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Chapter 1

General introduction

Recently, significant developments have been made in the design of practical robot

manipulators and hands that can perform various manipulation tasks required in

different fields. However, most industrial robots have been designed to perform only

specific movements based on a priori knowledge of the object to be manipulated.

Therefore they cannot accomplish tasks when the target object (e.g., object mass,

shape, or position) is unknown, or when the relative position of the vision system

with respect to the robot is unknown.

In this thesis, the total grasping task is investigated. The manipulator has an

uncalibrated camera system and the simple precision gripper has two fingers on the

end-effector. Then, the problem is divided into two tasks; the positioning task of

the manipulator, and the grasping task of the robot hand.

1.1 Positioning task using vision

The positioning task of a robot with respect to an object is a main application

of visual servoings. There exist different classification to describe visual servoing

schemes. Firstly, when the vision system is used to provide set-point inputs to

the joint-level controller, thus making use of joint feedback to internally stabilize

the robot, it is referred to as indirect visual servoing or dynamic look-and-move. In

contrast, direct visual servoing [76] eliminates the robot controller entirely, replacing

it with a visual servo controller that directly computes joint inputs, thus using vision

alone to stabilize the mechanism. Many visual servoing systems employ “indirect”

1



2 CHAPTER 1. GENERAL INTRODUCTION

rather than “direct” visual servoing, because of low vision sample rates and high

latencies. Secondly, most approaches can be categorized as either position-based

visual servoing (PBVS [78] [75]) or image-based visual servoing (IBVS [4] [11]). In

position-based control, features are extracted in the image and used in conjunction

with a geometric model of the target and the known camera model to estimate the

pose of the target with respect to the camera and the robot. In image-based servoing,

control values are directly computed on the basis of image features. The image-

based approach may reduce computational delay, eliminate the necessity for image

interpretation and eliminate errors due to sensor modeling and camera calibration.

Finely note that a third classification is static-eye and hand-eye configuration. In

static-eye configuration, the camera is fixed in the environment and observes the

robot. Position-based and image-based control laws are compared in [25], and it is

clear that position-based control laws are more sensitive to calibration errors.

For our research problem, the relative pose between the end-effector of the robot

and the object cannot be robustly computed. Therefore, image-based control laws

are adopted. Most of the previous works on visual servoing assume that the kine-

matic model of the robot, a model the object, and the camera intrinsic parame-

ters are known. They would fail if the robot and the vision system were not fully

known. We employ an indirect (look-and-move) scheme for the versatility and sta-

bility brought by the internal joint controllers. A novel approach for uncalibrated

and model-less visual servoing using a modified simplex iterative search method is

proposed. The kinematic model of the robot may be unknown; however, we assume

that the joint limits are known. The intrinsic parameters of the camera are also

unknown, and a model of the object is not necessary.

The simplex method is an unconstrained optimization technique [67]. The basic

idea behind this method is to compare the value of the objective function in several

configurations and to move to the next configurations in order to decrease this value.

In our approach, the objective function to be minimized is a cost function measuring

the difference between the image of the object in the desired position of the robot and

the image in the current position. The variables usually are the joint angles of the

robot, but it is not a requirement. The main idea is to use the optimization algorithm

in real-time to move the robot to the next position that makes the cost function

decrease. Our approach may include cost functions that are not differentiable since

it does not require the computation of Jacobian matrices. Demonstrations with a
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6DOF industrial manipulator show the efficiency of this method.

1.2 Grasping task applying human features

Analytical studies of grasping and manipulation by robot hands have been done by

many researchers. Yoshikawa and Nagai [79] divide the finger forces into two different

forces: manipulation force and internal force. The manipulation force is defined as

the force that generates the required force to compensate for gravity forces on the

object. Salisbury (see [69], [70]) defines the internal force whose resultant is zero as

the force that can be added when necessary to the manipulation force to prevent

sliding or breaking contact. Shimoga and Goldenberg present in [71] the model

and control of the impedance of a soft finger. They show experimentally how the

presence of passive damping from soft materials can reduce the peak impact forces

that occur when a rigid object is grasped by the fingers of a robotic hand. In [32],

the authors analyze the stiffness models of human grasping and present the grasp

stiffness model useful for modeling and controlling robotic manipulators. While the

grasping, manipulation and internal forces are well understood their implementation

is limited due to their complexity.

Another approach to the control of robot hands is a physiological approach mo-

tivated by the study on human hands. The study of human grasping has long been

an area of interest for hand surgery to design prosthetic devices. The study also can

lead to a grasp taxonomy that can assist robot hands in choosing an appropriate

grasp to perform a specific task and can also be used to design efficient grippers

[6] [7]. Flanagan and Wing [12] have investigated the stability of precision grasping

forces behaviors. When a human handles and carries an object, the grasping force

is delicately adjusted to the inertial force occurred by its movement [34]. This char-

acteristic is applied as a control law in the grasping task of the robot hand in [57].

A hand-over motion from human to a robot has been realized in [36], emulating

human’s hand-over motions.

Though a lot of researches have been done about motions to lift-up or manipulate

an object, the control of the motions to contact an object for grasping has not been

investigated yet. Human have the ability to touch an object without inducing large

displacements even if it is light and could easily fall. Though such skill is very

important when the object is fragile, few investigations have been made so far on soft
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grasping. Furthermore, it is not applied yet to control laws of robot hands. In this

thesis, experimental studies are carried out on the human grasping with the index

finger and the thumb (precision grasp). The contact force at the fingertip which

contacts first the target object, and the displacement of the object are analyzed.

Motions of human fingers are also investigated for objects of deformable width.

The results reveal the function of the index finger and the thumb in grasping. The

features of contact motions given by the measurement of human motions are applied

to a robot grasping task. The “soft” contact motion is demonstrated with a robot

hand with two fingers controlled individually. Each finger has two pairs of strain

gauges as force sensors. A vision system is also available with a camera for real-time

visual feedback.

1.3 Organization of this Dissertation

This thesis is structured as follows. Part I treats of the positioning task using vision

while Part II treats of the soft grasping of fragile objects.

Chapter 2 in Part I is dedicated to a short summary of existing visual servoing

algorithm. Existing uncalibrated visual servoing are described. The Gauss-Newton

optimization technique is shown as an example of the existing methods. The main

idea is to use the optimization algorithm in real-time to move the robot to the next

position that makes the objective function decrease. The objective function to be

minimized is a cost function measuring the difference between the image features of

the object in the desired position of the robot and the image features in the current

position. The variables are the joint angles of the robot. When the Jacobian of the

cost function with respect to the joint variables of the robot is unknown, a real-time

identification is performed. However, this type of adaptive algorithm cannot be

stable when there is not enough informations for the identification.

In Chapter 3, PartI, a simplex optimization technique is presented for uncali-

brated and model-less visual servoing. In this method, the kinematic model of the

robot is not necessary; however, we assume that the joint limits are known. The

intrinsic parameters of the camera are also unknown. Simulations are carried out

for simple target centering tasks with 2DOF and 6DOF.

In Chapter 4, PartI, a positioning task to approach a target object is described.

Assuming the kinematic model of the robot to be unknown, a modified simplex
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optimization method is used to achieve the positioning task. The objective function

to be minimized is a cost function measuring the difference between the ideal image

in the desired position of the robot and the actual image in the current position. The

variables are the joint angles of the robot. Modifications are brought to this visual

servoing algorithm to improve convergence. Several configurations and objective

functions are compared with simulations and experiments on 6DOF industrial robot.

In Chapter 5, Part II, the human flexible grasping control ability is investigated.

Human grasping motions are measured changing the weights and sizes of the object,

and the speed of the grasping motion. The human control features are analyzed

paying attention to the displacement of the object and the applied force in the first

contact.

Chapter 6 in Part II describes the application of the desirable human grasping

features to robot hand control. Two fingers of the hand touch a target object almost

at the same time like a human motion using visual feedback and synchronization of

distance errors.





Part I

Positioning

7





Chapter 2

Existing approaches

2.1 Introduction

In this chapter we review the fundamentals of visual servoing with a classification

of the different approaches. Then, image-based visual servoing is presented and

existing works on uncalibrated and model-less visual servoing are reviewed. The

simulations are done to show that the conventional optimization approach with on-

line estimation of the Jacobian may become unstable.

2.2 Classification of visual servoing algorithms

Vision is a useful robotic sensor since it mimics the human sense of vision and allows

non-contact measurements of the environment. Taken to the extreme, machine

vision can provide closed-loop position control for a robot end-effector, which is

referred to as visual servoing.

A good survey of early visual servoing research can be found in [28]. According

to the classification by Sanderson and Weiss [76], there exist three main criteria to

categorize visual servoing algorithms:

1. Camera configurations

• The camera(s) is fixed in the workspace. It is often called static-eye

configuration.

• The camera(s) is mounted on the robot’s end-effector. It is often called

hand-eye, or eye-in-hand configuration.

9
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2. Control level

• The vision system is used to provide set-point inputs to the joint-level

controller, thus making use of joint feedback to internally stabilize the

robot. It is referred to as a dynamic look-and-move, or indirect visual

servoing.

• The robot controller is entirely replaced with a visual servo controller

that directly computes joint inputs, thus using vision alone to stabilize

the mechanism. It is referred to as a direct visual servoing.

3. Feedback variables

• Features are extracted from the image and used to estimate the pose of

the target with respect to the camera. Control values are computed using

errors in the estimated pose (Cartesian) space. It is called position-based

visual servoing (PBVS)

• Control values are computed on the basis of image features directly. It is

called image-based visual servoing (IBVS).

• If part of the pose vector is estimated and part of the control values is

computed directly from the image features, it is defined a hybrid visual

servoing (HVS).

Note that pose vectors as well as other basic definitions are recalled in the appendix.

2.2.1 Camera configurations

Visual servoing systems typically use one of the two following camera configurations:

end-effector mounted, or fixed in the workspace.

Static-eye configuration

This configuration has the camera(s) fixed in the workspace as shown in Figure 2.1.

In this case, the camera image of the target is independent of the robot motion

unless the target is the end-effector itself. So the camera(s) position can be defined

relatively to the base of the robot, and to the object independently. A variant of

this is for the camera to be agile, mounted on another robot or pan/tilt head in

order to observe the visually controlled robot from the best vantage point. In the
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static-eye configuration, the relative pose between the end-effector of the robot and

the target must be measured or the relative pose between the camera and the base

of the robot must be known.

Hand-eye configuration

The second, often called eye-in-hand configuration, has the camera mounted on the

end-effector of the robot. Here, there exists a known, often constant, relationship

between the pose of the camera(s) and the pose of the end-effector. The figure 2.2

illustrates this configuration.

Figure 2.1: Static-eye configuration Figure 2.2: Hand-eye configuration

2.2.2 Control level

Indirect visual servoing

When the vision system is used to provide set-point inputs to the joint-level con-

troller, thus making use of joint feedback to internally stabilize the robot, it is

referred to as a indirect visual servoing system. The indirect visual servoing scheme

is shown in Figure 2.3, where ṙ∗ is the Cartesian space reference velocity (velocity

screw: see appendix). It is suitable for slow visual servoing loops (< 50Hz). The

control low is easier to synthesize.

Direct visual servoing

Direct visual servoing [76] eliminates the robot controller entirely, replacing it with

a visual servoing controller that directly computes joint inputs, thus using vision
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alone to stabilize the mechanism. The direct visual servoing schema is shown in

Figure 2.4, where q̇∗ is the reference velocity of the joints. This scheme is suitable

for fast visual servoing (� 50Hz). The control law is more complex since the robot

dynamics must be taken into account.

Many visual servoing systems employ “indirect” rather than “direct” visual ser-

voing because of low vision sample rates and high latencies. Using internal feedback

loops with a high sampling rate generally presents idealized axis dynamics to the

external controller. However, specialized hardware is nowadays developed for faster

sampling rates [51]. An important reason is also that most robots already have an

interface for Cartesian velocity reference signals or incremental position commands.

Thus, the kinematic singularities of the mechanism can be separated from the visual

controller, and the system design is greatly simplified in indirect visual servoing.

Figure 2.3: Indirect visual servoing

Figure 2.4: Direct visual servoing
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2.2.3 Feedback variables

Position-based visual servoing

In position-based control, features are extracted in the image and used in conjunction

with a geometric model of the target and the known camera model to estimate

the pose of the target with respect to the camera. Using these values, an error

between the current and the desired pose of the robot is defined in the Cartesian

space. In this way, position-based control nearly separates the control issues, namely

the computation of the feedback signal from the estimation problems involved in

computing position or pose from visual data. The position-based visual servoing

scheme is shown in Figure 2.5. The main inconvenience of this scheme is that

calibration errors may induce large pose errors.

Image-based visual servoing

In image-based servoing, control values are directly computed on the basis of image

features. The image-based approach may reduce computational delay, eliminate the

necessity for image analysis and eliminate errors due to sensor modeling and camera

calibration. Image-based visual servoing scheme is shown in Figure 2.6.

Hybrid visual servoing

These exist visual servoing schemes combining position based and image based visual

servoing schemes in order to improve the robustness properties disadvantages of both

schemes. This is called hybrid visual servoing.

Robots with visual servoing control loops run vision and motion in parallel, con-

tinuously updating visual estimates, and correcting the motion on the basis of these

estimates. Position-based visual servoing refers to the use of a Cartesian coordinate

system to describe the relative position between the end-effector and the target.

Once the current pose of the robot is estimated from the images, the objective pose

is immediately obtained. Assuming that the robot and camera parameters are well

known. When their errors exist large pose errors, the robot may lose the vision of

the target. Image-based visual servoing is more robust against errors in the robot

parameter’s identification. However, it minimizes the image features and does not

optimize the motion of the robot in its workspace. Hence workspace limits could be

reached. Hybrid visual servoing schemes try to improve the properties of the visual
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Figure 2.5: Position-based visual servoing

Figure 2.6: Image-based visual servoing
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servoing loop in the case of large pose errors or large motions of the robot in its

workspace.

For our application when the object to grasp has not necessary a good model

and where the camera might be weakly calibrated or uncalibrated, relative pose

reconstruction of the object with respect to end-effector is not realistic. Hence,

hereafter we will consider only image-based (or hybrid) visual servoing approaches.

2.3 Basic image-based visual servoing control laws

2.3.1 Indirect image-based visual servoing control law

Figure 2.7 shows the indirect image-based visual servoing schema in the case of an

eye-in-hand configuration. Images are acquired with the camera on the robot’s end-

effector, then image features f are extracted. These features are compared with the

ones of the objective image, and the control law is selected in order to reduce the

image feature errors ef . The control law is usually selected as (proportional control

law):

ṙ∗ = kJ+
I ef (2.1)

where, J+
I is the pseudo inverse of the image Jacobian or interaction matrix JI (see

appendix), which relates the image features motions (e.g., the velocity of a point P

on the image plane as explained in the appendix A.2) to the end-effector motion in

Cartesian space, ṙ:

ḟ = JI ṙ (2.2)

In case of a low bandwidth feedback loop, the controlled ṙ velocity screw can be

considered to be almost the same as the control input ṙ∗ of the robot’s end-effector:

ṙ ≈ ṙ∗ (2.3)

Thus, from Equation 2.7 and Equation 2.2,

ḟ = kJIJ
+
I ef = kJIJ

+
I (f ∗ − f) (2.4)

Mostly, the image Jacobian JI has to be estimated. Therefore, there is some uncer-

tainty on the estimated Jacobian ĴI . However, Equation 2.4 converges exponentially

to zero if:

kJI Ĵ
+
I > 0 (2.5)
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Espiau et. al. [11] proposed an approach to calculate the image Jacobian as-

suming a simple perspective projection model (see appendix). They use geometric

figures such as points, lines, and shapes extracted from the target’s contour in the

image, and it is widely used today.

In image-based visual servoing, the geometric model of the target is not neces-

sarily needed.

However, the image Jacobian JI changes according to the camera position and

the depth information which is normally unknown. Furthermore, some on-line esti-

mation of the Jacobian might be needed (cf. for example Hosoda and Asada [26]).

Figure 2.7: Indirect image-based visual servoing

2.3.2 Direct image-based visual servoing control law

Figure 2.8: Direct image-based visual servoing

Figure 2.8 shows the direct image-based visual servoing scheme. It does not

include Cartesian controller, and the visual servoing controller directly computes
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joint inputs, thus using vision alone to stabilize the mechanism.

ḟ = JI ṙ = JIJR(q)q̇ (2.6)

where, JR is a manipulator Jacobian that relates the joint velocity of the robot to

the velocity screw of its end-effector. A stable control law is given by:

q̇∗ = kJ−1
R Ĵ+

I ef (2.7)

Indeed, assuming that the visual servoing feedback loop has a smaller bandwidth

, then the velocity controlled robot thus:

q̇ = q̇∗ (2.8)

and it follows that:

ḟ = kJIJRJ−1
R Ĵ+

I (2.9)

which is exponentially stable as long as kJI Ĵ
+
I > 0

2.4 Uncalibrated visual servoing

2.4.1 Existing approaches

To control the robot in image-based visual servoing, image Jacobian has to be known,

or to be estimated. To compute the image Jacobian (see appendix), an informa-

tion on the distance between camera and target, a model of the target, and camera

intrinsic parameters such as focal length are generally needed. When these informa-

tion are missing and the Jacobian needs to be estimated, we speak of “uncalibrated

visual servoing”.

Uncalibrated and model-less visual servoing has been addressed by Hosoda in

[26], and Jägersand in [30]. They use an on-line estimation of the Jacobian between

the joint velocities of the robot and the feature velocities in the image plane. In

[27], Hosoda et. al. introduce a limited amount of image geometry constraints in

order to do visual path planning with obstacle avoidance. Their approach assumes

the on-line identification of a large number of parameters. In the presence of noise,

this type of approach may lead to a badly estimated Jacobian matrix if the motions

of the robot do not provide enough information in order to identify the parameters.
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Another approach to Jacobian estimation is taken by Ritter Martinez and Schul-

ten [68]. They use neural network learning techniques to organize a mapping of

3 DOF Jacobian parameters. They test the approach in simulation and find that

about 20 000 test movements are required to learn the mapping (of 4 by 3 Jaco-

bians). This is not a reasonable number of test movements to perform on a real

manipulator. The visual-motor model changes typically several times during com-

plex manipulations, for instance when grasping a new object. Since the exact grasp

typically is not known it would be difficult to construct a simulation to train the

system for the possible real world configurations.

Piepmeier et al. present in [65] and [66] a moving target tracking task based on

a Newton-like iterative optimization method with an adaptive gain matrix. The

Jacobian of the objective function is estimated on-line with a Broyden’s update

formula (equivalent to a LMS algorithm), or a recursive least-square algorithm with

forgetting factor. This approach is adaptive, but cannot guarantee the stability of

the visual servoing scheme in presence of large errors in the image. or large numbers

of parameters to estimate.

In the next section, the Newton-like methods for uncalibrated and model-less

visual servoing are detailed and simulations are carried out. In this method, the

kinematic model of the robot is unknown; however, we assume that the joint limits

are known. The intrinsic parameters of the camera are also unknown. The main

idea is to use an optimization algorithm in real-time to move the robot to the

next position that makes an objective function decrease. In these approaches, the

objective function to be minimized is a cost function that penalizes the difference

between the ideal image in the desired position of the robot and the actual image in

the current position. The variables are the joint angles of the robot. The algorithm

is based on the Gauss-Newton algorithm and requires the knowledge of the gradient

of the objective function. The robot has to make small movements each time to

calculate the gradient of the objective function. Large motions of the robot lead to

bad estimation of the gradient and the robot may become worse. Further more, this

is not best method with local convergence results.
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2.4.2 Uncalibrated visual servoing using Newton-like meth-

ods

Assuming that m features are detected in the image, let define f(Θ) as the m-

dimensional vector of the feature errors, where Θ is the vector of size n defining the

position of the robot (e.g., Θ are the joint angles). Hence, the feature error vector

f(Θ) = 0 if Θ = Θ∗, the desired position of the robot. Therefore, the positioning

task using visual servoing is achieved by minimizing the following objective function:

f(Θ) =




f1(Θ)
...

fm(Θ)


 (2.10)

F (Θ) =
1

2
f(Θ)�f(Θ) (2.11)

Indeed, the feature error f(Θ∗) = 0 minimizes F (Θ).

The gradient of the objective function F (Θ) is given by:

∇F (Θ) =




∂f(Θ)�
∂θ1

...
∂f(Θ)�

∂θn


 f(Θ) = J(Θ)f(Θ) (2.12)

where, J(Θ) = (∇f1(Θ) . . .∇fm(Θ)) is the n × m Jacobian matrix of the feature

errors:

Jij(Θ) =
∂fj(Θ)

∂θi

(2.13)

The Hessian of the objective function F (Θ) is given by:

H(Θ) = ∇ (∇�F (Θ)
)

(2.14)

= J(Θ)J(Θ)� +
m∑

i=1

fi(Θ)Hi(Θ) (2.15)

where H(Θ) is the Hessian of the ith feature error, i.e. Hi(Θ) = ∇ (∇�fi(Θ)
)
.

Near the optimum value Θ∗, it can be assumed that fi(Θ) � 0, therefore

H(Θ) � J(Θ)J(Θ)� (2.16)

If the iterative Newton’s algorithm is used for the minimization of F (Θ), then at

each iteration:

Θk+1 = Θk − αkH(Θk)
−1F (Θk) (2.17)
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Therefore, a Newton-like algorithm is given by:

Θk+1 = Θk − αk(JkJ
�
k )−1Jkf(Θk) (2.18)

where 0 < αk is the step size in the descent direction and Jk = J(Θk). The Jacobian

matrix is estimated on-line. At all time k, a first order approximation of the feature

error is given by:

f(Θk) � f(Θk−1) + J(Θk−1)
�(Θk − Θk−1) (2.19)

Therefore, an on-line estimation algorithm of the Jacobian matrix J(Θ∗) could be

defined by:

Jk = Jk−1 +
Γ∆Θk(∆f�

k − ∆Θ�
k Jk−1)

1 + ∆Θ�
k Γ∆Θk

, Γ = ς� > 0 (2.20)

where Γ is constant gain positive matrix, Jk is the kth estimate of J(Θ∗), and where,

∆fk = fk − fk−1

∆Θk = Θk − Θk−1

This algorithm is well known in adaptive filtering as the least means square (LMS)

algorithm that converges toward J(Θ∗) if the θk are in a neighborhood of Θ∗ where

J is almost constant. The estimation of the Jacobian matrix will converge toward

the true Jacobian matrix, if the feature errors provide enough information, i.e., if

the displacements of the robot span locally all the possible directions. Furthermore,

since the Jacobian matrix is depending on Θ, convergence will be possible only

around a working position, i.e., assuming small displacements around its working

position. Finally, it should be pointed out that the Newton optimization algorithm

has local properties of convergence, i.e., it will converge toward the nearest local

minimum of F (Θ).

Note that a recursive least squares estimation algorithm with modified forgetting

factor can also be used to provide on-line estimates of the Jacobian J(Θ∗) (cf. [65]

[41]).

Jk = Jk−1 +
αPk−1∆Θk(∆f�

k − ∆Θ�
k Jk−1)

1 + ∆Θ�
k Pk−1∆Θk

(2.21)

Pk =
1

λ

(
Pk−1 − Pk−1∆Θk∆Θ�

k Pk−1

1 + ∆Θ�
k Pk−1∆Θk

)
+ δI − βPk−1Pk−1 (2.22)
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where λ is a forgetting factor and the extra terms multiplied by δ and β are stabilizing

terms in case there is not enough excitation. Typical values for λ, α, β, δ are:

λ ∈ [0.95 0.99]

α ∈ [0.1 0.5]

0 < β ≤ 0.01

0 < δ ≤ 0.01

2.4.3 Simulations

Simulation with 2DOF for a centering task

Simulations were carried out using the previous Gauss-Newton method. The Jaco-

bian was estimated using a recursive least squares estimation with modified forget-

ting factor. The positioning processes was implemented under the graphic library

OpenGL to model the robot SCEMI 6P01. Target is a cylindrical white cup of 11cm

height without handle on a black background. Figure 2.9 and Figure 2.10 shows the

starting image and goal image of the target.

Figure 2.9: Image at the starting pose Figure 2.10: Image at the goal pose

The task consists in bringing the target object to the center of the image. The

objective function was set as following:

F (Θ) =

(
x − W

2

)2

+

(
y − H

2

)2

(2.23)

f(Θ) =

(
f1(Θ)

f2(Θ)

)
(2.24)
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with

f1 =

(
x − W

2

)
, f2 =

(
y − H

2

)
(2.25)

where W and H are the width and the height of the image, x and y are the coordi-

nates of the center of the object in the image. The number of image features to be

optimized is (m = 2).

In the first environment, only two degrees of freedom of the end-effector were

controlled by the optimization process. Thus, (m = n). Figure 2.13 shows that

the optimization converges very well. Number of iterations is four, for an objective

function with find value F (Θ) = 0.000289 at convergence.

Simulation with 6DOF for a centering task

Next, six degrees of freedom of the manipulator are controlled by the optimization

process. The same centering task was defined. The number of the system con-

figurations to be optimized is larger than the objective function (m < n) and the

algorithm did not converge as shown in Figure 2.14.

Simulation with 6DOF

Six degrees of freedom of the manipulator were controlled by the optimization pro-

cess. Figure 2.11 and Figure 2.12 shows the target’s image at the starting pose

and the goal pose. The number of image features to be minimized is six (m = 6):

x and y coordinates of the barycenter of the four dots, the distances between the

barycenter and each dot. The process did not converge as shown in Figure 2.15.

Figure 2.11: Image at the starting pose Figure 2.12: Image at the goal pose
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Chapter 3

Modified simplex method

3.1 Introduction

Most of the previous works on visual servoing assume that the kinematic model of

the robot and the camera intrinsic parameters are known. Most of these methods

could work with weak calibration, but they would fail if the robot and the vision

system were fully unknown.

Uncalibrated and model-less visual servoing has been addressed by Hosoda et al.

in [26], and Jägersand in [30]. They use an on-line estimation of the Jacobian be-

tween the joint velocities of the robot and the feature velocities in the image plane.

Their approach assumes the on-line identification of a large number of parameters.

In the presence of noise, this type of approach may lead to a badly estimated Jaco-

bian matrix if the motions of the robot do not guarantee sufficient excitation for the

identification of the parameters. Piepmeier et al. present in [65] and [66] a moving

target tracking task based on the Gauss-Newton optimization method. The Jaco-

bian of the objective function is estimated on-line with a Broyden’s update formula

(equivalent to a LMS or gradient algorithm) in order to compute the control signal.

This approach is adaptive, but cannot guarantee the stability of the visual servoing

scheme in presence of large errors in the image, or if the motions of the robot do

not guarantee sufficient excitation.

In this section, a novel approach for uncalibrated and model-less visual servoing

using a modified simplex iterative search method is proposed. The kinematic model

of the robot is not necessarily known; however, we assume that the bounds of the

joint variables are known. The intrinsic parameters of the camera are also unknown.

27
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Figure 3.1: Block diagram with Nelder-Mead simplex method

The simplex method is an unconstrained optimization technique [67], that do not

use gradient computations. Note that it is different from the linear programming

technique method also called “simplex”. This method was originally proposed by

Spendley, Hext, and Himsworth [73] and was developed later by Nelder and Mead

[64]. Box [2] extended the simplex method (Nelder and Mead algorithm) to solve

constrained minimization problems, and this technique is called complex method.

The basic idea behind the simplex and complex methods is to compare the value

of the objective function in several configurations and to move to the next position in

order to decrease this value. For our problem, the objective function to be minimized

is a cost function that penalizes the distance between the desired configuration of

the robot and the current configuration. The explored configurations are usually

defined parametrized by the joint angles of the robot. Note that other variables

could be used as it will be shown in the next chapter. Block diagram of this method

is illustrated in Figure 3.1

The main idea is to use the optimization algorithm in real-time to move the robot

to the next pose that makes the cost function decrease. Our approach may include

cost functions that are not differentiable since it does not require the computation

of Jacobian matrices.

With our approach, the same control algorithm can be used, without any modi-

fication, to control any robot that belongs to the same class (e.g., a 6 DOF anthro-

pomorphic arm) fitted with the same type of vision system (e.g., a black & white

monocular system) and with the same type of target (e.g., a cylindrical object).

The joint limits give constraints on the variables. The complex method can deal

with these limits in order to avoid them. Furthermore, the method that we propose

guarantees that the target will not be lost during the iterative search which is a well



3.2. FUNDAMENTALS OF NELDER AND MEAD SIMPLEX METHOD 29

known problem in visual servoing (see e.g., E. Malis [39]).

The optimization algorithm provides admissible joint positions that make the

cost function decrease. These joint positions are fed to a robot with stable internal

joint-level position control loops and trajectory planning. Therefore, the approach

guarantees stability and convergence.

The remaining of this chapter is structured as follows. Firstly, the fundamentals of

the Nelder and Mead simplex method to minimize objective functions are presented

in section 2. Then, the simplex method modified to handle the constrained problem

is presented in section 3. In section 4, we describe the application of this optimization

method to visual servoing. In the last section, simulations and experimental results

are presented.

3.2 Fundamentals of Nelder and Mead simplex

method

This section presents Nelder and Mead simplex method for solving the following

n-dimensional unconstrained minimization problem:

Find X = {x1, x2, . . . , xn} which minimizes f(X) (3.1)

3.2.1 Simplex iterative process

The geometric figure formed by the convex hull of a set of n + 1 points in an n-

dimensional space is called a simplex. For example, in two dimensions, the simplex

is a triangle, and in three dimensions, it is a tetrahedron.

The basic idea in the simplex method is to compare the value of the objective

function f at the n + 1 vertices {X i} of a simplex and move the simplex gradually

toward the optimum point during the iterative process. Starting from an initial

simplex with n + 1 known vertices {X i}, a new vertex will be computed to define a

new simplex using reflection, expansion, or contraction.

Reflection

If Xh is the vertex corresponding to the highest value of the objective function

among the vertices of a simplex, we can expect the point Xr obtained by reflecting
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the point Xh in the opposite face of the simplex to have a smaller value. Mathe-

matically, the reflected point Xr is given by:

Xr = α(Xos − Xh) + Xos (3.2)

where Xos is the centroid of all the points X i except Xh:

Xos =
1

n

n+1∑
i=1,i�=h

X i (3.3)

and α is the reflection coefficient (α > 0), defined as

α =
‖Xr − Xos‖
‖Xh − Xos‖ (3.4)

where ‖ · ‖ denotes the Euclidian norm.

The reflected point Xr is then compared with the vertices X l and Xs corre-

sponding to the minimum and second maximum function value respectively. The

next step depends on the value of f(Xr). The reflection process is illustrated in

Figure 3.2.

XrXh

Figure 3.2: Reflection process of the

simplex iteration

Xr Xe
Xh

Figure 3.3: Expansion process of the

simplex iteration

Expansion

In the case f(Xr) < f(X l) the minimum value of f , one can generally expect to see

the function value decrease further by expanding Xr to Xe in the same direction

using the relation

Xe = γ(Xr − Xos) + Xos (3.5)
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where γ is called the expansion coefficient (γ > 1), and is defined as

γ =
‖Xe − Xos‖
‖Xr − Xos‖ (3.6)

Then, we replace the point Xh by Xe or Xr depending on the value of f(Xe), i.e.:

Xh is replaced by Xe if f(Xe) < f(Xr), or Xh is replaced by Xr otherwise. The

expansion process is represented in Figure 3.3.

Contraction

If the reflection process gives a point Xr for which f(Xr) > f(Xs) the second worst

value of f , then obviously at the next iteration Xr would become the worst vertex,

therefore we should contract the point Xr to Xc closer to the centroid of the vertex:

Xc = β(Xr − Xos) + Xos (3.7)

where β is called the contraction coefficient (0 ≤ β ≤ 1) and is defined as:

β =
‖Xc − Xos‖
‖Xr − Xos‖ (3.8)

If the contraction process produces a point Xc for which f(Xc) < f(Xh), we

replace the point Xh by Xc and proceed to the next iteration. This contraction

process is illustrated at Figure 3.4

Xr

Xc

Xh

Figure 3.4: Contraction process of the

simplex iteration

Xr

Xc

Xh

Xd

Figure 3.5: Reduction process of the

simplex iteration
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Reduction

However, if f(Xc) > f(Xh) in the contraction process, then the contraction process

will be a failure. In this case, we apply a reduction process to the simplex:

Xd = β(Xh − Xos) + Xos (3.9)

before going to the next iteration with the point Xh replaced by Xd. This reduction

process is illustrated in Figure 3.5.

Convergence

The method is assumed to reach convergence whenever some stopping criteria have

been met, e.g.: √√√√n+1∑
i=1

{f(X i) − f̄}2

n + 1
≤ ε1, with f̄ =

n+1∑
i=1

f(X i)

n + 1
(3.10)

√√√√n+1∑
i=1

{X i − X}2

n + 1
≤ ε2, with X =

n+1∑
i=1

X i

n + 1
(3.11)

The flow chart of the algorithm is shown at Figure 3.6.

The parameter α, β, γ are somewhat arbitrary but typical values are:

α = 1 (3.12)

γ =
1

2
(3.13)

β = 2 (3.14)

3.2.2 Constrained Problems

Complex Method

Any manipulator has a limited workspace and joint constraints. To generate the

vertices of a simplex for a such manipulator, we propose the complex method, which

is an extension of the simplex method to solve constrained minimization problems,

Find X = {x1, x2, . . . , xn} which minimizes f(X)

subject to:

gv(X) ≤ 0, v = 1, 2, . . . , m (3.15)

x
(L)
j ≤ xj ≤ x

(U)
j , j = 1, 2, . . . , n (3.16)
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where, x
(L)
j and x

(U)
j are respectively the lower and upper bounds on the variables

xj. In general, the satisfaction of the side constraints given by Equation (3.16) may

not correspond to the satisfaction of the constraints gv(X) ≤ 0.

Initialization of the simplex

The method assumes that an initial feasible point X1 (i.e. such that Equation

(3.15) and Equation (3.16) are verified) is available. This feasible point X1 will be

the first vertex of the initial simplex. Thus, the remaining n points are computed

as following:

xi,j = x
(L)
j + ri,j(x

(U)
j − x

(L)
j ) (3.17)

i = 2, 3, . . . , n + 1 , j = 1, 2, . . . , n

where xi,j is the jth component of the point X i, and ri,j is a random number lying

in the interval (0, 1). Note that the points generated according to Equation (3.17)

satisfy the side constraints, Equation (3.16), but may not satisfy the constraints

given by Equation (3.15).

As soon as a new point X i is generated (i = 2, 3, . . . , k), we find whether it

satisfies all the constraints of Equation (3.15). If X i violates any of them, the trial

point X i is moved toward the centroid of the remaining, already accepted points

(X1,X2, . . . ,X i−1), until it becomes feasible, that is:

(X i)new = ηXoi + (1 − η)X i with 0 < η < 1 (3.18)

Xoi =
1

i − 1

i−1∑
j=1

Xj

Iterative process

In order to take into the constraints, the simplex method must be modified. Firstly,

an initial simplex must be defined in the feasible region (i.e., where the constraints

are verified). Then, the reflection, expansion, contraction, and reduction procedures

must be modified in order to stay in the feasible region. The same process can be

applied. If the worst position Xh violates any of Equation (3.16) and Equation

(3.15), the trial point Xh is moved toward the centroid of the remaining using

Equation (3.18)
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Xh

Xr < Xl Xr < Xs

Xc < Xs

Xh = Xe Xh = Xr Xh = Xc Xh = Xd

Figure 3.6: Flow chart of Nelder-Mead simplex method
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3.3 Uncalibrated visual servoing task using the

simplex method

This section deals with the modification of the optimization techniques described

above, for application to visual servoing. The goal is to position the end-effector of

the robot with respect to a static object. Our approach is generic and can be used

with different type of visual servoing applications where the visual features used to

build the objective function do not need to be differentiable or to have analytical

expressions. After, we will illustrate our approach with a simple positioning task

with respect to an unknown object for a robot in an eye-in-hand configuration.

3.3.1 Simplex optimization process with a robot

The main idea is to use a simplex like optimization algorithm to move the robot

from an initial position to a goal position. Since the vision system acquires images

continuously and assuming that joint angles are also measured, the cost function

can be computed along the trajectory of the robot while it is moving from a vertex

to its reflection point. Therefore, the optimum could be selected along that vertex.

In real-time, in other words, this is equivalent to modifying the Nelder and Mead

simplex method by adding a line search procedure during the reflection, expansion,

or reduction process. While the manipulator moves from Xh to Xr, images are

acquired with the camera. Here X are coordinates that gives the position of the

robot (e.g., joint angles, or Cartesian coordinates of the end-effector). Hence the

robot can scan the segment Xh−Xr in order to find the best point Xm correspond-

ing the minimum value of f on this segment. Once Xm is found on the segment,

Xh is replaced by Xm and we start a new simplex again. In the case where Xh

corresponds to the minimum value on the segment, i.e. there are no smaller value,

the reduction process different from Equation (3.9) is executed as follows:

newX i =
1

2
(X i + X l) i = 1, 2, . . . , n + 1 (3.19)

With this technique, the contraction process is omitted and faster convergence is

expected.
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(a)Classical simplex

(b)Modified simplex

Figure 3.7: Comparison between classical simplex optimization and modified simplex

process with a robot
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3.4 Simulation results

3.4.1 Simulations to compare modified method with original

(Nelder and Mead) simplex method

Simulations were carried out using the simplex and the modified simplex method

presented in section 3.3.1. The task was the centering of the target object in the

image in eye-in-hand visual servoing configuration, same as in section 2.4.3. The

system configuration and objective function were also the same.

Simulation without redundancy

Two degrees of freedom of the end of manipulator were controlled by the optimiza-

tion process. Thus the task has no redundancy (m = n). Figure 3.8 shows the

trajectories of simplex on the surface of the objective function, and Figure 3.9 is

close-up figure on the joint angles. The trajectories of classical and modified sim-

plex seem to be same, but the main change is the number of iterations. Table 3.1

compares number of iterations and cost of the objective function at the position of

convergence.

Simulation with redundant system configurations

Six degrees of freedom of the end of manipulator were controlled by the optimization

process. The task with the redundant system configuration (m < n) was not able to

converge as shown in Figure 3.11 and Figure 3.10. Table 3.1 also makes a comparison

with the Gauss-Newton optimization. It is clear that the simplex methods are much

efficient than Gauss-Newton for redundant problems.



38 CHAPTER 3. MODIFIED SIMPLEX METHOD

-20

-10

0

10

-100

-95

-90

-85

-80

-75
0

1

2

3

4

5

x 10
4

Joint4(pan) [degree]

Joint5(tilt) [degree]

C
os
t

(a)Classical simplex method

-20

-10

0

10

-100

-95

-90

-85

-80

-75
0

1

2

3

4

5

x 10
4

Joint4(pan) [degree]

Joint5(tilt) [degree]

C
os
t

(b)Modified simplex method

Figure 3.8: Joint angles and their cost functions with 2DOF
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Figure 3.9: Trajectory of joint angles with 2DOF
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(c)Joint 5, 6, and Cost function

Figure 3.10: Result of the classical simplex optimization with 6DOF centering task
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Figure 3.11: Result of the modified simplex optimization with 6DOF centering task
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Figure 3.12: Result of classical simplex optimization with 6DOF
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Figure 3.13: Result of modified simplex optimization with 6DOF
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Table 3.1: Comparison with different optimization techniques

number of iterations Objective function

Gauss-Newton 2DOF centering 4 0.0003

classical classical Simplex 2DOF centering 26 0.2564

modified Simplex 2DOF centering 16 0.0388

Gauss-Newton 6DOF centering not converged

classical Simplex 6DOF centering 72 0.0832

modified Simplex 6DOF centering 37 0.2411

Gauss-Newton 6DOF positioning not converged

classical Simplex 6DOF positioning 119 2.2928

modified Simplex 6DOF positioning 112 2.3273
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3.5 Conclusion

In this section, we investigated the simplex and modified simplex optimization tech-

niques for a positioning task by visual servoing. This method does not need any

model of the robot and does not require the estimation of Jacobian matrices. Con-

straints at the joint-level can be easily included. Since the simplex method does

not need to calculate or to estimate the gradient of the objective function, a robot

never goes in the wrong direction due to the bad estimation. Moreover, the objec-

tive function does not need to be differentiable. We successfully demonstrated the

proposed scheme with simulations.

The convergence of simplex iteration relies on the probability and contingency.

It is known that the convergence of simplex optimization technique is not so quick

near the minimum. Quicker convergence could be expected by switching to Gauss-

Newton iterative optimization technique with the LMS estimation algorithm, which

is discussed in Chapter 2.





Chapter 4

Practical positioning task with

simplex algorithm

4.1 Introduction

In the previous section, a modified simplex method has been introduced. The

method is efficient with complex objective functions due to redundant system con-

figurations or could even weak with multiple vision systems. It is also compatible

with non-smooth objective functions. We also found that the positioning task by

the modified simplex algorithm takes time especially near the convergence. This

chapter is devoted to practical applications to visual servoing tasks.

The goal is to position the end-effector fitted with a camera (eye-in-hand config-

uration) with respect to a static object. Our approach is generic and can be used

with different type of visual servoing applications where the features used to build

the objective function do not need to be differentiable nor to have analytical expan-

sions. We will illustrate our approach with a simple positioning task with respect

to an unknown object.

The task consists in bringing the end-effector at the vertical of a cylindrical object

placed in the workspace of the robot as shown in Figure 4.1 (b).

Firstly, we set a task to be accomplished by using the simplex optimization tech-

nique. An industrial manipulator with 6DOF is considered as a typical example. It

is desirable that the objective function scarcely has local minima. Existence of local

minima may cause an irrelevant convergence. Several objective functions are pro-

posed and compared. We also propose to restart initialization of the optimization

47



48CHAPTER 4. PRACTICAL POSITIONING TASK WITH SIMPLEX ALGORITHM

(a)start position (b)final position

Figure 4.1: Starting and goal position of the robot and their images taken with a

camera at the end-effector
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when the process falls in a local minimum.

We also present techniques for acceleration of the convergence. To accelerate the

convergence, a hybrid scheme combining a simplex algorithm with an image-based

partial visual servoing loop is proposed. The idea is to bring the target object to

the center of the image, during the optimization process. Other modifications can

be done to accelerate the convergence. Near the optimum, once a local Jacobian

matrix can be accurately identified thanks to small local motions, the algorithm can

switch to an iterative Gauss-Newton method.

4.2 Objective functions

The task consists in bringing the end-effector at the vertical of a cylindrical object

placed in the workspace of the robot. Therefore, five degrees of freedom should be

controlled by the optimization process.

4.2.1 Illustrative objective function

The objective functions are usually selected as sum of square of feature errors. A

possible objective function could have the following features:

• The distance between the end-effector and the object is given by its size in the

image.

• The angle between the object axis (cylinder axis) and the optical axis of the

camera is given by the form factor of its image (form factor = 1 when this

angle is zero). This angle can be decomposed in two elementary angles (e.g.

roll and pitch).

• The position of the object in directions parallel to the image plane is given by

the coordinates in the image of its center of mass.

For this task, we propose the following objective/cost function:

F = W1(x − W

2
)2 + W2(y − H

2
)2 + W3(

s

S
− 1)2 + W4(

llong

lshort

− 1)2 (4.1)

where W and H are the width and the height of the image, x and y are the co-

ordinates of the center of the object in the image, s and S are the actual and the
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desirable size of the object in the image, llong is the longest distance from the center

of the object to its contour, and lshort is the shortest one. Therefore
llong

lshort
is the form

factor of the object image. Finally, W1, W2, W3 and W4 are the respective weights of

feature errors in the cost function. Figure 4.2 shows an illustration of the features.

Clearly, even if a model of the object was known, some of these features would

not have a simple analytical expression (like, e.g., the form factor). These are

possible features that will allow for the control of the 5 DOF. However, there are

no limitations on this type of features as long as they contribute to the definition

of the desired position. This illustrative objective function requires the knowledge

of the approximate shape of the object. It also needs different objective functions

to reach different objective positions even with the same target object. A solution

to this problem of modeling the object consists in using only the pixel values of the

current and desired image as described in the next section.

4.2.2 Pixel matching by sum-of-square-difference

The following objective function does not need features. The sum-of-square-difference

(SSD) of each pixels intensity between the current and the reference or goal image

of the object.

F =
∑
i,j

(Pcurrent(i, j) − Preference(i, j))
2 (4.2)

where i and j indicate the location of a pixel in the image, and Pcurrent(i, j) and

Preference(i, j) are the intensity of (i, j)th pixel in the current and reference image,

respectively. This objective function is independent of the target object or the

objective position. The objective is easily learned, since it uses only in a view of the

object at the right position. Therefore, this is no special objective function tuning.

4.2.3 Simulations

Simulations were carried out using the modified simplex method presented in section

3.3.1. The positioning process was implemented under the graphic library OpenGL

to model the robot SCEMI 6P01. The target is a cylindrical white cup of 11cm

height without handle on a black background. The task consists in bringing the

end-effector at the vertical of a cylindrical object placed in the workspace of the

robot as shown in Figure 4.1 (b). To compare several optimization runs, we use
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Figure 4.2: Concept of the illustrative objective function
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the same starting positions as shown in Figure 4.1 (a). The target object is the

cylindrical white cup used in the last section.

To compare the efficiency of the objective function, simulations with the illustra-

tive objective function of Equation (4.1), the SSD pixel matching of Equation (4.2)

are carried out. The combined objective function, that sums up these two objective

functions, is also tested. For these simulations, different weights are chosen exper-

imentally in order to have nearly the same cost at the starting and final positions

for the two cost functions.

The tolerance of convergence ε is set to 1.0% of the mean cost between the starting

(n + 1) positions, and the termination tolerance is 1.0%.

Figure 4.3 shows the convergence of the distance and the angle of the end-effector

with respect to the object. The robot gradually approaches the optimal position.

Figure 4.3: Convergence of the cost with the complex method. The operation takes

86 steps.
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4.2.4 Influence of weightings for illustrative objective func-

tion

In order to converge faster, it is important that the cost function does not have

local minima. Our illustrative function uses two image features: size and form

factor. Each feature creates different local minima. Figure 4.4 and Figure 4.5 are

the plots of size and form factor at each joint angle. The optimized joint angles of

the robot are (Joint1, Joint2, Joint3) = (0, 60, 70)[degree]. In Figure 4.4, when it is

far from the global minimum, the size of the object’s image does not make difference

of the objective function, and it makes large peak near the global minimum because

it approaches the object too close. In Figure 4.5, the form factor makes a wide local

minimum. The differences between global and local minimum are small. However,

the positions where these features make local minimum are different. Thus the cost

function that has small local minimum may be available by adjusting the weights of

two image features. Figure 4.6 shows the objective function with W3 = 250, W4 =

250. Figure 4.6 shows the objective function with W3 = 150, W4 = 450. When we

take the correct weights on the image features, the objective function without large

local minimum is available.

4.2.5 The comparison of different cost functions

The comparison of the different cost functions is given in Table 4.1. The operations

symbolized in the table are as follows:

Ill: Simplex method with the illustrative objective function.

Ssd: Simplex method with the SSD pixel matching.

Cmb: Simplex method with the objective function combining Ill and Ssd.

The result on Table 4.1 are the mean between 5 successful runs. The operation

over 50 iterations were stopped and omitted from the calculation.

From the resulting errors, it can be said that the combined objective function

(Cmb) has the best convergence in this configuration. With cylindrical objects, the

SSD objective function has local minima as shown in Figure 4.9. Far away from

the global minimum, the objective function does not make large difference. The

illustrative objective function was efficient because it contained size error. However

the illustrative objective function had a wide local minimum as shown in Figure 4.8
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Figure 4.4: Illustrative objective function W3 = 500, W4 = 0
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Figure 4.5: Illustrative objective function W3 = 0, W4 = 500
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Figure 4.6: Illustrative objective function W3 = 250, W4 = 250
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Figure 4.7: Illustrative objective function W3 = 150, W4 = 450
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Ill Ssd Cmb

best result

distance error (mm) 24.1 39.0 28.8

angle error (degree) 3.4 5.5 4.1

number of iterations 26 23 49

worst result

distance error (mm) 159.7 65.9 64.5

angle error (degree) 22.5 9.3 9.1

number of iterations 9 31 25

average

distance error (mm) 92.2 51.6 44.3

angle error (degree) 13.0 7.3 6.3

number of iterations 23.8 30.6 31.6

success rate 5/5 5/9 5/11

Table 4.1: Result of the Simulations

near the global minimum. Its form factor (the difference between the longest and

the shortest strait lines intersecting at the center of the object image) is not large,

and it does not give a great cost when the size of the object image is nearly correct.

So the process always converges quickly, but often falls in local minimum.

The range of errors was the smallest with the combined objective function. The

two functions seem to offset the value of local minima each other as shown in Figure

4.10. From the result on success rate, it seems to have poor convergence properties,

however, it arrives at near the global minimum and wanders around there. It can

be expected to give an accurate convergence with a larger iteration limit.
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Figure 4.8: Illustrative objective function
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Figure 4.9: Sum-of-squared-difference pixel matching

Plots with different joint angle.

Joint 2= 70(obscure blue), 60(blue), 50(lightblue) [degree]
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Figure 4.10: Combined objective function

Plots with different joint angle.

Joint 2= 70(obscure blue), 60(blue), 50(lightblue) [degree]

4.3 Improvement of the convergence

4.3.1 Hybrid scheme

Acceleration of the convergence can be achieved by reducing the dimension of the

variable space. For example, to control some degree of freedom by image-based

visual servo loop is one of the solutions. To do this, we add a constraint on the

position of the robot end-effector. A simple image-based visual servo loop is used to

maintain the position of the object in the center of the image. This visual servo loop

guarantees that for each position of the other joints, the image remains centered. So

the iterative search is limited to a reduced subspace in the initial variable space. It

is an advantage of the simplex to be executed with other control method like this.

The illustrative objective function of Equation (4.1) is used on this simulations.

Different weights (W1 to W4) for each runs are chosen experimentally for fast con-

vergence. Since only five image DOF are controlled by vision and we use a 6 DOF

robot, one DOF must be constrained. To do so, we simply constraint one of the
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angle of the wrist to be equal to zero at any time.

To compare several optimization runs, we use the same starting positions as

shown in Figure 4.1 (a). The tolerance of convergence ε in Equation (3.11) are

set to 0.25% of the mean cost between the starting n + 1 positions. To escape

local minima, which explained in section 4.4.3, simplex iteration is terminated when

it converge with the cost function lower than 1.0% of the mean cost between the

starting (n + 1) positions.

The comparison of different optimization runs is given in Table 4.2. The opera-

tions symbolized in the table are as follows:

S: Simplex method without image-based centering.

M: Modified simplex method without image-based centering.

Si: Simplex method with image-based centering.

Mi: Modified simplex method with image-based centering.

S M Si Mi

number of iterations 144 108 98 86

distance error (mm) 23.9 33.3 9.6 4.0

angle error (degree) 7.5 10.3 3.1 1.3

image size error (% ) 0.47 0.82 0.37 0.23

form factor 2.89 5.20 2.18 1.02

Table 4.2: Result of the Simulation

The method Mi(modified simplex method with image-based centering) has the

best result among them. The use of an image-based visual loop clearly improves the

optimization time and accuracy.

It is easy to guess that the number of iterations becomes generally small when the

number of variables is small. Even if the end-effector comes to the good position,

total value of the objective function becomes large when the object is far from the

center of the image. This effects inaccuracy of the converged position.



62CHAPTER 4. PRACTICAL POSITIONING TASK WITH SIMPLEX ALGORITHM

4.3.2 Variable space

Joint space

The joint angles of a manipulator can be used as the variables for simplex process.

Since only joint-level controller is used, the process doesn’t need any Jacobian matrix

calculation that needs kinematic model of the manipulator. It is also easy to include

joint-space constraints with complex method explained in section 3.2.2. Cartesian-

space constraints are also available in the same way if a direct kinematic model is

known. However, the cost function in a joint space may have complex local minima

caused by the structure of the robot. Depending on the structure of the robot, it

may also be difficult to control some joints by image-based visual servo loop for the

purpose of keeping the target object in the image.

Cartesian space

When the inverse kinematics model of the manipulator is known, the pose of the

camera on the end-effector is available as variable space for the simplex algorithm.

It could be used to reduce the dimension of the variable space, since the position

and size of the object in the image can be adjusted easily with the visual servo loop,

which was described in section 4.3.1. For example, translations in x, y, z directions

are applied to maintain the position of an object in the center of the image and its

size in a number of pixels, then the dimension of simplex variables vector is three.

Furthermore, when rotated images are generated off-line, then all the rotated images

at this position can be compared with the reference image, then the optimization

for the rotation angle can be neglected and then the dimension of simplex variables

vector becomes two.

Simulations with Joint space and Cartesian space

Simulations are carried out, using the pose of the camera as variables. We use

translations of the camera in x, y, z directions to maintain the position of an object

in the center of the image and its size in certain number of pixels with an image

servo loop. Rotated reference images are generated off-line before the optimization

process. Then the number of variable for simplex operation is only two: pitch and

yaw of the camera.

The simulation is executed with the modified simplex method, using SSD pixel
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(a)Joint angles

(b)Camera pose

Figure 4.11: Different variables; the variable controlled by simplex operation is

signified with red, by visual feedback with blue
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matching as objective function. The target object is a teapot as shown in Figure

4.12. The start position of the camera is just above the object; pitch= 2
π
, yaw=

0. Different 24 goal images are tested. The tolerance of convergence ε and the

termination tolerance are set to the same values for any goal images. The operation

is stopped when the number of iterations exceeds 50.

The results are shown in Figure 4.13. For the purpose of comparison, the results

with joint space are shown in Figure 4.14.

The process with Cartesian space has better convergence. With joint space, it is

sometimes difficult to exceed local minima because of the structural restriction of

the robot. The symmetry images can be local minima of each other, and the images

obtained at same angle of pitch and same absolute angle of yaw, too. The process

with Cartesian space sometimes falls into these local minima.

Figure 4.12: Target object
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Figure 4.13: Pose error for simplex in Cartesian space
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Figure 4.14: Pose error for simplex in Joint space
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4.4 Solution for local minimum

4.4.1 Switching to Newton-like iterative methods

The classical and the modified simplex algorithm take time especially near the con-

vergence. On the other hand, the simulations in the previous chapter showed that

the process using Gauss-Newton method has converged very well near the local

minimum. Therefore, it is naturally to think of switching algorithms depending on

the optimization progress. The main idea is to estimate the image Jacobian during

the simplex optimization search, and once the optimization process arrives near the

optimal position, the optimization methods switch to the Gauss-Newton iterative

method. Faster convergence is expected with this technique near the optimum.

4.4.2 Multiple cameras

Since the objective function for the simplex algorithm has multiple image features,

it is also useful to employ several cameras. When the camera is set to observe

the workspace of the robot, it is possible to give a penalty objective function not to

exceed the workspace limit, e.g. not to touch other obstacles. The information about

the distance between the end-effector of the robot and the object is also available,

as shown in Figure 4.15.

4.4.3 Going out of a local minimum

When the cost function at n + 1 vertices converges and still has a large value, it

means that the algorithm has reached a local minimum. So, in this case, a simplex

process with new vertices is started. In this new simplex, the base point X1 is the

last minimum point Xl.

Since the simplex process is restarted each time when it falls in a local minimum,

if the cost function F has many local minima, the simplex process may need many

iterations and so takes a lot of time. So it is better to find a relevant cost function

and proper weights to avoid local minima.
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Figure 4.15: Using multiple cameras
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4.5 Experiments with an industrial robot manip-

ulator

The robot is a SCEMI 6P01 industrial manipulator with 6 rotational joints. The

camera is a PAL CCD black & white camera. The frame grabber is an Imaging

Technologies PCI board (PCVISION). Its host is a PC (bi-Pentium III 800 MHz)

running the Linux operating system. It performs image processing and controls the

optimization process. The target that we use in the experiment is a 12cm long black

screw placed on a white table as shown in figure 4.16. The desired position of the

end-effector with respect to this screw is at an approximate distance 40 cm.

base position 1 2 3 4

joint 1 -0.2085 -0.1163 0.6638 0.1509

joint 2 0.4945 0.8548 0.7770 0.1155

joint 3 1.4900 1.1452 1.0119 1.0804

joint 4 0.0000 0.0000 0.0000 0.0000

joint 5 -0.2257 -0.0835 0.1019 -0.2640

joint 6 0.2993 0.4465 -0.4206 0.5537

Table 4.3: Initial base positions X1(rad)

Table 4.3 shows the four initial robot joint positions (X1) that are used in the

experiments. We use the modified simplex method with image-based centering (that

we call Mi). The first three joints are the variables of the cost function (x1, x2, x3),

joints 5 and 6 are used for the centering and joint 4 is set to 0.

Figure 4.17 shows the cost function evolution with initial position 1. The cost

function gradually decreases, and the target projection in the image also changes

toward the desired image. The function converges at the 7th iteration and restarts

with new simplex again to go out of the local minimum.

Figure 4.18 shows the cost function for the 3 other initial positions. The number

of iterations needed to converge depends highly on the initial position.
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Figure 4.16: Starting position and final position of the manipulator and correspond-

ing images acquired by the camera.
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Figure 4.17: Evolution of the cost function with initial position 1
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Figure 4.18: Evolution of the cost function with initial positions 2,3, and 4
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4.6 Conclusion

Focusing on the convergence, the process with the illustrative function, SSD pixel

matching, and the combining cost function of these two were simulated. It was

difficult to converge with the pragmatic limit of only 50 iterations, the positioning

errors were not so small (2-4cm). Stable convergences were realized with the com-

bined objective function. Although the number of iterations was not improved with

these cost functions, the accuracy of the converged position can be improved by

combining several cost functions.

The comparison between joint angles and camera pose as the optimization vari-

ables was also done. The process has better convergence with smaller dimensions

of the variable vectors. Joint-level simplex operation also has difficulty to go out

from local minimum due to the structural constraints of the manipulator, even if the

global minimum is inside its workspace limits. With Cartesian space optimization,

the problem arises only from the local minimum of the objective function. When

Cartesian space is used for simplex operation with such manipulator, workspace has

to be considered by complex method.

We found that the cost function has local minima, and that the number of itera-

tions needed to converge depends on the initial position. The positions where local

minima exist depends on the target object and the objective function. Further work

could focus on improving the cost functions for rapid convergence and robustness

to initial positions. For example, switching cost functions during the process is a

possible solution for this problem.
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Chapter 5

Measurement of human grasping

motion

5.1 Introduction

Recently, a lot of research has been done on humanoid robots aiming to coexist with

humans. It is necessary that such robots have high-functional end-effector in order

to carry out complex task in the human living space. To realize such a dexterous

end-effector, analysis and application of human skills can be a solution.

It is known that humans have excellent skill in manipulating and grasping objects.

The analysis of various features of human grasping has been made until today. About

the motion to lift up a target object, Westling [77] and Jenmalm [31] reported the

effect of changing friction coefficient and curvature of the contact surface on the

behavior of human grasping. The development of the ability to control the grasping

force along the age is investigated by Forssberg [16] and Kinoshita [37]. It has

been observed that when a human handles and carries a target object, the grasping

force is delicately adjusted to the inertial force created by its movement [34]. This

characteristic has been applied for the control law of the robot hand in the grasping

task [57]. The analysis of the motions necessary to put an object on a table has

been made by Nakazawa [52], and it follows that humans unconsciously decrease

the grasping force to the minimum slip, in order to reduce the impact force, while

avoiding that the object slips.

Humans are able to touch an object without large displacements even if it is

light and could easily fall. Although such skill is very important when the object is

75
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fragile, little research has been made so far on this type of grasping.

In this chapter, experimental studies are carried out on the human grasping

with the index finger and the thumb (precision grasp). The contact force and the

displacement of the object are analyzed depending on the fingertip which contacts

first to the target object. Motions of human fingertips are investigated with objects

of deformable width. The experimental results reveal the function of the index finger

and the thumb during grasping.

5.2 displacement of the target object

5.2.1 Experimental set-up

The system arrangement for the experimental set-up is shown in Figure 5.6. The

target object was put on a table. A digital video camera was set 600mm above the

table. It recorded the displacement of the markers on the target object at 30Hz (i.e.
1
30

sec sampling interval), and the displacement of the object raised by the contact

with the human fingertips was analyzed. Light emitting diodes were also taken by

the camera for the detection of the contact time instant between the target object

and the table, and between the fingertip of the subject and the target object. They

turned off when the object had no contact with the table nor one of the fingertips

of the subject.

The view taken by the camera is shown in Figure 5.2. The target object was an

empty can. Fiducial marks were put on the upper face of the object to measure the

displacement with a digital video camera. The weight of the object was successively

30, 120, 210, and 300g, and it was adjusted by putting calibrated weights into the

can.

A subject sat down on a chair 400mm height, and grasped the target object at

a distance of 350mm, then lifted it up to around 50mm high. The subject pinched

the object with the index finger and the thumb. He was asked to make it quickly

or slowly. The grasping was demonstrated five times for each weights and speed

conditions.

The experiment was made by three subjects(S1, S2, and S3), who were male and

female students in their twenties. Practices have been carried out several times in

order to accustom the subjects to the handling of the target object.
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5.2.2 Results and discussion

Figure 5.5 indicates the average of distance of five markers from the position of the

target object before the contact by a fingertip to the position at the time instant

of lift from the table. It is clear that the heavier the target object, the smaller

the displacement distance, and that the quicker motion, the larger the displacement

distance. Note that subjects moved the target object around 1.0cm maximum, but

never dropped it. It can be observed that the two fingertips hold the object in the

early phase and that they take some time to lift it up.

Figure 5.4 shows the typical pattern of displacement of the target object depend-

ing on the fingertip that first made the contact. The starting position of the target

object is colored in red. The position where one fingertip touches the object is col-

ored in blue, and when both fingertips touch same time, it is colored in green. In the

case when the index finger touches first, as shown in Figure 5.4 (a), the displacement

distance made by the index finger was as large as the one during the phase of lift-up.

The direction of displacement made by the first contact was the composition of the

movement of the index finger and the wrist. In the case that the thumb touches first,

as shown in (b), Most of displacement has been made by the thumb. That indicates

that the movement of the arm in horizontal direction has been almost stopped when

the thumb touched the object.

first touched finger
Subject

index finger thumb simultaneity

fast motion 13 0 7
S1 slow motion 14 3 3

fast motion 9 1 10
S2 slow motion 8 4 8

fast motion 7 3 10
S3 slow motion 4 15 1

Table 5.1: Count numbers patterned on the first touched finger

The frequency of first contact by different fingertip is indicated on Table 5.2.2.

The pattern of this frequency was largely depended on the subjects. The frequency

of the first contact by both fingers simultaneously tended to increase with quicker

motion. It was caused by the sampling rate of the video camera that cannot detect
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small time difference of the contact.

The bar diagram in Figure 5.5 indicates the distance of displacement during first

contact and lift-up motions. When the thumb contact first, it tends to move the

object more than during lift-up motion. When the index finger touches the target

object first, it moves it both during the first contact phase and the lift-up phase.

This trend agrees with Figure 5.4.

The following conclusions can be drawn from these experimental results:

• human slightly moves the target object, but never let it fall down.

• When the index finger touched the target object first, the arm continued on

moving horizontally.

• When the thumb touched first, the arm stopped moving in the horizontal

direction, then perpendicularly lifted the target object.
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Figure 5.1: System arrangement for the experimental set-up

Figure 5.2: Camera view of experimental object and markers
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Figure 5.3: Average of displacement distance of the markers
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(a)Trajectory of the object markers

when the index finger touched first
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Figure 5.4: Trajectory of the markers put on the target object
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Figure 5.5: displacement of the target object of 30g weight. The results in the case

when the thumb contacted first are on the left side, and the index finger first on the

right side. The blue bars are the displacement during the first contact, and the red

ones the displacement during the lift-up motion
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5.3 Contact force in human grasping

5.3.1 Experimental set-up

The same system arrangement as in Figure 5.6 was used for these experiments.

The target object of Figure 5.7 was used in order to measure the contact force

and the displacement. Subjects pinched the object with the index finger and the

thumb at the part A and B of the object. The force applied by the index finger and

the thumb, Findex and Fthumb, were measured using two pairs of strain gauges. The

weight of this object was 230g. Fiducial marks were also put on the upper face of

the object to measure the displacement with a digital video camera.

Three load cells were set under the target object. The force applied to the desk

while the holding the object was measured with these load cells. Forces applied to

the object and the table were recorded in the computer through the gauge amplifier

with a 5ms sampling interval.

The experiment was made by five subjects(S1 to S5), who were all male students

in their twenties. Practices were carried out several times in order to accustom the

subject to the handling of the target object.

5.3.2 Results and discussion

The typical time trajectory of the measured forces is shown in Figure 5.8. First,

one of the fingertips touched the target object at time t = 0. Then, once the

two fingertips touched the object, their contact force Findex and Fthumb increased

simultaneously. Then, the target object lost the contact with the table at t = tu

and this is the end of the grasping motion. At the time instant of contact, the force

which was applied to the table through the object Ffloor changed, but the change was

quite small. It was confirmed that a human could grasp the target object flexibly

without pressing the table.

The enlarged view on the contact force is shown in Figure 5.9. It is found from

this figure that one of the fingertips has touched the target object earlier than the

other, and there is a difference in the contact time. We call it first contact from now

on. Hence, we will focus here after on the force applied just after the first contact.

Figure 5.10 indicates the average of the first contact force and its standard devi-

ations．The contact force of the fingertip during grasping (until the other fingertip

touches the object, from t1 to t2 in Figure 5.9) was averaged to every subject, in
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time and trials. independently of the fingertip which reached the object first, the

first contact force is about 0.1 to 0.2N . It can be said that a human can touch the

object with very small contact forces. The standard deviation shows the variation

in first contact force. All the subjects had larger variations with the thumb than

with the index finger. So the index finger can apply the contact force more stably

than the thumb.

The displacement of the target object from the initial state with no contact

are shown in Table 5.3.2. Their values are averaged on five experiments. The

displacement of the target object was less than 3mm. Subjects touched it without

large displacement.

Subject S1 S2 S3 S4 S5

Displacement[mm] 1.8 3.1 1.9 2.5 2.7

Table 5.2: Object displacements due to finger grasping

Figure 5.11 shows the time derivative of the first contact force. The grasping

motion can be classified into three patterns; (a) (b) and (c) in Figure 5.11. Their

characteristics are described as following;

Pattern I : While the first contact force is increasing without moving the target

object, the other fingertip touches it.

Pattern II : The contact force of both fingertips increase simultaneously.

Pattern III: While the first contact force is oscillating (the time derivative of the

first contact force is zero or negative) from the contact time instant, the other

fingertip touches the target object.

Figure 5.12 indicates the occurrence of these patterns for ten trials by each of

the five subjects. The right and left half plane in the figure are the frequency of

Patterns I, II, and III according to the finger making the first contact, i.e. the index

finger and the thumb, respectively. In the case of a grasping task by three fingers,

results on the frequency of first contact by the middle finger, the thumb, and the

index finger is reported in [14]. It has also been reported that there is a difference

between subjects [37]. Our measurement data had also some bias with respect to

each human subject.
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Pattern II occurred less than the other two, and appeared when both fingertips

contacted almost at the same time. Pattern I has appeared only when the index

finger touched the object first, therefore the contact force by the index finger tends

to increase without moving the target object, before the thumb touches it. For

pattern III, it is often in the case when the thumb made the first contact, so the

contact force tends to maintain, until the index finger touches the object. Based on

these results, it can be said that the characteristics of the first contact force were

different depending on the fingertip which contacted the target object first. The

number of subjects was five, and each of them did the grasping motions ten times.

Another experiment was carried out in order to confirm the above tendency. The

subjects were asked to touch the object first with the index finger or the thumb.

The number of subjects was five, and each of them made ten trials. Figure 5.14

shows the typical contact force data of the experiments. From these figures, the

trend discussed in Figure 5.12 can be confirmed. When the index finger touched the

object first (Figure 5.14 (a)), its contact force increased before the thumb arrived.

On the other hand, when the thumb touched the object first (Figure 5.14 (b)), its

contact force increased but was not stable. Figure 5.13 shows the occurrence of

patterns I, II, and III for these experiments. When the designated finger made

first contact consciously, the same trend with unconscious motions has appeared.

Pattern I obviously occurred more frequently with the first contact by the index

finger, while Pattern III with the thumb, similarly to the unconscious grasping

motion. The subject S5 who did not make the first contact with the index finger as

shown in Figure 5.12, usually showed pattern I when he was asked to touch with

the index finger first.

From these results, it can be concluded that the grasping movement of the fingers

are related strongly to the first contact force characteristics.
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Figure 5.6: System arrangement for the experimental set-up

Figure 5.7: Experimental object and markers
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Figure 5.8: Typical time trajectories in picking-up motion

Figure 5.9: Close-up of time trajectories of contact force by the two fingers
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Figure 5.10: Average of contact force and its standard deviation
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　 (a)Pattern I

　 (b)Pattern II

　 (c)Pattern III

Figure 5.11: Typical patterns of time derivative of the contact force
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Figure 5.12: Occurrence of a grasping speed patterns in picking up motions

Figure 5.13: Occurrence of a time derivative of the contact force patterns when the

first contact finger is designated
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　 (a)First contact with index finger

　 (b)First contact with thumb

Figure 5.14: Typical time trajectories of contact force in case the first contact is

made by the thumb or the index finger
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5.4 Motion of human fingertips and their func-

tions in grasping

5.4.1 Experimental set-up

The motion of the fingertips was measured. Experiments have been done using a

cylindrical object whose width is deformable due to the finger force as shown in

Figure 5.15. The object has a spring inside (15g weight, 55mm width, 12mm side

diameter, 0.23N/mm spring coefficient, 14mm deformable width), and the object

width is shortened proportionally to the applied force. Since the target object is

light, it is possible to hold it without shortening its width at the beginning of the

experiment. A subject pinched it with the index finger and the thumb. After the

stable holding condition was confirmed, the subject was asked to apply then reduce

the force to the target object. Markers were put on the 5 finger joints and on the 2

fingertips. The movement of the fingertips has been measured using the digital video

camera. At first, visual information was restricted for the subjects in order to avoid

its effect, and the grasping action was done only with the sense of the fingertips.

Then, the measurements were also carried out the visual information. Subjects were

five male subjects(S1 to S5) in their twenties.

5.4.2 Results and discussion

Figure 5.16 shows a typical motion of the fingertips obtained by the experimental

measurement. The polygonal lines connect the joints, thus they represent the pos-

ture of the hand at every time instant. It shows the motion of the fingertips applying

the force in the direction indicated by the arrows. From the figure, it was found

that the thumb hardly moved, and that the index finger largely moved.

The displacement magnitude of the markers on the fingers is shown in Figure 5.17

and Figure 5.18. This is the ratio of the displacement of the index finger and the

thumb for a complete displacement of the target object. The result of the experiment

without visual information in Figure 5.17 tells us that the displacement of the index

finger was clearly larger than the one of the thumb. The same trend was obtained

for the experiments with visual information as in Figure 5.18. The subject S2 moved

the thumb comparatively when he applied the force, but the ratio was still 40%. It

seems reasonable to suppose that the index finger applies the force actively and that
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the thumb hardly moves to support it. Next, the fine motions of each joint were

investigated. The back of the finger was considered as a straight line, and the joint

angles were calculated by the gradient of the lines as explained in Figure 5.19. The

calculated results are presented in Figure 5.20 and Figure 5.21. The vertical line in

the figure is the range of each joint angle that moved from initial state to the final

state where the action was completed. It is positive in the direction indicated by

the arrows in Figure 5.19. It can be said that the index finger moved more than the

thumb, especially the joint angles θ2 and θ3. Paying attention to the direction of

the joints motions, these θ2 and θ3 of the index finger and θ4 of the thumb moved in

the positive direction when the force was applied (Figure 5.20 (a) and Figure 5.21

(a)), and negative motions when the force was reduced (Figure 5.20 (b) and Figure

5.21 (b)). Conversely, the direction of motion of θ1 and θ5 for both fingertips were

different depending on the subject and the trial. It can be explained by the fact that

the joints of both fingertips have passive motions when they moved in the opposite

direction of the other three joints, and that they have active motions when it moved

in the same direction. With respect to the rotating stiffness of the finger joints, it

has been reported in [55] that the rigidity of the joint of the fingertips is low. From

this fact, it is likely that the passive motions of the fingertips is important for the

posture of the fingers when applying the force and holding the object.
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Figure 5.15: Experiment for grasping a cylindrical object whose width is deformable

due to the finger force

Figure 5.16: Typical trajectories of the fingers when the subject gives grasping force

to an object whose width may be deformable
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(a)Force-increasing motions without vision

(b)Force-decreasing motions without vision

Figure 5.17: Ratio of displacement between the two fingers without vision
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(a)Force-increasing motions with vision

(b)Force-decreasing motions with vision

Figure 5.18: Ratio of displacement between the two fingers with vision
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Figure 5.19: Average of contact force and its standard deviations
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　 (a)Force-increasing motions without vision

　 (b)Force-decreasing motions without vision

Figure 5.20: Angle variation of each links without vision
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　 (a)Force-increasing motions with vision

　 (b)Force-decreasing motions with vision

Figure 5.21: Angle variation of each links with vision
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5.5 Conclusion

In this chapter, the contact force and the displacements of the object have been ana-

lyzed. Motion of human fingertips has been investigated for objects with deformable

width.

The motion of the markers on the target object has been observed by a video

camera. Human slightly moves the target object, but knock it down. When the

thumb touched the object first, the markers were moved more than during the lift-

up phase.

The contact force has been measured paying attention to the fingertip which

touched the target object first. The time derivative of the first contact force has

been classified into three patterns, and the patterns had a close relationship with the

fingertip which made the first contact. When the index finger touched the object

first, the contact force stably increased before the thumb arrived. On the other

hand, when the thumb touched the object first, its contact force was not stable.

The motion of the finger has been measured using a deformable object. When

the force was applied and reduced, the index finger moved largely and the thumb

hardly moved regardless of visual information. The index finger applied the force

actively, and the thumb supported it.

These features of human grasping motion are related to each other, and reflect

grasping motions which do not move the target object.





Chapter 6

Application to robot hand

grasping

6.1 Introduction

Huge number of studies on grasping and manipulation by robot hands have been

done by many researchers. Salisbury and Craig [70] defined the internal force whose

resultant is zero as the force that can be added when necessary to the manipulation

force to prevent sliding or breaking contact. Yoshikawa and Nagai [79] proposed a

new definition of grasping and manipulating forces for multifingered robot hands.

Even though the grasping, manipulation and interval forces are well understood,

methods for determination of these forces are still inadequate for real-time imple-

mentation, mainly because of their complexity.

Another approach to the control of robot hands is a physiological approach mo-

tivated by the study on human hands. For an approach task in order to grasp a

target object, Nakazawa observed that the path of two human fingertips is similar

to the obstacle avoidance against the target object, and proposed a path-planning

model build with a complex potential field [58]. When a human handles and carries

a target object, the grasping force is delicately adjusted to the inertial force created

by its movement [34], and this characteristic is applied as a control law in the grasp-

ing task of the robot hand in [57]. Furthermore, a hand-over motion from human to

a robot has been realized in [36], emulating human’s hand-over motion.

Human have an ability to touch an object without large displacement even if it

is light and could easily fall. It is not applied yet to control laws of a robot hand.

101
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Our aim is to apply the model of human’s behavior to a robot hand.

We assume a robot hand with two fingers controlled individually. Each finger has

two pairs of strain gauges as force sensors. A vision system is also available with a

camera on the end-effector of the manipulator.

Human can keep the first contact force very small. It contributes to a ”soft”

grasping without rolling over the target object. The first contact force is always

almost the same and does not depend on the shape or weight of the target object.

Not to move the target object while waiting for the other finger to arrive, the

characteristic of human grasping motion is applied to robot hand control.

However, human fingers slightly move the target object during the first contact.

The displacement of the target object can be neglected when the time-lag between

the contacts by both fingers is very small. The two fingers of a robot hand do

not always have actuators with the same performance. When the characteristics of

the motors are different, they cannot always contact the target object with a small

time-lag between both fingertips, even if the object is exactly in the middle of the

distance between both fingers after the initial positioning phase. Therefore, position

synchronization is required to control the position and the velocity of two fingers so

that they can touch a target object at the same time and with the same velocity.

Visual feedback is used for this synchronization.

After both fingers touch the target object, the position and the force are controlled

simultaneously. The position synchronization is also used, and the force error and

position error are added with different weighting factors for the feedback to the

control of the fingers.

The remaining of this chapter is structured as follows. Firstly, maintenance of

the first contact force is proposed as an application of the human grasping features.

Strain gauges are used to detect the contact force, and experiments show the ef-

ficiency. For reduction of the impact force arising from the first contact, several

materials are attached on the fingertips and tested. Then, the fundamentals of

the synchronization method are presented. The synchronization is used for control

of two fingers in order to touch a target object simultaneously. Simulations with

synchronization are carried out. The simulation results prove the efficiency of the

method. Finally, an experiment of total grasping is demonstrated on an experimen-

tal set-up with position synchronization through visual feedback and force control.
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6.2 Control of the first contact force

6.2.1 Detection of touch and the first contact force

Contact time instants of two fingers may have small time-lag even with the position

synchronization if the resolution of the vision system is not high. It is undesirable

that the finger oscillates between contacting and no-contacting conditions due to

measurement noise, or that it moves the target object with the large first contact

force.

Human keeps the first contact force small. It contributes to a “soft” grasping

without rolling over the target object. The human subjects exerted forces around

0.1 to 0.2N , as found in the measurement of human grasping as shown in Figure

5.10. This force does not depend on the shape and weight of the target object.

We apply this feature to the robot hand control. When one of the fingertips

touches the target object, the contact force is kept around 0.16N , which is the

average human force taken from the data obtained by the measurement of human

grasping in Chapter 5.

6.2.2 Reduction of impact force by soft attachments

6.2.3 Experiments with a robot hand

Experimental set-up

The grasping demonstration was carried out using a robot hand with two fingers as

shown in Figure 6.2. The system arrangement for the experimental set-up is shown

in Figure 6.1.

The fingers were made from acrylic plate with 5mm in thickness, 2cm width, 5cm

length. Two fingers were moved by DC servo motors through a ball screw, and each

finger could be shifted in one direction. The contact forces were measured by strain

gauges through a low-pass filter (cut off frequency: 10Hz) and an amplifier.

The threshold of the force to detect the contact was 0.16N , and the gripping

force was 1.6N . Command voltages of two motors were constant until the fingertip

touches the target object. The finger that detects the contact first, stops and keeps

the first contact force at 0.16N . After both fingers contacted, the contact forces are

simultaneously increased until 1.6N . PID controller was used to control the force,

and its parameters have been set experimentally. The period was 0.01sec.
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Several materials were attached on the fingertip, and tested for the detection of

contact. The target object was an aluminium can of 50g on a table.

Results and discussion

Experimental results were obtained by using the robot gripper. Figure 6.3 shows

the contact force of two fingers with rubber attachment. The first contact force has

been kept at 0.16N . The strain gauges were sensitive enough to measure the contact

force.

The impact force was also detected. Since strain gauges measure the force by

the strain on the fingers, it is unavoidable to have a little impact force. It can be

a problem if a finger makes the target object slip over. Thus a “soft” attachment

was put on the fingertips in order to dissipate the impact force. Figure 6.4 shows

the result comparing the force over the threshold for detection of the contact. The

results are compared for a fingertip without attachment (acrylic plate), the case of

a block of rubber, and of a fingersack filled with gel. The result shows that the

impact forces were well reduced by the fingersack of gel. They were also affected by

the velocity of the finger motion controlled by the input voltage.
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Figure 6.1: Experimental set-up

Figure 6.2: Robot hand with two fingertips
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Figure 6.3: Time trajectory of the contact force

Figure 6.4: Time trajectory of the contact force
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6.3 Position synchronization

6.3.1 Position synchronization to touch a target object

Human can position the index finger and the thumb to have almost the same distance

between each finger and the target object [54], and thus the two fingertips can touch

the object almost at the same time. From the initial positioning task (using the

simplex algorithm), the end-effector converged to a position that could be different

from the ideal position with an error up to 10mm. The target object is not always

put just in the middle of the fingertips of the robot hand, and thus they cannot touch

the target object simultaneously without any motion synchronization. Therefore,

position synchronization is applied to control the position and the velocity both

fingertips so that they can touch a target object at the same time and with the

same velocity.

Consider a motion control system with n axes. Define the position tracking error

of the ith axis as

di(t) = ri(t) − xi(t) (6.1)

where ri(t) denotes the desired position of the ith axis and xi(t) is current position.

In synchronized motion, besides di(t) = 0, we would like to regulate motions amongst

axes during the approach so that

d1(t) = d2(t) = . . . = dn(t) ∀t (6.2)

The goal of maintaining kinematic relationships amongst n axes, as given by Equa-

tion (6.2), can be expressed as n sub-goals such as

d1(t) = d2(t), d2(t) = d3(t), . . . , dn(t) = d1(t) (6.3)

Then, let synchronization errors of a subset of all possible pairs of two axes from

the total of n axes in the following way:

εd
1(t) = d1(t) − d2(t)

εd
2(t) = d2(t) − d3(t) (6.4)

...

εd
n(t) = dn(t) − d1(t)
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Obviously, if εd
i (t) = 0 for all i = 1, · · · , n, the goal of multi-axis synchronization

of Equation (6.2) is achieved. Here, considering n = 2, the distances between each

fingertip and the target object d1 and d2 in Figure 6.5 are measured. Position

synchronization errors as in Equation (6.4) are also defined.

εd
1(t) = d1(t) − d2(t)

εd
2(t) = d2(t) − d1(t) (6.5)

Velocities of two fingertips should also be the same at the time of contact. Therefore,

if v1(t) and v2(t) are the velocities of both fingers, then:

v1(t) = ẋ1(t) = ḋ1(t)

v2(t) = ẋ2(t) = ḋ2(t)

εv
1(t) = −εv

2(t) = v1(t) − v2(t) (6.6)

Accordingly, a total feedback error denoted by es(t), is defined. This total error

includes the position errors di(t), and synchronization errors εd
i (t), and the velocity

errors εv
i (t), i.e.:

es(t) =

[
es1(t)

es2(t)

]
=

[
d1(t) + αdε

d
1(t) + αvε

v
1

d2(t) + αdε
d
2(t) + αvε

v
2

]
(6.7)

where αd and αv are positive coupling weights.

6.3.2 Position and force control

After both fingers touched the target object, they increase the contact force until

it is sufficient to lift up and hold the object. When only the forces of the fingers

are controlled, the target object usually moves since its position is not controlled

anymore. It is necessary to have both position and force controlled simultaneously.

Total feedback errors denoted by ei(t) are defined that contain the position errors

di(t) and the force errors fi(t). The position errors di(t) are the distance between

current positions of the fingertips and the position where the fingertip touched the

target object first. The force errors fi(t) are the difference between current and

objective forces.

ef (t) =

[
ef1(t)

ef2(t)

]
=

[
βdd1(t) + βff1(t)

βdd2(t) + βff2(t)

]
(6.8)

where βd and βf are positive coupling weights.
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6.3.3 Simulation

Synchronization

The proposed algorithm has been tested by simulations using Matlab simulink tool-

box. The model of the fingertip is shown in Figure 6.7. The robot hand model

had two fingers controlled individually. A PID controller was selected and the gains

αd, αv ware decided experimentally.

Starting positions for the two fingertips d1 and d2 were 30mm and 10mm, respec-

tively. The object width was 50mm.

Simulation results are shown in Figure 6.8. The time trajectories in Figure 6.8 (a)

indicate the positions of both fingertips, and Figure 6.8 (b) indicate their velocity.

Dotted lines indicate the results without synchronization(αd = 0, αv = 0), and

continuous lines indicate the results with position and velocity synchronization(αd =

0.75, αv = 0.1). Different starting positions are indicated by different colors.

The position and velocity synchronization had the best result. The time difference

between contact time instants was smaller than that of human even without syn-

chronization. Nevertheless, the time-lag with synchronization was less than half of

the one without synchronization, moreover, the velocity difference was much smaller.

Since we assume that the rigidity of the finger of the robot hand is stiffer than the

one of a human finger, the effect of synchronization can be important for a grasping

task by a robot hand.

Position and force control

The simulation of force and position control has been done. Assuming that the

two fingers have been just touched the target object, start conditions were set to

d1 = 0, d2 = 0, and f1 = f2 = 0. The objective force was set to 1[N ]. The coupling

weights βp and βf have been determined experimentally.

Simulation results are shown in Figure 6.9. The time trajectories in Figure 6.9

(a) indicate the positions of two fingertips, and (b) indicate their force. The colors

indicate if position are controlled with the forces or not (red indicates force feedback

alone, and blue force and position feedback).

It is clear from the simulation that position and force control had the best result.
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Figure 6.5: Model of the system

Figure 6.6: Block diagram of position synchronization



6.3. POSITION SYNCHRONIZATION 111

θ

Figure 6.7: The finger model of robot hand with motor, coupling, and ballscrew
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　 (b)Time trajectories of the finger velocity

Figure 6.8: Simulation results of the synchronization
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　 (a)Time trajectories of the finger position
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　 (b)Time trajectories of the finger force

Figure 6.9: Simulation results of the force and position control
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6.3.4 Experiments with a robot hand

Experimental set-up

The system arrangement for the experimental set-up is shown in Figure 6.10. The

target object was a plastic cup on the table. A digital video camera was set 600mm

above the table. The positions of the two fingertips and the target object were taken

with a 1
25

sec sampling interval.

Total grasping demonstration was carried out using a robot hand with two fingers,

same as the last section. First, the two fingers approached the target object. When

both errors became zero, the gripping phase was started. The objective gripping

force was 1.0N . The distance between the image center of the target object and

each fingertip were used to compute the synchronized error, because the shape of

the plastic object could be changed by the gripping force.

Result and discussion

Grasping task was successfully demonstrated. Figure 6.12 shows the positions of

both fingertips. The two fingers gradually compensated their difference of position

errors, and arrived at the target object at the same time with the same trajectories.

In the gripping phase, the position of the target object in the image did not move

largely as shown in Figure 6.13 (a). Figure 6.13 (b) indicates the contact force of

both fingertips detected by the strain gauges. They maintained the contact force

without moving the target object.

At the time instant when the second finger touches the object d1(t) = d2(t) = 0

and the controller switch from the control law (6.3.1) to the control law (??). This

instantaneous switch does not create bumps in the experiment. However, at high

velocities we could use the control law (6.2) between both control laws.
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Figure 6.10: Experimental set-up
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Figure 6.11: Robot hand with two fingertips
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Figure 6.12: Time trajectory of fingertips
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Figure 6.13: Experimental results for the gripping phase
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6.4 Conclusion

The principle of not moving the target object has been developed applying the

human features of grasping.

It is important to maintain the first contact force stable and small so that target

object does not to fall over. Only strain gauges were used for detection of the contact

force, and experiments were successfully carried out with a light can. Since strain

gauges could not detect the peak of the impact force arising at the first contact time

instant, a soft attachment was put on the fingertips, and it reduced the impact force

efficiently. Several materials for the attachment have been also tested, and the gel

in a sack had the best result.

Considering the results from a human hand, the motions of two fingertips of robot

hand have been synchronized using visual feedback in order to touch the target ob-

ject simultaneously. The total grasping phase by a robot hand was also demonstrated

through simulations and experiments using position and force synchronization, and

it showed very good results.



Chapter 7

Conclusion

7.1 Conclusion of this dissertation

In this thesis, research on the total grasping task has been investigated. The ma-

nipulator had an uncalibrated camera system and the simple precision gripper with

two fingers on the end-effector. Positioning and grasping tasks are investigated in-

dividually, assuming that the positioning test is defined precisely enough to allow

for grasping of the object.

For the positioning task, a novel approach for uncalibrated and model-less visual

servoing using a modified simplex iterative search method has been proposed. Most

of the previous works on visual servoing assume that the kinematic model of the

robot, the camera intrinsic parameters, and a model of the object are known. They

would fail if the robot and the vision system were fully unknown. Since our aim is

to accomplish a robust positioning task even with unknown system, the proposed

method did not need any kinematic model of the robot, or intrinsic parameters of

the camera. The method can work also without precise model of the object, only an

image of the object is needed. We just assumed that the joint limits were known.

Thus this approach can be easily applied to positioning task by any kind of robot.

To grasp an object, it is important to contact it ”softly”, especially if the target

object is fragile or may easily fall down. Human ability to grasp an object without

large displacements has been measured, and the main features of human grasping

motions have been applied to a robot hand control law.
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7.2 Specific contributions of this thesis

In the second chapter of this thesis, existing approaches for uncalibrated visual

servoing are reviewed. These methods use an iterative Newton-like optimization

algorithm that requires the knowledge of the Jacobian matrix of the objective func-

tion. In uncalibrated visual servoing, the Jacobian matrix which relates objective

function and system configuration has to be estimated on-line. Once the dimension

of configuration variables vector becomes large, this adaptive scheme may diverge.

Simulation results with 2DOF and 6DOF exhibit this potential stability problem.

However, it should be noted that when the optimization process started near the

global minimum, convergence could be very quick with high accuracy.

Chapter 3 is dedicated to the presentation of simplex optimization technique.

This method required neither a model of the robot nor the estimation of Jacobian

matrices. Constraints at the joint-level can be easily included. Since the simplex

method does not need to calculate or to estimate the gradient of the objective func-

tion, a robot never goes to irrelevant directions due to a poorly estimated Jacobian.

Moreover, the objective function does not need to be differentiable. We successfully

demonstrated the proposed scheme with simulations, and the results have been com-

pared with that of Newton-like methods.

In Chapter 4, the application of the simplex method to the robot positioning

task is presented. Using different types of cost functions, attempts to accelerate the

convergence and to exit from local minima are discussed. Objective functions do

not need to be differentiable, therefore, it is even possible to use pixel matching.

The comparison between joint angles and camera pose as the variables were also

done. The proposed scheme is successfully demonstrated. Successful experiments

with industrial manipulator are also presented.

In Chapter 5, the contact force and the displacement of the object are analyzed.

Motions of human fingers are investigated with objects of variable width. We found

that human slightly move light objects while grasping them. The contact force has

been measured by looking at the finger that touches the target object first. The

time derivative of the first contact force is classified into three patterns, and they

are related to the fingertip which makes the first contact. When the index finger

touches the object first, the contact force increases in a stable manner before the

thumb makes also contact. On the other hand, when the thumb touches the object

first, its contact force increases, but not stable. The motion of the finger has been
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measured using an object of variable width. When a force is applied, the index finger

makes large motions while the thumb hardly moves, regardless of visual information.

The index finger applies the force actively, and the thumb supports it.

In Chapter 6, the human features of soft grasping are applied to a robot hand

with two fingers. It is important to maintain the first contact force stable and

small in order to avoid the target object would not to fall over. Only strain gauges

were used for detection of the contact force, and the experiment is successfully

carried on a light can. Strain gauges could not detect the impact force arising

from the first contact. A soft attachment is put on the fingertips, and it efficiently

reduces the impact force. The comparison between several types of material for the

attachment has been performed, and the gel sack has the best result. Considering

the difference from a human hand, the motion of two fingers of the robot hand have

to be synchronized in order to touch the target object simultaneously using visual

feedback. The total grasping phase by a robot hand is demonstrated using a position

and force synchronization scheme, and it works very well.

7.3 Future works

The purpose of the methods we have developed is to make manipulation of object

even with minimum information about the model of the robot, the model of the

object, and the camera intrinsic parameters.

For positioning task, simplex algorithm only uses the current image features. It

is also interesting to use the image features taken during the simplex iterations

for recognition of the object, learning the environment, and reproducing the learned

motions even if the object has moved position. For example, to construct a subspace

can be a solution. Eigenspace methods relate the robot position to the feature

images as a compressed representation in a subspace. Eigenspace methods have

been extensively explored for object recognition [61] [62] [50], visual positioning and

tracking [60] [63] [8]. Normally the construction of an eigenspace needs intensive

computation, and many sample images are needed to construct the subspace with

enough reliability. Simplex algorithm can be used for an unknown object, and at the

same time the subspace can be calculated. It may help to make faster convergence

and also it is useful for faster positioning task with the same target object when it

is done a second time.
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The simplex algorithm may also integrate multiple tasks. In the case of a mul-

tiple camera system like when a camera is mounted on the robot’s end-effector and

another camera is fixed in the environment, both the positioning task with respect

to an object and obstacles (e.g., the floor, other objects) avoidance task observed

by the fixed camera can be take into account simultaneously. Not only for vision

systems, this method can be used with other type of informations, e.g., vision and

laser scan.

For grasping task, we realized a ”soft” touch motion applying human grasping

features. Human finger stops when it touches the object, and keep the small contact

force until the other finger touches it. It is applied to the robot using the strain

gauges as the force sensors, but position synchronization is employed for more reli-

ability. The structure of human soft fingers helps reducing the impact force applied

to the object, and it is also important to apply a robot hand. In future works we

would like to complete experiments with fast positioning and grasping at the same

time by mounting a hand on a robot arm.



Appendix A

Basic definitions

A.1 Coordinates and pose

H

H

b
e

e
c

b

c

P

p

Figure A.1: coordinate frames and pose

Figure A.1 shows coordinate frames of reference the robot base and the camera

(in the case of an eye-in-hand configuration). When the camera on the robot’s end-

effector is moved, the pose of the robot has to be determined, and it can be described

using coordinate frames. Coordinates of a point P with respect to coordinate frame

i is expressed as iP :

iP = [iP x
iP y

iP z]
� (A.1)

Position and orientation of a frame i with respect to frame j is defined as a pose

123
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vector:

jpi = [Tx Ty Tz α β γ]� (A.2)

where (Tx Ty Tz)
� = jOi is a translation vector that gives the coordinates of the

origine of frame i with respect to frame j, and (α β γ)� are rotation angles (e.g.,

like the Euler angles, role, pitch, and yaw) that allow to define a rotation matrix
jRi describing the rotation between frame i and frame j. Coordinates of point iP

with respect to frame j can be calculated using:

jP = jOi + jRi
iP (A.3)

The coordinates of vector iV with respect to frame j can be calculated using:

jV = jRi
iV (A.4)

This can be also expressed with a homogeneous transformation jHi:

jH i =

[
jOi

jRi

0 1

]
(A.5)

[
jP

1

]
= jH i

[
iP

1

]
(A.6)

[
jV

0

]
= jH i

[
iV

0

]
(A.7)

Homogeneous transformations express change of coordinate frame and can be com-

bined:

jH i = jHk
kH i (A.8)

When the camera pose with respect to the coordinate frame of the robot’s end-

effector, and the pose of the end-effector with respect t othe coordinate frame of the

robot’s base are known, the pose of the camera with respect to the base of the robot

can be easily calculated.

The velocity screw of frame i with respect to frame j in frame j coordinates is

described by:

j(j ṙi) = [vx vy vz ωx ωy ωz]
� (A.9)
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


vx

vy

vz


 = j(jV i) is a translational velocity (A.10)




ωx

ωy

ωz


 = j(jΩi) is a translational velocity (A.11)

Then, the velocity of point P rigidly attached to frame i with respect to frame j

expressed in frame j coordinates is given by:

jṖ = j(jΩi) × jP + j(jVi) (A.12)

= j(jΩi) × (jRiP + jOi) + j(jVi)

Note that the velocity screw is generally not equal to the derivative of the pose.
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A.2 Camera projection model

Xc

Yc

(xc,yc,zc)

Zc
optical axisoptical

center

Oc

camera frame

image plane

P

p

x
y

v

uu focal length

Figure A.2: Camera projection model

Figure A.2 shows the perspective transformation from a point in the camera

coordinates to point in the image plane. The optical center is taken as the origin of

the camera frame, and where λ is the focal length. If the coordinates of the target

are cP = (xc, yc, zc)
�, and its coordinates in the image plane are (x, y)�, then:

cP =




xc

yc

zc


 ⇒

[
x

y

]
=

[
λxc

zc

λyc

zc

]
(A.13)

The center of the image plane frame of coordinate is generally not on the optical

axis, and the scale of the image plane is not same as that of the camera coordinate

frame. Thus, the coordinates of the projection of P on the image plane is given by:

[
u

v

]
=

[
u0 + λku

xc

zc

v0 + λkv
yc

zc

]
(A.14)

where u0 and v0 are the coordinates of the position of intersection of the optical axis

Zc with the image plane expressed in the image frame, ku and kv are scaling factors

between the image plane and the camera frame coordinates. These intrinsic camera

parameters are obtained by calibration.
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A.3 Image Jacobian

The image Jacobian or interaction matrix expresses an relatopnship between the

velocity of the features and the velocity screw of the target:

ḟ = JI
c(ṙ) (A.15)

For example, the motion of the projection [uv]� in the image plane cP = [x y z]�

expressed in the camera frame can be described using the velocity screw of a fome

rigidly attached to P in the camera frame c(cṙp) = [vx vy vz ωx ωy ωz]
�.

Therefore,

cṖ = c(cΩp) × cP + c(cVp) (A.16)

cṖ =




ẋ

ẏ

ż


 =




zωy − vz
λ

ωz + vx

uz
λ

ωz − zωx + vx

z
λ
(vωy − uωx) + vz




where u0 = 0, v0 = 0, and kx = 1, ky = 1 in Equation A.14. Then, the velocity of

the projection of cP in the image plane is given by:[
u̇

v̇

]
=

[
λ
z

0 −u
z

−uv
λ

λ2+u2

λ
−v

0 λ
z

v
z

−λ2+v2

λ
uv
λ

u

]
c(cṙe) (A.17)

Which implies that:

JI =

[
λ
z

0 −u
z

−uv
λ

λ2+u2

λ
−v

0 λ
z

v
z

−λ2+v2

λ
uv
λ

u

]
(A.18)
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