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Abstract

The topic of this thesis is blood cells characterization by optical methods.
Throughout this work we propose to design and realize a diffractive beam
shaper especially adapted to blood cells differentiation, the beam shaper will
be next integrated in a blood cell analyzer.

The proposed diffractive beam shaper is globally optimized taking into
account specific constraints of flow cytometry optical measurements as well
as constraints linked to diffractive optics design and fabrication. The pro-
posed design will reduce misalignments sensitivity and enhance measurement
accuracy at lower cost than standard optical setups.

In order to set the context of the study we first introduce the required
hematology and flow cytometry backgrounds. The rest of the work focuses on
the proposed diffractive beam shaper synthesis: specifications, phase function
determination, prototype fabrication and experimental validation.

Prototypes of the proposed diffractive beam shaper have been realized.
Those prototypes have first been tested and validated as stand alone optical
components. They have next been integrated in the overall optical blood
cells differentiation system. Experiments we have realized have proven that
the proposed diffractive beam shaping function is especially adapted to op-
tical blood cells characterization: alignment and tolerancing of one critical
component have been relaxed and measurement stability has been enhanced.

Keywords: diffractive optics, beam shaping, kinoform, Computer Gen-
erated Hologram, diffraction, scatterring, biophotonics, hematology, flow cy-
tometry, blood cells.
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Résumé

Ce travail de these porte sur la caractérisation des cellules sanguines par
méthodes optiques. Nous proposons de concevoir et fabriquer un élément
optique diffractif particulierement adapté a la différenciation des cellules san-
guines et de l'intégrer dans un systeme approprié.

Ce composant est étudié afin de prendre en compte les contraintes propres
a la cytometrie en flux et a la synthese d’éléments diffractifs. Nous montrons
que ce composant permet d’améliorer les perfomances pour un coiit de fab-
rication inférieur aux systeémes actuels.

Compte tenu de la spécificité du domaine de I’hématologie, nous procédons
d’abord a une rapide présentation des bases de I’hématologie et de la cy-
tométrie en flux. Nous traiterons ensuite du cahier des charges, de la synthese
et de la réalisation de I’élément diffractif puis de son intégration suivie d’une
validation expérimentale.

Nous prenons en charge toutes les étapes: spécifications, calcul de la
fonction de phase, simulation des performances et synthése des fichiers de
fabrication. Une fois le prototype réalisé, 1’élément diffractif, apres avoir
été testé isolément, est intégré dans le systeme optique de caractérisation de
cellules sanguines.

Nous discutons ensuite cette intégration. Des tests permettent de mettre
en évidence le gain de précision et de fiabilité apporté par le systeme réalisé.
Nous concluons en faisant un bilan des résultats et en présentant des éléments
de prospectives.



Chapter 1

Introduction

During the last 15 years the role of optics has become obvious in fields like
communication, mass—storage or metrology. Less known is the increasing
role it plays in biology and medicine. Ranging from fiber optics endoscope
to fluorescence microscopy, biophotonics is now the ultimate tool in many
applications. If we restrict our considerations to light-tissue interaction, it
is surprising to note that there are still a lot of applications: skin diseases
treatment, laser surgery or breast cancer detection.

In the present work we are going to focus on one specific branch of biol-
ogy: hematology. Hematology is the study of blood cells: their number, their
type and their shape. Although largely unknown, hematology dates back to
the invention of the optical microscope. It has somehow stagnated until the
middle of that century where new tools became available: flow cytometers.
Flow cytometers allow measurement of characteristics of biological particles
such as bacteria, liposome, blood cells or multi—cellular organisms. Those
measurements are made while particles pass, in single file, through the mea-
suring apparatus in a water stream (see Fig. 1.1). Flowing particles (blood
cells in our case) are characterized either by interaction with an electric field
(see §2.3.1) or by light—particle interaction (see §2.3.2). Light—cell interaction
is, by far, the most refined method to get an accurate differentiation of blood
cells. It however requires many constraints onto the overall optical detection
system.

Blood cells analyzers can roughly be seen as automated flow cytometers.
Optical blood cells differentiating systems are embedded in high range ana-
lyzers. Our final goal is to design a new optical blood cells characterization
system that should enhance performances of actual systems at lower costs.
The optical blood cell differentiation system we are going to design can be
divided in two parts: blood cell illumination and light—cell interaction mea-
surement. Those two functionalities are of course linked, we then have to
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Diffractive Beam Shaper Fluorescence Detection

Side Scatter
——— Detection

Focusingity Forward Scatter
Detection
i
R /’

Figure 1.1: Schematic representation of measurement of fluores-
cence and light diffracted by a white blood cell.

take into account some of the constraints associated to the detection when
designing the illumination system. Throughout this thesis we are going to
focus on the design of the blood cell illumination system. Enhancements of
the light—cell interactions measurement system, although out of the scope of
that work, will briefly be discussed in the last chapter.

As depicted figure 1.1, the measurement point is the location where the
water stream that transports blood cells crosses the laser beam. So to in-
crease the light-blood cell SNR, the laser beam has to be focused at that
point. All cytometers optical setups that have been designed up to now rely
on a pair of cylindrical lenses to focus the laser beam. As a consequence, the
light intensity distribution at the measurement point is Gaussian along both
directions (see Fig. 1.2a). So, the light-blood interaction detected intensity
depends on the cell position inside the flowing stream (see Fig. 1.2a). We un-
fortunately can not avoid those fluctuations of blood cell position inside the
stream. To overcome that problem it would be necessary to generate the uni-
form intensity distribution represented Fig. 1.2b at the measurement point.
This, however, can not be done with standard refractive lenses. Throughout
this work we propose a new illumination setup that will generate the optimal
light distribution of Fig. 1.2b at the measurement point.

We propose to use a diffractive beam shaper to enhance the efficiency
of the illuminating system of the optical blood cells differentiation system
that will be integrated in future analyzers. This design should take into
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Figure 1.2: Intensity distribution at measurement point in stan-
dard optical setups (a); generated with the diffractive beam shaper

(b).

account constraints of diffractive optics synthesis as well as constraints that
are specific to our application: blood cells characterization. Once the design
of this globally optimized diffractive beam shaper will be achieved, prototypes
will be realized and tested.

The synthesis of this diffractive beam shaper will be the first step toward
a new generation of optical systems dedicated to blood cells differentiation.



Chapter 2

Context of the research:
Haematology

We have seen in the previous introducing chapter that the goal of our work is
to design a new optical system for blood cell characterization. This system,
which is based on light-blood cell interaction, will allow simultaneous mea-
surement of three optical parameters (see §2.3.2) for each of the blood cell
that are crossing the laser beam one after another. This new optical setup
will be integrated in Abx Diagnostics’ future top of the range analyzers.
Those analyzers can, from a sample of whole blood, give information such as
the munber of white and red blood cells and platelets. One can roughly say
that blood cells analyzers are automated flow cytometers (see §2.2).

Since blood is definitely the context of the study, we are going to briefly
present the different types of blood cells our detector will have to distinguish:
red blood cell, reticulocytes, white blood cells (lymphocytes, monocytes, neu-
trophils, eosinophils) and platelets. We will next introduce flow cytometry
and typical optical parameters that are measured in this field.

2.1 Blood essentials

Blood is classified as a connective tissue. In order to be classified as a con-
nective tissue, a tissue must consist of living cells in a non-living matrix.
Cells in blood include red and white blood cells and platelets. The matrix
in blood is the plasma, which remains liquid unless blood clotting is needed.
The function of blood that everyone is familiar with, is the delivery of oxygen
to the tissues. Oxygen diffuses into capillaries surrounding the alveoli in the
lungs, and as the blood moves through the body oxygen unloads to needy
tissues. Carbon dioxide, a waste product of cellular metabolism, will then
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make the journey back to the lungs in the blood, where it is exhaled. Other
cellular wastes are disposed of by the kidneys.

Blood vessels surrounding the stomach and intestines absorb nutrients
and water from the food we eat, the nutrients are then distributed throughout
the body via the circulatory system. Hormones produced in the endocrine
glands also use the blood highway for getting to their target organs and cells.

What changes in body when exercising? Increased heart rate and respi-
ration will certainly occur, as well as sweating, and perhaps a flushed ap-
pearance. Why does face get so red when exercise? Blood vessels near the
surface of the skin dilate and fill with blood. As the blood moves through
these vessels it is cooled, helping to reduce body temperature.

Proteins and other solutes present in the blood help maintain an appro-
priate pH for the body tissues, and act as buffers. (Buffers are substances
which help resist large swings in pH - for instance after you drink a glass
of acidic orange juice, blood pH does not drop due to the effect of buffers.)
These same proteins and solutes also help maintain blood volume by con-
trolling the rate of osmosis - the movement of water across a differentially
permeable membrane. The proteins and solutes remain in the blood vessels,
insuring adequate blood volume by causing water to remain in the circulatory
system.

White blood cells have the ability to fight off foreign invaders and prevent
wide—scale invasion. Blood is also unique because it can prevent the loss of
itself. Blood clotting occurs when blood vessels are damaged, preventing
excessive blood loss.

The average adult has about five liters of blood living inside of their
body. Because it contains living cells, blood is alive. Red blood cells and
white blood cells are responsible for nourishing and cleansing the body. Since
the cells are alive, they too need nourishment. Vitamins and Minerals keep
the blood healthy. The blood cells have a definite life cycle, just as all living
organisms do. Approximately 55% of blood is plasma, a straw—colored clear
liquid. The liquid plasma carries the solid cells and the platelets which help
blood clot. Without blood platelets, it wuld be possible bleed to death.
When the human body loses a little bit of blood through a minor wound,
the platelets cause the blood to clot so that the bleeding stops. Because new
blood is always being made inside of bones, the body can replace the lost
blood. When the human body loses a lot of blood through a major wound,
that blood has to be replaced through a blood transfusion from other people.
But everybody’s blood is not the same. There are four different blood types.
Blood also has Rh factors which make it even more unique. Blood received
through a transfusion must match. Patients who are scheduled to have major
surgery make autologous blood donations (donations of their own blood) so
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that they have a perfect match.

2.1.1 Plasma

It is a straw—colored, clear liquid that is 90% water, and it is an essential
ingredient for human survival. It might seem like plasma is less important
than the blood cells it carries. But that would be like saying that the stream
is less important than the fish that swims in it. You can’t have one without
the other. Besides water, plasma also contains dissolved salts and minerals
like calcium, sodium, magnesium, and potassium. Microbe-fighting anti-
bodies travel to the battlefields of disease by hitching a ride in the plasma.
Without plasma, the life-giving blood cells would be left loundering without
transportation. Never underestimate the importance of plasma.

2.1.2 Red blood cells

Erythrocytes (red blood cells, or RBCs) constitute the bulk of the blood cells,
a sample of blood is composed of approximately 45% erythrocytes. RBCs
are biconcave in shape (see Fig. 2.1), which gives the cells some advantages -
namely the flexibility needed to move through tiny capillaries; and increased
surface area which makes oxygen loading and unloading more efficient. RBCs

Figure 2.1: Scanning Electron Microscope image of red blood
cells (see arrows). Photo: Department of Cell Biology, Vanderbilt
University Medical Center.

are anucleate and have a life span of only 100-120 days. RBCs are packed
with the protein hemoglobin, which carries oxygen. Hemoglobin is composed
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of four protein chains with a heme group in the middle of each chain. One
atom of iron is embedded in the middle of each heme group. A molecule of
oxygen can bind with each iron atom, so the maximum amount of oxygen
a molecule of hemoglobin can carry is four molecules. All blood cells derive

Figure 2.2: Smear of red blood cells.

from a common ancestor - the hemocytoblast (blood cell builder). Erythro-
cyte production is controlled by the hormone erythropoietin, which is made
by the kidneys. The kidneys monitor the amount of oxygen in the blood,
and when it is low erythropoietin is released. All blood cells are made in
red bone marrow found in the ends of some long bones, and in the spongy
portions of some flat bones. The formation of red blood cells is known as
erythropoiesis. The general term given to the formation of all blood cells
is hematopoiesis. Developing red blood cells produce lots of ribosomes. Ri-
bosomes are the site of protein synthesis and juvenile RBCs need to make
a lot of proteins (hemoglobin) before they are ready to take on their adult
role - carrying oxygen. After the RBC has made all its hemoglobin it ejects
its nucleus - quite an unusual thing you might say, and yet it makes perfect
sense. The RBCs want to travel light allowing for maximum oxygen carry-
ing capabilities. Mature RBCs are really just cell membranes packed with
hemoglobin.

2.1.2.1 Reticulocytes

Reticulocytes are immature red blood cells that have just been released by
marrow of bones in the circulating blood. Unlike mature red blood cells,
reticulocytes still have RNA fragments in their cytoplasm (see 2.3). The
amount of RNA fragments will decrease progressively with maturation of
the cell (see 2.4). After 24 hours the cytoplasm contains no RNA at all;
the cell is a mature red blood cell. So the number of reticulocytes in the
circulating blood reflects the activity of the marrow of bones and its ability
to regenerate red blood cells. The information is of primary importance to
detect diseases such as anemia.
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Figure 2.3: Reticulocytes (i.e. immature red blood cells).
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Figure 2.4: Maturation of reticulocytes (i.e. immature red blood
cells).

2.1.3 White blood cells

The number of white blood cells, or leukocytes, is much smaller than the
number of RBCs. Leukocytes reside mainly in the body tissues, and use the
circulatory system for transportation. Leukocytes are able to leave the blood
vessels and travel throughout the body using a process known as diapedesis.
Leukocytes use amoeboid motion to slip through tight spots - one portion of
the cell membrane is extended, followed by cytoplasm, followed by more cell
membrane, followed by more cytoplasm, ...

Leukocytes can also respond to chemical signals via a process known
as chemotaxis. When more leukocytes are needed in a specific area the
leukocytes can call in reinforcements by secreting chemicals that other WBCs
will respond to.

Leukocytes are classified into two groups based on the presence, or ab-
sence, of membrane—bound granules in the cytoplasm, see table 2.1.

2.1.3.1 Basophils

The basophils granules contain histamine, which causes inflammation and di-
lates blood vessels. The blood vessels become leaky leading to tissue swelling.
When a foreign allergen invades the body’s tissues the basophils respond by
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Granular Leukocytes | Agranular Leukocytes
Basophils Monocytes
Eosinophils Lymphocytes

Neutrophils

Table 2.1: White blood cells (leukocytes) are classified according
to five sub—populations.

releasing the contents of their granules. Histamine also acts as a chemical
signal to recruit other leukocytes to the area. The most aesthetically pleasing

Figure 2.5: Basophil type white blood cell surrounded with red
blood cells.

of all the leukocytes, the basophils are also the least numerous. They are
easily recognized by their very large, deep purple cytoplasmic granules which
overlie, as well as flank, the nucleus (eosinophil granules, by contrast, only
flank the nucleus but do not overlie it). It is tempting to assume that the
basophil and the mast cell are the blood and tissue versions, respectively, of
the same cell type. Actually it is controversial as to whether this concept is
true or whether these are two different cell types.

2.1.3.2 Eosinophils

FEosinophils have a particular fondness for parasitic worms. The eosinophils’
granules contain digestive enzymes which are released from the cell onto the
parasite. A number of eosinophils will gather around the ”foreigner”, each re-
leasing enzymes which digest the invader. Larger numbers of eosinophils are
found in the digestive system and skin - both opportune sites for infection by
parasites. Eosinophils are capable of ameboid motion (in response to chemo-
tactic substances released by bacteria and components of the complement
system) and phagocytosis. They are often seen at the site of invasive parasitic
infestations and allergic (immediate hypersensitivity) responses. Individuals
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Figure 2.6: Eosinophil type white blood cell surrounded with
red blood cells.

with chronic allergic conditions (such as atopic rhinitis or extrinsic asthma)
typically have elevated circulating eosinophil counts. The eosinophils may
serve a critical function in mitigating allergic responses, since they can 1)
inactivate slow reacting substance of anaphylaxis (SRS-A), 2) neutralize his-
tamine, and 3) inhibit mast cell degranulation. The life span of eosinophils
in the peripheral blood is about the same as that of neutrophils. Following a
classic acute phase reaction, as the granulocyte count in the peripheral blood
drops, the eosinophil count temporarily rises.

2.1.3.3 Neutrophils

Neutrophils are especially fond of bacteria and fungi. Their granules con-
tain hydrolytic enzymes and proteins which act like antibiotics. Neutrophils
ingest their prey, then inject the contents of their granules into them. Unfor-
tunately the explosive act of killing the prey also kills the neutrophil. They

&

Figure 2.7: Neutrophil type white blood cell surrounded with
red blood cells.

are also the most populous of the circulating white cells (55 to70% of all
leukocytes are neutrophils) they are also the most short lived in circulation.
After production and release by the marrow, they only circulate for about
eight hours before proceeding to the tissues, where they live for about a
week, if all goes well. They are produced as a response to acute body stress,
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whether from infection, infarction, trauma, emotional distress, or other nox-
ious stimuli. When called to a site of injury, they phagocytose invaders and
other undesirable substances.

2.1.3.4 Monocytes

Monocytes are known as macrophages once they leave the circulatory system.
The macrophages are good all-around killers, able to destroy viruses, bac-
teria, and parasites. Their name (big—eater) gives a good indication of the
activity of this cell type. Macrophages are not particularly selective in their
choices any foreign invader will do just fine. Macrophages are good neighbors
too, as they help the lymphocytes recognize intruders, helping to initiate the
immune response. Most lymphocytes reside in the lymph nodes where they
function as part of the immune system. Two distinct types of lymphocytes
are found - T cells and B cells. The T cells (called T cells because they ma-
ture in the thymus gland) are involved in the hand to hand combat activities
of the immune system. T cells are programmed to detect specific foreign
antigens, unlike the macrophages, which aren’t picky about what they Kkill.
B cells make substances known as antibodies - free-flowing molecules which
act like hand grenades when attacking foreign substances. These large cells

e

Figure 2.8: Monocyte type white blood cell surrounded with red
blood cells.

are actually more closely related to neutrophils than are the other granu-
locytes, the basophil and eosinophil. Monocytes and neutrophils share the
same stem cell. They are produced by the marrow, circulate for five to eight
days, and then enter the tissues where they are mysteriously transformed
into histiocytes. Here they serve as the welcome wagon for any outside in-
vaders and are capable of processing foreign antigens and presenting them
to the immunocompetent lymphocytes. They are also capable of the more
brutal activity of phagocytosis. Unlike neutrophils, histiocytes can usually
survive the phagocytosis of microbes. What they trade off is killing power.
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For instance, mycobacteria can live in histiocytes (following phagocytosis)
for years.

2.1.4 Platelets

Platelets, or thrombocytes are not complete cells, they are fragments of an
unusual cell type called the megakaryoblast. All blood cells are descendents
of the hemocytoblast - the megakaryoblast would be the first generation, as
are the erythroblasts which form the RBCs, and the two cell types which
eventually become leukocytes. Megakaryoblasts undergo repeated rounds of
mitosis (division of the cytoplasm) without undergoing cytokinesis (division
of the cytoplasm). The nuclei do not become distinct, instead they merge
into one very large and irregularly shaped nucleus. When the cell is mature
the plasma membrane begins to form around small segments of the cytoplasm
- walling off the cell into thousands of small compartments. Eventually the
cell ruptures and the individual membrane bound cell fragments are then
called platelets. The most important job of platelets is to help form blood
clots.

As a conclusion for this section dedicated to blood essentials, we have to
stress that carefull review of peripheral blood adds significant value to the
clinical history and physical examination. For that reason flow cytometry
plays a role of primary importance aiding in the diagnostic of diseases.

2.2 Introduction to flow cytometry

We have previously mentioned that Abx Diagnostics blood cells analyzers
can roughly be considered as automated flow cytometers. Underlying mea-
surements principles are the same and the only differences lye in the fact
that standard cytometers require the blood sample to be manually prepared
(diluted, addition of lysing agents) whereas those operations are automated
in Abx Diagnostics analyzers. We are going to present flow cytometry and
then focus on standard parameters that are measured in flow cytometry in
which we will include our work.

Cytometry refers to the measurement of the physical and/or chemical
characteristics or cells or, by extension, of other biological particles [1][2].
Flow cytometry is a process in which such measurements are made while
the cells or particles pass, in single file, through the measuring apparatus
in a fluid stream. Biological particles which have been subjected to flow
cytometric analysis include viruses, liposomes, bacteria, chromosomes, cell
aggregates and multicellular organisms. The first application of flow cytom-
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etry was counting the number of particles present in a given sample volume.
Most of the present interest of flow cytometers is their ability to quantify and
determine the heterogeneity of a cell population. Actual flow cytometers can
measure a wide range of parameters, from the particle volume to its DNA
contents.

Flow cytometers are also able to sort particles according to some selected
characteristics. This is realized by employing electrical or mechanical to di-
vert cells with preselected characteristics from the main stream, and so can
be use to isolate subpopulations of cells [3][4][5][1][2]. The most prominent
use of flow cytometry in medical practice are in the related fields of labo-
ratory hematology and clinical immunology for a variety of tasks involving
blood cell counting and classification. Clinical applications are also being
pursed in the fields of genetics, microbiology, pharmacology and toxicology.
In order to use flow cytometry to study characteristics of intact cells from
sold tissues or tumors, or of cultured cells which grow attached to one an-
other, various methods are used to prepare single cell suspensions from the
starting material.

2.3 Measured parameters in flow cytometry

We have seen in chapter 2 that any sample of whole blood contains ery-
throcytes, leukocytes an platelets. A first separation between various cell
populations can be realized by a chemical reagent (a lysing agent) that de-
stroys a specific population (RBCs and platelets) leaving other cells (WBCs)
unaffected. The problem is then splitted into two parts. On the one hand
red blood cells and platelets, on the other hand the five white blood cells
sub—populations. To be able to distinguish between cell types, we have to
find a set of parameters that reflect differences from one blood cell to an-
other. Traditional parameters are cell volume, its light transmittance, its
diffraction pattern or fluorescence level. For instance if we represent white
blood cells volume versus transmittance (see Fig. 2.9) four sub—populations
of white blood cells can clearly be distinguished [3][6]. Available technologies
for measurement of cell parameters are either electrical (impedance or RF
based) or optical (light-blood cell interaction based).

2.3.1 Resistive measurement

One electrical engineer, Wallace Coulter, pursued the goal of blood cells
counting. His detection setup was based upon the fact that the electrical
conductivity of cell is lower than that of saline solution. Coulter reasoned
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Figure 2.9: Representation of white blood cells volume deter-
mined by the impedance method (X-axis) versus their optical
transmittance (Y—axis).

that blood cells, suspended in a saline solution and passing one at a time
through a small orifice (see Fig. 2.10), would be detectable by the change in
electrical impedance of the orifice produced as they passed through [5][2][1].
The electrical conductivity of a blood cell is different from the conductivity of

+ Electrode - Electrode
Insulator
Sensing
2 Aperture
Pmnc;’e-\\'
>>
Pp e

Electrolyte resistivity p

Figure 2.10: Coulter resistive measurement setup for particles
(like blood cells) volume determination.

the surrounding saline solution. So anywhere a cell passes through the aper-
ture, the overall conductivity of the cylindrical cross section of Figure 2.10
is modified according to the well known electrical law:

AR=(p—p)V
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where R is the impedance, p the conductivity and V' the volume. So, by
measuring variations of the impedance of the cylindrical cross section, one
can get a direct information concerning the passing blood cell [7].

The first orifice that Coulter realized was made of cellophane wrapper
from a cigarette package. The Coulter counter proved accurate for count-
ing and sizing blood cells [7][4]. Apparatus based on this principle are still
worldwide used in clinical and research laboratories and allows very accurate
measurement of particles ranging from 2um to 20pum depending on the aper-
ture size [2][1]. Impedance measurement gives the overall volume of a blood
cell but gives no information concerning its structure (cytoplasm, kernel,
granularity, ...). To get accurate information of concerning cell structure,
optical technologies are more adapted.

Another electrical method is used to count blood cells. The setup is quite
similar to the previous one (see Fig. 2.10) except that it is based on high
frequency current and not DC current like in Coulter principle. This method
also gives information concerning the cytoplasm contents.

2.3.2 Standard optical measurements in flow cytome-
try

Optical detection is, by far, the most refined method to get accurate infor-
mation concerning blood cells characteristics [6][2][1]. As we are going to see,
a blood cell can interact with an incoming light beam in various ways.

2.3.2.1 Blood cells optical transmittance

Although blood cells are basically made of water, they are not perfectly trans-
parent at visible wavelengths. Their index of refraction varies slightly from
water index. This allows measurement of the optical transmittance of the
blood cell in flowing water [6][2]. Measuring the optical transmittance of a
blood cell can be of primary importance to determine its type. For example,
Fig. 2.9 represents volume (X-axis) versus optical transmittance (Y-axis) of
white blood cells. It is obvious, observing the diagram, that light transmit-
tance parameter provide a significant opportunity in the determination of
white blood cells sub—populations.

2.3.2.2 Light scattering by blood cells

Blood cells contain many structures, like RNA structures, whose dimensions
are small enough to diffract visible light. This means that any illuminated
cell will produce a diffraction pattern that reflects its structure. Then, one
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Figure 2.11: Volume impedance and light transmittance mea-
surements of a blood cell.

could think of an ideal detection device that maps a 47 steradiant sphere
centered on the cell to collect the full diffraction pattern. Such device have
been realized, and experiments [6][8] have proven that those measurements
can be reduced to measurement of diffracted light along two directions : the
forward scatter (very small angle diffraction) and the side scatter (right angle
diffraction) [3][9][8].

Forward scatter basically gives information related to the cell volume.
That parameter is pretty close to the volume measured by the impedance
method (see §2.3.1). Nevertheless it allows detection of much smaller cells
(platelets) than impedance method [2][1][10].

Side scatter is sometimes assimilated to diffusion. Intensity of diffused
light depends on the contents of the cytoplasm [2][1]. If the cell has a mucleus,
then its very fine structures (like RNA structures) will diffract light over a
wide angle range: diffraction states that the finer the structures are, the
stronger incoming light rays will be bend [11][2][1]. That is, cells with high
cytoplasm contents will give a strong side scatter signal whereas cells with
no nucleus will give a weak side scatter signal [2][1].

2.3.2.3 Blood cells and fluorescence

Fluorescence methods typically distinguish cells that are labeled with a dye
molecule [1][2]. In the example of reticulocytes, cells are labeled with an
RNA specific dye: thiazole orange. In case of presence of RNA in the cell
cytoplasm, the RNA—thiazole orange complex will emit fluorescence light at
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Figure 2.12: Schematic representation of measurement of for-
ward scatter, side scatter and fluorescence of white blood cells.

530nm when excited with a 488nm Argon ion laser. If the cell’s cytoplasm
does not contains any RNA fragment, no RNA-dye complex is formed and
only weak residual fluorescence light is detected [10].

s - .. ZDODIMSLMD
Monocytes
050 | y
680 - Lymphocytes
g Neutrophils
an
Eosinophils
i inophil
170 4.
| S—
0 170 340 510 680 850 1023
55

Figure 2.13: Fluorescence (Y-axis) versus large angle scattering
(X-axis) parameters diagram for white blood cells.

2.3.2.4 Blood cell and light polarization

Experiments have been realized to determine white blood cells sub—populations
using polarization of large angle scattered light [1][2]. This method is based
on the fact that large diffracting structures (=~ \) tend to leave the polar-
ization state unchanged, whereas fine diffracting structures (< A) usually
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modify the polarization state [11]. So, by splitting the diffracted light into
two channels with perpendicular polarizers, it is possible to get two indepen-
dent measured parameters for each cell. We then obtain a 2D representation
where sub—populations of white blood cells are distinguishable.

In that chapter we have introduced the context of our research; hema-
tology and blood cells. We have seen that blood cells can be accurately
differentiated using dedicated optical setups that measure parameters such
as diffraction or fluorescence.

In the rest of that work we are going to focus on the light distribution
at the measurement point. This point is the location where the stream that
transports blood cells crosses the laser beam. It is, of course, located inside
the flow cell (see Fig. 2.12 and Fig. 2.11).

As we are going to see, our setup will rely on diffraction for two reasons.
The first one has been exposed previously; we are going to measure light
diffracted by blood cells. But we are also going to see that diffraction will
play an important role in the generation of the desired light distribution at
the measurement point. For this reason, the next chapter will start by a
short discussion on physics of diffraction.



Chapter 3

Diffractive Optical Elements

The previous two chapters were dedicated to the overall presentation of our
working environment and goals. We have seen in chapter 2 that hematology
is the context of our study and that our goal is the design a new generation
of optical system for blood cell characterization. This optical system will
be integrated in future blood cell automated analyzers. Since blood cells
analyzers are basically automated flow cytometers, we have presented in
section 2.3 parameters that are usually measured in flow cytometry. But we
have not turned our attention to the underlying technology that allows the
determination of those parameters.

In that chapter, we are going to introduce an innovating technology,
diffractive optics, that will both enhance the measurement accuracy and
lower fabrication costs of the new optical system targeted. The role that
diffractive optics will play in our application has already been briefly ex-
plained in chapter 1 and will be further detailled in chapter 4. We are then
going to focus on diffractive optics technology in this chapter. We are first
going to thoroughly study the physics of diffraction since it is the basis of
both diffractive optics and blood cell scattering. We will then get a general
view of diffractive elements synthesizing methods and fabrication.

3.1 Introduction

Bending light beams by diffraction has been known from a long time (Fres-
nel zone plate) but until recently, diffractive optical components were only
used where chromatic behavior was desired. Controling propagation of light
with diffractive components really appeared with the invention of hologra-
phy by Gabor in 1948. With holography it has become possible to control
propagation of light so that a previously optically recorded diffractive com-

19
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ponent can reconstruct the in—depth image of an existing object. Synthesis
of such holograms are based on an interferometric record of a real object.
In the late 60’s modern technology (computer and microlithography) made
possible the generation of artificially-computed interferometric records: dig-
ital holography was born. The first Computer Generated Hologram (CGH)
or Diffractive Optical Element (DOE) was realized by Brown and Lohmann
[12]. Those DOEs gave rise to many interest since it was then possible to
modify the propagation of light so that objects that have no real existance
are reconstructed.

Computer generated elements were first fabricated with binary amplitude
masks [12]. This fabrication method allowed only very limited diffraction ef-
ficiency [13]. In the 1980’s it was suggested that only the modulation of
the phase of an incoming beam was necessary to perform the CGH function
[14][15]. This was achieved by generating height reliefs on one surface of a

Figure 3.1: Phase only diffractive element (kinoform). Diffract-
ing surface reliefs can clearly be seen at the center of the glass
plate.

transparent substrat (see Fig. 3.1). As light traverses the plate, the relief
modulates the phase of the beam thereby the intensity distribution is mod-
ified in a plane behind the diffractive element. Those phase—only diffractive
elements or equivalentely kinoform absorb no energy and allow generation of
one single diffraction order that leads to high diffraction efficiency. Fabrica-
tion of those kinoforms started in the 80’s using photolithographic methods
[16][17].
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Diffractive optical elements are today widely used in applications as vari-
ous as laser machining [18], laser printing, telecom engineering, optical image
processing or metrology. Computer generated holograms can perform very
complex tasks as splitting, focusing or redistributing an incoming light beam.

Analysis of DOEs is crucial for an understanding of this technology,
equally important is the understanding of their design. Diffraction is the
basis of computer generated holograms, to be able to synthesize DOE it is
first necessary to thoroughly study mechanisms of diffraction. So we will be
able to answer to the DOE synthesizing question: what diffracting structure
gives the desired distribution of light? Furthermore, measured parameters in
hematology also rely on diffraction of light by a blood cell (see §2.3). Since
diffraction is definitely the cornerstone of our work, we are going to set strong
basis of physics of diffraction in the next sections.

3.2 Diffraction

As explained in the previous two chapters, the new blood cells counting op-
tical system we are going to design relies on diffraction for two reasons. The
first reason is explained in section 2.3.2: flow cytometry involves measure-
ment of diffraction of an incoming laser beam by a blood cell. The second
reason was exposed in the previous section: diffractive optics will play a
major role in the design of the optical blood cell characterization setup we
propose.

In the following sections we are going to introduce the physics of diffrac-
tion that will be intensively used through the rest of that work.

3.2.1 Background

Refraction and reflexion are phenomena that can bend light rays along their
propagation. Refraction occurs in a region were there is a change of the local
velocity of the light wave. At the boundary between two media of different
refractive index, rays are bent according to the Snell’s law:

nsin® = n'sin ¢ (3.1)

which is the basement of geometrical optics. It should be noticed that in-
cident and refracted rays are located in two different media. Reflexion also
bends light rays but occurs at an interface. Incident and reflected rays still
belong to the same media. Angle of incident and reflected rays with respect
to the interface normal are equal. Refraction and reflexion are enough to
accurately describe a very wide range of optical systems. Nevertheless, it
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has been noticed very early that light beams are sometimes bent in a way
neither refraction nor reflexion can explain. In particular, if we examine
thoroughly the region just next to an aperture stop, we would notice that
light distribution is not what we could have expected. Transition between
shadow and light is not sharp but rather gradual. With an even closer look,
it is also possible to distinguish intensity oscillations between bright and dark
regions. In that case, reflexion and refraction laws are inadequate to describe
propagation of light; diffraction theory has to be introduced.

Diffraction comes from the limitation of the lateral extend of a wave. This
phenomenon was observed for the first time by Leonardo da Vinci (1452
1519) in a very rough way. The first accurate description of diffraction was
introduced by Grimaldi (1618-1663) in his book! published in 1665; that is,
two years after his death. At those times corpuscular theory, that was widely
believed to describe accurately light propagation, failed to explain diffraction
phenomenon. Christian Huygens (1629-1695) , in the year 1678, proposed
a wave theory for propagation of light that described diffraction as a source
of secondary spherical disturbance. Sir Isaac Newton (1642-1727)has been
a strong adviser of the corpuscular theory since 1704. His strong influence
over contemporary scientists stopped progress in understanding diffraction
during the whole 18th century. In the year 1804 Thomas Young (1773-1829)
introduced the concept of interferences that directly proceeds from the wave
nature of light. Augustin Jean Fresnel (1788-1827) brought together ideas of
Huygens and Young in his famous memoir?. In 1860, James Clerk Maxwell
(1831-1879) identified light as an electromagnetic wave. Gustav Kirchhoff
(1824-1887) gave a more mathematical form to Fresnel expression of diffrac-
tion. His work basically relies on two assumptions concerning the field at
the diffracting aperture. Although those assumptions were quite empirical,
his formulation gives a very good approximation of the real diffracted field.
In the year 1884, Arnold J.W. Sommerfeld (1868-1951) modified Kirchhoff’s
theory. Thanks to Green’s theorem he suppressed one of the two assumptions
Kirchhoff made earlier to derive the so called Rayleigh—-Sommerfeld diffrac-
tion theory. Later, Sommerfeld was also the first to find the full rigorous
solution to the problem of diffraction by a conducting half-plane [11].

LF.M. Grimaldi Physico-Mathesis de lumine, coloribus, et iride (Bologna, 1665).
2A. Fresnel, Mém. de I’Acad. Sci. Paris (1850).
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3.2.2 Rigorous diffraction theory

Light is identified as an electric field £ and a magnetic field H linked by the
so called Maxwell’s equations:

curl € = —u%—,}: dive€ = 0
(3.2)
, o€ =
curl H = €5 divpH = 0

where € and p are permittivity and permeability tensors related to the
medium properties. If we restrict our analysis to a linear, isotropic but
non-homogeneous medium € = €(z,y, 2) and p = p(z,y, 2) are scalar func-
tions depending on position only (time-dependence is not considered here).
It’s then possible to derive equations in which either £ or H fields appear
separately:

02E

2 —I_ v c — — . _
VeE—en e +grad (In p) x rot (E) + grad (6 grad (In e)) 0
297 . —
V*H H g +grad (Ine€) x rot (’H) + grad (’H grad (In u)) 0

If we further restrict our analysis to a linear, isotropic and homogeneous
medium, permittivity and permeability are then scalar constants e = C*
and p = C' and all gradient functions are null functions. Previous equations

become: -
- 10U

V- ——>=0 3.3

v v? Ot? (3:3)

where v = 1/,/ep is the velocity of propagation in the medium and U

represents either EorH. Equation (3.3) is known as the vector wave equation.
Re-writting this equation for each vector components in a rectangular basis
gives:

( 1 0%U,
ViU, - —-——2=0
v2 Ot?
1 0%U
2 —_
| VU 0
1 0%U
2 o z
\VUZ v2 Ot2 0

Keeping in mind that U represents either Eor H. All components of the
field obviously have to satisfy to the same equation. This can be summarized
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within a single scalar wave equation:

VU - —=— =0 (3.4)

In the very specific case of monochromatic plane waves, amplitude and phase
of any of the field components can be represented by a complex function of
position and time:

Uz,y,z;t) = Az, vy, z)e_j‘p(m’y’z)ej“’t (3.5)

where w = 27v and ¢ is the phase of the wave. Eq. (3.4) can then be
re-written:
(V2+EHU =0 (3.6)

where the wave number k is defined as k = 2* with \ wavelength in the

dielectric medium and 7 = zuj + yus + zu3 is /’\che vector position®. Equa-
tion (3.6) is a time—independent equation known as Helmholtz equation. Any
space-dependent part of a propagating strictly monochromatic scalar wave
has to obey equation (3.6).

It should be noticed that the only approximation we made to derive
eq.(3.4) concerns the medium in which light propagates. For free space
propagation of light (i.e. no limitation of its lateral extend, no boundary
conditions), eq.(3.4) is not an approximation but the accurate description
of what happens. In the case of propagation of light through an index step
like an air—glass interface (see Fig. 3.2), things get more complicated. At the
air-glass boundary the assumption of homogeneous and isotropic medium is,
of course, no longer valid. We should then expect some deviation between
the scalar theory and the real diffracted fields. Let’s consider the case of a
linear, non—isotropic and non-homogeneous medium, € and p are tensors and

the Maxwell’s vector equation curlH = e%—‘i can be re—written:
o
. €00 €01 €02 63,5’”
CUTl g = — €10 €11 €12 %
d
€20 €21 €22 %

Examining previous system along the first unit vector of a rectangular basis,

it becomes:
o€, B % OH oH O0H,

— ¢ Ty, ot

Y
oy 0z o + o

3Refractive index of a medium is defined as n = , /egﬁo where €y and pp are vacuum

permittivity and permeability. Since we will only consider non—magnetic media, u = po

andn=,/%.
€0
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At the boundary & and H vectors components are not independent. It ap-
pears clearly that y and z components of the £ field are not only coupled one
to another, but also coupled with H field components. As a result, amplitude
and phase of diffracted fields at the step differ depending on whether they
are evaluated with scalar or rigorous theory (see Fig. 3.2). Scalar theory
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Figure 3.2: Amplitude and phase of the field at a step disconti-
nuity having a height of 27 in a material of index n=1.5 . Evalu-
ation by scalar diffraction theory (right) and rigorous diffraction
theory (left).

expect no amplitude variations and a perfect phase step, whereas rigorous
theory (i.e. real diffracted fields) shows no sharp discontinuity but ripple os-
cillations at the interface. It is worth stressing that deviation between scalar
and rigorous theory is noticeable in the immediate vicinity of the interface
or at the edges of the limiting aperture only. So as soon as we are a few
wavelengths away, scalar and rigorous theory are pretty close and coupling
can safely be ignored.

For that reason we are only going to consider scalar diffraction in our op-
tical blood cell counting setup. The smallest cell present in blood is platelet
with dimensions more than ten times the measuring wavelength (see chap-
ter 5). Concerning diffractive elements, we will also see in chapter 5 that
the chosen feature size is also about ten times the illuminating wavelength.
In that case we can safely consider our diffractive phase elements as thin
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phase—plates. So, in the followinf report of our work, computer generated
holograms will be referenced by their phase functions ¢(z,y) and the com-
plex amplitude notation will be used to perform all the scalar diffraction
calculations.

3.2.3 Full scalar diffraction

Let’s consider an arbitrary wave front U(zx,y;z) propagating from z = 0
along the positive z axis of a Cartesian basis. This arbitrary wave front can
be Fourier-transformed as:

U(u,v;2) = // Ulz,y; z)e” 2muat0) dody (3.7)

The arbitrary wavefront U(z,y;z) can then be considered as the inverse
Fourier transform of U (u, v; z) defined by the inverse Fourier transform:

Uz,y;z) = // U (u, v; 2)e?™ @) doy gy (3.8)

that is U(z, y; z) can be seen as an infinite composition of the set of functions
e~ 2mi(ur+y) weighted by U(u, v; z) components. Keeping in mind the complex
representation plane waves eq.(3.5), it is obvious that e 27(2+v) can be
seen as a plane wave propagating in the z direction with direction cosines
(Au; Av; /1 — A2u2 — M2p2 ). That means U(x,y;2) has been decomposed
over a plane waves basis weighted by U (u, v; z) functions. We define U (u, v; z)
as the angular spectrum of the field U(z,y; z).

Now let’s examine how the angular spectrum propagates from a z = 0
plane to another parallel plane defined by z = z,. That is, we have to
find a relation between U(u,v;0) and U(u,v;2p) with zy > 0. According
to the scalar diffraction theory (see §3.2.2) the space-dependent part of any
propagating field U(z,y; z) has to obey the Helmholtz equation (3.6):

(V2+ k) U(z,y;2) =0 (3.9)

Since Uz, y; z) can be represented by eq.(3.8) the previous equation becomes:

v? <// U (u, v; z)eQWj(W“L”y)dudU)
+ K? (// U(u, v; z)eQWj(W“L”y)dudv) =0
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We finally get the differential equation:

o*U 2 2,2 12,2
ﬁ(U,U;Z)—f“k (1 — Xu® — X0 U(u,v;2) =0

where an obvious solution is:
Ul(u,v; z) = U(u, v; 0)ekzVI-Vu? =A% (3.10)

So the effect of propagation along z axis is only described by the phase factor
elkzV 1-A2u2—\2¢? )

So, we have demonstrated that the optical disturbance can be decom-
posed in an infinite sum of planes waves, each traveling in direction given by
components:

u2

02
VvV1—u2—v?

where u and v were chosen to be cosines director of k. This ensure we have
1 —u? —v? > 0. But if we were* to have 1 — u? — v? < 0 we would get the
following relation:

U2

2
jVu2+v2 -1

which represents a wave that rapidly vanishes due to the positive real term
in the exponential. Those are evanescent waves.

We have demonstrated that knowing the field at a point Z;, it’s possible
to evaluate it at Z (Z — Z, > 0) with very few approximations. We just have
to take the angular spectrum of the field, multiply each term of the angular
spectrum by a Z-linear phase factor, and transform it back using inverse
angular spectrum relation.

Diffraction calculations based on the propagation of angular spectrum is
the most refined model for evaluation of diffracted fields [19][11]. It only
relies on the linear, isotropic and homogeneous properties of the medium
and on the fact that apertures (or interfaces) are large with respect to the
wavelength. It is, however, probably not the most convenient tool to solve
general purpose problems. Angular spectrum calculations require that both
diffraction and calculated surfaces are plane and parallel [20][21], which is

4Since (u,v) are cosines director we, theoretically, can’t have 1 —u? —v? < 0. However
the scalar theory neglects ripple oscillations of the field at the aperture boundary so the
case 1 — u? — v? < 0 might happen and corresponds to a real phenomenon.
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seldom the case in optics where surfaces are rather curved than planes. For
that reason other theories like Fresnel-Kirchhoff, although less accurate, have
proven their utility.

3.2.4 Fresnel-Kirchhoff diffraction integral

Fresnel-Kirchhoff theory relies on the Kirchhoff-Helmholtz integral theorem.
As shown in Appendix A, this theorem is derived from the Helmholtz equa-
tion and the Green’s theorem. The Kirchhoff-Helmholtz integral theorem
expresses the optical disturbance at a point in terms of its values and values
of its first derivative on a surrounding volume:

1 1 . 1 oU
_ = — ks o A I
U(PRy) = yp //A,B,c Se (U <]k 5) an) ds

where U is the disturbance to be determine and G = %ej’“ the auxiliary
Green’s function. The Kirchhoff-Helmholtz integral theorem, of course, im-
ply that conditions of validity of scalar theory are met. That is, we only con-
sider large diffracting apertures compared to the wavelength. Let’s consider
the following setup According to Fig. 3.3 the Kirchhoff-Helmholtz integral

[}

Figure 3.3: Volume and surfaces of integration used to derived
the Fresnel-Kirchhoff integral.

can be evaluated using the three surfaces A, B and C. Surface A is the hole
of the aperture. Surface B is the hidden surface just next to the aperture.
Surface C a portion of the sphere of radius R centered on P. It can be shown
(see [19] p.43) that the contribution of the spherical cap C to the integral
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3.2.4 is zero. To evaluate the integral 3.2.4 on surfaces B and C, Kirchhoff
made two assumptions:

1. On surface B we have U = 0 and g—g =0.
That is, on the region shadowed by the screen the disturbance and its
first derivative are null.

2. On surface A we have U = U’ and &£ = 20
Over that surface the disturbance and its first derivative are exactly
what they would be without the opaque screen.

In that case, the integral 3.2.4 reduces to the integral over surface A:

U(Py) = % //A %ejks (U (jk — %) — ‘;—D ds (3.11)

If we further consider that the aperture is illuminated by a spherical diverging
wave, the disturbance U, the auxiliary function G and their first derivative
are:

1 . 1 ,

U= el (;—U = (jk - —) e/*" cos(ii, )
T n T

G= %ejks g—i = (jk - %) /%3 cos(i, 5)

Considering that we only evaluate the optical disturbance at points far from
the aperture, we furthermore have k& > % which simplify previous relations
to:

1 . oU :
= — Jkr =1 jkr .7
U e B jke™" cos(7i, T)
1, oG ;
= _elks = = jkelks 7
G _e o Jke’™ cos(7, §)

Reporting those expressions in the integral 3.11 gives the Fresnel-Kirchhoff
diffraction integral:

1 jk(r+s) . 7)) — 7
U(Py) = _)\// e {cos(n,?) cos(n,@} s (3.12)
J A TS

2

Finally in the very specific case of normally incident plane wave illumination

eq. 3.12 becomes:
1 elk(r+s) T1 + cosh
UR) =— d 3.13
=5, Ts[ 2 ]S 519
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It has experimentally been proven [22][23] that Fresnel-Kirchhoff diffrac-
tion theory gives the diffracted fields with an excellent accuracy[24][25]. This
is the reason why Fresnel-Kirchhoff diffraction integral is widely used[26].

We, however, have to notice that Fresnel-Kirchhoff theory has inconsis-
tencies. The assumptions Kirchhoff made for surface B require that both the
field and first derivative to be zero. It can be shown that if those require-
ments are met, the field must be identically zero everywhere. Moreover the
approximation k£ > %, although valid when we are many wavelengths away
from the aperture, leads to wrong results as soon as we get closer to the
diffracting screen. That is why light distribution at the aperture is different
from what Kirchhoff’s assumptions involve.

In the next chapter we will see that either one of the two assumptions
is enough: U =0 or ‘Z,Z = 0. Depending on the chosen assumption we get
either the first or the second Rayleigh—-Sommerfeld diffraction integral for the
diffracted field.

3.2.5 Rayleigh—Sommerfeld theory

Although the Fresnel-Kirchhoff diffraction integral gives excellent results,
some inconsistencies in this theory have driven the need for a more mathe-
matically accurate formulation of the diffraction integral. As we have seen in
§3.2.4, the two Kirchhoff’s assumptions U = 0 and g—g = 0 lead to the math-
ematical conclusion that the disturbance must be identically zero everywhere
(see [23] p.199). To solve this contradiction Rayleigh shown that either U = 0
or ‘g—g = 0 is enough to derive another relation: the Rayleigh-Sommerfeld
diffraction integral.

The Rayleigh—Sommerfeld diffraction integral also relies on the Kirchhoff-
Helmbholtz integral theorem (see A.5). This involve that we are still dealing
with apertures large compared to the wavelength:

1 1 . . 1 oU
Uh) =1 //A (U (J’“ - ;> - %) ds

We also keep the same Green’s auxiliary function G = %ej’“ but the volume
V of integration differs. Considering two symmetric points its possible to
derive the two kind of Rayleigh-Sommerfeld diffraction formulae:

e]ks
U(z,y,z) // ('), 2") ( )ds

The first solution is obviously based on the first Kirchhoff’s assumption U=0
while the second one is based on the second Kirchhoff’s assumption —n = 0.
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As we did in the case of Fresnel-Kirchhoff integral, we suppose that the field
inside the aperture hole is exactly what it would be without the aperture. If
we further consider a diverging spherical incident wave:

1 . 1\ .
U= —el*r ou (]k - —> e?*" cos (i, )
T

r on
the final Rayleigh—Sommerfeld relations are:

e]kr ejks
Ui(z,y, 2 // ( ) cos(7, §)ds
27T A S
]kr
Uy(z,y, 2 // (
A

The RayleighfSommerfeld diffraction integral is believed to be more accurate
the Fresnel-Kirchhoff formulation because of its mathematical consistency
but also by its ability to reproduce closely the diffracted field just behind
the aperture. However it has been experimentally shown [27][28][22] that
Fresnel-Kirchhoff diffraction gives more accurate results than the Rayleigh—
Sommerfeld theory (assuming that we are many wavelength away from the
diffracting aperture) [25][26]. Moreover Rayleigh—-Sommerfeld theory is lim-
ited to plane surfaces which is a strong limitation since we usually deal with
curved surfaces in optics. On the contrary, Fresnel-Kirchhoff relation can
handle surfaces of any shape [24][19].

Finally, if we restrict our study to large distances from the aperture
(k> 1) and to a normally incident plane wave illumination U, (z,y, z) and

Us(z,y, z) reduce to:
e]kr e]ks
(z,y, 2 // cos(7, §)ds (3.14)
A

jkT ]ks
Us(z,y,2) = —= // cos(i, 7)ds (3.15)
A

It seems obvious that considering small angles, the obliquity factor of pre-
vious relations are unity. In this very specific case the Fresnel-Kirchhoff and
the two Rayleigh-Sommerfeld formulations are equivalent [19][11].

ejks
) cos(it, 7)ds
s

3.2.6 Fresnel diffraction

We have seen in eq.(3.15) of §3.2.5 that the first Rayleigh—-Sommerfeld diffrac-
tion integral can be written:

vy =+ [[ o)™

(3.16)




CHAPTER 3. DIFFRACTIVE OPTICAL ELEMENTS 32

where 6 is the angle defined by the normal 7 to the surface A and vector 7
Examining Fig. 3.4, it is obvious that cos# = Z. So without any approxima-

u 4 X

R (xy)

P(u,v) ) 6

(uv) Plane (x,y) Plane

Figure 3.4: Fresnel diffraction setup.

tion, the previous relation can be re—written:

=g L

The Rayleigh-Sommerfeld diffraction integral (3.15) was derived first as-
suming that the aperture dimensions are much larger than wavelength, then
further restricting to a far observation plane from the aperture. In that
particular case r distance can be approximated as following:

(3.17)

r=y@—w+ =0+
:z\/1+($;“)2+(y;“)2
:z(1+%($;“)2+%(y;”)2)

Reporting that approximation in the exponential part of eq.(3.17) and taking
r & z for the demoninator gives:

T X // sz (=

£)+(42)) dudv (3.18)
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which gives the Fresnel diffraction formulation:

jkz 2 2
(;z)\ // e92z —)’+ =) gy (3.19)

The previous equation can be developed as:

k2
U(Py) = & el @+v?) / / P00 Ik dudy (3.20)
JzA

This highlights the fact that, according to the Fresnel diffraction theory,
the optical disturbance at Z = Z; is basically the Fourier transform of the
product of the optical distrubance U(p) with a quadratic phase factor [19][11].
We will use that remark in section 3.4 to implement the Fresnel numerical
propagator that we propose [29][30].

3.2.7 Fraunhofer diffraction

We have seen in the previous section that if the observation plane is far from
the diffracting aperture, the diffracted field given by the Kirchhoff diffraction
integral can be simplified to the Fresnel diffraction formulation [19][11]:

jkz
U(P) e /\eJQZ (z2+y?) // e]2z (u?4v? )] efj%(uz—l—vy)dud,u (3-21)
]Z

In the case of very far observation plane ie. z > %(u? + v?) the previ-
ous relation can be further simplied and leads to the Fraunhofer diffraction
integral:

]lcz
U(Py) =& (@+4%) / / o35 W) gy gy (3.22)

In that case, the optlcal disturbance U(F;) in a plane far from the diffracting
aperture can easily be determined by taking the Fourier transform of the
complex transmittance of the diffracting aperture [31][32].

3.3 Numerical representation of diffracted fields

Until now all calculations involving optical disturbances or phase functions
were performed using their analytical continuous mathematical representa-
tions. But due to the pixelated—oriented fabrication method of diffractive
elements (see section 3.6), we have to sample those functions and adapt
diffraction formulations of the previous section to the discrete case.
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3.3.1 Sampling

Sampling a continuous function requires much more care as it could seem at
the first glance. It is demonstrated in reference [19] that a function can be
completely reconstructed from its samples provided the fact that sampling
rate satisfies to the Nyquist theorem (see [32] p.189 and [19]). This theorem
states that, considering a bandlimited function, sampling rate has to be at
least twice the highest frequency present in the function to be able to recover
all values between sampling points [32][29][33]:

VfSampled 2 2 Sup [VfBandLimited] (323)

If this criterion is not satisfied, spectrum overlapping will appear when the

sampled version of the function is Fourier-transform in frequency domain
[32][19]. This phenomenon will be taken into account in chapter 5 when
designing our diffractive elements.

3.3.2 The Fourier transform

In sections 3.2.6 and 3.2.7, we have seen that both Fresnel and Fraunhofer
diffraction formulations rely on the Fourier transform. Since those formula-
tions are, by far, the most intensively used in diffractive optics, we are going
to briefly discuss a few points concerning the discrete Fourier transform. Dis-
crete Fourier transform formulations are derived from their continuous case
counterparts [32][31]:

:F(u) _ /oo f(x)e_ijuzdx .'F(p) — Z f(n)e—27rjp%
*© 7;:(1)\/—1

f(x) = / f‘(u)e—l-%rjuwdu f(n) _ N f(p)e+27rjn%
. s

The above formulations describe the one dimensional case only. Since diffrac-
tive optical elements are represented by two dimensional arrays, we have to
first transform rows then columns.

3.3.2.1 Fast Fourier Transform

Since standard computer generated holograms are typically made of at least
1000 x 1000 cells, the Fourier transforming operation is very time consuming.
For this reason we propose to restrict the array dimensions to a power of
two; this allows the use of the very efficient Fast Fourier Transform (FFT)
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[32][31][34][35] algorithm. In particular huge 4096 x 4096 matrices of complex
numbers that we will use in chapter 5 were Fourier transformed using by one
the various FFT implementations we propose: the ASM-SSE FFT algorithm.
This implementation is based on the parallel-floating point instruction set

Founer Transform Algorithm
Radz 2 DIF FFT v

Murmerial Recipices FFT

Radix 2 DIF ASMFFRU FFT
Radix 2 DIF ASMYSSE FFT
Split Rachix FFT
Digcret Founer Transform

Figure 3.5: FFT algorithms implemented in the realized diffrac-
tive elements CAD software.

of the Pentium III processor. This pretty efficient implementation was of
great help when designing diffractive elements of chapter 5 since a 4096 x
4096 matrix is Fourier transformed in less than 6 seconds with a 600MHz
computer.

3.3.2.2 Dimensions

A little drawback of the FF'T algorithm is that dimensions of frequency plane
can not be freely chosen. Once the sampling interval Az and the sample num-
ber N in the space coordinate plane are fixed, sampling interval in frequency
plane Av is also fixed (see [32] p.362 and [29]) by:
1
~ NAz
It is now worth remembering that in the Fraunhofer formulation of diffraction
(see section 3.2.7) we had to write u = v/A\f to exactly match the Fourier
transform formulation. So in the case of Fraunhofer diffraction dimension p’
of a square pixel in the image plane is [31][19][32]:
N

Np
where A\ is the wavelength, f the focal length of the Fourier transforming

lens (see Fig. 4.9), p is the pixel size of our DOE and N the number of pixel
along each direction (see [19] p.353).

Av

P (3.24)
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3.3.2.3 Interpolation

We have seen above that an array of NV X NN pixels in the coordinate plane
also gives an array of N x N pixels when FFT-transformed in the frequency
plane. However it is often desirable to enhance either dimensions or accuracy
of the frequency plane. There are two simple ways to do this with the FFT
algorithm.

By embedding the N x N array in a larger one [31] (let’s say 2N x 2N)
is it obvious, taking a look at eq. (3.24), that the new pixel size p’ is half the
previous one, so accuracy is twice[32].

If, in the spatial coordinates plane, we oversample our N x N array by a
factor of two, then dimensions in the frequency plane will also be twice.

Those methods will be intensively used in chapter 5 to carefully examine
the reconstruction pattern of our computer generated holograms.

3.3.2.4 Applications of uncertainty principle

The Heisenberg’s uncertainty principle of quantum mechanics states that the
product of the uncertainty in position times the uncertainty of momentum
must be greater than h/27. We will see that, if we apply this fundamental
relation to our case, it is then possible derive a relation of primary importance
for our beam shaping problem.

3.3.2.4.1 Uncertainty principle Let’s consider a time-dependent phys-
ical phenomenon represented by the mathematical function f(¢). Since f(t)
represents a physical phenomenon, it has an infinite number of derivatives. It
is well know that the bandwidth—duration product of a signal can not be less
than a minimum value. This comes from the interdependence of time and
frequency variables that prevents arbitrary specification for both variables.
If a signal if very brief it also must be wideband; on the contrary an ideal
monochromatic wave must last forever. If we define the variance A, of the
function f(z) as:

Jo @2 («) [Pda
[ 1f (@) Pda

the previous statement can be given (see [32] p.160 and [36] p.30) a more
mathematical form:

(3.25)

(E:

1
AN, > — 3.26
i (3.26)
where A, is the root—-mean—square width of the function f(z) and A, is the
r.an.s width of its Fourier—transformed F(u). The inegality 3.26 is called
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uncertainty principle of quantum mechanics. The uncertainty principle is a
constraint on the lower limit of the product of the r.m.s width of a function
and its r.m.s bandwidth. This might appears pretty far from our concern but,
from that principle we are going to derive a relation of primary importance
for our beam shaping problem.

3.3.2.4.2 Space Band Width Product (SBWP) The direct applica-
tion of Heisenberg’s uncertainty relation (see 3.3.2.4.1) to signal processing
leads to the very well known time-bandwith inequality. Similarly it is con-
venient, in diffractive optics, to define the Space Band Width Product. Let’s
consider a physically-realizable function f of a space coordinate z. Its as-
sociated Fourier transform in spatial-frequency domain is F'(u). Since we
have chosen f to be physically-realizable both f and its transformed F' are
limited. This means that both f and F' have significant values over a finite
distance A, (resp. A,) and vanish anywhere else. The space bandwidth
product (SBWP) of this function is then defined as (see [19] p.27):

SBWP = A,A, (3.27)

In our case spatial-dimensions are the dimensions (e.i. height and width) of
the DOE whereas spatial-frequency plane is the reconstruction plane. The
SBWP product states that if we want infinitely sharp edges in the

The SBWP can be regarded as the number of degree of freedom of a
function, it is also a measure of its complexity [19].

3.3.2.4.3 Beam shaping coefficient 5 We have seen from 3.3.2.4.1 that
the uncertainty principle is a constraint on the lower limit of the product of
the r.m.s width of a function and its r.m.s bandwidth A;A, > . If we
restrict this general result to the problem of beam shaping we consider, it
possible to derive a relation that reflects the quality of the beam shaper.

The field distribution in the focal plane of the Fourier—transform lens in
given by [19]:

xl

Y]

where ) is the wavelength, f the focal length and z’ the coordinate in the
focal plane. Replacing this relation in the uncertainty principle gives [36][11]:

v

Az AL 1
2 —
Af 4
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Value of § parameter | Beam shaper quality
B <4 Beam shaper will not produce acceptable result
4<pB <32 Diffraction effects are significant
B = 32 good results

Table 3.1: Beam shaping 3 parameter

If we now convert width to Gaussian 1/e? radius, the previous equation

becomes [36] :
2V/27roy0
8= Y > 0.69
where 7 is the radius of the Gaussian input beam, g, the half-width of the
shaped beam [36].

In section 3.2 we have derived mathematical diffraction formulations for
various approximation levels. In the above sections, we have seen how to
represent those diffracted fields taking into account the pixelated nature of
phase only diffractive elements. In the next section we are going to bring
together those concepts to derive computer algorithms that will make possible
the numerical calculations of diffracted fields in various cases.

3.4 Proposed propagators

Preceding sections of that chapter were dedicate to the physics of diffraction
and to the numerical representation of optical disturbances. So we now have
all necessary tools for numerical calculations of optical disturbances diffracted
by computer generated holograms. In that section we are going to focus on
computer algorithms that allow numerical calculations of diffracted fields:
propagators. We will see in section 3.5 that propagators are not only used
for simulation of performances but also for the design of diffractive elements.

It would be tempting to use diffraction calculations algorithms available
in commercial software package. Unfortunately, no actual commercial soft-
ware can easily handle an arbitrary phase function ¢(x,y) as input data.
Furthermore, neither a commercial software can take into account other re-
quirements of DOE design like optimization constraints or phase quantiza-
tion (see chapter 4.1). As a result, we had to develop our own computer
software to be able to handle the full design of diffractive optical elements
from specifications to generation of e-beam fabrication input files. We are
going to present proposed functionalities of that software as we encounter
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the need for a specific task. We are alos going to introduce propagators we
have implemented and briefly discuss their usefulness.

Diffracting Sructure Plane Observation Plane
\Y

B(uv)

Tz

Free Space Propagation

Figure 3.6: Free space propagation.

We will see in chapter 5 that the typical feature size of our DOEs is
much longer than the illuminating wavelength. In that case, it has been
demonstrated in section 3.2.2 that scalar diffraction theory is enough to give
very accurate results [11][19]. So only scalar diffraction will be used. As
a consequence, diffractive phase elements will be considered as thin phase
plates and described with the complex amplitude notation.

We are now going to review all implemented versions of diffraction formu-
lations presented in section 3.2. One question could arise: why implementing
several propagators where one or two would be enough to design diffractive
elements? The answer can be given considering two points. First, we will
also have to simulate performances of our synthesized DOEs. This involve
a thorough examination of the optical disturbance propagating from DOE
plane to reconstruction plane. Depending on what you want to check (far
field, depth of field, Speckle, ...) one propagator will be used rather than
another. Second, we have encoded a total of five different propagators to
be able to validate them mutually. To validate an encoded propagator we
use well known diffracting apertures like slits, half planes or lenses to check
the calculated result. We also compare with resulst given by other propa-
gators, if they are obviously too different then something went wrong in the
implementation.
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Piopagators
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Figure 3.7: Propagators implemented in the realized diffractive
elements CAD software.

3.4.1 Angular spectrum of plane waves propagator

This formulation of diffraction, presented §3.2.3, is the most accurate method
for evaluation of diffracted fields since it only relies on the scalar diffraction
approximation. As seen on figure 3.8 even if the reconstruction plane is
very close from the diffracting structure, the calculated diffraction pattern is
still correct [19][11]. This method also has two strong advantages. It is first
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Figure 3.8: Simulated field amplitude behind an uniformly il-
luminated slit of dimensions 300umx100um. Calculations were
realized with the angular spectrum propagator at a distance:
Z=10pm (a), Z=100um (b) and Z=1mm (c) behind the slit.

reversible that is, the inverse propagator can easily be derived from the direct
one. Second, propagation of angular spectrum basically relies on Fourier
transforms. So, by using FFT algorithm presented §3.3.2 computing time is
low compared to other propagators [21]. Drawbacks of the method of angular
spectrum were already mentioned in §3.2.3; we are restricted to parallel plane



CHAPTER 3. DIFFRACTIVE OPTICAL ELEMENTS 41

surfaces [20][21]. Moreover if FFT is used, dimensions of the reconstructed
plane are then automatically fixed (see section 3.3.2 and references [32][31]).
We used this propagator to study the diffracted fields just behind the aperture
but also for validation of other propagators like the Kirchhoff one which
follows.

3.4.2 Kirchhoff propagator

The Kirchhoff formulation of diffraction is widely used in the design of
diffractive optical elements as it gives invaluable information concerning the
diffracted fields. Since no limitation on surfaces type are imposed by this
formulation of diffraction, both diffracting and reconstructed surfaces can be
curved, tilted or off-axis [25][24]. Dimensions of the reconstructed plane can
also be freely chosen®. As the calculation of Kirchhoff integral does not rely
on some kind of time-efficient FF'T algorithm, it takes quite a long time to
reconstruct the diffracted optical disturbance [25][24]. For this reason, the

(a) (b)

Figure 3.9: Kirchhoff based calculations of diffracted fields along
a plane perpendicular (a) and parallel (b) to the optical axis.

Kirchhoff propagator is particularly used for simulation of synthesized CGH
rather than during the optimization process.

In chapter 5 we will consider the ability of that propagator to calculate
the diffracted field along tilted surfaces to examine the depth of focus of

5The Nyquist sampling theorem has nevertheless to be satisfied.
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our custom diffractive elements [26][37]. To validate this approach, we de-
sign a Fresnel spot array generator that reconstructs three spots at distance
Z = 10mm of the diffracting aperture. Figure 3.9 shows calculations of recon-
structed field in a plane located at Z = 10mm of the diffracting aperture and
perpendicular to the axis on Fig. 3.9a and parallel to the axis (i.e. 90degrees
tilted with respect to the normal of the axis) on Fig. 3.9b. The focusing and
image forming effects in the reconstructed plane (dash line at Z = 10mm in
Fig. 3.9b) are clearly seen. A closer investigation of Fig. 3.9b reveals a slight
shift between the reconstructed plane (red line) and the Z = 10mm plane
(green line). This is due to the fact that the energy redistributing function
adds some focusing power to the quadratic lens phase function which has
also been encoded in the DOE phase function.

When implementing this tricky diffraction formulation, we used angular
spectrum propagator for near—field validation and Fourier diffraction for far—
field validation associated to slit apertures or spherical lens phases. The
implementation of the Kirchhoff formulation of diffraction (i.e. Kirchhoff
propagator) is not only very accurate but also versatile [25]. Furthermore,
in recent works more computing time-efficient variations of the Kirchhoff
diffraction formulation have been introduced [24][37][21][38][39]. In chapter 5
the Kirchhoff propagator will be used intensively to analyze performances of
DOEs we have realized.

3.4.3 Fresnel propagator

Propagators based on Kirchhoff, Rayleigh-Sommerfeld or angular spectrum
diffraction integral are useful to get an accurate idea on what happens in a
plane behind the diffracting structure. However, as those propagators involve
time—consuming calculations, it is usually advantageous to use more time—
efficient (although less accurate) propagators when synthesizing diffractive
optical elements. This is particularly true when CGHs are designed with
iterative methods (see §3.5 and §4.3.1) since they require many round trips
between the diffractive aperture and the reconstructed plane.

The Fresnel formulation of diffraction we have presented in section 3.2.6
relies on the fact that observation plane is far (thousands of wavelength) from
the diffracting aperture [11][19]. It was also demonstrated that the Fresnel
diffraction integral can be seen as a special case of a Fourier transform (see
eq. (3.20) page 33). For this reason, when intensive near—field calculations
are required or when computing time is critical, it is advantageous to use the
Fresnel integral evaluated with the Fourier transform. It is obvious that we
will take part of the efficiency of the FFT algorithm (see §3.3.2) to realize
the Fourier transform. Figure 3.10 represents the field diffracted by the spot
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Figure 3.10: Evaluation of field diffracted by the phase function
used in Fig. 3.9 with the Fresnel propagator. Reconstruction plane
is located at: Z =9mm (a), Z = 10mm (b) and Z = 11mm (c).

array generator described Fig. 3.9 of the previous section but, evaluated
with the Fresnel propagator. Distances between diffracting aperture and
evaluation plane are chosen to be: Z = 9mm (a), Z = 10mm (b) and
Z = 1lmm (c). Examining Fig. 3.9a and b, and Fig. 3.10a, b and c it is
obvious that the overall patterns are the same when evaluated with Kirchhoff
or Fresnel propagator. Tests realized with other apertures geometry and
other phase functions also led to the same conclusion.

The Fresnel formulation of diffraction is very useful to get the optical
disturbance in the near field of a diffracting aperture. Since FFT is the
cornerstone of calculations, that propagator is very time—efficient and quite
simple to implement. Moreover, the computing time efficiency can be further
enhanced using the fractional Fourier transform [34][30][35][20]. However, it
should be mentioned that this implementation of Fresnel diffraction formu-
lation has severe drawbacks. That propagator can not handle tilted, off-axis
neither curved reconstruction surfaces. Dimensions of the reconstructed sur-
face are also limited by the use of the FF'T algorithm.

3.4.4 Fourier propagator

Having a look at previous sections leads to a quite pragmatic statement: the
simpler a diffraction formulation, the less versatile it is. This is illustrated
with the case of Fraunhofer diffraction formulation exposed §3.2.7. In that
formulation, the optical disturbance diffracted in the far field of an aperture
is just the Fourier transform of the aperture complex transmittance function
(see eq.(3.22)). It is obvious that we are also going to use the FFT algo-
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Figure 3.11: Optical disturbance in the far field of a uniformly
illuminated slit evaluated with Kirchhoff propagator (a), Fresnel
propagator(b) and Fraunhofer propagator (c).

rithm to realize the Fourier transform [32][31][37][34]. The immediate draw-
back of that extreme simplicity is no versatility at all. When the Fourier
propagator is used there is no way to somehow control the geometry of the
surface where diffracted optical disturbance is evaluated. Distance between
diffracting aperture and observing plane is set to far field, dimensions of those
surfaces are limiteds by the use of FFT algorithm [32] and all surfaces are
limited to parallel planes.

Figure 3.11 represents optical disturbances in the far field of a uniformly
illuminated rectangular slit evaluated with three different formulations of
diffraction. As seen on this figure, the three diffracted patterns are the same
provided the fact that each of the (a), (b) and (c) picture has its own scale.
Having the correct sinus cardinal pattern with all propagators drives to the
conclusion that far field calculations are exact with those propagators.

This ends sections dedicated to diffraction formulations and their numer-
ical counterparts: propagators. Diffraction formulations were presented in
previous sections because of the nature of our optical blood cells counting
application which will rely on diffraction both for the generation of inten-
sity distribution at the measurement point (see chapter 1) and for measuring
various optical parameters associated to blood cells (see §2.3.2).

3.5 Design

In the previous section we have introduced numerical propagators which are
the basement for computer calculations of optical disturbances generated by



CHAPTER 3. DIFFRACTIVE OPTICAL ELEMENTS 45

diffracting structures. So, now that we are able to evaluate the field generated
by any diffracting structure, we have to deal with the much more critical
inverse problem: what diffracting structure will give the desired diffracted
pattern?

We first have to remind that we are only considering the case of phase
diffractive elements (see §3.1) that is, kinoforms. In that case the diffracting
structure is formed by surface reliefs that create a specific phase delay func-
tion ¢(x,y) at the diffracting aperture. So the DOE basically acts as a plate
that modulates the phase of an incoming beam so that intensity distribu-
tion in some plane after the kinoform matches a desired pattern. To design
a DOE, we have to determine a phase function ¢(z,y) that, under specific
illumination conditions, will give a diffracting pattern as close as possible to
the target one. In this section we are going to briefly review standard phase
determination (or optimization) methods. Then we will only retain methods
that are especially adapted to the design of our diffractive beam shaping
problem presented in section 1.

3.5.1 Analytical methods

It sometimes happens, particularly in diffractive beam shaping applications,
that requested intensity distribution in the image plane has a very simple ge-
ometrical shape like circle, rectangle or line [40]. In those cases target pattern
can obviously be represented with a mathematical function. Furthermore,
taking into account mathematical diffraction formulations presented in the
previous section, and knowing the mathematical representation of incoming
light distribution (a Gaussian function, for example); it is then sometimes
possible to analytically derive a mathematical formulation of the DOE phase
function ¢(z,y) [41]. It must be stressed that cases where both target pat-
tern and input intensity are described by a mathematical function are very
limited [42][43][44]. However, when analytical design is possible this design
method is usually superior to other design methods [45][46].

Since the diffractive beam shaper that will be used in our optical blood
cell counting setup typically meets requirements of analytical design, we will
further detail this method in section 4.3.2 and we will propose prototypes of
analytical beam shapers in chapter 5.

3.5.2 Numerical methods

Although it is sometimes possible to represent target patterns by an ana-
lytical mathematical function in beam shaping applications, it is seldom the
case in all other applications of diffractive optics like image processing or
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display. When the phase function ¢(z,y) can not be analytically derived,
numerical methods are then used. Those methods only rely on the numerical
values of illumination intensity, phase distribution and target intensity func-
tions at sampling points. At the end of the numerical optimization process
we get a serie of N x N phase delay values each corresponding to a pixel in
the DOE aperture. When this numerically determined DOE is illuminated
with the right intensity distribution, we get a diffraction pattern close to the
target one. Those numerical methods, that will be briefly exposed in the fol-
lowing sections, are based on complex—amplitude transmittance to describe
the diffracting structure. This involves that scalar diffraction formulations
(see 3.2.2) are used to determine the optical disturbance in the image plane.

3.5.2.0.4 Simulated Annealing The simulated annealing method anal-
yses the effects of the change of one pixel of the phase function on the
diffracted field [47]. Depending on whether the change improves the sim-
ilarity with the target pattern or not, this change is accepted or refused.
Since the effects of every pixel of the diffracting phase element is individ-
ually analyzed, computing time becomes extremely large when DOEs are
composed of many pixels in their aperture [36]. Some kind of noise is also
introduced in the algorithm so that convergence is not trapped to a local
minimum. For that reason, the simulated annealing method is not sensitive
to the starting parameters and is very good at avoiding stagnation to a lo-
cal minimum during the optimization process [47][48]. The algorithm has
converged when no pixel change is accepted.

The simulated annealing method is directly derived from the Direct Bi-
nary Search method [49], both manipulate pixels individually in the diffract-
ing aperture [50][51]. It is worth noting that both simulated annealing and
direct binary search only require forward propagator, this can be quite in-
teresting in cases (like the Kirchhoff one) where back propagators are more
than tricky to develop [19][11].

3.5.2.0.5 Iterative Method The Iterative Fourier Transform Algorithm
(or IFTA) method was originally developed by Gerchberg & Saxton for
electron—microsscopy [52]. The phase function of the diffracting structure
is determined by performing loops between diffracting and image planes
and, by replacing amplitude distribution in both planes by their target ones
(see 4.5 p.60). Unlike simulated annealing, all pixels are modified at each
loop in the iterative method. This is the reason why IFTA converges much
more rapidly than other optimization strategy [53][54]. Furthermore, since
all pixels are globally (and not individually) manipulated, iterative method



CHAPTER 3. DIFFRACTIVE OPTICAL ELEMENTS 47

is especially adapted to handle huge matrices of large diffracting elements.
However the severe drawback of iterative design lies in the fact that one can
not ensure the algorithm converges towards the global minimum [55]. That
is, the determined solution for the phase function might not be the optimal
one. Some other solutions with better performances probably exist. The
final optimized phase also strongly depend on starting parameters. If those
initial parameters are correctly chosen, IFTA performs as well as simulated
annealing and much faster (see [50] p.313).

When iterative optimization is carefully used, it is one of the most efficient
method to design diffractive beam shapers [40][55]. Some other algorithms
like Ping—Pong [56] or Yang-Gu [57][58][59] are based on IFTA but slightly
differ in the way constraints are applied in both planes.

3.5.2.0.6 Genetic Algorithm Genetic Algorithm depends on consider-
ations that radically differ from what we have encountered until now [36].
Optimal solution for the phase function of the diffractive element is found
by hybridization of a set of sub—optimal solutions. This method is analogous
to the crossing over of chromosomes in biology. This optimization strategy
is also very computational intensive, it is then limited to the determination
of the phase of small diffractive elements.

3.5.3 Selected optimization methods

Having briefly reviewed standard methods for optimization of the phase of
diffractive optical elements, it appears obvious that only two are adapted
to the constraints of diffractive beam shapers and to high pixel number:
the iterative method and the analytical design. Those two method were re-
ported to be successful in various beam shaping configurations [54][60][55][40]
[53][46][41]. For this reason, analytic beam shaping and iterative design of
beam shapers will be thoroughly studied in chapter 4. Then both methods
will be used in chapter 5 to design diffractive beam shapers that will be
integrated in our optical blood cell counting setup.

3.6 Fabrication

Previous sections of this chapter were dedicated to the introduction of diffrac-
tive optical elements. We have studied the physics of diffraction by computer
generated holograms in sections 3.2 and 3.4. Some methods to synthesize
the diffracting structures were also presented in section 3.5. So, now we are
able to calculate the diffractive structure that reconstructs a target intensity
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distribution in some plane after the DOE, the next step is to realize that
diffractive structure and to test its performances.

At the beginning of that chapter we mentioned that among all types of
diffractive elements, phase only diffractive elements (or kinoforms) give the
best performances [50][14]. Phase diffractive elements are a thin plate of
transparent material with surface reliefs on one side (see Fig. 3.12 and 3.1).
Those surface reliefs add a phase modulation to the impinging beam and so

Planel Plane2
. D
]

Index n

Figure 3.12: Schematic representation of surface reliefs of a
phase only diffractive optical element: a kinoform.

modify the light distribution in some plane after the diffracting plane. Since
the material is transparent, kinoforms have very good diffraction efficiency
(usually > 70%) [61][62]. Furthermore, by adjusting the maximal relief depth
to a 2w phase delay, it is possible to redirect all the energy into the first
diffraction order [14][19][50][51][63].

Having determined the two dimensional phase function ¢(z,y) with meth-
ods presented in section 3.5, we are going to see how ¢(z,y) can be converted
to a two dimensional depth function h(x,y). Let’s consider the setup depicted
Fig. 3.12; a wavefront of wavelength )\ located in the plane one (where the
surface relief depth is A an index n) needs a time interval AT to travel to

plane two:
h D—-—h h D
c/n c c c




CHAPTER 3. DIFFRACTIVE OPTICAL ELEMENTS 49

So the phase of that wavefront is changed of ¢ from plane one to plane two:

AT 27 2nth(n—1) 27D
o= = ¢ T

The last term of the previous equation is constant and plays no role in the
propagation of light, it can safely be omitted. So we have demonstrated that
the phase modulation the incoming beam undergoes is proportional to the
depth A of the surface relief. In case of variation of depth with location, that
is h = h(z,y), we get a two dimensional function for the phase modulation:

2m(n —1)

3 h(z,y) (3.28)

o(z,y) =
So, the pixelated phase relief depicted Fig. 3.12 directly represents the pixe-
lated phase distribution ¢(x,y) that was determined by methods described in
section 3.5. Furthermore, since an addition or subtraction of 27 to the phase
of an optical field has no effect, the phase function can be 2r—wrapped. Fig-
ure 3.13a represents the phase profile ¢(z) of a simple spherical positive lens,
once 2r—wrapped one get the phase profile ¢y, () represented on Fig. 3.13b.
This 2m—wrapped phase function is then sampled with a period zy to get
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Figure 3.13: Representation of the phase profile of a positive
spherical lens: full analog representation(a), 2m—wrapped analog
representation(b) and 27—wrapped and 4-step quantized repre-
sentation(c).

the final pixelated phase function ¢, = @a.(q X zo) with ¢ € Z depicted in
Fig. 3.13c.

Sharps edges due to the modulo—27 representation of the phase function
are characteristic for the diffractive structures and provide a challenge in the
fabrication process. Moreover, the feature size of diffractive element used at
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visible wavelengths is usually ten wavelengths (about a few microns). As a
result we will have to propose very specific fabrication methods to realize
prototypes of the diffracting structures that were calculated in section 3.5.
Once the diffractive optical element satisfies the target specifications, adapted
mass—production fabrication methods have to be considered.

3.6.0.1 Prototyping

Historically, first diffraction gratings were fabricated by ruling engines: high
precision mechanical devices that scribe grooves of a grating by ruling dia-
mond. With the invention of diamond turning machines, rotationally sym-
metric diffractive elements (such as diffracting lenses) could be achieved. It
is also possible to use two interfering beams for the production of gratings
of various kind. But none of those methods can really take advantage of the
versatility of diffractive optical elements. In the late 80’s, it has been noted
that microelectronics and diffractive optics have common demands: fabri-
cation of micrometer features. So electron-beam (or e-beam) lithographic
tools developed for microfabrication of semiconductor devices were adapted
with a modified software and resist processing to realize diffractive optical
elements with profile analogous to the one depicted Fig. 3.13c [61][62][63].

Electron-beam direct writing is the most sophisticated method for fab-
rication of diffractive optical elements. It can produce structures with di-
mensions below 50nm. Furthermore, analog profiles can be generated in a
electron sensitive resist by controlling the electron dose per unit area, which
eliminates masks alignments errors [64][50][61][62].

Through a collaboration with one of the world leading group in direct
e-beam writing: the Chalmers University of Technology, Goteborg, Sweden.
All prototypes we have designed (see chapter 5) were fabricated at Chalmers
University of Technology. The available e-beam has allowed fabrication of
diffractive elements made of 2048 x 2048 pixels with 64 phase quantization
levels [65]. When those elements were tested, we measured a diffraction
efficiency of more than 83% in the first order. This denotes an excellent
fidelity between the target surface profile h(z, y) and the realized one. Those
fabrication considerations will be further discussed in chapter 5 where testing
of all realized prototypes will be achieved.

3.6.0.2 Mass production

Fabrication methods presented in the above section were developed for pro-
totyping purposes only. Cost and time that is necessary to realize a single
prototype of DOE are not compatible with mass production for industrial
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use. Nevertheless, DOEs have excellent abilities for mass production with
various replication methods [65][50][51]. Available replication technologies
are represented on Fig. 3.14. The realization of a Nickel shim master is
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Figure 3.14: Nickel shim realization and replication technolo-
gies.

common to all replication methods.

The fabrication of the Ni shim is based on an original structure realized
by any of the prototyping methods exposed above. The original resist struc-
ture, which is non conducting, is first coated with a thin metallic layer of
approximately 50nm. Then a nickel copy is realized by electroplating pro-
cess. This gives a first generation shim (the master) that can be used to
produce replica or other generation of masters.

Once the master is realized, several different replication methods can be
used to replicate DOEs depending on desired quantities: UV-casting, hot
embossing or injection molding.

3.6.0.2.1 UV-casting A UV-curable liquid (resin or epoxy) is used as
replication material. This material is applied onto the Ni shim and exposed
to UV radiations. After exposed, the curable material is solid and can be
separated from the Ni shim. This method is especially adapted to small
number of replica [50][51].

3.6.0.2.2 Hot embossing Using a hot press, the relief surface of the
Ni shim can be replicated into a thermoplastic polymer (polycarbonate or
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PMMA). This method is rather slow compared to other replication technolo-
gies [50][51].

3.6.0.2.3 Injection molding Injection molding is a well established tech-
nology for the high speed mass production of plastics components like com-
pact disks. The Ni shim containing microstructures to be replicated is
mounted on one side of the mold and pre—heated plastic is injected into
the mold. After a rapid cool down, the molded part is extracted with a cycle
time of less than five seconds [50][51][65].

The replication technology that will mass produce DOEs for our blood
cell counting application has not been retained yet. Considering quantities (a
few hundreds DOEs a year) and replica fidelity imposed by the beam shaping
function sensitivity, we recommand to use injection molding.

3.7 Conclusion

In that chapter we have introduced a new technology, diffractive optics, that
will be used in our blood cell counting application to both enhance mea-
surement accuracy and lower production costs. Now that we are able to
handle all processes involved in the design of DOEs (from specifications to
fabrication of prototypes), we are going to focus in the next chapter on the
optical function the proposed diffractive optical element will perform: beam
shaping.



Chapter 4

Laser Beam Shaping

The goal we seek for throughout this work is to realize the uniform laser
illumination for our blood cell counting application presented in chapter 1. In
this section we are going to see that all problems of laser pattern generation
are known as beam shaping problems. We are also going to see that very
few optical technologies are available to solve the beam shaping problem at
reasonable cost, and that diffractive optics introduced in the previous section
is the most adapted technology to achieve this work.

4.1 Introduction

Beam shaping is the process of redistributing the irradiance and phase of an
optical disturbance. The shape is defined by the irradiance distribution such
as the uniform rectangular intensity distribution of our blood cell counting
application. In the following sections, we are going to consider lossless beam
shaping [66]. This means that incident energy is totally redistributed and
not absorbed by the shaping optical device. Equivalently, this also means
that the beam shaper has an efficiency close to 100%.

Generation of uniform illumination from a laser source is crucial for a
wide range of applications like laser welding [18], laser—stimulated etching,
laser scanning, laser microfabrication [67] or laser printing. This is the reason
why laser beam shaping has become a subject of interest soon after the laser
was discovered. The earliest known instance of lossless beam shaping was by
Frieden in 1965 (see [66]). He used geometrical methods to determine the
curvature of aspheric lenses that would reshape a single mode Gaussian beam
into a beam with uniform profile. Since then, many authors have presented
solutions based on either aspheric lenses or aspheric mirrors to correct badly
shaped laser beams [16][17][68]. Those solutions usually give quite uniform

93
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shaped beams with an excellent efficiency like apsheric—lenses based beam
shapers used microlithgraphy [67]. However, the typical drawback of those
solutions is cost. Aspheric lenses are still difficult to produce and cost remain
very high even in bulk quantities. This technology is obviously not adapted
to our industrial environment neither to large quantities.

However it is worth to keep in mind that, in our particular case, the
measurement point is defined by the intersection of the laser beam and the
stream in which blood cells are flowing one after another. Since we know the
geometrical limits in which blood cells are enclosed, it is possible for the laser
illumination to fulfill some constraints inside those limits and to be arbitrary
outside those limits. This is the basic concept of beam shapers actually used
in all flow cytometers. As we are going to see, the main advantage of this
setup is its simplicity since only spherical (or eventually cylindrical) lenses
are used. But this setup also has the severe drawback of very low efficiency.

4.2 Refractive setup efficiency

The very first step to meet the uniformity constraint exposed in chapter 1
is the use of a combination of spherical and cylindrical lenses to enlarge the
beam waist [69][36]. By enlarging the waist and restricting to the use of the
central part of the beam, it is possible to satisfy to the first beam shaping
condition: uniformity. So we are going to study light distribution in the

Figure 4.1: Optical setup for a very basic refractive beam
shaper.

plane of focus of the refractive beam shaper depicted Fig. 4.1. Since we
are only considering optical setups based on TEMy, lasers and spherical (or
eventually cylindrical) lenses, any beam cross—section has at least two axis
of symmetry. For this reason we can safely restrict our analysis to the one—
dimension case (see Fig. 4.2). Figure 4.2 shows the typical intensity profile
of a 1-D Gaussian beam. This profile can be represented by the following
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Gaussian beam profile
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Figure 4.2: One-dimensional Gaussian beam profile.

normalized function: o
I(.??) — 63—2152/02 (41)

where o is the beam waist at 1/e?. The total power under the normalized
Gaussian function can easily be calculated by:

+o0
Piotar = / I(t)dt

o

The refractive beam shaping trade—off implies that we only use the central
part of the focused beam waist to satisfy to the uniformity constraint [69][36].
So to ensure that intensity variations are less than n% between z = 0 (i.e.
the optical axis) and the limits +x,, of the used part of the beam, = has to
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obey:

with  n € [0;100]

1(0) =100
iS4
n
I(z,) >1— —
() 100

So, we have intensity variations less than n% if z,, values are restricted to:

Ty < a\/—% In (1 - %) (4.2)

Examining Fig. 4.2 it is obvious that, even in the case of pretty bad uniformity
(say variations of 10%), a very small part of the total beam is be used. That
means a huge amount a power is lost since we have to restrict ourselves to
the central part of the beam. To quantify the available amount of energy,
we define the refractive beam shaper efficiency 7, as a function of desired
uniformity n:

_ P(zn)
Ptotal

T where P(z,) = 2/ 0—22/0° gy (4.3)
0

The quantity fox" e 2%/9% gt can’t be evaluated directly. So we introduce the
Generalized Error Function defined as:

Erf (z) = % /0 e at (4.4)

If we change the variable of integration in the previous equation according
tot = ?u we can re—write the integral P(xz,) using the Erf function:

P(z,) = 2/ e/t = 0\/§ Erf (a:n£>
0 o

Reporting expressions of P(z,) and Py, = in Eq. 4.3, the efficiency 7,

becomes:
2
N = Erf (:v,Li)
o

Finally replacing z,, by the relation we found in Eq. 4.2, the final formula of
the efficiency of the refractive setup becomes:

100
N = Erf ( In 100 — n) (4.5)
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Refractive Beam Shaper Efficiency

00 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

1.0 1.0

—T—T—T—T—TTTTTT T T
L A
0.9 | — Efficiency /_ 0.9
L > 4
08 |- e - o8
e
i
07 | // - 07
0.6 e 4 o6
) e
/
E 05 | P - o5
04 | - - 04
//
03 | - 03
02 | / - 02
- /// 4
01 - o1
I ]
0.0 PR N U SN T NN MNNSS T SA R S S 0.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
Intensity Variations (%)

Figure 4.3: Refractive beam shaper efficiency.

Let’s consider that we want the uniformity to be less than 10%; this
involves that the efficiency 7y is less than 24%.

As one might have expected, the final formulation for the efficiency 7,
does not depend on beam waist ¢. This was easily predictable since the
more we enlarge the waist, the more uniform it becomes, and the more z,
boundary value increases. On the contrary if the waist is reduced, the z,
boundary value is also reduced.

It also has to be noticed that a Gaussian laser beam can, of course, not
be truncated by the use a rectangular diaphragm. This would inevitably lead
to a strong and unwanted diffraction pattern in any image plane.

One should notice that the previous setup is more a beam expander than
a real beam shaper. Relation between input and output beams is a scale
factor only. The Gaussian profile of the beam is left unchanged. Anyway, this
setup can be advantageous for cost—sensitive applications since it only relies
on two cheap plano—spherical or plano—cylindrical lenses. It is nevertheless
possible to design a real refractive beam shaper that transforms a Gaussian
profile into a uniform one [36][70][71]. But this requires lenses with very
complex aspheric surfaces (see [69][72]) that are very difficult to produce
in bulk quantities. Examples of other refractive or reflective beam shaping
devices are given in references [73][74][75][69][72].
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4.3 Diffractive beam shapers

In the previous section we have seen that typical refractive beam shapers
are either based on high cost aspheric surfaces [69][72][74] that give good
efficiency or based on cheap classical spherical surfaces that lead to a very
low efficiency. Since it seems impossible to satisfy to the low cost versus
high efficiency constraint with classical optical elements, it might be wise to
consider the use of Diffractive Optical Elements.

We have seen in section 3.1 that diffractive optical elements are basically
wave forming elements that have high diffraction efficiency (about 85%).
Diffractive optics is then the ideal technology to solve our beam shaping
problem.

Designing a DOE is pretty different from designing a refractive optical
system. It is not possible to “pick up” elements in a catalog and combine
them to get the desired optical function. Purpose of a DOE has a significant
impact on its design that it is impossible to consider multi purpose diffrac-
tive elements. Any DOE has to be custom—designed to fulfill constraints
of the application. Moreover no commercial software package actually ex-
ist to design applied diffractive elements. For instance, neither Code-V nor
Zemax can handle the full process of designing a DOE from the definition
of constraints to final fabrication data file. For this reason we are going to
present the algorithms we had to encode to achieve the goal of synthesizing
and fabricating a beam shaping diffractive element adapted to our blood cell
counting application.

We have previously mentioned in chapter 3 that DOEs can be synthesized
either using non linear optimization loops or using direct analytical determi-
nation. Both methods have its advantages and drawbacks and, as we will see
in chapter 5, they can sometimes be combined to give excellent results. So
we are first going to propose an iterative algorithm for determination of the
phase function of a beam shaping diffractive element. Then we will introduce
a direct analytical method to determine this phase function.

4.3.1 Proposed iterative design

We have seen in section §3.5 that many algorithms are available [76] to opti-
mize the phase function of diffractive phase optical elements: Direct Binary
Search [49], simulated annealing [47][77] and genetic algorithm [76]. In this
section we are going to propose our optimization strategies that is especially
efficient for our beam shaping problem: iterative optimization algorithm.
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4.3.1.1 Presentation

Iterative algorithms have prove, their utility in many scientific applications
like electron—beam microscopy, astronomy, wavefront sensing, cristallography
and optics. When mathematics fail in determining analytical solutions, it is
often advantageous to solve a problem with an iterative method. A typical
problem arises when we want the Fourier transform of an object (signal, aper-
ture, antenna array) to have certain properties (such as uniform spectrum)
while the object itself must satisfy some other constraints. Furthermore,
information are sometimes missing or incomplete in each domain.

4.3.1.2 Tterative Algorithm

The Gerchberg-Saxton [52] algorithm, that we are going to implement was
originally developed to solve a problem of electron-microscopy. In this case
both modulus of complex valued imaged and modulus of its Fourier transform
are measured and the goal is to reconstruct the phase in both domains.
This problem of electron—-microscopy exactly matches our needs in diffractive
optics where the two domains, spatial-coordinates in DOE plane and spatial—
frequencies in the reconstruction plane, are linked with a Fourier transform—
based! relation. Considering the setup depicted Fig. 4.4, it is obvious that

a(x,y) plane A(u,v) plane

Fourier Lens

Phase Diffractive Element ¢ (xy)

Figure 4.4: Tterative algorithm Fourier setup.

the input field @(z,y) = |i(z,y)|e’¥@¥ at the DOE plane and the output

Lthe validity of the presented algorithm still remains in case of more complex relations
between the two planes. For simplicity reasons, we are going to consider a pure Fourier
transform in this presentation.
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field U (u,v) = ‘U(u, v)‘ e’®®) in the focal plane make a Fourier transform

pair. In this case intensity is known in both planes (input laser beam and
output reconstructed pattern) but phase distribution ¢(z,y) in the DOE
plane is to be determined. So the problem can be summarized in finding a
Fourier transform pair that satisfies a set of constraints in both planes.
Iterative optimization is based on complex amplitude representation? of
optical disturbances. Amplitude u(z,y) of the optical disturbance in the
DOE plane is given by the square root (see Fig. 4.5) of the incoming laser
distribution i74se- (%, y)- In the reconstruction plane, amplitude distribution
U (u,v) should be as close as possible to the square root of the desired inten-
sity pattern Ipgern(t,v). The Fourier transform relation between the two

IFTA Starting Point

Initial Phase
b
{ DOE Plane Image Plane
16 ) i ()
uxy) € Free Space uuy €
Propagator l
DOE Plane | vxy=vi oy UE)=/Tw) Image Plane
Constraints = Constraints

i (<) 1 /()
ye Free Space False ‘() €
) [ Back—Propagator v

True

; | Back propagation I

IFTA Ending Point
Final Phase

¢ )

Figure 4.5: Proposed iterative optimization algorithm diagram.

domains involves a remark concerning the bandwidth of considered func-

2That is, geometrical optics approximation.
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tions. Let’s consider an amplitude distribution with very sharp variations
(say a step or Dirac function) in the image plane. This infinitely sharp func-
tion in the image plane must have an inverse Fourier transform function in
the DOE plane with infinite aperture dimensions. So, in the real case, the
finite aperture dimensions of the DOE only allow reconstructed of bandlim-
ited intensity distributions Upgspern (4, v) in the image plane [78][54]. To be
very accurate it is to be said that iterative optimization algorithm can, in
some cases, reconstruct very high spatial frequencies in the image plane al-
though dimensions of the aperture are finite. During the optimization loop
the algorithm can take part of spectrum overlapping to generate high spatial
frequencies. This is usually undesirable since it leads to strong Speckle noise
in the reconstruction plane.

Propagators used to go back and forth between the two planes are usu-
ally based on the Fourier transform, for this reason iterative optimization
algorithm is often called Iterative Fourier Transform Algorithm or simply
IFTA.

Figure 4.5 represents the proposed loop of the iterative optimization al-
gorithm, keeping in mind that we want to determine the phase function
o(z,y) of a Fourier transform pair that has to satisfy some constraints
in both domains. The algorithm starts with an initial guess ¢o(x,y) of
the function ¢(x,y) which is often chosen to be random. As we are go-
ing to see below, the choice of the initial phase ¢, is of primary impor-
tance for the quality of the final result. In the DOE plane, the ampli-
tude u(x,y) = |a(z,y)| of our complex function @(z,y) = u(z,y)e’?®V)
is, of course, the amplitude of the input laser. That is, the square root
of the laser intensity distribution w(z,y) = \/ireser(%,y). The complex
optical disturbance @(z,y) is then propagated from DOE plane to the im-
age plane in which the optical disturbance is U(u,v) = U(u,v)e/®®?) with
(U(u, v) = ‘U(u, U)D Since the initial phase distribution g(x,y) was cho-
sen random, there is no chance that U (u, v)? matches the desired output pat-
tern Ipggtern(u,v). So the amplitude distribution U(u,v) is replaced by the
desired amplitude U'(u,v) = \/Ipattern(u,v) whereas the phase distribution
®(u,v) is left unchanged. This is the image plane constraint (see Fig. 4.5).
The new complex optical disturbance U’(u, v) = U’ (u, v)e/®®?) is then prop-
agated back from image plane to DOE plane. Since U(u,v) has been mod-
ified in image plane, the modulus u(z,y) of its back-transformed function
probably doesn’t match \/igser(2,y) anymore. So u(z,y) distribution is
replaced with u'(z,y) = \/iLaser(z,y) (DOE plane constraint). We have
then performed a whole loop since we are back to the starting point. By
performing iterations and applying specifics constraints in both domains,
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Figure 4.6: Evolution of reconstructed light intensity pattern
(upper row) for N=1(a), N=10(b) and N=50(c) iterations. Lower
row shows one amplitude profile across the reconstructed plane.

the reconstructed amplitude U(u,v) become closer and closer to the target
v/ Ipattern (U, v) distribution. The question arises: when to stop?

4.3.1.3 Merit function

It seems obvious that we need to quantify how the amplitude distribution
U(u,v) matches the desired distribution \/Ipgtern(u,v). We will then be
able to set a threshold beyond which there is no need to perform any opti-
mization loop anymore. for that reason we introduce a merit function that
will quantify a parameter like diffraction efficiency, reconstruction error or
uniformity. Merit functions are evaluated in DOE or image plane depending
on the measured parameter. Let’s say we want the reconstruction error to
be less than 10%. Anytime the loop is in the image plane the reconstruction
error [79][50][51] will be evaluated. If it is more than 10% nothing will hap-
pen. But if the error is less than 10%, U(u, v) will not be applied constraints
anymore but back propagated a last time to the DOE plane. Optimization
is then over and the phase distribution ¢(z, y) is the one we were looking for
to solve our Fourier transform pair problem.

One might wonder if U (u, v) distribution really get closer to \/Ipattern(u, v)
when performing IFTA loops. That is, what ensure that this optimization
strategy converges? The answer is given in [80] p.195 and [52] where it is
demonstrated that similarity between U(u,v) and \/Ipgsern(u,v) can only
increase from one optimization loop to the next one.
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4.3.1.4 Speckle and phase dislocations

In section 3.3.1 we have stressed the importance of phase function ®(u,v) in
the reconstruction plane. There is a direct relation between smoothness of
®(u,v) and fluctuations of U(u, v) sampling points [81]. If ®(u,v) is smooth,
the amplitude distribution U(u,v) will be stable between sampling points;
whereas if ®(u, v) has discontinuities (or dislocations) U(u, v) will vary a lot
between sampling points (see [54][78][82]). Since beam shaping require the
best uniformity in the image plane, that means phase has to be carefully
controlled to get a smooth ®(u,v) function and then ensures that no Speckle
arises between sampling points. Our design problem becomes even more
difficult since the phase function ®(u,v) can not be used as a free parameter
when designing laser beam shapers.

4.3.1.5 Initial phase

It is now obvious that the random function taken as initial guess (¢, for phase
o(z,y) leads to a strong Speckle noise in the image plane. Since random
function has both high frequencies and many discontinuities, it tends to gen-
erate a ®(u,v) distribution with the same discontinuities; moreover IFTA
optimization is unable to remove those discontinuities in the image plane
(see [83]). For that reason it is highly desirable to find an initial function
¢o(z,y) with no discontinuities. It has also been demonstrated in [83] that
initial phase has a huge impact in IFTA optimized DOEs (Fig. 4.7). Random
and smoothed random phases tend to redistribute the energy uniformly into
the whole DOE window, which is desirable, but also contain discontinuities
that will remain in the whole optimization loop and give Speckle noise. If the
initial phase is chosen to be constant, the energy will be located mainly in
the center of the aperture and will slow down the converge rate of IFTA but
will introduce much less Speckle. The quadratic phase function of a positive
lens is a good compromise between convergence rate and Speckle. Since the
function is defined analytically by @o(z,y) = /\Lf(JIQ + ?), it is smooth over
the whole DOE aperture. More over energy can be accurately redistributed
over the plane by adjusting the focal length in the lens equation. As seen in
Fig. 4.7 the reconstruction plane of an IFTA optimized DOE started with a
quadratic phase contains almost no Speckle since the phase function ®(u,v)
in the image plane is smooth.

4.3.1.6 Constraints

We have seen above that because IFTA optimization strategy can not remove
phase dislocations, it is important to introduce as few phase discontinuities
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Figure 4.7: Initial phase distributions ¢q(z,y) (upper row) and
their associated final amplitude distributions U(u,v) in image
plane (lower row). Chosen initial phase distributions are: con-
stant (a), random(b), smoothed random(c) and quadratic(d).

as possible in the initial guess of the phase distribution. But although we
have taken care not to introduce any dislocations in the initial phase, those
discontinuities sometimes occur during the optimization process. As shown
in figure 4.5, constraints applied in both planes are total replacement of the
function amplitude distribution by the target amplitude distribution in the
whole plane. This constraint is pretty hard since it can produce big differ-
ences between @(z,%) and u'(z,y) (and also between U(u,v) and U’(u,v)):
continuity in the optimization process is broken and phase dislocations ap-
pear. For that reason it is desirable to find some less severe constraints that
ensure continuity of our Fourier transform pair from one iteration to the next
one. There are two different methods to somehow relax constraints applied in
each domain; it is possible to apply a constraint locally and it is also possible
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to apply it partially only.

% S gnal Window

Image Plane

Figure 4.8: Constraint can be apply in an area smaller than the
image plane: the signal window.

As depicted Fig. 4.8, the desired reconstructed pattern usually fills only
a small region of the image plane defined as signal window. Moreover light
distribution out of the signal window is of no interest in many applications.
It has been demonstrated [60][83][54] that replacing amplitude by target am-
plitude in signal window only minimizes modifications applied to U(u,v)
function and then leads to a more progressive and smoother optimization. It
is also important to note that since the constraint is applied in signal window
only and since the rest of the image plane is left unchanged, more degrees of
freedom are available for optimization. For this reason image reconstruction
errors are usually reduced when a local constraint is used. A drawback of
this method is the lower diffraction efficiency it gives. Since the amplitude
out of the signal window is left arbitrary, IFTA doesn’t try to optimize it to
the detriment of signal window amplitude.

Another way to somehow relax constraints in both domains is to apply
them partially. This means that, rather than abruptly replacing amplitude
with target amplitude, we introduce a running parameter o that will ensure
progressivity in replacement of amplitude in both planes. Assuming that
parameter values are ranging from zero at the beginning of the optimization
to one at the end. It is possible to give a more mathematical form to this
constraint:

Un+1(2,Y) = (1 — @)un(2,y) + @V iLaser (T, Y) (
Un+1(u, U) = (1 — a)Un(U, U) + ay IPatte'rn(ua ’U) (

The running parameter « is used to control the progressivity (i-e. continuity
of the optimization procedure. At the beginning of the optimization o = 0

4.6
4.7

so no change is made in the Fourier transform pair (a(x,y); U(u, v)) By
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slightly increasing «, we introduce very little changes that tend to converge
to the target pattern without breaking the continuity between iterations of
@ and U functions. At the end of the optimization & = 1 ensures that
there are very few differences between the reconstructed pattern and the
target pattern. Diffractive optical elements optimized with those constraints
typically give excellent reconstruction accuracy and low Speckle noise [80].
Those two methods are not exclusive one with another, this means that a
constraint that is both progressive and local can be apply. This method was
successfully tested to design Speckle—free diffractive elements [53][83][80].

4.3.1.7 Conclusion

We have seen that iterative optimization is a powerful tool to achieving good
compromise between high diffraction efficiency and high SNR [82][83]. It is
also a versatile strategy since it allows the use of various free space prop-
agators® to go back and forth between the two planes. Moreover, applied
constraints are unlimited and can help to solve problems as various as quan-
tization of phase function [60][84] or e-beam point spread function compen-
sation [85][65].

It is also important to note that both input and output intensity dis-
tributions can be almost completely freely chosen (unlike analytical method
see §4.3.2). Input intensity can be Gaussian, uniform, or arbitrary like the
output of a preceding diffractive element. Output intensity can represent
continuous geometrical patterns, discrete spots, or even pictures.

However, a drawback of iterative optimization is that it can not ensure
a global minimum but only local minima. So when the algorithm is stopped
because the merit function has reached the threshold, the determined phase
profile is not unique. Other solutions exist depending on initial conditions
or applied constraints [52][53].

4.3.2 Analytical design of diffractive beam shapers

We have seen in §4.3.1 that iterative methods can be used to determine the
phase distribution ¢(z,y) of a diffractive beam shaper. This method gives
quite satisfying results since it is possible to realize DOEs that shape the
Gaussian input beam into a rectangle of desired dimensions with sharp edges
[75][51].

Nevertheless, iterative methods generally tend to produce phase dislo-
cations (i.e. 7 phase jumps) in the reconstruction plane [81][86][78][83][84].

3Based on complex amplitude transmittance.
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Those dislocations are responsible for the strong Speckle effect that dramati-
cally lowers intensity distribution uniformity [87][81][88]. Moreover, we have
also seen that DOEs optimized with iterative methods are very sensitive to
beam misalignments and variations of input beam amplitude distribution
[89][80][53][60][54][90]. Then it might be wise to find a smoother phase dis-

a(x,y) plane A(u,v) plane

Fourier Lens

Phase Diffractive Element ¢ (xy)

Figure 4.9: Analytical beam shaping Fourier setup.

tribution ¢(z,y). We would like to find an infinitely derivable phase function
that, when multiplied with the input beam amplitude function a(z,y) and
Fourier-transformed according to the setup Fig. 4.9 gives the desired ampli-
tude A(u,v) in the reconstruction plane.

Since the chosen phase function ¢(z,y) and the Gaussian laser beam
amplitude a(x,y) are infinitely differentiable, one might expect A(u,v) and
®(u,v) to be infinitely differentiable too. For this reason there should be
no phase dislocations (a much reduced Speckle) in the reconstruction plane,
that is, a better intensity uniformity.

4.3.2.1 Fourier setup case

The goal is now to determine analytically the unknown function ¢(z,y) that
realizes the desired amplitude transformation when inserted in the optical
setup depicted Fig. 4.9. Determining analytically the phase function of a
DOE is not always possible. It has already been done [45][46][43][91][44][41]
for simple input beam profiles and reconstructed patterns such as lines, cir-
cles, rectangles, ... The desired transformation is a re-mapping of a plane
into another plane, it is a one-to—one transformation. Any point in the (z,y)
plane will be imaged in the (u, v) plane at location (u(z,y); v(z,y)). We have
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Figure 4.10: Redistribution of a Gaussian beam profile to a uni-
form one.

seen in §3.2.7 that the relation between the two planes of the setup depicted
Fig. 4.9 is basically a Fourier transform [19][46][43]:

~ +oo . o
A(u,v) = // [a(z, y)e??=¥)] e I3 (et g gy (4.8)

where A(u,v) = |A(u,v)|e®®?) and f the focal length of the lens.

Before trying to evaluate equation (4.8) ’as is’, it is interesting to make a
few remarks. We deal here with Fraunhofer diffraction which relies on small
wavelengths approximation (see §3.2.7 and [11]). If X is very small, then k& =
27” is very large and we should expect that the phase term of the exponential of
eq. (4.8) will vary rapidly. On the contrary, the input amplitude term a(z, y)
varies slowly compared to the phase. In that particular case eq. (4.8) can be
evaluated with the method of stationary phase (see [36] p.36, [11] p.888, [43],
[91]). Considering the integral:

+oo
// g(z, y)ejk(‘"’y)dxdy

the stationary phase method allows to write:

Oh(w,y) _ Oh(z,y) _,
ox dy

so in our particular case the previous relation becomes:

% <90(9:, y) - i—;(w + vy)) =0

a% <90(x, y) - i—;(ux + Uy)) =0
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We have found [43][42][44] a relation that gives coordinates of the point
M'(u,v) image of M(z,y) by the transformation associated to ¢:

Op(z,y) _2m
or ﬁ

Op(z,y) _ 2m (4.9)
dy )\fv

The next step to determine completely the transformation that will redis-
tribute the energy of a Gaussian beam profile to a uniform profile, is to
find relations u = u(z,y) and v = v(x,y). It is worth to notice that both
Gaussian input amplitude a(z,y) and uniform output amplitude A(u,v) =
Rect (%) Rect (%) are separable functions*. So our case can be reduced to
a one dimensional problem as depicted in Fig. 4.10. In particular, since con-
servation of energy imposes [43][46] that the area under the one-dimensional

Gaussian input beam profile must be equal to the area under the uniform
output beam profile (see Fig. 4.10):

Input beam intensity profile: i(x) = —e o2 (4.10)
2]
1
Output beam intensity profile: I(u) = A Rect (E) (4.11)
0 (0%
So conservation of total energy imposes:
+00 T
/ i(x)dz =1 that is ip=o0 B
ol
/ I(u)du =1 that is Iy =2

Moreover as we are considering a one-to-one geometrical transformation,
energy densities along the path of transformation also have to be equal:

[ las)tas= [ A ds
0 0

! / it = = / I(t)dt
20 Jo Iy Jo

=1 if z|<a

=0 anywhere else

*The Rect function is defined as Rect (Z) {
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To evaluate the left part of previous relation, we use the Generalized Error
Function that has already been introduced in §4.2:

1 [* 1 2
,—/ e 2/ qt = — o Erf (m£>
20 Jo 219 o

The right term is much easier to evaluate:

/Ou(w) Rect (i) ds = Ilou(:v) = iu(ac)

o 2a

So, we have found the relation between coordinates in the two planes of our
transformation that redistributes a Gaussian profile into a uniform one:
2
u(z) = a Erf (x£>

S (4.12)
where o is the waist of the Gaussian input beam, and « is the dimension of
the uniform rectangle output.

To get an overview of the situation: we reached the point where on the
one hand conservation of energy gave us the relation u = u(z); and on the
other hand stationary phase allowed us to analytically determine ¢(z) as a
function of w:

0p 27
a—x(x) = )\_fu
u(z) = aErf (x?)

Using the previous two equations, we are going to completely determine the
function ¢(x) associated to our reshaping transformation.

Op, . 2w V2
%(x) = )\—foz Erf <x7)

that is:

o(x) = /w i—;a Erf (t?) dt (4.13)

Evaluating integral (4.13) requires some calculations. Let’s consider the sim-
pler form:

/w Erf (s) ds (4.14)
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Integrating (4.14) by parts gives:

/j Erf(s)ds:/oxl. Exf (s) ds
_ [5. Exf (s))f — /O s % Frf (s) ds

= z. Erf (z) + % [e_mz - 1]

Reporting that result in eq.(4.13) that determines ¢ gives:

V2

Y=
o

Erf (s) ds

2o

A =3,

_ i;(\’g [x? Erf (xg> . % (e—2§—3 - 1)]

Keeping in mind that ¢(z,y) = ¢, (x)¢,(y) the final 2D-phase distribution
is given by [46][42]:

@Fourier(ajay) = (i—’]}) Oéﬁ [.’L‘Erf (.’E?) — \/%_ﬂ- <e_2§_3 _ 1)] X

[y Erf (y?) - \/LQ_W (eQ%; - 1)] (4.15)

where )\ is the laser wavelength, o the input laser beam waist, f the focal
length and (o, 3) are dimensions of the reconstructed rectangular output
intensity distribution. So far, we have analytically determined a phase func-
tion that, when inserted in the optical setup depicted Fig. 4.9, redistributes
the Gaussian-beam input amplitude of a TEMy, laser into a uniform rect-
angular intensity distribution in the output plane. It can be clearly seen
on figure 4.13 that the function ¢ is continuous over the full aperture of
the DOE; there are no dislocations. We are going to see that DOEs we
have designed with this analytical phase function give much better results
than IFTA-optimized DOEs [45][80]. Analytical design radically suppresses
Speckle and gives smoother (so much more uniform) intensity patterns. How-
ever because of the smoothness of that distribution it is impossible to get a
rectangle with very sharp edges in the reconstruction plane. This little draw-
back is definitely no trouble for our application to blood cells counting.
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Figure 4.11: Modulo 27 two—dimensional plot of the analytically
determined @ Foyrier (2, y) phase function. With focal f' = 10mm,
beam waist ¢ = 0.65mm, wavelength A = 488nm, rectangle di-
mensions o = 100pum and 8 = 30um.

4.3.2.2 Fresnel case

The analytical phase function defined by eq. (4.15) is based on the Fourier op-
tical setup depicted Fig. 4.9. However the lens of that setup is nothing more
than an optical element that adds a quadratic® phase term to an incoming
beam [19]. It is then certainly possible to combine this focusing function with

a(xy) plane A(uy) plane

‘
e e >

z

Phase Diffractive Element  ® (xy)

Figure 4.12: Fresnel analytical beam shaping setup.

5In the geometrical optics approximation.
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the reshaping function to get the even simpler optical setup of Fig. 4.12. Con-
sidering Fresnel near—field diffraction, the relation between (z,y) and (u,v)
planes is now a Fresnel transform (see §3.2.6). The stationary phase method
applied to the Fresnel integral gives® [43][42][44]:

Opz, 2w

where Z is the reconstruction plane distance. The conservation of energy
gives the same relation in the Fresnel case. So we still have:

u(z) = aErf (azﬁ>

o

The analytical phase function in the Fresnel case is then given by:

0e(z) = Z a/o Erf (s)ds — /0 sds]
That is:
2T V2 o _p22 1,
2 27 - a— o7 — - = 4.1
() 7 ax Erf (:E S ) a\/ﬁ (e 1) 57 (4.16)

As one might have expected, the analytical phase function @p,csne(,y) in
the Fresnel case can be obtained simply by addition of a quadratic term to
OFourier (T, Y), that is [43][42][46]:

™

@Fresnel(x; y) = @Fourier(xg y) — )\_Z (.T2 4 y2)

We have already stressed that analytical determination of DOE phase func-

tion ¢(z,y) is only possible when both input and output beams are rather
simple (i.e. Gaussian laser beam and simple geometrical output patterns)
[45][44][41][92]. For those simple cases, transformation of a beam of one irra-
diance into a beam with another irradiance is possible provided the fact that
the energy of incoming and outgoing beams are the same (see [36] p.88). It
is however possible to get slightly more complex reconstructed patterns by
splitting the aperture on the DOE. Each sub-aperture reconstructs a sub—
pattern which is a piece of a more complex one [40]. On have to stress that,
in this latest case, the DOE sensitivity to input beam variations is increased
[89].

6Input and output functions are still separable in the Fresnel case.
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Figure 4.13: Modulo 27 two—dimensional plot of the analytically
determined @presner(x,y) phase function. With reconstruction
distance Z = 10mm, beam waist ¢ = 0.65mm, wavelength A =
488nm, rectangle dimensions a = 100pum and g = 30um.

We have mentioned in §4.1 that the presentation of iterative and analyt-
ical methods to synthesize the phase function ¢(z,y) was driven by the fact
that we had to develop a full software package for generation of diffractive
elements. In the next section we are going to see how previous algorithms
have been implemented.

4.4 Implemented algorithms

We have already stressed in sections §4.1 and §4.3 that any diffractive element
has to be custom design to meet the application constraints. It is impossible
to pick up and combine several ‘multi-purposes’ diffractive elements to get
the desired optical function has it is done with refractive lenses. We have also
mentioned that actually no software package can handle the full synthesis of a
DOE from specifications to e-beam fabrication input file. Those are reasons
why we had to develop our own software package. So, to be able to synthesize
the diffractive beam shaper that will be integrated in our optical blood cell
counting application, we had to study and implement algorithms we have
selected in the previous two sections.

We have seen in section 4.1 that iterative and analytic design are the
most adapted methods to determine the phase function of a diffractive beam
shaper. We are then going to present encoded functionalities and some basic
examples for each methods.
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4.4.1 Iterative algorithm

It has already been explained in section 4.3.1 that iterative optimization al-
gorithm basically relies on: initial phase guess, constraints in both planes
and, of course, propagators. Since propagators have already been presented
in section 3.4, we are going to focus on IFTA loop only. The iterative algo-
rithm was encoded according to the block diagram represented on figure 4.5
page 60. However, the encoded algorithm is much more general than the one
depicted Fig. 4.5 since the way each block perform its function can be freely
chosen among a list of possibilities. This allows the design of beam shapers
but also of a wide range of diffractive elements (near or far field, arbitrary
reconstructed patterns, arbitrary merit functions, ...). We are now going to
briefly list functionalities with each block of the IFTA process.

4.4.1.1 Available initial phase functions

We have already stressed in section 4.3.1 the importance of initial phase
function in iterative design. For this reason a wide choice of initial phase
functions was encoded (see fig. 4.14). The random, pseudo-random and

Initial Phase
Spoherical Lens ¥ Jotmm [1XBlaze |2YBlaze |3 [a: Horw !
MNa Initial Phase =1 EXIT [so.0o0  [o.000 {0.000 J140
Constant (|
] -
Random
Srmoothed Fandom
Girting
Spherical Lens 0 |1 |2 |3 |4 Mo |
*:“3'3"'7‘;' F‘T;ﬁ“?': e ooo0  [oooo  [oooo  foooo  fooc
resne natyuca = nojle
IFTA1D R xr
Analytical Line Fi
Trrage Consteaint

Figure 4.14: Initial phase functions implemented in the realized
diffractive elements CAD software.

quadratic phase functions mentioned in reference [83] have been encoded.
We furthermore have taken into account the case of off-axis diffractive ele-

ments by adding a parametrable linear phase term along each direction (see
Fig. 4.14).
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4.4.1.2 Available image constraints

We have seen in the previous section that many different constraints can be
considered in the image plane: replacement of amplitude [54], progressive
replacement [83] or local replacement [60]. We moreover have add a very

Irrage Constraint

Progress. Replace Ampl. in Signal Window T 0:Epsilon I‘I'Incren'enil 2:heration# | 3 Setouwdlm Mre |
No Cocatemirt 4 Josso  [ooso  [zoo0  [1000 [oac
Replace Armplitude in Signal Wincow [ T P-
Srmooth Amplitude in Signal Window

Srmooth Phase in Signal Window
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Figure 4.15: Image constraints implemented in the realized
diffractive elements CAD software.

local constraint that allows to manually smooth pixels where phase dislo-
cations appear during the optimization process. We also have to note that
the selected constraint can be changed at any time during the synthesizing
process.

4.4.1.3 Available merit functions

Depending on the application, it is necessary to quantify diffraction efficiency,
reconstruction accuracy or reconstructed pattern uniformity. Any of those
functions can be selected to stop the optimization loop.

4.4.1.4 Validation

For validation purpose, we are going to synthesize the phase function of a
diffractive beam shaper with the iterative optimization algorithm. We choose
the Gaussian beam of a 488nm Argon ion laser as input intensity distribution.
The beam shaper is made of 256 x 256 square pixels of 6um and should
reconstruct a uniform rectangle of 100umx30um in the Fourier plane. We
also choose the random initial phase and progressive replacement constraint.
After N = 40 iterations, uniformity has reached 0.81 and stagnates’. The

Tt is the right place to check the convergence of iterative optimization between each
loop as exposed in [80] page 195.
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Figure 4.16: Merit functions implemented in the realized diffrac-
tive elements CAD software.
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Figure 4.17: The phase function (c) was determined by the it-
erative algorithm. Reconstructed retangular intensity pattern (a)
shows Speckle noise due to phase dislocations in image plane (b).

optimization loop is stopped. The reconstructed rectangle can clearly be seen
on Fig. 4.17. If we oversample the image plane by embedding the DOE plane
matrix in a larger matrix, we would see that amplitude fluctuations along
a profile line (Fig. 4.17 in green) are obviously linked to phase dislocations
(Fig. 4.17 in blue). This Speckle effect was expected and explained above.

4.4.2 Analytical design

The analytical design of diffractive beam shapers has already been introduced
in section 4.3.2. We are now going to check that the analytically-determined
phase function gives the expected result once propagated in the image plane
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[40][46][43]. For consistency reasons, calculation of analytical phase was in-
serted in the initial phase selection box of our software (see Fig. 4.14).
Keeping the same conditions as those presented in the previous exam-
ple, we are going to determine analytically the phase function of our test
beam shaper. Once propagated in the image plane, the amplitude profile
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Figure 4.18: The analytically determined phase function (c)
shows a very smooth modulo—27 profile (e) in blue. In the re-
construction plane both amplitude (a) in green and phase (d) in
blue are smooth, Speckle noise is then very limited.

measurement tool shows a perfect uniformity for the reconstructed rectangle
(see Fig. 4.18a and green profile of Fig. 4.18d). We are sure that no Speckle
arises since the phase profile in the image plane (see Fig. 4.18d in blue) is
also very smooth [81][88][93].

4.5 Conclusion

In section 2 we have presented the working environment we have to deal with:
blood cells. We have then briefly exposed basis of diffractive optics technol-
ogy in section 3.1. In the previous chapter we have seen that, considering all
constraints, diffractive beam shapers only can meet all the requirements of
our blood cell counting setup.

Everything has now been put in place to synthesize diffractive optical el-
ements: propagators, algorithms and software package. But those tools were
presented in a quite general way in previous chapters. In the next sections
we are going to list all the constraints that are specific to our blood cell
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counting application. Then, we are going to bring together and adapt tools
that have already been presented. The goal is to determine a synthesizing
method especially adapted to our application. So that we will be able to
design a diffractive beam shaper that fulfills all the constraints associated to
optical blood cells differentiation.



Chapter 5

Design of a DOE adapted to
blood cell characterization

The goal of the present work is to design a new blood cells optical character-
ization system that should enhance performances of existing setups at lower
costs. We have seen in previous chapters that diffractive optics is the most
adapted technology to realize the required beam shaping optical function at
reasonable cost.

This chapter will be dedicated to the synthesis, fabrication and testing
of the top hat diffractive beam shaper we propose to integrate in Abx Diag-
nostics analyzers.

5.1 Introduction

We have now put in place the whole environment of our optical blood cell
counting application. Chapters 1 and 2 introduced the context of our work:
hematology. Blood cells and their standard characterization methods have
also been presented. From this, it has followed that a very particular light
distribution was required at measurement point to ensure accurate and stable
characterization of blood cells. In chapter 3 we introduced diffractive optics
that enable realization of complex optical functions (like the desired one)
at low cost. We have so presented insights of diffractive optics from design
methods to prototyping.

So, now all the working environment has been set, this chapter will be
dedicated to the design, fabrication and test of final diffractive optical ele-
ments that will realize the targeted beam shaping function. Furthermore,
in that chapter, the diffractive beam shaper will no more be considered as a
stand alone optical component but as a part of an optical system that should

80
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fulfil defined specifications and deals with various constraints.

The beginning of that chapter will be dedicated to the presentation of
specifications and constraints that we will have to deal with. Next, we will
check that whether that desired diffractive beam shaper is physically real-
izable; that is whether required performances are compatible with laws of
diffraction introduced in chapter 3. We will then calculate the phase func-
tion @(z,y) of our diffractive beam shaper, fabricate prototypes and test
performances of those prototypes.

5.2 Constraints

Up to now we have only considered diffractive elements as isolated optical
components. This was driven by the fact we were only introducing diffractive
optics technology. But we have to keep in mind that our diffractive beam
shaper will only be one optical component among the others. That is, we
have to consider our optical blood cells counting setup globally and carefully
study what kind of constraints it involves for this diffractive beam shaper to
consider a global optimization.

5.2.1 Optical constraints
5.2.1.1 Geometrical specifications of intensity distribution

The first constraint obviously comes from specifications of the intensity distri-
bution our diffractive beam shaper should realize at the measurement point.
We have already mentioned in chapter 1 that the ideal light distribution is
a flat top one. Considering Fig. 5.1a it is obvious that the intensity of the
light-blood cell interaction will vary depending on the position of the cell
when it crosses the laser beam. Whereas, as depicted in Fig. 5.1b, a devi-
ation of the blood cell trajectory has no effect on the intensity of light cell
interaction if light distribution is a flat top one at measurement point.

A fluidic system [1][2] based on two concentric flowing sheaths ensures
that blood cells are transported inside a flow of 40um of cross section (see
Fig. 2.10). Since this flow can somehow deviate from its central position, the
total width of the rectangular intensity distribution is chosen to be 100um.
The height is chosen to be 30pum. One might wonder why choosing a rectangle
where a simple line would be much easier' to realize with diffractive optics?
The velocity of blood cells inside the flow cell is about 8ms™! and the diameter
of a cell can be as low as one micron. This means that electronics bandwidth

!Because of the phase freedom in the image plane.
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Figure 5.1: Simulated intensity distribution at the measurement
plane without beam shaper (a), with the Flat Top diffractive beam
shaper (b).

would have to handle events as fast as a few tens of microseconds, which is
not possible with standard electronics. By choosing a height of 30um we are
sure that any event will last at least four microseconds.

It also has to be noted that the flat top profile has to be maintained over a
distance of +20um from the measurement plane. This constraint comes from
the fact that, position of a blood cell inside its transporting flow sheath can
vary both transversally and longitudinally with respect to the laser beam.
This constraint is of primary importance when designing the phase function
o(z,y) of the diffractive beam shaper. We have seen in section 3.5 that phase
influences propagation of light [36]. So to get a large depth of field, phase
has to be as constant as possible in the reconstruction plane. Furthermore,
it has also been mentioned (see §3.5 and §4) that the reconstructed phase in
the image plane strongly depends on the method used to optimize the phase
function ¢(z,y) encoded in the DOE surface reliefs.

Uniformity of the flat top also definitely matters. The more uniform
the flat top, the more accurate blood cell characterization will be. If the
optically measured parameter is the blood cell light transmittance (see 2.3.2),
experiment has proven that uniformity has to be less than 6%. In the case of
measurement of forward or side scatter (see 2.3.2), the impact of uniformity
is less critical although quite difficult to quantify accurately .
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5.2.1.2 Laser type

We have seen in section 3.5 that the input laser intensity profile has to be
accurately known when designing diffractive optical elements. In our case,
the laser wavelength is imposed by the use of a specific dye (Thiazole Orange)
to stain reticulocytes for measurement of their fluorescence (see §2.3.2). Thi-
azole orange has its excitation peak at 488nm and fluorescence is detected
around 530nm. For that reason, the light source of our optical blood cell dif-
ferentiation setup will be the 488nm ray of an Argon ion laser. Fortunately,
that kind of laser have excellent stability and very good geometrical beam pa-
rameters. The output beam is circular, Gaussian fundamental (spatial mode
TEMgo > 99%) and has a very low divergence (0.95mrad). Since geometrical
characteristics of the beam are excellent, we will use the raw beam (no tele-
scope neither filtering optics) to illuminate our diffractive beam shaper. So
the input constraint of our beam shaper is the Gaussian profile of the Argon
laser.

We have now defined the overall specifications of our diffractive beam
shaper; the input will be the Gaussian beam of a 488nm Argon laser whilst
the output should be a 100umx30um flat top distribution with a depth of
field of 40um. It has to be noticed that those specifications proceed from
theoretical considerations only. We are going to see that fabrication—related
constraints also have a significant impact on final specifications.

5.2.2 Fabrication constraints

When designing diffractive optical elements, it is important to keep in mind
that fabrication methods are not perfect. That is, we often have to modify
initial specifications to take into account the fact that fabrication always
lowers expected performances.

We have already mentioned that our prototypes of diffractive beam shapers
will be fabricated by the e-beam direct write method (see §3.6) available at
Chalmers University. Surface reliefs that are produced have 64 quantization
levels which leads to a theoretical diffraction efficiency of more than 99%
[14][50]. In practice, etching errors limit the diffraction efficiency to 85% in
the first order [64][65][94][95]. Energy that is not diffracted in the first order
is mainly found? in the central spot (order zero) and in higher orders (see
Fig. 5.2). So, as represented Fig. 5.2a, the central spot and interferences
between orders will dramatically decrease the light distribution uniformity.
To overcome this problem, it is possible to shift the +1 order along both
directions so that neither central spot nor higher orders are superimposed

2Considering a Fourier diffractive element.
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Figure 5.2: Simulated intensity distribution reconstructed by a
Fourier Top Hat diffractive beam. On—axis case (row a), and off—
axis case (row b).

onto the flat top distribution (see Fig. 5.2b). This shift is simply obtained
by adding a modulo—27 linear phase term along both directions.

However, the off-axis coefficient can not be arbitrarily chosen if overlap-
ping of higher orders onto the first one is to be avoided. As represented
Fig. 5.2 and Fig. 5.3, dimensions of the pattern diffracted in the order N
is N times dimensions of the +1 order pattern. So, to make sure there is

Order O Order +1 Order +N
N.w
w
. ] .
* [——
—J X 61.N 1
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Figure 5.3: Overlapping of higher diffraction orders onto the first
one.

no overlapping of the order N over the first one, distance ; y has then to
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satisty:

by = (No—N2) = (24 2) >0

where w is the rectangle dimension (either width or height) and z its off-axis
position. So we get:
N+1 w
T>——- = NeN —{1
N-1 2 {u
The highest value of £ in the range N* — {1} is three. So to ensure that
no overlapping occures, the off-axis position z has to satisfy:
S 3
x> —w
2
where w is the rectangle linear dimension. On the practical point of view,
we are going to exceed this criterion to allow more efficient filtering of high
diffraction orders (see next section).

5.2.3 Measurement of forward scatter

This third kind of constraints comes from the complex optical environment
our beam shaper will be integrated in. We have to make sure that perfor-
mances of the beam shaper are compatible with specifications of the overall
optical system.

We have seen in chapter 1 that our optical blood cells characterization
setup should allow detection of light diffracted in the forward scatter direction
(see §2.3.2 p. 15). Typical angle range for measurement of forward scatter is
from less that 1deg to 9deg (see Fig. 5.4). We first have to choose the focusing
lens focal length f so that emerging rays are tilted of less than 1deg. Since
focal length of the focusing lens imposes dimensions of the reconstructing
plane of the DOE, we will have to adapt the phase function scale factor to
the focal length f to get the desired 100umx30um rectangle in the image
plane.

Furthermore, we have seen in section §3.6 that whatever the fabrication
method of out kinoform is, surface reliefs can not be perfectly generated.
That is, reconstruction of higher diffraction orders like those depicted on
Fig. 5.2 is unavoidable. Since dimensions of the pattern reconstructed in
order N is N times dimensions of pattern of order +1, it is obvious that rays
emerging from higher orders can eventually be tilted of more than one degree
and then introduce stray light when detecting forward scatter. Fortunately,
it is possible to suppress almost all higher orders if we insert a pinhole at
some distance behind the focusing lens. Diameter of the pinhole is chosen so
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Diffractive Beam Shaper
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Angular Range

Figure 5.4: Schematic representation of the geometrical con-
straint imposed by measurement of light diffracted by white blood
cells in the forward scatter direction (1deg to 9deg).

that 100% of the energy of the +1 order is transmitted whereas other orders
are either suppressed or strongly attenuated.

5.2.4 Tolerancing

Tolerancing is usually a subject of little concern in laboratories optical se-
tups. It is, however, the cornerstone of any industrial mass—produced optical
system. The optical system we propose will be produced at more than four
hundred units per year. It is obvious that complex and long alignment process
for our diffractive beam shaper can not be considered. The overall system
has to be rugged enough to handle small deviations of specifications without
any severe drop of performances.

Parameters that are eventually subject to drift are input beam diameter
and centering of the DOE with respect to the optical axis. We have seen in
§3.5 that some design methods are more sensitive than others to variation
of input beam profile and to misalignments. This will be taken into account
when selecting the final optimization method to generate the phase profile
o(z,y) of our diffractive beam shaper.
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5.2.5 Diffractive beam shaper specifications

In previous sections we have considered the overall optical blood cell char-
acterization system and from this, we have listed constraints imposed to our
diffractive beam shaper. It is now possible to sum up all those constraints
and define specifications the DOE will have to fulfil for optimal performances
of the whole optical blood cell characterization system.

Now that all specifications of out diffractive beam shaper have been de-
fined we are going, in the next section, to check whether this quite heavy list
is compatible with physics of diffraction.

Input laser

Wavelength 488nm

Type Circular TEMgq
Beam diameter at 1/e? 0.65 mm

Output intensity distribution

Type Flat Top
Dimensions 100pm x30pm
Depth of field +20pum
Uniformity as good as possible

Off-axis with no overlapping of higher orders
over the +1 order.

Emerging rays are tilted less than 1deg.
Sensitivity to misalignments as low as possi-

ble

Table 5.1: Specifications of a diffractive beam shaper adapted
to blood cells optical characterization.

5.3 Preliminary calculations

5.3.1 Preliminary calculations

Previous sections of that chapter were dedicated to the definition of speci-
fications our diffractive beam shaper will have to fulfil. We have seen that
specifications listed in table 5.1 come either from the beam shaping function
or from the overall optical system.

We now have to make sure those specifications are not irrelevant but
really compatible with physics of diffraction we introduced in section 3.2.



CHAPTER 5. DESIGN OF A DOE ADAPTED TO HEMATOLOGY 88

So, we are going to carry out some preliminary calculations to make sure
that desired performances can really be achieved.

5.3.2 Pixel number and pixel size

One of the very first step in diffractive optics design is the choice of the pixel
number and pixel size in DOE plane. When sampling the two dimensional
phase function ¢(z,y) (see §3.3 and §3.6), the smaller and more numerous
pixels are, the closer from the analog function we get. The number of pixel
is however limited by the capacity of computers to handle huge amount of
data. We choose a matrix size of 2048 x 2048 pixels to represent the phase
function ¢(z,y) of our diffractive element. This number of pixel is large
enough to get a high SBWP number (see §3.3) and leads to reasonable delay
when computing FFT (see §3.3.2).

Now the matrix dimensions® have been chosen, dimensions of pixels have
to be defined. The overall dimensions of the DOE aperture D are given by the
product of the pixel number N by the pixel size in hologram plane p, that is:
D = Np. This aperture D has to be large enough to transmit the input laser
beam without any truncation effect. If the laser beam were truncated by the
aperture, ripple oscillations would appear in the near filed whilst intensity
would be reduced in the far field. To make sure that no truncations effects
occure, we define the DOE aperture D according to the “d ~ 4.60” criterion.
This criterion ensures that oscillations due to diffraction by the aperture are
less than 1% [96]. Thus, the aperture diameter has satisfy D = 4.60 where
o is the laser beam radius at 1/e? of intensity. So the aperture has to be
D = Np = 4.60. Therefore, dimension p of our square pixel in the DOE
plane has to be at least:

p= 4'% = 0.73pum
We are going to retain the value of 0.75um to take into account fluctuations
of the waist from one laser head to another.

Square pixels of 0.75um can easily be realized with the e-beam direct
write method (see §3.6) [61][62][63]. Since the feature size of that proto-
typing technology can be as low as hundrendths of microns, no complex
considerations such as proximity errors compensation has to be introduced
[85][65]. Furthermore, dimensions of 0.75um for pixel size ensures that we are
in the validity domain of scalar diffraction. Scalar diffraction requires that
the diffracting structure feature size to be at least ten wavelengths (see 3.2.2

3In that work we are only considering the case of square DOE aperture.
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and [19]). Since one single pixel is about a wavelength, the only require-
ment in our case is the smallest feature size to be about ten pixels, which
is obviously always the case. Nevertheless this will be checked later when
generating the phase function ¢(z,y).

5.3.3 Image plane calculations

Whatever the type of our DOE will be (near or far field), we first have to
choose either the focal length or the reconstructing distance of our setup.
We have also seen in the previous section that detection of forward scatter
measurement has to be kept in mind when defining the numerical aperture
of our DOE. In particular, rays emerging from the DOE have to be tilted less
than one degree with respect to the optical axis otherwise stray light could
be introduced in the forward scatter measurement. So if € is the maximum
tilt angle, o is the laser beam radius; the reconstructing distance z has to be
chosen so that: o
6 = arctan > < ldeg

that is:
o

> -
® tan(1deg)

We are going to choose z = 20mm both to keep a safety margin and because
f" = 20.0mm correspond to catalog standard lenses. Considering the setup
of our blood cells counting application depicted Fig. 5.4 and Fig. 2.12, the
distance between the flow cell and the focusing element (either lens or DOE)
will be about 15mm which is a good value that allows a pretty compact
setup.

Now that the reconstructing distance has been defined, it is time to turn
our attention to the image plane. We have seen in section 3.3 that dimensions
p' of a pixel in image plane is given by [31][19][94][51]:

o M
Np

= 18.6mm

So considering choices that were made above, the pixel size in image plane
in our case is p' = 6.35um. To be really accurate, it has to be mentioned
that p’ is the distance between two adjacent spots in the image plane, that
is, the sampling grid in the image plane. When comparing p' = 6.35um with
the desired dimensions 100um x30um of the uniform rectangle, it is obvious
that the resolution is more than enough along the wide axis whilst it is more
tightened along the small one.
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Now we have seen that the sampling distance p' in the image plane is
enough to get accurate reconstruction of the desired rectangle, one might
wonder what is the minimal spot size in that plane? Considering a simple
lens of focal length f, the focused spot diameter d is given by (see [96] p. 676):

o

where o is the incoming laser beam radius at 1/e? of intensity (see [96] p. 676).
So the diameter of the smallest spot in the image plane is dy = 19um. When
comparing the value dy = 19um to the value p’ = 6.35um, one might wonder
if something would not be wrong. In fact, those two quantities are quite dif-
ferent as p' is the sampling grid spacing in image plane whereas dy represents
diameter of the smallest spot that can be generated with this optical setup.
One question arises, does the fact we have dy > p' really matter? It of course
does, but it does definitely not bother in our very special case. The fact we
have dy > p’ involves that the field amplitude can not vary strongly from one
pixel to the next one. This means neither sharp edges nor accurate details
can be reconstructed with that setup. Our application does not require sharp
edges but high uniformity so the fact that we have dy > p’ does not bother.
Moreover, as the field can not vary strongly from one pixel to the next one,
intensity variations due to Speckle should be very limited which is highly
desirable to get a good uniformity. So, although the fact dy > p' does have
an impact on the field in reconstruction plane, the effect is a rather good one
for our beam shaping application.

5.3.4 Beam shaping coefficient

We have seen in section 3.3.2.4.1 that the accuracy of the beam shaping
optical function can be estimated by the value of the parameter [3:

_2V27royo
= 7/\10

Where 7y is the input laser beam radius at 1/e? of intensity and yq is
the reconstructed pattern half-width. Choices that were made in previ-
ous sections involve a value of Brorizontat = 8.3 for the horizontal axis and
Bverticat = 2.5 along the vertical axis. According to [36] p.13 and p.136, the
value Brorizontar = 8-3, although a bit low, should be enough to achieve good
beam shaping. Vertical axis is more tricky as dimensions are one third of the
horizontal axis. The value Byerticat = 2.5 can not lead to good results along
vertical axis. Examining figures 5.5a and (b), it is obvious that edges of the

B
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Figure 5.5: Simulated profiles of square spots obtained with in-
creasing values of § parameter: f=4(a); f=8(b) and =16(c).

reconstructed pattern will be quite smooth especially along the vertical di-
rection. However, our application does not require particularly sharp edges
along the vertical direction. Having a look at Fig. 5.2, we see that the most
critical parameter is uniformity along the horizontal direction.

5.3.5 Sampling

In the previous paragraphs DOE aperture dimensions and image plane scaling
calculations were performed with no or little concern to sampling rate. We
are now going to check that the Nyquist theorem is satisfied in both planes.
Concerning the image plane, we have seen that the reconstructed pattern
will have rather smooth edges and intensity variations should be as small as
possible inside the rectangle. As a consequence, a pretty low sampling rate
will be enough to reproduce that pattern [19][31]. The sampling grid spacing
in the image plane p’ = 6.35um should be enough to accurately sample the
100pmx30pm pattern at least along the horizontal direction.

5.3.6 Remarks

We have seen in previous sections that specifications of the diffractive beam
shaper defined in §5.2 are compatible with physics of diffraction. However,
we have also seen that the beam shaping function will be much more difficult
to consider along the vertical axis. So, we probably can not expect very good
performances along that axis. It was furthermore mentioned in chapter 4 that
realizing a uniform rectangular light distribution in the reconstruction plane
is one of the most tricky task with diffractive optical elements. One solution
to enhance resolution along the vertical axis is to use a beam expander to
increase radius of the input laser beam. This would lead to a higher
coefficient and to a smaller spot size dy. This is definitely possible but would
require at least two additional lenses and would therefore increase both costs
and alignment time.
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So, we prefer to concentrate our effort on the beam shaping optical func-
tion. The focusing function will be realized by a classical refractive lens.
This means we are only going to consider Fourier type diffractive optical
elements. All available degrees of freedom will be used to achieve the best
possible beam shaping function.

The choice of a Fourier type diffractive optical element is not really a
limiting one. Standard BK7 plano—convex lens will be used so the cost in-
crease will be rather low. Furthermore this setup also have some advantages.
First it is possible, if needed, to scale dimensions of the reconstructing plane
by adjusting the focal length of the focusing lens. This feature, which of
course does not exist with Fresnel type DOEs, can be valuable to adapt the
reconstructed light distribution to slightly different optical setups. Moreover
the BK7 focusing lens will also protect the final plastic injected replica of
DOE from scratches, dusts and solvents that are frequently encountered in
industrial environment.

5.4 Design and simulation

5.4.1 Design

In the previous section we have taken care to check that the overall speci-
fications of our diffractive beam shaper defined in §5.2 are compatible with
the physics of diffraction. It appeared that, although those specifications
are a bit tight, this beam shaper should be realizable with diffractive optics
technology.

So, this section will be dedicated to the determination of the best possible
phase function ¢(z,y) with methods presented in §3.5 and chapter 4. We are
first going to generate this phase function ¢(x,y) using an hybrid analyti-
cal/iterative method then, we will discuss the obtained result and check its
sensitivity to various parameters such as misalignments or laser beam waist
fluctuations.

5.4.2 Phase function synthesis

It was mentioned in sections §3.5 and §4 that generation of the two di-
mensional phase function ¢(z,y) can be achieved either using analytical or
numerical methods. Analytical method usually leads to very smooth inten-
sity and phase distribution in the reconstruction plane [45][51][82], whilst
numerical methods can take into account various parameters during the op-
timization loop [85][53][55][51][50][65].
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According to the values of Byorizontar @0d Byerticar Parameters calculated
in the previous section, we can expect the phase optimization to be rather
tricky in our case. For that reason, we propose to combine both analytical and
iterative optimization methods into a single one hybrid optimization method.
So we are going to take part of the smoothness of analytical method and of the
versatility of the iterative one. We are first going to analytically determine
the phase function of our diffractive top hat beam shaper then, this phase
function will be considered as the starting point ¢g(z,y) (see Fig. 4.5) of
the iterative algorithm. This latest algorithm will be used the complete the
phase function determination as well as to include some other constraints.
So we are first going to analytically determine the phase function ¢(z,y)
according to the specifications of table 5.1. We, of course, are going to use
the formulation of equation (4.15) derived in section 4.3.2 page 71. But a
linear phase term will also be added along each direction to take into account
the required off—axis behavior. So the final mathematical formulation is:

@Fourier(xay) = (?\_7;.) af [SEEI’f (.T?) — \/% (e—Q:z — 1>] X

[y Frf (y?) _ \/LQ_ﬁ <e23i§ _ 1)

Where (, ) are dimensions of the reconstructed rectangle, f the Fourier
lens focal length, o the input laser beam waist, and (X, Y,) the off-axis
coefficients. This formulation was implemented as one of the available initial
phase functions (see Fig.4.14 page 75) our design software can generate. If
parameters of table 5.1 of p. 87 are used in the formulation of eq. (5.2), it leads
to the phase distribution represented Fig. 5.6a. Once Fourier-propagated,
one get the reconstructed plane of Fig. 5.6b. If fabrication errors (either
linear or random) are added, it becomes obvious examining Fig. 5.6¢ that we
have an off-axis beam shaper with no overlapping of higher orders onto the
+1 diffraction order.

Horizontal and vertical profiles of Fig. 5.6b can be compared with values
BHorizontat = 8.3 and PByerticat = 2.5 calculated in the previous section. As
expected, shaping is good along the horizontal direction whereas it is rather
rough vertically. This phenomenon, that has already been explained in sec-
tion 5.3, comes both from the quite large sampling grid p’ and spot size dg
in the image plane and from the fact that analytical determination can not
reconstruct very sharp edges.

To overcome that problem, we propose to use the phase function we have
just determined as the initial phase function g (z, y) of iterative optimization

o (2 X0+ %) (5.2)
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Figure 5.6: Analytically determined phase function (a). Recon-
structed intensity distribution (b). Over—exposed reconstructed
intensity distribution (c).

algorithm (see Fig. 4.5). This has two main advantages: first we are going
to somehow sharpen the edges of the reconstructed rectangle by performing
a few IF'TA loops over a carefully chosen signal window. Second we are also
going to reduce effects of quantization by including the quantization process
in the optimization loop.

So the first step is to sharpen edges of the reconstructed rectangle as well
as keeping the excellent uniformity provided by the analytical design. We are
then going to use a local constraint by defining a signal window as the area
surrounding the rectangular light distribution. This applied constraint will
furthermore be a progressive one to make sure that no Speckle occurs during
the optimization. Concepts of signal window and progressive constraints were
introduced in section 4.3.1. So, by locally and progressively manipulating the
amplitude in the image plane, we are going to slightly sharpen edges of the
rectangular light distribution.

Now that both uniformity and edges of the reconstructed rectangular
light distribution are achieved*, we have to perform the last step in the
design of our diffractive beam shaper: quantization. We have seen in section
3.6 that, although we will use the e-beam direct write method to realize our
prototypes, this method still requires a quantization of phase levels. The e
beam available at Chalmers University of Technology allows 64 quantization
levels which leads to a theoretical diffraction efficiency of almost 100%.

However, unless particular precautions are taken, quantization will un-
avoidably introduce stray light whatever quantization levels are. To reduce
those effects we propose to use the step wise quantization algorithm exposed
in reference [84]. This algorithm allows quantization to be progressively intro-

4This will be more accurately tested in the next section
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duced. This algorithm was furthermore inserted in the IFTA loop to ensure
that quantization has no effect over the uniformity of the reconstructed light
distribution. We have now reached the point where we have fully determined
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Figure 5.7: Quantization algorithms implemented in the realized
diffractive elements CAD software.

the phase function ¢(z,y) the input wave undergoes. This means that we
have a two dimensional array of quantized values representing phase delay
to be realized. We are now going to analyze performances of this diffractive
beam shaper using simulation tools presented in section 3.4.

5.4.3 Simulation of performances

Simulation of performances is definitely the cornerstone of diffractive optics
design. Simulation tools allow to foresee what light distribution behind the
DOE plane will be. Thanks to simulation it is possible to know where stray
light will be localized, how much off-axis will be necessary or exactly adjust
dimensions of the reconstructed pattern. It is then possible to realize less
DOEs prototypes since we already have a good idea of what is going on in
the image plane. So, a thorough examination of simulated results will lead to
a faster and cheaper design process by decreasing the number of prototypes.

For those reasons we have developed our own design and simulation soft-
ware. This software was designed to handle the synthesis of the phase func-
tion ¢(z,y) (either analytical or iterative methods are supported), simulation
of performances by the use of various propagators (see section 3.4), toleranc-
ing analysis (beam waist diameter, alignment sensitivity, ...) and finally
generation of the very specific files required by the e-beam machine.

In that section we are going to thoroughly analyze the light distribution
generated by the phase function ¢(z,y) determined in the previous section.
We are going to use propagators presented §3.4 to check various parameters
as depth of field, minimum feature size or misalignment sensitivity.
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5.4.3.1 Depth of field

We have seen, when presenting constraints our DOE has to fulfil, that the
flat top profile has to be maintained over £20um from the reconstruction
plane. This depth of field is required by the stream that transports blood
cells. Since depth of field is a distance measured along the optical axis, it is
no more possible to use the Fourier propagator. It was mentioned in §3.4 that
almost all propagators require the reconstruction plane to be perpendicular
to the optical axis. Only the Kirchhoff formulation of diffraction can handle
tilted surfaces (see §3.2.4). We propose to use that propagator to analyze the
light distribution in a plane behind the DOE and parallel to the optical axis.
In fact, we only need to 7-rotate the reconstructed plane R along the U axis
(see Fig. 5.8b) to get a plane I parallel to the optical axis and centered at
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Figure 5.8: Simulated depth of field measurement. Picture (a)
represents light amplitude in a plane parallel to the optical axis
(plane K of sketch (b) ). Profiles (a-1) to (a-4) taken in the plane
K are perpendicular to the optical axis.

the target distance Z = f. The strength of the Kirchhoff propagator also
comes from the fact that dimensions and resolution of the reconstruction
plane can be freely chosen. We propose to adjust those parameters to get
an enlarged picture of the profile. Determination of the profile type (Gaus-
sian or flat top) will be visually obvious. Once all the Kirchhoff propagators
parameters are selected (vertical and horizontal pixel size, vertical and hor-
izontal pixel number, reconstruction distance, ...) this propagator leads to
the reconstruction plane represented Fig. 5.8a. Profile number 2 is taken at
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the perfect reconstruction distance Z = f. To get an estimated value of the
depth of field, we examine the shape of profiles located in front and behind
the distance Z = f. As long as the shape is still top hat, we are inside the
depth of field range along the Z axis. Profile number 1 and 3 are limits be-
yond which any profile will show a rather rounded top. So from the pixel size
specified as parameter to the Kirchhoff propagator, it is easy to convert the
distance in pixel measured from profile one to profile two in the image plane
into a distance in microns. So, simulation gives a depth of field of 0.5mm.
It is quite interesting to note that left and right limits are not symmetrical
with respect to the point Z = f. This phenomenon, which does not come
from the diffractive behavior of our system, is encountered in any refractive
optical system and is perfectly explained with geometrical optics.

5.4.3.2 Minimum feature size

We have mentioned in chapter 3.2 that only scalar diffraction will be consid-
ered in this work (see §3.2.2 p.23). From this consideration it follows that
we are limited to large apertures and to diffracting structures with feature
size about ten wavelengths. Remembering that feature size is defined as the
length of a 0 to 27 phase delay structure, we now have to check that the
diffracting structure ¢(x, y) synthesized in the previous section fulfils this re-
quirement. Considering Fig. 5.9a, the minimum feature size is to be searched
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Figure 5.9: Generated phase function minimum feature size
measurement.
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in areas where fringes have the highest spatial frequency. So by taking several
profiles perpendicular to the fringes direction, we are manually looking for
the narrowest 0 to 27 transition. The profile represented Fig. 5.9b was taken
along the red line of Fig. 5.9a. Although it is probably not exactly the lowest
0 to 27 transition, it is enough to get an experimental validation. In Fig. 5.9b
red cursors are positioned to select one transition. Distance between cursors
are is shown in the lower part of Fig. 5.9b. We have A,,;, = 45um that is,
about one hundred times the illuminating wavelength. We are in the validity
domain of scalar diffraction.

5.4.3.3 Misalignment sensitivity

We have got to keep in mind that the diffractive optical element we are now
analyzing is intended to be replicated in large quantities for integration in
an industrial environment. As with any other mass—produced item, toleranc-
ing will play here a major role. Since we can not spend much time to align
this single optical component, we have to design an overall system that can
not only ensure an automated and accurate positioning of the DOE®, but
also handle small misalignments without any severe consequences. We have
seen in §3.5 that analytically synthesized diffractive elements are usually less
sensitive to misalignments than IFTA-designed DOEs [51][50][89][82]. So in
that section we are going to quantify how parameters like waist diameter or
position can drift. This will again be realized with the software we have de-
veloped. Once the input laser type is defined, all geometrical parameters can
freely be modified: laser beam position and tilt, beam diameter, beam qual-
ity, ...So taking the final phase function ¢(z,y) defined earlier, we are going
to check what happens in the reconstruction plane when beam parameters
are fluctuating. We are first going to determine alignment tolerances along
both directions by progressively shifting the waist along one direction. As

(a) (b) (c) (d)

Figure 5.10: Simulated horizontal profile of the reconstructed
intensity patterns. Input laser beam has been horizontally shifted
of 10pum (a), 20pum (b), 30um (c) and 50um (d).

5This will be further detailed in section 5.6.
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seen on Fig. 5.10, the reconstructed profile is still rather uniform as long as
the beam waist is shifted less than 20um. If the waist is further shifted, the
profile is no more horizontal but falls in the opposite direction the waist has
been displaced. Since laser illumination is symmetrical with respect to its
center, it is obvious that horizontal profile would fall on the other edge if the
beam waist were displaced on the left. Although not represented there, this
was tested by simulation. The fact that our diffractive element is off—axis
seems not to influence tolerancing to the left or to the right. So tolerancing
along the horizontal position of the beam waist is £20um.

Vertical position tolerancing is also determined using that setup. Exam-
ining Fig. 5.11, vertical profiles are modified exactly on the same way than
above. Examining Fig. 5.11 it appears that the laser beam can not be shifted
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Figure 5.11: Simulated vertical profile of the reconstructed in-
tensity patterns. Input laser beam has been vertically shifted of
10pm (a), 20pm (b), 30um (c) and 50um (d).

more than 20um vertically. This means that the position of the input laser
beam can drift of £20um horizontally and vertically. We will see in section
5.6 how to handle those severe tolerancing constraints.

The last geometrical beam parameter that is subject to drift is the beam
waist. The laser manufacturer gives a tolerancing of +5% for the beam
diameter. This means the beam diameter can range from 0.62mm to 0.68mm.
Our diffractive beam shaper was, of course, designed for the standard value
of 0.65mm for beam diameter. Just as it was done above, we propose to
analyze the effects of a drift of beam diameter in the reconstructed plane
with the simulation software we have designed. Figure 5.12 represents the
reconstructed amplitude in case of lower limit (a), nominal value (b) and
upper limit (c) of the laser beam diameter. If we carefully study profiles (a)
to (c), it is possible to see that the rectangle is slightly overshaped if beam
diameter is decreased whilst it is slightly undershaped if it is increased. Those
effects are however rather weak and should not bother.
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Figure 5.12: Simulated horizontal profile of the reconstructed
intensity patterns. The beam shaper was designed for a target
laser beam of diameter 0.65 mm (b). If the beam diameter is
reduced to 0.62mm profile (a) is reconstructed, whereas if the
beam is enlarged to 0.68mm profile (c) is obtained.

5.4.3.4 Uniformity

When specifications of our diffractive beam shaper were defined in §5.2 we
stated that uniformity should be as good as possible. Although the ana-
lytically designed final phase function ¢(z,y) should lead to a very good
uniformity [45][46][51], this parameter has never been analyzed up to now.
We are first going to check if Speckle noise could arise and then analyze the
effects of fabrication errors on uniformity.

The importance of Speckle noise in the image plane has already been
stressed in §4.3.1. It was mentioned that Speckle noise is linked to phase
dislocations in the reconstruction plane [78][81][84][87]. So we are going to
thoroughly examine the phase ®(u,v) associated with the amplitude U (u, v)
of the rectangular light distribution. Using the Kirchhoff propagator, we are
going to zoom over the reconstructed rectangle by choosing a small recon-
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Figure 5.13: Simulated field amplitude (a) and phase (b) gener-
ated by the analytically determined beam shaper phase function.
Figure (c) shows the amplitude (green line) and phase (blue line)
profiles taken along the red line. Fabrication errors are not taken
into account.
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structed window but a high resolution (much higher than the grid spacing p’
defined in section 5.3). Figure 5.13 represents both amplitude and phase of
the reconstructed rectangle. Pixel size was chosen to be 1um to make sure
that potential amplitude fluctuations between sampling points are visible.
Examining Fig. 5.13a and amplitude profile of Fig. 5.13c (green line), it is
obvious that amplitude is very stable between sampling points. Furthermore,
the phase profile of Fig. 5.13c (blue line) shows no dislocations but a smooth
modulo—27 profile which should lead to a limited Speckle noise.

Although all precautions have been taken not to introduce any Speckle
noise, we have seen in section 3.6 that fabrication will inevitably introduce
errors that will lead to stray light in the reconstruction plane. Two types of
errors are distinguishable; random and linear errors. Random errors appear
in the e-beam writing process. Linear errors are due to the resist development
step. Those errors are rather simple to represent mathematically. Random
errors are represented by adding a white noise to the phase function ¢(z,y)
whilst linear errors are represented by scaling the range [0, 27| to [0, e27[. We
of course, have integrated those fabrication errors in the simulation software
so it will be quite easy to study their consequences in the reconstruction
plane. Figure 5.14 represents the image plane when 7% of random fluctuation

(a) (b)

Figure 5.14: Simulation of effects of linear fabrication errors (a)
and random fabrication errors (b) over the reconstructed pattern.
Pictures are over—exposed.

are added to the phase function ¢(z,y). This leads to a strong spot in the
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order zero. As we have chosen off-axis design with no overlapping of higher
orders onto the first one, this first diffraction order is located pretty far from
the center. Therefore, the first diffraction order is only weakly influenced by
random fabrication errors. As represented Fig. 5.14a, the horizontal profile
is still smooth and uniform.

Now let’s consider the case where development time has been exceeded
introducing a linear scale factor of 1.2 onto the phase function ¢(z,y). The
corresponding image plane is represented Fig. 5.14b. Horizontal profile of
Fig. 5.14b shows no significant noise but diffraction efficiency has also dra-
matically dropped.

In that section we have used our design and simulation software to an-
alyze performances of the phase function ¢(z,y) determined in section 5.4.
According to the simulated results, our diffractive beam shaper will fulfil all
specifications defined in table 5.1. This simulation step is of primary impor-
tance since it allows to estimate performances of the diffractive component
decreasing the need for expensive prototypes.

However, it is of course not possible to skip the prototyping step in diffrac-
tive optics design. Although simulation tools are accurate, fabrication and
test of prototypes is still necessary for the final validation of the component.

5.5 Fabrication

Previous sections were dedicated to the design and simulation of perfor-
mances of the diffractive beam shaper we will integrate in our optical blood
cells characterization setup. Now that the final phase function ¢(z,y) has
been determined and performances have thoroughly been simulated, we are
going to physically realize that phase function using the prototyping method
exposed in section 3.6.

As mentioned in §3.6 we had the opportunity to work with the Chalmers
University of Technology (Sweden) to realize our prototypes. The Chalmers
University diffractive elements prototyping facility relies on e-beam micro-
lithography. This method, that has already been detailed in section 3.6,
allows realization of 64 level-quantized diffractive elements with direct write
method (i.e. one single pass writing, no mask alignments).

In that section we are first going to expose the necessary data processing
wortk that leads to the e-beam input files from the phase function ¢(z,y).
We are next going to analyze this prototype and check how the fabricated
surface relief function hA(zx,y) matches the desired phase function.
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5.5.1 Data processing

From section 5.4 we get the quantized phase distribution ¢,(z,y). That is,
a two dimensional array of 2048 x 2048 float values such as ¢,(z,y) = kg—z
with & € {0,1,2,...,63}. The constant factor Z—Z is not really useful since
it does not carry any information. For that reason, only the quantization
step number k is retained in the e-beam file format. Although 64 levels
requires 6 bits to be represented, the e-beam uses a full byte for simplicity
and memory alignment reasons. So our phase distribution ¢, (z, y) will finally
be represented with an array of 2048 x 2048 bytes. It should be noted that
the e-beam file format also requires an offset value of +128 to be added to
each value. Moreover data should be arrange in a pretty strange way: lines
of 48 bytes separated by a carriage return code.

Some other information such as array dimensions or resist type (negative
or positive) should also be stored in the e-beam input file header. All this
data processing work has, of course, be implemented in our design and sim-
ulation software. So, once the final phase distribution is determined, all we
have to do is to specify the Chalmers file format before saving to disk the
distribution p,(z,y).

It should be noted that the fact we have omitted the factor 2—2 means
we have to deal with one byte integer numbers only. This leads to a pretty
compact file format since our 2048 x 2048 pixels phase function is represented
by a 4.2Mb long file only.

5.5.2 Fabrication

Once the data processing work has been done, this file is the starting point
for the e-beam exposure step. During that process, the resist coated side
of a quartz plate (see Fig. 3.1 p. 20) is scanned by the electron beam. The
electron beam power (or dose) is modulated according to quantization value
read in the input file data. As a result, the resist coated area is divided into
2048 x 2048 pixels, each exposed proportionally to the quantization number
k of the phase function ¢,(z,y). This process requires a few hours to be
completed. It should be noted that random errors (see §5.4.3) sometimes
occur in this step. Those errors can come from stepping motor precision or
electron beam dose fluctuations. As mentioned earlier the chosen pixel size
is large in our case, so e-beam point spread function compensation is not
considered here.

The step that follows resist exposure is development. In that process,
exposed areas are chemically etched. The etching strength is proportional to
the e-beam dosage of exposure process and development time. So the surface
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relief function h(z,y) gradually appear during the development step. Since
that process is a chemical one, it is much less accurately controlled than the
exposure. For that reason, it is usually realized in several steps. The resist
is first etched for a short while, then the maximum depth is checked with
an atomic force microscope. Since maximum depth is proportional to the
etching time, it can be accurately controled. So by splitting the development
process it is possible to get really close to the ideal depth, i.e. the ideal 27
phase delay. Although the maximum etching depth can be well controlled, it
is never possible to exactly match the ideal depth. This means that DOEs are
always either over or under exposed. This introduces linear errors since the
phase delay range is scaled from [0, 27 to [0, €27[ so diffraction efficiency is
decreased. However those fabrication errors a rather limited; random errors
are then than 5% and maximum etching depth is about 95% of the target
one (see Fig. 5.15). Examining Fig. 5.15 one can notice that t transition
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Figure 5.15: Atomic force microscope picture of the surface re-
lief profile of one prototype realized by e-beam direct write at
Chalmers University.

from one e-beam dose level to another is not sharp but rather smooth. As
a consequence, the overall depth profile is also smooth and stray light will
mainly be localized around the order zero [90][51][61][64][65].

Picture 5.16 represents our diffractive beam shaper prototype examined
with a standard x20 optical microscope. The pixelated—oriented fabrication
method clearly appears there. Moreover, the scanning scheme of the e-beam
machine can easily be guessed from Fig. 5.16. The total area to be exposed
is divided into matrices of 64 smaller pixels. This has a consequence over the
reconstructed pattern in the image plane. We have already stressed that the
pixelated fabrication method leads to a convolution of the diffracted pattern
with a sinc function [51][50][13]. Since we now have two grids (matrices and
pixels) we should expect the final light distribution to be convoluted with
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two sinc functions. However misalignments of one matrix with respect to the
other are very limited: less than 100nm along both directions. So this second
convolution effect should not be too severe. Now that the diffracting phase

4
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Figure 5.16: Microscope photographs of one of the realized pro-
totypes taken with magnifications: x10 (a), x20 (b) and x40

(c).

function o(z,y) was determined and the corresponding surface reliefs func-
tion h(z,y) was fabricated, we have reach the most exciting step of diffractive
optics design: testing.

5.6 Test of performances

Previous sections of that chapter were dedicated to design and fabrication
of our flat top diffractive beam shaper prototype. We have extensively used
simulation tools to try to estimate performances and typical behavior of that
diffractive component. Now that the DOE is realized, we are going to check
that we get the expected behavior and compare real performances with the
simulated ones.

It has to be stressed that we are not going to test the overall optical
blood cells counting system in that chapter. We are only going to test the
diffractive beam shaper as a single, isolated optical component. Validation
of the entire optical system will be realized in the following chapter.

5.6.1 Mechanical integration

We have seen in section 5.4.3.3 that diffractive optical elements are quite
sensitive to input beam misalignments. Moreover, even for prototypes testing
purposes, we can not spend time to align or re-align the beam shaper every
morning before experiments are started. So we propose a mechanical design
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that ensures, once the DOE has carefully been aligned, neither vibrations
nor chocks will influence the alignment. This mechanical setup should be
simple and rugged enough so that both laser and DOE can be swapped from
one optical bench to another one. We propose to lock the DOE to the Argon
laser head front plate (see 5.17). So we no more consider the laser and

Figure 5.17: Mechanical integration of the diffractive beam
shaper onto the laser head package.

the DOE individually, but the overall as a shaped laser light source. The
mechanical setup represented Fig. 5.17 is very simple and definitely efficient
since the DOE holder is directly tightened onto the laser head front plate.
This front plate is a good and stable mechanical basis, it was designed by
the laser manufacturer to handle heavy fiber optics coupling mechanics. This
shaped light source can be swapped from an optical setup to another with
no adjustments of the DOE, this exactly matches our needs.

Before this shaped light source can be used, we of course have to align the
DOE with respect to the laser beam. At the first glance it would be tempting
to use edges of the quartz plate as assembly marks. However, edges of the
quartz plate are neither sharp nor regular and even not straight. This comes
from the quartz substrate that was used: it is so hard that dicing or cutting
it accurately is impossible. Neither it is possible to realize centering holes
or marks with the required precision. To overcome this problem we are
going to use UV—curable glue combined with a special DOE holder. Let’s
first consider the DOE holder represented Fig. 5.18. This part was home
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Laser Head Front
Supporting Part
DOE Holder
DOE Prototype
Focusing Lens

Lens Holder

Figure 5.18: Schematic representation of the diffractive element
holding mechanics.

designed and machined with good tolerances to hold the DOE quartz plate.
The diffractive component is then glued onto that mechanical part. So, even
if the quartz plate has been badly cut, we are only going to rely on the
DOE holder package. In a second step, the DOE holder is encased into an
alignment tool (see Fig. 5.18 and Fig. 5.19). This proposed alignment tool

Figure 5.19: Mechanical and optical setups used to center the
DOE prototype with respect to the laser beam.

was designed to allow four degrees of freedom: translation along X,Y and
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Z axis (with high precision translation stages) and rotation # along the Z
axis (high precision rotation stage). As a result, the diffractive element can
be shifted with respect to the laser beam using those degrees of freedom.
The alignment tool was furthermore designed to include the DOE focusing
lens, so the light distribution generated by the beam shaper can be checked
in a plane localized at Z = f’ behind the focusing lens. To get a real time
image of the reconstructed pattern, we have used a CCD camera that gives
a magnified view of the reconstructed pattern (see Fig. 5.19). The camera is
connected to a computer via a frame grabbing system; it is then possible to
get a real time intensity profile of the reconstructed pattern. This alignment
tool is quite efficient since it is directly possible to visualize the effects of a
shift or rotation of the DOE over the reconstructed pattern profile. We are
going to use that alignment setup to align the beam shaper in the assembly
step as well as to check its sensitivity to input laser beam misalignments.
To complete the assembly step all we have to do is to adjust the four mi-
crometer screws corresponding to the four degrees of freedom to get the best
possible reconstructed pattern on the computer screen (see Fig. 5.20). Once
the best reconstructed profile has been obtained, we have to lock the DOE
onto its supporting part (see Fig. 5.18) without any mispositioning. This will

Figure 5.20: Frame grabbing system allowing real time analysis
of the light intensity distribution in the image plane.

be realized with UV-—curing glue. Some liquid glue is dropped between the
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DOE holder and the positioning part and immediately UV exposed. Unlike
the use of tightening screws, this introduce no drift in the position of the
DOE holder.

So we have now realized our shaped laser light source of figure 5.18. The
diffractive beam shaper and its focusing lens are locked onto the laser head
package; it can easily be transported from a setup to another one without
any alignment problems.

5.6.2 Measured performances

Now that the diffractive beam shaper is realized and that we have designed
a specific alignment and testing mechanical setup, it is possible to compare
simulated DOE performances of section 5.4.3 to the real ones.

5.6.2.1 Diffraction efficiency

Diffraction efficiency is defined as the energy ratio in the desired diffraction
order (usually the first one) over the total energy (i.e. the input beam power).
In this case we are not going to use any focusing lens since it would lead to
a reconstructed plane with dimensions too small to be able to use the power
meter detector. So we are going to observe diffraction orders in the far field

Figure 5.21: Far field (i.e. no focusing lens) observation of light
diffracted by the beam shaper for diffraction efficiency measure-
ment.
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by projection onto a laboratory wall (see Fig. 5.21). In that case dimensions

of the rectangle reconstructed in the first order (about 17mmx6mm) are

enough to use the power meter detector. This leads to results of table 5.2.
The measured high diffraction efficiency of 82.5% in the first order means

Diffraction order | Diffraction efficiency
-2 1.3%
-1 2.2%
0 3.5%
+1 82.5%
+2 1.3%

Table 5.2: Measured diffraction efficiency.

that the theoretical maximum depth of A, = ﬁ was well realized during

the development step (see section 5.5). All other orders are weak, stray light
should therefore be very limited. The remaining 9.2% of energy that are
missing in the table above are due to higer orders, stray light and Fresnel
losses.

This very enlarged image of the reconstruction plane is also useful to check
that no overlapping of higher orders onto the first one occurs. Examining
Fig. 5.21 p. 109 and Fig. 5.6 p. 94, it can be noted that interferences between
high diffraction orders (4, 5, 6...) that are experimentally seen on Fig. 5.21
were also predicted by simulation of Fig. 5.6.

5.6.2.2 Dimensions

Dimensions of the rectangular reconstructed intensity distribution depend
both on sampling grid spacing in image plane p’ = ]’\V—’; (see §3.3), and on
(a, B) parameters of the analytical phase function formulation derived in
section 4.3.2. Although it has already been checked using the available prop-
agators of our simulation software (see §5.4.3), it is still necessary to get a
real measured value. This can easily be done using the mechanical alignment
setup depicted Fig. 5.20 and Fig. 5.19). Knowing the magnification (x8.4)
of the microscope objective used with the camera and the camera pixel size
(11pmx11um), it is possible to get the real length of profiles measured in
the reconstruction plane. As represented Fig. 5.20, the frame grabber image
processing software allows measurement of length in pixels; 80 pixels for the
vertical profile and 27 pixels for the horizontal one. Once calibrated to the
real dimensions we get 107um horizontally and 35um vertically. This exactly
matches specifications of the beam shaper defined in table 5.1 of page 87.
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Figure 5.22: Magnified image of the measured light distribu-
tion in the image plane (a) taken by the mechanical and optical
setup represented Fig. 5.19. Measured horizontal profile (b) shows
a good uniformity whilst measured vertical profile (c) is rather
rough.

5.6.2.3 Uniformity

We have seen in §5.2 that the beam shaper specifications require uniformity
to be as good as possible. Throughout the whole design process we have
taken care to use smooth analytical functions only and, not to introduce
any dislocation which could lead to Speckle noise. So, we are now going to
check and quantify the uniformity of the reconstructed intensity distribution.
This will be done along the horizontal axis which is the most critical for our
application. Using the setup represented Fig. 5.20, we take several horizontal
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Figure 5.23: Horizontal profiles taken for measurement of the
reconstructed intensity distribution uniformity.

profiles (see Fig. 5.23) to evaluate the uniformity along the horizontal axis.
We measure a uniformity between 4% and 7.3% depending on the selected
profile. This result is a really satisfying one and should be enough to allow
accurate characteriztion of white blood cells.

5.6.2.4 Depth of field

We have also seen in section 5.2 that our blood cell counting application
requires the depth of field to be at least +20um. According to the simulated
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results of section 5.4.3, that constraint should be satisfied. This is what we
are going to check.

This parameter will also be measured using the mechanical setup repre-
sented figures 5.19 and 5.20. As seen on Fig. 5.19, the camera is mounted
on high precision translation stage along the Z axis. It is then possible to
accurately shift the camera along that axis. This is all we need to get the
depth of field.

So the depth of field is determined by slightly shifting the camera along
the Z axis and observing the effects on horizontal and vertical profiles flat-
ness. As already stated in section 5.4.3, we try to find extreme positions
where the horizontal profile still has an acceptable uniformity. This leads to
the value of 550um.

It is interesting to note that the experimentally measured depth of field
of 550um is very close to the simulated value of 500um determined by the
simulation software (see §5.4.3).

5.6.2.5 Misalignments sensitivity

The last parameter that has to be checked is DOE sensitivity to input laser
beam misalignments. We already have a rough idea of this parameter value
thanks to the simulated results of section 5.4.3. It is however necessary to
measure the real sensitivity since, as stressed in §5.4.3, tolerancing is the
cornerstone of any mass produced system.

We are going to use the mechanical alignment setup represented Fig. 5.19
and 5.20 to measure misalignment sensitivity. This mechanical setup was de-
signed to shift the DOE along the X and Y as well as for real time monitoring
of the reconstructed plane. So it will be quite easy to measure and quantify
misalignment sensitivity using this setup. From the position that gives the
best reconstructed rectangular intensity distribution, we are going to shift the
DOE with the high precision translation stages (see Fig. 5.19). Observing
the corresponding profiles with the frame grabber system (see Fig. 5.20), we
stop shifting the DOE when the reconstructed profile uniformity drops. So
se find that our beam shaper can handle horizontal misalignments of 50um
and vertical misalignments of 60um with no severe changes in the uniformity
of the reconstructed light distribution. Comparing those measured results
to the simulated ones, it appears that real tolerances are much more relaxed
than the simulated ones.

This ends the section dedicated to the test of the diffractive beam shaper
prototype fabricated by Chalmers University from data we have generated.
Thanks to the specific mechanical alignment setup we have designed, we have
seen that real performances of our beam shaper match the expected ones.
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5.7 Conclusion

In that chapter we have first analyzed constraints associated to our optical
blood cell counting setup. From those constraints we have defined specifica-
tions the beam shaper will have to fulfil. We have then used diffractive optics
design methods proposed in earlier chapters to synthesize the flat top diffrac-
tive beam shaper according to specifications mentioned above. We have then
extensively used the simulation software we have designed to get an overview
of our beam shaper performances, and then track potential problems before
the diffractive component is realized. Simulated results were found to match
the required specifications, so beam shaper prototypes were realized. Those
prototypes have thoroughly been tested and measured performances were
found to match the expected ones.

We, however, have to stress that the real way we have designed our diffrac-
tive beam shaper is not exactly the one presented above. What has been
presented could lead to the thought that only one prototype was realized.
In fact, five series each containing two to four prototypes were fabricated at
Chalmers University. Between those series the proposed design methods and
specifications were modified to take into account problems encountered dur-
ing the test of previous prototypes. For instance, when the first prototype
was tested, we realized that the off—axis, although enough to avoid order
overlapping, was too low to clearly separate the reconstructed pattern from
noise. Other design parameters such as rectangle dimensions or synthesis
method have been adjusted between fabrication of series of prototypes. We
have also realized that fabrication—related parameters had to be modified.
The first two series of prototypes had 1024 x 1024 pixels whereas the next
ones had 2048 x 2048 pixels so a much smoother phase function. Moreover
the development step was also much more carefully controlled for the latest
series than for the first once.

At the beginning of this chapter we have stressed that only performances
of the single, isolated, diffractive beam shaper optical component will be
considered. Now that we have thoroughly analyzed our diffractive beam
shaper behavior, we are going to insert this optical component in the overall
optical blood cells characterization setup described in chapter 1. So, unlike
this one, the next chapter will be dedicated to the study of the entire optical
system performances.



Chapter 6

Integration and validation

In the present work we have proposed a design for a diffractive beam shaper
especially adapted to blood cell differentiation. As explained in chapter 1,
this diffractive beam shaper will a part of an optical blood cell characteriza-
tion system integrated in future blood cell analyzers.

In previous chapters 3 and 4 we have introduced physics of diffraction
and diffractive optics technology. We have proposed a design for this beam
shaper according to specifications required by the application. The beam
shaper was then realized and tested as an isolated optical component. In
that chapter we are going to check performances of the overall optical blood
cell characterization system.

6.1 Introduction

In chapter 5 we have synthesized and realized our diffractive beam shaper
prototypes. Performances of that beam shaper have thoroughly been ana-
lyzed in section 5.6. However the beam shaper was considered as a stand
alone optical component, only intrinsic performances of the DOE were ana-
lyzed.

In that chapter we are going to consider the overall optical blood cell
characterization system represented Fig. 6.1. We are first going to analyze
problems raised by the integration and alignment of the beam shaper in the
final optical system. We are next going to examine performances of this
optical system, that is, its abilities to distinguish between white blood cells
sub—populations. Finally, those results will be analyzed and compared with
other analyzer results.

114



CHAPTER 6. INTEGRATION AND VALIDATION 115

Figure 6.1: Overview of the blood cell differentiation final opti-
cal system.

6.2 Integration of the DOE in the final opti-
cal system

Mechanical integration of DOE prototypes in larger optical setups has already
been discussed in section 5.6. We have seen that the best way to keep a rugged
laser-DOE alignment and a versatile laser source is to lock the DOE to the
laser head package (see Fig. 5.17). Since this mechanical arrangement has
proven its utility when DOE performances were tested, we are going to keep
it in the final setup.

The final optical setup depicted Fig. 6.1 also requires another critical
alignment operation. We have already mentioned in chapter 1 and in sec-
tion 5.2 that blood cells are transported by a water stream of 40um cross
section. To take part of the DOE flat top profile, the stream has to be posi-
tioned in the depth of field range of the reconstructed plane. This operation
is much more tricky as it could seem at the first glance. The problem comes
from the fact that energy density is not maximum at the reconstructed plane
(see Fig. 5.8 p. 96). So it is not possible to shift the stream (i.e. the flowcell)
until we get the highest signal amplitude onto the detector: this would lead
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to an alignment of the stream at the focus of the Fourier lens but not onto
the DOE reconstructed plane (see Fig. 5.8).

The most accurate way to align the stream onto the reconstructed plane
would be to use an optical system that images both the reconstructed rectan-
gular intensity distribution and the stream with a very short depth of focus.
Therefore, we propose to use a x20 microscope objective to visualize the
stream on a screen. This provides both the required high magnification and

Figure 6.2: The water stream is dyed with Fluoresceine that
emits strong green radiations when excited with the 488nm ray of
an Argon laser. A magnified image of the measurement point is
used to adjust the water stream onto the rectangular light distri-
bution.

small depth of focus. If rectangle and stream are both seen at the focus on
the screen of figure 6.2, we are then sure that they are also in the same object
plane: the DOE reconstructed one.

This is however not that simple: the stream as well as the surround-
ing sheath that are flowing in the flow cell are composed of salt water (see
Fig. 2.11 and Fig. 2.12). It is therefore impossible to visualize it. To over-
come that problem we propose to dilute either alcohol or Fluoresceine in the
stream to visualize it. If alcohol is diluted in the stream salt water, the index
will be changed and the circular stream cross section will create a lens effect
deviating incoming light. This method is very efficient to get a rough align-
ment in cases where stream is very far (either transversally or longitudinally)
from the reconstructed rectangle. It is obvious that this method can not lead
to accurate positioning of the flow since it only relies on the way incoming
light is deviated. To get an exact alignment, we propose to dilute a specific
dye (fluoresceine) in the stream. When excited by the 488nm ray of an Argon
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laser, fluoresceine emits a strong green fluorescent radiation. All we have to
do is to fine—adjust the previous alignment so that both blue rectangle and
green line are in focus at the screen (see Fig. 6.2). If those two images are in
focus at the screen plane, it involves they are also in the same object plane
since the depth of focus of our alignment system was chosen to be very short.

Once the stream that transports blood cells has been aligned onto the
DOE reconstructed rectangle, the microscope objective of Fig. 6.2 is removed.
We also propose the use fluoresceine to align forward scatter and side scatter
detection optics. In that case we adjust detection optics to be able to see an
image of the stream onto the detector plane.

6.3 Validation

Throughout this work we have proposed a globally optimized optical system
dedicated to blood cell differentiation. In chapter 1 we have mentioned that
two optical functions are realized in the global setup: blood cell illumination
and light-blood cell interaction detection. We have stressed that our work
will focus on the first optical function. Detection of light-blood cell interac-
tions is actually realized using standard optical systems, enhancements will
be considered in future work.

We have seen in chapter 5.2 that the light intensity distribution has to
fulfil all constraints defined in table 5.1 to allow differentiation of blood cells.
The light intensity distribution at measurement point should be rectangu-
lar (100pmx30um) and as uniform as possible; in that case drift of particle
position inside the stream will have no more effect on the light—blood cell in-
teraction intensity. Table 5.1 furthermore specifies that rays at measurement
point have to be tilted of less than 1 deg to allow measurement of diffraction
in the forward scatter direction (see §5.2.5).

The above constraints have been validated in section 5.6 where our diffrac-
tive beam shaper has been tested as a stand alone optical component. Now
the beam shaper has been integrated in the overall optical system and aligned
with respect to the other optical components, we are going to validate the
behavior of the whole system.

6.3.1 Validation based on calibrated latex beads

In order to validate the stability and accuracy of the overall optical system, we
propose to use calibrated latex beads. Those latex beads are opaque spheres
with calibrated diameters (diameter CV is less than 0.1%). We propose
to measure the light diffracted by those beads in forward scatter direction
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(see §2.3.2). This parameter is linked to the diameter of the diffracting
particle [2][1][11].

In a first step, we are going to measure the forward scatter signal us-
ing the optical setup we proposed and using standard optical system. In
this case the flowcell has perfectly been aligned at the center of the flow-
ing stream. Observing figure 6.3a-1 and a-2, it appear that results given by
the two setups are very close. Now, keeping the same setup, we are going
to introduce a small misalignment of the flowcell on both optical systems.
Those misalignments can not be avoided in standard operating conditions of
those analyzers. It corresponds to vibrations or chocks we always encounter
in industrial environment. Figures 6.3b, ¢ and d were obtained for progres-
sive transversal misalignments (5um, 20um and 35um) of the flowing stream
with respect to the rectangular intensity distribution. Results obtained with
the proposed optical setup show no variation of the detected forward scatter
intensity (see Fig. 6.3b-1 to d-1), whereas intensity clearly falls when shifting
the flowcell on the standard optical system (see Fig. 6.3b-2 to d-2).

Those results have demonstrated that the optical setup we have proposed
allows the measurement of diffraction by a particle in the forward scatter
direction (1deg to 9deg, see §2.3.2). Moreover, unlike with the standard
system, the proposed setup shows no sensitivity to flowcell misalignments or
particle position fluctuations inside the flowing stream.

6.3.2 Validation based on human blood

The validation realized above is the most critical case. Latex beads are
identical one to each other (diameter CV is less than 0.1%), so any lack of
uniformity in the illumination setup would immediately lead to a broadening
of curves represented Fig. 6.3. The situation will be quite different in the
last validation step that relies on tests performed with human blood. Blood
cells have a so complex shape (considering both cytoplasm and nucleus) that
we can not expect results to be as obvious as those obtained with latex
beads. However, we are going to measure forward scatter, side scatter and
fluorescence of a blood sample as represented Fig. 6.4. Examining Fig. 6.4, it
is obvious that all blood cell sub—populations differentiated by the standard
optical system (see Fig. 6.4b) are also distinguished by the setup we propose
(see Fig. 6.4a). Tests performed over large number of human bloods have
confirmed that the proposed setup is adapted to blood cell differentiation.
Furthermore, we have also checked using human bloods that the proposed
system has no sensitivity to small transversal misalignments of the flowcell.
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Figure 6.3: Measured effects of flow cell misalignments onto the
detected forward scatter signal amplitude with the proposed sys-
tem (left column) and with a standard setup (right column). Flow-
cell is: centered with respect to the incoming laser beam (row a);
5pm transversally shifted (row b); 20pm shifted (row c) and 30pm
shifted (row d).

6.4 Conclusion

This chapter was dedicated to validation of performances of the overall optical
blood cell differentiation system. The beam shaper we have proposed in
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(b)

Figure 6.4: Results of human white blood cell optical character-
ization by the proposed system (a), by a standard setup (b).

previous sections is no more considered as a stand alone optical component
but as a part of the more complex optical system we have to test.

We have first proposed an optical method to align the diffractive beam
shaper with respect to the other optical components. We have then tested
performances of the whole optical system using calibrated latex beads and
human blood. As expected, we found that alignment tolerances of the flowcell
with respect to the incoming laser beam were relaxed thanks to the use of the
proposed diffractive beam shaper. Furthermore, comparing with standard
optical system, we have demonstrated that the proposed system is adapted
to blood cell differentiation.

It is however important to stress that, unlike in the previous chapters,
results obtained in this chapter reflect the behavior of the full system. Other
parameters like detection optics, electronics and data processing do have
a strong influence on results represented Fig. 6.4. Throughout the follow-
ing chapter we are going to highlight the fact that enhancements we have
proposed are the first step toward more accurate optical blood cell charac-
terization setups.



Chapter 7

Conclusion

The goal of the present work is to enhance performances of optical blood
cells differentiation systems embedded in future blood cell analyzers. Dif-
ferentiation between blood cell sub—populations relies on their interaction
with light. As described in chapter 1 and in section 2.3.2, two different opti-
cal functions can be distinguished in those systems: blood cell illumination
and light—cell interaction detection. Throughout that work we have focused
on the illumination, that is, the light intensity distribution at measurement
point. We have seen that the light intensity distribution is not optimal in
standard optical setups since any drift in the blood cell position leads to a
loss of precision in measured parameters (see chapter 1 and section 2.3.2).

We have therefore proposed an innovating design that ensures accurate
and stable measurements whatever blood cells position are. This design
relies on a diffractive beam shaper that has been globally optimized taking
into account specific constraint of blood cell counting. This diffractive beam
shaper generates a flat top intensity pattern at the measurement point which
is the optimal light distribution for our application.

We have then analyzed optical constraints associated to blood cell dif-
ferentiation and diffractive optics design. Taking into account and retain-
ing compromises between those two kind of constraints, we have designed a
diffractive beam shaper especially adapted to blood cell differentiation. Pro-
totypes have been realized and integrated in an overall optical blood cell
characterization system. As expected, validation steps have proven particle
position inside the flowing stream have no more impact onto the detected
signal amplitude.

In section 5.4 we have considered the possibility of using a telescope to
enlarge the laser beam waist. This solution was not retained because of
the extra costs (lenses, alignments) it would involve. However, the use of a
telescope would lead to a better resolution and uniformity in the DOE recon-
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structed plane. This would also relax alignment sensitivity of the diffractive
beam shaper. Although the actual setup is satisfying for actual applications,
the use of a telescope would furthermore enhance measurement stability and
accuracy. This could be useful to characterize finer blood cell details in very
high range analyzers.

As explained in chapter 1, the overall optical blood cells differentiation
system is composed of two functions: blood cell illumination and light—blood
cell interaction detection. The beam shaper we have proposed enhance per-
formances of the first function. But the second one still has to be improved
(optics, electronics, signal processing, ...). This will be our working theme
for the next years.

By synthesizing a diffractive element especially adapted to hematology,
we have facilitated measurement of optical parameters used in standard blood
cell characterization. Those parameters, presented in section 2.3.2, have been
known for a long time since the required technology is rather basic. It would
be interesting to wonder if other parameters such as non—elastic scattering
(Raman) or multi-wavelength excitation wouldn’t lead to a more accurate
characterization of blood cells.



Appendix A

Helmholtz—Kirchhoff integral
theorem

As exposed in section 3.2.4, the HelmholtzKirchhoff diffraction integral
is the basement of any scalar diffraction calculations. All propagators we
have studied and implemented in that work rely on the Helmholtz-Kirchhoff
diffraction integral. This relation will be presented here to give an overview
of approximations that are made when deriving diffraction equations.

The following calculations might appear pretty theoretical and somehow
out of the scope of that work. However we think that diffraction formulations
can not be considered as “recipes” applied to diffractive optics design. For
that reason, before studying diffraction integrals and their associated prop-
agators, we have thoroughly examined the Helmholtz—Kirchhoff integral to
get a better understanding of diffraction integrals insights.

The basement of Kirchhoff-Fresnel and Rayleigh-Sommerfeld diffraction
theory is the Green’s theorem that expresses the optical disturbance U at a
point P, in terms of its values on a surface S.

Green’s theorem 1 If U and G are continuous and if their first and second
deriatives are single—valued over the surface S bounding the volume V

/// (UV’G - GV?D) dv—//(U%—G )

where n is the outward normal of surface S.

According to Huygens principle, the chosen auxiliary Green’s function! is

1 _.z
G(Py) = —e Ikl

To1

Tt can be shown (with consirable difficulties) that the final result is independant of
the choice of the Green’s function G.
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where 79} = lﬁ. The auxiliary function G represents a spherical wave
expanding from P,. Since all functions mentionned in Green’s theorem are
supposed to be continuous, the Py singularity (i.e. 79; = 0) of G has to be
removed from integration domain. The new surface S’ is the same as S (see
Fig. A.1) except we remove the sphere S, of radius € so S’ = S+ S.. Keeping

Figure A.1l: Surfaces of integration for Green’s theorem S =
S'+ S..
in mind that both U and G have to obey to the Helmholtz equation

(V24+E)U=0 VU = —k*U
(V24 k) G=0 VG = —k*G

the first integral term of Green’s theorem 1 can be re-written

///,(U(_kQG)_G(—’“2U))dv=// (UG- GU)dv =

which means that the second term of Green’s theorem 1 also has to be zero.

[ (v -2 a o
) (5o

(A.2)
=A +B (A.3)

=0 (A.4)
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Now let’s evaluate the second member (i.e. B) of the previous equation (A.1).
Since surface S, is a sphere it’s then obvious (see Fig. A.1) that vectors 7
and 7,7 are colinear. Moreover G represents a spherical expanding wave, the
wave vector k is colinear to the normal vector 7 of the sphere so

8G oG 87‘01
a’l’L 67'01

< eJkTm > 6’/‘01
57“ 01 \7To1

0 1 or
— Jkroi Jjkro1 _ 01
|:7'01 8’/‘01 ( )+ (97‘01 (7'01):| 8’/1
1

- eJkT01:| -1
r
01

— Lejk"'m (_]k _ L)
To1 To1

so replacing 9€ by its value in the second member (i.e. B) of Eq. (A.1) gives

// [ egkrm (]k‘ _ i) _ 1 ]kr01 aU:| ds
. To1 To1 on

where ds represents the elementary surface of the sphere S, of radius e. Using
the solid angle 2 = 6% which value is, by definition, 47 over the full surface
S, previous equation ca be re—written

A7
B= / [Uiejkml <]k _ i) _ 1 jk’r‘Ol aU:| 2dQ
0 To1 To1 To1 on

The radius € of the sphere S, can be taken infinitely small, so taking the
zero-limit of the previous relation gives

4
limB = lim [Uleﬂ“ (jk—l) eﬂ’“aU] €2dQ
€

e—0 0 J, € € on

[ jkeﬂ"‘“ +
To1

4m
= / [lim jkeUelke — hm Ue’*¢ 1 lim ee’** 8U} s
0 €0 —0 €0 on

_ /47r 10— U(Py) + 0] dO
:47TU(P0)

Reporting the result B = 47U (F) in equation (A.1) gives the final form
of the integral theorem of Kirchhoff that express the optical disturbance at
point P, in terms of its values over the surface S
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1 0 1 . 1 ... 0U
P) = — o = dkror y .~ _jkror A.
Uh) 47 //S [Uan (7‘018 > r01e 8n] ds (A-5)
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