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Introduction

Si (M, g) est une variété riemannienne connexe, le groupe d’holonomie ré-
duit de M désigne '’ensemble des applications linéaires T, M — T, M obtenues
par transport paralléle le long des lacets homotopes a zéro et de point base x.
Lorsque la métrique g est irréductible, ¢’est-a-dire non localement difféomorphe
a un produit riemannien, et lorsque (M, g) n’est pas localement symétrique,
Berger |Ber55| a montré que le groupe d’holonomie réduit de g est nécessaire-
ment SO(n), U(n/2), SU(n/2), Sp(n/4), Sp(n/4)Sp(1), G5 ou Spin(7). Si le
groupe d’holonomie est Sp(n/4)Sp(1), on dit que g est quaternion-kéhlerienne,
la métrique est alors Einstein et son tenseur de Ricci est non nul.

Le fait que la courbure scalaire s d’une telle métrique ne soit pas réduite a
zéro est un aspect important de la géométrie quaternion-kihlerienne et en-
traine l'apparition de comportements trés différents selon que 1'on soit en
courbure scalaire positive ou négative ; lorsque s > 0, LeBrun [LeB93| et Sa-
lamon [LeB-Sal94| ont montré qu'il existe au plus un nombre fini de variétés
quaternion-kihleriennes compactes de dimension n a isométrie et homothétie
prés; au contraire, le cas s < 0 est beaucoup plus riche, méme dans le cas
homogéne [Ale75|. En particulier LeBrun [LeB91| a construit une famille &
une infinité de paramétres de métriques quaternion-kihleriennes complétes a
courbure scalaire négative sur la boule unité. Ces métriques g sont analytiques
et admettent un pole d’ordre 2 au bord, de sorte que si p est une fonction
qui s’annule a l'ordre 1 sur la sphére S, on obtient une classe conforme de
métriques [p%g|rs] sur S, dégénérées et dont le noyau H est appelé distribution
de contact quaternion-kéhlerienne [Biq00|. On dit que la distribution H est
l'infini conforme de g ( voir la définition 1.0.2 du chapitre 1 ). Avant de donner
une définition précise des structures de contact quaternioniennes, nous décri-
vons l'exemple fondamental que constitue le bord de la métrique quaternion
hyperbolique g.

Une structure quaternionienne sur un espace vectoriel V' est la donnée d’un
triplet (Iy, I, I3) de structures presque complexes vérifiant les relations de
commutation [1I, = —I51; = I5. Si H désigne le corps gauche des quaternions,
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une base orthonormale (7, j, k) des imaginaires purs fournit une telle structure
sur I’espace vectoriel H" ~ R*". La métrique hyperbolique s’écrit alors
deuc 1
== + ;((dpf + (Ludp)® + (Iodp)? + (Izdp)?)

ol euc est la métrique euclidienne de R*™ et p = (1 — |z|?). Les structures

presque complexes I; sont orthogonales pour la métrique gy et engendrent un
fibré @ C End(TM) qui est stable sous 'action de la connexion de Levi-Civita
de gx. L’existence d’un fibré Q localement engendré par une structure quater-
nionienne, orthogonale et stable sous 'action de la connexion de Levi-Civita
au-dessus d’une variété riemannienne caractérise les métriques quaternion-
kéhleriennes.

Dans le cas de la métrique hyperbolique, la distribution de contact sur le
bord est

H ™ = n3_, ker Iidp;
elle est stable sous 'action de [, I et I3 et on a
d(1;dp)(X,Y) = deuc([; X,Y)
pour des vecteurs X et Y de H. Ceci nous améne a la définition

DEFINITION 0.1. Soit H une distribution lisse de codimension 3 sur une
variété M. Si il existe une métrique gy sur H, une structure quaternionienne
locale (Iy, I, I3) sur H ainsi que des 1-formes locales 7y, ny et 13 telles que
7]1|H = 7}2|H = 773\;1 = 0 et pour tout ¢

dnilg = gu (L, ),
on dit que H est une structure de contact quaternionienne.

Cette définition peut étre simplifiée de maniére & mieux rendre compte des
spécificités de la dimension 7.

DEFINITION 0.2. Soit H une distribution orientable, de codimension 3 sur
une variété de dimension 7 et A2 H* le fibré engendré par les dn|y on n décrit
I’ensemble des 1-formes s’annulant sur H. On dit que H est une structure de
contact quaternionienne si A2 H* est un fibré de rang 3 et si la restriction a
AiH * du produit extérieur

ANH* @ N°H* — A*H* - R

est une métrique définie positive.
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Sous les conditions de la définition (0.2), I'existence d’une métrique gy et
d’une structure quaternionienne vérifiant les hypothéses de la définition (0.1)
est un fait classique d’algébre linéaire et revient a choisir une orientation sur
H et une base orthonormale (%dmh{) de A2 H*.

L’objet principal de cette thése est la question suivante :

— Etant donnée une structure de contact quaternionienne H sur une variété

M de dimension 7, existe-t-il une métrique quaternion-kihlerienne g,
définie sur un voisinage de M, admettant un pole d’ordre 2 le long de M
et d’infini conforme H 7

Rappelons qu’en dimension 4n+3 > 11, une réponse positive a été obtenue
par Biquard dans [Biq00]. En dimension 7, a I’aide de techniques twistorielles,
je montre l'existence d’une condition nécessaire et suffisante d’intégrabilité
pour qu'une distribution de contact quaternionienne soit le bord d’une mé-
trique quaternion-kahlerienne.

Twisteurs

Une des propriétés remarquables de la géométrie quaternion-kéhlerienne est
la possibilité de lui appliquer des techniques d’analyse complexe via I'espace
des twisteurs. Ce dernier est une variété holomorphe, fibrée au dessus de toute
variété quaternion-kahlerienne, inventée de maniére indépendante par Bérard
Bergery [Bér79| et Salamon [Sal82| au début des années 80 et généralisant
I’espace des twisteurs des variétés anti-autoduales de dimension 4 découvert
par Penrose ( [Pen72| et aussi [At-Hi-Si78]| ).

Si (M, g) est une variété quaternion-kiihlerienne, 1’espace des twisteurs
7 : T — M est le fibré en sphéres rondes S?

T = {1’1[1 +£L‘2[2+.1'3[3, l’%‘i‘x%‘{’l@ = 1}

ou (11, I, I3) est une structure quaternionienne locale sur M qui engendre Q.
La connexion de Levi-Civita de g permet d’identifier 7*7'M & une distribution
D, transverse aux fibres de 7. Si I € 7, la structure complexe J sur 7 est
définie par J7(X) = IX sur D et correspond a la structure complexe canonique
des sphéres sur 'espace tangent aux fibres. La distribution D est holomorphe
et la projection © : T'7 — T7T /D vérifie

O AdO" £ 0,

on dit que © est une structure de contact holomorphe. Enfin, I’application
antipodale I — —1I fournit une involution anti-holomorphe de 7.
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Le grand intérét de cette construction est qu’elle peut étre inversée, [LeB89] :
soit (7,0) une variété de contact holomorphe de dimension 2n + 1, munie
d’une involution anti-holomorphe o : 7 — 7 et désignons par MC ’ensemble
des sphéres holomorphes de 7, invariantes sous l'action de o, transverses a
D = ker©® et de fibré normal 2nO(1). Si M est non vide, alors le sous-
ensemble M des sphéres o-invariantes peut étre muni d’une métrique pseudo-
riemannienne qui est quaternion-kihlerienne dans le cas ou elle est définie
positive. De plus, si 7 vient d’une variété quaternion-kiahlerienne M’ alors M
et M’ sont isométriques.

Nous allons maintenant illustrer cette construction dans le cas hyperbo-
lique, a ’aide d’une description plus intrinséque de la métrique gy. L’espace
hyperbolique quaternionien est

HH” = {[QIu '--7qn+1] P Z ’q19|2 < ’qn+1’2} C HPn’
k=1

que l'on identifie & (B, gy) via la restriction de Iinjection H" < HP",
(@1, -y Gn) — [q1, -, Gn, 1]. L’identification

(21, .oy Zopao) > (21 + 22, oy Zona1 + J2on42)

entre C*"*2 et H"*! permet de définir une projection 7 : CP?"*!1 — HP", de

fibre CP! et dont la restriction a
2n

(CPerTH_l - {[217 "'722n+2] ) Z ’Zk|2 < ’Z2n+1|2 + |Z2”+2’2}
k=1

identifie 'espace des twisteurs de HH" avec CP?"*!. La structure réelle est la

multiplication a droite par j, et la forme de contact a valeurs dans O(2) est
définie sur tout CP?"*! par

n
O = E (ZQk—leQk - Z2kdz2k—1) - (22n+1d2’2n+2 - 2’2n+2d2’2n+1) .

k=1
Le bord de (CPJQF”Jrl est I’hypersurface

2k
(CPOZIH_I == {[zla sy 22n+2] y Z |Zk|2 = |22n+1|2 + |22n+2|2} ’
k=1

C’est une variété CR, de forme de contact 0" = %(2211 2kdZ — (zopi1dZony1 +
Zont2dZany2)) , fibrée en CP' au-dessus du bord

OHH" = {[q1, -, Gn+1] , Z ‘Qk|2 = ‘Qn+1‘2|}7
k=1
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que l'on appelle espace des twisteurs de la structure de contact quaternio-
nienne H" sur 0HH". Comme O(zj) = > 7_, [2zk]* — |22n41]* — |22n42/%, la
variété CP""! est exactement la réunion des fibres de 7 qui sont tangentes
a la distribution ker ©. La construction twistorielle inverse donnant des va-
riétés holomorphes, nous décrivons maintenant la complexification de I'espace
hyperbolique quaternionien.

On définit la forme symplectique w = Y, _ | dzop—1 Adzog — dzon11 Adzon 2.
Les complexifications de HHH™ et de JHH" sont les grassmaniennes Gry(C?"2)
et Gr9(C*"*2) respectivement, ou Grd(C**2) désigne I'ensemble des plans
complexes de C?"™2 isotropes pour w. Chaque point P de Gry(C*'*2) défi-
nit par projection une courbe complexe de genre nul CP} dans CP*"*! et
Gri(C?"*2) g’identifie alors a I'ensemble des P € Gry(C**2) tels que CP}
soit tangent au noyau de ©. La structure réelle provient de la multiplication
par j sur H**! ~ C?"+2,

Pour montrer qu’une distribution de contact quaternionienne (M, H) est
I'infini conforme d’une métrique quaternion-kihlerienne, on construit une va-
rieté CR intégrable 7 — M au-dessus de M que l'on appelle espace des
twisteurs de M. On complexifie M en une variété holomorphe M®; puis a
laide de 7, on obtient une variété complexe 7°¢ munie d’une structure de
contact holomorphe © et d’une famille de sphéres holomorphes (C,,),,cnc telle
que M€ soit une hypersurface de N€ qui paramétre les sphéres tangentes au
noyau de ©. On applique alors la construction inverse ( [LeB89] et [Biq00] )
pour montrer que M est le bord d’une variété quaternion-kéihlerienne.

Principaux résultats

Si H est une distribution de contact quaternionienne sur une variété M,
la construction d’'une métrique quaternion-kiahlerienne d’infini conforme H se
réduit a la construction d’un espace des twisteurs CR intégrable. Je définis
une condition d’intégrabilité pour une structure de contact quaternionienne
qui permet de faire cette construction ( définition 1.0.3, chapitre 1 ). Ceci me
permet d’obtenir le résultat suivant :

THEOREME 0.1. Une structure de contact quaternionienne H sur une va-
riété de dimension 7 est linfini conforme d’une métrique quaternion kdhle-
rienne si et seulement si H est intégrable.

Ce résultat est démontré dans le chapitre 1 a ’aide de la construction d’une
connexion adaptée aux structures de contact quaternioniennes en dimension

7.
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Cette condition d’intégrabilité est vérifiée pour les bords des métriques
construites par LeBrun. Galicki [Gal91| a construit une famille d’exemples
ayant Sp(1) comme sous-groupe d’isométrie par quotient de espace hyperbo-
lique quaternionien. Une question naturelle est alors de chercher des structures
de contact quaternioniennes sur la sphére S7, intégrables, et qui ont Sp(1)
comme sous-groupe de symétries, ou Sp(1) désigne ici Paction du groupe as-
socié a la fibration de Hopf ST — S*.

THEOREME 0.2. L’espace des déformations Sp(1)-invariantes, intégrables
de H™ est une famille continue a 25-parametres.

Ce résultat est démontré dans le second chapitre et permet d’en déduire
I'existence d’une famille de déformations quaternion-kéhleriennes et Sp(1)-
invariantes de la métrique hyperbolique quaternionienne.

COROLLAIRE 0.1. Il existe une famille a 25 paramétres de déformations
quaternion kdhleriennes, Sp(1)-invariantes de l’espace hyperbolique quaternio-
nien.

Sur une variété M, une 4-forme 2 de stabilisateur Sp(n)Sp(1) définit une
métrique riemannienne g qui est quaternion-kihlerienne lorsque €2 est paralléle
pour la connexion de Levi-Civita de g. En dimension 8 et contrairement aux
dimensions supérieures, il existe des 4-formes de stabilisateur Sp(n)Sp(1) qui
sont fermées mais qui ne sont pas paralléles ( [Swa89] et [Sal01] ).

Soit p une fonction strictement positive sur B® s’annulant & Pordre 1 sur
la sphére S” et soit H une distribution de contact quaternionienne sur S”.
La condition d’intégrabilité sur A apparait comme une obstruction a trouver
une 4-forme asymptotiquement hyperbolique quaternionienne ( définition 1.2,
chapitre 3 ), de bord H et telle que |VQ|, = O(\/p) ol g est la métrique
définie par € et V est la connexion de Levi-Civita de g. Le troisiéme chapitre
est principalement dédié a la preuve du

THEOREME 0.3. St H est proche de la structure standard H", Il existe
une 4-forme asymptotiquement hyperbolique quaternionienne €2, de bord H et

telle que |dQ2, = O(p?).

Mazzeo ( [Maz88| ) a montré que le spectre essentiel du laplacien des mé-
triques asymptotiquement hyperboliques réelles ( ou conformément compactes
) est identique & celui de 'espace hyperbolique réel. Il est naturel de faire une
hypothése analogue a propos du spectre essentiel du laplacien de Hodge pour
les métriques asymptotiquement hyperboliques quaternioniennes, sachant que
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sur les 5-formes, le spectre du laplacien pour gy est [1;+oo[. La construction
formelle du théoréme précédent permet alors d’obtenir le résultat suivant :

THEOREME 0.4. Supposons qu’il existe un voisinage U de H™ dans [’es-
pace des structures de contact quaternioniennes tel que si g est une métrique
asymptotiquement hyperbolique quaternionienne de bord H € U, le spectre es-
sentiel du laplacien sur les 5-formes est contenu dans [%, +o0o|. Alors il existe
un voisinage V. de H" tel que toute structure de contact quaternionienne
H €V peut étre réalisée comme le bord d’une 4-forme fermée, asymptotique-
ment hyperbolique quaternionienne et de bord H.

Enfin, le dernier chapitre donne une définition des quotients de contact qua-
ternioniens, analogue a celle des quotients quaternioniens définis par Galicki
et Lawson dans [Gal88|.






CHAPTER 1

Quaternionic contact structures in dimension 7

1. Introduction

In this paper we solve a boundary problem for quaternionic-Kahler metrics.
This problem is a degenerate version of a problem initially posed for Einstein
metrics. If g is a metric on a manifold M with boundary N, and [b] is a
conformal class of metrics on N, [b] is the conformal infinity of g if there exists
a function p positive in M and vanishing to first order on N such that p3g
extends continuously on N with p?g|rss € [b]. The standard example is the
hyperbolic metric gy, on the ball B"™ given by

euc
Ghyp = 47 5

where euc is the Euclidean metric on R"* and p(z) = 1 — |z|?. The conformal
infinity of gy, is the conformal class of the round metric on S™.

The problem of finding complete Einstein metrics with prescribed confor-
mal infinity on the ball was solved by Graham and Lee in [Gra91]. In dimen-
sion 4, one can search for selfdual Einstein metrics. LeBrun [LeB82| shows
using twistor theoretic arguments that a conformal metric on a 3-manifold N
is the conformal infinity of a selfdual Einstein metric defined near N. However,
a conformal metric on the sphere S? is not always the conformal infinity of a
complete selfdual Einstein metric on the ball B, see |Biq02].

In the same way, the degenerate version is modeled on the quaternionic
hyperbolic metric. Let H be the skew field of quaternions and H" the n-
dimensional H-vector space. The action of the standard basis (i,j, k) of
imaginary quaternions gives endomorphisms (I3, I», I3) of H" ~ R, Each
I; is an almost complex structure on H" and one has the commutations rules
I I, = — 1,1, = I5. A such triple of endomorphisms on a real vector space V'
is called a quaternionic structure on V. The quaternionic hyperbolic metric
on the ball B C H" is given by

deuc

P %((dp)2 + (Ldp)? + (Idp)® + (Isdp)?),

9H =

11
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where p = 1 — |z]* and euc is the Euclidean metric. In this case, the function
St and [p?gy|rsin—1] is a
conformal class of degenerate metrics on S**~! with kernel

H " = M}, ker Lidp|pgin-1 .

p is positive in B*", vanishes to first order on

The distribution H" is a so called quaternionic contact structure (|Biq00|
and [Mont02, p. 115]) whose definition in dimension 7 is:

DEFINITION 1.1. Let H be an oriented distribution of codimension 3 on a
7-dimensional manifold N and let Z be the set of one forms vanishing on H.
The distribution H is called a quaternionic contact structure if

N H: = {dn|u,, n €T}

is a rank three subbundle of A2H* such that the restriction to A3 H* of the
exterior product

AN’H* @ N’H* — AM*H* = R
gives a positive definite metric on A% H*.

If H is a quaternionic contact structure in dimension 7, a classical fact in
4-dimensional linear algebra gives the existence of a unique conformal class
lg] of metrics on H such that A% H* coincides with the space of selfdual 2-
forms with respect to [g]. Moreover, taking a local oriented orthonormal basis
(\/iiwi = \/iidm\H) of A% H* with respect to a particular choice of metric g in
this conformal class, one gets a quaternionic structure (I;);—1 2,3 on H satisfying
w;(+,-) = g(I;-,-) and defined up to a rotation by an element of SO(3).

This description shows the link with the following definition given by Bi-
quard in |[Biq00|: a quaternionic contact structure is a distribution H of
codimension 3 on a manifold N3 locally given by three 1-forms (11, 72, n3)
such that there exists a metric g on H and a quaternionic structure (I;) on H
satisfying the conditions dn;|y = g(I;+,+). The conformal class [g] is uniquely
determined by H.

Our definition enlights the fact that in dimension 7, quaternionic contact
distributions form an open set in the set of codimension 3 distributions. This
fact is no more true in higher dimensions.

Let us now come back to quaternionic-Kéhler geometry. First, using the
previous notations, we give the following definition:

DEFINITION 1.2. A metric g on a manifold M with boundary N is asymp-
totically quaternionic hyperbolic (AQH) if one has a quaternionic contact
structure H on N with compatible metric gy on H and a function p, positive
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in M vanishing to first order on N such that on a neighbourhood ]0,a] x N of
N, the behaviour of g near N is given by

1 1
g~ ?(dp2+nf+77§+77§) + ;gH when p — 0.

The quaternionic contact structure H is called the conformal infinity of g. In

the case where ¢ is also quaternionic-Kéhler, one says that g is asymptotically
hyperbolic quaternionic-Kéhler (AHQK).

Biquard |Biq00| has shown that every quaternionic contact structure of
dimension 4n + 3 > 11 is at least locally the conformal infinity of a unique
AHQK metric. Moreover, he showed in [Biq02| that a quaternionic contact
structure on S***3 with 4n + 3 > 11 and close to the canonical one is the
conformal infinity of a AHQK complete metric on the ball B**™*. The question
remains open in dimension 7.

In this paper, we answer this last question. We show that the confor-
mal infinity of an AHQK 8-manifold must satisfy an additionnal integrability
property which is empty in higher dimensions. Conversely, we prove that an
integrable quaternionic contact 7-manifold is the conformal infinity of a unique
AHQK manifold.

DEFINITION 1.3. Let H be a quaternionic contact structure on a manifold

N of dimension 7 and choose a compatible metric g. The quaternionic contact
structure H is called integrable if for each local oriented orthonormal basis
(dn;ler) of A2 H*, there exist vector fields (R, R, R3) satisfying

® ig1; = 0ij,

® ip,dnjly = —ir,dniln.
This property does not depend on the choice of metric g inside the conformal
class.

We can now give the statements of the main results.

THEOREM 1.1. Let H be a real analytic quaternionic contact structure
on a manifold N7. Then H is the conformal infinity of an AHQK metric g
defined on a neighbourhood of N and admitting a real analytic extension on
the boundary with pole of order 2 iff H is integrable. Moreover, the germ of g
along N 1is uniquely determined by H.

Using |Biq02| and this theorem, we can fill in the 8-ball by globally de-
fined complete AHQK metrics whose boundaries are close to the canonical
quaternionic contact structure H":
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COROLLARY 1.1. Let H be an integrable quaternionic contact structure on
S7, close to the canonical distribution H*". Then H is the conformal infinity
of a complete AHQK metric on the ball BS.

The paper is organized as follows. In section 2, we construct a connection
associated to each compatible metric. A part TV of its torsion gives a con-
formal invariant named vertical torsion. The vanishing of T% is equivalent to
the integrability of H.

In the third section, we study the boundaries of AHQK manifolds and
we show that they are integrable. This gives the motivation to study more
carefully the torsion and the curvature of this case. In particular, the curvature
on H looks like that of anti-selfdual Riemannian 4-manifolds except for an
additional term coming from the Bianchi identity. The computation is done
in section 4.

Still assuming the integrability condition, we construct an integrable CR-
manifold, the twistor space of the quaternionic contact structure. This is done
in section 5 and gives the converse statement to the third section, namely
that a quaternionic contact structure with vanishing vertical torsion is the
boundary of a unique AHQK manifold of dimension 8.

2. Construction of the connection

In the following, one has a smooth manifold N of dimension 7, a quater-
nionic contact structure H on N and g a fixed compatible metric g on H. We
fixe local contact forms (71,79, 73) and a local quaternionic structure (I;) on
H such that dn;(-,-) = g(;-,-) on H.

In the first three parts of this section, we construct an adapted connection
associated to g. This connection will be used in the twistorial construction of
section 5. To look at the conformal invariance of this twistorial construction,
we will need to know how a conformal change of metric changes the connection.
This is done in part 5 of this section.

2.1. Partial connection. If NV is a manifold, £ a vector bundle and D
a distribution on N, a D-connection on FE is a differential operator

V:T(E) — (D" ® E),

satisfying the Leibniz rule V(f s) = (df)|p ® s+ fVs for every function f and
section s of E.
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LEMMA 2.1. Assume that W is a distribution on N giving a splitting TN =
H @& W. There exists a unique H-connection V on H preserving the metric g
and such that the torsion satisfies

VX,Y € H, (TX7y>H = 0,
where the subscript H indicates the projection on H in the direction of W.

PRrROOF. If V is such a connection, we must have for every sections X, Y
and Z of H the Koszul formula

2(VxY,Z) = X.g(Y,Z)+Y.9(Z.X)— Z.g(X,Y)
+g({X7Y]H7Z>_g([X7Z]H7Y)_g<[KZ]H7X>'

It gives both uniqueness and existence. U

Otherwise stated, the vector fields X, Y, Z are sections of H, and given a
complementary W, a vector field R is a section of W, and (R;, Ry, R3) is the
dual basis of (91w, nelw,nslw). We equip W with the metric >, n?.

REMARK 2.1. If W is a complement to H, the torsion of the H-connection
associated to W on H satisfies

3
Txy = —[X,Y]w =) dni(X,Y)R;.

=1

2.2. Extension of the connection.

LEMMA 2.2. Let W be a complement of H in T'N. One can find a unique
connection VY on N such that :
(i) VW preserves the splitting TN = H & W and the metrics on H and
w,
(11) if X, Y € H and R, R € W, then (TX7y)H =0 and (TR,R’)W =0,
(iii) the torsion T satisfies
(1) VX eH, T)‘(/V = (R — (TXJ{)W) € EO(W)L,
(2) VReW , TH = (X — (Trx)n) € s0(H)",
PROOF. Let V be the partial connection on H defined by lemma 2.1. We
extend it to a true connection which preserves the metric on H, still denoted

by V. If a € T'(W* ® so(H)), the connection V' = V + a is metric and its
torsion 7" satisfies

Tpx = VX —[R, Xy =Trx + ar(X),

so that there exists a unique ag which annihilates the so(H)-part of T .. The
connection on W is constructed in the same way. U
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We put o;;(X) = dn;(R;, X). One has

3
TY(R) = V¥ (R) — [X,Rlw = VYR — Y ai;(X)R;,
j=1
from which we obtain
3

VYR, = —% D (asi(X) = aig (X)) R;

and
(3) Ty (R;) = —% Z(%’(X) + (X)) R; .

2.3. Reducing torsion. We search now a particular choice of W giving
the simplest torsion. To fix the notations, we recall some basic facts about
representations of SO(4).

The universal covering of SO(4) is Spin(4) = Sp(1) x Sp(1) where Sp(1)
is the group of unitary quaternions. Let S, and S_ be the representations
of the first and the second factor respectively on H ~ C2. The irreducible
representations of Spin(4) are the ST ®S™ where ST and S™ are the symmetric
power of order m and n of S, and S_ respectively. The following Clebsch-
Gordan formula gives the irreducible decomposition of tensorial products :

SRS~ STPe ST e @ S8TP, p<n.
The real irreducible representations of SO(4) are the real parts of ST ® S™
with n + m even. We will denote them by S™™. In particular, we have
RYo S8, A2 o~ 20 A2 o 502
We now give the explicit isomorphism R* ® Sym?(A2) ~ S>! @ 53! @ St

Let (I, I3, I3) be a quaternionic structure on R* given a SO(3)-trivialization
of AZ. Then

55’1 ~ {Zi,j aij ® ]z ® Ij7 aij = aji & R4 CLTLd \V/], Zz Iiaij = 0},
Sl’l ~ {ziT®Ii®[i,TER4},
53’1 ~ {zi,j([irj—i_IjTi)@[i@[ja TiER4, ZZ[ZTZZO}

In our case we have the natural identification

so that TW becomes a section of H* ® End(AiH*). We put w; = dn;|g and
w; the dual basis.
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REMARK 2.2. The metric g allows us to identify H* and H and we use it
throughout the text. In particular A3 H* can be considered as a subspace of
the space of 2-forms or that of skew-symmetric endomorphisms.

PROPOSITION 2.1. For each choice of compatible metric g on H, there is
a unique complement W9 of H such that T’ € T'(S>1).

PROOF. Let W be transverse to H and (R;, Rs, R3) be the dual basis of
(m1,m2,m3) on W. We have obtained in (3)

3
1
TW:—Q E (aij—l—ozﬁ)@wf@wj,
—

If W’ is another complementary to H spanned by the vectors R, = R; +r;
with r; € H, then of; = igdn;|g = a;; + (I;7;)’ (b and § are the usual musical
isomorphisms). With the explicit decomposition of H*®Sym?(A2 H) we wrote
down, the existence and the uniqueness of W follow. 0

REMARK 2.3. Another choice of complementary does not change the S%!
part of the torsion.

2.4. Derivation of the quaternionic structure. We fix W = W9 and

note V the corresponding connection. This connection is metric and so pre-
serves the bundle A2 H* :

3
Vijy = Z%’j ® ;.
i—1

Here we just look at the derivation in the direction of H, i.e. v;; € H*.
Let X,Y,Z € T'(H), and a be the skew-symmetrisation in X Y and Z.
One has the identity

(4) d(dn;)(X,Y, Z) = a(Vdn;)(X,Y, Z)
+dn(Txy, Z) + dnj(Tzx,Y) + dnj(Ty,z, X)
and can be rewritten in the following form :

Z(Q(ij + O‘EjaX)Ii +LX A (’ij + O‘?j)) =0.

7

Projecting on A2 H and A2 H gives the equivalent condition

3
Vi€ {1,2,3}, > (e +7;)0i=0.

=1
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But our particular choice of complementary vector bundle ensures that
Z(Cl{ij + Oéji) o Iz =0
i
hence we get

1

g = —5 (@ = agi).

2.5. Conformal change. Let ' = f2n be such a conformal change, and
(R1, R2, R3) be the dual basis of (11,72,13) on W9. We put (R}, R}, R}) the
dual basis of (211, f>n, f?13) on W19,

PROPOSITION 2.2. The conformal change of metric corresponds to the fol-
lowing change of basis of associated complementaries :

R = f2(Ri+r),
where v = 2f~'df | o I; (the musical isomorphisms # and b are taken with
respect to g on H, after restriction if necessary for 1-forms). Moreover, we
get
irydni|a + iggdng| i = ig.dnjlg + ig;dila -
PrROOF. We put of; = igdn)|u. We have
ni(R;) = f*ni(R;) = 6

so that R, = f~2(R; +r;) with 7; € H and finally

The conformal change left S>!, $3! and S%! globally invariant and (1’ o
L4770 L) +46; f ~Ldf|y € S*' @ S*! therefore the conditions o, + o, € 5!
and a;; + ay; € S> imply (r o I; + TZ o I;) +46;;f'df|g = 0 and the lemma
follows. U

COROLLARY 2.1. The torsion TW? associated to the Carnot-Carathéodory

metric is conformally invariant. We call it the vertical torsion and denote it
by TV or TV.

PROOF. If we change the metric in the conformal class, the 2-forms wj
are multiplied by the conformal factor and elements of the dual basis are
multiplied by its inverse. So the only thing we must look at is the invariance
of (a;; + @j;);; which follows from 2.2.

OJ

Let us summarize the results we have obtained in the following proposition.
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PROPOSITION 2.3. Let (N, H) be a quaternionic contact structure. The
integrability of H does not depend on the choice of an adapted metric on H.
Moreover, if g is particular a choice of compatible metric on H, the following
conditions are equivalent :

The distribution H is integrable.

The torsion T vanishes.

For any choice of complementary distribution W, the S>' part of the
torsion vanishes.

For any choice of oriented orthonormal basis (\/Lidmhq) of HT and
any choice of vector fields (Ry, Ra, R3) such that

ni(Ri) = 045,
the S™' part of (ig,dn;|g + ir,dni|m)i; vanishes.

In the study of the twistor space, we will need to know how the connection
is changed when the metric is multiplied by a conformal factor. We put 6 =
f~ldf. Recall that we write 6* for (0];)* and that the change of complementary
distribution is parametrized by R, = f~2(R; — 2[;6*). The following lemma
will be useful in the twistorial construction.

LEMMA 2.3. The connection V' adapted to f%g is given by
Vi, = Vg +0(R)+ 20T + 20 AN L0* — L3 (o, + b)) A L6k
+2(I; V#)so(H)

where (I;VO*)*H) means that we take the so(H) part of the endomorphism
X — IiVXQﬁ.

Proor. We put V' = V + 0 +a and V! = V + 0. The connection V!
preserves f2g and its torsion is

T)l(,Y = Y. dp(X,Y)R, +0(X)Y —6(Y)X
= Txy — 2 dni(X, Y )ry + 0(X)Y —0(Y)X

so that axY —ay X =Y. dn;(X,Y)r; —0(X)Y +6(Y)X. The connections V’
and V! both preserve f?g hence a is a 1-form with values in so(H). The skew-

symmetrisation in the two first variables gives an isomorphism H* ® so(H) —
A’H* @ H, with inverse b

(b(c)xY, Z) = %((C(X, Y),Z) +(c(Z,X),Y) = (c(Y, Z), X))

from which we deduce the first part of the lemma.
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We now look at the change of the connection in the direction of W9. If
UeTS, Uyw is its projection on V' in the direction of W = W9. We have
aRiX = V/RZX - VRLX — Q(Rl)X
= Vi X = Ve X—-0(R)X -V, X
Introducing the torsion, we obtain

ap, X = (Trysrix)viw — (Trox)vyw + [Ri, X]vywr — [Ri, X]vyw
= (Trivrix)vyw — (T, x)vyw + 325 dni(Ri, X)rj

But ag, € so(H), so that it suffices to compute the skew-symmetric part of
the right hand term in the previous equality. The contributions of the torsions
vanish by definition, that of >~ dn;(R;, X)r; is

1
§Za§j/\7‘j = —Zocgj/\fjeﬁ,
j j
and that of V'r; is

—20° A L,O* — 2|0% 2 + (V)W)
Using the expression of VI; obtained in 2.4, we get

Vri = —2V(L#F) = —2(VI,)0* — 2I;V6*
= Zj(aji — aij) X ]jeﬁ — 2]ZV9ﬁ .
Mixing all this together gives the lemma. 0

2.6. Higher dimensional case. Let us do some remarks about what is
going on in higher dimensions. Let H be a quaternionic contact structure on
a manifold N4 with n > 1 and g be a compatible metric on H. In the
same way and always with the same notations, one can show that there exists
a unique complementary W9 such that

Z(O{i]‘ +aj)ol; =0
i
for all 7.

On the other hand, lemma 2.1 is always true and give a metric H-connection
V on H. Then, using (4) and an argument of representation theory, one can
show that in fact o;; + oj; = 0 and that V preserves not only the metric but
also the Sp(n)Sp(1) structure on H. Hence, there is no integrability condition.
It is the reason why all quaternionic contact structures in dimension strictly
greater than 7 are the boundaries of AHQK metrics.
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3. Conformal infinity of AHQK manifolds

In this section, we will study the conformal infinity of an AQH quaternion-
Kéhler manifold. We find a particular trivialization of the quaternionic struc-
ture admitting an analytic extension to the boundary with pole of order 2.
Then, we use it to show that the quaternionic contact structure on the bound-
ary is integrable.

3.1. Twistor space and asymptotic development. The following is
essentially the work of [Biq00, II1.2] and [LeB91|. Let (M, g) be an AHQK
manifold of dimension 8 and suppose that the metric g admits an analytic ex-
tension to the boundary N. We will apply the twistor machinery to obtain a
particular choice of local trivialization of the quaternionic structure in a neigh-
bourhood of the boundary. The twistor space [Sal82| of M is a 5-dimensional
holomorphic manifold with the following data :

e a holomorphic contact structure n with values in a line bundle L;

e a family of dimension 8 of compact genus zero curves (C,,)nearc with
normal bundle O(1) ® C*%

e an hypersurface N© C M® of curves tangent to the contact distribu-
tion;

e a compatible real structure 7, without fixed points.

REMARK 3.1. M is the real slice of M© — N€ and N that of NC.

On each C,,, the line bundle L is isomorphic to O(2) so that L, =
H°(C,,, Hom(TC,,, L)) is a line bundle on M®. By restriction, the 1-form
n gives a section © of £ and S is the null set of ©. We choose local square
root L'/? of L, but the conclusions do not depend on this choice. Let us define

E, = HCnh L '?®N,,),
H, = H°C,, L%,

so that
T.M*=E,®H,,.

For m ¢ N© and u,v € H,,, the Wronskian w(u A v) = udv — vdu defines a
two form

(6) wir : A2HO(C,, LV?) 2 £, 95 C,

and therefore a SO3(C)-structure wy @ wy on HY(C,,, L) ~ Sym?(H,,).
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The normal bundle NN, of a curve C,,, has a natural identification with kern
if m ¢ NC so that we have a well defined 2-form

A2H(Cpny Nin) 5 Sym?(Hy)

The choice of a SO3(C)-trivialization on Sym?(H,,) exhibits three 2-forms wy,
woy, ws giving the Spy(C)Spi(C) structure. The complexified quaternionic-
Kahler metric is

(7) g=wp ®@wy on L, ® Hy,

where

wg : F,, kil
We now look at the contact structure on the boundary. Let [ : £ — C be a
local choice of trivialization of £ in a neighbourhood of s € N© and extend it
on M. In the same way, we obtain a symplectic form

Wyt A2HO(C,, L) S £, 5 T,
and thus a SO3(C)-metric Wy ® wy = ?0%wy ® wy. We choose a local
SOs3(C)-trivialization Sym?(H,,) — C3.
If s € N, one has TC, C kern hence n gives three 1-forms (11, 12, 73) along
N(C
H®(Cy, Ny) = H°(Cy, L) = Sym®(H,) — C°.
On the other hand, on M® — N© we obtain three 2-forms

N2H®(Cpoy Npy) & Sym?(H,,) — C2,

which can be written as [?©2w; with w; defining the quaternionic structure of
M® — NC,
We put p =10 : M® — C.

LEMMA 3.1. The forms w; have pole of order 2 along N©. More precisely,
the 2-forms >©%w; are defined on N© and satisfy

1 ,
PPO*w; = —dp An; + 3 Z "' A\ g

St

on N where ™ is the signature of the permutation (r,s,1) of (1,2,3).

PROOF. Because the w; define a quaternionic structure, we need only show
that is/0,l?0%w; = —n; to obtain the lemma. We take s € N©.

There exists a section ¢ of Ny along C, such that 1(¢) = 0 and i,dn|7rc, # 0,
cf [Biq00, lemma II1.2.5]. We normalize ¢ in order to have I(isdn|re,) = 1. It
is a vector in T, M with the properties dp(¢) = 1 and 1;(¢) = 0. Remark that
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whereas the symplectic form dn is not defined along N€, the 3-form 1 A dn
admits an extension to NC. By restriction, we have

Odn=nAdy € H°(Cp, T*Copy @ A’N}, @ L) = Ly @ N°T*M® ® H°(Cp, L) .
If u is tangent to Cy and o € H°(C,, N,), then
n A dn(u, ¢,0) = n(o)dn(u, ¢),
i.e. 14l©dn = —n and finally

i¢l2@2wi = ;.

The intersection of the kernels of p?w;, p*ws,, and p?ws on N is
H® = H°(C,, N, Nkern N TCFH)

and coincides with the contact structure of the boundary. The symplectic
form w; has well defined terms of order —1 on H® and one can show [Biq00,
Lemma II1.2.6] that

1
Wi = Wi g+ —W; 1+,
p p
with
1 )
Wi _9 = —dp A n; + 3 ;grsznr AMs, Wi _1|ge = dni|ye .
If we put

E,, = H°(C,, (N, Nkern N TCL™) @ L=/?),
n ;

we obtain by restriction a complex metric on H®
gue = dnlg,, @ Wy .

The quaternionic metric on M® has the asymptotic development
1 1
g=—759-2t g1+
P P
with
g2 =dp* +1; + 13 + 03 and g_1|ge = gue .

Finally, we put w; _1 = dn; + 7; where ;| gc = 0.
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3.2. Boundary conditions. We follow the notations of the previous sec-
tion and restrict ourselves to the real slice. We choose an arbitrary comple-
mentary W to H. Let (Ry, Ry, R3) be the dual basis of (11,72,73) on W and
let I; be the almost complex structures on H.

The symplectic forms w; and the metric define almost complex structures
I;. Because of the form of the w;, we have the analytic development

Iiﬁp = IL()ap + pIm@p + = RZ + wl + -
where ¢; € H is independent of p and if X € H,

We are now in position to show the following

PROPOSITION 3.1. The boundary of an AHQK manifold admitting is an
integrable quaternionic contact structure.

PrOOF. If X € H, one has
wi(Ij@p, X) + wj(Iiap, X) = —2(51']'9(8[), X) .

The order —2 terms do not give anything but from the order —1 terms we
deduce the equation

dni(Rj, X) +dnj(Ry, X) = —7i(R;, X) = (B, X) — 2035919, X)
+9-1(Yy, LX) + g1 (¥, ;X)) .
The second line gives an element in S*!' @ SU! therefore we need only to look

at ;. We will now use the fact that the metric is quaternionic-Kéhler. Indeed,
there exists one forms (;; such that the 2-forms (w;) satisfy

dw; = Zﬁjz’ Nwj, Bji=—0Bij.
J

The application (A!)3 — A3

(a;)iz1,23 — Z a; N\ w;

)

is an injection so that the 3;; are unique.

We have

dw; = —533, €™ dp Ny A — —dp A (dn + i)
1
2

+p (dp VAN dT]z + % ers 5r8i(d77r ANs — N N dns)> +e
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and then

1 : 1 .
dw; = ——32:»3”5’dp/\77r/\775—i-—2 <Zsmdnr/\775—dp/\%) + e
p p

T8 T8

We have »° €"%eP"n, Ay Ang =0 s0
1 irs Wy, —2 1 TSt
dwizz EZS Ns | A ,072 —i-? Za dn, Ams —dp ANy | +---

The exterior product of 1-forms with w, 5 is an injection, so 3,; is of the form
1 ,
Bri = ;ﬁri,—l + Brio+ -+ and By 1 = Z’fzrsﬂs-
S

Looking at the order —2 terms with respect to p, one obtains the equations

Z Brio A\ wr,—2 + Z Bri—1 N wy 1 = Z e dn, Ams —dp Ay .

We put Bri0 = Aridp + Y and v = dp A2 + 7Y where g5, € T*N and
N € A’°T*N.
Taking the dp component in the previous equation, one gets

r.k,s r,s

But then ,;(R;, X) + v;(R;, X) = 0 and the lemma follows. O
In the two next sections, we will look at integrable quaternionic contact
structures in order to show that they are the boundaries of AHQK metrics.
4. Integrable quaternionic contact structures

Let (N, H) be a quaternionic contact structure.
In section 2, we computed the derivation of the quaternionic structure in
the direction of H. On the other hand, from the identity d(dn;)(R;, X,Y) = 0,

we obtain

(8) (VR dn)(X,Y) = a(Vay)(X,Y) = > ap Aoy (X,Y)
k

+3 " dn(Ri, R)dni(X,Y) = g(LiTr, x + Th,1,x.Y)
k

where Cl(VOéij)(X, Y) = (VX()QJ>(Y) — (Vyam)(X)
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From now on, we suppose that the quaternionic structure is integrable. We
choose a compatible metric g on H and W = W9 the associated complementary
vector bundle defining the adapted connection V.

4.1. Torsion. The computations of section 2.4 give for any X € H,
3
) U SPESY:
i=1

LEMMA 4.1. Let (M, H) be an integrable quaternionic contact structure.
The tensor TH defined in lemma 2.2 lives in the component S*? of W* ®
so(H)* .

PROOF. By construction, 77 is a section of
AN H®so(H)' =S a S @ 5% @ 502,

SO we can put
Tp, = Nld+ > A,

with A, € T'(A2H) ( seen as skew-symmetric endomorphisms ). We apply
(8) with ¢ = j and obtain \; = 0 and A; = 0. Applying one more time
(8), we see that A,; is equal to the A% part of a(a,;) — >, apr A iy which is
skew-symmetric in p and <.

Writing A; = %Zm e™ A5, we obtain TH as the image of >, [; ® A; €
A2 H ® A? H by the SO(4)-equivariant map [; ® B — 53 n; ® [I;, ;]B. O

We are now able to calculate more precisely the vertical derivatives of the
quaternionic structure.

LEMMA 4.2. There exists a function A on N such that

3
1
rl; = 52 dn;(Ry, Ry,) + dni(R;, Ry,) — dii(Rs, R;)) I + N1, 1] .
k=1
PROOF. Symmetrizing (8) gives

3
(10) Vil + V=Y (dn;(Ri, Ry) + dni(R;, Ri) I,
k=1

In particular,

(V1 1;) = —(Vg1;, I;) = =2dn;(R;, R;),
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so that we know Vg, I; except for its component on [I;, I;]. We can put

3

1

Vrli=5 > (dny(Ri, Be) + dii(Ry, Re) — di(Ri, Ry)) I + Nij (L, 1]
k=1

with A\; = 0. From (10), we have \;; = Aj;. Moreover, taking for instance

i =1, j = 2 and using the skew-symmetry (Vg, I, I35) = —(Vg, I3, I2), we get

A12 = A13. The other equalities are obtained in the same way. O

4.2. The curvature tensor. We will give some results about the cur-
vature tensor in the 7"’ = 0 case. They will be useful for the twistorial
construction.

We are now interested in the curvature R of V, and more precisely in
its horizontal part. This is a section R € T'(A’H* ® so(H)). The splitting
A? = A2 @ A? allows us to decompose the curvature in A2 ® A2, A2 ® AT and
A? ® A? parts. Looking at its action on A3 H, we have

Rxyl; = VxVyl; —VyVxl; = Vixy), L + Zj dn;(X,Y)Vg,I;
= 3, (—a(Vag) + Xhmy age Aawi) (X, Y
+ 5, dny(X.Y) Vg, 1.
PROPOSITION 4.1. The A3 H ® A2 H part of the curvature is scalar. More
precisely, if we denote it by S € T'(End(A%H)), we obtain with the notations

of lemma 4.2 :

PROOF. Using Lemma 4.2 and (8), one sees that
(—a(Vayi) + X5 i A i)+ = All;, 1]
+5 22 (dni(Rj, Ri)) — dnj(Re, Ri) — digi(Ri, Rj)) I

where the subscript + means the selfdual part. Injecting this in the cur-
vature formula, one easily deduces the proposition. 0]

We can define a Ricci tensor and a scalar curvature for the partial curvature
R. As usual, we put
RiC(X, Y) = t?"H(Z — RZ,XY)
s = trg(Ric),
where the subscript H means that the trace is taken only on H. We note Ricy

the trace-free part of the Ricci tensor. In order to obtain the exact form of
the curvature, we use the first Bianchi identity

RxyZ + Ry zX + Rz xY = (dvT)X,Y,Z
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Let X, Y, Z and R; be parallel at the point p. Since the horizontal covariant
derivatives of R; and I; are identical,

(VT|n)p = (VZwi ® Ri)y =0,

so that at p, we have
RxyZ + RyzX + RzxY = —Iixy.,z—Tyvzx—1Tzxy
= i (dn ATE)(X,Y, Z)
The image by the Bianchi map b of the curvature R lives in the component

S§*?~ AN2H QA H of °H* ® H ~ S*° ¢ %% @ 5% @ 522,

PROPOSITION 4.2. The horizontal part R € T(A*H* ® so(H)) of the cur-
vature tensor seen as an endomorphism of A*H = A% H & A2 H has matriz

n_ 51d Rico + B
- \'Rico—"'B SId+W~
PROOF. Recall that the kernel of b is exactly the Riemannian curvature
tensors. We have
S*(A’H*) = kerb® A*H*
AN (N°HY) = NH @ N H* @ \N2H* @ AN>H*
We have shown that b(R) € S%? so that R is the sum of a Riemannian tensor
and an element in the unique irreducible $*? component which appears in

A2(A2H*) C End(A?(H*)). Moreover, Ric(B) = 0 if B € S?? C A*(A*H*)
so that the Ricci tensor behaves like the Riemannian Ricci tensor, hence is
symmetric. O

We show the following lemma which will be useful in the next section.

LEMMA 4.3. If the vertical torsion vanishes, the curvature R of the adapted
connection satisfies the following equality

[Rxy +IRx v +1Rx v — Rixav,1] =0,
for all XY € H and I € A3 H.

PROOF. This lemma is well known in the case of anti-selfdual Riemannian
curvature in dimension 4. In our case, it is similar except for the Bianchi part
B of the curvature tensor, hence we need only to show that B satisfies the
previous equality. We take for instance

B:weso(H)— tr(wK)J —tr(wJ)K € End(so(H)),
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where J € A2H and K € A7 H. We must show that
C =[B(w)+ IB(Iw) — IB(wl)+ B(IwI),I] = 0.
One has [J, K] = 0, so that we get
C=[-tr(w)K —tr(Iw))IK + tr(wlJ)IK — tr(IwlJ)K,I] .
The result follows then from the two equalities

tr(fwJ) = tr(JIw) = tr(IJw) = tr(wlJ)
{ tr(IwlJ) =tr(lwJI) = —tr(wJ)

5. Twistor space

In this section, we will end the proof of theorem 1.1.

5.1. Definitions. Let N7 be a smooth manifold and H be a quaternionic
contact structure on N with vanishing vertical torsion. Let g be a compatible
Carnot-Carathéodory metric, W the adapted complementary distribution and
V the connection associated to g.

Let 7 be the set of 2-forms w € A2H* of norm V2. This is a 2-sphere
bundle on M called the twistor space of (N, H). It can be identified with the
set of almost complex structures compatible with ¢ and the orientation. Let 7
be the projection 7 — N and choose a local quaternionic structure (I, I, I3)
associated to the 1-forms (11,72, m3). At a point I =z + 2915+ 2313, we put

N =17+ o e + T3TN3

It is a well defined 1-form on 7 not depending on the choice of SOj3-trivialization
(I, I, I3).
Using the connection V, we split the tangent bundle of 7 at I € 7 !(s)
for s € N:
7T =TT, TN .

Here 7, is the fiber above s of the fibration 7. We call Hor;T ~T,N = W& H,
the horizontal space. Let (R, Rs, R3) be the dual basis of (11, 172,73) on W. At
I, we have an almost complex structure J on kern, ~ kern; @ T77, satisfying
e on ker 7y, the almost complex structure satisfies J = I; after extending
11 to all kernl by IlRQ = Rg and ]1R3 = —Rz;
e on 17,7, J is the natural complex structure given by the metric and
the orientation on the sphere 7.
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PROPOSITION 5.1. Let H be an integrable quaternionic contact structure
on a 7-dimensional manifold N. The almost complex structure J defined on
the kernel of n™ is independent of the choice of compatible metric g on H.

PROOF. Let i = f?n be a conformal change, we follow the notations of 2.5.
The distribution ker n, on the twistor space is left unchanged. The conformal
change gives a new complementary W79 spanned by (R}, Ry, R) and a new
connection V' = V 4 a. The distribution Hor}7 is the horizontal subspace on
7T corresponding to V', and J' is the corresponding almost complex structure.

The vertical part of J is left unchanged.

At I} € T, we take U € kern", horizontal for the connection V, and X
its projection on N. We assume here that X € H. In the decomposition
T, T = Hor, 7 ®T1,7;, we have U = (X,0) and JU = ([;X,0). On the other
hand, in the decomposition 77,7 = Hor; T ® 11, T, we have U = (X, —ax 1),
JU = (1 X, —ap,xTh) and JU = (1 X, —%[Ihaxll]) thus J and J’ coincide iff
apxIh = %[Il,axll] for all X € kern;.

One has a € Q' (R® s0(H)), and we decompose the so(H)-part in selfdual
and anti-selfdual part that we write respectively a™ and a~. From 2.3, one
gets for X € H

af =Y (Lit", X)I;.
J
and the equality a;, xI; = %[Il,axll].

We must now verify the same kind of identity for X = Ry. This work in the
same way, only that we must pay attention to the fact that the complementary
spaces adapted to the choice of metric changes with the conformal change. We
have the decompositions 7,7 = WIS H® T, T, and 17, T = Wi SHGT, T,
where W9 and H are in Hory, T for the first case, and in Hor}, T for the second
case. Taking U = Rs, horizontal for V and writting the vectors in the second
décomposition, we obtain U = (2R}, —ry, —ar, 1), JU = (f*R}, —r3, —ag,I;)
and J'U = (f2Ry, —Iir2, —3[11, ar,11]). But we have r; = —2I;6%, hence it suf-
fices to verify that ar,/1 = 1[I}, ag,I;] which is a straightforward computation,
remarking that with the vanishing of the torsion, we get from lemma 2.3

an, = O(R;) + 2|0°|I; + 2608 A L0 + 2(1,V6%)>0D) |
so that the selfdual part is

1
+ — ﬂ2‘__§ vk
CLRl—gw‘ Iz 9 - t’f’([kjl G)Ik
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5.2. Integrability of the twistor space. This section is devoted to the
proof of the following theorem :

THEOREM 5.1. Let H be a quaternionic contact structure with vanishing
vertical torsion and J be the almost complex structure on the kernel of n” on
the tunstor space. Then

e J is adapted to the symplectic form dn" on kern” and gives a metric
of signature (6,2).
e J is integrable.

PROOF. The first point is similar to [Big00| and
i’ (-, J-) = gu + dm(Ra, Ry)(n3 +13) + 113 © dwy —np © dxy

where o © 5 = %(a ® [+ [ ® ) is the symmetric product. This is the metric
of signature (6, 2).

We must now verify the integrability of J. This is given by the vanishing
of the Nijenhuis tensor

N(X,Y)=[X, Y]+ J[X,JY] + JJX,Y] - [JX, JY].

If X and Y are vertical, it follows from the fact that J is the complex
structure of the 2-sphere which is integrable, and if X is horizontal and Y
vertical this is similar to the proof of 14.68 in [Bes87].

Assume now that X and Y are horizontal. In this case the vertical part
and the horizontal part of N(X,Y) at I € T are given by

(NX,Y)bor = Txy +1Tx 0y +ITixy — Tix,y
(NX,Y))ver = [Rxy +IRx1v +1Rixy — Rix,v,]

We look first at the horizontal part. If X,Y € H, then
Txy = Z dni(X,Y)R;

and we deduce that (N(X,Y))ger = 0. If X = Ry and Y = R3 at [ = I,
then (N(X,Y)gor = Tryrs — Try—r, = 0 so that the only no-trivial case
at I is X € H and Y = R,. Following the notations of 4.1, the W-part
of the torsion Tg x vanishes and the H-part is Tk, x = Zp I,A,; X where
Ay = —Ai, € A2 H. Therefore, we have

(N(X, Ro))ror = =22, LpApX — L) [)ARX

LY L AL X + Y LARLX
= _]3A32X - [3A23X - 11]3A3211X + ]2A23]1 .
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The A;; and I commute hence the skew-symmetry As; = —As, gives the
vanishing of (Nx r,)Hor-

We show now the vanishing of the vertical part. If X,Y € H, this is just
lemma 4.3. It remains to show that for X € H,

cryxy = |Rpox + 1 Rpy x + 1 Rpy 1y x — Rpsryx, [1]Y = 0.

We put I1R; = 0 and [; R, = Rj3, in order to have cyy z defined for all X, Y
and Z. Because we have the same identities on the torsion, the computation
is very similar to [Biq00, Lemma I1.5.3] and one gets

CRy, XY T Cyry,x =0, VXY € H.

Cr,.x,y is in the subspace spanned by [Y and I3Y therefore if the C-
subspaces spanned by Y and X for the almost complex structure I; are trans-

verses, then cp, xy = 0. We deduce that cg, xy = in all cases.
O

5.3. Proof of theorem 1.1. We have shown that any integrable quater-
nionic contact structure H admits a twistor space 7 which is CR-integrable.
This is sufficient to apply the results of Biquard [Biq00| which give the the-
orem 1.1 (see part III for the twistorial construction). With the notations of
3.1, the AHQK metric is ¢ = wg ® wy and is quaternionic-Kéahler, [LeB89].

The corollary 1.1 follows immediately from our theorem 5.1 and the theo-
rem 0.4 of |[Biq02].

5.4. Concluding remarks. We have shown that an integrable quater-
nionic contact distribution on S” close to the canonical one is the conformal
infinity of a quaternionic-Kéhler metric on the ball B®.

A quaternionic Kéhler manifold can be defined with the help of a parallel 4-
form  with stabilizer Sp(n)Sp(1). Swann [Swa89] showed that in dimension
greater than 8, if ) is closed, then € is parallel. On the other hand, one can
construct an 8-manifold with closed 2 which is not parallel, [Sal01]. So one
can ask if a quaternionic contact structure in dimension 7 is the conformal

infinity of an asymptotically hyperbolic metric associated to a closed 4-form
with stabilizer Sp(2)Sp(1).



CHAPTER 2

Sp(1)-invariant deformations of the 7-sphere

1. Introduction

This chapter is devoted to the construction of a family of integrable quater-
nionic contact structures on the 7-sphere. The idea is to look for Sp(1)-
invariant distributions, so that they are connexions on the Hopf bundle S7 —
S%. The integrability condition becomes a semi-linear equation on the basis
5S4, and the infinitesimal integrable deformations of the canonical quaternionic
contact distribution H“" are parametrized by the first homology group of an
elliptic complex.

Among the integrable quaternionic contact structures on S7, we show the
existence of an interesting family of Sp(1)-invariant integrable quaternionic
contact structures on the 7-sphere:

THEOREM 1.1. Let H" be the canonical quaternionic contact structure
of ST. Let H be the set of integrable Sp(1)-invariant quaternionic contact
structures and G be the group of diffeomorphisms of ST commuting with the
Sp(1)-action. There is a neighbourhood V of [H*"] in H/G which is home-
omorphic to the quotient of a 35-dimensional ball B3 by the isotropy group
Sp(2) of H®™. One obtains a 25-parameter family of integrable quaternionic
contact structures.

Then, we can construct a family of Sp(1)-invariant complete quaternionic
Kahler metrics on the 8-ball :

COROLLARY 1.1. Let gy be the quaternionic hyperbolic metric on the 8-
ball. There exists a 25-parameter family of Sp(1)-invariant AHQK metrics
with boundaries close to the boundary H" of gy.

This examples generalize a 3-parameter family constructed by Galicki in
|Gal91|, which were obtained by quaternionic quotient of the hyperbolic quater-
nionic space HH3. All these metrics have isometry group strictly greater than
Sp(1).

33
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2. Deformations of contact structures

Hereafter, we assume that N = S7 is the 7-sphere in H? where H? is an
H-vector space with H acting on right. Let (-,-) be the canonical metric on
H? ~ R®. Recall that we have a quaternionic contact structure on S7 given
by H¢ = (zH)* for z € S”. The restriction to H" of the round metric on
S7 defines an adapted metric go. The adapted complementary is W, = xImH
and is spanned by R;(z) = i, Ry(x) = xj and Rs(z) = zk.

H*™ is a connection on the principal Sp(1)-bundle ST — S* (Hopf-bundle).
We call n € QY(S7) ® sp(1) ~ QY (W) its connection form. Let us write it
n=>,mory, n®R, Onehas dn(W,H) = 0 so that the the torsions
TW = —% i,j(aij + OZji) ® @UZ* ® W and TH vanish.

Let v be the canonical volume form of S7 that we decompose as v =
v A Amg Ans so that v¢|y is a volume form on He™.

In this section, we compute the complex of integrable infinitesimal defor-
mations of H".

2.1. Deformation of the integrability condition. A deformation of
H™ is given by a 1-form 6 with values in W which vanishes on W, or equiv-
alently by a section of End(H",W). The link between the new distribution
and 0 is given by

Hy={X —-0(X),X € H"} = ker(n +0).

Assume now that 6! is a 1-parameter family of such 1-forms, each giving
a vertical torsion free distribution denoted by H; = ker(n + 6"). For small ¢,
the forms d(n; + 6!)|n, € T(A2H}) span a space of selfdual 2-forms on H; with
respect to a metric g, on H;. We choose ¢; such that g, is the restriction of
the round metric on H“".

In order to write the condition on the torsion, one has to take an orthonor-
mal basis of A2 H;. We identify the functions and the 4-forms on H*" using
v°. We search a' : S” — GL(3,R) such that a° = Id and

[a® - d(n + et)]i Ala’ - d(n+ et)]j
Ala - (n+ 6], Ala" - (n+60")], Alal - (n+60)]; = 20,0

Setting ¢ = dd—wtt|t:0, one obtains

(11) CLZ] + CLJZ + (d@z A dnj + dGJ VAN d’f],‘)|Hcan —+ tT(CL) =0
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REMARK 2.1. We used the fact that a;; = 0. In general, one has

dij +dji+(déiAdnj —I—déj /\dni)+Z(aki/\9k/\dnj“‘akj/\ék/\dni) —I—t?“(d) =0
k
on H.

We put 5" = a' - (n+ 6") with dual basis (R}, RS, R;) on W. Our choice of
a® ensures that we obtain an orthonormal direct basis in Ath for the metric
gr. Let I! be the associated quaternionic structure. By 2.3, the deformation
preserves the integrability iff there exist 7} such that for X € H®",

it (X — 0'(X)) +ige B (X — 0'(X)) = % (X — 0'(X)) + 71 (X — 0'(X)).
The ~? vanish so that one obtains the following lemma.

LEMMA 2.1. If 0! is a 1-parameter smooth deformation of the quaternionic
contact structure on ST which preserves the integrability, we have

./40((9) = —d(dij + (Iﬂ) Hean + (ZRldQJ + ZRJdQZ) Hean € 83’1 N> Sl’l ,

where

REMARK 2.2. The statement has exactly the same form if one deforms Ein-
stein selfdual Levi-Civita connections with non-zero scalar curvature ( which

give 3-Sasakian manifolds and so integrable quaternionic contact structures,
see [Kon75| ).

The composition of Ay with the projection on S>! gives a differential op-
erator A : T((H*“")* @ W) — I'(S>'). Its kernel gives the infinitesimal defor-
mations of H°" preserving the integrability. This kernel contains the image
of the infinitesimal diffeomorphisms through

DTS — T((H")* W)
¢ — {X€eH—Xn()+dn( X)}

2.2. A Bianchi identity. Because of the dimensions of the different vec-
tor bundles, the previous complex cannot be elliptic, even in the direction of
He™, We will show now a Bianchi identity.

LEMMA 2.2. Let (M7, H,g) be a quaternionic contact structure where g
1 a particular choice of Carnot-Carathéodory metric. Let W be the adapted
complementary and V be the corresponding adapted connection. The vertical
torsion T of H is a section of S>' C H* @ S*°. Let By be the composition
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of d¥ : T(H* ® S*°) — T'(A2H* ® S*°) with the projection on S%°. Then we
have
Bu(T")=0.

REMARK 2.3. Here is a small abuse of notation. Indeed dV can be applied
only on true 1-forms with values in a vector bundle. Nevertheless we can give
the following meaning to dV : a section o of H* ® E is extended in a true
1-form vanishing on W and we use then the vanishing (Txy )y = 0 in order

to obtain
(dVO')(X, Y) = VXo'Y — Vyo'X — O-TX,Y

= (Vxo)y — (Vyo)x,
for vector fields X,Y € H. This kind of equalities will be used throughout the
proof for every elements of ['(H* ® E) and every vector bundle E.

Summing over cyclic permutations will be denoted by Z(_’.’_).

PROOF. Let (I1, I, I3) be a local direct orthonormal basis of A3 H* corre-
sponding to local 1-forms (7,79, 7n3) defining the contact structure. Denotes
by (R, Rs, R3) the corresponding dual basis on W. The first Bianchi identity
is

Sxyvr (RxyRi—Trey.r — (VxT)y,g) =0,
for vector fields X and Y in H. Taking the W-part, we obtain

RxyR; = (TTRZ.,X,Y)W + (TTY,RZ.,X)W
+H((VxDyr)w + (VD) xy)w + (VyT) g, x)w -
We calculate first A1 (X,Y, Ri) = (Try, yv)w + (Try 5, x)w. One has

A(X,Y, Ry) = =T () (V) + Y ALTE(X), Y)R; + Ty ) (X)
J

— Y ALTH(Y), X)R;.
J
Putting a;; = %(Oéij + i), one gets

3 3

k,j=1 k=1
Assume now that p € M, and that X, Y and R; are parallel at p. In
particular, at p, one has «;; = a;; at p and

(> (VxDvr)w == (dan)(X,Y)Ry = Y (Vr,di) (X, Y)Ry,
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so that we obtain

RxyRi = =30 aji Narg(X,Y)Re + 00 (KTE + THL)(X), Y) Ry
= 2@V ) (X, Y) Ry, — 320 (Vi) (X, Y ) Ry

From the equation (Rxy R;, Ri) + (Rxy Rk, R;) = 0, we deduce that

2d¥ap(X,Y) = ((WTE +TEL)(X),Y) + (LTE + T 1L)(X),Y)
—VRidnk(X, Y) - Vde’I]Z(X, Y) .

Remark that (8) is true even if TV does not vanish. At p, it gives

AdVag, = >°;(dne(Ry, R) + dni( Ry, Ri))(Lj )
+2<(IkTg + Tg[k)', S+ <(IiT£Ik + Tll%ili)" ).
This is a 2-form whose selfdual part is

M dVar)y =Y (dn(Rj, Ri) + dni(R;, Ri)(L;+, )

—2tr(TE) (I, ) = 2t (TE ) (L, ) -

This is an element of S?°® (S*° @ S%0) C (52°)3. We take the projection
in Sym3(S*°) ~ S%0 ¢ 520 and then the S%C-part to obtain the lemma.
[l

2.3. The complex of infinitesimal deformations. We take the infin-
itesimal part of the previous equation and obtain the complex of infinitesimal
deformations of the 7-sphere

(Co) T(TST) 2 T(H @ W) B 1(s%) 5 1(589).

Here B. means the Bianchi operator on H".

We have the decomposition I'(TS") = I'(W) & I'(H*™) and on the other
hand T((H“")* @ W) = T'(S>1) @ T(S™!) with the property that A(T(S'1)) =
0. The restriction of D to I'(H*") is an isomorphism T'(H*“") — T'(S™!) so
that if D is the composition of D restricted to ['(W) with the projection on
['(S31), we obtain an isomorphism

ker A ker ANT(S*!)
DI(TST) —  DIW))

In other words, we can compute the first homology group of the complex

©) T(W) 2 r(s31) A r(sst) B r(sey.
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REMARK 2.4. This complex is not elliptic. Nevertheless a straightforward
computation shows that (C) is elliptic in the direction of H*". This was not

the case of (Cp).

LEMMA 2.3. If £ = &yean + Ew € T,S7, the principal symbols o¢ of the
previous differential operators satisfy :

o [f&pean =0, then ker o¢(D) = W,, or else if gean # 0, then ker o¢(D) =
{0}.

o If pean = 0, then kerog(A) = S31 or else if Egean # 0, then
ker o¢(A) = Imoe(D).

o If Egean = 0, then kerog(B) = S>', or else if Egean # 0, then
ker o¢(B.) = Imo¢(A).

3. Sp(l)-invariant case

We have seen in the previous section that infinitesimal deformations of
the standard quaternionic contact structure on S7 are parametrized by the
first cohomology group of the complex (C). This complex is not elliptic and
even not hypoelliptic. Indeed, |[LeB91| ensures the existence of an infinite
dimensional moduli space of integrable quaternionic contact structures on S”.

In order to obtain an elliptic complex, we will look at quaternionic contact
structures on S” admitting a free Sp(1)-action. Here, Sp(1) is viewed as the
group of unitary quaternions. There is a canonical action of Sp(1) on S” given
by the diagonal action of Sp(1) on ST C H?. The quotient is the 4-sphere and
the projection S7 — S* is the Hopf projection. Smooth deformations of this
Sp(1)-action on S7 are always diffeomorphic to the canonical one. Therefore,
we fix the Sp(1)-action to be the canonical one.

3.1. G-invariant structures. In this section, we do some general re-
marks about quaternionic contact structures H invariant under a free smooth
G-action, where G = SO(3) or G = Sp(1). Let (N, H) be such a quaternionic
contact structure. The action must be transverse to the contact distribution
so that H is a connection on a G-principal bundle N 5 B. Let (11, 7,73) be
the connection form of H with values in sp(1). The symplectic forms dn;|g
define a unique adapted conformal class of metrics [g] on H. Because of the
G-invariance, the conformal class [g] can be pushed down on B and gives a
conformal class of Riemannian metrics [g] on B. Let E = M X 44 g be the
adjoint bundle. The connection H gives a covariant derivative VZ on E, with
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curvature R¥. By definition of [g], the curvature R¥ gives an isomorphism
RE A?,_TB — F
¢ — Rieso(b)~FE

Let D be a linear connection, preserving the conformal class. Every choice
of D is available, but in general one chooses a metric g in the conformal class
and the corresponding Levi-Civita connection.

The tensor (R¥)'VPFRE is a section of T*B ® End(A%B) and taking
the symmetric part of End(A% B) with respect to any choice of metric in the
conformal class [g], it gives a tensor T in '(S™! @ (S0 @ S90)). The S>! part
of T is the vertical torsion of the quaternionic contact structure H. We put
Tor(H) =T.

3.2. Infinitesimal Sp(1)-invariant deformations of S”. We now come
back to the deformations of the canonical quaternionic contact structure on
S”. Let H be the set of Sp(1)-invariant quaternionic contact structures on the
Hopf bundle S” — S* and G be the group of diffeomorphisms of S commuting
with the Sp(1) action. Let V be the Levi-Civita connection of the round
metric of S%. In the Sp(1)-invariant case, the complex (C) can be written on
the basis S* in the following way :

LEMMA 3.1. The complex (C) applied to Sp(1)-invariant deformations on
the Hopf bundle S” — S* can be written on the basis as

(€) D(52) B D(S™) & (8™ % 1(5%)

where D = p*'V, A = p"'V? and B. = p®°V. The homology groups H®, H",
H? and H? of (C) have dimensions 10, 35, 0 and 0 respectively.

PROOF. The operator A is the composition of A; = p*°V and A, = p>'V
so that the previous complex splits into

(@) T(520) 2 T(s%) 2 T(5%),
(Cy) T(5%0) & 1551y B r(500).

One recognize in (C;) the complex of deformations of anti-selfdual metrics.
This complex is well-known and one can show that .4; gives an isomorphism
between ker D* and I'(S*°) (see for instance the proof of [Bes87, theorem
13.30, p. 376] ). Therefore the kernel of A @ D* can be identified with the
kernel of Ay, and we are reduced to the study of (Cs).

First we give some Weitzenbdck formula. Let DV be the Dirac operator
on S ® E where S = S0 @ S%! is the spinor bundle and £ can be any
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S™™. The Dirac operator is the composition of the connection and the Clifford
multiplication. The Clifford multiplication is a morphism of representation on
Spin(4)-modules so is the identity on each irreducible component of S ® E,
up to a multiplicative constant. If £ = S>° we see for instance that DV =
bB. ® aAj for some constants a and b. The Weitzenbock formula is

s
DY (6@ s) = V'V(0@s) + 3005+ Y e ej0® R, s,
€i,€;
and in our case, the curvature RV is scalar so that the last term in the previous
equality is a combination of Casimir operators. One obtains finally

(DY) = V'V + Z ,

and so ker(B@.A%) = 0, that is to say the complex (C) has no second homology
group.

In the same way, regarding B : I'(S%%) — T'(S*>!), it appears to be the
Dirac operator on S%° € S0 ® S0 (up to a multiplicative constant ). One

can show that 5

((DV)2 o V*VNSG*O = Es ,
which gives ker(Bf) = 0. From this results, we deduce that dimker A, is
exactly the index of (C3) which is the index of the Dirac operator

DV . F(sl,O ® 85’0) N F(So,l ® 55’0) ]
By the Atiyah-Singer index theorem,
index DY = {ch(S0)A(SY)}[SY]
= (6 + 35cha(S™0))(1 — py /24)[SY]
= 35.
U

3.3. Moduli space. In this section, we will end the proof of theorem
1.1. Here we must be more precise in our notations. If ¢ is a conformal
class of metric on S, there is a subbundle S)* of T*S§* ® A*T*S* ® A°TS*
associated to the representation S>! and g. In the same way, one defines S0
in A°T*S* @ A2T*S* @ A*T'S*.

REMARK 3.1. We have seen that each H € H defines a conformal class
of metrics on S*. In fact, the quaternionic contact structure H defines a true
metric on S, Indeed, if we come back to section 3.1, the vector bundle E is an
oriented bundle which gives an volume form on A2 T'S* such that R” preserves
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the two orientations. Then, we can choose the metric on S* which gives the
same volume form on A2 TS*. We obtain a well defined map

G:H—-M,

where M is the set of smooth metrics on S*. The round metric on S* is called
go and is the metric G(H“").

With the help of the canonical structure H", we identify H with an open
subset in ['(T*S* ® 5350). Let p*J be the orthogonal projection with respect to
go in S%7 (1S%J will appear at most one time in our vector bundles so that the
p™ are well defined ). We restrict ourselves to a neighbourhood U of H*" in
H where p>! (resp. p®° ) gives by restriction an isomorphism from Sg(l 11 O1to
S;’(’)l ( resp. from Sg’?H) onto SS(’)O ). With the identifications given by the p™/,
one gets maps

T:U—TD(SH), H—p»(Tor(H)),
and
B:UaT(Sy') — (Sg)) . (H,T) = p**(Bu(T)).

Because of the Bianchi identity of lemma 2.2, we have B(H,7 (H)) = 0 for
H € U. We want to apply an implicit function theorem so we must work in
Banach spaces. We assume now that our sections are C**2< (Holder-spaces).

We have seen in section 6.3 that we can search a slice in T'(S*!). We put
Uy =UNT(S*Y). Let us define the smooth map

U:U, — ImD* GkerB,, a— (D*(a),pT(a)),

where p is the projection on ker B, in the direction of Im B}. Because of
the vanishing of the second homology group of (C), the differential dycan) is
surjective. Its kernel is ker(D* @ A) and is of finite dimension 35. Therefore,
there is a submanifold X3® C ker D* @ I'(5%°) such that on a neighbourhood
of H™ in Uy, one has ¥(a) = 0 iff a € X3°. Because of the vanishing of the
homology groups H? and H?, we can apply the inverse function theorem with
the Bianchi operator B at (H°",0) in order to obtain that if p7 (a) = 0 then
7 (a) = 0 for a sufficiently small. We obtain a neighbourhood V' of H*" such
that

(D*(a), T (a)) =0iffa c M = X*NV.
We have obtained a 35-dimensional family of integrable C**2< quaternionic

contact structures on S”. If @ € M, it satisfies a non-linear but elliptic equa-
tion, hence a is smooth.
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The isotropy group G of H®" under the action of G is Sp(2). Because
ker D* is Sp(2)-invariant and Sp(2) is compact, we can assume that M is sta-
ble under the action of Sp(2). Hence, the manifold M is not the moduli space
of integrable quaternionic contact structures. Nevertheless, the only diffeomor-
phisms acting on M are in Sp(2). Indeed, it follows from the properness of the
action of G on H: an element ¢ € G gives a diffeomorphism ¢) on S* acting on
the metrics G(H). The diffeomorphism ¢ is determined up to a gauge trans-
formation by . The both nice behaviours of the action of diffeomorphisms
on the metrics and of the gauge transformations on the connections give the
properness of the action of G.

Therefore there exists a neighbourhood of [H°"] in H/G which is homeo-
morphic to a neighbourhood of H" in M quotiented by Sp(2). It gives the
theorem 1.1, and using the theorem 0.4 of [Biq02], one gets the corollary 1.1.

Among these, there is a family obtained as the boundary of quaternionic
quotient constructed by Galicki in [Gal91]|. Let us describe these more pre-
cisely. Choose D € sp(2) and let SP be

x*Dx|?
SDZ{IEHk,|LL‘|2+%:1}.
Here z* means the adjoint of z with respect to the canonical quaternionic
hermitian metric of H2. SP is isomorphic to the 7-sphere and invariant under

the diagonal action of Sp(1) on right. One has the codimension 3-distribution

*

Dz

HP = {v e H? 2*v — ‘ (z*Dv +v*Dx) =0} C T,S” .

This is a quaternionic contact structure which is the conformal infinity of
an AQH quaternionic-Kéhler metric on the interior B” of SP. Therefore H”
is an integrable quaternionic contact structure. Remark that HP is different
from the subspace of T,S” C H? stable under the right-action of H. The
isotropy group of H? is a quotient of K x Sp(1) where K is the subgroup of
elements of Sp(2) which commute with D.



CHAPTER 3

Quaternion-symplectic forms

1. Introduction

If (M*" g) is a quaternionic-Kéihler manifold, and if (I, I, I3) is a lo-
cal quaternionic structure (Iy, I, I3) defining local symplectic forms w;(-,-) =
g(I;-,-), ones obtains a well defined parallel 4-form

3
Q= E w?
i=1

whose stabilizer is Sp(n)Sp(1). Mutually, a 4-form Q with stabilizer Sp(n)Sp(1)
on a 4n-manifold defines a metric ¢ which is quaternionic-Kéhler iff 2 is paral-
lel for the Levi-Civita connexion of g. In dimension 4n > 12, Swann [Swa89|
has shown that such a 4-form €2 is parallel for the Levi-Civita connection iff €2
is closed. On the contrary, in dimension 8, there exist 4-form with stabilizer
Sp(2)Sp(1), which are closed and not parallel, see for instance [Sal01].

DEFINITION 1.1. Let M be a smooth manifold of dimension 8. A closed 4-
form €2 on M is quaternionic symplectic if for each point x € M, the stabilizer
of Q under the action of GL(T, M) is isomophic to Sp(2)Sp(1). If Q is not
closed, we say that € is a quaternionic 4-form.

One knows now that an integrable quaternionic contact structure closed
to the canonical one on the 7-sphere is the boundary of an asymptotically
hyperbolic quaternionic-Kahler 4-form. We give a general definition :

DEFINITION 1.2. Let M?® be a manifold with boundary N and let Q be a
quaternionic 4-form on M. Assume given a quaternionic contact structure H
on N. Let gy be a compatible metric on H and let (dn;|g); be a local SO(3)-
trivialization of A2 H*. The 4-form € is called asymptotically hyperbolic, with
boundary H, if there exists a positive function p, vanishing to first order on
N such that Q =Y, w? with

1 1 . 1
w; ~ ? (—dp/\m + §;alrsm A 773> + ;wi when p — 0

43
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and ¢;|y = dn;|g. In this case, the Riemannian metric defined by € is asymp-
totically hyperbolic quaternionic.

A natural question is to search if every quaternionic contact structure close
to the canonical one is the conformal infinity of a closed asymptotically hy-
perbolic quaternionic form. First, I show that if p is a function vanishing up
to first order on the boundary, then one can find an asymptotically hyperbolic
quaternionic 4-form €2, with metric g and such that

dal, = 0(").

Assuming then the existence of a uniform Poincaré estimate for the Hodge
laplacian of quaternionic-hyperbolic metrics with boundary H close to H“",
one constructs a closed asymptotically hyperbolic quaternionic form whose
boundary is H.

2. Preliminaries

First, we give some notations and collect some definitions and preliminary
facts which will be used throughout the chapter. More details about represen-
tations of Sp(2)Sp(1) appear in Salamon’s book [Sal89|.

2.1. The group Sp(2)Sp(1). Let R® be equipped with an orientation and
its canonical metric, and let (e1,--- ,es) be an oriented orthonormal basis of
(R®)*. Let us define the symplectic forms

w, = 61/\62+€3/\64+65/\66+€7/\68,
Wy = 61/\63—62/\64+€5/\67—66/\68,
w3 = ejNeg+exyNes+es Neg+eg/Ner.

Let po be the representation A*(R®)* of GL(8,R). The subgroup of GL(8,R)
preserving the selfdual 4-form Qg = w4+ w3 + w3 is Sp(2)Sp(1) and the orbit
of g under the action of GL(8,R) is called O.

We give now some facts about representations of Sp(2)Sp(1). The irre-
ducible representation of Sp(2) with highest root (n;, ny) is denoted by V(1:72),
If 0 ~ C? is the standard representation of Sp(1), the irreducible representa-
tions of Sp(1) are the symmetric powers o? = Sym? (o). With this notations,
one obtains the irreducible representations of Sp(2)Sp(1) as the tensor prod-
ucts Vm2) @ of for ny + ny + p even. The real irreducible representations
[V(n2) @ 6P) of Sp(2)Sp(1) are just the real parts of the previous ones.
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Following Salamon, we put A, = V(nm2) where
(ny,ng) =(2,...,2,1,...,1,0,...,0),
—— ;\,2_/

and we abbreviate the real representation [\] ® o?] to [A\jo”]. With this nota-
tions, one has sp(1) ~ [¢%] and sp(2) ~ [A\?]. The decomposition of the exterior
algebra is given by Swann in [Swa89|:

A~ [Nl

A%~ sp(2) @ sp(l) © [Ngo?]

A~ At [N @ [N,

A~ No% e (N @ [NoeRae [0t @ [N].

The Hodge operator gives a decomposition A* = A% ®A? in selfdual and anti-
selfdual 4-forms. From the inclusion R @ [0*] C A} and a dimension count,
one obtains

A* ~ No?l@[N] and AL ~ [NofeR® [0 @[N]
Remark that the image of the infinitesimal action of gl(8, R) on € is

~ gl(8,R) ~ (X252 2 2,2
TQOO_sp(Q)EBsp(l)_P\l 1@ [X5] @ [Ngo'] @ R

so that A appears to be a direct summand of T, O and can be identified in
this way with the space SymZ of traceless symmetric endomorphisms of R®.

2.2. First step. We start with a quaternionic-contact structure H on
the 7-sphere S7, close to the conformal infinity of the quaternionic hyperbolic
metric and with a choice of metric gg on H, compatible with the quaternionic-
contact structure. We choose locally an orthonormal basis (\%dm) of ATH*.
Let 'S = H®W be a splitting of T'S”. We denote again by gy the degenerate
metric on T'S” which vanishes on W and coincides with gz on H. If r denotes
the Euclidean radius on R®, let p =1 — |r|*> < be a function vanishing to first
order on the sphere S”. With the help of p, one identifies a boundary U of S”
in B® with ]0, e[xS7, and one puts

1 1
9:E<d02+77%+77§+7732,)+;9H7

so that g becomes a riemannian metric on U.
We define locally the 2-forms

1 1 irs 1
w; = 2 <—dp/\7h'+§;€ 771"/\775> +;(d77¢+%’)-
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where ;| = 0. and (dn; + ;) (W, TS) = 0. More precisely, one has
3
j=1

where (Ry, R, R3) is the dual basis of (n:1|w, n2|w, 13w )-
We obtain a globally defined 4-form

which gives a Sp(2)Sp(1) structure on U. It can be extended in an Sp(2)Sp(1)
structure on B® depending smoothly on H, for instance in deforming smoothly
H in H*" using the p parameter. We still call {2 the 4-form thus obtained and
we assume that the choice of gy and the construction of €2 depends smoothly
on the boundary H.

One defines the metric g, = n? + 15 + 135 + g on S,

2.3. Asymptotic behaviour of dQ2. The splitting TS” = W @ H gives
a decomposition AYT*S” = ®?_,A? where

A~ AW AATTH

and with projections p¢ : A — AY,
Let Q¢(B?®) be the set of sections of A C AYT*B?® over B, If a € Q4(B?),
then one has the estimate

d+1i

(14) ladly = o>

on U.

(67

gs

LEMMA 2.1. When p goes to zero, the b-form dS) satisfies

149l = O(Vp)

and

1,J

. 2 . .
91,20 + 5 S, dnla A dnds -+ innyls Admla) Ayl = O(o).
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PROOF. In a neighbourhood of S7, one has

1 irs irs
dw; = —;Zé dp An,. Ans + (dp/\dm—l—Ze dn, A ns)

TS r,s

1 1
——dp A (dn; + i) + —di
p p

1 . 1 A 1 1
= _?ZngSdp/\nr/\nS_’_;Zgzrsdnr/\ns_ Edp/\%_’—;d%

P T8
This gives for df) when p goes to zero,
1 3 irs 1 irs
§dQ = _2_p4;;5 dp/\%/\nr/\ﬁsﬂLE;;f d77r/\775/\%‘

__de/\’% d771+%)

de/\m A dy; + 2 Ze“"sd%/\m Ans+O(p).
Pay attention to the fact that in this expression, the term O(p) is taken with
respect to the metric g. We use here the fact that ~; vanishes on H ® H hence
that |[7i]|g, = O(py/p). In particular, we see that

191, = O(Vp),
which gives the first part of the lemma. Moreover, we have
i,0dQ = e Ze”"s%/\nr/\ns 2 Z% (dni+7:) — Zm/\d’yﬂrO( )

where O(p) is still taken with respect to g. The sums
Z "5y A A, and Z i A i

have no components in A‘ll, therefore

) 2
pi‘(pa—pdﬂ) — ;(Z i Ay A dig + s A p(d)) + O(p)

2%
and we get the lemma using
dviln = d(Y_indni Anj)lu,
J

= _ZZRgdnl|H VAN d77J|H

J
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Recall that there exists a unique complement W9% of H such that

> (ir,dilu A dilu + ig,digl A diglg) = 0.

2%
The distribution W9 depends smoothly on H, the metric gy and there first
derivatives. From now on, we assume that W = W9H,

3. Approximated solutions

In the previous section, for a given quaternionic-contact structure H on
the 7-sphere, we have obtained a quaternionic 4-form €2 with boundary H,
and such that d2 = O(/p). In this section, we show the existence of a
quaternionic 4-form €y, with boundary H and such that dQ)y = O(p?).

3.1. General remarks. We begin with our approximated solution €2, and
we look for w such that d(2 + w) = 0 and Q +w € I'(O). Thus, we have to
study a differential operator P : T'(O) — Q5(B®), given infinitesimaly by

P :T(To0) — Q°(B®), w— dw.

The operator P is not elliptic, but from 2.1, we have A* C Tq®, hence we
will take the restriction of P to the sections of A*. This restriction is elliptic
and explain why we study the operator d : Q*(B®) — Q°(B®) in the next
section.

3.2. The indicial operators. We start with a quaternionic contact struc-
ture H on ST and an asymptotically hyperbolic 4-form € quaternionic metric
g on B®, with boundary H. There exists a function p vanishing to first order
on S” such that on a neighboorhoud |0, a[xS” of S” in B®, one has

1 1
g~ ;(dpQ—i—ZmZ)—i-;gH when p — 0

where gy is a metric on H compatible with the quaternionic contact structure.
Let W be a supplementary vector bundle to H in T'S”. On S7, we define the
metrics g, = (17 + 03 +135)/p> + gu/p and gs = 97 + 05 + 13 + gu where by
definition gy (W, T'S7) = 0. The Hodge operators associated to g, g, and g5 are
denoted respectively by *, , and *,, and V7 is the connection with respect to
gs on ST, and d7 is the differential on S”. Let Q%(S7) be the space of d-forms
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on S” which depend on the parameter p €]0,a[. Remark then that one has for
a € QUST),

dp

“(= nwa) =a+ O(yp)a

We are looking at anti-selfdual deformations 2. We have the isomorphism

d d
U, Q4ST) = QL(BY), a —7’) A ko — *(—?p Ak pa) .

If a € Q)(S7), one has
40,4 (0) = d_pp A Pi(a) + Pyfa) where Py(a) € Q4(ST) and Py(a) € Q3(ST),

We are interested in the asymptotic developpments of the operators P, and
P, with respect to the norm of Uy(«), hence we consider now the normalised
operators

Pi(a) =Y pFplPp T pi(a)) and Pala) =D pFpIRy(p F i)
%,

1,

and we put

1 irs
Oézf*s(mAnzAns)Jr;vi/\erQZa % AN AT +E A AN ATgs

1,7,8

where £ is the signature of the permutation (4,7, s) of (1,2,3) and

v € N°H* |~ € N*H*, € € H*.

To simplify the notations, we put 7123 = n1 A n2 A ns and n;; = n; A n;. The
Hodge operator of the metric gy on H is xp.

LEMMA 3.1. With the previous decomposition of o € Qﬁ(S7), we get

_ %
&y

irs

3%;
2 (=

Pifa) = Vo

7
+§§)/\77123+Z + 3% + 2fdemil i) A s

1,78

ayi ) ST
—l—;(—pap + 514- +;5 kg Vs N dne| ) A

0
—l—(—pa—ﬁ +2f) s M123 + Z kY A donil

+0(/a) + O(/FV"a) + OlpvF 5o).
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PROOF. From the definition of Py, we get

Pl(a)zzp%p?dwppj _|_Z4+z 4 pzé_pp’

Z'hj

+0(/a) + 05 5.

so that the only term which remains to compute is

it
Zp pldr o« pa) = p"F pldrx, pi(a).

2%

Because we are interested in the high order terms, we can now assume that
& = 0. One has

* Oz—fmzs——Ze“”s*Hvz/\merZ*H%/\m-

’L’I’S

Applying d7, we get

itj—2 ) )
Y 0T pldewipia = D " fdemla Anps+ > €™k vi Adla A

7,5 07,8 1,78

+ Z s N denil g + O(\/ﬁv7@)

and the lemma, follows. 0]
In the same way, we obtain the asymptotic behaviour of Ps.

LEMMA 3.2. The operator Py satisfies
1 } 1 .
Pa(a) = 3 Z 5ZTS(*H]z‘f)/\77rs+§ Z e YNy | a Ans+O(y/pa)+0(y/p Via) .

DEFINITION 3.1. The indicial operator of Py on Q2(S7) is

a rs 8 i
I(Py) = (- P; + 5) A Thas + Z ;p + 3% + 2fdmnilu) A nys

’LT‘S

+2.r

0
+(—pa—£ + 2f) * 1123 + Z *g7i N donil -

; + Zsm kg Vs AN dne|g) A
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In the following, we compute the kernel of I(P;). For this purpose, we
must refine the decomposition of ,(S7). The forms dn;|y span the space
AiH* of selfdual 2-forms on H with respect to the metric gy. We can now
refine the splitting of some A?, identifying the spaces W*, A*IW* and A2 H*.
In particular, we have using this identifications,

A, ~ R,
Ay~ NH*@ATH" = Ay @Ay 5B A5, where ¢ Alg = Endg(A2H),
A‘ig = AN H* @A H*,
and Endy(A3 H*) denotes the trace-free endomorphisms of A2 H*. If (7;)ieq1,2,3
is in A3, we put
Yi=wity

with v € R, (7;7); € A3g and (7; )i € AJg. In the same way, we have a
decomposition

A4, = {(n) e N°H*, v; =xg(Lv), v € H*},

4 _ 4 4 1,4
A= Ay, ©Ayg where { A‘is = {(n) e NPH*, v; =g (L)), 3, L; = 0}.

PROPOSITION 3.1. The indicial operator I(P1) can be written

0 4

I(P1) = —Pa—p

where A is linear and satisfies
7
A = éld on Iy(A3 @ Aly),

1
A = §[d on Fp(Ail,4) ’
A = 3Id on F,)(A;g ® A§78) ,
A

B <3Id 21d

4 4
61d 21d > on Tp(Ao © Az).

Moreover, the eigenvalues of A on Aj & A;"l are 6 and —1.

PROOF. We follow the previous notations for a € Q3(S7). The restriction
of A to A3 comes immediately from the definition 3.1. Now, if a € I,(Aj4 &
Ajg), then one has

> xu(y +97) Ademiln =0,

(2

therefore still from 3.1, we obtain Aa = 3a.
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Next, if a = Y, *gLiv An; € A, then one has

Aa = ga + Zm e v A w,y

gOé + ET,S 88” g (ITISV) ,

5
5(1—2*1{@1/,

hence A = 3Id on Af,. The case a € Aty is very similar, and it remains now
the case a € A & Ag{l which is a completely analogous computation. 0

DEFINITION 3.2. The indicial operator of P is

1 : 1 .
I(Py)(cr) = 5 Z e (e Li§) N s + 5 Z e N dane | A s -

1,7, 2,7,S

We need now to compute the indicial operators of d : Q°(B®) — Q5(B?).
In the same way, we identify v € Q4(B) with (a, 5) € QI'(S7) x QUST),
where v = % Aa+ (. We write dy = (Q1(«, 3), Q2(c, 3)) using this identifi-
cation. Following what has been done with the operators F;, we normalize the
operators (); and write Q; for the new operators. We choose the notations

1 .
04:f*s77123+27/i/\77¢+5251T37i/\77rs+§A7]1237
i

07,8

6:Zhs/\ns+Z€imui/\nr$+</\n123

where f, v;, v, &, hs, p; and ¢ are forms vanishing on W. A straightforward
computation gives the indicial operators of Q; and Qj.

PROPOSITION 3.2. The indicial operators of Q1 and Qo are

9B

7 .
I(Q) (o, B) = —pa—p + BZhs Ans + §Z€mm A s +4C A 1123

@7,

1 .
= i Ndnel Ans - B > TN dnl g Ay

17,8 1,78

and

1 )
[(Qa)(0, 8) = 5 > €™ C Adiilir A



3. APPROXIMATED SOLUTIONS 53

3.3. Main result of the section. Let E be a vector bundle on S7, giving
a vector bundle on B8 — {0}. If k is a positive integer and p is real, let C']’:(E)
be the set of sections o of E on B® such that p~P0 admits a C* extension over
B8 — {0} for any function p vanishing up to order 1 on the boundary dB® = S7.
We define now C'}’,f = é’;f +Ck .
pt+3
With respect to the decomposition A>T*B® ~ ipﬁ A ANT*S™ @ AST*S” and
if H is C**1, the 4-form € satisfies

doplpTTdAQ+ Y plpT T dQ € CHA @ AY).

Moreover, from lemma 2.1, the projection pip=2dS2 is CF(A%).

THEOREM 3.1. If H is a quaternionic contact structure of reqularity C*+°,
close to the boundary of the quaternionic hyperbolic metric, there exists a
quaternionic form Qg of reqularity C*T1 on B®, with conformal infinity H
and depending smoothly on H, and such that

prp_%dQH + Zp?p_%dQH € C¥(A* @ AP)

In particular,

1dQu 1l = O(p°) -
We need to prove the lemma :

LEMMA 3.3. Assume that 1/2 < p < 3. Let (o, ) be in Cli(A*T*ST) x
Cr(AST*ST), without A} term if p = 1/2. If Qi(a, 3) and Qy(cv, B) are C;:;
sections, then there exists a section o/ € Cy(A'T*ST) such that Pi(/) — a €
Cﬁi(A‘*T*SU and Py(o/) — B € Cz’f;i(Af’T*SU.

2 2

PROOF. We follow the notations of the previous section, adding a’ on each
component of o’. Moreover, we identify f and f *, m123, v; and v; A n;, etc.

From the indicial operator I(Qs) obtained in proposition 3.2.2, we obtain
¢ € CL%(H*). We explain now how to remove the ¢ and p; components
of (a, 3). We define &'(p, x) to be pP/(7/2 — p) times (p~P&)(0,z). Because
pP€ is C* up to the boundary, the section & is well defined. Then, one has
Pi&)(p. ) =E(p.x) = pP((p77€)(0,2) = (p7€(p, ) +O(pP*3), hence P1(€')—¢
is a C’ﬁé section. Because of the indicial operator of Py, we must now verify

the compatibility p; = %*H L;¢', up to a section of C;];rl' But from the indicial
2
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operator of Q;, we obtain

i — 5 ¥ Li§ = —po—(pi — 5 % L) + (i — 5 %5 LiE) =0
op T 3" 5+ L pap(u 5 *im 1i€) + 5 (i = 5 +u i)

—p
up to a C;:i term. This is exactly what we need to conclude that p; —P2(¢') €
2

Cﬁi. The other components can be obtained in the same way, except for the
2

A} component when p = 1. O
We show now the theorem 3.3.1 :

PROOF. We begin with the first approximation {2, which depends smoothly
on H and satisfies ||dQ||, = O(,/p). The first step is to search for a section A
of traceless symetric endomorphisms Sym3 such that Id + A, is inversible and
||dpo(Id+A;1)71Q||, = O(p) where py is the representation A* of GL(8,R). One
has po(Id + A;)71Q = Q +w(A;) + F(A;) where w : A € Sym?2 — w(A) € A*
is linear and isometric in A, and where F'(A) is polynomial in A, without terms
of order 0 or 1, and with constant coefficients in every orthonormal basis.

Hence we need only look at the equation ||d(2 + w(A;))||l; = O(p). From
the previous section, it suffices to look at the indicial operators. The first
approximation € can be chosen such that dQ does not have C¥7'(A%) terms.

Therefore, we can apply the previous lemma to obtain w(A;). r?Fhis argument
can be applied recursively up to p = 3. We obtain finally a 4-form 2y. Each
step depends smoothly on the boundary, and if the boundary is sufficiently
close to the canonical one, the endomorphism Id + A = (Id + A;)(Id + As) - - -
is inversible. We obtain a quaternionic 4-form on a neighbourhood of S”, which
can be extended to a quaternionic 4-form on the ball provided H is not to far
from H". 0

REMARK 3.1. The volume form of g is p~%dp A v7 for a volume form v, on
S7, admitting a C* extension to B8. Thus, the 5-form dQy is square integrable.

4. Towards quaternionic symplectic forms

The aim of this section is to give an idea which could be used to get closed
asymptotically hyperbolic quaternionic forms on the 8-ball with prescribed
boundaries.

4.1. Preliminaries. Here g denotes an asymptotically hyperbolic quater-
nionic metric on the 8-ball B with Levi-Civita connection V and volume form
dv,. In the following, let (E, h) be a metric vector bundle on B associated to
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a SO(8)-representation. The Levi-Civita connection gives a metric connection
on E still denoted by V.
Let H*(E) be the set of sections ¢ of E satisfying

/ \Vio|idy, < +o0.
B8

for j € {0,--- , k} with its usual norm ||-|| z». The set of L?-functions on (B%, g)
with & L2-derivatives is just denoted by H*. We state now some analysis facts
using the geometry at infinity of g.

Let H be the boundary of g, let gy be a metric on H and p be a function
vanishing up to order 1 on S7 such that

1 1
g~ E(dPQJan?)JF;gH

when p goes to infinity. Here (71,12, 73) is a SO(3)-choice of 1-forms vanishing
on H with dual vector fields Ry, Ry, and R3. One defines the vector fields
& = pa%, & = pR; and & = /pX; if(X;) =4, 7 is an orthonormal basis of H.
We assume that the asymptotic developpment of ¢ is such that

(15) 9(&, &) — 65 € Cg
for a given integer £ > 0. Then, one has
9([60, &1, &5) = 9(&i, &) = 6 + O(/p) if1<i<3;
g([&l?&]?fj) = 15z]+0(\/_) 1f4§2§7,
9([6, & &) = (\/_) if1<i<3;
9([6. 61, &) = =0 dne(Xi, X;)0m + O(yp) if4<i, j<7.

We put g([&,&5], &) = V5 = Viican + O(y/p) Where the one forms 75 ..,
equal to gy ([£5*", £5°"], £5) for a particular choice (£") of orthonormal frame
for the hyperbolic quaternionic metric gy. The coefficients Rl]k of the curva-
ture R of V in the frame () admit an asymptotic developpment ka =
Ry can + O(y/p) Where the constants (Rl .,,) are the coefficients of the cur-
vature of gz in the frame (£/*"). Therefore, the curvature is bounded and the
geometry of g is uniform at infinity. Analysis on complete Riemannian mani-
folds with bounded curvature shares a lot of the features of analysis on R". In
particular, the Sobolev embeddings are true in such manifolds, see [Aub91,

chapter 2|.

THEOREM 4.1. Let (M™, g) be a complete Riemannian manifold with bounded
curvature and injectivity radius 6 > 0. If k > n/2, we have the continuous
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embedding H* C C% where C% is the set of continuous bounded functions on
M™.

We assume now that g(&;,&;) — d;; € C¥ with k > 5.
2

COROLLARY 4.1. One has a continuous embedding H*(E) C C%(E) where
CY%(E) is the set of continuous bounded sections of E on (B%,g).

PROOF. Such a vector bundle can be emdedded in a tensorial product
T*B®" ® TB% so that it is sufficient to look at the sections of TB. For a
vector field X and from the relation dg(X, &) = g(VX, &)+ g(X, V&) outside
a compact set K of B, we deduce that g(X,¢;) is a H' function and obtain
the estimate |[g(X, &)|| a1 (8-k) < Ail|X||#1(B—K). The same kind of estimate
are true with higher order derivatives terms. Indeed, let us look at second
covariante derivatives. One has

Vi =V A et=) dioget+ ) WVE o)

so that it is sufficient to look at the behaviour of dyf;. But from (15), we obtain
V= Vo can € Ck ! 50 that (&) 1s still a C’k ? function. The higher order

estimate are obtained in the same way and ﬁnally, one has ||g(X, &)|| w5 (—r) <
Cil| X||m5(s—k)- Therefore, the functions g(X, ;) are continuous and bounded.
Using the Grahm-Schmidt orthonormalization process with the basis (§;), we
obtain the corollary. 0

If Q is an asymptotically hyperbolic quaternionic form, one defines ¢ :
[((sp(2) @ sp(1))*+) — T(AST*B) be the function A — po(Id + A)(2) when
Id + A is inversible. All the sections A of gl(T'B) we shall use will be small
enough to obtain automatically the inversibility of Id + A.

If P: E— R is polynomial with constant coefficient in every orthonormal
basis, we obtain with the previous corollary that P(c) € H' for 0 € H'(E).
Therefore ® is a map from a neighbourhood of zero in H%((sp(2) @ sp(1))+)
to H(A?).

4.2. A partial result. From now on, one fixes the function p = 1—|x|? on
the 8-ball B. If gy is a compatible metric on a quaternionic contact structure,
we extend gy by zero on W9,

In this section, we assume that the following hypothesis holds :

HYPOTHESIS 4.1. There exist constants C, € and a neighbourhood U of
He™ in the set of quaternionic contact structures of reqularity C* on ST such
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that if g is a metric on B of the form
1 1
g= ;(dﬁ +Z77i2) + EgH

on {p < e}, then for all smooth forms o with compact support in {p < €}, one
has the Poincaré estimate

(16) 1Aa]|z2 = Cflal|zz .

REMARK 4.1. The Hodge Laplacian for the quaternion hyperbolic metric
gn on b-forms is an isomorphism ( [Ped04] for a study of the Hodge Laplacian
on the quaternion hyperbolic space ), and its spectrum is [1; +o00[. The previ-
ous hypothésis is equivalent to an hypothesis of uniform bellow boundness on
the essential spectrum of quaternion hyperbolic metrics, i.e. is equivalent to
the fact that the essential spectrum of such metrics is contained in [%, +oo| if
the boundary is close to H".

Let us show now how this hypothesis can be used to prove the existence of
asymptotically hyperbolic quaternionic symplectic forms.

Let p* be the projection A* — A*. On smooth 5-forms with compact
support, one has A = 2dj_ + 4d.

REMARK 4.2. We will use the metrics associated to the quaternionic form
Qg given by the theorem 3.1. This metrics can be written

1 1 1
H)y=—=(dp*+ Y n))+=gu+—cg_1+
on {p < ¢} with a finite number of g; depending smoothly on H. Therefore,
possibly changing C' and U ( neighbourhood of H" in C* norm ), we can

assume that hypothesis 4.1 still holds for the metrics g(H).

LEMMA 4.1. There exists € > 0 and a constant C' such that for the metrics
g(H) with H € U, one can replace the estimate (16) by the estimate

1Aal[ze = Clla]|m2
when o has support in {p < e}.

PROOF. By homogeneity, in the case of the hyperbolic metric gz, one has
on each ball B(1) of radius 1 the elliptic inequality
lallu2ase) < clllellzsay) + [Aall2isa)y)

with a constant ¢ which does not depend on the center of B(1). The lemma
follows for the hyperbolic metric. For a general asymptotically hyperbolic
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metric, the uniform geometry of g(H) at infinity gives the same result, possibly
shrinking the set {p < ¢}. O

LEMMA 4.2. There ezists a neighbourhood U of H®" such that if g(H)
18 the asymptotically hyperbolic metric with boundary H € U obtained with
3.1, then the Hodge Laplacian A is an isomorphism H?(A°) — L*(A®) with
uniformly bounded inverse.

PROOF. Suppose that A is not inversible with bounded inverse for g(H)
near the hyperbolic metric g5. Then, there exists a sequence of quaternionic
contact structures H,, which converges to H°" and a sequence of 5-forms a,
such that

(17) lctnl| 2oy = 1 and [|ATH ()| | 2o,y — O-

We can assume that «, is strongly H'-convergent on every compact set towards
a H'-form « which satisfies A%« = 0. Let (x,1 — x) be a partition of unity
associated to the covering ({p < e},{p > ¢/2}). From the previous lemma,
we obtain
Cllxom||m2 (g, < ||A9(Hn)(xan)||L2(g(Hn)) .

One can write A (ya,) = YA (a,,) + P,(a,,) where P, is a differ-
ential operator of order 1, with support in {p > ¢/2} and which converges
towards an operator P of order 1. Therefore || P, (cv,)||r2(g(m,)) converges to
[[P(c)||22(gy)- If P(a) # 0, then o # 0 and this contradicts the fact that A9
is an isomorphism. From the inequality

ClIxanl |2y < IXAT ()12 (ga) + [ Paln)l | r2g0)
we deduce that if P(a) = 0, then ||xan||g2(g(m,)) — 0 and from (17), we get

(1 = X) el m2(g(m.)) — 1
One has uniform elliptic estimates on {p > ¢/2}, and we obtain in the same
way,
C'NI(1 = x)anl 2oy < 11 = X) A || 2o,
F@n ()l z2g(r1)) + 111 = X) | 2(9(ar,))
with ||@Qn(am)||L2(g(m,)) — 0. Hence |[(1—x)a||L2(g,) 7 0 and so a is not zero.
This still contradicts the fact that A% is an isomorphism. 0]

REMARK 4.3. By uniform elliptic estimates, this is still true if we replace
H? by H'' and L? by H®.

On H?(A%) Nkerd, we define ¥ = 26_(A)~!. This a uniformly bounded
inverse for the smooth map d : H'9(A*) — HY(A%) Nkerd.
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LEMMA 4.3. Let ® : E — F a C! function between Banach spaces such that
®(0) = 0 and such that there exists a right inverse ¥ to do®, with ||¥|| < C.
Let 7 > 0 be such that for all ||y|| < CT,

1
d,® — dy®|| < — .
1y — d] < 5
Then for all z € F such that ||z|| < 3, there exists ||y|| < CT solution to the
equation ®(y) = z.

PROOF. Let ¢, be the C!' map on F defined by ¢,(z) = z—Po¥(z)+xz. A
fixed point ||z|| < T of ¢, satisfies ® o U(z) = z and ||¥(z)|| < C. Therefore,
it suffices to apply the fixed point theorem to ¢, for ||z|| < 7. One has

1
ldatl| < llduioy® — do®|| - [[]] < 5

when ||z|| < 7. Moreover, we get

o=(0)[] <[zl + € sup |[|dy® — do®]] - |[]| <7
lyll<Cr

if [|z|| < 7 and ||z|| < 7 so that we can apply the fixed point theorem. O

THEOREM 4.2. Assume that hypothesis 4.1 holds. Then, if H is a quater-
nionic contact structure of reqularity C* close to the boundary H" of the
hyperbolic quaternionic metric, then there exists a closed asymptotically hy-
perbolic form Q, with reqularity H'° and boundary H.

PROOF. The 4-form Qp constructed in theorem 3.1 satisfies dQ € H4(A®)
when H is C'°.

Moreover, 2y depends smoothly on H, and is closed when H = H*“", In
order to apply the previous lemma it is sufficient to remark that ||ds® — do ||
is uniformly bounded for H in a neighbourhood of H*" and for A uniformly
small. U

We discuss now some facts about the space of quaternionic symplectic
forms with boundary H" of Q" the quaternionic form corresponding to
the hyperbolic space. The complex of infinitesimal deformations of 2" is

F(Al) — F(Tﬂcano) —_— F(A5)
X = dix Q"
w —  dw.
A dimension count is sufficient to see that this complex is not elliptic in

the middle term. This explains why we considered only anti-selfdual forms.
One puts Toean O N A2 = E.
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The space of infinitesimal deformations is parametrized by the 4-forms
w = wg + w_, where wgy € E and w_ € A*, satisfying dwg + dw_ = 0
and pdwg = 0 where p is the projection A> — [A\}co']. Because there are no
harmonic 5-forms, if pdwg = 0, there exists a section w_ of A* such that
dw_ = dwg.

Moreover, there is no harmonic L?(E) forms ( [Ped04] ), and the kernel of
the restriction of the Hodge Laplacian to A is made of a unique discrete series
representation (m, V') contained in the sections of [A2¢%]. Thus, the space of
infinitesimal deformations of Q2" is parametrized by the direct sum of V' and
{wg € L*(E), pdwg = 0}. The vanishing of the kernel of the Laplacian on
5-forms shows that this deformations are integrable.

Finally, one can ask the following question :

e Given a quaternionic contact structure H on S7, can we find an asymp-
totically hyperbolic 4-form €2, with boundary H, and such that the
associated metric is Einstein 7

Remark that it is true if the boundary is integrable, the solution then is
the quaternionic-Kéhler metric.

Because of the work of Biquard [Biq00]|, the metric is uniquely determined
by the boundary ( at least up to small diffeomorphisms ).



CHAPTER 4

Examples

1. Quaternionic-contact quotients

1.1. The main result. Let H be a quaternionic contact distribution on
a smooth manifold M. Consider the Lie group

Aut(H) = {g € Diff(M), g.H = H}
whose Lie algebra is
at(H)={X eI(TM), LxH C H},

where Lx(H) ={[X,Y], Y € I(H)}. Let Q be the bundle TM/H and p be
the canonical projection TM — Q).

DEFINITION 1.1. The momentum map is the Aut(H )-equivariant function
M: M — aut(H)* ® Q defined for x € M by

(M(z), X) = p(X),
where (-, -) denotes the duality bracket between aut(H) and aut(H)*.

If G is a subgroup of Aut(M) which is a Lie group of Lie algebra g, one
obtains by restriction a map M : M — g* ® Q. In the same way that in
the quaternionic-Kéahler case, the only natural subset of M which remains
G-invariant is

M§ ={zeM, M(z)=0}.

Here is the main result of the section :

THEOREM 1.1. Let H be a quaternionic contact distribution on a smooth
manifold M and G be a compact subgroup of Aut(H) with momentum map
M. Let My be the G-invariant subset of MS where M intersects the zero
section transversally and where G acts freely. Then My/G is equipped with a
quaternionic contact structure Hy. Moreover, if 1 : My — M s the injection
and m : My — My/G the projection, then Hy is uniquely defined by i*H =
’/T*Ho.

In the case where My /G is of dimension 7, the distribution Hy is integrable.

61



62 4. EXAMPLES

PROOF. Let gy be a choice of adapted metric on H and (\%dm)i:l,gg be
a local choice of SO(3) trivialization of A2 H* on a neighbourhood of a point
xg € My. Let ([, I3, I3) be the associated quaternionic structure on H. If
g € G, the restriction to H of dn; A dn; is equal to d;; times a volume form
on H, so that (dg*n; A dg*n;)|lg = ¢*(dn; A dn;)|u is still equal to J;; times
a volume form on H. Eventually, a rescalling allows us to assume that the
1-forms n; are G-invariant. We denote by W the complementary vector bundle
associated to gy and by (Ry, R, R3) the dual basis of the restriction to W of
the 1-forms 7;.

Let m be the dimension of G and 4n + 3 be the dimension of M. The
submanifold Mj is of dimension 4n + 3 — 3m and the rank of H N T M, is at
least 4n —3m. On the other hand, putting V' for the vector bundle spanned by
the X (z) for X € g and x € My, one obtains HNT M, C (I,V & LV & I3V)*,
so that i*H = HNTM, = (I,V & LV @ I5V)* is a codimension 3 distribution
on My. Indeed, if Y € HNTM, and X € g, X is tangent to H along M,
therefore

ni([X,Y]) = —dni(X,Y) = gu (L X,Y) =0,

whereas taking Y € g gives that 1V + LV 4 I3V is a direct sum. The
distribution ¢*H is left invariant under the action of G on M, and is tangent
to the orbits of the G-action so that one obtains a unique codimension 3
distribution Hy on My/G such that 7*Hy = ¢*H. It remains to show that H,
is a quaternionic contact distribution on My/G. Because of the G-invariance,
the forms 7; can be pushed forward to give forms 1} on M,/G, defining Hy and
such that 7*n, = i*n;. Taking the differential, one has 7*dn, = i*dn; and at z,

(dng)ﬂ(wo)(ﬂ—*.? 7T*.> = gH(L,/L*a /L*) )

so that identifying (Ho)x(z,) With (V & LV @ LV & I;V)* gives the existence
of a metric g on Hy and of a quaternionic structure (17, I, I}) such that at

7 (o)
Finally, we show that Hj is integrable. Because of the G-invariance, the
vector fields R; are tangent to My and project on My/G giving a dual basis

(R}, Ry, RY) for the forms n). If X € Hy and X is the unique vector field in
(Ve LV& LV @ IV)! such that m, X = X, one has

i (R, X) = dn;(R;, X)
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so that the integrability ig; dnj|n = i%,dnj|n follows from that of H, recalling
that M is of dimension strictly greater than 7 and so that H is automatically
integrable. U

REMARK 1.1. If the quotient My/G is 3-dimensionnal, we obtain a confor-
mal structure [(n})? + (75)* + (n5)?] on My/G.

1.2. Link with the quaternionic-K&hler case. We recall briefly the
construction of the momentum map in the quaternionic-Kéhler case and do the
link with the quaternionic-contact case, see |Gal88|. Let g be a quaternionic-
Kéhler metric on a manifold M, with 4-form  and X be a vector field such
that £xQ = 0. Let us put locally @ = >, w? and G be the bundle spanned
by w1, we and ws. To X, one associates the G-valued 1-form

Ox = Zixwi®w,~.
Integration provides a unique section fx of G such that V fx = ©x , where V
is the Levi-Civita connexion of g. The momentum map p: M — aut(Q)* ® G
is defined by (u(z), X) = fx(x).

We see now how our momentum map on quaternionic-contact structures
can be defined in the same way. Let H be a quaternionic contact structure,
let gy be a choice of metric on H and (\/Liwz) = (\%dm) be a local SO(3)
trivialization of A% H*, associated to the quaternionic structure (I3, I, I3).
Let (Ry, Ro, R3) be the dual basis of (1, 72,73) spanning W9 and let V be
the associated connexion. If X is an infinitesimal automorphism of H, we put

3
i=1

where Xy € H. If Y € H, one has

3
Z nj([X7 Y])wj =0
j=1

which can be written

J 1,J i

In dimension greater than 7 [Biq00], or in the integrable case in dimension 7,
cf (9), one obtains

VO @)y == ix,w @ w;,
i j
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thus our momentum map is completely analogue to that in quaternionic-Kéahler
geometry.

1.3. Some examples. The examples we describe here are the boundaries
of a family of AHQK metrics contructed by Galicki in [Gal91]|. Let (u,v) =
u*v be the canonical quaternion-hermitian product on H**!. The standard
quaternionic contact structure on the sphere S**3 is the distribution

H, = {ve " vv=0}.

An element u € S**+3 is written u = (y,z) with y € H and = € H*. Let ), 3
be two real constants and D be any sp(k)-matrix. We consider a non-compact
action ¢° = (¢35, ¢3) by R ~ SO(1,1) C Sp(1,k + 1) on the sphere S¥*+3

&3 (y, ) = ((eP° cosh As)y + €% sinh \s)((e® sinh As)y + ¢ cosh As) 1,
®3(y,r) = ePx((e’ sinh As)y + ¢”* cosh As) 7.
The infinitesimal action is the vector field
X(y,x) = (= \y* — Byi +iBy + A\, Dx — \ay — Bwi).
and the momentum map is

M(y,z) = ((y,2), X(y,2))
= o*Dx+ py iy + ANy* —y) — Bi.

REMARK 1.2. The action ¢° can be extended in an action on the hyperbolic
ball B**+1)  whose momentum map is still

w(y, ) = "Dz + By*iy + ANy* —y) — Bi.

Let us assume now that A > 0. The points (—1,0) and (1,0) are left
invariant under the R action, and R((1,0), X (y,z)) = A(1 — R(y?)) > 0 for all
y # 1,—1. Therefore, the action of R on S**3 — {(1,0),(—1,0)} is free, the
orbits are transverse to the spheres (y) = ¢, and we obtain a slice

S={(y,z) € Sy +y* =0}

to the R action. The manifold M(Y(0)/R is diffeomorphic to Sy = S N
MED(0) and one obtains by quaternionic-contact quotient a quaternionic
contact structure Hy on Sg. When 3 = 0, one can describe the quaternionic
contact structure in the following way : the manifold Sy can be identified with

1
SP ={zxcH", |2*+ Z|x*Dx| =1}
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via z € SP — (2*Dz/2, ). The quaternionic contact structure on S is at a
point € SP,

1
Hy(x) = {v e H", z*v — Z:z:*Dx(:z:*Dv +v*Dzx)},
and does not coincide with the H-stable subspace of 7,5P.

2. Levi-Civita connections

2.1. Preliminaries. In chapter 2, we constructed a family of integrable
quaternionic contact structures whose automorphism group contains Sp(1).
This provides Sp(1) connections on a family of conformal 4-manifolds, satisfy-
ing a semi-linear PDE coming from the integrability condition. One may want
to specialize to the Levi-Civita connections of a Riemannian 4-manifold (M, g).
The action of the Levi-Civita V connection on A2T*M gives a codimension-3
distribution H on a SO(3)-bundle 7 : P — M, and one may search for g
such that the following conditions are satisfied:

(18) 'H is a quaternionic-contact distribution,
(19) 7*g|y is adapted to the quaternionic-contact structure,
(20) H is integrable.

The condition (19) forces the curvature of V on A2T*M to be a section
of AXT*M ® A2T*M, hence the traceless Ricci tensor must vanish and g is
Einstein. Let W be the seldual curvature of V and s be the scalar curvature.
Then, the condition (18) is equivalent tothe inversability of 5Id + W™ as an
endomorphism of ATT*M and the integrability condition can be written

S N + s (.5 -1 3,1 1,1
(121d+W ) V(121d+W )+(V(121d+W ))(121d+W )TesSTesS

where the notations follow 2.3.

2.2. A rigidity result. In this section, we show that the conditions (18),
(19) and (20) are quite restrictive and that they force the quaternionic contact
distribution to be 3-Sasakian. More precisely, one has

THEOREM 2.1. Let g be an Finstein metric on a 4-manifold M. If the S>!
part of
(21) (ZId+ W) V(2 Id+ W) (= Id + W)~
12 12 12
vanishes, then we are in one of the following mutually exclusive cases
(i) the distribution H is 3-Sasakian,



66 4. EXAMPLES

(ii) there exist a section of AiT*M which s Kdhler with respect to g, and
‘H is not a quaternionic-contact distribution.

Before going to the proof of this result, we recall some results and facts.

REMARK 2.1. In case (ii), the curvature R is a section of AV 'T*M ®
ABYT*M, therefore 5Id + W is not inversible. It explains why (i) and (i7)
cannot be both true.

THEOREM 2.2. ( Konishi, [Kon75| ). Let g be a Riemannian metric,
Einstein and anti-selfdual, with non-vanishing scalar curvature. Then, the
distribution 'H is 3-Sasakian.

PROPOSITION 2.1. ( see for instance [Sal84| ) Let g an FEinstein metric
on a 4-manifold. Then VW € S5,

PROOF. Let g be an Einstein metric satisfying (21). Let U be an open
subset of M where W admits an orthonormal basis of smooth eigenvectors
(11, I, I3) with smooth eigenvalues \; ( this condition is true in an open dense
subset of M ). There exists 1-forms 6; such that in the basis ([y, I, I3), one
has

(G5l + W) (V(GGId+ W) ([31d + W) ™)y = b0 L4001,

Let us put

VI, = ZéTijk’Yj ® Iy,
jik
so that one gets

- +
V(121d+W )2 = 2(12+)\)d)\ QLRI

ijk (S 2 S 2
—;5] ((E+)\z) —(E-i-)\j) Ve @ L@ 1.
On one hand, taking i = j gives d\; = (A; + 55)0; o I; and on the other hand,
taking ¢ # j gives

—(\i — )\)/\+)\+ Zszﬂw )(A+ )(00]+00])

1

We use now the constraint VW € S%! which can be written

Vi, —dX\; =Y e\ = M)wko Ll =0
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and then obtain that

()\3 — AQ)(Q)\l — 8/3) ()\1 — )\3)(/\2 + 8/12) ()\2 — Al)()\g + 8/12) vy 01l

()\3 — /\2)()\1 + 8/12) ()\1 — )\3)(2/\2 — 8/3) ()\2 — )\1)()\3 + 8/12) Y2 0 I

()\3 - )\2)()\1 + 8/12) ()\1 — )\3)()\2 + 8/12) ()\2 — )\1)(2)\3 - 8/3) Y30 I3
vanishes. Let A be the the previous left hand side matrix, whose determinant is

()\3 — )\2)()\1 — )\3)()\2 — )\1)(4)\1)\2)\3 — gs()q)\g + A3 + )\3)\2) — %Sg) .

If this determinant is not zero, then the ; vanish so that we are in case (ii) (
even hyperkéhlerian ). From now on, the determinant of A is assumed to be zero.

Assume now that A = A\; = Ay and that I3 is not Kahler. Then the determinant
of a 2 X 2 submatrix of A must vanish, so that A = A3 = 0 or that X is constant.
In this last case, all the eigenvalues are constant, and using VW* € $>! one obtain
vo = 1 = 0, which contradicts the fact that I3 is not Kéahler.

Finally, we consider the case where all the eigenvalues A; are distinct. Then, one
of the eigenvalues is equal to a constant times s, and so is constant. Choose this one
to be . Using again VIW+ € §%! one gets

yi= (A2 = A)yzols = (A1 — Az)y2 0 Lo
We put 7/ = (A3 — A2)v1 o [; and we obtain the system
M =5+t A3 +5)y = 0
M+ 3)7 + @+ A5 - 1)y
M+ +Ke+203-5)y = 0
If 7 is zero, then I is Kéhler, and if not, then
det Aw% 2A2+A3—§ _0
)\1—5—@ /\2+2)\3—1

and so, because Ay # A3, we get A\; = —s/12 and Ay = A3 = s/12 and the theorem
follows.

I
o

O
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