of linear partial differential equations

⎧
⎨

⎩

∂
∂tk
ψ(ẑ, t) = −Bk(ẑ, t)ψ(ẑ, t) , k ∈ {1, . . . ,m}

ψ(ẑ, 0) = Ir
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is integrable and therefore admits a unique solution ψ ∈ GLrO(D). The connection matrix of (E,∇)
with respect to the frame (e1, . . . , er) · ψ is given by ψ−1Ωψ + ψ−1dψ. By construction, it posseses
no dtk-components with respect to the coordinates (ẑ, t). Since it still satisfies the integrability
condition, it can moreover not depend on t. In other words, the connection matrix with respect to
(e1, . . . , er) · ψ and the coordinates (ẑ, t) is of the desired form (1.1).

Definition 1.2.4 (Second fundamental form). Let (E,∇) be a Malgrange connection with polar
divisor D on M . Let F ⊂ E be a subbundle. The second fundamental form of (E,∇) with respect to
F is the element

II∇,F ∈ Γ
(
Hom

(
F,E/F ⊗ Ω1

M (logDred)⊗OM (D −Dred)
))

defined by the composition

F ↪→ E
∇→ E ⊗ Ω1

M (logDred)⊗OM (D −Dred)→ E/F ⊗ Ω1
M (logDred)⊗OM (D −Dred).

The connection (E,∇) is said to be reducible if there exists a subbundle F of E with 0 < rank(F ) <
r = rank(E) such that ∇ induces a connection on F ; more precisely, such that II∇,F = 0. If there is
no such subbundle F , then (E,∇) is called irreducible.

Note that although∇ is only C-linear, the second fundamental form with respect to any subbundle
is OM -linear.

1.2.2 Monodromy

Let M be a complex manifold and let Dred be a (possibly empty) reduced effective normal crossing
divisor on M as before. Let (E,∇) be a flat meromorphic connection of rank r over M with polar
divisor at most D such that the corresponding reduced divisor is Dred. Denote M0 := M \ Dred.
Since (E,∇) is flat by assumption, (E0,∇0) := (E,∇)|M0 is integrable, i.e., S := ker(∇0) is a locally
constant sheaf of rank r over M0. For any path γ : [0, 1]→M0, the pull back γ∗S is locally constant
and thus isomorphic to a constant sheaf. Hence γ defines an isomorphism γ(S) : Sγ(1) → Sγ(0).
This isomorphism is invariant by homotopy relative to {γ(0) , γ(1)}. Fixing some point x0 ∈M0, we
obtain a representation

ρ∇ : π1(M
0, x0)→ GL(Sx0) ,

the monodromy representation of (E,∇) with respect to x0. Conversely, given ρ as above, there exists
a unique (up to unique isomorphism) flat holomorphic connection on M0 with monodromy represen-
tation ρ by Riemann-Hilbert correspondence (see [Del70, Thm. I.2.17]). Moreover, assuming Dred is
normal crossing, given ρ and, for each i ∈ !1, n", a choice of branch of the complex logarithm, there
exists a unique corresponding flat logarithmic Deligne connection on M with polar divisor at most
Dred and monodromy representation ρ [Del70, Prop. II.5.4]. Up to some minor technical conditions,
the Deligne models near the punctures may be replaced by more general so-called compatible mild
transversal models introduced by G. Cousin [Cou17, Th. 6]. Under more restrictive circumstances,
the local models may be chosen arbitrarily due to Malgrange’s Lemma (see § 1.2.3).

Definition 1.2.5. The monodromy representation ρ∇ of (E,∇) is said to be reducible if there exists
a sub-vector space of Sx0 = Ex0 of dimension d with 0 < d < r, which is stable under the action of
π1(M0, x0) induced by ρ∇. Otherwise, the monodromy representation is said to be irreducible.
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Note that if (E,∇) is a reducible flat meromorphic connection, then its monodromy representation
ρ∇ is reducible. By Riemann-Hilbert correspondence, the converse holds if (E,∇) is holomorphic.
The converse holds more generally if (E,∇) is logarithmic, due to the existence of local normal forms
[YT76, Thm. 3] at the poles.

1.2.3 Isomonodromic deformations

Let X0 be a compact Riemann surface of genus g, let Dred
0 be a reduced effective divisor of degree

n on X0 of the form Dred
0 =

∑n
i=1[xi] and let (E0,∇0) be a meromorphic connection over X0 with

polar divisor D0 =
∑n

i=1 ni[xi] where the ni’s are positive integers.

Definition 1.2.6 (Isomonodromic deformations). An isomonodromic deformation of (X0, E0,∇0)
as above consists in the following data:

• a family (p : X → T ,Dred) of n-pointed Riemann surfaces with Dred =
∑n

i=1 Di

(i.e., p is a proper holomorphic submersion between complex manifolds, where the fibers of p
are compact Riemann surfaces, Dred is a smooth reduced effective divisor on X and there exist
disjoint sections σi : T → X of p such that Di = [σi(T )]);

• a flat Malgrange connection (E ,∇) over X with polar divisor D =
∑n

i=1 niDi;

• a point t0 in T ; we denote X := p−1({t0}) and Dred := Dred|X ; and

• an (analytic) isomorphism of curves with marked points and meromorphic connections

(ψ,Ψ) : ((X0,D
red
0 ), (E0,∇0))

∼→ ((X,Dred), (E ,∇)|X ) .

Such deformations are called isomonodromic because for any point x1 in the fiber of p over
some point t1 in T away from the punctures, the choice of a path γ in X \ D0 from ψ(x0) to x1
allows to identify the monodromy representation of (E0,∇0) with respect to x0 with the monodromy
representation of (E ,∇)|p−1(t1) with respect to x1. Here the corresponding fibers over ψ(x0) and x1
are identified by holonomy along the chosen path and the fibers at x0 and ψ(x0) of the corresponding
vector bundles are identified by Ψ.

An important ingredient in the construction of isomonodromic deformations is Malgrange’s Lemma,
see [Sab07, p. 133], from [Mal83b]. It can be stated as follows.

Proposition 1.2.7 (Malgrange’s Lemma). Let Ui,T be complex manifolds. Let p : Ui → T be a
surjective holomorphic submersion whose fibers are smooth, connected and of complex dimension one.
Let Di be a smooth divisor on Ui defined by a holomorphic section of p. Let Σ := p−1(t0) be a fiber
and let (Ei,∇i) be a logarithmic connection on Σ with polar divisor {0} := Σ ∩ Di. Assume there
exists a homeomorphism

Φ : (Σ × T , {0} × T )→ (Ui,Di)

satisfying p ◦ Φ = pr2 and assume that T is simply connected.

Then there exists a unique (up to unique isomorphism) flat logarithmic connection (E ,∇) on Ui

with polar divisor Di, such that
(E ,∇)|Σ = (Ei,∇i) .

Note that in particular, in the above proposition, if U i = Σ×T , then, up to isomorphism, the only
logartihmic connection over U i extending the logarithmic connection (Ei,∇i) is the one obtained by
pull-back via the projection Σ × T → Σ. Therefore, logarithmic connections over Riemann surfaces
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with marked points (corresponding to the position of the poles) are rigid: they cannot be non-trivially
isomonodromically deformed whilst keeping the Riemann surface with marked points fixed. To obtain
interesting isomonodromic deformations in the logarithmic case, one needs to deform the base.

1.3 Universal isomonodromic deformations

For the purpose of this section, let us fix non-negative integers g, n satisfying

2g − 2 + n > 0 . (1.2)

Let us fix a quadruple
(X0,D

red
0 , E0,∇0) , (1.3)

where X0 is a compact Riemann surface X0 of genus g, Dred
0 is a reduced divisor of degree n on

X0 and (E0,∇0) is a meromorphic connection of rank r over X0 with a certain polar divisor D0 of
degree N ≥ n, such that Dred

0 is the reduced divisor associated to D0. Note that condition (1.2) is
equivalent to saying that the pair (X0,Dred

0 ) is stable. We say that (E0,∇0) is deformable if

3g − 3 +N > 0 . (1.4)

Note that the only undeformable configuration over a stable pointed curve is (g, n,N) = (0, 3, 3).
We will construct an isomonodromic deformation

(p : X → T∥,Dred, E ,∇, t0,ψ,Ψ) ,

of (1.3), which will be called the parallel isomonodromic deformation of (1.3), where the parameter
space T∥ has dimension 3g−3+N and the connection (E ,∇) is locally constant (see Definition 1.2.2),
such that this isomonodromic deformation of (1.3) satisfies a strong universal property with respect
to germs of locally constant isomonodromic deformations of (1.3). More precisely:

Proposition 1.3.1. Let (p′ : X ′ → T ′,D′red, E ′,∇′, t′0,ψ
′,Ψ′) , be an isomonodromic deformation of

(1.3) such that (E ′,∇′) is locally constant. Then, up to restricting to a sufficiently small neighborbood
of t′0 in T ′, there exists a classifying map

c∥ : (T ′, t′0)→ (T∥, t0)

and a unique isomorphism
(X ′,D′red, E ′,∇′)

∼→ c∗∥(X ,Dred, E ,∇)

which over t′0 induces the identity on (1.3) via (ψ′,Ψ′) and (ψ,Ψ).

This parallel isomonodromic deformation of (1.3) coincides with the universal isomonodromic
deformation of (1.3) in the logarithmic case N = n, as well as in the meromorphic rank-one case.

We will show, in the meromorphic rank-two case, that under suitable conditions the parameter
space of the universal isomonodromic deformation of (1.3) admits a natural foliation corresponding to
parallel isomonodromic deformations. We will also indicate why this holds, up to germification and
more restrictive conditions, in the case of arbitrary rank. Note however that in the non-logarithmic
case of rank r > 2, the construction of the universal isomonodromic deformation requires significantly
more involved methods than the elementary ones that as we will show are sufficient in the logarithmic
or meromorphic rank r ≤ 2 case. For an overview of the construction in the general case, which
because of its complexity is usually performed under various additional assumptions on (1.3) and is
not always complemented by the establishment of a universal property, we refer to [Sib77, Mal79,
JMU81, Mal83b, Mal86, Sab98, Pal99, Kri02, Boa02].

18



1.3.1 The Teichmüller curve

Before introducing the main construction, we need to recall a few well-known results from Teichmüller
theory. For a more detailed exposition, we refer to [ACG11, chap. XIV].

We fix a compact oriented real surface Σg for reference and a subset Y n ⊂ Σg of cardinality n,
as well as an ordering of Y n, i.e., a sequence yn := (y1, . . . , yn) with {yi} = Y n.

As a set, the Teichmüller space Tg,n of Riemann surfaces of genus g with n marked points is
the set of isomorphism classes [X,D,φ] of triples (X,D,φ), where X is a compact Riemann surface
of genus g, D = Dred is a set of n distinct points in X and φ is a Teichmüller structure, i.e., an
orientation-preserving homeomorphism φ : (Σg, Y n) → (X,D). Note that the Teichmüller structure
induces an ordering of the elements of D: we have D = {x1, . . . , xn} with xi = φ(yi). Two n-pointed
genus-g curves with Teichmüller structure (X,D,φ) and (X ′,D′,φ′) are said to be isomorphic if
there exists an isomorphism of pointed curves ψ : (X ′,D′) → (X,D) such that the automorphism
φ−1 ◦ ψ ◦ φ′ of (Σg, Y n) respects the ordering of the elements of Y n and is isotopic to the identity
by an isotopy relative to Y n. Under our general assumption (1.2), curves with Teichmüller structure
are rigid: if ψ is an automorphism of (X,D) and (X,D,φ) is isomorphic to (X,D,ψ ◦ φ), then ψ is
the identity.

The Teichmüller space Tg,n has a natural structure of a complex manifold such that, for any
holomorphic family (p : X → T ,D) of n-pointed genus-g curves endowed with a Teichmüller structure
Φ : (Σg, Y n)× T ∼→ (X ,D) with p ◦Φ = pr2, the associated classifying map

class+ : T → Tg,n

is holomorphic. Moreover, there exists a holomorphic family

(pg,n : Xg,n → Tg,n,Dg,n) (1.5)

of n-pointed genus-g curves parametrized by the Teichmüller space, endowed with a Teichmüller
structure Φg,n, such that the corresponding classifying map is the identity. This universal Teichmüller
curve satisfies a strong universal property with respect to families with Teichmüller structure as
above, i.e., any such family is isomorphic to the pull-back of the universal Teichmüller curve under
the classifying map, and this isomorphism is unique. From the real-analytic Fricke coordinates, we
know that the Teichmüller space Tg,n is diffeomorphic to R6g−6+2n [FK97]. In particular, Tg,n is a
contractible topological space. From the Bers construction of the Teichmüller space, we know that
Tg,n can be holomorphically embedded into C3g−3+n, see [Ber61]. In particular, there exist global
holomorphic coordinates t on Tg,n.

1.3.2 Universal isomonodromic deformations, logarithmic case

Let (X0,Dred
0 , E0,∇0) be as in 1.3 and assume that ∇0 is logarithmic, i.e. its polar divisor D0 satisfies

D0 = Dred
0 . We still assume (1.2); i.e., (X0,D0) is stable. The universal isomonodromic deformation

(p : X → T ,D, E → X ,∇, ⋆,ψ,Ψ) (1.6)

of (X0,Dred
0 , E0,∇0) is usually constructed as follows. Choose a Teichmüller structure φ on (X0,D0)

and denote by ⋆ ∈ T := Tg,n the point corresponding to [X0,D0,φ]. Denote by p : (X ,D) → T
the universal Teichmüller curve (1.5), whose fibers shall be denoted by (Xt,Dt) := p−1(t). We
moreover denote D =

∑n
i=1Di the natural decomposition. Let ψ : (X0,D0)→ (X⋆,D⋆) be the unique

isomorphism compatible with the given Teichmüller structures on X0 and X. Via this isomorphism,
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the connection (E0,∇0) on X0 induces a logarithmic connection (E⋆,∇⋆) on X⋆ with polar divisor
D⋆. We denote by Ψ : E0 → E⋆ the natural vector bundle isomorphism projecting to ψ. From
the Teichmüller structure Φg,n on the Teichmüller curve, we get, for each i ∈ !1, n", a topological
trivialization of

(
Ui , Di

)
for Ui := (X \ D) ∪Di yielding, by Malgrange’s Lemma, a flat logarithmic

connection (E i,∇i) over Ui with polar divisor Di extending (E⋆,∇⋆)|Ui∩X⋆ . By Riemann-Hilbert
correspondence, those glue to a flat logarithmic connection (E ,∇) over X with polar divisor D,
satisfying (E ,∇)|X⋆ = (E⋆,∇⋆). Again by Malgrange’s Lemma and Riemann-Hilbert correspondence,
we have the following strong universal property.

Proposition 1.3.2. Let (X0,D0) be a stable n-pointed genus-g curve and let (E,∇) be a logarithmic
connection over X0 with polar divisor D0. Let (p′ : X ′ → T ′,D′, E ′,∇′, t′0,ψ

′,Ψ′) , be an isomon-
odromic deformation of (X0,D0, E0,∇0) such that there exists a Teichmüller structure

Φ′ : (Σg, Y
n)× T ′ ∼→ (X ′,D′)

with p′ ◦Φ′ = pr2. Consider the universal isomonodromic deformation (1.6) of (X0,D0, E0,∇0) and
the Teichmüller classifying map

class+ : T ′ → T = Tg,n .

Up to conveniently modifying Φ′, we may assume class+(t′0) = ⋆. There exists unique isomorphism

(X ′,D′, E ′,∇′)
∼→ (class+)∗(X ,D, E ,∇)

which over t′0 induces the identity on (1.3) via (ψ′,Ψ′) and (ψ,Ψ).

Note that in the logarithmic case, any isomonodromic deformation of (X0,D0, E0,∇0) satisfies the
condition of Proposition 1.3.2 up to restricting its parameter space T ′ to for example a contractible
neighborhood of t′0.

1.3.3 Parallel isomonodromic deformations

Let (X0,Dred
0 , E0,∇0) be as in (1.3). We choose a Teichmüller structure φ on (X0,D0) and we denote

by
⋆ ∈ Tg,n

the point in the Teichmüller space corresponding to (X0,D0,φ). The Teichmüller structure φ also
provides an ordering of the points of X0 forming the support of Dred

0 :

Dred
0 =

n∑

i=1

[xi].

The polar divisor D0 of (E0,∇0) is then of the form D0 =
∑n

i=1 ni[xi], with ni > 0.

Consider the universal Teichmüller curve (1.5) together with its Teichmüller structure Φg,n. Note
that the latter provides a topological trivialization of the family (1.5). Since moreover the Teichmüller
space Tg,n is contractible, for each i ∈ !1, n", the i-th irreducible component of the divisor Dg,n on the
Teichmüller curve Xg,n admits a contractible neighborhood Vi ⊂ Xg,n. The second Cousin problem
there has a solution, so that there exists a holomorphic function z(i) ∈ ΓOVi with zero-divisor Di

g,n,
see [GR79, Thm. 2 p. 139]. Since moreover Di

g,n is smooth, if Vi is chosen sufficiently small, then

there are global holomorphic coordinates of the form (z(i), t) on Vi, such that pg,n : (z(i), t) +→ t with
respect to a holomorphic embedding of the Teichmüller space into C3g−3+n. We fix these coordinates.
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For each i ∈ {1, . . . , n}, denote

J (i) :=

{
{ε +→ ea

(i)
1 ε+ . . .+ a(i)ni−1ε

ni−1 , a(i)k ∈ C} if ni > 1
{ε +→ ε} if ni = 1 .

}

≃ Cni−1

the universal cover of the group of (ni − 1)-jets of biholomorphisms of the germ (C, 0).2 We now set

T∥ := Tg,n × J∥ , J∥ :=
n∏

i=1

J (i)

and consider

p : (X ,Dred)→ T∥ , Dred =
n∑

i=1

Di ,

the pull-back of the universal Teichmüller curve with respect to the projection to the first factor of
T∥. We set t0 := (⋆, 0) ∈ T∥.

Let ψ : (X0,Dred
0 ) → (Xt0 ,Dred

t0 ) := p−1(t0) be the unique isomorphism compatible with the
given Teichmüller structures. Via the isomorphism ψ, the connection (E0,∇0) on X0 induces a
meromorphic connection on p−1(t0), which we denote by (Et0 ,∇t0), and a natural vector bundle
isomorphism Ψ. Since T∥ is contractible, the natural morphism

π1(Xt0 \ D
red
t0 )→ π1(X \ Dred)

is an isomorphism. By Riemann-Hilbert correspondence, the holomorphic connection (Et0 ,∇t0)|Xt0\D
red
t0

therefore extends to a unique flat holomorphic connection (E(0),∇(0)) over X \ Dred.

Consider now a polar component Di. In a contractible neighborhood Ui of Di in X , we have
global holomorphic coordinates of the form

(z, t, a(1), . . . , a(n)) with t ∈ Tg,n , a(k) ∈ J (k) , z = z(i) ,

such that Di there is given by {z = 0}. We shall denote by ϕa(i)(ε) the (ni−1)-jet of biholomorphism

associated to a(i). Consider the meromorphic connection on the trivial bundle over (C, 0) obtained
by restricting (E0,∇0) to a germ of neighborhood of xi and choosing a frame of E0 over this germ.
It is written

Y +→ (d +Adx) · Y for some xniA(x) ∈ glrC{x} .

Assume that the map ψ is given with respect to our coordinates by x +→ (z, t) = (ϕ(x), ⋆). We obtain
a connection

∇(i) : Y +→ (d + Ωi) · Y , Ωi := A(ϕ−1(ϕa(i)(z))) d(ϕ
−1(ϕa(i)(z)))

on the trivial bundle over Ui. If we restrict the discussion to a compact subset K of J∥, then up to
shrinking Ui in the z-direction, we can make sure that

(ϕ−1(ϕa(i)(z))), t, a
(1), . . . , a(n))

2We made a slight abuse of notation here: for any a(i) ∈ Cni−1, there is a natural (ni − 1)-jet of biholomorphism
ϕ(ε) = ϕa(i)(ε) as stated, together with a natural choice of logarithm for ϕ′(0). Those together are equivalent to the

datum of a(i).
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are holomorphic coordinates on Ui. In particular, the connection ∇(i) there is flat, has polar divisor
niDi and is locally constant.

By Riemann-Hilbert correspondence, we obtain a unique isomorphism between the restrictions
to Ui \ D0 of ∇(i) and (E(0),∇(0)) respectively, which is compatible with (Et0 ,∇t0). Since moreover
the compact subset K can be chosen arbitrarily large, the above construction allows to extend
(Et0 ,∇t0) to a flat locally constant connection (E ,∇) over X . We have now constructed the parallel
isomonodromic deformation

(p : X → T∥,Dred, E ,∇, t0,ψ,Ψ)

of the initial connection (1.3). More precisely, we have seen that it is a locally constant isomonodromic
deformation of (1.3), whose parameter space has dimension

dim(T∥) = 3g − 3 + n+
n∑

i=1

(ni − 1) = 3g − 3 +
n∑

i=1

ni .

It remains to see that it satisfies the universal property stated in Proposition 1.3.1. Let (p′ : X ′ →
T ′,D′red, E ′,∇′, t′0,ψ

′,Ψ′) be a locally constant isomonodromic deformation of (1.3). We shall con-
struct the classifying map in two steps:

• Up to restricting the parameter space T ′ to for example to a contractible neighborhood of t′0,

we may assume that (X ′ → T ′,D′red) admits a Teichmüller structure. Then it admits a unique
Teichmüller structure compatible, via ψ′, with the one we have chosen on (X0,Dred

0 ) in the
construction of the parallel isomonodromic deformation of (1.3), so that there is a classifying
map class+ : (T ′, t′0)→ (Tg,n, ⋆). Without loss of generality, up to unique isomorphism, by the

universal property of the Teichmüller curve, we may assume that (p′ : X ′ → T ′,D′red, t′0) is
identical to the pull-back via class+ of (pg,n : Xg,n → Tg,n,Dg,n, ⋆).

• Since (E ′,∇′) is locally constant, up to further shrinking T ′, we may assume that for each
i ∈ !1, n" we have global holomorphic coordinates of the form (z′, t′) = (fi(z, t′), t′) near the
i-th irreducible component of D′red, which are convenient in the sense of Definition 1.2.2 and
do moreover coincide with (z, t′) when restricted to {t′ = t′0}. By Lemma 1.2.3, the (ni− 1)-jet
fi(ε, t′) mod εni is intrinsically defined. This jet yields, possibly after further shrinking T ′, a
well-defined map ci : (T ′, t′0)→ (J (i), 0).

The classifying map will then be

c∥ := (class+, c1, . . . , cn) : (T ′, t′0)→ (T∥, t0) .

The fact that there is a unique isomorphism

(X ′,D′red, E ′,∇′)
∼→ c∗∥(X ,Dred, E ,∇)

which over t′0 induces the identity on (1.3) via (ψ′,Ψ′) and (ψ,Ψ), is now an easy combination of
Riemann-Hilbert correspondence and Lemma 1.2.3.

Note that by the universal property in Proposition 1.3.2, in the logarithmic case, the praral-
lel isomonodromic deformation of (X0,D0, E0,∇0) is uniquely isomorphic to the universal isomon-
odromic deformation. Since Malgrange connections of rank one are locally constant, in the mero-
morphic rank-one case, by Proposition 1.3.1, the parallel isomonodromic deformation of (1.3) admits
a universal property with respect to germs of isomonodromic deformations (1.3). In other words,
in the meromorphic rank-one case, the parallel isomonodromic deformation of (1.3) is a universal
isomonodromic deformation of (1.3).
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Remark 1.3.3. Let (E ,∇) be the flat connection underlying the parallel isomonodromic deformation
of (X0,Dred

0 , E0,∇0). It follows from the construction that if ∇0 induces a connection on a sub-
bundle F0 of E0, then there exists a subbundle F of E such that ∇ induces a flat connection on F .
On the other hand, the connection (E ,∇) is canonically isomorphic to the connection we obtain by
applying the construction of the parallel isomonodromic deformation to (E ,∇)|p−1(t1) for any t1 ∈ T∥.
Consequently, if (E0,∇0) is irreducible then (E ,∇)|p−1(t) is irreducible for any parameter t ∈ T∥.

1.3.4 Universal isomonodromic deformations, meromorphic rank-two case

It was shown in [Heu10] that the universal object for isomonodromic deformations of rank 2 connec-
tions with vanishing trace, where one imposes the trace to vanish also along the isomonodromic defor-
mation, is precisely the parallel isomonodromic deformation. We will now adapt the sl2-construction
to the case of more general rank-two connections.

Let
(X0,D

red
0 , E0,∇0) , (1.7)

be as in (1.3), with two additional assumptions:

• The rank of E0 is r = 2.

• If x is a local coordinate on U ⊂ X0 near a pole of order ℓ > 1 of (E0,∇0), and the connection
∇0 : E0 → E0 ⊗ Ω1

X(D0) is, with respect to a holomorphic frame e(x), of the form

∇0 : e · Y +→ e ·
(
d +

1

xℓ
A(x)dx

)
· Y , A ∈ M2×2O(U),

then

tr(A(0)) ̸= 0 , A(0)−
1

2
tr(A(0)) · I2 ̸= 0 . (1.8)

Remark 1.3.4. The second condition above is verified for some choice of coordinates and frame near
each puncture if and only if it is verified for all such choices. It amounts to the most polar parts
of non-Fuchsian singularities of the connection having two distinct, but non-opposite eigenvalues, or
having two identical non-zero eigenvalues, but only one Jordan block.

The universal isomonodromic deformation

(p : X → T ,Dred, E → X ,∇, t0,ψ,Ψ) (1.9)

of (1.7) can be obtained by the following construction, which is very similar to the one of the parallel
isomonodromic deformation of (1.7). As before, we choose a Teichmüller structure on the stable
curve (X0,Dred

0 ), providing a point ⋆ ∈ Tg,n and an ordering on the poles of (E0,∇0), such that the
polar divisor writes D0 =

∑n
i=1 ni[xi]. For each i ∈ {1, . . . , n} denote by J (i) ≃ Cni−1 the (ni−1)-jet

space as in § 1.3.3. Set

T := Tg,n × J , J :=
n∏

i=1

(
J (i) × J (i)

)

and consider

p : (X ,Dred)→ T , Dred =
n∑

i=1

Di ,

the pull-back of the universal Teichmüller curve (1.5) with respect to the projection to the first factor
of T . We set t0 := (⋆, 0) ∈ T . We choose ψ : (X0,D0)

∼→ (Xt0 ,Dred
t0 ) := p−1(t0) and Ψ : (E0,∇0)

∼→
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(Et0 ,∇t0) projecting to ψ as before. The meromorphic Malgrange connection (E ,∇) with polar
divisor D =

∑n
i=1 niDi, whose restriction to p−1(t0) coincides with (Et0 ,∇t0), is constructed exactly

as before, except near the polar components Di with ni > 0. Consider such a polar component and
the meromorphic connection on the trivial bundle over (C, 0) obtained by restricting (E0,∇0) to a
germ of neighborhood of xi and choosing a frame there. It can be written ∇1

0 ⊗∇2
0 with

∇1
0 : Y +→ (d +Adx) · Y xniA(x) ∈ sl2C{x}

∇2
0 : y +→ (d + adx) · y xnia(x) ∈ C{x} ,

where we moreover have xniA(x)|x=0 ̸= 0, xniα(x)|x=0 ̸= 0 by our assumption on the non-logarithmic
poles. In a neighborhood Ui of Di in X , we have preferred coordinates of the form

(z, t,α1, . . . ,αn) with t ∈ Tg,n , αk = (a(k,1), a(k,2)) ∈ J (k) × J (k) , z = z(i),

such that Di there is given by {z = 0}. Assume that the map ψ is given with respect to these
coordinates by x +→ (z, t,α) = (ϕ(x), ⋆, 0). Denoting by ϕa(i,ℓ)(ε) the (ni − 1)-jet of biholomorphism

associated to a(i,ℓ), we obtain connections

∇1 : Y +→
(
d +A(ϕ−1(ϕa(i,1)(z))) d(ϕ

−1(ϕa(i,1)(z)))
)
· Y

∇2 : y +→
(
d + α(ϕ−1(ϕa(i,2)(z))) d(ϕ

−1(ϕa(i,2)(z))))
)
· y .

By the same argument as before, germifying in the z-direction, we may assume that the connection
matrices of these connections are holomorphic after multiplying by zni and non-vanishing if further
restricted to Di. Moreover, the connections ∇1 and ∇2 are obviously flat over their domain of
definition, and so is their tensor product∇(i) := ∇1⊗∇2 .We now glue the∇(i)’s with the construction
outside the Di’s to obtain (E ,∇). Note that

dim(T ) = 3g − 3 + n+ 2
n∑

i=1

(ni − 1) .

We have the following universal property.

Theorem 1.3.5. Consider the universal isomonodromic deformation (1.9) of (1.7). Let (p′ : X ′ →
T ′,D′red, E ′,∇′, t′0,ψ

′,Ψ′) , be another isomonodromic deformation of (1.7). Then, up to restricting
to a sufficiently small neighborbood of t′0 in T ′, there exists a classifying map

c : (T ′, t′0)→ (T , t0)

and a unique isomorphism
(X ′,D′red, E ′,∇′)

∼→ c∗(X ,Dred, E ,∇)

which over t′0 induces the identity on (1.7) via (ψ′,Ψ′) and (ψ,Ψ).

Proof. Let us denote by m − 1 the dimension of T ′. We may assume m > 1, otherwise there is
nothing to prove. We may also assume T ′ to be sufficiently small. Then we may endow the family
p′ : (X ′,D′red)→ T ′ with a Teichmüller structure Φ′ compatible with the one on (X0,Dred

0 ) associated
to the point ⋆ ∈ Tg,n. We obtain a Teichmüller classifying map class+ : (T ′, t′0) → (Tg,n, ⋆). The

classifying map c will be of the form c = (class+, c1, . . . cn) with ci =
(
c
(1)
i , c(2)i

)
: T ′ → J (i)×J (i). Only

those ci where ni > 1 need our attention. Let us consider such an index i. We may assume without loss
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of generality that the family p′ coincides with the pull-back, via class+, of the universal Teichmüller
curve, so that we have preferred coordinates (z, t′) in a neighborhood of the i-th component of D′red.
Since T ′ is sufficiently small, we may consider this neighborhood to be topologically a small polydisc
D in Cm. Hence the vector bundle E ′|D admits a frame e′, and we consider the connection matrix Ω
of ∇′ with respect to this frame. We have Ω = Ω0 + ω · I2 with trace(Ω0) = 0 and ω. We may write

Ω0 =
(
α β
γ −α

)
. From the flatness of ∇′ we deduce dΩ0 + Ω0 ∧ Ω0 = 0 and dω = 0, in other words,

dα = γ ∧ β , dβ = 2β ∧ α , dγ = 2α ∧ γ , dω = 0 . (1.10)

The assumption (1.8) on the initial connection (1.7) implies, via (ψ′,Ψ′), that the holomorphic one-
forms zniΩ0 and zniω are not zero when evaluated at (z, t′) = (0, t′0). Up to a constant gauge
transformation, we may assume that this holds also for the holomorphic one-form zniβ. Since D is
sufficiently small, we may assume that the holomorphic one-forms zniβ and zniω are non-vanishing
on D. By (1.10), these two one-forms define non-singular holomorphic foliations on D. Hence up to
shrinking, by the Frobenius integrability theorem there exist holomorphic functions f1, f2 on D and
non-vanishing holomorphic functions λ1,λ2 on D such that

zniβ = λ1df1 and zniω = λ2df2 .

Since in both cases, the divisor {z = 0} is a leaf of the foliation and ∂fj
∂z is non-vanishing, we may

assume, up to shrinking, that

• (fj , t′) is a system of coordinates on D for j ∈ {1, 2},
• {z = 0} = {f1 = 0} = {f2 = 0}; it suffices to modify the fj’s by some constants,

• in restriction to {t′ = t′0}, both f1 and f2 are the identity; it suffices to compose fj with gj(·, t′0),
where gj is defined by the coordinate change (z, t′) = (gj(fj , t′), t′),

• the functions ∂fj
∂z |z=0 for j ∈ {1, 2} admit a complex logarithm that yields 0 when evaluated at

t′0; indeed, by the previous assumption, these functions yield 1 when evaluated at t′0.

For these convenient f1, f2, we now define

c
(j)
i (t′) := (ε +→ fj(ε, t

′) mod εni) , j ∈ {1, 2} .

We clearly have a unique isomorphism (X ′,D′red)
∼→ c∗(X ,Dred) which over t′0 induces the identity on

(X0,Dred
0 ) via ψ′ and ψ. By Riemann-Hilbert correspondence and Malgrange’s Lemma, in restriction

to the complement of the non-logarithmic poles, we moreover have a unique isomorphism (E ′,∇′)
∼→

c∗(E ,∇) which over t′0 induces the identity on (E0,∇0) via Ψ′ and Ψ. It remains to prove that this
isomorphism extends over the non-logarithmic poles.

Let us consider such a pole of index i and adopt the notation above. We denote ϕ(j)(z, t′) := c
(j)
i (t′)(z).

Up to shrinking, since ∇′ is a Malgrange connection and the fj’s were convenient, with respect to
these coordinates we have

β = β0
(
ϕ(1), t

) dϕ(1)

(
ϕ(1)

)ni
+

m−1∑

k=1

βk
(
ϕ(1), t′

)
dt′k , ω = ω0

(
ϕ(2), t

) dϕ(2)

(
ϕ(2)

)ni
+

m−1∑

k=1

ωk

(
ϕ(2), t′

)
dt′k

with β0,βk, ω0,ωk holomorphic. However, (1.10) and the fact that β0 is non-vanishing forces α and
γ to be of an analogous form with respect to

(
ϕ(1), t

)
. From the integrability of Ω0 and ω we then

deduce, as in Lemma 1.2.3, that there exists ψ̃0 ∈ SL2(O(D) and λ̃ ∈ O∗(D) with ψ̃0|{t′=t′0} = I2 and

λ̃|{t′=t′0} = 1 such that

ψ̃−1
0 Ω0ψ̃0 + ψ̃−1

0 dψ̃0 = M
(
ϕ(1)

) dϕ(1)

(
ϕ(1)

)ni
, ω + λ̃−1dλ̃ = µ

(
ϕ(2)

) dϕ(2)

(
ϕ(2)

)ni
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for some holomorphic M ∈ sl2(C{ε}), µ ∈ C{ε}. In other words, with respect to the frame ẽ′ :=
e′ · ψ̃0 · λ̃ of E′ and the coordinates (z, t′), the connection matrix of ∇′ is given by

M
(
ϕ(1)(z, t′)

) d
(
ϕ(1)(z, t′)

)
(
ϕ(1)(z, t′)

)ni
+ I2 · µ

(
ϕ(2)(z, t′)

) d
(
ϕ(2)(z, t′)

)
(
ϕ(2)(z, t′)

)ni
.

It is now immediate to check that on D, the unique isomorphism (E ′,∇′)
∼→ c∗(E ,∇) defined in the

union between the fiber over t′0 and the complement of {z = 0}, extends (uniquely) to D.

Consider the embedding

ι :

⎧
⎨

⎩
J∥ =

∏n
i=1 J

(i) → J =
∏n

i=1

(
J (i) × J (i)

)

(
a(1), . . . , a(n)

)
+→

(
a(1), a(1), . . . , a(n), a(n)

)
.

and the corresponding embedding

ι′ : (T∥ = Tg,n × J∥ , (⋆, 0))→ (T = Tg,n × J , (⋆, 0)) .

The pull-back of the universal isomonodromic deformation of (1.7) by ι′ is by construction the parallel
isomonodromic deformation of (1.7). Moreover, the parameter space T admits a foliation by leaves
isomorphic to T∥. Indeed, consider the holomorphic map

π :

⎧
⎪⎨

⎪⎩

J =
∏n

i=1

(
J (i) × J (i)

)
→

∏n
i=1 J

(i)

(
ϕa(1,1) ,ϕa(1,2) , . . . ,ϕa(n,1) ,ϕa(n,2)

)
+→

(
ϕa(1,1) ◦

(
ϕa(1,2)

)−1
, . . . ,ϕa(1,1) ◦

(
ϕa(n,2)

)−1
)

.

The kernel of the differential π∗ defines a non-singular codimension
∑n

i=1(ni − 1)-foliation on J .
Its leaves, the level sets of π, are isomorphic to J∥. Pulling back this foliation to T , we obtain
a non-singular foliation whose leaves are isomorphic to T∥. These leaves correspond to parallel
isomonodromic deformations. Indeed, if (E ,∇) denotes the connection underlying the universal
isomonodromic deformation (1.9) of (1.7), and we choose a point t1 ∈ T in its parameter space,
then by construction, we see that the restriction of (E ,∇) to the leaf containing t1 of the parallel
foliation in the parameter space is canonically isomorphic to the connection underlying the parallel
isomonodromic deformation of (E ,∇)|p−1(t1).

Remark 1.3.6. Following the same argumentation as in Remark 1.3.3, if (E0,∇0) is irreducible
and (E ,∇) denotes the flat connection underlying the universal isomonodromic deformation of (1.7),
then (E ,∇)|p−1(t) is irreducible for any parameter t ∈ T .

1.3.5 The parallel foliation in the general case

For the construction of the germ of universal isomonodromic deformation in the non-logarithmic case
of arbitrary rank, with however various additional assumptions, we refer to the literature. All we
need in order to establish the relation between the germ of universal and the germ of parallel isomon-
odromic deformation of a given initial connection is some information concerning the parameter space
T of the former, as well as the corresponding classifying map. As we will now see, under suitable
conditions and up to germification, this parameter space T still admits a foliation by leaves isomor-
phic to T∥, and the leaf containing the initial parameter corresponds to the parallel isomonodromic
deformation. Let

(X0,D
red
0 , E0,∇0) (1.11)

be as in (1.3), with the following additional assumption:
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(*) If x is a local coordinate on U ⊂ X0 near a pole of order ni > 1 of (E0,∇0), and

Ω =
1

xni
A(x)dx , A ∈ Mr×rO(U)

is the connection matrix of ∇0 with respect to a frame e of E0 over U , then the matrix A(0)
admits r distinct non-zero eigenvalues.

As is well known [Sib62], under this condition, for any integer ℓ, up to shrinking U and conve-
niently choosing e, one may assume the Taylor series expansion of A up to order ℓ to take values
in Diagr(C[x]), where Diagr denotes diagonal matrices in Mr×r. In particular, we may assume the
non-logarithmic part of Ω, i.e., the part corresponding to the Taylor series expansion up to order
ni − 2 of A, to be diagonal for suitable frames. We may now associate to (X0,Dred

0 , E0,∇0) a point

(⋆,pp
0
) ∈ T := Tg,n ×

n∏

i=1

PP(i)
r ,

where PP(i)
r := {0} if ni = 1 and

PP(i)
r :=

{(

eΛ0 +
ni−2∑

k=1

Λkε
k

)
dε

εni

∣∣∣∣∣ Λ0,Λk ∈ DiagrC

}

≃
(
C̃∗ × Cni−2

)r

if ni > 1. Les us be more precise. Recall that near each irreducible component Di
g,n of the divisor

parametrizing the marked points in the universal Teichmüller curve pg,n : Xg,n → Tg,n, we have
preferred coordinates (z(i), t). A point (t0,pp) in T should be read as a point t0 in the Teichmüller
space and a collection of possible non-logarithmic parts at the marked points of a connection over
the fiber p−1

g,n({t0}) of the universal Teichmüller curve, where for each i ∈ {1, . . . , n}, the variable ε

in PP (i)
r is seen as the local coordinate z(i)|{t=t0} near the i-th marked point on the curve p−1

g,n({t0}).
Such a point (t0,pp) in T is an isomorphism class of irregular curve (in terms of [Boa02]), endowed
with a Teichmüller structure and a choice of logarithm of the leading order term at each pole (with
respect to preferred coordinates). Following [Mal83b, Boa02], up to restricting3 to a sufficiently small
neighborhood of (⋆,pp

0
) in T , there exists an isomonodromic deformation

(p : X → T ,Dred, E → X ,∇, (⋆,pp
0
),ψ,Ψ) (1.12)

of (1.11) parametrized by T , where (X ,Dred) is the pull-back of the universal Teichmüller curve with
respect to the projection T → Tg,n to the first factor of T , such that this germ of isomonodromic
deformation is versal with respect to the natural classifying map of underlying irregular curves
with preferred coordinates at the marked points. This means that for each parameter (t0,pp), the
connection matrix of the connection obtained from (E ,∇) by restricting to p−1({(t0,pp)}) has non-
logarithmic polar part pp when read with respect to z(i)|{t=t0} and a suitable frame. Consider the
non-singular holomorphic foliation of codimension (r−1)

∑n
i=1(ni−1) on T defined by the pull-back

to T of the level sets of the map

π : PPr :=
n∏

i=1

PP(i)
r −→ PPr−1 :=

n∏

i=1

PP(i)
r−1

3Germification here can actually be avoided by deleting the locus of multiple eigenvalues of eΛ0 in each PP(i)
r and

lifting to the universal cover of the resulting parameter space.
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constructed as follows. Consider firstly the projections f1 : PPr → PP1 and f2 : PPr → PPr−1

obtained by selecting the first entry and the lower right submatrix of size (r−1)×(r−1) respectively,
of each diagonal matrix of meromorphic one-forms. There is a well-defined holomorphic map f :
PPr → J∥ =

∏n
i=1 J

(i) satisfying f(pp
0
) = 0 and

f1(f(Ω)
∗Ω) = f1(pp0) mod

(
1

ε
C{ε}

)n

.

Here for the pull-back we consider the action of J (i) on PP(i)
r for each i, modulo logarithmic terms, and

differentiation is to be considered with respect to the variable ε only. The existence and uniqueness
of f can easily be established by considering its components f (i) for i ∈ {1, . . . , n} and performing
an induction on k ∈ {2, . . . , ni}, considering f (i) mod εk. The map π is now defined by

Ω +→ f2(f(Ω)
∗Ω) mod

(
1

ε
Cr−1{ε}

)n

.

Let us denote by T∥ the parameter space of the parallel isomonodromic deformation of (1.11). As
one can easily check, the composition of the classifying map T∥ → T with idTg,n × f is simply the
pull-back to T∥ of the involution on J∥ which to each jet associates its inverse. In particular, the
classifying map T∥ → T is injective and its image parametrizes the leaf containing (t0,pp) of the
foliation given by π∗. It is known by [Mal81, Mal86] that under suitable conditions, the germ of versal
isomonodromic deformation (1.12) of (1.11) satisfies a universal property with respect to germs of
isomonodromic deformations of (1.11) and the natural classifying map. When that is the case, the
universal property ensures that the connection (E ,∇) in (1.12), restricted to the preimage under p
of the germ of leaf in T containing (t0,pp), is uniquely isomorphic to the connection underlying the
germ of parallel isomonodromic deformation of (1.11).

1.4 Notions of stability of vector bundles over curves

In this section, we recall the notion of Mumford stability of vector bundles over curves and a refine-
ment of this notion using Segre-invariants and Higgs bundles in the rank 2 case. We also recall that
these are open conditions in families due to results of Maruyama, Shatz and Laumon. Furthermore,
we establish an elementary vector bundle lemma, which will be needed later on. For the moment,
it may just be considered as an example for the manipulation of vector bundles with respect to
questions of stability.

1.4.1 Arbitrary rank

Definition 1.4.1. Let X be a compact Riemann surface and let E → X be a vector bundle. Then E
is called (Mumford)-semi-stable (resp. stable) if for any non-zero coherent subsheaf F of E we have

µ(F ) :=
deg(F )

rank(F )
≤ µ(E) (resp. µ(F ) < µ(E) or F = E) .

Note that for any coherent subsheaf F as above there exists a unique subbundle F sat ⊂ E such
that rank(F ) = rank(F sat) and F ⊂ F sat. In particular, µ(F sat) ≥ µ(F ). The above definition is
therefore equivalent to the one we obtain by imposing that F is (the sheaf of sections of) a subbundle
of E. More details can be found for example in [LP97].
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The notion of stable bundles has been introduced by Mumford in [Mum62], where he established
that the moduli space of isomorphism classes of stable bundles with fixed rank and degree over X
admits a natural structure of non-singular quasi-projective variety. Semistable bundles, or rather
their S-equivalence classes, have to be taken into account when describing its closure. Stable bundles
of degree 0 in genus g ≥ 2 are also precisely those which can be endowed with a holomorphic
connection whose monodromy representation is unitary [NS65], see also [Don83].

The dual and the tensor product of semistable bundles are semistable [AB81, p. 588]. Moreover,
we have the following useful general fact. If 0→ A→ B → C → 0 is an exact sequence of coherent
sheaves over X, then the sequence of rationals (µ(A), µ(B), µ(C)) is monotonous: we either have
µ(A) ≤ µ(B) ≤ µ(C) or µ(A) ≥ µ(B) ≥ µ(C) and if one of the inequalities is strict, the other is, too.

Every vector bundle E → X admits a canonical Harder-Narasimhan filtration, i.e., a filtration

0 = F0 ! F1 ! . . . ! FN = E

such that for all i ∈ !1, N", the vector bundle Vi := Fi/Fi−1 is semistable and for all i ∈ !1, N", one
has µ(Vi) > µ(Vi+1) [Ses80, p. 15]. If N = 1, then E is semistable.

Every semistable vector bundle E → X admits a Jordan-Hölder filtration, i.e., a filtration

0 = F0 ! F1 ! . . . ! FN = E

such that for all i ∈ !1, N", the vector bundle Vi := Fi/Fi−1 is stable of slope µ(Vi) = µ(E).
Moreover, the graded bundle of a Jordan-Hölder filtration up to permutation of the direct summands
is canonical [Ses80, p. 18]. If N = 1, then E is stable.

Theorem 1.4.2 (Shatz). Let E → X p→ T be a holomorphic family of vector bundles over compact
Riemann surfaces. For any t ∈ T , denote Xt := p−1(t) and Et := E|Xt. Define

T nss := {t ∈ T | Et not semistable} , T ns := {t ∈ T | Et not stable} .

Then T nss and T ns are (possibly empty) closed analytic subsets of T .

Moreover, for a generic point4 t0 in T nss there exists a Euclidian neighborhood B of t0 in T nss

and a filtration by subbundles

0 = F0 ! F1 ! . . . ! FN+1 = E|p−1(B)

inducing, for any t ∈ B, the Harder-Narasimhan filtration of Et by restriction to Xt.

Similarly, for a generic point t0 ∈ T ns \ T nss there exists a Euclidian neighborhood B of t0 in
T ns\T nss and a filtration of E|p−1(B) by subbundles inducing, for any t ∈ B, a Jordan-Hölder filtration
of Et by restriction to Xt.

Proof. One can check that Shatz’s results in [Sha77], see also [AB81],[Nit86], [GN14], applied to
vector bundles over curves can be transferred into the analytic setting.

1.4.2 Rank two

Definition 1.4.3. Let E → X be a rank 2 vector bundle over a compact Riemann surface X. The
Segre-invariant of E is defined as

κ(E) := min
L

(deg(E)− 2deg(L)) ,

4By generic point we mean a point contained contained in B1 \ A, where B1 is a neighborhood of an arbitrary
non-singular point t1 and A is a proper closed analytic subset of B1.
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where the minimum is taken over all holomorphic line subbundles L of E. We say that E is maximally
stable if κ(E) ≥ g − 1.

Note that a rank two vector bundle E → X is stable if and only if κ(E) > 0 and semistable if
and only if κ(E) ≥ 0. The Segre-invariant κ(E) of a rank two vector bundle E → X is bounded
above by the genus g of X [Nag70]. One of the standard references in the study of maximally stable
bundles is [LN83].

Theorem 1.4.4 (Maruyama). Let E → X p→ T be a holomorphic family of rank 2 vector bundles
over compact Riemann surfaces. For any t ∈ T , denote Xt := p−1(t) and Et := E|Xt . For any k ∈ Z,
define

Tk := {t ∈ T | κ(Et) ≤ k} .

Then for any k ∈ Z, the set Tk is a closed analytic subset of T .

Moreover, for a generic point t0 ∈ Tk \ Tk−1 there exists a Euclidian neighborhood B of t0 in Tk
such that there exists a line subbundle L of E|p−1(B) satisfying

deg(Et)− 2deg(Lt) = κ(Et) = k ∀ t ∈ B ,

where Lt := L|Xt .

Proof. One can check that Maruyama’s results in [Mar76] applied to vector bundles over curves can
be transferred into the analytic setting.

Definition 1.4.5. Let E → X be a rank 2 vector bundle over a compact Riemann surface X. The
vector bundle E is said to be very stable if there exists no non-zero nilpotent Higgs field on E. If E
is maximally stable but not very stable, then E is said to be wobbly.

Here a Higgs field θ of E is a global section of End(E)⊗Ω1
X . To a Higgs field θ one can associate,

by composition, a global section θ2 of End(E)⊗Ω1
X⊗Ω1

X . The Higgs field θ is nilpotent if θrank(E) = 0.

Very stable bundles (in arbitrary rank) were introduced by Laumon [Lau88]. They appear as a
particular case in the study of Hitchin systems. The notion of wobbly bundles has been introduced
in [DP08], although we took the liberty here to modify their definition in order to include the g ≤ 1
case and to exclude the non-maximally stable case.

Note that a rank 2 bundle E is very stable if and only if for every line subbundle L of E one has

h0(X,Q∨ ⊗ L⊗ Ω1
X) = 0 , (1.13)

where Q = E/L. Indeed, if θ is a non-zero nilpotent Higgs field on E then setting L = ker(θ) we get
a non-zero morphism Q→ L⊗Ω1

X . Conversely, if we have a non-zero morphism Q→ L⊗Ω1
X , then

we obtain a non-zero nilpotent Higgs field by composing with E → Q and L⊗ Ω1
X → E ⊗ Ω1

X .

Any line bundle of degree at least g on X admits a non-zero section by Riemann-Roch. Hence
for any rank-two vector bundle E → X we have that if E is very stable, then it is maximally stable.
The converse is true if g = 0 and false in general if g > 0.

As for stability, very stability is an open condition [Lau88, Prop. 3.5]. We need the following
slightly more precise rank-two-statement.

Proposition 1.4.6. Let E→X p→ T be a holomorphic family of rank 2 vector bundles over compact
Riemann surfaces of genus g ≥ 0. For any t ∈ T , denote Xt := p−1(t) and Et := E|Xt. Define

T nil := {t ∈ T | Et not very stable} .
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Then T nil is a closed analytic subset of T .

Consider
T wob := {t ∈ T nil | Et maximally stable} ,

which by Maruyama’s Theorem 1.4.4 is either empty or the complement of a proper closed analytic
subset in T nil. For a generic point t0 ∈ T wob there exists a Euclidian neighborhood B of t0 in T wob

such that there exists a global section θ of End(E) ⊗ Ω1
X |p−1(B) inducing a non-zero nilpotent Higgs

field θt on each fiber Et with t ∈ B.

Proof. In view of Theorem 1.4.4, it is sufficient to show that T wob = T nil \ Tg−2 is a closed analytic
subset of T \ Tg−2. Let t0 ∈ T such that Et0 is maximally stable. We restrict to a sufficiently small
neighborhood of t0, which we again denote by T .

Assume first κ(Et0) > 0, which is automatically the case if g > 1. Then t +→ h0(End(Et) ⊗ Ω1
Xt
)

is constant. Indeed, by Serre duality and stability of Et, we have h1(End(Et) ⊗ Ω1
Xt
) = 1. By

Grauert’s Base Change Theorem [Gra60], see also [OSSG80, p. 11], since T is small, there exists
ν = (ν1, . . . , νn) generating H0(X ,End(E)⊗Ω1

X ) as a ΓOT -module, such that νt := ν(t) is a basis of
H0(Xt,End(Et)⊗Ω1

Xt
) for any t. Similarly, we have generating families ω = (ω1, . . . ,ωg) of H0(X ,Ω1

X )

and ω′ = (ω′
1, . . . ,ω

′
m) of H0(X ,Ω1

X⊗Ω1
X ). For i = 1, 2 we have morphisms Tri : End(E)⊗Ω1

X → Ω1
X
⊗i

given by θ +→ trace(θi). The induced morphisms of global sections are given with respect to the above
bases by matrices A1 ∈ Mg×n(ΓOT ) and A2 ∈ Mm×n(ΓOT ). Hence

T wob =
{
t ∈ T | rank

(
A1(t)
A2(t)

)
< n

}
,

which is clearly the simultaneous zero-locus of a finite collection of holomorphic functions in t.
Moreover, in restriction to a sufficiently small neighborhood B1 in T wob of a smooth point t1 of

T wob, we can find a non-zero holomorphic column vector in the kernel of
(

A1
A2

)
. Restricting to the

locus where this vector does not vanish, we find θ as in the statement in the complement of a proper
closed analytic subset of B1.

The case g = 0 is trivial because then T wob = ∅.

It remains to consider the case g = 1, κ(Et0) = 0. Since deg(Et) is even for every t, and we
assumed T sufficiently small, there exist four distinct line bundles Li → X with i ∈ [[1, 4]] such that
L⊗2
i ⊗ det(E) ≃ OX . We claim that

T wob =
4⋃

i=1

{
t ∈ T | h0(E ⊗ L−1

i |Xt) > 0
}
.

Indeed, a non-zero section of E ⊗ L−1
i |Xt gives rise to an invertible subsheaf F of E ⊗ L−1

i |Xt . Since
deg(F ) ≥ 0 and 0 = κ(Et) = κ(E ⊗L−1

i |Xt), this subsheaf F has to be a subbundle of degree 0. Since
moreover F is effective, we have F ≃ OXt . Hence Li|Xt is a line subbundle of Et and gives rise to a
non-zero nilpotent Higgs field by the characterization of very stable bundles in (1.13). Conversely,
again by (1.13), every non-zero nilpotent Higgs field has to be of that form. Hence by Grauert’s
Semicontinuity Theorem, see [OSSG80, p. 11], see also [Dem95], T wob is a closed analytic subset and
in the neighborhood of a generic point in T wob, we can construct θ as in the statement.

1.4.3 An elementary vector bundle lemma

Lemma 1.4.7. Let E → X be a vector bundle on a compact Riemann surface X. Let

0 = F0 ! F1 ! . . . ! FN = E (1.14)
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be a filtration of length N ≥ 2 by subbundles such that for all i ∈ !1, N", the vector bundle Vi :=
Fi/Fi−1 is semistable. Define a subbundle EndF (E) of End(E) by setting

EndF (E)(U) := {φ ∈ End(E)(U) | φ(Fi|U ) ⊂ Fi|U ∀i ∈ !1, N"} .

Assume that the sequence of slopes µi := µ(Vi) associated to the filtration (1.14) is non-increasing:
µi ≥ µi+1, and denote

µmax := max{µk+1 − µk | k ∈ !1, N − 1"} ≤ 0 .

Then for any coherent subsheaf 0 ̸= G ⊂ End(E)/EndF (E) we have µ(G) ≤ µmax.

Proof. This proof is simply a detailed version of a remark in [AB81, p. 590]. For each j ∈ !−N,N−1",
let us define Wj ⊂ End(E) by setting

Wj(U) := {φ ∈ End(E)(U) | φ(Fk|U ) ⊂ Fk+j |U ∀k ∈ !1, N"},

where we denote FN ′ := FN if N ′ > N , F−n := F0 if n > 0 and Vi = Fi/Fi−1 accordingly.
By definition, we have W0 = EndF (E), whereas W−1 is the subsheaf of endomorphisms that are
nilpotent with respect to the given filtration of E. We obtain a filtration by subbundles

0 = W−N ! . . . ! W0 ! . . . ! WN−1 = End(E)

satisfying

Wj/Wj−1 ≃
N⊕

k=1

Hom(Vk, Vk+j) ,

which is a direct sum of semistable bundles Vkj := Hom(Vk, Vk+j). If Vkj ̸= 0, then µ(Vkj) = µk+j−µk.
Now let us denote W i := Wi/W0 for each i ∈ !0, N − 1". Let 0 ̸= G ⊂WN−1. Let i ∈ !1, N − 1" and
consider the following diagram with exact rows and columns.

0

!!

0

!!

0

!!

0 "" G ∩W i−1
""

!!

G⊕W i−1
""

!!

G+W i−1
""

!!

0

0 "" G ∩W i
""

!!

G⊕W i
""

!!

G+W i
""

!!

0

0 "" (G ∩W i)/(G ∩W i−1) ""

!!

W i/W i−1
""

!!

(G+W i)/(G +W i−1) ""

!!

0

0 0 0

We see that (G ∩W i)/(G ∩W i−1) is a coherent subsheaf of W i/W i−1 = Wi/Wi−1. In particular, it
is either zero or

µ
(
(G ∩W i)/(G ∩W i−1)

)
≤ max{µk+i − µk | k ∈ !1, N − i"} ≤ µmax .

By induction on i ∈ !0, N − 1", considering the left row of the diagram above and the monotony of
the corresponding slopes, we conclude that for each index i, either G∩W i = 0 or µ(G∩W i) ≤ µmax.
For i = N − 1 this yields the result.

Remark 1.4.8. This Lemma can also be derived from general considerations considering slope fil-
trations for tensor products (such as E∨ ⊗ E), see [And09, Thm. 2.3.3].
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1.5 Definition of the Atiyah bundle

Let E →M be a holomorphic vector bundle over a complex manifold M . The Atiyah bundle At(E)
associated to E → M , is a certain holomorphic vector bundle on M fitting into an intrinsic short
exact sequence

0 "" End(E) "" At(E) "" TM "" 0

of vector bundles over M . The equivalence class of this Atiyah exact sequence corresponds to an
extension class

A(E) ∈ H1(M,Hom(TM,End(E))) = H1(M,End(E)⊗ Ω1
M ) ,

the so-called Atiyah class. The Atiyah bundle is particularly maniable, as illustrated by the variety of
equivalent5 definitions one may find in the literature. Those include the following list of approaches.

1. The choice of a particular OM -module structure on EndC(E)⊕ TM [Ati57, § 4].
2. The sheaf of GLrC-invariant sections of the tangent bundle of the frame bundle of E [Ati57,

Thm. 1].
3. Considering the element in Ext1(E,E⊗Ω1

M) obtained from the first-oder jet bundle associated
to E, see for example [HL10, § 10.1].

4. Using the curvature of the Chern connection associated to a hermitian structure on E [Ati57,
Prop. 4].

5. Considering the sheaf of holomorphic differential operators of order at most 1 with scalar
symbol, see for example [CS16, Appendix].

Each definition has its own upshots depending on the context in which one may encounter this
fundamental concept; for example Approach 2.) admits an immediate generalization to the concept
of the Atiyah bundle associated to a principal G-bundle, where G is a connected complex Lie group.
Approach 4.) has been used in [CS16] and [Hua95] to give a differential-geometric description of
deformations of pairs (E,X) à la Kodaira-Spencer.

In this section, we are going to recall in detail the definition of the Atiyah bundle corresponding
to Approach 5.), which we are going to use throughout, as well as the generalizations of the Atiyah
bundle encoding logarithmic and reducible connections.

1.5.1 Definition via the symbol homomorphism

For n ∈ N, let Diffn(E) denote the sheaf of holomorphic differential operators of order at most n of
E. We have Diff0(E) = End(E). A section P ∈ Diff1(E)(U) is a C-linear endomorphism of E|U such
that, for every holomorphic frame e over the range of a coordinate z := (z1, . . . , zm) on V ⊂ U ⊂M ,
P is of the form

P : e · Y +→ e ·

(
P0 · Y +

m∑

k=1

Pk ·
∂Y

∂zk

)

for some P0, Pk ∈ Mr×rO(V ). If ψ : E|U → U ×Cr denotes the trivialization associated to the frame
e, the symbol of P over V is by definition

σ1(P ) =
m∑

k=1

ψ−1 ◦ Pk ◦ ψ ⊗
∂

∂zk
∈ (End(E) ⊗ TM) (V ) .

5up to possibly changing the sign of the map End(E) → At(E)
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The symbol depends neither on the choice of z nor on the choice of e [Dem12, § VI.1] and yields a
natural short exact sequence

0 −→ Diff0(E)−→Diff1(E)
σ1−→ End(E)⊗ TM −→ 0 (1.15)

of vector bundles over M .

Definition 1.5.1 (The Atiyah bundle via the symbol homomorphism). We define

At(E) := σ−1
1 (idE ⊗ TM) .

From (1.15), we obtain a canonical short exact sequence

0 −→ End(E) −→ At(E)
σ1−→ TM −→ 0. (1.16)

Since it is useful for the comparison with other definitions, let us calculate the extension class
A(E) ∈ H1(M,End(E)⊗Ω1

M) corresponding to equivalence class of the Atiyah exact sequence (1.16).
Recall that A(E) is the image of idTM under the connecting homomorphism in the long exact
sequence associated to the short exact sequence obtained from (1.16) by applying Hom(TM, •). Let
(ψi)i with ψi : E|Ui → Ui × Cr be an atlas of holomorphic trivialization charts of E. We denote

by e(i) = (e(i)1 , . . . , e(i)r ) with e(i)k (z) = ψ−1
i (z, ek), where (e1, . . . , er) is the canonical basis of Cr, the

associated collection of holomorphic frames of E over the open sets Ui. Over Ui ∩ Uj we have

ψi = ψij · ψj ; e(j) = e(i) · ψij (1.17)

for some ψij ∈ GLrOM (Ui ∩ Uj). One easily checks that A(E) is given by the Čech-cocycle

ψ−1
j ◦ d ◦ ψj − ψ−1

i ◦ d ◦ ψi
(1.17)
= −ψ−1

j ◦ ψ
−1
ij dψij ◦ ψj .

1.5.2 The logarithmic Atiyah bundle and connections

Let D = Dred be a smooth reduced effective divisor on M . Recall that the logarithmic tangent bundle
TM(−logD), the dual of the logarithmic cotangent bundle Ω1

M (logD), is defined as follows. On the
complement of the support of D, sections of TM(−logD) are identified with sections of TM , whereas
over a coordinate chart (z1, . . . , zm) on U ⊂ M in which the support of D is given by {z1 = 0}, we
have

TM(−logD)(U) =

〈
z1

∂

∂z1
,
∂

∂z2
, . . . ,

∂

∂zn

〉
.

In other words, we have a short exact sequence of OM -modules

0 −→ TM(−logD) −→ TM −→ OD(D) −→ 0 .

In the case that X = M is of complex dimension 1 and D = D, one has TX(−logD) = TX(−D).

Definition 1.5.2 (The logarithmic Atiyah bundle). We define

AtD(E) := σ−1
1 (TM(−logD)) ,

where σ1 is given in (1.16). We obtain a canonical short exact sequence

0 −→ End(E) −→ AtD(E)
σlog1−→ TM(−logD) −→ 0 (1.18)
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fitting into the following commutative diagram with exact rows and columns

0

!!

0

!!
0 "" End(E) "" AtD(E)

σlog1 ""

!!

TM(−logD) ""

!!

0

0 "" End(E) "" At(E)
σ1 ""

!!

TM ""

!!

0

OD(D)

!!

OD(D)

!!
0 0 .

(1.19)

Lemma 1.5.3. If ∇ : E → E⊗Ω1
M(logD) is a logarithmic connection on E →M with polar divisor

at most D, then δ : TM(−logD)→ AtD(E) defined by

δ(θ)(e) = ∇(e) · θ , (1.20)

where ∇(e) · θ denotes the contraction of ∇(e) with θ, satisfies

σlog1 ◦ δ = idTM(−logD)

and therefore defines a holomorphic splitting of the logarithmic Atiyah exact sequence (1.18). Con-
versely, for a holomorphic splitting δ there exists a unique logarithmic connection ∇ on E →M with
polar divisor at most D, satisfying (1.20) for all U ⊂M , e ∈ E(U) and θ ∈ TM(−logD)(U).

Proof. It suffices to notice the following. Let e = e(z) be a holomorphic frame of E|U . Then δ is
given by

δ (θ) : e · Y +→ e ·

(
v1P1 +

m∑

k=2

vkPk + θ

)
· Y for θ = v1z1

∂

∂z1
+

m∑

k=2

vk
∂

∂zk

for some holomorphic matrices P1, Pk ∈ Mr×rOM (U). The connection matrix with respect to the
holomorphic frame e of the corresponding logarithmic connection is given by

Ω = P1
dz1
z1

+
m∑

k=2

Pkdzk .

Note that in particular, holomorphic connections on E → M are in one-to-one correspondence
with holomorphic splittings of the Atiyah exact sequence (1.16).

1.5.3 The filtered Atiyah bundle and reducible connections

Let L ⊂ E be a subbundle of E →M , i.e., we have a short exact sequence of vector bundles over M

0 −→ L −→ E −→ Q −→ 0.
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Combining this exact sequence with its dual sequence, we obtain an exact sequence

0 "" Q∨ ⊗ L "" Q∨ ⊗ E ⊕E∨ ⊗ L "" E∨ ⊗ E −→ L∨ ⊗Q "" 0 ,

factoring through
EndL(E) := {φ ∈ End(E) | φ(L) ⊂ L}

such that we have the following two short exact sequences:

0 "" Q∨ ⊗ L "" E∨ ⊗ L⊕Q∨ ⊗ E "" EndL(E) "" 0

0 "" EndL(E) "" End(E) "" L∨ ⊗Q "" 0 .

Recall from Definition 1.5.1 that sections of the Atiyah bundle are sections of the sheaf of holomorphic
differential operators of order at most 1.

Definition 1.5.4 (The filtered Atiyah bundle). We define the sheaf of sections of the Atiyah bundle
(respectively logarithmic Atiyah bundle) filtering with respect to L ⊂ E by

AtL(E)(U) := {P ∈ At(E)(U) | P (L(U)) ⊂ L(U)} ,

AtLD(E)(U) := {P ∈ AtD(E)(U) | P (L(U)) ⊂ L(U)} .

We obtain a canonical filtered logarithmic Atiyah exact sequence

0 −→ EndL(E) −→ AtLD(E)
σlog,L1−→ TM(−logD) −→ 0, (1.21)

and a similar canonical exact sequence with middle term AtL(E). Considering the following diagram,
we see that AtLD(E) is a subbundle of AtD(E) with quotient bundle L∨ ⊗Q.

0

!!

0

!!

0 "" EndL(E) ""

!!

AtLD(E)
σlog,L1 ""

ι

!!

TM(−logD) "" 0

0 "" End(E) ""

!!

AtD(E)
σlog1 ""

ρ

!!

TM(−logD) "" 0

L∨ ⊗Q

!!

L∨ ⊗Q

!!
0 0 .

(1.22)

Here ι is the natural inclusion map, and ρ is defined by the diagram. In other words, the map
ρ is by definition the composition of the quotient map from AtD(E) to AtD(E)/AtLD(E) with the
inverse of the natural map End(E)/EndL(E) → AtD(E)/AtLD(E), which is an isomorphism, and
the identification End(E)/EndL(E) = L∨ ⊗ Q obtained from ρ′ : End(E) → L∨ ⊗ Q given by
ρ′(φ) = (E → Q) ◦φ ◦ (L→ E). This forces ρ to be given, for any holomorphic section P of AtD(E),
by

ρ(P ) = (E → Q) ◦ P ◦ (L→ E) . (1.23)
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Lemma 1.5.5. Let ∇ : E → E ⊗ Ω1
M (logD) be a logarithmic connection on E → M and let δ be

the corresponding splitting of the logarithmic Atiyah exact sequence as in Lemma 1.5.3. Let L be a
subbundle of E with Q := E/L.Then with respect to the canonical isomorphism

Hom(TM(−logD) , L∨ ⊗Q) ≃ Hom(L , Q⊗ Ω1
M(logD))

we have ρ ◦ δ = II∇,L, where ρ as in equation (1.23) and II∇,L is the second fundamental form of ∇
with respect to L as in Definition 1.2.4.

Proof. It suffices to notice that the contraction with vector fields tangential to D commutes with the
projection E ⊗ Ω1

M (logD)→ Q⊗ Ω1
M (logD).

Note that in particular, holomorphic splittings of the filtered logarithmic Atiyah exact sequence
(1.21) are in one-to-one correspondence with logarithmic connections ∇ : E → E ⊗ Ω1

M(logD)
satisfying II∇,L = 0.

1.6 Some deformation theory

The aim of the this section is to introduce the Kodaira Spencer maps that we will use in the proof of
the main results of this chapter. More precisely, we recall the construction of a chain level refinement
of Kodaira Spencer maps associated to a germ of holomorphic family E → X p→ B of vector bundles
over compact Riemann surfaces parametrized by B, equipped with a holomorphic subbundle L ⊂ E
and a holomorphic family of marked points on the fibers Xt = p−1(t) given by a set of disjoint
sections σi : B → X for i ∈ {1, . . . , n}, such that the corresponding divisor D = Dred :=

∑n
i=1 σi(B)

is smooth. We denote by E → X → {t0} with L ⊂ E and D ⊂ X the restriction of the picture to a
central parameter t0 ∈ B.

What we will obtain is the following commutative diagram, where KS• denotes the Kodaira-
Spencer map classifying first order deformations of “objects of type •” and “◦” symbolizes all the
forgetful maps.

Tt0B
KS(E,L,X,D) ""

KS(E,X,D)

##

KS(X,D)

$$

KS(E,L,X) %%❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

KS(E,X)

&&

KSX

''

H1(X,AtLD(E)) ◦
ι∗

""

◦
!!

H1(X,AtD(E)) ◦

σlog1∗

""

◦
!!

H1(X,TX(−D))

◦τ∗
!!

H1(X,AtL(E)) ◦ "" H1(X,At(E)) ◦ "" H1(X,TX) .

(1.24)

Actually, we will only introduce those maps in Diagram (1.24) that will be relevant for us, namely
KSX ,KS(X,D),KS(E,X,D),KS(E,LX,D) and the corresponding forgetful maps. The construction can
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however be easily generalized to obtain Diagram (1.24) in full. All these Kodaira-Spencer maps
will be derived from exact sequences intrinsically associated to the family of subobjects underlying
the family. In particular, if we have two families of subobjects that are isomorphic (in the obvious
sense generalizing for example [ACG11, p. 172] and [CS16, Def. 4.1]), or isomorphic after possibly
shrinking the parameter space, then this isomorphism restricted to the central parameter identifies
the corresponding Kodaira-Spencer maps.

Note further that due to the fact that we are working with X of complex dimension one, de-
formations of type (E,X), (E,X,D) and (X,D) are unobstructed and, under the condition that
X, respectively (X,D) is stable, there exists for each such type a Kuranishi family such that the
corresponding Kodaria-Spencer map is an isomorphism and such that the germ of any family of the
given type with same central data is isomorphic to a pull-back of the Kuranishi family [ACG11,
Thm. 2.12, Cor. 4.6], [CS16, § 5].

In particular, under the condition that X, respectively (X,D), is stable, the Kodaira-Spencer
maps KSX ,KS(E,X), respectively KS(X,D),KS(E,X,D), classify not only first order deformations, but
germs of families up to isomorphism.

However, even in complex dimension one, deformations of type (E,L,X,D) and (E,L,X) are
obstructed in the following sense. Given E → (X ,D) → B deforming E → (X,D) → {t0} and
L ⊂ E, the subbundle L ⊂ E may not be induced from a subbundle L ⊂ E , even after shrinking the
parameter space. We construct an obstruction map in § 1.6.3.

1.6.1 Deformations of curves with marked points

Let (p : X → B,D) be a holomorphic family of Riemann surfaces with marked points. This means
that X and B are complex manifolds and p is a proper holomorphic submersion such that the fibers
Xt := p−1(t) for t ∈ B are compact Riemann surfaces. Moreover, D = Dred is a (possibly empty)
smooth reduced effective divisor on X , whose support is the union of the images of n disjoint sections
σi : B → X :

D =
n∑

i=1

σi(B) .

We consider the germ of such a family at a central parameter t0 ∈ B; at each of the finitely many
occasions in the following where we would need to restrict to a sufficiently small Euclidian neighbor-
hood of t0 in B, we restrict to this neighborhood, which we again denote B. We occasionally recall
that we are working over a germ of family by saying that B is sufficiently small. We denote Xt the
fiber of p over t, Dt := D ∩ Xt and (X,D) := (Xt0 ,Dt0).

The differential of p induces a canonical exact sequence

0 −→ TX −→ TX|X
p∗−→ p∗TB|X −→ 0 . (1.25)

The Kodaira-Spencer map KSX of the germ of family above, not taking into account the marked
points, is by definition the connecting morphism in the long exact sequence associated to (1.25).
Using the natural identification Tt0B = H0(X, p∗TB|X), we write this Kodaira-Spencer map

Tt0B
KS(X,D) "" H1(X,TX) .

We refer to [Voi02, § 9.1] for an exposition of different deformation-theoretic interpretations of this
map. A few details will however be given below, when we take into account the marked points.
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From the definition of the logarithmic tangent bundle (see § 1.5.2), we have the following com-
mutative diagram with exact rows and columns, where τ denotes the natural inclusion map:

0

!!

0

!!
0 "" TX(−D) ""

τ

!!

TX (−logD)|X

!!

"" p∗TB|X "" 0

0 "" TX ""

!!

TX|X
p∗ ""

!!

p∗TB|X "" 0

OD(D)

!!

OD(D)|X

!!
0 0 .

(1.26)

Definition 1.6.1. For a germ of family as above, Diagram (1.26) yields the following short exact
sequence of holomorphic vector bundles over X

0 −→ TX(−D) −→ TX (−logD)|X −→ p∗TB|X −→ 0 . (1.27)

Using the natural identification Tt0B = H0(X, p∗TB|X), we denote by

Tt0B
KS(X,D) "" H1(X,TX(−D))

the connecting morphism in the long exact sequence associated to (1.27). It is by definition the

Kodaira-Spencer map associated to the germ of family (X p→ B,D) with central fiber (X,D)→ {t0}.

Remark 1.6.2. Note that Diagram (1.26) shows that the forgetful morphism yielding the Kodaira-
Spencer map for the underlying germ of family of curves without marked points is induced by τ :

Tt0B
KS(X,D) ""

KSX ((

H1(X,TX(−D))

τ∗
!!

H1(X,TX) .

Alternatively, for any v ∈ Tt0B, the element KS(X,D)(v) of H
1(X,TX(−D)) can be computed as

the Kodaira-Spencer class of the first oder derformation of (X,D) obtained by restricting the family

(X ,D)
p→ B to the first order neighborhood of t0 ∈ B in the direction of v. Since later on we will use

some results of [ACG11] formulated in these terms, we shall briefly recall this construction, following
[ACG11, p. 172–176], [Dia84, p. 909].

Since B is small, we may assume without loss of generality that B ⊂ Cb with b = dim(B). Since
B is small and p : X → B is a holomorphic submersion, X is covered by open sets Ui such that
p(Ui) = B and on Ui we have coordinates of the form (zi, p) : Ui → Cb+1. We write those (zi, t). We
may assume that the covering (Ui)i is conveniently chosen such that each irreducible component of
D is contained in one of the Ui’s and does not intersect the others. Moreover, we may assume that
if an irreducible component of D is contained in Ui, then it is there given by {zi = 0}.
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Let ε be the standard coordinate on C and let S = (0,O0) with O0 = OC/OCε2 be the double
point [GR12, p. 4]. For every v =

∑b
ℓ=1 vℓ

∂
∂tℓ
∈ Tt0B we have a morphism of complex spaces

ν : S → B sending 0 to t0 and g = g(t) ∈ OB(U) with t0 ∈ U to g(t0) + ε
∑b

ℓ=1 vℓ
∂g
∂tℓ

(t0) ∈ O0.
Denote Xv := ν∗X and Dv := ν∗D. Since X is covered by open sets Ui (each intersecting X)
with coordinates (zi, t), which in restriction to t = t0 yield the coordinate xi = (zi, t0) for X on
Ui := Ui ∩X, we obtain coordinates (xi, ε) on Ui × S ⊂ Xv. From the holomorphic transition maps
(zi, t) = (fij(zj , t), t) on X we obtain holomorphic transition maps on Xv:

(xi, ε) = (f0
ij(xj) + εbij(xj), ε) with f0

ij(xj) = fij(zj , t0) . (1.28)

Here bij(xj) =
∑b

ℓ=1 vℓ
∂fij
∂tℓ

(zj , t0). From the atlas of charts (xi, ε) one can reconstruct Dv from D
without additional information. Indeed, from D on X we know those charts in which the irreducible
components of Dv are supposed to occur, and they are there given by {xi = 0}. From the cocycle
condition

fij(fjk(zk, t), t) = fik(zk, t)

on X one obtains a cocycle condition on Xv which amounts to the cocycle condition f0
ij ◦ f0

jk = f0
ik

of X and

bij(f
0
jk(xk)) + bjk(xk)

∂f0
ij

∂xj
(f0

jk(xk)) = bik(xk)

or, equivalently,

bij(xj)
∂

∂xi
+ bjk(xk)

∂

∂xj
= bik(xk)

∂

∂xi
.

In particular, βij := bij(xj)
∂
∂xi

defines a Čech-cocycle. On the other hand, we have a short exact
sequence

0 −→ TX(−D) −→ TXv(−logDv)|X
p∗−→ T0S ⊗OX−→0

(see [Voi02, p. 212] for a detailed description of the maps in this exact sequence). Note that the
cocycle βij corresponds to the image of ∂

∂ε ∈ H0(X,T0S⊗OX) under the connecting homomorphism

associated to the short exact sequence above. Indeed, ∂
∂ε given with respect to the chart (xj , ε) is

given with respect to the chart (xi, ε) by ∂
∂ε + bij(xj)

∂
∂xi

. Moreover, ∂
∂ε is tangential to Dv in each

chart containing an irreducible component of Dv. The elements

[βij ] ∈ H1(X,TX(−D)) [βij ] ∈ H1(X,TX)

are by definition the Kodaira-Spencer classes of the first order deformations (Xv,Dv)
p→ S and Xv

p→ S
of (X,D) and X respectively. It is now immediate to check that they coincinde with KS(X,D)(v) and
KSX(v) respectively.

From any element of H1(X,TX(−D)) one can construct, via (1.28), a unique equivalence class of

first order deformation (Xε,Dε)
p→ S [ACG11, p. 173-174]. Therefore, H1(X,TX(−D)) parameterizes

such first order deformations up to equivalence.

1.6.2 Deformations of vector bundles over curves

Let (p : X → B,D) be a holomorphic family of Riemann surfaces with marked points as in § 1.6.1.
Let E → X be a holomorphic vector bundle. Again we restrict to a germ (B, t0) and denote X :=
p−1(t0),D := D∩X. Moreover, we denote E := E|X . From Definition 1.5.2 of the logarithmic Atiyah
bundle for E and E with respect to D and D, we obtain the following Diagram (1.29), where the
right column is identical to the canonical exact sequence (1.27).
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0

!!

0

!!
0 "" End(E) "" AtD(E)

!!

σlog1 "" TX(−D) ""

!!

0

0 "" End(E)|X "" AtD(E)|X ""

!!

TX (−logD)|X ""

!!

0

p∗TB|X

!!

p∗TB|X

!!
0 0 ,

(1.29)

Definition 1.6.3. For a germ of family of vector bundles over Riemann surfaces with marked points
as above, Diagram (1.29) yields the following short exact sequence of holomorphic vector bundles over
X

0 −→ AtD(E) −→ AtD(E)|X−→p∗TB|X −→ 0 . (1.30)

Using the natural identification Tt0B = H0(X, p∗TB|X), we denote by

Tt0B
KS(E,X,D) "" H1(X,AtD(E))

the connecting morphism in the long exact sequence associated to (1.30). It is by definition the

Kodaira-Spencer map associated to the germ of family (E → X p→ B,D) with central fiber (E → X,D)
over {t0}.

Remark 1.6.4. Note that Diagram (1.26) shows that the forgetful morphism yielding the Kodaira-

Spencer map for the underlying germ of family of curves with marked points is induced by σlog1 :

Tt0B
KS(E,X,D) ""

KS(X,D) ))

H1(X,AtD(E))

σlog1 ∗
!!

H1(X,TX(−D)) .

For the case D = ∅, one obtains the Kodaira-Spencer map KS(E,X). We refer to [CS16], comple-
menting [Hua95], for a detailed exposition of the differential-geometric approach à la Kodaira and
Spencer to germs of families of vector bundles over curves. It allows to see −KS(E,X) as a derivation
of a family of complex structures. For an algebro-geometric approach considering first order defor-
mations of the pair (E,X) we refer to [Mar09, Sec. 2.3]. Both approaches, after further taking into
account the marked points, yield KS(E,X,D) (up to a sign).

1.6.3 Deformations of quadruples

Let (L ⊂ E → X , p : X → B,D) be a holomorphic family of filtered vector bundles over Riemann
surfaces with n marked points. This means we have a holomorphic family p : X → B of compact
Riemann surfaces, with marked point given by D as before, a vector bundle E → X and a subbundle

41



L ⊂ E . Again we restrict to the germ (B, t0); we denote Xt the fiber of p over t, Et := E|Xt , Lt := L|Xt ,
Dt := D ∩ Xt, and (E,L,X,D) := (Et0 ,Lt0 ,Xt0 ,Dt0).

From the Definition 1.5.4 of the filtered logarithmic Atiyah bundle, we obtain the following
diagram with exact rows and columns:

0

!!

0

!!
0 "" EndL(E) "" AtLD(E)

!!

"" TX(−D) ""

!!

0

0 "" EndL(E)|X "" AtLD(E)|X ""

!!

TX (−logD)|X ""

!!

0

p∗TB|X

!!

p∗TB|X

!!
0 0 ,

(1.31)

where the right column is identical to the canonical exact sequence (1.27).

Definition 1.6.5. For a germ of family of filtered vector bundles over Riemann surfaces with marked
points as above, diagram (1.31) yields the following short exact sequence of holomorphic vector bundles
over X

0 −→ AtLD(E) −→ AtLD(E)|X −→ p∗TB|X −→ 0 . (1.32)

Using the natural identification Tt0B = H0(X, p∗TB|X), we denote by

Tt0B
KS(E,L,X,D) "" H1(X,AtLD(E))

the connecting morphism in the long exact sequence associated to (1.32). It is by definition the

Kodaira-Spencer map associated to the germ of family (L ⊂ E → X p→ B,D) with central fiber
(L ⊂ E → X,D) over {t0}.

From Diagram (1.22), denoting Q := E/L and Q := Q|X , we obtain the following diagram with
exact rows and columns.

0

!!

0

!!
0 "" AtLD(E) ι ""

!!

AtD(E)

!!

ρ "" L∨ ⊗Q "" 0

0 "" AtLD(E)|X ""

!!

AtD(E)|X ""

!!

L∨ ⊗Q|X "" 0

p∗TB|X

!!

p∗TB|X

!!
0 0 .

(1.33)
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Remark 1.6.6. Note that Diagram (1.33) shows that the forgetful morphism yielding the Kodaira-
Spencer map for the underlying germ of family of unfiltered vector bundles over curves with marked
points is induced by ι:

Tt0B
KS(E,L,X,D) ""

KS(E,X,D) ))

H1(X,AtLD(E))

ι∗
!!

H1(X,AtD(E)) .

One can justify the name we have given to KS(E,L,X,D) by checking that H1(X,AtLD(E)) parame-
terizes first order deformations of quadruples (E,L,X,D) and that KS(E,L,X,D) is the corresponding
classification map. This is however not essential for our purposes. All we will actually need is that
Definition 1.6.5 establishes a certain map KS(E,L,X,D), which comes with the forgetful morphism ι∗
yielding KS(E,X,D). One then notices that ρ∗ : H1(X,At(E))→ H1(X,L∨⊗Q) with ρ as in Diagram
(1.33) yields an obstruction for the subbundle L ⊂ E to be induced from a subbundle L→ E . Indeed,
we have the following.

Proposition 1.6.7 (An obstruction map). Let p : (X ,D) → B be a germ of family of compact
Riemann surfaces with marked points, with central fiber (X,D) → {t0}. Let E → X be a vector
bundle. Denote E := E|X and let L ⊂ E be a subbundle of E → X. If there exists a subbundle L ⊂ E
such that L|X = L ⊂ E, then the composition

Tt0B
KS(E,X,D) "" H1(X,AtD(E))

ρ∗ "" H1(X,L∨ ⊗Q)

vanishes identically. Here Q := E/L and ρ∗ is induced from the second fundamental form

ρ : AtD(E) → L∨ ⊗Q

P +→ (E → Q) ◦ P ◦ (L→ E) .

Proof. Let L ⊂ E be a subbundle as in the statement. Recall from equation (1.23) that the map ρ
in diagram (1.33) coincides with the map given in the statement. Consider the top row of diagram
(1.33). Since it is exact, we have ρ∗ ◦ ι∗ = 0. The result follows from the fact that KS(E,X,D) =
ι∗ ◦KS(E,L,X,D).

1.7 Main results

This section contains a new proof of the Theorem 1.1.2 from [Heu09] mentioned in the introduction,
concerning rank-two connections, as well as its meromorphic version, based on the techniques devel-
oped in collaboration with I. Biswas and J. Hurtubise in [BHH16] and [BHH18b]. The statements
we prove will also include the investigation of very stability from [BHH17]. We will not need the
assumption of tracefreeness, but we will restrict ourselves to the case of stable pointed base curves.
Then we adapt these techniques in higher rank.

1.7.1 Isomonodromic deformations and stability in rank two

Theorem 1.7.1. Let X0 be a compact Riemann surface of genus g ≥ 0 and let D0 be a reduced
divisor on X of degree n. Let (E0,∇0) be a logarithmic connection of rank 2 over X0, with polar
divisor D0. Assume that (E0,∇0) deformable, i.e., 3g − 3 + n > 0, and is irreducible.
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Let E → X be the vector bundle over p : X → T = Tg,n underlying the universal isomonodromic
deformation of (E0,∇0) (see § 1.3.2). Denote Et := E|p−1(t) for any t ∈ T . We consider the following
closed analytic subsets of T , where k ∈ Z (see § 1.4.2):

Tk := {t ∈ T | κ(Et) ≤ k} , T nil := {t ∈ T | Et not very stable} .

Then
codim(Tk,T ) ≥ g − 1− k , codim(T nil,T ) > 0.

Remark 1.7.2. Note that

T2−2g−n ⊂ . . . ⊂ Tg−3 ⊂ Tg−2 ⊂ T nil ⊂ Tg = T .

We use the convention codim(A,T ) := dim(T )− dim(A), where dim(∅) = −∞.

Proof. Denote by ∇ the flat logarithmic connection on E → X with polar divisor D given by the
universal isomonodromic deformation.

Let t0 ∈ T . Denote X := p−1(t0), D := D ∩X, E := E|X . We claim that the Kodaira-Spencer
map

KS(E,X,D) : Tt0T → H1 (X, AtD(E))

classifying the germ at t = t0 of the family (E → X p→ T ,D) coincides with the composition

Tt0T
KS(X,D) "" H1 (X, TX(−D))

δ∗ "" H1 (X, AtD(E))

induced by the morphism δ : TX(−D)→ AtD(E) defined by the connection ∇|X as in Lemma 1.5.3.

Indeed, denote by σlog1 the symbol homomorphism for AtD(E) and by σ̃log1 the restriction to X of the
symbol homomorphism for AtD(E) (see Definition 1.5.2). The Kodaira-Spencer map KS(E,X,D) as
above is by definition the connecting morphism in the middle column of the following commutative
diagram with exact rows and columns (see Definition 1.6.3).

0

!!

0

!!
0 "" End(E) "" AtD(E)

!!

σ1 "" TX(−D)

!!

"" 0

0 "" End(EB)|X "" AtD(E)|X
σ̃1 ""

!!

TX (−logD)|X

!!

"" 0

p∗Tt0T

!!

p∗Tt0T

!!
0 0 .

(1.34)

The connecting homomorphism in the right column KS(X,D) : Tt0T → H1 (X, TX(−D)) is by defi-
nition the Kodaira-Spencer map of the family (X ,D) with central fiber (X,D) over t0 (see Definition
1.6.1).

On the other hand, we have the following morphism of short exact sequences, where

δ̃ : TX (−logD)|X → AtD(E)|X
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is the restriction to X of the morphism defined by the connection ∇ as in Lemma 1.5.3, and where
unnamed arrows coincide with the corresponding ones in Diagram (1.34).

0 "" TX(−D)

δ
!!

"" TX (−logD)|X

δ̃
!!

"" p∗Tt0T "" 0

0 "" AtD(E) "" AtD(E)|X "" p∗Tt0T "" 0 .

(1.35)

The claim follows.

Now let k ∈ Z. Assume that t0 is a generic point in Tk \ Tk−1. Let B be a sufficiently small
neighborhood of t0 in Tk \ Tk−1 and denote XB := p−1(B), DB := D ∩ XB , EB := E|XB . According
to Maruyama’s Theorem 1.4.4, there exists a line subbundle L of EB such that for L := L|X and
Q := E/L we have

deg(L∨ ⊗Q) = k .

Since (X,D) is stable and (X ,D) → T is the universal Teichmüller curve with marked points, the
Kodaira-Spencer map

KS(X,D) : Tt0T → H1(X,TX(−D))

is an isomorphism [ACG11, p. 188, p. 449]. We have the following commutative diagram, where ι∗
is induced from the inclusion map ι : AtLD(E)→ AtD(E) (see Definition 1.5.4) and KS(E,L,X,D) is as
in Definition 1.6.5:

H1
(
X,AtLD(E)

)

ι∗
!!

Tt0B
!
"

!!

KS(E,L,X,D)

**

H1 (X, AtD(E))

Tt0T
∼

KS(X,D)

""

KS(E,X,D)

**

H1 (X, TX(−D)) .

δ∗

++

Now consider ρ : AtD(E) → L∨ ⊗Q given by P +→ (E → Q) ◦ P ◦ (L→ E) and denote IIδ := ρ ◦ δ.
Recall from Lemma 1.5.5 that IIδ concides with the second fundamental form of ∇|X with respect
to L. Since ∇|X is irreducible (see Remark 1.3.3),

IIδ : TX(−D)→ L∨ ⊗Q

is not the zero homomorphism. Since moreover source and target of IIδ are line bundles, we have a
short exact sequence of coherent sheaves over X

0 −→ TX(−D)
IIδ−→ L∨ ⊗Q −→ T −→ 0,

where T is a torsion sheaf. It follows that

IIδ∗ ◦KS(X,D) : Tt0T → H1
(
X, L∨ ⊗Q

)

is surjective. On the other hand, the composition

ρ∗ ◦KS(E,X,D) : Tt0B → H1
(
X, L∨ ⊗Q

)

is the zero morphism because ρ∗◦ι∗ = 0 (see Proposition 1.6.7). This composition moreover coincides
with the composition IIδ∗ ◦KS(X,D) ◦ (Tt0B ↪→ Tt0T ). Thus dim(T )− dim(B) ≥ h1 (X, L∨ ⊗Q).
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Yet by Riemann-Roch, we have

h1 (X, L∨ ⊗Q) = h0 (X, L∨ ⊗Q)− deg(L∨ ⊗Q) + g − 1 ≥ 0− k + g − 1 ,

whence
codim(Tk,T ) ≥ g − 1− k .

Note that in particular, if T nil = Tg−2, then codim(T nil,T ) > 0. Assume T nil ̸= Tg−2 and let t0
be a generic point in T wob := T nil \ Tg−2. Let B be a sufficiently small neighborbood of t0 in T wob.
By Proposition 1.4.6 and Serre duality, there exists a line subbundle L = ker(θ) of EB , inducing a
line subbbundle L ⊂ E, such that h1(L∨ ⊗Q) ̸= 0. By the same reasoning as above, we have

codim(T nil,T ) ≥ h1(L∨ ⊗Q) > 0 .

Theorem 1.7.3. Let X0 be a compact Riemann surface of genus g ≥ 0 and let D0 be an effective
divisor on X. Denote by Dred

0 the associated reduced divisor and assume that (X0,Dred
0 ) is stable. Let

(E0,∇0) be a rank 2 meromorphic connection over X0, with polar divisor D0. Assume that (E0,∇0)
is irreducible and deformable.

Let E → X with p : X → T∥ be the family of vector bundles underlying the parallel isomonodromic
deformation of (E0,∇0) (see § 1.3.3). Denote Et := E|p−1(t) for any t ∈ T∥. We consider the following
closed analytic subsets of T∥, where k ∈ Z (see § 1.4.2):

Tk := {t ∈ T∥ | κ(Et) ≤ k} , T nil := {t ∈ T∥ | Et not very stable} .

Then
codim(Tk,T∥) ≥ g − 1− k , codim(T nil,T∥) > 0.

Proof. Denote by ∇ the flat meromorphic connection on E → X with polar divisor D and polar locus
Dred given by the parallel isomonodromic deformation. Let t0 ∈ T∥; denote X := p−1(t0), D := D|X ,

Dred := Dred|X and E := E|X . We wish to apply the idea of the proof of Theorem 1.7.1. The key
point is to show that for any line subbundle L ⊂ E with quotient bundle Q = E/L, the composition

ρ∗ ◦KS(E,X,D) : Tt0T∥ → H1(X,L∨ ⊗Q)

is surjective. Recall that ρ is defined by ρ(P ) = (E → Q)◦P ◦(L→ E) for any section P of AtDred(E).
The main difficulty here is that ∇ is not necessarily logarithmic and it will be less straight forward
to relate the Kodaira-Spencer map KS(E,X,D) and the composition ρ∗ ◦KS(E,X,D) to the connection
and its second fundamental form.

First step: Relate KS(E,X,D) to ∇.

We denote AtlogD (E) := AtDred(E) . From the logarithmic Atiyah exact sequence

0 −→ End(E) −→ AtlogD (E)
σlog1−→ TX (−logDred) −→ 0

we obtain, by tensoring with OX (D −Dred) and considering the preimage under σlog1 ⊗ id of

TX (−logDred) ⊂ TX (−logDred)⊗OX (D −Dred) ,
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the meromorphic Atiyah exact sequence

0 −→ End(E)⊗OX (D −Dred) −→ Atmer
D (E)

σmer
1−→ TX (−logDred) −→ 0 .

Similarly to Lemma 1.5.3, from ∇ we obtain a splitting

δ̃ : TX (−logDred) −→ Atmer
D (E) , σmer

1 ◦ δ̃ = id

of the meromorphic Atiyah exact sequence. We obtain coherent subsheaves

Fmer := Im(δ̃) ⊂ Atmer
D (E) , F log := Fmer ∩AtlogD (E) ⊂ AtlogD (E) ,

where the latter is constructed from the natural exact sequence

0 −→ AtlogD (E) −→ Atmer
D (E) −→ End(E)⊗OD−Dred(D −Dred) −→ 0 .

Hence we have a natural exact sequence

0 −→ F log −→ Fmer −→ T̃1 −→ 0 ,

where the quotient T̃1 is a torsion sheaf isomorphic to OD−Dred(D −Dred).

Similarly, we define AtlogD (E), Atmer
D (E),

δ : TX(−D0) −→ Atmer
D (E)

from ∇|X as well as F log ⊂ AtlogD (E) and Fmer ⊂ Atmer
D (E). We obtain the following diagram with

exact rows and columns

0

!!

0

!!

0 "" F log

!!

"" F log|X

!!

"" p∗T T∥|X "" 0

0 "" Fmer ""

!!

Fmer|X ""

!!

p∗T T∥|X "" 0

T1

!!

T̃1|X

!!
0 0 .

(1.36)

Moreover, we find the following.

• A natural injective morphism of short exact sequences

0 "" Fmer

!!

"" Fmer|X

!!

"" p∗T T∥|X "" 0

0 "" Atmer
D (E) "" Atmer

D (E)|X "" p∗T T∥|X "" 0 ,

where the relevant quotient bundle is isomorphic to End(E)(D −Dred) (because δ is a splitting
of the meromorphic Atiyah exact sequence).
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• A natural injective morphism of exact sequences

0 "" AtlogD (E)

!!

"" AtlogD (E)|X

!!

"" p∗T T∥|X "" 0

0 "" Atmer
D (E) "" Atmer

D (E)|X "" p∗T T∥|X "" 0 ,

where the relevant quotient sheaf is End(E) ⊗ OD−Dred(D − Dred) (by construction of the
meromorphic Atiyah bundle).

Those, together with Diagram (1.36), yield the following injective morphism of exact sequences

0 "" F log

µ
!!

"" F log|X

!!

"" p∗T T∥|X "" 0

0 "" AtlogD (E) "" AtlogD (E)|X "" p∗T T∥|X "" 0 ,

(1.37)

where µ : F log → AtlogD (E) is the natural inclusion map. Now Diagram (1.37) encodes the Kodaira-
Spencer map and its relation to ∇. More precisely, recall from Definition 1.6.3 that KS(E,X,D) is
the connecting homomorphism in the long exact sequence of cohomology spaces associated to the
bottom row of diagram (1.37). Denote by f∥ the connecting homomorphism associated to the short
exact sequence

0 −→ F log −→ F log|X −→ p∗T T∥|X −→ 0

given by the upper row of Diagram (1.37). It follows that the Kodaira-Spencer map

KS(E,X,D) : Tt0T∥ → H1
(
X, AtlogD (E)

)

classifying the germ at t = t0 of the family (E → X p→ T∥,Dred) coincides with the composition

Tt0T∥
f∥−→ H1

(
X, F log

)
µ∗−→ H1

(
X, AtlogD (E)

)
.

Second step: Appropriately lift the second fundamental form.

The first step of our proof implies that for any line subbundle L of E, the composition ρ∗ ◦
KS(E,X,D) equals ρ

log
∗ ◦ f∥, where ρlog is the restriction of ρ to F log. We claim that ρlog is a non-zero

morphism lifting the second fundamental form of ∇. Indeed, define

ρ′ : Atmer
D (E)→ L∨ ⊗Q⊗OX(D −Dred) = End(E)⊗OX(D −Dred) /EndL(E)⊗OX(D −Dred)

similarly to ρ. We obtain a map

ρmer : Fmer → L∨ ⊗Q⊗OX(D −Dred) ,

whose precomposition with δ identifies with the second fundamental form IIδ of ∇|X with respect to
L , analogously to Lemma 1.5.5. Since IIδ is non-zero by irreducibility of ∇|X (see Remark 1.3.6), the
map ρmer is not the zero map. If follows that ρlog is not the zero map, because we have a commutative
diagram of torsion-free, invertible coherent sheaves

F log ρlog ""
"
!

!!

L∨ ⊗Q

!!

Fmer ρmer
"" L∨ ⊗Q⊗OX(D −Dred) .
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Third step: Show that ρlog∗ is surjective.

From the second step, we know that ρlog fits into an exact sequence

0 −→ F log ρlog−→ L∨ ⊗Q −→ T2 −→ 0 ,

where T2 is a torsion sheaf. In particular, H1(X,T2) = 0. We deduce that ρlog∗ is surjective:

ρlog∗ : H1(X,F log) "" "" H1(X,L∨ ⊗Q) .

Fourth step: Show that f∥ is surjective.

At this point, we need some explicit calculations. Let B∥ be a sufficiently small neighborhood

of t0 in T∥ = Tg,n × J∥. We may choose coordinates (t, a(1), . . . , a(n)) on B∥, with t ∈ Tg,n and

ϕa(i) : ε +→
∑ni

k=1 a
(i)
k εk in J (i) such that t0 corresponds to (0, (1, 0), . . . , (1, 0)). The total space XB∥

of the family of curves parametrized by B∥ is covered by open sets Ui with coordinates of the form

(zi, t, a(1), . . . , a(n)) with holomorphic transition maps zi = fij(zj , t) dictacted by the Teichmüller
space such that moreover each irreducible component of Dred intersects precisely one chart, and the
intersection is there given by {zi = 0}. Over these charts, we have local frames ei of EB∥ such that
∇|XB∥

is given by

{
ei · Y +→ ei ·

(
d +A(i)(ϕa(i)(zi))d(ϕa(i)(zi))

)
· Y if Dred ∩ Ui ̸= ∅

ej · Y +→ ej · dY if Dred ∩ Uj = ∅

Here A(i) is a two-by-two matrix whose coefficients are meromorphic functions (in one variable) with
poles of order at most ni at the origin. The transition maps between two frames away from Dred

are then constant. Otherwise, keeping the above convention for indexation by i or j, we have that
eiψij = ej implies

dψij · ψ−1
ij +A(i)(ϕa(i)(zi))d(ϕa(i)(zi)) = 0. (1.38)

Let us calculate f∥

(
∂

∂a
(i0)
k

)
. Contracting ∇|XB∥

with ∂

∂a
(i0)
k

yields

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ei · Y +→ ei ·
(

∂

∂a(i)k

+A(i)(ϕa(i)(zi))z
k
i

)
· Y if i = i0

ei · Y +→ ei · ∂

∂a
(i0)
k

Y if i ̸= i0

ej · Y +→ ej · ∂

∂a
(i0)
k

Y

These however are not all local sections of F log. In order to obtain such sections, which still project
to ∂

∂a
(i0)
k

, we may add for example the contraction of ∇|XB∥
with

−
zki

ϕ′
a(i)

(zi)

∂

∂zi
= −

zki

a(i)1 + 2a(i)2 zi + . . .+ (ni − 1)a(i)ni−1z
ni−2
i

∂

∂zi
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over Ui with i = i0, yielding

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ei · Y +→ ei ·
(

∂

∂a
(i)
k

− zki
ϕ′
a(i)

(zi)
∂
∂zi

)
· Y if i = i0

ei · Y +→ ei · ∂

∂a
(i0)
k

Y if i ̸= i0

ej · Y +→ ej · ∂

∂a
(i0)
k

Y

We obtain a Čech-cocycle which is identically zero on all intersections except Ui0 ∩ Uj, where it is
given with respect to the coordinate on Ui with i = i0 by

ei · Y +→ ei ·

(

−
∂ψij

∂a(i)k

ψ−1
ij +

zki
ϕ′
a(i)

(zi)

∂

∂zi

)

· Y (1.38)
= ei ·

(

A(i)(ϕa(i)(zi))z
k
i +

zki
ϕ′
a(i)

(zi)

∂

∂zi

)

· Y .

Restricting to X we obtain a cocycle in H1(X,F log) representing f∥

(
∂

∂a
(i0)
k

)
, namely

ei0 · Y +→ ei0 · z
k
i0

(
∂

∂zi0
+A(i0)(zi0)

)
· Y .

This cocycle also represents the image of
[
∇|X ·

(
−zki0

∂
∂zi0

)]
∈ H0(X,T1) under the connecting

homomorphism associated to the exact sequence

0 −→ F log −→ Fmer −→ T1 −→ 0.

Denoting by K∥ the subspace of vectors in Tt0B∥ = Tt0T∥ whose projection to T0Tg,n is zero, we
have established by the above calculation an isomorphism K∥ ≃ H0(X,T1) fitting into the following
commutative diagram with exact columns

K∥

!!

∼ "" H0 (X,T1)

!!

Tt0T∥
f∥ ""

KS(X,D)

!!

H1
(
X, F log

)

!!

H1(X,TX(−Dred))

!!

δ∗ "" H1 (X, Fmer)

!!
0 0 .

(1.39)

Since moreover δ∗ is surjective, it follows that f∥ is surjective.

Conclusion

We may now conclude as in the proof of Theorem 1.7.1, briefly summarized as follows.

Combining the results in the above steps with the notation from § 1.6.3 (concerning deformations
of quadruples) establishes the commutativy of the following diagram, with surjectivity of double-
headed arrows, where B is a neighborhood of t0 in a submanifold of T∥ in which L extends to a line
subbundle of E|p−1(B).
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H1
(
X,AtLDred(E)

)

ι∗
!!

ι∗ "" H1
(
X,AtlogD (E)

)
ρ∗ ""

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

H1 (X,L∨ ⊗Q)

Tt0B
!
"

!!

KS(E,L,X,Dred)

,,

H1
(
X, AtlogD (E)

)
H1
(
X, F log

)
µ∗

++

µ∗
--

ρlog∗

.. ..

Tt0T∥

KS(E,X,Dred)

,,

Tt0B∥

f∥

// //

.

We have ρ∗ ◦ ι∗ = 0 by Proposition 1.6.7. This implies

codim(B,T∥) ≥ h1(X,L∨ ⊗Q) .

For t0 generic in Tk \ Tk−1, we may choose a neighborhood B of t0 in Tk \ Tk−1 as above and L with
deg(L∨ ⊗Q) = k by Maruyama’s Theorem 1.4.4. By Riemann-Roch, one then has h1(X,L∨ ⊗Q) ≥
g − 1− k.

For t0 generic in T wob = T nil \ Tg−2 we may choose a neighborhood B of t0 in T wob as above and
L with h1(X,L∨ ⊗Q) > 0 by Proposition 1.4.6.

Remark 1.7.4. The calculations and arguments provided in the first and fourth step in the proof of
Theorem 1.7.3 did not use any assumption on the rank.

Remark 1.7.5. If (E0,∇0) in the above statement satisfies moreover (1.8), then the conclusion is also
valid when considering the family E → X with p : X → T underlying the universal isomonodromic
deformation of (E0,∇0) (see § 1.3.4). Indeed, let t0 be a generic point in Tk. Let T∥ ⊂ T the leaf of
the parallel foliation containing t0 (see also § 1.3.4). We may assume that t0 is not a singularity of
Tk ∩ T∥. Theorem 1.7.3 yields

codim
(
Tk ∩ T∥,T∥

)
≥ g − 1− k ,

whence codim(Tk,T ) ≥ g − 1− k. The argument for T nil is identical.

1.7.2 Isomonodromic deformations and stability in arbitrary rank

We now show how to adapt the ideas from § 1.7.1 to the case of arbitrary rank r ≥ 2. The statements
and proofs we obtain can be deduced from [BHH16] and [BHH18b].

Theorem 1.7.6. Let X0 be a compact Riemann surface of genus g ≥ 1 and let D0 be a reduced
divisor on X0 of degree n ≥ 0. Let (E0,∇0) be a logarithmic connection of arbitrary rank over X0,
with polar divisor D0. Assume that (E0,∇0) is deformable, i.e., 3g − 3 + n > 0, and is irreducible.

Let E → X with p : X → T = Tg,n be the family of vector bundles underlying the universal
isomonodromic deformation of (E0,∇0). Denote Et := E|p−1(t) for any t ∈ T . Define

T nss := {t ∈ T | Et not semistable} , T ns := {t ∈ T | Et not stable} .

Then T nss and T ns are closed analytic subsets of T satisfying

codim(T nss,T ) ≥ g , codim(T ns,T ) ≥ g − 1.

In particular, T nss is proper and T ns is proper if g > 1.
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Remark 1.7.7. Note that
T nss ⊂ T ns ⊂ T .

Proof. The fact that T nss and T ns are closed analytic subsets follows from Shatz’ Theorem 1.4.2. Let
t0 be a generic point in T nss or in T ns \ T nss. Again by Theorem 1.4.2, there exists a neighborhood
B of t0 in the analytic subset under consideration such that EB := E|p−1(B) admits a filtration of
length N ≥ 2 by subbundles, which in restriction to Xt := p−1(t) with t ∈ B corresponds to the
Harder-Narasimhan filtration, respectively a Jordan-Hölder filtration of Et. Denote (E,X,D) :=
(Et0 ,Xt0 ,D ∩ Xt0) and let

0 = F0 ! F1 ! . . . ! FN = E

be the filtration under consideration of E. Similarly to Definition 1.5.4, define a filtered Atiyah
bundle

AtFD(E)(U) := {P ∈ AtD(E)(U) | P (Fi(U)) ⊂ Fi(U) ∀i ∈ !1, N"} .

It fits into the following diagram with exact rows and columns

0

!!

0

!!

0 "" EndF (E)

!!

"" AtFD(E) ""

ι

!!

TX(−D) "" 0

0 "" End(E) ""

!!

AtD(E) ""

ρ
!!

TX(−D) "" 0

End(E)/EndF (E)

!!

End(E)/EndF (E)

!!
0 0 .

(1.40)

with EndF (E) as in Lemma 1.4.7, and ι being the natural inclusion map.

Denote by δ : TX(−D)→ AtD(E) the morphism induced by ∇|X as in Lemma 1.5.3 and consider
the map

IIδ := ρ ◦ δ : TX(−D)→ End(E)/EndF (E)

induced by composition with ρ, where ρ is defined by Diagram (1.40). The map IIδ is not the zero
map by irreducibility of (E,∇|X). We therefore have a non-zero coherent subsheaf

G := Im(IIδ) ⊂ End(E)/EndF (E) .

Denoting
AtGD(E) := ρ−1(G) , EndG(E) := End(E) ∩AtGD(E) ,

we obtain a new diagram with exact rows and columns given in (1.41).
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0

!!

0

!!

0 "" EndF (E)

!!

"" AtFD(E) ""

ι′

!!

TX(−D) "" 0

0 "" EndG(E) ""

!!

AtGD(E) ""

ρ′

!!

TX(−D) ""

IIδ00

δ

11

0

G

!!

G

!!
0 0 .

(1.41)

We construct a Kodaira-Spencer map KS(E,F,X,D) : Tt0B → H1(X,AtFD(E)) similarly to Defini-
tion 1.6.5. Similarly to what we have done before, one shows that it fits into the following commutative
diagram.

H1
(
X,AtFD(E)

)

ι∗
!!

ι′∗ "" H1
(
X,AtGD(E)

)

ν∗22❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

ρ′∗ "" H1 (X,G)

Tt0B
!
"

!!

KS(E,F,X,D)

**

H1 (X, AtD(E))

Tt0T
∼

KS(X,D)

""

KS(E,X,D)

**

H1 (X, TX(−D))

δ∗

33

IIδ∗

44

.

Here ν∗ is induced from the natural inclusion map ν : AtGD(E)→ AtD(E).

On the one hand, IIδ∗ is surjective because G is a line bundle and IIδ is non-zero. On the other
hand, ρ′∗ ◦ ι′∗ is the zero map by exactness in Diagram (1.41). Hence by Riemann-Roch

dim(T )− dim(B) ≥ h1(X,G) ≥ g − 1− deg(G) .

The vector bundle Lemma 1.4.7 implies deg(G) < 0 in the case B ⊂ T nss and deg(G) ≤ 0 in the case
B ⊂ T ns \ T nss.

Let us make some remarks on how the statement of Theorem 1.7.6 can obviously be sharpened
in view of the above proof. If n = 0, then even without the assumption of (E0,∇0) being irreducible,
the estimate

codim(T nss,T ) ≥ g

still holds. Indeed, it suffices to see in the proof that the second fundamental form IIδ with respect
to a Harder-Narasimhan filtration of length N ≥ 2 cannot be the zero map. If IIδ were zero and
n = 0, then ∇|X would induce a holomorphic connection on each Fi/Fi−1, which would imply
µ(Fi/Fi−1) = 0 for all i ∈ !1, N" [Wei38] [Ati57]. This contradicts the strict monotony of slopes in a
Harder-Narasimhan filtration.

In the statement, we also excluded the case (g = 1, n = 0) because then the base curve is not
stable. However, if (E0,∇0) is a holomorphic (n = 0) connection on a curve of genus g = 1, then
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E0 is automatically semistable of slope 0 (by Riemann-Hilbert correspondence and the Atiyah-Weil-
criterion).

On the other hand, the idea of the above proof does not allow to adapt the argument concerning
very stability in Theorem 1.7.1 to higher rank, basically because from h1(X,V ) > 0 with V =
(ker(θ))∨⊗E/ker(θ), where θ is a Higgs field on E, we cannot conclude h1(X,G) > 0 for an arbitrary
line subbundle G of V .

Theorem 1.7.8. Let X0 be a compact Riemann surface of genus g ≥ 1 and let Dred
0 be a reduced

divisor on X of degree n > 0. Let (E0,∇0) be a meromorphic connection of arbitrary rank over X0,
with polar locus Dred

0 and polar divisor D0. Assume that (E0,∇0) is irreducible.

Let E → X with p : X → T∥ be the vector bundle underlying the parallel isomonodromic defor-
mation of (E0,∇0). With the notation of Theorem 1.4.2 for the non-semistable locus T nss and the
non-stable locus T ns , the following estimates hold

codim(T nss,T∥) ≥ g , codim(T ns,T∥) ≥ g − 1 .

Proof. The proof of this theorem consists in adapting the proof of Theorem 1.7.3, in a manner
analogous to the way we adapted the proof of Theorem 1.7.1 to the case of higher rank in the proof
of Theorem 1.7.6. More precisely, we have to consider the logarithmic Atiyah bundle AtFDred(E)

preserving a (Harder-Narasimhan or Jordan-Hölder) filtration instead of AtLDred(E), which preserves

just a subbundle. Moreover, it is necessary to modify the third step because End(E)/EndF (E) is no
longer necessarily a line bundle. Instead, one considers

Gmer := Im(IIδ) ⊂ End(E)⊗OX(D −Dred) /EndF (E)⊗OX(D −Dred)

and sets G := Gmer ∩
(
End(E)/EndF (E)

)
. As in the second step, one obtains G ̸= 0. This leads to

the following commutative diagram

H1
(
X,AtFDred(E)

)

ι∗
!!

ι′∗ "" H1
(
X,AtGDred(E)

) ρ′∗ ""

ν∗22❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

H1 (X,G)

Tt0B
!
"

!!

KS(E,F,X,Dred)

,,

H1
(
X, AtlogD (E)

)
H1
(
X, F log

)
µ′
∗

++

µ∗
--

ρlog
′

∗
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Tt0T∥

KS(E,X,Dred)

,,

Tt0B∥

f∥

// //

.

One then concludes as in the proof of Theorem 1.7.6, using ρ′∗ ◦ ι′∗ = 0 and Shatz’ Theorem.

1.7.3 Further remarks and open questions

Let (E0 ,∇0) be a logarithmic connection of rank r ≥ 2, with polar divisor D0 of degree n on a
compact connected Riemann surface X0 of genus g. If g = 0, then we moreover assume n ≥ 4.

Let (E1 → X1,∇1) be another such connection. For conciseness, in the following we will say that
(E0 ,∇0) is isomonodromically deformable into (E1,∇1) if there exists an isomonodromic deformation
of (E0 ,∇0), given by some flat logarithmic connection (E ,∇) over a family of compact Riemann
surfaces p : X → T with connected parameter space T , endowed with marked points, given by
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D ⊂ X , and an isomorphism (E ,∇)|p−1(t0) ≃ (E0 ,∇0), such that there exists t1 ∈ T and an
isomorphism (E ,∇)|p−1(t1) ≃ (E1 ,∇1).

Recall from the introduction that the Riemann-Hilbert type problem that motivated our results
is the following.

Given a logarithmic connection (E0 ,∇0) as above, is it isomonodromically deformable into
a connection (E1,∇1) such that E1 is semistable?

According to our results, the answer is positive if

i) n = 0 or
ii) (E0 ,∇0) is irreducible and g ≥ 1 or
iii) (E0 ,∇0) is irreducible and (g, r) = (0, 2) and deg(E0) even .

As one can easily check, the irreducibility assumption in the second and third point can be
weakened into ∇0 not preserving any nonzero subbundle F such that µ(F ) > µ(E0), in other words,
into the pair (E0,∇0) being semistable. Moreover, if the pair (E0,∇0) is not semistable, then the
answer is negative for purely topological reasons. What is not entirely covered by our results is the
genus zero case. Consider an irreducible logarithmic connection (E0,∇0) of rank r ≥ 2 with n ≥ 4
poles over P1. In view of the proof of Theorem 1.7.6, up to isomonodromic deformation, we may
assume that E0 is of the following type:

E0 ≃
r⊕

k=1

OP1(ak) where ∀ k ∈ !1, r − 1" , ak+1 = ak or ak+1 = ak + 1 .

When deg(E0) = 0 and r = 2, then such a vector bundle is trivial. When r > 2, even if we assume
deg(E0) = 0, the question remains whether (E0,∇0) can be isomonodromically deformed into a
connection on the trivial bundle.

In the future, we would like to develop some applications of the Theorems 1.7.6 and 1.7.8. Note
that from refinements of the sl2-case of Theorem 1.7.1 several applications already appeared. For
example, it is shown in [Heu09] that any non-trivial one-parameter isomonodromic deformation of
irreducible sl2-connection with four poles (counted with multiplicity) arises as a solution of one of the
Painlevé equations PII-PVI. Moreover, in the sl2 and (g, n) = (2, 0) case, from refinements in [HL15]
and [CDHL18] of Theorem 1.7.1 one deduces that the monodromy functor for irreducible holomorphic
connections on unstable bundles, respectively the trivial bundle, (over varying curves) is a local
diffeomorphism. This represents a new proof of Hejhal’s theorem and a first step towards an open
question of Ghys respectively (see Chapter 3). In the case of rank r ≥ 2 and g > 1, Krichever [Kri02]
obtained isomodoromy equations for meromorphic connections using Tyurin’s approach of rational
trivialization for generic stable bundles of degree rg [Tyu65]. Theorems 1.7.6 and 1.7.8 suggest that
any universal/parallel isomonodromic deformation of irreducible meromorphic connection should
appear as a solution of Krichever’s isomonodromy equations.

Note that Theorems 1.7.1 and 1.7.6 provide lower bounds for the codimension of the loci of
certain “non-generic” vector bundles that may occur along universal isomonodromic deformations
of irreducible logarithmic connections. It would be interesting to see wether these lower bounds are
sharp. Even more interesting is to estimate the dimension of these subsets of the parameter space
in function of the initial connection (i.e., in function of its monodromy and residues). Already the
non-emptiness of these subsets, which is a degeneration problem, is widely open. For example:

Problem 1. Let (E0,∇0) be an irreducible logarithmic connection of rank r ≥ 2 over a compact
Riemann surface of genus g ≥ 1 with polar divisor D0 of degree n ≥ 0. Assume deg(E0) = 0.
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Find necessary and sufficient conditions for each of the following. The connection (E0,∇0) can
be isomonodromically deformed into some connection (E1,∇1), where E1 is

a) the trivial bundle
b) non-stable
c) non-semistable .

To the best of the author’s knowledge, the known (partial) answers to this problem are essentially
the following. For g ≥ 2 and n = 0, by the Narasimhan-Seshadri Theorem [NS65], unitary mon-
odromy is sufficient condition for Problem 1b) and non-unitary monodromy is a necessary condition
for Problems 1a) anf 1c). If moreover r = 2, then in view of [LM09] and the Gallo-Kapovich-Marden
Theorem [GKM00], non-unitary monodromy is also sufficient for Problem 1c).

Note that Problem 1c) appears also as a degeneration problem when considering g = 0 and
semistable initial bundles. A conjecture that, as pointed out by Loray, already appears in the
works of Poincaré, says that for g = 0, n = 4, r = 2, any irreducible tracefree (E0,∇0) can be
isomonodromically/parallely deformed into (E1,∇1) with E1 ≃ OP1(1)⊕OP1(−1).

As mentioned in the introduction, our deformation technique allows to solve the Riemann-Hilbert
problem investigating (Ramanan-)semistability along isomonodromic deformations for principal con-
nections on G-bundles (see [BHH16]) over curves of genus g ≥ 1. The discrete version of this Riemann-
Hilbert problem (fixing the complex structure of the pointed base curve, but not the residues) seems
to be largely open for G ̸= GLrC:

Problem 2. Let ρ : π1(X \ D, x0) → G be a group homomorphism, where G is a connected
reductive complex algebraic group, X is a compact Riemann surface and D is a divisor on X, such
that there exist principal logarithmic connections (EG → X ,D ,∇G) with monodromy conjugated to
ρ (see [Boa11]). Is there one such connection with EG trivial or semistable?
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Chapter 2

Algebraic isomonodromic deformations
and the mapping class group

2.1 Introduction

Let Σg be a compact oriented real surface of genus g, let Y n := {y1, . . . , yn} be a set of n distinct
points in Σg and let y0 ∈ Σg \ Y n. Denote

Λg,n := π1(Σg \ Y n , y0) .

The mapping class group Γg,n of isotopy classes of orientation preserving homeomorphisms of Σg

that fix Y n pointwise, acts on the character variety

χg,n(G) := Hom(Λg,n, G) /G ,

where G is an algebraic subgroup of GLrC (see Section 2.2 for more details). For a representation
ρ ∈ Hom(Λg,n, G), we denote by [ρ] ∈ χg,n(G) the corresponding equivalence class.

In this chapter, we present two results about finite orbits of the mapping class group action
on χg,n(G) for G = GLrC, obtained in collaboration with G. Cousin in the prepublication [CH16].
These results and their respective proofs can be read independently. On the one hand, we relate such
finite orbits to the existence of an algebraic universal isomonodromic deformation of a logarithmic
connection over a curve, whose monodromy belongs to that orbit. The obtained result, stated
in § 2.1.1, can be seen as criterion under which a GAGA-type theorem holds for isomonodromic
deformations. On the other hand, motivated by this result, we perform a dynamical study classifying
conjugacy classes of reducible rank two representations with finite orbit. This classification result
will be stated in § 2.1.2.

2.1.1 Algebraization of universal isomonodromic deformations

As recalled in Chapter 1, any triple (C,E,∇0), where C is a compact Riemann surface and (E,∇0) is
an analytic logarithmic connection over C, admits a universal analytic isomonodromic deformation,
which is unique up to unique isomorphism, and whose parameter space is the Teichmüller space
Tg,n. This universal analytic isomonodromic deformation satisfies a universal property with respect
to germs of analytic isomonodromic deformations of (C,E,∇0). On the other hand, C can be seen
as a smooth curve (a smooth projective complex variety of dimension one). By one of Serre’s GAGA
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theorems [Ser56, Prop. 18], the holomorphic vector bundle E is obtained by analytification from a
unique algebraic vector bundle over C. Moreover, the analytic logarithmic connection ∇0 on E is
induced by a unique algebraic logarithmic connection on this algebraic vector bundle [Del70, Prop.
II.4.4.]. A universal algebraic isomonodromic deformation of (C,E,∇0), if it exists, would be an
algebraic isomonodromic deformation whose analytic germification is isomorphic to the germification
of the universal analytic isomonodromic deformation of (C,E,∇0). In § 2.6.4, we give an alternative
definition and state the corresponding universal property. Our main result is the following.

Theorem 2.1.1. Let C be an irreducible smooth projective complex curve of genus g. Let D be a
set of n distinct points in C and let ϕ : (Σg, Y n) → (C,D) be an orientation preserving homeomor-
phism. Let (E,∇0) be an algebraic logarithmic connection of rank r over C with polar divisor D and
monodromy [ρ] ∈ χg,n(GLrC) with respect to ϕ. Assume that 2g − 2 + n > 0 and that ∇0 is mild. If
r > 2, then assume further that ρ is semisimple. The following are equivalent:

(1) There exists a universal algebraic isomonodromic deformation of (C,E,∇0).

(2) The orbit Γg,n · [ρ] in χg,n(GLrC) is finite.

Note that the orbit Γg,n · [ρ] in χg,n(GLrC) does not depend on the choice of ϕ. We prove
Theorem 2.1.1 by adapting the proof for the special case of genus g = 0, which has been established
in [Cou17]. The main ingredients of the proof of Theorem 2.1.1 are: the logarithmic Riemann-Hilbert
correspondence (see Section 2.6); the introduction of a base point section for a family of punctured
curves and the splitting of the fundamental group of the total space of the family, together with
its relation to the mapping class group (see Section 2.7). Both implications to be proven appear as
special cases of stronger results: Theorems 2.8.1 and 2.8.2 respectively. We give their statements and
proofs in Section 2.8.

The statement of Theorem 2.1.1 is natural in the following sense. As we recall in Section 2.2,
the (algebraic) moduli space Mg,n of stable smooth n-pointed genus-g curves is the quotient of the
(analytic) Teichmüller space Tg,n by the natural action of Γg,n . Intuitively, a universal algebraic
isomonodromic deformation should be the quotient of the universal analytic isomonodromic defor-
mation with respect to a sufficiently large subgroup of Γg,n that fixes [ρ].

2.1.2 Dynamical study of finite orbits in the reducible rank 2 case

Since the pure mapping class group Γg,n is a finite index subgroup of the full mapping class group
Γ̂g,n, for any representation ρ ∈ Hom(Λg,n, G), the conjugacy class [ρ] ∈ χg,n(G) has finite orbit
under Γg,n if and only if it has finite orbit under Γ̂g,n (see Section 2.2). Note that the size of Γ̂g,n · [ρ]
equals the size of the set of conjugacy classes of m-tuples

{
(ρ′(s1), . . . , ρ′(sm))

∣∣∣ ρ′ ∈ Hom(Λg,n, G) and [ρ′] ∈ Γ̂g,n · [ρ]
}
/G ,

where {s1, . . . , sm} is a set of generators of Λg,n. We introduce a specific presentation

Λg,n = ⟨α1,β1, . . . ,αg,βg, γ1, . . . , γn | [α1,β1] · · · [αg,βg]γ1 · · · γn = 1⟩

and a subgroup
Γ̂◦
g,n = ⟨τ1, . . . , τ3g+n−2,σ1, . . . ,σn−1⟩

of Γ̂•
g,n := Γ̂g,n+1 which, as such, acts on Hom(Λg,n, G), and which is sufficiently large in the sense

that the Γ̂◦
g,n-orbit of [ρ] ∈ χg,n(G) equals its Γ̂g,n-orbit. Moreover, the action of Γ̂◦

g,n on Λg,n can be
explicitly described (see Section 2.3).
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We then apply this explicit description of the mapping class group action to the specific study
of finite Γg,n-orbits on χg,n(GL2C) that correspond to reducible representations, assuming g > 0.
Using other techniques, the complete characterization of finite Γg,n-orbits on χg,n(GL2C) with g > 0
that correspond to irreducible representations with values in SL2C is under preparation by Wang
[Wha17]. The complete characterization of finite Γg,n-orbits on χ0,n(GL2C) that correspond to
reducible representations (assuming g = 0) has been carried out by Cousin and Moussard in [CM16].
As in our case, the study then boils down to the characterization of finite orbits in χg,n(Aff(C)), where
Aff(C) is the group of affine isomorphisms of the complex line. Moreover, as a particularity of the
genus zero case, the pure mapping class group acts trivially on the linear part of affine representations
ρAff , and the study can be further reduced to linear dynamics. For g > 0, a more direct approach is
necessary.

In the case g = 1 and n > 0, we find a particular type of representations with infinite image, whose
conjugacy classes have finite orbit under Γg,n, namely the representations ρµ,c ∈ Hom(Λg,n,GL2C)
defined by

ρµ,c(α1) :=

(
µ 0
0 1

)
ρµ,c(β1) :=

(
1 − 1

µ−1

0 1

)
ρµ,c(γi) :=

(
1 ci
0 1

)
∀i ∈ !1, n"

where µ ∈ C∗ \ {1} is a root of unity and c = (c1, . . . , cn) ∈ Cn with
∑n

i=1 ci = 1. Note that the
condition

∑n
i=1 ci = 1 is necessary for ρµ,c to be well defined. The complete classification, for every

g > 0 and n ≥ 0, of reducible rank-2 representations with finite Γg,n-orbit is the following.

Theorem 2.1.2. Let g > 0, n ≥ 0. Let ρ ∈ Hom(Λg,n,GL2C) be a reducible representation. Consider
its conjugacy class [ρ] ∈ χg,n(GL2C). Then the orbit Γg,n·[ρ] is finite if and only if one of the following
conditions is satisfied.

(1) The representation ρ is a direct sum of scalar representations with finite images.

(2) We have g = 1, n > 0, there are a root of unity µ ∈ C∗ \ {1} , c = (c1, . . . , cn) ∈ Cn with∑n
i=1 ci = 1 and a scalar representation λ with finite image such that

[ρ] ∈ Γg,n · [λ⊗ ρµ,c] .

The heart of the proof of Theorem 2.1.2 is the complete classification of finite Γ̂g,n-orbits in
χg,n(Aff(C)) under the full mapping class group (see the beginning of Section 2.4 for details on how
we proceed). We deduce an explicit description of the finite Γg,n-orbits for scalar and affine represen-
tations. The decomposition of reducible representations into a tensor product of such representations
then yields the result. Moreover, the size of the finite orbits can be estimated (see Section 2.5).

2.2 The mapping class group

Let g and n be nonnegative integers. Let Σg be a compact oriented real surface of genus g, let
yn = (y1, . . . , yn) be a sequence of n distinct points in Σg. We shall denote by Y n := {y1, . . . , yn} the
corresponding (unordered) set of points. The (pure) mapping class group of (Σg, yn) is defined to be
the set of orientation preserving homeomorphisms h of Σg such that h(yi) = yi for all i ∈ !1, n" :=
{k ∈ Z | 1 ≤ k ≤ n}, quotiented by isotopies:

Γg,n := Homeo+(Σg, yn)
/
{isotopies relative to Y n} .
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We can also consider homeomorphisms of Σg that preserve the set Y n, but do not necessarily preserve
the labelling of the punctures. This leads to the full mapping class group

Γ̂g,n := Homeo+(Σg, Y n)
/
{isotopies relative to Y n} .

Note that we have an exact sequence of groups

1 −→ Γg,n −→ Γ̂g,n −→ Sn −→ 1,

where Sn denotes the symmetric group of degree n. In particular, Γg,n is a subgroup of Γ̂g,n of finite
index n! .

2.2.1 The mapping class group action on χg,n(G)

Let now y0 ∈ Σg \ Y n be a point. We denote the fundamental group of Σg \ Y n with respect to the
base point y0 by

Λg,n := π1(Σg \ Y n, y0) . (2.1)

The composition α .α′ of two paths α,α′ ∈ Λg,n shall denote the usual concatenation (first α, then
α′). For any group G, we may consider the space Hom(Λg,n, G) of representations as well as the set
of representations modulo conjugation, which we shall denote

χg,n(G) := Hom(Λg,n, G) /G . (2.2)

Define the groups of orientation preserving homeomorphisms h of Σg such that h(y0) = y0 and
h(yn) = yn, respectively h(Y n) = Y n, modulo isotopy:

Γg,n+1 := Homeo+(Σg, yn, y0)
/
{isotopies relative to Y n ∪ {y0}} ,

Γ̂•
g,n := Homeo+(Σg, Y n, y0)

/
{isotopies relative to Y n ∪ {y0}} .

Now Γ̂•
g,n naturally acts on the fundamental group Λg,n: for h ∈ Γ̂•

g,n and α ∈ Λg,n, we set

a(h)(α) := h∗α .

Via the forgetful maps Γg,n+1 → Γg,n and Γ̂•
g,n → Γ̂g,n we obtain a commutative diagram

Γg,n+1

!!!!

#
"

"" Γ̂•
g,n

a ""

!!!!

Aut(Λg,n)

!!!!
Γg,n

#
"

"" Γ̂g,n
"" Out(Λg,n) : Aut(Λg,n)

/
Inn(Λg,n) .

Indeed, the isotopy class of any element h ∈ Homeo+(Σg, yn) may be lifted to the isotopy class of
an element h0 ∈ Homeo+(Σg, yn, y0). Let h1 ∈ Homeo+(Σg, yn, y0) be another representative. Then
these lifts are the extremities of an isotopy (ht)t∈[0,1] relative to Y n. We have a loop γ ∈ Λg,n defined
by γ(t) = ht(y0). For any α ∈ Λg,n, we obtain a(h1)(α) = γ−1 . a(h0)(α) . γ .

In particular, for any group G, the mapping class group Γ̂g,n acts on χg,n(G), and this action lifts
to an action of Γ̂•

g,n on the space Hom(Λg,n, G). More precisely, for all ρ ∈ Hom(Λg,n, G), h ∈ Γ̂•
g,n

and α ∈ Λg,n, we define
([h] · ρ)(α) := ρ(a(h−1)(α)) . (2.3)
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Recall that for G = GLrC, a representation ρ ∈ Hom(Λg,n,GLrC) is called irreducible if the only
subvector spaces V ⊂ Cr stable under Im(ρ) are {0} and Cr. A semisimple representation is a direct
sum of irreducible representations. These notions are invariant under conjugation, so that we may
speak of irreducible or semisimple elements of χg,n(GLrC).

2.2.2 The mapping class group action on Tg,n

We define a curve of genus g to be a smooth projective complex curve C with H1(C,Z) = Z2g.

As a set, the Teichmüller space Tg,n of n-pointed genus-g curves is the set of isomorphism
classes [C,D,ϕ] of triples (C,D,ϕ), where C is a curve of genus g, D = {x1, . . . , xn} is a set
of n distinct points in C and ϕ is a Teichmüller structure, i.e., an orientation-preserving home-
omorphism ϕ : (Σg, Y n) → (C,D). Two n-pointed genus-g curves with Teichmüller structure
(C,D,ϕ) and (C ′,D′,ϕ′) are said to be isomorphic if there exists an isomorphism of pointed curves
ψ : (C,D)→ (C ′,D′) such that [ϕ′] = [ψ ◦ ϕ], where [ϕ] denotes the isotopy class of ϕ.

We have a natural action of the pure mapping class group Γg,n on Tg,n given by

[h] · [C,D,ϕ] := [C,D,ϕ ◦ h−1] ; [h] ∈ Γg,n , [C,D,ϕ] ∈ Tg,n .

The kernel of this action is finite. More precisely, we have (see [ACG11, Prop 4.11 p. 189]):

Lemma 2.2.1. Let g, n ≥ 0 such that 2g− 2+n > 0. If the natural morphism Γg,n → Aut(Tg,n) has
nontrivial kernel Kg,n, then Kg,n ≃ Z/2Z and one of the following holds.

• (g, n) = (2, 0) and the non-trivial element of Kg,n is the hyperelliptic involution of Σ2.
• (g, n) = (1, 1) and the non-trivial element of Kg,n is the order 2 symmetry about the puncture,
given, for (Σ1, y1) = (C/Z2, 0), by z +→ −z.

2.2.3 Relation to Mg,n

Let g, n be non-negative integers satisfying

2g − 2 + n > 0 . (2.4)

As a set, the moduli space Mg,n of curves of genus g with n (labeled) punctures is the set of
isomorphism classes [C,x] of pairs (C,x), where C is a genus g curve and x = (x1, . . . , xn) is a tuple
of n distinct points in C. The isomorphisms are isomorphisms of pointed curves that respect the
labellings of the n-tuples. Notice that a pointed curve with Teichmüller structure (C,D,ϕ) defines
such a pair (C,x), by setting x := (ϕ(yi))i∈!1,n". In this way, we obtain a forgetful map

πg,n : Tg,n →Mg,n (2.5)

whose fibers are globally fixed by the action of Γg,n/Kg,n on Tg,n. Denote by Rg,n ⊂ Tg,n the
set consisting in points with non-trivial stabilizer for the action of Γg,n/Kg,n. The subset Bg,n :=
πg,n(Rg,n) of Mg,n characterizes pointed curves with automorphism groups not isomorphic to Kg,n.
We say that these curves have exceptional automorphisms.

Recall that Tg,n has a natural structure of a complex analytic manifold, and Mg,n has a natural
structure of a complex quasi-projective variety. The set Bg,n of curves with exceptional automor-
phisms is a Zariski closed subset of Mg,n (see [ACG11, Rem. 5.13 p. 202 and Th. 6.5 p. 207]) which
is a proper subset (see [Bai62, Mon62, Poo00, Cor08]). Moreover, the map

πg,n|Tg,n\Rg,n : Tg,n \ Rg,n →Mg,n \ Bg,n
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is a non branched analytic cover, with Galois group isomorphic to Γg,n/Kg,n. For any point ⋆̂ ∈ Tg,n
projecting to ⋆ ∈Mg,n we obtain a tautological map

taut⋆̂ : π1(Mg,n \ Bg,n, ⋆) ! Γg,n

/
Kg,n ; (2.6)

such that for the lift γ̂ in Tg,n with γ̂(0) = ⋆̂ of a loop γ corresponding to an element of π1(Mg,n \
Bg,n, ⋆) we have γ̂(1) = taut⋆̂(γ) · ⋆̂. For another point ⋆̂′ = [h] · ⋆̂ we obtain taut[h]·⋆̂ = h · taut⋆̂ · h−1,
so that taut⋆̂ is a morphism of groups:

taut⋆̂(γ1 .γ2) = taut⋆̂(γ1) · taut⋆̂(γ2) .

We refer to [ACG11, chap. XIV] for a more detailed exposition on all of the above.

2.3 Effective description of the action on χg,n(G)

In this section, we describe the action of Γ̂g,n on Λg,n in terms of specified generators for both groups.
More precisely, for a specific presentation

Λg,n = ⟨α1,β1, . . . ,αg,βg, γ1, . . . , γn | [α1,β1] · · · [αg,βg]γ1 · · · γn = 1⟩

with g > 0 we construct a subgroup

Γ̂◦
g,n = ⟨τ1, . . . , τ3g+n−2,σ1, . . . ,σn−1⟩

of Γ̂•
g,n = Γ̂g,n+1 such that the Γ̂◦

g,n-orbit of [ρ] ∈ χg,n(G) equals its Γ̂g,n-orbit. Table 1 summarizes

the action of the generators of Γ̂◦
g,n on those generators of Λg,n that are not fixed by the action of

the generator of Γ̂◦
g,n under consideration.

τ2k k ∈ !1, g" αk +→ αkβk
τ2k−1 k ∈ !1, g" βk +→ βkαk

τ2g+k k ∈ !1, g − 1" αk+1 +→ Θ−1
k αk+1

αk +→ αkΘk ; where Θk := αk+1β
−1
k+1α

−1
k+1βk

βk +→ Θ−1
k βkΘk

τ3g−1+k k ∈ !1, n− 1" αg +→ αgΞk

βg +→ Ξ−1
k βgΞk ; where Ξk := (γ1 . . . γk)−1βg

i ∈ !1, k" γi +→ Ξ−1
k γiΞk

σk k ∈ !1, n− 1" γk +→ γkγk+1γ
−1
k

γk+1 +→ γk

Table 1: Action of Γ̂◦
g,n on Λg,n.

2.3.1 Presentation of the fundamental group

To give an effective description of Λg,n and how Γ̂g,n acts, we will assume that Σg is the subsurface
of genus g of R3 depicted in Figure 1. On this surface we also depicted, in gray, an embedded closed
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βg

αg

β1βg−1

y0

αg−1 α1

δ

Figure 1: Preferred elements of the fundamental group, I

disk ∆̄ ⊂ Σg, we will denote ∆ its interior. We fix n and we consider a subset Y n = {y1, . . . , yn} ⊂ ∆
of cardinality n, as well as a point y0 ∈ ∆̄ \∆. We have

π1(Σg \∆, y0) =
〈
α1,β1, . . . ,αg,βg, δ

∣∣ [α1,β1] · · · [αg,βg] = δ−1
〉
,

where the mentioned generators correspond to the loops in Figure 1.

The loops in Figure 2 correspond to the following presentation.

π1(∆̄ \ Y n, y0) = ⟨γ1, . . . , γn, δ | γ1 · · · γn = δ⟩ .

y0

δ

y1 y2 yn

γnγ1 γ2

Figure 2: Preferred elements of the fundamental group, II

By the Van Kampen theorem, we have

Λg,n = π1(Σ \∆, y0) ∗δ π1(∆̄ \ Y n, y0)

=
〈
α1,β1, . . . ,αg,βg, γ1, . . . , γn | γ1 · · · γn = ([α1,β1] · · · [αg,βg])

−1
〉
.

Definition 2.3.1. In the sequel, we will refer to the above

(αi)i∈!1,g" , (βi)i∈!1,g" , (γj)j∈!1,n"

as the generators of Λg,n.

2.3.2 Mapping class group generators

We define Γ1
g to be the mapping class group of orientation preserving homeomorphisms of Σg \∆ that

restrict to the identity on the boundary ∂∆. Continuating such homeomorphisms by the identity on
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∆, we get a morphism
ϕg : Γ1

g → Γ̂•
g,n .

After Lickorish [Lic64] (see also [FM12, Th. 4.13]), the group Γ1
g is generated by the (right) Dehn-

twists along the loops τ1, . . . , τ3g−1 represented in Figure 3.

τ2g+1

τ2g
τ2

τ2g−1 τ2g−3 τ1

τ2g−2
τ3g−1 τ3g−2

Figure 3: Dehn-twists

A right Dehn twist acts on paths which cross the corresponding Dehn curve as depicted in Figure 4.
This action can be paraphrased as a path crossing the Dehn curve has to turn right. A left Dehn
twist is the inverse of a right Dehn twist.

(γ)γ

τ

τ

Figure 4: A Dehn-twist

One can easily check the following.

Lemma 2.3.2 (Dehn-twists). The action of the Dehn twists above on the fundamental group
π1(Σg \ ∆, y0) is given in Table 2, where we only indicate the non-trivial actions on the genera-
tors. Here for τ2k−1 we give the formula for the left Dehn twist. The other generators all correspond
to right Dehn twists. For k ∈ !1, g − 1", the element Θk described in Table 2 is fixed by τ2g+k.

τ2k k ∈ !1, g" αk +→ αkβk
τ2k−1 k ∈ !1, g" βk +→ βkαk

τ2g+k k ∈ !1, g − 1" αk+1 +→ Θ−1
k αk+1

αk +→ αkΘk ; where Θk := αk+1β
−1
k+1α

−1
k+1βk

βk +→ Θ−1
k βkΘk

Table 2: Dehn twist action
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On the other hand, one can define the mapping class group of orientation preserving homeomor-
phisms of ∆̄ that preserve the set Y n and restrict to the identity on the boundary ∂∆. It is classically
called the braid group on n strands and denoted Bn. Continuating such homeomorphisms by the
identity on the complement of ∆ in Σg, we get a morphism

ϕ0 : Bn → Γ̂•
g,n.

After Artin [Art25], the group Bn is generated by half-twists σ1, . . . ,σn−1, whose action is depicted
in Figure 5.

yi+2yi−1 yi−1 yi
yi+1

yi+1

γi

yi

y0

yi+2

∆

γi+1

σi

∆

y0

Figure 5: Half-twists

Lemma 2.3.3 (Half-twists). The action of the braid group Bn = ⟨σ1, . . . ,σn−1⟩ on the fundamental
group π1(∆̄ \ Y n, y0) is described in Table 3, where we only indicate the non-trivial actions on the
generators. Moreover, Table 3 indicates the action of σcycl := σn−1 ◦ · · · ◦ σ1 ∈ Bn and some of its
powers.

σk k ∈ !1, n− 1" γk +→ γkγk+1γ
−1
k

γk+1 +→ γk
σcycl γ1 +→ δγnδ−1

i ∈ !2, n" γi +→ γi−1

σkcycl k ∈ !1, n"
i ∈ !1, k" γi +→ δγn+i−kδ−1

j ∈ !k + 1, n" γj +→ γj−k

Table 3: Half twist action

Remark 2.3.4. Note that σcycl is almost a cyclic permutation of the generators of π1(∆̄ \ Y n, y0).
More precisely, it acts as such on the representations ρ that satisfy ρ(δ) = id, e.g. representations
with abelian image.

By construction, the subgroups ϕ0(Bn) and ϕg(Γ1
g) of Γ̂

•
g,n commute, and we have a morphism

Bn × Γ1
g
ϕ0×ϕg−→ Γ̂•

g,n .

Composing with the canonical map π : Γ̂•
g,n → Γ̂g,n (forgetting that y0 is fixed) yields a morphism

Bn × Γ1
g → Γ̂g,n, which is not surjective unless g = 0 or n ≤ 1. In order to generate the whole
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mapping class group Γ̂g,n for g > 0, it suffices to add min(0, n − 1) Dehn twists, namely the ones
corresponding to the loops τ3g, . . . , τ3g+n−2 of Figure 6 (see [FM12, Sec. 4.4.4]). We call them mixing
twists.

y1

yk+1

yk+2

yk

yn

y0

τ3g−1+k

τ3g−1+k+1

Figure 6: Mixing twists

Lemma 2.3.5 (Mixing twists). The action of the (right) mixing twists τ3g, . . . , τ3g+n−2 on the fun-
damental group Λg,n is described in Table 4, where we only indicate the non-trivial actions on the
generators. Moreover, for k ∈ !1, n− 1", the element Ξk described there is fixed by τ3g−1+k.

τ3g−1+k k ∈ !1, n− 1" αg +→ αgΞk

βg +→ Ξ−1
k βgΞk ; where Ξk := (γ1 . . . γk)−1βg

i ∈ !1, k" γi +→ Ξ−1
k γiΞk

Table 4: Mixing twist action

The twists, mixing twists and braids we introduced all fix y0. We denote by Γ̂◦
g,n the subgroup

of Γ̂•
g,n they generate. If g = 0, then we have Γ̂◦

g,n = Bn. We are interested in the case g > 0, where
we have

Γ̂◦
g,n := ⟨τi ,σj | i ∈ !1, 3g − 1 + min(0, n − 1)" , j ∈ !1, n− 1"⟩ .

As mentioned, the image of Γ̂◦
g,n under π : Γ̂•

g,n → Γ̂g,n is Γ̂g,n.

Remark 2.3.6. We did not call δ = γ1 · · · γn = ([α1,β1] · · · [αg,βg])
−1 a generator of the fundamental

group. It will nevertheless be useful to notice that among our preferred generators of Γ̂◦
g,n, only the

mixing twists act non trivially on δ. More precisely, for k ∈ !1, n− 1" we have

τ3g−1+k(δ) = [Ξ−1
k ,βg]δ .

2.4 Finite orbits of the action on χg,n(Aff(C))

In the previous section, we have established an explicit description of the full mapping class group ac-
tion on Λg,n. This description at hand, we will now classify affine representations ρ ∈ Hom(Λg,n,Aff(C))
with finite orbit Γ̂g,n · [ρ] in χg,n(Aff(C)) for g > 0:

• We establish that for those representations ρ ∈ Hom(Λg,n,Aff(C)) such that the group Im(ρ)
is abelian, the orbit Γ̂g,n · [ρ] is finite if and only if Im(ρ) is finite (see Proposition 2.4.2).
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• We then consider representations ρ ∈ Hom(Λg,n,Aff(C)) such that the group Im(ρ) is not
abelian. We classify all finite orbits in this case in three steps.

- We give a necessary condition for the finiteness of Γ̂g,n · [ρ] in Lemma 2.4.4.

- We prove that in the genus one case, this necessary condition is also sufficient (see Propo-
sition 2.4.5).

- We prove that in the higher genus case, this necessary condition can be tightened (see
Lemma 2.4.6), and this tightened necessary condition cannot hold for every conjugacy
class [ρ′] ∈ Γ̂g,n · [ρ]. We conclude that in the higher genus case, there are no conjugacy
classes of non abelian Aff(C)-representations with finite orbit under Γ̂g,n (see Proposition
2.4.7).

The group Aff(C) = {(aij) ∈ GL2(C) | a21 = 0 , a22 = 1} identifies with the group {z +→ az +
b | a ∈ C∗, b ∈ C} of affine transformations of the complex line C. For shortness, its elements will
be denoted as polynomials az + b. Our explicit calculations are easier to check with the following
formulas in mind.

(λz) ◦ (az + b) ◦ (λz)−1 = az + λb
(z + c) ◦ (az + b) ◦ (z + c)−1 = az + b− c(a− 1)

[λz + c, az + b] = z − c(a− 1) + (λ− 1)b

Also, recall that by definition, for all τ ∈ Γ̂◦
g,n , ρ ∈ Hom(Λg,n,Aff(C)) and α ∈ Λg,n, we have

(τ · ρ)(α) = ρ(τ−1
∗ α) .

2.4.1 Abelian case

Lemma 2.4.1 (Finding a non trivial subgroup). Let g > 0, n ∈ N. Let G be a group with identity
element id and let ρ : Λg,n → G be a representation. Assume that for any ρ′ ∈ Γ̂◦

g,n · ρ, we have

ρ′(αg) = id .

Then ρ is the trivial representation, i.e., Im(ρ) = {id}.

Proof. Note that our assumption on ρ is Γ̂◦
g,n-invariant, so that what we prove for ρ under that

assumption also holds for any ρ′ ∈ Γ̂◦
g,n · ρ. We denote

R′ := ⟨ρ′(αg), ρ
′(βg), . . . , ρ

′(α1), ρ
′(β1)⟩ , S′ := ⟨ρ′(γ1), . . . , ρ′(γn)⟩.

First step: for any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′ is trivial.

For k ∈ !1, g", define the following property, which we shall denote H(k):

For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

k := ⟨ρ′(αg), ρ′(βg), . . . , ρ′(αk), ρ′(βk)⟩ is trivial.

Let us first prove that our assumption implies H(g). Consider τ := τ−1
2g and ρ′ = τ · ρ. Then

ρ′(αg) = ρ(αgβg) = ρ(βg). We have ρ′(αg) = ρ(αg) = id, hence ρ(βg) = ρ(αg) = id. By Γ̂◦
g,n-

invariance, we have H(g).
Let now ρ be a representation satisfying H(k). In particular, we have

ρ(αi) = ρ(βi) = id ∀i ∈ !k, g" .
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For ρ′ = τ · ρ, with τ = τ−1
2g+k−1 we have ρ′(αk) = ρ(β−1

k−1αkβk) = ρ(βk−1)−1.

For ρ′ = τ · ρ, with τ = (τ2k−3 ◦ τ2g+k−1)−1, we have ρ′(αk) = ρ(βk−1αk−1)−1.

Hence ρ satisfying H(k) implies ρ(αi) = ρ(βi) = id for all i ∈ !k − 1, g". As H(k) is Γ̂◦
g,n-invariant,

this proves H(k − 1). We conclude by noticing R′ = R′
1.

Second step: for any ρ′ ∈ Γ̂◦
g,n · ρ, the group S′ is trivial.

If n = 0 or n = 1, there is nothing to prove. Assume n > 1. We have already proven that R′

is trivial for any ρ′ ∈ Γ̂◦
g,n · ρ. In particular ρ′(δ) = id. Considering, for i ∈ !1, n", the action of

τ = (σn−i
cycl ◦ τ3g+n−2)−1 on αg then shows that for ρ′ = τ · ρ we have id = ρ′(αg) = ρ(γi) (see Table 3

page 62). Hence ⟨ρ(γ1), . . . , ρ(γn)⟩ = {id}. Since the assertion is Γ̂◦
g,n-invariant, we have proven that

S′ is trivial for any ρ′ ∈ Γ̂◦
g,n · ρ.

We conclude that Im(ρ) = Im(ρ′) = ⟨S′, R′⟩ = {id}.

Proposition 2.4.2 (Abelian case). Let g > 0. Let ρ : Λg,n → Aff(C) be a representation such that
the group Im(ρ) is abelian. Then the orbit of the conjugacy class [ρ] under the action of Γ̂g,n is finite
if and only if Im(ρ) is finite.

Proof. If Im(ρ) is finite, then the orbit Γ̂◦
g,n · ρ is finite. A fortiori, the orbit Γ̂◦

g,n · [ρ] is finite.
Assume now that ρ is abelian and the orbit of [ρ] is finite. Since Im(ρ) is an abelian subgroup of
Aff(C) it is, up to conjugation, either a non trivial subgroup of the translation group

{z +→ z + c | c ∈ C} ⊂ Aff(C) ,

or it is a subgroup of the linear group

{z +→ λz | λ ∈ C∗} ⊂ Aff(C) .

Elimination of the first case: Im(ρ) cannot be a non trivial translation group.
Indeed, if it would be the case, by Lemma 2.4.1, we might assume ρ(αg) ̸= id. Up to conjugation,
we would then have

ρ

(
αg

βg

)
=

(
z + 1
z + c

)

for a certain c ∈ C. Considering the action of τ−m with τ := τ2g−1 :

τ−m · ρ
(
αg

βg

)
= ρ

(
αg

βgαm
g

)
=

(
z + 1
z + c+m

)
,

we would deduce that, for m ̸= m′, the conjugacy classes of τm · ρ and τm
′ · ρ are distinct. Hence

Γ̂◦
g,n · [ρ] would be infinite, yielding a contradiction.

Second case: If Im(ρ) is a subgroup of the linear group, then it is finite.
Note that two distinct linear representations are not conjugated. For any i ∈ !1, g", finiteness of the
orbit under ⟨τ2i⟩ yields that ρ(βi) is torsion. Similarly, considering ⟨τ2i−1⟩ yields that ρ(αi) is torsion
for all i ∈ !1, g". For j ∈ !1, n− 1", finiteness of the orbit under ⟨τ3g−1+j⟩ implies that ρ(γ1 . . . γj) is
torsion. Consequently, γj is torsion for all j ∈ !1, n− 1". Hence

Im(ρ) = ⟨ρ(αi), ρ(βi), ρ(γj) | i ∈ !1, g" , j ∈ !1, n − 1"⟩

is an abelian group generated by finitely many torsion elements, whence the conclusion.
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2.4.2 Preparation lemmata

Lemma 2.4.3 (Finding a non abelian subgroup). Let g > 0. Let ρ : Λg,n → Aff(C) be a representa-
tion. Assume that for any ρ′ ∈ Γ̂◦

g,n · ρ, the subgroup

⟨ρ′(αg), ρ
′(βg)⟩

of Im(ρ) is abelian. Then ρ is an abelian representation, i.e., Im(ρ) is abelian.

Proof. Denote R′
k := ⟨ρ′(αg), ρ′(βg), . . . , ρ′(αk), ρ′(βk)⟩ and S′ := ⟨ρ′(γ1), . . . , ρ′(γn)⟩ .

First step: For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

g is contained in the center of R′
1.

For k ∈ !1, g", define the following property.

H(k) : For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

g is a subgroup of the center of R′
k.

By assumption, we have H(g). Assume now H(k) is proven. In particular, Rg := ⟨ρ(αg), ρ(βg)⟩ is
a subgroup of the center of Rk := ⟨ρ(αg), ρ(βg), . . . , ρ(αk), ρ(βk)⟩. Note that H(k) is Γ̂◦

g,n-invariant.
Hence in order to prove H(k − 1), is suffices to prove that Rg is also a subgroup of the center of
Rk−1. For ρ′ = τ · ρ, with τ = τ−1

2g+k−1, only one of the generators of Rk is modified, namely

ρ′(αk) = ρ(β−1
k−1αkβk) = ρ(βk−1)

−1ρ(αkβk) .

In particular, we have ρ′(βg) = ρ(βg). Then H(k) implies that ρ(βg) belongs to the center of
⟨Rk, R′

k⟩ = ⟨Rk, ρ(βk−1)⟩ . For ρ′′ = τ ′ · ρ, with τ ′ = τ ◦ τ−1
2k−3, we have

ρ′′(αk) = ρ(βk−1αk−1)
−1ρ(αkβk) .

Then H(k) implies that ρ′′(βg) = ρ(βg) belongs to the center of ⟨Rk, R′′
k⟩ =

⟨Rk, ρ(βk−1αk−1)⟩. We have now proven that for any representation ρ such that H(k) holds, ρ(βg)
is an element of the center of Rk−1 = ⟨Rk, R′

k, R
′′
k⟩. This assertion applied to τ−1

2g−1 · ρ shows that
ρ(βgαg) is an element of the center of Rk−1. Hence Rg = ⟨ρ(βg), ρ(βgαg)⟩ is a subgroup of the center
of Rk−1.

Second step: For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′ := R′

1 is abelian.
If R′ is trivial, then in particular it is abelian. If R′ is non trivial, then by the first step in the proof
of Lemma 2.4.1, we can find τ ′ ∈ Γ̂◦

g,n such that for the induced representation ρ′′ = τ ′ · ρ we have
R′′ = R′ and R′′

g is non trivial. Hence by the first step of the current lemma, R′ has a non trivial
center. Yet any subgroup of Aff(C) with non trivial center is abelian.

Third step: For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

g is a subgroup of the center of Im(ρ′).

We have now proven that under our assumption, R′ is abelian for any ρ′ ∈ Γ̂◦
g,n · ρ. In particular,

ρ(δ) = id. Recall, from Remark 2.3.6, the action of the mixing twist τ3g+n−2 on δ. It is given by
δ +→ [β−1

g δγ−1
n ,βg]δ. Hence, for ρ′ = τ · ρ with τ = (σn−i

cycl ◦ τ3g+n−2)−1, we have

ρ′(δ) = [ρ(β−1
g γ−1

i ), ρ(βg)] = [ρ(βg)
−1, ρ(γi)

−1]

(see Table 3 page 62). Consequently, ρ(βg) centralizes S := ⟨ρ(γi) | i ∈ !1, n"⟩. Yet we could
have applied the same argument to ρ′′ = τ ′ · ρ, where τ ′ = τ−1

2g−1 is the inverse of the Dehn-twist
βg +→ βgαg, and we would have obtained that ρ(βgαg) centralizes S. It follows that Rg centralizes S.
By Γ̂◦

g,n-invariance of the statement, we deduce that for any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

g centralizes
Im(ρ′) = ⟨R′, S′⟩.
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Fourth step: Im(ρ) is abelian.
If ρ is the trivial representation, there is nothing to prove. Otherwise, by Lemma 2.4.1, there is a
representation ρ′ ∈ Γ̂◦

g,n ·ρ in the orbit of ρ such that R′
g = ⟨ρ′(αg), ρ′(βg)⟩ is not the trivial group. On

the other hand, we have proven that R′
g is a subgroup of the center of Im(ρ′). Hence Im(ρ) = Im(ρ′)

is abelian.

Lemma 2.4.4 (Prepared form). Let g > 0. Let ρ : Λg,n → Aff(C) be a representation. Assume that
Im(ρ) is non abelian and Γ̂g,n · [ρ] is finite. Then up to the action of a certain element of the mapping
class group and up to conjugation, ρ is of the following “prepared form”

ρ

⎛

⎜⎜⎜⎜⎝

αg

βg
αi

βi
γj

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

µmgz
z + 1
µmiz + ai
z + bi
z + cj

⎞

⎟⎟⎟⎟⎠
, (2.7)

for i ∈ !1, g − 1" and j ∈ !1, n", where µ ∈ C∗ \ {1} is a root of unity, mg,mi ∈ Z, ai, bi, cj ∈ C and
µmg ̸= 1.

Proof. According to Lemma 2.4.3, up to the action of an element of the mapping class group, we
may assume ρ([αg,βg]) ̸= id. Since Γ̂g,n · [ρ] is finite, the linear part ρlin of ρ also has finite orbit.
After Proposition 2.4.2, ρlin takes values in a finite cyclic group ⟨µ⟩ ⊂ C∗. Hence for each i ∈ !1, g",
we have

ρ(αi) = µmiz + ai, ρ(βi) = µniz + bi

for integers mi, ni ∈ Z and complex numbers ai, bi ∈ C. Consider the actions of τ−1
2i and τ−1

2i−1 on
(mi, ni) (the other exponents are not altered) :

τ−1
2i−1

(
mi

ni

)
+→

(
1 0
1 1

)(
mi

ni

)

τ−1
2i

(
mi

ni

)
+→

(
1 1
0 1

)(
mi

ni

)

These actions generate the action of SL2Z on (mi, ni) ∈ Z2. If (mi, ni) ̸= (0, 0), then m̃i :=
gcd(mi, ni) is a well defined positive integer. Let pi and qi be integers such that pimi + qini = m̃i.
The matrix (

pi qi
− ni

m̃i

mi
m̃i

)
∈ SL2Z

then sends (mi, ni) to (m̃i, 0). Hence, up to the action of a word in the twists (τ2i)i∈!1,g", (τ2i−1)i∈!1,g",
we may assume ni = 0 for each i ∈ !1, g". The property ρ([αg,βg]) ̸= id is not altered by such a
word, hence µmg ̸= 1. Up to conjugation by an element of Aff(C), we may moreover assume

ρ

(
αg

βg

)
=

(
µmgz
z + 1

)
. (2.8)

For j ∈ !1, n", let cj , dj ∈ C be defined by ρ(γj) = djz+ cj . For k ∈ Z, consider the action of τ−k
2

:

τ−k
2 · ρ

⎛

⎝
αg

βg
γj

⎞

⎠ =

⎛

⎝
µmgz + kµmg

z + 1
djz + cj

⎞

⎠ ≈

⎛

⎜⎝
µmgz
z + 1

djz + cj − k (dj−1)µmg

µmg−1

⎞

⎟⎠ .

For these sequences of normalized triples to be finite, we must have dj = 1 for each j.
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2.4.3 Non abelian case in genus one

Proposition 2.4.5 (Non abelian representations for g = 1). Assume g = 1. Let ρ : Λg,n → Aff(C)
be a representation with non abelian image (in particular, n ≥ 1). Then the orbit Γ̂g,n · [ρ] is finite
if and only if there is a root of unity µ ̸= 1 and c := (c1, . . . , cn) ∈ Cn with

∑n
i=1 ci = 1 such that

[ρ] ∈ Γ̂g,n · [ρµ,c], where ρµ,c is the representation given by

ρµ,c(α1) = µz ; ρµ,c(β1) = z −
1

µ− 1
; ρµ,c(γi) = z + ci ∀i ∈ !1, n" .

Proof. Recall that for g = 1, the fundamental group Λg,n has the following presentation

Λg,n = ⟨α1,β1, γ1, . . . , γn | γ1 · · · γn = [α1,β1]
−1⟩ ,

and the mapping class group Γ̂g,n is generated by the elements of Table 5.

τ1 β1 +→ β1α1

τ2 α1 +→ α1β1
τ̃2+k := τ−1

2 ◦ τ2+k k ∈ !1, n − 1" α1 +→ α1β
−1
1 Ξk

β1 +→ Ξ−1
k β1Ξk ; where Ξk = (γ1 . . . γk)−1β1

i ∈ !1, k" γi +→ Ξ−1
k γiΞk

σi i ∈ !1, n − 1" γi +→ γiγi+1γ
−1
i

γi+1 +→ γi

Table 5: Action of the generators in genus 1

Assume [ρ] has finite orbit, then by Lemma 2.4.4, we have Γ̂g,n · [ρ] = Γ̂g,n · [ρµ,c] for a convenient
choice of c ∈ Cn and a root of unity µ ̸= 1. Let us now prove that [ρµ,c] has finite orbit. Denote

N := order(µ) ; Dc := µZc1 + . . .+ µZcn .

Denote the following sets of tuples of affine transformations

S1
µ,d :=

{(
µk1z
µk2z − d

µk1−1

) ∣∣∣∣∣
k1, k2 ∈ Z, k1 ̸∈ NZ,

gcd(k1, k2, N) = 1

}

S2
µ,d :=

{(
µk1z + d

µk2−1

µk2z

) ∣∣∣∣∣
k1, k2 ∈ Z, k2 ̸∈ NZ,

gcd(k1, k2, N) = 1

}

Rµ,c,d :=

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
z + c̃1

...
z + c̃n

⎞

⎟⎠

∣∣∣∣∣∣∣

(ĉ1, . . . , ĉn) ∈ Sn · (c1, . . . , cn),
c̃i ∈ µZĉi ∀i ∈ !1, n",

d =
∑n

i=1 c̃i

⎫
⎪⎬

⎪⎭
.

Moreover, we set Sµ,d := S1
µ,d ∪ S2

µ,d. Then by definition, we have

ρµ,c

⎛

⎜⎜⎜⎜⎜⎝

α1

β1
γ1
...
γn

⎞

⎟⎟⎟⎟⎟⎠
∈ Oµ,c :=

⋃

d∈Dc

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎝

ϕα
ϕβ
ϕ1
...
ϕn

⎞

⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣

(
ϕα
ϕβ

)
∈ Sµ,d ,

⎛

⎜⎝
ϕ1
...
ϕn

⎞

⎟⎠ ∈ Rµ,c,d

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.
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Note that Oµ,c is a finite set, and we will prove that each conjugacy class in the orbit of ρµ,c under
the action of the mapping class group has a representative in Oµ,c. We shall denote [Oµ,c] the image
of Oµ,c in χg,n(Aff(C)).

• The set [Oµ,c] is stable under the inverses of τ1 and τ2.
In order to prove this assertion, it is enough to prove that the sets S1

µ,d and S2
µ,d are stable under the

action of τ−1
1 and τ−1

2 modulo conjugation by translations. Let

ρ

(
α1

β1

)
=

(
µk1z
µk2z − d

µk1−1

)
∈ S1

µ,d.

Then

τ−1
1 · ρ

(
α1

β1

)
=

(
µk1z
µk1+k2z − d

µk1−1

)
∈ S1

µ,d

and

τ−1
2 · ρ

(
α1

β1

)
=

(
µk1+k2z − µk1d

µk1−1

µk2z − d
µk1−1

)
.

To see that, up to conjugation by a translation, the latter image also belongs to Sµ,d, we need to
distinguish two cases. Firstly, if k1 + k2 ∈ NZ, then k2 ̸∈ NZ and we obtain

(
µk1+k2z − µk1d

µk1−1

µk2z − d
µk1−1

)
=

(
z + d

µk2−1

µk2z − d
µk1−1

)
≈

(
z + d

µk2−1

µk2z

)
∈ S2

µ,d .

Secondly, if k1 + k2 ̸∈ NZ, then we obtain
(

µk1+k2z − µk1d
µk1−1

µk2z − d
µk1−1

)

≈

(
µk1+k2z
µk2z − d

µk1+k2−1

)

∈ S1
µ,d

In a similar way, one can show that up to conjugation by translations, we have τ−1
1 · S2

µ,d ⊂ Sµ,d and

τ−1
2 · S2

µ ⊂ S2
µ.

• The set [Oµ,c] is stable under the inverses of σ1, . . . ,σn−1.
Indeed, for every ρ ∈ Oµ,c, the group ⟨ρ(γ1), . . . , ρ(γn)⟩ is a translation group. In particular, it is
abelian. Hence the elements σi act as permutations. But permutations stabilize the set Rµ,c,d.

• The set [Oµ,c] is stable under the inverse of the modified mixing twist τ̃2+k.
Note that for every k ∈ !1, n − 1", up to a common conjugation by ρ(Ξk), the representation ρ′ :=
τ̃−1
2+k · ρ may be described as follows, where Ξk = (γ1 . . . γk)−1β1.

⎧
⎪⎪⎨

⎪⎪⎩

ρ′(α1) = ρ(Ξkα1β
−1
1 )

ρ′(β1) = ρ(β1)
ρ′(γi) = ρ(γi) i ∈ !1, k";
ρ′(γj) = ρ(ΞkγjΞ

−1
k ) j ∈ !k + 1, n".

In the following calculations, i represents an index less or equal to k (if such an index exists) and j
represents an index greater than k.
Assume first that ρ (α1 ,β1) ∈ S1

µ,d. Then

ρ

⎛

⎜⎜⎝

α1

β1
γi
γj

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µk1z
µk2z − d

µk1−1

z + c̃i
z + c̃j

⎞

⎟⎟⎠ and ρ(Ξk) = µk2z −
d

µk1 − 1
−

k∑

i=1

c̃i .
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Hence

ρ′

⎛

⎜⎜⎜⎝

α1

β1

γi

γj

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

µk1z + d−
∑k

h=1 c̃h

µk2z − d
µk1−1

z + c̃i

z + µk2 c̃j

⎞

⎟⎟⎟⎟⎠
≈

⎛

⎜⎜⎜⎜⎝

µk1z

µk2z − d′

µk1−1

z + c̃i

z + µk2 c̃j

⎞

⎟⎟⎟⎟⎠
,

where

d′ = µk2d− (µk2 − 1)
k∑

i=1

c̃i =
k∑

i=1

c̃i +
n∑

j=k+1

µk2 c̃j ,

since d =
∑k

i=1 c̃i+
∑n

j=k+1 c̃j . In other words, up to conjugation by a translation, we have ρ′ ∈ Oµ,c.

By an almost identical argumentation, we show that if ρ ∈ Oµ,c with ρ (α1 ,β1) ∈ S2
µ,d, then τ̃

−1
2+k · ρ

is also in Oµ,c modulo conjugation.

Since every element of Γ̂◦
g,n induces a bijection of χg,n(Aff(C)) and we have proven that [Oµ,c] is

stable under τ−1
i for every i ∈ !1, n + 1" and σ−1

j for every j ∈ !1, n − 1", these generators of Γ̂◦
g,n

induce bijections of
[Oµ,c] ⊂ χg,n(Aff(C)) .

Hence [Oµ,c] is also stable under τi for every i ∈ !1, n+1" and σj for every j ∈ !1, n−1". We conclude
that the orbit Γ̂g,n · [ρµ,c] = Γ̂◦

g,n · [ρµ,c] is contained in the finite set [Oµ,c].

2.4.4 Non abelian case in higher genus

We are now considering the case g > 1, and arbitrary n ≥ 0. Recall that Λg,n then contains the
group

G := ⟨αg−1,βg−1,αg,βg⟩ ⊂ Λg,n

and Γ̂◦
g,n contains a subgroup

H := ⟨τ2g−3, τ2g−2, τ2g−1, τ2g, τ3g−1⟩ ⊂ Γ̂◦
g,n

acting on G as summarized by Table 6.

τ2k k ∈ !g − 1, g" αk +→ αkβk
τ2k−1 k ∈ !g − 1, g" βk +→ βkαk

τ3g−1 αg +→ Θ−1αg

αg−1 +→ αg−1Θ ; where Θ := αgβ−1
g α−1

g βg−1

βg−1 +→ Θ−1βg−1Θ

Table 6: Action of a subgroup in genus g ≥ 2

Lemma 2.4.6 (Elimination criterion). Let g ≥ 2. Let ρ : Λg,n → Aff(C) be a representation of the
following “weak prepared form”

ρ

⎛

⎜⎜⎝

αg

βg
αg−1

βg−1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µmgz
z + 1
µmg−1z + a
z + b

⎞

⎟⎟⎠ , (2.9)
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where µ is a root of unity, a, b ∈ C, mg,mg−1 ∈ Z and µmg ̸= 1. If Γ̂g,n · [ρ] is finite, then

a = 0 , b = 0 and µmg−1 =
1

µmg
.

Proof. Note that if two representations ρ, ρ′ of the form (2.9) are conjugated, then they their restric-
tions to G are equal. Assume

ρ

⎛

⎜⎜⎝

αg

βg
αg−1

βg−1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µmgz
z + 1
µmg−1z + a
z + b

⎞

⎟⎟⎠ .

Now consider the action of τ−k
2g−2 for k ∈ Z:

τ−k
2g−2 · ρ

⎛

⎜⎜⎝

αg

βg
αg−1

βg−1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µmgz
z + 1
µmg−1z + a+ k · µmg−1b
z + b

⎞

⎟⎟⎠ .

Since the suborbit (τ−k
2g−2 · [ρ])k is supposed to take finitely many values, we have b = 0 .

Now consider the action of τ−k
3g−1. We have

τ−k
3g−1 · ρ

⎛

⎜⎜⎝

αg

βg
αg−1

βg−1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µmgz + kµmg

z + 1
µmg−1z + a− kµmg+mg−1

z

⎞

⎟⎟⎠ ≈

⎛

⎜⎜⎜⎝

µmgz
z + 1

µmg−1z + a− k · µ2mg+mg−1−µmg

µmg−1

z

⎞

⎟⎟⎟⎠
.

As the corresponding suborbit is supposed to be finite, we have µmg−1 = µ−mg .

In order to conclude, consider τ̃3g−1 = τ−1 ◦ τ3g−1 ◦ τ , where τ := τ2g−3 ◦ τ2g ◦ τ−1
2g−1 ◦ τ2g. We have

τ̃k3g−1∗ :

⎛

⎜⎜⎜⎝

αg

βg

αg−1

βg−1

⎞

⎟⎟⎟⎠
+→

⎛

⎜⎜⎜⎜⎝

Θ̃−kαgΘ̃k

βgΘ̃k

αg−1Θ̃k

Θ̃−kβg−1α
−1
g−1Θ̃

kαg−1Θ̃k

⎞

⎟⎟⎟⎟⎠
,

where Θ̃ := τ−1
∗ Θ = α−1

g βg−1α
−1
g−1. Then

ρ
(
Θ̃k
)
= z − k · a .

Hence, modulo conjugation by ρ
(
Θ̃k
)
, we have

τ̃−k
3g−1 · ρ

⎛

⎜⎜⎜⎝

αg

βg

αg−1

βg−1

⎞

⎟⎟⎟⎠
≈ ρ

⎛

⎜⎜⎜⎜⎝

αg

Θ̃kβg

Θ̃kαg−1

βg−1α
−1
g−1Θ̃

kαg−1

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

µmgz

z + 1− k · a
1

µmg z + (1− k) · a
z − k · aµmg

⎞

⎟⎟⎟⎟⎠
.
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Provided 1− k · a ̸= 0 (which is the case for an infinite number of k ∈ Z), we obtain

τ̃−k
3g−1 · ρ

⎛

⎜⎜⎜⎝

αg

βg

αg−1

βg−1

⎞

⎟⎟⎟⎠
≈

⎛

⎜⎜⎜⎜⎝

µmgz

z + 1
1

µmg z +
(1−k)·a
1−k·a

z − k·a
1−k·aµ

mg

⎞

⎟⎟⎟⎟⎠
.

Again by finiteness, we have a = 0 .

Proposition 2.4.7 (Non abelian representations for g > 1). Assume g ≥ 2 and n ≥ 0. Let ρ :
Λg,n → Aff(C) be a representation with non abelian image. Then the orbit Γ̂g,n · [ρ] is infinite.

Proof. Let g ≥ 2 and let ρ be a representation with finite orbit modulo conjugation. Let us assume
for a contradiction that ρ(Λg,n) is non-abelian. We may then assume that ρ is of “prepared form” as
in Lemma 2.4.4. In particular, we may assume that ρ is of “weak prepared form” and hence satisfies
the elimination criterion of Lemma 2.4.6. In other words, we may assume that ρ is of the following
form:

ρ

⎛

⎜⎜⎝

αg

βg
αg−1

βg−1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µz
z + 1
1
µz

z

⎞

⎟⎟⎠ ,

where µ ̸= 1 is a root of unity. We have

τ−1
3g−1 · ρ

⎛

⎜⎜⎝

αg

βg
αg−1

βg−1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µz + µ
z + 1
1
µz − 1

z

⎞

⎟⎟⎠ ; τ2g · (τ−1
3g−1 · ρ)

⎛

⎜⎜⎝

αg

βg
αg−1

βg−1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

µz
z + 1
1
µz − 1

z

⎞

⎟⎟⎠ .

Now τ2g ◦ τ−1
3g−1 ·ρ is also of weak prepared form, but is not compatible with the elimination criterion

of Lemma 2.4.6, whence the contradiction.

2.5 Reducible rank two representations with finite orbit

Theorem 2.1.2 concerns representations ρ : Λg,n → GL2C that are reducible, i.e., that globally fix a
line in C2. A particular case of reducible rank 2 representations are those that are totally reducible,
i.e., that globally fix two distinct lines in C2. In Proposition 2.5.8, we will prove the statement in the
totally reducible case, and in Theorem 2.5.9, we will prove it in the reducible but not totally reducible
case. The juxtaposition of these two results yields Theorem 2.1.2. Moreover, we will estimate the
size of finite orbits of conjugacy classes of affine representation under the pure mapping class group.

2.5.1 The size of some finite orbits

Note that since C∗ is abelian, we have a natural identification between scalar representations and
their conjugacy classes: χg,n(C∗) = Hom(Λg,n,C∗). In particular, Γg,n acts on Hom(Λg,n,C∗).

Proposition 2.5.1. Let g > 0, n ≥ 0. Let λ ∈ Hom(Λg,n,C∗) be a scalar representation with finite
image. Then

card(Im(λ))2g−1 ≤ card(Γg,n · λ) ≤ card(Im(λ))2g (2.10)
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Proof. Since Im(λ) is finite, there is a root of unity µ ∈ C∗ such that Im(λ) = µZ. For each j ∈ !1, n",
choose an integer mj ∈ Z such that λ(γj) = µmj . Denote N := order(µ) and

Oλ :=

{
(µkg , µℓg , . . . , µk1 , µℓ1)

∣∣∣∣∣
k := (kg, . . . , k1) ∈ Zg , ℓ := (ℓg, . . . , ℓ1) ∈ Zg

gcd(kg, . . . , k1, ℓg, . . . , ℓ1,m1, . . . ,mn, N) = 1

}
.

Note that to any element (µkg , µℓg , . . . , µk1 , µℓ1) ∈ Oλ we can associate a well defined representation
λ′ ∈ Hom(Λg,n,C∗) by setting λ′(αi) = µki ; λ′(βi) = µℓi for all i ∈ !1, g" and λ′(γj) = µmj for all
j ∈ !1, n". In that sense, we can see Oλ as a subset of Hom(Λg,n,C∗).

We claim that Γg,n · λ = Oλ. Notice that this claim implies (2.10). Indeed, the second inequality
is obvious, and the first one follows from the fact that if we set for example kg = 1, then we can
choose all other exponents freely.

Let us now prove the claim. We clearly have λ ∈ Oλ. Each pure element τ of Γ̂◦
g,n transforms the

generators γi into conjugates ζ−1
i γiζi. Since C∗ is abelian, this implies that for any representation λ′

corresponding to an element of Oλ, we have (τ ·λ′)(γi) = λ′(γi) = µmi . Consequently, Γg,n ·Oλ = Oλ

and in particular Γg,n · λ ⊂ Oλ .

The orbits of Γ̂g,n on χg,n(C∗) = Hom(Λg,n,C∗) are the ones of Γ̂◦
g,n. Note that the subgroup

H := ⟨τi | i ∈ !1, 3g − 1 + min(0, n − 1)"⟩ ⊂ Γ̂◦
g,n is generated by pure elements. Translating Table

1 into an action of Γ̂◦
g,n on the powers of µ corresponding to the generators of Λg,n then yields the

following.

(a) For a given (k̃g, . . . , k̃1) ∈ {1, . . . , N}g such that gcd(k̃g, . . . , k̃1,m1, . . . ,mn, N) = 1, the sub-
group ⟨τ2i , τ2i−1 | i ∈ !1, g"⟩ ⊂ H acts transitively on those elements ofOλ satisfying gcd(ki, ℓi) =
k̃i for all i ∈ !1, g" (see also the proof of Lemma 2.4.4).

(b) For all k̃ := (k̃g, . . . , k̃1) ∈ {1, . . . , N}g such that gcd(k̃g, . . . , k̃1,m1, . . . ,mn, N) = 1, there is
an element of the subgroup ⟨τ2i , τ2i−1 , τ2g+i′ | i ∈ !1, g" , i′ ∈ !1, g− 1"⟩ ⊂ H, which sends the
element of Oλ given by k = (gcd(k̃g, . . . , k̃1), 0, . . . , 0) and ℓ = 0⃗ to the element of Oλ given by

k = k̃ and ℓ = 0⃗.
(c) The subgroup ⟨τ3g−1+j | j ∈ !1,min(0, n − 1)"⟩ ⊂ H acts transitively on those elements of Oλ

satisfying ℓ = 0⃗ and ki = 0 for all i ∈ !1, g − 1".

Consequently, the pure subgroup H acts transitively on Oλ. This implies Γg,n · λ = Oλ.

Recall that we denote

Aff(C) =

{(
a b
0 1

) ∣∣∣∣ a, b ∈ C, a ̸= 0

}
. (2.11)

Proposition 2.5.2. Let g = 1 and let n > 0. Let µ ∈ C∗ be a root of unity of order N > 1 and
let c = (c1, . . . , cn) ∈ Cn with

∑n
i=1 ci = 1. Consider the representation ρµ,c ∈ Hom(Λg,n,Aff(C))

defined by

ρµ,c(α1) :=

(
µ 0
0 1

)
; ρµ,c(β1) :=

(
1 − 1

µ−1

0 1

)
; ρµ,c(γi) :=

(
1 ci
0 1

)
∀i ∈ !1, n" .

Its orbit Γg,n · [ρµ,c] is finite in χg,n(Aff(C)). More precisely, we have

φ(N)(2N − φ(N)) ·Nn′−1 ≤ card(Γg,n · [ρµ,c]) ≤ (N2 − 1)Nn′−1 , (2.12)

where n′ := card{i ∈ !1, n" | ci ̸= 0} and φ denotes the Euler totient function.
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Remark 2.5.3. Observe that the estimate (2.12) yields an equality if N is a prime number.

Proof. For convenience we shall represent the elements of Aff(C) by degree one polynomials az + b,
as in page 63. Denote

Dc := µZc1 + . . .+ µZcn ; Sµ,d := S1
µ,d ∪ S2

µ,d ; Rµ,c,d ; Oµ,c

as in the proof of Proposition 2.4.5. Moreover, denote

Rpure
µ,c,d :=

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
z + c̃1

...
z + c̃n

⎞

⎟⎠

∣∣∣∣∣∣∣

c̃i ∈ µZci ∀i ∈ !1, n"

d =
∑n

i=1 c̃i

⎫
⎪⎬

⎪⎭

Opure
µ,c :=

⋃

d∈Dc

⎧
⎪⎨

⎪⎩
(ϕα ,ϕβ ,ϕ1 , . . . ,ϕn)

∣∣∣∣∣∣∣

(
ϕα
ϕβ

)
∈ Sµ,d ,

⎛

⎜⎝
ϕ1
...
ϕn

⎞

⎟⎠ ∈ Rpure
µ,c,d

⎫
⎪⎬

⎪⎭
.

We shall denote by [Oµ,c] and [Opure
µ,c ] the respective images of Oµ,c and Opure

µ,c in χg,n(Aff(C)). By a
slight refinement of the proof of Proposition 2.4.5, we have

Γg,n · [ρµ,c] ⊂ [Opure
µ,c ] . (2.13)

Indeed, recall that the pure subgroup Γg,n of Γ̂g,n is the subgroup that respects the labellings of the
punctures. Each pure element τ of Γ̂◦

g,n transforms the generators γi into conjugates ζ−1
i γiζi. As

we have ρ(ζi) = µmz + d for suitable m ∈ Z, d ∈ C, we deduce (τ · ρ)(γi) = µmci. This proves the
inclusion (2.13). Moreover, using Table 5 page 68, we can check successively:

(a) as observed in the proof of Lemma 2.4.4, any element ρ = [∗1, ∗2, z + c̃1, . . . z + c̃n] of [Oµ,c]
can be transformed into an element ρ′ = [z + d/(µ− 1), µz, z + c̃1, . . . , z + c̃n] by an element of
⟨τ1, τ2⟩, where d =

∑n
i=1 c̃i;

(b) for any j ∈ !1, n", by the action of an element of Bn = ⟨σi | i ∈ !1, n− 1"⟩, the element ρ′ can
be transformed into [z + d/(µ − 1) , µz, z + c′1, . . . , z + c′n], where c′1 = c̃j , c′j = c̃1 and c′i = c̃i
for i ̸= 1, j;

(c) for any mj ∈ Z, using a power of τ̃3, we transform this latter element into [z + d′/(µ − 1), µz,
z + µmjc′1, . . . , z + c′n], where d′ = d+ (µmj − 1)c̃j .

(d) reusing an element of Bn, one gets ρ′ altered only by replacing c̃j by µmj c̃j and d by d′.

This allows to infer that any element ρ = [∗1, ∗2, z + c̃1, . . . z + c̃n] of [Oµ,c] can be transformed
into [z + 1/(µ − 1), µz, z + c1, . . . , z + cn] by a suitable element of Γ̂g,n. Reusing (2.5.1), we deduce
Γ̂g,n · [ρµ,c] = [Oµ,c]. The conjunction of this equality and the inclusion (2.13) yields

Γg,n · [ρµ,c] = [Opure
µ,c ] .

Denote by [Sµ,d]t and [Opure
µ,c ]t the set of equivalence classes of Sµ,d and Opure

µ,c respectively modulo
conjugation by translations. For each d ∈ Dc, the cardinality of [Sµ,d]t equals the cardinality of

KN :=
{
(k1, k2) ∈ !1, N"2

∣∣ gcd(k1, k2, N) = 1
}
.

Indeed, for {i, j} = {1, 2}, the elements of Si
µ,d that are not conjugated by a translation to an element

of Sj
µ,d are precisely those corresponding to kj = 0 and gcd(ki, N) = 1. We can estimate

φ(N)(2N − φ(N)) ≤ card([Sµ,d]t) ≤ N2 − 1 .

77



These inequalities are readily derived from the inclusions

{
(k1, k2) ∈ !1, N"2

∣∣ gcd(k1, N) = 1 or gcd(k2, N) = 1
}
⊂ KN ⊂ !1, N"2 \ {(0, 0)}.

On the other hand, conjugations by translations act trivially on Rpure
µ,c,d. By definition of n′,

card

⎛

⎝
⋃

d∈Dc

Rpure
µ,c,d

⎞

⎠ = Nn′
.

We deduce
φ(N)(2N − φ(N))Nn′ ≤ card[Opure

µ,c ]t ≤ (N2 − 1)Nn′
.

The condition
∑n

i=1 ci = 1 ensures n′ > 0. In particular, there is an index i0 ∈ !1, n" such that
ci0 ̸= 0. Up to conjugation by powers of the linear transformation µz, we can normalize c̃i0 = ci0 for
each element in [Opure

µ,c ]t, which yields card[Opure
µ,c ] = 1

N card[Opure
µ,c ]t .

2.5.2 Reduction to the affine case

Let A be a group. Consider a representation ρ ∈ Hom(A,GL2C), and assume it takes values in
Upp ⊂ GL2C, where Upp is the group of invertible upper triangular matrices of rank 2. To such a
representation, we may associate two other ones: the scalar part ρC∗ : α +→ ρ(α)2,2 and the affine
part ρAff := ρ−1

C∗ ⊗ ρ. The former takes values in C∗ and the latter takes values in Aff(C), see (2.11).

Lemma 2.5.4. Let ρ = ρC∗ ⊗ ρAff and ρ′ = ρ′C∗ ⊗ ρ′Aff be two reducible representations as above, and
assume that they are not totally reducible. We have [ρ] = [ρ′] ∈ Hom(A,GL2C)/GL2C if and only if
ρC∗ = ρ′C∗ and [ρAff ] = [ρ′Aff ] ∈ Hom(A,Aff(C))/Aff(C).

Proof. The ”if”-part is trivial. Assume [ρ] = [ρ′]. Since they take values in Upp, both representations
ρ and ρ′ leave the line span(e1) of C2 invariant. Since both are not totally reducible, for each of the
representations, there is no other globally invariant line. Let M = (mi,j) ∈ GL2C conjugate both
representations. Then M must leave span(e1) invariant, i.e. M ∈ Upp. As the scalars are central in
GL2C, the element M/m2,2 ∈ Aff(C) conjugates both representations. In particular ρC∗ = ρ′C∗ and
M/m2,2 conjugates ρAff and ρ′Aff .

Lemma 2.5.4 has the following immediate consequence, where we consider the natural inclusion

ι : Aff(C) =

{(
a b
0 1

) ∣∣∣∣ a, b ∈ C, a ̸= 0

}
↪→ GL2C .

Lemma 2.5.5. Let g > 0, n ≥ 0 and let ρ ∈ Hom(Λg,n,GL2C) be a reducible but not totally reducible
representation. Then there exist a unique λ ∈ Hom(Λg,n,C∗) and a unique conjugacy class [ρAff ] ∈
χg,n(Aff(C)) such that [ρ] = [λ⊗ ι∗ρAff ] ∈ χg,n(GL2C). Moreover, we have

max{card(Γg,n · λ) , card(Γg,n · [ρAff ])} ≤ card(Γg,n · [ρ]) ≤ card(Γg,n · λ) · card(Γg,n · [ρAff ]) . (2.14)

In particular, the following are equivalent.

• Γg,n · [ρ] is a finite subset of χg,n(GL2C).

• Γg,n · λ is a finite subset of Hom(Λg,n,C∗) and Γg,n · [ρAff ] is a finite subset of χg,n(Aff(C)).
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Consider the natural inclusion

ιι : (C∗)2 → GL2C ; (a1, a2) +→
( a1 0

0 a2

)
.

Lemma 2.5.6. Let g ≥ 0, n ≥ 0. Let ρ ∈ Hom(Λg,n,GL2C) be a totally reducible representa-
tion. Then there are scalar representations λ1,λ2 ∈ Hom(Λg,n,C∗) such that [ρ] = [ιι∗(λ1,λ2)] ∈
χg,n(GL2C). Moreover, we have

1

2
max{card(Γg,n · λi) | i ∈ {1, 2}} ≤ card(Γg,n · [ρ]) ≤ card(Γg,n · λ1) · card(Γg,n · λ2) . (2.15)

In particular, the following are equivalent:

• Γg,n · [ρ] is a finite subset of χg,n(GL2C).

• Γg,n · λi is a finite subset of Hom(Λg,n,C∗) for i = 1, 2.

Proof. The image of the map ιι∗ from Hom(Λg,n, (C∗)2) to χg,n(GL2C) is obviously the set of conju-
gacy classes of totally reducible representations. By definition, the action of Γg,n on ιι∗Hom(Λg,n, (C∗)2),
induced by the action on Hom(Λg,n, (C∗)2), coincides with the action of Γg,n on χg,n(GL2C). More-
over,

1

2
· card(Γg,n · (λ1 ,λ2)) ≤ card(Γg,n · [ιι∗(λ1 ,λ2)]) ≤ card(Γg,n · (λ1 ,λ2)) . (2.16)

Indeed, the second inequality is obvious, and the first one follows from the fact that if [ιι∗(λ1 ,λ2)] =
[ιι∗(λ′1 ,λ

′
2)] then either (λ1 ,λ2) = (λ′1 ,λ

′
2) or (λ1 ,λ2) = (λ′2 ,λ

′
1).On the other hand, we can estimate

max{card(Γg,n · λi) | i ∈ {1, 2}} ≤ card(Γg,n · (λ1 ,λ2)) ≤ card(Γg,n · λ1) · card(Γg,n · λ2) . (2.17)

We conclude by noticing that (2.16) and (2.17) imply (2.15).

Remark 2.5.7. The equality [ρ] = [ιι∗(λ1,λ2)] ∈ χg,n(GL2C) in the above Lemma is commonly
written as ρ = λ1⊕λ2. We adopted this notation in the statement of Theorem 2.1.2, and we will use
it in its proof.

2.5.3 Classification results

Proposition 2.5.8. Let g ≥ 0, n ≥ 0. Let ρ ∈ Hom(Λg,n,GL2C) be totally reducible, i.e., ρ = λ1⊕λ2
is a direct sum of scalar representations. The following are equivalent:

• the orbit Γg,n · [ρ] in χg,n(GL2C) is finite.

• the subgroup Im(ρ) of GL2C has finite order.

Moreover, if the orbit Γg,n · [ρ] is finite, then its size can be estimated as follows:

1

2
max{card(Im(λi))

2g−1 | i ∈ {1, 2}} ≤ card(Γg,n · [ρ]) ≤ card(Im(ρ))2g . (2.18)

Proof. From Lemma 2.5.6, finiteness of the orbit Γg,n·[ρ] in χg,n(GL2C) is tantamount to the finiteness
of the orbits Γg,n · λi ⊂ Hom(Λg,n,C∗) for i = 1, 2. Since [Γ̂g,n : Γg,n] = n! is finite, finiteness of
Γg,n · λi is equivalent to the finiteness of Γ̂g,n · λi. Proposition 2.4.2 establishes that Γ̂g,n · λi is finite
if and only if Im(λi) is finite. This proves the equivalence in the statement.

The left inequality in (2.18) follows from Lemma 2.5.6 and Proposition 2.5.1. Each pure element
τ of Γ̂◦

g,n transforms the generators γi into conjugates. By abelianity, for ρ′ = τ ·ρ and any i ∈ !1, n",
we get ρ′(γi) = ρ(γi). We deduce the right inequality in (2.18).
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Theorem 2.5.9. Let g > 0, n ≥ 0 and let ρ ∈ Hom(Λg,n,GL2C) be a reducible but not totally
reducible representation. The following are equivalent:

• the orbit Γg,n · [ρ] in χg,n(GL2C) is finite.

• g = 1 , n > 0, there are a scalar representation λ ∈ Hom(Λg,n,C∗) and an affine representation
ρµ,c ∈ Hom(Λg,n,Aff(C)) as in Proposition 2.5.2 , such that

[ρ] ∈ Γg,n · [λ⊗ ρµ,c] .

Moreover, if the orbit Γg,n · [ρ] is finite, then its size can be estimated as follows:

max
{
N2 ,φ(N)(2N − φ(N))Nn′−1

}
≤ card(Γg,n · [ρ]) ≤ (N2 − 1)Nn′−1N2

2 , (2.19)

where n′ := card{i ∈ !1, n" | ρ(γi) ̸∈ C∗I2}, N := order(µ), N2 = card(Im(λ)) and φ is the Euler
totient function.

Proof. From Lemma 2.5.5, we know that [ρ] admits a unique decomposition [ρ] = [λ⊗ρAff ], where λ is
a scalar representation and ρAff is an affine representation. Moreover, since ρ is not totally reducible,
the affine representation ρAff has non abelian image. Still by Lemma 2.5.5, the orbit Γg,n · [ρ] ⊂
χg,n(GL2C) is finite if and only if the orbits Γg,n · λ ⊂ Hom(Λg,n,C∗) and Γg,n · [ρAff ] ⊂ χg,n(Aff(C))
are finite. From Proposition 2.4.2, the orbit Γg,n · λ ⊂ Hom(Λg,n,C∗) is finite if and only if λ has
finite image. Since [Γ̂g,n : Γg,n] = n! is finite, finiteness of the orbit Γg,n · [ρAff ] ⊂ χg,n(Aff(C)) is
equivalent to the finiteness of the orbit Γ̂g,n · [ρAff ] ⊂ χg,n(Aff(C)). Since ρAff has non abelian image,
by the Propositions 2.4.7 and 2.4.5, the finiteness of the latter orbit is equivalent to g = 1 , n > 0 and
[ρAff ] ∈ Γ̂g,n · [ρµ,c′ ] for a convenient choice of a non trivial root of unity µ and c′ = (c′1, . . . , c

′
n) ∈ Cn

with
∑n

i=1 c
′
i = 1. Composing with a suitable element of Bn shows this is also equivalent to [ρAff ] ∈

Γg,n · [ρµ,c], for some c ∈ Sn · c′. This proves the equivalence in the statement.

The estimate (2.19) follows from Proposition 2.5.1, Proposition 2.5.2 and Lemma 2.5.5, taken
into account that

card{i ∈ !1, n" | ρ(γi) ̸∈ C∗I2} = card{i ∈ !1, n" | ρAff(γi) ̸= id} = card{i ∈ !1, n" | ci ̸= 0}.

2.5.4 Further remarks and open questions

The obvious general and largely open problem at hand is the following.

Problem 3. Let g, n ≥ 0 be integers and let G be an algebraic subgroup of GLrC which is not finite.
Characterize all finite orbits in χg,n(G) for the action of the mapping class group Γg,n.

This problem is interesting from the point of view of isomonodromic deformations as well as from
the point of view of dynamics on character varieties. For some results and open problems on the
latter, see for example the survey [Gol06].

A well-known question asked by M. Kisin is closely related to the question of the complete
classification of finite mapping class group orbits in Hom(Λg,0, G). Both have recently been answered,
for g ≥ 2, in [BKMS17]. The authors show than the only elements ρ ∈ Hom(Λg,0, G) with Γ•

g,0 · ρ
finite are the obvious ones: those with Im(ρ) finite. This answers Problem 3 for the case of n = 0,
g ≥ 2 and abelian groups G.
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For G = Aff(C), or when considering only reducible [ρ] ∈ χg,n(GL2C), Problem 3 is solved by
combining [CM16] and our result.

The only other known answers to Problem 3, to the best of the author’s knowledge, concern the
case G = SL2C, g = 0. Even for this special case, a complete answer is known only for n ≤ 4. It has
been established by Lisovyy and Tykhyy in [LT14] and turned out to provide a classification of all
algebraic solutions of the sixth Painlevé equation. The latter are due to Boalch, Dubrovin, Mazzocco
and others, we refer to [LT14] and the survey articles [Boa07] [Iwa13] for precise references. Some
algebraic solutions of n-Garnier systems with n ≥ 5 corresponding to finite mapping class group
orbits were found in [Tsu06], [Dia13], [Gir16] and [CM17].

2.6 Algebraic logarithmic connections

2.6.1 Definition and relation to analytic connections

Let M be a smooth quasi-projective variety1 over C and let D be a (possibly empty) reduced normal
crossing divisor on M . Denote by D1, . . . ,Dn the irreducible components of D. By definition, M
is a Zariski open subset of a projective variety M̂ . By Hironaka desingularization, we can and shall
moreover assume that M̂ is smooth, and that D∞ := M̂ \M and D̂ := D+D∞ are normal crossing

divisors on M̂ .

An algebraic logarithmic connection of rank r over M with polar divisor at most D is a pair
(E,∇), where E → X is an algebraic vector bundle of rank r over M , whose sheaf of sections we
shall also denote by E, and ∇ is a C-linear morphism

∇ : E → E ⊗Ω1
M (logD) ,

which satisfies the Leibniz rule
∇(f · e) = f ·∇(e) + e⊗ df

for any f ∈ OM (∆) , e ∈ E(∆), where ∆ ⊂M is any Zariski open subset and OM denotes the sheaf
of regular functions on M . We say that (E,∇) has polar divisor D if, for any i ∈ !1, n", ∇ does not
factor through

E ⊗ Ω1
M(log(D −Di)) ↪→ E ⊗ Ω1

M (logD).

Such an algebraic logarithmic connection (E,∇) will be called regular if (E,∇)|M\D is regular in
the sense of [Del70, § II.4]. We will only need the following sufficient condition: if (E,∇) is induced,
by restriction to M , from an algebraic logarithmic connection on M̂ with polar divisor at most D̂,
then (E,∇) is regular [Del70, Thm. II.4.1]. Note however that regularity does not depend on the
choice of a smooth compactification. By [Ser56, Prop. 18] and [Del70, Prop. II.4.4], any analytic

logarithmic connection (Êan, ∇̂an) with polar divisor at most D̂ on M̂ (seen as a complex manifold),
as defined in § 1.2.1, is obtained by analytification from a unique (up to isomorphism) algebraic

logarithmic connection (Ê, ∇̂) with polar divisor at most D̂ on M̂ .

An algebraic logarithmic connection (E,∇) is called flat if its curvature ∇2 is zero.

1Here and throughout, by quasi-projective variety we shall mean irreducible and separated quasi-projective variety,
unless explicit mention of the contrary.

81



2.6.2 Flat connections and monodromy

Let (E,∇) be a flat algebraic logarithmic connection on M with polar divisor at most D as above.
Let x0 ∈ M0 := M \ D and let f : Ex0

∼→ Cr be an isomorphism of vector spaces. We define the
monodromy representation

ρ∇ : π1(M
0, x0)→ GLrC

of (E,∇) with respect to f to be the monodromy representation of its analytification (Ean,∇an)
with respect to f , which in turn is the monodromy representation of (Ean,∇an) as defined in § 1.2.2,
conjugated by f .

We shall briefly review its construction for the case where M = C is a smooth projective curve (a
compact Riemann surface), while introducing the monodromy with respect to a Teichmüller structure.
Later on, this will allow us to compare monodromy representations for different but homeomorphic
curves. Let C be a smooth projective curve, and let D = {x1, . . . , xn} be a set of n ≥ 0 distinct
points on C. Denote C0 := C \D. Let

ϕ : (Σg, Y
n)

∼→ (C,D)

be a homeomorphism (with respect to the Euclidian topology on C) and denote x0 := ϕ(y0). Since
C is of complex dimension one, any logarithmic connection over C is automatically flat. Moreover,
since C is projective, any analytic logarithmic connection over C is the analytification of a unique
algebraic logarithmic connection over C. Let (E,∇) be an algebraic logarithmic connection of rank
r over C with polar divisor at most D. Since (E,∇) and (Ean,∇an) are flat, S := ker(∇an|C0)
is a locally constant sheaf of rank r over C0. For any path γ : [0, 1] → Σg \ Y n, the pull back
(ϕ◦γ)∗S is locally constant and thus isomorphic to a constant sheaf. Hence γ defines an isomorphism
γ(S) : Sγ(1) → Sγ(0). This isomorphism is invariant by homotopy relative to {γ(0) , γ(1)} and satisfies
γ1 . γ2(S) = γ1(S)◦γ2(S) for any pair of paths (γ1, γ2). Using the canonical identification Sx0 = Ex0 ,
we may set ρ∇(γ) = f ◦ γ(S) ◦ f−1 for closed paths with end point x0, and obtain a representation

ρ∇ : Λg,n = π1(Σg \ Y n, y0)→ GLrC ,

the monodromy representation of (E,∇) with respect to ϕ and f . Note that its conjugacy class

[ρ∇] ∈ χg,n(GLrC) = Hom(Λg,n,GLrC)
/
GLrC ,

does not depend on the choice of f . We refer to [ρ∇] as the monodromy of (E,∇) with respect to ϕ.
Note that any representative of the conjugacy class [ρ∇] is a monodromy representation of (E,∇)
with respect to ϕ and some choice of f .

2.6.3 Algebraic logarithmic Riemann-Hilbert correspondence

Let us briefly recall some notions and results from [Cou17], allowing to construct algebraic logarithmic
connections from monodromy representations.

Denote by D the unit disc around 0 in the complex line and denote by V the trivial vector bundle
of rank r over D. Its sheaf of holomorphic sections shall be denoted by V = ⊕r

i=1OD. A (logarithmic)
transversal model is an analytic logarithmic connection (V, ξ) over D with polar divisor at most {0}.
It is called a mild transversal model if any automorphism of the locally constant sheaf ker(ξ|D\{0})
is obtained by the restriction to D \ {0} of an automorphism of the sheaf V. Let us recall some
examples.
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• If (V, ξ) is a model such that its monodromy admits only one Jordan block for each eigenvalue,
then (V, ξ) is mild.

• If (V, ξ) is a Deligne model, i.e., the real parts of the eigenvalues of its residue take values in
[0, 1), then (V, ξ) is mild.

• If (V, ξ) is resonant (its residue admits two eigenvalues that differ by a non-zero integer) and
has diagonalizable monodromy, then (V, ξ) is not mild.

The isomorphism class of a transversal model is called a transversal type. Accordingly, amild transver-
sal type is the transversal type of a mild transversal model.

Let M be a smooth quasi-projective complex variety, and let D ⊂M be a smooth (non-crossing)
divisor on M . Denote (Di)i∈I the irreducible components of D. Let

ρ ∈ Hom(π1(M \D,x0),GLrC)

be a representation and L be the locally constant sheaf over the complex manifold M \ D, which
has monodromy representation ρ. For each i ∈ I, choose a holomorphic embedding fi : D ↪→ M
such that fi(D) intersects Di transversely exactly once, at fi(0). We say that a transversal model
(V, ξi) is compatible with ρ at Di if its monodromy representation with respect to some ε ∈ D \ {0}
is isomorphic to the one of f∗

i L. This is a well defined notion, independent of the choice of fi. By
isomorphism invariance, this adapts to a notion of compatible transversal type. Compatible mild
transversal models always exist, e.g. one can choose a Deligne model.

Assume we have a flat algebraic logarithmic connection (E,∇) over M , with polar divisor at most
D. By [Cou17, Prop. 3.2.1], the transversal type defined by f∗

i ∇an is independent of the choice of fi,
it depends only of Di and (E,∇). It is called the transversal type of (E,∇) at Di. The connection
(E,∇) is said to be mild if for every component Di, the transversal type of (E,∇) at Di is mild.

Theorem 2.6.1 (Logarithmic Riemann-Hilbert). Let M be a smooth quasi-projective complex vari-
ety, let D ⊂ M be a smooth divisor and let ρ : π1(X \D,x0) → GLrC be a representation. Denote
(Di)i∈I the irreducible components of D. For each i ∈ I, let (V, ξi) be a mild transversal model
compatible with ρ at Di.

There exists a flat algebraic logarithmic connection (E,∇) over M with polar divisor at most D
such that

• (E,∇) is regular,

• the monodromy of (E,∇) is given by [ρ] and

• for each i ∈ I, the transversal type of ∇ at Di is given by (V, ξi).

Moreover, let (E,∇) and (E′,∇′) be two such connections. Choose isomorphisms f : Ex0

∼→ Cr and
f ′ : E′

x0

∼→ Cr such that the monodromy representations of (E,∇) and (E′,∇′) with respect to f and

f ′ are both given by ρ. Then there exists a unique isomorphism Ψ : (E′,∇′)
∼→ (E,∇) such that

f−1 ◦Ψ ◦ f ′−1 = Ir.

Proof. Let M̂ be smooth projective variety containing M as a Zariski open subset. Denote by
D̂j, j ∈ J , the irreducible components of M̂ \M and by D̂i the Zariski closure of Di in M̂ for each
i ∈ I. By Hironaka desingularization, we may suppose that D̂ :=

∑
i∈I∪J D̂

i is a normal crossing

divisor. Moreover, we may assume that
∑

i∈I D̂
i is non-crossing. Since M \D = M̂ \ D̂, ρ defines

ρ̂ = ρ ∈ Hom(π1(X̂ \ D̂),GLrC) . For each j ∈ J , choose a Deligne model (V, ξj) on (D, 0) compatible

with ρ̂ at D̂j. According to [Cou17, §3.3, Thm. 6], there exists an analytic logarithmic connection
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(Êan, ∇̂an) over X̂ with polar divisor D̂, unique up to isomorphism, inducing [ρ̂] and all the chosen
transversal models.

Since M̂ is projective, by GAGA [Ser56, Prop. 18] this connection is the analytification of a unique

(up to isomorphism) algebraic logarithmic connection (Ê, ∇̂) on M̂ . Denote by (E,∇) := (Ê, ∇̂)|M its
restriction to M , which is a regular algebraic logarithmic connection. It remains to show uniqueness.
Again from [Cou17, Th. 6], we know that (Ean,∇an) is unique up to analytic isomorphism, and that
this isomorphism is moreover uniquely determined by its restriction to the fibers over x0. Yet any
analytic isomorphism between regular algebraic logarithmic connections (E,∇), (E′,∇′) over M is
algebraic, for the isomorphism can be seen as a global horizontal section of (E,∇)⊗ (E′,∇′)∨, which
is regular by [Del70, Prop. 4.6].

2.6.4 Algebraic isomonodromic deformations

Let g, n be non-negative integers. Let (C,D) be a n-pointed genus-g curve, i.e., C is a smooth
projective (complex, irreducible, separated) curve and D is a reduced divisor of degree n on C.
Henceforth, we shall assume

2g − 2 + n > 0 , (2.20)

i.e., (C,D) is stable.

Definition 2.6.2 (Families of pointed curves). An algebraic family of n-pointed genus-g curves is a
pair

F = (κ : C → T ,D) ,

where κ : C → T is a proper surjective smooth morphism of (complex, irreducible, separated) smooth
quasi-projective varieties, whose fibers are genus-g curves and D =

∑n
i=1 Di is a smooth reduced

divisor on C given by pairwise disjoint sections σ1, . . . ,σn of κ with σi(T ) = Di. We denote, for any
t ∈ T , Ct := κ−1(t) and Dt :=

∑n
i=1 σi(t).

An algebraic family of n-pointed genus-g curves with central fiber (C,D) is a tuple

F(C,D) = (κ : C → T ,D, t0,ψ) ,

where κ and D are as above and ψ : (C,D)
∼→ (Ct0 ,Dt0) is an isomorphism of pointed curves.

Let (C,D) be as above and let (E,∇0) be a logarithmic connection over C with polar divisor D.

Definition 2.6.3 (Isomonodromic deformations). An algebraic isomonodromic deformation of
(C,E,∇0) is a tuple I(C,E,∇0) = (F(C,D), E ,∇,Ψ), where

• F(C,D) = (κ : X → T,D, t0,ψ) is an algebraic family of n-pointed genus-g curves with central
fiber (C,D) as above,

• (E ,∇) is a flat regular algebraic logarithmic connection over C with polar divisor D and

• Ψ : (E,∇0)→ ψ∗(E ,∇)|Ct0 is an isomorphism of algebraic logarithmic connections over C.

If moreover F(C,D) is a Kuranishi family (see below), then I(C,E,∇0) will be called universal.

For a detailed exposition on algebraic and analytic Kuranishi families, we refer to [ACG11, Chap.
15]. For convenience of the reader and in order to introduce some notation, we summarize some facts
that will be relevant in the sequel. An algebraic Kuranishi family with central fiber (C,D) is by
definition a certain universal object of algebraic deformations of (C,D). Any stable n-pointed genus-
g curve (C,D) admits an algebraic Kuranishi family, and this remains true if one imposes certain
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additional constraints on the Kuranishi family, such as, as in our case, for its parameter space to
be a smooth irreducible quasi-projective variety. The universal property then reads as follows (see
[ACG11, Rem. 6.9, p. 208]):

Proposition 2.6.4 (Universal property of Kuranishi families). Let F(C,D) and F ′
(C,D) be two algebraic

families with central fiber (C,D) as in Definition 2.6.2. Assume that F(C,D) is Kuranishi. Then there
exist

• an étale base change p : (T ′′, t′′0)→ (T ′, t′0); denote F ′′
(C,D) := p∗F ′

(C,D);

• a morphism q : (T ′′, t′′0)→ (T , t0) and

• a unique isomorphism f : F ′′
(C,D)

∼−→ q∗F(C,D) projecting to the identity on T ′′ and inducing the
identity on the central fiber.

One can, and we shall, moreover consider only Kuranishi families that are Kuranishi at any
parameter, i.e., for any t1 ∈ T , the naturally associated family F(Ct1 ,Dt1)

with central fiber κ−1(t1)
is also Kuranishi.

If F(C,D) is an algebraic Kuranishi family in the above sense, then the underlying analytic fam-
ily Fan

(C,D) of compact Riemann surfaces is an analytic Kuranishi family. Moreover, there exists a

Euclidian neighbborhood U of t0 in T such that FU := Fan|U can be endowed with a Teichmüller
structure

Φ : (Σg, Y
n)×B → (CU ,DU )

satisfying κ ◦Φ = pr2 such that the Teichmüller classifying map

class+(F+) :

{
U → Tg,n
t +→ [Ct,Dt,Φt]

with F+ := (FU ,Φ) is a local isomorphism. The universal Teichmüller curve over Tg,n can actually
be constructed by gluing germs of analytic Kuranishi families with Teichmüller structure [AC09].
Unless (g, n) = (0, 3), in which case Mg,n is reduced to a point, there is no universal curve over
Mg,n. Algebraic Kuranishi families are however a convenient substitute.

Let F(C,D) be an algebraic family as in Definition 2.6.2. Assume we have a labelling x of D, i.e.,
x = (xi)i∈!1,n" ∈ Cn and D =

∑n
i=1 xi. Then there is a well defined labelling D = (Di)i∈!1,n" of D

defined by D =
∑n

i=1 Di and ψ(xi) ∈ Di for all i ∈ !1, n", yielding a well defined classifying map

class(F) :

{
T → Mg,n

t +→ [Ct,Dt]
,

which is a morphism of quasi-projective varieties with respect to the natural structure of quasi-
projective variety on Mg,n. If F(C,D) is Kuranishi, then for any labelling, the classifying map class(F)
is dominant and has finite fibers.

Note that as a contrast to the analytic category, a universal algebraic isomonodromic deformation
of (C,E,∇0) does not need to exist; its existence is precisely the subject of Theorem 2.1.1. The reason
is that we cannot achieve contractible parameter spaces of algebraic Kuranishi families by restricting
to Zariski-open subsets, and we therefore have no canonical way of associating a (monodromy)-
representation of π1(C\D) to a representation of π1(C\D).When a universal algebraic isomonodromic
deformation of (C,E,∇0) does exists, the germ at the central parameter of its analytification is clearly
uniquely isomorphic to the germ of the universal analytic isomonodromic deformation of (C,E,∇0)an

(see § 1.3.2). Remaining in the algebraic category, a universal property can be formulated as follows
(the proof will be given in § 2.8.4).
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Proposition 2.6.5 (Universal property of universal algebraic isomonodromic deformations). Let
I(C,E,∇0) and I ′

(C,E,∇0)
be algebraic isomonodromic deformations of (C,E,∇0) as above. Assume

that I(C,E,∇0) is universal, that (E,∇0) is mild and the monodromy of (E,∇0) is irreducible. Then

• up to replacing I ′
(C,E,∇0)

by p∗I ′
(C,E,∇0)

, where p : (T ′′, t′′0)→ (T ′, t′0) is a convenient étale base
change, and

• up to replacing the underlying connection (E ′ → C′,∇′) by (E ′,∇′)⊗κ′∗(L, ξ), where (L, ξ) is a
regular flat algebraic connection of rank 1 over T ′ with empty polar divisor, and

• modifying Ψ′ accordingly,

there exists a morphism q : (T ′, t′0)→ (T , t0) and a unique isomorphism f : I ′
(C,E,∇0)

∼−→ q∗I(C,E,∇0)

projecting to the identity on T ′ and inducing the identity on the central fiber.

2.7 The monodromy of the monodromy

In this section, we introduce the so-called group of mapping classes of a family of curves, which is
the image of a canonical morphism from the fundamental group of the parameter space of the family
to the fundamental group of the central fiber. For an isomonodromic deformation, the action on the
monodromy representation of the initial connection by the group of mapping classes of the underlying
family of curves corresponds to the monodromy of the monodromy representation. Under suitable
conditions, this group can be translated into a subgroup of Γg,n. We shall moreover see that up to an
étale base change, any algebraic family of pointed curves can be endowed with a section avoiding the
punctures. The existence of such a base point section allows us to decompose the fundamental group
of the total space of the family of curves into an semi-direct product of the fundamental groups of
the central fiber and the parameter space.

2.7.1 Mapping classes of the central fiber

As usual, let (C,D) be a stable n-pointed genus-g curve. Let F(C,D) be an algebraic family as in
Definition 2.6.2, with parameter space (T , t0). Let β : [0, 1] → T be a closed path with end point
t0, i.e., a continous map such that β(0) = β(1) = t0. By Ehresmann’s Theorem [Voi03, Thm.
9.3] [Hus94, Cor. 10.3], the pullback fibration β∗(C,D) → [0, 1] possesses a topological trivialization
Φ : (C,D) × [0, 1]

∼→ β∗(C,D). For s ∈ [0, 1], we denote

Φs := Φ|(C,D)×{s}

and deduce a homeomorphism from the central fiber seen over {1} to the central fiber seen over {0}
given by

ψ−1 ◦ Φ0 ◦ Φ−1
1 ◦ ψ : (C,D)

∼→ (C,D) .

Its isotopy class shall be called the mapping class associated to β and F(C,D) and denoted

mapF(C,D)
(β) .

Lemma 2.7.1. The mapping class mapF(C,D)
(β) is well defined, i.e., it does not depend on the choice

of a trivialization Φ. Moreover, mapF(C,D)
(β) only depends on the homotopy class of β.

Proof. For fixed β, take two trivializations : Φ, Φ̃ : (C,D)× [0, 1]
∼→ β∗(C,D). The family Φ̃0 ◦ Φ̃−1

s ◦
Φs ◦Φ−1

1 gives an isotopy from Φ0 ◦ Φ−1
1 to Φ̃0 ◦ Φ̃−1

1 .
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Consider now two paths β1 and β2 that are homotopic relative to their endpoints. By definition, there
exists a continuous map θ : D→ T , where D denotes the closed unit disc, such that β2(s) = θ(eiπ(1+s))
and β1(s) = θ(eiπ(1−s)). Since D is contractible, by Ehresmann’s Theorem, there is a trivialization Φ
of θ∗(C,D). It induces trivializations Φi of β∗i (C,D) for i = 1, 2. Since they are both induced by Φ,
we have Φ1

0 = Φ2
0 = Φ−1 and Φ1

1 = Φ2
1 = Φ1.

Proposition 2.7.2. Let F(C,D) = (κ : C → T ,D, t0,ψ) be an algebraic family as in Definition 2.6.2.
Assume that none of the fibers (Ct,Dt) has exceptional automorphisms. Let x be a labelling of D and
denote cl : T → Mg,n \ Bg,n the corestriction of the induced classifying map class(F) (see § 2.2.3
and § 2.6.4). Let ϕ : (Σg, yn)

∼→ (C,x) be an orientation preserving homeomorphism and denote
by ⋆̂ := [C,D,ϕ] the corresponding point in Tg,n. Then for all β ∈ π1(T , t0), the following equation
holds in Γg,n/Kg,n:

ϕ−1 ◦mapF(C,D)
(β) ◦ ϕ = taut⋆̂(cl∗β) ,

where taut⋆̂ is the tautological morphism taut⋆̂ : π1(Mg,n \ Bg,n, ⋆) → Γg,n/Kg,n (see (2.6)) and
⋆ := [C,x] ∈Mg,n.

Proof. Denote F+
g,n = (Fg,n,Φg,n) the universal Teichmüller curve Fg,n = (κg,n : X → Tg,n,Y)

endowed with the Teichmüller structure Φg,n : (Σg, Y n)× Tg,n
∼→ (X ,Y). For any point t ∈ Tg,n, we

shall denote
Φg,n
t := Φg,n|(Σg ,Y n)×{t} : (Σg, Y

n)× {t} ∼→ (Xt,Yt) .

Let p : (T̃ , t̃0)→ (T , t0) be a universal cover and consider the pulled-back family

F̃ = (κ̃ : C̃ → T̃ , D̃) := p∗(κ : C → T ,D) .

Now for any contractible analytic submanifold ∆̃ ⊂ T̃ containing t̃0, there is a trivialization

Φ : (C,D)× ∆̃
∼−→ (C̃, D̃)|∆̃

of F̃|∆̃, unique up to isotopy, such that Φt̃0 = ψ with respect to the identification (C̃t̃0 , D̃t̃0)=(Ct0 ,Dt0)

provided by pullback. We denote Φ̃ := Φ ◦ (ϕ × id). Setting F̃+ := (F̃ |∆̃, Φ̃) defines an analytic
family of compact Riemann surfaces with marked points and Teichmüller structure. By the universal
property of the Teichmüller curve, up to modifying Φ̃ by a fiber-preserving isotopy, there is a unique
isomorphism f of complex manifolds fitting into the following commutative diagram:

(Σg, Y n)× ∆̃

Φ̃
!!

(Σg, Y n)× ∆̃

class+(F̃+)∗Φg,n
!!

(C̃, D̃)|∆̃
f

∼
""

κ̃
!!

class+(F̃+)∗(X ,Y)

class+(F̃+)∗κg,n
!!

∆̃ ∆̃ .

Now let [β] ∈ π1(T , t0) \ {1} and consider β̃ : [0, 1] → T̃ , the lift of β with starting point t̃0. If the
representative β of the homotopy class [β] is well chosen, then β̃ is a C∞-embedding. By existence
of tubular neighborhoods, there is a contractible neighborhood ∆̃ of t̃0 as above, containing β̃. We
claim that, up to isotopy,

mapF(C,D)
(β) = Φ−1

β̃(1)
◦ Φt̃0 . (2.21)
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Indeed, we have β∗(C,D) = (p ◦ β̃)∗(C,D) = β̃∗p∗(C,D) = β̃∗(C̃, D̃). Since moreover β̃ is an embed-
ding, we have β∗(C,D) = (C̃, D̃)|β̃([0,1]). The claim then follows from the fact that ψ−1 ◦ Φt̃0 is the

identity and from the definition of the mapping class.

Denote β̂ := class+(F̃+)∗β̃, which is a path in Tg,n with starting point ⋆̂. By our definitions, the
following diagram is commutative if we remove the dotted arrow.

(Σg, Y n)× {t̃0}
Φ̃t̃0

∼
"" (C̃t̃0 , D̃t̃0)

ft̃0 ∼

!!

(C̃β̃(1), D̃β̃(1))

fβ̃(1)∼

!!

(Σg, Y n)× {β̃(1)}
Φ̃β̃(1)

∼
--

(Σg, Y n)× {⋆̂}
Φg,n

⋆̂

∼ "" (X⋆̂,Y⋆̂)
∼

ψ̂

"" (Xβ̂(1),Yβ̂(1)) (Σg, Y n)× {β̂(1)}
Φg,n

β̂(1)

∼--

We define the induced isomorphism of pointed curves

ψ̂ = fβ̃(1) ◦ (ft0)
−1, (2.22)

so that adding the dotted arrow maintains this commutativity. We have
⎧
⎨

⎩

Φg,n
⋆̂ = ft̃0 ◦ Φ̃t̃0 = ft̃0 ◦ Φt̃0 ◦ ϕ

Φg,n

β̂(1)
= fβ̃(1) ◦ Φ̃β̃(1) = fβ̃(1) ◦ Φβ̃(1) ◦ ϕ.

(2.23)

On the other hand, cl∗β is a closed path in Mg,n \ Bg,n with end point ⋆. By construction, it

lifts, with respect to the forgetful map πg,n, to β̂, with β̂(0) = ⋆̂. By definition of the tautological
morphism taut⋆̂, we thus have, for [h] := taut⋆̂(cl∗β) ∈ Γg,n/Kg,n:

[h] ·
[
X⋆̂,Y⋆̂,Φ

g,n
⋆̂

]
=
[
Xβ̂(1),Yβ̂(1),Φ

g,n

β̂(1)

]
.

By the definition of the action of the mapping class group on Tg,n, we now have

[h] ·
[
X⋆̂,Y⋆̂,Φ

g,n
⋆̂

]
= [h] ·

[
Xβ̂(1),Yβ̂(1), ψ̂ ◦ Φ

g,n
⋆̂

]
=
[
Xβ̂(1),Yβ̂(1), ψ̂ ◦ Φ

g,n
⋆̂ ◦ h

−1
]
.

Hence there is an element [k] ∈ Kg,n such that, up to isotopy,

ψ̂ ◦ Φg,n
⋆̂ = Φg,n

β̂(1)
◦ h ◦ k .

Combined with (2.22) and (2.23), this implies, up to isotopy,

Φ−1
β̃(1)
◦ Φt̃0 = ϕ ◦ h ◦ k ◦ ϕ−1 ,

which by (2.21) and the definitions of h and k yields the desired result.

2.7.2 Splitting of the fundamental group

Lemma 2.7.3 (Existence of a base point section). Let F(C,D) = (κ : C → T ,D, t0,ψ) be an algebraic
family of pointed curves with central fiber (C,D) as in Definition 2.6.2. Let x0 be a point in C \D.
Then there are
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• a Zariski open neighborhood U of t0 in T and

• a finite étale cover p : (T ′, t′0)→ (U, t0)

such that for F ′
(C,D) = (κ′ : C′ → T ′,D′, t′0,ψ

′), defined by F ′
(C,D) := p∗F(C,D), there exists a section

σ of κ′ with values in C′ \ D′ such that σ(t′0) = ψ′(x0).

Proof. Since C is embedded in some projective space PN , by Bertini’s Theorem, there exists a hyper-
plane H of PN which intersects Ct0 transversely, is disjoint from Dt0 and satisfies ψ(x0) ∈ H. Since
H is ample, we have deg(Ct ∩H) > 0 for each t ∈ T . In particular, H ∩ Ct ̸= ∅ for each parameter
t ∈ T . By irreducibility of T , there exists an irreducible component ∆ of C ∩H such that κ(∆) = T
and ψ(x0) ∈ ∆. Now κ|∆ : ∆ → T is a connected finite ramified covering. Denote by Z1 ⊂ T its
branching locus. Further, denote by Z2 the adherence of κ(∆ ∩ D). By construction, Z := Z1 ∪ Z2

is a Zariski closed proper subset of T not containing t0. Denote U := T \ Z and

T ′ := κ−1(U) ∩∆ .

We now have t′0 := ψ(x0) ∈ T ′ and

p := κ|T ′ : (T ′, t′0)→ (U, t0)

is a connected finite étale cover. Consider the algebraic family F ′
(C,D) := p∗F(C,D). By definition of

the pullback, its total space C′ is given by a fibered product

C′ = {(x, t′) ∈ C|κ−1(U) × T ′ | κ(x) = p(t′)}

and we have κ′ : C′ → T ′ ; (x, t′) +→ t′ . On the other hand, T ′ is a subset of C|κ−1(U) by construction
and we can define a section σ of κ′ by

σ : T ′ → C′ ; t′ +→ (t′, t′) .

Since moreover T ′ ∩ D = ∅ by the choice of Z2, we have σ(T ′) ∩ D′ = ∅. We conclude by noticing
σ(t′0) = (ψ(x0), t′0) = ψ′(x0).

To fix notations, let us recall the definition of (inner) semi-direct products.

Let G be a group and A a subgroup. Assume we have a group B̃ fitting into a split short exact
sequence of groups, as follows.

{1} "" A "" G "" B̃

σ
66

"" {1}

Assume further that the map A→ G in that sequence is defined by the inclusion map. Then A is a
normal subgroup of G; for B := σ(B̃) we have a natural morphism η ∈ Hom(B,Aut(A)) defined by
η(b)(a) = b · a · b−1 for all a ∈ A , b ∈ B; we have a group A#η B defined as the set A× B endowed
with the group law

(a , b) · (a′ , b′) = (a · η(b)(a′) , b · b′) ,

and the natural morphism A#η B → G defined by (a, b) +→ a · b is bijective, allowing us to identify
G = A#η B.
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Lemma 2.7.4 (Splitting). Let F(C,D) = (κ : C → T ,D, t0,ψ) be an algebraic family as in Definition
2.6.2. Let σ : T → C be a section of κ such that σ(T ) ⊂ C0 := C \ T . Denote C0 := C \ D and
x0 := ψ−1(σ(t0)). Then

π1(C0,σ(t0)) = ψ∗π1(C
0, x0)#η σ∗π1(T , t0) , (2.24)

where for all γ ∈ π1(C0, x0) and β ∈ π1(T , t0) we have

η(σ∗β)(ψ∗γ) = σ∗β · ψ∗γ · σ∗β−1 .

Proof. Since σ takes values in C0, we have a morphism of fundamental groups σ∗ : π1(T , t0) →
π1(C0,σ(t0)). From the embedding of the central fiber, we get the morphism ψ∗ : π1(C0, x0) →
π1(C0,σ(t0)) . Consider now the family of n-punctured curves given by κ : C0 → T . This family is a
topologically locally trivial fibration and the fiber over t0 identifies, via ψ, with C0. Hence we have
a long homotopy exact sequence

· · · −→ π2(C0,σ(t0))
κ∗−→ π2(T , t0) −→ π1(C

0,σ(t0))
ψ∗−→ π1(C0,σ(t0))

κ∗−→ π1(T , t0) −→ {1}.

The maps σ∗ : πj(T , t0)→ πj(C0, τ(t0)) are sections for the corresponding κ∗ and we may derive
the following split short exact sequence:

{1} "" π1(C0, x0)
ψ∗ "" π1(C0, τ(t0)) κ∗

"" π1(T , t0)
σ∗

77 "" {1} .

Given a decomposition (2.24), the monodromy representation of the flat connection underlying
an isomonodromic deformation can be seen as an extension of the monodromy representation of the
initial connection. Its existence and uniqueness will be discussed in § 2.7.4.

2.7.3 Splitting and the mapping class group

Let F(C,D) = (κ : C → T ,D, t0,ψ) be an algebraic family of stable n-pointed genus-g curves as in
Definition 2.6.2. Assume there is a section σ : T → C0 := C \D of κ. Then we can define an algebraic
family of n+ 1-pointed genus-g curves

F•
(C,D•) := (κ : C → T ,D•, t0,ψ)

by setting D• := D + σ(T ) and D• := D + x0, where x0 := ψ−1(σ(t0)) ∈ C0 = C \ D. To a
labelling x = (x1, . . . , xn) of D we can associate a labelling x• := (x1, . . . , xn, x0) of D•. Note that if
a fiber of F• has exceptional automorphisms, then the corresponding fiber of F also has exceptional
automorphisms. If none of the fibers of F• has exceptional automorphisms, we may corestrict the
classifying map class(F•) to obtain a morphism

cl• : T →Mg,n+1 \ Bg,n+1 .

Let ϕ : (Σg, yn, y0)
∼→ (C,x, x0) be an orientation preserving homeomorphism and denote ⋆̂• :=

[C,D•,ϕ] ∈ Tg,n+1 and ⋆• := [C,x•] ∈Mg,n+1. Note that since we assumed 2g − 2 + n > 0, we have
Kg,n+1 = {1} according to Lemma 2.2.1. We obtain a tautological morphism

taut⋆̂• : π1(Mg,n+1 \ Bg,n+1, ⋆
•)→ Γg,n+1

as in § 2.2.3.
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Proposition 2.7.5. Let F•
(C,D•) = (κ : C → T ,D•, t0,ψ) be an algebraic family of stable n-pointed

genus-g curves with an additional puncture as above. Assume that none of its fibers admits exceptional
automorphisms. Let ϕ : (Σg, yn, y0)

∼→ (C,x, x0) be an orientation preserving homoeomorphism.
Then

π1(C
0,σ(t0)) = (ψ ◦ ϕ)∗Λg,n #η σ∗π1(T , t0) , (2.25)

where for all α ∈ Λg,n and β ∈ π1(T , t0), we have

η(σ∗β)((ψ ◦ ϕ)∗α) = σ∗β · (ψ ◦ ϕ)∗α · σ∗β−1

= (ψ ◦ ϕ)∗ a (taut⋆̂•(cl•∗ β)) (α) .

Here we adopt the notation above and denote a(h)(α) = h∗α for all h ∈ Γg,n+1 and α ∈ Λg,n as in
Section 2.2.

Proof. By Proposition 2.7.2, the following equation holds in Γg,n+1 = Γg,n+1/Kg,n+1 for every β ∈
π1(T , t0):

ϕ−1 ◦mapF•
(C,D•)

(β) ◦ ϕ = taut⋆̂•(cl
•
∗β) . (2.26)

We claim that for any γ ∈ π1(C0, x0) and any β ∈ π1(T , t0), the following equation holds in
π1(C0,σ(t0)):

ψ∗mapF•
(C,D•)

(β)∗γ = σ∗β · ψ∗γ · σ∗β−1 . (2.27)

Indeed, let γ : [0, 1] → C0 be a closed path with end point x0. For any s0 ∈ [0, 1], we have a
closed path γs0 := γ × {s0} in the product space C0 × [0, 1]. We also have a path θ : [0, 1] →
C0× [0, 1] ; s +→ (x0, s). The path θ ·γ1 ·θ−1 is closed and homotopic to γ0. Now let β ∈ π1(T , t0) and
let Φ : (C0, x0)× [0, 1]

∼→ β∗(C0,σ(T )) be a trivialization commuting with the natural projections to
[0, 1]. Define the homeomorphism

Φ̃ := Φ ◦ ((Φ−1
1 ◦ ψ)× id[0,1]) : (C

0, x0)× [0, 1]
∼→ β∗(C0,σ(T )) ,

which is another trivialization, satisfying Φ̃1 = ψ and Φ̃0 = ψ∗mapF•
(C,D•)

(β). Since Φ̃ is continuous,

the closed paths Φ̃∗γ0 and Φ̃∗θ · Φ̃∗γ1 · Φ̃∗θ−1 are homotopic in β∗(C0,σ(T )). Considering the natural
projection κ : β∗(C0,σ(T )) → (C0,σ(T )), we have κ∗Φ̃∗γ0 = Φ̃0∗γ and κ∗Φ̃∗γ1 = Φ̃1∗γ. Since
moreover κ∗Φ̃∗θ = σ∗β, we have (2.27).

Since ϕ is a homeomorphism, the induced map ϕ∗ : Λg,n → π1(C0, x0) is an isomorphism. The
statement then follows from (2.26), (2.27) and the Splitting Lemma 2.7.4 .

2.7.4 Extensions of representations

We shall now consider the problem of extending a representation of the fundamental group of a fiber
of a family of pointed curves to a representation for the whole family in light of Proposition 2.7.5.

Lemma 2.7.6 (Extension of representations). Let A,B be groups and let G = A #η B be as in
§ 2.7.2. Let ρA ∈ Hom(A,GLrC) be a representation.

• There exists a representation ρ ∈ Hom(G,GLrC) such that ρ|A = ρA if and only if there exists
a representation ρB ∈ Hom(B,GLrC) such that for all (a, b) ∈ A×B we have

ρA(b · a · b−1) = ρB(b) · ρA(a) · ρB(b−1) .
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• Let ρ, ρ′ ∈ Hom(G,GLrC) be representations such that ρ|A = ρ′|A = ρA. Assume that ρA is
irreducible. Then there exists λ ∈ Hom(B,C∗) such that ρ = λ⊗ ρ′ .

The proof of this Lemma is elementary and will be left to the reader. A similar statement can be
found in [Cou17, Lem. 1].

Concerning the problem of extending (monodromy)-representations, we begin with the elementary
case of non semisimple rank 2 representations.

Lemma 2.7.7. Let A,B be groups. Let ρA ∈ Hom(A,GL2C) be non semisimple. Let θ ∈ Hom(B,Aut(A))
such that for all h ∈ Im(θ), we have [ρA] = h · [ρA] := [ρA ◦ h−1]. Then there exists a representation
ρB ∈ Hom(B,GL2C) such that

ρA(θ(β)
−1(α)) = ρB(β)

−1ρA(α)ρB(β) ∀α ∈ A ,β ∈ B .

Proof. We may assume that ρA takes values in Upp, the group of invertible upper triangular ma-
trices of rank 2. By assumption, for each β ∈ B, there exists a matrix Mβ ∈ GL2C such that
ρA(θ(β)−1(•)) = M−1

β ρA(•)Mβ . By Lemma 2.5.4, we may assume Mβ ∈ Aff(C), where Aff(C) :=
{(ai,j) ∈ Upp | a2,2 = 1}, which is isomorphic to the affine group of the complex line. If Im(ρA) ⊂ Upp
is non abelian, then it has trivial centralizer and the matrices Mβ ∈ Aff(C) are uniquely defined.
Otherwise, we have Im(ρA) ⊂ {λ ( 1 τ0 1 ) | λ ∈ C∗ , τ ∈ C} and the matrices Mβ are uniquely defined if
we impose Mβ ∈

{(
µ 0
0 1

) ∣∣ µ ∈ C∗}. It is now straightforward to check that given these choices, the
map β +→Mβ is well defined and a morphism of groups.

For a similar result for semisimple representations ρA (of arbitrary rank), the group B, which in
our case will be the fundamental group of a parameter space, might have to be modified, in order
to take into account the non-unicity of the matrices Mβ due to possible permutations of irreducible
components.

Proposition 2.7.8. Let A be a group. Let ρA ∈ Hom(A,GLrC) be semisimple. Let (T , t0) be a
smooth connected quasi-projective variety, and let θ ∈ Hom(π1(T , t0),Aut(A)) such that H := Im(θ)
stabilizes [ρA]. Then there is an étale base change p : (T ′, t′0) → (T , t0) and a representation ρB ∈
Hom(π1(T ′, t′0),GLrC) such that

ρA(θ(p∗β)
−1(α)) = ρB(β)

−1 · ρA(α) · ρB(β) ∀α ∈ A ,β ∈ π1(T ′, t′0) .

Proof. Let ρA =
⊕

i∈I ρ
i
A be a decomposition such that each ρiA is irreducible. The subgroup

⋂

i∈I

StabAut(A)[ρ
i
A] ⊂ StabAut(A)[ρA] ,

stabilizing the conjugacy class [ρiA] for each i ∈ I, is of finite index (see for example [Cou17, Lemma

3]). Hence the subgroup H̃ := H ∩i∈I StabAut(A)[ρ
i
A] is of finite index in H. Consider the finite

connected unramified covering p̃ : (T̃ , t̃0) → (T , t0) characterized by p̃∗π1(T̃ , t̃0) = θ−1(H̃). Note
that p̃ induces a structure of smooth quasi-projective variety on T̃ . Since H̃ stabilizes [ρiA], for every

h ∈ H̃ and every i ∈ I, there is a matrix M i
h ∈ GLriC such that

(M i
h)

−1 · ρiA ·M i
h = [h] · ρiA . (2.28)

Given i and h, the choice of M i
h is unique up to an element of the centralizer of ρiA. Since ρiA is

irreducible, this centralizer is given by the set of scalar matrices. Denote by M i
h ∈ PGLriC the projec-

tivization ofM i
h ∈ GLriC. Then ρB

i : β +→M i
θ∗p̃∗β

is a well defined element of Hom(π1(T̃ , t̃0),PGLriC).
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According to the Lifting Theorem [Cou15, Thm. 3.1], there exists a Zariski closed subset Z̃ of T̃ not
containing t̃0, a finite morphism of smooth quasi-projective varieties

p′ : (T̃ ′, t′0)→ (T̃ \ Z̃, t̃0) ,

étale in a neighborhood T ′ of t′0, and a representation ρiB ∈ Hom(π1(T̃ ′, t′0),GLriC) whose projec-
tivization is p′∗ρBi. For a convenient choice of p′, this property is satisfied for all i ∈ I at once. We
obtain a representation ρB :=

⊕
i∈I ρ

i
B in Hom(π1(T ′, t′0),GLriC) satisfying the required properties

with respect to p := p̃ ◦ p′|T ′ .

2.8 Algebraization results

We shall now see that Theorem 2.1.1 is a corollary of the juxtaposition of Theorem 2.8.1, showing
that our algebraizability criterion for germs of universal isomonodromic deformations is necessary,
and Theorem 2.8.2, showing that it is also sufficient.

2.8.1 Finiteness is a necessary condition

Theorem 2.8.1. Let (C,D) be a stable n-pointed genus g-curve. Let ϕ : (Σg, Y n)
∼→ (C,D) be

an orientation preserving homeomorphism. Let (E,∇0) be an algebraic logarithmic connection over
C with polar divisor D and denote by [ρ∇0 ] ∈ χg,n(GLrC) its monodromy with respect to ϕ. Let
I(C,E,∇0) = (F(C,D), E ,∇,Ψ) be an algebraic isomonodromic deformation of (C,E,∇0) with parameter
space T as in § 2.6.4.

Assume that the classifying map class(F) : T →Mg,n is dominant.

Then the Γg,n-orbit of [ρ∇0 ] in χg,n(GLrC) is finite.

Proof. The orbit Γg,n · [ρ∇0 ] does not depend on the choice of ϕ. Moreover, it is canonically identified,
for any t1 ∈ T , with the orbit Γg,n · [ρt1 ] of the monodromy of the connection (E ,∇) restricted to
the fiber over t1 of the family F . Since class(F) is dominant we may assume, without loss of
generality, that ⋆ := class(F)(t0) ∈ Mg,n \ Bg,n. Moreover, up to restricting I(C,E,∇0) to a Zariski
open neighborhood U of t0 in T , we may assume that class(F)(T ) ∩ Bg,n = ∅. Notice that this
property, as well as the assumption of class(F) being dominant is not altered by finite covers and
further excision of strict subvarieties not containing t0. According to Lemma 2.7.3, up to such a
manipulation, we may assume that F(C,D) = (κ : C → T ,D, t0,ψ) admits a section σ : T → C of
κ with values in C0 := C \ D such that σ(t0) = ψ ◦ ϕ(y0). Let ρ∇0 be a representative of [ρ∇0 ].
Denote by ρ the monodromy representation of (E ,∇) with respect to some isomorphism Ex0 ≃ Cr,
such that the restriction of ρ to the subgroup (ψ ◦ ϕ)∗Λg,n of π1(C0,σ(t0)), given by the inclusion of
the central fiber, is identical to (ψ ◦ϕ)∗ρ∇0 . Such a choice of isomorphism for the fiber over x0 exists,
as implies for example Theorem 2.6.1. According to Proposition 2.7.5, we then have a semi-direct
product decomposition

π1(C0,σ(t0)) = (ψ ◦ ϕ)∗Λg,n #η σ∗π1(T , t0) ,

where we have two different expressions for its structure morphism η, proving that

H := taut⋆̂•(cl
•
∗π1(T , t0)) ⊂ Γg,n+1

acts on ρ∇0 ∈ Hom(Λg,n,GLrC) by conjugation. More precisely, for all α ∈ Λg,n and [h] =
taut⋆̂•(cl

•
∗ β) ∈ H, we have

ρ∇0 (a(h)(α)) = ρ(σ∗β) · ρ∇0(α) · ρ(σ∗β
−1)
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and in particular [h−1] · [ρ∇0 ] = [ρ∇0 ]. In other words, H is a subgroup of the stabilizer of [ρ∇0 ] in
Γg,n+1. By definition of the mapping class group action, we then have

π(H) ⊂ StabΓg,n [ρ∇0 ] ,

where π : Γg,n+1 → Γg,n is the projection forgetting the marking y0. Since the size of the orbit
Γg,n · [ρ∇0 ] equals the index of StabΓg,n [ρ∇0 ] in Γg,n, it now suffices to prove that π(H) has finite
index in Γg,n. Denote by q : Γg,n → Γg,n/Kg,n the quotient by the normal subgroup Kg,n, which, by
Lemma 2.2.1, has order at most 2. Hence for the indices, we have

[Γg,n : π(H)] ≤ 2 · [Γg,n/Kg,n : q(π(H))] .

We have a commutative diagram

Γg,n+1

π

!!

π1(T , t0)
taut⋆̂• ◦ cl•∗--

taut⋆̂ ◦ cl∗
!!

Γg,n
q "" Γg,n/Kg,n ,

where cl : T → Mg,n \ Bg,n denotes the corestriction of class(F). On the other hand, by the
dominance assumption and [Deb01, Lemma 4.19], the subgroup cl∗ π1(T , t0) of π1 (Mg,n \ Bg,n, ⋆) is
of finite index. In particular, since the tautological morphism taut⋆̂ : π1 (Mg,n \ Bg,n, ⋆) ! Γg,n/Kg,n

is onto, the subgroup q(π(H)) = taut⋆̂(cl∗π1(T , t0)) of Γg,n/Kg,n has finite index.

2.8.2 Finiteness is a sufficient condition

Theorem 2.8.2. Let F(C,D) = (κ : C → T ,D, t0,ψ) be an algebraic family of stable n-pointed genus-
g curves with central fiber (C,D) as in § 2.6.4. Let (E,∇0) be an algebraic logarithmic connection
over C with polar divisor D and denote by [ρ∇0 ] ∈ χg,n(GLrC) its monodromy with respect to an
orientation preserving homeomorphism ϕ : (Σg, Y n)

∼→ (C,D). Assume that

• (E,∇0) is mild,

• r = 2 or [ρ∇0 ] is semisimple, and

• the Γg,n-orbit of [ρ∇0 ] in χg,n(GLrC) is finite.

Then there exist

• an étale base change p : (T ′, t′0)→ (T , t0) and

• a regular flat algebraic logarithmic connection (E ,∇) over p∗C with polar divisor p∗D,

such that ψ∗(E ,∇)|C′
t′0

is isomorphic to (E,∇0).

Proof. Since (C,D) is stable by assumption, it only admits a finite number of automorphisms. Let
x0 ∈ C \ D be a point fixed by no automorphism other than the identity. Up to isotopy, we may
assume ϕ(y0) = x0. Let x• be the labelling of D• = D+ x0 induced by ϕ. By construction, we have
⋆• := [C,x•] ∈Mg,n+1 \ Bg,n+1. Up to an étale base change, we may assume, by Lemma 2.7.3, that
there is a section σ : T → C of κ with values in C0 := C \ D such that σ(t0) = ψ(x0). With the
notation of § 2.7.3, we may consider the family of n + 1-pointed genus-g curves F•

(C,D•) = (κ : C →
T ,D + σ(T ), t0,ψ). According to Proposition 2.7.5, we have a semi-direct product decomposition
π1(C \ D,σ(t0)) = (ψ ◦ ϕ)∗Λg,n #η σ∗π1(T , t0), where

η(σ∗β)((ψ ◦ ϕ)∗α) = σ∗β · (ψ ◦ ϕ)∗α · σ∗β−1 = (ψ ◦ ϕ)∗a(θ∗β)(α)
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and θ := taut⋆̂• ◦ cl•∗ : π1(T , t0)→ Γg,n+1.

Since the Γg,n+1-orbit of [ρ∇0 ] in χg,n(GLrC) is finite, the stabilizer

H := StabΓg,n+1 [ρ∇0 ]

of the conjugacy class of ρ∇0 under the action of Γg,n+1 has finite index in Γg,n+1. Since the tau-
tological morphism is onto, the subgroup taut−1

⋆̂• (H) of π1(Mg,n+1 \ Bg,n+1, ⋆•) then has also finite
index. In particular, there is a finite connected étale cover q : (U, u0) → (Mg,n+1 \ Bg,n+1, ⋆•) such
that π1(U, u0) = taut−1

⋆̂• (H). Now consider the fibered product

(T ′, t′0)
p ""

!!

(T , t0)

class(F•)
!!

(U, u0)
q "" (Mg,n+1, ⋆•).

We denote the pullback family of curves by F ′
(C,D•) = (κ′ : C′ → T ′,D′ + σ′(T ′), t′0,ψ

′) := p∗F•
(C,D•).

We further denote cl′ = cl• ◦p, which is the corestriction of class(F ′). By construction, the morphism
θ′ := θ ◦ p = taut⋆̂• ◦ cl′∗ : π1(T ′, t′0)→ Γg,n+1 takes values in H.

Again up to an étale base change of (T ′, t′0), by Proposition 2.7.8 and Lemma 2.7.7, there is a
representation ρB ∈ Hom(π1(T ′, t′0),GLrC) such that for all β ∈ π1(T ′, t′0), α ∈ Λg,n, we have

(
[θ′∗β]

−1 · ρ∇0

)
(α) = ρB(β) · ρ∇0(α) · ρB(β−1) .

Since by definition
(
[θ′∗β]

−1 · ρ∇0

)
(α) = ρ∇0(a(θ

′
∗β)(α)), we obtain a well defined representation

ρ :

{
π1(C′ \ D′,σ′(t′0)) → GLrC

(ψ′ ◦ ϕ)∗α · σ′∗β +→ ρ∇0(α) · ρB(β)

(see Lemma 2.7.6) with respect to the semi-direct product decomposition π1(C′ \ D′,σ′(t′0)) = (ψ′ ◦
ϕ)∗Λg,n #η σ′∗π1(T ′, t′0). By construction, ρ extends ρ∇0 . We conclude by the logarithmic Riemann-
Hilbert correspondence (see Theorem 2.6.1).

2.8.3 Proof of the main result

The two previous theorems imply Theorem 2.1.1 stated in the introduction:

Proof of Theorem 2.1.1. Let us first prove the implication (2.1.1)⇒ (2.1.1). Let I(C,E,∇0), given by
(F(C,D), E, ∇,Ψ), be a universal algebraic isomonodromic deformation of (C,E,∇0) as in § 2.6.4.
Then by definition, the family F(C,D) is Kuranishi. In particular, the classifying map class(F) : T →
Mg,n is dominant. Then by Theorem 2.8.1, the Γg,n-orbit of [ρ∇0 ] in χg,n(GLrC) is finite.

Let us now prove the implication (2.1.1) ⇒ (2.1.1). Let F(C,D) = (κ : C → T ,D, t0,ψ) be any
algebraic Kuranishi family with central fiber (C,D) as in § 2.6.4. Note that such a family exists since
(C,D) is stable, and that it remains Kuranishi after pullback via an étale base change. Up to such a
manipulation, according to Theorem 2.8.2, the family F(C,D) can be endowed with a regular flat al-
gebraic logarithmic connection (E ,∇) over C with polar divisor D such that there is an isomorphism
Ψ : (E,∇0) → (E ,∇)|Ct0 commuting with ψ via the natural projections to (C,D) and (Ct0 ,Dt0)
respectively. Now I(C,E,∇0) := (F(C,D), E ,∇,Ψ) defines an algebraic universal isomonodromic defor-
mation of (C,E,∇0).
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2.8.4 Proof of the universal property

Let us now proof the universal property of universal algebraic isomonodromic deformations stated in
§ 2.6.4.

Proof of Proposition 2.6.5. Let I(C,E,∇0) = (F(C,D), E ,∇,Ψ) be a universal algebraic isomonodromic
deformation of (C,E,∇0) with parameter space (T , t0) and let I ′

(C,E,∇0)
given by (F ′

(C,D), E
′,∇′,Ψ′)

be an algebraic isomonodromic deformation of (C,E,∇0) with parameter space (T ′, t′0).

By Lemma 2.7.3, there is an étale base change p̃ : (T̃ , t̃0) → (T , t0), such that for F̃(C,D) :=

p̃∗F(C,D), there is a section σ : T̃ → C̃ avoiding the marked points. Since F̃(C,D) is still Kuranishi,
by the universal property of Kuranishi families, we have an étale base change p : (T ′′, t′′0)→ (T ′, t′0),

a morphism q̃ : (T ′′, t′′0)→ (T̃ , t̃0) and a unique isomorphism

f̃ : F ′′
(C,D) := p∗F ′

(C,D)
∼−→ q̃∗F̃(C,D) .

In particular, σ lifts to a section σ′′ := f̃∗q̃∗σ : T ′′ → C′′ avoiding the marked points of F ′′
(C,D). Let

ρ∇0 ∈ Hom(π1(C \D,x0),GLrC) be a representative of the monodromy of (E,∇0). Denote by

ρ′′ , ρ̃ ∈ Hom(π1(C′′ \ D′′ ,σ′′(t′′0)),GLrC)

representatives ot the monodromy of (E ′′,∇′′) and f̃∗q̃∗p̃∗(E ,∇) respectively, such that

ρ′′|ψ′′
∗ π1(C\D,x0) = ρ̃|ψ′′

∗π1(C\D,x0) = ψ′′
∗ρ∇0 .

By the Splitting Lemma 2.7.4, we have

π1(C′′ \ D′′,σ′′(t′′0)) = ψ′′
∗π1(C \D,x0)#η σ

′′
∗π1(T ′′, t′′0) .

Since ρ∇0 is irreducible, by Lemma 2.7.6 there is a representation λ ∈ Hom(π1(T ′′ , t′′0) ,C
∗) such

that λ⊗ (σ′′)∗ρ′′ = (σ′′)∗ρ̃. By the Riemann-Hilbert correspondence, there is a regular flat algebraic
connection (L, ξ) of rank 1 over T ′′, without poles, whose monodromy representation is λ−1. The
monodromy representation of its lift κ′′∗(L, ξ) is the trivial extension of σ′′∗λ−1 to a representation
ψ′′
∗π1(C\D,x0)#ησ′′∗π1(T ′′, t′′0) → C∗. Now up to replacing (E ′′,∇′′) by (E ′′,∇′′)⊗κ′′∗(L, ξ) and choos-

ing an appropriate modification of Ψ′′, the monodromy representations of (E ′′,∇′′) and f̃∗q∗p∗(E ,∇)
with respect to frames of the fiber over σ′′(t′′0) induced, via Ψ and Ψ′′, from a common frame of Ex0 ,
coincide. Both connections are regular, have canonically identified monodromy representations and
same transversal models, given by (E,∇0). By the logarithmic Riemann-Hilbert correspondence,
they are uniquely isomorphic via an isomorphism inducing the identity on (C,E,∇0).

2.8.5 Further remarks and open questions

The proof of Theorem 2.8.1 asserting that finiteness of the orbit Γg,n ·[ρ∇0 ] in χg,n(G) with G = GLrC
is a necessary condition for the existence of an algebraic isomonodromic deformation of (C,E,∇0)
with class(F) : T →Mg,n dominant goes through word for word when considering algebraic isomon-
odromic deformations of principal logarithmic connections on G-bundles over curves, where G is a
connected complex algebraic subgroup of GLrC. One can even drop the regularity assumption in the
definition of algebraic isomonodromic deformations for that statement.

In collaboration with I. Biswas and G. Cousin, we are currently working on a generalization
of the sufficient condition (Theorem 2.8.2) for principal connections. This generalization is more
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delicate, because we need an appropriate generalization of the algebraic logarithmic Riemann-Hilbert
correspondence for G-connections. It is not known in general which elements of Hom(π1(M \D), G)
arise as the monodromy representation of a flat principal logarithmic connection (EG,∇) a complex
manifold M of dimension m > 1 (for m = 1, see [Boa11]). In the case of smooth divisors D, one might
look, analogously to [Cou17], for G-mild models. It would be interesting to classify those groups G
such that any representation ρ ∈ Hom(π1(D\{0}), G) arises from a G-mild model. Examples of such
groups are GLrC, the group of triangular matrices and the group of diagonal matrices. The group
G = SLrC on the other hand, is a counter-example if r > 1. Indeed, consider for example a scalar
monodromy λ · Ir with λr = 1 but λ ̸= 1. It does not admit a mild slrC-model. One can show that
the monodromy (

i 1 0 0
0 i 0 0
0 0 i 1
0 0 0 i

)
∈ SL4C ,

where i =
√
−1, is another such example.

Even though, in order to generalize Theorem 2.8.2 for principal connections one may consider,
as we did for G = GLrC, only isomonodromic deformations of G-mild initial connections (EG,∇0),
algebraization requires moreover G-mild models for the irreducible components of the divisor “at
infinity”. Moreover, one has to take into account normal crossings, which boils down to the following.

Problem 4 (Corner models). Consider the polydisc M of radius 2 centered a the origin in Cm, with
m > 1, endowed with standard coordinates (z1, . . . , zm). Denote by D ⊂ M the normal crossing
divisor {z1 · · · zm = 0}. For i ∈ !1,m", let ∇i be a logarithmic connection on the trivial G-bundle
over the disc Σi := {zj = 1 ∀j ̸= i} with polar divisor Σi ∩ D, such that the monodromy matrices
of ∇1, . . . ,∇m commute. Is there a flat principal logarithmic connection ∇ on the trivial G-bundle
over M , with polar divisor D, which induces ∇i on Σi for i ∈ !1,m"?

For G = GLrC, it follows from [Cou17] that Problem 4 has a solution if the models ∇i are all
mild and at most one of them is not a Deligne model.

Ultimately, the goal should be a classification, in terms of generalized monodromy data, of mero-
morphic principal G-connections over curves which admit universal algebraic isomonodromic defor-
mations. Even up to some technical assumptions, it is not at all clear what the statement should be
in the non-logarithmic case. One may start by asking the following.

Problem 5. Do finite orbits of the wild mapping class group action on the wild character variety
introduced in [Boa14] correspond to algebraic universal isomonodromics deformations of meromorphic
principal G-connections over curves ?
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Chapter 3

Flat rank two vector bundles
on genus two curves

3.1 Introduction

Let X be a smooth projective curve of genus 2 over C. Consider the set Con(X) of isomomorphism
classes of tracefree holomorphic connections (E,∇) of rank 2 over X. Consider moreover the set
Bun(X) of isomomorphism classes of rank 2 vector bundles E with trivial determinant bundle over
X that are flat in the sense that they can be endowed with a holomorphic connection, so that the
natural forgetful map

bun : Con (X)→ Bun (X) (3.1)

is surjective. In collaboration with F. Loray, we provided in [HL15] an explicit description of (3.1),
seen as a map of stacks, and deduced several applications. These results will be presented in this
chapter.

Note that by [Nit93, IIS06a, IIS06b], the subset Conirr(X) ⊂ Con(X) corresponding to irreducible
connections has a natural structure of open subset in the smooth locus of a 6-dimensional quasi-
projective variety such that the complement of Conirr(X) in this variety parametrizes GIT-equivalence
classes of reducible connections. A GIT-approach to the subset Bunss (X) ⊂ Bun(X) of semistable
bundles (in the sense of Mumford) has been established in the classical work by Narasimhan and
Ramanan (see [NR69] and § 3.5.1). They construct a quotient map

NR : Bunss (X)→MNR := |2Θ| ≃ P3 (3.2)

onto the 3-dimensional linear system generated by twice the Θ-divisor on Pic1(X). The Kummer
surface Kum(X) = Jac(X)/±1 naturally parametrizes the set of decomposable bundles in Bunss, and
the classifying map NR provides an embedding Kum(X) ↪→ P3

NR as a quartic surface with 16 ordinary
double points. The map NR is one-to-one in restriction to the set Buns of stable bundles, which
it identifies with the complement MNR \ Kum(X). In the fiber over a smooth point of Kum(X)
one finds 1 decomposable bundle and 2 affine bundles. Over each singular point of Kum(X) one
finds 1 decomposable bundle (the trivial bundle and its twists) and a 1-parameter family of (twisted)
unipotent bundles. Not appearing in MNR are the 16 Gunning bundles that form the complement in
Bun (X) of the semistable locus. We refer to § 3.3.3 for the geometric motivation of our bundle-type
terminology.

Hyperelliptic descent (see § 3.3). The main idea in [HL15], that already appears in works
of Ramanan and Bhosle (see for example [Ram81] and [Bho84]), is to use the hyperellipticity of the
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curve X to descent to the study of parabolic bundles and connections over P1. A result of Goldman
combined with Riemann-Hilbert correspondence implies that any (E,∇) ∈ Conirr(X) admits a lift
h : (E,∇) ∼→ ι∗(E,∇) of the hyperellitic involution ι : X → X and this lift is unique up to a sign
(see § 3.3.1). Let us denote by π : X → P1 ≃ X/ι the natural quotient map. As an example of
the more general situation studied in collaboration with I. Biswas in [BH13b], the lift h induces a
natural splitting of the push-forward π∗(E,∇) into a direct sum of two logarithmic connections of
rank two over P1. More precisely, each of these direct summands is an element of Con(X/ι), which
will denote the set of isomorphism classes of pairs (E,∇), where E is a rank two vector bundle of
degree −3 on P1 and ∇ is a logarithmic connection on E with poles located at the image W under π
of the Weierstrass points on X, such that each residue has the two eigenvalues 0 and 1

2 .

Conversely (see § 3.3.2), from any (E,∇) ∈ Con(X/ι) one can construct a tracefree holomorphic
connection on X by composing the natural lift π∗ with positive elementary transformations at the
lift of the parabolic structure on p on E defined by the 1

2 -eigendirections of ∇. In restriction to
the irreducible locus, we obtain a map Φ : Con (X/ι) → Con (X) whose fibers correspond to the
direct summands described above. Forgetting the connections on both sides yields a well defined
map φ : Bun (X/ι) → Bun (X) given by by (E,p) +→ E, so that the following diagram commutes,
where vertical arrows designate the forgetful maps:

Con (X/ι) 2:1

Φ
""

!!

Con (X)

!!
Bun (X/ι)

φ
"" Bun (X) .

(3.3)

A dictionary (see § 3.4). The map φ turns out to be a ramified 2-cover onto its image.
The image consists of the complement in Bun(X) of the affine bundles, and the ramification locus
corresponds to the decomposable bundles. The fiber of φ over a generic stable bundle E consists of
two isomorphism classes of parabolic bundles (E,p), such that

E ≃ OP1 (−1)⊕OP1 (−2)

and the parabolic structure p is defined by the fibers over the Weierstrass points of a subbundle
L ≃ OP1 (−4) of E, giving rise to an anticanonical subbundle L ≃ OX(−KX) of E which is invariant
under the hyperelliptic involution. We also investigate the special cases of all other bundles in the
image of φ and describe the particularities characterizing the parabolic bundles in the associated
fibers of φ. It turns out that with the exception of those corresponding in Bun(X) to the trivial
bundle and its twists, all parabolic bundles occuring in Bun (X/ι) are indecomposable.

Application to classical approaches (see § 3.5). Of course Bun (X) is not a Hausdorff
topological space. For example all points in a same fiber of the Narasimhan-Ramanan map (3.2)
are arbitrarily close to each other. Other non-Hausdorff points in Bun (X) are the 16 (unstable)
Gunning bundles. For each of them, there is a plane in MNR such that each point in the fiber of
(3.2) over a point in this plane is arbitrarily close to this Gunning bundle. We show that these 16
Gunning planes are precisely the planes arising in the classical (16:6)-configuration of the Kummer
surface (see [Hud90, GD94, NR69, Bol07]). With respect to a curve X with equation

y2 = x (x− 1) (x− r) (x− s) (x− t) (3.4)

we exhibit in § 3.5.2, via generators of |2Θ|, a natural system of coordinates on MNR ≃ P3. With
respect to these coordinates, we compute the Narasimhan-Ramanan map for the moduli space MB ≃
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P3 of ι-invariant non-split extensions OX(−KX)→ E → OX(KX) studied by Bertram and Bolognesi
[Ber92, Bol07, Bol09]. Via Tyurin’s classical approach, moduli spaces of parabolic structures on
the trivial rank two bundle over X (tensorised by O(−KX)) supported by divisors in |2KX | are
birational models of Bun(X). We provide such a model MTyu ≃ P2 × P1, which arises naturally
from hyperelliptic descent, and which covers the trivial bundle in Bun(X). Note however that other
constructions allow to cover for example the affine bundles in Bun(X). We construct a universal
bundle on a rational 2-cover B of MTyu, which, via the relations we provide towards the other
mentioned moduli spaces, can be seen as an explicit version of Bolognesi’s universal bundle [Bol09]
over the rational two-cover MB of MNR. For convenience, Table 1 references where we the obtained
explicit maps can be found in the manuscript. Note that by classification, each of the mentioned
moduli spaces contains a birational model of the Kummer surface. We compute these (with respect
to our coordinates), and are able to describe the geometry of their birational transition maps (in
terms of blow ups and contractions) by consulting the special loci singled out in the dictionary.

B -- Prop. 3.5.11

1:1
""

Eq. (3.27)2:1

!!

MB ≃ P3

Prop. 3.5.92:1

!!

MTyu ≃ P2 × P1 -- Prop. 3.5.8

1:1
"" MNR ≃ P3

Table 1: Collection of explicit formulae.

A chart of the stack Bun (X) (see § 3.6). The subset Bunind (X/ι) of indecomposable
parabolic bundles in Bun (X/ι) has been shown in the previous works [AL97, LS15] to have a nat-
ural structure of smooth non separated 3-dimensional projective scheme. More precisely, it can be
constructed by patching together GIT quotients Bunssµ (X/ι) of µ-semi-stable parabolic bundles for a
finite number of well-chosen weights µ ∈ [0, 1]6. These moduli spaces are smooth projective manifolds
and they are patched together along Zariski open subsets. Note that for one of these µ, the cor-
responding moduli space is naturally identified with the aforementioned Bertram-Bolognesi moduli
space. We select some more particular choices of µ and provide explicit transition maps between the
corresponding Bunssµ (X/ι)’s. Again the special loci identified by the dictionary allow us to describe
the geometry of these transition maps, as well as the Galois-involution of φ as a composition of blow-
ups, contractions and flops. This provides a geometrical and to a large extend explicit description

of φ : Bunind (X/ι)
2:1
! Bun∗ (X), where the image consists of the complementary in Bun (X) of the

affine bundles and (twists of) the trivial bundle.

Application to the Hitchin fibration (see § 3.6.6). The restriction buns : Cons(X) →
Buns(X) to the locus of stable bundles of the forgetful map (3.1) is known to be a locally trivial
affine A3-bundle, whose homogeneous part can be interpreted as the moduli space Higgs(X) of
tracefree holomorphic Higgs bundles (E, θ) with E ∈ Buns(X). This moduli space is naturally
identified with the cotangent bundle T∨Buns(X). We provide an explicit universal Higgs bundle for
its natural counterpart Higgs (X/ι) with respect to Diagram (3.3). This allows us, in a very direct
way, to compute the Hitchin map

Hitch :

{
Higgs(X) → H0(X,Ω1

X ⊗ Ω1
X)

(E, θ) +→ det(θ)

}

explicitly. The result is stated in Table 11. We can relate the six Hamiltonians described by G. van
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Geemen and E. Previato in [VGP96] to the three Hamiltonian coefficients of the Hitchin map. Let
us mention that the map buns also has a natural structure of Lagrangian fibration (see e.g. [Sim08,
§ 7.2]). Using the so-called apparent map in [LS15] and Diagram (3.3), one can explicitly construct
a regular rational and Lagrangian section of buns (see [HL15, §. 7.3], not detailed here).

A chart of the stack Con(X) (see § 3.7.1). We describe a collection of subsets of Con(X/ι),
parametrized by C6 and endowed with universal connections, with birational transition maps. Patch-
ing those together yields a certain subset Con∗(X/ι) of Con(X/ι) with a natural structure of affine
(possibly non separated) scheme, which is invariant under the Galois involution of Φ. The quotient

Con∗(X) := Φ(Con∗(X/ι)) ⊂ Con(X)

contains all irreducible connections.

The family M and the isomonodromy foliation (see § 3.7.2). Varying the parameter
(r, s, t) ∈ T := (C \ {0, 1})3 \ {diagonals} which encodes the complex structure of X in (3.4), this
construction yields a family M → T with fibers Con∗

(
X(r,s,t)

)
. Note that M is actually a chart

of the moduli stack of genus 2 curves endowed with tracefree rank 2 connections, i.e., isomorphism
classes of triples (X,E,∇). Moreover, all these triples in M arise from the hyperellitic lift Φ. The
well known isomonodromy Hamiltonian system derived from Garnier systems over P1 gives rise, in
M, to a singular holmorphic foliation Fiso. The 3-dimensional leaves of this foliation parametrize
(universal) isomonodromic deformations.

Application to projective structures (see § 3.7.3 and § 3.7.4) . In the above M, not
only the isomonodromy foliation Fiso, but also the locus of special bundles, for example the Gunning
bundles, are explicit. We show that the isomonodromy foliation is transverse to the locus of Gunning
bundles by direct computation in Theorem 3.7.2. As a corollary, we obtain a new proof of a result of
Hejhal [Hej75], stating that the monodromy map from the space of projective structures on the genus
two curves to the space of PGL2-representations of the fundamental group is a local diffeomorphism.

3.2 Parabolic bundles and their elementary transformations

This section contains basic definitions that will be used in the sequel. Namely, what for practical
reasons we simply call parabolic bundles (in the literature: quasi-parabolic bundles of rank 2), their
(semi-)stability with respect to a given weight, parabolic connections and elementary transformations
on parabolic bundles and connections.

In the following paragraphs, let X be a smooth projective curve defined over C and let D =
x1 + . . . + xn be a reduced divisor on X.

3.2.1 Parabolic bundles and connections

A parabolic structure p supported by D on a given rank 2 vector bundle E → X associates, to each
xi ∈ D, a 1-dimensional subspace pi of the fiber Exi . The pi’s will be called parabolics, and the
pair (E,p) will be called a parabolic bundle. When, as above, we implicitly have an order on the
support of D, we denote the parabolic structure p = (p1, . . . , pn). A trivial yet useful remark is that
a parabolic structure on E supported by D can be equivalently defined by the choice of a point in
each of the fibers over D of the ruled surface P(E) → X. Abusing notation, we denote these points
pi as well.

A logarithmic connection of rank r with polar divisor at most D is a pair (E,∇), where E → X
is a vector bundle of rank r and ∇ : E → E ⊗ Ω1

X (D) is a C-linear morphism satisfying the Leibniz
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rule. At each x0 ∈ D, the connection intrinsically defines an endomorphism of the fiber Ex0 , the
residue Resx0∇. Residual eigenvalues and residual eigenspaces in Ex0 hence are well-defined. The
connection ∇ on E induces a logarithmic connection tr (∇) on the determinant line bundle det (E)
over X with

Resx0 tr (∇) = tr (Resx0∇)

for each x0 ∈ D. By the Residue Theorem, the sum of residues of a global meromorphic 1-form on
X is zero. We thereby obtain Fuchs’ relation:

deg (E) +
∑

x0∈D

tr (Resx0∇) = 0. (3.5)

We say that a logarithmic connection (E,∇) is tracefree when (det(E), tr (∇)) is isomorphic to the
trivial connection dX on the trivial line bundle. A logarithmic connection with polar divisor at most
D such that all residues are zero gives rise to a holomorphic connection (E,∇) with ∇ : E → E⊗Ω1

X .

Let (E,∇) be a logarithmic rank r connection and let L be a r-torsion line bundle, i.e., L⊗r ≃ OX .
Then there is a unique holomorphic connection ζ on L such that (L, ζ)⊗r is isomorphic to the trivial
connection on the trivial line bundle. We refer to the tensor product (E,∇) ⊗ (L, ζ) as the twist of
(E,∇) by L. Note that twists preserve the isomorphism class of the trace connection.

A parabolic connection over X with support D will be by definition a triple (E,∇,p), where
E → X is a vector bundle of rank r = 2, p is a parabolic structure on E supported by D and ∇ is a
logarithmic connection on E with polar divisor at most D, such that moreover for each xi ∈ D the
corresponding parabolic pi is an eigendirection of Resxi∇.

3.2.2 Elementary transformations

Let (E, p) be a parabolic bundle on X supported by a single point x0 ∈ X. Consider the vector
bundle E− defined by the subsheaf of those sections s of E such that s(x0) ∈ p. A natural parabolic
direction on E− is defined by those sections of E which are vanishing at x0 (and thus belong to E−).
If x is a local coordinate vanishing at x0 and E is generated near x0 by ⟨e1, e2⟩ with e1(x0) ∈ p,
then E− is locally generated by ⟨e1, e′2⟩ with e′2 := xe2 and we define p− ⊂ E−|x0 to be Ce′2(x0). By
identifying the sections of E and E− outside x0, we obtain a natural birational morphism E ""# E−.
We denote

elm−
x0
(E, p) := (E−, p−) .

In a similar way, we define the parabolic bundle (E+, p+) by the sheaf of those meromorphic
sections of E having (at most) a single pole at x0, whose residual part is an element of p. The
parabolic p+ then is defined by

p+ := {s(x0) | s is a holomorphic section of E near x0}.

In other words, E+ is generated by ⟨e′1, e2⟩ with e′1 := 1
xe1and p+ ⊂ E+|x0 defined by Ce2. The

natural morphism E ""# E+ is now regular, but fails to be an isomorphism at x0. We denote

elm+
x0
(E, p) := (E+, p+) .

These elementary transformations (see also [Mac07]) satisfy

• det (E±) = det (E)⊗OX (±[x0]),
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• elm+
x0
◦ elm−

x0
= id(E,p) and elm−

x0
◦ elm+

x0
= id(E,p),

• elm+
x0

= OX ([x0])⊗ elm−
x0
.

More generally, given a parabolic bundle (E,p) with support D, we define the elementary trans-
formations elm±

D as the composition of the (commuting) single elementary transformations over all
points of D. We define elm±

D0
for any subdivisor D0 ⊂ D in the obvious way.

Given a parabolic connection (E,∇,p) with support D, the elementary transformations elm±
D

yield new parabolic connections (E±,∇±,p±). In fact, the compatibility condition between p and
the residual eigenspaces of ∇ ensures that ∇± is still logarithmic. The monodromy is left unchanged,
but the residual eigenvalues are shifted as follows: if λ1 and λ2 denote the residual eigenvalues of ∇
at x0, with p contained in the λ1-eigenspace, then

• Resx0∇+ has eigenvalues (λ+1 ,λ
+
2 ) := (λ1 − 1,λ2),

• Resx0∇− has eigenvalues (λ−1 ,λ
−
2 ) := (λ1,λ2 + 1),

and p± is now defined by the λ±2 -eigenspace.

One easily verifies that elementary transformations are well-defined on isomorphism classes of
parabolic bundles and parabolic connections.

Note that positive and negative elementary transformations coincide for a projectivized parabolic
bundle (P(E), p). They consist, for the ruled surface P(E) → X, in composing the blowing-up of
p with the contraction of the strict transform of the fiber [GM89]. This contraction yields the new
parabolic p±. Elementary transformations on projectivized parabolic bundles are clearly involutive.

Note moreover that when σ ≃ X denotes the curve in the total space of the ruled surface
P(E)→ X corresponding to a line subbundle L ⊂ E, the self-intersection number of σ coincides with
deg (E)−2 deg (L) (see [Mar70]). The self-intersection number of the curve σ̂ in P(E±) corresponding
to the line subbundle L± of E± determined by L satisfies

#(σ̂ · σ̂) =
{

#(σ · σ)− 1 if p ∈ σ
#(σ · σ) + 1 if p ̸∈ σ .

3.2.3 Weight-stability and moduli spaces

A weight µ supported by the divisor D associates to each xi ∈ D an element µi ∈ [0, 1]. Let µ be
such a weight and let (E,p) be a parabolic bundle with parabolic structure supported by D. We
refer to the triple (E,p,µ) as a weighted parabolic bundle. For any line subbundle L of E, we define
the stability index of L with respect to µ by

indµ (L) := degparµ (E)− 2 degparµ (L) ,

where

degparµ (E) := deg (E) +
n∑

i=1

µi and degparµ (L) := deg (L) +
∑

pi⊂L

µi .

Here by taking the sum over pi ⊂ L we mean taking the sum over those parabolics pi that are
contained in the total space of L ⊂ E. Note that the stability index of L with respect to µ writes,
for the section σ of P(E)→ X defined by L, as

indµ (L) = indµ (σ) := #(σ · σ) +
∑

pi ̸∈σ

µi −
∑

pi∈σ
µi.
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A parabolic bundle (E,p) will be called µ-semi-stable (resp. µ-stable) if

indµ (L) ≥ 0 (resp. > 0) for each line subbundle L ⊂ E .

Alternatively, we speak of (semi-)stability of weighted parabolic bundles (E,p,µ). For vanishing
weights µ1 = . . . = µn = 0, we get the usual definition of (semi-)stability of vector bundles.

We say a bundle is strictly semi-stable if it is semi-stable but not stable. A bundle is called
unstable if it is not semi-stable.

Semi-stable weighted parabolic bundles over X with fixed ordinary degree, fixed weight µ sup-
ported by D and µ-parabolic degree 0 admit a coarse moduli space Bunssµ which is a normal projec-
tive variety; the stable locus Bunsµ is smooth [MS80] [BH95]. Note that a similar property holds for
weighted parabolic connections [Nit93].

For weighted parabolic bundles (E,p,µ), it is natural to extend the definition of elementary
transformations as follows. Given a subdivisor D0 ⊂ D, define

elm±
D0

: (E,p,µ) ""#
(
E′,p′,µ′)

by setting

µ′
i =

{
1− µi if pi ∈ D0,
µi if pi ̸∈ D0.

For L′ ⊂ E′ denoting the strict transform of a line subbundle L ⊂ E, we then have indµ′ (L′) =
indµ (L) . Therefore, elm±

D0
acts as an isomorphism between the moduli spaces Bunssµ and Bunssµ′

(resp. Bunsµ and Bunsµ′).

3.3 Hyperelliptic descent

From now on, let X be the smooth complex projective curve given in an affine chart of P1 × P1 by

y2 = x (x− 1) (x− r) (x− s) (x− t) , (3.6)

for some pairwise distinct r, s, t ∈ C0 \{1}. Denote by ι : X → X its hyperelliptic involution, defined
in the above chart by (x, y) +→ (x,−y), and denote by π : X → P1 the hyperelliptic projection,
defined in the above chart by (x, y) +→ x. Denote by W = {0, 1, r, s, t,∞} the critical divisor on P1

and by W = {w0, w1, wr, ws, wt, w∞} the Weierstrass divisor on X, i.e., the branching divisor with
respect to π.

Consider a rank 2 vector bundle E → P1 of degree −3, endowed with a logarithmic connection
∇ : E → E ⊗ Ω1

P1 (W ) having residual eigenvalues 0 and 1
2 at each pole. We fix the parabolic

structure p defined by the 1
2 -eigenspaces over W . After lifting the parabolic connection

(
E,∇,p

)
via

π : X → P1, we get a parabolic connection on X
(
Ẽ → X, ∇̃, p̃

)
= π∗

(
E → P1,∇,p

)
.

We have det
(
Ẽ
)
≃ OX (−3KX) and the residual eigenvalues of the connection ∇̃ : Ẽ → Ẽ⊗Ω1

X (W )

are 0 and 1 at each pole, with parabolic structure p̃ defined by the 1-eigenspaces. After applying
elementary transformations directed by p̃ (see § 3.2.2), we get a new parabolic connection:

elm+
W :

(
Ẽ, ∇̃, p̃

)
""# (E,∇,p)
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which is now holomorphic and tracefree.

Recall from the introduction that we denote by Con (X/ι) the set of isomorphism classes of
logarithmic rank 2 connections on P1 with residual eigenvalues 0 and 1

2 at each pole in W , and we
denote by Con (X) the set of isomorphism classes of tracefree holomorphic rank 2 connections on
X. Since to every element (E,∇) of Con (X/ι), the parabolic structure p is intrinsically defined as
above, we have just defined a map

Φ :

{
Con (X/ι) → Con (X)(
E,∇,p

)
+→ (E,∇) . (3.7)

In § 3.3.1 we characterize all holomorphic and tracefree rank 2 connection (E,∇) on X that can
be obtained as above. It turns out that irreducibility of ∇ is a sufficient condition. In § 3.3.3, we
introduce a bundle-type terminology for flat vector bundles E and characterize those that can be
obtained via Φ, namely all semistable but not affine bundles, and also the unstable Gunning bundles.
In § 3.3.2 we present a construction inverse to this Φ, and we enrich our point of view of hyperelliptic
decent by its relation to the classical approach of Tyurin [Tyu64] in § 3.3.4.

3.3.1 Topological considerations

By the Riemann-Hilbert correspondence, Con (X/ι) and Con (X) are in one-to-one correspondence
with spaces of representations. Let us start with Con (X) which is easier.

The monodromy of a tracefree holomorphic rank 2 connection (E,∇) on X gives rise to a mon-
odromy representation, namely a homomorphism ρ : π1 (X,w) → SL2. In fact, this depends on the
choice of a basis on the fiber Ew. Another choice will give the conjugate representation MρM−1

for some M ∈ GL2C. The class [ρ] ∈ Hom (π1 (X,w) ,SL2) /PGL2 however is well-defined by (E,∇).
Conversely, the monodromy [ρ] characterizes the connection (E,∇) onX modulo isomorphism, which
yields a bijective correspondence

RH : Con (X)
∼−→ Hom (π1 (X,w) ,SL2) /PGL2

which is complex analytic where it makes sense, i.e., in restriction to the subset Conirr (X) of irre-
ducible connections, with its natural structure of smooth quasi-projective variety. Yet this map is
highly transcendental, since we have to integrate a differential equation to compute the monodromy.
Note that the space of representations only depends on the topology of X, not on the complex and
algebraic structure.

In a similar way, parabolic connections in Con (X/ι) are in one-to-one correspondence with conju-
gacy classes of elements ρ in Hom∗(πorb1 (X/ι, x) ,GL2C

)
. Here, thinking of P1 = X/ι as the orbifold

quotient of X by the hyperelliptic involution, a representation ρ of the orbifold fundamental group
πorb1 (X/ι) (killing squares of simple loops around punctures, see the proof of theorem 3.3.1 below)
can be seen as a representation

ρ : π1
(
P1 \W,x

)
→ GL2

with 2-torsion monodromy around the punctures. Moreover, elements ρ ∈ Hom∗(πorb1 (X/ι, x) ,GL2C
)

are required to have the two eigenvalues 1 and −1 around each puncture.

If x = π (w), the branching cover π : X → X/ι induces a monomorphism

π∗ : π1 (X,w) ↪→ πorb1 (X/ι, x) ,

whose image consists of words of even length in the alphabet of a system of simple generators of
πorb1 (X/ι, x) . This allows to associate, to any representation ρ : πorb1 (X/ι, x) → GL2C as above, a
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representation ρ ◦π∗ : π1 (X,w)→ SL2. We have thereby defined a map Φtop between corresponding
representation spaces, which makes the following diagram commutative

Con (X/ι) RH
∼

""

Φ
!!

Hom∗(πorb1 (X/ι, x) ,GL2C
)
/PGL2

Φtop

!!
Con (X) RH

∼
"" Hom (π1 (X,w) ,SL2) /PGL2 .

(3.8)

We now want to describe the map Φtop. The quotient πorb1 (X/ι, x) / π∗ (π1 (X,w)) ≃ Z2 acts (by
conjugacy) as outer automorphisms of π1 (X,w). It coincides with the outer action of the hyperelliptic
involution ι.

Theorem 3.3.1. Given a representation [ρ] ∈ Hom (π1 (X) ,SL2) /PGL2 , the following properties are
equivalent:

(a) [ρ] is either irreducible or abelian;
(b) [ρ] is ι-invariant;
(c) [ρ] is in the image of Φtop.

If these properties are satisfied, then [ρ] has 1 or 2 preimages under Φtop, depending on whether it is
diagonal or not.

Proof. We start making explicit the monomorphism π∗ and the involution ι. Let x ∈ P1 \ W and
w ∈ X one of the two preimages. Choose simple loops around the punctures to generate the orbifold
fundamental group of P1 \W with the standard representation

πorb1 (X/ι, x) =

〈
γ0, γ1, γr, γs, γt, γ∞

∣∣∣∣
γ20 = γ21 = γ2r = γ2s = γ2t = γ2∞ = 1

and γ0γ1γrγsγtγ∞ = 1

〉
.

Even words in these generators can be lifted as loops based in w on X, generating the ordinary
fundamental group of X. Using the relations, we see that π1 (X,w) is actually generated by the
following pairs {

α1 := γ0γ1
β1 := γrγ1

{
α2 := γsγt
β2 := γ∞γt

(3.9)

and they provide the standard presentation

π1 (X,w) = ⟨α1,β1,α2,β2 | [α1,β1][α2,β2] = 1⟩ , (3.10)

where [αi,βi] = αiβiα
−1
i β−1

i denotes the commutator. In other words, the monomorphism π∗ is
defined by α1 +→ γ0γ1 et cetera (see Figure 1).

After moving the base point to a Weierstrass point, w = wi say, the involution ι acts as an invo-
lutive automorphism of π1 (X,wi): it coincides with the outer automorphism given by γi-conjugacy.
For instance, for i = 1, we get

{
α1 +→ α−1

1
β1 +→ β−1

1

{
α2 +→ γα−1

2 γ−1

β2 +→ γβ−1
2 γ−1 with γ = β−1

1 α−1
1 β2α2.

Let us now prove (a)⇔(b). That irreducible representations are ι-invariant already appears in the
last section of [Gol97]. Let us recall the argument given there. There is a natural surjective map

Ψ : Hom (π1 (X) ,SL2) /PGL2 −→ Hom (π1 (X) ,SL2) //PGL2 =: χ
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Figure 1: Elements of π1
(
P1 \W,x

)
that lift as the generators of π1 (X,w).

to the GIT quotient χ, which is an affine variety. The singular locus is the image of reducible
representations. There can be many different classes [ρ] over each singular point. The smooth locus
of χ however is the geometric quotient of irreducible representations, which are called stable points
in this context. The above map Ψ is injective over this open subset. The involution ι acts on χ
as a polynomial automorphism and we want to prove that this action is trivial. First note that the
canonical Fuchsian representation given by the uniformisation H → X must be invariant under the
hyperelliptic involution ι : X → X. The corresponding point in χ therefore is fixed by ι. On the other
hand, the definition of χ only depends on the topology of X and, considering all possible complex
structures on X, we now get a large set of fixed points χFuchsian ⊂ χ. Those Fuchsian representations
actually form an open subset of Hom (π1 (X) ,SL2R) //SL2R, and thus a Zariski dense subset of χ.
It follows that the action of ι is trivial on the whole space χ. By injectivity of Ψ, any irreducible
representation is ι-invariant.

In other words, if an irreducible representation ρ is defined by matrices Ai, Bi ∈ SL2 for i = 1, 2
with [A1, B1] · [A2, B2] = I2, then there exists M ∈ GL2C satisfying:

{
M−1A1M = A−1

1

M−1B1M = B−1
1

{
M−1A2M = CA−1

2 C−1

M−1B2M = CB−1
2 C−1 with C = B−1

1 A−1
1 B2A2. (3.11)

Since the action of ι is involutive, M2 commutes with ρ and is thus a scalar matrix. The matrix M
has two opposite eigenvalues which can be normalized to ±1 after replacing M by a scalar multiple.
There are exactly two such normalizations, namely M and −M .

For an abelian representation ρ defined by matrices Ai, Bi ∈ SL2 for i = 1, 2, the action of ι is
simply given by

Ai +→ A−1
i and Bi +→ B−1

i for i = 1, 2.

We can easily exhibit a conjugation of ρ equivalent to this action. Indeed, in the abelian case, up to
conjugacy, we have:
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• either A1, B1, A2, B2 are diagonal and one can choose M =

(
0 1
1 0

)
,

• or A1, B1, A2, B2 are upper triangular with diagonal ±I2 and M =

(
1 0
0 −1

)
works.

It remains to consider reducible ι-invariant representations. In the strict reducible case (i.e.,
reducible but not diagonal), there is a unique common eigenvector for all matrices A1, B1, A2, B2;
the representation ρ restricts to it as a representation π1 (X)→ C∗ which must be ι-invariant. This
(abelian) representation must therefore take values in {±1}. It follows that any reducible ι-invariant
representation is abelian.

Let us now prove (b)⇔(c). Given a representation [ρ] ∈ Hom∗(πorb1 (X/ι) ,GL2C
)
/PGL2 , its

image under Φtop is ι-invariant, because the action of ι coincides in this case with the conjugacy by
ρ (γ1) ∈ GL2C. Conversely, let [ρ] ∈ Hom (π1 (X) ,SL2) /PGL2 be ι-invariant, i.e., ι∗ρ = M−1 · ρ ·M
for some M ∈ GL2C as in (3.11). From the cases discussed above, we know that M can be chosen
with eigenvalues ±1. Then setting

⎧
⎨

⎩

M0 := A1M
M1 := M
Mr := B1M

⎧
⎨

⎩

Ms := B−1
2 A1B1M

Mt := A1B1MA2B2

M∞ := A1B1MA2

,

we get a preimage of [ρ], mapping γi to Mi. The preimage depends only of the choice of M . Any other
choice reads M ′ := CM with C commuting with ρ. In the general case, i.e., when ρ is irreducible,
we get two preimages given by M and −M . However, when ρ is diagonal, we get only one preimage,
because the anti-diagonal matrices M and −M are conjugated by a diagonal matrix (commuting
with ρ).

Corollary 3.3.2. The Galois involution of the double cover Φtop is given by
{

Hom∗(πorb1 (X/ι) ,GL2C
)
/PGL2 −→ Hom∗(πorb1 (X/ι) ,GL2C

)
/PGL2

[ρ] +→ [−ρ]

}
.

So far, Theorem 3.3.1 provides an analytic description of the map Φ: although Φtop is a polynomial
branching cover, the Riemann-Hilbert correspondence is only analytic. In the next section, we will
follow a more direct approach providing algebraic informations about Φ. However, note that we can
already deduce the following:

Corollary 3.3.3. Any tracefree holomorphic connection (E,∇) on X which is either irreducible or
totally reducible is invariant under the hyperelliptic involution: there exists a bundle isomorphism
h : E → ι∗E conjugating ∇ with ι∗∇. We can moreover assume h ◦ ι∗h = idE and the restriction of
h to the fibre Ew = ι∗Ew over each Weierstrass point w = ι(w) ∈ X is an automorphism with simple
eigenvalues ±1. Moreover, if ∇ is irreducible, then h is unique up to a sign.

Symmetry group

The 16-order group of 2-torsion characters Hom(π1(X), {±1}) acts on the space of representations
Hom (π1 (X) ,SL2) /PGL2 by multiplication, changing signs of the images Ai, Bi of the generators
αi,βi. This corresponds to the action by twist (see § 3.2.1) of 2-torsion line bundles on the moduli
space Con (X). Together with the involution of Corollary 3.3.2, we get a 32-order group acting on

Hom∗
(
πorb1 (X/ι) ,GL2C

)
/PGL2 ,
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changing signs of the images Mi of the generators γi. Note that only even numbers of sign changes
can occur. The action of this torsion group can be described as follows (see (3.9)):

(B1, A1, B2, A2) (M0,M1,Mr,Ms,Mt,M∞)
OX([w0]− [w1]) (−,+,+,+) (−,−,+,+,+,+)
OX([w1]− [wr]) (+,−,+,+) (+,−,−,+,+,+)
OX([ws]− [wt]) (+,+,−,+) (+,+,+,−,−,+)
OX([wt]− [w∞]) (+,+,+,−) (+,+,+,+,−,−)

OX (+,+,+,+) (−,−,−,−,−,−)

The quotient for this action identifies with one of the two connected components of

Hom (π1 (X) ,PGL2) /PGL2 ,

namely the component of those representations that lift to SL2. We have seen in Theorem 3.3.1 that
the fixed point set of the Galois involution of Φtop is given by diagonal representations. We can also
compute the fixed point locus of OX([w0]− [w1]) for instance.

Proposition 3.3.4. The fixed point locus of the action of OX([w0]− [w1]) (with its unitary connec-
tion) on the space of representations Hom (π1 (X) ,SL2) /PGL2 is parametrized by:

A1 = ±I, B1 =

(
0 1
−1 0

)
, A2 =

(
a 0
0 a−1

)
and B2 =

(
b 0
0 b−1

)

with (a, b) ∈ C∗ × C∗.

3.3.2 A direct algebraic approach

Let (E,∇) be a holomorphic tracefree rank 2 connection on X, and let h be a ∇-invariant lift to the
vector bundle E of the action of ι on X as in Corollary 3.3.3. Following [Bis97] and [BH13b], we
can associate a parabolic logarithmic connection

(
E,∇,p

)
on P1 with polar divisor W and a natural

choice of parabolic weights µ. Let us briefly recall this construction. The isomorphism h induces
a non-trivial involutive automorphism on the rank 4 bundle π∗E on P1. The spectrum of such an
automorphism is {−1,+1} with respective multiplicities 2, which yields a splitting π∗E = E ⊕ E′

with E denoting the h-invariant subbundle.

In local coordinates, the automorphism h acts on π∗E in the following way. If U ⊂ X is a suffi-
ciently small open set outside of the critical points, we have Γ (π (U) ,π∗E) = Γ (U,E)⊕Γ (ι (U) , E)
and h permutes both direct summands. Locally at a Weierstrass point with local coordinate y, one
can choose sections e1 and e2 generating E such that h (e1) = e1 and h (e2) = −e2 (recall that h
has eigenvalues ±1 in restriction to the Weierstrass fiber). On the corresponding open set of P1,
the bundle π∗E is generated by ⟨e1, e2, ye1, ye2⟩, and we see that ⟨e1, ye2⟩ spans the h-invariant sub-
space. Since the connection ∇ on E is h-invariant, we can choose the sections e1 and e2 above to be
horizontal for ∇. Then considering the basis e1 = e1 and e2 = ye2 of E, we get

∇e1 = ∇e1 = 0 and ∇e2 = ∇ye2 = dy ⊗ e2 =
dy

y
⊗ e2 =

1

2

dx

x
⊗ e2

so that ∇ is logarithmic with eigenvalues 0 and 1
2 . To each pole in W , we associate the parabolic

pi defined by the eigenspace with eigenvalue 1
2 , with the natural (in the sense of [BH13b]) parabolic

weight µi =
1
2 .
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(
Ẽ, ∇̃, p̃

)
--
elm−

W
❴❴❴ (E,∇,p) -- h ""$%$%$%$%$%$% (E,∇)

π∗

!!

(E,∇,p′)""−h-- %$ %$ %$ %$ %$ %$
(
Ẽ′, ∇̃′, p̃′

)
""

elm−
W

❴ ❴ ❴

(
E,∇,p

)
--
eig 1

2 ""$%$%$%$%

π∗

++

88

√
d log(W )⊗elm+

W

99❳
❳

❨ ❨ ❩ ❬ ❬ ❭ ❭ ❪ ❪ ❫ ❫ ❴ ❵ ❵ ❛ ❛ ❜ ❜ ❝ ❞ ❞ ❡ ❡ ❢
❢

(E,∇) #
"

"" (E,∇)⊕ (E ′,∇′) (E′,∇′)&
!--

(
E′,∇′,p′)
π∗

++

""
eig 1

2-- %$ %$ %$ %$

Table 2: Hyperelliptic descent, lift and involution.

However, since we consider the rank 2 case, this general construction can also be viewed in the
following way (summarized in Table 2): Denote by p the parabolic structure on E defined by the h-
invariant directions over W = {w0, w1, wr, ws, wt, w∞} and associate the natural homogenous weight
µ = 0. In the coordinates above, the basis (e1, e2) generates the vector bundle E after one negative
elementary transformation in that direction. Now the hyperelliptic involution acts trivially on the
parabolic logarithmic connection on X defined by

(
Ẽ, ∇̃, p̃, µ̃

)
:= elm−

W (E,∇,p,µ)

and we have (
Ẽ, ∇̃, p̃, µ̃

)
= π∗

(
E,∇,p,µ

)
.

Galois involution and symmetry group

With the notations above, let (E′,∇′) be the connection on P1 we obtain for the other possibility
of a lift of the hyperelliptic involution on (E → X,∇), namely for h′ = −h. It is straightforward
to check that the map from (E′,∇′,p′) to (E,∇,p) and vice-versa is obtained by the elementary
transformations elm+

W over P1, followed by the tensor product with a certain logarithmic rank 1

connection
√

d log (W ) over P1 we now define:

There is a unique rank 1 logarithmic connection (L, ζ) on P1 having polar divisor W and eigen-
values 1; note that L ≃ OP1 (−6). We denote by d log (W ) this connection and by

√
d log (W ) its

unique square root. In a similar way, define
√

d log (D) for any even order subdivisor D ⊂W .

The Galois involution of our map Φ : Con (X/ι)→ Con (X) is therefore given by
√

d log (W )⊗ elm+
W : Con (X/ι)→ Con (X/ι) .

There is a 16-order group of symmetries on Con (X), consisting of twists by 2-torsion line bundles.
It can be lifted as a 32-order group of symmetries on Con (X/ι), namely those transformations√

d log (D) ⊗ elm+
D with D ⊂ W even. For instance, if D = wi + wj, then its action on Con (X/ι)

corresponds via Φ to the twist by the 2-torsion connection on OX (wi + wj −KX). In particular, it
permutes the two parabolics (of p and p′) over wi and wj.

Possible parabolic bundles

Note that the triples
(
E,∇,p

)
arising from hyperelliptic descent as above satisfy the following:

• E is a rank 2 vector bundle over P1,
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• ∇ : E → E ⊗ Ω1
P1 (W ) is a rank 2 logarithmic connection on E with polar divisor W =

[0] + [1] + [r] + [s] + [t] + [∞] and residual eigenvalues 0 and 1
2 over each pole,

• p =
(
p0, p1, pr, ps, pt, p∞

)
the parabolic structure defined by the 1

2 -eigendirections over x =
0, 1, r, s, t,∞.

From Fuchs’ relation, [Bis02], [AL97, Prop. 3], and a formula due to Brunella (see for example
[Heu09, p. 464]) one can deduce the following complete characterization of possible parabolic bundles(
E,p

)
(see [HL15, Prop. 5.1]).

Proposition 3.3.5. Given a parabolic bundle
(
E,p

)
of rank 2 with parabolic structure supported by

W , there exists a logarithmic connection ∇ as above if and only if

• either
(
E,p

)
is indecomposable and then E ≃ OP1 (−1)⊕OP1 (−2) or E ≃ OP1 ⊕OP1 (−3)

• or E ≃ OP1 (−1)⊕OP1 (−2) with 2 parabolics defined by the the fibres over the Weierstrasspoints
of the line subbundle OP1 (−1), the 4 other ones by OP1 (−2),

• or E ≃ OP1 ⊕OP1 (−3) with all parabolics defined by OP1 (−3).

3.3.3 Bundle-type terminology

Recall the well-known flatness criterion for vector bundles over curves [Wei38, Ati57].

Theorem 3.3.6 (Weil). A holomorphic vector bundle on a compact Riemann surface is flat, i.e.,
it admits a holomorphic connection, if and only if it is the direct sum of indecomposable bundles of
degree 0.

Recall from the introduction that we denote by Bun(X) the set of isomorphism classes of vector
bundles E → X such that there exists (E,∇) ∈ Con(X). In other words, flat rank 2 vector bundles
E → X with trivial determinant bundle det (E) ≃ OX . From Weil’s criterion, we get the following
list of such bundles (up to isomorphism):

1. flat stable bundles: stable bundles are automatically indecomposable; therefore, all isomor-
phism classes of stable rank 2 bundles E → X with trivial determinant bundle are elements of
Bun(X).

2. flat strictly semistable bundles:

(a) decomposable bundles of the form E = L ⊕ L−1, where L ∈ Jac (X) is a degree 0 line
bundle. We distinguish between the following :

i. generic decomposable bundles: those satisfying L⊗2 ̸≃ OX ; they form a 2-parameter
family of isomorphism classes.

ii. 16 special decomposable bundles: those satisfying L⊗2 ≃ OX , namely the trivial bundle
E0 = OX⊕OX and its 15 twists E0⊗L0 with L0 ̸≃ L⊗2

0 ≃ OX ; we write those special
decomposable bundles Eτ = E0⊗OX(τ) with τ = [wi]−[wj ] and i, j ∈ {0, 1, r, s, t,∞}.

(b) non-split extensions 0 −→ L −→ E −→ L−1 −→ 0, where L ∈ Jac (X) is a degree 0
line bundle; one shows easily that such bundles are indecomposable and hence flat. We
distinguish between:

i. affine bundles: those satisfying L⊗2 ̸≃ OX ; for each such L, there is (up to isomor-
phism) a unique corresponding affine bundle EL; note that the vector bundle EL⊗L
can be endowed with (non tracefree) holomorphic connections with monodromy in
the affine group Aff(C) =

(
C∗ C
0 1

)
.

111



ii. unipotent bundles: those satisfying L = OX ; since PH1 (X,OX) ≃ P1, they form a
1-parameter family of isomorphism classes of bundles; note that unipotent bundles
can be endowed with tracefree holomorphic connections with unipotent monodromy.

iii. twists of unipotent bundles; each unipotent bundle can be tensorised by OX(τ) with
τ = [wi]− [wj ] as above, preserving flatness; we call twisted unipotent bundles those
obtained for the 15 non trivial τ ’s.

3. flat unstable bundles: we call those Gunning bundles in reference to [Gun67b]. In particular,
a Gunning bundle over X is an unstable indecomposable rank 2 vector bundle with trivial
determinant bundle. There are precisely 16 isomorphism classes of such bundles: for each of
the 16 theta characteristics ϑ ∈ Pic1 (X) such that ϑ⊗2 ≃ Ω1

X ≃ OX (KX), there is a unique
isomorphism class of indecomposable extension 0 → ϑ → E → ϑ−1 → 0; we denote the
corresponding Gunning bundle E = Eϑ. We distinguish between the

(a) 6 odd Gunning bundles: ϑ = OX([wi]), i ∈ {0, 1, r, s, t,∞}
(b) 10 even Gunning bundles: ϑ = OX([wi] + [wj ]− [w∞]), i ̸= j ∈ {0, 1, r, s, t}.

For geometrical reasons, we further introduce the following terminology:

• The Gunning planes Πϑ ⊂ Bun(X). For any of the 16 theta characteristics ϑ, we refer
to bundles in Bun(X) that arise as a non-split extension 0 → ϑ−1 → E → ϑ → 0, and that
moreover are not affine bundles, as elements of the Gunning plane Πϑ. As we shall see later,
Gunning planes are in bijection with actual 2-planes in P3

NR. We speak of odd and even Gunning
planes according to the type of ϑ.

• The unipotent family ∆ ⊂ Bun(X). We refer to the set of isomorphism classes of unipotent
bundles as the family ∆. Note that it is naturally parametrized by P1. When w is a Weierstrass
point, we refer to an element of ∆ ∩ Π[w] as a special unipotent bundle associated to w. We
shall see in Proposition 3.4.1 that there are (up to isomorphism) precisely six special unipotent
bundles - one for each Weierstrass point. A generic unipotent bundle will be a unipotent bundle
that is not a special unipotent bundle.

Following [Gun67a, Thm. 29] and [Mar71], the automorphism group Aut(E) and, more impor-
tantly, the projectivized automorphism group PAut(E) = Aut(E)/C∗ for each vector bundle E
corresponding to an isomorphism class in Bun(X), is well known. Moreover, a calculation of the
dimension h0(X, sl(E)) of the affine space of connections on each fixed E and a description of the
moduli space of irreducible connections up to bundle automorphism for each fixed E has been detailed
in [HL15, § . 1.3]. The result is summarized in Table 3.

bundle type E PAut(E) connections moduli in Conirr(X)
stable E 1 A3 A3

decomposable L⊕ L−1 (C∗, ·) A4 C2 × C∗

affine L→ EL → L−1 1 A3 ∅
trivial+twists E0, Eτ PGL2(C) A6 C3

(ν0,ν1,ν2)
\ {ν21 = 4ν0ν2}

unipotent+twists τ → E → τ (C,+) A4 C2 × C∗

Gunning ϑ→ Eϑ → ϑ−1 H0(X,Ω1
X) A5 A3

Table 3: Moduli spaces of irreducible connections for each bundle type.

We notice that a curious phenomenon occurs: when E is an affine bundle, then all (holomorphic,
tracefree) connections on E are reducible, and none of them are totally reducible. Indeed, E has a
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unique subbundle L of degree 0, which is not isomorphic to its pull-back under the hyperelliptic invo-
lution ι. Therefore, the vector bundle E cannot admit a lift h of ι. This implies that the monodromy
of a connection ∇ on E can be neither irreducible, nor totally reducible. This phenomenon does not
occur for higher genus [Hit87b, Prop. 3.3, p. 70]. Even though affine bundles do not allow hyper-
elliptic descent, we shall see in § 3.4.7 that they admit another natural construction by elementary
transformations, due to Tyurin [Tyu64] (see also § 3.5.3).

3.3.4 Tyurin subbundles

Let E ∈ Bun(X) be a flat vector bundle. We call Tyurin subbundle of E any line subbundle L ⊂ E
obtained by saturation of the inclusion of locally free sheaves OX (−KX) ↪→ E defined by a non
zero element ϕ ∈ H0 (Hom (OX (−KX) , E)). A Tyurin subbundle L ⊂ E is called degenerate when
L ̸≃ OX (−KX).

Assume that E arises from hyperelliptic descent, i.e., that lies in the image of the composition of
Φ in (3.7) and the forgetful map. From Table 3 and the remark on affine bundles thereafter, we know
from Corollary 3.3.3, that there exists a lift h : E → ι∗E of the hyperelliptic involution ι : X → X,
which moreover acts non-trivially with two distinct eigenvalues on each Weierstrass fiber E|w. The
involution ι acts linearly on OX (−KX) and therefore h acts on H0 (Hom (OX (−KX) , E)). Since it
is involutive, this action induces a splitting

H0 (Hom (OX (−KX) , E)) = H+ ⊕H−

into eigenspaces (relative to ±1 eigenvalues).

Proposition 3.3.7. Let E, h and H+ ⊕H− be as above. Then

dim(H+ ⊕H−) =

⎧
⎨

⎩

3 if E is unipotent, or an odd Gunning bundle
4 if E is the trivial bundle
2 else .

If E is not an even Gunning bundle, then both H+ and H− have positive dimension, and there are
two distinct Tyurin subbundles L+ and L− of E such that all non-zero elements of H± give rise to
L±. They are h-invariant and they are the only h-invariant Tyurin subbundles.

Proof. One easily calculates h0(X,E) for each bundle type in § 3.3.3. Serre duality, together with the
fact that rank two vector bundles with trivial determinant bundle are self-dual, yields the dimension
of H := H+ ⊕H−. Considering dim(H) ≥ 2, one checks that not all elements of H \ {0} can give
rise to the same subbundle L ⊂ E unless E is an even Gunning bundle. Assume that ϕ1 and ϕ2

in H give rise to distinct subbundles. In the following, we consider the ϕi’s as maps from the total
space of the line bundle Ω := OX (−KX) to the total space of E. When combined, their images span
all fibers of E, except those over the vanishing divisor of the map ϕ1 ∧ ϕ2 : Ω⊗ Ω→ det(E) = OX .
This divisor is an element of |2KX | and therefore of the form

[P ] + [ι(P )] + [Q] + [ι(Q)]

for some P,Q ∈ X. In particular, the ϕi’s generate the fiber over at least one of the six Weierstrass
points. But the action of h on the Weierstrass fiber has two opposite eigenvalues. Hence the ϕi’s
cannot both belong to the same eigenspace of H. Let us assume that ϕ1 and ϕ2 yield the now well
defined L+ and L− as in the statement and let ϕ ∈ H correspond to a Tyurin subbundle L that is
neither L+ nor L−. We may assume ϕ = ϕ1 +ϕ2. Considering the distinct eigenvalues of the action
of h for ϕ1 and ϕ2 over the Weierstrass points, L cannot be h-invariant.
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Let us denote, as in Table 2, by p and p′ the parabolic structures on E determined by the +1 and
−1-eigendirections respectively of the action of h on the fibers over the Weierstrass points. When
one of the two h-invariant Tyurin subbundles in the above proposition, say L+, is non-degenerate,
then the action of h on H+ induces an action on the global non-vanishing sections of E ⊗OX(KX)
corresponding to L+ ⊗ OX(KX) ≃ OX . In particular, the parabolic structure on E defined by
the fibers L+|w ⊂ E|w over the Weierstras points then coincides with p. Similarly, when L− is
non-degenerate, then it determines p′. So when L± are both non-degenerate, then they determine
both of the hyperelliptic parabolic structures p and p′ on E. This is the case for generic stable
bundles. Indeed, when E is stable and admits a degenerate h-invariant Tyurin subbundle L, then
we necessarily have L ≃ O(−[w]), where w is a Weierstrass point. Such a bundle is by definition an
element of the odd Gunning plane Π[w] (see §3.3.3).

A case-by-case study for each type of flat bundle of hyperelliptic parabolic structures up to bundle
automorphism that are determined by the invariant Tyurin subbundles L± will be included in the
discussion in Section 3.4. The result is summarized in Table 4.

bundle type
degenerate invariant
Tyurin subbundles

parabolic
structures p,p′

(up to autom.)
determined by L±

stable off odd Gunning planes ∅ 2 out of 2
stable on Π[wi], off Π[wj ] ∀j ̸= i L+ ≃ OX(−[wi]) 1 out of 2
stable on Π[wi] ∩Π[wj ] L+ ≃ OX(−[wi]), L− ≃ OX(−[wj ]) 0 out of 2

generic decomposable off Π[w]’s ∅ 1 out of 1
generic decomposable on Π[w] L+ ≃ OX(−[w]), L− ≃ OX(−[w]) 0 out of 1
τ ⊕ τ with τ⊗2 ≃ OX L+ ≃ τ, L− ≃ τ 1 out of 1
generic unipotent (off Π[w]’s) L+ ≃ OX 2 out of 2
special unipotent on Π[w] L+ ≃ OX , L− ≃ OX(−[w]) 1 out of 2
twists of unipotent L+ ≃ OX([wi]− [wj ]) 1 out of 2
affine ∅ 0 out of 0
even Gunning bundle L+ = L− ≃ ϑ 2 out of 2
odd Gunning bundle L+ ≃ ϑ 2 out of 2

Table 4: Invariant Tyurin subbundles for the different types of bundles. By definition non-degenerate
Tyurin subbundles are isomorphic to OX(−KX).

3.4 A dictionary for hyperelliptic descent

Let is now consider the lower part of the diagram

Con (X/ι) Φ ""

!!

Con (X)

!!
Bun (X/ι)

φ "" Bun (X) .

(3.12)

Recall that Φ has been defined in (3.7), vertical arrows correspond to forgetful maps and Bun(X/ι)
denotes precisely the set of isomorphism classes of parabolic bundles (E,p) that arise from parabolic
connections (E,∇,p) in Con (X/ι) by forgetting ∇.
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In particular, the map φ in (3.12) is constructed as follows. Given a flat parabolic bundle (E,p) in

Bun(X/ι), we lift it up to the curve X as π∗(E,p) = (Ẽ, p̃), then apply elementary transformations

(E,p) := elm+
W (Ẽ, p̃) over the Weierstrass points and get a vector bundle E with trivial determinant

bundle over X, an element of Bun(X).

Conversely, let E be a bundle in the image of φ. Then one can choose a lift

h : E → ι∗E (3.13)

of the hyperelliptic involution ι on X such that ι∗h ◦ h = idE, and such that for each Weierstrass
point w ∈ X, the lift h acts on E|w = ι∗E|w with two opposite eigenvalues ±1 (see Cor. 3.3.3). The
+1 and −1 eigendirections respectively define two parabolic structures p and p′ on E, supported by
the Weierstrass divisor. The parabolic bundles

(E,p) and (E,p′) (3.14)

arise, via φ = elm+
W ◦π

∗, from elements (E,p) and (E ′,p′) in Bun (X/ι). The latter are moreover

interchanged by the Galois involution OP1 (−3)⊗ elm+
W (see § 3.3.2).

We now explain which parabolic bundles in Bun(X/ι) give rise to which types of bundles in
Bun(X) and illustrate on pictures the corresponding configurations of curves and points on the ruled
surfaces.

3.4.1 Stable bundles (Figure 2)

When E is stable, the only bundle automorphisms of E are homothecies, so that the lift h in (3.13)
does not depend on the choice of a connection. It is (up to a sign) uniquely determined by the bundle
E. By Proposition 3.3.7, there are precisely two h-invariant Tyurin bundles L and L′ of E. When E
is stable and is not a member of one of the odd Gunning planes Π[wi], these Tyurin subbundles are
non-degenerate:

L,L′ ≃ OX (−KX) .

The two parabolic structures p and p′ in (3.14) then are precisely the fibres over the Weierstrass points
of two line subbundles L,L′. Note that the roles of p and p′ can be interchanged by changing the sign
of h, and we may focus on one of them, say (E,p). After applying elementary transformations over
the Weiertrass points (Ẽ, p̃) := elm−

W (E,p), we get the lift of a unique parabolic bundle (E,p) on

X/ι; precisely, Ẽ = OX (−KX)⊕OX (−2KX) and E = OP1 (−1)⊕OP1 (−2). The two anti-canonical
subbundles L,L′ ⊂ E, being h-invariant, descend as two subbundles of (E,p); one easily checks
that they are the destabilizing bundle L = OP1 (−1) ⊂ E ≃ OP1 (−1) × OP1 (−2) and the unique
L′ ≃ OP1 (−4) ⊂ E containing all parabolics of p.

In Figure 2, we can see the projectivized total space of the parabolic bundle associated to E (a
ruled surface), and its two preimages E and E′ in Bun(X/ι). The anti-canonical subbundles L and
L′ of E, and the corresponding subbundles of E and E′, are the blue and red curves (sections) on
the ruled surfaces. We can see the self-intersection of the curves in each case. Parabolics are just
points in Weierstrass fibers; those corresponding to p and p (defined by the blue curve L up-side)
are the red ones and those corresponding to p′ and p′ (defined by the red curve L′ up-side) are the
blue ones. We also indicate, in yellow, the intersection of the two curves in each ruled surface; it
is closely related to the so-called Tyurin divisor DT

E that will be considered in § 3.5.3. The Galois
involution of φ : Bun(X/ι) → Bun(X) permutes the roles of L and L′; down-side, the elementary
transformation permutes the role of the two curves.
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Figure 2: A generic stable bundle on X.

Consider now the case where E is stable but belongs to an odd Gunning plane Π[w]. Then one
of the two h-invariant Tyurin subbundles is degenerate, say L = OX (−[w]), and fails to determine
the corresponding parabolic structure p over the Weierstrass point w. When E ∈ Π[wi] ∩Π[wj ], then
the two h-invariant Tyurin subbundles are degenerate and neither p, nor p′ are entirely determined
by these bundles. Figure 3 depicts a stable bundle on an odd Gunning plane. It can be seen as a
special case of Figure 2, where one of the two +4-curves is reducible.
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Figure 3: A stable bundle belonging to the odd Gunning plane Π[wt].
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Figure 4: A stable bundle belonging to the even Gunning plane Π[wr]+[ws]−[wt].

Another special case, drawn in Figure 4, arises when PE possesses an invariant (but not anti-
canonical) +2-curve (drawn here in green) containing three parabolics of each type (red and blue).
This configuration corresponds to a stable bundle on an even Gunning plane.

3.4.2 Gunning planes (Figures 3 and 4)

Let ϑ ∈ Pic1(X) with ϑ⊗2 ≃ OX(−KX) be a theta-characteristic. Recall the Gunning plane
Πϑ ⊂ Bun(X) is by definition the set of isomorphism classes of bundles in Bun(X) that arise
as non-split extensions ϑ−1 → E → ϑ and that admit hyperelliptic descent. Generic members of
each Gunning plane are stable bundles as indicated in Figures 3 and 4. Not necessarily assuming
stability, one can check that a bundle E belonging to a Gunning plane yields parabolic bundles (E,p)
and (E′,p′) characterized as follows.

Odd Gunning planes. For i ∈W , consider ϑ ≃ OX([wi]). The odd Gunning plane Πϑ descends as

• Πi :=
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and pi ⊂ OP1 (−1)

}
;

• Π′
i :=

{
(E ′,p′) ; E′ = OP1 (−1)⊕OP1 (−2) and pk ′ ⊂ OP1 (−3) , ∀k ̸= i

}
.

Even Gunning planes. Denote W = {i, j, k}∪ {l,m, n} and consider ϑ ≃ OX([wi]+ [wj ]− [wk]) ≃
OX([wl] + [wm]− [wn]). The even Gunning plane Πϑ descends to

• Πi,j,k :=
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and pi, pj , pk ⊂ OP1 (−2) ⊂ E

}
;

• Πl,m,n :=
{
(E ′,p′) ; E′ = OP1 (−1)⊕OP1 (−2) and pl′, pm′, pn′ ⊂ OP1 (−2) ⊂ E ′}.

Recall from § 3.3.2 that the 16-order group of 2-torsion line bundles τ with τ⊗2 ≃ OX acts on
Con(X) and is induced from a group action on Con(X/ι). With respect to the map φ : Bun(X/ι)→
Bun(X), this action is seen as follows. Let E ∈ Bun(X) be endowed with a lift h of the hyperelliptic
involution as in (3.13) and let τ = OX([wi]− [wj ]) with i ̸= j. The two parabolic structures p and p′
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on E⊗ τ are obtained from the two parabolic structures on E by interchanging there the roles of the
two parabolics over wi and wj respectively. Equivalently, the two parabolic bundles over P1 associated
to E ⊗ τ by hyperelliptic descent are obtained from those for E by applying OP1 (−1)⊗ elm+

[wi]+[wj ]

on E and E′.

Note further that the group of 2-torsion line bundles acts on the set of theta-characteristics, and
therefore on the set of Gunning planes in Bun(X). As will shall see in the following paragraphs,
the non-stable elements of each odd Gunning plane for example are precisely one special unipotent
bundle and a 1-parameter family of generic decomposable bundles.

3.4.3 The unipotent family and its 15 twists (Figures 5 and 6)

Let E be an element of the family∆ ⊂ Bun(X) of unipotent bundles. It arises as a non-split extension
0 → OX → E → OX → 0. There are many lifts h of the hyperelliptic involution ι since there are
non-trivial automorphisms on E: one can choose ±ι∗g ◦ h ◦ g−1 for any g ∈ Aut (E). However, since
E admits a unique trivial subbundle, this subbundle must be h-invariant for any choice of h. Possibly
replacing h by −h, we may assume L− = OX . The following proposition will imply that among the
1-parameter family of unipotent bundles, there are only six special unipotent bundles, and that for
those, we have L− = OX and L+ ≃ OX (−[w]).

Proposition 3.4.1. Let E be a unipotent bundle. Then there is a regular map

ϕ1 ⊕ ϕ2 : OX ⊕OX (−KX)→ E ,

invertible over the complement of a divisor D ∈ |KX |, and E is, up to isomorphism, uniquely deter-
mined by D.

Moreover, when w is a Weierstrass point and D = 2[w], then E is the special unipotent bundle
associated to w and for any lift h of the hyperelliptic involution, E admits a h-invariant Tyurin
subbundle isomorphic to OX(−[w]).

Proof. Let ϕ1 : OX → E and ϕ2 : OX (−KX) → E be non-zero morphisms such that moreover
the line subbundle determined by ϕ2 is not the unique trivial subbundle of E. Note that such a ϕ2

exists by Proposition 3.3.7. Then ϕ1 ∧ ϕ2 : OX (−KX) → det(E) ≃ OX is a non-zero morphism,
and D := div0(ϕ1 ∧ ϕ2) ∈ |KX |. It follows that ϕ1 ⊕ ϕ2 is a composition of two positive elementary
tranformations, with support P and ι(P ) respectively, determined by D = [P ] + [ι(P )]. Conversely,
let D ∈ |KX |. Assuming that D is reduced, one checks that there is only one isomorphism class
of parabolic structure on OX ⊕ OX (−KX) such that after elementary transformation over D, one
obtains an indecomposable bundle admitting a trivial subbundle. One checks that this remains true,
after adapting the notion of parabolic structure, for non-reduced support D, and that one then
obtains the corresponding special unipotent bundle.

Now assume D = 2[w] and let h be a lift of the hyperelliptic involution. Then h acts as a linear
involution on H0 (X,Hom (OX (−[w]) , E)). As in the proof of Proposition 3.3.7, one shows that
there is at least one eigenvector that does not give rise to the trivial subbundle. It yields the desired
subbundle.

Consider a generic (i.e., non special) unipotent bundle E. For any lift h of the hyperelliptic invo-
lution, we then obtain L− = OX and a non-degenerate invariant Tyurin subbundle L+ ≃ OX (−KX),
determining the parabolic structures p′ and p. Note that the automorphism group of E fixes the
trivial subbundle and acts transitively on the set of non-degenerate Tyurin subbundles.
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Figure 5: A generic unipotent bundle over X.

For fixed h, a generic unipotent bundle has two parabolic structures (see Figure 5):

• p defined by some subbundle OX (−KX) ⊂ E;

• p′ defined by the destabilizing bundle OX ⊂ E.

They depend up to automorphism not on the choice of h and respectively descend to elements
(determined by E ∈ ∆) of the following families

• ∆ :=
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and p ⊂ OP1 (−3) ⊂ E

}
;

• ∆′ :=
{
(E′,p′) ; E ′ = OP1 ⊕OP1 (−3) and p′ ⊂ OP1 (−4) ⊂ E′}.

Note that the case of special unipotent bundles, where L+ fails to determine the parabolic of p over
the special Weierstrass point, can be obtained as a limit case. In Figure 5, the +4 and the +5 curve
become reducible and the −1 curve obtains a parabolic.

Let E be a twist of unipotent bundle, in other words an element of ∆ tensorised by a 2-torsion
line bundle τ = OX ([wi]− [wj ]) with i ̸= j. It arises as a non-split extension 0→ τ → E → τ → 0.
After choosing a lift h of the hyperelliptic involution, Proposition 3.3.7 yields two invariant Tyurin
subbundles L and L′. One of them, say L′, is τ ⊂ E, the only Tyurin subbundle of degree 0. It
fails to determine the corresponding parabolic structure p′ over wi and wj . The intersection L ∩ L′

has to be [wi] + [wj ] and L is therefore non-degenerate and defines the parabolic structure p. The
parabolic structures on E can moreover be deduced from the ones in the unipotent bundle E ⊗ τ by
permuting the role of the two parabolics over wi and wj (see § 3.3.2, § 3.4.2).

Hence a twist of unipotent bundle has two hyperelliptic parabolic structures (see Figure 6):

• p with parabolics pi and pj on OX ↪→ E and the others outside;

• p′ with parabolics pi and pj outside OX ↪→ E and the others on it.

They respectively descend as elements of
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• ∆i,j :=
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and pk ⊂ OP1 (−2) , ∀k ̸= i, j

}
;

• ∆′
i,j :=

{
(E ′,p′) ; E′ = OP1 (−1)⊕OP1 (−2) and pi′, pj ′ ⊂ OP1 (−1)

}
.
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Figure 6: Twist of a generic unipotent bundle over X.

3.4.4 Generic decomposable bundles (Figure 7)

Let E = L0 ⊕ L−1
0 , where L0 = OX ([P ] + [Q]−KX) is not 2-torsion: L2

0 ̸= OX . On the projective
bundle PE, there are two sections σ0,σ∞ : X → PE coming from the two direct summands L0 and
L−1
0 respectively, both having 0 self-intersection. They are permuted by any lift h of the hyperelliptic

the involution ι and they correspond to degenerate, but non-invariant Tyurin subbundles. There
is a 1-parameter family of anticanonical embeddings OX (−KX) ↪→ E on which the automorphism
group Aut (E) acts transitively. Any hyperelliptic involution h fixes two members L+ and L− of this
family. These are either both degenerate (when P = w or Q = w and thus E ∈ Π[w])), or both non-
degenerate. Let us focus on the case where neither P , norQ is a Weierstrass point. Then there are two
h-invariant non-degenerate Tyurin subbundles. Note that this was also the case for generic stable
bundles (see § 3.4.1). Here however, we have the particularity that up to bundle automorphism,
there is only one possible hyperelliptic parabolic structure p. It is defined by a non-degenerate
Tyurin subbundle OX (−KX) ↪→ E that can be arbitrarily chosen. Choose such a subbundle and
denote by σ : X → PE the corresponding section. The section σ intersects σ0 at [P ]+ [Q] and σ∞ at
[ι(P )]+[ι(Q)]. One can view PE as the fiber-wise compactification of OX ([P ] + [Q]− [ι(P )] − [ι(Q)])
with σ0 as the zero section and σ∞ as the compactifying section; σ is a rational section with divisor
[P ] + [Q]− [ι(P )] − [ι(Q)].

For the corresponding parabolic bundle (E,p), the anticanonical embedding descends as the
destabilizing subbundle OP1 (−1) ↪→ E = OP1 (−1) ⊕ OP1 (−2). On the other hand, σ0 and σ∞,
being permuted by the involution ι, descend as a 2-section Γ ⊂ P(E), thus intersecting a generic
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member of the ruling twice. Moreover, Γ intersects twice the section σ−1 : P1 → P(E) defined by
the destabilizing bundle OP1 (−1) ↪→ E, namely at π(P ) and π(Q) (where π : X → P1 = X/ι is
the hyperelliptic projection). The restriction of the ruling projection P(E)→ P1 to the curve Γ is a
2-cover branching precisely over the branching divisor W of π : X → P1. The parabolic structure p

is located at the double points of Γ ⊂ P(E) over W .

Conversely, when we have a parabolic structure p on E = OP1 (−1) ⊕ OP1 (−2) such that there
is a smooth curve Γ ⊂ P(E) belonging to the linear system defined by |2[σ−1] + 4[f ]| (with f any
fiber of the ruling and σ−1 the negative section as before) such that Γ passes through all 6 parabolic
points p and is moreover vertical at these points (i.e. tangent to the ruling), then it gives rise to a
generic decomposable bundle E.
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P

s

Γ

P1

(0) elm+
W ◦ π∗

X
Q π(P ) π(Q)ι(Q)ι(P )

w1 wr ws wt w∞w0 0

(+4)

(0)

1 r ∞t

Figure 7: A generic decomposable bundle on X.

The case of E ∈ Π[w] can be obtained as a limit case: in Figure 7, the +4 curve becomes reducible,
and the parabolic over w on the curve Γ (still smooth and defined as above) now also lies on the
−1-curve.

3.4.5 The trivial bundle and its 15 twists (Figure 8)

When E is the trivial bundle, we obtain a 1-parameter family of Tyurin subbundles formed by all
embeddings OX ↪→ E. Any lift h as in (3.13) fixes two of these (degenerate) Tyurin subbundles.
However, up to automorphism, there is exactly one parabolic structure, which is moreover determined
by the corresponding subbundle OX ↪→ E. Descending to P1, we get the decomposable bundle
E0 = OP1 ⊕OP1 (−3) with parabolic structure p by a line subbundle OP1 (−3) ⊂ E0. Note that the

isomorphism class of
(
E0,p

)
does not depend on the choice of such a subbundle and is a fixed point

of the Galois involution OP1(−3)⊗ elm+
W .

When E = Eτ = τ ⊗ E0 with τ = OX ([wi]− [wj ]) is a 2-torsion line bundle with i ̸= j, the
two parabolic structures p and p′ can be deduced from the case of trivial bundles by permuting the
role of the two parabolics over wi and wj with respect to p and p′ (see § 3.3.2). In particular, E
comes from the decomposable parabolic bundle E = OP1 (−1)⊕OP1 (−2) having parabolics pi and pj
lying in the first direct summand, the other ones in the second. Note that the 16 parabolic bundles
correspoding to the trivial bundle and its twists are precisely the flat decomposable bundles listed in
Proposition 3.3.5.
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Figure 8: The trivial bundle over X and one of its twists.

3.4.6 The 6 + 10 Gunning bundles (Figures 9 and 10 )

Let ϑ with ϑ2 = OX(KX) be a theta characteristic and Eϑ be the associated Gunning bundle. It
arises as a non-split extension 0→ ϑ→ Eϑ → ϑ−1 → 0.
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Figure 9: An odd Gunning bundle over X.
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Six odd theta characteristics. When ϑ is an odd theta characteristic ϑ = OX([wi]), the two
h-invariant Tyurin subbundles L and L′ are distinct and one of them, say L′, is the destabilizing
subbundle ϑ. The other one is necessarily non degenerate L ≃ OX (KX). The hyperelliptic parabolic
pi over wi is defined by L|wi = L′|wi and p′i is elsewhere. Hence each fixed h induces two non-
isomorphic parabolic structures p and p′ on Eϑ. Moreover, neither the isomorphism class of (Eϑ,p)
nor the isomorphism class of (Eϑ,p′) depends on h. Note that indeed Aut (Eϑ) fixes ϑ ⊂ Eϑ and acts
transitively on the set of non-degenerate Tyurin subbundles. Hence there are exactly two isomorphism
classes of hyperelliptic parabolic structures on Eϑ:

• p with parabolic pi in ϑ ↪→ E and the others outside;

• p′ with all parabolics in ϑ ↪→ E except p′i.

They respectively descend as

• Qi : E = OP1 (−1)⊕OP1 (−2) and pk ⊂ OP1 (−2) , ∀k ̸= i;

• Q′
i : E ′ = OP1 ⊕OP1 (−3) and pi′ ⊂ OP1 .
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Figure 10: An even Gunning bundle over X.

Ten even theta characteristics. When ϑ is an even theta characteristic ϑ = OX([wi] + [wj ] +
[wk]−KX), the space of morphisms ϕ : OX (−KX)→ Eϑ is of dimension 2 and all these morphisms
take values in the subbundle ϑ ⊂ Eϑ, which is therefore the unique Tyurin bundle. We may identify
the sheaves

Hom (OX (−KX) ,ϑ) ≃ OX([wi] + [wj ] + [wk]),

and their space of global sections is generated by the two sections

1,
(x− xl) (x− xm) (x− xn)

y
∈ H0 (X,OX ([wi] + [wj ] + [wk])) ,
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where {i, j, k, l,m, n} = {0, 1, r, s, t,∞} and wi = (xi, 0) ∈ X. The hyperelliptic involution acts as
id on the first one and −id on the second one. Hence there are two types of hyperelliptic parabolic
structures on Eϑ:

• p with parabolics pi, pj and pk in ϑ ↪→ E and the others outside;

• p′ with parabolics p′l, p
′
m and p′n in ϑ ↪→ E and the others outside.

They respectively descend as elements of

• Qi,j,k : E = OP1 (−1)⊕OP1 (−2) and pl, pm, pn ⊂ OP1 (−1);
• Ql,m,n : E′ = OP1 (−1)⊕OP1 (−2) and pi′, pj ′, pk ′ ⊂ OP1 (−1).

3.4.7 Affine bundles

As we have seen, affine bundles are the only ones in Bun(X) that cannot be constructed by hyper-
elliptic descent. They admit however a natural construction by elementary transformations given
by Tyurin’s approach. Indeed, even if the notion of h-invariant line subbundles does not make
sense here, we can of course consider the space of Tyurin subbundles of an affine bundle. Let
L0 = OX([P ]+ [Q]−KX ) = OX(KX − [ι(P )]− [ι(Q)]) be a degree 0 line bundle such that L⊗2

0 ̸= OX

and let E be the unique non-trivial extension

0 −→ L0 −→ E −→ L−1
0 −→ 0.

Then h0 (X,Hom (OX (−KX) , E)) = 2. Moreover, we have

h0 (X,Hom (OX (−KX) , L0)) = 1.

In other words, E possesses a 1-parameter family of Tyurin subbundles. For P ̸= Q, precisely three of
them are degenerated: L0, a unique line subbundle LP ≃ OX(−P ) of E and a unique line subbundle
LQ ≃ OX(−Q) of E. They define a parabolic structure q on E over the so-called Tyurin divisor
D = [P ] + [Q] + [ι (P )] + [ι (Q)], where the parabolics over ι(P ) and ι(Q) are both given by L0 and
the two other ones are both given by LP ∩LQ. Then OX (KX)⊗ elm−

D(E, q) yields the trivial bundle
E0 on X. One easily checks that the thereby induced parabolic structure on E0 is isomorphic to the
one given, with respect to P(E0) = P1 ×X, by (λP ,λι(P ),λQ,λι(Q)) = (0, 1, 0,∞) ∈ (P1)4, inducing
moreover the case P = Q as the limit.

3.5 Classical approaches and their relations

Let X be a smooth genus 2 curve over C, together with its hyperelliptic involution ι as at the
beginning of Section 3.3. We are interested in moduli of flat rank 2 vector bundles over X with
trivial determinant bundle and their geometry.

Recall from § 3.3.3, that with the exception of the 16 Gunning bundles, flat bundles as above
are semistable. In § 3.5.1, we review the classical Narasimhan-Ramanan moduli space MNR of S-
equivalence classes of semistable bundles [NR69]. We complement it by noticing that each of our 16
Gunning planes there has an alternative interpretation as sets of S-equivalence classes of semistable
bundles arbitrarily close to the corresponding Gunning bundle, and that they form the 16 planes in
the classical (16,6)-configuration of the Kummer surface [Hud90, GD94, NR69, Bol07]. In § 3.5.2
we compute a natural isomorphism P3

NR ≃MNR and the thereby arising equation of the Kummer
quartic.
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Tyurin’s classical approach [Tyu64, Tyu65] of minimal rational trivialization of generic stable
vector bundles will be studied in its particularities for the case of our interest (rank 2, genus 2),
namely in its relation to hyperelliptic decent in § 3.5.3. We obtain a natural compactification MTyu of
the space of Tyurin invariants, which is isomorphic to P2×P1. We explicitly compute the (birational)
classification map towards P3

NR.

The Bertram [Ber92] point of view, complemented by more recent works of Bolognesi [Bol07,
Bol09] (see also [Kum00]), arises from the moduli space MB ≃ P3 of hyperelliptic (ι-invariant) flags
(E,L), where L is a non-degenerate Tyurin subbundle. It is described in § 3.5.4, together with its
relations to the moduli spaces mentioned before. Using Tyurin’s approach, we moreover recover an
explicit version of Bolognesi’s universal bundle.

In summary, in this section we review classical approaches and we construct, using hyperelliptic
descent, an explicit version of the following rational classification maps:

MB
2:1
""# MNR

1:1
$"" MTyu .

The geometry of the resulting birational transition maps between the three birational models of the
Kummer quartic can be understood by the special loci in these spaces singled out in the dictionary
from Section 3.4.

3.5.1 The Narasimhan-Ramanan moduli space

Two semi-stable vector bundles of same rank and degree over a curve are called S-equivalent, if the
graded bundles associated to the Jordan-Hölder filtrations of these bundles are isomorphic. In our
case, i.e., rank 2 bundles with trivial determinant bundle over X, we get that

• two stable bundles are S-equivalent if and only if they are isomorphic;

• two strictly semi-stable bundles are S-equivalent if and only if there is a line bundle L ∈ Jac (X)
such that each of the two bundles is an extension either of L−1 by L or of L by L−1.

To a semi-stable bundle E, we associate (following [NR69]) the set

CE = {L ∈ Pic1 (X) | h0 (X,E ⊗ L) > 0}.

Equivalently, L ∈ CE if and only if there is a non-zero (and thus injective) morphism L−1 → E
of locally free sheaves. For stable bundles, the quotient E/L−1 then is necessarily locally free and
hence defines an embedding of the total space of L−1 into the total space of E. The set CE then
parametrizes line subbundles of degree −1.

Narasimhan and Ramanan proved that this set CE is the support of a uniquely defined effective
divisor DE on Pic1 (X) linearly equivalent to 2Θ, where

Θ = {[P ] | P ∈ X} ⊂ Pic1 (X)

is the locus of effective divisors of degree 1, naturally parametrized by the curve X itself. Moreover,
for strictly semi-stable bundles, the divisor DE only depends on the Jordan-Hölder filtration, i.e., on
the S-equivalence class of E. We thus get a map

NR : MNR → P
(
H0
(
Pic1 (X) ,OPic1 (2Θ)

))
(3.15)

from the moduli space of S-equivalence classes to the linear system |2Θ| on Pic1 (X). Note that
the Narasimhan-Ramanan classifying map is defined only for semi-stable bundles and thus not for
Gunning bundles.
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Theorem 3.5.1 (Narasimhan-Ramanan). The map NR defined above is an isomorphism. Let π :
E → T be a smooth family of semi-stable rank 2 vector bundles with trivial determinant over X. Then
the map φ : T →MNR associating to t ∈ T the S-equivalence class of Et = π−1 (t) is a morphism.

In particular, the moduli space of stable bundles naturally identifies with a Zariski open proper
subset of MNR ≃ P3.

Let E = L0 ⊕ L−1
0 with L0 ∈ Jac (X). Given L ∈ Pic1 (X), non-trivial sections of E ⊗ L come

from non-trivial sections of L0 ⊗ L or L−1
0 ⊗ L. We promtly deduce that

DE = L0 ·Θ+ L−1
0 ·Θ

where L0 ·Θ denotes the translation of Θ by L0 for the group law on Pic (X). A special case occurs
for the 16 torsion points L2

0 = OX for which L0 = L−1
0 and hence DE = 2 (L0 ·Θ) is not reduced.

The moduli space of semi-stable decomposable bundles naturally identifies with the Kummer variety

Kum(X) := Jac (X) /ι,

the quotient of the Jacobian Jac (X) by the involution ι : L0 +→ ι∗L0 = L−1
0 . The Narasimhan-

Ramanan classifying map (3.15) provides a canonical embedding

Kum (X) := Jac (X) /ι ↪→MNR

and the image is a quartic surface in MNR ≃ P3. The moduli space of stable bundles identifies with
the complement of this surface. The 16 torsion points L2

0 = OX of the Jacobian are precisely the
fixed points of the involution ι and yield 16 conic singularities on Kum(X).

As it shall turn out, the notion of two vector bundles being arbitrarily close in Bun(X), is
responsable for the classical geometry of the Kummer surface of strictly semi-stable bundles in MNR.
We say two rank 2 vector bundles E and E′ with trivial determinant over X are arbitrarily close if
there are smooth families of vector bundles (Et)t∈A1 and (E′

t)t∈A1 over X such that Et ≃ E′
t for each

t ̸= 0 and E0 ≃ E, E′
0 ≃ E′. One easily proves the following (see [HL15, Prop. 3.5]).

Proposition 3.5.2. Given two extensions

0→ L→ E0 → L′ → 0 and 0→ L′ → E′
0 → L→ 0

of the same (but permuted) line bundles, there are two deformations Et and E′
t of these bundles

(parametrized by A1) such that Et ≃ E′
t for t ̸= 0.

In particular, two semi-stable rank 2 bundles are arbitrarily close if and only if they are S-
equivalent. Recall that for any theta-characteristic ϑ, we introduced in § 3.3.3 the notion of Gunning
plane Πϑ ∈ Bun(X) (as a set), and that by § 3.4.2 it contains each S-equivalence class of semistable
bundle E′ arising as an extension 0 → ϑ−1 → E′ → ϑ → 0 exactly once. Now Proposition 3.5.2
shows that all elements of the Gunning plane Πϑ are arbitrarily close to the Gunning bundle Eϑ. On
the other hand, the set of S-equivalence classes of semistable extensions E′ as above forms a 2-plane
in MNR; it is given by those divisors DE′ ∼ 2Θ that pass through the point ϑ on Pic1 (X). Since
they are naturally identified, we denote this 2-plane in MNR by the same symbol Πϑ.

The intersection of Πϑ with the Kummer surface is easily described as

Πϑ ∩Kum(X) = {L0 ⊕ L−1
0 | L0 ∈ ϑ−1 ·Θ}.
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In fact, the 16 planes Πϑ ⊂MNR are well-known; each of them is tangent to the Kummer surface
along a conic passing through 6 of the 16 nodes. The above description gives a natural parametrization
of the hyperelliptic cover of this marked conic by the curve X itself (via the Θ divisor). Precisely,
for each Πϑ, the 6 corresponding nodes are those parametrized by the 2-torsion points ϑ−1⊗O ([wi])
where wi runs over the six Weierstrass points. Conversely, through each node pass 6 of the 16 planes.
This so-called (16, 6) configuration is classical (see [Hud90, GD94]) as well as the interpretation in
terms of the moduli space of vector bundles (see [NR69, Bol07]). However, the interpretation of Πϑ
in terms of S-equivalence classes of semi-stable bundles arbitrarily close to the (unstable but flat)
Gunning bundle Eϑ seems to not have been considered so far.

Remark 3.5.3. In this geometric picture, the family ∆ ≃ P1 of unipotent bundles can be seen as the
tangent cone to the Kummer surface after blowing up the singular point corresponding to the trivial
bundle. The strict transform of the Π[wi] ⊂MNR then intersects this P1 in a unique point which is
the special unipotent bundle associated to [wi].

3.5.2 Natural coordinates for MNR

We shall now construct two sets of coordinates on the Narasimhan-Ramanan moduli space MNR ≃
P3, allowing us to express explicitly the Kummer surface of strictly semi-stable bundles as well as the
involutions of the moduli space given by tensor products with 2-torsion line bundles. The first set of
coordinates (v0 : v1 : v2 : v3) has the advantage that they allow to easily calculate the Narasimhan-
Ramanan classifying map for the families of bundles we will encounter. The second set of coordinates
(t0 : t1 : t2 : t3) exploits symmetries of the Kummer surface which are useful in certain applications
(see Cor. 3.5.6 and § 3.6.6).

For all computations, the curve X is the smooth compactification of the affine complex curve
defined by

X : y2 = x(x− 1)(x − r)(x− s)(x− t)

where 0, 1, r, s, t ∈ C are pair-wise distinct; we denote by ∞ the point at infinity. Moreover, in all of
the resulting fomulae, we denote

σ1 = r + s+ t, σ2 = rs+ st+ tr, σ3 = rst. (3.16)

Coordinates (v0 : v1 : v2 : v3). Let us first calculate a basis of H0(Pic1(X),OPic1(X)(2Θ)) in
order to introduce explicit projective coordinates on the three-dimensional projective space

PH0(Pic1(X),OPic1(X)(2Θ)) .

Since Pic1(X) is birationally equivalent to the symmetric productX(2), rational functions on Pic1(X)
can be conveniently expressed as symmetric rational functions on X ×X.

X ×X "" "" X(2) φ(2) "" Pic2(X) ∼
−[∞]

"" Pic1(X)

{P,Q} ✤ "" [P ] + [Q]

The pull-back of the divisor Θ ⊂ Pic1(X) (resp. Θ + [∞] ⊂ Pic2(X)) to X × X is ∆ +∞1 +∞2,
where ∆ is the anti-diagonal {(P,Q) ∈ X ×X | Q = ι(P )}, ∞1 is the divisor {∞} ×X and ∞2 is
the divisor X × {∞}. The pull-back to X ×X of 2Θ, viewed as a divisor on Pic1(X), is then (see
Figure 11):

2∆+ 2∞1 + 2∞2.
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∆

X ×X

∞1

∞2

∆ X (2)

∞

Pic2(X)

KX Θ + [∞]

Figure 11: X2 as a rational cover of Jac(X).

Lemma 3.5.4. Let (P1, P2) = ((x1, y1), (x2, y2)) be coordinates of X ×X. Denote by S2 the group
generated by the symmetric involution (P1, P2) +→ (P2, P1) on X×X. Then the space of S2-invariant
sections of the line bundle OX×X(2∆ + 2∞1 + 2∞2) is given by

H0
(
X ×X,OX×X(2∆ + 2∞1 + 2∞2)

)S2 = VectC(1, Sum,Prod,Diag),

where (with respect to (3.16))

1 : (P1, P2) +→ 1

Sum : (P1, P2) +→ x1 + x2

Prod : (P1, P2) +→ x1x2,

Diag : (P1, P2) +→
(

y2−y1
x2−x1

)2
− (x1 + x2)3 + (1 + σ1)(x1 + x2)2 +

+x1x2(x1 + x2)− (σ1 + σ2)(x1 + x2) .

(3.17)

Proof. We have

dim
(
H0
(
X ×X,OX×X (2∆ + 2∞1 + 2∞2)

)S2
)
= h0

(
Pic1(X),OPic1(X)(2Θ)

)
= 4

128



(see [NR69] or [Mum08]). The function Diag can be rewritten as

Diag = 1
(x1−x2)2

·
[
−2y1y2 − 2(1 + σ1)x21x

2
2 − (σ2 + σ3)(x21 + x22)

+(x1 + x2) ·
(
x21x

2
2 + (σ1 + σ2)x1x2 + σ3

)] (3.18)

The expression of Diag in (3.17) shows that it has no poles off the anti-diagonal and the infinity
(and in particular no poles on the diagonal). From the expression (3.18) follows easily that Diag
has polar divisor 2∆ + 2∞1 + 2∞2. Indeed, if u1 is the local parameter for X1 near ∞1 defined by
x1 =

1
u2
1
, then the principal part of the generating functions is given by

1, Sum =
1

u21
+ x2, P rod =

x2
u21

and Diag ∼
x22
u21
−

y2
u1

+ · · ·

As a section of H0(Pic1(X),OPic1(X)(2Θ)), the function 1 vanishes twice along Θ while the other
ones do not vanish identically on Θ.

In the sequel, denote by (v0 : v1 : v2 : v3) ∈ P3
NR the projective coordinates representing the

rational function
v0 + v1 · Sum+ v2 · Prod+ v3 ·Diag

on X(2). We use the natural isomorphism P3
NR ≃MNR given by identifying the zero-divisor of such

a function with an element of |2Θ| as explained above, combined with the inverse of the Narasimhan-
Ramanan map (3.15).

Equation of the Kummer surface. We will now compute the equation in P3
NR of the Kummer

surface embedded in MNR with respect to the isomorphism P3
NR ≃MNR. It is sufficient to consider

decomposable semi-stable bundles. Let L = OX([P 1] + [P 2] − [∞]) ∈ Pic1(X) and denote by L̃ the
associated degree 0 bundle L̃ = OX([P 1] + [P 2] − 2[∞]). The corresponding Narasimhan-Ramanan
divisor on Pic1(X) is L̃ ·Θ+ L̃−1 ·Θ. The first component L̃ ·Θ is parametrized by

X → Pic1(X) ; Q +→ [P 1] + [P 2] + [Q]− 2[∞].

Setting [P 1]+ [P 2]+ [Q]−2[∞] ∼ [P1]+ [P2]− [∞], we get that [P 1]+ [P 2]+ [Q] belongs to the linear
system |[P1]+[P2]+[∞]| onX. The latter is generated by the two functions 1 and f(P ) := y+y1

x−x1
− y+y2

x−x2

on the curve. Therefore, [P1] + [P2] − [∞] ∈ L̃ · Θ (the support of) if, and only if, f(P 1) = f(P 2);
this gives the following equation for P1 = (x1, y1) and P2 = (x2, y2):

y
1
+ y1

x1 − x1
−

y
1
+ y2

x1 − x2
=

y
2
+ y1

x2 − x1
−

y
2
+ y2

x2 − x2
.

The equation for the other component L̃−1 · Θ is deduced by changing signs y
i
→ −y

i
for i = 1, 2.

Taking into account the two equations, we get an equation for L̃ ·Θ+ L̃−1 ·Θ:

(
y
1
+y1

x1−x1
− y

1
+y2

x1−x2
− y

2
+y1

x2−x1
+

y
2
+y2

x2−x2

)(−y
1
+y1

x1−x1
− −y

1
+y2

x1−x2
− −y

2
+y1

x2−x1
+

−y
2
+y2

x2−x2

)
= 0

which, after reduction, reads

−Diag(P 1, P 2) · 1 + Prod(P 1, P 2) · Sum − Sum(P 1, P 2) · Prod + 1 ·Diag = 0 (3.19)

Remark 3.5.5. The symmetric form of this equation is due to the fact that for any vector bundle
E ∈MNR and any line bundle L ∈ Pic1(X) such that h0(X,E⊗L) > 0, the divisor DE associated to
E and the divisor L̃ ·Θ+ L̃−1 ·Θ associated to L̃⊕ L̃−1 intersect precisely in L and ι(L) on Pic1(X).
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Hence, according to equation (3.19), the Kummer embedding

Jac(X) → Kum(X) ⊂ P3
NR

OX ([P 1] + [P 2]− 2[∞]) +→ (v0 : v1 : v2 : v3)

is explicitely given by

(v0 : v1 : v2 : v3) = (−Diag(P 1, P 2) : Prod(P 1, P 2) : −Sum(P 1 : P 2) : 1) (3.20)

One can now eliminate parameters P 1 and P 2 from (3.20) as follows: express y
1
y
2
in terms of

functions x1 + x2 and x1x2 and variable v0/v3, so that the square can be replaced by
(
y
1
y
2

)2
=

∏

w=0,1,r,s,t

(
w2 − (x1 + x2)w + x1x2

)
;

then replace x1x2 and x1 + x2 by v1/v3 and −v2/v3 respectively. We get

Kum(X) :
0 = (v0v2 − v21)

2 · 1

−2
[
[(σ1 + σ2)v1 + (σ2 + σ3)v2](v0v2 − v21)

+ 2(v0 + σ1v1)(v0 + v1)v1 + 2(σ2v1 + σ3v2)(v1 + v2)v1] · v3
[
−2σ3(v0v2 − v21) +

[
(σ1 + σ2)2v1 + (σ2 + σ3)2v2

]
(v1 + v2)

−(σ1 + σ3)2v1v2 + 4[(σ2 + σ3)v0 − σ3v2]v1
]

· v23

−2σ3 [(σ1 + σ2)v1 − (σ2 + σ3)v2] · v33

+σ23 · v43 .

Here, we see that v3 = 0 is a (Gunning-) plane tangent to Kum(X) along a conic.

Following formula (3.20), we can compute the locus of the trivial bundle E0

and its twists Eτ := E0 ⊗OX (τ), where τ = [wi]− [wj ]:

Eτ (v0 : v1 : v2 : v3)

E0 (1 : 0 : 0 : 0)
E[w0]−[w∞] (0 : 0 : 1 : 0)
E[w1]−[w∞] (1 : −1 : 1 : 0)
E[wr]−[w∞] (r2 : −r : 1 : 0)
E[ws]−[w∞] (s2 : −s : 1 : 0)
E[wt]−[w∞] (t2 : −t : 1 : 0)

Eτ (v0 : v1 : v2 : v3)

E[w0]−[w1] (rs+ st+ rt : 0 : −1 : 1)
E[w0]−[wr] (r(st+ s+ t) : 0 : −r : 1)
E[w0]−[ws] (s(rt+ r + t) : 0 : −s : 1)
E[w0]−[wt] (t(rs+ r + s) : 0 : −t : 1)
E[w1]−[wr] ((1 + r)st : r : −1− r : 1)
E[w1]−[ws] ((1 + s)rt : s : −1− s : 1)
E[w1]−[wt] ((1 + t)rs : t : −1− t : 1)
E[wr]−[ws] ((r + s)t : rs : −r − s : 1)
E[wr]−[wt] ((r + t)s : rt : −r − t : 1)
E[ws]−[wt] ((s + t)r : st : −s− t : 1)

The Gunning planes Πϑ are the planes passing through 6 of these 16 singular points. Precisely,
the odd Gunning plane with ϑ = [wi] is passing through all Eτ with τ = [wi] − [wj ] (including the
trivial bundle E0 for i = j); for an even Gunning plane with ϑ = [wi]+[wj ]− [wk] ∼ [wl]+[wm]− [wn],
where {i, j, k, l,m, n} = {0, 1, r, s, t,∞}, we get

E[wi]−[wj], E[wj ]−[wk], E[wi]−[wk]

E[wl]−[wm], E[wm]−[wn], E[wl]−[wn]

}
∈ Π[wi]+[wj ]−[wk] = Π[wl]+[wm]−[wn].

We can derive explicit equations, for instance:
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Π[w0] v1 = 0
Π[w1] v1 + v2 + v3 = 0
Π[w∞] v3 = 0

Π[w0]+[w1]−[w∞] v0 + v1 = (rs+ st+ rt)v3

Coordinates (t0 : t1 : t2 : t3). By construction of the Narasimhan-Ramanan moduli space,
the action of the group of 2-torsion line bundles by twist is linear and free on MNR and it preserves
Kum(X). Since we know the action on the sixteen bundles Eτ corresponding to the singularities of
the Kummer surface, the action of the group of 2-torsion line bundles on MNR with respect to the
coordinates (v0 : v1 : v2 : v3) can easily be made explicit. It is given in [HL17, p. 158]. If we allow to
choose square-roots ρ0, ρ1, ρr, ρs such that

ρ20 = F ′(0), ρ21 = −F ′(1), ρ2r = F ′(r), ρ2s = F ′(s),

where F (x) = x(x− 1)(x− r)(x− s)(x− t) and F ′(x) is its derivative with respect to x, then we can
construct an isomorphism between P3

t with coordinates (t0 : t1 : t2 : t3) and P3
NR (with coordinates

(v0 : v1 : v2 : v3)) such that in P3
t , the action of the group of 2-torsion line bundles is generated by

double-transpositions of variables and double-changes of signs as in the table below.

τ (t0 : t1 : t2 : t3)⊗ Eτ

0 (t0 : t1 : t2 : t3)
[w0]− [w∞] (t2 : t3 : t0 : t1)
[w1]− [w∞] (t1 : −t0 : −t3 : t2)
[wr]− [w∞] (t0 : −t1 : −t2 : t3)
[ws]− [w∞] (t1 : t0 : −t3 : −t2)
[wt]− [w∞] (t2 : t3 : −t0 : −t1)

An explicit coordinate change satisfying this property is given by
⎛

⎜⎜⎝

t0
t1
t2
t3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

a b c d
−b a d −c
c d a b
d −c −b a

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

1 1 0 −σ2
0 ρ1 0 0
0 ρ0 ρ0 ρ0
0 0 0 ρ0ρ1

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

v0
v1
v2
v3

⎞

⎟⎟⎠ , (3.21)

where a = rst(r − s)ρ1 + tρrρs − rt(r − 1)ρs − stρ1ρr

b = −st(s− 1)ρr + rtρ1ρs

c = t(r − s)ρ0ρ1 − t(r − 1)ρ0ρs

d = −t(r − 1)(s − 1)(r − s)ρ0 + t(s− 1)ρ0ρr.
Note that from the product formulation, this can be seen as a composition of two coordinate changes,
the first one transforming the Gunning planes Π[w0], Π[w1], Π[w∞] and Π[w0]+[w1]−[w∞] into coordinate
hyperplanes, the second one respecting this condition, but further normalizing the group action.
Since for our new coordinates, the group action of the 2-torsion bundles is normalized to double-
transpositions of variables and double-changes of signs, the equation of the Kummer surface in these
coordinates must be invariant under such manipulations. According to [Hud90, § 53, p. 80-81], this
forces the equation of the Kummer surface with respect to the coordinates (t0 : t1 : t2, t3) to be of
the following very nice form

(t40 + t41 + t42 + t43) + 2D(t0t1t2t3)
+A(t20t

2
3 + t21t

2
2) +B(t21t

2
3 + t20t

2
2) + C(t22t

2
3 + t20t

2
1) = 0 ,

(3.22)
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with coefficients A,B,C,D satisfying the relation

4−A2 −B2 − C2 +ABC +D2 = 0 .

Indeed, we find such an equation, and more precisely the one given by

A = −2s(t−1)+(t−s)
t(s−1) B = −2 r+(r−t)

t

C = 2 (r−1)+(r−s)
s−1 D = −4 r(s−t)+(r−s)

t(s−1) .
(3.23)

The five t-polynomials occuring in the Kummer equation (3.22) are fundamental invariants for
the action of the translation group and define a natural map MNR ≃ P3

NR ≃ P3
t → P4 whose image

is a quartic hypersurface (see [Dol12], Proposition 10.2.7).

Corollary 3.5.6. The quartic in P4 defined by the natural map MNR → P4 is a coarse moduli space
of S-equivalence classes of semi-stable P1-bundles over X.

Proof. Let T be a smooth parameter space and S → X × T a family of P1-bundles over X. Denote
by πT the projection X × T → T . The P1-bundle S lifts to a rank 2 bundle E → X × T such that
det(E) = π∗TOX and PE = S. This vector bundle is unique up to tensor product with π∗T (L) where
L is a 2-torsion line bundle on X. According to Theorem 3.5.1, the classification map T → MNR

then is a morphism as is its composition with the natural map MNR → P4. The resulting morphism
T → P4 no longer depends on the choice of E .

3.5.3 Tyurin parametrization

Recall from § 3.3.4 that we defined Tyurin subbundles as subbundles obtained by anticanonical
embeddings, and that they are called degenerate when they are not isomorphic to the anticanonical
line bundle.

Tyurin invariants for generic stable bundles. Let E ∈ Bun(X) be a stable bundle. Recall
from Proposition 3.3.7 (see also § 3.4.1) that there is a well defined decomposition

H0(X,Hom(OX (−KX), E)) = H ⊕H ′

into one-dimensional subspaces that are h-invariant for any lift h : E
∼→ ι∗E of the hyperelliptic

involution ι, and that the subspaces H and H ′ define two distinct Tyurin subbundles L and L′ of E.
Let ϕ1 ∈ H \ {0} and ϕ2 ∈ H ′ \ {0}. The divisor

DT
E := div0(ϕ1 ∧ ϕ2) ∈ |2KX |

does not depend on the choice of the ϕi’s. It is a well-defined invariant of the bundle E. We call it
the Tyurin divisor.

Proposition 3.5.7. Let E ∈ Bun(X) be a stable bundle and let DE ∈ |2Θ| be the divisor on Pic1 (X)
defined by Narasimhan-Ramanan (see § 3.5.1). Then the Tyurin divisor DT

E is the intersection
between the divisor DE and the natural embedding X → Θ;P +→ [P ] on Pic1 (X):

DT
E = DE ·Θ.

For each point P in the support of DT
E, there is one and only one subbundle LP ⊂ E such that

LP ≃ OX (−[P ]). These are precisely the degenerate Tyurin subbundles.

For any Weierstrass point w = ι(w) ∈ X, the bundle E lies on the odd Gunning plane Π[w] if and

only if w is in the support of DT
E.
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Proof. Let P be a point in the support of DT
E . Then ι(P ) is also in the support, and there is a linear

combination λ1ϕ1 + λ2ϕ2 vanishing at ι(P ). It gives rise to an subsheaf OX(−[P ]) ↪→ E, which, by
stability of E, has to be a subbundle. Again by stability of E, there cannot be another subbundle
isomorphic to OX(−[P ]). Moreover, E cannot admit any line subbundle of the form OX(−[P ′]) with
P ′ ∈ X other than the (at most four) degenerate Tyurin subbundles arising from DT

E . Those however
form precisely the support of DE .Θ. Since this divisor is reduced for generic stable bundles E, we
can conclude by continuity that DT

E = DE .Θ. By definition, an element of the Gunning plane Π[w]

contains a degenerate Tyurin subbundle isomorphic to OX(−[w]).

Let E be as above. Its Tyurin divisor is of the form

DT
E = [P ] + [ι(P )] + [Q] + [ι(Q)]

for some P,Q ∈ X. Let us assume that the Tyurin divisor DT
E is reduced, i.e., E does not lie on

any odd Gunning plane. Then we have a parabolic structure q+ on E, defined by the fibers of the
line subbundles LP , Lι(P ), LQ, Lι(Q) over the corresponding points. This parabolic structure then
coincides with the intersection in E of the two distinguished and non-degenerate Tyurin subbundles
L,L′ ≃ OX(−KX) that are h-invariant. In particular, elm−

DT
E
(E, q+) is naturally isomorphic to

Ω := OX(−KX)⊕OX(−KX) , endowed with a parabolic structure qTE . Here the direct summands of
Ω correspond to the pair (L,L′) of h-invariant Tyurin subbundles of E in a chosen order. Note that
conversely, elm+

DT
E
(Ω, qTE) is nothing but the regular rational map

ϕ1 ⊕ ϕ2 : OX(−KX)⊕OX(−KX)→ E .

The isomorphism class of (Ω, qTE) is a well-defined invariant for the isomorphism class of the stable
bundle E off the Gunning planes.

Tyurin’s construction. Conversely, let us consider a divisor, say reduced for simplicity:

D = [P1] + [ι (P1)] + [P2] + [ι (P2)] ∈ |2KX |,

and a parabolic structure q on Ω = OX(−KX)⊕OX(−KX) supported by D. Note that the datum
of q is equivalent to the datum of points in the fibers of the trivial P1-bundle PΩ → X over the
support of D. We are going to consider PΩ as the trivialized trivial P1-bundle, so that the parabolic
structure q is defined by (

λP1 ,λι(P1),λP2 ,λι(P2)

)
∈
(
P1
)4

.

From this data, one can associate a vector bundle E → X with trivial determinant bundle by

elm+
D (Ω, q) = (E, q+). (3.24)

The list of vector bundles that can be obtained by Tyurin’s construction (with possibly reduced
Tyurin divisor) is given in Table 5.

A Turin parameter space. Consider the parameter space

(P1, P2,λ) ∈ X1 ×X2 × P1 := X ×X × P1 .

We define a parabolic structure q on Ω as a function of a generic parameter (P1, P2,λ), with ordered
support and associated parabolic structure given respectively by

(P1, ι(P1), P2, ι(P2)) and
(
λP1 ,λι(P1),λP2 ,λι(P2)

)
:=

(
λ,−λ,

1

λ
,−

1

λ

)
. (3.25)
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Note that this particular choice of normalized parabolic structure does not allow to construct affine
bundles. In order to obtain those, one could consider another normalization where for example three
of the parabolics are fixed to (0, 1,∞) and the fourth one is a free parameter. Our choice (3.25) is
motivated by hyperelliptic descent. Indeed, the transformation

(X1 ×X2 × P1
λ)× (X × P1

z) −→ (X1 ×X2 × P1
λ)× (X × P1

z)

((P1, P2,λ), ((x, y), z)) +−→ ((P1, P2,λ), ((x,−y),−z))

preserves the parabolic structure q and induces a lift h of the hyperelliptic involution on the vector
bundle E associated to q as in (3.24). The two subbundles of Ω corresponding to {z = 0} and
{z =∞} on PΩ = P1

z ×X are fixed under this transformation and yield the two h-invariant Tyurin
subbundles of E.

We now consider symmetries that yield isomorphic parabolic bundles. One can first independently
permute P1 ↔ ι(P1), P2 ↔ ι(P2) and P1 ↔ P2: this generates a order 8 group of permutations.
Moreover, even for a fixed order on the support of D there is a freedom in the choice of λ: our choice
of normalization, characterized by

λP1 + λι(P1) = λP2 + λι(P2) = 0 and λP1 · λP2 = 1, (3.26)

is invariant under the Klein 4 group < z +→ −z, z +→ 1
z > acting on the projective variable z ∈ P1

parametrizing fibers of PΩ = P1×X. The transformation group taking into account all this freedom
is generated by the following 4 transformations

(X1 ×X2 × P1
λ)× (X × P1

z) −→ (X1 ×X2 × P1
λ)× (X × P1

z)

((P1, P2,λ), ((x, y), z))

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ12+−→
(
(P2, P1,

1
λ), ((x, y), z)

)

σι+−→ ((ι(P1), ι(P2),−λ), ((x, y), z))
σiz+−→ ((P1, ι(P2), iλ), ((x, y), iz))
σ1/z+−→

(
(P1, P2,

1
λ ), ((x, y),

1
z )
)

(here, i =
√
−1). The 32-order group ⟨σ12,σι,σiz ,σ1/z⟩ acts faithfully on the parameter space

X1 × X2 × P1
λ. We define the Tyurin configuration space MTyu to be the GIT quotient for this

action, given by:

X1 ×X2 × P1
λ

(32:1)
""# MTyu = P2

D × P1
λ

((x1, y1), (x2, y2),λ) +→
(
(1 : −s : p),λ

)
=
(
(1 : −x1 − x2 : x1x2),

(
λ2 + 1

λ2
)
y1y2

) (3.27)

Here P1 = (x1, y1) and P2 = (x2, y2). Note that P2
D naturally parametrizes the linear system

|2KX | ≃ P2 of possible divisors.

Relation to P3
NR. Note that by construction, the open set in MTyu given by reduced divisors

is the moduli space of parabolic structures on Ω with reduced support in |2KX | whose parabolic
directions can moreover be normalized in a particular way (3.26), and that it is in bijective corre-
spondence with isomorphism classes of certain parabolic bundles (E, q+) with reduced support in
|2KX |. One checks that our construction implies that the vector bundles E that one may obtain are
all flat (and hence elements of Bun(X)), and moreover semistable, generically stable and admitting
hyperelliptic descent.

We may observe that the surface {λ = ∞} in MTyu, corresponding to λ = 0 or ∞, is the
locus of the trivial bundle E = E0. We can also find an equation for the surface corresponding to
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generic decomposable bundles E. Those are obtained from λ ∈ {1,−1, i,−i}, and hence correspond
to λ2 = 4(y1y2)2 which, after expansion, reads

λ2 = p(p− s+ 1) ·
(
p3 − σ1p2s+ σ2ps2 − σ3s3 + (σ21 − 2σ2)p2 + (3σ3 − σ1σ2)ps

+σ1σ3s2 + (σ22 − 2σ1σ3)p− σ2σ3s+ σ23
) .

Note that here and in the following, we used the notation (3.16). This surface is birationally equivalent
to the Kummer surface in MNR, via the Narasimhan-Ramanan classification map given explicitly in
the following proposition.

Proposition 3.5.8. The natural classifying map MTyu = P2
D × P1

λ

1:1
""# MNR ≃ P3

NR reads

(s,p,λ) +→ (v0 : v1 : v2 : v3)

=
(
λ−sp2+2(1+σ1)p2−(σ1+σ2)sp+(σ2+σ3)(s2−2p)−σ3s

s2−4p : p : −s : 1
)
.

Note that the fibration P2
D × P1

λ → P2
D is send onto the pencil of lines of P3

NR passing through
the trivial bundle E0 : (1 : 0 : 0 : 0).

Sketch of proof. The idea, detailed in [HL15, Prop. 4.10] is to consider the family of +6-curves in
PΩ that contain all four Tyurin parabolics. It yields, after elementary transformations, the family
of +2-curves in PE forming the Narasimhan-Ramanan divisor DE (in the generic situation, which is
sufficient). One then uses the definition of the coordinates on P3

NR.

3.5.4 The Bertram-Bolognesi moduli space

The space of non trivial extensions 0→ OX (−KX)→ E → OX (KX)→ 0 is

PH1 (X,OX(−2KX)) ≃ PH0 (X,OX (3KX))∨ .

This space naturally parametrizes the moduli space of those pairs (E,L) where L ⊂ E is a non-
degenerate Tyurin bundle. The hyperelliptic involution ι acts naturally on H0 (X,OX(3KX)) and thus
on its dual: the invariant subspace is an hyperplane that naturally parametrizes those pairs (E,L)
that are invariant under the involution. We define the Bertram-Bolognesi moduli space MB := P3

B
to be this invariant hyperplane:

P3
B ⊂ PH0 (X,OX (3KX))∨ =: P4

B .

A cubic differential ω ∈ H0 (X,OX(3KX)) reads

ω =
(
a0 + a1x+ a2x

2 + a3x
3 + a4y

)(dx

y

)⊗3

uniquely so that the coefficients ai provide a full set of coordinates. Let (b0 : b1 : b2 : b3 : b4) be dual
homogeneous coordinates for P4

B. The natural action of the hyperelliptic involution ι : X → X on
cubic differentials induces an involution on P4

B that fixes the hyperplane P3
B = {b4 = 0} and the

point (0 : 0 : 0 : 0 : 1).
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bundle type Tyurin divisor reduced parabolic structure

stable off Π[wi] DT
E yes generic

on Π[wi], off Π[wj ] 2[wi] + [P ] + [ι(P )] no (λwi ,λP ,λι(P )) = (0, 1,∞)

on Π[wi] ∩Π[wj ] 2[wi] + 2[wj ] no λwi ̸= λwj

unipotent generic [P ] + [ι(P )] + [Q] + [ι(Q)] yes λP = λι(P )

special [P ] + [ι(P )] + 2[w] no λP = λι(P )

twisted by OX([wi]− [wj ]) 2[wi] + 2[wj ] no λwi = λwj

affine

L0 → E → L−1
0

L⊗2
0 ̸= OX

L0 = OX([P ] + [Q]−KX)
[P ] + [ι(P )] + [Q] + [ι(Q)] yes

(λP ,λι(P ),λQ,λι(Q))

= (0, 1, 0,∞)

semi-stable

decomposable

generic: L⊗2
0 ̸= OX

L0 = OX([P ] + [Q]−KX)
[P ] + [ι(P )] + [Q] + [ι(Q)] yes λP = λQ ̸= λι(P ) = λι(Q)

L0 ⊕ L−1
0 trivial: L0 = OX [P ] + [ι(P )] + [Q] + [ι(Q)] yes λP = λι(P ) ̸= λQ = λι(Q)

twist: L0 = OX([wi]− [wj ]) 2[wi] + 2[wj ] no λwi ̸= λwj

unstable L = OX([P ]), P ̸∈W [P ] + [ι(P )] + [Q] + [ι(Q)] yes λι(P ) ̸= λP = λQ = λι(Q)

decomposable L = OX([w]) 2[w] + [Q] + [ι(Q)] no limP→w of the previous one

L⊕ L−1 L = OX(KX) [P ] + [ι(P )] + [Q] + [ι(Q)] yes λP = λι(P ) = λQ = λι(Q)

odd Gunning bundle Ew
2[w] + [P ] + [ι(P )]

(P arbitrary)
no λw = λP = λι(P )

T
ab
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Some known results. Following the introductions of [Ber92, Kum00] and § 5 of [Bol07], the
locus of unstable bundles is given by the natural embedding of the curve X:

β : X ↪→ P4
B; (x, y) +→

(
1 : x : x2 : x3 : y

)
.

The locus of strictly semi-stable bundles is given by the quartic hypersurface Wed ⊂ P4
B spanned by

the 2-secant lines of X. The Narasimhan-Ramanan moduli map

P4
B ""# P3

NR

is given by the full linear system of quadrics that contain X; it restricts to P3
B as the full linear system

of quadrics (of P3
B) that contain the six points X ∩ P3

B. After blowing-up the locus X of unstable
bundles, we get a morphism

P̃4
B → P3

NR

namely a conic bundle; its restriction to the strict transform P̃3
B of P3

B is generically 2 : 1, ramifying
over the Kummer surface Kum ⊂ P3

NR. The quartic hypersurface Wed restricts to P3
B as the (dual)

Weddle surface; it is sent onto the Kummer surface. There is a Poincaré vector bundle E → X ×P4
B

realizing the classifying map above. Hence by restriction, there is a Poincaré bundle E → X × P3
B

on the double cover P3
B of P3

NR. The projectivized Poincaré bundle P (E)→ X × P3
B defines a conic

bundle C → X × P3
NR over the quotient P3

NR. For each vector bundle E ∈ P3
NR, the fibre CE of

the conic bundle represents the family of Tyurin-subbundles of E. Yet the conic bundle C is not
a projectivized vector bundle over P3

NR, not even up to birational equivalency, because a Poincaré
bundle over a Zariski-open set of P3

NR does not exist [NR68].

Explicit classifying map towards P3
NR. Note that a point in the Bertram-Bolognesi moduli

space MB corresponds to a pair (E,L) with E ∈ Bun(X) admitting hyperelliptic descent, together
with a specified choice of h-invariant non-degenerate Tyurin subbundle L. It therefore corresponds
to a well-defined parabolic bundle (E,p) ∈ Bun(X/ι) such that moreover E ≃ OP1(−1)⊕OP1(−2),
where the destabilizing subbundle of E arises from L and carries no parabolic. Since E, as a non-split
extension, does not admit a subbundle isomorphic to L−1, the parabolic bundle (E,p) is moreover
indecomposable. Conversely, parabolic bundles arising as a non-split extensions

0→ (OP1 (−1) ,∅)→
(
E,p

)
→ (OP1 (−2) ,W )→ 0

are elements of PH1
(
P1,HomO

P1
(OP1 (−2)⊗OP1 (W ) ,OP1 (−1))

)
, which by Serre duality, is identi-

fied with PH0
(
P1,OP1 (−1)⊗ Ω1

P1 (W )
)∨

. After lifting such parabolic bundles by X → P1, applying
elementary transformations and forgetting the parabolic structure, we precisely get those extensions

0→ OX (−KX)→ E → OX (KX)→ 0

i.e. by those points of P4
B = PH0 (X,OX (3KX))∨, that are ι-invariant. Using this relation, two

results (Prop. 3.6.1 and Prop.3.6.2) that will be presented in § 3.6 yield, as an immediate corollary,
the explicit Narasimhan-Ramanan classification map.

Proposition 3.5.9. The natural map P3
B ""# P3

NR is generically 2 : 1 and given by

(b0 : b1 : b2 : b3) +→

⎧
⎪⎪⎨

⎪⎪⎩

v0 = b2b3 − (1 + σ1)b22 + (σ1 + σ2)b1b2 − (σ2 + σ3)b0b2 + σ3b0b1
v1 = b22 − b1b3
v2 = b0b3 − b1b2
v3 = b21 − b0b2
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Moreover, the (dual) Weddle surface, i.e., the lift to P3
B of the Kummer equation, reads

(−b0b2b23 + b21b
2
3 + b1b

2
2b3 − b42) + (1 + σ1)(b0b

2
2b3 − 2b21b2b3 + b1b

3
2) + (σ1 + σ2)(−b0b32 + b31b3)

+(σ2 + σ3)(−b0b21b3 + 2b0b1b
2
2 − b31b2) + σ3(b

2
0b1b3 − b20b

2
2 − b0b

2
1b2 + b41) = 0.

Note that on X, we have the following equation:

y2 = x(x− 1)(x− r)(x− s)(x− t) = x5 − (1 + σ1)x
4 + (σ1 + σ2)x

3 − (σ2 + σ3)x
2 + σ3x .

It follows that the equation for v0 in Proposition 3.5.9 vanishes along the embedding β(X) ⊂ P4
B.

Moreover, we have the following equations on β(X):

b0b2 = b21 = x2, b0b3 = b1b2 = x3 and b1b3 = b22 = x4 .

It follows that the components v0, . . . , v3 of the map P3
B ""# P3

NR exactly correspond to the restriction
to P3

B of the natural quadratic forms on P4
B vanishing along the embedding β : X ↪→ P4

B. It
is quite surprising that the most natural basis both appearing from the Bertram point of view,
and the Narasimhan-Ramanan point of view, are so compatible. They provide the same system of
coordinates on MNR which is however not considered in the classical theory of Kummer surfaces (see
[Hud90, GD94]).

Moreover, since we know that points inMB correspond to the particular type of parabolic bundles
in Bun(X/ι) described above, the dictionary in Section 3.4 classifies all bundles E arising from points
(E,L) ∈ MB . Again those bundles E which are special in the sense that they are neither stable
bundles off the Gunning planes nor generic decomposable bundles give a bundle-type interpretation
of geometrical features of the dual Weddle surface in MB . Since we know where the special bundles
occur in P3

NR, we can explicitly compute their locus in P3
B by Proposition 3.5.9. The result is given

in the following proposition and summarized in Figure 12.

Proposition 3.5.10. The special bundles occuring in P3
B = MB are precisely the following

• Odd Gunning bundles Qi: they are the 6 special points of the twisted cubic parametrized by

β : X/ι→ P3
B ; x +→ (1 : x : x2 : x3) ,

namely Qi is the image of the Weierstrass point wi.

• Generic unipotent bundles ∆: the 1-parameter family defined by the twisted cubic β(X/ι)
(minus the special points) corresponds to the set of non-special unipotent bundles.

• Twisted unipotent bundles ∆i,j: lines of P3
B passing through Qi and Qj .

• Even Gunning planes Πi,j,k: planes of P3
B passing through Qi, Qj and Qk.

• Odd Gunning planes Π′
i: the quadric surface of P3

B with a conic singular point at Qi that
contains the 5 lines ∆i,j and the cubic ∆.

The preimage under the Narasimhan-Ramanan classifying map γ : P3
B

2:1
""# P3

NR of the Kummer
surface is the dual Weddle surface Wed (X), which is, via γ, a birational model of Kum (X). It is also
a quartic surface, but with only 6 nodes (see [Hud90, GD94]). The above bundle-type interpretation
describes this birational map geometrically: The 16 singular points of Kum(X) are blown-up and
replaced in Wed (X) by the cubic ∆ and the 15 lines ∆i,j. The six new conic points arise from the
contraction to the point Qi of the lift Πi of the Gunning plane Πi in P3

NR. One deduces that the map
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Πijk

(unipotent bundles)

left cubic

dual Weddle surface

X

P3
B

wk

wj

∆jk

∆ij

∆ik

wi

Gunning plane

twists of unipotent bundles

conic singularity of the

Figure 12: Special bundles in the Bertram-Bolognesi moduli space P3
B.

γ is defined by the linear system of quadrics passing through the 6 points Qi; indeed, for a general
plane Π ∈ P3

NR, γ
∗Π must intersect each contracted Πi. We thus recover the quadric system in [Dol10,

§ 4.6]. Those Π tangent to Kum(X) have a singular lift Π; when Π runs over the tangent planes of
Kum(X), the singular point of Π runs over the (dual) Weddle surface. The 10 even Gunning planes
in P3

NR have each two preimages, giving rise to the 20 lifted Gunning planes Πi,j,k (each passing
through 3 of the 6 conic points). Note that the complement of the dual Weddle surface covers the
open set of stable bundles in P3

NR

P3
B \Wed (X)

γ
! P3

NR \Kum(X) ,

but that this is not a covering since over odd Gunning planes, only the lift Π′
i occurs in P3

B (the other
one corresponds to the indeterminacy point Qi). .

The universal family via Tyurin’s approach. Recall from § 3.5.7 that we have introduced a
parameter space (X1×X2×P1

λ) of a family of parabolic structures q on Ω with PΩ = X×P1
z supported

by elements of |2KX | yielding, by elementary transformations, ordered triples (E,L,L′) of flat bundles
E with (generically) non-degenerate and h-invariant Tyurin subbundles L,L′. Considering only the
data (E,L) then yields an element of MB . Using [LS15, Thm. 4.2], we showed in [HL15, Prop. 7.4]
that the classifying map is explicitly described as follows.

Proposition 3.5.11. The natural map X1 ×X2 × P1
λ

16:1
""# P3

B is given by
⎧
⎪⎪⎨

⎪⎪⎩

b0 = λy2 − 1
λy1

b1 = λx1y2 − 1
λx2y1

b2 = λx21y2 − 1
λx

2
2y1

b3 = λx31y2 − 1
λx

3
2y1
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Consider now the total space (X1×X2×P1
λ)× (X×P1

z). It is by construction equipped with the
4 rational sections

(P1,λ) , (ι(P1),−λ) ,
(
P2,

1

λ

)
,

(
ι(P2),−

1

λ

)
:
(
X1 ×X2 × P1

λ

)
→

(
X × P1

z

)

which are globally invariant under the action of the 32-order group ⟨σ12,σι,σiz,σ1/z⟩, whose orbits
(for generic points) correspond to isomorphism classes of E. The quotient provides a projective
Poincaré bundle, namely a (non trivial) P1-bundle over

(
P2
D × P1

λ

)
×X (actually, over an open set of

Tyurin configuration space) equipped with a universal parabolic structure. After positive elementary
transformation, we get a universal P1-bundle over an open subset of P3

NR. However, we cannot lift the
construction to a vector bundle because the action of < z +→ −z, z +→ 1

z > (induced by ⟨σ2iz,σ1/z⟩)
does not lift to a linear GL2C-action (indeed,

(−i 0
0 i

)
and

(
0 1
−1 0

)
do not commute). This is the

reason why there is no Poincaré bundle for P3
NR, but only a projective version of it. The ambiguity

is killed-out if we do not take σ1/z into account, meaning that we choose one of the two h-invariants
Tyurin subbundles and consider isomorphism classes of (E,L): we then obtain Bolognesi’s Poincaré
bundle [Bol09] mentioned earlier. It is here explicitely given as follows.

Consider the vector bundle Ẽ = π∗(OX(−KX) ⊕OX(−KX)) over (X1 ×X2 × P1)×X, where π
denotes the projection from X1 ×X2 × P1 ×X to X. We shall moreover denote πi the projection to
Xi, and consider the divisor D = {π = π1} + {π = ι ◦ π1} + {π = π2} + {π = ι ◦ π2}. We define a
parabolic structure over D given by

(
P1, P2,λ, P1,

(
λ
1

))
,
(
P1, P2,λ, ι(P1),

(−λ
1

))
,
(
P1, P2,λ, P2,

(
1
λ

))
,
(
P1, P2,λ, ι(P2),

(
1
−λ
))

.

The action of the group ⟨σ12,σι,σiz,σ1/z⟩ on the base lifts to an action on the bundle Ẽ given by

(
P1, P2,λ, P, Z

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ12+−→
(
P2, P1,

1
λ , P, Z

)

σι+−→ (ι(P1), ι(P2),−λ, P, Z)

σiz+−→
(
(P1, ι(P2), iλ, P,

(√
i 0

0 1√
i

)
Z

)
.

By [Bis97], Ẽ is the lift of a vector bundle Ê → X×B with B = (X1×X2×P1)/⟨σ12 ,σι,σiz⟩. Moreover,

the parabolic structure we gave on Ẽ is also invariant and descends to a parabolic structure on Ê .
At least in restriction to a codimension 2 subset of B, it makes sense to perform positive elementary
transformations along this (not everywhere reduced) parabolic structure. This yields a vector bundle
E → X × B. After appropriate restriction and identification, it corresponds to a universal bundle on
the 2-cover MB ""# MNR .

3.6 A chart of the moduli stack Bun(X)

Consider the map φ : Bun (X/ι) → Bun (X) defined in Section 3.4. Consider moreover the subset
Bunind (X/ι) of indecomposable parabolic bundles in Bun (X/ι). We know from Proposition 3.3.5,
§ 3.4.5 and § 3.3.3 that its image Bun∗(X) under φ consists in the complement in Bun (X) of the
affine bundles, the trivial bundle and the twists of the trivial bundle. Moreover, we know from Section
3.4 that the restricted map

φ : Bunind (X/ι) ! Bun∗ (X) (3.28)

is a ramified two-cover, ramifying over the locus of decomposable bundles in Bun∗ (X). On the
other hand, according to [AL97, LS15], Bunind (X/ι) has the structure of a smooth non-separated
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projective scheme. In particular, (3.28) describes a chart of Bun(X), seen as a moduli stack. We
are now going to describe Bun∗ (X) by describing both Bunind (X/ι) and the Galois-involution of φ
geometrically and, to a large extend, explicitly.

Note that Bunind can be constructed by patching spaces naturally isomorphic to
(
P1
)3

(see
[AL97]) or P3 (see [LS15]) along Zariski-open subsets. We are going to present a certain number
of those, which will be referred to as charts, with particular geometrical meaning, natural explicit
coordinates and transition maps. Note that, as one can easily convince oneself, affine parts of these
charts admit natural parabolic Poincaré bundles. One of those -and one of our preferred charts-
corresponds to Bolognesi’s universal bundle over Bertram’s moduli space (see § 3.5.4). The geometry
of the explicit transition maps and the Galois involution will be described by extensively using the
dictionary from Section 3.4.

As an application, from another one of our preferred charts, endowed with its Narasimhan-
Ramanan classification map, we deduce in § 3.6.6 an explicit expression of the Hitchin map

Higgs(X) ≃ T∨Buns(X)→ H0(X,Ω1
X ⊗ Ω1

X).

3.6.1 Semi-stable bundles and projective charts

For any choice of µ = (µ0, µ1, µr, µs, µt, µ∞) ∈ [0, 1]6, we denote by Bunssµ (X/ι) ⊂ Bun(X/ι) the set
of parabolic bundles that are semistable when endowed with the weight µ (see § 3.2.3). For a generic
weight µ, semi-stable bundles are automatically stable; in this case, the moduli space Bunssµ (X/ι)
is projective, smooth and a geometric quotient. The special weights µ, for which some bundles are
strictly semi-stable, form a finite collection of affine planes in the weight-space [0, 1]6 ∋ µ called walls.
They cut-out [0, 1]6 into finitely many chambers: the connected components of the complement of
walls. Along walls, the moduli space is no more a geometric quotient, but a categorical quotient,
identifying some semi-stable bundles together to get a (Hausdorff) projective variety, which might
be singular in this case; outside of the strictly semi-stable locus, Bunssµ (X/ι) is still smooth and a
geometric quotient. The moduli space Bunssµ (X/ι) is constant in a given chamber; if not empty, it
has dimension three and contains as an open set the geometric quotient of those bundles (E,p) with
E = OP1 (−1)⊕OP1 (−2) and parabolics p in general position:

• no parabolic in OP1 (−1) ↪→ E,

• no 3 parabolics in the same OP1 (−2) ↪→ E,

• no 5 parabolics in the same OP1 (−3) ↪→ E.

Between (non empty!) moduli spaces in any two chambers, we get a natural birational map

can : Bunssµ (X/ι)
∼
""# Bunssµ′(X/ι)

arising from the identification of the generic bundles occuring in both of them. The indeterminacy
locus comes from those special parabolic bundles that are stable for µ but not for µ′ and vice-versa;
this configuration occurs each time we cross a wall. In [LS15] it is shown that a parabolic bundle(
E,p

)
is indecomposable if, and only if, it is stable for a good choice of weights µ ∈ [0, 1]6. The moduli

spaceBunind(X/ι) of indecomposable bundles can thus be covered by a finite collection of such moduli
spaces, by choosing one µ in each non empty chamber; therefore, Bunind(X/ι) can be constructed
by patching together these moduli spaces by means of canonical maps along the open set of common
bundles, yielding a structure of smooth non separated scheme. In this context, two parabolic bundles(
E,p

)
and

(
E ′,p′) are said to be arbitrarily close if there are families

(
Et,pt

)

t∈A1
and

(
E ′

t,p
′
t

)

t∈A1
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such that
(
Et,pt

)
≃
(
E ′

t,p
′
t

)
for each t ̸= 0 but

(
E0,p0

)
≃
(
E,p

)
and

(
E ′

0,p
′
0

)
≃
(
E′,p

)
. If two

parabolic bundles over P1 are arbitrarily close then of course the corresponding vector bundles over
X are arbitrarily close in the sense of § 3.5.1. As shown in [LS15], for example any point of ∆ is
arbitrary close to any point of ∆′ (see § 3.4.3). This will give rise to a flop phenomenon when we will
compare certain semi-stable projective charts. The same phenomenon occurs for twisted unipotent
bundles.

It is closely related to the reason why decomposable flat bundles are not taken into account in
this picture. Indeed, consider for example the preimage (E0,p

0) := φ−1(E0) of the trivial bundle
on X (see § 3.4.5). If the bundle E0 = OP1 ⊕ OP1 (−3) equipped with the decomposable parabolic
structure p0 defined by the fibres of OP1 (−3) ↪→ E0 is semi-stable for some choice of weights µ,
then all other parabolic structures p on E0 with no parabolics in the total space of OP1 ⊂ E0 are
also semi-stable and arbitrarily close to p0; they are represented by the same point in the Hausdorff
quotient Bunssµ (X/ι). One can check that this point is moreover necessarily singular.

As an example that will be useful in the following, let us consider weights of the form

µ = (µ0, µ1, µr, µs, µt, µ∞) = (µ, µ,λ,λ,λ, µ) (3.29)

with λ, µ ∈ [0, 1]. Considering only µ as in (3.29), a parabolic bundle belongs a wall if its projec-
tivization possesses a section with self-intersection number k ∈ 2Z+ 1 containing m parabolics over
{0, 1,∞} and ℓ parabolics over {r, s, t} such that

0 = k + (3− 2m)µ + (3− 2ℓ)λ

for some λ, µ ∈ [0, 1]. Table 6 lists all possible configurations. They are visualized in Figure 13.

Possible configuration (k,m, ℓ) Walls
λ = −µ+ 5

3 (−5, 0, 0), (5, 3, 3)
λ = −µ+ 1 (−3, 0, 0), (−1, 1, 1), (1, 2, 2), (3, 3, 3)
λ = −µ+ 1

3 (−1, 0, 0), (1, 3, 3)
λ = −3µ+ 1 (−1, 0, 1), (1, 3, 2) 3⃝
λ = −3µ+ 3 (−3, 0, 1), (3, 3, 2)
λ = −1

3µ+ 1 (−3, 1, 0), (3, 2, 3)
λ = −1

3µ+ 1
3 (−1, 1, 0), (1, 2, 3)

λ = 3µ− 1 (−1, 0, 2), (1, 3, 1) 2⃝
λ = 1

3µ+ 1
3 (−1, 2, 0), (1, 1, 3)

λ = µ+ 1
3 (−1, 3, 0), (1, 0, 3)

λ = µ− 1
3 (−1, 0, 3), (1, 3, 0) 1⃝

Table 6: Possible wall-configurations for weights of the form µ = (µ, µ,λ,λ,λ, µ).

The pink line in in Figure 13 is not a wall, it will be considered later. The particular meaning
of the red parts of Table 6 and Figure 13 will also be considered later. The two blue chambers are
non-empty and correspond to our two main charts.
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µ

λ

2
1

1

12
3

1
3

2
3

1
3

P3
B

P1
R × P1

S × P1
T

3

Figure 13: Chambers of moduli spaces for the weights µ = (µ, µ,λ,λ,λ, µ).

3.6.2 The chart P1
R × P1

S × P1
T

Our first main chart (see [AL97] and [LS15, § 3.4]) is given by weights of the form

µ0 = µ1 = µ∞ =
1

2
and µr = µs = µt = 0

and is isomorphic to P1
R × P1

S × P1
T . Precisely, µ-stable bundles

(
E,p

)
are given by E = OP1 (−1)⊕

OP1 (−2) with p
0
, p

1
, p∞ outside of OP1 (−1) ⊂ E and not all three of them contained in the same

OP1 (−2) ↪→ E. Within the 2-parameter family of line subbundles isomorphic to OP1 (−2) we can
choose one containing at least p0 and p∞ say, and then choose meromorphic sections e1 and e2 of
OP1 (−1) and OP1 (−2) (whose divisor is supported at x = ∞) such that the parabolic structure is
normalized to

p
i
= λie1 + e2 with (λ0,λ1,λ∞) = (0, 1, 0) and (λr,λs,λt) = (R,S, T ) ∈ P1

R × P1
S × P1

T .

To compare to the point of view of [AL97], note that

OP1 (1)⊗ elm+
∞
(
E,p

)
= (E ′

0,p
′) (3.30)

is the trivial bundle E ′
0 = OP1 ⊗ OP1 equipped with a parabolic structure having p0′, p1′ and p∞′

pairwise disctinct (with respect to the trivialization of the bundle).
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Proposition 3.6.1. The classifying map P1
R × P1

S × P1
T ""# P3

NR is explicitely given by (R,S, T ) +→
(v0 : v1 : v2 : v3) where

v0 = s2t2(r2 − 1)(s − t)R− r2t2(s2 − 1)(r − t)S + s2r2(t2 − 1)(r − s)T+
+t2(t− 1)(r2 − s2)RS − s2(s− 1)(r2 − t2)RT + r2(r − 1)(s2 − t2)ST

v1 = rst [((r − 1)(s − t)R− (s− 1)(r − t)S + (t− 1)(r − s)T+
+(t− 1)(r − s)RS − (s− 1)(r − t)RT + (r − 1)(s − t)ST ]

v2 = −st(r2 − 1)(s − t)R+ rt(s2 − 1)(r − t)S − rs(t2 − 1)(r − s)T−
−t(t− 1)(r2 − s2)RS + s(s− 1)(r2 − t2)RT − r(r − 1)(s2 − t2)ST

v3 = st(r − 1)(s − t)R− rt(s− 1)(r − t)S + sr(t− 1)(r − s)T+
+t(t− 1)(r − s)RS − s(s− 1)(r − t)RT + r(r − 1)(s− t)ST

The indeterminacy points

(R,S, T ) = (0, 0, 0), (1, 1, 1), (∞,∞,∞) and (r, s, t)

of this map correspond to the odd Gunning bundles E[w1], E[w0] and E[w∞] respectively. Conversely,
a generic point (v0 : v1 : v2 : v3) ∈MNR has precisely two preimages in P1

R × P1
S × P1

T :

R = r(t−1)(v0+rv1−r(s+t+st)v3)T
t(r−1)(v0+tv1−t(r+s+rs)v3)−(r−t)(v0+v1−σ2v3)T

S = s(t−1)(v0+sv1−s(r+t+rt)v3)T
t(s−1)(v0+tv1−t(r+s+rs)v3)−(s−t)(v0+v1−σ2v3)T ,

where T is any solution of aT 2 + btT + ct2 = 0 with

a = (v1 + v2t+ v3t2)(v0 + v1 − σ2v3)
b = −(1 + t)(v0v2 + v21 + tv1v3)− 2(v0v1 + tv0v3 + tv1v2)

+σ2(tv1 + v2 + tv3)v3 + (r + s+ rs)(v1 + t2v2 + t2v3)v3
c = (v1 + v2 + v3)(v0 + tv1 − t(r + s+ rs)v3).

The discriminant of this polynomial leads again to our equation of the Kummer surface in the co-
ordinates (v0 : v1 : v2 : v3) given in Section 3.5.2. Here and below, we use the σ-notation from
(3.16).

Sketch of proof. The idea of the proof of this proposition, detailed in [HL15, Prop. 5.2], is the follow-
ing. Using (3.30), one may work with the trivial bundle E′

0, and more precisely, with its trivialized
lift E0 to X. One finds that in the generic situation, the family of degree −4 subbundles of E0

that contain all parabolics of p′ yields, after application of OX (−3[w∞]) ⊗ elm+
W , the 1-parameter

family of line subbundles of E that forms the Narasimhan-Ramanan divisor DE (see 3.5.1). De-
gree −4 subbundles of the trivial bundle of the general form OX(−[P1] − [P2] − 2[w∞]) are easily
parametrized. Containing all parabolics yields a condition on {P1, P2} in terms of (R,S, T ) that it
suffices to translate into a coordinate (v0 : . . . : v3).

The Galois involution (R,S, T ) +→ (R̃, S̃, T̃ ) of the classifying map P1
R×P1

S×P1
T ""# P3

NR is easily
calculated and given by

R̃ = λ(R,S, T ) · (s−t)+(t−1)S−(s−1)T
−t(s−1)S+s(t−1)T+(s−t)ST

S̃ = λ(R,S, T ) · (r−t)+(t−1)R−(r−1)T
−t(r−1)R+r(t−1)T+(r−t)RT

T̃ = λ(R,S, T ) · (r−s)+(s−1)R−(r−1)S
−s(r−1)R+r(s−1)S+(r−s)RS
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where λ(R,S, T ) = t(r−s)RS−s(r−t)RT+r(s−t)ST
(s−t)R−(r−t)S+(r−s)T .

Its fixed points provide the equation in coordinates (R,S, T ) of the lift of the Kummer surface,
namely

((s − t)R+ (t− r)S + (r − s)T )RST

+t((r − 1)S − (s− 1)R)RS + r((s− 1)T − (t− 1)S)ST + s((t− 1)R − (r − 1)T )RT

−t(r − s)RS − r(s− t)ST − s(t− r)RT = 0.

3.6.3 The chart P3
b
= P3

B

Our second main chart is defined by democratic weights

1

6
< µ0 = µ1 = µr = µs = µt = µ∞ <

1

4

and corresponds to the moduli space of the indecomposable parabolic structures on E := OP1 (−1)⊕
OP1 (−2) having no parabolic in the total space of OP1 (−1). It corresponds to the main chart P3

b of

[LS15] given by PH1
(
P1,Hom(OP1 (−2)⊗OP1 (W ) ,OP1 (−1))

)
≃ PH0

(
P1,OP1 (−1)⊗ Ω1

P1 (W )
)∨

.
As explained in § 3.5.4, it coincides with the Bertram-Bolognesi-moduli space P3

B given by the
ι-invariant hyperplane of P4

B = PH0 (X,OX (3KX))∨. From this point of view, the projective coordi-
nates b = (b0 : b1 : b2 : b3) ∈ P3

b are dual to the coordinates of ι-invariant cubic forms

(
a0 + a1x+ a2x

2 + a3x
3
)(dx

y

)⊗3

.

Proposition 3.6.2. The natural birational map P3
B ""# P1

R × P1
S × P1

T is given by

(b0 : b1 : b2 : b3) +→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R = r b3−(s+t+1)b2+(st+s+t)b1−stb0
b3−σ1b2+σ2b1−σ3b0

S = s b3−(r+t+1)b2+(rt+r+t)b1−rtb0
b3−σ1b2+σ2b1−σ3b0

T = t b3−(r+s+1)b2+(rs+r+s)b1−rsb0
b3−σ1b2+σ2b1−σ3b0

The inverse map is given by (R,S, T ) +→ (b0 : b1 : b2 : b3) with

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b0 = R−r
r(r−1)(r−s)(r−t) +

S−s
s(s−1)(s−r)(s−t) +

T−t
t(t−1)(t−r)(t−s)

b1 = R−r
(r−1)(r−s)(r−t) +

S−s
(s−1)(s−r)(s−t) +

T−t
(t−1)(t−r)(t−s)

b2 = r(R−r)
(r−1)(r−s)(r−t) +

s(S−s)
(s−1)(s−r)(s−t) +

t(T−t)
(t−1)(t−r)(t−s)

b3 = r2R
(r−1)(r−s)(r−t) +

s2S
(s−1)(s−r)(s−t) +

t2T
(t−1)(t−r)(t−s) −

1
(r−1)(s−1)(t−1)

Sketch of proof. The idea is to use the identification P3
B = P3

b and to apply a result of [LS15] (see
also [LSS12]). The elements of P1

R × P1
S × P1

T appearing in P3
b are those with (R,S, T ) finite. For

any (E,p) ∈ C3
(R,S,T ), and any compatible apparent parabolic Higgs field (see § 3.6.6), one can

compute its apparent map (the second fundamental form with respect to the destabilizing bundle),
which yields a global section of OP1(−1) ⊗ OP1(W ). For example for Θr in (3.33) one obtains
(R−r)x3+(r(1+s+t)−Rσ1)x2+(Rσ2−r(s+t)−σ3)x−σ3(R−1)

x(x−1)(x−r)(x−s)(x−t) dx. There are two maps

C3
(R,S,T ) → PH0

(
P1,OP1 (−1)⊗ Ω1

P1 (W )
)∨

.
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One consists in associating to each (E,p) the hyperplane locus of compatible apparent parabolic
Higgs fields. The other one associates the corresponding (b0 : b1 : b2 : b3), which are the dual

coordinates for a0+a1x+a2x2+a3x3

x(x−1)(x−r)(x−s)(x−t)dx. According to the proof of [LS15, Thm. 4.2], these two maps

coincide. In particular, our example for Θr yields b3(R− r)+ b2(r(1+ s+ t)−Rσ1)+ b1(Rσ2− r(s+
t)− σ3)− b0σ3(R− 1) = 0. Similar equations from Θs and Θt in (3.33) yield the result.

Recall that the classifying map P3
b = P3

B → P3
NR, which is now a direct consequence of Propositions

3.6.1 and 3.6.2 is stated in Proposition 3.5.9.

In order to understand the geometry of the birational map P3
B ""# P1

R × P1
S × P1

T explicitly
given in Proposition 3.6.2 we have to consider a path in Bunind(X/ι) linking the corresponding
chambers and the wall-crossing phenomena along this path. What we will obtain is summarized in
Figure 14. Since P3

B corresponds to the weight µ =
(
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
and P1

R × P1
S × P1

T corresponds
to the weight µ =

(
1
2 ,

1
2 , 0, 0, 0,

1
2

)
, we may consider only the walls between chambers of the form

µ = (µ, µ,λ,λ,λ, µ) with λ, µ ∈ [0, 1] as in (3.29). First, we want to consider the crossing of the
walls 1⃝, 2⃝ and 3⃝ in Figure 13, in order to describe the birational map P3

B ""# P1
R × P1

S × P1
T . We

look at Table 6 and check which configurations (k,m, ℓ) (corresponding to self-intersection number
k, m parabolics over {0, 1,∞} and ℓ parabolics over {r, s, t}) arise in these walls. The configuration
(k,m, ℓ) = (1, 3, 0) is not stable in P1

R × P1
S × P1

T , but (k,m, ℓ) = (−1, 0, 3) is. By the dictionary in
Section 3.4, the latter corresponds to the even Gunning bundle Eϑ with ϑ = OX([wr] + [ws]− [wt]).
The point in the moduli space P1

R×P1
S ×P1

T corresponding to this bundle is blown up when crossing
the wall 1⃝ and replaced by the corresponding Gunning plane: (k,m, ℓ) = (1, 3, 0). Passing on to wall
2⃝, the three lines (k,m, ℓ) = (−1, 0, 2) in the moduli space corresponding to the unipotent bundles
tensored by OX ([wr]− [ws]) ,OX ([ws]− [wt]) and OX ([ws]− [wt]) respectively are no longer stable.
Here a flop phenomenon occurs: these three lines are blown up and the resulting planes are contracted
to three lines (k,m, ℓ) = (1, 3, 1) corresponding to the families of the same types of unipotent bundles.
Passing on to wall 3⃝, the three planes (k,m, ℓ) = (−1, 0, 1) corresponding to the odd Gunning planes
with characteristic ϑ ∈ {OX([wr]),OX ([ws]),OX ([wt])} are contracted and replaced by three points
corresponding to the configurations (k,m, ℓ) = (1, 3, 2): the Gunning bundles with characteristic ϑ.

3.6.4 The four democratic charts and the Geiser involution

Following the pink line in Figure 13 means studying wall-crassing phenomena for moduli spaces
Bunssµ (X/ι) with democratic weights µ = (µ, µ, µ, µ, µ, µ) for µ ∈ [0, 1]. As we see, walls occur for

µ ∈
{
1
6 ,

1
4 ,

1
2 ,

3
4 ,

5
6

}
. Those µ corresponding neither to a wall nor to an empty chamber are charts

of Bunind(X/ι). We will find four of those. As before, in order to describe the geometry of their
transition maps, it is however useful to consider the moduli spaces on the walls as well. We are
going to do so by moving µ from 0 to 1. For each choice of µ ∈ [0, 1], one can easily check for which
types of special bundles which hyperelliptic lifts are semi-stable with respect to the corresponding µ;
this is summarized in Table 7 (in terms of Section 3.4). Note that (avatars in Bunind(X/ι) of) even
Gunning bundles are not semistable for any choice of democratic weights.

For µ ∈ [0, 16 [: The moduli space Bunssµ (X/ι) is empty since OP1 (−1) is destabilizing the generic
parabolic bundle (even if it carries no parabolic).

For µ = 1
6 : The moduli space Bunssµ (X/ι) reduces to a single point. Indeed, it also contains the

(non flat) decomposable bundle E = OP1 (−1) ⊕ OP1 (−2) with all parabolics p lying in the total
space of OP1 (−2). But the generic parabolic bundle is arbitrarily close to this decomposable bundle
so that they have to be identified in the Hausdorff quotient Bunssµ (X/ι).
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blow up
the

E[wr]+[ws]−[wt]

bundle
Gunning

P1
T

P1
S

P1
R

the three
blow up

Gunning
bundles

P3
B

E[w−r]
E[w−t]

E[w−s]

≃ P2

Π[wr]+[ws]−[wt]

unipotent bundlesblow up
three lines twisted by

flop

OX([wi]− [wj])of
i, j ∈ {r, s, t}

twisted bythree lines

unipotent bundlesblow up

i, j ∈ {r, s, t}of OX([wi]− [wj])

∼

Figure 14: Geometry of the natural birational map P3
B ""# P1

R × P1
S × P1

T .
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µ 0 1
6

1
4

1
2

3
4

5
6 1

unipotent bundles ∆ ∆′

(and twists) ∆ij ∆′
ij

odd Gunning Qi Πi

bundles and planes Π′
i Q′

i

even Gunning planes Πijk

Table 7: Moving weights.

For µ ∈]16 ,
1
4 [: Here, we recover our chart P3

B = P3
b = Bunss

] 16 ,
1
4 [
(X/ι) from § 3.5.4 and § 3.6.3

with special families ∆, ∆ij , Qi, Π
′
i and Πijk. The natural map φ : Bunss

] 16 ,
1
4 [
(X/ι) ""# P3

NR has

indeterminacy points at all 6 points Qi.

For µ = 1
4 : Now, odd Gunning planes Πi become semi-stable, but are arbitrarily close to the

corresponding point Qi, so that they are identified in the quotient Bunssµ (X/ι). Therefore, the moduli
space is still the same P3

b, but no longer a geometric quotient.

For µ ∈]14 ,
1
2 [: Odd Gunning bundles Qi are no longer semi-stable and are replaced by the

corresponding Gunning planes Πi. The natural map

can : Bunss
] 14 ,

1
2 [
(X/ι)→ Bunss

] 16 ,
1
4 [
(X/ι)

is the blow-up of P3
b at all 6 points Qi, and the exceptional divisors represent the corresponding

planes Πi. The classifying map NR ◦ φ : Bunss
] 14 ,

1
2 [
(X/ι)→ P3

NR is a morphism.

For µ = 1
2 : the trivial bundle and its 15 twists become semi-stable (and just for this special value

of µ). In particular, unipotent families are identified with these bundles in the moduli space, which
has the effect to contract the strict transforms of lines ∆ij and the rational curve ∆ to 16 singular
points of Bunssµ (X/ι). This moduli space is exactly the double cover of P3

NR ramified along Kum(X),
therefore singular with conic points over each singular point of Kum(X). The natural map

can : Bunss
] 1
4
, 1
2
[
(X/ι)→ Bunss1

2
(X/ι)

is a minimal resolution.

For µ ∈]12 ,
3
4 [: The families ∆ and ∆ij are no longer semi-stable, and are replaced by the families

∆′ and ∆′
ij. But mind that the canonical map

can : Bunss
] 14 ,

1
2 [
(X/ι) ""# Bunss

] 12 ,
3
4 [
(X/ι)

is not biregular: there is a flop phenomenon around each of the 16 aforementioned rational curves.

Precisely, after blowing-up the 16 curves, we exactly get the resolution ̂Bunss1
2
(X/ι) of the previous

moduli space by blowing-up the 16 conic points. Then, exceptional divisors are ≃ P1 × P1 and we
can contract them back to rational curves by using the other ruling; this is the way the map can is
constructed here. In particular, we get a second minimal resolution of Bunss1

2
(X/ι).

For µ ∈ [34 ,
5
6 [: Here, we finally contract the strict transforms of Π′

i to the points Qi.

The Galois involution of the ramified cover φ : Bun(X/ι)
2:1−→ Bun(X)

Υ := OP1 (−3)⊗ elm+
W : Bun(X/ι)

∼−→ Bun(X/ι)

148



induces isomorphisms between moduli spaces

Υ : Bunssµ (X/ι)
∼−→ Bunssµ′(X/ι)

where µ′ is defined by µ′
i =

1
2−µi for all i. In particular, it underlines the symmetry of our democratic

family of moduli spaces around µ = 1
2 : the Galois involution induces a biregular involution of

Bunss1
2
(X/ι), as well as isomorphisms

Bunss
] 14 ,

1
2 [
(X/ι)

∼←→ Bunss
] 12 ,

3
4 [
(X/ι) and Bunss

] 16 ,
1
4 ]
(X/ι)

∼←→ Bunss
[ 34 ,

5
6 [
(X/ι).

Considering now the composition

Bunss
] 16 ,

1
4 ]
(X/ι)

can
""# Bunss

[ 34 ,
5
6 [
(X/ι)

Υ−→ Bunss
] 16 ,

1
2 [
(X/ι),

we get the (birational) Galois involution of the map φ : P3
b ""# P3

NR described in Proposition 3.5.9.
This is known as the Geiser involution (see [Dol10], § 4.6); it is a degree 7 birational map. The
combination of all wall-crossing phenomena described in § 3.6.4, when µ is varying from 1

6 to 5
6 ,

provides a complete decomposition of this map (see Table 8):

• first blow-up 6 points (the Qi along the embedding X/ι
∼−→ ∆ ⊂ P3

b),

• flop 16 rational curves (the strict transforms of the twisted cubic ∆ and all lines ∆ij),

• contract 6 planes (namely strict transforms of Π′
i onto Qi),

• then compose by the unique isomorphism sending Q′
i → Qi.

̂Bunss
1
2
(X/ι)

∆,∆ij blow-up

(16 curves)
::♦♦♦

♦
♦
♦
♦
♦
♦
♦
♦
♦

!!

∆′,∆′
ij blow-up

##❖❖
❖
❖
❖
❖
❖
❖
❖
❖
❖
❖

Bunss
] 14 ,

1
2 [
(X/ι)

Qi blow-up (6 points)

!!

##

Bunss
] 12 ,

3
4 [
(X/ι)

::
Q′

i blow-up

!!

Bunss
1
2
(X/ι)

Bunss
] 16 ,

1
4 ]
(X/ι)

;;

Υ

∼
<<
Bunss

[ 34 ,
5
6 [
(X/ι)

Table 8: Geometry of the Geiser involution.

3.6.5 A sufficient collection of charts

As a note, we now describe how to complete our preferred charts in order to cover Bunind(X/ι).

Consider our first main chart P1
R × P1

S × P1
T and permutations thereof. By the latter, we mean

charts P1
i × P1

j × P1
k obtained by choosing three distinct elements i, j, k ∈ {0, 1, r, s, t,∞}, setting
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µi = µj = µk = 0 and all the other weights equal to 1
2 . The birational relations between those are

obvious. In view of § 3.4.1, all of these together are sufficient to cover all stable bundles in Bun(X).

Now add the two democratic charts P3
B = P3

b = Bunss1
5
(X/ι) and Bunss1

3
(X/ι). Table 9 lists which

non-stable elements of Bun(X) occur in the image under φ of these and P1
R × P1

S × P1
T . Here we use

a checkmark sign (%) only if, in view of Section 3.4, we can be certain that every bundle of a given
type can be found, a quotient mark (?) when certain of them can possibly be found, and nothing
when no bundle of this type can be found.

We conclude that all of the above are sufficient to cover Bun∗(X). It then suffices to add for each
the corresponding Galois-involution chart in order to cover Bunind(X/ι).

bundle type P3
b Bunss1

3
(X/ι) P1

R × P1
S × P1

T

unipotent generic % % ?
special % ?
twisted % % ?

affine
semi-stable
decomposable

L0 = OX([P ]− [Q]) with
P,Q ∈ X \W and P ̸= Q

% % ?

L0 ⊕ L−1
0 L0 = OX([P ]− [w]) with

P ∈ X \W and w ∈W
% ?

L⊗2
0 = OX

Gunning
bundle

even, ϑ ≃ OX([wr] + [ws]− [wt]) %

even, other ϑ
odd, ϑ ∈ {[w1], [w0], [w∞]} % %

odd, other ϑ %

Table 9: Non stable bundles that can be found in the image in Bun(X) .

3.6.6 Application to the Hitchin fibration

Let us denote by Buns(X) ≃ MNR \ Kum(X) the moduli space of stable rank two bundles with
trivial determinant bundle over X. For E ∈ Buns(X), the cotangent space of Buns(X) at E is
isomorphic, by Serre duality, to H0(X, sl(E)⊗Ω1

X), i.e., to the space of trace free holomorphic Higgs
fields θ : E → E ⊗ Ω1

X on E. In particular, we have a canonical isomorphism

T∨Buns(X) ≃ Higgs(X) ,

where Higgs(X) denotes the moduli space of tracefree holomorphic Higgs bundles (E, θ) with E
stable. In [Hit87a], Hitchin considered (in a more general setting) the map

Hitch :

{
Higgs(X) → H0(X,Ω1

X ⊗ Ω1
X)

(E, θ) +→ det(θ)

}
(3.31)

and established that it defines an algebraically completely integrable Hamiltonian system: the Liou-
ville form on MNR induces a symplectic structure on Higgs(X) and writing a quadratic differential

as (h2x2 + h1x+ h0)
(
dx
y

)⊗2
, the 3 components of Hitch

h0, h1, h2 : Higgs(X)→ C
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are holomorphic functions commuting to each other for the Poisson structure. Moreover, fibers of
the Hitchin map are open sets of 3-dimensional abelian varieties. One can also associate to (E, θ)
the spectral curve spec(θ), which is the double-section of the projectivized bundle PE → X defined
by the eigendirections of θ. This curve spec(θ) is thus a two-fold ramified cover of X, ramifying at
zeroes of the quadratic form Hitch(E, θ); the spectral curve is constant along Hitchin fibers and its
Jacobian is the compactification of the fiber (see for example [Hur96]). A broad field of applications
has been deduced from the various algebraic and geometric properties of the Hitchin system and its
generalizations since then. As an application of our description of the map Bun(X/ι) → Bun(X),
we shall now calculate the Hitchin Hamiltonians hi explicitly.

Denote by Higgs(X/ι) the set of triples (E, θ, p) where (E, p) ∈ Bun(X/ι) corresponds to a stable
bundle E ∈ Buns(X) and where

θ : E → E ⊗ Ω1
P1(W )

is a logarithmic Higgs field with at most apparent singularities over W : the residue at any wi ∈ W
is either zero or nilpotent and the parabolic p

wi
is a 0-eigendirection of the residue. For fixed (E, p),

we denote by H0(P1, sl(E)⊗ Ω1
P1(W ))appp the space of such apparent logarithmic Higgs fields on E.

Note that Higgs(X/ι) is canonically identified with the cotangent bundle of Bun(X/ι) (restricted
to the preimage of Buns(X)). Indeed, firstly, we identify the tangent space of the moduli space of
parabolic bundles at the point (E,p) with by H1(P1, sl(E,p)) where sl(E,p) is the sheaf of tracefree
endomorphisms of E over P1

x that preserve the parabolic structure. Secondly, by Serre duality, we
have a perfect pairing

⟨·, ·⟩ :
{

H1(P1, sl(E,p))×H0(P1, sl(E)⊗ Ω1
P1(W ))appp → H1(P1,Ω1

P1) ≃ C
(φ, θ) +→

∑
Res(trace(φ · θ)) .

Let E ∈ Buns(X). Since E is stable, the hyperelliptic involution (up to a sign) h : E → ι∗E
given by Corollary 3.3.3 does not depend on the choice of an irreducible connection on E. It follows
that for any Higgs field θ on E, the following diagram commutes

E θ ""

h
!!

E ⊗ Ω1
X

ι∗E ι∗θ"" ι∗E ⊗ Ω1
X .

ι∗h

++

Hyperelliptic decent of the pair (E, θ) then produces two triples (E, θ, p) ∈ Higgs(X/ι). Let us
calculate the composition

Higgs(X/ι)
2:1−→ Higgs(X)

Hitch−→ H0(X,Ω1
X ⊗ Ω1

X) (3.32)

in the affine part C3
(R,S,T ) of our first main chart of Bun(X/ι) (see § 3.6.2). Let (E,p) ∈ Bun(X/ι)

correspond to (R0, S0, T0) ∈ C3
(R,S,T ). We have E = OP1(−1) ⊕ OP1(−2). We may choose a pair of

meromorphic sections (e1, e2) of E forming a frame over P1 \ {∞} such that e1 is a section of the
subbundle OP1(−1) ↪→ E and e2 defines a subbundle L ≃ OP1(−2) ↪→ E, such that moreover the
parabolic structure p is given by

x = 0 x = 1 x = r x = s x = t x =∞(
0
1

) (
1
1

) (
R0

1

) (
S0

1

) (
T0

1

)
L

,
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The vector field ∂
∂R ∈ T(R0,S0,T0)Bun(X/ι) for instance is given in H1(P1, sl(E,p)) by the cocycle

φ01 :=

(
0 1
0 0

)

over U01 = U0 ∩U1 with U0 := P1 \ {r} and U1 := Dε(r). Indeed, if we glue the restrictions (E,p)|U0

and (E,p)|U1 by the map

exp(ζφ01) =

(
1 ζ
0 1

)
:
(
(E,p)|U1

)
|U01 → (E,p)|U0 ,

we get the new parabolic bundle defined by (R0+ ζ, S0, T0), i.e., the point defined by the time-ζ map
generated by the vector field ∂

∂R . A straightforward calculation (see [HL15, Prop. 6.1]) shows that
the dual basis with respect to ⟨·, ·⟩ of the basis

(
∂

∂R
,
∂

∂S
,
∂

∂T

)

of T(R0,S0,T0) Bun(X/ι) then is (Θr,Θs,Θt) |(R,S,T )=(R0,S0,T0), given with respect to the trivial chart
over P1 of E defined by the frame (e1, e2) by

Θr =

(
0 0

1−R 0

)
dx
x +

(
R −R
R −R

)
dx
x−1 +

(
−R R2

−1 R

)
dx
x−r

Θs =

(
0 0

1− S 0

)
dx
x +

(
S −S
S −S

)
dx
x−1 +

(
−S S2

−1 S

)
dx
x−s

Θt =

(
0 0

1− T 0

)
dx
x +

(
T −T
T −T

)
dx
x−1 +

(
−T T 2

−1 T

)
dx
x−t .

(3.33)

Corollary 3.6.3. The Liouville form on C3
(R,S,T ) given by dR + dS + dT defines a holomorphic

symplectic 2-form on Higgs(X/ι) ⊂ T∨Bun(X/ι) given with respect to the chart C6
(R,S,T,cr,cs,ct)

by

dR ∧ dcr + dS ∧ dcs + dT ∧ dct.

Any Higgs field Θ on E respecting the parabolic structure p given by (R,S, T ) is a unique linear
combination of the above Θi’s:

Θ = crΘr + csΘs + ctΘt . (3.34)

In particular, we obtain a universal Higgs bundle over C6
(R,S,T,cr,cs,ct)

⊂ T∨Bun(X/ι). The im-

age of such a triple (E,Θ,p) under the map (3.32) is simply given by det(Θ), where (E,Θ) :=

elm+
W (π∗(E,Θ)) and the elementary transformations are taken with respect to the hyperelliptic lift

p of the parabolic structure p. On the other hand, in affine charts of X, elementary transformations
are simply meromorphic gauge transformations, acting by conjugacy on Θ. Therefore, to get Hitchin
Hamiltonians on the chart (R,S, T, cr , cs, ct), we just have to compute

det(crΘr + csΘs + ctΘt) = (h2x
2 + h1x+ h0)

(dx)⊗2

x(x− 1)(x− r)(x− s)(x− t)
.

A straightforward computation yields the explicit Hitchin Hamiltonians for Higgs(X/ι) given in Table
10.
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h0 = (cr(R − 1) + cs(S − 1) + ct(T − 1)) (crst(R− r)R+ csrt(S − s)S + ctrs(T − t)T )

h1 = +cr (cr(s+ t)(r + 1) + css(t+ 1) + ctt(s+ 1))R2 − cr 2 (t + s)R3

+cs (cs(r + t)(s+ 1) + crr(t+ 1) + ctt(r + 1))S2 − cs2 (t + r)S3

+ct (ct(r + s)(t+ 1) + crr(s+ 1) + css(r + 1))T 2 − ct2 (r + s)T 3

−crcs(t(R− 1 + S − 1) + r(S − s) + s(R− r))RS
−crct(s(R− 1 + T − 1) + r(T − t) + t(R− r))RT
−csct(r(S − 1 + T − 1) + s(T − t) + t(S − s))ST
− (ct t(r + s) + crr(s + t) + css(r + t)) (crR+ csS + ctT )

h2 = (cr(R − 1)R+ cs(S − 1)S + ct(T − 1)T ) (cr (R − r) + cs(S − s) + ct(T − t))

Table 10: Explicit Hitchin Hamiltonians for the chart P1
R × P1

S × P1
T of Bun(X/ι)

It is easy to check that these functions indeed Poisson-commute: for any f, g ∈ {h0, h1, h2}, we
have ∑

i=r,s,t

∂f

∂pi

∂g

∂qi
−
∂f

∂qi

∂g

∂pi
= 0

in Darboux notation (pr, ps, pt, qr, qs, qt) := (R,S, T, cr, cs, ct).

Consider the natural rational map φ∗ : T∨P3
NR ""# T∨P1

R × P1
S × P1

T induced by the explicit

map φ : P1
R × P1

S × P1
T ""# P3

NR of Proposition 3.6.1. Then, for a general section µ0d
(
v0
v3

)
+

µ1d
(
v1
v3

)
+ µ2d

(
v2
v3

)
, the Hitchin Hamiltonians with respect to these coordinates (see § 3.5.2) are

straightforward to calculate. The page-filling formula is given explicitly in [HL15, Table 12]. From
the explicit coordinate change (v0 : v1 : v2 : v3) ↔ (t0 : t1 : t2 : t3) given in (3.21), we know how to
identify general sections

η0d

(
t0
t3

)
+ η1d

(
t1
t3

)
+ η2d

(
t2
t3

)
= µ0d

(
v0
v3

)
+ µ1d

(
v1
v3

)
+ µ2d

(
v2
v3

)
,

yielding

Hitch :

{
Higgs(X) → H0(X,Ω1

X ⊗Ω1
X)

((t0 : t1 : t2 : t3), η0, η1, η2) +→ (h2x2 + h1x+ h0)
(dx)⊗2

x(x−1)(x−r)(x−s)(x−t)

}
,

where Hitchin Hamiltonians are given in Table 11.
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h0 = 1
4t43

·

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rst·
[
η0(t20 − t23) + η1(t0t1 + t2t3) + η2(t0t2 + t1t3)

]2

−st·
[
η0(t0t1 − t2t3) + η1(t21 + t23) + η2(t0t3 + t1t2)

]2

+4rs· (η0t0 + η1t1)
2 t23

−rt·
[
η0(t20 + t23) + η1(t0t1 + t2t3) + η2(t0t2 − t1t3)

]2

h1 = 1
4t43

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t·
(
t20 + t21 + t22 + t23

) [
(η20 + η21 + η22)t

2
3 + (η0t0 + η1t1 + η2t2)2

]

+st·
(
t20 − t21 + t22 − t23

) [
(η20 − η21 + η22)t

2
3 − (η0t0 + η1t1 + η2t2)2

]

+4r· (t0t2 − t1t3) t3 [η0η2t3 + (η0t0 + η1t1 + η2t2)η1]

+4sr· (t0t2 + t1t3) t3 [η0η2t3 − (η0t0 + η1t1 + η2t2)η1]

+4s· (t0t3 + t1t2) t3 [η1η2t3 − (η0t0 + η1t1 + η2t2)η0]

+4rt· (t0t1 + t2t3) t3 [η0η1t3 − (η0t0 + η1t1 + η2t2)η2]

h2 = 1
4t43

·

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s·
[
η0(t0t2 + t1t3) + η1(t0t3 + t1t2) + η2(t22 − t23)

]2

−1·
[
η0(t0t2 − t1t3) + η1(t0t3 + t1t2) + η2(t22 + t23)

]2

−t·
[
η0(t0t1 + t3t3)− η2(t0t3 − t1t2) + η1(t22 + t23)

]2

+4r· (η1t1 + η2t2)
2 t23

Table 11: Explicit Hitchin Hamiltonians for the coordinates (t0 : t1 : t2 : t3) of MNR.

The reason behind the fact that the explicit Hitchin Hamiltonians have a much simpler expression
with respect to the coordinates (t0 : t1 : t2 : t3) than with respect to the coordinates (v0 : v1 : v2 : v3)
of MNR is that equation of the Kummer surface with respect to the former is very symmetric.
As pointed out in [VGP96], the classical line geometry for Kummer surfaces in P3 is related to
certain symmetries of the Hitchin Hamiltonians. Note that in [VGP96], B. van Geemen and E.
Previato conjectured a projective version of explicit Hitchin Hamiltonians, which has been confirmed
in [GTNB98]. Their Hamiltonians H1, . . . H6 are evaluations, up to functions in the base, of the
explicit Hitchin map at the Weierstrass points. This can now be made precise: from the coefficients
A,B,C,D of the Kummer surface in (3.22), one checks that our normalized W corresponds to the
λi’s in [VGP96] when identifying (λ1,λ2, . . . ,λ6) = (0, t, 1, s, r,∞). Now if we denote

h(x) := h2x
2 + h1x+ h0,

then
H1 = 4h(0)

rst H4 = 4h(s)
s(s−1)(s−r)(s−t)

H2 = − 4h(t)
t(t−1)(t−r)(t−s) H5 = 4h(r)

r(r−1)(r−s)(r−t)

H3 = 4h(1)
(r−1)(s−1)(t−1) H6 = 0.

3.7 The isomonodromy foliation

Let Con(X) be as in Section 3.3, and denote by Con∗(X) the subset defined as the complement of the
trivial connection dX on the trivial vector bundle over X and twists thereof. Moreover, denote by
Con∗(X/ι) ⊂ Con(X/ι) the set of those parabolic connections (E,∇) that are mapped to an element
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of Con∗(X) under the hyperelliptic lift elm+
W ◦ π

∗. We are going to cover Con∗(X/ι) by an atlas of
affine charts C6 in § 3.7.1. Then, by allowing variations of the position of the points W over which
the parabolic structure p given by ∇ is defined, we obtain a space M of triples (E,∇,W ) which by
hyperelliptic lift describes a space M of triples (X,E,∇), where X is a curve of genus 2, E is a rank
2 vector bundle with trivial determinant bundle and ∇ a holomorphic trace free connection on E
with either abelian (but not trivial or a twist thereof) or irreducible monodromy. The isomonodromy
foliation Fiso on M is induced from the isomonodromy foliation F iso on M. The latter is well-known
and can be expressed explicitly as a Hamiltonian system derived from the Garnier equations (see
§ 3.7.2). On the other hand, we have explicit expressions of the loci in M corresponding to special
types of flat bundles inBun(X), for example the Gunning bundles. We prove by explicit computation
that Fiso is transversal to this locus of Gunning bundles in § 3.7.3, which provides an alternative
proof of a theorem of Hejhal (see § 3.7.4).

3.7.1 An atlas of Con∗(X/ι)

Let Ẽ := OP1 ⊕OP1(−1), given by the affine chart (P1 \ {∞})×C2 with coordinates (x, Y ), together
with the affine chart (P1\{0})×C2 with coordinates (x̂, Ŷ ) =

(
1
x , (

1 0
0 x )Y

)
. Unless otherwise specified,

the formulae in the following will be with respect to the coordinates (x, Y ). We define a parabolic
structure p̃ on Ẽ as follows:

x = 0 x = 1 x = r x = s x = t x =∞(
0
1

) (
1
1

) (
zr
1

) (
zs
1

) (
zt
1

)
OP1(−1) . (3.35)

Note that the only automorphisms of Ẽ fixing p̃ are the scalar ones. For any choice of κi ∈ C∗ with
i ∈W = {0, 1, r, s, t,∞} we define ρ ∈ C by

κ0 + κ1 + κr + κs + κt + κ∞ + 2ρ = 1 .

We are going to consider logarithmic connections ∇̃ : Ẽ → Ẽ ⊗ Ω1
P1(W ) with eigenvalues

⎛

⎝
x = 0 x = 1 x = r x = s x = t x =∞
0 0 0 0 0 ρ
κ0 κ1 κr κs κt κ∞ + ρ

⎞

⎠ . (3.36)

More precisely, we consider such connections such that moreover the parabolic structure p̃ on Ẽ

coincides with the parabolic structure defined by the κi-eigendirections of the residues of ∇̃ over
W \ {∞} and the (ρ+ κ∞)-eigendirection of the residue of ∇̃ over x =∞. Such a connection can be
written as

∇̃ = ∇0 + crΘr + csΘs + ctΘt (3.37)

with

∇0 := d+

(
0 0
ρ κ0

)
dx

x
+

(
−ρ ρ+ κ1
−ρ ρ+ κ1

)
dx

x− 1
+

∑

i∈{r,s,t}

(
0 ziκi
0 κi

)
dx

x− i

and

Θi :=

(
0 0

1− zi 0

)
dx

x
+

(
zi −zi
zi −zi

)
dx

x− 1
+

(
−zi z2i
−1 zi

)
dx

x− i
,
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where (zr, zs, zt, cr, cs, ct) ∈ C6. Note that the residue of ∇̃ at x = ∞ is given with respect to the
coordinate Ŷ by (

ρ 0
ρ+ cr(r − zr) + cs(s− zs) + ct(t− zt) ρ+ κ∞

)
.

Moreover, for residues of ∇̃ over finite points (and coordinate Y ), the eigendirections with respect to
the 0-eigenvalues are generated by

x = 0 x = 1 x = r x = s x = t(
− κ0
ρ+

∑
i∈{r,s,t} ci(zi−1)

1

) (
1 + κ1

ρ+
∑

i∈{r,s,t} cizi

1

) (
zr − κr

cr
1

) (
zs − κs

cs
1

) (
zt − κt

ct
1

)
.

It is immediate to check that for any fixed choice of the κi’s in C∗, two connections (Ẽ, ∇̃)
constructed as above for distinct values of

(z, c) := (zr, zs, zt, cr, cs, ct) ∈ C6

are non isomorphic. We deduce a description of certain affine charts of Con(X/ι) as follows.

• The canonical chart U0: Set κi =
1
2 for all i ∈ W . For any element of C6

(z,c), consider the

corresponding connection (Ẽ, ∇̃) in (3.37). Let (OP1 (−1) , ζ) be the (unique) logarithmic rank
1 connection over P1 having a single pole at infinity. Then (E,∇) := (Ẽ, ∇̃) ⊗ (OP1 (−1) , ζ)
is a logarithmic connection whose eigenvalues are given by (3.36) except at x =∞, where the
eigenvalues have been shifted to (ρ+ 1, ρ+ κ∞ + 1). In particular, since here we have κ∞ = 1

2
and thus ρ = −1, each of the residues of (E,∇) has eigenvalues 0 and 1

2 . Hence (E,∇) is an
element of Con(X/ι), whose parabolic structure p (given by the 1

2 -eigendirections of ∇) is the
following

x = 0 x = 1 x = r x = s x = t x =∞(
0
1

) (
1
1

) (
zr
1

) (
zs
1

) (
zt
1

)
OP1(−2) . (3.38)

If we denote by U0 ⊂ Con(X/ι) the set of parabolic connections thusly constructed, we have
a canonical isomorphism U0 ≃ C6

(z,c) and a universal connection over U0 × P1 given by (3.37),

tensorised by (OP1 (−1) , ζ). Note that the Higgs fields Θi are identical to the ones in (3.33) for
(R,S, T ) = (zr, zs, zt). In particular, U0 is isomorphic to the restriction of T∨P1

R × P1
S × P1

T to
the affine part of P1

R × P1
S × P1

T ⊂ Bun(X/ι).

• The 7 switched charts UJ : Let ∅ ̸= J ⊂ {r, s, t}. Set κj = −1
2 for all j ∈ J and κi =

1
2

for all i ∈ W \ J . For any element of C6
(z,c) consider the corresponding connection (Ẽ, ∇̃)

in (3.37). Let (OP1 , η) be the (unique) logarithmic rank 1 connection over P1 of the form
η : OP1(−1) → OP1(−1) ⊗ Ω1

P1(J + [∞]) having eigenvalues +1
2 over each element in J and

eigenvalue 1 − #J
2 over ∞. Then (E,∇) := (Ẽ, ∇̃) ⊗ (OP1(−1), η) is an element of Con(X/ι).

Denote by UJ the set of logarithmic connections thusly constructed. Again we have a canonical
isomorphism UJ ≃ C6

(z,c) and a universal connection over UJ×P1 given by (3.37), tensorised by

(OP1 , η). Here, the parabolic structure p defined by the 1
2 -eigendirections of ∇ is the following

x = 0 x = 1 x = i x = j x =∞(
0
1

) (
1
1

) (
zi
1

) (
2cjzj + 1

cj

)
OP1(−2) for i ∈ {r, s, t} \ J , j ∈ J ,

wheras the 0-eigendirections over J are given by (zj , 1)ᵀ .
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• The twisted chart Utw: Set κ0 = κ1 = −1
2 and κi =

1
2 for all i ∈ W \ {0, 1}. Denote again

by (Ẽ, ∇̃) the connection in (3.37) associated to a point in C6
(z,c) for this choice of the κi’s.

Let (E,∇) be the connection obtained from (Ẽ, ∇̃) by applying the two negative elementary
transformations in the 0-eigendirections of ∇̃ over x = 0 and x = 1. Again, (E,∇) is an element
of Con(X/ι) and we denote by Utw ≃ C6 the set of logarithmic connections thusly constructed,
which comes with a universal connection over Utw×P1. Note that it may happen, for particular
choices of (z, c), that the 0-eigendirections of ∇̃ over x = 0 and x = 1 are both given by (1, 0)ᵀ .
In that case, we have E = OP1 ⊕OP1(−3). Otherwise, we obtain E ≃ OP1(−1)⊕OP1(−2).

• The 9 · (6! − 1) permuted charts U0,σ, UJ,σ, Utw,σ: For any σ ∈ S({0, 1, r, s, t,∞}) \ {id},
instead of ∇0 and the Θ′

is in (3.37) respecting the parabolic structure p̃ in (3.36) on Ẽ, we
could have started with an analogous construction of connection and Higgs fields respecting
the normalized parabolic structure given by

x = σ(0) x = σ(1) x = σ(r) x = σ(s) x = σ(t) x =∞(
0
1

) (
1
1

) (
zr
1

) (
zs
1

) (
zt
1

)
OP1(−1) .

For that new choice, we obtain similar construction of canonical, switched and twisted chart.

• The 9 · 6! Galois involution charts: Choose any of the above charts U together with
its universal family of connections. First apply positive elementary transformations in all 1

2 -
eigendirections of the universal family of connections. We obtain logarithmic connections with
eigenvalues 0 and −1

2 over each Weierstrass point. Then tensorize this connection by the
unique logarithmic (rank 1) connection on OP1(−3) having eigenvalues 1

2 over each Weierstrass
point. We obtain a new chart U ′, such that the images of U and U ′ under the hyperellitic lift
Con(X/ι)→ Con(X) coincide.

By construction, the above are indeed all affine charts of Con(X/ι). Moreover, the transition maps
between charts are all birational. Using Proposition 3.3.5, one easily checks that the image under
Con(X/ι)→ Bun(X/ι) of the union of all of the above charts is surjective. Then, analysing possible
connections over different types of bundles, one deduces the following (see [HL15, Prop. 7.1]).

Proposition 3.7.1. The union of all of the above charts is given by the subset Con(X/ι)∗ ⊂ Con(X/ι)
defined as the complementary of the preimage of those elements of Con(X) that are not the trivial
connection on the trivial bundle nor a twist thereof.

3.7.2 The isomonodromy Hamiltonian system

Recall that our base curve X and its quotient X/ι are defined, via X = Xr,s,t : y2 = x(x − 1)(x −
r)(x− s)(x− t), by a parameter (r, s, t) in

T := {(r, s, t) ∈ C3 | r, s, t ̸= 0, 1, r ̸= s, r ̸= t, s ̸= t} .

The construction carried out in § 3.7.1 of charts of Con∗(X(r,s,t)/ι) naturally generalises to families
with varying (r, s, t), yielding families M → T and M → T such that M|(r,s,t) = Con∗(X(r,s,t)) and
M|(r,s,t) = Con∗(X(r,s,t)/ι). We shall denote by Φ : M → M the map which for each fixed (r, s, t)
corresponds to the hyperelliptic lift.

Note that a family of tracefree rank two connections defined over the total space of a family of
genus 2 curves Xr,s,t parametrized by an open set of T is isomonodromic if and only if it is isomon-
odromic after hyperellitpic descent. Since families of logarithmic connections are isomonodromic if

157



and only if the connection matrices of the family are integrable, and locally in M we have universal
families of connections, the integrability condition defines a (singular holomorphic) foliation F iso on
M, inducing a foliation Fiso on M. We refer to F iso and Fiso as the isomonodromy foliation. Note
moreover that isomonodromic families of logarithmic connections over P1 remain isomonodromic if
we perform elementary transformations in the eigendirections of the residues and or tensorise with
a flat rank 1 connection. We may thus describe the isomonodromic foliation in (lifts over T of) the
canonical chart, the switched charts and the twisted chart simultaneously by describing the integra-
bility condition for families of connections (Ẽ, ∇̃) with Ẽ = OP1 ⊕OP1(−1) and ∇̃ given by a point
in C6

(z,c) as at the beginning of § 3.7.1. This integrability condition is well-known (see [Oka86]) to
be given by a Hamiltonian system, usually expressed with respect to the coordinates

(q, p) = (q1, q2, q3, p1, p2, p3) ,

which will also be Darboux coordinates with respect to the symplectic form ω =
∑

i∈{r,s,t} dzi ∧ dci,
and are defined as follows. The vector e1 = (1, 0)ᵀ becomes an eigenvector of the connection matrix of
∇̃ for 3 points x = q1, q2, q3 (counted with multiplicity), namely at the zeroes of the (2, 1)-coefficient
of the connection matrix:

− ρ+
∑

i∈{r,s,t}

ci
(zi − i)x− i(zi − 1)

x− i
=

(
−ρ+

3∑

i=1

ci(zi − i)

) ∏3
k=1(x− qk)∏

i∈{r,s,t}(x− i)
(3.39)

At each of the three solutions x = qk of (3.39), the eigenvector e1 = (1, 0)ᵀ is associated to the
eigenvalue

pk := −
ρ

qk − 1
+

∑

i∈{r,s,t}

cizi

(
1

qk − 1
−

1

qk − i

)
. (3.40)

The equations (3.39) and (3.40) allow us to express our initial variables (z, c) as rational functions
of the new variables (p, q) as follows. Set ∆ = (q1 − q2)(q2 − q3)(q3 − q1) and

Λ = ρ+
∑

{k,l,m}={1,2,3}

pk(qk − r)(qk − s)(qk − t)

(qk − ql)(qk − qm)
.

For i ∈ {r, s, t}, denote
Λi := Λ|i=1

the rational function obtained by setting i = 1 in the expression of Λ. Then we have, for {i, j, k} =
{r, s, t}

ci = −
(q1 − i)(q2 − i)(q3 − i)

i(i− 1)(i − j)(i− k)
Λ and zi = i

Λi

Λ
. (3.41)

The rational map
Π : C6

(q,p) ""# C6
(z,c) (3.42)

has degree 6: the (birational) Galois group of this map is the permutation group on indices k = 1, 2, 3
for pairs (qk, pk). For i ∈ {r, s, t} define Hi by

i(i− 1)
∏

j∈{r,s,t}\{i}

(j − i) ·Hi :=

3∑

l=1

∏
k ̸=l(qk − i)

∏
k ̸=l(qk − ql)

F (ql)

(
p2l −G(ql)pl +

pl
ql − i

)
+ ρ(ρ+ κ∞)

3∏

l=1

(ql − i),
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where F (x) = x(x− 1)(x− r)(x− s)(x− t) and G(x) = κ0
x + κ1

x−1 +
κr
x−r +

κs
x−s +

κt
x−t . Then, assuming

κi ̸∈ Z for any i ∈ {0, 1, r, s, t,∞}, a local analytic map

χ : (r, s, t) +→ (q1, q2, q3, p1, p2, p3)

induces an isomonodromic deformation of the connection (3.37) if, and only if,

∂qk
∂i

=
∂Hi

∂pk
and

∂pk
∂i

= −
∂Hi

∂qk
∀i ∈ {r, s, t}, k ∈ {1, 2, 3}. (3.43)

In other words, the isomonodromic foliation F iso is given with respect to the various charts of M
corresponding to families of C6

(z,c) over T as the kernel of the 2-form

Ω =
3∑

k=1

dqk ∧ dpk +
∑

i∈{r,s,t}

dHi ∧ di.

In particular, F iso is 3-dimensional, transversal to fibers of the family M → T and χ locally
parametrizes a leaf of this foliation. The tangent space to the foliation is defined by the 3 vec-
tor fields Vr, Vs, Vt given by

Vi :=
∂

∂i
+

3∑

k=1

(
∂Hi

∂pk

)
∂

∂qk
−

3∑

k=1

(
∂Hi

∂qk

)
∂

∂pk
. (3.44)

Note that the polar locus of these vector fields is given by (q1 − q2)(q2 − q3)(q1 − q3) = 0, namely
the critical locus of the map (3.42).

3.7.3 Transversality to the locus of Gunning bundles

Theorem 3.7.2. For any even theta-characteristic ϑ, the locus {(X,Eϑ,∇) ∈M} of connections on
the Gunning bundle Eϑ, is transversal to the isomonodromy foliation Fiso.

Proof. Up to permuting the role of the Weierstrass points, we can assume

ϑ = OX([wr] + [ws]− [wt]) = OX([w0] + [w1]− [w∞]).

Recall from § 3.4.6 that the corresponding Gunning bundle Eϑ has two preimages (E,p) ∈ Bun(X/ι).
They both satisfy E = OP1(−2)⊕OP1(−1) and the two parabolic structures are characterized by the
fact that the destabilizing bundle OP1(−1) ⊂ E contains precisely all parabolics associated to one of
the two subsets {r, s, t} ∪ {0, 1,∞} = W (see Figure 15).

Up to a Möbius transformation in X/ι (and thus a rational change of variables (r, s, t)), it is
sufficient to consider the configuration on the left hand side of Figure 15. Any connection in Con∗(X/ι)
yielding this configuration under the forgetful map Con∗(X/ι)→ Bun∗(X/ι) is visible in the Switched
chart UJ ≃ C6

(z,c) for J = {r, s, t}, and is therefore obtained (by tensor product with a certain rank

1 connection) for a particular value of (z, c) from (Ẽ, ∇̃) in (3.37) with the following exponents:

κ0 = κ1 = κ∞ =
1

2
and κr = κs = κt = −

1

2
(⇒ ρ =

1

2
)

(see § 3.7.1). More precisely, such a point (z, c) ∈ UJ yields a configuration corresponding to the
Gunning bundle Eϑ as in Figure 15 if and only if the 0-eigenspaces of the residues of ∇̃ over x = r, s, t
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Figure 15: The two parabolic bundles corresponding to Eϑ with ϑ = OX([wr] + [ws]− [wt]).

coincide with the destabilizing subbundle OP1 ⊂ Ẽ = OP1 ⊕OP1(−1) in the fibers over these points.
From the explicit formulae for these 0-eigenspaces we deduce that the locus of the Gunning bundle
Eϑ in UJ is given by {cr = cs = ct} = 0 and is parametrized by z ∈ C3. Allowing now variations the
parameter (r, s, t) defining X, we are let to consider the locus in M of even Gunning bundles Eϑ,
given by

Ξ := {((r, s, t), (z, c)) ∈ T × UJ | ci = 0} .

Consider now the rational map

T × C6
(q,p)

Π
""# T × UJ ⊂M

((r, s, t), q, p)
6:1+→ ((r, s, t),z, c)) .

(3.45)

defined in (3.42). For practical reasons, in the following we denote (q, p) = (qr, qs, qt, pr, ps, pt) instead
of the indices 1, 2, 3 in (3.42). Namely, formula (3.41) shows that the Gunning locus Ξ coincides with
the image under Π of

ΞDarb = {((r, s, t), (q, p)) ∈ T × C6
(q,p) | qr = r, qs = s, qt = t}.

Note that both Ξ and ΞDarb are Zariski-open subsets of six-dimensional linear subspaces of C9,
parametrized by (r, s, t, p) and (r, s, t,z) respectively. The map Π induces on these linear spaces an
affine transformation given by

zr = r(2(r − 1)pr + 1), zs = s(2(s − 1)ps + 1), zt = t(2(t− 1)pt + 1).

Note that according to (3.41), the polar locus of the map Π is {(qr− qs)(qr− qt)(qs− qt) = 0}, which
is disjoint from ΞDarb ⊂ T × C6

(q,p). On the other hand, locally in T we can define a right inverse of

Π by using (3.39) to define q with the additional requirement that Ξ is sent to ΞDarb, and using the
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following formula for p:

pj = −
ρ

qj − 1
+

∑

i∈{r,s,t}

cizi
qj − 1

+
zj(qk − j)(qℓ − j)(ρ −

∑
i∈{r,s,t} ci(zi − i))

j(j − 1)(j − k)(j − ℓ)
−

ckzk
qj − k

−
cℓzℓ
qj − ℓ

,

where {j, k, ℓ} = {r, s, t} (instead of (3.40), which is not defined on Ξ). This shows that there is a Eu-
clidian neighborhood of ΞDarb such that Π restricted to this neighborhood is a local diffeomorphism,
which moreover sends ΞDarb surjectively onto Ξ.

In order to show that the isomonodromy foliation F iso is transversal to Ξ it is thus sufficient to
prove the transversality of ΞDarb with the vector fields Vi defined in (3.44). Modulo the vector fields

∂

∂r
+

∂

∂qr
,

∂

∂s
+

∂

∂qs
,

∂

∂t
+

∂

∂qt
,

∂

∂pr
,

∂

∂ps
,

∂

∂pt
,

that are tangent to ΞDarb, the vector fields Vi for i ∈ {r, s, t} are equivalent respectively to

Ṽi = −
∂

∂qi
+

∑

j∈{r,s,t}

(
∂Hi

∂pj

)
∂

∂qj
.

We associate the column vector

(
Ṽr, Ṽs, Ṽt

)ᵀ
=

[(
∂Hi

∂pk

)

i,j∈{r,s,t}
− I

]
·
(
∂

∂qr
,
∂

∂qs
,
∂

∂qt

)ᵀ

,

where I denotes the identity 3-by-3 matrix. Calculation shows
[(

∂Hi

∂pj

)

i,j∈{r,s,t}
− I

]∣∣∣∣∣
(qr ,qs,qt)=(r,s,t)

=
1

2
· I,

which is clearly invertible. This proves transversality of the isomonodromic foliation F iso with the
locus Ξ of our even Gunning bundle in M. The transversality of Fiso with the locus Φ(Ξ) of our
even Gunning bundle in M then follows from the fact that the Gunning bundle is not in the fixed
point locus of the action of the Galois involution in the Switched chart UJ we considered, so that the

two-fold cover (r, s, t,z, c)
2:1
""# Φ(r, s, t,z, c) is a local diffeomorphism in a neighborhood of Ξ.

3.7.4 Projective structures and Hejhal’s theorem

As we shall now see, Theorem 3.7.2 provides an alternative proof, in the genus 2 case, of a theorem
of Hejhal concerning projective structures. The notion of projective structures on compact Riemann
surfaces goes back to the works of Schwarz on the hypergeometric equation (see [dSG10, Chap. VIII]).
A projective structure on X is given by an atlas of charts fi : Ui ⊂ X → C ⊂ P1 (holomorphic
diffeomorphisms) such that the transition maps ϕij := fj ◦ f−1

i are (restrictions to fi(Ui ∩ Uj)) of
Möbius transformations: ϕij ∈ PGL2(C). As proven in [Gun67b], the set of equivalence classes
of projective structures on X in in bijective correspondence with the vector space of quadratic
differentials

(
ν2x

2 + ν1x+ ν0
)(dx

y

)⊗2

∈ H0(X,Ω1
X ⊗ Ω1

X)
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with ν = (ν0, ν1, ν2) ∈ C3. This correspondence associates to ν an atlas of projective charts formed
by local solutions f of the Schwarzian differential equation

(
f ′′

f ′

)′
−

1

2

(
f ′′

f ′

)2

=
x3 + ν2x2 + ν1x+ ν0

F
−

1

2

F ′′

F
+

7

8

F ′F ′

F 2
,

where F (x) = x(x − 1)(x − r)(x − s)(x − t) and primes denote differentiation with respect to x
(see [dSG10, § IX.3.4]). On the other hand there is a bijective correspondence between equivalence
classes of projective structures on X and isomorphism classes of projectivised connections P(E,∇),
where E is any Gunning bundle (see again [Gun67b]). Equivalently, one may consider the set of
isomorphism classes of tracefree connections (Eϑ,∇) for a fixed ϑ-characteristic ϑ⊗2 ≃ Ω1

X , which we
have parametrized by C3

c. Following the calculation in [LM09, Prop. 2.1], one sees that the natural
identification C3

ν ≃ C3
c is holomorphic. The monodromy of a projective structure can be equivalently

defined as the monodromy of P(E,∇), the Schwarzian differential equation, or of any local projective
chart (it can be analytically continuated along any loop). Let us denote by Σ2 the real oriented
surface underlying X. We may consider projective structures along the family of complex structures
on Σ2 parametrized by T = C3

(r,s,t) \ {diagonals}. After lifting to the Teichmüller space, namely the

universal cover T̃ → T , the monodromy map

Mon : T̃ × C3
b → Hom(π1(Σ2, w),PGL2)/PGL2 . (3.46)

is well-defined and analytic. A problem which goes back to the work of Poincaré on Fuchsian functions
was to decide which kinds of conjugacy classes of representations in χ := Hom(π1(Σ2, w),PGL2)/PGL2

arise as the monodromy of a projective structure, i.e. as monodromy of (Eϑ,∇), for a suitable
complex structure on Σ2. Since both source and target of Mon are 6-dimensional, one expects most
elements of χ to be realizable by a projective structure. One the other hand, we know three types
of representations in χ that are certainly not realizable: those which are not in the image in χ of
Hom(π1(Σ2, w),SL2) - they do not come from tracefree connections; those which are in the image in
χ of unitary representations - they come from connections on stable bundles; and those which are
in the image of reducible representations in Hom(π1(Σ2, w),SL2) - they come from connections on
strictly semistable bundles. Is was proven in [GKM00] that any element of χ that does not belong
to one of these three sets of exceptions can be realised. Some time earlier, D. A. Hejhal proved in
[Hej75] a local version:

Theorem 3.7.3 (Hejhal). The monodromy map (3.46) is a local diffeomorphism.

Going back to our space M of triples (X,E,∇) we also have, locally in T (or, alternatively, after
lifting M over the universal cover of T ), a monodromy map

Mon : M→ Hom(π1(Σ2, w),SL2)/PGL2 , (3.47)

whose fibers are the leaves of the isomononodromic foliation Fiso. Note that in restriction to the
irreducible locus, Fiso is non-singular and Mon is a submersion. Moreover, the locus Ξ in M of
Gunning bundles with fixed even ϑ-characteristic is smooth and has dimension 6, complementary to
the dimension 3 of the isomonodromy leaves. Theorem 3.7.2 is therefore equivalent to saying that
that the restriction Mon|Ξ of the monodromy map in (3.47) to Ξ is a local diffeomorphism. After
proper identifications, it is therefore equivalent to Hejhal’s theorem.

Remark 3.7.4. Note that transversality of two submanifolds of M of complementary dimension
implies their topological transversality in the sense that their intersection is at most 0-dimensional.
The topological transversality of Ξ with the isomonodromy leaves, or equivalently, the openess of the
monodromy map Mon|Ξ, also follows from the main result in [Heu09].
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3.7.5 Further results and open questions

Consider the Teichmüller space Tg,0 of curves C of genus g endowed with a Teichmüller structure
ϕ : Σg → X. Consider the space Systirr of pairs (C,A) with C ∈ Tg,0 and A ∈ sl2Ω1

C corresponding
to an irreducible tracefree connection d + A on the trivial bundle C × C2 (an irreducible system),
modulo gauge equivalence.

Theorem 3.7.5. When g = 2, then the monodromy map

Mon : Systirr → Hom(π1(Σg),SL2C)//SL2C

is a local diffeomorphism.

This theorem has two proofs, one developped with F. Loray by showing, similarly to Theorem
3.7.2 that the ”irreducible” leaves of the isomonodromy foliation in M are transversal to the locus
of the trivial bundle, and another one, developped by G. Calsamiglia and B. Deroin, using moduli
spaces of branched projective structures on Σg. They appear in our common recent publication
[CDHL18]. Notably, the statement analogous to Theorem 3.7.5 is false in genus g > 2 (see [CDHL18,
§ 6]). Theorem 3.7.5 should be seen as a local result in genus two towards the following question
raised by E. Ghys.

Problem 6 (Ghys). Classify of the image of Systirr under the monodromy map for g ≥ 2.

The motivation for this problem comes from the study of quotients Y := SL2/Γ by cocompact
lattices Γ ⊂ SL2. These compact complex manifolds are not Kähler. Huckleberry and Margulis
proved in [HM83] that they admit no complex hypersurfaces (and therefore no non-constant mero-
morphic functions). Elliptic curves exist in such quotients, while the existence of compact curves of
genus at least two remains open and is related to Ghys’ question. Indeed, assuming that for a non
trivial system on a curve C, its monodromy has image contained in Γ (up to conjugation), then the
corresponding fundamental matrix induces a non trivial holomorphic map from C to Y . Reciprocally,
any curve C in Y can be lifted to SL2C and gives rise to the fundamental matrix of some system on
C, whose monodromy is contained in Γ. In fact, it is not known whether holomorphic sl2-systems
on Riemann surfaces of genus > 1 give rise to representations with discrete or real image. Although
Ghys’ question remains open, our result shows on the one hand that we can locally realize arbitrary
deformations of the monodromy representation of a given system over a genus two curve by allowing
deformations of both the curve and the system, and on the other hand that, if a genus two curve
exists in some Y as before, it is rigid in Y up to left translations.

The results in [HL15] also raise some questions which should be easier to tackle. For example
to study the geometry of isomonodromic deformations in M near a point of Systirr. Note that the
comparison of the two approaches in [CDHL18, § 11] shields some light on this question. In particular,
not only in the moduli space of bundles, but also in M, and even after restricting to the locus of
irreducible connections, the locus of the trivial bundle appears as a singularity in the locus of strictly
semistable bundles. One might also deduce some more applications from the explicit description of the
Hitchin map in Table 11. For example, it seems to suggest that in the spirit of Torelli type theorems
on moduli spaces of vector bundles over curves [MN68, BG03], these explicit Hitchin Hamiltonians
encode the complex structure of the base curve - namely, the equivalence class of the triple (r, s, t) in
(3.4). Moreover, it would be interesting to compute the nilpotent cone explicitly for example. This
is not a trivial question - for the näıve approach, this calculation has not manageable size.
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