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Institut National de Physique Nucléaire et de Physique de Particules

email: polbrat@fuw.edu.pl, http: www.fuw.edu.pl/~polbrat

A Ph.D. thesis prepared in collaboration between the Warsaw University, Poland,
and the Louis Pasteur University, France, thanks to a scholarship from the French
Government. This work was supported in part by the Polish Committee for Scientific
Research (KBN) and by the Foundation for Polish Science (FNP).

Supervisors:
Jacek Dobaczewski Instytut Fizyki Teoretycznej, Warszawa
Jerzy Dudek Institut de Recherches Subatomiques, Strasbourg

Referees:
Wojciech Satu la Instytut Fizyki Teoretycznej, Warszawa
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Streszczenie Jednym z zastosowań metod średniego pola w fizyce ja̧drowej jest obecnie
badanie egzotycznych symetrii ja̧der atomowych. Wia̧że siȩ to w szczególności z analiza̧ rotacji
ja̧der wokó l osi pochylonej wzglȩdem osi g lównych rozk ladu masy w modelu Tilted-Axis Crank-
ing (TAC). Niniejsza praca przedstawia jedne z pierwszych obliczeń TAC wykonanych metodami
w pe lni samozgodnymi. Zastosowano w niej metodȩ Hartree’ego-Focka z dwucia lowym oddzia-
 lywaniem efektywnym Skyrme’a. Stworzono program komputerowy pozwalaja̧cy na  lamanie
wszystkich symetrii przestrzennych rozwia̧zania. Jako pierwsze zastosowanie przeprowadzono
obliczenia dla pasm magnetycznych w 142Gd oraz chiralnych w 130Cs, 132La, 134Pr i 136Pm.
Ich wystȩpowanie zwia̧zane jest odpowiednio z nowym mechanizmem  lamania symetrii sfe-
rycznej oraz ze spontanicznym  lamaniem symetrii chiralnej. Samozgodne rozwia̧zania w 142Gd
potwierdzaja̧ istotna̧ rolȩ mechanizmu shears w tworzeniu ca lkowitego momentu pȩdu. Zgodność
z danymi doświadczalnymi nie jest jednak zadowalaja̧ca, prawdopodobnie wskutek nieuwzglȩd-
nienia korelacji par lub przeszacowania deformacji. Wyniki w 132La stanowia̧ pierwszy w pe lni
samozgodny dowód, że rotacja ja̧drowa może przybierać charakter chiralny. Wykazano, że ro-
tacja chiralna może wystȩpować tylko powyżej pewnej krytycznej czȩstości obrotu. Sprawdzo-
no też, że cz lony pola średniego Skyrme’a nieparzyste wzglȩdem odwrócenia czasu nie maja̧
jakościowego wp lywu na wyniki.

Résumé Une des applications récentes des méthodes de champ moyen en physique nucléaire
est l’étude des symétries exotiques du noyau. Cette problématique est reliée, en particulier, à
l’ánalyse de la rotation nucléaire autour d’un axe incliné par rapport aux axes principaux de la
distribution de masse dans le modèle dit de Tilted-Axis Cranking (TAC). Cette thèse présente
l’un des premiers calculs TAC effectués dans le cadre de méthodes entièrement auto-cohérentes.
La méthode Hartree-Fock avec l’interaction effective à deux corps de Skyrme a été utilisée. Un
code numérique a été écrit qui permet de briser toutes les symétries spatiales des solutions.
Comme première application, des calculs pour les bandes magnétiques dans 142Gd et pour les
bandes chirales dans 130Cs, 132La, 134Pr et 136Pm ont été effectués. L’existence de ces bandes
est dûe à un nouveau mécanisme de brisure de la symétrie sphérique, et de brisure spontanée de
la symétrie chirale, respectivement. Les solutions auto-cohérentes dans 142Gd confirment le rôle
important du mécanisme shears dans la génération du moment angulaire. Pourtant, l’accord
avec les données expérimentales n’est pas satisfaisant, probablement à cause de l’omission des
corrélations d’appariement dans les calculs ou de la possible surestimation de la déformation.
Les résultats obtenus dans 132La constituent la première preuve entièrement auto-cohérente que
la rotation nucléaire peut acquérir un caractère chiral. Il a été démontré que la rotation chirale
ne peut avoir lieu qu’au-dessus d’une certaine fréquence angulaire critique. Il a été également
vérifié que les termes du champ moyen de Skyrme impair par rapport au renversement du temps
n’ont pas d’influence qualitative sur les resultats.

Abstract Currently, one application of the mean-field methods in nuclear physics is the
investigation of exotic nuclear symmetries. This is related, in particular, to the study of nuclear
rotation about an axis tilted with respect to the principal axes of the mass distribution in the
Tilted-Axis Cranking (TAC) model. The present work presents one of the first TAC calculations
performed within fully self-consistent methods. The Hartree-Fock method with the Skyrme
effective two-body interaction has been used. A computer code has been developed that allows
for the breaking of all spatial symmetries of the solution. As a first application, calculations
for the magnetic bands in 142Gd and for the chiral bands in 130Cs, 132La, 134Pr, and 136Pm
have been carried out. The appearance of those bands is due to a new mechanism of breaking
the spherical symmetry and to the spontaneous breaking of the chiral symmetry, respectively.
The self-consistent solutions for 142Gd confirm the important role of the shears mechanism in
generating the total angular momentum. However, the agreement with experimental data is
not satisfactory, probably due to the lack of the pairing correlations in the calculations or to
the possibly overestimated deformation. The results obtained for 132La constitute the first fully
self-consistent proof that the nuclear rotation can attain a chiral character. It has been shown
that the chiral rotation can only exist above a certain critical angular frequency. It has also been
checked that the terms of the Skyrme mean field odd under the time reversal have no qualitative
influence on the results.
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Chapter 1

Introduction

The phenomenon of spontaneous symmetry breaking is a leading theme of a multitude of
quantum effects. For instance, it is due to the spontaneous breaking of the particle-number
symmetry that superconducting condensates appear in metals. Spontaneous breaking oc-
curs if a system in its endeavor to attain the minimal energy chooses a symmetry-violating
state even though the underlying interactions are invariant under the concerned symme-
try. Nevertheless, it is the nature of the interactions that determines which symmetries
are broken and under which conditions. Therefore, study of symmetry-violating states
brings one closer to understanding the interactions - the most fundamental goal in physics.

In the nuclear structure physics, one important example of spontaneous symmetry
breaking is the existence of deformed nuclei. Like for molecules, violation of the spherical
invariance leads to the appearance of rotational excitations, which manifest themselves
in specific sequences of levels, the rotational bands. Depending on the conservation or
violation of other symmetries, like the plane reflection, those bands can have different
structures. Recently, two novel types of bands have been observed experimentally, that
have challenged the theoretical models. They are called magnetic and chiral bands.

The peculiarity of the magnetic structures is that, contrary to all the previously known
rotational bands, they appear in nuclei whose charge distribution is nearly spherical, which
can be inferred from the very weak electric quadrupole transitions. On the other hand,
magnetic dipole transitions, to which the bands owe their name, are strong. Thus, the
bands constitute the first evidence for the breaking of the spherical symmetry by a large
dipole moment, which, in turn, is produced by highly asymmetric current distributions.
In the absence of charge deformation, no collective rotation is possible, and the magnetic
bands also entail a new mechanism of generating the angular momentum, in which valence
nucleons play a crucial role. The angular momenta of the valence particles align coherently
along one direction, and those of the valence holes along a perpendicular direction. The
spin of the levels in the band is produced by gradual alignment of the two angular momenta
vectors. This has been dubbed shears mechanism, because it resembles the closing of a
pair of shears used for cutting the sheep wool. The magnetic bands were first observed in
early 1990s, and more that 130 such structures have been found so far.

The chiral bands have the form of doublets of bands lying very close in energy. Since
other hypotheses failed to reproduce the vanishing energy splitting between them, it has
been suggested that the doublets are due to the possible existence of two enantiomeric
(left- or right-handed) forms of the nucleus. The chiral bands are observed mainly in well-

7



8 CHAPTER 1. INTRODUCTION

deformed nuclei, in which there is one valence proton particle and one valence neutron
hole in an orbital of high angular momentum. The former drives the nucleus towards
elongated shapes, while the latter towards oblate ones. The interplay of these opposite
tendencies may result in a shape resembling a triaxial ellipsoid. In the triaxially deformed
nucleus, the particle and hole align their angular momenta along the short and long axes
of the density distribution, respectively. Moreover, the moment of inertia with respect
to the medium axis is the largest, which favors the collective rotation around that axis.
Thus, the total angular momentum vector has non-zero components on all the three axes,
and those component vectors can form either a left-handed or a right-handed system.
This means, according to the original Kelvin’s definition, that the system is chiral, only
that its chirality is related to the handedness of angular momenta rather than of position
vectors. First chiral bands were identified about the year of 2000, and ten odd occurrences
are known now.

The chiral rotation has been successfully examined within the phenomenological Par-
ticle-Rotor Model, in which the nucleus is represented by a rigid core with a few valence
nucleons coupled to it. However, the very concept of both the shears mechanism and
rotational chirality came from considerations within the mean-field cranking approach,
which is one of the most fundamental methods in the nuclear structure physics. In this
approximation, each nucleon is moving independently in a rotating potential that repre-
sents an averaged interaction with other nucleons. The main point about the mean-field
description of the two considered phenomena is that it must allow for rotation about
an axis that does not coincide with any principal axis of the mass distribution; such a
variant of the cranking model is called Tilted-Axis Cranking (TAC). Before the interest
in magnetic and chiral bands arose, only rotations about principal axes were considered,
so addressing the new effects required an upgrade of the existing numerical tools. A
first TAC code was written by Frauendorf [Fra93a]; it used a phenomenological mean
potential to describe the properties of the valence particles, and the nuclear liquid-drop
model to account for some bulk properties of the nucleus. A great deal of experimental
data, mainly on magnetic bands, has been analyzed by using that code, and generally a
good agreement was obtained. As far as more fundamental methods are concerned, only
one magnetic band in 84Rb has been studied by Madokoro et al. [Mad00a] within the
Relativistic-Mean-Field method.

Although the phenomenological model of Frauendorf has led to a remarkable suc-
cess, a more fundamental description requires self-consistent methods, in which the mean
potential is indeed generated from averaging an effective two-body interaction with the
nucleonic density. First of all, such an approach is capable to provide a strong test of the
stability of the proposed shears and chiral configurations with respect to the core degrees
of freedom. It is also necessary to take into account several important effects, like all kinds
of polarization of the core by the valence particles and full minimization of the underly-
ing energies with respect to all deformation variables, including the deformation of the
current and spin distributions. Application of self-consistent methods to the description
of the magnetic and chiral rotation is the subject of this PhD dissertation.

The author developed a code that can perform TAC calculations within the full
Hartree-Fock (HF) method with the Skyrme effective interaction [Rin00a]. It is one
of the first existing tools of this kind, and allows for a study of many other effects; for
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instance, it has already been used to calculate the time-reversal violating Schiff moment
of 225Ra [Eng03a] in connection with the search for fundamental breaking of the T or CP
symmetry beyond the Standard Model. In the present work, the first Skyrme-HF TAC
solutions were found. For the study of the shears bands, the nucleus of 142Gd was cho-
sen. The HF results corroborated that an important portion of the angular momentum
is generated by the shears mechanism, although the shape deformation is non-negligible,
and the collective rotation of the core is also present. The chiral solutions were looked
for in four N = 75 isotones, 130Cs, 132La, 134Pr, 136Pm, and found in the second one. It
was established that the chiral rotation appears only above a certain critical value of the
angular frequency. The origin of the critical frequency was explained in terms of a very
simple classical model, that provides a surprising agreement with the HF results.

In Chapter 2, an introduction to the physics of the magnetic and chiral bands is given,
together with a review of the literature. Chapter 3 describes the theoretical tool used
in this work - the Skyrme-HF TAC method. Particular emphasis is put on the issue of
spontaneous symmetry breaking in rotational bands and on technical differences between
the self-consistent and phenomenological approaches. One aspect that can be studied
uniquely within the self-consistent approach is the influence of the HF time-odd densities
and fields on the shears and chiral solutions. The way this is investigated in the present
work is also described in that Chapter. Finally, the code hfodd is presented. The
rotational behavior of the nuclei here under study is determined, to a big extent, by the
alignment properties of a few valence h11/2 nucleons. In Chapter 4, their basic features
are established from standard (non-TAC) cranking calculations and from pure symmetry
considerations. The Skyrme-HF results for the shears band in 142Gd are presented in
Chapter 5. Chapter 6 gives the planar and chiral solutions for the N = 75 isotones. There,
the classical model is formulated, the expression for the critical frequency is derived, and
its values are analyzed. Since the present calculations constitute the first application of the
Skyrme-HF TAC method, several technical details on how the solutions were obtained are
also given in that Chapter. Chapter 7 summarizes the main conclusions from the present
work, and outlines prospects for further research.
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Chapter 2

Magnetic and chiral rotations

A classical rigid body can rotate uniformly only about the principal axes of its inertia
tensor. However, already Riemann showed [Rie60a] that in liquids rotation about a tilted
axis may take place if there is an intrinsic vortical motion. In a drop of nuclear matter,
the nucleus, vorticity may arise from the presence of unpaired nucleons near the Fermi
level. The swirling vortices produce the single-particle (s.p.) angular momenta that take
various directions and add to the collective rotation drawing the total spin away from the
principal axes. It is the rotation about a tilted axis that breaks the signature and chiral
symmetries, and gives rise to the magnetic and chiral bands. The two phenomena show
different ways of coupling the s.p. spins to the collective rotation.

2.1 Magnetic rotation

In early 1990’s, very regular rotational bands were observed in several light lead isotopes
[Bal92a, Cla92a, Kuh92a], and were initially mistaken for superdeformed structures. But
detailed measurements showed that they had an unusual feature: weak E2 and strong M1
transitions. To date, many more similar structures have been identified. They are called
magnetic dipole or shears bands. This Section recapitulates their main characteristics and
presents the mechanisms that are believed to lie at their origin.

Taking into account the vast experimental evidence, one can enumerate the following
properties that can be considered as a definition of the magnetic dipole bands:

• Levels in the band form the I+, (I +1)+, (I +2)+ or I−, (I +1)−, (I +2)− spin-parity
sequence.

• Bands never start at spins less than about 10h̄, except for the lightest nuclides, and
approximately follow the regular rotational dependence of E ∼ I(I + 1).

• The E2 transitions within the band are very weak, with reduced probabilities B(E2)
typically not exceeding ∼ 0.1 e2b2. In contrast, the values of B(M1) are exception-
ally large, in the range of ∼ 2 − 10µN . They exhibit a characteristic fall with
increasing spin.

• The ratio J (2)/B(E2) assume the values of ∼ 100 h̄2MeV−1e−2b−2 that is roughly
an order of magnitude larger than for normal or superdeformed bands.

11
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Figure 2.1: Experimental evidence for the magnetic bands throughout the nuclear chart.
Nuclei, in which magnetic bands have been found [Ami01a] (May 2001), are marked with
black squares, and the gray background represents the known isotopes [Ant02a] (July
2002). Principal high-j orbitals available for the valence particles and holes are marked.

So far, more than 130 bands possessing such properties have been observed in more that
60 nuclides that are marked in Fig. 2.1. They group in four islands situated not far from
magic numbers.

If a nucleus exhibits rotational excitations, its spherical symmetry must be sponta-
neously broken. Before 1990, there was only evidence for breaking the rotational invari-
ance by a deformation of the charge distribution. But in the shears bands, the very weak
E2 transitions unequivocally point to an almost spherical shape. Therefore, the main
question about the newly found bands is what violates the spherical symmetry, if not
the shape. On the other hand, sequences of levels linked by relatively strong M1 and
weak E2 transitions appear quite often in nearly spherical nuclei. They originate from
recouplings of the angular momenta of valence nucleons, and are well understood within
the spherical shell model. However, these sequences constitute complicated multiplets
with energy changing abruptly with spin. From this point of view, the peculiarity of the
magnetic bands consists in their surprisingly regular level spacing.

Origins of that regularity were sought in a series of shell-model studies. Frauendorf et
al. investigated the bands observed in light Pb isotopes [Fra96a] and in odd In isotopes
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Figure 2.2: The shears mechanism; from the bandhead a) to the maximum alignment c).
The angular momentum, j, is generated by gradual alignment of spins of valence particles
and holes, jp and jh. The corresponding contributions, µp and µh, to the magnetic dipole
moment, µ, are drawn schematically for the case in which the valence particles are protons,
and the valence holes are neutrons.

[Fra97b] using the surface-delta interaction. They found that a substantial portion of
the angular momentum originates from coupling of high-j valence particles in one kind
of nucleons with high-j valence holes in the other kind. However, regular structures
were obtained only if low-j orbitals were included in the configuration space. These or-
bitals provide a certain polarizability of the core, which introduces the long-range, mainly
quadrupole correlations. These correlations smooth out the E(I) dependence, because
they involve many nucleons and average their influence. Therefore, the magnetic rotation
is a collective phenomenon, despite that mainly the valence high-j nucleons contribute
to the angular momentum1. The core polarization plays a crucial role, even though it
is weak as opposed to that in well deformed nuclei. These features are supported by
several experimental observations of transitions from irregular to regular structures, as
the Z and N numbers get away from magic shells, increasing the polarizability. Frauen-
dorf [Fra97b] found such a transition in 49In58,60,62,64 isotopes with increasing N , in good
correlation with the shell-model results. Similar behavior was reported for isotopes of Cd
and Sn [Fra01a]. In the region of N = 80, it was found in 64Gd78,79,80 [Rza01a, Lie02a].
Inspecting the table of magnetic bands [Ami01a], one easily notices that the effect is also
well pronounced when passing from the isotopes of 80Hg to the isotopes of 82Pb. In fact,
the magnetic bands have been observed in close, but never immediate vicinity of doubly
magic nuclei, see Fig. 2.1.

If the low-j orbitals are excluded from the configuration space in the discussed shell-
model study, the valence high-j particles and holes rearrange their angular momenta in
a complicated way from one level to another. The appearance of quadrupole correlations
with the inclusion of those orbitals causes the valence high-j particles to orient their an-
gular momenta coherently in the same direction and the holes to behave similarly. Such a
stretched alignment of several high-j contributions results in long particle and hole angular
momenta vectors, jp and jh, which are called blades. In general, both kinds of nucleons

1However, to avoid confusion, in the following the term collective rotation is reserved for the standard
rotation of the deformed mass distribution.
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can contribute to each blade, but in most cases the particles are protons and the holes
are neutrons. At the bandhead, the two blades turn out to form an angle of nearly 90◦

(Fig. 2.2a). Since the proton and neutron effective g-factors, gπ and gν, have opposite
signs, the perpendicular coupling also gives rise to a large magnetic dipole moment, µ,
with a significant component, µ⊥, perpendicular to the total spin, j, (Fig. 2.2a). This
is the source of the strong M1 transitions, because the reduced probability B(M1) is
proportional to µ2

⊥. The perpendicular coupling of jp and jh has been confirmed by an
experimental determination of the effective g-factor in the bandhead of a shears band in
193Pb [Chm97a]. In the band, jp and jh align towards each other, retaining their constant
lengths. In this way, the total spin increases, while µ⊥ decreases, causing the observed
drop-off in the M1 strength (Fig. 2.2b). Assuming the geometry shown in Fig. 2.2, Mac-
chiavelli and Clark [Mac98a] calculated the B(M1) values for the magnetic bands in 198Pb
and 199Pb as proportional to µ2

⊥, and obtained a good overall agreement with experiment.
Obviously, the maximum spin that can be generated in such a way approximately equals
the sum of jp and jh, whereas µ⊥ and B(M1) vanish when the maximum alignment is
achieved (Fig. 2.2c). This mode of generating the angular momentum and the magnetic
moment was originally proposed by Frauendorf [Fra93a], and was then dubbed shears
mechanism [Bal94a], because it resembles the closing of a pair of shears used for cutting
the sheep wool.

In view of the important role of the quadrupole polarization, the magnetic bands have
been investigated within approaches that take that polarization into account in a model
way. In [Mac98b] and also in [Mac98a, Mac98c, Mac99a], Macchiavelli and Clark used the
particle-vibration theory [Boh75a], considering the coupling of the valence high-j particles
and holes to the quadrupole vibrations of the nuclear shape about a spherical equilibrium.
They postulated the stretched coupling of the constituent angular momenta in each blade
and treated all the valence particles as one particle with spin jp and all the valence holes as
one hole with spin jh. In the second order of the perturbation series, the particle-vibration
coupling gives rise to an effective interaction between the valence nucleons. It takes the
form of the second-order Legendre polynomial, P2(cos ϑ), where ϑ is the angle between
the position vectors of the valence particle and hole. It was shown in [Boh53a] that in the
limit of high angular momenta the expectation value of the interaction P2(cos ϑ) in the
state |jpjhj〉 becomes proportional to P2(cos θ), where, this time, θ is the angle between
jp and jh, the shears angle. Actually, these results were obtained in such a regime of the
particle-vibration theory, in which there already exist a static quadrupole polarization
of the core. Therefore, it is not surprising that they could also be derived within the
mean-field approximation. Frauendorf considered [Fra01a] the quadrupole-quadrupole
model with some simplifications similar to that made by Macchiavelli and Clark. He
presumed that in both protons and neutrons the ensemble of the valence nucleons can
be treated as one object with constant quadrupole tensor and mean angular momentum
pointing along one of its principal axes. Under these assumptions and with the aid of the
addition theorem for spherical harmonics, the quadrupole-quadrupole interaction between
the valence particles and holes transforms directly into the form of P2(cos θ). He also
postulated that the valence nucleons are the only source of polarization of the otherwise
spherical core and that the core energy depends quadratically on the induced quadrupole
moment. The core defined in this way only modifies the strength of the P2(cos θ) force.
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It comes both from the particle-vibration theory and from the mean-field quadrupole-
quadrupole model that for the relevant particle-hole case the coupling constant of the
P2(cos θ) interaction is positive. Since the polynomial P2(cos θ) itself has a minimum at
θ = 90◦, the perpendicular coupling at the bandhead is reproduced. These facts lie at the
origin of the following popular picture that can be found in the literature. States belonging
to high-j orbitals have doughnut-like shapes with mean angular momenta pointing along
the symmetry axis of such a density distributions. Therefore, the right-angle orientation
of the two spin vectors at the bandhead corresponds to a minimal spatial overlap of
the particle and hole wave-functions. One usually says that this is because the particle-
hole interaction is repulsive, and tends to minimize the overlap. This reasoning may
be misleading, because it overlooks the core, whereas the P2(cos θ) interaction describes
precisely the influence of the core polarization, and does not have the sense of a direct
force.

With the P2(cos θ) interaction at hand, one can address the fundamental question of
how the energy changes with spin in a shears band. Although the quadrupole correlations
smooth out the E(I) dependence, the shears mechanism of generating the angular mo-
mentum is substantially different from that occurring for the collective rotation, and it is
not obvious whether it should also lead to the rotational-like behavior of E ∼ I(I + 1).
In their model study, Macchiavelli and Clark assumed that the P2(cos θ) force is the only
source of the energy change along the band and that the whole angular momentum comes
from the shears closing, that is, I = j. Under these assumptions, the energy, E, of a level
belonging to a shears band has the form of P2(cos θ),

E ∼ 3 cos2 θ − 1

2
, (2.1)

whereas from the shears geometry shown in Fig. 2.2 one easily obtains

cos θ =
I2 − (jp)2 − (jh)2

2jpjh
. (2.2)

Substitution of (2.2) to (2.1) yields a fourth-order E(I) dependence, and the fourth-
order term is not only a correction, because the quadratic term has a negative sign. For
given values of jp and jh, the shears angle, θ, can be extracted from the experimental
spins according to (2.2) and the obtained dependence of E(θ) can be compared with the
form (2.1). Such an analysis was done for 198,199Pb [Mac98b] and 142Gd [Rza01a], giving
a satisfactory agreement with (2.1). The fourth-order dependence translates into non-
constant moments of inertia. This aspect was exploited in [Mac98c], where a qualitative
agreement with the moments of inertia for a band in 197Pb was found.

The important role of the quadrupole polarization and the quasi-classical behavior
of the angular momenta of the high-j nucleons make the magnetic rotation suitable for
the mean-field description within the cranking model. In this approach, the alignment
properties of the valence particles and holes are governed by the deformation of the mean
potential. It turns out that the high-j particles and holes align their mean angular mo-
mentum vectors, jp and jh, on the short and on the long axis of the deformed nucleus,
respectively, giving the perpendicular coupling at the bandhead. With increasing rota-
tional frequency, the two blades gradually align towards the axis of rotation, in agreement
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with the shears picture. Since the valence nucleons provide components of the angular
momentum on two different axes, the considered system is an example of nuclear rotation
about a direction tilted with respect to the principal axes of the nucleus. The variant of
the cranking model that allows for such a rotation is called Tilted-Axis Cranking (TAC),
and was originally developed by Frauendorf [Fra93a]. In fact, the very idea of the shears
mechanism was first inspired by TAC considerations, and a great majority of experimental
data on the magnetic bands has been successfully reproduced within this theory. From
TAC calculations, β deformations as small as ∼ 0.05 and rarely approaching ∼ 0.19 are
assigned to the shears bands. It seems, however, that smaller deformations are needed
to reproduce the properties of shears bands than those that come from the energy mini-
mization. Recently, Frauendorf suggested [Fra03a] that the direct interaction between the
valence nucleons, absent in the mean field, may be of some importance, or that isovector
deformations may play some role. Self-consistent methods are necessary to address the
latter point. The Skyrme-Hartree-Fock (Skyrme-HF) TAC approach developed in this
work is one of the first theoretical tools appropriate for a study of such effects.

In general, in generating the angular momentum there is a competition between closing
of the shears and the collective rotation. Two elements are decisive here: deformation
and pairing correlations. If deformation is small, there is almost no collective motion and
the whole inertia comes from the aligning blades. As deformation grows, obviously the
core rotation becomes more important. But it also turns out that the angular momenta
of the valence nucleons get more and more rigidly fixed with respect to the nuclear shape,
retain their perpendicular coupling, and thus do not produce any increase in spin. This
pushes the balance towards the collective rotation and leads to a change in the total
moment of inertia. That change is not necessarily drastic, because the J (2) moments of
the shears bands are comparable to those of the well-deformed rotational structures. But
quantities like B(M1)/B(E2) and J (2)/B(E2) are radically influenced, mainly due to
the increase in B(E2). For a given deformation, inclusion of pairing in the calculations
will generally reduce the collective inertia. It is argued in Section 4.4 that by introducing
additional mixing of the s.p. states, pairing can also soften the deformation alignment of
the valence particles and holes and thus make the shears close faster. These arguments
indicate that the pair correlations favor the shears mechanism over the core rotation as far
as the generation of the angular momentum is concerned. Macchiavelli and Clark studied
[Mac99a] the shears-rotor competition within a classical model of two blades interacting
via the P2(cos θ) force, coupled to and a spherical rotor. By minimizing the energy at a
given spin they found the balance between the shears and rotor contributions. By scaling
the model parameters to the lead region they arrived at a universal estimate that the
shears mechanism is expected to dominate for ε <∼ 0.12. For the known magnetic bands,
it is estimated that the core rotation contributes ∼ 15% of the total spin.

For more information on the magnetic rotation and the shears mechanism, see the
review articles by Clark and Macchiavelli [Cla00a] and by Frauendorf [Fra01a]. A com-
pilation by Amita et al. [Ami01a] lists detailed experimental and theoretical data on all
the known magnetic dipole bands (May 2001) together with complete bibliography.
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2.2 Chiral rotation

The history of chirality began in 1848, when Louis Pasteur noticed that molecules of
some substances exist in two species, which turn the light polarization plane either left
or right. Half a century later, lord Kelvin called these forms chiral, from the greek word
χειρ, meaning hand, in analogy to the left and right hand. I call any geometrical figure,
or group of points, chiral, and say it has chirality, if its image in a plane mirror, ideally
realized, cannot be brought to coincide with itself. - Lord Kelvin, Baltimore Lectures on
Molecular Dynamics and the Wave Theory of Light, 1904. Thus, a system is chiral if it is
not symmetric with respect to mirror-reflection, Ŝ, in any plane. However, the chirality of
nuclear rotation does not concern the position vector, but rather the axial pseudo-vector
of angular momentum. Therefore, it is represented by the operator R̂T , product of the
time reversal and rotation through 180◦. It is easily verified that R̂T acts on the angular
momentum like Ŝ acts on the position vector.

The R̂T symmetry was introduced into consideration in nuclear structure physics in
1997, by Frauendorf and Meng [Fra97a], who were inspired by a coincidence of two cir-
cumstances. One was that in 1987 Frisk and Bengtsson demonstrated [Fri87a] that in
triaxial nuclei mean-field cranking solutions can exist with the angular momentum vec-
tor, J , having non-zero components, J s, Jm, J l, on the short (s), medium (m), and
long (l) axes, as illustrated in Fig. 2.3. Frauendorf and Meng pointed out that such an
orientation of the angular momentum violates the R̂T symmetry. Indeed, if vectors J s,
Jm, J l form, say, a left-handed set2 (Fig. 2.3a), then their images in the mirror reflection,
R̂T , will form a right-handed set (Fig. 2.3b). Like the left and right hand, the two systems
cannot be superimposed by any rotation, and are thus chiral. Notice that the discussed
most general orientation of J with respect to the triaxial shape also violates the signature
symmetry, R̂.

The second premise of Frauendorf and Meng was the observation, by Petrache et al.
in 1996 [Pet96a], of an almost degenerate doublet of positive-parity ∆I = 1 bands in
134Pr. Appearance of such pairs can be explained in terms of the breaking of the chiral
symmetry in the following way. Spectroscopic measurements provide us with eigenvalues
of observables (spin, energy) that commute with R̂T . Therefore, quantum states observed
in the laboratory do not violate R̂T . At a given spin, the two states of the doublet, |+〉
and |−〉, can be interpreted as

|+〉 =
1√
2

(|L〉+ |R〉) , |−〉 =
1√
2

(|L〉 − |R〉) , (2.3)

where |L〉 and |R〉 are the left-handed and right-handed states represented in Fig. 2.3.
Since states |L〉 and |R〉 are transformed onto one another by R̂T ,

R̂T |L〉 = |R〉 , R̂T |R〉 = |L〉 , (2.4)

it is easily verified that |+〉 and |−〉 are, indeed, eigenstates of that operator,

R̂T |+〉 = |+〉 , R̂T |−〉 = −|−〉 . (2.5)

2Of course, which handedness is which is a matter of convention. Here, the right-handed-screw orien-
tation of space and the s-m-l order of the axes is adopted.
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Figure 2.3: Triaxially deformed nucleus with the angular momentum, J , having non-zero
components, J s, Jm, J l, on the short (s), medium (m), and long (l) axis. The left panel,
|L〉, shows the left-handed orientation of those three vectors, and the right panel, |R〉,
shows the right-handed orientation. The components J s, Jm, J l originate from the spin
of the valence particle, jp, from the collective angular momentum, R, and from the spin
of the valence hole, jh, respectively.

They are also orthogonal3. The nuclear many-body Hamiltonian, Ĥ, is invariant under
R̂T , and therefore the states |L〉 and |R〉 have equal mean energies. At the same time,
the matrix element of Ĥ between those states is, in general, non-zero, i.e.,

〈L|Ĥ|L〉 = 〈R|Ĥ|R〉 = E , |〈L|Ĥ|R〉| = ∆ 6= 0 . (2.6)

As a consequence, the energies of the laboratory states, |+〉 and |−〉, read

〈+|Ĥ|+〉 = E + ∆ , 〈−|Ĥ|−〉 = E −∆ . (2.7)

Their energy splitting is, of course, due to the interaction between the left- and right-
handed states. One can see that doublet bands like those observed in 134Pr may be
attributed to the breaking of the chiral symmetry.

One can thus suppose that the appearance of the doublet bands is connected to the
existence of triaxially deformed states with the angular momentum vector lying outside
any principal plane. Frauendorf and Meng pointed out that in odd-odd nuclei around
134Pr such states can arise in the following way. In this region, a configuration is easily
available, in which one proton particle occupies the lowest substate of the h11/2 orbital,
and simultaneously one neutron hole is left in the highest h11/2 substate. The former
drives the nucleus towards elongated shapes, while the latter towards disc-like forms.
The interplay of these opposite tendencies may yield stable triaxiality. In the triaxially
deformed potential, the considered particle and hole align their angular momenta, jp and
jh, along the short and long axis of the nucleus, respectively, providing the J s and J l

components of J . As expected from the hydrodynamical irrotational-flow model [Boh75a],
the moment of inertia with respect to the medium axis is the largest, which energetically

3More precisely, they can be always made orthogonal by an appropriate choice of phases of the states
|L〉 and |R〉.
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favors the collective rotation about this direction. Thus, the component Jm comes from
the collective angular momentum, R. This is illustrated in Fig. 2.3.

Since the first observation in 134Pr, about 12 similar structures have been found in odd-
odd nuclei in the A ∼ 130 region. They are all attributed to the discussed configuration
of πh1

11/2 νh−1
11/2. Recently, first observations of possibly chiral bands in the even-odd

135Nd [Zhu03a] and in the even-even 136Nd [Mer02a] were reported in the same region.
There, the proposed active configurations are πh2

11/2 νh−1
11/2 and πh2

11/2 νh−1
11/2, respectively.

Peng, Meng, and Zhang predicted theoretically [Pen03a] that another island of chirality,
associated mainly with the configuration πg1

9/2 νg−1
9/2, may exist around A ∼ 100. Indeed,

experimental work is underway for 102−106Rh [Sta03a] and gives promising results. It seems
that a pair of bands found in 104Rh [Koi03b, Vam04a] provides the best known example
of a chiral doublet, because the chiral partners are situated closest to each other. In this
case, the πg−1

9/2 νh11/2 configuration is proposed. Latest lifetime measurements in 132La, by

Grodner et al. [Gro04a], provided the first direct information about the absolute B(E2)
and B(M1) values in the chiral bands; see Section 6.1. A complete (January 2004) review
of experimental and theoretical investigations of the chiral bands in particular nuclides is
given in Tabs. 2.1 and 2.2. See also Fig. 6.1 for sample level schemes and Figs. 6.13–6.15
for spin-energy plots.

Certainly, an important question about the observed doublet bands is whether the
chiral rotation is the only possible explanation of their appearance. A more standard
picture would be that they are in fact four ∆I = 2 bands corresponding to the two signa-
ture states of the two odd nucleons, one proton and one neutron. The energy separation
between the bands would then be just the signature splitting. However, the calculated
signature splitting turned out to be a few times larger than the observed distance [Sta01b].
Also the possibility that the yrare partner band is a gamma-vibrational excitation built
on the yrast band has been ruled out for the same reason. However, recently Pasternak
[Pas04a] managed to reproduce all the three bands observed in 132La (see Section 6.1) in
a very simple classical model that invokes only planar rotation. Yet, some of the model
parameters were fitted to each band separately.

Two theoretical tools have been used for the description of the chiral rotation: various
versions of the Particle-Rotor Model (PRM), originally developed by Bohr and Mottelson
[Boh75a] and the mean-field Tilted Axis Cranking (TAC) model, which is discussed in
Section 3.3 and used in this work. In the PRM approach, the nucleus is represented by a
rotating deformed structureless core and a few valence particles interacting with it, and
possibly among themselves. The valence nucleons are usually treated as pure particles or
holes, while calculations with pairing appeared only recently [Koi03a]. The core is usually
taken as a triaxial rigid quantum rotor (Davydov-Fillipov model [Dav58a]), characterized
by three moments of inertia, Js, Jm, Jl, and described by the Hamiltonian

Ĥrot =
R̂2

s

2Js

+
R̂2

m

2Jm

+
R̂2

l

2Jl

, (2.8)

where R̂s, R̂m, R̂l are the intrinsic-frame components of the core angular momentum. In
all available PRM studies, the moments of inertia, Jk, are calculated from the irrotational-
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Figure 2.4: Schematic drawing of the trajectory followed by the total angular momentum
vector, J , along planar and chiral bands. Indices s, m, l refer to the short, medium and
long intrinsic axis, respectively. Arrows marked as jp and jh denote the initial angular
momenta of the valence proton particle and neutron hole. Regions of planar, chiral and
axial rotation are marked.

flow formula [Boh75a],

Jk = 4Bβ2 sin2

(

γ +
2kπ

3

)

, k = 1, 2, 3 , (2.9)

where k = 1, 2, 3 corresponds to the short, medium, and long axis4, respectively, and
B is a mass parameter. The important point is that PRM gives wavefunctions of good
angular momentum, and thus describes the system in the laboratory frame. Therefore,
it directly yields the splitting between the bands and the transition probabilities. Due to
the presence of the rigid core, PRM does not take into account polarization of the nucleus
by valence particles, nor change of shape induced by rotation. These effects are properly
included in the mean-field TAC model, especially in its self-consistent version. The mean-
field wavefunctions, in turn, explicitly break the chiral symmetry, and correspond to the
|L〉 and |R〉 states in the intrinsic frame. This makes the physical interpretation more
straightforward, but neither the splitting nor the transition probabilities can be directly
calculated. The PRM and TAC methods are to an extent complementary. A more
detailed comparison of the two models in their assumptions and results can be found in
[Fra96b, Fra97a]. It is noteworthy that the salient features of the chiral rotation can be
elucidated within a very simple classical model of two gyroscopes, representing the valence
particle and hole, coupled to a triaxial rigid body standing for the core. This model is
discussed in [Olb02b, Dim02a, Olb04a], and in Section 6.4.

The following general structure of a chiral band could be established from the theo-
retical studies. Figure 2.4 shows a schematic trajectory of the mean angular momentum

4The irrotational-flow formula, as it is given in Eq. (2.9), and with such an assignment of k to the
three intrinsic axes, is valid for the γ range from 0 to 60◦, which is used in the present work.
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Figure 2.5: A chiral doublet band for the πg1
9/2 νg−1

9/2 configuration in the A ∼ 100

region, calculated within the PRM [Pen03a]. a) energy in function of spin, b) spin versus
rotational frequency calculated as ω(I) = [E(I + 1) − E(I − 1)]/2. Solid and dashed
lines connect the points corresponding to odd and even spins, respectively. The regions
of planar, chiral and axial rotation are marked.

vector, J , in the intrinsic frame, and Fig 2.5b gives the I(ω) dependence calculated within
the PRM [Pen03a] for a generic πg1

9/2 νg−1
9/2 chiral band in the A ∼ 100 region. As al-

ready discussed, the valence particle and hole tend to align their spins, jp and jh, along
the short and long axes of the triaxial shape, respectively. At low spins, the total J

comes mostly from those valence nucleons, and remains in the plane spanned by the short
and long axes (marked as ’planar’ in Fig 2.4). This is called planar rotation, in which
the chiral symmetry is not broken. In this part of the band, the dependence of spin on
rotational frequency is approximately linear (marked as ’planar’ in Fig 2.5b), with the
second moment of inertia close to the moments, Js and Jl, for the short and long axes
(in most studies, γ ≈ 30◦ is assumed, for which Js ≈ Jl). At a certain value of the
rotational frequency, the spin vector moves out of the s-l plane into one of the octants
of the intrinsic frame, and the rotation becomes chiral (marked as ’chiral’ in Fig 2.4).
In the current study, an analytical estimate for that critical frequency has been found in
terms of the classical model; see [Olb02b, Olb04a] and Section 6.4. In the chiral regime,
the spin-frequency plot is also a straight line (marked as ’chiral’ in Fig 2.5b), but J (2) is
now approximately equal to the moment of inertia, Jm, associated with the medium axis.
This results in a kink in Fig. 2.5b around spin 11 h̄. As the angular momentum vector
traverses the selected octant further along the band, it aligns more and more with the
medium axis (marked as ’towards axial’ in Fig 2.4). Simultaneously, contributions from
the valence particle and hole become negligibly small as compared to the total spin, and
one effectively arrives at the axial rotation about the medium axis. In this regime, not
only the chiral symmetry, but also the signature is unbroken. In view of such a scenario,
it is stressed in the literature that the chiral rotation is a transient phenomenon, existing
only in a limited range of angular momentum.
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Figure 2.4 shows the mean intrinsic-frame trajectory of the angular momentum vector
along a chiral band. Classically, each point of that trajectory corresponds to a uniform
rotation of the nucleus about a fixed direction, without any wobbling. Within the TAC
model, the trajectory follows the minimum of the energy surface with increasing rotational
frequency. The two chiral partners can be viewed as two lowest quantum states in the
potential represented by that surface. In the single planar minimum existing at low
spins, the two states are interpreted as zero- and one-phonon excitations separated by
a finite energy interval. They correspond to oscillations of the spin vector about the
planar equilibrium, which has a classical analogy in non-uniform rotations [Dim02a]. In
the chiral regime, there is the left and right minimum, of equal depths. If the barrier
between them is high enough, the two lowest eigenstates are nearly degenerate, and one
can talk about strong chiral symmetry breaking. For low barriers, the spin vector can
tunnel between the minima, and the splitting between the band states is non-zero5. This
kind of weak symmetry breaking has been dubbed chiral vibrations [Sta01b]. As the
axial rotation is approached, the weakened breaking of both the chiral symmetry and
the signature manifests itself, in particular, by the onset of the signature splitting. That
splitting is absent for the planar and chiral rotation, because the signature is strongly
broken in those modes. The above features appear clearly in the structure of the chiral
band, as calculated in the PRM model. This can be seen from Fig. 2.5, showing the plots
of energy versus spin and spin versus rotational frequency.

The evolution from planar to chiral to axial finds a manifestation in the electromagnetic
properties of the chiral bands, too. Those were examined in [Fra97a, Pen03a, Pen03b],
mainly in the frame of the PRM model. For planar rotation, the transitions within
each partner band are strong, the transitions from the yrare to the yrast band are weak,
and there are practically no decays in the opposite direction. In the chiral regime, all
reduced probabilities assume moderate values, and the intraband and interband transition
strengths are comparable. As the planar rotation is approached, the B(E2) within the
two partners become equal and slowly increase, while the interband E2 decays disappear.
The B(M1) show the characteristic odd-even staggering, absent at lower spins. Reference
[Koi03a] gives a discussion of the staggering in B(M1)/B(E2) and B(M1)in/B(M1)out

(interband/intraband) in connection with the signature splitting and inversion.

The appearance of the chiral bands is considered a strong evidence for the existence of
triaxial deformations; certainly, the chiral geometry cannot occur in an axially symmetric
nucleus. It is clear from the irrotational-flow formula (2.9) that γ = 30◦ gives the largest
moment of inertia with respect to the medium axis (Jm = 4Js = 4Jl) and thus favors the
aplanar orientation of the angular momentum. The PRM study by Starosta et al. [Sta01a,
Sta02a] showed that the value of γ practically does not influence the alignments of the
valence particle and hole on the short and long axis. However, those alignments are only
well defined for sufficiently large β deformation. References [Sta01a, Sta02a] investigated
the influence of γ and β on the mean value of the so-called orientation operator, σ̂ =
(jp × jh)R̂, which measures the aplanarity of jp, jh, and R, i.e., the degree of chirality,
in a sense. The average value of σ̂ increases with β and has a maximum for γ = 30◦. This
is reflected in the splitting between the chiral partners, which decreases with β, and is

5However, in order to actually calculate the chiral splitting in such an approach, one would need the
mass parameter in addition to the potential surface, and such calculations have not been done.
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minimal for γ = 30◦. However, it is known that the flow of matter in nuclei is not purely
irrotational, i.e., the curl of the velocity field is not exactly zero. Thus, the moments of
inertia may deviate from the irrotational-flow values (2.9) assumed in the PRM studies,
especially if pairing is weak, and the dependence of the discussed observables on γ may
not be so straightforward.

As far as the mean-field methods are concerned, certainly taking into account the
interaction between the left- and right-handed minima would be desirable, preferably
in conjunction with the projection onto good chirality before variation. This would be
the first tool capable of calculating the chiral splitting and the transition probabilities
in a fully microscopic way. In the PRM domain, efforts are being undertaken to include
pairing in the calculations [Koi03a], to use γ-soft cores, and to take into account the direct
residual interaction between the valence nucleons [Rai03a, Rai03b]. Such an interaction
is supposed to be responsible for the stabilization of the chiral geometry in nuclei at the
limits of the islands of chirality. Experimentally, lifetime measurements would certainly
be of great use.
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Table 2.1: Experimental and theoretical investigations of candidate chiral rotational
bands; this Table is continued in Table 2.2. Acronyms in column Theory stand for calcu-
lations in the following models. TAC: phenomenological Tilted-Axis Cranking model of
Frauendorf et al.; PRM: Particle-Rotor Model used by Peng et al. [Pen03a, Pen03b] or
its different version used by Hartley et al. [Har01a]; CPH: Core-Particle-Hole model, a
version of PRM developed by Starosta et al.; CQP: Core-Quasi-Particle model, a version
of CPH that includes pairing; SHF: Skyrme-Hartree-Fock results of the present work; see
Tab 6.2 for details. The symbol ν in the column Pairing means that pairing was included
only for neutrons.

Exp. The. Conf. Pair. Def. Tri. ωcrit Ref.
A ∼ 100 PRM πg1

9/2 νg−1
9/2 no β ∼ 0.12 30◦ ≈ 0.3 [Pen03a]

100Rh πg−1
9/2 νh1

11/2 [Vam04a]
102Rh πg−1

9/2 νh1
11/2 [Vam04a]

103Rh [Sta03a]
104Rh [Koi03b]

PRM πg−1
9/2 νh1

11/2 no β = 0.12 30◦ [Pen03a]

PRM πg−1
9/2 νh1

11/2 no β = 0.25 25◦ ≈ 0.3 [Pen03b]

EXP πg−1
9/2 νh1

11/2 [Vam04a]
105Rh [Sta03a]
106Rh PRM πg−1

9/2 νh1
11/2 no β = 0.25 25◦ ≈ 0.3 [Pen03b]

πg−1
9/2 νh1

11/2 [Vam04a]
108Rh PRM πg−1

9/2 νh1
11/2 no β = 0.25 25◦ ≈ 0.3 [Pen03b]

110Ag PRM πg−1
9/2 νh1

11/2 no β = 0.25 25◦ ≈ 0.3 [Pen03b]
118I EXP πg−1

9/2 νh11/2 [Sta01a]
124Cs [Koi03a]
126Cs EXP πh1

11/2 νh−1
11/2 [Li02a]

[Koi03a]
128Cs EXP πh1

11/2 νh−1
11/2 [Koi01a]

EXP CQP πh1
11/2 νh−1

11/2 yes β = 0.19 27◦ [Koi03a]
130Cs EXP πh1

11/2 νh−1
11/2 [Sta01a]

EXP TAC πh1
11/2 νh−1

11/2 yes ε = 0.16 39◦ [Sta01b]

EXP πh1
11/2 νh−1

11/2 [Koi03a]

PRM πh1
11/2 νh−1

11/2 no ε = 0.16 39◦ [Pen03a]

SHF πh1
11/2 νh−1

11/2 no β = 0.24 48◦ ≈ 0.4 present
132Cs EXP πh1

11/2 νh−1
11/2 [Koi03a]

EXP TAC πh1
11/2 νh−1

11/2 no ε = 0.16 36◦ ≈ 0.18 [Rai03a]

EXP CPH πh1
11/2 νh−1

11/2 [Rai03b]
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Table 2.2: Continuation of Table 2.1.

Exp. The. Conf. Pair. Def. Tri. ωcrit Ref.
130La EXP πh1

11/2 νh−1
11/2 [Koi01a]

132La EXP CPH πh1
11/2 νh−1

11/2 no [Sta01a]

EXP TAC πh1
11/2 νh−1

11/2 yes ε = 0.175 32◦ [Sta01b]

EXP CPH πh1
11/2 νh−1

11/2 no β = 0.23 21◦ [Sta02a]

EXP πh1
11/2 νh−1

11/2 Lifetimes measured [Gro04a]

PRM πh1
11/2 νh−1

11/2 no ε = 0.175 32◦ [Pen03a]

SHF πh1
11/2 νh−1

11/2 no β = 0.26 46◦ ≈ 0.5 present
134La EXP PAC πh1

11/2 νh−1
11/2 ε = 0.14 30◦ [Bar01a]

132Pr EXP πh1
11/2 νh−1

11/2 [Koi01a]
134Pr TAC πh1

11/2 νh−1
11/2 yes ε = 0.175 27◦ 0.3 [Dim00a]

EXP πh1
11/2 νh−1

11/2 [Sta01a]

EXP TAC πh1
11/2 νh−1

11/2 yes ε = 0.175 27◦ [Sta01b]

EXP CPH πh1
11/2 νh−1

11/2 no β = 0.25 35◦ [Sta02a]

PRM πh1
11/2 νh−1

11/2 no ε = 0.175 27◦ [Pen03a]

SHF πh1
11/2 νh−1

11/2 no β = 0.26 58◦ present

SHF πh1
11/2 νh−1

11/2 no β = 0.23 22◦ ≈ 0.9 present
136Pm EXP πh1

11/2 νh−1
11/2 [Bea01a]

EXP πh1
11/2 νh−1

11/2 [Sta01a]

EXP TAC πh1
11/2 νh−1

11/2 yes ε = 0.195 27◦ [Sta01b]

EXP TAC πh1
11/2 νh−1

11/2 ε = 0.194 25◦ < 0.2 [Hec01a]

EXP PRM πh1
11/2 νh−1

11/2 no ε = 0.194 25◦ [Har01a]

PRM πh1
11/2 νh−1

11/2 no ε = 0.195 27◦ [Pen03a]

SHF πh1
11/2 νh−1

11/2 no β = 0.25 53◦ present

SHF πh1
11/2 νh−1

11/2 no β = 0.22 19◦ ≈ 0.6 present
138Eu EXP πh1

11/2 νh−1
11/2 [Bea01a]

TAC πh1
11/2 νh−1

11/2 yes ε = 0.225 20◦ [Sta01b]

EXP TAC πh1
11/2 νh−1

11/2 ε = 0.202 24◦ < 0.2 [Hec01a]
135Nd EXP TAC πh2

11/2 νh−1
11/2 ν ε = 0.20 30◦ ≈ 0.45 [Zhu03a]

136Nd EXP πh1
11/2 νh−2

11/2 [Mer02a]
188Ir TAC yes ε = 0.21 40◦ < 0.2 [Dim00a]
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Chapter 3

Theoretical tools

In this Chapter, some general information about the spontaneous symmetry breaking in
the mean field is recalled, mainly in the context of rotational bands. While the Tilted-
Axis Cranking (TAC) method has already been widely discussed and used in its version
based on phenomenological potentials, this work introduces one of its first applications
to the self-consistent Hartree-Fock (HF) calculations. Therefore, the TAC basics are
recapitulated with particular emphasis on the differences between the phenomenological
and self-consistent implementations. It is also described how the values of the time-odd
coupling constants of the HF energy functional are chosen in the present calculations
to investigate the role of the time-odd nucleonic densities and fields in the shears and
chiral solutions. After a concise review of other computer codes capable of performing
symmetry-unrestricted mean-field calculations, the program hfodd, used in this work, is
presented.

3.1 Spontaneous symmetry breaking

This Section summarizes the basics of the HF method, and explains how the spontaneous
symmetry breaking intervenes in the mean-field approach.

The variational HF method consists, in its standard version, in minimizing the expec-
tation value of the many-body Hamiltonian,

Ĥ = T̂ + V̂ , (3.1)

in the trial class of Slater determinants. Here, T̂ is the kinetic energy, and V̂ is the
effective two-body interaction. A Slater determinant, |Ψ〉, is uniquely characterized by
its hermitian, projective density matrix,

ραβ = 〈Ψ|a+
β aα|Ψ〉 . (3.2)

For a given density, one introduces the so-called s.p. Hamiltonian, ĥ[ρ], which is the
functional derivative of the energy, E = 〈Ψ|Ĥ|Ψ〉, with respect to the density,

h[ρ]βα =
∂E

∂ραβ
. (3.3)

27
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By evaluating the derivative one obtains

ĥ[ρ] = T̂ + Γ̂[ρ] , (3.4)

where Γ̂[ρ] is the mean potential generated by averaging the two-body interaction with
the density distribution,

Γ[ρ]µν =
∑

αβ

Vµβναραβ . (3.5)

The HF equations state that a local energy minimum is attained for such a density matrix,
which commutes with the s.p. Hamiltonian it induces,

[

ρ, ĥ[ρ]
]

= 0 . (3.6)

The last equation tells us, in particular, that the density matrix and the s.p. Hamiltonian
have common eigenstates. Therefore, the Slater determinant corresponding to the HF
solution represents a set of particles moving in the mean potential Γ̂[ρ]. Although it
is known that a Slater determinant provides a poor approximation to the nuclear stat,
the obtained approximation to the s.p. density, ρ, is much better. Therefore, like in
the Density Functional Theory, of which the HF method is a particular case, a reliable
physical result is contained in the density.

The nuclear many-body Hamiltonian, Ĥ, is invariant under a number of symmetry
operations, Ŝ,

[Ĥ, Ŝ] = 0 . (3.7)

Normally, these conserved symmetries include the translation, rotation, plane reflection,
time reversal, and particle-number symmetries. This list can be supplemented with the
approximate isospin symmetry, which is broken mostly by the Coulomb interaction, and
by the Galilean invariance, which is only a symmetry of the interaction V̂ . In different
physical conditions, e.g., when the system is subjected to an external electromagnetic field,
some of those symmetries are unconserved. The nuclear states belong to irreducible rep-
resentations of the group formed by the conserved symmetries of the Hamiltonian Ĥ. In
general, those representations may be multi-dimensional, like for the angular-momentum
eigenstates with L > 0. Such states are said to be covariant with the group operations.
States that are bases of one-dimensional representations, like the angular-momentum
eigenstates with L = 0, are called invariant1. In the present work, only conservation
of single dichotomic symmetries, like plane reflections, is analyzed. A dichotomic sym-
metry is a two-element group containing the given symmetry operation and the neutral
element. Such a group has only two irreducible representations, both one-dimensional,
the symmetric and the anti-symmetric one.

In the variational HF approach, one does not calculate exact eigenstates of Ĥ, but
looks for their approximation among possibly simple states, the Slater determinants. If,
for instance, there are strong quadrupole correlations in the exact solution, the only way
the simple determinant can account for them may be by a static quadrupole deformation,
which violates the rotational invariance. Thus, in general, the mean-field solution does
not possess the symmetries of the many-body Hamiltonian, which means that the density

1Also for one-dimensional representations different than the totally symmetric one.
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matrix, ρ, corresponding to the minimum energy, does not commute with the symmetry
operator, Ŝ,

[ρ, Ŝ] 6= 0 ; (3.8)

then one says that the symmetry Ŝ is spontaneously broken in the HF solution. But it
may also remain unbroken, which depends on the constituents of the system and on the
interaction V̂ . It is clear that symmetries broken in the mean field are reminiscent of the
presence of certain correlations in the exact solution. Although the quantum mechanics
formally requires a proper symmetry behavior, one may note that the mean-field descrip-
tion eventually becomes exact in the limit of large systems, like macroscopic crystals or
even molecules. Thus, it is also sufficient for the description of certain properties of nuclei.
If information of a more quantal character is required, like the excitation spectrum, one
may need to restore the broken symmetries, e.g., by projecting the mean-field solutions
onto good angular momentum. See [Rin00a] for a more thorough discussion.

An important result about the symmetry breaking in the HF approach is provided by
the theorem of self-consistent symmetries [Rin00a], which requires that if Ŝ is a symmetry
of the many-body Hamiltonian, Ĥ, then

Ŝ+ĥ[ρ]Ŝ = ĥ[Ŝ+ρŜ] . (3.9)

In particular, if ρ is invariant under Ŝ then so is ĥ. On the other hand, if ĥ commutes
with Ŝ then its s.p. eigenstates can be chosen as eigenstates of Ŝ, which means that also
ρ is invariant under Ŝ. Consequently, the s.p. density and the s.p. Hamiltonian have the
same symmetries in a self-consistent solution. In the present study, the condition of the
theorem are always satisfied, because the Skyrme interaction is rotationally invariant, and
only subgroups of the rotation group are considered here.

The exact solutions are often referred to as laboratory states, which are, in general,
covariant with the symmetry group of the many-body Hamiltonian. One says that spon-
taneous symmetry breaking occurs in the intrinsic frame, which actually alludes to the
mean-field solutions. In Section 2.2, the states |+〉 and |−〉 of a chiral doublet are the lab-
oratory states, and the left- and right-handed states |L〉 and |R〉 are mean-field solutions,
while the passage from the latter to the former is the projection onto good chirality.

3.2 Symmetries and rotational bands

Relation between the symmetries of the nucleus and the structure of rotational bands is
presented in this Section. The symmetry group DT

2h, which plays a crutial role in the
present analysis, is defined.

For all quantum systems whose rotational excitations are observed, like molecules or
nuclei, one can find universal connections between the symmetries in the intrinsic frame
and the sequence of spin and parity of levels within a rotational band. This can be done
by checking what values of angular momentum and parity can be projected out of a mean-
field solution with given symmetries unbroken. Frauendorf [Fra01a, Fra01b] summarized
the results of such an analysis in a table which is reproduced in Table 3.1. It can be seen
that three symmetry operations are relevant for the classification of the bands, namely,
the space inversion or parity, P̂ (reflection in a point), the signature, R̂ (rotation through
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Table 3.1: Symmetries of the nucleus in the intrinsic frame and sequences of spins and
parities in the corresponding rotational bands. The parity (P̂ ), signature (R̂z), and chiral
symmetry (R̂T

y ) operators are defined in the text. Symbols U and B stand for unbroken
and broken, respectively; an operator as entry means that this operator gives the same
result as the one given in the header of the column. I± means that there are two degenerate
states of opposite parity. The 2 means that there are two degenerate states with the same
I±. In rows I-V, the parity of the band can be positive or negative, although the latter
possibility is not explicitly indicated. From [Fra01a, Fra01b].

P̂ R̂z R̂T
y Level sequence

I U U U I+, (I + 2)+, (I + 4)+

II U B U I+, (I + 1)+, (I + 2)+

III U B B 2I+, 2(I + 1)+, 2(I + 2)+

IV U U B 2I+, 2(I + 2)+, 2(I + 4)+

V U B R̂z I+, (I + 1)+, (I + 2)+

VI B U U I±, (I + 2)±, (I + 4)±

VII B B U I±, (I + 1)±, (I + 2)±

VIII B U B 2I±, 2(I + 2)±, 2(I + 4)±

IX B B R̂z I±, (I + 1)±, (I + 2)±

X R̂z B U I+, (I + 1)−, (I + 2)+

XI R̂z B B 2I+, 2(I + 1)−, 2(I + 2)+

XII R̂T
y U B I±, (I + 2)±, (I + 4)±

XIII R̂T
y B B I±, (I + 1)±, (I + 2)±

XIV R̂z B R̂z I+, (I + 1)−, (I + 2)+

XV B B B 2I±, 2(I + 1)±, 2(I + 2)±

180◦), and the chiral symmetry, R̂T (product of the signature and the time reversal).
Not all of the 15 mathematically conceivable kinds of bands listed in the Table have
been experimentally found, and the interesting question whether they all appear in nuclei
remains open.

Together with the important time-reversal operation, the symmetries appearing in
Table 3.1 generate a group called DT

2h [Dob00b], which is of crucial importance in the
present analysis. The group comprises2:

• Three signature operations, R̂i = exp(−iπĴi), i = x, y, z, which are rotations
through 180◦ about the three cartesian axes. Here, Ĵi denotes components of the
angular momentum operator.

• Space invertion, P̂ , sometimes called parity, changing r into −r.

• Three simplex operations, Ŝi = P̂ exp(−iπĴi), which are reflections in the planes
perpendicular to the i = x, y, z axes.

2The identity element, 1, the change of sign, −1, and the products of −1 with other elements of the
group are not mentioned.
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• Antilinear time-reversal operator, T̂ = exp(−iπŝy)K̂, where ŝy is the y component

of the total intrinsic spin operator, and K̂ is the complex conjugation in the space
representation.

• T -signatures, R̂T
i = T̂ R̂i, T-parity, P̂ T = T̂ P̂ , and T -simplexes, ŜT

i = T̂ Ŝi, where
i = x, y, z.

The T -signatures are the chiral operators discussed in Section 2.2.
When enumerating the DT

2h symmetries it is necessary to introduce names of the three
cartesian axes. But obviously, the question in the mean-field calculations is not, e.g.,
whether the signature with respect to some particular a priori given axis is broken or not.
One says that the signature is broken uniquely if there is no axis i such that R̂i is the
symmetry of the density. Otherwise, the signature is not broken. The same pertains to the
simplex, T -signature, and T -simplex symmetries. In the following, the terms broken and
unbroken are always understood in this sense, when referring to the signature, simplex,
T -signature, and T -simplex symmetries, unless a particular axis is specified.

3.3 Tilted-Axis Cranking

To obtain HF solutions describing states with higher angular momentum, particularly the
levels of a rotational band, one usually imposes a linear constraint on the total angular
momentum, and minimizes the mean value of the quantity called Routhian,

Ĥ ′ = Ĥ − ωĴ , (3.10)

where the Lagrange multiplier ω is called rotational frequency, and Ĵ is the angular-
momentum operator. This approach is called cranking approximation. Since Ĥ is rota-
tionally invariant, the solutions obtained for the same length, but different directions of
ω differ only by their orientation in space. Therefore, only the length, ω, has a physical
meaning. The Kerman-Onishi theorem [Ker81a] states that, at the minimum, the total
angular momentum vector, J = 〈Ĵ〉, is parallel to ω. Indeed, this configuration obviously
minimizes the mean value of the cranking term, −ωĴ , while Ĥ is rotationally invariant.
It comes from the variation of the many-body Routhian, Ĥ ′, that in the cranking model
the s.p. Hamiltonian, ĥ, is replaced by the s.p. Routhian,

ĥ′ = ĥ− ωĴ , (3.11)

both in the HF equations (3.6) and in the theorem of self-consistent symmetries (3.9).
If a given symmetry is not broken in a mean-field solution, expectation values of observ-

ables represented by operators odd under this symmetry vanish. Here, we are interested
in properties of the DT

2h symmetries with respect to the mean angular momentum vector
and electric quadrupole moment of the mass distribution, because they will play a fun-
damental role in the search for broken signature and chiral symmetries. These properties
can be summarized as (see [Dob00b] for a detailed derivation):

• If the time reversal, T̂ , is not broken, all components of the angular momentum
vanish, while the quadrupole moments are not affected.
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• Unbroken parity, P̂ , does not constrain neither the angular momentum nor the
quadrupole moments.

• If R̂i or Ŝi is unbroken, the angular momentum can have a non-zero component only
on the i-th axis, which in turn is a principal axis of the quadrupole tensor.

• If R̂T
i or ŜT

i is unbroken, the axis i is a principal axis of the quadrupole tensor, while
the angular-momentum vector is confined to the plane perpendicular to that axis.

These conclusions are valid, of course, for any arbitrarily oriented axis i, not only the x,
y, z axes of some particular frame. It follows from the third bullet that if the angular
momentum has non-zero components on at least two principal axes of the quadrupole
tensor, then there does not exist any axis i such that R̂i or Ŝi be an unbroken symmetry.
The last point tells us that if the angular momentum has non-zero components on all the
three principal axes of the quadrupole tensor, then there is no such axis i that R̂T

i or ŜT
i

be unbroken.
It is clear from the above properties of the DT

2h symmetries that whenever there exist
an axis i such that either R̂i, Ŝi, R̂T

i , or ŜT
i is an unbroken symmetry, then i is a principal

axis of the quadrupole tensor. So, only the principal axes and planes of this tensor
are candidates to being symmetry axes and symmetry planes. It is, therefore, useful to
consider the intrinsic frame of reference, defined by the principal axes of the quadrupole
moment. To denote the axes of the intrinsic frame, the symbols s, m, l, are used, in view
of the short, medium and long axes of a triaxially deformed shape. Let us also introduce
the program frame, which is defined by the axes used for solving the mean-field equations,
e.g., in a computer code3. They are denoted as x, y, z. In general, the axes of the two
frames do not coincide.

If one wants to check by using the mean-field methods whether a given symmetry
is spontaneously broken or not in the considered system, one looks for the minimum of
the Routhian among trial solutions both breaking and not breaking the symmetry in
question. Then one checks, to which of those two categories the minimum belongs. These
are the symmetry-unrestricted calculations. One can also impose a given symmetry, which
amounts to searching for the Routhian minimum only among solutions that do not break
that symmetry. When performing calculations with imposed DT

2h symmetries one can,
without loss of generality, impose the symmetries associated with the axes of the program
frame, e.g., R̂x, which is technically much simpler. In fact, imposing either R̂i, Ŝi, R̂T

i or
ŜT

i , where i = x, y, z, causes that one of the intrinsic axes coincides with the program i-th
axis. In the following, the term imposed always has this meaning.

If some symmetries are imposed in the calculations, notably the cranking term, −ωĴ ,
must conform to them. This means that all the above restrictions concerning the mean
angular momentum, J , equally touch the cranking frequency, ω. For example, solutions
invariant under the time reversal may only result if no cranking is applied. These remarks
allow us to introduce the following widely used classification of calculations with imposed
symmetries. Whenever a signature R̂i or simplex Ŝi symmetry is imposed, one can talk

3It would be unfortunate to call it laboratory frame, because in the common interpretation of the
cranking model one would say that the program frame rotates in the laboratory system. The program
and intrinsic frames do not move with respect to each other, they differ only by the orientation of their
axes.
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about one-dimensional cranking, because the applied rotational frequency, ω, together
with all resulting (single-particle (s.p.) and total) angular momenta vectors, point along
the unique, i-th axis. A name Principal-Axis Cranking (PAC) is also adopted, because
the i-th axis is then a principal axis of the mass distribution (its quadrupole moment).
In PAC calculations, the Kerman-Onishi condition (J ‖ ω) is satisfied identically. In
the Tilted-Axis Cranking (TAC), all signature and simplex symmetries are broken, and
therefore the frequency, ω, and the mean angular momentum, J , vectors can become
tilted with respect to the principal axes. If either a T -signature or T -simplex is still
imposed, these vectors remain in a single plain, and hence the name of planar or two-
dimensional cranking (2D) is used. If not, ω and the resulting angular momentum, J ,
can take any direction, and one talks about three-dimensional cranking (3D). In both the
2D and 3D cases, still the parity can be either broken or not.

To solve the HF equations, one often uses the iterative method [Rin00a]. It follows
from the theorem of self-consistent symmetries (see Section 3.1) that if a symmetry is not
broken in a certain iteration, it will remain so in all subsequent ones, and consequently
in the final result. Therefore, to impose a symmetry it is enough to start the iterations
from an ĥ even under this symmetry and also to apply the cranking frequency ω in a
proper direction, as discussed above4. To render the calculations symmetry-unrestricted,
either the initial ĥ or the cranking term must violate the considered symmetry. If the
symmetry is not dynamically broken in the physical solution, it will recover in the course
of the iterations. In the present calculations, a DT

2h-symmetric Nilsson [Nil55a] potential

is always used as the first approximation to ĥ, unless the iterations are restarted from
some previously obtained solution. Therefore, the DT

2h symmetries can be broken only
by the cranking term. If one wants to perform symmetry-unrestricted calculations for
a non-rotating state, one may nevertheless apply a small cranking frequency in the first
iteration, only to break the DT

2h symmetries, and then continue with no cranking.

To relate the discussion to the magnetic and chiral rotation, after having performed
a symmetry-unrestricted calculation one should verify whether the signature or chiral
symmetry is broken by considering the mean angular momentum vector in the intrinsic
frame. If it has non-zero components on more than one intrinsic axis, then the signature
symmetry is broken. If all three components are non-zero, also the chiral symmetry
is broken. However, to make one sure that these symmetries are unbroken is not so
straightforward, because there may a priori exist other factors violating them, different
that the angular momentum coupling, e.g., exotic deformations. A detection of unbroken
symmetries based on the values of the variational parameters (e.g., elements of the density
matrix) would be doable, but difficult. Another way is to perform a separate calculation
imposing the symmetry in question and then to check, whether the results are equivalent,
i.e., whether they differ at most by orientation in space. This can be verified by looking at
the total energy, contributions thereto from the different terms of the Skyrme functional,
density integrals, various observables, and s.p. energies.

A phenomenological approximation to the HF approach consists in replacing Γ̂ with
a model potential, like the Nilsson [Nil55a] or Woods-Saxon [Woo54a] one, which de-
pends on several parameters, mainly multipole deformations, αλµ, of the nuclear surface.

4It is still possible that an initially unbroken symmetry breaks due to numerical noise. To avoid such a
noise, in practical calculations the terms of ĥ′ odd under the considered symmetry are simply disregarded.
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Then, the expectation value of the Routhian ĥ′ (corrected for the liquid drop energy via
the Strutinsky renormalization [Rin00a]) is minimized with respect to parameters of the
potential.

It is well understood that only the relative orientation of the angular momentum vector
and the intrinsic axes carries a physical information. Their position with respect to the
program frame is meaningless and can be arbitrary. One can take advantage thereof
in the phenomenological method, where the orientation of the mean potential is under
control via the variational parameters, like the multipole deformations αλµ of the nuclear
surface, and can be fixed so that the α2µ tensor be diagonal in the program frame simply
by setting α21 = Im α22 = 0. With this condition satisfied, the intrinsic frame coincides
with the program frame, facilitating many computational details. The minimization of
the expectation value of the Routhian ĥ′ at a given magnitude of ω is then performed by
varying the direction of ω and all αλµ except α21 and Im α22. The position of ω with
respect to the coinciding intrinsic and program frames is often described in the spherical
coordinates, ϑ, ϕ, called tilt angles. It is in fact this procedure that is usually understood
under the term TAC and that has been described many times in the literature, see e.g.
the seminal papers by Frauendorf et al. [Fra91a, Fra92a, Fra93a, Fra97c, Fra00a] and
[Dim00b].

In the HF method, however, the Euler angles defining the orientation of the intrinsic
axes are not free variational parameters, but complicated functions of the densities, that
change from one iteration to another according to the HF recipe. Thus, the orientation
cannot be easily controlled. The only feasible way to keep the nucleus in the axes of the
program frame is by imposing dynamical constraints on the off-diagonal components of
the quadrupole tensor and requiring that they vanish. Then, one can vary the cranking
frequency vector like in the phenomenological approach. It is actually the only way to
proceed if the energy dependence on the tilt angles, ϑ, ϕ, is sought. It has been checked,
however, that multipole constraints strong enough to confine the nucleus may easily lead
to divergenciesm, at least in the present calculations. If only the minimum is of interest,
a more natural and faster way is to fix the rotational frequency vector with respect to the
program frame and let the mean potential reorient and conform to it self-consistently in
the course of the iterations. It is but this procedure that corresponds to the minimization
of the given Routhian (3.10). The direction of the rotational frequency vector in the
program frame no more plays any role, while the solution now does become tilted with
respect to that frame. This method has been adopted in the present work.

Some quantities, like mean angular momenta and multipole moments, carry a clear
information only when expressed in the intrinsic frame of the nucleus. But they are first
calculated in the program frame. Since the two no more coincide, it is necessary to find the
principal axes of the nuclear shape by diagonalization of the electric quadrupole tensor
and to transform the considered quantities into the corresponding frame by use of the
Wigner matrices.

To examine deformed nuclei one usually choses deformed bases. However, deformation
of the basis improves the description only if it suites the shape of the nucleus; otherwise
it may spoil the result. For instance, deformation of the Harmonic-Oscillator (HO) basis
amounts to stretching the cartesian coordinates associated with the axes of the program
frame, and to taking different numbers of quanta in each direction. This is not appropriate



3.4. THE HF TIME-ODD COUPLING CONSTANTS 35

for representing the TAC solutions, whose principal axes are arbitrarily tilted with respect
to the program frame. A deformed basis would drive such a solution like a force to
a certain orientation different from the self-consistent one, determined by the direction
of the cranking vector. In particular, the Kerman-Onishi condition would be violated.
Therefore, in self-consistent TAC calculations, the s.p. space spanned by the basis should
be rotationally invariant. It means that the basis should have the three characteristic
frequencies equal and comprise only entire HO shells. To obtain a reasonable description
for deformed nuclei, the only way is to use large bases.

It follows from the theorem of self-consistent symmetries that the s.p. Routhian and
the density matrix are invariant under the same symmetry operations; see Section 3.1.
However, one should be aware of one exception to that rule, that concerns the time-reversal
symmetry in case the time-odd terms of the mean field are artificially set to zero in the
calculations. This simplification is always the case in the phenomenological mean-field
approach, where time-odd terms simply do not appear in the model potential. With the
time-odd fields cut off (and with no cranking), the Routhian is explicitly time-even, while
the density will still acquire time-odd components whenever there is an unpaired particle;
see Appendix A. The spectrum of the time-even Routhian exhibits the two-fold Kramers
degeneracy, and the state of the unpaired particle can be any unitary combination of the
states in the Kramers pair; the physicist must take the decision. The main point of this
discussion is that this freedom of choice influences the time-odd densities, while the time-
even ones remain undisturbed. This lemma is proven in Appendix A. Together with the
time-odd densities, also the time-odd observables, notably the mean angular momentum,
depend on that choice. The time-even quantities, like the quadrupole moments, are
uniquely determined, because they depend only on time-even densities. These conclusions
are valid for both the phenomenological and the self-consistent implementation of the
mean-field method. However, in the self-consistent approach, in each iteration there is
a feedback from the density to the mean field. One may doubt, therefore, whether the
choice of state for the unpaired particle alters the generated mean field. This is not the
case, because the time-even fields originate only from the time-even density, which are
not disturbed, while the time-odd fields are suppressed.

3.4 The HF time-odd coupling constants

One important point in the investigations of the magnetic and chiral rotation is to examine
the role of various time-odd observables, like current and magnetic-moment distributions.
Their impact on the results is governed by the time-odd coupling constants of the HF
energy functional. After introducing necessary definitions of the local densities, energy
functional, mean fields, and local gauge invariance, this Section explains how the values
of the time-odd coupling constants are set in the present calculations.

In the HF approximation, the total energy is, in general, a functional of the non-local
one-body density,

ρα(rσ, r′σ′) = 〈Ψ|a+
r
′σ′αarσα|Ψ〉 , (3.12)

where |Ψ〉 is the many-body wavefunction, r and σ are the position and spin variables,
and α = n, p for neutrons and protons, respectively. The density ρα(rσ, r′σ′) can be
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written as a sum of the scalar, ρα(r, r′), and vector, sα(r, r′), terms,

ρα(r, r′) =
∑

σ

ρα(rσ, r′σ′) , sα(r, r′) =
∑

σσ′

ρα(rσ, r′σ′)σσ′σ, (3.13)

as
ρα(rσ, r′σ′) = 1

2
ρα(r, r′)δσσ′ + 1

2
sα(r, r′) · σσσ′ . (3.14)

The HF equations are usually solved within the Local-Density Approximation (LDA), in
which the total energy depends only on local (r = r′) densities, and on their derivatives at
r = r′ up to the second order. One has to consider the following real nucleonic densities
[Eng75a]:

Particle: ρα(r) = ρα(r, r) ,
Spin: sα(r) = sα(r, r) ,
Kinetic: τα(r) = [∇ ·∇′ρα(r, r′)]

r=r
′ ,

Vector kinetic: T α(r) = [∇ ·∇′sα(r, r′)]
r=r

′ ,
Momentum: jα(r) = 1

2i
[(∇−∇

′)ρα(r, r′)]
r=r

′ ,
Spin-current: Jµν,α(r) = 1

2i

[

(∇µ −∇′
µ)sν,α(r, r′)

]

r=r
′ ,

(3.15)

of which ρα, τα, and
←→
J α = Jµν,α are time-even, and sα, T α, and jα are time-odd. For

each of the local densities, one defines the isoscalar and isovector density, e.g.,

ρ0 = ρn + ρp ρ1 = ρn − ρp (3.16)

The isoscalar and isovector terms are denoted by subscript t = 0, 1, respectively.
The interaction part of the HF LDA energy functional can be expressed as a space

integral,

E =
∑

t

∫

d3r
(

Heven
t +Hodd

t

)

, (3.17)

of energy densities, Heven
t and Hodd

t , which depend on the time-even and time-odd nucle-
onic densities, respectively. They are defined as

Heven
t (r) = Cρ

t ρ2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt + CJ

t

←→
J 2

t + C∇J
t ρt∇ · J t ,

Hodd
t (r) = Cs

t s
2
t + C∆s

t st ·∆st + CT
t st · T t + Cj

t j
2
t + C∇j

t st · (∇× jt) ,
(3.18)

where the square of the tensor density is defined as
←→
J 2

t =
∑

µν J2
µν,t, and its vector part,

J t, is defined as Jλ,t =
∑

µν ελµνJµν,t. The coupling constants Ct appearing in Heven
t and

Hodd
t are conventionally called time-even and time-odd, respectively. They are functions

of the parameters of the Skyrme force [Dob95a], and may depend on density if the force is
density-dependent. Note, however, that in the spirit of the Density-Functional Theory the
energy functional does not need to come from any interaction, and the coupling constants
Ct play the role of fundamental parameters.

Upon variation of the interaction energy, E , with respect to local densities, one obtains
the neutron and proton Skyrme-HF s.p. mean potentials (see Section 3.1),

Γn = Γeven
0 + Γodd

0 + Γeven
1 + Γodd

1 Γp = Γeven
0 + Γodd

0 − Γeven
1 − Γodd

1 , (3.19)
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where the time-even and time-odd fields, Γeven
t and Γodd

t , read

Γeven
t = −∇ · [Mt∇] + Ut + 1

2i

(←→∇σ · ←→B t +
←→
B t ·

←→∇σ
)

,

Γodd
t = −∇ · [(σ ·Ct) ∇] + σ ·Σt + 1

2i
(∇ · I t + I t ·∇) .

(3.20)

They depend on the nucleonic densities through the potential functions,

Ut(r) = 2Cρ
t ρt + 2C∆ρ

t ∆ρt + Cτ
t τt + C∇J

t ∇ · J t + U ′
t ,

Σt(r) = 2Cs
t st + 2C∆s

t ∆st + CT
t T t + C∇j

t ∇× jt ,
Mt(r) = Cτ

t ρt ,
Ct(r) = CT

t st ,←→
B t(r) = 2CJ

t

←→
J t − C∇J

t

←→∇ ρt ,

I t(r) = 2Cj
t jt + C∇j

t ∇× st .

(3.21)

The tensor gradient operators in (3.20) and (3.21) are defined as (
←→∇σ)µν = ∇µσν and

∇µν =
∑

λ εµνλ∇λ. The term U ′
t represents the rearrangement terms resulting from the

density dependence of the coupling constants, Ct. In standard parametrizations of the
Skyrme interaction, which are used in the present work, only Cρ

t and Cs
t depend on the

isoscalar particle density, ρ0, and then

U ′
0(r) =

∑

t′

(

∂Cρ
t′

∂ρ0
ρ2

t′ +
∂Cs

t′

∂ρ0
s2

t′

)

U ′
1(r) = 0 . (3.22)

If the energy functional is derived from the Skyrme interaction, there are unique
relations between the time-even and time-odd coupling constants, Ct. In particular,

Cj
t = −Cτ

t , CJ
t = −CT

t , C∇j
t = +C∇J

t . (3.23)

However, it turns out [Dob95a] that the three relations (3.23) have a deeper sense, namely,
they are necessary and sufficient conditions for the invariance of the energy functional
under a local gauge transformation of the A-body wave-function, |Ψ〉,

|Ψ′〉 = exp

(

i

A
∑

j=1

φ(rj)

)

|Ψ〉 , (3.24)

where φ(r) is an arbitrary real function of position. In particular, for φ = p · r/h̄, the
gauge transformation (3.24) corresponds to a Galilean boost with velocity v = p/m,
where m is the particle mass.

In the present calculations, the SLy4 [Cha97a] and SkM* [Bar82a] parametrizations of
the Skyrme force were used. Like in the original fits, the time-even coupling constant CJ

t

and the time-odd constant CT
t were always set to zero. This does not hamper the local

gauge invariance. Apart from CJ
t , all other time-even coupling constants were taken as

they come from the parameters of the Skyrme force. To examine the role of the time-odd
densities and fields, attempts were undertaken to obtain each solution with three sets of
values of the time-odd coupling constants. In each case, values of selected constants were
taken as they come from the Skyrme force, while those of the remaining ones were set to
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Table 3.2: Three sets of values of the time-odd coupling constants used in the present
calculations. For each set, values of the listed constants were taken as they come from
the Skyrme force, while the remaining constants were set to zero.

Set symbol Coupling constants
N

G Cj
t , C∇j

t

T Cs
t , C∆s

t , Cj
t , C∇j

t

zero. The constants selected in each set are listed in Table 3.2. The density-dependent
and independent components of Cs

t were suppressed or not simultaneously. These three
types of calculations are denoted throughout the text as N , G, and T . In the first
case, N , the mean field contained only time-even components, like the phenomenological
mean potentials, and the local gauge invariance was violated. In the set G, only those
time-odd coupling constants were not set to zero, that must be related to the time-even
coupling constants according to (3.23) for the energy functional to be invariant under
the local gauge transformations (3.24). Finally, in the set T all the time-odd coupling
constants were taken as they come from the Skyrme force, with the exception of CT

t .
In the following Chapters, setting or not selected time-odd coupling constants to zero is
referred to as excluding or including the corresponding time-odd terms of the mean field,
as given by Eqs. (3.20, 3.21).

The results obtained for each of the sets, N , G, T , are compared for particular bands
in Chapters 5 and 6. A general conclusion is that the inclusion of the time-odd fields does
not change the solutions qualitatively. Switching them on and off influences mostly the
moments of inertia. Additionally, convergence problems arise at low cranking frequencies
for the G, and particularly the T set, and no solutions could be obtained in several cases.

3.5 Symmetry-unrestricted mean-field codes

This Section gives a review of computer codes that can perform symmetry-unrestricted
mean-field calculations, particularly within the TAC model, and that existed prior to the
present study.

Imposed symmetries in mean-field calculations allow to reduce the sizes of matrices
or of the space lattice, and thus to gain on the computer memory and CPU time. Before
the interest in magnetic bands emerged at the beginning of the 1990’s, the signature or
simplex symmetries were inherently imposed in the majority of mean-field codes. One
of the first numerical TAC calculations were carried out in 1987 by Frisk and Bengts-
son [Fri87a] by using the Nilsson potential [Nil55a] with pairing. The phenomenologi-
cal TAC code originally written by Frauendorf [Fra93a, Dim00b] is now widely used for
description of experimental data on the magnetic and chiral bands. It allows for in-
cluding monopole pairing correlations with quasiparticle excitations. Recently, Dudek
and Schunck [Dud04a] have written a relativistic Woods-Saxon TAC program, and first
results are about to appear soon. One of the first symmetry-unrestricted calculations
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within realistic self-consistent methods were performed in 1991 by Umar et al. [Uma91a].
Without cranking and pairing, they solved the Skyrme-HF equations in the space rep-
resentation, by using the Spline Collocation Method. About the year 2000, Yamagami
and Matsuyanagi developed a symmetry-unrestricted Skyrme-HF program working on a
Cartesian mesh with the imaginary-time method [Yam00a, Yam01a]. They include ei-
ther only cranking or only pairing with the density-dependent delta force and without
quasiparticle excitations. Calculations of Madokoro et al. for a magnetic band in 84Rb
[Mad00a] were done in 2000 by use of a Relativistic Mean Field TAC code imposing only
the parity, working in the harmonic-oscillator basis and not including pairing. For the
purpose of the present work, the author developed a Skyrme-HF TAC program, hfodd

version (v2.05c), that works in the harmonic-oscillator basis and allows for breaking of all
the DT

2h symmetries. Currently, the pair correlations cannot be taken into account in the
TAC mode. This program is described in the next Section.

3.6 The program hfodd (v2.05c)

In order to perform self-consistent calculations for the magnetic and chiral rotation, the
author of this work developed a Skyrme-HF computer code, hfodd version (v2.05c). In
the previous versions, (v1.60r) and (v1.75r) [Dob00a], the simplex symmetry was imposed,
thus not allowing for TAC calculations. Removing this restriction was the principal im-
provement introduced during the present work, and led to the version (v2.05c), which
was used for obtaining results presented here. A brushed-up version, (v2.08i), was pub-
lished in [Dob04a]. This Section gives an overview of the program’s main features, with
particular emphasis on those that have been introduced for the purpose of the present
investigations.

The code hfodd solves the nuclear HF equations for the Skyrme effective interaction
by using the iterative method. The s.p. wavefunctions are expanded onto the deformed
Cartesian Harmonic-Oscillator (HO) basis. From the s.p. wavefunctions, the HF local
densities (3.15), and then the mean potentials (3.20) are calculated on a Cartesian mesh.
By using the Gauss-Hermite quadrature, matrix elements of those potentials between the
HO states are calculated. The matrix of the s.p. Hamiltonian, obtained in this way, is
then diagonalized, to find the s.p. wavefunctions in the next iteration. The Nilsson po-
tential [Nil55a] is implemented as a starting point. All densities (3.15) appearing in the
Skyrme functional are calculated, and all time-even and time-odd fields (3.20) are taken
into account. Several parametrizations of the force are available and can be modified.
The generalized spin-orbit terms [Rei95a] can be included in the Skyrme functional. Ap-
propriate time-odd coupling constants of the energy functional can be determined either
from the Skyrme force or from the Landau parameters [Ben02a]. For the center-of-mass
motion, either the standard one-body correction before variation or a two-body correc-
tion after variation can be used. Apart from such basic quantities like s.p. and total
energies, the code calculates the angular momentum vectors, electric, magnetic, and sur-
face multipole moments, mean-square radii and Bohr deformation parameters. Linear and
quadratic constraints on spin as well as quadratic constraints on the electric and surface
moments are implemented. With the simplex imposed as an unbroken symmetry, the
program can also work in the HFB mode, with either the fixed-gap or density-dependent
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delta pairing. The Fermi level is found automatically by using the equivalent-spectrum
method [Dob84a]. The quasi-particle blocking is not yet programmed.

The user can choose the pattern of imposed symmetries by independently imposing
or not the Ŝy, R̂y, P̂ , T̂ , ŜT

x , ŜT
y , and ŜT

z symmetries. Keeping in mind that the unbroken
symmetries must form a group, 34 combinations listed in Table 3.3 are permitted. Some
of them differ only by an exchange of the Cartesian axes associated with the signature
and simplex symmetries, and are thus physically equivalent. Altogether, 19 out of the 28
non-equivalent subgroups5 of DT

2h can be selected as imposed symmetries. Imposing the
missing 9 subgroups can easily be implemented provided there is a physics motivation to
study such new cases. When either of the three symmetries, Ŝy, R̂y, or P̂ is imposed,
the s.p. Routhian acquires a specific block-diagonal form, and diagonalization of smaller
matrices results in a faster execution time. In version (v2.08i), this is implemented for
Ŝy and/or P̂ imposed, but in case R̂y alone is imposed it is not implemented yet. The
three T -simplexes and the time reversal cannot be used in a similar way, because they
are represented by anti-linear operators. However, when the time reversal and simplex
or signature are imposed, the Kramers degeneracy allows for diagonalization of matrices
only in one simplex or signature, which reduces the numerical effort by half. The code
stores the Skyrme local densities on a Cartesian mesh, and takes advantage of imposed
symmetries, both represented by linear and anti-linear operators, to reduce the number
of lattice points on which the densities are calculated.

Arbitrary s.p. configurations can be required in the code hfodd, and the way of
selecting them is related to the pattern of imposed symmetries. If P̂ and R̂y are imposed,
then the s.p. states are divided into four groups characterized by the parity and signature
eigenvalues. Those groups are referred to as parity-signature blocks. The code does not
put the particles just on the energetically lowest s.p. states, but the user must specify the
numbers of particles in each block separately. Then, in each block, the lowest levels are
occupied, which gives the reference configuration, from which the particle-hole excitation
are counted afterwards. The same is implemented for imposing either of P̂ , R̂y, or Ŝy

alone, only that in these cases there are two blocks instead of four. They are called parity,
signature, and simplex blocks, respectively. If no symmetries are imposed, obviously
there is only one block. The three T -simplexes and the time reversal do not play any
role in this mechanism, because anti-linear operators do not provide quantum numbers.
In the following, the parity-signature reference configuration is specified as (n++, n+−,
n−+, n−−), where, e.g., n+− is the number of occupied states of parity +1 and signature
−i, etc. Similarly, the parity, signature, and simplex reference configurations are given
as (n+, n−). States in parity-signature blocks are denoted as, e.g., 18– +, which refers
to the eighteenth state of negative parity and positive signature, counting from one in
energetical order. Sometimes, a pair of states, like 18– + and 18– –, is denoted as 18–±.
The notation for the parity, signature, and simplex blocks is similar, e.g., 28 –. Particle-
hole excitations are defined by selecting from which state in which symmetry block a
particle is removed and onto which state in which block it is put. This is denoted as,
e.g., (18– +→ 19– +) for the parity-signature case and, e.g., (28 –→ 29 –) for the parity,
signature, or simplex imposed. The use of symmetry blocks makes it easier to follow a
given configuration diabatically, because crossings of levels belonging to different blocks

5Including the trivial subgroups.
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Table 3.3: Complete list of imposed (I) or non-imposed (N) symmetries allowed in the
code hfodd version (v2.08i). The first column enumerates all the possible symmetry
patterns, while the second column enumerates non-equivalent subgroups (see text).

Number Symmetries Conserved group

Ŝy R̂y P̂ T̂ ŜT
y ŜT

x ŜT
z

1 1 I I I I I I I R̂xyz P̂ Ŝxyz T̂ R̂T
xyz P̂ T ŜT

xyz

2 2 I I I I I N N R̂y P̂ Ŝy T̂ R̂T
y P̂ T ŜT

y

3 3 I I I N N I I R̂y P̂ Ŝy R̂T
zx ŜT

zx

4 4 I I I N N N N R̂y P̂ Ŝy

5 5 I N N I I I N R̂z Ŝxy T̂ R̂T
z ŜT

xy

6 5 I N N I I N I R̂x Ŝyz T̂ R̂T
x ŜT

yz

7 6 I N N I I N N Ŝy T̂ ŜT
y

8 7 I N N N N I N Ŝy R̂T
z ŜT

x

9 7 I N N N N N I Ŝy R̂T
x ŜT

z

10 8 I N N N N N N Ŝy

11 5 N I N I N I I R̂y Ŝzx T̂ R̂T
y ŜT

zx

12 9 N I N I N N N R̂y T̂ R̂T
y

13 10 N I N N I I I R̂xyz P̂ T ŜT
xyz

14 11 N I N N I N N R̂y P̂ T ŜT
y

15 12 N I N N N I I R̂y ŜT
zx

16 13 N I N N N N N R̂y

17 2 N N I I N I N R̂x P̂ Ŝx T̂ R̂T
x P̂ T ŜT

x

18 2 N N I I N N I R̂z P̂ Ŝz T̂ R̂T
z P̂ T ŜT

z

19 14 N N I I N N N P̂ T̂ P̂ T

20 3 N N I N I I N R̂z P̂ Ŝz R̂T
xy ŜT

xy

21 3 N N I N I N I R̂x P̂ Ŝx R̂T
yz ŜT

yz

22 15 N N I N I N N P̂ R̂T
y ŜT

y

23 15 N N I N N I N P̂ R̂T
x ŜT

x

24 15 N N I N N N I P̂ R̂T
z ŜT

z

25 16 N N I N N N N P̂

26 6 N N N I N I N Ŝx T̂ ŜT
x

27 6 N N N I N N I Ŝz T̂ ŜT
z

28 17 N N N I N N N T̂

29 12 N N N N I I N R̂z ŜT
xy

30 12 N N N N I N I R̂x ŜT
yz

31 18 N N N N I N N ŜT
y

32 18 N N N N N I N ŜT
x

33 18 N N N N N N I ŜT
z

34 19 N N N N N N N
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do not cause any confusion as to which of them should be occupied. If two levels from the
same block are about to cross near the Fermi surface, the user may require that a state
with a lower/higher value of a certain s.p. observable be occupied. In the present context,
such diabatic blocking concerns primarily the projection of the s.p. angular momentum
on the cranking frequency vector.

The code allows for TAC calculations, and there are no restrictions on the direction
of the angular frequency vector, except for those following from the imposed symmetries.
According to the Kerman-Onishi theorem [Ker81a], in TAC calculations all self-consistent
solutions have their spin and cranking frequency vectors, J and ω, parallel. In practice,
J approaches ω very slowly in the course of the iterations, and up to several thousands
of iterations are necessary to obtain a converged result. To avoid this inconvenience, a
quadratic constraint on the vector product, ω×J , has been introduced, constraining that
quantity to zero. However, this does not speed up the convergence significantly, and may
easily lead to divergencies. In version (v2.08i), a different prescription was implemented,
which is much more stable and substantially reduces the required number of iterations.
Namely, in each iteration, the rotational frequency vector is explicitly reset to be parallel
to the current total angular momentum vector, while its length, ω, is kept unchanged.
Since ω is not constant in this method, it does not correspond to minimization of any a
priori given Routhian. However, it is the Routhian with the last direction of ω that will
have been minimized once the converged solution is found. This method was invented
after the completion of the present calculations, and was not yet implemented in version
(v2.05c). This is the only difference between the two versions that matters for the present
study.

Some quantities, like the multipole moments, only carry a clear information if cal-
culated with respect to the center of mass. As far as the symmetry patterns used in
the code (see Table 3.3) are concerned, if neither the parity nor T -parity is imposed,
the center-of-mass of the solution may move away from the origin of the program frame.
The code then finds its position and recalculates the quantities in question in the center-
of-mass frame. It is also useful to compute the spin vectors and all types of multipole
moments in the intrinsic frame of the nucleus, defined by the principal axes of the electric
quadrupole tensor. Unless any two of the simplex symmetries, Ŝx, Ŝy, Ŝz, ŜT

x , ŜT
y , ŜT

z ,
are imposed, the principal axes may become tilted with respect to the Cartesian axes of
the program frame; see Section 3.3. The code then finds the directions of the principal
axes by diagonalization of the quadrupole tensor, and transforms all necessary quantities
to the intrinsic system of reference. If the parity is not imposed, the solution may acquire
non-zero linear momentum. The code computes its value and corrects the mean angular
momenta for that translational motion.



Chapter 4

Properties of the h11/2 valence
nucleons

Behavior of the shears and chiral bands is, to a big extent, determined by the rotational
properties of the valence high-j particles and holes. In the cases studied here, we are
primarily interested in properties of the h11/2 orbital. In this Chapter, some general
properties of the h11/2 states are analyzed, first within self-consistent one-dimensional
cranking method, and then analytically. It is demonstrated that those properties are
affected by the triaxial deformation and that the concerned valence nucleons are expected
to align their angular momenta rather stiffly along the principal axes of the triaxial shape.
It is also argued that pairing correlations may soften those alignments.

4.1 Symmetries of the non-rotating solutions

In the following two Chapters, Hartree-Fock (HF) shears solutions in 142Gd and chiral
solutions in 130Cs, 132La, 134Pr, 136Pm are presented. Calculations were carried out with
two Skyrme-force parametrizations, SLy4 [Cha97a] and SkM* [Bar82a], with and without
the HF time-odd fields included; see Section 3.4. Since there is no physical indication
for the breaking of parity in either of the shears or chiral bands, this symmetry was im-
posed in the calculations. For all considered nuclides, symmetry-unrestricted calculations
(modulo the imposed parity) were performed to check, whether some other symmetries
are spontaneously broken in the non-rotating states. Whenever the time-odd fields were
absent (either switched off or self-consistently zero in the ground state of the even-even
142Gd), it was found that the mean field possessed the DT

2h symmetry. This was inferred
from comparison of the symmetry-unrestrained results with those obtained with the DT

2h

symmetry imposed1, as described in Section 3.3.

1In hfodd, for configurations with unpaired nucleons, the DT
2h symmetry can be imposed on the mean

field by imposing P̂ , Ŝy, ŜT
x , ŜT

z , and switching the time-odd fields off.
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4.2 Single-particle PAC Routhians for triaxial nuclei

All the HF solutions considered in the present work are triaxial, and this property deter-
mines many of their features. It is instructive to examine their rotations about the three
principal axes first. This amounts to applying Principal-Axis Cranking (PAC), with both
parity and signature imposed. For non-rotating states with the time-odd terms absent,
the mean field is anyway symmetric with respect to the whole DT

2h group, and imposing
either of the three signatures does not change it. Although the associated Slater determi-
nants can be different for different signatures imposed, due to different signature states
chosen for unpaired particles, this does not affect the mean field; see Section 3.3 for de-
tails. Thus, it is justified to say that three different rotations of the same triaxial object
are considered. With the time-odd fields present, the symmetry-unrestrained solutions
violate all the three signatures. Therefore, imposing any of them necessarily leads to a
substantially different solution, and different for each of the signatures imposed. How-
ever, the energies, deformations, and s.p. energies are very similar, and the effects from
the time-odd fields are not so strong. In the code hfodd, it is technically most convenient
to perform PAC about the y axis2. To examine rotation about each given intrinsic axis,
the non-rotating solutions were first turned in space, by use of appropriate quadrupole
constraints, so that the required principal axis coincide with the program y axis.

Sample self-consistent s.p. PAC Routhians for 130Cs, 132La, 134Pr, 136Pm, and 142Gd
are collected in Appendix D. The s.p. levels are numbered so that, e.g., 14–+ denotes the
fourteenth level of negative parity and positive signature; see Section 3.6. In non-rotating
solutions, the s.p. levels originating from the spherical h11/2 orbital have numbers 14–±
to 19–± (each level comprising two states of opposite signatures), for both protons and
neutrons. This was checked in calculations with constraints on the quadrupole moment
by the observation that the s.p. energies of the levels 14–± to 19–± converge to the
same value with decreasing β, and no crossings with other negative-parity levels occur3

in function of β. In the spherical case, the h11/2 s.p. levels unambiuously have numbers
14–± to 19–± in all realistic potentials, because h11/2 is an intruder orbital, well separated
from all other negative-parity states.

For cranking about the short axis, the lowest sublevels of the h11/2 orbital (14–±) split
strongly in function of ω, while the highest (19–±) do not. For the long axis, it is precisely
the opposite, while for the medium axis only the intermediate levels split. Routhians for
cranking about the medium axis are given only in Figs. D.6 and D.7, for the sample case
of 132La. In fact, the intermediate h11/2 levels split for cranking about each of the three
axes, but only weakly. Slopes of the PAC Routhians, e′, translate into the s.p. alignments,
ji, on the i-th axis according to the well-known formula

ji = − de′

dωi

, (4.1)

which holds exactly for fixed mean potentials and approximately if the potential changes
with rotational frequency due to the HF self-consistency or TRS minimization. Therefore,

2Although PAC about the x and z axes is also implemented, conservation of the associated simplex
or signature symmetries does not yield block-diagonal matrices in the basis used [Dob04a].

3With the exception of the triaxial minima in 134Pr and 136Pm; see Section 6.2.
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the lowest h11/2 sublevels align their angular-momenta vectors on the short axis, and
the highest on the long one. The corresponding alignments are approximately equal to
11/2 h̄. The intermediate states have non-zero alignments on all the three axes. Although
these results are based on PAC calculations, they are confirmed in the full Tilted-Axis
Cranking (TAC) results of Chapters 5 and 6. For the DT

2h-symmetric mean fields, the
alignments obtained from one-dimensional cranking acquire a very specific meaning, which
is discussed in the next Section.

4.3 DT
2 -symmetric mean field

In all the present HF solutions without the time-odd fields, as well as in virtually all phe-
nomenological studies of the magnetic and chiral rotation, the mean-field Hamiltonian, ĥ,
is symmetric under the DT

2h group. In such a case, important properties of the s.p. states
can be inferred from pure symmetry considerations. Eigenstates of a DT

2h-symmetric po-
tential exhibit the two-fold Kramers degeneracy, and this Section is focused on properties
of a single Kramers pair. In fact, to obtain the results of this Section, it is enough to
assume that ĥ is symmetric with respect to DT

2 , a subgroup of DT
2h which consists of the

time reversal, the three signature, and the three T -signature operations.
A complete information about the matrix elements of the angular-momentum operator,

Ĵ , between the states of a Kramers pair, (|µ〉, |µ̄〉), is contained in the real alignment
vector, Jµ, and the complex decoupling vector, Dµ, of the state |µ〉,

Jµ = 〈µ|Ĵ |µ〉 , Dµ = 〈µ|Ĵ |µ̄〉 . (4.2)

The alignment and decoupling vectors, J µ̄, Dµ̄, of the state |µ̄〉 are related to Jµ and Dµ,
by Eq. (B.2); see Appendix B. For any Hamiltonian, ĥ, invariant under the DT

2 group, one
can choose the states of the considered Kramers pair as eigenstates of either of the three
signatures, R̂i, where i = x, y, z. This results in three formally different pairs, (|µi〉, |µ̄i〉),
that correspond to just three different bases in the same two-dimensional eigenspace of
ĥ. It is shown in Appendix B, that there are only three independent real parameters
that determine all components of the alignment and decoupling vectors associated with
the three examined pairs. These are the ”diagonal” components Jµx

x , J
µy
y , Jµz

z , where the
lower indices refer to the Cartesian components of J . One has

Jµx = (Jµx

x , 0, 0) , Dµx = (0, Jµy

y ,−iJµz

z ) , (4.3)

Jµy = (0, Jµy

y , 0) , Dµy = (−iJµx

x , 0, Jµz

z ) , (4.4)

Jµz = (0, 0, Jµz

z ) , Dµz = (Jµx

x ,−iJµy

y , 0) . (4.5)

Invariance of ĥ under DT
2 does not restrict the values of Jµx

x , J
µy
y , Jµz

z . In the often
considered case of axial symmetry, say with respect to the z axis,

(Jµx

x , Jµy

y , Jµz

z ) =

{

(Jµ⊥

⊥ , Jµ⊥

⊥ , J
µ‖

‖ ) for J
µ‖

‖ = 1/2

(0, 0, J
µ‖

‖ ) for J
µ‖

‖ = 3/2, 5/2, ...
(4.6)

The component J
µ‖

‖ is quantized due to the axial symmetry, and the still arbitrary com-

ponent Jµ⊥

⊥ is usually called decoupling parameter; see Appendix B for details.
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Suppose that the states in the considered Kramers pair have no coupling to other states
through the angular-momentum operator. Under this assumption, the 3D cranking for this
pair becomes a two-dimensional diagonalization problem, that can be solved analytically.
Of course, it concerns the non-selfconsistent cranking, where the Hamiltonian ĥ in the
Routhian ĥ′ is fixed. For a degenerate Kramers pair, ĥ reduces to its eigenvalue, e. Taking,
e.g., the states |µz〉, |µ̄z〉 as a basis one has, according to (4.5),

ĥ′ = ĥ− ωĴ =

[

e 0
0 e

]

−
[

ωzJ
µz
z ωxJ

µx
x − iωyJ

µy
y

ωxJ
µx
x + iωyJ

µy
y −ωzJ

µz
z

]

. (4.7)

For the eigenstates of ĥ′, one obtains the following components of the mean angular
momentum vector, J ,

Ji = ± ωi(J
µi

i )2

(

ω2
x(Jµx

x )2 + ω2
y(J

µy
y )2 + ω2

z(Jµz
z )2

)1/2
. (4.8)

They differ by sign for the two eigenstates. This dependence has a singularity at ω = 0,
and is not linear in the general case. Consider the following two extreme situations. If
Jµx

x = J
µy
y = Jµz

z = g, then Ji = gωi/ω, and J always orients itself along ω, already for
infinitesimal ω. This can be called soft alignment. On the other hand, when only one of
the parameters Jµx

x , J
µy
y , Jµz

z is non-zero, say J
µj

j , then Ji = J
µj

j δij, and J is independent
of ω (unless ω = 0). We call this stiff alignment on the j-th axis.

In axial nuclei, precisely one two-fold degenerate substate of each deformation-split
j-shell has J

µ‖

‖ = 1/2 and Jµ⊥

⊥ 6= 0, which represents the soft alignment. According

to Eq. (4.6), all other necessarily have a vanishing decoupling parameter, and are thus
rigidly aligned with the symmetry axis. For prolate shapes, the lowest-energy substate has
J

µ‖

‖ = 1/2, and is soft, while for oblate shapes it is the highest substate. In triaxial nuclei,

values of the parametrs Jµi

i , where i = s, m, l corresponds to the short, medium, and long
principal axes, are equal to the alignments obtained from the one-dimensional cranking
about the three axes. Indeed, for cranking about the axis i, the s.p. states are eigenstates
of R̂i. Taking into account the PAC results of the previous Section, one can see that for
the lowest h11/2 substates of a triaxial nucleus only Jµs

s is non-zero, while for the highest
substates only Jµl

l does not vanish. These alignments are thus stiff. The Routhians of
these states are not much curved, which confirms that their angular-momentum coupling
to other states is rather weak. Note that there are no states with stiff alignment on the
medium axis. The response to rotation of the middle h11/2 substates is soft, because
all the three parameters, Jµs

s , Jµm
m , Jµl

l , are non-zero, and complicated, because these
states interact with one another, what can be seen from the strong bending of their PAC
Routhians.

Although the presented results come from a non-selfconsistent cranking (with fixed ĥ),
the full HF calculations in Chapters 5 and 6 show that at least the deformation does not
change much with rotational frequency, particularly for the chiral bands. Therefore, the
non-selfconsistent cranking should be a good approximation here. In both the magnetic
and chiral bands, the active high-j particles occupy the lowest substates of a given orbital,
while the valence holes occupy the highest substates. The principal conclusion of the last
two Sections is, therefore, that those valence particles and holes align their individual
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angular momenta on the short and long axes of the triaxial shape, respectively, and that
those alignments are stiff. These results, based mostly on symmetry considerations, agree
well with the full HF TAC results of Chapters 5 and 6. According to the presented
considerations, the triaxial deformation should affect the blades closing in the shears
bands. Indeed, for prolate or oblate shapes, respectively the lowest particle or the highest
hole would rather have a soft alignment.

4.4 Influence of the pairing correlations

Besides deformation, pairing correlations may affect properties of the shears and chiral
mean-field solutions. Since pairing is not included in the present HF calculations, this
Section aims at least at a model study of its possible role. It is well known that pairing
reduces the collective moments of inertia. Here, the interest is rather in the influence that
pairing may exert on the alignment properties of the valence particles and holes.

Non-selfconsistent one-dimensional cranking about the y axis is considered for a system
of two Kramers pairs, (|µy〉, |µ̄y〉) and (|νy〉, |ν̄y〉), whose states have good signature R̂y.
Let eµ < eν be the energies of those two pairs, taken at ωy = 0, and gy be the matrix

element of the y-th component, Ĵy, of the angular-momentum operator between |µy〉 and
|νy〉. It is assumed for simplicity that the considered states have zero alignment on the y
axis at ωy = 0. In the basis of the states |µy〉, |µ̄y〉, |νy〉, |ν̄y〉, the no-pairing Routhian for
this model takes the form

h′ =









e1 0 −ωygy 0
0 e1 0 ωygy

−ωygy 0 e2 0
0 ωygy 0 e2









. (4.9)

The interest here is in the alignment, jy, of a single particle that at ωy = 0 occupies the
state |µy〉. By diagonalization of (4.9) and, e.g., by using formula (4.1), one obtains

jy =
2ωyg

2
y

√

(eν − eµ)2 + 4ω2
yg

2
y

. (4.10)

This dependence is traced in Fig. 4.1 for eµ = −1 MeV, eν = +1 MeV and gy = 2 h̄.
Inclusion of pairing in the simplest fixed-delta form leads to the quasi-particle Routhian

H′ =

























e1 0 −ωygy 0 0 −∆ 0 0
0 e1 0 ωygy ∆ 0 0 0

−ωygy 0 e2 0 0 0 0 −∆
0 ωygy 0 e2 0 0 ∆ 0
0 ∆ 0 0 −e1 0 ωygy 0
−∆ 0 0 0 0 −e1 0 −ωygy

0 0 0 ∆ ωygy 0 −e2 0
0 0 −∆ 0 0 −ωygy 0 −e2

























. (4.11)

For a qualitative study, a gap parameter of ∆ = 1 MeV is taken. In order to talk about
an unpaired particle in the Hartree-Fock-Bogolyubov formalism, one has to consider a
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Figure 4.1: Alignment of the canonical particle with v2 = 1 for sample values of the
Fermi energy, λ, and for the case with no pairing (∆ = 0), obtained from one-dimensional
cranking in a simple model (see text). Values of λ and ∆ are given in MeV.

one-quasiparticle excitation and identify the particle in question with the canonical state
with occupation v2 = 1. Precisely one such state must appear in the canonical spectrum
for one-quasiparticle excitation. For ωy = 0, that state necessarily coincides with some
eigenstate of the particle-hole Routhian (4.9), but it is not so for ωy 6= 0. In other words,
in rotating solutions pairing introduces extra admixtures to the blocked particle, that
can change its alignment properties. To describe a particle initially put on |µy〉, in the
following such a quasi-particle is blocked that for ωy → 0 the fully occupied canonical
state continuously pass onto |µy〉. The model was solved numerically. Figure 4.1 shows the
alignment, jy, of the considered canonical particle in function of the rotational frequency,
ωy, for a few sample values of the Fermi energy, λ. If λ � eµ, the result is obviously
identical to that without pairing. As the Fermi energy increases towards λ = 0, the
process of alignment gets faster. It is illustrated for λ = −1 MeV and λ = −0.1 MeV. If
λ = 0, already for infinitesimal rotational frequencies a non-zero value of jy is achieved.
For this value of λ, the Fermi level lies exactly at half way between eµ and eν. For λ > 0
the fully occupied canonical particle initially anti-aligns its angular momentum, and only
for higher rotational frequencies the positive jy is regained. This is not marked in Fig. 4.1
because such a situation does not seem to be the case, neither for the magnetic nor for
the chiral rotation.

Although no quantitative conclusions can be drawn from this simple model, it becomes
clear that inclusion of pairing correlations may render the valence particles and holes more
susceptible to rotational alignment. Together with the reduction of the total moments of
inertia, it may affect the shears-rotor competition in the magnetic bands and the value of
the chiral critical frequency, as well as the structure of chiral bands; see Chapter 2.



Chapter 5

Hartree-Fock shears results in 142Gd

In the present work, the πh2
11/2 νh−2

11/2 single-particle (s.p.) configuration in 142Gd is taken
as an example for the study of the shears mechanism. It is particularly simple to handle,
because it involves only the well-separated h11/2 intruder orbital, and can be considered
a model shears configuration. Additionally, a magnetic band supposed to be built on
that structure has been observed experimentally in 142Gd. The presented results show
the first fully self-consistent Hartree-Fock (HF) Tilted-Axis Cranking (TAC) solutions,
and confirm the important role of the shears mechanism. However, the agreement with
experiment is not yet satisfactory. Possible reasons are discussed, but further research is
needed to clarify this point. A preliminary report on these results was given in [Olb02a].

5.1 Previous studies in 142Gd

Magnetic bands in 142Gd were first investigated by Sugawara et al. [Sug97a], but the
present analysis is based on the most recent EUROBALL III measurements by Lieder et
al. [Lie02a]. In that experiment, four magnetic bands, denoted DB1, DB2, DB3, DB4,
were observed, and configurations of πh2

11/2 νh−2
11/2, πh1

11/2g
−1
7/2 νh−2

11/2, πh2
11/2 νh−4

11/2 and

πh1
11/2g

−1
7/2 νh−4

11/2 were assigned to them, respectively. The present work focuses on the

DB1 structure. Figure 5.1 shows a partial level scheme of 142Gd, including the DB1 and
the ground-state band. Two ∆I = 2 bands built on the πh2

11/2 and νh−2
11/2 configurations

[Sta88a] are also displayed, because if the πh2
11/2 and νh−2

11/2 excitations are combined

together, they yield the πh2
11/2 νh−2

11/2 configuration of the band DB1. The πh2
11/2 and

νh−2
11/2 bandheads are 10+ isomeric states, which points to the parallel coupling of the

angular momenta of the two h11/2 proton particles and neutron holes. Such a coupling is
characteristic for the shears mechanism; see Section 2.1.

It was discussed in Section 2.1 that deformation has a strong influence on the shears
mechanism. There is no direct experimental data on the deformation of 142Gd, but several
theoretical predictions for the ground state are available. The Extended Thomas-Fermi
method with the Strutinsky Integral [Abo92a] gives β2 = −0.21, the Folded Yukawa po-
tential combined with the Droplet Model [Mol95a] yields β2 = −0.156 and the Relativistic
Mean Field [Lal96a] gives β2 = −0.158. These theoretical calculations were limited to
axially-symmetric shapes. In the present work, Total Routhian Surface (TRS) calcu-
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lations allowing for triaxial deformations were performed with the pairing correlations
included; see Appendix C for details. The obtained energy surface is shown in Fig. 5.2.
The minimum corresponds to a triaxial shape with γ ≈ 30◦. At γ = 0◦ and γ = 60◦

there are saddle-points, and the one for γ = 60◦ has lower energy, in agreement with
the previous predictions of oblate shapes. The triaxial minimum is rather shallow in the
γ direction, so one can talk about γ-softness. Both the minima and the saddle-points
have the absolute deformation of β ≈ 0.181, placing the TRS prediction between those
of [Mol95a, Lal96a] and that of [Abo92a]. For the magnetic bands in 142Gd, phenomeno-
logical TAC calculations allowing for triaxial shapes were performed in the experimental
paper [Lie02a], by using the code of Frauendorf; see Section 3.5. Energy minimization
gave β ≈ 0.15 and γ ≈ 60◦ for all the four bands, but β ≈ 0.10 and γ = 60◦ was taken
for the cranking description of DB1 and DB3. A satisfactory agreement with experiment
has been obtained for both the energies and the B(M1)/B(E2) ratios.

5.2 HF solutions in 142Gd

This Section describes the HF ground-state and shears solutions in 142Gd. Since this is
the first application of the Skyrme-HF TAC method developed in this work, below it
is explained step-by-step how those solutions were found. Refer to Section 3.6 for the
treatment of symmetries and s.p. configurations in the code hfodd.

The HF calculations in 142Gd were performed with two Skyrme parametrizations,
SLy4 [Cha97a] and SkM* [Bar82a]; see Appendix C for all details. To investigate the
role of the HF time-odd densities and fields, three different sets of time-odd fields, N
(no time-odd fields), G (time-odd fields responsible for a gauge invariance of the force),
and T (all Skyrme time-odd fields), were included; see Section 3.4. The study of the
shears mechanism was preceded by a search for the ground-state minimum. Only the
parity was imposed as an unbroken symmetry. Several parity reference configurations (see
Section 3.6) were considered that seemed reasonable from the standard Nilsson diagrams,
with no particle-hole excitations required. Cranking constraint was applied in the first
iteration to make the calculations symmetry-unrestricted, and then released, as described
in Section 3.3. The lowest minimum was found for the parity configuration listed in the
first row, right column of Table 5.1. With the SLy4 force, that solution corresponds to a
HF vacuum, and for SkM* there is one empty positive-parity state under the last occupied
negative-parity state. It is known that the order of s.p. levels may vary from force to force.
Deformation of β = 0.19, γ = 40◦ for SLy4 and β = 0.18, γ = 39◦ for SkM* was obtained.
These values of β are very close to the TRS result for the ground state in 142Gd.

It should be expected that the ground state of the even-even 142Gd with quadrupole
deformation is symmetric with respect to the whole DT

2h group, not only the parity.
If that was the case, each Kramers pair of a given parity would comprise two states
of opposite signatures, and the considered parity configuration would translate into a
parity-signature configuration given in the first row, left column of Table 5.1. Indeed,
DT

2h-imposing calculations with such a configuration were performed, and an identical
result was obtained; see Section 3.3.

The DT
2h-imposing solution was then used to examine one-dimensional rotations about

the three principal axes; see Section 4.2. Figure D.1 shows the s.p. Routhians from the
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Table 5.1: Parity-signature and parity single-particle configurations (see Section 3.6) for
protons (π) and neutrons (ν) used to obtain the solutions in 142Gd at zero cranking
frequency.

Parity-Signature Parity
Ref. Exc. Ref. Exc.

142Gd SLy4 π (18,18,14,14) (36,28)
Ground SkM* ν (21,21,18,18) (42,36)
142Gd SLy4 π (18,18,14,14) (14– –→ 15– –) (36,28) (28 –→ 29 –)
Shears SkM* ν (21,21,18,18) (18– +→ 19– +) (42,36) (36 –→ 37 –)

Principal-Axis Cranking (PAC) calculations with the SLy4 force and no time-odd fields.
As it was discussed in Section 4.2, the s.p. levels 14–± to 19–± (see Section 3.6) can
be recognized as belonging to the h11/2 orbital for both kinds of nucleons. One can see,
therefore, that in the considered HF solution there are two h11/2 proton particles occupying
the lowest two-fold degenerate substate of the orbital and two h11/2 neutron holes on its
highest substate.

The considered shears band was calculated with only the parity imposed. In the
language of the parity configurations, the h11/2 orbital comprises states from the one
described by 27 – to that described by 38 –, both for neutrons and protons. With no time-
odd fields, the πh2

11/2 νh−2
11/2 shears configuration was obtained from the ground state

by exciting one proton from the 28 – onto the 29 – state, and simultaneously promoting
one neutron hole1 from 37 – onto 36 –, see the second row of Table 5.1. This led to a
converged solution for zero cranking frequency. Still with the time-odd fields switched
off, a similar test as for the ground state was performed, showing that the mean field in
the πh2

11/2 νh−2
11/2 solution breaks none of the DT

2h symmetries with the parity-signature
configuration as specified in the second row, left column of Table 5.1.

To obtain the two-dimensional TAC solutions, a cranking frequency of 0.05 MeV/h̄
with equal components on the short and long axes of the nucleus was applied, starting
the iterations from the previously converged non-rotating state. For the sake of sim-
plicity, the mean field obtained with the DT

2h symmetry imposed was used as a starting
point, which guaranteed that the principal axes initially coincided with the program axes;
see Section 3.3. As expected, a perpendicular coupling of the valence-nucleon angular
momenta was obtained. The band was calculated with the cranking-frequency step of
0.05 MeV/h̄, starting the iterations for each subsequent value from the converged solution
for the previous one.

The two occupied proton h11/2 states are marked with filled circles in Fig. D.2, showing
the s.p. Routhians for the shears band with N time-odd fields. These are just the lowest
two h11/2 states with positive alignments on the cranking vector, as reflected by their
negative slopes. At low frequencies, the two states have numbers 27 – and 29 –, as discussed
previously. At ω ≈ 0.15 MeV/h̄, there is a crossing of the down-sloping 29 – Routhian

1Since the code hfodd works in the language of particles rather than holes, this was actually done by
removing one neutron particle from 36 –, and putting it onto 37 –.
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with the up-sloping 28 – Routhian. For the configuration to be followed diabatically, the
proton particle has to be moved from 29 – onto 28 –, and one deals from now on with a
vacuum state in the negative-parity block. The analogous holds for the two neutron holes.

Obtaining the HF TAC solutions in the presence of the time-odd terms of the Skyrme
mean field is more cumbersome than without those terms. In general, the inclusion of the
time-odd fields splits the Kramers pairs even in non-rotating states, which may change
the order of the s.p. levels. In particular, some empty states from above the Fermi surface
may come below the highest occupied states, which formally corresponds to particle-hole
excitations. Since one cannot foresee which such excitations are a priori needed, it is
difficult to find the s.p. configuration corresponding to the required physical state at zero
cranking frequency. It is easier to proceed in case the signature or simplex symmetry is
imposed, because such symmetry provides an additional quantum number, which allows
to distinguish between s.p. states. Moreover, practice shows that calculations with the
time-odd fields are prone to divergencies at low cranking frequencies.

In order to circumvent the above problems, calculations with the time-odd fields were
not started from the zero cranking frequency. Instead, iterations for the G and T fields
were restarted at each cranking frequency from the corresponding converged solution with
the N fields, with the s.p. configuration unchanged. Because of shifts in the s.p. energies
introduced by the time-odd fields, this did not work in cases when levels cross either
due to those fields, or in function of the rotational frequency. Yet, converged results
were obtained for higher frequencies, where the proton and neutron configurations are
already the s.p. vacua in negative parity. These fragments of bands were then extended
towards lower frequencies step by step, by changing the configuration by hand whenever
a crossing was about to occur, or by using the diabatic blocking on the total alignment on
the cranking vector; see Section 3.6. In spite of that, convergence could not be achieved
in some cases. See Fig. 5.4 for the frequency ranges, in which the G and T solutions did
converge.

5.3 The shears mechanism in 142Gd

The key point of the present study is to examine the shears mechanism in 142Gd. It is
particularly interesting to see how the aligning angular momenta of the valence nucleons
and the collective rotation compete in generating the total spin. These issues are addressed
in this Section.

Below, spins of the two valence neutron h11/2 holes are defined as the spins of the two
empty h11/2 states, taken with the minus sign. To ensure that the total neutron spin is
equal to the sum of the two holes’ and the core’s contributions, the core is defined as all
the occupied neutron states plus the two empty h11/2 states. The division of the proton
s.p. states into the two valence h11/2 particles and the remaining core is obvious.

The angular momentum vectors of the valence nucleons and of the proton and neutron
cores are shown in Fig. 5.3 for several values of the rotational frequency. The angular
momenta of the two h11/2 proton particles are nearly parallel (stretched coupling), and
their vector sum (particle blade) has length of approximately 10h̄. The same holds for
the neutron holes. The stretched coupling and the length of the two blades is retained up
to high cranking frequencies. In the non-rotating state (bandhead), the particle and the
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11/2 band in 142Gd. HF results with the SLy4 and

SkM* forces are shown for the N , G, T time-odd fields included. For the proton particles,
the arrow anchored at the origin stands for the energetically lower of the two concerned
s.p. states, while the inverse holds for the neutron holes. Arc of radius 10h̄ is drawn in
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results with the SLy4 and SkM* forces are shown for the N , G, T time-odd fields included.

hole blade aligns with the short and the long intrinsic axis, respectively. In the absence
of collective rotation, that perpendicular orientation yields the total bandhead spin of
about 14h̄. With increasing rotational frequency, the two blades align towards each other
(shears closing). These results are perfectly consistent with the shears scenario proposed
in the literature and discussed in Section 2.1. At ω = 0.75 MeV/h̄, the angle between the
blades is equal to 53◦ for SLy4 and 50◦ for SkM*. At that point, the angular momentum
gain due to the shears closing (with respect to the bandhead spin) reaches about 5h̄. Note
that the maximum gain, corresponding to the complete closure, would be not more than
6h̄ for two blades of 10h̄ each, initially forming a right angle.

In competition with the shears mechanism, also the core generates its angular mo-
mentum. Both the proton and neutron cores tend to align their spins with the long axis,
because the moment of inertia with respect to that axis is larger than with respect to
the short axis. This is expected from the irrotational-flow formula (2.9) for γ > 30◦, and
can be also checked by considering one-dimensional cranking about the two axes, like in
Section 6.3. Interestingly, the contribution from the neutron core is a few times smaller
than that from the proton core. At ω = 0.75 MeV/h̄, the spin generated by the two cores
equals ≈ 10h̄, two times more than the contribution from the shears mechanism. This
is in accord with the estimate of Macchiavelli and Clark [Mac99a] (see Section 2.1) that
deformations smaller than ε ≈ 0.12 are needed for the shears mechanism to dominate.
It can be seen from Fig. 5.3 that the behavior of the shears blades and of the two cores
is very similar for the SLy4 and SkM* Skyrme parametrizations, and independent of the
time-odd fields included.



56 CHAPTER 5. HARTREE-FOCK SHEARS RESULTS IN 142GD

5

6

7

8

9
N G

S
L

y
4

T

5

6

7

8

12 14 16 18 20 22 12 14 16 18 20 22 12 14 16 18 20 22 24

S
k
M

*

E
n
er

g
y

[M
eV

]

Spin [h̄]

Figure 5.5: Calculated energies for the πh2
11/2 νh−2

11/2 shears band in 142Gd (lines), com-

pared with the experimental data for the DB1 band (points). Hartree-Fock results with
the SLy4 and SkM* forces are shown for the N , G, T time-odd fields included. The energy
scale refers to the experimental energy measured with respect to the ground state. For
the N and G fields, the calculated curves are offset in energy so that they coincide with
the experimental bandhead at spin 16h̄. For the T fields, the offset is arbitrary.

At ω = 0, the shears solution has the deformation of β ≈ 0.17, γ ≈ 45◦, with negligible
differences between the forces used. Thus, the πh2

11/2 νh−2
11/2 excitation slightly reduces

the value of β as compared to the ground state. The deformation further diminishes
with increasing rotational frequency, which is illustrated in Fig. 5.4, and falls below 0.15
with ω approaching 0.75 MeV/h̄. Such a decrease of deformation is characteristic for the
shears bands; see Section 2.1. In the present results, however, the solution simultaneously
becomes more and more triaxial, as it can be seen from the evolution of γ shown in the
same Figure. The closing blades composed of the two pairs of high-j nucleons have quite
a strong polarization effect on the core.

5.4 Comparison with experiment

In Fig. 5.5, the energies calculated for the πh2
11/2 νh−2

11/2 band are compared with the
experimental data for the band DB1. Clearly, in the calculations the spin is generated at
a too low energy expense in the vicinity of the experimental bandhead. Since the shears
closing is rather slow in the HF solutions, the discrepancy should rather be attributed to
an overestimated collective inertia. The effect is most pronounced for the G set of the
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time-odd fields, which systematically yields the largest values of the moments of inertia;
also for the N = 75 isotones studied in Section 6.5. Apart from the time-odd fields,
the moment of inertia depends strongly on the deformation and on the intensity of the
pairing correlations; see Section 4.4. Since the πh2

11/2 νh−2
11/2 shears configuration is a

two-quasiparticle state in each kind of nucleons, the pairing effects should be significantly
weakened, and one would expect the pure HF approximation to provide a correct de-
scription. From the theoretical point of view, there is no apparent reason to surmise that
the calculated deformation is wrong, all the more since the predictions for the ground
state are consistent with the TRS results. It must be conceded, however, that the quoted
estimates of [Mol95a, Lal96a] give a considerably lower β for the ground state.

Whether the combined effects of the lack of pairing in the present calculations and
of a possibly overestimated deformation may account for the observed deviation from
the experimental data should be a subject of further research. Certainly, there are still
several unclear points about the theoretical description of the magnetic bands in 142Gd,
particularly concerning the deformation. In [Lie02a], a considerably smaller ε had to be
used to reproduce the DB1 and DB3 bands than it came from the energy minimization.
From the level scheme in Fig. 5.1 it is clear that the bands built on the πh2

11/2 and νh−2
11/2

configurations are rather well-deformed structures, similar to the ground-state band. Why
would the combination of these two excitations diminish the deformation so much? It
should be noted here that recently Pasternak et al. [Pas04a] obtained a surprisingly
good description of the magnetic bands in 142Gd within a very simple classical model. It
would be instructive to see whether such solutions have their self-consistent mean-field
counterparts.
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Chapter 6

Hartree-Fock chiral results

Investigation of the chiral rotation in this thesis was directly stimulated by the first
experimental observations of candidate chiral bands, in 130Cs, 132La, 134Pr, and 136Pm
[Sta01b]. These nuclei were naturally chosen for the analysis in this work. An exploratory
study performed within the Principal-Axis Cranking (PAC) revealed that a very appealing
and accurate model for the chiral rotation can be given in the classical framework of two
gyroscopes coupled to a triaxial rotor. That model is presented in Section 6.4 and leads
to one of the principal conclusions of this dissertation, that chiral rotation can only exist
above some critical value of the rotational frequency or spin. This result is confirmed
by the full Skyrme-Hartree-Fock (Skyrme-HF) solutions that are presented later in this
Chapter, and constitute the first fully self-consistent proof of the chiral symmetry breaking
in rotating nuclei. However, the chiral bands could be obtained only in 132La from among
the studied isotones. A brief report on the results obtained in 132La is given in [Olb04a],
which is a revised version of the e-print published earlier in [Olb02b].

6.1 Previous studies in 130Cs, 132La, 134Pr, and 136Pm

As it was discussed in Section 2.2, the πh1
11/2 νh−1

11/2 configuration is in the literature
commonly adopted for the chiral doublet bands in the N = 75 isotones. Level schemes of
those bands are displayed in Fig. 6.1. Experimental data were taken from the most recent
measurements, namely from [Koi03a] for 130Cs, from [Sta02a, Tim03a, Gro04a] for 132La,
from [Sta01b, Rob03a] for 134Pr, and from [Har01a] in the case of 136Pm. The names
of bands in 132La, B1 and B3, are reproduced from [Gro04a]. Spin assignments are still
tentative, apart from the two lowest bands in 132La. Note that the bands referred to as
yrast in the present work are only yrast in the positive parity. The low-spin regions of those
bands are difficult to explore using γ-spectroscopy, because transition energies become
very low. However, recent highbrow experiments in 132La [Tim03a] and 134Pr [Rob03a]
suggested that the bandhead spins are 7+, which is consistent with the orthogonal angular
momentum coupling of the h11/2 proton particle and neutron hole. See Tables 2.1 and 2.2
for a review of experimental and theoretical investigations of the chiral rotation in the
N = 75 isotones.

For all of nuclei 130Cs, 132La, 134Pr, and 136Pm phenomenological Tilted-Axis Cranking
(TAC) calculations were performed in [Sta01b], and in [Dim00a] also for 134Pr and in

59
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Figure 6.1: Partial level schemes of 130Cs [Koi03a], 132La [Sta02a, Tim03a, Gro04a], 134Pr
[Sta01b, Rob03a], and 136Pm [Har01a], showing the yrast positive-parity bands and sup-
posed chiral partners. In 132La, the band B1 is the previously known partner [Sta02a],
while B3 is the recently discovered third band [Gro04a].
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[Hec01a] for 136Pm. All these calculations were performed by using the TAC code of
Frauendorf. The ε deformations of 0.16, 0.175, 0.175, 0.195 and triaxialities γ of 39◦,
32◦, 27◦, ≈ 26◦ were found, respectively for 130Cs, 132La, 134Pr, 136Pm. Chiral solutions
were obtained in a limited range of angular frequency. The lower limits correspond to
the critical frequency, ωcrit, discussed in this Chapter. Only [Dim00a] and [Hec01a] quote
their values, which are ωcrit = 0.3 MeV/h̄ for 134Pr and ωcrit < 0.2 MeV/h̄ for 136Pm.
Comparison with experimental energies is given only for 134Pr [Sta01b, Dim00a], where
the mean trend is reproduced.

For all the considered N = 75 isotones, calculations within the Particle-Rotor Model
(PRM) were performed as well [Pen03a]. A different version of the model was used
in [Har01a] for 136Pm. The same deformations were used as in the TAC calculations
described in the previous Paragraph. A satisfactory agreement with experimental data
was obtained. Probably the most sophisticated implementation of the PRM was employed
in 132La [Sta01a, Sta02a] and 134Pr [Sta02a]. Deformations of β = 0.23, γ = 21◦ and
β = 0.25, γ = 35◦ were adopted, respectively, and good agreement was obtained both for
energies and B(M1)/B(E2). Note that the values of β used in the latter calculations are
significantly larger than in the former ones.

Recently, a lifetime measurement in 132La [Gro04a] provided the first data on the
absolute values of B(M1) and B(E2) in the proposed chiral bands. That experiment
revealed that the band B1, so far taken for the chiral partner, has the intraband B(E2)
values an order of magnitude lower than the yrast band and than those predicted by the
PRM. Moreover, a new band, called B3, was discovered, that cannot be ruled out as the
chiral partner, either; see Fig. 6.14. Its electromagnetic properties are more similar to
those of the yrast band. Energetically, it is more distant form the yrast band than B1,
but the spin assignments are tentative, and there are some indications [Gro04b] that they
should be shifted up by one unit. In such a case, the band B3 would become almost
exactly degenerate with the yrast sequence at spin 18 h̄. Certainly, further experimental
research is needed to clarify this point.

6.2 HF minima in the N = 75 isotones

The present HF study of 130Cs, 132La, 134Pr, and 136Pm is limited to the chiral πh1
11/2 νh−1

11/2

configuration. This Section describes the structure of the minima that were found for that
configuration before application of cranking.

Calculations were performed with two Skyrme parametrizations, SLy4 [Cha97a] and
SkM* [Bar82a]; see Appendix C for all details. To investigate the role of the HF time-odd
densities and fields, three different sets of time-odd fields, N (no time-odd fields), G (time-
odd fields responsible for a gauge invariance of the force), and T (all Skyrme time-odd
fields), were included; see Section 3.4. The πh1

11/2 νh−1
11/2 configuration is energetically

most favored in the mean field for the single h11/2 proton particle occupying the lowest
substate of the orbital, and the neutron hole occupying the highest substate. Only such
a case was considered, and the HF solutions were sought much like those in 142Gd, see
Section 5.2, with the parity imposed. It was inferred from comparison of the symmetry-
unrestricted and DT

2h-imposing calculations that the DT
2h symmetry was not spontaneously

broken in all solutions where no time-odd fields were included. Table 6.1 gives the parity
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Table 6.1: Parity-signature and parity single-particle configurations (see Section 3.6) for
protons (π) and neutrons (ν) used to obtain the solutions in the N = 75 isotones at zero
cranking frequency.

Parity-Signature Parity
Ref. Exc. Ref. Exc.

130Cs SLy4 π (14,14,14,13) (28,27)
SkM* ν (19,19,19,18) (38,37)

132La SLy4 π (15,15,14,13) (30,27)
SkM* ν (19,19,19,18) (38,37)

134Pr SLy4 π (16,16,14,13) (32,27)
oblate ν (19,19,19,18) (38,37)
134Pr SkM* π (16,16,14,13) (32,27)
triaxial ν (19,19,19,18) (19– +→ 20– +) (38,37) (37–→ 39–)
136Pm SLy4 π (17,17,14,13) (34,27)
oblate ν (19,19,19,18) (38,37)
136Pm SkM* π (17,17,14,13) (34,27)
triaxial ν (19,19,19,18) (19– +→ 20– +) (38,37) (37–→ 39–)

and parity-signature configurations (see Section 3.6) that were found for the studied states.

In 130Cs and 132La, deformations of β = 0.24− 0.26 and γ ≈ 45◦ − 49◦ were obtained,
depending on the force and time-odd fields. In the N = 75 isotones, 25 neutrons are left
above the N = 50 spherical shell. Within the considered configuration, 11 of them are put
on the h11/2 orbital, and the remaining 14 occupy the positive-parity single-particle (s.p.)
states above N = 50. Presumably, they entirely fill the g7/2 and d5/2 orbitals, and thus
exert no shape-driving force, although the positive-parity orbitals are obviously mixed by
deformation.

In the Z = 55 nucleus 130Cs, one of the 5 protons outside the Z = 50 shell occupies
the h11/2 orbital, and the other 4 the g7/2 orbital. Addition of two protons (132La) also
results in their location on that orbital. Although there obviously exist some mixing
between the g7/2 and d5/2 proton orbitals, they seem to be quite well separated and can
be easily recognized among the s.p. Routhians, see Figs. D.5 and D.6, D.7, thanks to
their alignment properties on the short and long axes. The g7/2 orbital is composed of the
levels 13+±, 14+±, 15+±, and 16+± (see Section 3.6), and d5/2 comprises levels 17+±,
18+±, and 19+±.

In both 134Pr and 136Pm, two minima with the same πh1
11/2 νh−1

11/2 configuration were
found, which differ by the occupation of positive-parity states. The energetically lower
minimum has similar positive-parity s.p. structure as in 130Cs and 132La. Namely, the two
protons added to form 134Pr take the last free substates of g7/2, while the two protons
added to form 136Pm occupy d5/2. This can be traced in Figs. D.8 and D.10. However,
such solutions correspond to almost oblate shapes of γ = 53◦ − 58◦. The other minima
have γ = 19◦ − 22◦, which is triaxial, but closer to the prolate shapes1. It seems that the

1In the following, those two minima in 134Pr and 136Pm are referred to as oblate and triaxial.



6.3. PAC CALCULATIONS 63

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4

Proton particle

short

medium
long

0 0.1 0.2 0.3 0.4 0.5

Neutron hole

A
li

g
n
m

en
t

[h̄
]

Rotational frequency [MeV/h̄]

Figure 6.2: Single-particle alignments of the valence h11/2 proton particle and neutron
hole in 132La, obtained from one-dimensional cranking about the short, medium and long
axis. The Figure shows the Hartree-Fock results for the SLy4 force and the G time-odd
fields included.

occupied positive-parity neutron g7/2 and d5/2 orbitals are now strongly mixed with the
s1/2 and d3/2 states from the same magic shell, which may also be the case for protons. For
such deformations, some substates of the negative-parity f7/2 or h9/2 orbitals from above
N = 82 come so low that they slip under the highest h11/2 substate, where the valence
neutron hole is put2. The highest h11/2 state can be distinguished thanks to its alignments
on the short and long axes, which are exactly opposite to those of the down-coming lowest
substates of f7/2 or h9/2. In Figs. D.9 and D.11, the highest h11/2 substate has numbers
20–±. Exact deformations in the obtained minima are displayed in Table 6.2.

6.3 PAC calculations

Before going to the full HF TAC calculations in the N = 75 isotones, it is instructive
to have a closer look at the PAC results, already discussed in Section 4.2. They contain
an important information on both the valence nucleons and on the collective core. The
results in this Section lead to the formulation of the classical model, that will serve as a
guideline for a consecutive HF study of the chiral rotation.

Below, the study of the valence nucleons is carried out for the PAC calculations in
132La, performed with the SLy4 force and the G time-odd fields. The conclusions derived
in this sample case are supported for other nuclei and forces by the full TAC results;
see Sections 6.6 and 6.8. Figure 6.2 shows the s.p. alignments of the valence particle
and hole, obtained from one-dimensional cranking about the three principal axes. The
plot confirms that, at ω = 0, the particle and hole do indeed orient their spins, jp and
jh, on the short and long axis, respectively. The response of jp and jh to rotation is
gradual and rather weak, meaning that the s.p. wave functions are strongly constrained

2There is only one such intruder with the SkM* force, but two with SLy4. This makes the diabatic
cranking calculations with the SLy4 force difficult due to multiple level crossings. In the following, only
the SkM* results are shown for the triaxial minima, and only the SLy4 results for the oblate ones.
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by deformation (deformation-alignment). These results can be summarized as

jp ' ssis + δJ pω , jh ' slil + δJ hω , (6.1)

where is and il denote the unit vectors along the short and long axis, respectively. There-
fore, to a reasonable approximation, the odd particle and hole can be treated like gy-
roscopes of spins ss and sl, rigidly fixed along the short and long axes, while the small
coefficients δJ p and δJ h can be incorporated into the total collective inertia tensor, J .

The same PAC calculations provide the total alignments, Js, Jm, Jl, that are plotted
in Fig. 6.3 for all the considered nuclei and forces. The upbend in the Js curve for 130Cs
is caused by the change of slope of the last occupied positive-parity proton s.p. state due
to its interaction with the first empty one. These are the levels 14++ and 15++ in the
top-left panel of Fig. D.5, respectively. In 132La, the 14++ and 15++ states are both
occupied, and no upbend occurs. Similarly, the upbend in Jl for the triaxial minimum
in 136Pm is because of the interaction between the neutron hole state 18++ and the
particle state 20++, see the bottom-right panel in Fig. D.11. The upbend in Js for the
nearly oblate solution in 136Pm originates from the smooth crossing of the 17++ and
18++ proton states, as shown in the top-left part of Fig. D.10. This crossing has no
effect in 134Pr, because there are two protons less there, and the concerned states are
both empty. In the nearly oblate minima in 134Pr and 136Pm, the medium axis is not well
distinguished from the long one, and an attempt to crank around it immediately leads to
solutions associated with the long axis.

One can see that all the observed bends in the total alignment plots are due to smooth
level crossings near the Fermi surface. Otherwise, the Ji(ωi) dependence is, to a good
approximation, linear, like for the rigid rotation. The corresponding slopes give the
collective total moments of inertia, Js, Jm, Jl, with respect to the short, medium, and
long axis, respectively. They already contain the small contributions, δJ p and δJ h, from
the valence particle and hole3. At zero frequency, cranking around the medium axis gives
a vanishing angular momentum, while those around the other two axes give non-zero
values, equal to the initial alignments, ss and sl, of the odd particle and hole.

The microscopic PAC results presented so far suggest that the considered system can
be modeled by two gyroscopes of spins ss and sl rigidly fixed along the short and long axes
of a triaxial rigid rotor characterized by the inertia tensor, J , whose diagonal components
are equal to Js, Jm, Jl. It is instructive to solve the associated problem of motion in the
classical framework, which is done in the next Section. It was mentioned in Section 4.1
that for no time-odd fields included in the present HF calculations, the mean potentials for
the non-rotating states have the DT

2h symmetry, which implies that the inertia tensor must
be diagonal in the principal-axis frame of the mass distribution. With the time-odd fields
included, perturbative TAC tests were performed, in which to the self-consistent non-
rotating solution cranking frequency was applied in different directions in order to check
the response of the mean angular momentum vector. It was found that the off-diagonal
components of J are negligible. Therefore, the inertia tensor is taken diagonal.

3Since the coefficients Ji, i = s, m, l, are slopes of the Ji(ωi) dependence, they should be thought
of more as the second, or dynamical moments of inertia. In classical mechanics, they would have the
meaning of components of the inertia tensor.



6.3. PAC CALCULATIONS 65

0

5

10

15

20
130Cs

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0 0.2 0.4

132La

0 0.2 0.4

134Pr

oblate

oblate

oblate

triaxial

triaxial

0 0.2 0.4

triaxial

S
L

y
4

N

136Pm

oblate

S
L

y
4

G

oblate

S
L

y
4

T

oblate

S
k
M

*
N

triaxial

S
k
M

*
G

triaxial

0 0.2 0.4 0.6

S
k
M

*
T

triaxial

T
o
ta

l
a
li

g
n
m

en
t

[h̄
]

Rotational frequency [MeV/h̄]

short medium long

Figure 6.3: Total alignments obtained from one-dimensional cranking about the short,
medium and long axis in 130Cs, 132La, 134Pr, and 136Pm. Hartree-Fock results with the
SLy4 and SkM* forces are shown for the N , G, T time-odd fields included.



66 CHAPTER 6. HARTREE-FOCK CHIRAL RESULTS

Jl
Js

Jm

sl
ss

Figure 6.4: The classical model of chiral rotation. Two gyroscopes of spins ss and sl

rigidly fixed along the short and long axes of a triaxial rigid body characterized by three
moments of inertia, Js, Jm, Jl, associated with the short (s), medium (m) and long (l)
axis.

6.4 Classical model and the critical frequency

It was argued in the previous Section that a simple model of two gyroscopes coupled to a
triaxial rigid body is appropriate for the description of rotation in the considered nuclei.
Below, that model is solved in the classical framework. It possesses several analogies to
the HF TAC method in its foundations. Yet first of all, it leads to a crucial conclusion
that chiral rotation can only exist above some critical value of the rotational frequency
or spin. A simple analytical formula allows for estimating the critical frequency on the
basis of the standard PAC results.

The model system is sketched in Fig. 6.4. A triaxial rigid body models the collective
core. Its inertia tensor, J , is diagonal with respect to the short, medium and long axes,
and the corresponding components, Js, Jm, Jl, also include the small contributions from
the valence particle and hole; see Eq. (6.1). The particle and hole are represented by two
ideal gyroscopes of spins ss and sl, rigidly fixed along the short and long axis of the core,
respectively.

The notion of the ideal gyroscope requires explanation. Consider an axially symmetric
rigid body with moments of inertia, J‖ and J⊥, with respect to the symmetry axis and
an axis perpendicular to it, respectively. If such a body spins at angular frequency Ω
around the symmetry axis, its kinetic energy is T0 = J‖Ω

2/2. Simultaneously, if the
body rotates with arbitrarily oriented frequency, ω, the kinetic energy becomes Tω =
(J⊥ω2 sin2 ϑ + J‖(ω cos ϑ + Ω)2)/2, where ϑ is the angle between ω and the symmetry
axis. The ideal gyroscope is the limiting case when J‖ and J⊥ go to zero and Ω increases
so that ΩJ‖ remain constant and equal to a given value of s. Obviously the total spin is
then equal to s and points along the symmetry axis, while Tω becomes infinite. However,
the difference Tω − T0 = (J⊥ sin2 ϑ + J‖ cos2 ϑ)Ω2/2 + J‖Ωω cos ϑ has a finite limit,

T = ωs cos ϑ = ωs . (6.2)

This difference can be considered as the kinetic energy of the ideal gyroscope measured
with respect to the case with no rotation, that is with ω = 0.
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Coming back to the discussed classical model, the total angular momentum, J , of the
system reads

J = Jω + s , (6.3)

where s is the vector sum of spins of the the two gyroscopes. In the absence of potential
interactions, the Lagrangian of the system is equal to the total kinetic energy, and is given
by the formula

L = Ekin =
1

2
ωĴω + ωs . (6.4)

Taking the laboratory components of ω as generalized velocities, it is easy to check that
the generalized momenta are equal to the laboratory components of J . This fact allows
us to write the Legendre transformation [Gol53a] and to obtain the Hamiltonian of the
system,

H = ωJ − L =
1

2
ωJω =

R2
s

2Js
+

R2
m

2Jm
+

R2
l

2Jl
, (6.5)

where R = J − s is the angular momentum of the rigid body alone. Note that H is
analogous to the rotational part (2.8) of the PRM Hamiltonian. Since the Lagrangian
(6.4) does not depend explicite on time, Hamiltonian (6.5) is a constant of motion, and
is identified with the total energy, E, of the system. Consider now a particular type of
the Routh function [Gol53a] (Routhian), H ′, namely such that no variables undergo the
Legendre transformation. In such a case, H ′ = −L, and by rewriting the Routhian in
terms of the Hamiltonian one obtains

H ′ = H − ωJ . (6.6)

This quantity is similar to Routhian (3.10) appearing in the quantum cranking model.
Equations of motion for the model can be derived in the following way. The time

derivatives, ∂t and ∂ω
t , of any vector J , taken in the laboratory frame and in a frame

rotating at angular frequency ω, respectively, are related by the formula ∂tJ = ∂ω
t J+ω×J

[Gol53a]. But ∂tJ = 0, if J represents the angular momentum, which is conserved in the
laboratory frame. Thus, one obtains the Euler equations [Gol53a] for the time evolution
of the angular-momentum vector in the body-fixed frame,

∂ω
t J = −ω × J . (6.7)

Thouless and Valatin [Tho62a] showed that analogous equations govern the evolution of
the mean angular momentum in the Time-Dependent HF theory.

Apart from the equations of motion, a convenient way to analyze rotation of the
considered system is through phase portraits, which are intersections of the angular-
momentum sphere with the energy ellipsoid. Dimitrov et al. carried out such an analysis
[Dim02a] for a slightly simplified version of the model. Separatrices defining the planar
and chiral rotational regimes as well as the chiral vibrational regime (see Section 2.2)
are clearly visible in this approach. However, the mean-field cranking approximation can
only account for the so-called uniform rotations, in which the mean angular-momentum
vector is constant in the intrinsic frame of the nucleus, ∂ω

t J = 0. Because of that, also the
present study within the classical model is limited to such uniform motions. The Euler
equations (6.7) now take the form ω× J = 0, and require that ω and J be parallel. The
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same condition holds for the HF solutions and is known as the Kerman-Onishi theorem;
see Section 3.3 and [Ker81a]. These equations can be easily solved for the considered
model. However, to show further analogies with the HF method, here the variational
principle is employed to find uniform solutions.

According to the Hamilton’s principle, motion of a mechanical system can be found
by making the action integral,

∫

L dt, stationary. Here, real uniform rotations are sought,
and all of them obviously belong to a wider class of trial motions with ω constant in the
intrinsic frame. Within this class, Lagrangian (6.4) does not depend on time. Therefore,
extremizing the action for the given ω reduces to finding extrema of the Lagrangian as a
function of the intrinsic-frame components of ω. Since H ′ = −L, the Routhian (6.6) can
be equally used for this purpose. This serves us as a bridge between the classical model
and quantum cranking theory, where an analogous Routhian is minimized in the space of
the trial wavefunctions.

Extrema of H ′ with respect to the intrinsic-frame components of ω at a given length
of ω can be found by using a Lagrange multiplier, µ, for ω2. Setting to zero the derivatives
of the quantity

H ′ +
1

2
µω2 =

1

2

[

(µ− Js)ω
2
s + (µ− Jm)ω2

m + (µ− Jl)ω
2
l

]

− (ωsss + ωlsl) (6.8)

with respect to ωs, ωm, ωl, one obtains

ωs = ss/(µ− Js) , (6.9)

ωm(µ− Jm) = 0 , (6.10)

ωl = sl/(µ− Jl) . (6.11)

Equation (6.10) gives either ωm = 0 or µ = Jm, leading to two distinct classes of solutions.
If ωm = 0 then both ω and J lie in the s-l plane. This gives planar solutions, for

which the chiral symmetry is not broken. All values of µ are allowed, and the Lagrange
multiplier must be determined from the length of ω calculated in the obvious way from
(6.9) and (6.11). Figure 6.5a shows ω versus µ for sample model parameters, extracted
from the HF PAC solutions with the SLy4 force with no time-odd fields, and listed in
Table 6.2. The solutions marked as A and D exist for all values of ω, while above some
threshold frequency, ωthr, two more solutions appear, B and C. This threshold frequency
can be determined by finding the minimum of ω in function of µ, and reads

ωthr =

(

s
2/3
s + s

2/3
l

)3/2

|Jl − Js|
. (6.12)

The value of ωthr coming from the present HF calculations is rather high, higher than
1 MeV/h̄. Since bands B and C are situated far above the yrast line (see Fig. 6.6) they
will not be subject of further analysis.

For µ=Jm, all values of ωm are allowed, while components in the s-l plane are fixed
at ωs = ss/(Jm − Js) and ωl = sl/(Jm − Jl). Consequently, the angular momentum has
non-zero components along all three axes, and the chiral symmetry is broken. For each
value of ω, there are two cases differing by the sign of ωm, and thus giving the chiral
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Figure 6.5: a) Rotational frequency ω(µ) for the four planar bands (marked as A, B,
C, D) and for the chiral doublet (the vertical line) obtained in the classical model. b)
Intrinsic-frame trajectory of the rotational frequency vector along those bands. The chiral
solution corresponds to a straight line perpendicular to the figure plane, and intersecting
it at the marked point. That perpendicular direction represents ωm.

doublet. The fact that ωs and ωl are constant leads to the principal conclusion that chiral
solutions cannot exist for ω smaller than the critical frequency

ωcrit =

[

(

ss

Jm − Js

)2

+

(

sl

Jm − Jl

)2
]1/2

. (6.13)

At that frequency, and with ωm=0, the chiral solution coincides with the planar band A.
In the ω space, the four planar solutions form a hyperbola in the s-l plane, while the

chiral doublet corresponds to a straight line perpendicular to that plane. These curves
are shown in Fig. 6.5b. Figure 6.6a gives the angular momentum in function of rotational
frequency for all the presented bands. With increasing ω, the second moment of inertia,
dJ/dω, asymptotically approaches Jl for bands A and B, and Js for bands C and D. For
the chiral band, J is exactly proportional to ω with the coefficient Jm. Thus, the critical
spin, Jcrit, corresponding to the critical frequency (6.13) reads

Jcrit = Jmωcrit . (6.14)

Figure 6.6b summarizes the energies in function of spin. At low angular momenta, the
yrast line coincides with the planar band D. Then it continues along the planar solution
A. Since the moment of inertia Jm is the largest, beyond the critical frequency the chiral
solution becomes yrast, thereby yielding good prospects for experimental observation.

Since the works of Volterra of 1898 [Vol98a], similar classical particle-rotor models
have been considered in several contexts different than the chiral rotation. They do
not always assume a rigid coupling of gyroscopes to the core, but introduce a potential
interaction between them. Bohr and Mottelson [Boh80a], and later also Kamchatnov
[Kam90a] examined one gyroscope interacting with an axially-symmetric core, to study
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Figure 6.6: a) Angular momenta J(ω) and b) Energies E(I) for the four planar bands
and the chiral doublet obtained in the classical model.

high-K bands. As far as the magnetic rotation is concerned, Macchiavelli et al. [Mac99a]
considered two gyroscopes coupled to a spherical core to investigate the competition
between the collective rotation and shears mechanism; see Section 2.1. That model was
generalized by Pasternak [Pas04a] to the case of axially deformed core.

6.5 Classical estimates of the critical frequency

A useful feature of the classical model presented in the previous Section is that all its
parameters can be easily extracted from the standard PAC calculations (see Section 6.3),
that can be performed by many existing mean-field codes. Then, Eq. (6.13) provides
an estimate of the critical frequency, and gives insight into where its value comes from.
Below, the critical frequency and spin are estimated on the basis of the HF PAC results
of Section 6.3, and also from the PAC calculations with pairing, performed within the
Total Routhian Surface (TRS) method.

The model parameters, Js, Jm, Jl, and ss, sl, were obtained from a least-square fit
of straight lines, Ji = Jiωi + si, i = s, m, l, to the calculated points shown in Fig. 6.3.
Parameter sm was set to zero. Whenever there was a bend in the calculated Ji(ωi)
dependence (see Section 6.3), the line was fitted in the rotational frequency range below
the bend. The fitted moments of inertia and initial alignments, together with the resulting
values of ωclas

crit and Iclas
crit (4), are listed in Table 6.2.

As expected from the irrotational-flow model [Boh75a], the moment of inertia with
respect to the medium axis is the largest. Note, however, that the Js : Jm : Jl ratio
is far from that predicted by the irrotational-flow formula (2.9) used for the calculated
triaxiality γ. The inclusion of the time-odd fields G (see Section 3.4) increases all the

4In the present work, the symbol J denotes the average angular-momentum vector calculated from a
mean-field solution or the classical angular-momentum vector. The symbol I is used for the spin quantum
number, as it is measured in experiment. If I is approximated from mean-field or classical results, the
relation I(I + 1) = J2 is used.
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Table 6.2: The β and γ deformations, parameters of the classical model, Js,m,l [h̄2/MeV],
ss,l [h̄], classical estimates for the critical frequency and spin, ωclas

crit [MeV/h̄] and Iclas
crit [h̄],

and full HF TAC results for those quantities, ωHF
crit [MeV/h̄] and IHF

crit [h̄], for the N = 75
isotopes. HF results with the SLy4 and SkM* forces are listed for the N , G, T time-odd
fields included. For 132La, results from TRS calculations are given, too.

130Cs β γ Js Jm Jl ss sl ωclas
crit Iclas

crit ωHF
crit IHF

crit

SLy4 N 0.24 49 4.81 29.2 17.0 5.41 4.86 0.46 12.8
G 0.24 49 5.50 37.1 21.3 5.45 5.16 0.37 13.2
T 0.24 49 4.16 29.4 19.9 5.49 5.20 0.59 16.8

SkM* N 0.23 47 5.86 31.3 17.9 5.43 5.01 0.43 13.0
G 0.23 47 6.55 36.7 21.1 5.47 4.97 0.37 13.0
T 0.23 47 5.69 33.4 20.0 5.49 5.14 0.43 13.9

132La β γ Js Jm Jl ss sl ωclas
crit Iclas

crit ωHF
crit IHF

crit

SLy4 N 0.26 46 7.18 28.7 19.1 5.44 4.90 0.57 15.9 0.68 18.8
G 0.26 46 8.45 36.0 23.7 5.60 5.21 0.47 16.4 0.60 20.3
T 0.26 46 7.12 31.7 22.2 5.64 5.26 0.60 18.5

SkM* N 0.25 45 8.19 30.8 20.3 5.47 5.03 0.54 16.0 0.62 17.8
G 0.25 45 8.81 35.9 23.5 5.60 5.06 0.46 15.9 0.54 17.8
T 0.25 45 8.37 34.0 22.4 5.63 5.21 0.50 16.5 0.58 18.5

TRS 0.20 25 15.7 65.6 9.33 6.33 4.23 0.15 9.2
134Pr β γ Js Jm Jl ss sl ωclas

crit Iclas
crit ωHF

crit IHF
crit

SLy4 N 0.26 58 6.11 25.4 5.00 4.36
oblate G 0.26 58 7.21 31.3 4.92 4.84

T 0.26 56 3.68 29.8 5.26 4.60
SkM* N 0.23 22 18.5 28.1 20.7 5.38 5.28 0.91 25.0
triaxial G 0.23 22 21.4 32.6 24.3 5.46 5.44 0.82 26.1

T 0.23 22 20.7 30.8 24.8 5.52 5.57 1.08 32.7
136Pm β γ Js Jm Jl ss sl ωclas

crit Iclas
crit ωHF

crit IHF
crit

SLy4 N 0.25 53 24.7 4.62
oblate G 0.25 53 30.3 5.38

T 0.25 52 29.0 5.05
SkM* N 0.22 19 15.0 27.5 12.4 5.32 5.38 0.56 14.8
triaxial G 0.22 19 17.9 33.2 13.0 5.50 5.42 0.45 14.4

T 0.22 19 17.4 29.8 13.4 5.51 5.53 0.56 16.1
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moments of inertia, but particularly Jm, with respect to the case, N , with no time-odd
fields. This causes a decrease in ωclas

crit , but the corresponding Iclas
crit does not change much,

because Jm is larger. Switching on the fields T results in values of Jm between those
obtained for the cases N and G. The critical frequency always becomes higher than for
the G fields, and the resulting critical spin is always the highest among all the examined
sets of time-odd fields. These variations of I clas

crit are of the order of a few spin units.
For the chiral bands in 132La, the full HF TAC solutions were found (see Section 6.8),

and the obtained values of the critical frequency and spin, ωHF
crit and IHF

crit , are also listed
in Table 6.2. They are slightly higher than the classical estimates, ωclas

crit and Iclas
crit , but the

agreement can be considered good, given the simplicity of the classical model. When the
time-odd fields are included, values of ωHF

crit and IHF
crit vary similarly to those of ωclas

crit and
Iclas
crit .

To examine the possible role of pairing correlations, PAC calculations within the TRS
approach were performed for 132La; see Appendix C for details. Deformation of β ≈ 0.20
and γ ≈ 25◦ was obtained from energy minimization. In the cranking calculations, TRS
effectively interchanges values of Js and Jl, and enlarges Jm roughly twice with respect to
the HF results. On the basis of the irrotational-flow model, these changes in the moments
of inertia can be partly understood as due to the change in triaxiality; the value of γ
obtained from TRS is closer to 30◦ and on the other side of 30◦ than the HF results.
As governed by Eq. (6.13), the increase in Jm significantly lowers the values of ωclas

crit

and Iclas
crit , see Table 6.2. However, inclusion of pairing in the full HF TAC calculations

(Hartree-Fock-Bogolyubov method) is necessary to verify this trend.
Values of the critical spin obtained from the HF calculations are rather high as com-

pared to the spin range in which the supposed chiral bands are observed in nuclei under
study. A detailed comparison with experiment is given in Section 6.9.

6.6 Planar HF bands

The next step in the HF analysis of the πh1
11/2 νh−1

11/2 configuration in the N = 75 isotones

was to obtain planar solutions, much similar to the shears solutions in 142Gd; see Sec-
tion 5.2. They serve us as starting points in the search for the chiral bands, as described
in the next two Sections.

In the N = 75 isotones, planar solutions were found by applying a tilted cranking
vector to converged non-rotating states. Since in the triaxial minima in 134Pr and 136Pm,
the neutron h11/2 states interleave with other negative-parity levels (see Section 6.2), it
was very difficult to follow the proper configuration diabatically, and the planar bands
in those minima were obtained only for very low angular frequencies. Figures D.12–D.14
give sample s.p. Routhians for the planar bands in 132La.

Figure 6.7 shows the angular momenta of the valence h11/2 proton particle and neutron
hole for the planar bands in the studied N = 75 isotones. Results with no time-odd
fields are shown, as an example, because they were found in the largest frequency range,
but inclusion of the G or T fields very little alters the alignments, like it was already
demonstrated for the shears band in 142Gd; see Fig. 5.3. One can see that, indeed, the
individual spins of the valence nucleons are rather tightly aligned along the short and long
axis, as it was expected from the PAC calculations in Section 6.3. Interestingly, there is
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hole along the HF planar bands found in the N = 75 isotones. Results with no time-odd
fields are shown; the triaxial solutions in 134Pr and 136Pm were calculated with the SkM*
force, while the remaining results displayed were obtained with SLy4. The angle between
the two spin vectors is given in each panel. Rotational frequency is given in MeV/h̄. The
scale of the plots and the values of ω are identical to those in Fig. 5.3, for the shears band
in 142Gd.

almost no difference between the triaxial and oblate minima in 134Pr and 136Pm as far as
this point is concerned. Neither do the four N = 75 isotones differ much in this regard.
Note, however, that the alignments in the N = 75 isotones are visibly stiffer than for the
shears band in 142Gd (see, e.g., the angles between the blades given in Figs. 6.7 and 5.3).
This is because the deformation in the considered N = 75 is larger than that in 142Gd.

Contrary to the shears band in 142Gd (see Chapter 5), the deformation is almost
constant along the planar bands in the N = 75 isotones. The absolute deformation β
drops by not more than 0.02 in the frequency range, where the planar solutions were
found, and the triaxiality varies by about 3◦, at most. This is presumably connected to
the fact that there are only two valence nucleons, compared to four in 142Gd, and they
are unable to polarize the core so much.

The HF planar solutions discussed in this Section start at zero rotational frequency
(convergence problems with the G and T fields withstanding), and the individual angular
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momenta of the valence particle and hole have positive projections on the ω vector. Thus,
these solutions have all the characteristics of the planar band A of the classical model;
see Section 6.4. Indeed, the trajectory of ω along the HF bands almost exactly follows
the classical hyperbola, as illustrated in Fig. 6.8. Also the calculated energy as function
of spin agree very well with the classical prediction, see Figs. 6.13–6.15.

6.7 Search for the chiral HF solutions

Planar HF solutions were easily obtained by applying a small cranking frequency to the
non-rotating state (at least with no time-odd fields). For chiral bands, analogous task was
more difficult, because these bands start at a finite frequency, which in the present case is
not lower than ≈ 0.5 MeV/h̄. Several level crossings may occur between ω = 0 and such
a high frequency, and it is a priori difficult to identify the required s.p. configuration. To
follow a given configuration diabatically, it is desirable to find a continuous path linking
the chiral solution to the non-rotating state. A hint on how to proceed comes from the
classical model prediction that the chiral band sprouts from the planar solution (at the
point corresponding to the critical frequency). One can thus restart iterations from the
converged planar band, rather than from the non-rotating state. Such a way of proceeding
was adopted in this work, to find the solutions described in the next Section. However, the
author also found chiral solutions by performing a perturbative search along the planar
band. That method gives some understanding of why chiral solutions do not appear in
some cases, and therefore merits a note in this Section.

Specifically, to each converged point of the planar band, a small additional component,
ωm, of the angular frequency along the medium axis was added. The resulting Routhian
was diagonalized only once, and the same parity s.p. configuration was required as for the
planar state. Then, it was checked whether in the resulting (non-selfconsistent) state the
angular momentum and rotational frequency vectors were parallel or not. The Kerman-
Onishi theorem [Ker81a] requires that their parallelism is a necessary condition for self-
consistency; see Section 3.3. Presuming that in nuclei that are stiff against deformation
changes, the direction of J is the only degree of freedom, the Kerman-Onishi condition
is also sufficient. In other words, if J is parallel to ω in the considered state after one
diagonalization, then it is very probable that further iterations may lead to a converged
chiral solution. Indeed, in practice it was always the case, and never a chiral solution was
obtained, in spite of several attempts, if that simple test gave negative result.

The condition for J and ω being parallel can be written in the form

Js

ωs

=
Jm

ωm

=
Jl

ωl

. (6.15)

Note that the Js/ωs and Jl/ωl ratios must be very close to each other in the non-
selfconsistent state, because the Kerman-Onishi condition is fulfilled for the self-consistent
planar state. Therefore, the test consists in checking for each point of the planar band if
Jm/ωm is equal to Js/ωs ≈ Jl/ωl. In fact, this is only reliable if the time-odd fields are
switched off, because in their presence, the Jm/ωm ratio calculated perturbatively is sig-
nificantly smaller than the self-consistent result would be5. The test was made with ωm =

5This can be seen, e.g., from the comparison of non-selfconsistent and self-consistent PAC results. The
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reason is that the relevant components of the time-odd fields only become active after self-consistency is



76 CHAPTER 6. HARTREE-FOCK CHIRAL RESULTS

20

30

40

50
130Cs

20

30

40

0 0.2 0.4 0.6 0.8

132La

0 0.2 0.4 0.6 0.8

134Pr

oblate

0 0.2 0.4 0.6 0.8

triaxial

S
L

y
4

136Pm

oblate

0 0.2 0.4 0.6 0.8 1

S
k
M

*

triaxial

J
/
ω

ra
ti

o
[h̄

2
/
M

eV
]

Rotational frequency [MeV/h̄]

Classical Js/ωs = Jl/ωl

Classical Jm/ωm

HF Js/ωs = Jl/ωl

HF Jm/ωm

Figure 6.9: The HF and classical-model values of the Jm/ωm and Js/ωs ≈ Jl/ωl ratios for
the perturbative search for the HF chiral solutions along the planar bands in the N = 75
isotones (see text). HF results for the SLy4 and SkM* forces with no time-odd fields are
shown.

0.05 MeV/h̄, and it has been verified that changing this value up to ωm ≈ 0.10 MeV/h̄
does not influence the results. The discussed ratios, calculated for all the HF planar bands
found in the N = 75 isotones, are plotted in Fig. 6.9, together with the classical-model
predictions.

It can be a priori expected that chiral solutions do not appear in the oblate minima
in 134Pr and 136Pm, because of insufficient triaxiality. Indeed, the calculated values of
the Jm/ωm and Js/ωs ≈ Jl/ωl ratios exhibit a complicated behavior, and do not become
equal one to another at any point. In 130Cs, as well as in the triaxial minimum in 136Pm,
the two ratios clearly approach each other. It seems that the only reason why they do not
attain equality is that the planar bands were not found up to sufficiently high frequencies,
because of level crossings. Note, however, that the moment of inertia associated with
the medium axis, Jm/ωm, significantly drops with angular frequency, which takes Jm/ωm

away from Js/ωs ≈ Jl/ωl, and defers their equalization to higher frequencies. This does
not occur in 132La, where the ratios do become equal, and this happens near the point
expected from the classical model. As described in the next Section, self-consistent chiral
solutions were indeed found in this case.

achieved for a non-zero cranking frequency.
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6.8 Self-consistent chiral Skyrme-HF solutions

Apart from the perturbative test described in the previous Section, self-consistent chiral
solutions were sought in the following way. To the mean field of each converged point
of the planar band, a cranking term was added with the rotational frequency of the
same magnitude as for the planar solution, but with equal components on all the three
intrinsic axes. Of course, other choices for ω are possible; the important point is to
break the chiral symmetry at the starting point by applying a non-zero ωm, to render the
calculations symmetry-unrestricted; see Section 3.3. From the Routhian constructed in
such a way, regular HF iterations were restarted with the same parity s.p. configuration
as for the planar state.

In 130Cs, 134Pr, and 136Pm, as well as for low rotational frequencies in 132La, the
iterations converged to planar solutions that differed from the planar starting points
uniquely by orientation in space (due to different direction of the applied ω). This confirms
in the frame of the Skyrme-HF method that, for the concerned configuration, the chiral
symmetry is not dynamically broken at low frequencies, as predicted by the classical
model. In 132La, for frequencies high enough, converged solutions were obtained with the
angular momentum having non-zero components on all the three intrinsic axes, and thus
violating the chiral symmetry, R̂T . These are the first fully self-consistent results that
confirm the spontaneous breaking of this symmetry in rotating atomic nuclei.

The found fragments of chiral bands were then used as starting points to obtain chiral
solutions for lower and higher angular frequencies. Calculations were performed with a
frequency step of 0.02 MeV/h̄. At a certain value of decreasing ω, the planar orientation
of the angular momentum was regained in the intrinsic frame, and the solution merged
into the previously obtained planar band6. This confirms the classical prediction that
the planar and chiral bands have a common point. In a natural way, that junction value
of ω can be regarded as the Skyrme-HF result for the critical frequency, and is denoted
in the following as ωHF

crit . From Figs. D.12 to D.14, it can be seen that the chiral and
planar s.p. Routhians do indeed coincide at ω = ωHF

crit . Values of ωHF
crit are collected in

Table 6.2 and are discussed in the next Section. For highest frequencies, chiral solutions
were obtained up to a certain value of ω, and all attempts to go higher caused iterations to
fall into another, although also chiral, minimum. This is probably due to multiple smooth
crossings of occupied and empty levels, particularly in neutrons; see the s.p. Routhians in
Figs. D.12 to D.14. That other minimum is not build on the πh1

11/2 νh−1
11/2 configuration,

and will not be subject of further studies here. Although the chiral solutions have been
found in a rather narrow ω interval, of about 0.1 MeV/h̄, the accompanying increase in
ωm is significant, from zero to about 0.4 MeV/h̄; see Fig. 6.10.

Similarly to the planar solutions described in the previous Section, there is almost
no deformation change along the HF chiral bands in 132La. This yields good prospects
for the validity of the classical descriptions of those bands; see Section 6.4. Figure 6.10
gives the intrinsic-frame trajectories of the angular frequency vector along the HF chiral
solutions. In each case, the HF trajectory is almost a straight line, parallel to the medium

6With the exception of the SLy4 case with the T time-odd fields. Although a chiral solution has been
found for this force, it could not be connected to the planar band, and it is not sure whether it is built
on the πh1

11/2
νh−1

11/2
configuration. In the following, results for this band are not discussed.
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axis, as predicted by the classical model. The only difference is that ωHF
crit is a bit higher

than ωclas
crit , and the line is shifted along the planar band to higher frequencies.

In the vicinity of ωHF
crit , the h11/2 Routhian associated with the valence neutron hole

enters a region of high density of negative-parity levels interacting among themselves.
Therefore, it is doubtful whether the considered hole can still be identified with a single
s.p. state. However, the h11/2 proton particle is still well separated. Figure 6.11 gives
its spin alignments on the three intrinsic axes along the chiral band. The plot confirms
the stiff character of those alignments. Like in the case of ω, only the component on the
medium axis changes, the other two remaining nearly constant.

6.9 Comparison with experiment

Unfortunately, mean-field results for the chiral rotation are not directly comparable with
experimental data, as those of the PRM. This is because the pure mean-field approach
does not take into account the interaction between the left- and right-handed solutions,
which are exactly degenerate; see Section 2.2. Thus, splitting between the chiral partners
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cannot be reproduced, nor their exact energies. It is argued in the literature that the
mean-field chiral solution can be viewed as a kind of average of the two partner bands,
and one can thus compare the mean trends. One can also speculate about the value of the
critical frequency. It should correspond to the kink in the I(ω) dependence, as predicted
by the PRM and by the classical model; see Figs. 2.5 and 6.6, respectively. However,
there seems to be no distinct kinks in the experimental bands in the N = 75 isotones; see
Fig. 6.12.

Figures 6.13–6.15 give a comparison of calculated and experimental energies. At low
spins, where the supposed chiral partners have not been observed, the level energies are
reasonably reproduced by the HF planar solutions. It may mean, on the one hand, that
the yrast band is not yet perturbed by interactions with the chiral partner, and, on the
other hand, that the HF moments of inertia are correct. Roughly at the spin where the
chiral partners commence to be visible, the HF planar solutions cease following the yrast
bands, which significantly change their behavior. One may argue, therefore, that this is
due to the interaction between the left- and right-handed minima.

In 132La, the HF results for the critical spin, IHF
crit = 15.9 − 18.5h̄ (see Table 6.2 or

Fig. 6.14) are rather high as compared to the spin range, in which the two candidate chiral
partners are observed. Yet, the classical estimate, I clas

crit = 9.2h̄, evaluated for the TRS
PAC results with pairing (see Section 6.5) is already below that range. It means that the
inclusion of pairing in the calculations may be important for the correct interpretation of
the data. But it also suggests that the actual critical spin is somewhere between the HF
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and TRS results, that is roughly in the middle of the spin range of the chiral partners.
The HF-PAC-based values of Iclas

crit calculated for 130Cs and 136Pm also lie at half-spin-
range of the partner bands; see Figs. 6.13 and 6.15. The closeness of the side bands to the
critical spin may imply that those structures represent the transition from planar to chiral
rotation, as discussed in Section 2.2. Although this transition is abrupt in the cranking
model, and even in the PRM as indicated by the sharp kink in the I(ω) dependence in
Fig. 2.5b, it may be rather smooth and complex in real nuclei. This is an interesting topic
for study including techniques beyond the mean field.
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Chapter 7

Conclusions and outlook

To conclude, a numerical tool has been constructed that allows for Skyrme-Hartree-
Fock (Skyrme-HF) Tilted-Axis Cranking (TAC) calculations with no symmetries imposed.
Thus, it can be used for investigating the spontaneous breaking of various symmetries in
rotating nuclei. As a first application, the phenomena of the magnetic and chiral rotation
were studied. For their cranking description, both two-dimensional (planar) and three-
dimensional (chiral) TAC solutions were obtained, which is a robust test of the method.
The present results provide one of the first fully self-consistent proofs for the possibility of
nuclear rotation about an axis tilted with respect to the principal axes. They constitute
the first fully self-consistent description of the chiral rotation, and were preceded only by
a single Relativistic Mean Field calculation [Mad00a], as far as the magnetic rotation is
concerned.

Before going to the full HF TAC calculations, properties of the h11/2 valence nucleons
were examined within the PAC frame and on the basis of pure symmetry considerations.
It was found that the valence particles and holes align their angular momenta along
the short and long axis of the nucleus, respectively. It was argued that their spins are
bound to those axes rather tightly, and possibly more tightly in triaxial nuclei than in
axially-symmetric ones. By considering a very simple model it was concluded that pairing
correlations may soften those alignments.

For the study of the shears bands, the πh2
11/2 νh−2

11/2 configuration in 142Gd was chosen.
A substantially triaxial solution was obtained. The HF results corroborate that an impor-
tant portion of the angular momentum is generated by the shears mechanism, as expected
from earlier investigations. It was found that the aligning valence nucleons polarize the
core quite strongly, and the deformation decreases with spin. However, the rotating core
also generates angular momentum, and actually wins the competition with the shears
mechanism. This may be due to overestimated deformation or the lack of pairing in the
calculations. It is also possible that triaxiality acts against the shears mechanism by stiff-
ening the alignments of the valence nucleons; such an effect has not been considered so
far. The too big collective moment of inertia causes that agreement with experiment is
not satisfactory.

The chiral solutions were sought in four N = 75 isotones, 130Cs, 132La, 134Pr, 136Pm,
with the πh1

11/2 νh−1
11/2 configuration. Strongly triaxial solutions were found, but nearly

oblate minima proved to be lower in energy for 134Pr and 136Pm. One-dimensional crank-
ing about the three axes premised that the alignments of the valence nucleons are very
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stiff and that the core responds to rotation linearly, like a rigid body. On the basis of
these results, a classical model was constructed, in which the chiral rotor is represented
by two gyroscopes coupled to a triaxial rigid body. The solutions to that model agree
surprisingly well with the full HF TAC results, and elucidate the salient features of the
chiral rotation. The HF chiral solutions were found only in 132La. It was established that
the chiral rotation appears only above a certain critical value of the angular frequency; a
conclusion that had been known before as a purely numerical result. In the present work,
the origin of the critical frequency is explained in an illustrative way within the classical
model, that also gives an analytical estimate for that quantity. The HF chiral solutions
correctly reproduce the mean E(I) behavior of the observed doublet bands in 132La. The
calculated critical frequency is rather high as compared to the spin range in which the
chiral partner bands are observed. PAC calculations with pairing suggested that pairing
correlations may reduce its value. It is also possible that the bands in the N = 75 isotones
represent the transition from planar to chiral rotation.

One purpose of the present study was to investigate the influence of the Skyrme time-
odd fields on the magnetic and chiral results. The inclusion of those fields changes mainly
the moments of inertia, as expected, and causes convergence problems, mainly at low
cranking frequencies. It does not alter, however, the qualitative features of the solutions.

Granted, the pairing correlations do influence the shears-rotor competition in the
magnetic bands and the critical frequency in the chiral rotation. Their inclusion in the
HF TAC calculations in the frame of the Hartree-Fock-Bogolyubov method would be very
desirable. The pure mean-field approach is not capable of estimating the splitting between
the chiral partner bands, because it does not take into account the interaction between
the left- and right-handed solutions. Inclusion of that interaction requires techniques
beyond the mean field, preferably the restoration of broken chiral symmetry. To describe
the smooth transition from planar to chiral rotation, it should be the projection before
variation.



Appendix A

Invariance of the time-even density

This Appendix gives the proof that unitary mixing of states in a Kramers pair does not
alter the time-even part of the density matrix, even if only one particle is put on such a
pair. This lemma was used in Section 4.3.

The density matrix, ρ, of an arbitrary Slater determinant, |Ψ〉, is defined as

ραβ = 〈Ψ|a+
β aα|Ψ〉 . (A.1)

It can always be expressed as a sum of contributions from the single-particle (s.p.) states,
|νi〉, of which |Ψ〉 is constructed,

ραβ =
∑

i

〈0|aνi
a+

β aαa+
νi
|0〉 . (A.2)

The density ρ can be uniquely decomposed into a time-even part, ρ(+), and a time-odd
part, ρ(−),

ρ = ρ(+) + ρ(−) , T̂+ρ(+)T̂ = +ρ(+) , T̂+ρ(−)T̂ = −ρ(−) , (A.3)

in the following way:

ρ(+) =
1

2
(ρ + ρ̄) , ρ(−) =

1

2
(ρ− ρ̄) , (A.4)

where ρ̄ is the time-reversed density, i.e. the density of the state T̂ |Ψ〉,

ρ̄ = T̂+ρT̂ , ρ̄αβ = (〈Ψ|T̂+)a+
β aα(T̂ |Ψ〉) . (A.5)

Since the time-reversal operator, T̂ , is anti-unitary and anti-hermitian when acting on s.p.
states, one can always choose the s.p. basis so that it consist of pairs of states, (|µ〉, |µ̄〉),
mutually reversed in time up to phase factors sµ, sµ̄ (Kramers pairs),

T̂ |µ〉 = sµ|µ̄〉 , T̂ |µ̄〉 = sµ̄|µ〉 , sµ̄ = −sµ . (A.6)

In such a basis, the time-reversed density matrix, ρ̄, is related to the original density, ρ,
by a simple formula,

ρ̄αβ = sαs∗βρ∗
αβ . (A.7)
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See, e.g., [Dob87a] for detailed derivations.
If the s.p. Hamiltonian, ĥ, is even under transformation through the time-reversal,

T̂+ĥT̂ = +ĥ , (A.8)

then its eigenstates can be chosen so that they form a basis like above. The states |µ〉
and |µ̄〉 have equal energies (Kramers degeneracy). Suppose now that of such eigenstates
one constructs a Slater determinant, |Ψ〉, and in at least one Kramers pair only one state
is occupied, say |µ〉. This may happen if the number of particles is odd or if there are
particle-hole excitations. According to (A.2), the contribution to the density matrix, ρ,
from the particle on |µ〉 is

∆ραβ = 〈0|aµa
+
β aαa+

µ |0〉 = δαµδβµ , (A.9)

where there is no summation over µ, and ρ has been expressed in the basis of the same
s.p. states, of which |Ψ〉 is built. By using (A.4) and (A.7) one finds that such a single
particle contributes both to the time-even and to the time-odd density,

∆ρ
(+)
αβ =

1

2
(δαµδβµ + δαµ̄δβµ̄) , ∆ρ

(−)
αβ =

1

2
(δαµδβµ − δαµ̄δβµ̄) . (A.10)

Since the states |µ〉, |µ̄〉 are degenerate, all their unitary combinations are equally good
eigenstates of ĥ and can serve for constructing Slater determinants. The theorem used in
Section 4.3 states that if the particle is put not on |µ〉, but on a state |µ′〉,

|µ′〉 = p|µ〉+ q|µ̄〉 , p∗p + q∗q = 1 , (A.11)

then its contribution to the time-even density does not change. Indeed, its new contribu-
tion, ∆ρ′, to the total density equals

∆ρ′
αβ = 〈0|(aµp

∗ + aµ̄q∗)a+
β aα(pa+

µ + qa+
µ̄ )|0〉 (A.12)

= p∗pδαµδβµ + p∗qδαµ̄δβµ + q∗pδαµδβµ̄ + q∗qδαµ̄δβµ̄ , (A.13)

where the same basis has been used as in (A.9). Again, from (A.4) and (A.7) one calculates
directly that ∆ρ′(+) = ∆ρ(+), and the time-odd term, ∆ρ(−), changes. Note yet, from
(A.10), that if both states are occupied in a Kramers pair, then their contributions to the
time-odd density cancel.



Appendix B

Alignment and decoupling vectors

For a DT
2 -symmetric single-particle (s.p.) Hamiltonian, the alignment and decoupling vec-

tors of eigenstates forming a Kramers pair are expressed in terms of three real parameters.
Thus, the Equations (4.3, 4.4, 4.5) of Section 4.3 are derived.

Consider a Kramers pair, (|µ〉, |µ̄〉), as defined by (A.6). For the state |µ〉 one can
define the real alignment vector, Jµ, and the complex decoupling vector, Dµ,

Jµ = 〈µ|Ĵ |µ〉 , Dµ = 〈µ|Ĵ |µ̄〉 . (B.1)

Although the decoupling vector changes its phase when |µ〉, |µ̄〉 change their phases, the
relative phases of its components do not depend on the phase convention. Since the
angular-momentum operator is odd under the time reversal, it can easily be verified that

J µ̄ = 〈µ̄|Ĵ |µ̄〉 = −Jµ , Dµ̄ = 〈µ̄|Ĵ |µ〉 = Dµ ∗ . (B.2)

Here, we are concerned by properties of a single Kramers pair formed by eigenstates
of a s.p. Hamiltonian, ĥ, that is even under the DT

2 group. Therefore, it is possible to
choose the states of the pair as eigenstates of either of the three signatures, R̂i, where
i = x, y, z, but only one at a time, because the signature operators do not commute
among themselves. This results, respectively, in three formally different pairs, (|µi〉, |µ̄i〉),
that correspond to just three different bases in the same two-dimensional eigenspace of
ĥ. Here, it is also convened that the states |µi〉 have eigenvalues of −i under the action
of R̂i, while the eigenvalues of |µ̄i〉 are +i.

The fact that |µi〉 and |µ̄i〉 are eigenstates of R̂i, together with the transformation rules
of the components, Ĵj, of the angular momentum operator under the three signatures,

R̂+
i ĴjR̂i =

{

+Ĵj j = i

−Ĵj j 6= i
, (B.3)

induces limitations on the components, Jµi

j and Dµi

j , of the alignment and decoupling
vectors. Namely,

Jµi

j =

{

non-zero j = i
0 j 6= i

, Dµi

j =

{

0 j = i
non-zero j 6= i

. (B.4)

In other words, Jµi is confined to the axis i and Dµi to the plane perpendicular to that
axis.
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In order to establish connections between the alignment and decoupling vectors as-
sociated with the three pairs, (|µi〉, |µ̄i〉), one needs to express the states of one pair as
linear combinations of those in the remaining two. Below, states |µx〉, |µ̄x〉 and |µy〉, |µ̄y〉
are expressed as linear combinations of |µz〉, |µ̄z〉 by diagonalization of R̂x and R̂y in the
basis of |µz〉, |µ̄z〉, after having found the corresponding two-by-two matrices. Taking into
account that R̂x and R̂y are odd under R̂z,

R̂+
z R̂xR̂z = −R̂x , R̂+

z R̂yR̂z = −R̂y , (B.5)

one arrives at a conclusion that the diagonal matrix elements of R̂x and R̂y in the |z〉, |z̄〉
basis vanish. The off-diagonal ones depend on the phases of |z〉, |z̄〉, but are restricted
by the fact that the signatures are unitary anti-hermitian operators. Moreover, the off-
diagonal elements of R̂x and R̂y are connected by the equality

〈z|R̂x|z̄〉 = i〈z|R̂y|z̄〉 , (B.6)

which is due to the multiplication rule

R̂x = R̂yR̂z . (B.7)

All this means that, with a proper choice of phases in |µz〉, |µ̄z〉, one can always make
that the corresponding matrices of R̂i be related to the Pauli matrices1, σ̂i,

R̂i = −iσ̂i . (B.8)

By diagonalization of R̂x and R̂y one obtains, with an arbitrary choice of phases:

|µx〉 =

√

−i

2
(|µz〉+ |µ̄z〉) , |µ̄x〉 = −

√

i

2
(|µz〉 − |µ̄z〉) , (B.9)

|µy〉 =

√

i

2
(|µz〉+ i|µ̄z〉) , |µ̄y〉 =

√

−i

2
(i|µz〉+ |µ̄z〉) . (B.10)

These formulae, together with relations (B.2), allow to express Jµx, Dµx and Jµy , Dµy in
terms of Jµz , Dµz . Taking into account the constraining conditions (B.4) on the left-hand
side, one obtains the following set of equations:

(Jµx

x , 0, 0) = (Re Dµz

x , Re Dµz

y , 0) , (0, Dµx

y , Dµx

z ) = (−Im Dµz

x ,−Im Dµz

y ,−iJµz

z ) ,
(B.11)

(0, Jµy

y , 0) = (−Im Dµz

x ,−Im Dµz

y , 0) , (Dµy

x , 0, Dµy

z ) = (−iRe Dµz

x ,−iRe Dµz

y , Jµz

z ) .
(B.12)

A glance at them convinces us that all of the quantities Jµi

j , Dµi

j express through the
three ”diagonal” components, Jµi

i . One eventually arrives at:

Jµx = (Jµx

x , 0, 0) , Dµx = (0, Jµy

y ,−iJµz

z ) , (B.13)

1This assures compatibility of notation with the case of a particle possessing only the intrinsic spin and
no space degrees of freedom, where the general definition, R̂i = exp(−iπĴi), leads explicite to R̂i = −iσ̂i.
For such a particle, the states of spin | ↑〉 and | ↓〉 have the z-signature signature eigenvalues of −i and
+i, respectively, and play the role of |µz〉 and |µ̄z〉.



91

Jµy = (0, Jµy

y , 0) , Dµy = (−iJµx

x , 0, Jµz

z ) , (B.14)

Jµz = (0, 0, Jµz

z ) , Dµz = (Jµx

x ,−iJµy

y , 0) . (B.15)

If the Hamiltonian, ĥ, has no extra symmetries, then Jµi

i can assume arbitrary values.

If ĥ is axially symmetric, say with respect to the z axis, then the states |µz〉, |µ̄z〉 are
eigenstates of Ĵz, which leads to quantization of Jµz

z . In fact, Jµz
z = +1/2,−3/2, ...,

because R̂z = exp(−iπĴz), while in the adopted convention R̂z|µz〉 = −i|µz〉. For states
|µx〉 and |µy〉, defined by (B.9) and (B.10), one easily finds

Jµx

x =
1

2
Re〈µz|Ĵ+ + Ĵ−|µ̄z〉 , Jµy

y =
1

2
Re〈µz|Ĵ+ − Ĵ−|µ̄z〉 , (B.16)

where Ĵ+ = Ĵx + iĴy and Ĵ− = Ĵx − iĴy are the ladder operators, that increment and

decrement the magnetic quantum number, Jz, of an eigenstate, |Jz〉, of Ĵz,

Ĵ+|Jz〉 ∼ |Jz + 1〉 , Ĵ−|Jz〉 ∼ |Jz − 1〉 . (B.17)

One can see, therefore, that the matrix elements in (B.16) can be non-zero only if |µz〉
and |µ̄z〉 differ in Jz by one, that is if Jµz

z = 1/2. In such a case, 〈µz|Ĵ−|µ̄z〉 = 0, and
Jµx

x = J
µy
y . These results can be summarized as

(Jµx

x , Jµy

y , Jµz

z ) =

{

(Jµ⊥

⊥ , Jµ⊥

⊥ , J
µ‖

‖ ) for J
µ‖

‖ = 1/2

(0, 0, J
µ‖

‖ ) for J
µ‖

‖ = 3/2, 5/2, ...
(B.18)

The parameter Jµ⊥

⊥ is not restricted by the above kinematic conditions, and is usually
called decoupling parameter.
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Appendix C

Technical details of the calculations

This Appendix summarizes all technical details of the present Hartree-Fock (HF) calcu-
lations, and of the auxiliary calculations performed in Chapters 5 and 6 within the Total
Routhian Surface (TRS) approach.

All the HF calculations presented in this work were performed with the help of the
code hfodd, version (v2.05c), which is described in Section 3.6. Twelve spherical shells of
the Harmonic Oscillator were taken as the single-particle (s.p.) basis. It has been verified
for the one-dimensional cranking in 132La that varying the number of shells from 10 up to
16 changes the quantities important for the present study, like deformation, alignments,
moments of inertia, by less than 1%. The calculations were performed with two Skyrme
parameter sets, SLy4 [Cha97a] and SkM* [Bar82a]. Attempts were undertaken to obtain
each solution with three sets of the HF time-odd fields [Dob95a, Dob97a] included, as
listed in Table 3.2 and explained in Chapter 3.4. Those sets are denoted in the text as N ,
G, T . Since the treatment of the pairing correlations is not yet implemented in hfodd

in the Tilted-Axis Cranking (TAC) mode, pairing was not included. In all Principal-Axis
Cranking (PAC) calculations, the P̂ , R̂y, ŜT

x , ŜT
z symmetries (and their products) were

imposed, while only P̂ was kept in the TAC case. The respective parity-signature and
parity configurations (see Section 3.6) for all the considered solutions are given in Tabs. 5.1
and 6.1. The configurations were followed diabatically in each band, either by choosing the
occupied state by hand, whenever a crossing was about to occur, or by using the diabatic-
blocking techniques described in Section 3.6. In all planar solutions, the direction of
ω was chosen so that it had equal components on two axes of the program frame (see
Section 3.3) and zero component on the third axis. In the chiral bands, ω had equal
projections on all the three program axes. In each case, the direction of ω was kept fixed,
and only its magnitude was changed. The axial and planar bands were calculated with
an ω step of 0.05 MeV/h̄, while the step of 0.02 MeV/h̄ was used for the chiral solutions.
With no time-odd fields included, the iterations for each value of ω were restarted from
the previously converged solution at the prior value of ω. Then, each point converged
with no time-odd fields served as a starting point for calculations with the time-odd fields
included. As explained in Section 3.6, the convergence rate is sometimes very low in TAC
calculations. To deal with this difficulty, all solutions were first obtained at the level
of convergence defined by the hfodd flag EPSITE=0.000001; see the hfodd manual in
[Dob00a]. Afterwards, additional iterations were repeated in portions until the functional
energy ceased changing from one iteration to another by more than 1 eV. This criterion
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could be fulfilled after hundreds of iterations at higher frequencies, ω > 0.4 MeV/h̄, and
after thousands of iterations for lower frequencies, ω < 0.4 MeV/h̄. This process could
have been much faster, had the technique of resetting ω parallel to J been known earlier;
see Section 3.6. The constraint on ω × J was not used, because it turned out to be very
ineffective; see Section 3.6.

To estimate the possible influence of the pairing correlations, auxiliary calculations
within the TRS method were performed in the present work. In Chapter 5, the energy
surface for the ground state in 142Gd was examined, and one-dimensional cranking for
132La was considered in Chapter 6. The calculations were done by using the TRS software
developed by Satu la and Wyss [Sat94a]. The method employs the phenomenological
Woods-Saxon potential and a correction for the liquid-drop energy. Self-consistency is
assured in the pairing channel, and the strength of the monopole pairing is adjusted to
experimental data following the average gap method. The quadrupole pairing is also
included, with the coupling constant chosen so that the pairing field possess the local
galilean invariance. Approximate projection onto good particle number is implemented
within the Lipkin-Nogami method. The code does not allow for TAC calculations. See
[Sat94a] for all details and further references.



Appendix D

Single-particle Routhians

In this Appendix, all Figures showing the Hartree-Fock (HF) single-particle (s.p.) Routhi-
ans are collected.

The Routhians marked as Axial in the Figures’ captions come from one-dimensional
cranking, with imposed parity and signature. The Routhians denoted Planar and Chi-
ral were obtained from Tilted-Axis Cranking (TAC) calculations, with only the parity
imposed. In both kinds of Routhians, solid lines are used for positive-parity levels, and
dashed lines for negative-parity levels. In the case of Principal-Axis Cranking (PAC),
levels of positive signature (+i) are plotted in black, and levels of negative signature (−i)
in gray. Each s.p. level is labeled with its total ordinal number and its ordinal number in
the given symmetry block. For the PAC or TAC Routhians, the second number refers to
the parity-signature or parity blocks, respectively. For example, the state marked as 62
14–+ is the 62nd state among all and the 14th of negative parity and positive signature.
The last item in each label indicates whether the given state is occupied (1) or not (0).
This information is not provided for states far from the Fermi energy. For clarity, the
Routhians bearing the h11/2 nucleons are marked with points, put at the values of the
cranking frequency, at which the HF solutions were obtained. The proton particles and
the neutron holes are marked with full and open circles, respectively. The symbols N , G,
T , used in the captions, refer to calculations with various Skyrme time-odd fields included;
see Section 3.4. The labels oblate and triaxial, used for 134Pr and 136Pm, denote the nearly
oblate and triaxial minima found in those nuclei, see Section 6.2. Figures D.12–D.14 show
the Routhians for the planar and chiral bands in 132La in the same plots. A vertical line
is drawn at the value of the HF critical frequency, ωHF

crit ; see Section 6.8. The Routhians
left to that line correspond to the planar band, and the Routhians to the right correspond
to the chiral band.
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Figure D.1: Axial Routhians in 142Gd for SLy4 force with N time-odd fields.
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Figure D.2: Planar Routhians in 142Gd with N time-odd fields.
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Figure D.3: Planar Routhians in 142Gd with G time-odd fields.
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Figure D.4: Planar Routhians in 142Gd with T time-odd fields.
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Figure D.5: Axial Routhians in 130Cs for SLy4 force with N time-odd fields.



101

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8

Short axis

49 13++ 1
50 13+- 1

51 13– 1
52 13-+ 1

53 14++ 1
54 14+- 1

55 15++ 1
56 15+- 1

57 14– 0
58 14-+ 1

59 16++ 0
60 16+- 0

61 17++ 0
62 17+- 0

63 15– 0
64 15-+ 0

65 18++ 0
66 18+- 0

67 16– 0
68 16-+ 0

69 19++ 0
70 19+- 0

71 17– 0
72 17-+ 0

73 18– 0
74 18-+ 0

75 19– 0
76 19-+ 0

77 20++ 0
78 20+- 0

79 21++ 0
80 21+- 0

0 0.2 0.4 0.6 0.8

Medium axis

49 13++ 1
50 13+- 1

51 13– 1
52 13-+ 1

53 14++ 1
54 14+- 1

55 15++ 1
56 15+- 1

57 14– 0
58 14-+ 1

59 16++ 0
60 16+- 0

61 17++ 0
62 17+- 0

63 15– 0
64 15-+ 0

65 18++ 0
66 18+- 0

67 16– 0
68 16-+ 0

69 19++ 0
70 19+- 0

71 17– 0
72 17-+ 0

73 18– 0
74 18-+ 0

75 19– 0
76 19-+ 0

77 20++ 0
78 20+- 0

79 21++ 0
80 21+- 0

0 0.2 0.4 0.6 0.8

Long axis

49 13++ 1
50 13+- 1

51 13– 1
52 13-+ 1

53 14++ 1
54 14+- 1

55 15++ 1
56 15+- 1

57 14– 0
58 14-+ 1

59 16++ 0
60 16+- 0

61 17++ 0
62 17+- 0

63 15– 0
64 15-+ 0

65 18++ 0
66 18+- 0

67 16– 0
68 16-+ 0

69 19++ 0
70 19+- 0

71 17– 0
72 17-+ 0

73 18– 0
74 18-+ 0

75 19– 0
76 19-+ 0

77 20++ 0
78 20+- 0

79 21++ 0
80 21+- 0

S
in

g
le

-p
a
rt

ic
le

R
o
u
th

ia
n
s

[M
eV

]

Rotational frequency [MeV/h̄]

F
igu

re
D

.6:
P

roton
A

x
ial

R
ou

th
ian

s
in

1
3
2L

a
for

S
L

y
4

force
w

ith
N

tim
e-o

d
d

fi
eld

s.



102
A

P
P

E
N

D
IX

D
.

S
IN

G
L
E

-P
A

R
T

IC
L
E

R
O

U
T

H
IA

N
S

-14

-12

-10

-8

-6

0 0.2 0.4 0.6 0.8

Short axis

57 14– 1
58 14-+ 1

59 16++ 1
60 16+- 1

61 17++ 1
62 17+- 1

63 18++ 1
64 18+- 1

65 15– 1
66 15-+ 1

67 19++ 1
68 19+- 1

69 16– 1
70 16-+ 1

71 17– 1
72 17-+ 1

73 18– 1
74 18-+ 1

75 20++ 0
76 20+- 0

77 21++ 0
78 21+- 0

79 19– 0
80 19-+ 1

81 20– 0
82 20-+ 0

83 21– 0
84 21-+ 0

85 22– 0
86 22-+ 0

0 0.2 0.4 0.6 0.8

Medium axis

57 14– 1
58 14-+ 1

59 16++ 1
60 16+- 1

61 17++ 1
62 17+- 1

63 18++ 1
64 18+- 1

65 15– 1
66 15-+ 1

67 19++ 1
68 19+- 1

69 16– 1
70 16-+ 1

71 17– 1
72 17-+ 1

73 18– 1
74 18-+ 1

75 20++ 0
76 20+- 0

77 21++ 0
78 21+- 0

79 19– 0
80 19-+ 1

81 20– 0
82 20-+ 0

83 21– 0
84 21-+ 0

85 22– 0
86 22-+ 0

0 0.2 0.4 0.6 0.8

Long axis

57 14– 1
58 14-+ 1

59 16++ 1
60 16+- 1

61 17++ 1
62 17+- 1

63 18++ 1
64 18+- 1

65 15– 1
66 15-+ 1

67 19++ 1
68 19+- 1

69 16– 1
70 16-+ 1

71 17– 1
72 17-+ 1

73 18– 1
74 18-+ 1

75 20++ 0
76 20+- 0

77 21++ 0
78 21+- 0

79 19– 0
80 19-+ 1

81 20– 0
82 20-+ 0

83 21– 0
84 21-+ 0

85 22– 0
86 22-+ 0

S
in

g
le

-p
a
rt

ic
le

R
o
u
th

ia
n
s

[M
eV

]

Rotational frequency [MeV/h̄]

F
igu

re
D

.7:
N

eu
tron

A
x
ial

R
ou

th
ian

s
in

1
3
2L

a
for

S
L

y
4

force
w

ith
N

tim
e-o

d
d

fi
eld

s.



103

-8

-6

-4

-2

0

Short axis

49 13++ 1
50 13+- 1

51 13– 1
52 13-+ 1

53 14++ 1
54 14+- 1

55 15++ 1
56 15+- 1

57 14– 0
58 14-+ 1

59 16++ 1
60 16+- 1

61 15– 0
62 15-+ 0

63 17++ 0
64 17+- 0

65 18++ 0
66 18+- 0

67 19++ 0
68 19+- 0

69 16– 0
70 16-+ 0

71 17– 0
72 17-+ 0

73 18– 0
74 18-+ 0

75 19– 0
76 19-+ 0

77 20++ 0
78 20+- 0

79 21++ 0
80 21+- 0

-16

-14

-12

-10

-8

0 0.2 0.4 0.6 0.8
53 14++ 1
54 14+- 1

55 15++ 1
56 15+- 1

57 16++ 1
58 16+- 1

59 14– 1
60 14-+ 1

61 17++ 1
62 17+- 1

63 18++ 1
64 18+- 1

65 15– 1
66 15-+ 1

67 19++ 1
68 19+- 1

69 16– 1
70 16-+ 1

71 17– 1
72 17-+ 1

73 18– 1
74 18-+ 1

75 19– 0
76 19-+ 1

77 20++ 0
78 20+- 0

79 21++ 0
80 21+- 0

81 20– 0
82 20-+ 0

P
ro

to
n
s

Long axis

49 13++ 1
50 13+- 1

51 13– 1
52 13-+ 1

53 14++ 1
54 14+- 1

55 15++ 1
56 15+- 1

57 14– 0
58 14-+ 1

59 16++ 1
60 16+- 1

61 15– 0
62 15-+ 0

63 17++ 0
64 17+- 0

65 18++ 0
66 18+- 0

67 19++ 0
68 19+- 0

69 16– 0
70 16-+ 0

71 17– 0
72 17-+ 0

73 18– 0
74 18-+ 0

75 19– 0
76 19-+ 0

77 20++ 0
78 20+- 0

79 21++ 0
80 21+- 0

0 0.2 0.4 0.6 0.8

N
eu

tr
o
n
s

53 14++ 1
54 14+- 1

55 15++ 1
56 15+- 1

57 16++ 1
58 16+- 1

59 14– 1
60 14-+ 1

61 17++ 1
62 17+- 1

63 18++ 1
64 18+- 1

65 15– 1
66 15-+ 1

67 19++ 1
68 19+- 1

69 16– 1
70 16-+ 1

71 17– 1
72 17-+ 1

73 18– 1
74 18-+ 1

75 19– 0
76 19-+ 1

77 20++ 0
78 20+- 0

79 21++ 0
80 21+- 0

81 20– 0
82 20-+ 0

S
in

g
le

-p
a
rt

ic
le

R
o
u
th

ia
n
s

[M
eV

]

Rotational frequency [MeV/h̄]

Figure D.8: Axial Routhians in oblate 134Pr for SLy4 force with N time-odd fields.
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Figure D.9: Axial Routhians in triaxial 134Pr for SkM* force with N time-odd fields.
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Figure D.10: Axial Routhians in oblate 136Pm for SLy4 force with N time-odd fields.
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Figure D.11: Axial Routhians in triaxial 136Pm for SkM* force with N time-odd fields.
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Figure D.12: Planar and Chiral Routhians in 132La with N time-odd fields.
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Figure D.13: Planar and Chiral Routhians in 132La with G time-odd fields.
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Figure D.14: Planar and Chiral Routhians in 132La with T time-odd fields.
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[Mol95a] P. Möller et al., At. Dat. Nucl. Dat. Tabl. 59, 185 (1995)

[Nil55a] S.G. Nilsson, Mat. Fys. Medd. Dansk. Vid. Selsk. 29, No. 16 (1955)

[Olb02a] P. Olbratowski et al., Acta Phys. Pol. B33, 389 (2002)

[Olb02b] P. Olbratowski et al., nucl-th/0211075 (2002)

[Olb04a] P. Olbratowski et al., Phys. Rev. Lett. 93, 052501 (2004)

[Pas04a] A.A. Pasternak, private communication (2004)

[Pen03a] J. Peng, J. Meng, S.Q. Zhang, Phys. Rev. C68, 044324 (2003)

[Pen03b] J. Peng, J. Meng, S.Q. Zhang, Chin. Phys. Lett. 20, 1223 (2003)

[Pet96a] C.M. Petrache et al., Nucl. Phys. A597, 106 (1996)

[Rai03a] G. Rainovski et al., Phys. Rev. C68, 024318 (2003)

[Rai03b] G. Rainovski et al., Journ. Phys. G29, 2763 (2003)



114 BIBLIOGRAPHY

[Rei95a] P.G. Reinhard, H. Flocard, Nucl. Phys. A584, 467 (1995)

[Rie60a] B. Riemann, Abh. Kön. Ges. Wiss. 9, 1 (1860)

[Rin00a] P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 2000)

[Rob03a] S.P. Roberts et al., Phys. Rev. C67, 057301 (2003)

[Rza01a] T. Rza̧ca-Urban, Acta Phys. Pol. B32, 2645 (2001)

[Sat94a] W. Satu la, R. Wyss, Phys. Rev. C50, 2888 (1994)

[Sta88a] W. Starzecki et al., Phys. Lett. B200, 419 (1988)

[Sta01a] K. Starosta et al., Nucl. Phys. A682, 375c (2001)

[Sta01b] K. Starosta et al., Phys. Rev. Lett. 86, 971 (2001)

[Sta02a] K. Starosta et al., Phys. Rev. C65, 044328 (2002)

[Sta03a] K. Starosta, P. Joshi, private communication

[Sug97a] M. Sugawara et al., Zeit. für Phys. A358, 1 (1997)

[Tho62a] D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962)

[Tim03a] J. Timár et al., Eur. Journ. of Phys. A16, 1 (2003)

[Uma91a] A.S. Umar et al., Phys. Rev. C44, 2512 (1991)

[Vam04a] C. Vaman et al., Phys. Rev. Lett. 92, 032501 (2004)

[Vol98a] V. Volterra, Acta Mathematica 22, 201 (1898)

[Woo54a] R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577 (1954)

[Yam00a] M. Yamagami, K. Matsuyanagi, Nucl. Phys. A672, 123 (2000)

[Yam01a] M. Yamagami, K. Matsuyanagi, M. Matsuo, Nucl. Phys. A693, 579 (2001)

[Zhu03a] S. Zhu et al., Phys. Rev. Lett. 91, 132501 (2003)


