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Paul Feautrier, Professeur à l’École Nationale Supérieure de Lyon

Reinhard Wilhelm, Professeur, Universität des Saarlandes, Sarrebruck (Allemagne)

Examinateur :
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Bertrand Blier, Les Valseuses (Going Places/Die Ausgebufften).

“La compilation, c’est bon.”

Philippe Clauss.



4



Foreword/Avant-Propos

Ce manuscrit présente une grande partie des travaux de recherche que j’ai effectués pendant
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Chapter 1

Introduction

Moore’s Law has been making admirable headway and presenting the computer industry

with more and more gates on a chip. However, the same basic architecture of the 1960s is

still being used to take advantage of these advances.

Microprocessor and DSP vendors are now hell-bent to use Moore’s Law to ramp up

their megahertz ratings or embedded multiple processors on the same die as a way to

turbocharge their performance. But megahertz does not measure work done, and pro-

grammers have yet to be able to effectively use the underlying hardware and program

more than two or three processors in parallel.

The traditional microprocessor and DSP are effectively hitting the proverbial wall.

Large amounts of chip overhead and programming issues pose inherent limitations for

conventional microprocessor and DSP architectures. Effort to improving microprocessor

performance via architectural changes has waned because traditional chip designers are

limited as to how to add gates efficiently in those architectures.

Compilers play a crucial role since they should be able to mask hardware specific

functionalities as well as to do all the efficient program optimizations while relieving the

programmers. This is of course ambitious. The ever growing complexity of hardware and

application requirements poses huge difficulties for building good compilers. For example,

real-time requirements imposes the necessity of precise execution time prediction and

performance while hardware cost minimization involves efficient utilization of the small

amount of resources.

Moreover in the past 10 years, the embedded industry has experienced an explosion.

11
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Once relegated to massive infrastructure equipment, dedicated microprocessors are now

pervasive, peppering everything from automobiles to personal digital media to toys with

processing power. Application requirements for embedded systems induce more and more

complexity, functionality, and sophistication.

All these trends create a need for compilers capable of generating high quality ma-

chine code. Such an objective can only be reached through smart program analysis and

optimizations methods, capable of extracting accurate information related to the execu-

tion behavior on the target machine and capable of using efficiently this information to

optimize the input source code.

This thesis wants to contribute by proposing an analysis framework for nested loops.

It mainly focuses on the accuracy of the used geometrical model and particularly on the

periodic aspect of loop analysis and transformations. Moreover it aims to expand the

static analysis range through the development and the use of dedicated tools based on

general mathematical theories. This work is representative of the approach consisting in

expanding as far as possible the range of static analysis rather than using less general

and less accurate dynamic approaches motivated by the “too high” complexity of the

underlying mathematical models.

1.1 Specific background

For many years, compiler writers have focused on parameterized loop nests, mainly because

of their importance in scientific and multimedia programs. The polytope model [4] allows to

manipulate loop nests whose bounds are affine functions with integer-valued parameters

in the constant part by modeling them as parameterized rational polytopes P . As the

considered loop indices are incremented by a constant integer value, the values taken by

the n-vector of indices belong to a subset of Zn: an integer lattice L. So the values taken

by the index vector I ∈ Zn, where n defines the number of nested loops, are given by the

so-called Z-polytope P ∩ L.

Example 1.1. The iterations of the following Gaussian elimination code:

for(i=1;i<=n; i++)

for(j=i+1;j<=n;j++)

for(k=i+1; k<=n; k++)

a[j][k]=a[j][k]-a[j][i]*a[i][k]/a[i][i];
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are modeled by the parameterized Z-polytope P ∩ Z3, where

P =











1 ≤ i ≤ n

i + 1 ≤ j ≤ n

i + 1 ≤ k ≤ n

and n is an integer parameter.

As in the general problem of integer linear programming, we are interested in integer

points (i.e., points with integer coordinates) in polytopes whose vertices may be non-

integer.

In a class of code optimization and parallelization methods (e.g. in [85, 31, 52, 86, 32,

87, 28]), loop nests are usually transformed by applying an affine integer transformation to

the Z−polytope representing the loop nest [74]. They may also be split into sub-polyhedra

as for example in [37]. The result can then be transformed back into a loop nest by source

code generation.

Several loop optimization and parallelization techniques also need to compute the

indices of the first and last iterations to be executed in a loop nest (i.e. the lexicographic

extrema of the I values). For instance, a precise dependence analysis may consist in

computing the first executed iteration accessing a variable, among the set of iterations

following a given access to this variable. Another issue is precise liveness analysis of data

accessed in a loop nest, where the first and last iterations accessing the considered data

have to be computed. Liveness analysis can be used to reduce the maximum amount of

memory used by a program, and to reduce communications while parallelizing loops.

These techniques, as well as integer programming techniques in general, look for ver-

tices of the integer hull P ′ of a parameterized Z-polytope, as it is known that the solution

is one of these vertices. The integer hull is the convex hull of the integer points in P ∩ L.

To have a better insight of the problem, let us consider the polytope presented in example

1.2.

Example 1.2. The following polytope is represented on figure 1.1.

P2 =











2i − 3j − 1 ≥ 0

−i + 4j − 3 ≥ 0

−2i + 25 ≥ 0
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���
�(3,2)

j

i

j

i

Figure 1.1: P2, the wrong lexicographic minimum, and int(P2)

Its corresponding loop nest in the C language, generated by using the Fourier-Motzkin
algorithm while choosing i as the outer loop index, would be:

for (i=ceil(13/5); i<= floor(25/2); i++)

for (j=ceil((i+3)/4);j<=floor((2i-1)/3); j++)

/* statements */

According to the loop bounds, the minimal integer value for i is d13/5e = 3. The

minimal integer value for j seems then to be d(i+3)/4e = d6/4e = 2. But figure 1.1 shows

that point (3, 2) does not belong to P2: it does not correspond to a loop iteration. This

example points out one of the problems one may encounter when manipulating polyhedra

with non-integer vertices while dealing with integer points. This problem vanishes if we

manipulate the integer hull int(P2) of P2 (in gray on figure 1.1), as its vertices are integer

while it includes all the integer points (iterations) of P2. Here, int(P2) corresponds to the

following polyhedron:

int(P2) =



















































2i − 3j − 1 ≥ 0

−j + 7 ≥ 0

i − j − 2 ≥ 0

−i + 4j − 3 ≥ 0

j − 2 ≥ 0

−i + 3j ≥ 0

−i + 12 ≥ 0,

whose Fourier-Motzkin projection gives the following loop nest:

for (i=4; i<= 12; i++)

for (j=max(2, ceil(i/3), ceil((i-3)/4)) ; j<=min(7, floor((2i-1)/3), i-2) ; j++)

/* statements */
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The lexicographic minimum, {i = 4; j = 2} is directly given by the lower loop bounds.

This thesis focuses on manipulating integer points that belong to a parametric rational

polyhedron P . In chapter 2, we first devise an algorithm for the convex hull of all these

points, i.e., the integer hull of P . Then, we consider the problem of finding particular

integer points. The points we look for have to be maximum w.r.t. a given hierarchically

linear order. This order encompasses the classical linear order as well as the lexicographic

order (which represents the execution order of the iterations in a loop nest). We propose

an algorithm for computing such a maximum in chapter 3. This result is exploited to

determine the integer points in the projection of a Z-polyhedron, and to count these

points. Then, we devote chapter 4 on the study of Ehrhart’s conjecture, which defines a

link between the faces of P and the coefficients of the Ehrhart polynomial of P , which gives

the number of integer points in P as a function of P ’s parameters. Approximation methods

for Ehrhart polynomials are then proposed, as well as an optimization for an existing

algorithm for computing Ehrhart polynomials, and a new method for computing Ehrhart

polynomials in some specific cases. We describe in chapter 5 what we have implemented

among the concepts and algorithms we present across the thesis. An overview of the work

is finally given in chapter 6, as well as future working directions.

But first, some mathematical preliminaries are given in the next section.

1.2 Preliminaries

1.2.1 Normal forms

Two integer matrix decompositions are commonly used in the polytope model: the Hermite

and Smith normal forms. Before presenting these decompositions and their properties, we

must recall the terms of unimodular matrix and full-rank matrix.

In the frame of this thesis, a unimodular matrix denotes a square integer matrix whose

determinant is ±1. The (row- or column-) vectors of a n-dimensional unimodular matrix

span Zn. A unimodular matrix is invertible, and its inverse is also unimodular.

A matrix is of full row-rank if the number of its non-zero rows cannot be reduced by

row-elimination. Similarly, a matrix is of full column-rank if the number of its non-zero

columns cannot be reduced by column-elimination.

There exist two Hermite normal forms: the left Hermite normal form of a full row-rank
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matrix A corresponds to the following decomposition:

A = [HA 0]UA.

The properties that will be used in this thesis are:

• HA is an integer lower triangular matrix of nonnegative elements, and it is invertible,

• UA is an integer unimodular matrix,

• the column-vectors of A and HA span the same integer lattice.

The right Hermite normal form is similar to the left form. For a full column-rank

matrix A, it is:

A = UA

[

HA

0

]

.

UA is unimodular and HA is an invertible integer upper triangular matrix of nonnegative

elements. Also, the row-vectors of A and HA span the same integer lattice.

The Smith normal form of an integer matrix A is the following decomposition:

A = UA

[

S 0

0 0

]

VA,

where UA and VA are unimodular and S is an integer diagonal matrix of positive diagonal

elements.

More details and properties of these normal forms are given in [76].

1.2.2 A regularly occurring problem

At several occasions across this thesis, we will need to know under which condition there

exists an integer solution I to the set of m parametric equalities:

AI + BN + C = 0 (1.1)

where N ∈ Zp are the parameters of the problem, and A,B and C are respectively (m ×

n), (m × p) and (m × 1) integer matrices. There is an integer solution to equation (1.1) if

the m-dimensional integer point (BN +C) belongs to the lattice of integer points spanned
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by the column-vectors of A. In other words, there must be an integer linear combination

(given by I) of the column-vectors of A that is equal to BN + C.

Let A = [HA 0]UA be the Hermite normal form of A. As the column-vectors of HA

and A span the same lattice, the condition for equation (1.1) to have a solution is that

there exists X ∈ Zm such that: HAX + (BN + C) = 0. As HA is invertible, this can be

written H−1
A (BN + C) = −X, or similarly

H−1
A (BN + C) ∈ Zm.

1.2.3 Validity domains

We are going to work on a parametric polyhedron P . In [60, 55], Loechner and Wilde

have pointed out that the shape of P depends on the value of the parameters. They have

shown that the parameters space can be partitioned into adjacent rational polyhedra,

called validity domains, in which P has a given shape. An algorithm for computing these

validity domains is detailed in [55]. A given shape determines:

• a given affine expression for the vertices of P ,

• a given set of constraints which are non-redundant in the corresponding validity

domain.
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Chapter 2

A method for computing the

integer hull of a rational

parametric polyhedron

In the polytope model, iterations of a loop nest are modeled by integer points of a rational

parametric polyhedron P . The variables of the program that are unknown at compile-time

are treated as parameters. Besides, compilation parameters can be taken into account, as

for instance an assumed execution context. This might include memory, cache, TLB and

register file size, cache associativity, maximum execution time or energy consumption and

availability of other resources. For a more direct quantitative and qualitative analysis of

nested loops, we want to characterize the whole set of integer points of P by their convex

hull, which is called the integer hull of P , in order to make somehow clearer the problems

related to integer points in a rational parametric polyhedron. Another motivation is

that, to our knowledge, the rare existing algorithms for computing the integer hull of a

polyhedron are too restrictive. In particular, they are not parametric. It is known that the

computational complexity of all the integer hull algorithms (including ours) is exponential

in function of the number of variables and parameters. Then, it has become usual to look at

their complexity for a fixed dimension, i.e., when the number of variables and parameters

are fixed. The first algorithm is due to Schrijver [76], chap. 23, who uses Gomory’s cutting

planes. In [29], Feautrier extends the cutting planes to the case of parametric polyhedra

in the context of integer linear programming. Extending Schrijver’s integer hull algorithm

19
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to the parametric case could then be envisaged. In [7], Bockmayr and Eisenbrand recall

that the complexity of this algorithm is exponential for a fixed dimension. They present

a polynomial-time algorithm (for a fixed dimension) for finding the elementary closure of

P , which represents all the possible cutting planes for P . The extension of this algorithm

to the parametric case could help to find a polynomial-time algorithm for computing

the integer hull of P for a fixed dimension. However, this extension is far from being

obvious. Besides, Harvey [41] gives a fast algorithm for computing the integer hull of a 2-

dimensional polytope, based on unimodular transformations. He then uses this algorithm

in the context of logic programming expressed with constraints, in the particular case

where each constraint depends on two variables. The work of Lasserre [50], which is

concurrent with the one described in this chapter, showed that a Z-polyhedron defined as

{Ax + b = 0, x ∈ Nn} can be transformed into a polyhedron defined as Ω = {Mq + r =

0, q ∈ R+}, where M is totally unimodular and where r is integer, which implies that

Ω has only integer vertices. A linear relationship x = Eq exist between x and q. The

constraints of the integer hull are then derived from a convex cone built with M and E.

The extension to the parametric case is unlikely to be easy.

In this chapter, we present a new approach for computing the integer hull P ′ of a

rational parameterized polyhedron P , defined by a set of rational affine equalities and

inequalities on a set of variables I ∈ Zn and integer-valued parameters N ∈ Zp. Integer

vertices are computed by recursively extracting, from the facets of P , sets of points having

one more integer coordinate at each step.

For simplicity, we first assume the following restrictions on the considered parametric

polyhedron:

• it is bounded: it is a parametric polytope,

• the values for which it is not empty (its definition domain) belongs to only one

Loechner-Wilde validity domain (see section 1.2),

• it is full-dimensional: it is defined only by a set of inequalities, and there is no

implicit equalities for the values of parameters that belong to the definition domain

of P : a subset of the inequalities defining P can never be equivalent to an equality.

An intuitive presentation of the method is given in next section. Then, section 2.2

introduces the mathematical objects used in section 2.3 to turn the problem into a geo-
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2i − 3j − 1 = 0

2i − 3j − 2 = 0

2i − 3j − 3 = 0

j

i

−i + 4j − 5 = 0

−i + 4j − 6 = 0

−i + 4j − 3 = 0

−i + 4j − 4 = 0

Figure 2.1: Integer minima and maxima for j for a given value of i

metric form. An algorithm in devised in section 2.4. The assumed restrictions on P are

discussed in section 2.5.

2.1 Basic Idea

Consider the polytope P2 represented with its integer hull on figure 1.1. The maximum

integer value jmax of j for a given i in P2 is determined by one of its defining inequalities:

2i − 3j − 1 ≥ 0 ⇔ j ≤
2i − 1

3

As we can see on figure 2.1, when i mod 3 = 0, jmax is solution to the equation 2i−3j−3 =

0. It is solution to 2i− 3j − 1 = 0 when i mod 3 = 2, and solution to 2i− 3j − 2 = 0 when

i mod 3 = 1. Similarly, the minimal integer value jmin is determined by the inequality

{−i + 4j − 3 ≥ 0}. It is solution to























−i + 4j − 4 = 0 if i mod 4 = 0

−i + 4j − 3 = 0 if i mod 4 = 1

−i + 4j − 6 = 0 if i mod 4 = 2

−i + 4j − 5 = 0 if i mod 4 = 3

.

For a given value of i, the coordinate j of an integer point of P is bounded by values

which are solutions to some equations. These equations depend periodically on i. So each

integer point (i, j) of P2 is in the convex hull of two integer extremal points: (i, jmin) and

(i, jmax). The reader can figure out by comparing figures 2.2 and 1.1 that the convex hull

of all these extremal points (drawn in gray) is the integer hull of P2.
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To generalize this idea to n dimensions, consider that any integer point in a n-

dimensional space

X = (x1, x2, . . . , xk−1, xk, xk+1, . . . , xn)

of a polyhedron P belongs to a line segment dk(X), which is the intersection of a line and

P , defined by

dk(X) = {I = (x1, . . . , xk−1, ik, xk+1, . . . , xn), ik ∈ Q, I ∈ P}, k ∈ [1..n]

ik has a minimal and maximal value in dk(X), given by two faces (or constraints) of P :

pmin(I,N) ≥ 0 and pmax(I,N) ≥ 0. Coefficient ak of ik in pmin(I,N) is positive and

it is negative in pmax(I,N), therefore we have: ik ≥ p′min(I,N) and ik ≤ p′max(I,N),

where p′min(I,N) = −pmin(I,N)
ak

+ ik and p′max(I,N) = −pmax(I,N)
ak

+ ik. These inequalities

define the rational lower and upper bounds for ik in dk(X). In other terms, we have

p′min(I,N) ≤ xk ≤ p′max(I,N). Furthermore, as xk is integer, we have dp′min(X,N)e ≤

xk ≤ bp′max(X,N)c. So X belongs to the convex hull of the integer points xmin(X,N)

and xmax(X,N), where

xmin(X,N) = (x1, . . . , xk−1, dp
′
min(X,N)e, xk+1, . . . , xn)

and

xmax(X,N) = (x1, . . . , xk−1, bp
′
max(X,N)c, xk+1, . . . , xn).

It follows that:

• the convex hull P ′ of all the existing extremal points, for any X ∈ P , xmin(X,N)

and xmax(X,N) contains all the integer points of P ,

• P ′ ⊂ P ,

• P ′ has integer vertices, which are some of the extremal points,

which implies that P ′ is the integer hull of P .

Example 2.1. The existing extremal points xmin(i1) and xmax(i1) are represented on

figure 2.2, as well as the different d2(i1, i2). Observe that some of the extremal points are

the vertices of the integer hull of P2, and that the convex hull of all these points is the

integer hull of P2 (represented on figure 1.1).

We have seen that the extremal points are periodically solution to an equality. We

explain this periodic character in next section.
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Figure 2.2: The extremal integer points of P2 and the different d2(i1, i2)

2.2 Periodic Polyhedra

Consider the kth coordinate xk,max(X,N) of xmax(X,N) determined by the inequality

pmax(X,N) =

n
∑

t=1

atxt +

p
∑

u=1

bunu + c ≥ 0 :

xk,max(X,N) = bp′max(X,N)c.

with p′max(X,N) = pmax(X,N)
−ak

+ xk.

Example 2.2. Consider the inequality pmax(i, j,m) = {−3i + 2j − m + 5 ≥ 0}, which

defines an upper bound on i:

i ≤
2j − m + 5

3

Its maximal integer value is given by

imax(i, j,m) = b
2j − m + 5

3
c = bp′max(i, j,m)c

Let α be an integer and β a positive integer. By defining the mod operator as the

remainder of a division by an integer:

∀α ∈ Q, β ∈ N, 0 ≤ α′ < β ∈ Q+ : α mod β = α′ ⇔ α = k.β + α′, k ∈ Z, 0 ≤ α′ ≤ β

the following formulae come:

b
α

β
c =

α

β
−

α mod β

β
,
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d
α

β
e =

α

β
+

(−α) mod β

β
.

Hence, we can write: xk,max = b−ak .p′max(X,N)
−ak

c, and since ak < 0:

⇔ xk,max =
−ak.p

′
max(X,N)

−ak

−
(−ak.p

′
max(X,N)) mod (−ak)

−ak

⇔ −akxk,max = −ak.p
′
max(X,N) − (−ak.p

′
max(X,N)) mod (−ak).

As −ak.p
′
max(X,N) = pmax(X,N) − akxk, it reduces to:

pmax(X,N) − (pmax(X,N) − akxk) mod (−ak) = ak(xk − xk,max).

This gives the necessary and sufficient condition for xk to reach its maximal integer value

w.r.t. the inequality pmax(X,N) ≥ 0:

xk = xk,max ⇔ pmax(X,N) − pmax(X,N) mod (−ak) = 0 (2.1)

Similarly, we have:

xk = xk,min ⇔ pmin(X,N) − pmin(X,N) mod (ak) = 0 (2.2)

Theorem 2.1 follows equations (2.1) and (2.2):

Theorem 2.1. Let p(I,N) ≥ 0 be an inequality with integer coefficients:

p(I,N) =
n
∑

t=1

atit +

p
∑

u=1

bunu + c ≥ 0.

Let X = (x1, x2, . . . , xn) ∈ Zn. The extremal possible integer value of xk satisfying

p(X,N) ≥ 0 for integer values of (x1, x2, · · · , xk−1, xk+1, · · · , xn) is solution to

I(p(X,N), k) = 0, (2.3)

where I(p(X,N), k) = p(X,N) − p(X,N) mod (|ak|).

In this chapter, I(p(X,N), k) will be called the integer bound of xk w.r.t. p(X,N). So

the set of extremal points xmin(X,N) and xmax(X,N) are integer solutions to (2.3) for

some constraint p(X,N) ≥ 0 of P . It is known in theory of numbers that an affine function

of an integer variable is periodic modulo m ∈ N (see for instance [78]), which explains the
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periodic character (periodicity) of the extremal points. We choose to handle periodicity

by using a tailored class of mathematical objects, called periodics. We believe that they

are more appropriate than modulo congruences to understand the geometric approach we

propose. Periodics are presented in [66] as a generalization of periodic numbers, initially

introduced by Ehrhart [26] and extended by Clauss [16] as coefficients for Ehrhart poly-

nomials. A periodic over a monöıd K is defined as a periodic function of integer variables

whose values are in K. In this chapter, only three instances of K are considered: rational

numbers, polyhedra and polynomials.

Let f(I), I ∈ Zn be an affine function with integer coefficients and let m ∈ Z.

f(I) mod m is an integer periodic number. A periodic number of period S =
(

sk

)

∈ Nn is

a rational-valued periodic function of I. It can be represented by a n-dimensional array

whose number of elements in the kth dimension is the corresponding period sk.

Example 2.3. A 2-dimensional periodic number of period S =

(

2

3

)

depending on

(N,M) ∈ Z2, whose value is :

• 1 for N mod 2 = 0, M mod 3 = 0

• 2 for N mod 2 = 1, M mod 3 = 0

• 3 for N mod 2 = 0, M mod 3 = 1

• 4 for N mod 2 = 1, M mod 3 = 1

• 5 for N mod 2 = 0, M mod 3 = 2

• 0 for N mod 2 = 1, M mod 3 = 2

is denoted as:

[

1 3 5

2 4 0

]

N,M

Consider A(i) = i mod 3, i ∈ Z. Its value is periodically 0, 1, and 2, depending on i.

Hence it is a periodic number of period 3. In a more general way, if f(I) =
∑n

k=1 akik + c

is an integer affine function of I ∈ Zn with ak, c ∈ Z, and m ∈ N, f(I) mod m is an integer

periodic number of period S = (sk) with sk = m
gcd(m,|ak|)

.
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Example 2.4. With f(I) = 3i + 4j, and m = 6, it gives:

(3i + 4j) mod 6 =
[

0 1 2 3 4 5
]

(3i+4j)
=

[

0 4 2

3 1 5

]

i,j

,

which is an integer periodic number of period S =

(

2

3

)

.

The arithmetic operators on rational numbers can be translated in operators on pe-

riodic numbers. Let ⊗ be an arithmetic operator on rational numbers. Let A and B be

n-dimensional (without loss of generality) periodic numbers of respective periods SA ∈ Zn

and SB ∈ Zn. The periodic number C resulting from the operation ⊗ extended to periodic

numbers:

C = A ⊗ B

is defined for any I ∈ Zn by:

C(I) = A(I mod SA) ⊗ B(I mod SB).

Its period is S =













s1

s2

...

sn













∈ Zn such that sk = lcm(sA
k , sB

k ) ∀k ∈ [1, n]. This extension

is quite straightforward from rational numbers to periodic numbers. However, we will

see in next section that an operator on a monoid K can not always be straightforwardly

translated in an operator on periodics over K.

Using periodic numbers, we can give an explicit form of the equalities yielding the

extremal points.

Example 2.5. According to theorem 2.1, coordinate j of the extremal points of P2 is

given by one of the two equalities:

−i + 4j − 3 − (−i + 4j − 3) mod 4 = −i + 4j − 3 −
[

1 0 3 2
]

i
= 0

2i − 3j − 1 − (2i − 3j − 1) mod 2 = 2i − 3j − 1 −
[

1 0
]

i
= 0,

which is concordant with our preliminary observations.
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The two forms of a periodic number, an affine function modulo an integer and an

array of integers, are equivalent. However, to distinguish them, the first form will be

called symbolic form1 and the second form will be called explicit form (as its values are

given explicilty).

The equalities depend on a periodic number: their definition is periodic. As a classical

equality defines a hyperplane, i.e. a polyhedron, an equality whose definition is periodic

defines then a periodic polyhedron. It can be defined as a periodic function whose values

are polyhedra. But in order to offer the right geometric intuition, we use the following

equivalent geometric definition (stated in [66]):

Definition 1. A n-dimensional periodic polyhedron M of period S =
(

s1 s2 . . . sn

)T

∈

Nn is given by:

• q = s1 × s2 × . . . × sn polyhedra MI , indexed by:

I =
(

i1 i2 . . . in

)T

∈ Zn with 0 ≤ ik < sk, k ∈ [1..n]

• their respective definition lattice LI : the integer lattice defined by:













s1 0 · · · 0

0 s2 0 0
... 0

. . .
...

0 0 · · · sm













J + I, J ∈ Zn

⋃

I LI = Zn: any element X ∈ Zn is mapped to a unique MI by the relation 2

I = X mod S.

Notice that each MI is then the intersection between an integer lattice and a polyhedron

(i.e. a Z−polyhedron). As well as periodic numbers, periodic polyhedra can be represented

as a n-dimensional array of polyhedra.

Example 2.6. A 2-dimensional periodic polyhedron (made of one inequality) of (i, j, k) ∈

Z3 which is periodic along on (i, j) ∈ Z2, whose value is :

1we will see later that, in our frame, the general symbolic form of a periodic number is actually more

complicated than just an affine function modulo an integer
2The reader used to the theory of numbers can notice that the Li’s correspond to the direct sum of the

n residue classes modulo sk, k ∈ [1..n], which are known to partition Zn
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• i + 2j − 3k + 7 ≥ 0 for i mod 3 = 0, j mod 2 = 0

• 2i − j + k ≥ 0 for i mod 3 = 1, j mod 2 = 0

• 3j − 5 ≥ 0 for i mod 3 = 2, j mod 2 = 0

• −i − 2j ≥ 0 +3k -7 for i mod 3 = 0, j mod 2 = 1

• i − 2k + 1 ≥ 0 for i mod 3 = 1, j mod 2 = 1

• 1 ≥ 0 for i mod 3 = 2, j mod 2 = 1

can be represented as:






i + 2j − 3k + 7 ≥ 0 −i − 2j + 3k − 7 ≥ 0

2i − j + k ≥ 0 i − 2k + 1 ≥ 0

3j − 5 ≥ 0 1 ≥ 0







i,j

, and can also be written:







1 −1

2 1

0 0







i,j

i +







2 −2

−1 0

3 0







i,j

j +







−3 3

1 −2

0 0







i,j

k +







7 −7

0 1

−5 1






≥ 0

We call this form factored form, as the constant form of an affine function of (i, j, k) is

extracted.

Using periodic polyhedra, we show in next section new geometric tools that will allow

to compute the integer hull of a parametric rational polyhedron.

2.3 Pseudo-facets

We have seen that extremal points of P are integer solutions to an equality I(p(I,N), k) =

0 where p(I,N) ≥ 0 is one of the inequalities that define P . As well as {p(I,N) ≥ 0, I ∈ P}

defines a facet of P , we say that the solutions to {I(p(I,N), k) = 0, I ∈ P} belong to a

pseudo-facet of P .

Definition 2. Let pq(I,N) ≥ 0 be an inequality of P . The qth facet fq of a polyhedron P

can be defined by:

{I ∈ P | pq(I,N) = 0}.

Similarly, the qth pseudo-facet f ′
q,k of P w.r.t. ik is defined by:

{I ∈ P | I(pq(I,N), k) = 0}.
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To get further into the comparison between a facet and a pseudo-facet, notice that the

facet fq can be decomposed as the intersection of two polyhedra:

• a hyperplane, defined by pq(I,N) = 0, which by the way defines the affine hull of fq,

• and a projected polyhedron, which is obtained by eliminating a variable, say ik, in

P by using pq(I,N) = 0. The result is called projected as it corresponds to the

projection along ik of fq.

Similarly, a pseudo-facet f ′
q,k(P ) can be decomposed as the intersection of two periodic

polyhedra:

• a (supporting) pseudo-hyperplane, defined by I(pq(I,N), k) = 0,

• a projected pseudo-facet, the projection of the pseudo-facet along ik using the equality

I(pq(I,N), k) = 0.

The projected pseudo-facet defines the values of all the variables but ik for which the

solution of I(pq(I,N), k) = 0 belongs to the pseudo-facet f ′
q,k(P ).

Example 2.7. Consider the parameterized polyhedron P3 defined by:

P3 =











−2i1 + 3i2 − n ≥ 0

−2i2 + 21 ≥ 0

4i1 + i2 − 13 ≥ 0

Figure 2.7 shows the facet of P defined by :











−2i1 + 3i2 − n = 0

−2i2 + 21 ≥ 0

4i1 + i2 − 13 ≥ 0

,

which can be decomposed into a (supporting) hyperplane and a n − 1-dimensional poly-

hedron:

=











−2i1 + 3i2 − n = 0
{

2i2 + 21 ≥ 0

7i2 − 2n − 13 ≥ 0



30 CHAPTER 2. COMPUTING THE INTEGER HULL OF A POLYHEDRON

���
�

���
�

���
�

���
�

��	
	



�
�

��




���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

supporting hyperplane

facet

i2

i1 (n = 1)

projected facet

i2

i1

pseudo-facet

supporting pseudo-hyperplane
projected pseudo-facet

Figure 2.3: A facet of P3 and its corresponding pseudo-facet w.r.t. i1.

and the corresponding pseudo-facet w.r.t. i1:






















I(−2i1 + 3i2 − n, 1) = −2i1 + 3i2 − n −

[

0 1

1 0

]

i2,n

= 0

−2i2 + 21 ≥ 0

4i1 + j2 − 13 ≥ 0

,

which can be decomposed into a periodic hyperplane and a periodic n − 1-dimensional

polyhedron, the projected pseudo-facet:

=



































−2i1 + 3i2 − n −

[

0 1

1 0

]

i2,n

= 0















−2i2 + 21 ≥ 0

7i2 − 2n −

[

13 15

15 13

]

i2,n

≥ 0

We can state the basic idea for computing the integer hull of a rational polytope using

our brand new geometric object:

Theorem 2.2. The convex hull of the integer hulls of the pseudo-facets of P w.r.t. ik is

the integer hull of P .
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Proof. According to theorem 2.1, the extremal points, whose convex hull is the integer

hull of P , belong to pseudo-facets of P . Moreover, each of the extremal points belongs to

the integer hull of a pseudo-facet of P w.r.t. ik. The convex hull of the integer hulls of all

the pseudo-facets is then the integer hull of the extremal points, that is to say the integer

hull of P .

The determination of the integer hull of P therefore requires to compute the integer

hull of each of the pseudo-facets of P w.r.t. ik. Following the recursive theorem 2.2,

the pseudo-facets of the pseudo-facets of P have then to be computed. But the pseudo-

facets of P are periodic polyhedron, for which pseudo-facets are not defined yet. A näıve

manner to compute the pseudo-facets of a periodic polyhedron P ′ would be to consider

each possible definition of P ′ (which is a polyhedron) given by its explicit form, and to

compute their individual pseudo-facets. In [66], we show that operators on periodics over a

monoid K cannot in general be derived straightforwardly from the operators on K. In next

section, this issue is tackled for periodic polyhedra: some operators on polyhedra cannot

be translated naively into a semantically equivalent operator on periodic polyhedra.

2.3.1 Pseudo-facets of periodic polyhedra

As seen in definition 1, a periodic polyhedron P has the same definition PJ0
for each point

belonging to the integer lattice

SJ + J0 =













s1 0 · · · 0

0 s2 0 0
... 0

. . .
...

0 0 · · · sn+p













J + J0, J ∈ Zn+p.

It is indexed by J0, and its determinent, q = s1 × s2 × · · · × sn+p, is greater than 1 if P

is periodic. Computing directly the integer bound of a variable w.r.t. some constraint for

each polyhedron PJ0
may lead to points that do not belong to this lattice.

Example 2.8. Consider the following periodic polyhedron:

{

−2i +
[

19 20
]

i
≥ 0

Let us compute an upper bound of i for each of the possible definitions the polyhedron:
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• when i mod 2 = 0:

−2imax + 19 − (−2imax + 19) mod 2 = 0 ⇒ imax = 9

• when i mod 2 = 1:

−2imax + 20 − (−2imax + 20) mod 2 = 0 ⇒ imax = 10

The computed integer bounds are contradictory with the conditions on i: imax is odd

when it is supposed to be even, and conversely.

Hence, we must consider the integer part on the lattice where the constraint is defined.

This can be enforced by the following variable substitution:

(

I

N

)

= SJ + J0, where

J0 = (jk), jk = ik mod sk for k ∈ [1..n] and jk = nk mod sk for k ∈ [n + 1..n + p].

Considering J0 as parameters, the supporting lattice for the variables is then Zn: an

integer bound operation can only result in some point of this new lattice.

Then, taking the integer part of ik w.r.t. the constraint
∑

l alil + c of P leads to

compute:

I(
∑

l

alil +

n+p
∑

m=n+1

bmnm + c, k) = I(
∑

l

al(sljl + j0,l) +

n+p
∑

m=n+1

bm(smjm + j0,m) + c, k)

=
∑

l

al(sljl + j0,l) +

n+p
∑

m=n+1

bm(smjm + j0,m) + c

−((
∑

l

al(sljl + j0,l) +

n+p
∑

m=n+1

bm(smjm + j0,m) + c) mod |aksk|)

=
∑

l

alil +

n+p
∑

m=n+1

bmnm + c − ((
∑

l

alil +

n+p
∑

m=n+1

bmnm + c) mod |aksk|)

Hence, the definition of a pseudo-facet of a periodic polyhedron is the same as for a

polyhedron, except that the integer bound operator, I, is a bit different, as it takes the

existing period of ik into account. Notice that this new definition of I is just a generaliza-

tion to periodic polyhedra: a polyhedron is nothing else than a periodic polyhedron with

sk = 1, k ∈ [1..n].
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Example 2.9. The following periodic polyhedron with variables I =

(

i1

i2

)

and parameters

N =
(

n
)

:

P1(i1, j1, n) =















−2i1 + 3i2 − n −

[

0 1

1 0

]

i2,n

= 0

−2i2 + 21 ≥ 0

has a period S =







si1 = 1

si2 = 2

sn = 2






. Its pseudo-facet obtained from the constraint −2i2 +21 ≥ 0

w.r.t. i2 is then:

f ,
2,2 =















−2i1 + 3i2 − n −

[

0 1

1 0

]

i2,n

= 0

−2i2 + 21 − (−2i2 + 21 mod | − 2si2 |) = 0

which can be written:














−2i1 + 3i2 − n −

[

0 1

1 0

]

i2,n

= 0

−2i2 + 21 −
[

1 3
]

i2
= 0

The variable substitution technique allows to avoid the issues due to periodicity. How-

ever, one can notice that periodicity has no impact on some operators, for instance the

convex hull operator for a periodic polyhedron.

Now that the meaning of theorem 2.2 is clear, we can devise an algorithm for computing

the integer hull of a parametric polyhedron P .

2.4 Integer hull

Theorem 2.2 states a relation between the integer hull int(P ) of a polyhedron P and the

integer hull of its pseudo-facets w.r.t. variable ik:

int(P ) = conv

(

⋃

q

int(f ′
q,k(P ))

)

,
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where conv(X) denotes the convex hull of a periodic polyhedron X.

Let us see what happens when getting into the recursion: the problem is now to

compute int(f ′
q,k(P )). Similarly to the integer hull of P , the integer hull of f ′

q,k is the

integer hull of its pseudo-facets w.r.t. another variable ik′ , k′ ∈ [1..n] \ k as the points of

f ′
q,k correspond already to an integer bound of ik. Thus we have:

int(f ′
q,k) = conv





⋃

q′

int(f ′′
q′,k′(f ′

q,k))



 (2.4)

According to theorem 2.1, a property of a pseudo-facet w.r.t. ik is that ik is integer if the

other variables and the parameters are integer. A pseudo-facet f ′′ w.r.t ik′ of a pseudo-

facet f ′ w.r.t. ik belongs to f ′: ik is integer if the other variables and the parameters are

integer. Moreover, it is a pseudo-facet w.r.t. ik′ , so ik′ is integer if the other variables

and the parameters are integer. Then ik and ik′ are integer if the other variables and

parameters are integer. Recursively, taking n times a pseudo-facet of a pseudo-facet leads

to a pseudo-facet f such that all the variables are integer when the parameters are integer.

Since a pseudo-facet of a periodic polyhedron of dimension m is (m− 1)-dimensional, f is

of dimension 0. The two latter sentences state that f is an integer point if the parameters

are integer (which is assumed). The integer hull of P is then the convex hull of all the f ’s.

The relations among P , its pseudo-facets and recursively the pseudo-facets of the

pseudo-facets are given by a tree, the pseudo-facet tree P . The vertices of int(P ) are

obtained by scanning this tree from its root P to its 0-dimensional pseudo-facets, called

the pseudo-vertices of P . We can devise an algorithm from the recurrence relation among

P and its pseudo-facets to obtain the pseudo-vertices of P .

get_pseudo_vertices(periodic polyhedron P) {

n = dimension(P)

if n = 0 return P

U = empty set of periodic polyhedra

k = rank of the variable to be processed for n

i = the kth variable of V

for each inequality f(I) >= 0 of P with a nonzero coefficient for i do :

compute P’ by replacing f(I) >= 0 in P by f(I) − (f(I) mod |a|) = 0

==> P ′ = {P | f(I) − (f(I) mod |a|) = 0}

P proj = projected pseudo-facet of P ′

add get_pseudo_vertices(P proj) to U

for each element u of U

add ({ f(I) − (f(I) mod |a|) = 0} ∩ u) to P ′′
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endfor

endfor

return P ′′

}

Example 2.10. Let us compute the pseudo-vertices of

P3 =











−2i1 + 3i2 − n ≥ 0 (a)

−2i2 + 21 ≥ 0 (b)

4i1 + i2 − 13 ≥ 0 (c)

where i1, i2 are the (respectively first and second) variables and n is the parameter. Each

inequality has been marked with a letter. The pseudo-facets we are going to compute are

named according to the inequalities that are transformed into equalities. The order of

indices in which we choose to compute the pseudo-facets is i1 and then i2.

Pseudo-facet (a) w.r.t. i1 has been computed in example 2.7:

(a) =











−2i1 + 3i2 − n − (2i1 + 3i2 − n) mod 2 = 0
{

−2i2 + 21 ≥ 0

7i2 − 2n − 13 − 2[(2i1 + 3i2 − n) mod 2] ≥ 0

The period of (a) is S =







1

2

2






. Two pseudo-facets of (a) w.r.t. (i2) can be derived:

(ab) =















−2i1 + 3i2 − n − (3i2 − n) mod 2 = 0

−2i2 + 21 − (−2i2 + 21) mod (2 × 2) = 0
{

−4n + 121 − 7[(−2i2 + 21) mod 4] − 4[(3i2 − n) mod 2] ≥ 0

=







































−2i1 + 3i2 − n −

[

0 1

1 0

]

i2,n

= 0

−2i2 + 21 −
[

1 3
]

i2
= 0

{

−4n + 121 −

[

7 11

25 21

]

i2,n

≥ 0
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(ac) =































−2i1 + 3i2 − n − (3i2 − n) mod 2 = 0

7i2 − 2n − 13 − 2[(3i2 − n) mod 2] · · ·

· · · − [7i2 − 2n − 13 − 2[(3i2 − n) mod 2] mod (7 × 2)] = 0
{

−4n + 121 − 4[(3i2 − n) mod 2] · · ·

· · · − 2[7i2 − 2n − 13 − 2[(3i2 − n) mod 2] mod 14] ≥ 0

=















































−2i1 + 3i2 − n −

[

0 1

1 0

]

i2,n

= 0

7i2 − 2n − 13 −

[

1 13 11 9 7 5 3 15 13 11 9 7 5 3

8 6 4 2 14 12 10 8 6 4 2 0 12 10

]

i2,n

= 0

{

−4n + 121 −

[

2 26 22 18 14 10 6 30 26 22 18 14 10 6

16 12 8 4 28 24 20 16 12 8 4 0 24 20

]

i2,n

≥ 0

For pseudo-facet (b) w.r.t. i1, consider the equality

I(−2i2 + 21 ≥ 0, 1) = −2i2 + 21 − (−2i2 + 21) mod 0,

which does not give an extremal value of i1, as the inequality of P3 marked with (b) is

independent from i1. Thus, there is not pseudo-facet (b) w.r.t. i1. Finally, let us compute

pseudo-facet (c) w.r.t. i1:

(c) =











4i1 + i2 − 13 − (i2 − 13) mod 4 = 0
{

7i2 − 2n − 13 − (i2 − 13) mod 4 ≥ 0

−2i2 + 21 ≥ 0

,

of period







1

4

1






. Pseudo-vertices (ca) and (cb) can be derived:

(ca) =































4i1 + i2 − 13 − (i2 − 13) mod 4 = 0

7i2 − 2n − 13 − (i2 − 13) mod 4 · · ·

· · · − [7i2 + 2n − 13 − (i2 − 13) mod 4] mod (7 × 4) = 0
{

4n + 121 − 2[(i2 − 13) mod 4] · · ·

· · · − 2[[7i2 + 2n − 13 − (i2 − 13) mod 4] mod 28] ≥ 0
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=















































































4i1 + i2 − 13 −
[

3 0 1 2
]

i2
= 0

7i2 − 2n − 13 −













15 13 11 9 7 5 3 29 27 25 23 21 19 17

22 20 18 16 14 12 10 8 6 4 2 0 26 24

1 27 25 23 21 19 17 15 13 11 9 7 5 3

8 6 4 2 28 26 24 22 20 18 16 14 12 10













i2,n

= 0























4n + 121 −













30 26 22 18 14 10 6 58 54 50 46 42 38 34

44 40 36 32 28 24 20 16 12 8 4 0 52 48

2 54 50 46 42 38 34 30 26 22 18 14 10 6

16 12 8 4 56 52 48 44 40 36 32 28 24 20













i2,n

≥ 0

(cb) =















4i1 + i2 − 13 − (i2 − 13) mod 4 = 0

−2i2 + 21 − (−2i2 + 21) mod (2 × 4) = 0
{

4n + 121 − 7(−2i2 + 21) mod 8 − 2[(i2 − 13) mod 4] ≥ 0

.

=



















4i1 + i2 − 13 −
[

3 0 1 2
]

i2
= 0

−2i2 + 21 −
[

5 3 1 7
]

i2
= 0

{

−4n + 121 −
[

41 21 9 53
]

i2
≥ 0

.

As this description of a pseudo-vertex can be represented as a (upper) triangular matrix

(without the domain of parameters), it is called the triangular form of a pseudo-vertex.

The coordinates of the pseudo-vertices are derived from their triangular form by row-

elimination. For this example, they are written in their explicit form on figure 2.4.

Notice that the periodic numbers of the pseudo-vertices depend on the variables. Vari-

ables can also be instantiated in the periodic numbers, giving a set of extremal points

which are periodic along the parameters only. The number of extremal points generated

by instantiating a variable ik equals the period of the pseudo-vertex along this variable.

Example 2.11. Pseudo-vertex (ab) still depends on variable i2:














i1 = (−2n + 63 − 2[(3i2 − n) mod 2] − 3[(−2i2 + 21) mod 4])/4

i2 = (21 − (−2i2 + 21) mod 4)/2
{

n ≤ (121 − 7[(−2i2 + 21) mod 4] − 4[(3i2 − n) mod 2])/4

As the period of (ab) along i2 is 2, instantiating i2 will lead to two vertices:
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(ab)













(−2n + 63−

[

3 5

11 9

]

i2,n

)/4

(21 −

[

1

3

]

i2

)/2













n ≤ (

[

57 55

48 50

]

i2,n

)/2

(ac)













(−n + 39 +

[

3 32 33 20 21 8 9 38 39 26 27 14 15 2

17 18 5 6 35 36 23 24 11 12 −1 0 29 30

]

i2,n

)/14

(2n + 13 +

[

1 13 11 9 7 5 3 15 13 11 9 7 5 3

8 6 4 2 14 12 10 8 6 4 2 0 12 10

]

i2,n

)/7













n ≤ (121−

[

2 26 22 18 14 10 6 30 26 22 18 14 10 6

16 12 8 4 28 24 20 16 12 8 4 0 24 20

]

i2,n

)/4

(ca)

































(−n + 39 +











3 4 5 6 7 8 9 −4 −3 −2 −1 0 1 2

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 −13 −12

3 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2

3 4 5 6 −7 −6 −5 −4 −3 −2 −1 0 1 2











i2,n

)/14

(2n + 13 +











15 13 11 9 7 5 3 29 27 25 23 21 19 17

22 20 18 16 14 12 10 8 6 4 2 0 26 24

1 27 25 23 21 19 17 15 13 11 9 7 5 3

8 6 4 2 28 26 24 22 20 18 16 14 12 10











i2,n

)/7

































n ≤ (121−











15 13 11 9 7 5 3 29 27 25 23 21 19 17

22 20 18 16 14 12 10 8 6 4 2 0 26 24

1 27 25 23 21 19 17 15 13 11 9 7 5 3

8 6 4 2 28 26 24 22 20 18 16 14 12 10











i2,n

)/4

(cb)





[

2 1 1 2
]

i2[

8 9 10 7
]

i2





n ≤
[

20 25 28 17
]

i2

Figure 2.4: Explicit coordinates and validity domains of the pseudo-vertices of P3.
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(b)(a)

(c)

(i2)

(i1) (n = 0)

(ab) (ac)

(a)

(ca) (cb)

(c)

P

i2

i1

Figure 2.5: The faces of P3 and its pseudo-facets tree.

• for i2 mod 2 = 0, we can take i2 = 0:















i1 = (−2n + 63 − 2[(−n) mod 2] − 3[(21) mod 4])/4

i2 = (21 − (21) mod 4)/2
{

n ≤ (121 − 7[(21) mod 4] − 4[(−n) mod 2])/4

=















i1 = (−n + 30 − [(−n) mod 2])/2

i2 = 10
{

n ≤ (57 − 2[(−n) mod 2])/2

• for i2 mod 2 = 1, we can take i2 = 659:















i1 = (−2n + 63 − 2[(1977 − n) mod 2] − 3[(−1318 + 21) mod 4])/4

i2 = (21 − (−1318 + 21) mod 4)/2
{

4n ≤ (121 − 7[(−1318 + 21) mod 4] − 4[(1977 − n) mod 2])/4
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=















i1 = (−n + 27 − [(1 − n) mod 2])/2

i2 = 9
{

n ≤ 25 − [(1 − n) mod 2]

Somehow, the variables are already instantiated in the explicit form. For instance,

on figure 2.4, the coordinates of the nine extremal integer points (2 points for (ab), 2 for

(ac), 4 for (ca) and 1 for (cb)) can be read directly from the explicit coordinates of the

pseudo-vertices.

By opposition to cutting planes algorithms, this algorithm adds no constraint to the

original problem, but constraints are replaced by periodic constraints. Also, it adds neither

variables nor parameters to the problem. Moreover, the pseudo-facet tree of P is n-deep,

so a given pseudo-vertex is obtained by computing a pseudo-facet n times.

2.4.1 Periodic validity domains

The algorithm presented in the previous section returns a set of pseudo-vertices. Each of

them is expressed as the intersection between

• a set of n periodic hyperplanes, defining the coordinates of the pseudo-vertex,

• and the corresponding projected pseudo-facet, which is the projection of the pseudo-

vertex into the parameter space.

This projection defines the values for which the pseudo-vertex belongs to P . It is similar

to Loechner and Wilde’s validity domains [55, 60] for rational vertices of a parametric

polyhedron.

2.4.2 Computational complexity of the algorithm

We handle periodic numbers, which can have large periods if the coefficients of the con-

straints of P are large. An upper bound of the number of distinct polyhedra is M n+p,

where M is the maximal value of a coefficient that can be obtained by row elimination

of the constraints of P , and n and p are respectively the number of variables and pa-

rameters3. But using the symbolic form of a periodic number avoids this exponential

3The precise number of polyhedra, corresponding to the period of int(P ), is computed in chapter 4.
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complexity factor. Notice that this bound becomes polynomial, even with the explicit

form, if the dimension of P and its number of parameters are fixed.

Computing all the pseudo-vertices of a n-dimensional simplex requires (n + 1)! com-

putations of a pseudo-facet, which gives a lower complexity bound. An upper complexity

bound can be derived by construction. As the order of variables to become integer is

chosen once for the whole process, the number of operations is proportional to the number

of distinct combinations of n inequalities among the m inequalities of P (without picking

twice the same inequality), given by the well-known formula m!
(m−n)!(n!) . Both bounds are

exponential in n, but polynomial for a fixed n. Finally, the complexity of finding the

pseudo-vertices is then exponential, but polynomial for fixed n and p.

Anyway, the integer hull is the convex hull of the extremal points derived by instan-

tiating the variables in the periodic part of the pseudo-vertices. This instantiation is

exponential in function of n. Moreover, we know no algorithm that computes the convex

hull of a set of extremal vertices under a symbolic form that contains nested modulo ex-

pressions. Thus, the only algorithm we can implement for now is exponential in function

of n and p, and polynomial if n and p are fixed.

Nevertheless, the algorithm is highly parallel: the processing of subtrees of the pseudo-

facet tree can be distributed, and the only data to be communicated is the pseudo-facet

corresponding to the subtree root.

2.5 Generalization

2.5.1 Unbounded polyhedron

Unbounded polyhedra can be used to model nested while and for loops with the polytope

model, as for instance in [23]. Nemhauser and Wolsey have shown in [69] (part I, sec-

tion 6) that the integer hull S of an unbounded polyhedron P defined by its Minkowsky

representation:

P = {x ∈ Rn|x =
∑

k

λkv
k +

∑

j

µjr
j,
∑

k

λk = 1, µj ≥ 0 ∀j}

where the vk ∈ Rn are the extreme vertices of P and rj its extreme rays, is given by:

S = {x ∈ Zn|x =
∑

k

λkq
k +

∑

j

µjr
j,
∑

k

λk = 1, µj ≥ 0 ∀j}
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where the qk are the extremal vertices of the integer hull of conv(vk).

Thus, computing the integer hull of an unbounded polyhedron P amounts to compute

the integer hull of the convex hull of its extreme vertices.

2.5.2 Polyhedron with implicit equalities

The geometric dimension of a polyhedron P defined in a n-dimensional variable space

by a non-redundant system of e equalities E(I,N) = 0 and e′ inequalities is given by

d(P ) = n− e. A polyhedron is full-dimensional if d(P ) = n, so if P has no equalities. We

see in next section that the equalities of P must be handled in a specific manner. Following

the terminology of Schrijver, the equalities can be classified into explicit, which are plain

equalities in the definition of P , and implicit equalities, which are sets of inequalities

defining P that are equivalent to a equalities. Once identified, implicit equalities can be

transformed into explicit equalities. When some inequalities can be summed up into an

(implicit) equality, we say that these inequalities contribute to an implicit equality.

In the parametric case, a little subtlety appears, as some inequalities can contribute to

an implicit equality for only some values of the parameters. Along with the inequalities

contributing to an implicit equality, we must then identify the values of the parameters for

which the contributing inequalities are actually equivalent to an equality. We call these

values the contribution domain of the inequalities to the implicit equality. Naturally, we

are only interested in the values of the parameters that belong to the definition domain

of P .

Example 2.12. The parametric polyhedron of variables (i, j, k) and parameterized by n:

P =































i ≥ 0

j ≥ 0

2i − j + n ≥ 0

−2i + j − 3 ≥ 0

k = n

has one explicit equality, k = n. Besides, the two last inequalities contribute to one

implicit equality for n = 3, as we have then:

0 ≤ 2i − j + 3 ≤ 0 ⇔ 2i − j + 3 = 0.



2.5. GENERALIZATION 43

Hence, P is 2-dimensional for n < 3 and 1-dimensional for n = 3. The contribution

domain of the two last inequalities to the implicit equality 2i − j + 3 = 0 is {n = 3}.

The case where P has explicit equalities is treated in next section. We can assume for

now that P is only defined by a set of non-redundant inequalities. Let K be a cone made

of n inequalities of P . K can be written as:

AI + BN + C ≥ 0,

where A, B and C are respectively n × n, n × p and n × 1 integer matrices.

Consider the system of inequalities AI ≥ 0, which represents a cone K ′ centered at

the origin. According to Schrijver ([76],chap. 8), the number of implicit equalities is

n − r, where r is the row-rank of A. The row-rank of A is less than n if and only if some

rows of A can be written as a linear combination of some other rows of A. This means

that, when there is an implicit equality in K ′, one of the contributing inequalities can be

written as a linear combination of the others. The number of implicit equalities is then

given by the number of rows of A that can be eliminated by row eliminations, i.e. n − r.

Let UA =

(

H

0

)

be the right Hermite normal form of A. The number of rows of H is

the row-rank of A. The last rows with coefficients equal to zero correspond to inequalities

that have been eliminated by (unimodular) row operations. The other rows that have been

used for eliminating one of these last rows contribute to the same implcit equality. Since

the kth row of U defines the row operations performed on A to obtain the k th row of

(

H

0

)

,

the n − r last rows of U define the contributing inequalities for a given implicit equality:

the jth row of A (inequality of K) contributes to the implicit equality corresponding to

the kth row of UA if and only if Ukj is non-zero. For each implicit equality, we introduce

a distinction among the contributing rows/inequalities:

• the kth row is eliminated if the kth row of UA is made of zeros,

• the kth row is remaining if the kth row of UA has non-zero coefficients.

Example 2.13. Let K be the set of three inequalities, where (i, j, k) are variables and
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(n,m, l) are parameters:

K =











−2i + 3j − k − n ≥ 0

2i − 3j + k − m ≥ 0

−2i + 3j − k − 2l ≥ 0

We can extract A:

A =







−2 3 −1

2 −3 1

−2 3 −1






,

whose right Hermite normal form is:

UA =







−1 0 0

1 1 0

−1 0 1













−2 3 −1

2 −3 1

−2 3 −1






=







2 −3 1

0 0 0

0 0 0







The rank of A is one: there are two implicit equalities, which are materialized by the

two last rows of the right-hand side matrix. Observe the second row of U : its first and

second elements are non-zero, which means that the first and the second inequalities of K

contribute to the implicit equality materialized by the second row of the right-hand side

matrix. Similarly, one sees on the third row of U that the first and third inequalities of K

contribute to the other implicit equality. Among the three contributing inequalities, only

the first is remaining in UA, the second and the third being eliminated.

By definition, if the kth contributing inequality of K is eliminated, the coefficients for

the variables of the kth row of the polyhedron resulting from the row-elimination U (let

us call it UK) is made of zeros. But the coefficients for the parameters (and constants)

are in general non-zero: they define equalities that are the condition on which the row

elimination (and then the corresponding implicit equality) holds. In other words, the

parameters (and constants) part in the kth row of UK corresponding to the kth eliminated

row of UA define the contributing domain of the inequalities given in the k th row of U .

Besides, if the kth contributing inequality of K is remaining, the kth row of UK is the

result of the elimination: it defines explicitly the implicit equality.

Example 2.14. Using K and U from the last example, we can apply the row elimination
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U to K, giving:

U.K =











−2i + 3j − k − n = 0

−n − m = 0

n − 2l = 0

.

According to the third row of U :

• n−m = 0 is the contributing domain of −2i+3j−k−n ≥ 0 and 2i−3j+k−m ≥ 0,

which defines the equality −2i + 3j − k − n = 0,

• n−2l = 0 is the contributing domain of −2i+3j−k−n ≥ 0 and −2i+3j−k−2l ≥ 0,

which (also) defines the equality −2i + 3j − k − n = 0.

As P is the intersection of all the possible K’s derived from its defining inequalities,

each distinct intersection of contribution domains may define a separate set of implicit

inequalities. The definition domain of P can then be splitted into disjoint domains corre-

sponding to each distinct set of contribution domains.

Intuitively, as the contributing domains are values of the parameters where some in-

equalities of P collapse into an equality, it seems that these values are the last values until

P is empty. Therefore, we conjecture that the contributing domains of P are faces of its

definition domain.

We will see in subsection 2.5.3 that the computation of the integer hull of a parametric

polyhedron P depends on its defining equalities. The different contributing domains,

where implicit equalities appear, must be treated separately.

2.5.3 Non-full-dimensional polyhedron

As our algorithm works with full-dimensional polytopes, we want to transform the rational

non-full-dimensional parametric polyhedron P , defined by a non-redundant system of e

equalities E(I,N) = 0 and e′ inequalities, into a full-dimensional polyhedron. The e

equalities define the parametric hyperplane ε(N) ∈ Qn on which the polyhedron lies (i.e.,

the affine hull of P ), and the inequalities partition this hyperplane by half-spaces.

The equalities of a non-full-dimensional polyhedron make e variables dependent on

the other ones: if n − e variables are determined, the other variables are given by the

e equalities. We can then use the equalities to eliminate e variables and project P in a
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(n − e)-dimensional space. The resulting polyhedron is then full-dimensional and we can

find its integer hull by the usual method. But, as we look for integer points, two problems

appear:

• there must exist integer points in ε(N) for some integer values of N , or else int(P )

is always empty. Such values of N have to be determined.

• the e variables to be eliminated must be integer for any integer value of the remaining

n−e variables and of the parameters. If this is not the case, vertices that are integer

in the (n− e)-dimensional space may not be integer when transformed back into the

n-dimensional space.

Getting integer points in ε(N)

The set of equalities in the definition of a parametric polyhedron P (I,N) can be written:

AeI + BeN + Ce = 0, (2.5)

In the general case of a non-full-dimensional polyhedron, P contains integer points only

for some values of N , defined by an integer lattice. According to section 1.2, there is an

integer point in ε(N) if and only if:

H−1
Ae

(BN + C) = D−1H ′−1
Ae

(BN + C) ∈ Ze (2.6)

where Ae = HAeU is the Hermite normal form of Ae, and D is a e-dimensional nonnegative

diagonal matrix whose kth diagonal element δk is the common denominator of the kth row

elements of the rational matrix H−1
Ae

. This necessary and sufficient condition can also be

written:

[H ′−1
Ae

(BN + C)] mod δ = 0 (2.7)

Or more shortly :

⇔ [B′N + C ′] mod δ = 0 (2.8)

where δ is the integer (e)-vector (δi). To solve this problem, first observe that solutions

to:

B′N + C ′ = 0 (2.9)

are also solutions to (2.8). The integer kernel K of B ′ is a basis for some integer solutions

to (2.9): it is then a basis for some integer solutions to (2.8).
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Now consider the ith row of (2.8):

[B′
i·N + C ′

i] mod δi = 0, (2.10)

where B′
i· is the ith row of B′. (B′

i·N + C ′
i) mod δi is a periodic number, say of period

Si = (sij), j ∈ [1..p]. So if a given N0 ∈ Zp is solution to (2.10), any N1 ∈ Zp such that

N1 mod Si = N0 mod Si is also solution to (2.10): each equality of (2.8) yields some

periodicity of the solution. Hence, if a given vector N0 is solution to (2.8), any value

N1 such that N1 mod S = N0 mod S is also solution to (2.8), where S = (sj), and

sj = lcmi(sij), j ∈ [1..p]. sj is the period along each parameter.

So the effect of the mod δ is to introduce periodicity of the solutions: the p-dimensional

diagonal matrix S = (sj) defines another basis for solutions to (2.8). Let [G 0] be the p-

dimensional (left) Hermite normal form of
(

K S
)

and N0 a particular integer solution

to (2.8). The general form of a solution to (2.8) is:

N = GN ′ + N0 (2.11)

If there is no N0, there is no value of the parameters yielding an integer solution for I.

The considered polytope contains then no integer point for any value of the parameters.

Finding a particular integer solution to (2.8) reduces to find an integer solution to

(B′ mod δ) · N + D · X = −C ′ mod δ, which can be written

(

B′ mod δ D
)

·

(

N

X

)

= M ·

(

N

X

)

= −C ′ mod δ. (2.12)

N ′
0 = H−1

M .(−C ′ mod δ) is integer if and only if there exists an integer solution to (2.12),

where M = [HM 0] ·UM is the Hermite normal form of M . The particular solution is then

given by N0 = U−1
M ·













N ′
0

0
...

0













(see for instance [70]).

Equation (2.11) defines:

• a condition on N for the existence of an integer solution to equation (2.5), i.e., for

the existence of an integer point in P ,
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• a compression of the parameters space (from N to N ′) so that there exists an integer

point in P for any value of N ′.

Notice that G is invertible (as S is invertible) and lower triangular. Moreover, as it is an

integer compression, any integer value of N ′ corresponds to an integer value of N .

Example 2.15. Consider the following parametric rational polyhedron:

P4 =











2i + 4j − 3n + l + 5 = 0

3i − 9j + 2n − 4m − 2 = 0

i + j − n + 2m ≥ 0

,

where i, j are the variables and n,m, l the integer parameters. Its affine hull is defined by

ε4(n,m, l) =

{

2i + 4j − 3n + l + 5 = 0

3i − 9j + 2n − 4m − 2 = 0
.

We have:

HAe =

(

2 0

3 15

)

,H−1
Ae

=

(

1
2 0
−1
10

1
15

)

, δ =

(

2

30

)

,H ′−1
Ae

=

(

1 0

−3 2

)

.

Hence, we have to solve:
{

(−3n + l + 5) mod 2 = 0

(13n − 8m − 3l − 19) mod 30 = 0

The integer kernel of this system of equations, without the mod ’s, is given by :

K =







2

1

6






.

The period of the solution of the first equation is







2

1

2






and it is







30

15

10






for the second

equation. The global period of the solution is then given by their element-wise lcm:

S =







30 0 0

0 15 0

0 0 10






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The basis of solutions is then given by (the non-null column-vectors of) the Hermite normal

form of

(K|S) =







2 30 0 0

1 0 15 0

6 0 0 10






, i.e.,







2 0 0 0

1 15 0 0

6 0 10 0






.

We can compute a particular solution:






n

m

l






=







7

0

34






,

so the condition on the parameters for ε4(n,m, l) to contain an integer point is:






n

m

l






=







2 0 0

1 15 0

6 0 10













n′

m′

l′






+







7

0

34






.

Taken as a variable substitution, which corresponds to a compression of the parameters

space, it gives the following transformed polyhedron:
{

2i + 4j + 10l′ + 18 = 0

3i − 9j − 60m′ + 12 = 0
=

{

i + 2j + 5l′ + 9 = 0

i − 3j − 20m′ + 4 = 0
,

which contains an integer point for any integer values of (n′,m′, l′).

In this subsection, we have seen that it is possible to compress the parameter space in

order to have integer points in the affine hull of the resulting polyhedron for any values of

the new parameters. In next subsection, we try to eliminate some variables by ensuring

that they will have an integer value for any integer value of the other (remaining) variables

and of the parameters. This is done using the same compression technique.

Integer variable elimination

Let E(I,N) = 0 the system of e equalities defining (along with a system of e′ inequalities)

the polyhedron P . The integer solutions to E(I,N) = 0 span a sub-lattice of Zn whose

determinant can be greater that one. Looking for integer points in P is then unobvious:

we can find, from the inequalities defining P , integer points that are not solution to

E(I,N) = 0.
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Example 2.16. Consider the following polyhedron:

Peq =

{

−2i + 3j − 1 = 0

2j − 3 ≥ 0
.

The pseudo-facet obtained from the inequality 2j −3 ≥ 0 w.r.t. j is j = 2, for which there

is no integer solution to −2i + 3j − 1 = 0.

Problems with non-full-dimensional polyhedra in a space S of dimension n are com-

monly handled by projecting the polyhedron into a space S ′ of dimension n − e. The

equalities E(I,N) = 0 allow to do this, by eliminating e variables. The projected poly-

hedron P ′ is full-dimensional, so we can compute the vertices of its integer hull by the

normal method. But we seek for the corresponding integer vertices of P , which are inte-

ger solutions to E(I,N) = 0. Let I2 be the variables to be eliminated and I1 the other

(remaining) variables. For the vertices of P to be integer in S, it is necessary that, for any

integer value of I1 and N , the equalities E(I1, I2, N) = 0 lead to integer values of I2:

(N, I1) ∈ Zp+n−e, E(I1, I2, N) = 0 ⇒ I2 ∈ Ze (2.13)

As the e equations of E(I,N) = 0 determine the value of I2 for a given value of (I1, N),

an equivalent condition is that there exists an integer solution I2 to E(I1, I2, , N) = 0 for

any values of (I1, N). This condition on (N, I1) is similar to the condition on N for the

existence of integer solutions in I to E(I,N) = 0, computed in last subsection. By taking

I2 as variables and (N, I1) as parameters, we then compute a compression on (N, I1) such

that I2 is integer:






N

I1

1






=







G
N0

I1,0

0 1






·







N ′

I ′1
1






, (2.14)

where G is a lower triangular invertible integer matrix.

Substituting (I1, N) by (I ′1, N
′) and eliminating I2 allows to find points with integer

I ′1 coordinates, whose corresponding points in S given by E(I ′
1, I2, N

′) = 0 have integer

I2 coordinates. Moreover, as G,N0 and I1,0 are integer, (I1, N) is integer for any integer

(I ′1, N
′).
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Example 2.17. Consider the non-full-dimensional polyhedron

Peq2 =

{

−2i + 3j − n + 1 = 0

2j + i + 2n − 3 ≥ 0

in the 2-dimensional space (i, j), parameterized by n. Assume we chose to eliminate j.

The compression such that (i, n) ∈ Z2 ⇒ j ∈ Z is :







n

i

1






=







1 0 1

1 3 0

0 0 1













n′

i′

1






, which gives

the compressed polyhedron:

Peq2(i
′, n′) =

{

−2i′ + j − n′ = 0

3i′ + 2j + 3n′ − 1 ≥ 0
.

Eliminating j in Peq2(i
′, n′) gives the polyhedron {7i′ + 5n′ − 1 ≥ 0}, which is a full-

dimensional polyhedron of dimension 1. The derived pseudo-vertex is given by

7i′ + 5n′ − 1 − (7i′ + 5n′ − 1) mod 7 = 0

which gives

i′ =
−5n′ + 1 + (5n′ − 1) mod 7

7
.

As i = n′ + 3i′ and n′ = n − 1, we have:

i =
−8n + 11 + 3(5n − 6) mod 7

7
=

−8n + 11 +
[

3 18 12 6 0 15 3
]

n

7

and, as −2i′ + j − n′ = 0,

j =
−3n′ + 2 + 2(5n′ − 1) mod 7

7
=

−3n + 5 +
[

2 12 8 4 0 10 6
]

n

7

As expected, the resulting pseudo-vertex has integer coordinates.

Notice that, as G is lower triangular, the computed compression (2.14) can be seen as

a pair of compressions:

• the first p rows are a pure parameter space compression: N is a function of N ′ only.

• the other rows are a parametric compression: I1 depends on I ′1 and on N ′.
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The parameter space compression corresponds to the condition on N for an integer point

to exist in the affine hull of P . That is to say, it is (equivalent to) the parameter space

compression computed in last section. Both compressions are then computed at the same

time by ordering N and I1 properly, as in (2.14). Notice that the parametric integer

compression is non-orthogonal: it is not just a scaling. In the transformed space, the

directions associated to the indices may be different than in the original space. In next

section, we propose a way to compress I1 and N so that I2 is integer, but by using an

orthogonal compression.

Constrained integer variable elimination

We may wish that the basis vectors for I ′
1 have the same direction as for I1. For instance,

the lexicographic order is unchanged if I ′
1 is obtained by a combination of an orthogonal

scaling and a translation of I1. In this case, the integer lexicographic extremum for

(I1, I2) in P is obtained directly from the integer lexicographic extremum for I ′
1 in P ′

using E(I1, I2, N) = 0.

A non-orthogonal compression from (N, I1) to (N ′, I ′1) is given by equation (2.14). We

use it to compute an orthogonal compression. Consider the (p + k)th row of equation

(2.14), with k ∈ [1, n]:

ik = G(p+k),1n
′
1 + · · · + G(p+k),pn

′
p + G(p+k),(p+1)i

′
1 + · · · + G(p+k),(p+k)i

′
k + i1,0,k.

Let

i′′k = i′k + b(G(p+k),(p+1)i
′
1 + · · · + G(p+k),(p+k−1)i

′
k−1 + i1,0,k)/G(p+k),(p+k)c (2.15)

We have:

ik = G(p+k),1n
′
1 + · · · + G(p+k),pn

′
p + G(p+k),(p+k)i

′′
k + Ck,

where Ck = (G(p+k),(p+1)i
′
1+· · ·+G(p+k),(p+k−1)i

′
k−1+i1,0,k) mod G(p+k),(p+k). This relation

between ik and i′′k is a parametric scaling combined with a translation. This translation is

periodic as Ck is periodic.

Notice that, according to (2.15), we have:

i′′k ∈ Z ⇔ i′k ∈ Z (2.16)
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We would like to express I1 as a function of I ′′1 = (i′′k), but Ck still depends on the i′s. As

G is lower triangular, i′k depends on (i′1 · · · i
′
k−1) and on N ′. Hence i′1 depends only on i′′1

and N , and transitively i′k (as well as Ck) can be expressed as a function of (i′′1 , · · · , i′′k−1)

and N . Finally, the (p + k)th row of equation (2.13) can be written:

ik = Gp+k,0n
′
0 + · · · + Gp+k,pn

′
p + Gp+k,p+ki

′′
k + C ′′

k , (2.17)

where C ′′
k is Ck expressed as a function of I ′′1 .

Geometrically, the resulting transformation from I1 to I
′′

1 is the combination of an

orthogonal scaling and a periodic parameterized translation. We call it naturally a periodic

parametric orthogonal compression.

Example 2.18. Assume that the following condition holds on variables i, j, k and param-

eter n for some other variables to be eliminated:
















n

i

j

k

1

















=

















1 0 0 0 2

2 3 0 0 4

1 1 2 0 2

2 2 3 4 1

0 0 0 0 1

































n′

i′

j′

k′

1

















(2.18)

We have:

i′′ = i′ + b
4

3
c = i′ + 1

so i′ can be substituted in the second equation of system (2.18):

i = 2n′ + 3i′ + 4 = 2n′ + 3i′′ + 1

So C1 = 1. The same process can be applied to the third equation:

j′′ = j′ + b
i′ + 2

2
c ⇔ 2j′′ = 2j′ + i′ + 2 − (i′ + 2) mod 2

Substituting i′, we obtain:

2j′′ = 2j′ + i′′ + 1 − (i′′ + 1) mod 2

and the third equation becomes:

j = n′ + 2j′′ + (i′ − 2) mod 2 = n′ + 2j′′ + (i′′ + 1) mod 2



54 CHAPTER 2. COMPUTING THE INTEGER HULL OF A POLYHEDRON

The substitution for variable k is:

k′′ = k′ + b
2i′ + 3j′ + 1

4
c ⇔ 4k′′ = 4k′ + 2i′ + 3j′ + 1 − (2i′ + 3j′ + 1) mod 4

So the fourth equation becomes:

k = 2n′ + 4k′′ + (2i′ + 3j′ + 1) mod 4,

which gives, by substituting i′ and j′ by i and j:

k = 2n′ + 4k′′ + (2i′′ + 3j′′ − 2 +
−3i′′ − 3 + 3(i′′ + 1) mod 2

2
) mod 4

= 2n′ + 4k′′ +
(i′′ + 6j′′ − 7 + 3(i′′ + 1) mod 2) mod 8

2

= 2n′ + 4k′′ +













2 1 3 2 0 3 1 0

1 0 2 1 3 2 0 3

0 3 1 0 2 1 3 2

3 2 0 3 1 0 2 1













j′′,i′′

The parameterized compression defined by equation (2.18) can then be written as a peri-

odic parameterized orthogonal compression:

















n

i

j

k

1

















=

















1 0 0 0 2

2 3 0 0 1

1 0 2 0 (i′′ + 1) mod 2

2 0 0 4 (i′′+6j′′−7+3(i′′+1) mod 2) mod 8
2

0 0 0 0 1

































n′

i′′

j′′

k′′

1

















=



































1 0 0 0 2

2 3 0 0 1

1 0 2 0
[

1 0
]

i′′

2 0 0 4













2 1 3 2 0 3 1 0

1 0 2 1 3 2 0 3

0 3 1 0 2 1 3 2

3 2 0 3 1 0 2 1













j′′,i′′

0 0 0 0 1










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2.5.4 Polyhedron with multiple validity domains

In the general case of a parameterized polyhedron, the computed extremal integer points

will actually belong to the polyhedron P for only some values of the parameters. Loechner

and Wilde give in [55, 60] an algorithm to compute the values of parameters for which a

given rational vertex belongs to a rational polyhedron. This algorithm first computes the

vertices of P and their projection into the parameters space (which is the validity domain

of the vertex). The parameters space is then partitioned into polyhedral domains in which

a given set of vertices belong to P , by a series of intersection. This method can be adapted

quite directly to compute the values of the parameters associated to a given expression of

the integer hull of P . Indeed, we can partition the parameter space into periodic polyhedra

in which a given set of extremal integer points belong to P . However, we must separate the

domains where implicit equalities appear, giving a beforehand partition. This is translated

into the following algorithm:

get_integer_hull(Polyhedron P) {

V, H: empty lists of periodic polyhedra

E(I,N) = e explicit equations of P

∪(D j, P j) = Partition of the definition domain of P according to its contribution domains,

and the corresponding expression of P

for each (D j, P j)

replace the implicit equalities of P j by f explicit equalities

compress the parameters and n − (e + f) variables according to E(I,N):

(I, N) → (I′, N ′)

Q j(I′, N ′) = projection of P j(I ′, N ′) by eliminating e + f variables.

H = empty list of periodic polyhedra

PX = empty list of periodic polyhedra

PX = get_pseudo_vertices(Q j)

(W, X) = lists of validity domains and

the corresponding valid extremal points from PX

for each (W_i, X_i) in (W, X)

H_i = convex hull of the pseudo-vertices X_i

add (W_i, H_i) to (V, H)

endfor

endfor

return (V, H)

}

Loechner-Wilde validity partitions the definition domain of P into adjacent polyhedral

domains: these domains form a polyhedral complex4. This property, which does not

4This complex is known to be the chamber complex of P w.r.t. the projection into the parameters space
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influence the algorithm, is not always true for the validity domains of the extremal integer

points.

2.6 Convex hull of the integer points

To have an explicit form of the integer hull, the convex hull of the integer points must be

computed. A convex hull algorithm must be run on a set of parametric points. To our

knowledge, no such algorithm exists. Still, an algorithm based on Chernikova’s transfor-

mation [12, 34, 51] exists for doing the converse operation: translating the set of parametric

constraints of a polyhedron into its parametric vertices. For the non-parametric case, this

algorithm is used for computing the convex hull of a set of points, by using duality. Adapt-

ing this method to the parametric case will not be tried here. However, even Chernikova’s

transformation, known to be among the fastest, has an exponential complexity in varying

dimension.

Then, it sounds relevant to consider the peculiarities of the integer extremal points we

have computed, in order to reduce the computation time of their convex hull. First, it is

important to notice that the extremal integer points we compute are not the vertices of

int(P ), but a superset of them. Some of the extremal integer points may strictly belong to

int(P ) for any values of the parameters. These points, which we call false integer vertices,

are then superfluous. They shall be eliminated, so that the integer hull can be computed

directly using a (exponential) parametric convex hull algorithm. This issue is treated in

next subsection. Then, a parametric convex hull algorithm, tailor-made to the case of our

integer extremal points, is proposed in subsection 2.6.2.

2.6.1 Cleaning up

In the following discussion, each periodic value of the parameters is considered separately.

Also, we consider the different validity domains separately. Then, in the considered values,

the computed extremal vertices have a fixed affine and non-periodic expression. Let P =
⋂

q cone(vq) be the decomposition of P into cones. As int(P ) =
⋂

q int(cone(vq)), the

vertices of int(P ) can be derived from each cone of P independently from the other cones.

Hence, the false integer vertices can be eliminated cone-wise.

[77].
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The problem we focus on can be stated as: Let v be a vertex of P , and vext the

set of corresponding extremal integer points, i.e., the integer points derived by using the

constraints containing v. Compute the set of integer points vint ∈ vext which are vertices

of int(P ).

A first approach comes from noticing that:

• the computed set of extremal integer points depends on the (chosen) order in which

the variables become integer,

• the vertices of int(P ) are extremal integer points for any chosen order.

Let A and B be sets of extremal integer points computed with the respective orders oA

and oB . The points in (A ∪ B) \ (A ∩ B) are not vertices of int(P ). It is then possible

to eliminate false integer vertices by computing the extremal integer points for all the

permutations of the variables and keeping only the points that are common to all the

computations. This method may eliminate most false integer vertices, but not all of them

in the general case. Moreover, it multiplies the computation complexity by n!, the number

of permutations among the n variables.

Alternatively, we can rely on particular extremal integer points which are, by construc-

tion, close to the borders of P . These points are likely to be vertices of the integer hull:

their convex hull is likely to contain other extremal points, which can then be eliminated.

Consider a pseudo-vertex under its triangular form (as in section 2.4). The first row defines

a periodic hyperplane which is parallel to a (n − 1)-dimensional face of P . The periodic

number of this row can then be seen as a distance between the face of P and the value

of the periodic hyperplane. The second row can be read in a similar way: it corresponds

to a periodic hyperplane parallel to the (n − 2)-dimensional face of the projection of the

(n − 1)-dimensional facet mentioned above. The value of the periodic number can also

be seen as a distance between both of them, and so on until the nth row, whose periodic

number is a distance between an extremal integer point and the corresponding rational

vertex of P . Let us define this distance more formally:

Definition 3. Let v be a vertex and u be an integer extremal point derived from a pseudo-

vertex w corresponding to v. hk(u) is called the kth hyperplane distance between u and v.

It is the absolute value of the periodic number of the kth row of w, where w is of triangular

form.
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Following this idea of distance, we can define an order on the extremal integer points

derived from the same vertex:

Definition 4. Let u1, u2 be two extremal integer points derived from a vertex v. u1 is said

closer to v than u2 if and only if:

∃k ∈ [1..n] : h1(u1) = h1(u2), h2(u1) = h2(u2) . . . hk−1(u1) = hk−1(u2), hk(u1) < hk(u2).

Notice that, due to the absolute value, this order is not total. For each pseudo-vertex,

we can then define a (small set of) closest integer extremal points for each value of the

parameters (modulo their period along the parameters). The maximum number of closest

integer extremal points for a pseudo-vertex is bounded by 2n−1, as there are only two

possible minima for each row except for the first, where the periodic number can only be

non-positive.

A heuristic for quickly eliminating some of the false integer vertices is based on the

following conjecture:

Conjecture 1. At least one of the closest integer extremal points of a pseudo-vertex is a

vertex of int(P ).

The following algorithm is then expected to remove a significant part of the false integer

vertices (for each value of the parameters):

v: a vertex

Among the closest integer extremal points of the pseudo-vertices

derived from v, pick n points: c i, i ∈ [1..n].

Let u i = c i − v.

eliminate all the extremal integer points p such that

p − v =
∑

(i = 1 to n)α iu i

with:

α i ≥ 0

and
∑

(i = 1 to n)α i ≥ 1,

except the points c i themselves.

Notice that the coordinates (ci−v) are easily available from the coordinates of the pseudo-

vertex, which only differ from the coordinates of v by a periodic number.
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It can be decided to repeat this elimination phase with different combinations of the

closest extremal points. A stopping criterion has then to be set, which can be for instance

the ratio between the false integer points that have been eliminated and the number of

points before the elimination.

At this point, some false integer vertices still remain, and they have to be removed by

computing the convex hull of all the remaining integer extremal points.

2.6.2 A tailored convex hull algorithm

First, we can take advantage of the fact that, for any extremal integer point c corresponding

to a vertex vq, the value of c′ = c − v is a constant. Working cone-wise, we can then run

the non-parametric dual Chernikova transformation to obtain the convex hull of all the

extremal integer points corresponding to a vertex. Actually, we must compute the convex

hull of the extremal points plus the rays of cone(vq) to obtain int(cone(vq)). The resulting

constraints correspond to values of c′, i.e., they are translated by v. Let AI ′ + b ≥ 0 be one

of the resulting constraints, computed from the points c′. Coming back to the constraints

in the original coordinates I is straightforward:

I ′ = I − v ⇒ AI ′ + b = AI + b − Av.

The constraint is then given by AI + b − Av. It is naturally parametric as v is an affine

function of the parameters.

Finally, as int(P ) =
⋂

q int(cone(vq)), the integer hull is obtained by intersecting the

cones (i.e., by putting together the constraints of the different cones). The overhead due

to the parametric character of P is then small at this step of the integer hull computation.

Another question raises about the computation of the integer hull of P : when comput-

ing constraints from parametric vertices in general, one can find non-linear constraints,

especially constraints whose coefficients depend on the parameters. In our case, the ex-

tremal integer points c corresponding to a vertex v are such that c−v is constant (period-

wise). Moreover, the vertices v are defined by the intersection of linear constraints (the

constraints of P ). These two elements are sufficient to state that the computed constraints

cannot have coefficients that depend on parameters.
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2.7 A remark on Ehrhart polynomials

The periodic character of the integer points of a rational parametric polyhedron has ini-

tially been pointed out by Ehrhart with his Ehrhart polynomials. The integer hull of

the rational polyhedron P is the convex hull of periodic integer points: it is a periodic

polyhedron with (periodic) integer vertices. It is periodic along the parameters. Ehrhart

[26] has shown that the number of integer points in a rational parametric polyhedron (i.e.,

its Ehrhart polynomial) is non-periodic if all its vertices are integer. It is obvious that

the Ehrhart polynomial of P equals the Ehrhart polynomial of int(P ). By definition,

the periodic polyhedron int(P ) is represented by a set of polyhedra {MI} with integer

vertices, each polyhedron defining int(P ) on a given integer (definition) lattice in the pa-

rameter space. The Ehrhart polynomial of MI is then non-periodic, i.e. it is a (regular)

polynomial.

We can deduce a new way to compute the Ehrhart polynomial E of P , by computing

the Ehrhart polynomial of every MI , each resulting non-periodic polynomial defining E on

the integer lattice defining MI . We do not discuss this algorithm, as we do not believe it is

faster than current algorithms. However, it is interesting to see that the period of E equals

the period of int(P ). This result will be useful in chapter 4, where Ehrhart polynomials

are worked on.

2.8 Conclusion

We have defined a new method for computing the integer hull of a rational parameterized

polyhedron P , which characterizes the integer points in P . New geometric objects and

operators have been introduced for this purpose, which all deal with the periodic character

of the extremal integer points of P . These objects, included in the class of periodics, are a

conceptual bridge between the polyhedral model and the Ehrhart polynomials. As such,

they fit in the framework developed around the polyhedral library Polylib [84, 56, 70]. This

is why the algorithm for computing the pseudo-vertices of a non-full-dimensional periodic

polyhedron has been developed using Polylib. The generic class of periodics has also been

developed, including iterators for scanning the different values taken by a periodic.

We argue that the geometric framework of periodic polyhedra also allows new ways to

tackle all the known problems due to integer points in parametric rational polyhedra. We



2.8. CONCLUSION 61

show this in the next chapters by dealing with well-known problems in the polytope model:

parametric linear integer programming problems, problems that come when projecting a

Z-polyhedron, and issues around Ehrhart polynomials.
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Chapter 3

An application to integer linear

programming

In chapter 2, we have seen that the integer points of a rational parametric polyhedron

P can be characterized by the integer hull of P . This integer hull is the convex hull of

some integer extremal vertices, which can be computed with the help of pseudo-facets.

For some applications using this approach, only some of the vertices of the integer hull

are looked for: the problem is to find minimal or maximal integer solutions that respect

the affine constraints of P w.r.t. a certain order. In the polytope model, the natural

order corresponds to the execution order of the iterations of the modeled loop nest: it is

the lexicographic order. Feautrier [29] has developed the only algorithm for finding the

integer lexicographic extrema of a rational parametric polyhedron, in the frame of the

polytope model. This algorithm has been implemented in the PIP/PIPLib software [33].

Since then, numerous applications have been found in loop nest analysis, optimization and

parallelization, for instance in [24, 8, 9, 22]. This order is total and non-linear, but it can

be decomposed into a hierarchy of partial linear orders. This is shown in next section.

By the way, we are lead to look for the integer optimum w.r.t. a linear order, which is a

well-known mathematical problem whose applications outrun the scope of this thesis.

Many techniques exist in the literature for finding optimal integer vertices w.r.t. a

linear order. Following Nemhauser and Wolsey ([69] chap. II) and Aardal and Van Hoesel

[2, 3], they can be classified as follows:

• cutting plane algorithms compute the integer hull of a rational polyhedron P by

63
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adding constraints that exclude its non-integer vertices, so that all its integral points

still respect the added constraint. The performance of this method is strongly re-

lated to the choice of a new cutting plane. The original idea has been proposed

by Dantzig, Fulkerson and Johnson. Gomory showed an automatic way to produce

valid cutting planes in [36], giving birth to an algorithm that provably terminates.

Chvàtal extended this algorithm to bounded polyhedra with real coefficients [13].

Also did Schrijver [76], who tackled the case of an unbounded polyhedron as well.

• branch and bound algorithms recursively divide P into sub-polyhedra of which integer

vertices are computed. The most commonly used technique partitions P into two

polyhedra by a hyperplane including the optimal rational vertex of P . Branch and

bound, as well as cutting planes, first look for a rational optimum at each step.

Nowadays, this optimum is generally found by using the simplex method [25] or,

alternatively, the interior point method [46, 49].

• an algorithm for deciding if an integer solution exists (which is actually the origi-

nal formulation of the integer linear programming problem) has been described by

Lenstra [43]. It is the first polynomial-time algorithm for a fixed dimension. By

enclosing a transformation of P between two balls (one inside of P and one outside),

and by finding a basis with special properties (a reduced basis) for the correspond-

ing transformed lattice, it is shown that if there is an integer point in P , then it

belongs to a set of hyperplanes whose number is polynomially bounded for a fixed

dimension. Grötschel, Lovász and Schrijver [38, 76] refine this algorithm in some

way by bounding P using ellipsöıds instead of balls, and Lovász and Scarf [62], as

well as Kannan, use different definitions (so-called generalized) of a reduced basis.

The interested reader is invited to have a look at the clear survey of Aardal [1] on

the use of basis reduction for integer linear programming.

• notice that the question of the existence of an integer point in a polyhedron can be

answered for a parametric polyhedron. In [9], Boulet and Redon use Feautrier’s PIP

to determine if a parametric polyhedron P contains an integer point, by determining

the existence of a lexicographic integer point in P . We can also count the number

of points in a parametric polyhedron, i.e., compute the Ehrhart polynomial of P ,

and test if it is positive. However, in practice the applicability of this test is limited



3.1. FRAMEWORK 65

to polynomials of small dimension. Two algorithms for computing the Ehrhart

polynomial of a parametric polyhedron exist at present: the first one is due to

Clauss, Loechner and Wilde [15, 21, 18] and the second to Seghir et al [77] and

Verdoolaege et al [83].

• algorithms based on Lagrangean relaxation give an approximate solution by inte-

grating constraints into the objective function. Since we are interested in exact

solutions, the Lagrangean relaxation is not suitable.

• column generation, which is the dual equivalent for cutting planes.

Finding an integer extremum w.r.t. a partial linear order and w.r.t. the lexicographic

order, which is total and non-linear, seem to be distinct problems. Actually, they can

be considered as particular cases of a hierarchically linear order, which is introduced in

next section. The aim of this chapter is then to find an algorithm for computing the

extremum integer point of P w.r.t. a hierarchically linear order on Qn. An algorithm for

solving this problem for full-dimensional polyhedra is presented in section 3.2. Specific

parts of this algorithm are developed in sections 3.3 and 3.4. Then, it is extended to

non-full-dimensional polyhedra in section 3.5.

3.1 Framework

Let V be an ordered set of w integer vectors (v1, v2, . . . , vw), which can be represented as

the row-vectors of a matrix V . V defines an order upon Qn, noted ≺V and defined by:

I ∈ Qn ≺V J ∈ Qn

⇔ ∃q ∈ [1..w] : v1.I = v1.J, v2.I = v2.J . . . vq−1.I = vq−1.J, vq.I < vq.J

This order is total on Qn if the vectors of V span an n-dimensional space. Else, it is

a partial order on Qn. Let X0 be a nonempty subset of Qn (in which we look for a

maximum), and let Xq the set of elements of Xq−1 that maximize vq.I. Basically, the

maximum in X0 w.r.t. V is Xw. It is a point if X0 is finite and if V defines a total order.

In this case, if X0 is a rational polyhedron, Xw is a vertex of X0. If X0 is the intersection

of a polyhedron P with Zn, Xw is a vertex of the integer hull of P .
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Notice that the classical problem of linear programming can be seen as finding a

maximum in a polyhedron P w.r.t. an order V defined by only one vector (w = 1).

Besides, the lexicographic order is defined by V = (e1, e2, · · · en), where ek, k ∈ [1..n], is

the kth vector of the canonical basis of Zn. In other terms, the lexicographic order is

represented by a matrix V equal to the n-dimensional identity matrix.

In this chapter, we try to compute the integer points in a parametric polyhedron P

which are maximal w.r.t. a given order V represented by matrix V . The corresponding

minimum is the maximum w.r.t the order represented by matrix −V .

Pseudo-facets allow to compute extremal integer points of a rational parametric poly-

hedron. A straightforward way to compute the integer maximum of P w.r.t. V would

then compute its integer hull P ′ and find the rational maximum in P ′, for example by

adapting the lexicographic dual simplex algorithm (see [29] or [69] chap. II section 4).

But this approach implies the computation of all the integer vertices of P ′, which is costly

and in general useless as some vertices can never be the maximum w.r.t. V. So, as it

is generally done in integer linear programming, we must compute only a subset of the

vertices of P ′, containing the integer maximum of P w.r.t. V. Instead of computing all

the extremal integer points of P , we can then compute only those which may contain the

integer maximum w.r.t. V. It is the principle of the algorithm presented in next section.

3.2 Computing the integer maximum w.r.t. V

We proceed in two steps: first, we look for the set of pseudo-facets (f) that may contain

the maximum w.r.t. V. Then, we derive the integer extremal vertices from (f) and take

the maximum among them. We first assume that the considered rational parametric

polyhedron P is full-dimensional. The non-full-dimensional extension is treated in section

3.5.

Basically, the algorithm for computing the maximum pseudo-facets w.r.t. the hierar-

chically linear order represented by V =













v1

v2

...

vw













I tries to maximize v1I. Then, it maximizes

v2I if the maximum for v1I is degenerate (i.e., if it is a pseudo-facet whose dimension is

greater than 0), and so on until finding one or many pseudo-vertices or having a degenerate



3.2. ALGORITHM 67

maximum for vwI. The special case where there is no maximum pseudo-facet along the

current vector corresponds to an infinite solution. The general form of the algorithm for

finding the pseudo-facets that are maximal w.r.t. V is then given by maximize(P, V, 1),

where the function maximize is defined as following:

maximize(cf, V, q,k) {

input: cf, the periodic polyhedron to be worked on

V: the hierarchically linear order to be considered

q: integer, the current row-vector of V that we have to maximize

k: we want i k to become integer

output: a set S of pseudo-facets

0- if (v q = zero vector) then {

(a) if (q < w) then maximize(cf, V, q + 1, k)

(b) else return cf

}

1- (else) select the set of pseudo-facets F of cf w.r.t i k

that may maximize v qI

2- if F is empty, return +∞

3- (else) if (q = w) then return F

4- (else) for each pseudo-facet f ∈ F w.r.t. i k {

(a) decompose f into its supporting hyperplane h

and the corresponding projected pseudo-facet pf

(b) compute V ′, the projection of V along i k using h

(c) return (h ∩ maximize(pf, V ′, q, k + 1))

}

Each call of maximize computes pseudo-facets for which vqI is maximal, and in which

one more variable is integer. The algorithm stops either when the pseudo-facets are 0-

dimensional, or when there is no more function to maximize. As the dimension of P and

the number of vectors of V are bounded, it terminates. Its complexity is exponential,

but polynomially bounded for a fixed dimension. It is clear that the complexity of this

algorithm is strongly dependent on the way we select, at step 1, the pseudo-facets that may

maximize vqI: the fewer pseudo-facets it selects, the faster the algorithm will terminate.
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The ideal selection method would select only one pseudo-vertex, which would render a

polynomial complexity even without fixing the dimension, provided the selection method

is itself polynomial. Selection methods are discussed in next section. If the selection

method is not ideal, the result of maximize(P, V, 1, 1) is either a pseudo-facet along with

+∞ or a set of pseudo-facets. Extracting the solution (i.e. a set of vertices) from this set

is discussed in section 3.4.

3.3 Selection methods

Let I ∈ Zn be the variables and N ∈ Zp the parameters of the current periodic polyhedron

P for which we seek a maximum w.r.t. V.

3.3.1 A simple selection criterion

Let v ∈ V the vector corresponding to the current function vI to be maximized. A first

selection method is to select the (periodic) inequalities (C) : AI + BN + c ≥ 0 for which

Av < 0, where A,B are integer (1 × n) and (1 × p) matrices, and c is a periodic number.

Let us see why such inequalities lead to the maximum w.r.t. vI. Let U be a n×n matrix

whose column-vectors have the following properties:

• the first is collinear to v: v′ = αv, α 6= 0,

• the others, uk with k ∈ [2..n] are orthogonal to v: uk.v = 0,

• they form a basis of Qn.

The (rational) change of variables I = UI ′ implies: vI = vUI ′ = α‖v‖2i′1.

The maximum for vI is then given by the maximum value for i′1. We can write (C) as:

AUI ′ + BN + c ≥ 0.

It is clear that if Av, the coefficient of i′1, is negative, (C) defines an upper bound on i′1,

i.e., the maximum value for i′1 may be derived from (C). Hence, the integer points I for

which vI are maximum can belong to a pseudo-facet derived from (C).
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Example 3.1. Let us make a sketch of the process to find the candidate pseudo-vertices

with the following problem (also considered by Feautrier in [29]): compute the integer

lexicographic maximum of

P1 =































−i + m ≥ 0

i ≥ 0

j ≥ 0

−j + n ≥ 0

2i + j − k = 0

where k, n,m are the parameters. The order matrix is given by V =

(

1 0

0 1

)

. Since there is

an equality, for a given (maximal) i, j is determined, so we can eliminate j. The coefficient

in j is 1, so j is integer for any integer value of the variables and the parameters. Therefore,

the problem that appears with non-full-dimensional polyhedra, presented in section 2.5.3

does not occur here.

P1 =































2i + j − k = 0






















−i + m ≥ 0

i ≥ 0

−2i + k ≥ 0

2i − k + n ≥ 0

The candidate vertices belong to two max-pseudo-facets of P1 w.r.t. i:

A =































2i + j − k = 0






















−i + m = 0

i ≥ 0

−2i + k ≥ 0

2i − k + n ≥ 0

=































2i + j − k = 0

−i + m = 0










m ≥ 0

k − 2m ≥ 0

−k + 2m + n ≥ 0

B =































2i + j − k = 0






















−i + m ≥ 0

i ≥ 0

−2i + k − (−2i + k) mod 2 = 0

2i − k + n ≥ 0

=











































2i + j − k = 0

−2i + k −
[

0 1
]

k
= 0



















−k + 2m +
[

0 1
]

k
≥ 0

k −
[

0 1
]

k
≥ 0

n −
[

0 1
]

k
≥ 0
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Here, A and B are the pseudo-vertices we are looking for:

A :

(

i

j

)

=

(

m

k − 2m

)

for

{

m ≥ 0

2m ≤ k ≤ 2m + n

B :

(

i

j

)

=







k−

»

0 1
–

k

2
[

0 1
]

k






for







n ≥
[

0 1
]

k[

0 1
]

k
≤ k ≤ 2m +

[

0 1
]

k

In this example, the periodic numbers defining the found pseudo-vertices are not func-

tion of the variables (which is generally the case). Section 3.4 shows how to derive integer

points from pseudo-vertices.

3.3.2 An ideal selection criterion?

Intuitively, selecting the inequality for which A.vT is minimal looks like a reasonable

selection criterion, which would dramatically reduce the number of pseudo-facets to be

selected at each step. Unfortunately, this intuition is not validated by a proof yet. Anyway,

the parameter space would have to be split into domains for which an inequality minimizing

A.vT is not redundant in P . Actually, this splitting work is already done when computing

the validity domains of the different candidate maximal integer points, with the simple

selection method. But this latter computation is clearly heavier than just splitting the

parameters space before choosing the pseudo-facets.

3.4 From pseudo-facets to the solution

In this section, we assume that the result of the function maximize(P, V, 1) is a set

of pseudo-facets, each q-dimensional pseudo-facet being decomposed into a set of n − q

periodic hyperplanes and the corresponding projected pseudo-facet (it is projected in a

space with q variables and p parameters). Two particular cases can appear:

• some of the pseudo-facets correspond to an infinite maximum (maximize returns ∞),

• all the pseudo-facets are pseudo-vertices (they are 0-dimensional).
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(3 1)

(n = 0)

(0 1)

i

j

Figure 3.1: The polyhedron P∞

3.4.1 Infinite solutions

In the case where the function maximize returns +∞, the solution is infinite. However,

as +∞ results from the maximum w.r.t. V in a periodic polyhedron cf , we know that

this infinite solution belongs to the affine hull of cf , which is more precise than a mere

infinity. In the general case, cf is a q-dimensional pseudo-facet of P , so its affine hull is a

q-dimensional periodic hyperplane.

Example 3.2. Assume that we look for the integer maximum w.r.t the order V given by

V =

(

3 1

0 1

)

for the polyhedron P∞ represented on figure 3.1.

P∞ =

{

i − 2 ≥ 0

−2i − 3j + n + 16 ≥ 0

The first function to be maximized is 3i + j: let us compute the pseudo-facet(s) of

P∞ corresponding to an upper bound of 3i + j. They are derived from the inequalities

AI + BN + c ≥ 0 for which A.(3 1)T is negative. Only the second inequality is in this

case. The integer maximum for 3i + j belongs then to the pseudo-facet:

{

−2i − 3j + n + 16 − (−3j + n + 16) mod 2 = 0

i − 2 ≥ 0
=

{

2i = −3j + n + 16 − (j + n) mod 2
{

−3j + n + 12 − (j + n) mod 2 ≥ 0

The projection of 3i + j along i using 2i = −3i + n + 16 − (j + n) mod 2 is −7j. The

new function to maximize is then −j (put to a g.c.d. of 1). Now, there is no inequality
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AI + BN + c ≥ 0 for which A.(0 − 1)T is negative any more: the maximum value for the

free variable j is +∞. The solution can then be written:

max(P∞,V) =

{

2i = −3j + n + 16 − (j + n) mod 2

j = +∞

3.4.2 Set of pseudo-vertices

In the case where the returned pseudo-facets are all 0-dimensional, the maximum integer

extremal points w.r.t. V must be computed for each value of the parameters (modulo

the period along the parameters). The overall maximal extremal integer points can be

computed by selecting the maximum integer extremal points w.r.t. V for each pseudo-

vertex and then taking the maxima among them. According to section 2.6.1, the diagonal

form of a pseudo-vertex u gives directly the coordinates of u in function of its corresponding

vertex v (of P ): u = v−c, where c is a periodic number. When finding the maximal integer

extremal points corresponding to a given pseudo-vertex, comparing the different values

of v.c (instead of v.u) is then sufficient. But each integer extremal point has a different

validity domain: the maximum is only the maximum inside its definition domain. Outside,

one of the other integer extremal points may be the maximum, and so on. The solution

is then given by the following algorithm :

for each pseudo-vertex u

X: the set of extremal integer points corresponding to u

(M,D): list of the maxima and their associated domain of parameters

(M,D) = (∅, ∅)

D′: the domain of parameters for which the maximum is determined

D′ = ∅

while X 6= ∅ {

select the set x ⊆ X with the maximal value w.r.t. V

their validity domain is dv x

if (dv x \ D′) 6= ∅ {

add (x, dv x \ D′) to (M,D)

D′ = D′ ∪ dv x
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}

X = X \ x

}

Notice that the inequalities of the validity domains only vary from one constraint, from

one extremal integer point to another. Consider two extremal integer points u1 and u2.

Also, consider one of the constraints of their validity domains, respectively BN + c1 ≥ 0

and BN + c2 ≥ 0: if c1 ≥ c2, then BN + c2 ≥ 0 ⇒ BN + c1 ≥ 0. This allows to test

quickly if the validity domain of u1 is included in the validity domain of u2, by using only

the c’s.

Example 3.3. The pseudo-vertex of P3 (from example 2.10) that is maximal w.r.t. the

order V3 defined by V =
(

1 −1
)

is (ab), whose diagonal form is:















































i = (−2n + 63 −

[

3 5

11 9

]

i2,n

)/4

j = (21 −

[

1

3

]

i2

)/2

{

−2n +

[

57 55

48 50

]

i2,n

≥ 0

we can focus on the periodic numbers:

c =













−(

[

3 5

11 9

]

i2,n

)/4

−(

[

1

3

]

i2

)/2













We have:

V.c =









−(

[

1 3

5 3

]

i2,n

)/4

0









for

{

−2n +

[

57 55

48 50

]

i2,n

≥ 0

For n mod 2 = 0, the maximum for V.c is

(

−1/4

0

)

, which is reached for i2 mod 2 = 0, i.e.

for

(

i

j

)

=

(

−(n/2) + 15

10

)

, with a validity domain of −2n+57 ≥ 0. This validity domain
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includes −2n + 48 ≥ 0, so the extremal integer point obtained with i2 mod 2 = 1 is never

the maximum.

For n mod 2 = 1, the maximum for V.c is

(

−3/4

0

)

, which is reached for i2 mod 2 = 0

and for i2 mod 2 = 1, i.e. for

(

i

j

)

=

(

−(n − 1)/2 + 14

10

)

and

(

i

j

)

=

(

−(n − 1)/2 + 13

9

)

,

with a validity domain of −2n + 55 ≥ 0. The solution can then be written in a periodic

manner:
{ [(

−n/2 + 15

10

) (

−(n − 1)/2 + 14

10

)]

n

;

[(

−n/2 + 15

10

) (

−(n − 1)/2 + 13

9

)]

n

}

respectively for
{

−2n +
[

57 55
]

n
≥ 0;−2n +

[

57 50
]

n
≥ 0
}

.

3.4.3 General case

In the general case, function maximize returns a set of pseudo-facets of different dimen-

sions. By comparison with the rational case, we assume that the maximal integer vertices

w.r.t. a given order is given by only one pseudo-facet f . Then, any point I (even rational)

of f gives, for each periodic value of the variables and the parameters, the maximum value

for V I that can take an integer point of f . The maximum can then be determined as in

the previous subsection, by evaluating V I.

Example 3.4. As nothing new specific to periodicity or to the parametric character of

the computation is discussed in the current subsection, let us consider an example without

parameters and whose solution is non-periodic. Let us find the integer maximum w.r.t.

V5 with V5 =
(

1 4 1
)

in

P5 =































i + k ≥ 0

−i − k + 2 ≥ 0

−i − j − k + 3 ≥ 0

−i + k + 2 ≥ 0

i − k + 2 ≥ 0

P5 is represented on figure 3.2. Let v = (1 4 1). The inequalities AI + c ≥ 0 for which
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Figure 3.2: P5 and its integer maxima w.r.t. V5

A.v < 0 are −i − k + 2 ≥ 0 and −i − k − j + 3 ≥ 0, giving respectively the following

pseudo-facets pf1 and pf2:

pf1 =































−i − k + 2 = 0






















2 ≥ 0

−j + 1 ≥ 0

2k ≥ 0

−2k + 4 ≥ 0

, pf2 =































−i − j − k + 3 = 0






















−j + 3 ≥ 0

j − 1 ≥ 0

j + 2k − 1 ≥ 0

−j − 2k + 5 ≥ 0

.

On pf1, vI = i + 4j + k = 4j + 2, so v = (0 4 0), or (0 1 0). The only inequality of pf1 for

which A.v is negative is −j + 1 ≥ 0, so the pseudo-facet pf11 may contain the maximum

w.r.t. V5:

pf11 =























−i − k + 2 = 0

−j + 1 = 0
{

k ≥ 0

−k + 2 ≥ 0

.

On pf11, vI = j = 1, so v = (0 0 0) and we cannot go further. If pf11 is the maximum

w.r.t. V5, it is a one-dimensional degenerate solution. We can then take any value of k to

compute vI on pf11:

vI = (1 4 1).((−k + 2) 1 k)T = 6.
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On pf2, vI = i + 4j + k = 3j + 3, so v = (0 3 0), or equivalently v = (0 1 0). Two

pseudo-facets of pf2 can maximize vI:

pf21 =































−i − j − k + 3 = 0

−j + 3 = 0










2 ≥ 0

k + 1 ≥ 0

−k + 1 ≥ 0

.

Again, v = (0 0 0) on pf21, so the solution is degenerate as pf21 is one-dimensional. We

have:

vI = (1 4 1).(−k 3 k)T = 12.

Besides,

pf22 =































−i − j − k + 3 = 0

−j − 2k + 5 = 0










k − 1 ≥ 0

−k + 2 ≥ 0

2 ≥ 0

On pf22, v = j = −2k + 5, so v = (0 0 − 1). The pseudo-facet that maximizes v in pf22

is given by:

pf221 =























−i − j − k + 3 = 0

−j − 2k + 5 = 0

k − 1 = 0
{

2 ≥ 0

It is the 0-dimensional pseudo-facet (−1 3 1), so if it is the solution, it is non-degenerate.

For pf221, we have:

vI = (1 4 1).(−1 3 1)T = 12.

Noticing that pf221 belongs to pf21, the solution is given by pf21.

When the maximum for vkI in a periodic polyhedron cf is degenerate, it corresponds

to an inequality AI + BN + c ≥ 0 such that the change of variables I = UI ′ defined in

section 3.3 would give a constant upper bound on i′1 (as A.uk = 0, k ∈ [2..n]). As cf is
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convex, its value of vkI is then greater than the values for other pseudo-facets of cf . This

allows to prune the branches of the candidate pseudo-facets tree: if a degenerate maximum

for vkI is found in a q-dimensional pseudo-facet cf , the other q− 1-dimensional candidate

pseudo-facets derived from cf can be eliminated, as they do not contain a better solution.

In example 3.4, the pseudo-facet pf22 would have been pruned.

3.5 Non-full-dimensional polyhedra

As we have seen in section 2.5.3, a non-full-dimensional polyhedron P defined by a set of e

equalities (along with inequalities) can be transformed into a full-dimensional polyhedron,

by compressing it into a polyhedron P ′ (so that its supporting lattice is Zn) and then

projecting it into a space where it is full-dimensional, giving a polyhedron P ′′.

Our algorithm for finding an integer maximum w.r.t. a hierarchically linear order V

is based on the construction of pseudo-facets, selected according to the scalar product

between the row-vectors of the matrix V representing V and the normal vector of faces of

P . As P is compressed, we must compute the hierarchically linear order V ′ whose integer

maximum in P ′ corresponds to the integer maximum w.r.t. V in P . Hence, the selected

inequalities of P ′ according to V ′ must correspond to the inequalities of P that would have

been selected according to V. Let U be the compression: an inequality of P written as

AI + BN + c ≥ 0 is compressed according to I = UI ′. It is then compressed into the

inequality AUI ′+BN +c ≥ 0, i.e., A′I ′+BN +C ≥ 0 with A′ = AU . Let v a row-vector of

V . When we look for the integer maximum for vI, we compute pseudo-facets by selecting

the inequalities for which A.vT < 0. Let v′T = U−1.vT . We have

A.vT = A′U−1Uv′T = A′v′T .

In other words, an inequality of P ′ would be selected according to v if and only if the

compressed inequality is selected according to v ′ = v.(U−1)T . Finally, looking for the

integer maximum in P w.r.t. V reduces then to looking for the integer maximum in P ′

w.r.t. the order V ′ whose representing matrix is V ′ = V.(U−1)T .

Similarly, when P ′ is projected using the e equalities into a full-dimensional polyhedron

P ′′, the order V ′ must be transformed accordingly, by using the e equalities to eliminate

e variables in V ′I, giving the order V ′′.
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Once the integer maximum in P ′′ w.r.t V ′′ found, the solution to the original problem

is obtained by computing the values of the e eliminated variables using the e equalities,

and then by uncompressing the variables, using I = UI ′.

3.6 An application: determining data holes

The polytope model has broadly shown its power as a model for loop nests analysis.

Several analysis, optimization and parallelization methods are obtained by transforming

parametric Z-polyhedra (and thus their associated loop nest), for instance by:

• applying affine transformations, including scalings, skewings, symetries (as for in-

stance in [53, 71, 45]),

• applying non-affine transformations, as for instance tiling, unrolling, linearizing,

peeling (see for instance [86]),

• splitting into sub-(Z-)polyhedra (e.g. in [37, 67, 58]),

resulting in a set of parametric disjoint Z-polyhedra. But a noticeable weakness of the

model shows up when the transforming function is non-invertible: the image of a Z-

polyhedron by such a function is, in general, not a Z-polyhedron.

Again, from now on we will consider Z-polyhedra whose lattice is Zn, as it is always

possible to transform a Z-polyhedron to this simpler form.

Example 3.5. The following example has been presented by Clauss [17]. It is a parametric

version of an example initially presented by Ferrante et al [35] and also treated by Pugh

[73].

for i = 1 to 8 do

for j = 1 to p do

a(6i+9j-7) = ...

The elements of the array a reached by this loop are defined by :

E = {k ∈ Z | ∃i, j, p ∈ Z3 : 1 ≤ i ≤ 8; 1 ≤ j ≤ p; k = 6i + 9j − 7}

Although these points are defined by a set of affine rational constraints (i.e., equalities

and inequalities with integer coefficients), the set E of integer values of k, which is the
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image of a Z-polyhedron by a non-invertible affine function, cannot be described by a

Z-polyhedron. E is the Z-polyhedron {k = 3x + 2, 8 ≤ k ≤ 9p + 41, x ∈ Z} minus the two

points {k = 11} and {k = 9p + 38}. These two points that are not accessed by the loop

nest will be called (data) holes from now on.

As seen in example 3.5, a non-invertible affine transformation can be written as a

projection, by introducing a new variable (k in the example). Hence, we will use the

term projection in the following. As remarked by Aardal in [1], Lenstra [43] and Lovasz

and Scarf [62] based their integer linear programming algorithms on the idea that integer

points are hard to find in thin polyhedra. The projection of a thin polyhedron P is likely

to contain integer points which do not result from the projection of an integer point of P .

Formally, we can say that the two applications: projection and intersection with a lattice

of points, do not commute in general:

Π(P ∩ L) = Π(P ) ∩ Π(L) is false,

where Π is a projection and L is a lattice of points. This observation is confirmed by

Pugh, whose Omega test [72] identifies a dark shadow in the projection of P (which is

itself called the real shadow of P ). The integer points in the dark shadow, which is a

sub-polyhedron of the real shadow, are mandatorily resulting from the projection of an

integer point of P . The rest of the real shadow, which results from the projection of thin

parts of P , may contain integer points that are not the projection of integer points of P

(we call these points holes). In [72], the aim of Pugh is not to identify holes or the integer

points that are not holes, but to tell if a polyhedron contains integer points. The problem

Pugh focuses on is the existence of data dependences modeled by a polyhedron. Also,

Feautrier’s PIP, which computes the lexicographic extrema of a parametric polyhedron,

was firstly aimed at computing dependence functions and (re-)scheduling loop nests [30].

As stressed later by Pugh [73] in the context of integer points enumeration, the problem

of finding holes in the projection of a Z-polyhedron can be solved by solving the problem

of the existence of an integer point in a polyhedron.

This link between the two problems is used in [9] by Boulet and Redon. When pre-

evaluating the communication volumes induced by a given alignment and distribution

for a HPF program, they need to count only once the number of template locations to
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be read without communication (because they are mapped to the same processor as the

written location) at a given loop iteration. As the distribution (which maps the template

locations to the processors) is non-invertible, the authors use Feautrier’s PIP to consider

only one of the read template locations (the lexicographic minimum among them) per

processor. This leads somehow to a one-to-one mapping between a processor and a read

template location, which allows to count the number of iterations which do not generate

communications for each template location. The total number of communications among

template locations is then derived, using Ehrhart polynomials. In this frame, a processor

which is in the image of the polyhedron defining the template locations, but on which no

template location (defined by integer coordinates) is distributed, is a hole.

Until now, the unarguably appropriate way to count the computation and data volumes

of a loop nest is by using Ehrhart polynomials [26]. It has been initially proposed by Clauss

[17]. The same author uses Ehrhart polynomials to find holes in the projection of a Z-

polyhedron P , by determining the number of integer points of P that have an integer

image in the projection of P . This number is an Ehrhart polynomial, whose integer roots

correspond to the holes. The feasibility of this technique is then limited by the possibility

of finding integer roots of multivariate polynomials. Counting the holes allows then to

count the number of integer points in the projection of P .

We show in subsection 3.6.1 how to determine the exact set of values accessed by a loop

nest through a non-invertible reference function. This result gives directly an alternative

method, developed in subsection 3.6.2, for computing the number of integer points in the

image of a Z-polyhedron by a singular affine function.

3.6.1 Domain of existence of an integer point in a polyhedron

In the polytope model, the iterations of a loop nest correspond to the integer points

of a Z-polytope P (I,N) : P.







I

N

1






≥ 0 ∩ Zn+p+1, while data accessed through (multi-

dimensional) access functions are the image of these points by the corresponding mapping.

This mapping can be represented by an access matrix. It has been shown [17] that when

this matrix is non-invertible, the image is not a Z-polyhedron in the general case, but a

union of Z-polyhedra. Consider a m × (n + p + 1) access matrix A, through which a loop

with n indices and p parameters accesses a m-dimensional array. Let X ∈ Zm be the
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coordinates of an accessed array element. The access of an element X by an iteration I

of P is solution to:

{P.







I

N

1






≥ 0;A.







I

N

1






= X}

Describing the accessed data reduces to look for the set of values of X for which the set

of iterations I accessing X through A is not empty. In other words, we seek the domain

of existence in P (I,N) of an integer point in the inverse image (also called preimage) of

X by A:

{X ∈ Zm | preimage(X,A) ∩ P (I,N) 6= ∅}

First, there must exist integer points in preimage(X,A). Then, we must see for which

values of X these points are in P (I,N).

Existence of an integer point in the preimage

For simplicity, assume there is no equality in the definition of P (we have seen in section

2.5.3 how to come to such a case). We look for integer values of N and X such that there

exists an integer solution I to

A.







I

N

1






= X ⇔ AII + (ANN − ImX) + A1 = 0 (3.1)

where AI (respectively AN and A1) is the part of A corresponding to I (respectively

N and the constants), and Im is the m-dimensional identity matrix. This problem is

solved in section 2.5.3, where the n − m equations are used to eliminate n − m variables.

Here, we are going to the same projection process, pointing out different aspects of the

computation at each step. Let I2 the variables to be eliminated and I1 the variables to

remain. Considering (N,X) as parameters, the values of (N,X, I1) for which there exists

an integer I2 define an affine compression on (N,X, I1):







N

X

I1






= G.







N ′

X ′

I ′1






+







N ′
0

X ′
0

I ′0






.
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As G is lower triangular, X ′ depends on X and N , whereas N ′ depends only on N . This

compression can then be read as separate conditions for the existence of an integer solution

I2 to (3.1):

• a constant condition on N ,

• a parametric condition on X,

• a condition on I1 depending on X and N .

The condition on N gives the values of the parameters for which a data can be accessed.

The condition on X defines the lattice of array elements that can be accessed through

the reference A. The condition on I1 will allow to project P along I2 so that there is

a one-to-one mapping between the integer solutions I = (I1, I2) to (3.1) and the integer

points I ′1 of the projected polyhedron.

Example 3.6. The polyhedron presented in example 2 has only one equation: {6i+9j −

7 = k}. Let j the variable to be eliminated. The values of (i, k) for which there is an

integer solution j to this equation are defined by the following compression:











p ∈ Z

k = 3k′ + 2

i = 3i′ + 2k′

, i′, k′ ∈ Z.

The accessed array elements k defined by this compression are the same as in [73] and [17].

We can make this change of variables from (i, k) to (i′k′) explicit, giving: 2i′+j+k′−1 = 0.

The change of variables from X to X ′ defines the lattice of data that can be accesssed

by an iteration through the reference A. It corresponds to a compression of the data space:

in the new data space, each array element X ′ can be accessed by an integer iteration point

I through A. But this I does not necessarily belong to the iteration domain {P (I,N) ≥ 0}.

In next subsection, we look for the array elements X ′ actually accessed by the loop nest.

Exact data accessed by the loop nest

In the compressed space (I ′1, I2, X
′, N ′), there exist integer points in the preimage of any

integer X ′ by function A for any integer value of N ′. We are only interested in the
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integer points I ∈ P whose image by A is integer: E(I ′
1, I2, X

′, N ′) = P (I ′1, I2, X
′, N ′) ∩

{A(I ′1, I2, X
′, N ′) = 0}. More precisely, we want to know if there exist such points for

given integer X ′ and N ′. According to section 2.5.3, we can eliminate I2 in E by using

its n−m equalities. Then, these equalities give the corresponding value of (I ′
1, I

′
2) for any

value of I ′1. The resulting polyhedron E(I ′
1, X

′, N ′) is n-dimensional.

Example 3.7. In the intersection between the compressed polyhedron and the access

equalities:










1 − 2k′ ≤ 3i′ ≤ 8 − 2k′

1 ≤ j ≤ p

2i′ + j + k′ − 1 = 0

,

the equation can be used to eliminate j, giving:

P3 =

{

1 − 2k′ ≤ 3i′ ≤ 8 − 2k′

−k′ − p + 1 ≤ 2i′ ≤ −k′

Obviously, there exists an integer point I ′
1 in a parametric polyhedron E(I ′

1, X
′, N ′) if

and only if the (parametric) convex hull of its integer points, i.e., its integer hull, is not

empty. It is shown in chapter 2 that the (parametric) integer hull of a polyhedron is the

convex hull of the extremal integer points derived from its pseudo-vertices. The integer

hull is non-empty if and only if there exist such extremal points. So a straightforward way

to obtain the values of X ′ for which there exists an integer point I ′
1 in E(I ′1, X

′, N ′) would

be to compute the values of X ′ for which E(I ′1, X
′, N ′) has pseudo-vertices. For a given

pseudo-vertex, these values are given by the validity domain of the pseudo-vertex (a.k.a.

its projected pseudo-vertex).

Example 3.8. The pseudo-facet w.r.t. i′ of P3 derived from the inequality 2i′+k′+p−1 ≥

0 is:

P3,1 =























2i′ + k′ + p − 1 − (k′ + p − 1) mod 2 = 0










k′ − 3p + 1 + 3(k′ + p − 1) mod 2 ≥ 0

−k′ + 3p + 13 − 3(k′ + p − 1) mod 2 ≥ 0

p − 1 − (k′ + p − 1) mod 2 ≥ 0
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=



































































2i′ + k′ + p −

[

2 1

1 2

]

p,k′

= 0















































k′ − 3p +

[

4 3

3 4

]

p,k′

≥ 0

−k′ + 3p +

[

10 13

13 10

]

p,k′

≥ 0

p −

[

2 1

1 2

]

p,k′

≥ 0

As the value of all its variables are determined by equalities, it is a pseudo-vertex. The

values of k′ and p for which this pseudo-vertex belongs to P3 (i.e., its validity domain) are

given by the inequalities.

As there exists an integer point in E as soon as there exists a pseudo-vertex, the values

of X ′ and N ′ such that there exists an integer point I ′
1 in E can be given by the union of

the validity domains of the pseudo-vertices of E.

Computing all the pseudo-vertices is not necessary. The existence of an integer point

in E do not reduce to the existence of all its pseudo-vertices, but to the existence of at

least one pseudo-vertex. Given a (hierarchically) linear order O on the variables I ′
1, there

exists an integer point in E if and only if there is always at least one integer point that

is the maximum w.r.t. O. Thus, the existence of an integer point in E reduces to the

existence of a pseudo-vertex that is maximal w.r.t. O.

Example 3.9. For P3, we can for instance maximize −i, i.e. to minimize i. Two pseudo-

vertices minimize i′: P3,1 and

P3,2 =























3i′ + 2k′ − 1 − (2k′ − 1) mod 3 = 0










7 − (2k′ − 1) mod 3 ≥ 0

k′ − 2 − 2((2k′ − 1) mod 3) ≥ 0

−k′ + 3p − 1 + 2(2k′ − 1) mod 3 ≥ 0

=































3i′ + 2k′ −
[

3 2 1
]

k′

= 0


















[

5 6 7
]

k′

≥ 0

k′ −
[

6 4 2
]

k′

≥ 0

−k′ + 3p +
[

3 1 −1
]

k′

≥ 0

The values of k and p such that there is an integer point in P3 are then given by the union
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of the validity domains of P3,1 and P3,2:

P ′
3,1 =















































k′ − 3p +

[

4 3

3 4

]

p,k′

≥ 0

−k′ + 3p +

[

10 13

13 10

]

p,k′

≥ 0

p −

[

2 1

1 2

]

p,k′

≥ 0

∪ P ′
3,2 =







k′ −
[

6 4 2
]

k′

≥ 0

−k′ + 3p +
[

3 1 −1
]

k′

≥ 0

The fact that the union of P ′
3,1 and P ′

3,2 describe the exact set of integer values of k ′ such

that there exists an integer solution in P3 is not obvious. To convince the reader, let us

show how, for instance, we can compute the data holes. The periodic numbers used in the

definition of these validity domains are a short notation. These periodic polyhedra can be

written more explicitly as:

P ′
3,1 =























{3p − 4 ≤ k′ ≤ 3p + 10; p ≥ 2} if k′ mod 2 = 0 and p mod 2 = 0

{3p − 3 ≤ k′ ≤ 3p + 13; p ≥ 1} if k′ mod 2 = 1 and p mod 2 = 0

{3p − 3 ≤ k′ ≤ 3p + 13; p ≥ 1} if k′ mod 2 = 0 and p mod 2 = 1

{3p − 4 ≤ k′ ≤ 3p + 10; p ≥ 2} if k′ mod 2 = 1 and p mod 2 = 1

P ′
3,2 =











{6 ≤ k′ ≤ 3p + 3} if k′ mod 3 = 0

{4 ≤ k′ ≤ 3p + 1} if k′ mod 3 = 1

{2 ≤ k′ ≤ 3p − 1} if k′ mod 3 = 2

Each element of this decomposition is the intersection of a polyhedron and an integer

lattice (defined, for instance, by k ′ mod 2 = 0 and p mod 2 = 0), i.e., a Z-polyhedron.

So the data holes can be found in the following way: let Pk′ be the projection of P3 on

the space of k′: Pk′ = {2 ≤ k′ ≤ 3p + 13}. The data holes can be determined for each

validity domain by scanning the different lattices defined by the periodic numbers. For a

given lattice L, the holes generated by the Z-polyhedron P ′
L whose lattice is L is given by

(Pk′ ∩ L) \ P ′
L = (Pk′ \ R) ∩ L. Here, the holes generated by {3p − 4 ≤ k ′ ≤ 3p + 10; p ≥

2, k′ mod 2 = 0, p mod 2 = 0} are: Pk′ \ {3p − 4 ≤ k′ ≤ 3p + 10; p ≥ 2} ∩ {k′ mod 2 =

0, p mod 2 = 0} = {3p+11 ≤ k′ ≤ 3p+13}∩{k′ mod 2 = 0, p mod 2 = 0} = {k′ = 3p+12},

which is one of the data holes we were looking for (k = 3k ′ + 2 = 9p + 38).



86 CHAPTER 3. INTEGER LINEAR PROGRAMMING

Identifying the data holes determine the data computed by a loop nest more precisely

that just by projecting along the access function the polyhedron defined by the loop

bounds. In the example developed here, if the only array elements that are used after the

loop nest execution are the elements a[11] and a[3p+12], the whole loop nest is useless and

can be eliminated. Analyzing this can be considered costly when considering a single loop

nest whose volume of accessed data is large. In this case, the ratio between the number

of data accessed and the number of holes shall tend to zero, as well as the chances for

having to eliminate a whole loop nest. But, for instance, dead code elimination based

on the analysis of liveness of array elements have to propagate along the whole analyzed

program. The error associated to an approximate analysis propagates as well, and the

final error may disallow a powerful dead code elimination.

The aim of this example of use of the pseudo-facets for determining holes is just to

show the relevance of pseudo-facets in the polytope model: we did not try to devise a

specific way to compute holes that would be optimal in performance.

Among many applications (several of them are shown in [73] and [16]), this allows

for instance to determine the exact number of data accessed by a loop nest through a

non-invertible array access function. Next section shows how the number of integer points

in such a projection can be derived from the domain of existence of an integer point in a

polyhedron.

3.6.2 Number of integer points in the projection of a Z-polyhedron

Counting the number of integer points in the image of a Z-polyhedron P by a non-singular

integer affine transformation T is trivial, as it equals the number of integer points in P .

We have seen that when the transformation is singular, i.e., it can be represented by a non-

invertible matrix A, some holes appear in the image. After some adequate transformations,

we have obtained the definition of a set of points X ′ such that there exists an integer point

I in the projection of a polyhedron P (I,N), depending on parameters N . These integer

points X ′ are the image of the integer points of P . So counting the number of existing

X ′ gives the number of points in the projection of the Z-polyhedron P along A. Ehrhart

polynomials [16, 26] give the number of integer points in a rational polyhedron. Thus, the

operation is almost straightforward, the only difficulty coming from the fact that the set

of points X ′ are defined by a periodic polyhedron.
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Example 3.10. The set of integer points in E, that is to say in P3, is defined in section

3.6.1 by P ′
3,1 ∪ P ′

3,2. P ′
3,1 is periodic in function of k′, with a period of 2, and P ′

3,2 is also

periodic along k′ but with a period of 3. The couple (P ′
3,1, P

′
3,2) is then also periodic along

k′ with a period of 6. Similarly, it is periodic along p with a period of 2. We can then

write P ′
3,1 ∪ P ′

3,2 as:























3p −

[

4 3 4 3 4 3

3 4 3 4 3 4

]

p,k′

≤ k′ ≤ 3p +

[

10 13 10 13 10 13

13 10 13 10 13 10

]

p,k′

p ≥

[

2 1 2 1 2 1

1 2 1 2 1 2

]

p,k′

∪

{
[

6 4 2 6 4 2

6 4 2 6 4 2

]

p,k′

≤ k′ ≤ 3p +

[

3 1 −1 3 1 −1

3 1 −1 3 1 −1

]

p,k′

This system defines twelve Z-polyhedra, each of them having its own Ehrhart polynomial.

We can transform the system by considering that k ′ can always be written k′ = 6k′′ +

k′ mod 6 = k′′ +
[

0 1 2 3 4 5
]

k′

, and similarly p = 2p′ + p mod 2 = 2p′ +
[

0 1
]

p
:























6p′ −

[

4 2 2 0 0 −2

0 0 −2 −2 −4 −4

]

p,k′

≤ 6k′′ ≤ 6p′ +

[

10 12 8 10 6 8

16 12 14 10 12 8

]

p,k′

2p′ ≥

[

2 1 2 1 2 1

0 1 0 1 0 1

]

p,k′

∪

{

[

6 3 0 3 0 −3
]

p,k′

≤ 6k′′ ≤ 6p′ +

[

3 0 −3 0 −3 −6

6 3 0 3 0 −3

]

p,k′

In this form, the variables over which the polyhedron is enumerated, namely k ′′ and p′,

are independent from k′ mod 6 and p mod 2. Then, the number of distinct values of k ′ in

P ′
3,1 ∪ P ′

3,2 is the sum of the six Ehrhart polynomials given by the distinct combinations

of k′ mod 6, for each value of p mod 2. Let us compute the Ehrhart Polynomial ε(p) for

p mod 2 = 0 :
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









































{6p′ − 4 ≤ 6k′′ ≤ 6p′ + 10; 2p′ ≥ 2} ∪ {6 ≤ 6k′′ ≤ 6p′ + 3} , k′ mod 6 = 0

{6p′ − 2 ≤ 6k′′ ≤ 6p′ + 12; 2p′ ≥ 1} ∪ {3 ≤ 6k′′ ≤ 6p′} , k′ mod 6 = 1

{6p′ − 2 ≤ 6k′′ ≤ 6p′ + 8; 2p′ ≥ 2} ∪ {0 ≤ 6k′′ ≤ 6p′ − 3} , k′ mod 6 = 2

{6p′ ≤ 6k′′ ≤ 6p′ + 10; 2p′ ≥ 1} ∪ {3 ≤ 6k′′ ≤ 6p′} , k′ mod 6 = 3

{6p′ ≤ 6k′′ ≤ 6p′ + 6; 2p′ ≥ 2} ∪ {0 ≤ 6k′′ ≤ 6p′ − 3} , k′ mod 6 = 4

{6p′ + 2 ≤ 6k′′ ≤ 6p′ + 8; 2p′ ≥ 1} ∪ {−3 ≤ 6k′′ ≤ 6p′ − 6} , k′ mod 6 = 5

=











































{2 ≤ 6k′′ ≤ 6p′ + 10; p′ = 1} ∪ {6 ≤ 6k′′ ≤ 6p′ + 10; p′ ≥ 2} , k′ mod 6 = 0

{3 ≤ 6k′′ ≤ 6p′ + 12; 2p′ ≥ 1} , k′ mod 6 = 1

{0 ≤ 6k′′ ≤ 6p′ + 8; p′ ≥ 1} , k′ mod 6 = 2

{3 ≤ 6k′′ ≤ 6p′ + 10; 2p′ ≥ 1} , k′ mod 6 = 3

{0 ≤ 6k′′ ≤ 6p′ + 6; p′ ≥ 1} , k′ mod 6 = 4

{−3 ≤ 6k′′ ≤ 6p′ − 6; 2p′ ≥ 1} ∪ {6p′ + 2 ≤ 6k′′ ≤ 6p′ + 8; 2p′ ≥ 1} , k′ mod 6 = 5

Their number of integer points are then:










2 if p′ = 1, p′ + 2 if p′ ≥ 2 , k′ mod 6 = 0; p′ + 2 if p′ ≥ 1 , k′ mod 6 = 1

p′ + 2 if p′ ≥ 1 , k′ mod 6 = 2; p′ + 1 if p′ ≥ 1 , k′ mod 6 = 3

p′ + 2 if p′ ≥ 1 , k′ mod 6 = 4; p′ + 1 if p′ ≥ 1 , k′ mod 6 = 5

Summing all these possible values over k ′ mod 6 gives the number of integer points in

P ′
3,1 ∪ P ′

3,2 when p mod 2 = 0: ε(p) =

{

16 if p′ = 1

6p′ + 10 if p′ ≥ 2
=

{

16 if p = 2

3p + 10 if p ≥ 4

3.7 Remarks and perspectives

Using the pseudo-facet machinery, we have defined a new way to compute the integer

points that are maximum w.r.t. a hierarchically linear order in a parametric polyhedron.

This frame encompasses the known problems of parametric integer linear programming

and of the integer lexicographic maximum. In [68], Minoux stresses Gomory’s observation:

the number of integer points to be considered for finding an integer extremum w.r.t. v.I

for the problem {AI = b, I ≥ 0} is finite. Once known the rational extremum u as well as

an optimal basis B, the number of integer points near u that can be an integer solution

to the problem is bounded by det(B). This observation corroborates ours, for which the

number of integer points which can be the solution corresponding to a given rational point

equals Πn
k=1pk, where pk is the period along the variable ik.
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The algorithm works by a series of inequality selections, pseudo-facet computations

and projections. The pseudo-facet computation and the projection steps are linked, as a

pseudo-facet w.r.t. a variable ik must be projected along ik. The choice of the variable

to be projected has an influence on the periodicity of the resulting pseudo-facet. This

choice could be extended by developing the concept of pseudo-facet w.r.t. a vector of Zn.

This idea is somehow close to the concept of first/last faces introduced by Clauss in [14]

for synthesizing space-optimal systolic arrays. If this extension is possible, it raises the

question of the best set of vectors for which the periodicity of the solution is minimal.

This question will be considered in future works.

Besides, we believe that there are still some optimizations to be found in the presented

algorithms. Better selection algorithms, and some ways to give a symbolic maximum have

to be found in order to further reduce the algorithm’s complexity.
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Chapter 4

Further work on Ehrhart

polynomials

4.1 Motivation

Ehrhart polynomials allow to enumerate the number of integer points in a parametric

rational polyhedron. In the polytope model, loop nests are represented by unions of

parametric rational polyhedra. Iterations of the loop nest correspond to integer points

in a polyhedron P : counting the number of iterations executed by the loop nest boils

down to computing the Ehrhart polynomial of P . This principle has been introduced by

Clauss [15, 16], extended by Clauss and Loechner [19], and has found many applications,

especially in loop nest parallelization and optimization.

• in [19], Clauss and Loechner extract the number of distinct processors used to ex-

ecute a parametric nested loop with a given schedule. This number is an Ehrhart

polynomial depending on the loop parameters. Together with Wilde, they also show

in [21] that Ehrhart polynomials is the most appropriate technique to compute the

exact parametric number of integer points in a polyhedron, by solving problems that

were addressed by other techniques until then [35, 82, 73, 80].

• Boulet and Redon [9] use Ehrhart polynomials to evaluate the number of data com-

municated during the execution of a parallelized loop nest in HPF according to a

given array alignment, depending on the chosen data distribution. As this evaluation

91
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is done without having to execute the program, the program writer can then choose

an optimal data distribution for his/her HPF program.

• Loechner and Mongenet [59] compute the number of communications resulting from

a space-time mapping of a loop nest, and use the resulting Ehrhart polynomial as a

criterion for choosing the best space-time mapping.

• Bourgeois, Spies and Tréhel [10] use Ehrhart polynomials in the static part of their

performance predictor for C/MPI programs ChronosMix.

• We showed in [22] a method for ranking the iterations of a loop nest according to

their execution order. They use this ranking, defined by an Ehrhart polynomial, to

organize array elements that are accessed by a loop nest in the exact order in which

they are accessed. The consequence is an increase of the data locality of memory

accesses. We extended the method from the case of one loop nest accessing arrays

through an invertible array reference (so with no self-reuse) to the case of multiple

loops accessing array elements through multiple non-invertible array references [20,

57, 58], i.e., cases where self-reuse is the dominating temporal locality factor. We

treated separately the cases when only group-reuse can be exploited [67, 64, 65].

• Braberman, Garbervetsky and Yovine [11] use Ehrhart polynomials to evaluate the

amount of dynamic memory needed by Java methods, in order to allow a precise

scoped memory management and to allocate objects only when they are needed.

• Seghir et al [77] use Ehrhart polynomials to synthesize cache hints at compile time,

by computing the number of distinct array elements accessed between two distinct

accesses to an array element.

• Verdoolaege et al [83] focus on the use Ehrhart polynomials in the context of em-

bedded systems.

But a series of techniques would only need a good approximation of the number of points

in a polyhedron.

• Ju, Collard and Oukbir [44] determine the probability for an array data dependence

to occur in a window of some successive iterations, in order to decide whether a

speculative load (prefetch) is profitable or not. Roughly, this probability depend on
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a ratio between the number of iterations for which the dependence occurs and the

total number of iterations in the loop nest. They do not use Ehrhart polynomials in

their implementation, but refer to them as an appropriate method. The authors look

for quick approximations of the probabilities: the accuracy of Ehrhart polynomials

is then not really needed there.

• Pingali et al [48] mention the use of Ehrhart polynomials for a tool to estimate

the number of cache lines accessed by some array references in loop nests. This

number is needed to derive the size of data blocks that will be grouped to increase

the locality of their accesses and then increase the performance of the program. But

their implementation use bounding boxes for the considered polyhedra, which give

a very rough over-approximation of its Ehrhart polynomial.

• Hannig and Teich [39] approximate the number of used processors corresponding to

a given parallel space-time mapping with Ehrhart polynomials: the authors assume

that the projection of integer points of a polytope is given by the integer points that

belong to the projection of the polyhedron. The Ehrhart polynomial computed this

way is an over-approximation of the actual number of integer points on which the

iterations are mapped.

• The same authors [40] use Ehrhart polynomials approximation to estimate the energy

consumption of VLSI components in embedded systems.

• Lisper [54] also uses Ehrhart polynomials to evaluate the worst case execution time

of a program.

Other authors even compute approximations of the number of integer points in a polyhe-

dron.

• Tawbi developed a method for enumerating the integer points of a polyhedron, by

expressing it as sums which are then decomposed using Bernoulli formulae. The

result is an approximation in the case of rational constraints. This technique has

been used to tackle the same kind of problems as with Ehrhart polynomials, for

instance for estimating the time of execution of a loop nest [81, 82].

• Van Engelen, Gallivan and Walsh [27] estimate the worst case execution time of a

loop nest by finding a polynomial interpolation of the number of iterations. In the
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case of polyhedra with rational vertices (or equivalently when non-unit loop strides

are considered), this polynomial is an approximation of the number of integer points

in the polyhedron. This method also tries to handle polynomial loop bounds, in

which case it generally leads to an approximation of the number of iterations.

• Heine and Slovik [42] use Ehrhart polynomials to determine the best loop trans-

formation and data to be distributed to a cluster of workstations in a cyclic block

manner (as in HPF). They first compute a set of candidate mappings of iterations

to processors according to individual data access functions. Then they compute the

difference between local data and remote data to be accessed by the processors, ac-

cording to each mapping. This difference, which is an Ehrhart polynomial, is used to

rank the candidate mappings symbolically and then to choose the optimal mapping.

The authors simplify the Ehrhart polynomials by replacing each periodic coefficient

by its average value. The relevance of this approximation method is discussed in

section 4.8

Unfortunately, no formal upper bound is given on the approximation error for these dif-

ferent works, to our knowledge.

Some exact approaches also exist.

• Pugh’s [73] algorithm combines Tawbi’s approach with the omega test for simplifying

the input, which is a set of Presburger formulas. Pugh handles rational bounds by

treating integer parts as symbolic, transforming them into modulo functions.

• Sakellariou [75] goes further into decomposing nested sums, following the work of

Tawbi. His goal was to split loop nests into balanced sub-loops for parallelizing

the corresponding computations. While being exact in cases where Tawbi had to

approximate the result, his framework cannot deal with a polyhedron as is, but only

when stated as bounds of loop nests. Hence, a Fourier-Motzkin preprocess is needed.

As the bounds resulting from such a preprocess are often expressed as a maximum

or a minimum among affine loop bounds, the proposed algorithm must split the

polyhedron to have only affine loop bounds. The result is less simple and clear than

Ehrhart polynomials.

Until recently, the only implemented algorithm for computing Ehrhart polynomials

of a parametric rational polyhedron was using the Clauss-Loechner-Wilde interpolation
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method, implemented in the polyhedral library Polylib [84]. Barvinok [5] proposed a non-

parametric decomposition of cones into simplicial unimodular cones, that allows to com-

pute the Ehrhart polynomial of a non-parametric polytope in polynomial time for a fixed

dimension. The resulting algorithm is the last step of a series of advances in enumerative

combinatorics, to which belong the works of Brion, Dyer, Kantor, Khovanskii, Lawrence,

Pommersheim and Pukhlikov, which are summed up in [6]. It has been optimized and im-

plemented in the lattE software [61]. Seghir and Verdoolaege [77, 83] found simultaneously

the same idea to extend this algorithm to the parametric case. Firstly using the explicit

form of the periodic numbers, the computation time of this parametric extension is still

considered of a too high complexity, while being better than the Clauss-Loechner-Wilde

method on the presented examples. But when keeping them under a symbolic form (with

modulos, similarly to Pugh and at a smaller degre to us), the computation complexity

decreases significantly.

The need for an approximation is not only motivated by computation complexity

reasons, but also by the need for a result having a simpler mathematical structure. Also,

many mathematical tools that can analyze and manipulate polynomials exist. Ideally, we

would like to compute a good approximation of the Ehrhart polynomial of P in polynomial

time. The quality of the approximation must be known: the user should have a clear

bound on the approximation error, which should ideally be asymptotically zero when

possible. This chapter studies some aspects of Ehrhart polynomials that can lead to an

approximation by two distinct ways. Other side results are also shown: an optimization for

the Clauss-Loechner-Wilde interpolation method and an alternative Ehrhart polynomial

computation method for particular polyhedra.

First, in section 4.2 we have a look on a (proved) conjecture stated by Ehrhart that

links the periodic character of the Ehrhart polynomial of a polyhedron P to some geomet-

ric properties of its faces. We show an extension of this conjecture in section 4.3 that gives

a less restrictive condition for a polyhedron to have a non-periodic Ehrhart polynomial E .

Then, we decompose the problem of giving an approximation of E into two subproblems:

finding the values of the parameters for which the affine hull of P contains an integer point

(section 4.4), and then transforming P so that it has a non-periodic Ehrhart polynomial,

which allows to derive a non-periodic approximation. Two kinds of affine transformations

are considered: a compression of the parameters space of P in section 4.5, and an expan-

sion of the variables space of P in section 4.6. A fast tailor-made algorithm to compute



96 CHAPTER 4. FURTHER WORK ON EHRHART POLYNOMIALS

the Ehrhart polynomial of a polyhedron resulting from this variable space expansion is

presented in section 4.7. They are compared to other existing and possible approximation

methods in section 4.8. Finally, section 4.9 sums up the contribution brought by this

chapter, and gives future working directions.

4.2 A focus on Ehrhart’s conjecture

The approximation method presented here is based on the notion, due to Ehrhart, of the

grade of an Ehrhart polynomial w.r.t. a parameter a: it is the highest degree monomial

having a periodic coefficient in function of a.

Example 4.1. The grade w.r.t. a of the following Ehrhart Polynomial :

12a3 − 5a2 +
[

2 3
]

a
a + 1

is 1, as all the coefficients of degree strictly higher than 1 are non-periodic.

Ehrhart has conjectured [26] the following relationship between the grade of an Ehrhart

polynomial and a geometric property of the polyhedron, which has been proved later by

Stanley [79] and McMullen [63]:

Theorem 4.1 (Ehrhart’s conjecture). Let E(a) be the Ehrhart polynomial of a polytope

P , in a n-dimensional space, depending on parameter a:

E(a) = ck(a)ak + ck−1(a)ak−1 + . . . + c0(a),

where cq(a), q ∈ [0..k] are periodic numbers depending on a. If, for q ∈ [0..k], the affine

hulls of the q-dimensional faces of P contain an integer point for any value of the parameter

a, then the grade of E(a) equals q − 1.

A corollary of this theorem is: if the affine hulls of all the 0-dimensional faces of a

polytope P are integer for any values of the parameters, the grade of its Ehrhart polynomial

is -1. That is to say, if the vertices of P are integer for any values of the parameter, then

the Ehrhart polynomial is non-periodic. Another corollary is that if the affine hull of P is

Qn (i.e., P is full-dimensional), then the term of E(a) of degree n is non-periodic.

This theorem extends to a polytope with any number of parameters, by applying it

parameter by parameter. The Ehrhart polynomial is then multivariate, so it is more
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convenient to use a vectorial representation. Parameters will be noted N = (nk) ∈ Zp.

We use an index vector r = (rk) ∈ Zp to distinguish monomials. Any term nr1

1 nr2

2 . . . n
rp
p

written N r, r is called the multi-index of N . Let dk be the maximum degree along nk in

the polynomial, and let d = (dk) ∈ Zp. A multivariate Ehrhart polynomial can be written

as:

E(N) =
∑

0≤r≤d

αrN
r,

where the ≤ operator is element-wise, and αr is a (multidimensional) periodic number.

The grade gk of E(N) along nk is then the highest degree rk of the monomials whose

coefficients are periodic along nk. The vector g = (gk) ∈ Zp is then called the (multi-

)grade of E(N). Then, considering multiple parameters, theorem 4.1 becomes:

Theorem 4.2 (p-dimensional Ehrhart’s conjecture). Let E(n) be the Ehrhart poly-

nomial of a polytope P depending on parameters N ∈ Zp. If there exists some value

N0 = (n1,0, n2,0, . . . , nk,0, . . . , np,0), k ∈ [1..p] of the parameters such that the affine hulls

of all the qk-dimensional faces (qk ∈ [1..dk]) of P contain an integer point for any N =

(n1,0, n2,0, . . . , nk, . . . , np,0), nk ∈ Z, then the grade g = (gk) ∈ Zp of E(N) is bounded by

gk < qk.

This theorem is more general but also more intricate than theorem 4.1. The following

corollaries may be of simpler usage, while being less precise:

Corollary 1. If, for q ∈ [0..n], the affine hulls of all the q-dimensional faces of P contain

an integer point for any values of N , then g ≤ (q, q, · · · , q) (element-wise).

As we are interested in non-periodic Ehrhart polynomials, a condition for an Ehrhart

polynomial to be non-periodic can be straightforwardly derived:

Corollary 2. If all the vertices of P are integer for any values of N , then the Ehrhart

polynomial of P is non-periodic.

This last corollary is similar to the first corollary we have derived from the one-

dimensional theorem 4.1.
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4.3 A more precise condition for an Ehrhart polynomial to

be non-periodic

In chapter 2, we presented a method for computing the integer hull P ′ of a parametric

rational polyhedron P , i.e., the convex hull of its integer points. It is shown that P ′ is

a periodic polyhedron: it is periodically defined by one of the polyhedra of a finite set

{P1, P2, . . . , Pt}, t ∈ N+ of polyhedra with integer vertices. As each of these polyhedra

have integer vertices (for any values of the parameters), their Ehrhart polynomial is non-

periodic. Hence, the periodicity of the Ehrhart polynomial of P is the periodicity of the

integer hull of P .

Let P be defined by a non-redundant set of constraints (equalities and inequalities):

AP I + BP N + CP
=
≥

0 (4.1)

By construction, the periodicity of P ′ is independent from the constant part CP of P .

It follows that the periodicity of the Ehrhart polynomial of P does neither depend on

the constant part of P . This observation was also showed by Ehrhart [26] who revealed

that the number of integer points can be defined by a linear recurrence relation on the

parameters over a validity domain. This allows to extend theorem 4.1.

The affine hull of a q-dimensional face fq of a parametric rational polyhedron P of

variables I ∈ Zn and of parameters N ∈ Zp is given by turning a set of m = n − q

constraints of (4.1) into equalities:

AI + BN + C = 0,

where A, B, and C are respectively m × n,m × p, and m × 1 integer matrices, so that A

is full-row-rank (if not, fq would be empty).

Theorem 4.1 derives periodicity information for the Ehrhart polynomial of P from the

fact that the affine hulls of q-dimensional faces of P contain an integer point for any values

of N . Let A = [HA 0]UA be the left Hermite Normal form of A. According to section 1.2,

there exists an integer solution for I if and only if H−1
A .(BN + C) ∈ Zm. Equivalently,

there is an integer point in the affine hull of the face fq if and only if H−1
A (BN) ∈ Zm and

if H−1
A C ∈ Zm.

Theorem 4.1 tells that if all the q-dimensional faces of P fulfill these two conditions -

on B and on C - then the grade of the Ehrhart polynomial E(N) of P is strictly less than
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q. But we have seen that the periodicity of E(N) is independent from the constant part

C of P . Hence, condition H−1
A C ∈ Zm has no influence on the grade of P and then is

not necessary in theorem 4.1. Moreover, we can consider the condition H−1
A (BN) ∈ Zm

parameter by parameter, as the kth column-vector B•k of B corresponds to parameter nk.

It comes the following theorem:

Theorem 4.3 (extension of p-dimensional Ehrhart’s conjecture). Let E(N) be the

Ehrhart polynomial of a rational polyhedron P parameterized by N = (nk) ∈ Zp. If, for

any q-dimensional face of P whose affine hull is defined by:

AI + BN + C = 0,

where I ∈ Zn are the variables, and A, B and C are respectively (n − q) × n, (n − q) × p

and (n − q) × 1 integer matrices, we have:

H−1
A B•knk ∈ Z,∀nk ∈ Z,

where A = [HA 0]UA denotes the left Hermite normal form of A and B•k is the kth

column-vector of B, then the grade of E(N) along nk is strictly less than q.

The corollary giving a condition for an Ehrhart polynomial to be non-periodic is then:

Corollary 3 (non-periodicity condition). If all the vertices of P , defined by

AI + BN + C = 0,

where I ∈ Zn are the variables, and A, B and C are respectively n × n, n × p and n × 1

integer matrices, we have:

H−1
A BN ∈ Zn,∀N ∈ Zp,

where A = [HA 0]UA denotes the left Hermite normal form of A, then E(N) is non-

periodic.

Alternatively, this condition can be written

HA = HAB,

where (A B) = HABUAB is the left Hermite normal form of the matrix (A | B). It can be

seen as following : if any linear combination of the vectors of A and B can be reached by
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a linear combination of the vectors of A, then there is an integer solution to AI +BN = 0

for any values of N , and conversely.

We want to compute an approximation of the Ehrhart polynomial EP (N) of a rational

parametric polyhedron P , which does not, in general, satisfy the non-periodicity condition

given by corollary 3. The principle we choose is to transform P into a polyhedron P ′ satis-

fying this condition, whose Ehrhart polynomial EP ′ is then non-periodic, by transforming

affinely either its parameter space (in section 4.5) or its variable space (in section 4.6).

Then, the polynomial that approximates EP (N) is obtained by coming back to the original

space. But first, we focus on the particular case of a non-full-dimensional polyhedron, and

show how this case can be reduced to the case of a full-dimensional polyhedron.

4.4 Non-full-dimensional polyhedra

Loechner and Wilde [55] have shown that the parameter space of a parametric ratio-

nal polyhedron P can be partitioned into polyhedral domains (called validity domains)

in which P can be expressed as a non-redundant set of equalities and inequalities over

variables I ∈ Qn and parameters N ∈ Zp. In section 2.5.2, we have seen that a set of

inequalities can be equivalent to an equality for some values of the parameters. These cou-

ples of inequalities are called implicit equalities, as in [76], by opposition to plain (explicit)

equalities. It is shown that the definition domain can be split into parameters domains

with a certain set of implicit equalities, and how these inequalities can be transformed into

equivalent explicit equalities. Here, implicit equalities are assumed to be converted into

explicit equalities: the considered values of the parameters belong to one of such domains.

Also, without loss of generality, we consider one fixed Loechner-Wilde validity domain.

The e equalities define the hyperplane on which the polyhedron lies, and the inequalities

partition this hyperplane by half-spaces. The geometric dimension of P is given by n− e:

it is the dimension of its affine hull aff(P ), the hyperplane ε(N) ∈ Qn defined by the

equalities of P :

AeI + BeN + Ce = 0, (4.2)

P is called full-dimensional when its affine hull is Qn, i.e., when e = 0.

In the general case of a non-full-dimensional polyhedron, P contains integer points

only for some values of N , defined by an integer lattice. Knowing this lattice allows:



4.4. NON-FULL-DIMENSIONAL POLYHEDRA 101

• to get rid of the (easily large number of) values of N for which aff(P ) contains no

integer point,

• to project P into a space in which it is full-dimensional, and for which any integer

point corresponds to an integer point of the affine hull of P (as presented in section

2.5.3).

According to section 1.2, there is an integer point in ε(N) if and only if:

H−1
Ae

(BN + C) ∈ Ze, (4.3)

where Ae = HAeU is the Hermite normal form of Ae. According to section 2.5.3, is given

by:

N = GN ′ + N0, (4.4)

where G is an invertible lower triangular integer matrix whose non-zero elements are

positive.

If no N0 exists, there is no value of the parameters yielding an integer solution for I.

The considered polytope contains then no integer point for any value of the parameters.

Equation (4.4) defines:

• a condition on N for the existence of an integer solution to equation (4.2), i.e., for

the existence of an integer point in P ,

• a compression of the parameters space (from N to N ′) so that there exists an integer

point in P for any value of N ′.

In this section, we have seen that it is possible to compress the parameter space in

order to have integer points in the affine hull of the resulting polyhedron for any values of

the new parameters. Next section uses the same principle to enforce the non-periodicity

condition by a linear parameter space compression.
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4.5 Non-periodicity by parameter space compression

4.5.1 Non-periodicity for one vertex

In section 4.3, we have seen that E(N) is non-periodic if, for each vertex defined by

AI + BN + C =
≥

0, we have

H−1
A BN ∈ Zn. (4.5)

This problem is the same as in equation (4.3), solved in last section, but with a constant

part equal to zero. The solutions in N to this problem are then defined by an integer

lattice:

N = GN ′,

where G is a triangular nonnegative integer p-dimensional matrix. Notice that there always

exists a solution, as the vector (0, · · · , 0) is always a particular solution.

4.5.2 Non-periodicity for the polyhedron

Let {v1, v2, . . . , vr} be the r vertices of P , and let N = GiN
′ be the condition on N for a

vertex vi, i ∈ [1..r] to satisfy the non-periodicity condition (4.5). The values of N where all

the vertices satisfy (4.5) are given by the intersection of the r lattices for which vi, i ∈ [1..r]

satisfy (4.5). It is given by the lattice

(

N

1

)

= Gv ·

(

N ′

1

)

, (4.6)

where the column-vectors of matrix Gv span the intersection of the lattices spanned by

the column-vectors of Gi, i ∈ [1..r].

Equation (4.6) defines a change of variables from N to N ′, such that all the vertices

of P satisfy equation (4.5) for each value of N ′.

Example 4.2. The Ehrhart polynomial of the following polyhedron parameterized by n :

P1(n) =























i ≥ 0

j ≥ 0

−2i + n ≥ 0

−2j + n + 1 ≥ 0
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is given by

EP1
(n) =

1

4
n2 + n +

[

1 3
4

]

n

P1 has four vertices, for which we can identify matrices:

• A1 =

(

−2 0

0 −2

)

, B1 =

(

1

1

)

, G1 =

(

2 0

0 1

)

• A2 =

(

1 0

0 1

)

, B2 =

(

0

0

)

, G2 =

(

1 0

0 1

)

• A3 =

(

−2 0

0 1

)

, B3 =

(

1

0

)

, G3 =

(

2 0

0 1

)

• A4 =

(

0 −2

1 0

)

, B4 =

(

1

0

)

, G4 =

(

2 0

0 1

)

The intersection of these lattices is then given by:

(

n

1

)

= Gv

(

n′

1

)

=

(

2 0

0 1

)(

n′

1

)

Changing n into n′ in P1 gives:

P ′
1(n

′) =























i ≥ 0

j ≥ 0

−i + n′ ≥ 0

−2j + 2n′ + 1 ≥ 0

,

which satisfies the condition for its Ehrhart polynomial to be non-periodic. It is given by:

EP ′

1
(n′) = n′2 + 2n′ + 1

Consider the vertex of P1 of coordinates

(

n/2

(n + 1)/2

)

. Notice that there exists no

linear compression on n such that this vertex can be integer. Hence, Ehrhart’s conjecture

(theorem 4.1) would not allow to find a sufficient condition on n for EP1
(n) to be non-

periodic.
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This change of variables defines a restriction of the values of N to a lattice on which

the Ehrhart polynomial of P has a given (non-periodic) polynomial definition. Computing

the Ehrhart polynomial of P on this lattice will then give a non-periodic integer-valued

polynomial E ′(N ′). Changing back the variables from N ′ to N will then give a rational-

valued polynomial E ′(N) whose values are integer when N satisfies condition (4.6). Let

EP (N) be the Ehrhart polynomial of P . As the compression defined by equation (4.6) is

not affine but linear, we always have N = 0 ⇔ N ′ = 0, so the computed polynomial is the

definition of EP (N) for N mod S = 0, where S is the period of EP (N). In order to avoid

values of N for which EP (N) = 0 because the affine hull of P contains no integer points,

we assume that the parameter space has beforehand been compressed using the technique

presented in section 4.4.

Example 4.3. The change of variables to come back to n is given by:

(

n′

1

)

= G−1
v

(

n

1

)

=

(

1
2 0

0 1

)(

n

1

)

.

The polynomial resulting from applying this change of variables to EP ′

1
(n′) is:

EP ′

1
(n) =

1

4
n2 + n + 1.

It is integer-valued when n = 2n′ (n is even), for which values the non-periodicity condition

is satisfied for P .

Next subsections present applications to this parameters compression technique and

an interpretation of EP ′(N).

4.5.3 An optimisation for Ehrhart polynomials computation methods

Gv is the basis of a lattice of integer points N for which the number of points in P is given

by the same non-periodic polynomial. Notice that this is true for any N = N1+X,X ∈ Zp,

as the non-periodicity condition for AI + BN1 + (+BX + C) =
≥

0 is

N1 = GvN
′ ⇔ N = GvN

′ + X,
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which is then the general form of a lattice satisfying the non-periodicity condition for

AI + BN + C =
≥

0. The different values of X define g = |det(Gv)| distinct lattices which

partition Zp. The number of distinct non-periodic polynomials that define periodically

EP (N) is then g. Scanning the g distinct lattices would allow to compute Ehrhart poly-

nomials, by computing these g polynomials separately and putting them together into

EP (N).

The periodicity S = (sk) ∈ Zp of EP (N) is usually defined by:

EP (N) = EP (N + TX), X ∈ Zp,

where T is the p-dimensional integer diagonal matrix whose k th diagonal element is sk.

Gv has the same property:

EP (N) = EP (N + GvX), X ∈ Zp,

but it is lower triangular. One can derive T from Gv by an integer column elimination E:

T = GvE.

As Gv already results from a unimodular column-elimination, E is unimodular only if Gv

is diagonal. Else, it is non-unimodular of determinant e. In any case, we have:

t = det(T ) = e ∗ g ≥ g,

which means that the periodicity information given by T is not minimal in the general

case. The method proposed by Clauss for computing Ehrhart polynomials computes t

polynomials and puts them together into EP (N). The non-symbolic Seghir-Verdoolaege

method also computes t polynomial values, but spares some computations by computing

the periodic coefficients of the Ehrhart polynomial separately. The method suggested

above for computing Ehrhart polynomials would then reduce the number of polynomials

to be computed by a factor of e in the Clauss-Loecher-Wilde method, and a factor less

than or equal to e in the non-symbolic Seghir-Verdoolaege method.

4.5.4 An approximation method for Ehrhart polynomials

We have seen that EP ′(N) is one of the polynomials defining EP (N): the value of each

of its coefficients is the value of the corresponding coefficient of EP (N) for some values of
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N mod S. Then, if EP (N) has some non-periodic coefficients, the corresponding coefficients

of EP ′(N) are exact for any values of N . If the affine hull of the d-dimensional polyhedron

P contains integer points for any value of the parameters, then its term of degree d is

non-periodic. According to section 4.4, we can always compress the parameters space so

that the affine hull of P contains integer points for any value of the resulting parameters.

Then, EP ′(N) is an approximation of EP (N) so that its terms of degree d are exact.

Also, all the non-periodic coefficients of EP (N) are exact in EP ′(N). However, unless the

periodicity of the coefficients are computed, we do not know which of these coefficients

will be exact or not.

This approximation method boils down to looking for the value of the Ehrhart poly-

nomial for N mod S = 0, where S is the period for the parameters. The Clauss-Loechner-

Wilde algorithm computes S (or a multiple of S) using the fact that the period along a

given parameter nk is given by the common denominator of the coefficients for nk of the

(rational parametric) coordinates of the vertices of P . Once S is known, compressing the

parameters space of P according to S and computing the non-periodic Ehrhart polynomial

of the resulting polyhedron gives the same approximation for EP (N). As the Loechner-

Wilde algorithm for computing the validity domains in which P has a given Ehrhart

polynomial already computes the vertices of P , S can be quickly computed, as well as P ′.

Obviously, computing S as in Clauss-Loechner-Wilde’s method and compressing P with

S is the fastest method to compute P ′ and then EP ′(N).

4.6 Approximating by variable space transformations

4.6.1 Non-periodicity for one vertex

Given a vertex defined by the constraints

AI + BN + C ≥ 0, (4.7)

we would like to compute an affine transformation of the space of the variables I ∈ Qn so

that the non-periodicity condition,

H−1
A BN ∈ Zn

is satisfied, which is the case if A is unimodular.
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Let A = UA′Q be the Smith normal form of A, where U and Q are unimodular

matrices and A′ is an integer diagonal matrix. Equation (4.7) rewrites:

UA′QI + BN + C ≥ 0

The following change of variables :

A′QI = I ′, I ′ ∈ Zn

transforms equation (4.7) into :

UI ′ + BN + C ≥ 0

As U is unimodular, we have H−1
U BN ∈ Zn: there is an integer point I ′ in the new basis

for any value of N .

Notice that the non-periodicity is conserved by further variable space expansion. Ac-

tually, making another change of variable I ′ = X−1I ′′, I ′′ ∈ Zn, where X is an invertible

integer matrix, transforms equation (4.7) into the following equalities:

UX−1I ′′ + BN + C = 0

⇔ I ′′ + XU−1BN + XU−1C = 0.

Then, as XU−1B is integer, the non-periodicity condition is still satisfied for any I =

Q−1A′−1X−1I ′′.

4.6.2 Non-periodicity for the polyhedron

But this expansion makes one given vertex of P satisfy the non-periodicity condition. From

now on, we will note L−1
q = Q−1A′−1 the expansion matrix for the qth vertex, q ∈ [1..r].

Let I = L−1
q X−1

q I ′′q be the expansion of the variable space so that the non-periodicity

condition is satisfied for the qth vertex of P , q ∈ [1..r]. We look for an expansion of

the variable space I = L−1I ′′ that results from expansions of I ′′
q , q ∈ [1..r]. In other

terms, the column-vectors of L−1
q , q ∈ [1..r] must be an integer linear combination of the

column-vectors of L−1 : L−1Xq = L−1
q . In the lattice theory, the lattice spanned by the

column-vectors of L−1 is called the gcd of the lattices spanned by Lq, and it is given by
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the left Hermite normal form of a matrix whose columns are the columns of all the Lq’s,

q ∈ [1..r]:
(

L−1
1 L−1

2 · · · L−1
r

)

=
(

L−1 0
)

UL,

where UL is a unimodular integer matrix.

The Hermite normal form is usually computed for integer matrices, but it can be

adapted to rational matrices by factor their terms by their common denominator. L−1 is

the gcd of the q lattices, so it has the greatest possible determinant. Then, there exists no

expansion derived from the expansions computed for the individual vertices that expands

less than L−1.

Example 4.4. The following polyhedron:

P3 =











2i − 3j + 2n − 4m − 1 ≥ 0 (a)

−i + 4j + 6m − 3 ≥ 0 (b)

−2i + 12n + 8m + 25 ≥ 0 (c)

,

whose variables are i and j and whose parameters are n and m, has three vertices, given by:

v1 = (a)∩ (b), v2 = (a)∩ (c), v3 = (b)∩ (c). The Smith normal for Matrix A1 =

(

2 −3

−1 4

)

(Matrix A for v1) is :

A1 = U1A
′
1Q1 =

(

2 1

−1 0

)(

1 0

0 5

)(

1 −4

0 1

)

,

giving the change of variables:

I ′1 = A′
1Q

′
1I = L1I =

(

1 −4

0 5

)

I ⇔ I = L−1
1 I ′1 =

(

1 4
5

0 1
5

)

I ′1.

Similarly, we have:

A2 =

(

2 −3

−2 0

)

= U2A
′
2Q2 =

(

1 0

−4 1

)(

1 0

0 6

)(

2 −3

1 −2

)

= U2L2

I = L−1
2 I ′2 =

(

2 −1
2

1 −1
3

)

I ′2

A3 =

(

−1 4

−2 0

)

= U3A
′
3Q3 =

(

−1 0

−2 −1

)(

1 0

0 8

)(

1 −4

0 1

)

= U3L3
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I = L−1
3 I ′3 =

(

1 1
2

0 1
8

)

I ′3

The gcd L of the lattices L1,L2 and L3 spanned respectively by the column-vectors of

L−1
1 , L−1

2 and L−1
3 is spanned by the column-vectors of L−1:

L−1 =

(

1
10 0
1
40

1
24

)

The expansion for which the non-periodicity condition is satisfied for all the vertices of P3

is then given by
(

i

j

)

=

(

1
10 0
1
40

1
24

)(

i′

j′

)

,

and the resulting polyhedron P ′
3 with an expanded variable space is:

P ′
3 =











i′ − j′ + 16n − 32m − 8 ≥ 0

j′ + 36m − 18 ≥ 0

−i′ + 60n + 40m + 125 ≥ 0

The number of integer points in the polyhedron P ′ resulting from the variable expan-

sion is given by a non-periodic Ehrhart polynomial EP ′(N), i.e., a polynomial. But, as the

variable space is expanded by L−1 of determinant 1/g, the number of integer points in P ′

is roughly g times too big. In next subsection, we evaluate the error done by considering

that the number of integer points is multiplied by g. Finally, an approximation of the

number of integer points in P is given by
EP ′ (N)

g
.

Example 4.5. The number of integer points in P3 is given by its Ehrhart polynomial:

EP3
(N) =

361

30
n2 +

209

15
nm +

121

30
m2 +

1007

30
n +

583

30
m+
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Its approximation, given by the Ehrhart polynomial of the expanded polyhedron P ′
3 divided

by det(L) = 240 is:

EP ′

3
(N)

240
=

361

30
n2 +

209

15
nm +

121

30
m2 +

1273

40
n +

737

40
m +

505

24

4.6.3 Approximation error

In example 4.5, notice that all the terms of degree 2 (i.e., the terms for which the sum of

the degrees along each variables equals 2) of the approximation EP ′

3
(N) equal the terms of

degree 2 of the original Ehrhart polynomial. In this section, we show that this is always

the case:

Theorem 4.4. Let E(N) be the Ehrhart polynomial of a n-dimensional polyhedron P .

The terms of degree n of the approximation E ′(N) by variable expansion equal the terms

of degree n of E(N).
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Proof. The space S of the variables can be partitioned/paved into unit cells defined by

C(I0) = {I | I0 ≤ I < I0 +









1
...

1









}, I0 ∈ Zn

where the ≤ and < operators are element-wise. Each unit cell contains one and only one

integer point. When S is expanded by the transformation I = L−1I ′, giving the expanded

space S ′, each unit cell is transformed into an expanded cell given by:

C′(I0) = {I ′ | I0 ≤ L−1I ′ < I0 +









1
...

1









},

which contains exactly g = det(L) integer points.

If the polyhedron P could be partitioned exactly into whole unit cells (i.e., if it is a

hyper-rectangle with integer vertices), then its image by expansion P ′ would be the union

of the image of the unit cells of P . Then, its number of integer points would be exactly

g times the number of integer points in P . But in the general case, some unit cells are

partly inside P and partly outside. Two cases can be distinguished:

• a unit cell with I0 /∈ P but having a non-empty intersection with P : the correspond-

ing expanded cell may contain integer points that belong to P . As these integer

points do not correspond to an integer point of P , they are extra points which tend

to lead to an over-approximation of E(N).

• a unit cell with I0 ∈ P but not being completely included in P : the corresponding

expanded cell may contain integer points that do not belong to P . As these integer

points do correspond to an integer point of P , they are missing points which tend

to lead to an under-approximation of E(N).

Example 4.6. The unit cell C(0, 0) = {0 ≤ i < 1; 0 ≤ j < 1} and the polyhedron

{3i +4j − 2 ≥ 0} in Z2 are represented in figure 4.1. They have a non-empty intersection.

Expanding the variable space by

(

i

j

)

= L−1

(

i′

j′

)

with L =

(

1 1

1 −1

)

gives the expanded

unit cell C ′(0, 0) = {0 ≤ i′ + j′ < 2; 0 ≤ i′ − j′ < 2} and the expanded polyhedron

P ′ = {7i′ − j′ − 4 ≥ 0} represented in figure 4.2.
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Figure 4.1: A unit cell having a non-empty intersection with a polyhedron
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Figure 4.2: The expanded unit cell and polyhedron, with an extra integer point
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We then have:

E(N) = E ′(N) + (nmp(N) − nep(N))/g,

where nmp and nep stand respectively for number of missing points and number of extra

points. The approximation error ξ is then given by:

ξ = |(nmp(N) − nep(N))/g| (4.8)

This difference is of course periodic, but now we want to show that its degree is strictly

inferior to the maximum degree of E(N). Notice that the extra and missing points are

somehow similar: we give an upper bound on the number of extra points, knowing that

the upper bound on the missing points is similar.

Extra integer points in P ′ are the image of some rational points of a unit cell with

I0 /∈ P but having a non-empty intersection with P . So the integer points I0 that are

somehow close to P can lead to extra points in P ′: at most g − 1 points. The set I0 of

such integer points I0 belong to a finite set of hyperplanes parallel to the faces of P . Let

P defined by the set of m constraints:

f(N) = {
⋂

j∈[1..m]

fj(I,N) ≥ 0}, (4.9)

where fj(I,N) =
∑

k aj
kik +

∑

l b
j
l nl + cj ≥ 0, j ∈ [1..m]}. The condition for a unit cell to

intersect P is that at least one of its vertices satisfies (4.9). The general form of a vertex

of C(I0) is I0 +Q, where Q = (qk) ∈ Zn and qk can be 0 or 1. Notice that the case Q = (0)

is excluded as the considered I0 must not belong to P . So the general condition on I0 for

C(I0) to have a potential intersection with P is:

I0 ∈ {{I | I + Q ∈ P} \ {I ∈ P}}

⇔ I0 ∈ {I |
∑

k

aj
k(ik + qk) +

∑

l

bj
l nl + cj ≥ 0} \ {I |

∑

k

aj
kik +

∑

l

bj
l nl + c ≥ 0}

⇔ I0 ∈ {I |
∑

k

aj
kik +

∑

l

bj
l nl + (

∑

k

aj
kqk + cj) ≥ 0} \ {I |

∑

k

aj
kik +

∑

l

bj
l nl + c ≥ 0}.

The set of all the possible values of Q gives a disjunctive set of inequalities. Considering

a given inequality
∑

k aj
ki0,k +

∑

l b
j
l nl + (

∑

k aj
kqk + cj) ≥ 0 (i.e., a given value of j), all
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the inequalities (for all the possible values of Q) are redundant with (i.e., they imply) the

inequality for which the value of (
∑

k aj
kqk + c) is maximal. This value is maximum if

qk = 1 when ak is nonnegative: the maximum value is then (
∑

k aj+
k + c), where

aj+
k =

{

aj
k if aj

k ≥ 0

0 if aj
k < 0

A looser but simpler necessary condition for C(I0) to intersect P can then be derived:

I0 ∈ Υ, where

Υ = {I |
∑

k

aj
kik +

∑

l

bj
l nl +

∑

k

aj+
k + cj ≥ 0} \ {I |

∑

k

aj
kik +

∑

l

bj
l nl + c ≥ 0},

which can also be written :

Υ = (
⋂

j∈[1..m]

{fj(I,N) + αj ≥ 0}) \ (
⋂

j∈[1..m]

fj(I,N) ≥ 0}),

where αj =
∑

k aj+
k . Using the set theory (in particular, the formula A \ B = A ∩ B̄), Υ

can be reduced to a union of m convex polyhedra:

Υ =
⋃

r∈[1..m]

(
⋂

j∈[1..m]

{fj(I,N) + αj ≥ 0} ∩ {fr(I,N) < 0}) =
⋃

r∈[1..m]

Υr

For a given convex polyhedron Υr of the union, there is always a couple of inequalities

fr(I,N) + αr ≥ 0 and fr(I,N) < 0.

Then, we can say that C(I0) may lead to extra integer points in P ′ if I0 is an integer

solution to the equation

fr(I,N) + β = 0, β ∈ Z

with 0 < β ≤ αr.

The number of (n − 1)-dimensional polytopes (the solution belongs to Υr) defined by

this equality is less than or equal to the number of distinct values for β, i.e.. αr. The

number of integer solutions for I0 in a (n− 1)-dimensional polytope for a given value of β

is given by an Ehrhart polynomial EΥr ,β(N), whose degree is (n − 1).

Finally, the number of extra integer points in P ′ is less than or equal to the number of

unit cells that can lead to extra points times the number of integer points in the expanded

unit cell. Formally, it is less than or equal to :

nep(N) ≤
m
∑

r=1

(

αr
∑

β=1

(EΥr ,β(N))) × (g − 1)
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As neither of m,αr and g depend on N , the degree of nep(N) is the maximum degree of

the different EΥr,β(N), i.e., n − 1.

Obviously, a very similar reasoning can be applied to the number of missing points:

nmp(N) is less than or equal to a sum of Ehrhart polynomials whose degrees are n − 1.

According to equation (4.8), the approximation error for E(P ) using the approximation

by variable expansion is an Ehrhart polynomial whose maximum degree can be n − 1.

This proof can be extended to a non-full-dimensional polyhedron by using the trans-

formation presented in section 2.5.3, which transforms a polyhedron P ∈ Qn+n′

whose n-

dimensional affine hull intersects an integer lattice L1 into a full-dimensional Z-polyhedron

P ′ ∩ Zn.

4.7 Computing the Ehrhart polynomial of an expanded poly-

hedron

To simplify the following discussion, we will consider a full-dimensional rational parametric

polyhedron P . Extension to a non-full-dimensional polyhedron is done as usual (across

this thesis). We consider a polyhedron P resulting from a variable space expansion, as

described in previous section.

We want to compute the Ehrhart polynomial of P , by using generating functions, sim-

ilarly as in the Seghir-Verdoolaege algorithm [77, 83]. However, we want to take advantage

of the special properties of P .

Several researchers have worked on generating functions as a way to enumerate the

integer points in a polytope. An article by Barvinok and Pommersheim [6] makes a clear

inventory of the known results in this theory. The generating function of P ∩ Zn, the

integer points of P is a Laurent series defined by:

f(P ;x) =
∑

I∈P∩Zn

xI ,

where x and I are n-dimensional, and the vectorial notation xm = xi1
1 xi2

2 · · · xin
n is used, as

in section 4.2. The Ehrhart polynomial of P is then given by f(P ; (1 · · · 1)). The power

of Barvinok’s algorithm, on which the Seghir-Verdoolaege algorithm is based, relies on

properties of the generating functions:
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(a) the generating function of P equals the sum of the generating functions of its cones

(Brion’s theorem),

(b) for any convex polyhedral cone K, the series f(K;x) is a quotient of two non-zero

Laurent polynomials.

In particular, if the n rays uk of K, pointed on a vertex v, form a unimodular basis, we

have f(K;x) = xvΠn
k=1

1
(1−xuk ) . Then, known techniques allow to evaluate f(K;x) for

x = (1 · · · 1), giving the Ehrhart polynomial of P , EP (N) =
∑

i f(Ki;x).

Another important property of the generating functions is the following:

Property 1. f(P ;x) = 0 if P contains a straight line.

By the way, this property lead to an alternative proof [6, 47] of Brion’s theorem. The

algorithm we propose is mainly based on this last property. As Barvinok, we can compute

the generating function for each cone of P and then sum the generating functions of the

different cones.

Consider a rational parametric polyhedron P resulting from a variable space expansion.

By construction, it is the intersection of unimodular constraint-cones, and its vertices are

integer.

Definition 5 (m-constraint-cone). A m-constraint-cone K in a n-dimensional space

is defined by the intersection of m constraints. It is a cone pointed on a vertex v, written

a set of inequalities:

AI + BN + C ≥ 0,

where A,B and C are m×n, m× p and m× 1 matrices. A unimodular constraint-cone is

a (simplicial) n-constraint-cone such that A is unimodular. The vertex v of K saturates

all the inequalities (i.e., v is solution to the corresponding equalities).

Each constraint-cone K of P of vertex v is the intersection of unimodular constraint-

cones:

K =
⋂

i

Ui.



4.7. EHRHART POLYNOMIAL OF AN EXPANDED POLYHEDRON 117

A constraint-cone is equivalent to a cone written as the positive combination of rays

rj and v (Minkowski representation):

C = v +

n
∑

j=1

αjrj , αj ≥ 0, rj ∈ Zn.

rj is called a ray of C.

Let two constraint-cones C1 and C2 of vertex v such that u ∈ Zn is a ray of C1 and −u

is a ray of C2:

C1 = v + α1u +
n
∑

j=2

αjr1,j, αj ≥ 0,

C2 = v − α2u +
n
∑

j=2

αjr2,j, αj ≥ 0,

The generating function of C1 ∩ C2 is given by:

f(C1 ∩ C2;x) = f(C1;x) + f(C2;x) − f(C1 ∪ C2;x).

C1 ∪ C2 can be written as a positive combination of rays and v:

C1 ∪ C2 = v + (α1 − α2)u +
n
∑

j=1

αjr1,j +
n
∑

j=1

αkr2,j , αj ≥ 0αk ≥ 0. (4.10)

As {(α1 − α2)u, α1 ≥ 0, α2 ≥ 0} defines a straight line, we have by property 1:

f(C1 ∪ C2;x) = 0,

which gives the following property:

Property 2 (composability). Let C1 and C2 be two constraint-cones of vertex v. If u is

a ray of the constraint-cone C1 and −u is a ray of the constraint-cone C2, we have:

f(C1 ∩ C2;x) = f(C1;x) + f(C2;x).

C1 and C2 are said to be composable.

A m-constraint-cone can be defined as the intersection of Cn
m unimodular constraint-

cones 1. But these unimodular constraint-cones are not in general composable with each

1Here, Cn
m denotes the number of combinations of n inequalities among m
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other. We must find a definition of K as the intersection of unimodular constraint-cones

Ci that are composable with each other. The generating function of K is then the sum of

the generating functions of Ci.

A simple divide-and conquer algorithm leads to this decomposition. As constraints

incident to a cone are split away from each other, similarly as the banana skin is split

from one end of the banana, we call it the banana skin algorithm.

C: m-constraint cone

decomp(C) {

if C is a n-constraint-cone, return C.

B: n − 1 inequalities of C

Compute the m − n unimodular constraint-cones C ′ of C made of:

- the n − 1 chosen inequalities

- one of the other m − n inequalities

u: basis vector of the kernel of B

S 1: set of unimodular constraint-cones of C ′ having the ray u

S 2: set of unimodular constraint-cones of C ′ having the ray −u

return decomp(S 1), decomp(S 2)

}

Each call of decomp(C) splits the m-constraint-cone C into two composable constraint-

cones. The rays for a unimodular constraint-cone are usually obtained by inverting the

matrix A, which is n-dimensional. For a m-constraint-cone, m − n inversions would be

needed. However, u needs to be determined once only, for instance using a Hermite normal

form of B. Then, we just need the sign of the ray αu, as its direction is (also) determined

by B. Let u′ be the vector chosen among the other (m − n) inequalities. The sign of α is

determined by αu.u′ = 1.

Obviously, at most n−m splittings occur for a m-constraint-cone. At each splitting, the

bulk of the computation is in the Hermite normal form. The complexity of such a recursive

splitting is clearly lower than Barvinok’s decomposition into simplicial unimodular cones.

The approximation method by variable space expansion, associated with the constraint-

cone splitting algorithm presented here, is then expected to be the fastest approximation

algorithm.
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4.8 Other approximation algorithms

We have devised polynomial-time (for fixed dimension) algorithms for computing an ap-

proximation having the following properties:

a. its approximation error is of maximal degree d−1, where d is the geometric dimension

of P . Then, the asymptotic limit of this error is zero when the Ehrhart polynomial

is of degree d.

b. it is valid on the whole validity domain of the Ehrhart polynomial they correspond

to.

Now let us compare different approaches to ours.

4.8.1 Interpolation by a polynomial

We have seen that the Ehrhart polynomial of P is a polyhedron if we restrict the values

of the parameters N to a certain lattice (so that the non-periodicity condition is fulfilled

for P ). Computing a polynomial by interpolation on such a lattice is the idea of the

parameter space compression method coupled with the Clauss-Loechner-Wilde algorithm.

Unless the interpolation is done on points on such a lattice, there is no guarantee on the

approximation error on the whole validity domain (but only on the domain covered by the

interpolation points). Considering this, it is important to note that validity domains can

be unbounded.

Example 4.7. To illustrate a simple unlucky interpolation, consider the following poly-

tope: {1 ≤ 4i ≤ n}, where n is the parameter. The Ehrhart polynomial of P is

EP (N) = 1
4n +

[

0 −1
4 −1

2 −3
4

]

n
. P is one-dimensional, so it can be inteprolated by

a polynomial of degree one. Assume the chosen interpolation points are (n = 1;n = 7).

The interpolated polynomial is then E ′(n) = 1
6n− 1

6 . The absolute approximation error is

asymptotically 1
12n, the relative error being 1

3 .

4.8.2 Average value of the coefficients

Taking the average value of the coefficients, as proposed by Heine and Slovik [42], gives

an approximation whose error is asymptotically zero only in the case where the coefficient
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of highest degree of the Ehrhart polynomial is non-periodic. Notice that this method

needs to compute the Ehrhart polynomial first. The periodic character of Ehrhart poly-

nomials seems to be the main problem: a non-periodic polyhedron is obviously easier to

manipulate.

4.9 Conclusion

In this chapter, we have extended Ehrhart’s conjecture, giving a more precise relation

between the coefficients of the constraints defining P and the periodicity of its Ehrhart

polynomial. These informations allow to transform P into a somehow similar polyhedron

with a non-periodic Ehrhart polynomial. The application of this is two methods for

approximating the Ehrhart polynomial of P by a non-periodic polynomial. Besides, a

new efficient method for computing Ehrhart polynomials of polyhedra with particular

properties has been shown. In future works, we will try to extend it to any kind of

polyhedron.



Chapter 5

Implementation

A part of the concepts and algorithms developed in this thesis has been implemented.

Still, some parts have been developed too recently to be implemented. Some other parts

needed the clarity brought by this thesis to be implemented in a robust way. These parts

are underway to be completed.

5.1 Periodics

5.1.1 Explicit periodics

In [66], we have studied periodic numbers, periodic polyhedra and Ehrhart polynomials as

being instances of a generic class: the periodics. Periodics are defined as multidimensional

functions of integer values over a monoid K. These functions have a fixed period along

each of their n variables, so they can be represented as n-dimensional arrays. A generic

class of periodics has been implemented using such a data structure, in C + +. Generic

operators, as well as iterators that are aware of the spatial locality of the contained data,

have been written.

Instantiating K to integers, polyhedra and polynomials has firstly allowed us to ma-

nipulate easily periodic numbers (in their explicit form), periodic polyhedra and Ehrhart

polynomials. This implementation of periodic numbers has been used by R. Seghir [77] in

preliminary versions of his program for computing Ehrhart polynomials by a parametric

extension of Barvinok’s algorithm. A cast operator, from this class of explicit periodic

numbers to the periodic numbers under the Polylib representation, has been written for

121
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this purpose. This usage has been obsoleted later, when Seghir and Verdoolaege [77, 83]

put their software contributions together and focused on using the symbolic form for pe-

riodic numbers in order to avoid the exponential complexity of the explicit form.

This generic class has also been instantiated with polynomials in an attempt of Ehrhart

polynomials pretty printing in LaTeX. This attempt was motivated by the periodic need

of writing down Ehrhart polynomials in scientific articles, and by the not-so-comfortable

existing text output. A cast operator from the Polylib representation to the form of a

periodic polynomial has been written for this purpose, as well as a pretty printer for

periodic polynomials.

A redundancy problem showed up when using this class for representing periodic poly-

hedra, as the non-periodic part can be significant. A more efficient way to represent a

periodic polyhedron with m constraints is then to use a matrix with m rows and a vector

of m periodic numbers.

The advantage of this generic class is that it is possible to use new instances of periodics

quickly. However, as the explicit periodic form is inherently exponential, the periodic class

developed this way is likely to take significant amounts of memory space. Moreover, the

readability of the periodic may become easily bad.

The need for a symbolic form of periodic numbers has showed up very quickly for

these reasons, but also for the known performance reasons. This form is presented in next

section.

5.1.2 Symbolic periodics

The symbolic form of the periodic numbers is defined by the way they can be computed.

Roughly speaking, periodic numbers we use are nested modulos of affine functions of

the variables. When constructing pseudo-facets, the modulo of a periodic affine func-

tion is computed, which defines the periodic supporting hyperplane. When computing

the corresponding projected pseudo-facet, linear combinations between the periodic affine

constraints are done. Besides, the most simple form of a periodic number is a rational

number. As we only deal with integers in our implementations, it is (for us) an integer

number. The symbolic form of a periodic number can then be summed up by the following

context-free grammar:
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< pn > −→ < integer>

| <integer> * <pn> + <integer> * <pn>

| (<f(I)> + <pn>) mod <integer>

where <f(I)> is an affine function of the variables, <integer> is an integer constant.

The three derivation alternatives define the three C++ constructors we use for a symbolic

periodic number. We have also written a cast operator for converting a periodic number

in symbolic form into its explicit form.

This symbolic periodic number class is used, as expected in our pseudo-vertices com-

putation function, presented in next section.

5.1.3 Pseudo-vertices

The periodic polyhedron representation is made of a m × (n + p + 1) matrix, along with

a m-dimensional vector of symbolic periodic numbers. The pseudo-vertices computation

function builds either the whole pseudo-facets tree is we want to compute the integer

hull. As explained in section 3.2, branches are selected (the others are pruned) if we look

for the maximum w.r.t. a given order. The conversion operator into explicit periodic

number can then be used to compute the maximal extremal points and the corresponding

validity domain. Iterators over explicit periodic numbers can be linked together, so the

periodic validity domain is easily linked to the periodic coordinates of the extremal point

it corresponds to.

5.1.4 Periodic polyhedra as input

For now, our programs can only take a polyhedron as its input. In order to deal with

problems whose input involve periodic polyhedra, we must develop a parser for periodic

polyhedra. The context-free grammar presented in subsection 5.1.2 will be helpful to parse

periodic numbers in their symbolic form.

5.2 Ehrhart polynomials approximation

The approximation by variable space expansion, presented in section 4.6, has been imple-

mented for full-dimensional polyhedra, by modifying the Polylib function Polyhedron Enu-
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merate(). The function firstly computes the coordinates of each vertex of the considered

polyhedron P , along with its validity domain. At this stage, we also compute the non-

periodicity condition for the vertex, as an expansion matrix. Then, vertices are grouped

into sets sharing a common validity domain. All these vertices will form a polyhedron,

for which we compute the expansion matrix L, which is the Hermite normal form of the

expansion matrices of the grouped vertices.

This expansion is then applied to the polyhedron, giving a polyhedron P ′. The Ehrhart

polynomial of P ′ is then computed (instead of the Ehrhart polynomial of P ), and divided

by det(L).



Chapter 6

Conclusion

We have centered this thesis on the periodicity appearing when manipulating integer

points in rational polyhedra, and shown the particular role of periodic polyhedra in this

frame. First, the integer hull of a parametric polyhedron, for which we give a computation

algorithm, is a periodic polyhedron. Furthermore, in the field of parametric integer linear

programming, which is frequently used in the polytope model, the integer maximum w.r.t.

a (hierarchically) linear order is a set of periodic polyhedra. This result is corroborated by a

well-known particular case, the lexicographic extremum of a parametric polyhedron P : this

extremum is a pseudo-vertex, i.e., a 0-dimensional periodic polyhedron. We believe that

some optimizations still have to be found for our parametric integer linear programming

algorithm. PIP, the library dedicated to computing this particular extremum, will be used

as an indicator in our future performance measurements.

Besides, we would like to extend the concept of pseudo-facet w.r.t. a variable to

pseudo-facets w.r.t. a vector. This might enable new profitable degree of freedom for

computing the solution, and could also reduce the complexity of the algorithm.

The periodicity of the integer hull explains the periodic character of Ehrhart poly-

nomials. We use this link between the integer hull of P and its Ehrhart polynomial to

extend Ehrhart’s conjecture, giving a less restrictive condition on the polyhedron P to

have a non-periodic Ehrhart polynomial. We derive some side results from this new non-

periodicity condition: two distinct approximation methods for Ehrhart polynomials, an

optimization for the Clauss-Loechner-Wilde interpolation method for computing Ehrhart

polynomials, and a new method for computing Ehrhart polynomials in particular cases.
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We wish to extend this technique, based on generating functions as in the Barvinok-like

algorithms, to the general case in future work.

The algorithms presented in chapter 2 and 3 have been presented with non-periodic

polyhedra. But they also work for periodic polyhedra, as they manipulate pseudo-facets,

which are periodic polyhedra. Actually, the polytope model suffers from a major limi-

tation: some of the algorithms working on polyhedra produce a result that is a periodic

polyhedron. Then, further operations on polyhedra may not be directly applicable to this

periodic polyhedron. This problem raises the need for a library that manipulates periodic

polyhedra, in the manner of Polylib, for instance.

Code generation is another classical problem in the polytope model. We also wish to

solve it using periodic polyhedra and the pseudo-facets machinery, and to evaluate this

solution.
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