
N◦ d’ordre:

École Doctorale Sciences Pour l’Ingénieur
ULP - INSA - ENGEES - URS

THÈSE

présentée pour obtenir le grade de

Docteur de l’Université Louis Pasteur - Strasbourg

Discipline: Sciences pour l’Ingénieur

(spécialité Informatique)

par

Florentin Picioroagă

SCALABLE AND EFFICIENT MIDDLEWARE FOR

REAL-TIME EMBEDDED SYSTEMS. A UNIFORM

OPEN SERVICE ORIENTED, MICROKERNEL BASED

ARCHITECTURE

Soutenue publiquement le 3 décembre 2004

Membres du jury

Directeur de thèse: M. Uwe Brinkschulte, professeur, Université de

Karlsruhe

Co-Directeur de thèse: M. Bernard Keith, professeur, INSA Strasbourg

Rapporteur interne: M. Pierre Colin, professeur, ENSPS Strasbourg

Rapporteur externe: M. Andreas Polze, professeur, HPI - Université de

Potsdam

Rapporteur externe: M. Gabriel Ciobanu, professeur, Académie Roumaine

de Iaşi

Examinateur: Mme. Aurélie Bechina, mâıtre de conférence,

Université d’Oslo

LIIA N◦ de l’Unité: ERT N◦9

c© Copyright by

FLORENTIN PICIOROAGA

2004

All Rights Reserved

To my beloved wife - Carmen, my daughter - Ana Maria,

my parents and my grandmother.

ACKNOWLEDGMENTS

I would like to thank Prof. Uwe Brinkschulte, for the valuable discussions and clear

directions which he showed me along the entire period at IPR Institute. He introduced

me in the research domain of real-time systems and gave me the very basic conception,

trying to use a microkernel architecture and services for embedded middleware, as a

premise and basic idea for my thesis. Based on that, I have developed the detailed fine

grain architecture, implemented and evaluated it. Without his help on the last four

years, I wouldn’t finish this work.

Many thanks to Mrs. Aurelie Bechina and Etienne Schneider for the interesting dis-

cussions and their support.

Many thanks to Prof. Bernard Keith who encouraged me and accelerated the process

of writing the thesis.

I would like also to thank the reviewers: Mrs. Aurelie Bechina, Mr. Gabriel Ciobanu,

Mr. Pierre Colin and Mr. Andreas Polze for their constructive comments.

ABSTRACT

The task to design and implement a middleware for embedded real-time systems has,

near the normal challenges for building a usual middleware, two additional difficult

demands: 1) it must maintain the real-time features of the underlying environment

and, 2) it must adapt in the same time to powerful systems and, moreover, fit on

small systems (embedded systems). This thesis presents the research done in providing

a solution for these problems - OSA+ middleware. The proposed solution is using a

well known concept from operating systems - the microkernel architecture. Adapting

this concept to a middleware brings a serie of advantages and disadvatages which are

analyzed in this thesis.

Contents

List of Figures xi

List of Tables xiii

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Background . 3

1.3 Objectives . 8

1.4 Thesis organization . 9

2 MIDDLEWARE FOR REAL-TIME EMBEDDED SYSTEMS 11

2.1 Distributed systems . 11

2.1.1 Definition of distributed systems 11

2.1.2 Goals of distributed systems 12

2.2 Middleware . 16

2.2.1 Middleware definition 17

2.2.2 Notion of real-time 21

2.2.3 Middleware for real-time embedded systems 22

2.3 Refining the problems and the objectives 24

3 STATE OF THE ART 27

3.1 CORBA . 27

3.1.1 Minimum CORBA 28

3.1.2 Real-time CORBA 29

3.2 CORBA compliant middleware 30

3.2.1 ORBExpress RT . 30

vii

3.2.2 TAO . 31

3.2.3 RTZen . 32

3.2.4 OpenFusion e*ORB 32

3.2.5 Visibroker RT . 34

3.2.6 ROFES . 35

3.3 Non CORBA middleware suitable for DRE 35

3.3.1 NDDS . 35

3.3.2 MidART . 36

3.4 Conclusions . 36

4 THESIS APPROACH 43

4.1 OSA+ general architecture 44

4.1.1 OSA+ as middleware 47

4.1.2 OSA+ core platform 49

4.1.3 Basic services . 71

4.2 OSA+ microkernel architecture 77

4.2.1 Microkernel principals and ideas 78

4.2.2 Avoiding the microkernel drawbacks 79

4.3 Scaling OSA+ by the microkernel and the basic services . . 80

4.4 OSA+ and real-time . 81

4.4.1 Separate functionality 82

4.4.2 QoS information . 86

4.4.3 Job scheduling . 88

4.4.4 Service scheduling . 90

5 APPROACH EVALUATION 91

5.1 OSA+ for embedded systems 91

5.1.1 High scalability . 92

5.1.2 Memory footprint . 92

5.2 OSA+ and real-time . 93

5.2.1 Considerations about the test environment 93

5.2.2 OSA+ predictability evaluations 98

5.3 Performance overhead . 114

5.3.1 Local communication 115

5.3.2 Remote communication 117

viii

5.4 Avoiding microkernel communication drawbacks 118

6 CONCLUSIONS AND FUTURE DIRECTIONS 121

6.1 Conclusions . 121

6.2 Future directions . 123

Bibliography 125

Publications by the author 131

Curriculum vitae 133

Appendix 135

ix

x

List of Figures

1.1 Middleware, hiding the distribution 5

1.2 Main componenets for building an aplication for DRE systems 6

1.3 Thesis logical roadmap . 10

3.1 Main components of ORB architecture 28

3.2 OpenFusion e*ORB’s Open Pluggable Boundaries 33

3.3 Microkernel architectures comparison 40

4.1 OSA+: service oriented architecture 44

4.2 OSA+: adapting to different environments 48

4.3 OSA+ virtual platform . 49

4.4 Procedural and lightweight services 52

4.5 Service Configurator design pattern 55

4.6 Communication methods in OSA+ 57

4.7 Order . 59

4.8 Synchronous/asynchronous communication with jobs 62

4.9 Local connection-oriented communication 64

4.10 Communication chain . 66

4.11 Optimizing communication with chains 67

4.12 Chain processing . 69

4.13 OSA+ communication layers 73

4.14 Simple protocol between the communication layers 75

4.15 Overcoming microkernel performance loose through proce-

dural interface communication 80

4.16 Bucket container structure 87

5.1 OSA+ on Komodo, FPP, no GC, same priority 99

xi

5.2 OSA+ on Komodo, GP, no GC, 60/30 CPU 101

5.3 OSA+ on Komodo, GP, with GC, 60/30/10 CPU 101

5.4 OSA+ on Komodo, GP, no GC, 50/50 CPU 102

5.5 OSA+ on Komodo, statistics. 102

5.6 OSA+ on MontaVista 3.1 and RTSJ 105

5.7 OSA+ on TimeSys 4.1 and RTSJ 106

5.8 OSA+ on TimeSys 5.0 and RTSJ 107

5.9 OSA+ on RedHat 9 and RTSJ 108

5.10 OSA+ on RTSJ, statistics. 109

5.11 OSA+ on MontaVista 3.1 and Sun JVM 110

5.12 OSA+ on TimeSys 4.1 and Sun JVM 111

5.13 OSA+ on TimeSys 5.0 and Sun JVM 112

5.14 OSA+ on RedHat 9 and Sun JVM 113

5.15 OSA+ on Sun JVM, statistics. 114

5.16 OSA+ performance overhead on TimeSys 4.1 and RTSJ . . 116

5.17 OSA+ performance overhead on Komodo, FPP, no GC, same

priority . 117

5.18 OSA+ performance overhead, TimeSys 4.1 and RTSJ vs.

Komodo . 118

5.19 Performance of OSA+ communications mechanisms 120

.1 OSA+ UML class diagram 138

xii

List of Tables

3.1 State of the art, middleware for DRE 38

4.1 OSA+ types . 61

5.1 OSA+ footprint(in bytes) 93

5.2 OSA+ performance overhead for sending a single message . 116

xiii

xiv

Chapter 1

INTRODUCTION

1.1 Motivation

In the early days of computing, most solutions were equipped with mono-

lithic software designs specific to the problem domain. APIs (Application

Programming Interfaces) were not yet existent for many common functions

and standard communication protocols were not used. The applications

had to be adapted again and again to run on a different system. Entire

systems (hardware/software) could only be designed and programmed by a

single engineer unless a big software design project with a large overhead

was started. The problem was that programming at a low abstraction level

was and remains a cumbersome task. Many platform and programming

system specific details have to be taken care of, e.g. storage management,

exception handling, proper initialization of service routines and networking.

In our days, the goals have been shifted from delivering problem specific

end-solutions, to delivering open-solutions. With other words, the sintagm

a solution is good when it solves my problem has been transformed in a so-

lution is good when it solves my problem and can be used in other contexts

as well. So, the problem solution takes in account further possibilities of

reusing the software in other environments where they can enlarge the func-

tionality of existing applications. Hence, the integration and functionality of

application programs has greatly increased over the past years. And what

is interesting and more challenging is that, not only the desktop, server,

or super computers are directly affected by this trend, but also systems

with less computational resources: small microcontrollers with low clock

1

frequency (a few MHz) and limited memory resources (64-512 KB). They

are usually highly specialized for tasks like: controlling devices, actuators,

gathering data from sensors and reacting to critical situations. In most of

these systems, the right answer delivered too late becomes the wrong answer,

that is why achieving of end-to-end quality of service(QoS) is essential [52].

Such systems are known as real-time and embedded systems.

These systems are increasingly being connected via wireless and wireline

networks to create large-scale distributed real-time and embedded (DRE)

systems. They have become critical in domains such as avionics (e.g.,

flight mission computers), telecommunications (e.g., wireless phone ser-

vices), tele-medicine (e.g., robotic surgery), nuclear reactors, oil refineries

and industrial process automation.

Distributed embedded and real-time systems, or more correctly the prob-

lems which they pose to the software designer, programmer and system

maintainer, represent one of the main focuses of this thesis. These prob-

lems are shortly enumerated in the following paragraph and they will be

further analysed in chapter 2. They are the driving forces for the research

done in this thesis and for the decisions which were made in order to reach

the envisioned goals.

DRE systems include many interdependent levels, such as communication

(e.g., network, bus communication), many local and remote systems which

must be coordinated, and often multiple layers of software. In such systems,

there are situations when it is hard to enumerate, or often even approximate,

all possible physical system configurations or workload mixes a priori [52].

Together all these derive the following challenges:

• As distributed systems, DRE systems require capabilities to manage

connections and message exchange between (possibly heterogeneous)

networked computing devices.

• As real-time systems, DRE systems require predictable and efficient

control over end-to-end system resources, such as memory, CPU, and

network bandwidth.

• As embedded systems, DRE systems have size, weight, cost, and

power constraints that often limit their computing and memory re-

2

sources. For example, embedded systems often cannot use conven-

tional virtual and automatic memory techniques because of space or

timing constraints. In this case, the software must fit on low-capacity

storage media, such as EEPROM or NVRAM.

• As open systems which operate in a dynamic environemnt, DRE sys-

tems require controllability, and adaptability of operating character-

istics for applications with respect to such features as time, quantity

of information, accuracy, and synchronization.

While it is possible in theory to develop these types of complex sys-

tems from scratch, contemporary economic and organizational constraints,

as well as increasingly complex requirements and competitive pressures,

make it infeasible to do so in practice. To address all the competing design

forces and run-time QoS demands, sustained efforts are made for creat-

ing comprehensive software methodologies, design-/run-time environments,

and hardware/software co-design.

The presented thesis contributes to these efforts and is foccusing on the

software side of the problem.

1.2 Background

After seeing the main challenges for DRE systems, an overview about the

solution which conciliates these challenges is given in this section. Later the

solution will be further analyzed, so the reader can become familiar step by

step with the research theme of the thesis.

Over the past decade, various technologies have been intended to alleviate

many complexities associated with developing software for DRE systems.

Their successes have added a new category of systems, programming lan-

guages, and networking offerings to the previous generation. In particular,

some of the most successful of emerging technologies have centered on mid-

dleware, which is system software that resides between applications and

the underlying operating systems, network protocol stacks, and hardware.

The middleware provides general purpose services which have standard pro-

gramming interfaces and use standard protocols. The management of han-

dling presentation, computation, information storage, communication, con-

3

trol and system resources are all highly popular examples of middleware

services [5].

Typically, middleware packages take care of the details and offer some

functionality at a higher level of abstraction. The oldest pieces of mid-

dleware packages in the history of computing were possibly the scientific

libraries written in Fortran. For example, LINPACK [18] raises the level of

abstraction from floating point numbers and basic arithmetic operations to

matrices and their operations.

Most middleware-oriented systems impose specific structure formats on

the applications built on them. Their API software layers are responsi-

ble for inter-operability and are well defined [64]. For example, in high

performance distributed computing, the data is distributed to a large num-

ber of computers so they can work in parallel and achieve speeds that are

much higher than on a single computer. Message passing libraries such as

PVM [59] and MPI [24] evolved into middleware packages offering many

more services than simple send and receive calls for data communication.

This thesis focuses on middleware which eases the development of a dis-

tributed system by hiding the distribution from the user. As can be seen

in figure 1.1, the user is not concerned on two important aspects regarding

the distribution:

• the locality, the middleware hides the location of the user applications.

The user makes no distinction between different physical platforms

when using the middleware, but perceives only one virtual platform

offered by the middleware.

• the platform specific implementation, the user application has to im-

plement the same middleware APIs wherever the application will be

deployed (e.g., Unix, VxWorks, Windows). The platform specific

APIs are hidden by the middleware layer.

Another important aspect of middleware is the availability on different

architectures and languages. Even the middleware provides a standard API

and the possibility to work with high level abstraction notions, it will be

a great disadvantage if it is ported only on few combinations of architec-

tures and languages. A study made by the Standish’s Group’s CHAOS

4

Middleware

Application

Platform

API

API

Application

Platform

API

Figure 1.1: Middleware, hiding the distribution

shows the importance of choosing the right infrastructure in order to have

a solid platform which also enables the application to easily adapt to new

demands. They state that 70% of all software projects involve the creation

and recreation of the infrastructure [1]. Considering also the special require-

ments regarding real-time aspects imposed by the application the potential

user has less options for choosing a whole tool chain for developing the

application.

Figure 1.2 shows the possibilities to build a real-time distributed applica-

tion in an embedded system environment using the middleware approach.

A distributed application is real-time if all the components have real-time

capabilities. Using a top-down approach it can be observed in figure 1.2,

that the middleware, which in fact realizes the distribution of the applica-

tion, has to be real-time. Under the middleware layer the following system

configurations can exist:

• System 1 : in this case the chosen programming language can be trans-

formed directly in execution code for the general purpose (GP) used

processor(C, C++, Ada). Here the middleware runs directly on top

of the operating system (OS) and is using the network communication

provided by the OS. Both have to be real-time.

• System 2 : the programming language is interpreted and is executed

by a virtual machine. Java is the most used interpreted language

5

GP Processor Microcontroller

Network & OS
services

GP Processor

Interpreter

Real-time distributed application

Middleware

Network & OS
services

Minimal network
& OS services

System 1 System 2 System 3

Network

Figure 1.2: Main components for building a real-time distributed applica-
tion for embedded systems

in the area of embedded systems. In this system configuration, in

addition, the Java Virtual Machine has to be real-time.

• System 3 : this system configuration is highly specialized for embed-

ded real-time applications. OS and network services are minimal,

special functionalities specific for real-time systems are provided by

the microcontroller.

When chosing the infrastructure of the application(Fig. 1.2) the following

criteria have to be considered:

• Platform availability

– programming language for development (e.g., C, C++, Java,

Ada)

6

– compiler or virtual machine in case of choosing an interpreted

language (e.g., Java)

– operating system which for real-time applications must be a

Real-time Operating System (RTOS)

– processor

• Costs

– for development, which includes licence prices for the used com-

ponents: compiler, operating system, middleware and maybe

training courses for the developers

– deployment

– maintenance

• Time to market. It can be short if the developers become rapidly

familiar with the choosed components, and/or there is comprehensive

documentation and support.

The previously enumerated criteria concern the infrastructure of the appli-

cation which restricts already the user possibilities or gives the important

paths to be followed. But there are also other important aspects to con-

sider, which become critical in case of real-time embedded systems. These

are:

• Performance

– speed, efficiency of the chosen components

– footprint, especially for the embedded systems

• Predictability, without predictability, performance is useless

• the need for loading and executing dynamic code at run-time. This

is important when a system must be reconfigured, updated during

run-time without stopping it (e.g., for air traffic control systems)

• Power consumption and techniques for power management. This is

important for wireless interconnected systems.

7

Regarding the programming language for real-time distributed systems,

for small embedded applications, sequential languages like C and C++ reign

supreme. For the larger real-time high integrity systems, Ada still domi-

nates. In the telecommunications market, CHILL is popular. In Germany,

Pearl is widely used for process control and other industrial automation

applications [22].

Although there is little doubt that the Java language has been immensely

successful in a wide range of application areas, it has yet to establish itself

completely in the real-time and embedded markets. Even that a preliminary

version of the Real-Time Specification for Java exists, the introduction of

the final approved specification could dramatically alter the status quo. In

the future, if Microsoft’s C# programming language starts to gain momen-

tum, extensions will inevitably be considered to make it more appropriate

for real-time systems.

1.3 Objectives

After having an overview of the research domain, distributed real-time and

embedded systems, and the problems which appear designing and devel-

oping applications for such systems, it is very important to point out now

our goals. The main focus of our middleware is to ease the development of

DRE systems. Therefore, the special requirements for these systems must

be satisfied:

1. Footprint: the middleware should be able to run on top of systems

with low resources (embedded systems).

2. Scalability: The middleware should perform well on low resource sys-

tems, but also it should be able to scale up to more complex applica-

tions where a richer set of features are needed.

3. Real-time:

• the middleware should first provide bounded worst case execu-

tion times (WCET) for all its components.

8

• quality of service (QoS) information must be supported in order

to deal with different real-time aspects and to reflect different

environments.

• end-to-end priorities should be preserved over different platforms

to avoid priority inversion 1.

4. Overhead minimization: middleware introduces overhead in terms of

memory and performance degradation which have to be minimized as

much as possible.

Choosing a microkernel approach to solve at least part of these requirements

seems to be a natural approach. This concept is well-known from operating

systems and it looks suitable to be applied when designing a middleware

which has to meet the first two mentioned requirements for DRE systems.

So this leads to one of the main research goals of this thesis: to investigate

the suitability of the microkernel concept when designing middleware for

DRE systems.

The middleware designed and presented within this thesis is implemented

in two programming languages: C and Java. However, it will be discussed

the Java reference implementation, as it is more updated, more complete

regarding the implementation of our mentioned goals and better evaluated,

especially in a real-time environment.

1.4 Thesis organization

In the previous sections the reader got familiar with the research area of

the thesis and, more important, with the goals that are aimed. A roadmap

of the thesis is presented here which can guide the reader further:

In Chapter 2, the research domain - middleware for distributed real-

time and embedded systems - is thoroughly studied. This permits us to

have a deeply view of all the issues that have to be tackled for reaching our

goals and assures the foundation for the following chapters.

In Chapter 3, existing solutions provided by other people: research

groups, companies, are discussed and compared to the aimed goals.

1priority inversion appears when higher priority tasks are blocked by lower priority
tasks

9

Chapter 4 presents our approach. First, a description of the abstract

concepts is made, which is continued with a deep view of all the important

insides related to the goals.

In Chapter 5, an evaluation of our middleware approach is presented in

order to verify if and in which extent the aimed goals have been reached.

Chapter 6 summarizes the research contribution presented in this thesis

and suggests directions for future work.

A logical roadmap of the thesis is presented in figure 1.3.

Distributed systems

Middleware

Middleware for real-time
embedded systems

Our approach

Conclusions and
future directions

State of the art

Concepts Approach evaluation

Figure 1.3: Thesis logical roadmap

10

Chapter 2

MIDDLEWARE FOR

REAL-TIME EMBEDDED

SYSTEMS

2.1 Distributed systems

2.1.1 Definition of distributed systems

An important step in computer systems history was the appearance of Local-

area networks or LANs which allow hundreds of computers to be connected

within a building. Later the appearance of Wide-area networks or WANs

allowed more LANs to be interconnected. As a consequence of these tech-

nologies, it became very easy to put together large numbers of computers

in so called computer networks. They enabled at the beginning exchange of

data between computers located in different geographical places in a faster,

and easier way than previous communication technologies. This evolved in

more complex interactions between computers than basic data communica-

tion and finally resulted in the appearance of applications, logically spread

on different computers and with them the appearance of the distributed

systems.

There are different definitions of a distributed system in the literature.

One of the first definitions was given already in 1978 by Enslow [21]. More

recent definitions are given by Bal [4], Tanenbaum [60], Schroeder [54] and

Couloris [16]. We will give here only the later one:

11

A distributed system is that composed of a collection of autonomous com-

puters connected by a communication network, and equipped with software

enabling them to coordinate their activities and share resources.

As an example of a distributed system, we consider a network of work-

stations in a university or company department. In addition to each user’s

personal workstation, there might be a pool of processors in the machine

room that are not assigned to specific users but are allocated dynamically

as needed. Such a system might have a single file system, with all files ac-

cessible from all machines in the same way and using the same path name.

Furthermore, when a user types a command, the system could look for the

best place to execute that command, possibly on the user’s own workstation,

possibly on an idle workstation belonging to someone else, and possibly on

one of the unassigned processors in the machine room. If the system as

a whole looks and acts like a classical single-processor timesharing system

(i.e., multi-user), it qualifies as a distributed system [60].

2.1.2 Goals of distributed systems

Building a distributed system should solve some problems that arise and

should serve some goals in order to worth the effort.

The main important goals for building a distributed system are: con-

nect easily users or applications to resources, hide the fact that resources

are distributed across a network, increase performace (e.g., adding new re-

sources in the system), be open, be scalable. These aspects will be discussed

further.

Connecting users to resources

A main goal of a distributed system is to make it easy for users to ac-

cess remote resources, and to share them with other users in a controlled

way. Some examples of resources are: printers, computers, storage facilities,

data, files, networks, etc. One of the problems which appear here is that

sharing resources can lead to unwanted accesses to the resources, security

mechanisms have to be considered. Furthermore, synchronization becomes

an issue. The resources have to be accessed in a consistent way, it can

happen that they are accessed by more users or tasks at the same time.

12

Transparency

Transparency is an aspect of the distributed system that is hidden from the

user (programmer, system developer, user or application program). Trans-

parency is provided by including a set of mechanisms in the distributed

system at a layer below the interface where the transparency is required.

A distributed system that is able to present itself to users and applications

as if it were only a single computer system is said to be transparent.

The International Standards Organization study on Open Distributed

Processing [46] identified eight dimensions of transparency. These areas

are interrelated and build upon each other. They describe properties of

distributed systems of varying complexity and importance. We can briefly

state the characteristics of each type of transparency [19]:

• Access. Software can interact in the same manner (i.e. exchange

information), regardless of where it is (local or remote) or how it is

implemented.

• Location. Software components can find other components regardless

of location.

• Migration. A component can be moved from one host to another

without affecting interaction.

• Replication. Multiple copies of the destination component may exist

on different networked machines.

• Concurrency. Users need not be aware of ongoing interactions be-

tween other software and the destination component.

• Scalability. Systems can grow substantially (more connections, more

components), yet maintain the same basic interaction mechanism and

architecture.

• Performance. Mechanisms by which performance is obtained is hid-

den from users. This may include dynamic load balancing.

• Failure. Destination components may fail without affecting the con-

sistency of the entire system.

13

Openness

An Open Distributed System is made up of components that may be ob-

tained from a number of different sources, which together work as a single

distributed system. It offers services according to standard rules that de-

scribes the syntax and semantics of those services. For example, in com-

puter networks, standard rules govern the format, contents, and mean-

ing of messages sent and received. Such rules are formalized in protocols.

In distributed systems, services are generally specified through interfaces,

which are often described in an Interface Definition Language (IDL). In-

terface definitions written in an IDL nearly always capture only the syntax

of services. In other words, they specify parameters, return values, pos-

sible exceptions that can be raised, and so on. Proper specifications are

complete and neutral. Complete means that everything that is necessary

to make an implementation has indeed been specified and neutral means

that the specification should not prescribe how an implementation should

look like. Completeness and neutrality are important for interoperability

and portability [8]. Interoperability characterizes the extent by which two

implementations of systems or components from different manufacturers

can co-exist and work together by relying on each other’s services as spec-

ified by a common standard. Portability characterizes to what extent an

application developed for a distributed system A can be executed, without

modification, on a different distributed system B that implements the same

interfaces as A [60].

Another important goal for an open distributed system is that it should

be flexible, this means that it can use easily different components from dif-

ferent developers. To achieve flexibility in an open distributed system, it is

crucial that the system is organized as a collection of relatively small and

easily replaceable or adaptable components. This implies that we should

not only describe the API seen by the user applications, but also the inter-

faces of the internal components and their interactions. This differs from

monolithic approaches where the components are mixed together without

a clear separation. Therefore, in monolithic systems adding, modifying or

removing components is more difficult to be realized and make them to be

rather closed instead of open.

14

Scalability

Many distributed systems must be scalable. Typical present and future

applications include web-based applications, e-commerce, multimedia news

services, distance learning, remote medicine, enterprise management, and

network management. They should be deployable in a wide range of scales,

in terms of numbers of users and services, quantities of data stored and

manipulated, rates of processing, numbers of nodes, geographical coverage,

and sizes of networks and storage devices. Small scales may be just as im-

portant as large scales (e.g., adapting to small systems, embedded systems).

Scalability means not just the ability to operate, but to operate efficiently

and with adequate quality of service, over the given range of configurations.

Let’s discuss now some problems that can appear when a system needs to

scale.

Scalability in respect to size is a frequent problem when dealing with

distributed systems. It appears when a varying amount of resources or

users has to be supported by the system. In this case we are confronted

with limitations of centralized services, data, and algorithms.

For example if only one service exists which has to support a large number

of requests, than this service becomes a bottleneck in the whole system. The

same thing is happening in case of centralized data. As example we can

think of an on-line phone book. Even if more database services permit

the users to query the on-line book, there is still a bottleneck created due

to communication load. All the requests at some point access the same

back-end database.

Another problem is to have a centralized algorithm. Here a very good

example is the routing problem. In wide networks (e.g. WANs) a large

number of messages are transported from one node to another. An optimal

path can be calculated if all the information about the topology of the

network is known by the routing algorithm. In this case an algorithm from

graph theory can be executed (e.g. for determining maximum flux through

the network, or the fastest connection) in order to find the desired path.

But, this implies that information about the network should be collected,

information that can change very often. However, only to maintain this

information up-to-date, a lot of traffic will be generated. That’s way a

15

more natural approach for this problem is to have a decentralized algorithm,

which has the following characteristics:

1. No machine has information about the complete system state

2. Machines make decisions based only on local, partial information

3. If a machine fails, the algorithm can still provide a solution

4. There is no time synchronization

Another issue is the geographical scalability. A WAN network suffers when

compared to a LAN network in terms of communication performance and

reliability. Also, the connections in a WAN network are point-to-point, so

that no broadcast protocol is possible.

To solve these scalability problems there are basically three techniques:

hiding communication latencies, distribution, and replication.

Communication latencies can be hidden when using asynchronous com-

munication. In this way the system can do other tasks so long as some

information is not yet available from the network.

Distribution involves that a component is splitted in smaller parts which

are spread over the network. An example of distribution is the Internet Do-

main Name System (DNS). The DNS name space is hierarchically organize

into a tree of domains, which are divided into nonoverlaping zones. The

names in each zone are handled by a single name server.

Replication of a component in a distributed system can help to balance

the load of the system and also provides a higher degree of fault tolerance.

This is the case of web site mirrors, where the same data is available in

different places of the Internet. If a mirror is faulty from some reason the

user can choose another mirror of the same site.

2.2 Middleware

In the previous section we reviewed the characteristics of distributed sys-

tems. Also, we could see the problems that occur when building such sys-

tems. A possible solution to cope with these problems is to use a middle-

ware.

16

The term middleware first appeared in the late 1980s to describe net-

work connection management software, but did not come into widespread

use until the mid 1990s, when network technology had achieved sufficient

penetration and visibility [3]. By that time middleware had evolved into a

much richer set of paradigms and services offered to make it easier and more

manageable to build distributed applications. Concepts similar to today’s

middleware previously went under the names of network operating systems,

distributed operating systems and distributed computing environments.

2.2.1 Middleware definition

In the literature, there are different middleware definitions. One which is

more complete and covers more aspects of the term is: “Middleware is the

software that assists an application to interact or communicate with other

applications, networks, hardware, and/or operating systems. This software

assists programmers by relieving them of complex connections needed in a

distributed system. It provides tools for improving quality of service (QoS),

security, message passing, directory services, file services, etc. that can be

invisible to the user” [7].

Middleware provides a higher-level abstraction layer for programmers

than Application Programming Interfaces (APIs) such as sockets that are

provided by the operating system. This significantly reduces the burden

on application programmers by relieving them of this kind of tedious and

error-prone programming.

Middleware is designed to mask some of the kinds of heterogeneity that

programmers of distributed systems must deal with [3]. They always mask

heterogeneity of networks and hardware. Most middleware frameworks also

mask heterogeneity of operating systems or programming languages, or

both. Few of them, such as CORBA, also mask heterogeneity among vendor

implementations of the same middleware standard. Finally, programming

abstractions offered by middleware can provide transparency with respect

to distribution in one or more of the following dimensions: location, concur-

rency, replication, failures, and mobility. The classical definition of an op-

erating system is the software that makes the hardware useable. Similarly,

17

middleware can be considered to be the software that makes a distributed

system programmable.

Middleware is quite a general term which covers a variety of software. In

the literature there are several ways to classify middleware. We avoid to

delve into detail here, but we will shortly enumerate the most important

middleware so that we can have a clear separation of what is the targeted

research area for our middleware and what is not intended to cover:

• Transactional middleware. Supports transactions involving compo-

nents that run on distributed hosts. Transactions oriented middleware

uses the two-phase commit protocols [6] to implement distributed

transactions. Examples of transaction middleware: IBM’s CICS [31],

BEA Tuxedo [28].

• Message oriented midlleware (MOM). Supports the communication

between distributed system components through message queues

across the network. As characteristics that differenciate MOMs from

other types of middleware can be mentioned: asynchronous communi-

cation, group communication, storing of messages on persistent stor-

age. Some examples of MOMs: IBM’s MQSeries [26] and Sun’s Java

Message Queue [29].

• Procedural middleware. Extends the procedure call interface to offer

the abstraction of being able to invoke a procedure whose body is

across a network. Remote procedure call (RPC) systems are usually

synchronous, and thus offer no potential for parallelism without using

multiple threads, and they typically have limited exception handling

facilities. RPC was devised by Sun Microsystems in the early 1980s.

• Object middleware. Makes object-oriented principles, such as object

identification through references, inheritance, polymorphism, avail-

able for development of distributed systems. The communication be-

tween objects (client object and server object) can be synchronous,

deferred synchronous, and asynchronous using threading policies. The

Common Object Request Broker Architecture [13] is a standard for

distributed object computing. It is part of the Object Management

Architecture (OMA), developed by the Object Management Group

18

(OMG), and is the broadest distributed object middleware available

in terms of scope. Another examples of object middleware are: Mi-

crosoft’s DCOM [10] and Sun’s Java RMI [45].

• Component middleware. Components are third-party deployable soft-

ware modules that can be composed in ways unforeseen by their de-

velopers to produce desired behaviour [22]. A component middleware

is a configuration of components which are selected either at build-

time or at run-time. As examples we can mention: OMG’s CORBA

Component Model [14], Microsoft’s .NET [47] and Sun’s Enterprise

Java Beans [20].

• Publish-subscribe middleware. A special type of message oriented

middleware is the publish-subscribe middleware. Publish-subscribe

systems differ from point-to-point systems in the way that the com-

munication between the end points is anonymous, asynchronous and

loosely coupled. In a publish-subscribe communication model ap-

plications use named topics rather than network addresses to dis-

tribute data. Publishers simply create a publication and give it a

topic name. Then, they can send issues (data) for the already created

topic. Subscribers simply create a subscription for a topic name and

they instruct the middleware to take specific actions when a new is-

sue arrives. Examples of publish-subscribe middleware are: Elvin [55],

Tibco Rendezvous [32], NDDS [33].

• Service oriented middleware. A service oriented middleware is essen-

tially a collection of services. A service realizes some functionalities

and has the following properties:

1. The interface to the service is platform-independent.

2. The service can be dynamically located and invoked.

3. The service is self-contained. That is, the service maintains its

own state.

The idea of service oriented architecture departs significantly from

that of object oriented programming, which strongly suggests that you

19

should bind data and its processing together. Therefore, the service

oriented architecture has as a main goal the achieving of loose coupling

between the software components, which are services. Examples of

service oriented architecture are Web services like SOAP [62]. Our

middleware approach uses service oriented principles too, more details

will be presented in section 4.1.

While the existing middleware covers a broad range of application do-

mains, they still have several shortcomings like:

• inflexibility, they do not respond well to changing requirements.

• unscalability, even that they perform good in local-area networks,

they are not able to scale to wide-area networks and at the other

extreme to systems with low resources, embedded systems.

As a result new middleware appeared that addresses these requirements,

such as:

• Adaptive and reflective middleware. Adaptive middleware is software

whose functional and QoS-related properties can be modified either:

– statically, e.g., to reduce footprint, leverage capabilities that exist

in specific platforms, enable functional subsetting, and minimize

hardware/software infrastructure dependencies.

– dynamically, e.g., to optimize system responses to changing en-

vironments or requirements, such as changing component inter-

connections, power levels, CPU/network bandwidth.

Reflective middleware makes the internal organization of systems as

well as the mechanisms used in their construction both visible and

adjustable at run-time. It permits automated examination of the

capabilities it offers, and automated adjustment to optimize those ca-

pabilities [52]. Examples of reflective middleware are: OpenCORBA

[38], FlexiNet [30], Quarterware [56].

• Middleware for Mobile Computing. They address problems like net-

work unreachability, low bandwidth connection (9600 baud), peer-to-

peer connections, etc.

20

• Real-time middleware. Addresses systems which need real-time prop-

erties and will be discussed in section 2.2.3 as it makes the subject of

the present thesis.

Before going to discuss about the section for our research domain in the

middleware area, we will discuss about what we understand through the

real-time notion, while this is an important term for the research described

in the thesis.

2.2.2 Notion of real-time

Real-time systems are defined as those systems in which the correctness of

the system depends not only on the logical result of the computation, but

also on the time at which the results are produced [57]. As a completion

to this definition we can add that “guaranteeing timing behavior requires

that the system be predictable. It is also desirable that the system attain

a high degree of utilization while satisfying the timing constraints of the

system”. In achieving predictability, a system must have bounded worst

case execution times for all its internal components. Timing constraints for

activities to be done in a real-time system can be more complex, but usually

there are periodic or aperiodic. An activity is aperiodic when a deadline

can be attached for the start time or end time of the activity or even for

both. In the case of a periodic activity, a period might mean “once per

time interval T” or “exactly T units apart” [58].

Depending of the correctness of the system to respect the deadlines the

real-time systems can be divided in three categories:

• Soft real-time, when the system can tolerate some degree of latency,

can miss some deadlines without compromising the whole system.

• Hard real-time, when a missed deadline result in a failure of the sys-

tem.

• Firm real-time, when the result of an operation becomes worthless

after the missed deadline.

Another important point when discussing about real-time systems is the

moment when the activities has to be scheduled for execution, otherwise

21

stated: the scheduling used by the real-time system. Here we can distin-

guish:

• static scheduling, priorities are assigned to the activities to be sched-

uled a priori and do not change during run-time. Static scheduling

policies allow complex analyzes to be made before execution. Ev-

ery situation can be tested and information like: deadlines, execution

times, activity inter-dependencies which affect the timing constraints,

order of executed activities, resources needed by each activity, can be

determined during the tests. Static scheduling policies algorithms

introduce almost no overhead in the system at run-time. However,

they realize usually a lower utilization of the processor, because the

priorities are set in concordance with the peak load for each activity.

Example of static scheduling policies are: Rate monotonic (RM) [36],

Fixed Priority (FP) [39].

• dynamic scheduling, priorities for each activity to be scheduled can be

changed during run-time. Dynamic scheduling policies are more flexi-

ble, adapt better to the actual demands of the system which result in

a better utilization of the processor for low or average loads of activ-

ities. The drawbacks are that they need extensible testing and they

introduce a higher overhead in order to be implemented. Examples of

dynamic scheduling policies are: Earliest Deadline First (EDF) [58],

Least Laxity First (LLF) [41].

As a distinction from normal systems, real-time systems do not have the

fairness characteristic. Thus, the activity which has the highest priority

gets all the needed resources like: CPU, memory, etc. In non real-time

systems the demand of all activities are tried to be solved on a more or less

fair basis. On the other hand, non real-time systems try to maximize the

overall performance of the system, as in real-time systems predictability is

the main goal.

2.2.3 Middleware for real-time embedded systems

Using traditional middleware solutions can not satisfy the requirements of

special distributed applications which need to react to events in a deter-

22

mined time. In fact traditional middleware does not consider notions such

as time, priorities, in general quality of service. It performs the task in

a “best effort” fashion. Furthermore, resources are limited in embedded

systems. Therefore a new type of middleware emerged where issues like

efficiency, predictability, and scalability are considered stringent.

Conventional middleware is developed for general purpose applications.

In such systems, memory is often abundant. Thus, middleware can have at

least several megabytes without affecting system performance or cost. In

contrast many embedded systems have tight constraints regarding memory

footprint due to cost, power consumption or weight restrictions. For ex-

ample space systems, even in the last decade, frequently have less than a

megabyte of on-board memory [63]. Therefore a middleware designed for

embedded systems has to be able to scale down and to respect low memory

footprint constraints.

As important as the memory footprint, is the real-time characteristic

of the middleware. With this respect, the middleware has to offer means

to user applications for controlling timing constraints, priorities, resource

allocation like: CPU, memory, network bandwidth. All these require mech-

anisms at the middleware level to assure that the user application is able

to keep the deadlines.

Some of these requirements can be specified by the user application

through quality of service information. But, of course the middleware

should provide necesary API functions to accept QoS information from

the user side. The enforcement of the QoS information can be made in two

ways:

• passive, the middleware can just map these information to the under-

lying operating system and communication system and provide the

user information about the success of the enforcement.

• active, the middleware tries to use the resources of the underlying

systems together with its own mechansims in order to realize the

enforcement of the QoS information.

Nevertheless the middleware should introduce as little as possible perfor-

mance overhead. While the targeted systems usually have low power CPUs

23

the middleware should spare the precious clock cycles, especially if these

can bring missed deadlines to the application. The performance overhead

can be a result of: internal message buffering strategies which can produce

non-uniform behavior of the middleware for different sizes of the messages,

excessive data copying, long chains of method calls, inefficient data mar-

shaling, and lack of integration with underlying real-time OS and network

QoS mechanisms.

2.3 Refining the problems and the objectives

Following the introduction chapter, where an overview of the research theme

of the presented thesis was given, this chapter took a step further to enlarge

and deepen this view. This should make the reader more familiar with the

research area. Moreover, it should make him/her discover the multitude of

perspectives when looking at the research subject of this thesis. On one

hand this is good because the reader can find out all the important issues

that have to be tackled when discussing about the thesis subject. On the

other hand, due to the fact that the number of issues is quite large, in the

reminding of this section will be given only the issues which we are focusing

on.

First of all it should be mentioned that the main focus of the research is

to ease the development for distributed real-time embedded systems.

As a solution to deal with the distribution we choosed to use a middleware.

More precisely our middleware addresses, regarding the distribution prob-

lem, the following issues:

• networks, hardware, operating system and programming language het-

erogeneity. A distributed system contains many computation nodes

and inherently different hardware, operating systems and program-

ming languages over which they have to be implemented. Also, the

nodes can be interconnected through different networks. Our mid-

dleware guarantees that the user doesn’t have to deal with all these

kinds of heterogeneity, but to focus on the logic of the application.

• access transparency. The user of our middleware can interact in the

same manner with middleware components (services in our case), re-

24

gardless of where there are: local or remote, or how there are imple-

mented.

• location transparency. Middleware components can find other com-

ponents regardless of location.

Regarding embedded systems, our middleware approach aims towards:

• high scalability

• minimize the memory footprint

• minimize the performance overhead.

A micro-kernel architecture concept in combination with a service archi-

tecture is proposed and evaluated in this work.

Finally, our middleware provides real-time features using the following

techniques:

• guarantying predictability for all the internal middleware components

• giving control to the user over end-to-end system resources (e.g., mem-

ory, CPU, network bandwidth). This control can be achieved directly

through middleware API or, indirectly using corresponding QoS pa-

rameters.

25

26

Chapter 3

STATE OF THE ART

This thesis explores the development of middleware for real-time embedded

systems. In this chapter will be presented existing solutions in this domain

which can be categorized from the point of view of standards in:

• CORBA compliant middleware

• Non CORBA middleware suitable for DRE

3.1 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard

for distributed object computing. It is part of the Object Management Ar-

chitecture (OMA), developed by the Object Management Group (OMG).

The CORBA specification [13] is supported by more than 800 organiza-

tions. CORBA specification is object-oriented and is based on a client-

server model for distributed computing. It makes possible that objects are

available for remote invocations regardless of the language in which they

are written or the system environment (e.g., operating system, CPU type)

in which they exist. The Object Request Broker (ORB) is responsible for

all the mechanisms required to find the object’s implementation, prepare it

to receive the request, communicate the request to it, and carry the replay

(if any) back to the client. Figure 3.1 shows the structure of a typical ORB.

To invoke operations on a remote distributed object, a client must know

the interface of the object. This interface contains methods of the object,

types of data to be passed as parameters for the methods and is defined

27

in the OMG Interface Definition Language (IDL). These interfaces can be

further translated to different programming languages like C++, C, Java,

Smalltalk and Ada.

Client Object Implementation

���������������
���������������

interface identical for all ORB implementations

there may be multiple object adapters

ORB Core

Object
AdapterIDL

Stubs

stubs and skeletons for each object type

�����
�����
�����
�����

ORB dependent interface

Invocation
Dynamic

���������������������
���������������������

ORB
Interface

��

��

Skeleton
Dynamic Static IDL

Skeleton

	�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�

�
�
�

�
�
�

�������
�������
�������
�������

�
�
�
�
�������

Normal call interface

Up−call interface

���
���
���

���
���
���

Figure 3.1: Main components of ORB architecture

In order to enable various ORBs from different vendors to communicate

to each other, OMG specified a general ORB interoperability architecture

named General Inter-ORB Protocol (GIOP).

3.1.1 Minimum CORBA

Minimum CORBA is a sub set of CORBA which appeared as a necessity to

support systems with limited memory resources, embedded systems. Mini-

mum CORBA has the same goals as CORBA, portability and interoperabil-

ity, and represent a trade-off between usability and resource conservation.

Features omitted from CORBA could still be implemented in applications

as long as they are needed and system resources permits.

28

3.1.2 Real-time CORBA

Real-time CORBA (RT CORBA) is a set of extensions to CORBA which

enable an ORB to be used in a real-time system. The goals of RT CORBA

specification is to support the developer in building predictable distributed

systems, by providing mechanisms to control resources like: CPU, mem-

ory, and network. The current version of RT CORBA supports only fixed

priority scheduling. A Request For Proposal (RFP) for dynamic schedul-

ing which should be addressed in next versions of RT CORBA is started.

RT CORBA does not guarantee that deadlines will always meet, but aims

to provide the developer a middleware which behaves in a deterministic

manner. For realizing this objective it addresses a series of issues like:

• Processor resource management. In order to use the processor in a

predictable way, RT CORBA assigns Real-time CORBA Priorities

to all operations of CORBA objects. These priorities are global on

all the platforms where RT CORBA is implemented and assure an

uniform priority model.

• Memory management. RT CORBA enables the user to specify the

number of threads that are used by the middleware, the amount of

memory that each thread should have and the amount of memory

reserved for queuing CORBA requests.

• Network resource management. Network resources are controlled in

the following ways:

– the application can select and configure the available network

protocols. For the moment only TCP/IP has been defined by

OMG (which is not a real-time communication mechanism),

but other vendors can implement other network protocols, e.g.,

VME/PCI, IP Multicast, 1394, etc.

– the client can obtain a private connection to a server, which will

be not shared with other connections

– the client can request to use multiple connections to the server.

The way that RT CORBA deals with this connections is trans-

parent to the application.

29

As described earlier, OMG addresses real-time distributed applications

through a separate extension to the CORBA specification which is called

CORBA Real-time. Also, the embedded systems have different require-

ments than general purpose middleware for distributed systems and these

are reflected by OMG in a subset of the CORBA specification named Min-

imum CORBA. First, available implementations which comply with one or

both of these tailored specifications of CORBA, are discussed. Later, non

CORBA compliant approaches are presented.

An overview will be given afterwards which can help the reader to observe

the differences between the discussed middleware in relation with: memory

footprint, real-time, scalability and architecture design techniques.

3.2 CORBA compliant middleware

The most significant CORBA implementations for the domain of embed-

ded real-time distributed applications are: TAO/ZEN, ORBExpress RT,

e*ORB RT, Visibroker RT, ROFES. They will be described in the follow-

ing section.

3.2.1 ORBExpress RT

ORBExpress RT is one of the few CORBA implementations which addresses

real-time embedded applications. The product is part of the ORBExpress

family developed by Objective Interface Systems since 1997. The latency

and memory overhead are significantly reduced compared with other real-

time middleware solutions as shown in a study conducted by Boeing [12].

It provides Distributed Priority Inheritance and propagation which are es-

sential features for maintaining end-to-end predictability. Focusing on em-

bedded systems, it has the ability to adapt to different transport media

which are used by these systems. Here can be enumerated: ATM, 1394, IP

Multicast, VME/PCI bus, shared memory or even a proprietary one. The

proprietary transports can be implemented and plugged in the platform by

the developer.

From the information provided by the company, the minimum footprint

which the Orb can reach, using a highly customized configuration (proces-

30

sor, operating system, network, etc.), is 93k. However, this configuration

does not provide real-time capabilities. On the other side, when using

the Orb in more common operating conditions, like on an embedded real-

time operating system, VxWorks, and a PowerPc processor, the footprint

is around 168 KB. Also, in this configuration of the Orb, real-time func-

tionalities are not included.

3.2.2 TAO

TAO is an open source Orb developed by Douglas Schmidt and his re-

search group from Universities of Washington and California, Irvine. It

is developed on top of a framework called Adaptive Communication En-

vironment (ACE), which is a widely used, freely-available object-oriented

framework that contains a rich set of components implementing design pat-

terns for high-performance and real-time communication systems. One of

the strengths of the TAO middleware is the use of designed paterns [48] [51].

They describe solutions to common problems which can appear quite of-

ten in application development, together with advantages, disadvantages

and practical examples for these solutions. Because of using these high

level principles in development, the TAO middleware is easy to be under-

standable by the developers. As a disadvantage of applying these general

solutions for special applications, like those executed on embedded systems,

is exactly its generality. And this, because more specific, more optimized

(e.g., for memory footprint) solutions should be considered for the same

problems. This was one of the reasons why the research group started a

new development process for the RTZen.

It is important here to mention that the TAO research group played

an important role in influencing the OMG’s Real-time CORBA specifica-

tion. They have used TAO or ACE in projects with important companies

like: Boeing, Motorola, BBN, Lucent, Nokia, Lockheed, Microsoft, Cisco,

DARPA, etc. and the open community around these projects count more

than 100 persons.

TAO development was started with the aim to realize a CORBA com-

pliant real-time Orb which should provide high quality reusable software

that can be used in mission critical applications. Later, the goal to adapt

31

TAO to embedded systems made the research group to find techniques for

tailoring the Orb to the memory constraints imposed by the new targeted

applications domain. With a memory footprint for the complete C++ li-

braries of about 1.4 MB(for Linux), TAO is still not appropriate for the

use on embedded systems. However, in the last period, commercial support

is provided by a series of companies as OCI, Riverace, PrismTech which

includes consulting regarding the techniques used to tailor the Orb to the

specific targeted embedded system.

3.2.3 RTZen

RTZen is developed by the same team of Douglas Schmidt and is based on

the ACE framework too. Even that the techniques used are quite the same

- applying design patterns for solving the problems - the focus is to develop

a Java real-time Orb for embedded systems. The Orb is based on a micro-

kernel architecture to minimize the footprint and is implemented using the

Real-time Specification of Java (RTSJ) in order to acheive predictability of

the middeware in the Java world. Another important aspect is that RTZen

can run on top of a conventional Java Virtual Machine (JVM) and also on

interpreted and ahead-of-time compiled RTSJ platforms. For using RTZen

on an ahead-of-time compiled RTSJ platform, the research team developed

an additional tool, jRate (Java Real-Time Extension), which is an extension

of the GNU GCJ compiler and compiles java class files in target executable

files. The footprint of the actual implementation of RTZen is about 896

KB, and implements partially the RT CORBA standard.

3.2.4 OpenFusion e*ORB

OpenFusion e*ORB is one of the most important Orbs in the domain of em-

bedded real-time systems. Together with ORBExpress, they were the only

ones which focused from the begining toward systems with low resources

and later, providing also real-time capabilities. This brings to the Open-

Fusion e*ORB the advantage of a bottom-up evolving in contrast with the

top-down strategie used by other Orbs to adapt from normal systems to

32

small resource systems. It was in 1998 the only implementation of a C++

CORBA ORB running on handheld device Operating Systems.

The design of the Orb is based on a micro-kernel architecture, making it

possible to adapt to small systems. What is remarkable for this Orb, is the

high control of the user over the components of the Orb. The micro-kernel

architecture provides to the user the ability to easily add Orb components

as modules or libraries, and configure them according with the application

needs. Moreover, the Orb provides a set of defined points where the user

can intercept even the interactions between the Orb components, providing

a deeper information about the actions performed by the Orb. This can

substantially help the user to understand and eventually to optimize its

application in order to meet the required real-time properties. The Orb

defined points are called interception pluggable boundaries and can be ob-

served in the Fig. 3.2.

Transport

GIOP

ORB

POA

servant code

GIOP

ORB

client code

Figure 3.2: OpenFusion e*ORB’s Open Pluggable Boundaries

Some of the componenets which the user can configure are:

• communication: the wire protocol, wire transport can be user imple-

mented, so protocols which are not supported by the company can be

added.

• POA: the size of the Portable Object Adapter(POA) can be adapted

to the user application. If the user needs a more complex adapter,

having so called child POAs, new code is plugged to the Orb which

provides this functionality.

33

• different thread pools strategies can be plugged in by the user.

• different queue dispatching techniques are available as plug-in mod-

ules.

Its reduced footprint permited to adapt even to Digital Signaling Process-

ing (DSP) environments, which have severe requirements regarding the pro-

cessing power and the amount of memory. The footprint for a minimum

real-time server for e*Orb 2.3 in C++, using shared libraries, without de-

bugging information, on a Linux OS with a 8086 compatible processor is

about 1.1 MB. On the other side the company states that a minimum client

can reach a size from 100 KB.

3.2.5 Visibroker RT

Visibroker RT is developed by Borland and is used by some important com-

panies like: Cisco Systems, Deutsche Bank, Ericsson, Hitachi, Nokia, Sun

Microsystems, etc. Like the other Orbs designed for embedded systems

it provides a mechanism to plug in, beside the TCP/IP network proto-

col, other custom network protocols needed by the embedded applications.

Notable issues which has to be mentioned for Visibroker RT are:

• communication is optimized for in-process communication between

clients and servers. The performance obtained is comparable to direct

function call.

• the Orb can be tested without target hardware, using tools delivered

together with Visibroker which simulate the hardware.

• like OpenFusion e*ORB, the Orb exposes to the user an interface

which can be modified in order to debug the Orb and get more infor-

mation about the Orb execution

The footprint of Visibroker’s RT 6 shared libraries for C++, without debug

information and not using exceptions, is on a Linux OS with a Pentium 4

processor, approximatively 5 MB for the Minimum RT CORBA 2.6 specifi-

cation. As an important goal for Visibroker is to speed up the development

process, a console visualization tool is available which helps the user to

34

inspect different aspects of the Orb itself or of the distributed objects man-

aged by the Orb.

3.2.6 ROFES

ROFES is a middleware developed at the Faculty for Electrical Engineering

and Information Technology Aachen, Germany [50]. The actual implemen-

tation of ROFES, version 0.4, implements partly the RT CORBA specifi-

cation. One of the aims of the development team is to realize in the near

future a fully compliant RT CORBA Orb. ROFES provides support for

other network mediums like: CAN Bus (Controller Area Network) [9] and

Scalable Coherent Interface (SCI) [27]. It uses a microkernel architecture

which permits that different components can be dynamically loaded into

the platform. It is notable to mention that the size of the C++ library,

without debug information, exceptions and run time type identification is

about 324 KB.

3.3 Non CORBA middleware suitable for DRE

3.3.1 NDDS

NDDS (Network Data Delivery Service) is a publish-subscribe middle-

ware for distributed real-time applications developed by Real-Time Inno-

vations [33].

NDDS provides real-time by allowing to set a number of parameters for

subscription and publication which give the programmer control over:

• Subscription deadline. This deadline lets the developer to set how

long to wait for the next publication issue.

• Subscription minimum separation. Minimum separation lets the de-

veloper set the highest rate at which the application receives data.

• Publication strength. Strength lets the developer establish hierarchies

among applications publishing the same topic. The idea is similar

with having priorities for issues for the same topic.

35

• Publication persistence. Persistence lets the developer define how long

each issue is valid.

It is important to note here that Real-Time Innovations was the lead au-

thor for the Data Distribution Service Standard Specification [17] adopted

by OMG. The specification establishes a standard interface for publish-

subscribe communications for real-time systems.

3.3.2 MidART

MidART stands for Middleware and network Architecture for distributed

Real-Time systems. MidART was developed starting with 1995 at Mis-

ubishi Electrical Research Laboratories. The main focus is to enable easy

communication over different networks. Thus, they have introduced some

new concepts: RT-CRM (Real-Time Channel based Reflective Memory)

and Selective Real-time Channels. RT-CRM is a software-based unidirec-

tional reflective memory. It provides data reflection with guaranteed timeli-

ness, while allowing applications to specify how and when data are reflected.

Data reflection can be done per period or upon a write. The communication

model is similar with publish-subscribe paradigm. The server application

creates a reflective memory area and all new data written in this area are

sent to the remote clients which register to this area. The communications

created in order to enable the data transfer are unidirectional. A distinction

of the MidART is the admission control support, which guarantees that the

QOS parameters specified by user for timeliness and transfer rates can be

achieved by the middleware.

3.4 Conclusions

This section presented existing solutions in the area of distributed real-time

embedded systems. All of them address the requirements for DRE systems,

requirements which get different weights in the overall end solution. For

example, interoperability is one aspect which becomes important specially

for large distributed applications which spread over a highly heterogeneous

environment and use, probably, different specialized middleware. For this,

36

CORBA solutions are superior to the others, because they implement the

same standard which permit them to easily inter-communicate. On the

other side, non CORBA solutions are not restricted to a standard and have

more freedom when choosing necessary means to reach the solution.

For each described middleware there were presented some of the defining

ideas which delimit them from the others. Table 3.1 realizes a summary

of these solutions. We will also include in the comparision our middleware

approach which is described in the next two chapters. Our middleware is

named OSA+, which stands for Open System Architecture, Platform for

Universal Services. The comparison criteria are described below:

• Footprint, the three sizes have the following meaning:

– total size of the middleware

– size of an unoptimezed minimum application

– size of an optimized and highly configured minimum application

For the cases where only the total size of the middleware is present,

there are included also additional features which can be excluded when

a minimum application should be built. To reduce the size of an end

product, we can use the following techniques:

– remove debug information from libraries, or classes in case of

Java

– make custom libraries for the specific application and remove

from them, the symbols which are not used in the application

– rename classes, methods, variables with shorter names (there are

tools which automatically make this)

• Scalability :

– - : not enough information is available

– 0 : the middleware is able to scale down, but not for critical

systems where resources are minimum

– + : the middleware is able to scale down to low resource embed-

ded systems

37

Middleware Footprint Scalability Architecture Middleware

category

Standards Programming

language

e*Orb

- 7,9 MB

 sh. libs

- 1,1 MB

 sh. libs

-> 100KB

+
compositional

microkernel

object

oriented

- RT CORBA

- Minimum

CORBA C, C++

OrbExpress RT

-

- 168 KB

- 93 KB

+ -
object

oriented

- RT CORBA

C++, Ada

TAO

- 1,5 MB

 sh. libs

-

-

0
design

patterns

object

oriented

- RT CORBA

- Minimum

CORBA
C++

RTZen

- 896 KB

-

-

+
compositional

microkernel

object

oriented

- part. RT

CORBA Java

Visibroker RT

- 5 MB

 sh. libs

-

-

- -
object

oriented

- RT CORBA

- Minimum

CORBA C++

ROFES

- 324 KB

-

-

+
compositional

microkernel

object

oriented

- part. RT

CORBA C++

NDDS

-

-

-

- -
publish/

subscribe

- DSS from

CORBA

- RTPS
C

MidART

-

-

-

- -
publish/

subscribe
- C++

Our approach

(OSA+)

- 75 KB

- 53 KB

- 29 KB

++
full

microkernel

service

oriented
- Java, C

Table 3.1: State of the art, middleware for DRE

– ++ : the middleware is able to scale down to very low resource

embedded systems

• Architecture:

– compositional microkernel: the middleware uses a microkernel

concept only for composing a desired middleware configuration

based on some building blocks which extend the features of the

middleware. The building blocks are used as libraries which are

added to the application and are tightly coupled through linking

38

or compiling dependencies. Therefore, the middleware compo-

nents can not be plugged in the middleware if these dependen-

cies are not satisfied. For example using e*Orb is not possible

to build a real-time application without using the real-time mu-

tex library due to linking dependencies. Another example would

be that a client needs at compile time the interface definition of

the server when using the CORBA static invocation method for

the objects. This can be avoided using the dynamic invocation

method. But, this introduces much more degradation in terms

of code size and performance and is not suitable for applications

running on embedded systems. Another important issue is that

the compositional microkernel doesn’t provide a real medium for

inter-communication between the components, which normally

introduces a relaxing of the coupling between the components.

Further, each component has its individual interface.

– full microkernel: additionally to the compositional microkernel

concept, the full microkernel architecture provides a basic mech-

anism of communication between components. Another impor-

tant element is that components do not have compilation or link-

ing dependencies, but only semantic dependencies, so they can

exist and provide reduced functionality if other dependencies are

not present on the platform. The components are entities which

are self-contained and share the same interface. This signifi-

cantly increase the flexibility and scalability. Figure 3.3 shows

the difference.

– design patterns: for reaching the goals, the middleware uses

clearly stated solutions for a class of recurring problems. These

solutions are analyzed and exposed to the user in a standard

way.

As it can be seen the memory footprint for all presented middleware is not

suitable for a system with less than 100 KBytes. Furthermore, non of them

have realized a full microkernel. To delimit the work presented in this thesis

from the other presented middleware, the last line of the table contains as a

39

preview of chapters 4 and 5 the comparison values for our approach named

OSA+:

• footprint: OSA+ has the smallest footprint which makes it easily

adapt to very low resource embedded systems.

• full microkernel architecture: apart from the facts presented in the

previous paragraph, OSA+ provides a uniform interface for its build-

ing components (services). This means that all the components, re-

gardless if they are middleware components or user components, can

be included in the platform in the same manner. No difference is

made. This leads to a maximum flexibility and scalability.

User
component 1

User
component 2

Middleware
component 1

Middleware
component 2

IF IF

IF IFcommunication mechanism

microkernel

User
component 1

User
component 2

Middleware
component 1

Middleware
component 2

microkernel

IF3 IF4

IF1 IF2

compilation/linking
dependencies

Compositional microkernel architecture Full and uniform microkernel architecture

Legend:
IF − interface

compilation/linking
dependencies

Figure 3.3: Microkernel architectures comparison

• service orientation: OSA+ is a service oriented architecture. As we

discussed in section 2.2, services are defined by their platform and

language independent interface. They are defined at a higher ab-

straction level than the objects, which use a finer level of granularity.

Thus, the management of services is more simple than in the case of

objects, because they are simply less in number than objects. An-

other advantage, when comparing with object oriented middleware,

is that services are self-contained. Once they are activated they have

their own execution flow and life cycle. On the other side, objects get

40

the execution flow of some thread. Therefore, additional techniques

to manage thread pools have to be implemented on object oriented

middleware.

41

42

Chapter 4

THESIS APPROACH

In the previous chapters we have presented, in the following order:

1. research goals of the thesis

2. research domain, which helps the reader to understand the research

background and the problems which appear when trying to reach the

goals

3. and finally, existing solutions, which inform us about what is already

done and give a first outline of what is defining this research from the

other solutions.

As a natural follow-up, in this chapter, we will present our approach to ease

and improve the applications development for distributed real-time embed-

ded systems. As a new concept for embedded real-time middleware, OSA+

is combining a purely service oriented concept with the full microkernel ar-

chitecture. To explain the design and the design motivation, this chapter

is structered in three sections, which describe the following issues:

• the general service oriented architecture of OSA+ and how it solves

the distribution problem

• how OSA+ adapts to embedded systems due to the microkernel prin-

ciples

• what the means to provide real-time are.

43

4.1 OSA+ general architecture

OSA+ is a service oriented middleware for DRE systems. It facilitates the

applications to be easily deployed and to communicate over a heterogenous

environment. In OSA+, the active communication parts are services. A

service, as already mentioned in section 2.2, realizes some functionalities

which are made public to the execution environment through an interface.

This interface can be accessed in a platform and a language independent

manner. In our case, the service interface is accessed through jobs. A job

consists of an order and a result. The order is sent from one service to

another to state what functionality the service should do, for which data,

and when the action should be performed. After the service executes the

order, a result is sent back. The communication of jobs is accomplished

by a platform. The platform facilitates the plugging of services which can

communicate with each other. Figure 4.1 shows the service oriented archi-

tecture of OSA+.

Middleware/OSA+ platform

Service Service

send order receive result receive order send result

Figure 4.1: OSA+: service oriented architecture

A natural question arrises now: why did we choose, in contrast to common

real-time middleware approaches, to have a service oriented architecture for

our middleware?

The motivation is based on the following reasons:

• higher abstraction level concept independent of the programming lan-

guage

• uniform approach

44

• loose coupling

• platform and programming language independent access to the service

• and as a consequence of all these, flexibility and efficieny

Let’s explain these ideas.

A service concept is defined at a higher abstraction level and, is inde-

pendent of programming language. The essence of a service is given by the

functionality of the service, by what it does. It can be argued that a service

concept is equal, when considering the abstraction level, with an object con-

cept used in OO (Object oriented) programming. In fact, they both expose

their functionality which is one of the main issues for both concepts, but

the significant difference comes in place when considering granularity. Ob-

jects are finer in granularity than services. A service can be in fact mapped

to an object in an OO programming language, which would be composed

inherently form many other objects to realize its functionality. To see the

difference of abstraction level an example will be helpful. Let’s consider the

functionality of moving from one town to the other. This can be done (not

in all the cases) by a car. In a service oriented architecture, the relevant

issues are that the car can realize the moving service and the quality of this

service, e.g., car speed and comfort. In an object oriented programming

there are additional issues which have to be considered, like:

• granularity: each other piece of the car is also an object

• how the car is built: the car object is composed using a certain ar-

rangement from other thousands of objects which are the pieces of

the car.

Therefore, the management of services is simpler, because they are not

syntactically inter-dependent, but only semantically and they are normally

less in number due to the higher level of abstraction.

With a service oriented architecture, an uniform middleware approach si

possible. As we will see in the next chapters, services are the only neces-

sary instances in our middleware to perform application and system tasks.

In contrast with other architectures, no libraries, shared objects, etc. are

45

needed. Middleware configuration, middleware extensions and the applica-

tions are realized by the same service structure.

Service oriented architectures realize a loose coupling between data and

its processing. This, again contrasts with object oriented programming.

To get a better picture about this, let’s consider another example. A CD

player realizes the functionality of playing CDs. This functionality can be

provided by other CD players: a portable player, the player in the car,

etc. So, you can use your CD on all this players, getting a different quality

of service when listening the CD. This is exactly what is happening in a

service oriented architecture, there is no binding between the data, in our

case the CD, and the processing, in our case the CD player. But in an

object oriented programming, using this example, every CD would come

with its own CD player which is able to play it.

In our middleware, the access to the service is realized through jobs which

are, in fact, messages. These messages have some special format which

are recognized by the platform and by the services which exchange them.

Nevertheless, they are platform and programming language independent.

Thus, the job communication makes the access to the services to be platform

and programming language independent. In fact the access is dependent

in our case only by the semantic interface of the service which dictates the

content of the messages.

CORBA succeeded in some extent to raise the level of abstraction for

objects and make it less dependent of the execution environment and the

programming language (a CORBA object abstraction can be mapped to the

C language as well). But still there are a number of dependencies, which

bind the object from the CORBA processing model, like: object activation

techniques through thread pools, and more important the interface to the

object, which is programming language dependent and generates mandatory

changes in the application in the case it is modified.

These properties provide flexibility and efficiency. Due to the uniform

service approach, the middleware can be adapted and scaled in a very flexi-

ble way, as it is shown in the following section. Since service management is

simpler than object management, the management overhead can be reduced

and the efficiency can be increased.

46

4.1.1 OSA+ as middleware

First of all, OSA+ is a middleware and it must solve the distribution prob-

lem. In section 2.3 we enumerated the issues which we tackle regarding

distribution, and these are:

• networks, hardware, operating system and programming language

heterogeneity.

• access transparency

• location transparency

Solving heterogeneity problem

To solve the programming language heterogeneity we have to port OSA+

concepts to different languages. At this moment, OSA+ is ported to C and

Java.

To deal with the other mentioned heterogeneities, we divided our middle-

ware in an environment independent part which is the OSA+ core platform,

and a part which adapts the middleware to the environment.

The OSA+ core platform contains no hardware nor operating system

dependent parts. It is maintained as small as possible and provides basic

functionalities which gives the posibility to the user to extend the platform

and configure for its needs (a microkernel, see section 4.2). Because the

core platform is environment independent and contains the user interface

of the middleware, the applications developed using OSA+ middleware will

implement the same interface on every platform where OSA+ is ported.

This shields the applications from the environment changes, and help the

user to focus more on the logic part of the application.

The adaptation part consists from services which are implemented by the

middleware developers. It adapts to every operating system where OSA+

is ported and also to different communication mediums. These services are

part from the basic services and they are: Process Service, Event Service,

Memory Service, and Communication Services. They will be described in

section 4.1.3. Currently, OSA+ is ported on Windows NT 4.0, VxWorks,

Linux RT, Komodo micro-controller and due to the fact that is available in

47

Java, OSA+ is running on all the operating systems where a java virtual

machine is implemented. In figure 4.2 we can see how OSA+ addresses

platform heterogeneity.

As mentioned before, the service is the uniform instance. There is no

difference between application services and basic services. They share the

same API, the same structure and communication principles.

User service User service

Basic services:
 - Process Service
 - Communication Services
 - Event Service
 - etc.

Extension services:
- Logging service
- Reconfiguration

Service

API

OSA+ core
API

Environment:
hardware, OS and

communication system

Functional extensions

Environment
independent

Environment
adaptation

Figure 4.2: OSA+: adapting to different environments

Besides the services which adapt the middleware to the environment, the

basic services contain an additional service called ARS (Address Resolu-

tion Service). This service permits the user to locate remote services and

local services in the same manner, providing location transparency to the

middleware. More about this service will be presented in section 4.1.3.

Once a service is located through the ARS service, the user can send jobs

to the service. The middleware will deliver the jobs to the service whether

the service is local or remote. The access to the service, which in our case

is the action to send jobs to the service, is transparent to the user. All

OSA+ platforms involved in the communication between two services will

work together to deliver the jobs to the corresponding services.

Having location and access transparency the user is not anymore con-

48

cerned about the issues which occur when having the application on dif-

ferent physical platforms, but perceives the environment presented by our

middleware as a overall virtual platform, figure 4.3.

OSA+
platform 1

Operating
system

Communication
system

Service 1,1 Service 1,m

OSA+ global
virtual platform

OSA+
platform n

Operating
system

Communication
system

Service n,1 Service n,k

Computer system 1 Computer system n

Communication
medium

... ...

....

Figure 4.3: OSA+ virtual platform

Additional services can be provided by the middleware which extend the

functionality of the middleware, these are extension services. An example

of extension service is the Reconfiguration Service which can be added on

the platforms where there is a need to replace, remove or add services at

run-time [53]. Again, the service is used as the uniform concept to extend

the functionality.

4.1.2 OSA+ core platform

The core platform, as already mentioned, provides basic functionalities in

order to extend the core and to adapt to the demands of the application

and the environment. The basic functionalities are:

• the middleware user interface: the API

• service management: services can be plugged into the platform

49

• local job management: jobs can be exchanged between local services

• basic support for quality of service.

They will be described in the following sections.

User interface

The user is able to interact and use the middleware through the interface

presented by the middleware, so called API (Application Programming In-

terface). When discussing about the API for a middleware we have to

address two points:

1. what functionalities offers the middleware to the user, through the

API

2. and, how the API looks for different programming languages.

For the first point, we already mentioned that the core platform contains

the necesarry functions to manage services, jobs, and quality of service

information. These functions will be described in the next sections.

The second point is related to the portability. Applications which are

not using a middleware and must be ported on different operating systems

have to solve the portability problem on their own. A good solution is to

base on APIs which are the same on every different platform where they

will be executed. For example, applications written in C which are based

on standards like ANSI C and POSIX, can be easily adapted to run on all

the operating systems where these standards are ported. This solution can

be applied when the application contains all the components written in the

same programming language. While middleware tends to solve the porta-

bility for programming languages too, the problem is solved by specifying

their API in an interface definition language (IDL). This specification is

then mapped to a programming language using a middleware tool. This

tool generates the necessary code and frames which are simply filled by the

user with the code desired for each function.

In our case we didn’t spent effort to realise such tools for the following

reasons:

50

• our middleware API is quite simple and it contains a relative reduced

number of functions. This eases considerable the use of the mid-

dleware without the help of extra tools which would map the IDL

interface to C or Java for our case.

• the time spent developing such tools, require additional human re-

sources which were not available.

Services and service management

Services are the active entities which can be added to the platform in order

to extend its functionality. A service can exist in our middleware in three

forms:

• as a procedural service

• as a lightweight service

• and as a heavyweight service.

A procedural service does not have its own control flow, but takes the

control flow of the service which sent the order, when processing the received

orders. In this case only a synchronous communication is possible, so the

sender of the order will be able to do other activities after the procedural

service is finishing to process the order, figure 4.4(a).

A lightweight service has its own control flow and has the same address

space as the platform. In this case it is possible to have asynchronous com-

munication. The middleware will make sure that the order will be sent to

the service receiver, while the service sender can do other activities, fig-

ure 4.4(b). The platform is able to create lightweight services only if the

Process Service is present on the platform. This service adapts the middle-

ware to the task management of the operating system (see section 4.1.3) and

creates threads which will host a lightweight service. For each lightweight

service, a priority can be specified. This separates the services by their im-

portance. Priorities are important for real-time and help for realizing the

predictability property for our middleware. More about service priorities

will be discussed in the real-time section 4.4.

51

A heavyweight service has its own control flow, but has a different address

space than the platform. To communicate with such a service, the platform

needs to have inter-process communication functionality included in the

Process Service.

The main reason to introduce procedural services on one side and

lightweight and heavyweight services on the other side is again efficiency:

many tasks in the application don’t need a control flow of its own. Thus,

overhead and complexity can be reduced by using procedural services. Fur-

thermore, the concept of the procedural service is vital for the entire uniform

service architecture: since light- and heavyweight services are only possible

when the Process Service is present to adapt to the operating system, thus

Process Service necessarily must be a procedural service. Otherwise, this

service could never be plugged in.

To distinguish between lightweight and heavyweight services is for effi-

ciency and flexibility reasons, too. Heavyweight services offer more protec-

tion while lightweight services run more efficiently due to the same address

space.

Sender service
 Receiver service

send order

send result

processing order:

procedural service:

process result:

(a) Procedural service

Sender service
 Receiver service

processing order:

lightweight service:

process result:

other activities:

send order

send result

other activities:

(b) Lightweight service

Legend: bars indicate control flow

Figure 4.4: Procedural and lightweight services

52

The user can enable a service on the platform by building first the ser-

vice and then make it known to the platform. The platform has a Service

class which has to be derived by the user to implement a custom service.

This class provides functions which a service can do, like: sendOrder,

sendResult, waitOrder, waitResult, etc.

On the other side, the core platform realizes a basic service management.

It offers two functions which add or remove a service from the platform:

registerService and unregisterService. By adding a service to the

platform, the user must provide: the name and the version of the service,

the service type (ex. lightweight) and a priority. The function returns an ID

for the service which identifies uniquely the service on the local platform.

The core platform realizes the service management by applying the Service

Configurator design pattern [34].

Patterns have roots in Cristopher Alexander’s work on urban planning

and building architecture [2]. Software design patterns first became popular

with the object-oriented Design Patterns book [25].

A design pattern systematically names, motivates, and explains a general

design that addresses a recurring design problem in object-oriented systems.

It describes the problem, the solution, when to apply the solution, and its

consequences. It also gives implementation hints and examples. The solu-

tion is a general arrangement of objects and classes that solve the problem.

The solution is customized and implemented to solve the problem in a par-

ticular context. [25]

A very important advantage of design patterns is the fact that they speed

up the development process by providing an almost ready made solution

that has been used earlier and proved to be efficient. Commonly used design

patterns also have the potential of being revised and improved over time,

and thus are more likely to perform better than home made designs.

The Service Configurator pattern decouples the implementation of ser-

vices from the time at which the services are configured into an application

or a system. This decoupling improves modularity of the services and al-

lows the services to evolve over time independently of configuration issues,

such as whether or not two services must be co-located or what concur-

rency model will be used to execute the services. In addition, the Service

Configurator pattern provides centralized administration of all the services

53

it configures. This facilitates automatic initialization and termination of

the services and can optimize performance by performing common service

initialization and termination activities [34].

The Service Configurator pattern requires all services to have an uni-

form interface for configuration and control. This allows the services to

be treated as building blocks that can be easily integrated as components

in our platform. The uniform interface which must be present by all the

services is given by the Service class of the core and has two parts:

• a mandatory syntactic interface, which realizes the physical binding

(due to the programming language) to the platform

• and a mandatory semantic interface, which presents the functionalities

provided by the service. This interface is accessed through the orders

that can be executed by the service.

Furthermore, the service can present its semantic interface through an op-

tional extension of the syntactic interface, which is called procedural in-

terface. The procedural interface contains functions which can be called

directly to execute the service functionalities. The procedural interface of

the service can be obtained by executting the getInterface function of the

service. The advantages and motivation of having this optional interface

are described in section 4.2.2. Figure 4.5 shows the Service Configurator

pattern used by our middleware.

The mandatory syntactic interface of a service contains the following

functions:

• getInterface, returns the optional procedural interface of the service

• serviceLoop, represents the execution body of the service and must

be overwritten by the user. For lightweight services, this function

is the start function for the thread which will host the service. For

procedural services, the function will be executed by the platform

every time when a new order is received.

• orderSignaled, executed every time an order is received for the ser-

vice. This function has to be as simple as possible and used only to

signal that an order is waiting to be processed by the service.

54

Service

-GET_QOS_PARAMS

-CONSTRUCT
-DESTRUCT

-RECONFIG

+orderSignaled()
+resultSignaled()

+getInterface()
+serviceLoop()

ServiceRepository

+get(ID : int) : Service
+getIterator() : Iterator

+remove(ID : int)
+add() : int

ExtensionServiceBasicServiceUserService

Figure 4.5: Service Configurator design pattern

• resultSignaled, executed every time a result is received for the ser-

vice. The same discussion from orderSignaled is valid here.

The mandatory semantic interface of a service consists of four platform

predefined orders which a service has to recognize. These are:

• CONSTRUCT, this is an order which is sent by the platform once the

service is registered on the platform. This is the first order received

by a service. The service can use it to allocate resources needed for

its life time.

• DESTRUCT, this order is sent by the platform when the service is unreg-

istered. The service can use this order to deallocate platform resources

or even to reject its unregistration.

• GET QOS PARAMS, when receiving this order the service should respond

with the QoS parameters supported by the service, if there are any.

More about QoS will be discussed in section 4.1.2.

• RECONFIG, this order is sent by the Dynamic Reconfiguration Service

to announce that this service should be reconfigured with another

55

one. The service to be reconfigured can act accordingly and do special

actions like: prepare the current state of the service to be transfered

to the new service, reduce at minimum the number of activities made

by the service, etc. This is part of another PhD thesis [53].

Beside the mandatory orders, any user defined and application specific order

can be used to realize applications.

The ServiceRepository is a container which maintains all services reg-

istered on the platform. It has to use as less memory as possible, but in

the same time it should adapt for cases when a large number of services are

present on the platform. For static applications where the number of ser-

vices is known and will not vary, the ServiceRepository can be configured

as a simple array. For more dynamic applications the ServiceRepository

is implemented as a BucketContainer which is explained in section 4.4.1.

The ServiceRepository has four basic functions:

• add, which adds a service to the repository and returns an unique ID

• remove, which removes a service from the repository. The ID of the

service to be removed is provided by the user.

• get, which returns the reference to a service with the ID specified by

the user

• getIterator, returns an Iterator which can be used to enumerate all

services actually maintained by the ServiceRepository. This iterator is

used for example by the platform when searching for a service knowing

its name.

Communication principles

Now that we know how the services can be built and included in the plat-

form, the next step will be to define how they exchange information. Our

middleware approach provides three ways to exchange information between

services which are shown in figure 4.6 and are discussed further.

56

Communication
in OSA+

Jobs communication
Basic communication

Chain communication

Procedural interface
communication

Figure 4.6: Communication methods in OSA+

Basic job communication

The basic job communication mechanism realizes the communication be-

tween services through messages. These messages are divided in orders and

results, where a pair (order, result) forms a job. The basic job mechanism

will be described step by step as it is used in a real application. These steps

are:

1. identifying the destination service for the orders

2. building the order which has to be sent to the destination service

3. filling the order with a message

4. choosing between connection-oriented or connectionless communica-

tion

5. sending the order and getting the result.

1. Identifying the destination service A communication is needed, for

example, when the user wants to transport some data over the network or

use some functionalities of a service - process the data and get back some

results. In both cases the user needs to specify the ending point of the

communication, the destination for its data. Our middleware presents the

services to the user as name and version pairs. In fact, to identify uniquely

a service on the global platform, the middleware needs more information,

like:

• information to uniquely identify the platform. This can be IP address

when communicating using internet protocol as network protocol or

serial port when using serial communication as network

57

• information to uniquely identify the service on the host platform.

This is the local service ID given by the platform once the service is

registered.

But, the middleware should be location transparent and should shield the

user from these details. Therefore, the core offers a lookUpService function

which searches a service by its name and/or version and returns back a

lookUpInfo object which contains information about the found service.

This object can be further used to send orders to the located service. The

lookUpService function will look first for services on the local platform,

and if no service is found, will use the ARS service to search on the global

platform.

For identifying a service, the user has also the possibility to use directly the

local ID of the service when a service is on the local platform and the ID is

known.

2. Building the order Orders can be built by the registered services using

the buildOrder function of the Service class. This function will return

back an order which can be transmitted to the destination service, but it

doesn’t contain any message. For the moment, the order represents only

the envelope for the message. An Order object has the following relevant

members regarding the basic communication mechanism (figure 4.7):

• serviceDestId, the destination service for this order. This parameter

can be empty in the case that a lookUpInfo object is used further for

the communication.

• serviceSourceId, the service which built and sent the order. This

service will get back the result in case it exists.

• orderId, this identifies the functionality of the destination service

requested through this order.

• priority, this member is important for real-time applications where

different priority levels have to exist in order to indicate the impor-

tance of each operation. In case that more orders have to be executed

by a service, the order with a higher priority will be executed first.

58

This priority is inherited by the result and becomes the priority of the

whole job.

• resultSize, in case that the processing of this order will produce a

result, the size of the result is needed by the platform for reserving

necessary resources.

• orderData, this contains the real message which has to reach the

destination service of the order. The message can contain different

parameters for the service functionality selected by this order. These

parameters can be filled before sending the order using platform func-

tions. On the destination service, the parameters will be read and

processed.

• endian, this indicates the byte order format for the message param-

eters stored in the orderData and in qosData.

• qosData, this contains QoS information requested by sending this

order. More details about handling QoS information will be discussed

in section 4.1.2.

− serviceDestId IM
− serviceSourceId P
− orderId M
− priority O
− resultSize M
− orderData O
− endian P
− qosData O

Order

order QoS information

message

Legend:

IM − indirect mandatory, has to be
 specified by building the order
 or later using a lookUpInfo
 object
P − set by the core platform
M − mandatory for user
O − optional for user

Figure 4.7: Order

3. Filling the order with a message Once the envelope for the message

is created, i.e. the order, the user has to fill it out with a message and

eventually to attach some quality of service demands for processing the

order. The orderData and qosData members are of type ByteArray. This

59

class contains an array of bytes and has functions to write and read data

into it. The service which sends the order uses write functions for writting

the message into the order, and the service which gets the order will use read

functions for reading the message. Our middleware defines a series of types

which can be written and read from a ByteArray object, like: OSAShort,

OSAChar, etc. All the OSA+ types and their mapping to the C and Java

programming languages can be seen in table 4.1.

It can be observed from the table that the middleware introduces an

overhead of at least one byte for each data type compared with the na-

tive programming language type. This is due to an additional byte which

defines the middleware data type. Because messages represent the main

mean of communication in our middleware, we decided to introduce this

additional byte in order to provide the type safety characteristic for the

data transported over messages. In this way no misinterpretation can be

made for the message bytes.

One of the aims of our middleware is to be portable over programming

languages, and this must be valid for the data types used by the middleware,

too. In our conception, a middleware data type is portable over different

programming languages, if it maintains the same value on the mapped

programming language type. As example, an OSAUShort has the same value

range when mapped to an unsigned short in C and to an int in Java.

This is different from the CORBA standard, where the user has to take

care to use the appropriate CORBA data type that fits the programming

language dependent value range when sending a value to an application in

a different programming language.

4. Connection-oriented or connectionless communication When a ser-

vice is willing to send an order to another service, it can choose between two

possibilities. It can create a long term connection and send orders over it or

it can send the orders directly without establishing any connection. These

possibilities are known as: connection-oriented or connectionless communi-

cation.

The connection-oriented communication has the advantage that all re-

sources which are needed for transmitting the jobs will be reserved before

the communication starts. This will result in:

60

OSA+ types mapping
OSA+ ANSI C JAVA

Type Min Max Bytes Type Min Max Bytes Type Min Max Bytes

OSAChar 0 2
16

-1 3 unsigned short 0 2
16

-1 2 char \u0000 \uFFFF 2

OSAShort -2
15

2
15

-1 3 signed short -2
15

2
15

-1 2 short -2
15

2
15

-1 2

OSAUShort 0 2
16

-1 3 unsigned short 0 2
16

-1 2 int -2
31

2
31

-1 4

OSALong -2
31

2
31

-1 5 signed long -2
31

2
31

-1 4 int -2
31

2
31

-1 4

OSAULong 0 2
32

-1 5 unsigned long 0 2
32

-1 4 long -2
63

2
63

-1 8

OSADouble IEEE754 IEEE754 9 double IEEE754 IEEE754 8 double IEEE754 IEEE754 8

OSAByte * * 2 unsigned char * * 1 byte * * 1

OSAWord * * 3 unsigned short * * 2 short - - 2

OSADWord * * 5 unsigned long * * 4 int - - 4

OSABool 0 1 2 unsigned char 0 1 1 boolean TRUE FALSE -

OSAString string of characters 3+2*n char* \0 terminated string n+1 String string of characters 2*n

OSAByteArray array of bytes 3+n unsigned char* * * n byte[] * * n

Legend:

 * : not applicable or relevant

 - : not present

Bytes column : nb. of bytes when the type is serialized

Table 4.1: OSA+ types

• efficient communication, no time is spent anymore during the com-

munication for reserving and freeing resources

• safe communication, once the resources are reserved there is no more

the danger to be accidently out of resources. This situation can hap-

pen in connectionless communication where resources are allocated

each time a communication is realized.

These advantages are important especially for real-time processing where

the guaranteeing of resource reservation is made more easier when using

connection-oriented communication.

The core platform has the createConnection function which returns to

the user a Connection object that can be further used to send orders. As

parameters for this function, the user has to give a template order, a number

of orders that can be active over the connection and information to locate

the destination service. The template order and the number of orders to

be reserved indicate to the platform the memory needed by the user for the

communication. This information is used also to allocate resources in the

case that the destination service is on a remote platform.

The connectionless communication is suited when there are no strict tim-

ing demands and only sporadic orders will be sent to the service.

61

5. Sending the order and getting the result The communication can

be synchronous or asynchronous. The synchronous communication is re-

alized by the following functions: sendOrder, waitOrder, sendResult

and waitResult. The asynchronous communication is realized through the

functions: sendOrder, existOrder, sendResult and existResult. The

exist functions check if there is something available to be processed for the

service: order or result. If something is available, it can be requested from

the platform through a wait function. Figure 4.8 depicts the methods used

when communicating with jobs.

SenderService ReceiverService

Middleware

sendOrder

waitResult existResult waitOrder existOrder

sendResult

1

2b 2a

3

4a4b

Legend: the numbers indicate the operation order when communicating by jobs

Figure 4.8: Synchronous/asynchronous communication with jobs

Note, there is a major difference between message oriented middleware like

e.g. JMS and the service oriented OSA+ architecture. OSA+ not only de-

livers orders and results (jobs), but it is as well responsible for the execution

of these jobs. This affects for e.g. that the middleware changes the priority

of a service when this service receives an order with a different priority.

Therefore, the OSA+ middleware performs job and service scheduling.

If the services are on the local platform, the core is able to realize the

communication. The modality how this is accomplished will be described

further. But, when a service is on a remote platform, the core uses the

Communication Services to send the order to the remote service, again

following the uniform service approach. This services will be described in

section 4.1.3.

Now we will describe the connection-oriented communication realized

62

by the core platform. The connectionless communication is realized also

through connections which are hidden for the user. In this case, the plat-

form creates the necessary connections to realize the communication.

As already mentioned, the connection-oriented communication reserves

the resources once a connection is created. These resources are, for the local

communication, mainly the jobs that can be simultaneously active and are

not yet processed. These jobs will be reserved inside the Connection object

and their amount is specified by the user when the Connection is created.

Each service has two heaps sorted on priorities: one for unpro-

cessed orders - availableOrders, and one for unprocessed results -

availableResults. The core platform realizes the local communication

between two services through the Connection object created by the service

which initiated the communication - the source service of the orders. The

steps which are made by the core to realize the communication, are shown

in figure 4.9 and described here:

1. the core gets a free (unused) job from the Connection

2. the order is copied from the source service to the Connection object.

To realize a faster communication, we distinguish here two cases:

a) the content of the order is really copied byte by byte to the

Connection object

b) the Connection will use only a pointer to the order which has

to be sent. This method is faster, because it uses only pointers,

but has the drawback that the user must not modify the con-

tent of the order until it is processed by the destination service.

This requires user collaboration. This case is used inside the

middleware whenever it is possible.

3. the core adds the orders to the priority sorted order heap of the des-

tination service and acknowledges the destination service that a new

order has arrived

4. the order is processed by the destination service according to the

order’s priority and other QoS requests (see section 4.1.2 and the

63

corresponding result will be written by the service directly inside the

Connection

5. the core adds the result to the priority sorted result heap of the order

source service, and acknowledges the order source service that a result

arrived.

availableOrders availableResults

heap heap

availableOrders availableResults

heap heap

SourceService DestinationService

order 3: add order

5: add result

Connection

2: copy order

4: write result

job

order

result

1: free job

job

job

Figure 4.9: Local connection-oriented communication

Procedural interface communication

The procedural interface communication is introduced in our middleware

to obtain a faster communication than the communication with jobs. It

is realized by normal method call, and the data is transmitted over the

method parameters. Using this mechanism to communicate to a service

introduces the following consequencies:

64

• avoiding of the job communication mechanism which results in a faster

communication. In this case the priority used to execute the service

functionality is the caller service priority.

• the communication will be synchronous, the service which uses the

procedural interface of another service has to wait until the called

function finishes to execute

• the communication can be only local, on the same platform

• in this case a tight coupling is made between both services.

The procedural interface is optional, so a service can ommit this. In fact,

the procedural interface communication is used by our middleware to access

frequently used functionalities of the basic services (e.g. the Process Service

and the Communication Services) thus having an important impact to the

overall speed and real-time characteristic of the middleware. This issue is

addressed in more detail in section 4.2.2.

Chain communication mechanism

In the domain of the real-time systems, the application demands regarding

resources (CPU, communication needs, bounded time for memory usage)

are always important and considered. In order to fulfill these demands,

any additional information can be used to optimize the resource allocation.

Therefore, many applications, especially from the real-time domain, can

provide information in advance about a sequence of communications that

will be established with other applications. This information can be used to

minimize the overall resource usage, e.g. fewer inter-platform connections

will be established, which will save in the same time: memory, CPU and

communication time. Once the middleware has this information, it can op-

timize the flow of communication data and improve the overall performance

of the application. This can produce better results regarding the real-time

constraints imposed by the application.

The chain communication mechanism is an extension of the basic job

communication mechanism. Using the basic communication mechansim,

our middleware allows one-to-one communication through jobs. Using the

65

chain communication mechanism, a service can build a sequence of one-to-

one basic communications through jobs, which we call a chain. The chain

describes the communication partners of the service - the chain nodes, and

the orders to be transmitted to them. Furthermore, part of the results

from a chain node can be supplied as input data for the next node in the

chain, see figure 4.10. Regarding the chain concept, we define a multijob

as a sequence of jobs. A multijob contains a multiorder - the sequence of

orders to be sent to the communication partners, and the results obtained

by processing these orders.

SourceService

���

CommPartner1 CommPartner2 CommPartnern

comp. order part. order

1 2 comp./part.

order

3

���

forward

result

forward

result

Legend:

- the numbers represent the chain communication order

- CommPartneri : communication partner service

- comp. : complete, part. : partial

+
comp.

order

ordernorder1 order2

communication chain

Figure 4.10: Communication chain

Analyzing the chain, the Communication Service knows the platforms

involved in communication and can obtain the values for the communication

throughput (the amount of data transported between two platforms in a

given time period) between all these platforms. With this information the

Communication Service can choose the optimum solution for each node

communication. It can choose between the following choices, figure 4.11:

• standard mechanism of establishing one-to-one connections to the

other communication partners

• establishing fewer connections and forwarding the data between the

66

nodes of the chain. In this case the Communication Service can ap-

ply an algorithm from graph theory which maximizes the data flow

between the nodes of the chain.

SourceService

CommPartner1 CommPartner2 CommPartner3

6b

5a

4b

3a

2b

1a

(a) Establishing a connection for every com-
munication

CommPartner3

SourceService

CommPartner1

CommPartner2

1a

2a

4b

3a

(b) Establishing a connection between
successive partners and forwarding the
data

Legend:

- the numbers represent chain communication order

- a: sending an order, b: sending a result

- CommPartneri : communication partner service

Figure 4.11: Optimizing communication with chains

For supporting the chain communication mechanism, the Order class con-

tains the following members:

• mOrderPolicy defines different policies that can be applied inside the

chain, when processing this order. These policies are:

– MO POLICY BREAK AT ERROR, if the destination service reports an

error when processing this order, the processing of the chain must

be interrupted

– MO POLICY CONTINUE AT ERROR, if the destination service reports

an error when processing this order, continue to process the chain

– MO POLICY IGNORE RESULT, do not transmit back the result pro-

duced when processing this order

67

– MO POLICY BREAK SEQUENTIALITY, if there is no data to be for-

warded between chain nodes, then make a multicast and send

the orders in the same time to the corresponding services

• fwdTable, this member contains information about which output data

from the result obtained by processing this order, should consist an

input data for the next order in the chain.

Inplementing the chain communication concept, two other classes were

added: MultiOrder and MultiJob which are linked lists of Order respec-

tively, Job objects.

Chain processing As in the basic communication mechanism, there are

two steps when using the chain communication:

1. establishing connections and reserving resources

2. sending data over the connections.

The most complex step is the first one, especially when the chain is spread

over different platforms. This step is realized by the HLCService together

with the corresponding low level communication services. The HLCService

will do the following (see also figure 4.12):

1. analyze the whole chain and group the communication partners which

reside on the same platform

2. analyze the inter-dependencies between successive communication

partners. If information will be forwarded we have an inter-

dependency.

3. analyze the communication performance of the inter-platform connec-

tions. This information is received from the low level communication

service.

4. create on the remote platforms chains containing the groups created

at step 1 and create inter-platform connections. These connections

are created according with the information obtained at steps 2 and 3.

68

SourceService

12 23 32 i3 jk nk

12 32 23 i3 jk nk

CommPartner1 CommPartner3 CommPartner2 CommPartneri CommPartnerj CommPartnern

Platform2 Platform3 Platformk

Platform1

Legend:
 possible low
 level connection
 middleware
 connection

user chain

Figure 4.12: Chain processing

Once that connections are established and the user provided chain is split in

smaller chains on each remote platform, the OSA+ Core is able to process

the chain. The processing of the chain will happen sequentially on each

platform.

One way to extend the chain communication is to allow parallel process-

ing. If between two consecutive services there is no data to be forwarded,

then the platform could send the orders in parallel to both services.

QoS support

In order to present the real-time features of the underlying environment

(hardware, operating and communication systems), OSA+ uses QoS in-

formation. The user can request desired QoS properties for its actions:

deadlines, priorities, minimum band width for an Internet connection, etc.

Our middleware distinguishes between two kinds of QoS:

1. general QoS which are globally recognized by the middleware, like:

deadlines, band width, etc.

2. service specific QoS which can be defined by the service and can

be directly requested by the other services. The platform will not

interfere when processing this QoS information.

69

The QoS information is divided in classes: time related, communication

related, etc. Our middleware provides a simple mechanism to realize and

extend the general QoS processed by the platform. Each class of QoS

information is managed by a service. This service will register a QoSHandler

to the platform, which will be executed every time an order contains QoS

information belonging to the class. As an example, the Event Service is

responsible for initiating and monitoring all time triggered actions. These

are mainly release times (earliest start of execution, earliest start of order

delivery, etc.) and deadlines (latest end of execution, latest end of order

delivery, etc.). The service will register to the platform a QoSHandler using

the following core function:

addQoSHandler(RTEventClass, RTEventQoSHandler)

Where RTEventClass is an integer representing the QoS class of parameters

regarding real-time events and RTEventQoSHandler is the handler imple-

mented by the Event Service. With this mechanism, new classes of QoS

information can be easily added to the platform.

The core platform differentiates two points in time when processing the

QoS information:

1. initialization time, when resources are reserved. As example for the

communication related QoS class, this is the time when connections

are created.

2. execution time, when orders are exchanged between services. As ex-

ample for the time related QoS class, this is the time when deadlines

for the orders are set and monitored.

The QoSHandler interface provides two methods for supporting these QoS

processing times: initializationTime and executionTime. They are

executed by the core platform at the corresponding processing time.

For the moment, our middleware considers only three QoS information

classes: time related, communication related and task scheduling related.

These are managed by the Event Service, Communication Services, respec-

tively Process Service.

The service specific QoS information will be delivered by the platform

along with the order. It depends of the service how this will be processed.

70

An example of service specific QoS is a database service which might define:

database access priority or rate of read or write transactions per second.

As the efficiency is a key factor for OSA+, the QoS information is or-

ganized in classes of simple (key-value) pairs, where the key is a unique

code for a QoS parameter and value is the corresponding value for it. As

example an order can contain as QoS parameters the key-value pair (10 -

100), where 10 represents the QoS code parameter for the order execution

deadline and 100 represents the time in milliseconds. This mode to repre-

sent QoS information is very simple, efficient and flexible. On top of the

actual representation of QoS parameters, a layer can be easily added which

describes them in more general formats, e.g. the XML format. This layer

can be added on more powerful platforms with enough resources to support

it.

After discussing about the main aspects concerning the OSA+ core plat-

form, we will further describe the basic services.

4.1.3 Basic services

The basic services allow the middleware to use the underlying operating

system and/or hardware. They adapt and scale OSA+ to the heterogeneous

environments. The middleware is using a fixed interface for each specific

task which realizes the adaptation. These tasks are:

• using real-time memory management

• using processes and threads

• using communication hardware and protocols

• using timer events

In case of using OSA+ on an embedded system whith less resources, the

basic services can contain only the basic functionalities which are needed

for this environment.

Process Service

The Process Service allows OSA+ to use lightweight (threads) and/or

heavyweight tasks (processes) to run light- and/or heavyweight services.

71

The Process Service adapts to different process models and scheduling poli-

cies and use them for scheduling the platform lightwieght and heavyweight

services.

OSA+ requires that a Process Service can create, start, terminate and

destroy tasks. Additionally, it can also take advantage of the possibility to

change priorities and deadlines or to suspend and resume tasks. Especially

the priority changing feature is mandatory for inheriting the order priority

to the service which executes the order. More about this will be discussed

in the real-time section 4.4. The Process Service is a procedural service and

has to be registered on the platform before registering other lightweight or

heavyweight services.

Currently the service adapts OSA+ to three processing environments:

1. Komodo real-time micro-controller. Here the service can use the FPP

and GP real-time scheduling schemes.

2. real-time specifications for java. The service is able to use the

javax.realtime package which gives the possibility to manage real-

time threads.

3. standard java. Only priorities are available to schedule the threads.

Communication Services

Communication services allow the platform to use communication hardware

and protocols to communicate with other platforms. This not only includes

sending and receiving data, but also includes routing data to services.

From the communication’s point of view, the middleware has a layered

architecture that is built by four layers (Figure 4.13):

• Job oriented communication between services (General Service Layer,

GSL)

• Job oriented communication between platforms (Platform Layer, PL)

• Simple data oriented communication across network boundaries (Pro-

tocol Spanning Layer, PRSL)

72

• Simple data oriented communication inside of networks (Protocol

Layer, PRL)

Abstract Communication Medium (ACOMM)

General−Service−Layer (GSL)
Platform−Layer (PL)

Protocol−Spanning−Layer (PRSL)
Protocol−Layer (PRL)

General−Service−Layer (GSL)
Platform−Layer (PL)

Protocol−Spanning−Layer (PRSL)
Protocol−Layer (PRL)

Figure 4.13: OSA+ communication layers

The Protocol Layer consists of Low Level Communication services (LLCs)

that provide a simple communication with well-known protocols such as

TCP/IP, CAN or ISDN. To switch these protocols and to route data be-

tween services that are located in separate networks, the Protocol Spanning

Layer offers a High Level Communication service (HLC). This service will

send and receive data across the boundaries of networks. To keep the lay-

ers lean and to reduce the overhead, a very simple protocol is used. This

protocol only contains functions to establish and release connections and

to transmit data over them. OSA+ Platforms use the protocol spanning

layer to deliver remote orders and results. As the users of the HLC they

form the Platform Layer. Finally, the application services are grouped in

the General Service Layer.

The LLC services are designed to be synchronous regarding the commu-

nication. They are always waiting for remote data or commands received

from the HLC Service. In this way, no processor time is spent when no

remote communication exists.

TCPIPService The TCPIPService is a low level communication service

which is able to use the TCP/IP protocol. The service is using the java.nio

package appeared in JDK version 1.4. This package provides the following

advantages compared with the standard java.net package:

73

• multiplexing/demultiplexing I/O operations. Using the java.net

package, the programmers would have to deal with multiple socket

connections by starting a thread for each connection. Inevitably, they

would encounter issues such as operating system limits, deadlocks, or

thread safety violations. With the java.nio package, multiple simul-

taneous socket connections can be managed by a single thread. This

leads to a scalable approach which saves considerable memory and

processor resources.

• unblocking blocked read, write operations. The new read, write block-

ing operations available in the java.nio package can be interrupted

by other threads. This feature is used by the TCPIPService when

it listens, in a blocking mode, from the network for incoming data

or connections. At the same time, the HLCService is willing to use

the TCPIPService for executing some actions, e.g. sending an order

on a remote platform. To solve this, the TCPIPService overrides the

signalOrder method of the Service class which is executed by the

platform when a new order arrives. In this method, the service un-

blocks itself from the blocking mode in order to act on the received

order.

• non-blocking operations. Using blocking operations from java.net

package, a thread will block on a read or a write until the operation is

completely finished. If during a read, data has not completely arrived

at the socket, the thread will block on the read operation until all

the data is available. Using non-blocking operations, the thread will

read whatever amount of data is available and return to perform other

tasks.

A similar library as the java.nio package, is the NBIO library [43]. This

can be used for earlier versions of the JDK standard libraries.

In figure 4.14 the simple protocol between all the communication layers

can be seen. It is interesting to mention here the createRemoteConnection

function of the HLCService which is executed in two steps:

1. first, a low level connection is established, and

74

2. secondly the information about the resources to be reserved for this

connection is sent to the remote platform. This information contains

the number and size of active jobs that can exist on this connection.

TCPIPService CANService (PRL)

Application service (GSL)

Core platform (PL)

HLCService (PRSL)

connect/close
send

create(release)Connection
sendOrder/sendResult

create(release)RemoteConnection
sendRemoteOrder/sendRemoteResult

create(release)LLCConnection
sendHLCData

waitOrder/waitResult
existOrder/existResult

create(release)Connection
insertOrder/insertResult

receivedLLCConnection
releaseLLCConnection

receivedLLCData

close
receive

Figure 4.14: Simple protocol between the communication layers

Event Service

The event service allows the platform to use environment based events.

These can be:

• hardware based events, e.g. hardware timer events and other inter-

rupts. These events require the Event Service to work directly with

the hardware.

• operating system events, e.g. OS timers and interrupts. In this case

the Event Service uses the operating system capabilities.

An important event class for real-time are timer events. They give to the

platform the possibility to attach different timings to the jobs and to mon-

itor if they are respected. Once that the Event Service is registered on the

platform, it will also register a QoSHandler which is able to deal with all

timing related QoS information. It will initiate the release times of the

orders and will monitor their deadlines.

75

Real-time Memory Service

Contemporary and future real-time systems are more dynamic, so not all

resources can be pre-allocated. OSA+ provides support for these dynamic

systems by definition of a basic service, the Real-time Memory Service,

which can be plugged into the platform. The Real-time Memory Service

allows the allocation and freeing of memory under guaranteed timing con-

straints. The platform can use this functionality to deliver jobs in real-

time, for connectionless communication where the needed buffers are not

pre-allocated. For real-time operating systems, the Real-time Memory Ser-

vice can rely on their capabilities to dynamically allocate and free memory.

In environments without that support, the approach is to demand in ad-

vance an important amount of memory when the service is registered on the

platform. In that case, the Real-time Memory Service realizes a predictable

memory management itself. This task is challenging especially in the case

of embedded systems, where the memory is limited and has to be used as

efficient as possible.

ARS Service

The Address Resolution Service is responsible for locating services on the

global virtual platform, the middleware level. In a usual configuration an

ARS Service maintains location service information for several platforms.

This information consists of:

• service identification information: name and version

• service location: the network type used to reach the platform where

the service is located and the network address of the remote platform.

An example for this information, which is mapped to the middleware

class LookUpInfo, will be: {UserService, 0.7, TCPIP, 127.0.0.1:5000}.

Having this information, the communication services can locate and reach

all the services which are maintained by the ARS Service. The core platform

uses the ARS Service to provide location transparency to user applications.

The user has to give only the name and/or version of the service to com-

municate, and the core platform will:

76

• contact the ARS Service and obtain information about the service

location

• use location information and the communication services to send or-

ders and results.

In order to use the ARS Service, the user has to configure first the core

platform with its location using the core function configureARS. Once that

the core is configured, each new service which will be registered on the

platform will be also made public to the ARS Service. An exception is

made for the basic services which are known only on the local platform.

However, other implementations of the ARS are possible too. Services can

be located as well on a peer-to-peer basis, when the ARS just asks the

neighbour platforms if a service is unknown. Broadcasts would be another

possibility to locate remote services.

4.2 OSA+ microkernel architecture

One main goal of OSA+ is the realization of a highly scalable architecture,

which can easily be adapted to different hardware and software environ-

ments. Especially we want to be able to scale down to embedded systems.

To reach this goal, a microkernel architecture well known from operating

systems is used. The OSA+ platform consists of a very small core platform,

which offers a basic functionality. This core platform can be extended and

adapted to the environment through the basic services. And finally user ser-

vices can be added on the platform. If we compare OSA+ to a microkernel

operating systems, we can see that:

• the microkernel role is played by the core platform

• the operating system services are in our case the basic services

• the inter-process communication mechanism corresponds to basic job

communication mechanism in our middleware, and

• the user applications correspond for our middleware to the user ser-

vices.

77

In the following section the motivation of choosing to use a microkernel

concept for our middleware will be discussed.

4.2.1 Microkernel principals and ideas

The microkernel concept will be discussed in the context of the operating

systems first, because it is more easily and intuitive to be presented on that

level instead of using only abstract concepts. Once we map the microkernel

concepts to our middleware, the principles and ideas can be easily seen for

the middleware, too.

In operating systems, we can distinguish the kernel approach and the

microkernel approach. The kernel approach included all the OS services in

the kernel. The main idea is, that all the services are safe and absolutely

trustworthy. The advantage for this approach is that there is no restriction

to implement the OS services which makes the kernel approches to obtain

a good performance. The disadvantage is that the OS does not control the

execution of these services, so if an OS service is failing, the entire OS can

fail.

The main idea for the microkernel approach is to keep the kernel minimal.

Therefore, the OS services are kept outside the kernel. This reduces the ker-

nel’s size and protects the OS services from each other and the users. Now,

OS services can be introduced that are not necessarily totally trusted by

the other services. The idea for this approach is to separate the OS services

by each other. This is realized for OSes by having different address spaces.

Since they are isolated and protected by each other, the microkernel has to

supply user and system services with a cross-address-space communication

facility which is usually called inter-process communication (IPC).

The advantages of using the microkernel approach are:

• first of all flexibility and extensibility. The system can be easily

adapted to new hardware or software. Only selected services need

to be modified or added to the system. The modifications can be

made and tested on line.

• coexistence of different APIs, multiple services which provide the same

facility can exist in the OS.

78

• isolation, OS services malfunctions are isolated as normal applica-

tions. They can be shut down and replaced.

• modular system structure

• easy maintenance, less error prone

After having presented the microkernel principles, it can be seen that these

principals are extremely close to our goals:

• focus for embedded systems - the central idea is minimality

• as middleware, scalability and adaptation to different environments -

flexibility and extensibility are inherent advantages of the microkernel

concept which permit to microkernel OSes to easily adapt to new

hardware or software.

Therefore, we decided to investigate this concept for building our middle-

ware and to work further for the real-time aspect of the middleware.

4.2.2 Avoiding the microkernel drawbacks

The microkernel concept seems to be a perfect approach for reaching the

above mentioned goals. However, the disadvantages must also be consid-

ered. The strict separation of the services introduces two drawbacks when

using the microkernel approach:

1. less performance, the services can not share common information but

have to use the IPC to exchange this information

2. increased communication overhead, by raising the modularization of

the entire system, the communication between the services is raised

too.

To overcome these drawbacks in our middleware approach, we introduced

the following techniques:

• the basic services can share common information with the core plat-

form (and only with the core platform) on a read-only basis. They are

not allowed to modify this information. Otherwise, a faulty service

can affect the entire platform.

79

• the procedural interface communication, see section 4.1.2. A pro-

cedural interface of a service represents the public access points for

the other services. These access points can be used natively in the

implementation programming language, with the restrictions already

discussed. The main advantage using this technique is to reduce the

communication time by a more direct connection. The amount of

communication remains the same.

Figure 4.15 shows how the procedural interface communication avoids the

job communication which is more time consuming (message based commu-

nication).

OSA+ microkernel

User Service OSA+
Basic service

OSA+ API

OSA+
Basic service

Procedural interface

Job
communication

Figure 4.15: Overcoming microkernel performance loose through procedural
interface communication

4.3 Scaling OSA+ by the microkernel and the

basic services

By the microkernel approach and the basic services, the OSA+ middleware

can be scaled to different environments and application requirements. Here

are some examples on how OSA+ can be configured:

• the microkernel can be used standalone. Since it contains no operating

system or communication system dependant parts, it can only provide

the use of local procedural services with a single control flow. This

results in the lowest possible functionality and memory footprint.

80

• adding the Process Service establishes the connection to the operating

system. Thus, local procedural, lightweight and heavyweight services

can be used.

• combining the microkernel with the Process Service and the Commu-

nication Services allows local and global services to be executed.

• combining the microkernel with the Event Service enables local pro-

cedural time-triggered services.

• etc.

As it can be seen, the full microkernel approach in combination with a

purely service oriented architecture provides a great flexibility. Further-

more, different types and qualities of basic services can be used without

the need to change the application or the core platform. As mentioned in

the previous sections, different implementations for e.g. the ARS, the Real-

time Memory Service or the Communication Services are possible. Finally,

extension services can be used to increase the core platform functionality,

e.g. by encryption or error logging.

4.4 OSA+ and real-time

The OSA+ middleware can guarantee real-time performance of its opera-

tions only if all the underlying layers are able to carry out their functions in

real-time (see figure 1.2). First of all, the hardware must guarantee worst

case execution times for its operations. Simple microcontrollers or proces-

sors without caches and branch prediction are more suitable than highly

speculative complex microprocessors. Second, the operating system used

should be a real-time one. It should support at least one of the common

real-time scheduling policies like fixed priority preemptive or earliest dead-

line first (EDF). Another possibility is to omit the operating system layer

at all. On a small microcontroller, the Process Service described in section

4.1.3 can operate directly on the hardware and exploit the real-time features

of the processor. This is very important in case of the embedded systems.

Real-time memory management is a useful feature which can be used by

81

OSA+ as it was discussed in section 4.1.3. In case of no real-time mem-

ory management is available, the operating system should support memory

locking. And third, the physical communication medium and the protocols

used should guarantee worst case execution times for the transmission of

messages between the nodes of the distributed system.

These assumptions regarding the environment are necessary conditions

in order to provide real-time to the user applications. Furthermore, the

middleware layer itself, OSA+, has to maintain the real-time features of

the underlying environment and to present them to the user applications.

In the following sections the modalities chosen to maintain and present

these features to the user applications are described.

4.4.1 Separate functionality

An important aspect when designing real-time applications is the resource

allocation issue. This affects the predictability of the application. In most

of the cases resource allocation implies complex techniques which do not

respect strict timing constraints, e.g. complex algorithms for memory al-

location, parameter negotiation for protocol communication, task creation

implies memory allocation, etc. Therefore, our middleware makes a strict

separation between:

• initialization functions, and

• operational functions.

Initialization functions are responsible for resource allocation. They can be

unpredictabile and might not obey any timing constraints. Some examples

of initialization functions of our middleware are:

• createConnection and releaseConnection. The createConnection

function allocates all the operating system and middleware needed

resources regarding communication, e.g. sockets, buffers, jobs.

• lookUpService. This function is used to locate a service before start-

ing the real communication. It realizes a search operation (searches

a service having the name and/or version values) whith no constant

time behaviour.

82

• registerService and unregisterService. Calling the

registerService function, the core platform has first to add the

service to the Service Repository, an operation which might not be

performed in constant time. Then, in case the service is lightweight

or heavyweight the core will use the Process Service to create an

operating system thread or process to host the service. Again, this

operation implies memory allocation and might not be necessarily

executed in constant time.

Operational functions use the resources allocated by the initialization func-

tions and must offer a constant and bound time behaviour. As middleware

function examples, we can mention:

• sendOrder and sendResult. The functions use the resources already

allocated by the createConnection function. A special issue here is

the processing of the job priorities. The operations to maintain the

job queues sorted on priorities have to perform in a bound time. This

aspect is discussed further in section 4.4.3.

• waitOrder, waitResult. These functions have to fetch in bound time

the job with the highest order from the job priority queue. More about

this is described in section 4.4.3.

• existOrder and existResult. These functions simply check if the

job priority queue is not empty. It is not very difficult to realize this

in bound time.

Techniques for realizing predictablity behaviour

In order to maintain the determinism and predictability of the underlying

environment, a series of principles and implementation techniques must

be strictly applied when designing the middleware. In OSA+ these are

represented by:

• separation between initialization and operational functions. This

principle has been already explained in the previous section.

• using priorities: fixed or time-based priorites. They will be explained

in sections 4.4.3 and 4.4.4.

83

• choosing algorithms and data structures which have a bound time

and a good WCET(worst case execution time). We are using prior-

ity heaps (see 4.4.3) and general trees (see the description of bucket

containers below).

• avoiding search operations for the operational functions

• sacrifice high-level programming techniques for efficiency. Some cases

to mention here are:

– using list pointers instead of iterators. To obtain an iterator

implies in most of the cases the allocation of a new iterator object

even if this is not obvious for the programmer. The allocation

introduces unbounded performance overhead.

– reusing objects, which again avoids allocations.

• and, realize a close loop between development and evaluation. This

can show the weak points of the performance from already earlier

stages of development.

Applying these techniques becomes more difficult especially when the mid-

dleware is confronted with additional requirements, like:

• modularization, which means in OSA+ strict separation between the

basic services of the middleware basic services. This introduces more

communication overhead, but the procedural interface communication

introduced by us can overcome this problem.

• strict restrictions regarding memory consumption, OSA+ is focusing

on embedded systems. To cope with these restrictions, OSA+ uses a

number of techniques described in the Noble’s book [44], like:

– “small interfaces” [40] and “strong design” [35] principles, which

say that an interface should present only the minimum data and

behavior to its clients.

– hooks, which dynamically modify the behavior of the core plat-

form. This is the case of QoSHandler objects, which change

dynamically the behavior of the platform when treating QoS in-

formation.

84

– packages. A large program with lots of optional pieces can be

split in packages and loaded when there are needed. The micro-

kernel architecture concept uses this principle. The packages in

our case are the services.

– sharing. Multiple copies of the same data can be avoided when

the information is shared everywhere it is needed. We apply this

principle when the core platform shares information with the

basic service. However, this principle has to be applied carefully

due to security and fail safe reasons. Thus, the shared data is

read-only for the basic services.

– multiple representations. To support several different implemen-

tations of an object, each implementation must satisfy a common

interface. For example in OSA+, the HLC Service can have dif-

ferent implementations:

∗ a basic one, with a small footprint, which is able only to

route messages to the low level communication services

∗ an enhanced version which supports the common basic func-

tionalities and other extra features like: applying special al-

gorithms to find the optimum solution when establishing low

level communication connections in case of using the chain

communication mechanism (see figure 4.11).

An example for a data structure with a good WCET used in OSA+ is

the Bucket Container. The Bucket Container is a container (data structure)

that maintains objects in buckets. A bucket is represented by a vector of

pointers to the objects managed by the container, see figure 4.16. This

structure represents a special type of general incomplete tree, where each

non leaf node has exactly bs siblings (bs is the bucket size) and the object

pointers are stored only on the tree leaves. Additionally, the structure con-

tains a linked list with buckets which have at least one free slot for storing

an object. This list is used when adding a new object to the container.

From now on, objects will be used for convenience in place of pointers to

objects.

The ideas for building such a structure are:

85

• using the memory space in an optimal way when managing a variant

number of objects. This is e.g. needed when managing connections

or services registered on the platform. A simple linked list would

introduce a lot of overhead. A simple array lacks the necessary dy-

namics. The tree-based Bucket Container is able to manage a number

of n = bstl objects, where tl is the number of tree levels. At the be-

ginning, the container will be able to store objects in a preallocated

number of buckets. Once that these buckets are filled with objects,

new buckets are created. In this way, the storage capacity can be ex-

ponentially extended by keeping the overhead low at the same time.

• the operations to manage objects have low bound complexity values:

– add is adding an object to the container and returns an ID.

The operation complexity is max(O(bs), O(1)+O(al(logbsn))), if

exists already a free slot among the existing buckets, respectively

a new leaf bucket has to be created. al(m) is the allocation time

for m buckets.

– get, returns the reference of an object knowing its ID. The com-

plexity of the operation is O(logbsn + bs).

– remove, removes the object with the specified ID from the con-

tainer. The complexity is: O(logbsn + bs).

4.4.2 QoS information

OSA+ allows every service to provide quality of service (QoS) information

for the platform and all other services which want to use it. QoS parame-

ters depend highly on the individual service, so they belong to the service

specification. However, for the middleware basic and the extension ser-

vices all QoS parameters are predifined by the OSA+ middleware and they

can be used by the user. These QoS parameters are important because

they reflect the characteristics of the underlying hardware and operating

system. Therefore, the real-time characteristic of the middleware depends

upon them.

The QoS parameters predifined by the OSA+ middleware are:

86

list of buckets
with free slots

object

bucket

new allocated buckets, when
current buckets are full

Legend:
− bucket size is 3
− the tree has 3 levels

Figure 4.16: Bucket container structure

• for low level communication services:

– RT, if a predictibale communication is possible at all

– bandwidth, the amount of data that can be transferred on a

connection in a defined amount of time

– priority, if the connection allows priority based communication

– send/receive buffer sizes

– timeout, if a timeout value can be set for the blocking operations:

accept, read

• Process Service:

– the process/thread stack size

– the available RT scheduling schemes

– the RT scheduling scheme specific parameters: priority, deadline,

processor percentage utilization, etc.

– the possibility to modify task scheduling parameters during run-

time

87

• Event Service:

– deadlines set for order processing

Using the QoS parameters the middleware core and the application services

can evaluate the real-time capabilities based on the current environment

(operating system, communication system, etc.). Here are some examples:

• if the Process Service offers no real-time scheduling scheme (non RT-

OS present), no real-time operations are possible at all.

• if RT scheduling schemes are available but the low level communica-

tion services report no real-time features (bandwidth, priorities, etc.),

only local jobs can be processed in real-time.

• if RT scheduling schemes are available and the low level communica-

tion services report real-time features, e.g. priority based communica-

tion, remote jobs can be processed in real-time too, because priorities

can be preserved end-to-end from on platform to the other thus avoid-

ing priority inversions.

4.4.3 Job scheduling

The main communication mechanism in OSA+ is realized through jobs. In

order to have a predictibale communication the core platform introduces

priorities for jobs. Each service processes the arrived jobs in the priority

order. The core platform uses priority quees to maintain the service jobs

which are waiting to be processed, see 4.4.3. Moreover, the core platform

will modify the priority of the job’s destination service according with the

priority of the job. This action is performed when the job is picked up

by the service and is possible only if the Process Service realizes a priority

based task scheduling.

Regarding priorities, the core platform realizes a priority inheritance

mechansim in order to avoid priority inversion for job processing. Priority

inversion can happen when a service is curently processing a job with a low

priority and a high priority job is waiting to be processed in the priority

queue.

88

So, the core platform is able only to realize a priority based scheduling

of the jobs.

When the user needs a time based scheduling, the Event Serivce has to

be plugged to the platform. The Event Service will manage all the jobs

which contain time related QoS information: release times and deadlines

for job processing. For the release times, the Event Service will:

1. send the job to the job’s destination service

2. modify the deadline for the job’s destination service according to the

deadline of the job. In this way, the job scheduling parameters are

inherited by the service which should process the job. This can be

realized only if the Process Service supports modification of scheduling

parameters for the tasks at run-time.

Priority queues

The jobs are scheduled by the core platform using priority queues. These

queues are used by the core when sending orders and results. Because

these operations are categorized by the middleware in operational oper-

ations (see 4.4.1) and are determinant for the predictability of the mid-

dleware, they have to provide bound time for the enqueue and dequeue

operations. Therefore, we chose to implement them using binary heaps.

A binary heap is a heap-ordered binary tree which has a very special

shape called a complete tree. The order in the heap is given by the rule:

each node value of the tree is greater than the values of its siblings. As a

result of its special shape, a binary heap can be implemented using an array

as the underlying basic data structure. Thus, the implementation is based

on array subscript calculations rather than pointer manipulations. And

since an array is used, the storage overhead associated with the pointers

contained in the nodes of the trees is eliminated.

The enqueue and dequeue operations for the binary heap have O(log n)

complexities which make them appropriate for using as priority queues.

89

4.4.4 Service scheduling

Besides job scheduling, our middleware realizes service scheduling, too. As

already discussed in section 4.4.3, services are scheduled in OSA+ according

to the job scheduling parameters. The priority (or deadline) of a service is

set to the priority (or deadline) of the job it is currently processing. Services

are scheduled by the core platform through the Process Service which di-

rectly adapts to the scheduling scheme of the hardware or operating system.

The adaptation of the service priority according to the currently processed

job is the default behaviour applied to a registered service on the platform,

and is known as ORDER PROPAGATED policy. The user can otherwise change

this behaviour and use the SERVICE DECLARED policy. This allows the user

to:

• request specific scheduling parameters for the service (e.g. priority)

• not inherit the scheduling parameters from the jobs received by the

service.

Note, only the lightweight and heavyweight services can be scheduled be-

cause they have their own control flow.

90

Chapter 5

APPROACH EVALUATION

In the previous chapter we described the principals and realization of our

middleware approach. We presented the concepts that drove us toward a

solution for the development of applications for distributed real-time and

embedded systems. In this chapter, we will evaluate the implementation of

these concepts and analyze if they cope with our expectations.

5.1 OSA+ for embedded systems

One of our main objectives is to adapt to embedded systems. Thus, we

have to address the following requirements:

• high scalability. Our middleware has to scale down to these systems

and maintain only the necessary components.

• minimize the memory footprint. Even if we scale down and main-

tain the necessary set of functionality, we can only benefit from this

functionality if we match the stringent memory requirements. Our

software has to fit on a system with low memory resources.

• minimize the performance overhead. If we succeeded to physically

adapt our middleware to these embedded systems, we must also con-

sider the performance degradation which our middleware introduces

to a distributed application. The performance overhead introduced

must not hinder the requirements of the application which uses our

middleware, especially in the case of real-time applications.

91

5.1.1 High scalability

Our middleware is highly scalable due to the pure microkernel architecture

and service orientation. These concepts offers two characteristics regarding

the scalability:

• platform configurability: the microkernel architecture permits us to

select for the middleware only the desired functionalities. These func-

tionalities are realized by the microkernel and additional services.

• fine adjustment: each component selected to be part from the plat-

form, can be further configured and adjusted to the needs of appli-

cation and environment requirements. For example, the HLC Service

can provide basic functionalities, or can implement more complex al-

gorithms in order to realize an optimum communication with chains

of orders, see 4.1.2.

5.1.2 Memory footprint

In order to measure the memory footprint for our middleware, we used the

Sun java compiler for Linux, version 1.4.2 05. In table 5.1, there are two

sets of measurements:

• a normal set, obtained by compiling the source files and removing

debug information from the resulted classes

• a minimum set which is obtained by executing an additional tool [37]

on the classes generated at the previous step. This tool makes opti-

mizations for code size, like:

– removes the code which is not used by the application, eg.

classes, methods, variables.

– renames long with short names

As it can be seen from the table, for the minimum version the overall

footprint including TCP/IP communication is about 44 kBytes, which is,

to our knowledge, the smallest footprint for a fully configurable real-time

middleware. Furthermore, e.g. for local sequential applications, only the

core and the InitService is necessary leading to a footprint of 29 kBytes.

92

Minimum Normal
OSA+ Core 28628 52705

ProcessService 3316 5084
HLCService 5695 9561

TCPIPService 5992 7573
InitService 880 1046

Total 44511 75969

Table 5.1: OSA+ footprint(in bytes)

5.2 OSA+ and real-time

Our approach aims toward a middleware which maintains the real-time

features of the underlying environment. Therefore, the predictability of the

middleware has to be evaluated and analyzed.

The main idea when evaluating the real-time features of our middleware,

is to obtain an environment which is proved to be real-time. In this way,

the results generated by an application using OSA+, are not influenced by

the enviornment but only by our middleware. The influence in this case is

introduced in terms of predictability and determinism.

5.2.1 Considerations about the test environment

As it can be seen in the picture presented at the beginning of the thesis 1.2,

in order to have an environment with real-time features, we choosed two

configurations:

1. a microcontroller with real-time features

2. a general processor with a:

• real-time operating system, and

• a real-time interpreter, which in our case is represented by a java

virtual machine.

From both configurations, we removed the remote communication, because

at this moment we do not have implemented a communication service which

adapts to a real-time network communication medium, like: CAN Bus [9]

93

or, SCI [27]. The only remote communication which we can do is based on

the TCP/IP protocol which does not have support for real-time.

For the first configuration we used the Komodo Simulator which is sim-

ulating the Komodo microcontroller. The Komodo project explores the

suitability of Java and a multithreaded processor in embedded real-time

systems [11]. A multithreaded processor is characterized by the ability to

simultaneously execute instructions of different threads within the proces-

sor pipeline, which allows an extremely fast context switch. Multithreaded

techniques are proposed in processor architecture research to mask laten-

cies of instructions. The Komodo microcontroller has the following features

which make it appropriate for real-time applications:

• supports four real-time scheduling schemes:

– earliest deadline first (EDF), where the thread with the closest

deadline gets the highest priority,

– guaranteed percentage (GP), where each thread gets a guaran-

teed percentage of the available processor power

– fixed priority preemptive (FPP), where each thread gets a fixed

priority, and

– Least Laxity First (LLF), where the thread with the lowest laxity

to the deadline gets the highest priority.

• has zero latencies for thread context switches. A context switch ap-

pears when a different thread is scheduled for execution.

• can execute maximum six real-time threads

• has a java virtual machine implemented in hardware

For the second configuration we use for evaluation as real-time operating

systems:

• TimeSys Linux GPL 4.1 based on the Linux kernel 2.4.21

• TimeSys Linux GPL 5.0 based on Linux kernel 2.6.0

• MontaVista 3.1 based on Linux kernel 2.4.20

94

As comparision we use also a non real-time operating system: RedHat 9.0

based on Linux kernel 2.4.20 [49].

The TimeSys [61] and MontaVista [42] RTOS apply different modifica-

tions to the original Linux kernel in order to improve the real-time perfor-

mance of basic mechanisms, such as:

• improvements to the scheduler and drivers in order to have a pre-

emptible kernel and to improve the responsiveness of user processes.

• high-resolution timers, with a resolution below one millisecond (eg.

100 microseconds or even less depending on the hardware). The Linux

kernel provides timers with a 10 milliseconds resoultion.

• mutexes with priority inheritance, so that a higher priority process

can continue with the execution as soon as possible.

These RTOSes use the standard Linux API and the POSIX standard.

Therefore, existing Linux applications can be simply executted in a real-

time operating system without changes.

The java virtual machines used for evaluation were:

• Sun JVM 1.4.2 06 which is a standard java virtual machine, and

• the reference implementation of the real-time specification for java.

This is realized by TimeSys and we will refer it as RTSJ. The version

used in our evaluations is 1.1. The real-time specification for java

enable Java programs to be used for real-time applications, see [23].

The test environment for these two configurations had the following char-

acteristics:

• first configuration, Komodo microcontroller: 5.5 MHz frequency, 2Mb

RAM

• second configuration, general purpose processor: Mobile Intel Pen-

tium 4, 1800MHz, 512 MB RAM. All the evaluations were running

in console mode, without any other processes on the system except

the application. In this way we tried to avoid as much as possible

influences from other sources.

95

For evaluating the predictability of our middleware not only the average

performance for a bunch of operations is important, but also the peak per-

formance for a single operation. For hard real-time applications, the worst

case execution time of an operation is more important than the overall per-

formance. Thus, we used a simple Client/Server application. There were

implemented as lightweight services and their pseudocode looks like this:

Server Client

while (not test_finished) { test_finished=false;

waitOrder(); createConnection(Server);

measure time after receiving; order = createOrder(order_size);

sendResult(); fill_order_with_data;

} for (1000 times) {

measure time before sending;

sendOrder(order);

waitResult();

}

test_finished = true;

We use the basic communication mechanism with order sizes of 32 bytes.

On the Komodo we collected 10 samples of this test and on the Pentium 100

samples. Furthermore, we recorded the following computed values: mini-

mum, maximum, average and standard deviation for each test. Moreover,

on the Komodo microcontroller we used four different configurations:

• FPP scheduling scheme, no garbage collector, each service had the

same priority

• GP scheduling scheme, no garbage collector, Client/Server CPU

shares of 60/30 percent

• GP scheduling scheme, no garbage collector, Client/Server CPU

shares of 50/50 percent

• GP scheduling scheme, with garbage collector, Client/Server/GC

CPU shares of 60/30/10 percent.

96

The real-time garbage collector of Komodo can be started as an additional

thread and, as for the other real-time threads, custom scheduling parame-

ters can be assigned. In this way, the user can control the garbage collector.

On a standard java virtual machine, the garbage collector introduces un-

predictable behavior for an application.

On the Pentium processor, we tested the Sun JVM in interpreted mode,

avoiding the execution of the Just In Time compiler (JIT). The JIT intro-

duces unpredictable behavior, by compiling the java bytecode of the hot

spots in an application into machine specific code. This results in longer

times when this operation is performed, but the performance is increased

for next execution of the same part of the application.

For both configurations we were looking for patterns when sending these

1000 orders. Eventual patterns, like peeks which appear in all configurations

at a certain time, can show that our middleware encounters a situation

where it doesn’t behave predictably.

The time was measured on the Pentium processor by executing the rdtsc

instruction, which returns a 64 bit quantity indicating the number of pro-

cessor cycles since the machine was booted. In order to use the rtdsc

instruction, we used a C code function which was accessed by our Java ap-

plication through the Java Native Interface (JNI). The JNI interface allows

java applications to access libraries written in C or C++. As observed in

our tests, the first measurement has every time a greater value than the

average. This can be explained by the fact that the java virtual machine

is loading the library code used for our fine measurements in its address

space. This is confirmed on the Komodo Simulator, where the first mea-

surement does not have any specific pattern. Here, no library is needed and

loaded by the microcontroller, but a Komodo API function is used to get

the processor cycles since the Komodo Simulator was started. This value

still appears on the graphics, but is not considered in statistics.

All time measurements were recorded in memory for each test, and saved

in a file when the test was finished. In this way we tried to avoid as much

as possible I/O operations to the harddrive. However, when collecting the

statistics for the 100 samples, they were saved after completing a sample in

a file. This could result in I/O operations in between the tests, which may

interleave with our time measurements for the next test.

97

5.2.2 OSA+ predictability evaluations

Before starting to discuss the evaluations regarding our middleware pre-

dictability, a short roadmap is given which hopefully will help the reader

to easily follow the ideas behind these evaluations:

1. firstly, we will analyze our approach in a full real-time environment:

the Komodo microcontroller. This evaluations set we will refer it as

Full RT and should show clearly if OSA+ performs in a predictibale

manner.

2. then, OSA+ will be studied on top of a real-time JVM - RTSJ and

all selected operating systems. We expect to observe here, that the

configuration RTOS + RTSJ is comparable with the Full RT evalu-

ations set. Furthermore, when combining RTSJ with a non real-time

operating system, we expect the real-time java virtual machine can

not support the predictability of the application without the help of

a RTOS. This evaluations set we will name RTSJ.

3. in the third set, we will analyze the predictability of OSA+ on top of

a standard java virtual machine. Here we are interested if the real-

time operating system can support by itself the predictability of the

application when the java virtual machine is not real-time. We should

expect here worst results regarding the predictability compared with

the RTSJ evaluations set. This set we will name it Sun evaluation

set.

When evaluating the results obtained, we will qualify them using two cri-

teriums:

• the predictability: as uniform the values are, as predictable they are

evaluated. A statistical value which indicates the uniformity of the

values, is the standard deviation.

• and their value: as small the value is, as better is the performance for

executing a single operation.

98

The Full RT evaluations set

On the Komodo microprocessor we observed that all 10 samples for each

configuration produced the same succession of time measurements. This

confirm us the high level of predictability for this environment.

The ideal results were obtained when using the FPP scheduling scheme,

figure 5.1. Here, all the 1000 measurements made have the same value, 4308

microseconds. This is due to two reasons:

• the Garbage Collector does not influence the application.

• as soon as one service is blocked waiting for an order or result, the

other thread gets the processor in a deterministic context switch time,

which for Komodo is zero cycles.

0

1000

2000

3000

4000

5000

1 105 209 313 417 521 625 729 833 937
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

Figure 5.1: OSA+ on Komodo, FPP, no GC, same priority

The values obtained here, 4308 microseconds, are the smallest obtained

from all configurations. This is due to the scheduling scheme, which suits

best here. This can not be obtained using the GP scheduling scheme,

figures 5.2 and 5.4. However, without the garbage collector we still get a

uniform distribution, all measurements show the same value.

This set of results confirm us clearly that OSA+ maintains the predictabil-

ity of the environment. No peaks are appearing in the measured results once

that the resources are reserved by the middleware.

From our evaluation, a standard and often configuration for a normal

application is missing: OSA+ using the FPP scheduling scheme in combi-

nation with the Garbage Collector. This is hapenning due to a weakness of

99

Komodo: since the garbage collector is realized as a thread, under FPP it

will get a fixed priority like the other threads. Possible priority assignments

are:

1. GC < Server = Client. In this configuration the GC could not get

the processor.

2. GC = Server = Client. The Server and Client reach both a blocking

state (waiting for an order, respectively the result) which makes the

GC to take and not realease back the processor.

3. GC > Server = Client. Only the GC will run.

In the configurations were the GP scheduling scheme was used, we can

make the following considerations regarding the results obtained:

• the GC influences the results obtained: the distribution is no longer

uniform and there is a performance degradation (compare figures 5.2

and 5.3). This indicates that the execution of the application threads

depends on the actions made by the GC when collecting the unused

application objects. The GC may aqcuire some locks on objects used

by the application threads, which results in blocking periods for the

affected thread. In this situation, a similar problem like in the FPP

scheduling scheme appears: priority inversion. The affected thread

will wait for the GC to release the locks, but this one has only a small

share of the processor. A possible solution here is to realize a priority

inheritance mechanism, and to assign to the GC the additional share

from the affected thread as long as the lock is still owned by the GC.

In this way, the blocking periods will be shorter which will increase

the predictability and performance of the application.

• the results depend of the allocated percentages for each thread. For

our application, the threads become active in a succesive order and

depend one from the other. Moreover, the time needed by each thread

to perform its action until the next blocking state is equal. This

leads to better results in the configurations with equal shares for each

thread than the ones with inequal processor shares. This can be

observed in figures 5.4 and 5.2. Nevertheless, it can be observed that

100

in both configurations we have a very good distribution for a real-

time application. This confirms once more that OSA+ maintains the

predictability of the underlying environment.

0
1000
2000
3000
4000
5000
6000
7000
8000

1 90 179 268 357 446 535 624 713 802 891 980
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

Figure 5.2: OSA+ on Komodo, GP, no GC, 60/30 CPU

0
5000

10000
15000
20000
25000
30000
35000

1 127 253 379 505 631 757 883
order nb.

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

Figure 5.3: OSA+ on Komodo, GP, with GC, 60/30/10 CPU

The previous considerations are summarized in figure 5.5. Here we can

see regarding the predictability and performance that:

FPP > GP, no GC, equal CPU shares > GP, no GC, inequal CPU shares

> GP, with GC

101

0
1000
2000
3000
4000
5000
6000

1 119 237 355 473 591 709 827 945
order nb.

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

Figure 5.4: OSA+ on Komodo, GP, no GC, 50/50 CPU

0

10000

20000

30000

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

minimum 4308 5367 6468 9913
maximum 4308 5376 7072 31467
average 4308 5373.72 7066.881 10248.111
stdev 0 2.95864834 24.0663009 1226.389314

FPP, no GC, same
priority

GP, no GC, 50/50
CPU

GP, no GC, 60/30
CPU

GP, with GC, 60/30
CPU

Figure 5.5: OSA+ on Komodo, statistics.

The RTSJ evaluations set

Before starting to discuss about the RTSJ set, we will discuss some issues

which are valid for the Sun evaluations set, too.

In order to check the consistency of our evaluations, we recorded a number

of 100 samples of the same test. For each operating system we present two

diagrams:

• one diagram which is selected from the 100 samples. This diagram

shows a single sample execution and time evolution for our applica-

tion.

• one diagram which shows the collected statistics from all samples.

102

As we can observe from all the diagrams (5.6(b), 5.7(b), 5.8(b) and 5.9(b))

which show the collected statistics of the 100 samples, their representation

is rather liniar and does not have major variances. This assures us that the

measured results are consistent and representative.

Another important observation which has to be stated before going to

present the evaluations is about the garbage collector on the java virtual

machines. As it can be seen from our pseudocode for the Client/Server

services, the resources are allocated before the communication starts. This

has an important impact on the overall performance of the application.

When no more resources are allocated during run-time by the application,

the garbage collector does not have to make any action in order to collect the

unused application objects. Moreover, before starting each test we called

the System.gc() method, which should collect all the unused objects up to

that moment. We have monitored also the activity of the garbage collector

on Sun JVM and did not registered any collecting actions.

The inactivity of the garbage collector shows us that we have succeded

to separate the initialization phase, when the resources are allocated by

the middleware, from the operational phase, when no resources are more

allocated. However, for the Komodo microcontroller this behaviour of in-

activity from the side of the garbage collector is not encounted. In fact,

we could observe on the Komodo Simulator that the system itself was al-

locating some memory for executing some optimizations for the java byte

code of our application. This was resulting in a continue activity of the GC

which affected the bahaviour of the OSA+ application.

With the RTSJ evaluations set we wanted to observe how OSA+ per-

forms on top of an real-time java virtual machine. It can be seen from the

diagrams which show the time evolution of a single sample, that our Clien-

t/Server application produces almost the same pattern on all the operating

systems. This pattern is identified through regular peaks which are with

approximatively 10 microseconds greater than the average. However, on

the RedHat operating system, this peak has a higher value. This can be

explained by the fact that the real-time java virtual machine has no real-

time support from the operating system. These peaks can be accepted for

a real-time application, if the following conditions are respected:

103

• the peaks must be bound, and

• they must be acceptable for the timing constraints of the application.

However, for RedHat 9 their is no guarantee that in other situations, when

the system is loaded, the value of the peaks will not be even higher. In

case of TimeSys 4.1, the company provided for the Linux GPL version a

bounded time of 1000 microseconds maximum latency, see TimeSys white

paper [15]. In the Linux preemptible kernel, whenever a kernel thread

needs exclusive access to a resource, all other kernel threads must wait,

resulting in maximum latency that is as long as the duration of the longest

non-preemptible interval. For the comercial version, TimeSys Linux/Real

Time, the maximum latency is even better, 10 microseconds. Furthermore,

in the same paper they estimate for a standard Linux (e.g. RedHat) a

maximum latency of 100000 microseconds, much more higher than both

TimeSys real-time operating systems.

From the collected sample statistics diagrams, it can be observed that

TimeSys 4.1 produces the smaller peaks, less than 250 microseconds. All

other operating systems produced peaks around 4500 microseconds. In fact,

these peaks are due to the state of the operating system at that time, and

like already mentioned they could appear as result of our bash script which

started each test and saved the results in a file. We have registered samples

with major peaks appearing grouped in small numbers. This could result

when our application interrupted the I/O operations for the results file, so

they appeared again when sending the next orders.

From the statistics presented in figure 5.10, we can observe that OSA+

performs predictably on all operating systems. However, no guaranties exist

that the same will happen in case of the RedHat operating system under

different load.

The Sun evaluations set

After having evaluated OSA+ on top of a real-time java virtual machine

running on standard and real-time operating systems, we would like to

observe if the same predictable behaviour is maintained when using a non

real-time java virtual machine.

104

0

20

40
60

80

100

120

1 83 165 247 329 411 493 575 657 739 821 903 985
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

(a) A single sample

1

10

100

1000

10000

1 9 17 25 33 41 49 57 65 73 81 89 97
sample nb.

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

min max average stdev

(b) Collected sample statistics

Figure 5.6: OSA+ on MontaVista 3.1 and RTSJ

105

0
20
40
60
80

100
120

1 92 183 274 365 456 547 638 729 820 911
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

(a) A single sample

0

50

100

150

200

250

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
sample nb.

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

min max average stdev

(b) Collected sample statistics

Figure 5.7: OSA+ on TimeSys 4.1 and RTSJ

106

0
20
40
60
80

100
120

1 104 207 310 413 516 619 722 825 928
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

(a) A single sample

1

10

100

1000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
sample nb.

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

min max average stdev

(b) Collected sample statistics

Figure 5.8: OSA+ on TimeSys 5.0 and RTSJ

107

0

50

100

150

200

1 88 175 262 349 436 523 610 697 784 871 958
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

(a) A single sample

1

10

100

1000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
sample nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

min max average stdev

(b) Collected sample statistics

Figure 5.9: OSA+ on RedHat 9 and RTSJ

108

0

50

100

150

200

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

min 38 39 28 37
max 51 68 58 164
average 38.2042042 47.2972973 39.67867868 38.31331331
stdev 1.343185203 4.242015724 2.777691744 4.303190721

MontaVista 3.1 TimeSys 4.1 TimeSys 5.0 RedHat 9

Figure 5.10: OSA+ on RTSJ, statistics.

As expected the real-time distribution is worse (5.11(b) to 5.2.2, regard

the logarithmic scale of the y-axis).

At this evaluations set, like for the RTSJ evaluations set, we don’t see

any notable difference when running in the same java virtual machine, but

on different operating systems: real-time and non real-time. This can have

the following explanations:

• the OSA+ application reserves resources at the begining and not dur-

ing operational phase. This results in no activity from the garbage

collector, which could influence the application.

• our tests were made on an idle system. This minimized the influence of

other activities on the system, and in fact masked the non predictibale

responsiveness of a non real-time operating system in case that more

requests exist for the processor.

However, when comparing the RTSJ set with the Sun evaluations set, we

can clearly see that the first one has a lower variation for the measured

values.

As conclusion, the evaluations shows our middleware approach behave

predictable if it based on a predictable environment. If only one component

is non real-time, the entire configuration looses real-time capabilities, too.

109

1

10

100

1000

10000

1 89 177 265 353 441 529 617 705 793 881 969
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

(a) A single sample

1

10

100

1000

10000

100000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
sample nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

min max average stdev

(b) Collected sample statistics

Figure 5.11: OSA+ on MontaVista 3.1 and Sun JVM

110

1

10

100

1000

10000

1 84 167 250 333 416 499 582 665 748 831 914 997
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

(a) A single sample

1

10

100

1000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
sample nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

min max average stdev

(b) Collected sample statistics

Figure 5.12: OSA+ on TimeSys 4.1 and Sun JVM

111

1

10

100

1000

10000

1 89 177 265 353 441 529 617 705 793 881 969
order nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

(a) A single sample

1

10

100

1000

10000

100000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
sample nb.

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

min max average stdev

(b) Collected sample statistics

Figure 5.13: OSA+ on TimeSys 5.0 and Sun JVM

112

1

10

100

1000

10000

1 99 197 295 393 491 589 687 785 883 981
order nb.

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

(a) A single sample

1

10

100

1000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
sample nb.

si
ng

le
 o

rd
er

se

nd
in

g(
us

)

min max average stdev

(b) Collected sample statistics

Figure 5.14: OSA+ on RedHat 9 and Sun JVM

113

1

10

100

1000

10000

si
ng

le
 o

rd
er

 s
en

di
ng

(u
s)

min 27 34 28 27
max 4516 4492 4628 4526
average 45.11711712 51.15815816 48.29229229 44.51751752
stdev 169.3079221 154.1703263 189.619129 169.8477898

MontaVista
3.1 TimeSys 4.1 TimeSys 5.0 RedHat 9

Figure 5.15: OSA+ on Sun JVM, statistics.

5.3 Performance overhead

In the previous section we analyzed and prooved the predictability of our

middleware approach. But, this characteristic together with the very good

results for the memory footprint could not be enough for using OSA+ in

some applications. The reason is, the performance degradation introduced

by the middleware might break tight timming requirements of the applica-

tion. Therefore, we have to analyze the performance overhead introduced

by our approach as well. For this, we measured the communication latencies

introduced by OSA+ in two cases:

• local communication, services are on the local platform. This mea-

surements are especially important for the middleware itself. Because

OSA+ is using a microkernel architecture, the middleware uses plat-

form services for accomplishing some tasks. These services can inter-

communicate over the basic communication mechanism. Therefore,

these evaluations are important for the performance of OSA+ mid-

dleware.

• remote communication, services are on different platforms. As OSA+

is used for distributed systems, the latencies introduced for remote

communication must also be measured.

114

5.3.1 Local communication

For the local communication measurements, we compared the OSA+ Clien-

t/Server application with a pure Java Client/Server application. In the

pure Java application the Client and Server threads exchange data through

a message queue and use the java synchronization mechanims to announce

the arrival of a message in this queue. We measured the average time for

sending a 32 bytes message for a number of 1000 operations. To compute

the OSA+ performance overhead we compared the obtained time with the

time for sending a single 32 bytes order using the basic communication

mechanism which is already measured, see figures 5.5 and 5.10. The over-

head was measured for two real-time configurations:

• Komodo micro-controller using FPP scheduling scheme, no garbage

collection with the same priority for both services, and

• TimeSys 4.1 real-time operating system and RTSJ java virtual ma-

chine

Additionally, we have simulated a payload (data processing activity) from

the side of the server for each message sent. The idea is to simulate a real

application which will do some processing with the message, and to observe

how the overhead evolves for different payloads.

Table 5.2 presents the measured values. Regarding the timing constraints

for the application that is using our middleware, the 22 us overhead in-

troduced by OSA+ in case of the powerfull Pentium processor is almost

negligible. For the embedded system, the 4.3 milliseconds communication

time has to be considered especially if the application has to react to events

which introduce lower timming constraints, e.g. 10 ms. In this case, due to

the low computation power of the micro-controller, the time left for other

processings is quite narrow. To overcome such tight constraints, the user

has different posibilities to further minimize the overhead:

• if it is possible, the service could be registered on the platform as a

procedural service. The communication time is approximatively half

compared with the case of using a lightweight service, see figure 5.19.

• the procedural interface mechanism can be used. This introduces

almost no overhead, see figure 5.19.

115

Configuration Java app. OSA+ app. OSA+ overhead
TimeSys 4.1 and RTSJ 25 us 47 us 22 us
Komodo, FPP, no GC 1.6 ms 4.3 ms 2.7 ms

Table 5.2: OSA+ performance overhead for sending a single message

Figures 5.16 and 5.17 show the evolution of the performance overhead

when sending a single message using our middleware and considering a

processing payload for each message. The measured time in the figures is

splitted in:

• payload for processing a single message by the server

• time which the Java application needs to send the message

• overhead introduced by OSA+ when sending the same message using

the basic communication mechanism

As we can see, already for a 195 microseconds payload (the tile with value

242), the performance overhead introduced by OSA+ reaches a value of only

10% in the configuration which is using the powerfull Pentium processor.

On the Komodo micro-controller we need a payload of 25.4 milliseconds to

reach the same 10% performance overhead which for an 5.5 MHz micro-

controller is quite a good value. The measurements made in figures 5.16

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

47 66 110 242 462
order processing duration(us)

co
nt

rib
ut

ed
 p

er
ce

nt
ag

e

payload Java app. OSA+ performance overhead

Figure 5.16: OSA+ performance overhead on TimeSys 4.1 and RTSJ

116

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4.3 8.1 13.5 29.7 56.7
order processing duration(ms)

co
nt

rib
ut

ed
 p

er
ce

nt
ag

e

payload Java app. OSA+ performance overhead

Figure 5.17: OSA+ performance overhead on Komodo, FPP, no GC, same
priority

and 5.17 are directly compared in figure 5.18, where the time is normalized

and measured in clock cylces. It can be easily observed that on the Komodo

embedded system the computation power is more efficient used, to reach

a 5% performance overhead (last plotted value) on Komodo, are necessary

only 38% of the clock cycles needed by the Pentium processor. This is due

to the fact that the Komodo micro-controller is highly specialized for exe-

cutting Java applications. Otherwise, we are expecting the same evolution

as for the Pentium processor on other embedded systems which are using a

simillar configuration, see figure 1.2.

5.3.2 Remote communication

For the remote communication we measured the latency introduced only

by the OSA+ when sending a 48 bytes order. The latency does not include

the network communication and the time needed by the functions used

from the java.nio package. The test was done in a configuration which

includes TimeSys 4.0 RTOS and Sun JVM running in interpreted mode.

We choosed Sun JVM because the reference implementation of RTSJ does

not implement the java.nio package which is used by the TCPIPService.

The average for 1000 orders was about 498 microseconds. For realizing the

remote communication, the middleware is using the basic communication

117

0
20
40
60
80

100
120
140
160
180

0 100 200 300 400 500 600 700 800
payload(thousands clocks)

O
SA

+
pe

rfo
rm

an
ce

 o
ve

rh
ea

d
vs

. J
av

a
ap

p.
(in

 %
)

Komodo TimeSys 4.1 and RTSJ

Figure 5.18: OSA+ performance overhead, TimeSys 4.1 and RTSJ vs. Ko-
modo

mechanism where jobs are exchanged between OSA+ Core, HLCService

and TCPIPService. The latency can be further minimized if the procedural

interface is used.

5.4 Avoiding microkernel communication

drawbacks

As discussed in section 4.2.2, the microkernel architecture which we are

using for our approach introduces disadvantages in terms of performance

degradation and increased communication overhead. We addressed the per-

formance degradation by introducing:

• the procedural interface communication mechanism, and

• the non copy variant of the order communication mechanism, see 4.1.2

Both techniques can be used only on the local platform. To evaluate these

communication mechanisms we used the same test described in the pre-

vious section 5.3 with a payload of 0 microseconds and for the following

configurations:

1. Client: lightweight service, Server: procedural service. With this

118

configuration we wanted to evaluate order communication for a pro-

cedural service.

2. Client: lightweight service, Server: lightweight service. The Client is

using the procedural interface of the Service to exchange data.

3. Client: lightweight service, Server: lightweight service. The stan-

dard order communication mechanism is used.

4. Client: lightweight service, Server: lightweight service. The non

copy order communication mechanism is used.

In figure 5.19 can be observed that the latency of the procedural interface

mechanism is comparable as to a direct method call invocation and the

time to send 1000 orders is below one microsecond. We can conclude that

this is a very efficient way to communicate between local services and to

improve considerably the performance of our microkernel based middleware.

However, this mechanism has to be used as less as possible, because it’s

introducing strong dependencies between service.

To avoid the strong dependencies introduced by the procedural interface,

it can be choosen to implement only basic services which are critical for the

performance of the platform as procedural services. If this is possible (no

control flow is needed for the service), it can be observed that communicat-

ing with orders to a procedural service is more than two times faster than

communicating between two lightweight services.

The non copy variant of the order communication mechanism introduces

constant overhead independently of the order size. This mechanism, when

used on the local platform, can speed up the application especially when

large amounts of data must be transported.

119

0
20
40
60
80

100

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

order size(bytes)

se
nd

in
g

of
 1

00
0

or
de

rs

(m
s)

1) Procedural Service 2) Procedural interface
3) Standard order comm. 4) Non copy order comm.

Figure 5.19: Performance of OSA+ communications mechanisms

120

Chapter 6

CONCLUSIONS AND FUTURE

DIRECTIONS

6.1 Conclusions

In this thesis, we presented our approach which addresses the development

of applications on distributed real-time embedded systems. In the first two

chapters we introduced the research domain and described the requirements

and the problems which appear when trying to cope with these require-

ments. Due to the fact that our research domain represents an intersection

of three research areas:

• distributed systems

• real-time systems, and

• embedded systems,

the mission to find a solution which solves the requirements of all these

areas was more difficult. We had to address issues regarding distribution,

our solution must have strict real-time capabilities and must fit on systems

with very low resources. Nevertheless, there are already existing solutions

in our research domain. We have summarized them and presented a brief

comparision in the third chapter. Here, we already introduced the main

aspects which differentiate our approach from the other solutions. The

following list summarizes the contributions of this thesis to the research

domain:

121

• full microkernel architecture. We introduced a full microkernel

middleware architecture which permited us to reach a high adaptabil-

ity:

– to the environment. Our middleware can adapt to different pro-

cessing and communications environments.

– to low resource systems. Using a microkernel architecture, it

becomes more easy to select only the neded components for a

specific application. Moreover, these components can be further

configured and adapted to the low resource systems in a user

transparent manner (e.g. some functionalities can be removed

from the components).

The full microkernel architecture makes the adaptability task to be

more easy due to the uniform and independent view of each compo-

nent. This differs from other approaches which use a microkernel ar-

chitecture, but introduce tight dependecies between the components.

The full microkernel approach permits us to reach a memory foot-

print of 44 KB for a distributed version of the middleware, which is

the smallest footprint from the presented approaches.

• service orientation. Our approach is the only one in our research

domain which is service oriented. The other approaches are object

oriented. This has the following important consequences:

– our approach is working at a higher abstract level. The notion

of service is focused more on the offered functionality and less on

the implementation and programming language aspects. As an

immediate result of this, the management of services introduces

less overhead. For example, they can overlap on many other

objects from a object oriented programming language.

– due to the abstraction level, our approach is loosely coupled. It

can be more natural and easily implemented in different pro-

gramming languages. This differs from the other approaches

which are tight to the processing environment.

122

• chain communication mechanism. This communication mech-

anism permits our middleware to establish optimum inter-platform

connections. The connections are optimum in regard to communica-

tion time or amount of data to transfer. The mechanism can be used

when multiple connections has to be established by the application.

In chapter 4 we described the concepts and the realization of our approach

and we pointed out the differences to the other approaches. Nevertheless,

we had to evaluate if our concepts produce good results when there are

applied in practice. Thus, we evaluated our middleware in chapter 5 and

proved, that it respects the real-time and embedded systems requirements.

6.2 Future directions

We have realized an implementation reference for our approach, but there

are still many things that can be added. As a matter of consequence, in this

reference implementation we realized only the basic concepts which permit

us to further build on top of what we have alreay realized.

Firstly, we have to implement the Address Resolution Service. This will

permit the user to transparently discover services on remote platforms.

Currently, the user has to provide specific parameters in order to identify a

remote service.

Then we will realize a bridge between OSA+ and CORBA as an addi-

tional service. The service will be able to understand and communicate

with CORBA applications. CORBA is the most important standard for

distributed applications.

We would also like to publish our implementation, so it can be tested by

other people and hopefully evolve in more richer and mature middleware.

Finally, organic computing is an upcoming research initiative. Here, com-

putational systems should behave like organic entities and provide self-x fea-

tures like self-organizing, self-configuring, self-healing, self-protecting, etc.

Extending OSA+ to an organic middleware could introduce such features

to distributed embedded systems by automatically organizing, configuring,

copying or moving services.

123

124

Bibliography

[1] Extreme CHAOS. Technical report, The Standish Group International,

Inc., 2001.

[2] Cristopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacob-

son, Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language.

Oxford University Press, 1977.

[3] David Bakken. Encyclopedia of Distributed Computing, chapter Mid-

dleware. Kluwer Academic Publishers, 2003.

[4] H.E. Bal. Programming Distributed Systems. Pretince-Hall, Inc., 1990.

[5] Philip A. Bernstein. Middleware: A Model for Distributed System

Services. Communications of the ACM, 39(2):86–98, February 1996.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-

currency Control and Recovery in Database Systems. Addison-Wesley

Professional, 1987.

[7] Toni A. Bishop and Ramesh K. Karne. A survey of middleware. In

N. Debnath, editor, Proceedings of ISCA 18th International Conference

Computers and Their Applications, pages 254–258, Honolulu, Hawaii,

USA, March 2003. ISCA.

[8] Gordon Blair and Jean-Bernard Stefani. Open Distributed Processing

and Multimedia. Addison-Wesley Professional, 1998.

[9] Bosch. Can 2.0b. Available: http://www.can.bosch.com/content/

Literature.html (Accessed: 2004, November 9), 1991.

125

[10] Don Box. Essential COM. Addison-Wesley Professional, 1998.

[11] U. Brinkschulte, C. Krakowski, J. Kreuzinger, R. Marston, and T. Un-

gerer. The Komodo Project: Thread-Based Event Handling Supported

by a Multithreaded Java Microcontroller. In Proceedings of the 25th

EUROMICRO Conference, volume 1, Milan, Italy, September 1999.

[12] H. Rebecca Callison and Daniel G. Butler. Real-Time CORBA Trade

Study. Technical Report D204-31159-1-5, Boeing Corporation Phan-

tom Works, October 2000.

[13] Common Object Request Broker Architecture: Core Specification

3.0.3. Technical Report formal/2004-03-01, Object Management

Group, March 2004.

[14] CORBA Components Specification 3.0. Technical Report formal/02-

06-66, Object Management Group, June 2002.

[15] TimeSys Corporation. TimeSys Linux GPL. Available: http://www.

timesys.com/index.cfm?bdy=bsp_downloads.cfm (Accessed: 2004,

November 9).

[16] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-

tems. Concepts and Design. Addison-Wesley Professional, 2nd edition,

1994.

[17] Data Distribution Service for Real-Time Systems Specifications. Tech-

nical Report ptc/03-07-07, Object Management Group, May 2003.

[18] J. Dongarra. Performance of various Computers using Standard Lin-

ear Equations software in a Fortran Environment. In Proceedings of

Third Conference on Multiprocessors and Array Processors, San Diego,

California, January 1987.

[19] Wolfgang Emmerich. Engineering Distributed Objects. John Wiley and

Sons, 2000.

[20] Robert Englander. Developing Java Beans. O’Reilly, June 1997.

126

[21] P.H. Enslow. What is a ‘distributed’ data processing system? Com-

puter, 11(1):13–21, January 1978.

[22] Alexander Romanovsky et. al. CaberNet Vision of Research and Tech-

nology Development in Distributed and Dependable Systems. Tech-

nical report, Network of Excellence in Distributed and Dependable

Computing Systems, January 2004.

[23] The Real-Time for Java Expert Group. The Real-Time Specification

for Java. Available: https://rtsj.dev.java.net/rtsj-V1.0.pdf

(Accessed: 2004, November 9).

[24] Message Passing Interface Forum. MPI: A message-passing interface

standard. Technical Report UT-CS-94-230, 1994.

[25] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional, 1995.

[26] Leonard Gilman and Richard Schreiber. Distributed Computing with

IBM(r) MQSeries. Wiley, 1996.

[27] IEEE P1596.6 Working Group. SCI/RT - Scalable Coherent Interface

for Real-time applications, 1992.

[28] Carl L. Hall. Building Client/Server Applications Using Tuxedo. Wiley,

1996.

[29] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate

Stout. Java Message Service Specification 1.1. Technical report, Sun

Microsystems, Inc., April 12 2002.

[30] Richard Hayton. FlexiNet Open ORB Framework. Technical Report

2047.01.00, APM Ltd, Poseidon House, 1997.

[31] Eugene S. Hudders. CICS: A Guide to Internal Structure. Wiley, 1994.

[32] TIBCO Software Inc. TIBCO Rendezvous. Available: http://www.

tibco.com/software/enterprise_backbone/rendezvous.jsp (Ac-

cessed: 2004,

November 9).

127

[33] Real-Time Innovations. NDDS: The Real-Time Publish- Subscribe

Middleware. Available: http://www.rti.com/products/ndds (Ac-

cessed: 2004,

November 9).

[34] Prashant Jain and Douglas C. Schmidt. Service Configurator A Pat-

tern for Dynamic Configuration of Services. In Proceedings of the Third

USENIX Conference on Object-Oriented Technologies and Systems,

Portland, Oregon, USA, June 1997. USENIX.

[35] Coplien J.O. Advanced C++ programming styles and idioms. Addison-

Wesley Professional, 1994.

[36] Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and

Michael Gonzalez Harbour. A Practitioner’s Handbook for Real-Time

Analysis: Guide to Rate-Monotonic Analysis for Real-Time Systems.

Kluwer Academic Publishers, 1993.

[37] Eric Lafortune. ProGuard. Available: http://proguard.

sourceforge.net (Accessed: 2004, November 9).

[38] Thomas Ledoux. OpenCorba: A Reflective Open Broker. In Pierre

Cointe, editor, Meta-Level Architectures and Reflection, Second In-

ternational Conference, Reflection’99, volume 1616 of Lecture Notes

in Computer Science, pages 197–214. Springer-Verlag, Saint-Malo,

France, July 1999.

[39] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-

ming in a hard real-time environment. ACM, 20(1):40–61, 1973.

[40] Bertrand Meyer. Object oriented software construction. Pretince Hall

PTR, 2nd edition, March 2000.

[41] A. K. Mok and M. L. Detouzos. Multiprocessor scheduling in a hard

real-time environment. In Proceedings of the 7th Texas Conference on

Computing Systems, November 1978.

[42] MontaVista Software. MontaVista Linux. Available: http://www.

mvista.com/previewkit/index.html (Accessed: 2004, November 9).

128

[43] NBIO: Nonblocking I/O for Java. Available: http://www.eecs.

harvard.edu/~mdw/proj/java-nbio/ (Accessed: 2004, December

10).

[44] James Noble and Charles Weir. Small Memory software. Pearson

Education Limited, 2001.

[45] Rickard Oberg. Mastering RMI: Developing Enterprise Applications

in Java and EJB. Wiley, February 2001.

[46] Information Technology - Open Distributed Processing - Reference

Model: Foundations. Technical Report ISO-20746-2, International

Standards Organization, 1996.

[47] David S. Platt. Introducing Microsoft .NET. Microsoft Press, May

2001.

[48] I. Pyarali, C. O Ryan, D. C. Schmidt, N.Wang, V. Kachroo, and

A. Gokhale. Applying optimization patterns to the design of real-

time orbs. In Proceedings of the 5th Conference on Object-Oriented

Technologies and Systems, San Diego, CA, May 1999.

[49] Red Hat Inc. RedHat Linux 9. Available: ftp://ftp-stud.

fht-esslingen.de/pub/Mirrors/ftp.redhat.com/redhat/linux/

9/ (Accessed: 2004, November 9).

[50] ROFES: Real-Time CORBA for embedded systems. Available: http:

//www.lfbs.rwth-aachen.de/content/20 (Accessed: 2004, Decem-

ber 10).

[51] D. C. Schmidt and C. Cleeland. Applying patterns to develop extensi-

ble orb middleware. IEEE Communications Magazine, 37, April 1999.

[52] Douglas Schmidt. Middleware R&D Challenges for Distributed Real-

time and Embedded Systems. Workshop on New Visions for Software

Design and Productivity, December 2002.

[53] Etienne Schneider. A middleware approach for dynamic real-time soft-

ware. Reconfiguration on distributed embedded systems. PhD thesis,

University Louis Pasteur Strasbourg, 2004.

129

[54] Michael D. Schroeder. Distributed Systems, chapter 1, pages 1–16.

Addison-Wesley Professional, 2nd edition, 1993.

[55] Bill Segall and David Arnold. Elvin has left the building: A publish/-

subscribe notification service with quenching. In In Proceedings of the

1997 Australian UNIX Users Group, Brisbane, Australia, September

1997.

[56] A. Singhai, A. Sane, and R. H. Campbell. Quarterware for middleware.

In Proceedings of ICDCS’98, May 1998.

[57] John Stankovic. Misconceptions about real-time computing: A serious

problem for next generation systems. IEEE Computer, 21(10):10–19,

October 1988.

[58] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C.

Buttazzo. Deadline scheduling for real-time systems: EDF and related

algorithms. Kluwer Academic Publishers, October 1998.

[59] V. S. Sunderam. PVM: a framework for parallel distributed computing.

Concurrency, Practice and Experience, 2(4):315–340, 1990.

[60] Andrew S. Tanenbaum and Maarten van Stenn. Distributed Systems.

Principles and Paradigms. Pretince-Hall, Inc., 2002.

[61] TimeSys Corporation. A TimeSys Perspective on the Linux Pre-

emptible Kernel. Available: http://www.timesys.com/_content/

media/docs/whitepapers/ (Accessed: 2004, November 9).

[62] XML Protocol Working Group W3C. Soap version 1.2. Available:

http://www.w3.org/TR/soap12-part1/ (Accessed: 2004, November

9), June 2003.

[63] D. Wagner. Spacebourne Processors: Past, Present and Future Satel-

lite Onboard Computers. 49th International Astronautical Congress,

Sept. 28 - Oct. 2. 1998.

[64] Uffe Kock Wiil and Peter J. Nurnberg. Evolving hypermedia middle-

ware services: Lessons and observations. In Proceedings of Selected

Areas in Cryptography, pages 427–436, 1999.

130

Publications by the author

In reverse chronological order:

1. E. Schneider, F. Picioroaga, U. Brinkschulte: Dynamic Reconfig-

uration through OSA+, a Real-Time Middleware, Middleware 04,

1st Middleware Doctoral Symposium, 2004, 18th-22nd October 2004,

ACM, Toronto, Canada

2. A. Bechina, U. Brinkschulte, F. Picioroaga, E. Schneider: OSA+

Real-Time Middleware. Results and Perspectives. International

Symposium on Object-Oriented Real-Time Distributed Computing

(ISORC 2004), Wien, Austria, May 12 - 14, 2004.

3. U. Brinkschulte, A. Bechina, F. Picioroaga, E. Schneider: Open Sys-

tem Architecture for embedded control applications Concepts and re-

sults. To be published in ICIT’03 International Conference on Indus-

trial Technology, Maribor, Slovenia, December 10 - 12, 2003, IEEE.

4. A. Bechina, F. Picioroaga, U. Brinkschulte: Towards a Collabo-

rative Engineering Framework. International Conference on Com-

puter Information Systems and Industrial Management Applications,

CISIM’03, Elk, Poland, June 26 - 28, 2003.

5. U. Brinkschulte, A. Bechina, B. Keith, F. Picioroaga, E. Schneider:

A Middleware Architecture for Ubiquitous Computing Systems with

Real-Time needs. 2002 IAR Workshop (Institute for Automation and

robotic Research), Grenoble, France, November 23-24, 2002

6. U. Brinkschulte, A. Bechina, F. Picioroaga, E. Schneider: Distributed

Real-Time Computing for Microcontrollers - the OSA+ Approach.

131

International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC 2002), Washington D.C., 2002, IEEE, p.169-172.

ISBN: 0-7695-1558-4

7. U. Brinkschulte, A. Bechina, F. Picioroaga, E. Schneider, Th. Un-

gerer, J. Kreuzinger, M. Pfeffer: A Micro-kernel Middleware Architec-

ture for Distributed Embedded Real-Time Systems. 20th Symposium

on Reliable Distributed Systems, New Orleans, MI, USA, October

28-31, 2001, IEEE, p.218-226, ISBN: 0-7695-1366-2.

8. Bechina, U. Brinkschulte, F. Picioroaga, E. Schneider: Real Time

middleware for industrial embedded measurement and control appli-

cation OSA+. The 2001 International Conference on Parallel and Dis-

tributed Processing Techniques and Applications, Las Vegas, Nevada,

USA, June 25-28, 2001, CSREA, p.843-849, ISBN: 1-892512-69-6.

132

Curriculum vitae

Florentin Picioroagă

30 July, 1977 Born in Iaşi, Romania

Oct. 1991 - Jul. 1995 High School

“Anghel Rugină” High School, Vaslui, Romania

Specialization: computer science

Oct. 1995 - Jun. 1999 Diploma degree

Faculty of Computer Science

“Al. I. Cuza” University of Iaşi, Romania

Sep. 1999 - Jun. 2000 Master degree

Faculty of Computer Science

“Al. I. Cuza” University of Iaşi, Romania

Specialization: distributed and parallel programming

Nov. 2000 - Dec. 2004 Ph.D. student

Institute for Process Control and Robotics

University of Karlsruhe, Germany

&

LIIA - INSA de Strasboug, France

133

134

Appendix

Application example using OSA+

import osa . ∗ ;

public class Cl i en tS e r v i c e extends osa . S e r v i c e {

//This execu t e s the cons t ruc t order r e c e i v e d from the p la t form .

public f ina l void cons t ruc t (f ina l osa . Error osaErr , f ina l Job job) {

// noth ing to do

sendResult (osaErr , job) ;

}

//This execu t e s the d e s t r u c t order r e c e i v e d from the p la t form .

public f ina l void des t ruc t (f ina l osa . Error osaErr , f ina l Job job) {

// noth ing to do

sendResult (osaErr , job) ;

}

public stat ic void main (St r ing [] args) {

MicroKernel osaMKernel = new MicroKernel (

new BucketContainer (3 , 2 , 3 , 3) , // Serv i c e Repos i tory

new BucketContainer (3 , 2 , 3 , 3) , //Connection Repos i tory

null) ;

osa . Error osaErr = new osa . Error () ;

// I n i t i a l i z e the OSA+ plat form

osaMKernel . i n i t (osaErr) ;

Proce s sSe rv i c e p r o c e s sS e r v i c e = new Proce s sSe rv i c e () ;

//we add the Proce s sServ i c e to the p la t form

osaMKernel . r e g i s t e r S e r v i c e (

osaErr , p roce s sSe rv i c e , ” Proce s sSe rv i c e ” , // s e r v i c e name

135

” 1 .0 ” , // s e r v i c e ve r s i on

Plat formInfo .PRC SERVICE) ; // procedura l s e r v i c e

//we add HLC s e r v i c e because we want to have remote acce s s

HLCService h l cS e r v i c e = new HLCService () ;

osaMKernel . r e g i s t e r S e r v i c e (osaErr , h l cSe rv i c e , ”HLCService” , ” 1 . 0 ” ,

Plat formInfo .LWP SERVICE) ;

//we can have remote acce s s over TCPIP

TCPIPService t cp i pS e rv i c e = new TCPIPService (

” 1 2 7 . 0 . 0 . 1 ” , 7777) ; //IP address o f the p la t form

osaMKernel . r e g i s t e r S e r v i c e (osaErr , t cp ipSe rv i c e , ”TCP/IP” , ” 1 .0 ” ,

Plat formInfo .LWP SERVICE) ;

C l i e n tS e r v i c e c l i e n t = new Cl i en tS e r v i c e () ;

//we add the C l i en tS e r v i c e as a l i g h tw e i g h t s e r v i c e

osaMKernel . r e g i s t e r S e r v i c e (osaErr , c l i e n t , ”He l loWor ldServ ice” , ” 0 . 1 ” ,

Plat formInfo .LWP SERVICE) ;

}

//This i s the entry po in t o f the s e r v i c e f o r OSA+

public f ina l void serv iceLoop (f ina l osa . Error e r r o r) {

Order rece ivedOrder , sendOrder ;

osa . Error osaErr = new osa . Error () ;

Job job ;

LookUpInfo serverLookUpInfo ;

Connection conn ;

S t r ing message ;

while (true) {

job = waitOrder (osaErr) ;

rece ivedOrder = job . getOrder () ;

switch (rece ivedOrder . getOrderId ()) {

case Plat formInfo .DESTRUCT FUNCTION ID:

de s t ruc t (osaErr , job) ;

return ;

case Plat formInfo .CONSTRUCT FUNCTION ID:

cons t ruc t (osaErr , job) ;

// d i s c o v e r a SERVER s e r v i c e

serverLookUpInfo = getMicroKernel () . lookUpServ ice (”SERVER”) ;

sendOrder = bui ldOrder ((byte) 100 ,

136

// order id , i d e n t i f i e s the f u n c t i o n a l i t y o f the SERVER s e r v i c e which i s

r eques t ed

50) ; // r e s u l t S i z e

sendOrder . setOrderData (ByteArray . a l l o c a t e (60)) ;

// f i l l the order wi th a message

sendOrder . getOrderData () . writeOSAString (

osaErr , ” He l lo World ! ”) ;

// crea t e a connect ion to the SERVER s e r v i c e

conn = getMicroKernel () . c reateConnect ion (

osaErr , sendOrder , (short) 1

//nb . o f orders which shou ld be re se rved on the connect ion

, serverLookUpInfo) ;

//we send the order over the c rea t ed connect ion

sendOrder (osaErr , sendOrder , conn) ;

//and we wai t the r e s u l t from the SERVER

job = waitResu l t (osaErr) ;

// suppos ing t h a t the SERVER s e r v i c e r e a l i z e s f o r orderId 100

//an echo f u n c t i o n a l i t y , we read back the r e c e i v e d message

message = job . ge tResu l t () . getResultData () . readOSAString (osaErr) ;

System . out . p r i n t l n (”Received : ” + message + ” from the s e r v e r ! ”) ;

break ;

}

//we need t h i s in case t h a t t h i s s e r v i c e i s r e g i s t e r e d as

// procedura l s e r v i c e

i f (kernelNeedControlFlow ()) {

return ;

}

}

}

}

137

Figure .1: OSA+ UML class diagram

