
 

N° d’ordre : 

École Doctorale Sciences Pour l’Ingénieur 

ULP – INSA – ENGEES - URS 

THÈSE 

présentée pour obtenir le grade de 

Docteur de l’Université Louis Pasteur – Strasbourg I 

Discipline : Sciences pour l’Ingénieur 

(Spécialité Informatique) 

par 

Etienne Schneider 

A Middleware Approach for Dynamic Real-Time Software 

Reconfiguration on Distributed Embedded Systems 

Soutenue publiquement le 3 décembre 2004 

Membres du jury 

Directeur de thèse : M. Uwe Brinkschulte, professeur, Université de 
Karlsruhe, Allemagne  

Co-Directeur de thèse : M. Bernard Keith, professeur, INSA Strasbourg 

Rapporteur interne : M. Pierre Colin, professeur, ENSPS Strasbourg 

Rapporteur externe : M. Andreas Polze, professeur, HPI – Université de 
Potsdam, Allemagne 

Rapporteur externe : M. Chris D. Gill, professeur, Université Washington 
Saint Louis, Etats-Unis d’Amérique 

Examinateur : Mme Aurélie Bechina, maître de conférence, 
Université d’Oslo, Norvège 

LIIA                                                                 N° de l’Unité: ERT N°9 





Abstract 

 

 

 

 

 

Dynamic software reconfiguration is a useful tool to adapt and maintain software systems. In 

most approaches, the system has to be stopped while the reconfiguration is in progress. This is 

not suitable for real-time systems. Timing constraints must be met even while the system is 

reconfiguring. 

Our approach is based on the real-time middleware OSA+. Our main objective is to be able to 

reconfigure one (or more) service during the run-time, with a predictable and predefined 

blackout time (the time the systems does not react due to the reconfiguration).  

Three different approaches concerning the blocking or non-blocking state of a service are 

presented. These approaches can be used to realize a tradeoff between the reconfiguration time 

and the blackout time. 





Résumé 

 

 

 

 

La reconfiguration dynamique d'un logiciel peut être un auxiliaire utile pour adapter et maintenir 

des systèmes informatiques. Dans la plupart des approches, le système doit être interrompu 

pour que la reconfiguration puisse être exécutée. Cette interruption ne peut convenir aux 

systèmes temps-réel : il est nécessaires que les contraintes temporelles soient respectées, même 

lorsque le système est en train d'être reconfiguré. 

Notre approche se base sur OSA+, un middleware temps-réel. Notre objectif principal est 

d'être capable de reconfigurer un (ou plusieurs) service lorsque le système est en fonction, avec 

un temps de non-réponse prévisible et prédéfini, c'est-à-dire un temps pendant lequel le système 

ne réagit pas à cause de la reconfiguration. 

Trois approches différentes concernant le blocage ou le non-blocage d'un service sont 

présentées. Ces approches peuvent être utilisées pour réaliser un compromis entre le temps de 

reconfiguration et le temps de non-réponse. 





 

 

Acknowledgments 

 

 

 

 

Despite the PhD work is a personal work, it is not something, which was possible for me to do 

alone. 

This four-year work requires knowledge that was out of my domain before starting this 

research. I came to Karlsruhe to make a PhD thesis about a reconfigurable middleware in real-

time. Before starting the research, I knew nothing about either reconfiguration, or middleware 

or real-time. I will not say that I know everything about these domains, but I know a lot more 

than before, especially for someone who did not start his studies as a computer scientist. 

Though I still do not master them, the task will be vain and unrealistic; I have a better 

understanding of many of their mechanisms. 

 

This research work was only possible with the presence and the help of very special persons: 

- Professor Brinkschulte: man of great understanding, comprehension and support. 
He is the lead of the laboratory. If he would not have been there, I think the thesis 
will never be finished due to desperation and sometimes lack of self confidence 
from me. I consider him more as a mentor than anything else. 

 

- Florentin Picioroagă: my friend and colleague, who was always there to help my 
poor object programming knowledge, especially for some trivial and basic 
questions. 

 

- Dr. Bechina: for her support and to have introduced me in the laboratory. 

 

Like mentioned above, the PhD is a four-year work. In four years, a lot of event can happen in 

the life of someone. I came to Karlsruhe for research, but I found more than that… It is 

common to say that the last months of a thesis are hard for the PhD candidate, in my case; I 

think it was more that what I could have expected. However, now, I am a brand and proud new 

father of my newborn son, Ryan (22nd of October 2004). 



 

 

It is not possible to not mention my parents who helped me to build myself. I am certainly not 

the best student, but I hope that I succeeded to be a good son and an honest person, if I did it 

is thanks to them. 

 

At last, but not least, for the last three years, nearly four now, my wife was always present beside 

me, in pain, desperation but also, and more often, in the moment of happiness and joy. She is 

my balance and my counterpart, without who I do not see any future. 

 



 

 

Thanks 

 

 

 

 

In addition to the persons already mentioned in the Acknowledgement part, thanks go to 

Professor Keith from Strasbourg who is the co-director of this thesis work. The reviewers of 

this manuscript were of a great help to finalize it with their critics, comments and advices: 

Professor Polze, from the University of Potsdam, Professor Gill from Washington University in 

Saint-Louis and Professor Colin from the University Louis Pasteur of Strasbourg. I would also 

thank Professor Ungerer from the University of Augsburg for his opinion and comments. 

 

These thanks will not be complete without thank Gabi Ansorge, the secretary of the laboratory, 

who was and is very helpful concerning the German language and the administration tasks and 

others. Moreover, special thanks to Mathias Pacher and Stefan Gaa, students of Professor 

Brinkschulte, who bring humor to the laboratory, even when there are clouds outside. 

 

 





 

 

Table of Contents 

 

 

 

 

ABSTRACT ...................................................................................................................................................... 3 

RESUME.......................................................................................................................................................... 5 

ACKNOWLEDGMENTS................................................................................................................................ 7 

THANKS .......................................................................................................................................................... 9 

TABLE OF CONTENTS ............................................................................................................................... 11 

CHAPTER 1 INTRODUCTION AND MOTIVATIONS......................................................................... 1-15 

1.1 DEFINITIONS ............................................................................................................................................................... 1-16 
1.1.1 Middleware..................................................................................................................................................... 1-16 
1.1.2 Real-time........................................................................................................................................................ 1-18 
1.1.3 Embedded System........................................................................................................................................... 1-19 
1.1.4 Reconfiguration ............................................................................................................................................... 1-20 
1.1.5 Reconfiguration and Real-Time ....................................................................................................................... 1-21 

1.2 MOTIVATIONS AND OBJECTIVES ...............................................................................................................................1-23 

CHAPTER 2 STATE OF THE ART ..........................................................................................................2-25 

2.1 GENERAL CONCEPTS AND TERMINOLOGY............................................................................................................. 2-25 
2.1.1 Object Management Architecture..................................................................................................................... 2-25 
2.1.2 CORBA........................................................................................................................................................ 2-25 
2.1.3 Distributed ORBs .......................................................................................................................................... 2-25 
2.1.4 Communication Protocols ................................................................................................................................ 2-26 
2.1.5 Software bus ................................................................................................................................................... 2-26 
2.1.6 Least-laxity first scheduling............................................................................................................................. 2-26 
2.1.7 EDF scheduling ............................................................................................................................................. 2-26 
2.1.8 Fixed Priority scheduling................................................................................................................................. 2-27 
2.1.9 Mutexes in real-time systems ........................................................................................................................... 2-27 

2.2 REAL-TIME MIDDLEWARE......................................................................................................................................... 2-27 
2.2.1 Real-Time CORBA ...................................................................................................................................... 2-27 
2.2.2 DynamicTAO ............................................................................................................................................... 2-29 
2.2.3 OSA+........................................................................................................................................................... 2-31 

2.3 REAL-TIME RECONFIGURATION...............................................................................................................................2-32 
2.3.1 The CONIC system ....................................................................................................................................... 2-32 
2.3.2 Software configuration management.................................................................................................................. 2-35 
2.3.3 Realize ........................................................................................................................................................... 2-36 



 

 

2.3.4 Software Architecture Reconfiguration ..............................................................................................................2-38 
2.3.5 Object and Process Migration in .NET ...........................................................................................................2-39 
2.3.6 The Komodo project .........................................................................................................................................2-41 

2.4 CONCLUSION............................................................................................................................................................... 2-42 

CHAPTER 3 OSA+ MIDDLEWARE ARCHITECTURE ........................................................................3-45 

3.1 SERVICES AND JOBS .................................................................................................................................................... 3-45 
3.2 MICROKERNEL ARCHITECTURE ................................................................................................................................ 3-48 
3.3 REAL-TIME ISSUES ...................................................................................................................................................... 3-49 

3.3.1 Core Issues ......................................................................................................................................................3-49 
3.3.2 Quality of Service Control and Assessment.......................................................................................................3-49 
3.3.3 Real-time memory service..................................................................................................................................3-50 
3.3.4 Event service....................................................................................................................................................3-50 

CHAPTER 4 ARCHITECTURE, DESIGN, STRUCTURING ................................................................4-53 

4.1 BASIC CONCEPTS ........................................................................................................................................................ 4-53 
4.2 DETAILED PRESENTATION OF THE CASE ................................................................................................................ 4-55 
4.3 DESIGN ........................................................................................................................................................................ 4-57 

4.3.1 Basic algorithm................................................................................................................................................4-59 
4.3.2 Main principle.................................................................................................................................................4-59 
4.3.3 Reconfiguration of multiple services ...................................................................................................................4-64 
4.3.4 “Transfer-State” and “Switch” cooperation in multiple service reconfiguration ....................................................4-69 
4.3.5 An alternate way to deal with reconfiguration of multiple services:......................................................................4-70 

4.4 RECONFIGURATION- AND BLACKOUT-TIME BOUNDS........................................................................................... 4-70 
4.4.1 Bounds for the full-blocking approach ...............................................................................................................4-71 
4.4.2 Bounds for the partial-blocking approach..........................................................................................................4-71 
4.4.3 Bounds for the non-blocking approach ..............................................................................................................4-72 

CHAPTER 5 IMPLEMENTATION ASPECTS ........................................................................................5-77 

5.1 MICROKERNEL............................................................................................................................................................ 5-77 
5.2 BUCKETCONTAINER .................................................................................................................................................. 5-81 
5.3 SERVICEINFO .............................................................................................................................................................. 5-83 
5.4 DYNAMICCON............................................................................................................................................................. 5-87 
5.5 STATESERVER.............................................................................................................................................................. 5-88 
5.6 CONCLUSION............................................................................................................................................................... 5-92 

CHAPTER 6 PRACTICAL EVALUATION...............................................................................................6-93 

6.1 OVERALL PERFORMANCE.......................................................................................................................................... 6-94 
6.2 ADVANTAGES OF INTRODUCING THE RECONFIGURATION SERVICE.................................................................. 6-95 
6.3 PRIORITY EXPERIMENT.............................................................................................................................................. 6-96 
6.4 SUMMARY ..................................................................................................................................................................... 6-99 

CHAPTER 7 CONCLUSION AND FUTURE WORK ........................................................................... 7-101 

7.1 CONCLUSION............................................................................................................................................................. 7-101 
7.2 FUTURE WORK.......................................................................................................................................................... 7-102 



 

 

BIBLIOGRAPHY ......................................................................................................................................... 103 

PUBLICATIONS .......................................................................................................................................... 105 

VITA .............................................................................................................................................................. 107 

 

 





 

Chapter 1 Introduction and Motivations 

 

 

 

 

An application made from different parts or components, running simultaneously on various 

computers, is called a distributed system. All these parts are linked to each other using a network, 

which allows them to operate together to deliver services or results on requests. When the 

domain about embedded systems is approached, usually, we mean a component made from 

hardware and software, which are part of a bigger tool or device. On the side of the real-time, 

real-time systems are generally systems with time constraints; and thus, whatever the range is, the 

processes are to be complete in a predefined amount of time. 

Having all this systems together is called a distributed real-time and embedded (DRE) system. Thus, it 

is a system, which is distributed across a network of small electronic components; each one is 

made with, at least, a microcontroller, which forms a bigger device, for example like a robot: 

there are various members, like leg or arm, communicating together towards a common goal. 

Often the DRE systems are seen in aerospace and defense activity. But they appear more often 

in the medical field, where the time constraints and the accuracy are very critical too. 

The middleware is used more and more to ease the management and the development of the 

DRE system. In [1], the author states that middleware is very useful if not necessary in the 

development of DRE systems, because middleware has essential qualities and Quality of Service 

which are important for DRE systems. New applications introduce restrictions in power 

consumption, heat, costs or available resources thus leading to very small microcontrollers 

becoming more and more important in the field of distributed real-time computing. Traditional 

middleware architectures are not well suited to support such small devices. 

Dynamic Reconfiguration deals with the changes of a working system, which, most of the time, for 

various reasons, cannot be stopped. These changes can be due to the life cycle of the system, or 

it can be due to failure of the system. From [2], dynamic reconfiguration occurs when it is needed to 

modify the configuration of an application while it is running. But, in general, it is not necessary 

that the application should be a long running one. It is important for the concept that we mean 

modifying the configuration of a system while it is running, without considering the needed 

amount of up time. Configuration changes can be done, for example, when a new part of the 

 

1-15 



Chapter 1 - Introduction and Motivations 

 

software has to be added to the system, or when one has to be replaced by a newer version, or, 

again, when a part of it is failing, and it needs to be replaced by a working one. 

This chapter will briefly present our motivations to bring dynamic real-time reconfiguration to 

the middleware for embedded systems. In a first section we will define the important terms and 

concepts, which are used later in this thesis. Then we will speak about Dynamic 

Reconfiguration itself, in our case: OSA+. This acronym stands for Open System Architecture - 

PLatform for Universal Services. 

 

1.1  Definitions 

1.1.1 Middleware 

The word middleware is considered as a trend currently. Wherever you look in the computer 

science domain, probabilities are high that you will find something named middleware. 

The origins of the middleware seem nearly as old as the computer science itself, when 

programmers started to make functions. Then, to reuse them, they assembled them into a 

library. Moreover, since there were more and more specialized libraries, these ones were put 

into specialized Software Development Kits (SDKs). Sometimes, the SDKs are very specialized, 

and to use them, one will find an application skeleton; these very specialized SDKs are named 

middleware. A middleware is not an application, but a software tool, which is used to ease the 

design and development of applications. 

Middleware in computing terms is used to describe a software agent acting as an intermediary, 

between different components in a transactional or other distributed process. The classic 

example of this is the separation which is attained between the client user and the database in a 

client/server situation. 

Researchers and developers found that introducing middleware in such a situation helps to better 

service client requests by reducing the amount of connections, since they are always resource 

consuming, to the database and more efficiently passing the requested data back. Examples of 

proprietary transaction-management middleware software include IBM Websphere[3], Tuxedo[4], 

ColdFusion [5]. The ObjectWeb consortium[6] is the first world-wide consortium focused on 

open-source middleware. 

Another reason to use middleware is to provide high-level abstractions and services to 

applications to ease application programming, application integration, and system management 

tasks. In this sense, middleware moves beyond transaction management and other lower-level 

1-16 



Chapter 1 - Introduction and Motivations 

 

services to encompass database management systems, web servers, application servers, content 

management systems, and similar tools that support the application development and delivery 

process. 

In our case, middleware has to be seen in the domain of interoperability. It is connectivity 

software [7]. It allows, usually, several processes to run on one or several machines, and interact 

across a network. Middleware can help the migration of applications from monolithic heavy 

systems, like mainframes, to the client/server application, providing communication across 

heterogeneous platforms. 

The most common middleware initiatives are Open Software Foundation’s Distributed 

Computing Environment[8] (also known as DCE), Microsoft’s COM/DCOM [9] (Component 

Object-Model/Distributed COM, popularized thanks to the Windows operating system) and 

the famous Common Object Request Broker Architecture (CORBA) [10]. 

 

In a general way, a system with a middleware can be described like in Figure 1. 

   Application  Application   

Middleware (Distributed System Services)   

Platform OS  Platform OS   
 

Figure 1. General middleware architecture. 

The middleware is a kind of interface between the operating system and the distributed 

applications. 

Of course, since a middleware offers a wider application range, there are drawbacks due to its 

concept: the maintainability of the system for example. Due to the need for long-term 

availability of many embedded systems, it is crucial to stop the system only to maintain or to fix 

bugs. Instead, it would be desirable to perform them while the system is running. This reduces 

maintenance costs and improves productivity. The maintenance process might be complex due 

to many components, which might be affected in a widely distributed system. This task is 

essential, and a real-time middleware should support the reconfiguration process. 

The advantages of using a middleware are various. Often, and especially in our case, its aim is a 

distributed system. Thus, it offers a more powerful system than just a local computer. 

1-17 



Chapter 1 - Introduction and Motivations 

 

Moreover, as long as the network between all platforms is operational, all these platforms can 

share their resources thanks to the help of the middleware. A platform running an application 

may migrate its tasks to another platform with a lower load for example. Real-time middleware 

helps to simplify the development, operation and maintenance of such systems. New 

applications introduce restrictions in power consumption, heat, costs or available space thus 

leading to very small microcontrollers becoming more and more important in the field of 

distributed real-time computing. Traditional middleware architectures are not very suitable for 

supporting such small devices. 

 

1.1.2 Real-time 

The real-time feature is very important in the domain of embedded computing. Often, embedded 

systems mean that the whole system should answer with a minimal and predictable latency. 

As mentioned in the FAQ of [11], having one and only definition about real-time is nearly 

impossible. Therefore, one generally accepted definition is: 

“A real-time system is one in which the correctness of the computations not only depends upon the logical 

correctness of the computation but also upon the time at which the result is produced. If the timing 

constraints of the system are not met, system failure is said to have occurred.” 

And, to be more precise the following statement was added: 

“Hence, it is essential that the timing constraints of the system are guaranteed to be met. Guaranteeing 

timing behavior requires that the system be predictable. It is also desirable that the system attain a high 

degree of utilization while satisfying the timing constraints of the system.” 

 

Moreover, real-time computing is the area of activity for hardware and software, which have 

time constraints. The time constraints can differ significantly regarding the domain in question 

[12]. In computer assisted medical surgery, the system must have the shortest reaction time; at 

most, as fast as the surgeon gesture is: the range is roughly milliseconds. On the other hand, a 

train booking system, most of the time, must check if the booking is occurring before the train 

departure, and not after; in this case, the range is approximately minutes. These two examples 

are real-time systems because both of them must process actions with a finite time limit. 

An operation within a larger dynamic system is called a real-time operation if the combined 

reaction- and operation-time of a task is shorter than the maximum delay that is allowed, in 

view of circumstances outside the operation. The task must also occur before the system to be 

controlled becomes unstable. A real-time operation is not necessarily fast, as slow systems can 

1-18 



Chapter 1 - Introduction and Motivations 

 

allow slow real-time operations. Real-time means, for us, hard real-time where the system must 

be predictable in all circumstances. This applies for all types of dynamically changing systems. 

The opposite of a real-time operation is a batch job. A batch job is concerning the sequential 

execution of programs on a computer. Usually, there is no precise end of execution for batch 

jobs, thus they cannot be predictable. 

A typical example could be a computer-controlled breaking system in a car. If the driver can 

stop a car before it hits a wall, the operation was in real-time; if the car hits the wall it was not. 

Many machines require real-time controllers to avoid "instability", which could lead to the 

accidental damage or destruction of the system, people, or objects. 

In the economy, real time systems are information technologies, which provide real-time access 

to information or data. The ability of a company to process its data in real-time increases the 

competitiveness of the company. 

In fact we can distinguish three types of real-time systems: 

- Hard real-time system: When the missing of a deadline has a critical or even 

disastrous results. Deadlines must be met in all circumstances. An example would 

be a traffic light recognition system in an autonomous car. 

- Firm real-time system: When the result of the system just became invalid after the 

deadline. So the result has to be discarded in this case. An example would be the 

positioning system of a moving car, it would be invalid if it is not updated regularly. 

- Soft real-time system: when the deadline can be missed to a given extent. An 

example can be video or audio streams. 

 

1.1.3 Embedded System 

Embedded Systems are, usually, sets of both hardware and software parts, which form components 

of some larger system or systems and which are expected to function without human action. A 

typical embedded system consists of a single-board microcomputer with software in a ROM, which 

starts running some special purpose application program as soon as it is turned on and will not 

stop until it is turned off (if ever). Thus the requirements of an embedded system differ from 

the ones of a general purpose computer.  

An embedded system may include some kind of operating system but often it will be simple enough 

to be written as a single program. It will not usually have any of the normal peripherals such as 

a keyboard, monitor, serial connections, mass storage, etc. or any kind of user interface software 

unless these are required by the overall system of which it is a part. Often an embedded system 

1-19 



Chapter 1 - Introduction and Motivations 

 

must provide real-time response. Embedded systems are often regrouped to form larger 

devices. 

A key factor for producing embedded systems is to minimize the costs, but the safety and the 

predictability are important too. They are often produced in more than tens of thousands, so 

for the manufacturer it is very important to reduce costs and to have minimal power 

consumption. That is why the processors and the memory are respectively slow and small. 

Moreover, the boards are usually simplified compared to general purposes computer to improve 

efficiency while minimizing the need for extra components. 

Programs on an embedded system often must run with real-time constraints with limited hardware 

resources: often there is no disk drive, operating system, keyboard or screen. Instead of a 

mechanic disk drive, a flash drive replaces the magnetic but fragile disk. A small keypad and 

LCD screen may be used instead of a PC keyboard and screen. 

 

1.1.4 Reconfiguration 

The term reconfiguration means the possible changes for a configuration. Generally speaking, a 

configuration is the current environment of an object. During the lifetime of an object, its 

environment may change, and thus, the object may have to adapt to continue its actions. 

In computer science a system configuration is made from software components and hardware 

components. Changes can occur on both levels, and may need adaptation of the software to 

pursue its task. 

Static configuration is generally a configuration of a system which once it is set will not change 

over time, or if it has to be modified the system has to be stopped. Often a static configuration 

is used for small devices which have only one single task. The maintenance of such a static 

configuration is eased by the size of the system, and by its relative simple complexity. 

On the other side, dynamic configuration is used for more complex devices or systems. These 

systems or devices are made from various smaller components, which should interact together 

to realize one goal. The application of a dynamic configuration often concerns distributed 

systems, which cannot be stopped to modify the behavior of one of their components. The 

realization of a dynamically reconfigurable system is more complicated than one relying on a 

static configuration for different reasons, among them: 

- the complexity of the whole system depends on various software and hardware 

components; 

1-20 



Chapter 1 - Introduction and Motivations 

 

- the changes are to be applied during the runtime of the system, 

- since the changes occur when the system is running, the components of the system will 

have different states during runtime, and thus these states will have to be preserved 

during the reconfiguration, 

- processes on the system may have deadlines, which have to be respected, thus the real-

time feature of the system is another constraint. 

In [13], the authors say that, most of the time, it is difficult to foresee all changes, which can 

happen on a system. It is why dynamic reconfiguration is important for a complex system. 

 

1.1.5 Reconfiguration and Real-Time 

In embedded systems, real-time is one of the key factors for reliability. Embedded systems can 

be composed of various sub-systems or devices. To manage together these components, 

distributed systems are often used. 

This leads us to the main problem: how, since embedded devices often have limited resources, 

is it possible to reconfigure such embedded systems in limited time and space? 

Concerning the real-time issues, we have to define two different times: 

- the reconfiguration time: it is the amount of time necessary to complete a whole 

reconfiguration of a service, from the moment the reconfiguration is triggered by a 

service (cf. Figure 2). 

- the blackout time: during a reconfiguration of a service, it is the amount of time during 

which the reconfigured service is not able to process any message received, and thus 

cannot process job. The blackout time cannot exceed the the reconfiguration time (cf. 

Figure 3). 

1-21 



Chapter 1 - Introduction and Motivations 

 

Service B 

reconfiguration message: 
reconfigure B with B’ 

Reconfiguration is triggered 

Jobs of B are pending 

Reconfiguration is complete 

Service B’ 

time 

Service A 

Reconfiguration Time 

Figure 2. Reconfiguration time principle 

 

being reconfigured into 

Service B Service B’ 

Service B is again 

able to process jobs 

Service B sets itself in a 

reconfigurable state 
time 

Blackout time Reconfiguration is triggered Reconfiguration is complete 

Figure 3. Blackout time principle 

A reconfiguration occurs by replacing an instance of a service by a newer version of this same 

service. But, during this procedure, from the moment the reconfiguration is initiated by a third 

service, up to the moment the new version of the service is active, events can happen and they 

may affect the state of the old version of the service. 

This state, for consistency reasons, must be the same for the new version of the service. Thus, 

the state has to be transferred from the old version of the service up to the new version of the 

service. By doing so, the new version of the service is able to continue to process orders sent 

first to the old version of the service. To reduce the blackout time, and thus, to reduce the 

overall reconfiguration time, the state transfer must last the shortest possible amount of time. 

This criteria is even more critical when it is about real-time, since it is not possible to halt the 

system. 

1-22 



Chapter 1 - Introduction and Motivations 

 

 

1.2 Motivations and objectives 

In the first part, we introduced terms that we will use throughout this document. Now, we want 

to define our objective. The main goal of this thesis is to design and evaluate a system 

architecture for real-time reconfiguration in distributed embedded systems based on 

middleware. Distributed embedded systems become more and more important, because the 

complexity of embedded systems is constantly growing. So a single processor can no longer 

control these systems. In today’s systems, an increasing number of microcontrollers is used for 

control. These microcontrollers deal in an efficient way with local systems parts and are 

interconnected via a network, mostly field buses. A middleware is an efficient means to ease the 

design and development of such a system. In our approach, to not have to do all work from 

scratch, we will rely on and extend an existing middleware for this purpose (see Chapter 3) For 

evaluation, we will use a theoretical approach to handle time bounds combined with 

measurements to examine the system performance. Our approach shall not only allow bounded 

reconfiguration and blackout time but also give the possibility to define trade-offs between the 

two values. Furthermore, it will be able to work on systems with limited memory and 

computation resources, as is often found in embedded systems. 

Application fields for such architecture would be for example: 

- For autonomous aircraft, navigation can be based on different methods: radar, GPS, 

landmarks, etc. Flying over ground, landmarks are a good choice for the aircraft to 

precisely determine its current position. This is no longer true when flying over water. 

So when crossing the coastline, a reconfiguration of the navigation would be a resource 

saving way to reflect this change. Resources are normally limited in small airplanes due 

to weight. Of course, the reconfiguration has to be done in real-time so as not to crash 

the airplane and not to loose track. Dynamic real-time reconfiguration can be used for 

other purposes in this domain too, for example the adaptation of the analyzing routine 

in a surveillance plant to the current needs.  

- In the medical domain, since surgery is more and more assisted by computers, it is 

possible to see reconfiguration while the surgeon is operating. For example, the sensor 

and the embedded system connected to it are set for a low blood pressure, then after 

cauterizing a vein the blood pressure has a normal level. Now, the first configuration of 

the embedded system is not valid anymore, and it needs a reconfiguration to handle the 

new environment changes. A dynamic reconfiguration of the system will allow the 

1-23 



Chapter 1 - Introduction and Motivations 

 

surgeon to continue his operation without any interruption, and thus, the patient will 

not stay longer than necessary in the operating room. 

- Dynamic reconfiguration can be used in a factory equipped with automated guided 

vehicles. Assume such a vehicle is operating in a room with optical tracks on the ground 

to drive the vehicle from one point to another. The vehicle is using a driving module, 

which is using the optical tracks to move, when it receives a new order to go to another 

place; however there is no more optical track, just the walls and some obstacles to reach 

its destination. Rather than to have the light sensor and its module still working, and 

thus using the batteries of the vehicle, the dynamic reconfiguration will allow 

reconfiguring the driving module by using a laser beam, which will detect all obstacles 

on the road from the vehicle up to its destination point. 

Not all of these applications are real yet, but the automated guided vehicle [14] is part of our 

project at the University of Karlsruhe and it is expected to be functional by the end of 

year 2005. 

1-24 



 

Chapter 2 State of the Art 

 

 

 

 

2.1 General Concepts and Terminology 

Before detailing the state-of-the-art, we will start this chapter with a brief introduction of some 

general real-time and middleware related concepts and terminology important for our work. 

2.1.1 Object Management Architecture 

The Object Management Group (OMG), a joined consortium of several companies and 

research sites, aims to standardize the handling of object oriented architectures. The Object 

Management Architecture or OMA created by the OMG sets up an environment to handle 

distributed heterogeneous objects in a standardized way. The OMG found that applications 

share a lot of common functionality. This functionality are assembled in a set of standard 

objects with standard functions [15]. 

2.1.2 CORBA 

CORBA is an acronym and means Common Object Request Broker Architecture[16]. It defines 

the interface standard of the OMA. It allows applications and programs running on different 

platforms and computers to interact with each others, as long as these programs and 

applications respect the CORBA standard. It uses object-oriented principles (polymorphism, 

inheritance, identification, etc.). CORBA is one of the most popular middleware standards. The 

CORBA specifications are presented in [10]. 

 

2.1.3 Distributed ORBs 

The ORB (Object Request Broker) is the core of the OMA. It is responsible to realize the 

communication of the distributed objects in CORBA and to localize, identify and manage these 

objects. From [17] and [18], the implementation of a CORBA based middleware is built from 

Distributed ORBs, which reside on different platforms. This kind of middleware replaces more 

and more traditional communication mechanisms and gateway objects. It leads to the creation 

of heterogeneous and transparent distributed object applications. 

 

2-25 



Chapter 2 - State of the Art 

 

2.1.4 Communication Protocols 

Today, computers are nearly all interconnected through networks. However, the networks are 

not only sets of cables and network cards; they are composed of various other elements, which 

are using protocols, organized by function and level of detail. The ISO Network Protocol 

Standard, a work by the IEEE and the ISO, defines all these protocols. A protocol is a set of 

rules that governs how information is delivered.  

2.1.5 Software bus 

Generally, “bus” is a hardware term used to speak about interconnecting pathways. But, a 

software bus is a programming interface, which allows programs or applications or software 

modules to transfer data to each other in a standardized way. As with hardware buses, software 

buses allow developers to plug in or remove components. E.g., CORBA and the OMA can be 

seen as defining a software bus. 

2.1.6 Least-laxity first scheduling 

The laxity is the amount of time between the complete execution of a task since its start and its 

next deadline. It is the size of the available scheduling window. The least-laxity first (LLF) 

algorithm, as described in [19] is an optimal real-time scheduling methodology on uniprocessor 

system. This means as long as the processor load is less or equal 100%, LLF will find an 

executable schedule meeting all the deadlines. Furthermore, LLF is able to detect time 

constraint violations ahead of reaching a tasks deadline. The main drawback of this algorithm is 

excessive context switching, depending on scheduling granularity. If multiple tasks have nearly 

the same laxity, LLF would have them context switch every time the scheduler gets control. 

2.1.7 EDF scheduling 

Earliest deadline first (EDF) scheduling (cf. [20]) is another dynamic real-time scheduling 

principle. This scheduling algorithm allows the task with the earliest deadline to be executed 

first. It is a scheduling algorithm often used in hard real-time system. 

Like LLF, EDF is an optimal scheduling scheme on uniprocessor systems. The advantage of 

EDF compared to LLF is the lower overhead and less context switches. 

On the downside, EDF performs worse than LLF when deadlines are missed. Under overload 

conditions, LLF is the better scheduling scheme. 

2-26 



Chapter 2 - State of the Art 

 

2.1.8 Fixed Priority scheduling 

Fixed Priority (FP) scheduling is the most simple real-time scheduling scheme. Each task gets a 

fixed priority. The task with the highest priority is executed. FP is not optimal. Even with 

processor loads below 100%, FP might not find an executable schedule. The maximum 

processor load for which n executable schedule is guarantied calculates to  

n(21/n-1), where n is the number of tasks in the system (cf. [21]). 

To assign fixed priorities to periodic tasks, Rate Monotonic Scheduling (RMS) is an optimal 

approach. Optimal does not mean: the scheduling is optimal. As mentioned above, this is not 

true for fixed priorities. Optimal means here, there is no better way to assign fixed priorities to 

tasks. RMS assigns a priority reciprocally to the period of a task. The shorter the period is, the 

higher is the priority (cf. [21]). 

2.1.9 Mutexes in real-time systems 

Mutex (Mutual Exclusion) is a standard mechanism to synchronize tasks. Only one task is 

allowed to enter, the other tasks have to wait until the task possessing the mutex leaves. 

In real-time systems, some additional aspects have to be observed: the priority of the task 

waiting for a mutex determines the sequence of accessing the mutex. Furthermore, priority 

inheritance is used to avoid priority inversion. If a high priority task is waiting for a mutex 

possessed by a low priority task, this task will inherit the priority of the high priority task. 

 

 

2.2 Real-Time Middleware 

In this section, we present existing approaches on combining middleware with real-time 

capabilities. 

 

2.2.1 Real-Time CORBA 

Real-Time CORBA is an enhancement of CORBA. It was designed by the Real-Time Special 

Interest Group of the Object Management Group (RTSIG-OMG), with participation of several 

companies in the field of the embedded systems, like Boeing and Objective Interface for 

example. The Real-Time CORBA specifications [22] allow the management of hardware 

resources whereas CORBA is an intermediate layer between the operating system and the 

applications. 

2-27 



Chapter 2 - State of the Art 

 

One of the key specifications is the end-to-end predictability. To reach this goal, Real-Time 

CORBA supports fixed priority scheduling. This scheduling method defines static priority levels 

for each thread. The priorities, despite their value at the initialization, can be modified during 

their lifetime. Real-Time CORBA relies on the possibility of the operating system to let 

applications specifying priorities. Another important aspect of Real-Time CORBA is how are 

handled the priorities in the system and how are handled the communication requests from the 

client applications up to the server application in a consistent manner, i.e. without priority 

inversion, except the ones, which are expected. The priority of the client on its operating system 

is mapped to an ORB’s priority. The priority is sent, as part of the request message, up to the 

server. Once the server receives the message, the priority of the client is mapped relatively with 

the priorities of the operating system of the server. Thus, the priorities are treated relatively the 

same way on the distributed system. 

RT-CORBA specifies the way the applications can interact with the available resources [23]. 

This includes the processor resources, the communication resources and the memory resources. 

The resource management is done with the usage of standard interfaces and Quality of Service 

policies, a policy should affect in the same manner each side of the end-to-end system: the 

client and the server. Concerning the communications between the client and the server, the 

connections can have different priorities increasing the traffic predictability: real-time and non 

real-time information can exist together. The communication protocols properties are 

controlled by the applications. A distributed system containing, between the server and the 

client, a network, Real-Time CORBA does not rely only on the TCP/IP protocol due to the 

weak predictability of the protocol and the lack of consistent guarantee. 

Thus, a Real-Time-CORBA system must guarantee the resource usage and the resource 

availability for each application. This concerns the threads, the memory, the CPU, and the 

communication way (like the network). Such a control over the hardware is provided through 

open interfaces to the resources. On another side, the specification of the CORBA 

enhancement gives the possibility to the application developer to define thread pools. The 

shared resources of the system, with the help of the mutexes, are protected in a consistent way. 

It can be difficult to predict how a system can react, moreover when it is a matter of time 

prediction. One of the goals of the research group was to focus on the predictable behavior of 

the system, to allow the design of schedulable and distributed systems. To be predictable, 

especially for hard real-time systems, all the system components, i.e. the transport, the real-time 

operating system and the object request broker must use predictable and schedulable logic; 

otherwise, the real-time constraints of the system cannot be met. Real-Time CORBA’s 

specifications define a global scheduling service, which allocates the available resources to 

2-28 



Chapter 2 - State of the Art 

 

comply with QoS needs. Concerning the connections between the client and the server, a 

priority can be defined by each client and for each connection. 

One of the problems of the real-time embedded systems is their maintainability and their costs. 

The Real-Time CORBA specifications offer the possibility to reduce drastically the impact of 

issues due to the embedded system by bringing to bear the advantages of distributed systems.  

 

2.2.2 DynamicTAO 

Motivated by the fact that the computer environment is more and more heterogeneous and 

dynamic, researchers are studying the dynamic configuration of middleware. 

The project named dynamicTAO[24] is characterized by being a CORBA compliant ORB. It is 

based on the TAO ORB[25] due to its flexibility, portability, extensibility and the fact that it can 

easily be configured. The researchers designed dynamicTAO to be reconfigurable and reflective. 

This means that it can modify itself its definition and evaluation rules, and it knows how to alter 

them. This self-configuration answers to the detection of the environment change in the goal to 

optimize, all the time, the performance of the system. 

They choose an approach to modify an existing implementation of a CORBA compliant ORB 

because they consider this approach more productive than developing a middleware from 

scratch. Despite TAO can barely be reconfigurable during run-time, the approach of the 

researchers, named 2K, allows applications to be adaptive in a dynamic environment. 

dynamicTAO is reflective because of its ability to modify or to reconfigure its own engine. This 

self-configuration is done in three steps: the components of the ORB can be moved at any 

place in the distributed system; modules can be loaded or unloaded; at last, the configuration 

state of the ORB can be modified. 

One of the key items of dynamicTAO is the component configurator, which acts like a 

bookkeeper for the intra dependencies of the component of the system. This configurator 

keeps track of the references to instances of the ORB and to the servants available in the same 

process. The ORB can support different strategies like Concurrency, Security and Monitoring. 

And the strategies related to the ORB can be modified during run-time as long as the 

constraints are respected. In some cases, the strategies can use the configurator for saving their 

dependencies related to other strategies and to the ORB. In fact, various information can be 

saved in the configurator, it is depending on the strategies currently running. 

To ease the dynamic reconfiguration, the components of the system are dynamically loadable 

libraries: they are used only when needed. These libraries are available to use once they are put 

2-29 



Chapter 2 - State of the Art 

 

on the Persistent Repository where they can be manipulated. The reconfiguration interface on 

dynamicTAO can be split in three interfaces: 

- the Distributed Configuration Protocol Broker (DCP Broker), which is a subclass of the 

Network Broker. It monitors the connection requests. Once there is a connection 

request from a client, the reconfiguration process is started; 

- the Reconfiguration Agent Broker is like the DCP Broker, but focuses more on the 

reconfiguration  of a set of ORBs; 

- the DynamicConfigurator exports an Interface Definition Language interface. This 

DynamicConfigurator interface defines the operations, which can be done on 

dynamicTAO abstractions. 

 

The process of reconfiguration is processed such a way: first, the implementation is loaded into 

memory – in the repository – then the implementation is attached to a hook in TAO. Once the 

implementation is assigned to a hook, it is possible to use it. 

Replacing the implementation by another one is already a reconfiguration, but, most of the 

time, the component reconfigured was computing some process before the reconfiguration 

occurs. An implementation cannot be switched whenever, but it has to follow rules. E.g. the old 

implementation should not be used anymore, if it is still used then the reconfiguration has to be 

put on hold until it is free from any activity. Another problem concerns the state information: 

the integrity or a part of the state information of the old component may be needed by the new 

component, thus it has to be transferred to the new component. 

A feature of dynamicTAO is the ability to notice when change should occur. This is ensured by 

monitoring the interactions between the objects of the distributed system. Thus, by knowing 

the load of the resources, the system is able to adapt to optimize its efficiency. 

The research team is aware that CORBA has some limits due to its size. Despite this constraint, 

they decided to develop LegORB, whose objective is to be a dynamically reconfigurable ORB 

for embedded systems like the PDA. LegORB resulted in a derivative commercial project: 

Universally Interoperable Core. Their goal is to obtain a safe dynamic reconfiguration of 

scalable distributed systems 

2-30 



Chapter 2 - State of the Art 

 

Figure 4. Architecture of DynamicTAO 

 

2.2.3 OSA+ 

The OSA+ approach[26] is about a real-time middleware using microkernel concepts to adapt 

to small low power devices. The active entities of the OSA+ architecture are services, which 

can communicate with each other through jobs. A job consists of an order and a result. The 

order is sent from one service to another to state what this service should do and how and 

when this action should be performed. The result is sent back after the job has completed its 

execution. 

Services are plugged into a platform and can communicate with each other. Because OSA+ is 

intended to work in a distributed environment, there might be more than one platform. All 

physical platforms work together and provide the user an overall virtual platform, which hides 

the heterogeneity of the underlying communication, and operating systems. 

In order to build a highly scalable architecture, which can easily be adapted to different 

hardware and software environments, a microkernel architecture well known from operating 

systems is used. The OSA+ platform consists of a very small core platform, which offers basic 

functionality. This core platform contains no hardware or operating system-dependent parts. 

The core platform uses special services to extend its own functionality. These special services 

are the basic services, which are used for the adaptation to a specific hardware and operating 

system environment, and the extension services, which extend the core functionality of the 

platform (cf. Figure 5). It should be mentioned here that the platform is also able to run 

Administration Panel Reconfiguration Agent Process boundary 

Servant1 Reconfigurator

Domain Reconfigurator

Dynamic Service Configurator

ACE Service Repository

TAO Configurator 

Network Broker

Persistant repository ACE Service Configurator

Local file system 

Data / command flow 
Configuration file 

2-31 



Chapter 2 - State of the Art 

 

without any extension services. Since the research is focused on microcontrollers, it is necessary 

to minimize the average overhead, because of a lack of power and memory. Thus the kernel and 

the basic services should be as small as possible to meet the constraints of such a reduced 

system. 

 

 User   
Service   

User
Service

OSA+ Core Platform  

Basic   
Service 

Extension
Services

Adaptation to  
hardware, operating 
system and  
communication system

Functional 
extensions

… … 

 

Figure 5: OSA+ Architecture 

One application example for the OSA+ architecture is a real-time processing environment for 

oil-drilling platforms. In this project (DIAGNOSIS, funded by the EU), oil drilling heads are 

equipped with small microcontrollers to gather integrated sensor data about oil pressure, 

temperature, etc. and to control actors like valves. A PC running an RT-OS (VxWorks) collects 

the data from several drilling heads. Several of these PCs again are combined to form a group 

and to perform vital control decisions (e.g. about opening and closing valves) based on the 

sampled data. This scenario is an ideal application field for OSA+ combining small 

microcontrollers with powerful PCs. 

 

2.3 Real-Time Reconfiguration 

This chapter presents approaches to handle dynamic reconfiguration in real-time. 

2.3.1 The CONIC system 

The researchers [13] are among the firsts, who tried to establish first ideas about dynamic 

reconfiguration for distributed systems. When they first wrote about dynamic configuration for 

distributed real-time systems, there was no middleware for distributed systems like CORBA. 

2-32 



Chapter 2 - State of the Art 

 

The dynamic configuration of a system means to modify and extend a system while it is 

running, without stopping it. They present with their own distributed and dynamically 

configurable system, CONIC, their concepts about the requirements for a dynamically 

reconfigurable system. 

It is important to say that the modifications for the researchers are incremental, with all 

advantages and drawbacks of this system. They consider three different kinds of modifications:  

- the planned ones, which are done under human supervision usually before being totally 

automated. 

- the operational changes are needed in the case of a system failure, thus replacing, 

moving or removing components of the system. 

- the evolutionary changes allow the system to follow modifications of its environment. 

As it is well known now, to have a large system, it is better to have it made from small 

components, this will enhance maintainability, bug tracking, but it will ease the reconfiguration. 

A system is a configuration of these components. To describe a configuration, Magee and 

Kramer refer to a configuration language with which they write a configuration specification. 

This specification gives information about the software components, their instances, the 

connections between those instances, and the location of those instances on the distributed 

system. Such distributed system specifications are divided into three different structures: the 

logical structure for the software, the physical structure for the hardware and the logical to 

physical mapping for the physical location of the software components. Their research work 

focuses on the logical part. 

 Their research group was motivated to have a real dynamically reconfigurable system especially 

because all other approaches forced the systems to be put off-line if it was necessary to 

reconfigure them, which was all but efficient and economic. Their approach relies on change 

specifications, which include modifications concerning the previous configuration, e.g. adding 

new components, modifying others. To prevent any error, the change cannot occur if its 

specification was not validated. A configuration manager is in charge to translate the 

configuration into operating system commands. In the objective to have a truly dynamically 

reconfigurable system, they define properties which are essential or desirable to have a dynamic 

configuration. These properties concern the programming language (e.g. modularity, 

interconnection and interfacing), the configuration and change specification (e.g. context 

definition, instantiation and interconnection), the operating system (e.g. module management, 

connection management, and communication support), the validation process (e.g. 

interconnection, allocation and specification and system consistency) and the configuration 

manager (e.g. allocation and specification and system consistency). Having a system which 

2-33 



Chapter 2 - State of the Art 

 

fulfills all these essential properties, and then one will have a dynamically reconfigurable 

distributed system. The researchers tried out and put into application their principles, and 

obtained CONIC. 

CONIC is a kind of programming language whose syntax is close to that of PASCAL. It is used 

to describe systems with interconnected modules, a programming language and an operating 

system able to support and manage CONIC systems. The modules have interfaces (called, 

according to the case, exitports and entryports) where messages are sent and received. 

Messages are the only way that modules can use to communicate with each other. The modules 

are written such a way that the programmer will give their context – the types used, the 

instances in the system and the link between the modules. The change of configuration is done 

by writing a new module, which will dynamically modify the system. If part of the running 

system has to be modified, then the programmer should take care of the inverse procedure of 

modules creation, i.e. in spite of having use, create and link, there will be first unlink, 

delete and remove. They are just the inverse functions. A change can only be validated if all 

links are “unlinked” when an instance is “deleted.”  Since CONIC is a programming language, 

the way the dynamic configuration is done looks alike programming: a module source is 

compiled by the CONIC compiler, which produces a descriptor file and a code file, this one 

containing object code, for the target hardware. Then, from the configuration source file 

concerning the system, group or changes, a Translator will produce a descriptor file for the 

system or the group, which is a set of modules. Then the CONIC Station Builder, which 

produces Load Image file for each station, processes these descriptor files, with the target 

system description. Each station is connected to each other, thus multicast does the 

communication between each station, and the CONIC Station Builder does not include the 

physical connection between each station. At last, the Dynamic Configuration Manager is 

responsible for handling requests to modify the system. The configuration manager processes 

such requests and then produces operating systems commands to apply the changes. Once the 

configuration manager validated the changes, it updates the system descriptor file to reflect the 

changes of the system.  

Despite all this, the researchers did not consider the case of the state of the modules, and they 

recognize that it is difficult to evaluate the consequences of a change during the runtime of the 

system. Moreover, the consistency of the system is in question too after the changes occurred. 

At last, they are concerned about the effect of the changes on the timing of the system. It is 

interesting to notice that in that time, the configuration was considered as an element of the 

programming language. 

2-34 



Chapter 2 - State of the Art 

 

Configuration changes 

 

Figure 6. Dynamic Configuration Process in CONIC 

 

2.3.2 Software configuration management  

The projects concerning SCM[27] are about software configuration management: they include 

three related projects whose goals focus on SCM. More and more, the management of software 

is related to the hardware because the trend is aiming at distributed systems. More specifically, 

the researchers of Carleton and the Bulldog Group focus on service components which are 

software components with software-based services and sometimes, hardware-based services. 

In their approach, two or more service components can be composed to form a single new 

service able to be deployed for usage with new features. Their objective is to compose service 

components during runtime, i.e. dynamically. They analyzed different ways to reach their goal, 

but most of the time; the dynamic techniques are not present in the normal “design and develop” 

procedures. 

To form a composite service, there are different possibilities: first by using a composite service 

interface, which regroups the composable methods of several service components, and through 

which all calls to the methods are redirected to the correct component. Second, by creating a 

stand alone composite service, which interconnects the service components: the output of a 

service component is chained to the input of another one. At last, the third technique is to 

create a stand-alone composite service made with the assembling of all the composable 

methods of the software-based service component. 

Another project of these researchers is to make a service component able to be adapted to 

many changes in its environment. For them, the service components should be designed to be 

Validation 

Configuration Manager 

Configuration 
Specification i 

Configuration 
Specification i+1 

Operating System System i System i+1 

Valid changes 

commands 

2-35 



Chapter 2 - State of the Art 

 

used in various/several composite services. This goal is reached by formally specifying the 

functional and non-functional constraints and authorization policies. At last, their project is 

about dynamic evolution of network management software. Its domain is real-time systems. 

The researchers are again using the notion of modules, and they aim to make them updatable. 

The main drawback of their approach is that they foresee the possible evolution before it is 

needed (to check) and then, they may not evaluate properly the needs. In their dynamic 

software evolution, they are using swappable modules, named S-modules, and non-swappable 

proxies, named S-proxies. The pair is named an S-component. But without a swap-manager in 

the application, the change cannot occur. This swap-manager controls all the swapping 

transaction. Another drawback is that a potential S-module must be first manually converted 

before it can be swapped.  

 

2.3.3 Realize 

The research team at the University of California in Santa Barbara investigates the field of 

Resource Management for soft real-time CORBA application in the domain of military 

application, where high availability and fault tolerance are among the most important concerns. 

The platform of Realize [28] is a distributed system. Their objective is to distribute the load 

between processors and to meet soft real-time deadlines, and thus the application should not be 

modified. Their requirements are to take a CORBA implementation off the shelf, to improve 

this implementation without modifying its features like interoperability and portability. 

Realize is based on a structure using three different parts: the Replication Manager, the 

Interceptor and the Resource Manager. The Interceptor intercepts the Internet Inter-ORB 

Protocol messages and diverts them to the Replication Manager. This one multicasts the 

messages to the replicas of the objects, with the help of the Totem, a group communication 

system. On its side, the Resource Manager is in charge of the resource allocation, monitors the 

application object. Since it is implemented by using CORBA objects, it has the benefits of all 

CORBA objects like interoperability, and the fault tolerance of Realize. The resource 

management of Realize is the main part of the project. The Resource Manager works together 

with Profilers and Schedulers. Both of them are deployed on every processor. The Profiler is 

monitoring the behavior of objects and the load of the processor. The Resource Manager 

collects the data of the Profilers, and, with a configuration file defining the physical 

configuration, handles the management of the objects; with the data, it is able to determine if a 

processor is overloaded. With the help of a least-laxity scheduling algorithm, the Schedulers use 

the information of the Resource Manager to make the tasks meet their deadlines. Each profiler 

is implemented between the CORBA ORB and the operating systems. A feedback loop is 

2-36 



Chapter 2 - State of the Art 

 

represented for each level for each manager. The researchers demonstrate the least laxity 

algorithm is more effective than the earliest deadline first algorithm. This effective algorithm 

takes in account the execution time of the tasks compared to the earliest deadline of the EDF 

algorithm.  

Depending on the requirements of some tasks, the Resource Manager can migrate tasks from 

one processor to the other allowing them to satisfy their deadlines. To migrate objects, the 

researchers are using two algorithms: a Cooling Algorithm and a Hot Spot Algorithm. The 

Cooling Algorithm is based on reports about the load for each processor; the destination 

candidate will be the one with the least load, calculated from the data collected by the Profiler; 

but only if the load constraints on this processor are respected, the goal being to have the 

processor with the heavies load below the second most highly loaded. The second algorithm 

used by the Resource Manager is the Hot Spot Algorithm. The researchers use this algorithm to 

check either the latency of a task is too high with respect to its deadline; if so, the 

Reconfiguration Manager looks for the object causing the delay, and evaluates the possibility to 

move it to the processor with the least load, as long as the allowed maximum load is not 

reached. The Resource Manager allocates the new tasks to the processors with respect to the 

available resource and with respect to the latency, and making changes when needed. 

To meet the soft real-time deadlines, the authors use a Replication Manager: this will increase 

the availability of the system, and it will be more fault tolerant. The replication of an object 

depends on the importance of its application. The more important is the application, the more 

its objects will be replicated. The replication can be active or passive. In the first case, all 

replicas proceed the method, whereas in the case of the passive replication, only one replica – 

the primary replica - will execute the method, and the other replicas will just log the message of 

the invocation. Once the execution done, the Replication Manager multicasts the state of the 

primary replica to the other replicas to update them and the result is sent to the client object. The 

replication of objects takes into account the available resources, and the maximum allowed use 

of each processor and memory. 

In the domain of Fault Detection, the Realize system is using the timeouts. During Active 

Replication, if one replica fails, the service is not stopped. On the side of the Passive 

Replication, it depends on which replicas failed. In the case of a non-primary replica, there is no 

visible effect for the client. If it is a primary replica, Realize has to define a new replica. Then 

the log done by the other replicas will be used to do the last method invocation. 

The consistency of the replication process is assured by a reliable messaging service named 

Totem. All the replicas got the messages in the exact same order, thus, they will execute them in 

2-37 



Chapter 2 - State of the Art 

 

the same order. About the passive replication, sending to all replicas messages means that they 

all have the updated state of the object. 

To summarize, Realize is a system, which allows CORBA to have benefits from resource 

management, soft real-time scheduling and fault tolerance, with its various modules. And the 

objectives of the researchers seem to be reached: to have a system, which respects the defense 

constraints about fault tolerance and availability. The system is, by nature, complex, and despite 

an average 10% overhead, Realize extends seven commercial CORBA ORBs without having to 

modify them. 

 
Realize Resource 
Manager 

Realize Resource 
Manager 

Realize Replica-tion 
Manager 

Realize Replica-tion 
Manager 

Realize Interceptor Realize Interceptor 

CORBA ORB CORBA ORB 

TOTEM TOTEM 

Platfrom Platfrom 

Multicast Messages 

IIOP Interface IIOP Interface 

Method 

Stub 

Method 

Skeleton 

Figure 7. Structure of the Realize system 

 

2.3.4 Software Architecture Reconfiguration 

More and more people in research at universities and in companies are interested in the domain 

of Software Architecture. M. Wermelinger in [29] focused his research on the formal 

description of reconfiguration of architectures. Architectures cannot be set for their lifetime, so 

there will emerge new needs, new requirements. Thus, the work aims to define reconfiguration 

rules for architectures in a way that the system they describe can follow the new requirements. 

To reach his goal, the researcher presented three approaches to comply with different 

2-38 



Chapter 2 - State of the Art 

 

assumptions depending on the target systems. Each approach, based on the work of other 

researches, has its own advantages and drawbacks. 

His first approach, the transaction approach, shows how a given reconfiguration can be 

specified in the same manner as the system it is applied to and in a way to be executed 

efficiently. The second approach, the CHAM approach for CHemical Abstract Machine, 

focuses on a formalism for rewriting multisets of terms, to describe architectures, computations, 

and reconfigurations in a uniform way. The last approach, the CommUnity approach, uses a 

Unity-like parallel programming design language to describe computations. Architectures are 

represented by diagrams in the sense of Category Theory, which are algebraic structures with 

many various complementary natures, and reconfigurations are specified by graph 

transformation rules. 

 

2.3.5 Object and Process Migration in .NET 

The work [30] of the research team at the Hasso-Plattner Institute proposes an approach based 

on the code migration, with the help of Aspect-Oriented Programming into the .Net 

framework. The work is partially based on the Software Architecture Reconfiguration by 

Wermelinger described in the previous paragraph. The advantage of the .NET based object and 

process migration approach is to address the middleware layer without the need to access the 

operating system. There are several reasons to migrate entities, called migrants, in a distributed 

environment; among them are the load balancing, and the persistence of object. 

The researchers aimed their project to the non-functional system properties. Often, when the 

matter is about migration, it concerns mainly the migration of simple data object. Other 

executable objects use these ones, and they do not have any internal process. On the other 

hand, migration of executable objects is well known when these objects are started after the 

migration. However, a more challenging area is the migration of objects during runtime, and 

with all inheriting constraints, like the state preservation. In this area, the approaches can differ 

sensibly: projects are using virtual machines to notify resource changes, others are more 

concerned at the compilation time of the executable objects, and the relevant migration 

information is inserted at the compilation time. A common way to insure state preservation 

during the migration is to use an interface before the migration starts and after it finishes. The 

domain of activity of the research team is the migration within component frameworks. 

For the researchers, it is important that the candidates for migration can activate themselves or 

can be triggered by an external object or call. Migration can occur at different point of 

execution in the time. Another element of the migration process is the migration server: it is 

2-39 



Chapter 2 - State of the Art 

 

responsible to find or define a destination for the migrant. During the migration, the 

consistency of the system must to be guaranteed, while the system should still perform its 

normal tasks. In the case where their model is based on messages, migration will not be 

launched before the end of the message handling, thus the migrant is in a safe state for the 

transfer, which is why they are using migration policy. A migration means first a destination 

should exist or should be identified, then this destination should receive all relevant storage 

information. The already mentioned migration server, which is part of every host, handles the 

migration data stream and checks if the migrant is able to continue its tasks, it is also its duties 

to handle the state and code transfer. The Hasso-Plattner Institute uses one feature of the .Net 

framework for caching binary migrants, to save time for the migration of the same entity at a 

later time. A dynamically attached module assures the accessibility to the migrant. Concerning 

the blackout period during the migration, the research team is using the mechanisms of the 

TCP, as long as the blackout period will last less than the timeout value of the standard 

protocol. They inserted in the migrant re-entry method to be called when the migration is done. 

A drawback of the serialization is that the state of external language machine software or object 

is not saved, and it is the same constraints for the local threads. The researchers experimented 

with their approaches by developing two applications: a File Version Checker and a Web Server. 

Both of these experiments were using a network to migrate entities. Despite issues with the 

cache usage and the state area of the migrating applications, they obtained good and 

encouraging results. Their next step is to solve these issues. 

 

Figure 8. Architecture of the .NET migration framework 

 

 

Migration 
policy 

moduler 

Post 
migration 

handler 

Migration 
serverr 

Migration 
library 

UDP multicast group 

Migration 
serverr 

IPostMigrationHandler 

Migrant 
network 

IMigrantLib 

IMigrationServerLib IRemoteMigrationServer 

ILocalMigrationServer 

IMigrationPolicy 

2-40 



Chapter 2 - State of the Art 

 

2.3.6 The Komodo project 

Komodo[31] is part of the Komodo Project for which the OSA+ Microkernel was designed. 

The researchers tried and investigated an approach for dynamic reconfiguration directly in the 

microcontroller. Their goal was to replace a class by a new version with respect to real-time 

constraints. To achieve this goal, they used a feature of the Komodo multithreaded 

microcontroller: a helper thread, which is not affecting the real-time constraints of other real-

time threads. These real-time threads are guaranteed by a guaranteed percentage-scheduling 

scheme. The Komodo microcontroller, which is a Java microcontroller and thus executes Java 

bytecodes, can handle up to four threads. The priority manager decides which thread has to be 

executed, depending on the percentage of processing time requested. The helper threads are 

used for operating systems tasks: interrupts, garbage collection, and the class loader. The later 

has an active role in the real-time reconfiguration of the microcontroller. In fact, there are two-

class loaders: an external one, which is on the simulator, and an internal one, which is the one 

operating on the microcontroller. This internal class loader, executed as a helper thread, has two 

tasks: loading needed classes into the memory and replacing existing classes by new ones. The 

class loader works similarly to the standard Java class loader as far as processing of the 

interfaces and attributes. The researchers are working on a class based reconfiguration 

technique, thus their approach has to handle the inheritance of the classes to prevent any 

failure, and thus there are some limitations: the instance variables have to be present, in the 

same order, in both old and new versions of the class. Moreover, the same requirement applies 

to the method table; if there are new fields in the new version of the class, they must be 

appended at the end of the field table. After the classes are loaded, it is necessary to proceed to 

the switch of the two versions. This can only be done if the classes are descendants of the 

ReconfigurableObject class. The next step is the exchange the table entries between the old 

and new classes. When this switch is done, the class loader deletes all information of the old 

class, only if the new class, the ancestral classes or the son classes do not use them anymore. A 

restriction of the approach concerns the reconfiguration of two mutual dependant classes: the 

system does not support such a behavior: the programmer has to remove dependencies. The 

class loader is not conceived for large systems, and so for a large number of classes. At last, the 

derivation of classes is not supported: new methods and new fields from a new version of a 

class will not be available to the derived classes of the old version of the class. 

Concerning the results of such a class exchange, after evaluations, it seems that the class 

exchange is lower than 1µs by using optimized techniques on a 300 MHz system. Contrary to 

other approaches, which handle the reconfiguration but lack the real-time possibility, the class 

2-41 



Chapter 2 - State of the Art 

 

loader of the Komodo microcontroller is able, thanks to its scheduling schemes, to assure 

deadlines, during runtime. 

 

2.4 Conclusion 

As we saw, the different approaches discussed in this chapter have common points, especially 

because they use more or less the same model for the middleware approach: some kind of 

central engine with external components, which can or cannot be activated. 

The following table (cf. Table 1) summarizes the properties of the described approaches 

regarding our objectives1. To distinguish them from our approach, the last column of the table 

contains a preview of the following sections: the comparable values of our architecture. This 

architecture, which is based on the service-oriented middleware OSA+, is the only one that 

allows a trade-off between reconfiguration and blackout time while being at the same time 

sustainable for a distributed embedded system with limited memory and resources. 

Furthermore, to optimize the blackout time, we introduce a new approach to transfer the state 

of a service to be reconfigured while the service is running and thus its state is changing. This 

reduces the blackout time to the minimal possible value. 

 

                                                   

1 The approach of Wermelinger is not listed separately in this table because it is used as a base part of the .NET 
object migration approach. 

2-42 



Chapter 2 - State of the Art 

 

 

 Approaches 

Features CORBA RT-

CORBA 

OSA+ Dynamic 

TAO 
Realize Komodo Object 

migration in 

.NET 

Conic Our approach 

(DynamicCon 

using OSA+) 

Real-time 

Reconfiguration 

No No No Yes Yes Yes Yes Yes Yes 

Distributed 

System 

Yes Yes Yes Yes Yes No Yes Yes Yes 

Scalability - - + 0 0 0 0 - + 

Bounded 

Reconfiguration 

time/Blackout 

time 

N/A N/A N/A No Yes Yes Yes No Yes 

Trade-off 

Reconfiguration 

time/Blackout 

time 

N/A N/A N/A No No No No No Yes 

State transfer N/A N/A N/A Yes Yes No Yes No Yes 

State transfer 

while the state is 

changing 

N/A N/A N/A No No No No No Yes 

Footprint >1 MB 200 KB -

1 MB 

< 64 KB 1.5 MB > 1 MB - unknown Unknown <128 KB 

Architecture - - Full micro-

kernel 

Design 

patterns 

- Hardware 

based virtual 

machine 

Component - Full 

microkernel 

Middleware 

category 

Object Object Services Object Object Object Object Messages 

and 

Modules 

Services 

Table 1. Approaches comparison 
Legend:  -, this feature is not available 

  0, this feature is partially available 

  +, this feature is totally available 

 

2-43 





 

Chapter 3 OSA+ Middleware Architecture 
 

 

 

 

We have decided to base our dynamic reconfiguration approach on the OSA+ middleware 

mentioned in Chapter 2. This has been done for the following reasons: 

- Middleware based dynamic reconfiguration allows more flexibility, since the 

reconfiguration can be done in a distributed system. This means, components can not 

only be replaced by newer versions, but as well moved to other computation nodes. 

- The OSA+ middleware is suitable for embedded real-time systems with low resources. 

This is exactly the target platform we envision. 

- The OSA+ middleware is not object-oriented, but service-oriented. Services normally 

are bigger entities than objects. In fact, in many cases a service consists of several 

objects. This eases the reconfiguration, because often it is only necessary to replace or 

to move a single service to reconfigure the system. In an object-oriented approach, 

mostly more than one object is affected by the reconfiguration. 

- Finally, OSA+ has been developed at our institute so we have all the insights in the 

internal structures and the possibility to freely modify these structures if it is necessary 

to have efficient dynamic reconfiguration in real-time. 

 

To fully understand our approach described in the next chapters, we have to provide a more 

detailed view to the structures and features of the OSA+ middleware than the short overview 

presented in Chapter 2. For a full description, see [32]. 

 

3.1 Services and Jobs 

OSA+ is a scalable middleware for real-time systems. It facilitates the development of 

distributed real-time applications in a heterogeneous environment. In contrast to object 

oriented middleware architectures like CORBA, DCOM or RMI and message based 

architectures like JMS, OSA+ is a service based architecture. A service is the active entity of the 

middleware. It can have an individual control flow to perform application or system tasks. So a 

 

3-45 



Chapter 3 - OSA+ Middleware Architecture 

 

distributed application is formed by combining services. Services communicate by exchanging 

jobs. A job consists of an order and a corresponding result. The order tells what and when to do 

this (release times, deadlines, priorities). The result is returned after the job has finished 

execution. This is more than pure message exchange (like in JMS), because the execution of the 

services is scheduled according to the priorities or deadlines of the jobs. A more detailed 

description of the job scheduling can be found in Section 3.3. Because OSA+ is dedicated to 

small systems, a simple interface is necessary. Figure 9 shows the service interaction based on 

only six functions: 

SendOrder: 

Sends an order from a client service to a server service. The order contains the task to 

perform, all necessary parameters and the real-time related quality-of-service requests 

(priorities, deadlines, etc. to perform this order. SendOrder is a non-blocking function 

allowing the caller to continue operation without waiting for a result. 

ReturnResult: 

Returns a result for an order to the requesting client service. This is a non-blocking 

function too. 

AwaitOrder: 

This blocking function waits for an order. Usually, it is used in server services to 

perform synchronous communication. As soon as an order is picked up by the server 

service, the middleware takes care for the quality-of-service requests, e.g. by setting the 

execution priority of the server service to the priority requested in the order. 

AwaitResult: 

Is a blocking function to wait for an incoming result. This is the counterpart to 

AwaitOrder and is used for synchronous communication too. 

ExistOrder: 

This non-blocking function checks if an order is available for a service. If this is true, 

the order can be picked up by calling AwaitOrder. ExistOrder is used for 

asynchronous communication, where the server service does not only want to wait for 

an order, but perform other tasks in between. 

ExistResult: 

Is a non-blocking function to check if a result is present. If this is true, the result can be 

picked by calling AwaitResult. This function is the counterpart of ExistOrder and 

used for asynchronous communication too. 

3-46 



Chapter 3 - OSA+ Middleware Architecture 

 

 

Send  
Order Await 

Result
Exists
Order

Return  
Result Exists 

Result
Await 
Order

Microcontroller/
-processor 1

Microcontroller/
-p  rocessor n

Figure 9 Service Oriented Architecture 
 

To understand our reconfiguration approach, the knowledge of another OSA+ feature is 

important: besides communication between services, plugging services in the middleware 

platform and removing services from the platform is another basic functionality. This is done 

by two functions: 

 

RegisterService: 

This function plugs-in a service to the middleware platform and makes it known to the 

other services. As soon as a service is plugged in, a special, predefined job is sent to the 

service, the constructor-job. This job allows the service to perform all its setup task like 

e.g. allocating memory or looking for other services to cooperate with. 

 

UnregisterService:  

This function removes a service from the middleware platform. Before the service is 

removed, another special predefined job is sent to the service, the destructor-job. The 

purpose of this job is to allow the service to do a clean-up, e.g. freeing allocated 

memory, before it is removed. Furthermore, a service is able to refuse to be removed by 

returning a negative result for the destructor-job. 

 

This is important for our approach, because plugging-in and removing services at run-time is a 

basic functionality for dynamic reconfiguration. Additionally, we will introduce another special 

predefined job, the reconfigurator-job. This job is sent to a service to allow to prepare for 

reconfiguration. Job-based reconfiguration is one of the key concepts of our approach 

described in chapter 4. 

 

3-47 



Chapter 3 - OSA+ Middleware Architecture 

 

3.2 Microkernel architecture 

In order to provide scalability and to adapt to small systems with low resources and to full size 

systems as well, OSA+ uses a microkernel architecture. This makes the middleware suitable to 

be used in embedded environment. OSA+ consists of small, uniform building blocks.  

 Figure 10 shows the overall structure. The core of the OSA+ platform offers only a basic 

functionality, which is registering/unregistering of local services and local job exchange. This 

helps to keep the core small. Furthermore, no parts depending on the environment (operating 

system, communication system, ...) are contained. Because the core is able to register and 

interact with local services, exactly these services can be used to adapt to the environment and 

to extend the functionality. No special libraries or objects are necessary to adapt or to scale the 

middleware. The services as a building block are a uniform concept to setup and extend the 

microkernel and to form the application. We have defined a set of basic services for that 

purpose: the process service adapts to the operating system and is responsible for service 

scheduling. The memory service adapts also to the operating system and is responsible for 

dynamic memory allocation. The event service deals with real-time events and time-related job 

delivery. The communication service adapts to the underlying communication system and is 

responsible for remote job delivery. The address resolution service deals with finding remote 

services. There are no differences between a basic service and a user service. The core platform 

treats them in the same way. This keeps the core small and simple. It allows scaling and 

adapting the middleware in an easy way. On very small systems, the core can operate standalone 

with a restricted functionality. As necessary, basic services can be added. Furthermore, it is 

possible to provide a basic service with different qualities and resulting memory sizes.   

User Services User Services 

OSA+ Core (Microkernel) 

Extension ServicesBasic Services 

Adaptation to the environment Functional extensions 

 
Figure 10 OSA+ Microkernel Architecture 

3-48 



Chapter 3 - OSA+ Middleware Architecture 

 

In Addition to the basic services and user application services, extension services can be written 

to add new functionalities to the platform, e.g. error logging or job encryption. 

 

3.3 Real-time Issues 

3.3.1 Core Issues 

Since the core is kept on a simple, environment independent level and does not deal with issues 

like e.g. thread scheduling (this is the task of the process service), the core real-time issues are 

simple: 

- The core functions are divided into two groups: initialization functions (e.g. plug in a 

service) and operational functions (e.g. SendOrder). The initialization functions 

preallocate all necessary resources (e.g. memory) for the operational functions. So while 

the execution time of initialization functions may be unpredictable, the operational 

functions are completely static and offer a constant and tightly bounded time behavior. 

- The job queues maintained by the job delivery component of the core are prioritized. 

This means, high priority jobs will overtake low priority jobs in these queues. This 

important for the real-time features of our job-based reconfiguration approach too. To 

maintain the priority of a job on all its way through the system, this priority is as well 

delivered to the process service (service scheduling) and the communication service 

(remote delivery). 

 

3.3.2 Quality of Service Control and Assessment 

The overall real-time behavior of a middleware depends on the underlying components like the 

operating or the communication system. This means, the core real-time issues described in the 

previous section are only one facet. The real-time properties of the underlying components are 

introduced to the core by the basic services (e.g. OS scheduling policies are introduced by the 

process service). Different configurations are possible: for example, with a real-time OS 

(process service) but a non real-time communication system (communication service), local jobs 

but not remote jobs can be handled in real-time. 

To deal with such different configurations, OSA+ prescribes that every service must provide 

quality of service (QoS) information for the platform and all other services, which want to use 

it. This is done by a special QoS report function every service must be able to execute. For 

example, the process service has to report the available scheduling policies (non-realtime, FPP, 

3-49 



Chapter 3 - OSA+ Middleware Architecture 

 

EDF, etc.) by this function. Using the QoS report functions the core and the user services can 

evaluate the overall real-time properties. 

The QoS report function can be used as well to provide different qualities and resulting 

memory sizes for the same basic service. While e.g. a simple and small version of the process 

service offers and reports only one simple scheduling policy (may be FPP), a more complex 

version can realize several different schemes. 

 

3.3.3 Real-time memory service 

The OSA+ memory service is a good example for the use of the QoS report function. This 

service can report two important properties: 

- memory locking 

- real-time memory allocation 

 

If both are not present, no real-time operation can be performed at all because even so all 

needed memory is preallocated by the core initialization functions, it may be swapped out 

during operation by the OS. Fortunately, at least memory locking is offered by most OS 

platforms, or swapping is not implemented at all for microcontroller OS platforms.  

 

If real-time memory allocation (this means the allocation time for a piece of memory is 

predictable) is available, the core can introduce more dynamics. Memory does not have to be 

preallocated by the initialization functions, but can be dynamically allocated by the operational 

functions. For example, if no real-time memory allocation is present the maximum job size and 

number of simultaneous jobs for a service has to be defined statically at initialization time. With 

real-time memory allocation this can be handled at run-time. Some systems like PERC or 

Metronome are providing real-time memory allocation. 

3.3.4 Event service 

While the other basic services contribute in a more passive way to the overall real-time behavior 

by offering real-time features (like RT scheduling policies, prioritized communication, etc.), the 

event service plays an active role. This service is responsible for initiating all time triggered 

actions. Figure 11 shows the possible states and times of a job during job scheduling. 

3-50 



Chapter 3 - OSA+ Middleware Architecture 

All the release times (earliest start of...) are handled by the event service. It is the responsibility 

of this service to trigger the delivery of a job at the requested time. This includes single job 

delivery as well as an automatic periodic delivery with a given cycle time. Furthermore, the 

event service monitors all the deadlines (latest end of ...). If a deadline is violated, the event 

service reports an error. Note, that all times are optional. So a simple event service may not 

support all of the times or actions (e.g. no periodic actions) and thus saving memory. The QoS 

report function of the event service is responsible for providing this information. 

 

source
platform

destination
platform

job
 cr

ea
ted

ea
rli

es
t s

tar
t o

f d
eli

ve
ry

lat
es

t e
nd

 of
 de

liv
er

y

lat
es

t e
nd

 of
 de

liv
er

y

or
de

r d
eli

ve
red

ea
rli

es
t s

tar
t o

f e
xe

cu
tio

n

lat
es

t e
nd

 of
 ex

ec
uti

on

de
liv

eri
ng

 or
de

r

de
liv

eri
ng

 re
su

lt
ea

rli
es

t s
tar

t o
f d

eli
ve

ry

res
ult

 re
ce

ive
d

res
ult

 re
ce

ive
d

lat
es

t e
nd

 of
 cy

cle
 / j

ob

lat
es

t e
nd

 of
 cy

cle
 / j

ob

cycle 1 cycle n
period

. . .

 

Figure 11 Real-Time Scheduling 
 

3-51 





 

Chapter 4 Architecture, Design, Structuring 

 

In this chapter, we will present the theory which led us to the conception of a non-blocking 

real-time reconfiguration for middleware. In a first part, we will introduce the basic concepts 

and describe the case of the reconfiguration. 

 

4.1 Basic Concepts 

Our approach is based on the service oriented middleware OSA+. In such an architecture, 

reconfiguration means replacement or movement of services, as shown in Figure 12. On the 

middleware level, both can be handled in the same way due to the uniform platform spanning 

the distributed system. So the presented concepts are valid for both aspects. 

To provide the envisioned goals of dynamic real-time reconfiguration with the possibility to 

have a trade-off between reconfiguration-time and blackout-time, we are introducing the 

following three basic concepts: 

Microcontroller/
-processor 1

Microcontroller/
-processor n 

Service n Service m Service m 

New 
Service n

Movement 
Replacement 

 

Figure 12. Reconfiguration due to replacement or movement of services 

• Job-based reconfiguration: OSA+ uses jobs to communicate between services. The 

reconfiguration of a service is triggered by such a job too. Defining a reconfiguration 

job allows the system to use all real-time related job properties like priorities, deadlines, 

etc., for reconfiguration like for all other tasks. A reconfiguration request sent to a 

service is handled like all other jobs for this service, see Figure 13. If there a jobs with 

 

4-53 



Chapter 4 - Architecture, Design, Structuring 

 

higher priorities, they are executed before, jobs with lower priorities are executed after 

the reconfiguration. Therefore, dynamic reconfiguration respects real-time priorities and 

deadlines. A problem will occur concerning jobs with lower priority than the one of the 

reconfiguration job: without any special checks, these jobs will be processed after the 

reconfiguration was done. If jobs have to be processed before the reconfiguration, it 

might be necessary to modify their priorities, in such a case, the user should be aware of 

possible side effects. 

 
Service 

Job 1 
(Data Processing) 
Priority or Deadline 

1 

Job 2 
(Data Processing) 
Priority or Deadline 

2 

Job 3 
(Reconfiguration) 

Priority or Deadline 
3 

Job 4 
(Data Processing) 
Priority or Deadline 

4 

 

Figure 13. Job based reconfiguration 

• Monitored on-the-fly state transfer: As long as no state transfer is necessary (stateless 

services), switching of services for reconfiguration is easy. The new or moved version 

of a service can be plugged into the platform with the old version still working. Then 

the switch can be done instantly by switching the connections. The blackout-time is 

minimal. When state needs to be transferred, the blackout-time increases, because the 

old version of the service must be stopped, then the state can be transferred and finally 

the new version can be activated. 

In our approach, we offer the possibility to transfer the state without stopping the 

service to be switched. Therefore, we have to deal with state changes during transfer. By 

constantly monitoring the remaining amount of state to be transferred (which might 

increase and decrease), it is possible to define a desired maximum blackout-time (Figure 

14). As soon as the remaining amount of state can be transferred within the requested 

blackout-time, the old service can be stopped, the remaining state transferred and the 

new or moved service started. 

Of course, as lower the requested blackout-time, as higher can become the 

reconfiguration-time. If there exists an upper bound for this reconfiguration-time is a 

main research question, which will be answered in the evaluation section. 

4-54 



Chapter 4 - Architecture, Design, Structuring 

 

 

Old Service New/Moved Service 

Monitor amount  
of state left to transfer

state transfer 

processing jobs 

state changes 

switch switch 

incomplete state copied 

 

Figure 14. On-the-fly state transfer with monitoring 

• Reconfiguration service: To handle all reconfiguration related issues like plugging in 

the new service, transferring the state or deleting the old service, a special 

Reconfiguration Service is defined. This service relieves the service requesting the 

reconfiguration and the service to be reconfigured from these tasks. Neither service is 

blocked by the reconfiguration process (Figure 15). 

service requesting a 
reconfiguration Reconfiguration Service 

service to be 
reconfigured 

new/moved service 

reconfiguration 
request 

handle the 
reconfiguration  
(movement, state 
transfer, switching, ...) 

 

Figure 15. Reconfiguration service 

4.2 Detailed presentation of the case 

As we saw in the first chapter, the OSA+ middleware is made from various services, the basic 

ones, which are necessary, and the extension ones, which extend the capabilities of the 

middleware. 

Since the reconfiguration is not always necessary during the whole running time of an 

application, and to save resources, we decided to make the configuration service as an extension 

4-55 



Chapter 4 - Architecture, Design, Structuring 

 

service. However it is still possible to have it running all the time with the main services, if the 

resources are available. 

We define a reconfiguration as a replacement of a service by another one, or the movement of a 

service. Thus a service, when “reconfigured”, is able to continue processing the orders sent by 

services, which are not aware of its reconfiguration. This reconfiguration is triggered by another 

service. Our objective is to have all services continuing their jobs while the reconfiguration is 

started and processed, even the service which has to be reconfigured. 

 

OldVersion Service 

DynamicCon Service 

Triggering Service 

 

Lambda Service 
 

 

Result 

Order 

 

NewVersion Service 

Figure 16. Reconfiguration Principle 

A typical reconfiguration of a service is done as shown in Figure 16. There are five services, 

which are involved in the reconfiguration, but it may happen that only four of them are 

concerned: The Triggering Service and the Lambda Service can be the same service, responsible 

for requesting a reconfiguration of another service. Here is how the reconfiguration occurs: 

 The Lambda Service normally sends orders to the OldVersion Service. This one 

processes the requests and, when done, sends back results. 

 Another service, the Triggering Service, makes a request to the Recon-figuration 

Service named the DynamicCon Service in the figure, for the reconfiguration of the 

OldVersion Service and its replacement by the NewVersion Service. 

 The OldVersion Service gets the reconfiguration order, and sends back its status 

concerning the reconfiguration, i.e., indicating whether it is possible or not. 

4-56 



Chapter 4 - Architecture, Design, Structuring 

 

 The exchange of service names and identifications is done with the help of the 

microkernel, transparently for the user. Since the services are known to the middleware 

by their names and by their identifications, it is the appropriate place to process the 

replacement. 

 While the Lambda Service continues to send orders to the “OldVersion Service”, 

after the reconfiguration they are automatically re-directed to the “NewVersion 

Service”. 

 

This is a simple case, but what is not shown in the figure is all the mechanisms to insure that the 

reconfiguration can be done with respect to timing constraints and to make the reconfiguration 

consistent. This means that the OldVersion Service must always be able to process the 

orders coming from any services; up to the point where the NewVersion Service replaces it. 

The problem with the replacement of services is that the NewVersion Service must 

consistently take over the role of the OldVersion Service. Thus, for consistency, the state of 

the OldVersion Service has to be transferred to the NewVersion Service. At least, 

NewVersion Service has to be able to proceed all requests, which were sent to the 

OldVersion Service, the same way as OldVersion did, because the Lambda Service still 

requests the same kind of results. 

The replacement of a service is called a switch of services too. 

A problem, already mentioned, occurs when several jobs with different priorities have to be 

processed concurrently to the reconfiguration jobs. It is possible to add safety mechanisms, but 

it is critical that the user and / or the developer of the service and / or the application is aware 

of the possible side effects if a service is reconfigured too soon or too late. It is possible to have 

safety procedures inside the reconfiguration manager, but this will not prevent the developer 

and / or the user of the service to take care of the behavior of his service or application. 

In the following sections, we will present in detail our approach to offer the possibility to have a 

real-time and non-blocking reconfiguration with reconfiguartion-time / blackout-time trade-

offs. 

 

4.3 Design 

We first have to evaluate when this switch of the two services has to be done. Depending on 

this switching time, more or less work has to be done to not jeopardize the consistency of the 

service itself, or the one of the system. 

4-57 



Chapter 4 - Architecture, Design, Structuring 

 

In fact, the following switching times are possible: 

- When a service is looking for a new job (a), 

- When a service is looking for a new job or sending a result (b), 

- Or anytime (c). 

 

The second question is about the state of the service. We can distinguish two types of state 

information: 

- The outer job state of a service. It is all variables that are necessary to correctly process 

an arriving job, 

- The inner job state of a service. It is composed by all variables that are only valid 

during the processing of a job. 

 

Depending on the switching time, the state information to be transferred differs: 

- In case of switching only when looking for a job, case (a), only the outer job state must 

be saved, 

- In case of switching anytime or even while sending a result, cases (b, c), the inner job 

state must be saved as well. 

 

Often, a service will be replaced for two main reasons: 

• For a functional service update: 

In this case, switching time (b) or (c) is critical, because the new version of the service might 

perform other algorithms, and thus can make the inner job state incompatible. It might not 

be possible to resume a half completed job 

• Service movement (for example due to load balancing) from one platform to another: 

In this case all three variants are possible and might be useful. 

 

We have decided to focus on switching time (a), since our approach addresses both kinds of 

reconfiguration and the amount of state information is lower (only the outer state) 

 

4-58 



Chapter 4 - Architecture, Design, Structuring 

 

4.3.1 Basic algorithm 

Here is the outline of our basic reconfiguration algorithm. In the following, we call the service 

to be reconfigured the source service and the new (or moved) service the destination service. 

1. A reconfiguration is requested by a job and processed according to the job parameters 

(priority, deadline, ...) 

2. As soon as the reconfiguration job gets processed, the Reconfiguration Service 

(DynamicCon) starts to transport the outer state information of the source service to the 

destination service while the source service is still running. 

3. The Reconfiguration Service monitors the outer state for more parts to be transported 

(due to incomplete transport or state changes of already transported parts for example). tt is the 

time necessary to transport the remaining state information and tb is the requested blackout-

time., 

if tt < tb  

then 

the source service is stopped and the remaining state information is transported and 

the reconfiguration is completed. The new job is executed by the destination service. 

 else 

the new job is executed by the source service and this algorithm continues again with 

step 2. 

 

In this case, a problem occurs: the reconfiguration time might be unbounded! Thus, the 

switching of services may never fully happen, because there would still be state information to 

transfer between both versions of the service. If a service cannot be replaced by its new version, 

this means there is no reconfiguration. To handle this issue, we will refine the base algorithm in 

the following section and investigate if and how the reconfiguration-time can be bounded. 

 

4.3.2 Main principle 

To replace and move a service from one platform to another, or just to update an old version of 

a service, different steps are needed. 

4-59 



Chapter 4 - Architecture, Design, Structuring 

 

In a general matter, the service to be reconfigured, namely the OldVersion Service is already 

launched and active, i.e. processing jobs when it is about to replace it with an improved service 

(or move to another platform), namely the NewVersion Service. 

 

Load a service on a platform 

First to be able to use a service, it must be plugged into the OSA+ platform. If a service shall be 

moved, it must be transported to the destination platform as well. Once the new service is on 

the platform, it is activated after the Constructor-Job order is sent; thus the service is ready 

to receive and process orders. 

These few steps can be schematized as following: 

Load a service: [Transport the service] (optional) 

    Plug-In the service 

    Send the Constructor-Job 

Note: The Constructor-Job allows the service to setup and initialize its variables and state 

information, making it ready to be used. 

 

Remove a service on a platform 

Once the new version of the service is loaded and active, the old version of the service will 

receive a Destructor-Job order. This order sets this service in a state readying its disabling. 

Then, once the service is disabled, it can be deleted from the platform if it is necessary. This is 

often the case on a resource-limited system. 

Remove a service: Send the Destructor-Job 

    Unplug the service 

    [Delete the service] (optional) 

Note: The Destructor-Job allows the service to clean up. Furthermore, the Destructor-Job 

can have a priority so the time of destruction is given by the position of the Destructor-Job 

among other jobs in the service queue. 

 

Replacement of a service 

4-60 



Chapter 4 - Architecture, Design, Structuring 

 

When the new version of a service has to replace its old version, the new service will get a 

temporary name, called a shadow name, so both versions can coexist at the same time with the old 

version still active. Then the new version service is activated with a Constructor-Job. The old 

version of the service is set in a reconfigurable state by sending the Reconfigurator-Job; and 

so the switch between the two versions occurs. To complete the reconfiguration, the old 

version of the service receives a Destructor-Job to prevent it from being used again. The old 

service can be deleted if necessary. 

Replace a service: [Transport the new service](optional) 

    Plug-In the new service using a shadow name 

    Send the Constructor-Job to the new service 

    Send the Reconfigurator-Job to the old service 

    Send the Destructor-Job to the old service 

    Unplug the old service 

    [Delete the old service](optional) 

 

In case where the state information needs to be transferred from the old service to the new one, 

the Constructor-Job sent to the new service indicates this by a special parameter. Then, the 

new service sends a “StateTransfer” message to the Reconfiguration Service to initiate the state 

transfer. 

When the old service receives the Reconfigurator-Job, it sends a “Switch” message to the 

middleware. This function stops the old service thus allowing the Reconfiguration Service to 

finish the state transfer and swaps the services so the old service is now the shadow service while 

the new service is the working one (e.g. by swapping entries in the service table of the 

middleware). Both names and identifications are exchanged. 

Note: the reconfiguration time is given by the position of the Reconfigurator-Job among 

the other jobs in the service queue. 

 

Possible cooperations of “TransferState” and “Switch” 

In the previous paragraphs, the principal algorithm is given to explain how the reconfiguration 

is handled in our approach. Now, we discuss in detail the state transfer and switching of the 

services. Three different concepts can be distinguished: 

4-61 



Chapter 4 - Architecture, Design, Structuring 

 

- The full-blocking approach 

On calling “TransferState”, the new service is blocked until the old service calls “Switch” 

to initiate the exchange of both services. After the switch is executed, the state is 

transferred. This guarantees consistent and identical state info on both services, but causes 

the longest blackout time (cf. Figure 17). This approach is efficient especially for a service, 

which does not have a big amount of variables, or which is not often used, so that its state 

is stable for a long time. 

 

New Service 

Old Service 

Receives 
“Constructor” 

Receives 
“Reconfiguration” 

Calls 
“TransferState” 

blocked

unblock
swap  
services 

Calls 
“Switch” 

transfer state

Reconfiguration time

Middleware 

Blackout time

 

Figure 17. The full blocking approach 

- The partial-blocking approach 

On calling “TransferState”, the new version of a service starts to transfer the state 

information. The Reconfiguration Service inherits the control flow from the new service so 

the old version of the service is not blocked. The Reconfiguration Service is fully reentrant 

so it can have multiple control flows in order to perform multiple simultaneous 

reconfigurations. As the old version of the service calls “Switch”, the services are swapped 

and the remaining state information is transferred (cf. Figure 18). This guarantees consistent 

and identical state info as well and reduces the blackout time, because state information is 

transported in parallel to the old working service. Still, there is a blocking time while the 

swap is done and the remaining state info is transferred.  

- The non-blocking approach 

Like for the partial-blocking approach, the new version of the service starts to transfer the 

state info on calling “TransferState”. 

4-62 



Chapter 4 - Architecture, Design, Structuring 

 

As the old version of the service calls “Switch”, the remaining amount of state 

information to transfer is monitored. If the time necessary to transfer this information 

is less than the requested blackout-time, the swap is done and the remaining state 

information is transferred. Otherwise, the swap is delayed. This means, “Switch” 

returns without swapping the services and “TransferState” continues to transfer the 

state information. From now on, every time the old version of the service looks for a 

new job, an automatic call to “Switch” is executed by the middleware to check if the 

swap can be processed. If the remaining time to transfer the state information is less 

than the requested blackout-time, the swap is made (cf. Figure 19). This approach 

 

New Service 

Old Service 

Receives 
“Constructor” 

Receives 
“Reconfigurator” 

Calls 
“TransferState“ 

state is stable
swap  
services 

Calls 
“Switch“ 

start state transfer

Reconfiguration time

Middleware

finish transfer

Blackout time 

 

Figure 18. The partial blocking approach 

Handling Asynchronous Jobs 

On the OSA+ platform, it is possible to have synchronous and asynchronous jobs. The 

synchronous job of a service means that the service that sends the order waits for the 

completion of the job to have a result. On the other hand, in the case of the asynchronous job, 

the requesting service does not wait for a response. 

Therefore, it might happen that a result is pending for a service, which is switched. However, 

this is not a problem for our approach: the pending result must, of course, be part of the state 

information of this service. By transferring the state information to the new version of the 

service, this new version should be able to manage the pending result in a proper way. 

4-63 



Chapter 4 - Architecture, Design, Structuring 

 

 

New Service 

Old Service 

Receives 
“Constructor” 

Receives 
“Reconfigurator” 

Calls 
“TransferState” 

check remaning  
state to transfer: 
too big ⇒ delay swap 

Calls 
“Switch” 

start state transfer 

Reconfiguration time

Middleware

finish transfer 

Receives 
new job 

Calls 
“Switch” 

Receives 
new job 

Calls 
“Switch“ 

check remaning  
state to transfer: 
too big ⇒ delay swap 

check remaning  
state to transfer: 
ok ⇒ do swap 

Blackout 
time 

 

Figure 19. The non-blocking approach 

In this first part, we were focused of the reconfiguration of one service only. In the next part, 

we will discuss the reconfiguration of several services. 

 

4.3.3 Reconfiguration of multiple services 
Reconfiguring one service has only few consequences on the whole system, as long as a critical 

service is not concerned. On the other hand, when it is about the reconfiguration of multiple 

services, the difficulty is more complex. 

It may occur that services are interdependent. For example, a service A uses service B. In a new 

version, the interface between A and B might have changed so both services must be 

reconfigured at the same time. 

The notion of “at the same time” is not very suitable for distributed systems, so we will refine this 

constraint: 

 

Assumption: Service A implies service B:  A → B 

  This means, the reconfiguration of A implies the reconfiguration of B 

 

This introduces two requirements, which were not considered for the reconfiguration of a 

single service: 

1. An old version of A must not send a job to the new version of B. 

2. A new version of A must not send a job to the old version of B. 

4-64 



Chapter 4 - Architecture, Design, Structuring 

 

 

If we look at the previously discussed reconfiguration process of a single service, for all the 

approaches discussed, there exists a blackout interval beginning with swapping services and 

ending with completing the state transfer (cf. Figure 20) 

 swap service remaining state transfer 

blackout time 

old service 
stopped 

new service 
started 

 

Figure 20. Overview of the Reconfiguration Process 

We can fulfill the requirements 1 and 2 with the following simple conditions: 

A → B 

1. old version of B must be stopped after old version of A is stopped. 
2. old version of B must be stopped before new version of A is started. 

 

The condition 1 fulfills requirement 1: if the old version of B is stopped after the old version of 

A is stopped, never the old version of A can send a job to new B (because the old version of A 

is stopped before the old version of B) 

The condition 2 fulfills requirement 2: if the old version of B is stopped before the new version 

of A is started, then the new version of A can never send a job to the old version of B. 

The Figure 21 presents the overview of the reconfiguration of two services, which are 

interdependent. It appears that the overall blackout time is the addition of the blackout-times 

for both services. 

It is obvious that the overall blackout-time can be minimized by stopping service B as soon as 

possible after stopping service A 

4-65 



Chapter 4 - Architecture, Design, Structuring 

 

 swap service remaining state transfer 
Service A 

Service B 
swap service remaining state transfer 

valid interval to stop B 
 

 A blackout-time 

 B blackout-time 

 Overall blackout-time 

 

Figure 21. Overview of the Reconfiguration of Two Services 

The Reconfiguration Services (service A and B may not reside on the same platform, and, thus 

it is necessary to have a reconfiguration service on each platform) can be easily synchronized by 

a reconfiguration-sync job (cf. Figure 22). Doing so will prevent the services to be started or 

stopped at the wrong time. 

 swap service remaining state transfer 
Service A 
(Reconfig.- 
Manager 1) 

Service B 
(Reconfig.- 
Manager 2) 
 

swap service remaining state transfer 

reconfig-sync- 
job 

result of reconfig- 
sync-job 

do not stop old B 
before reconfig- 
sync-job is received 

do not start new A before 
result of reconfig- 
sync-job is received 
(acknowledge) 

 

Figure 22. Use of the reconfiguration managers 

Handling Asynchronous Jobs with multiple service reconfiguration 

Asynchronous jobs introduce no additional problems as long as the service A itself offers a 

synchronous interface. This means (cf. Figure 23): 

4-66 



Chapter 4 - Architecture, Design, Structuring 

 

 

job 

Service A 

Service B 

sub-job sub-job sub-result sub-result 

result job 

synchronous interface 

asynchronous jobs to sub-
services 

 

Figure 23. Management of asynchronous jobs 

- The service, in our example: A, does not look for a new job unless the old job is 
completed. 

- But all sub-jobs directed to other services (e.g. Service B) in order to complete the given 

job can be processed asynchronously. 

This guarantees that there is no pending result for Service A when this Service A is looking for 

a new job (and therefore might be reconfigured). 

If the condition of the synchronous interface is not met, pending results might set the services, 

or even worst, the whole system in an inconsistent state. From our example, let’s assume 

Service A is operating fully asynchronous on its interface, thus there will be pending results for 

Service A, respectively pending jobs for Service B once that Service A is stopped (e.g. Figure 

24). 

In this case even if the old version of service B is stopped after the old version of service A is 

stopped and before the new version of service A is started, the new service A might get a result 

from the old version of service B (the pending result) or the new version of service B might get 

a job from the old version of service A (the pending job). 

 

To avoid this situation, there are two possibilities: 

- The service-driven approach: as soon as a service receives a reconfigurator-job, which 

means the system has to replace this service, the service must clean up and be assured that 

there is no more pending job or results. This is the same approach as for the destructor-

job, which shall enable the service to clean-up before being removed. 

- The system-driven approach: the old version of service A is not stopped by the system 

(the middleware) as long as there is pending jobs or results, which are sent by or to the old 

version of service A. 

4-67 



Chapter 4 - Architecture, Design, Structuring 

 

 

job 1 

Service A 

Service B 

sub-job 1 sub-job 2 
queued 
(service B 
e.g. busy) 

sub-result 1 queued 

asynchronous interface 

job 2 (before result 1 is 
returned) 

stopped for 
reconfiguration pending result 

pending job 

Figure 24. Inconsistencies due to asynchronous interface 

To realize the system-driven approach, there are again two possibilities: 

- Stopping the old version of service A is delayed until there are no more pending jobs or 

results. The old version of service A, meanwhile, is kept fully operational. This minimizes 

the blackout-time, but increases the reconfiguration time (maybe unbounded). 

- The old version of service A is stopped in a way that no more new jobs arrives (the 

connections to A are cut for the incoming jobs), but the old version of service A is still able 

to process results and to give jobs to sub-services (incoming results, outgoing jobs). The 

transfer of the remaining state information is delayed until all pending results and jobs are 

processed and therefore have contributed to modify the state. Then, the old version of 

service A is fully stopped and the remaining state information is transferred to the new 

version of service A (cf. Figure 25). 

Pending results or jobs are checked every time the service looks for a job or a result. This 

approach reduces the reconfiguration time, but increases the blackout time. 

 cut new incoming jobs 

old service A 

completely swap 

process pending 
results and jobs 

transfer remaining state 

 

Figure 25. Preventing inconsistencies 

Furthermore, service A must meet the following requirement: 

Incoming results must be checked and processed by the service independently of 

incoming jobs. Otherwise, the service would block because all incoming jobs are cut. 

4-68 



Chapter 4 - Architecture, Design, Structuring 

 

 

4.3.4 “Transfer-State” and “Switch” cooperation in multiple service 
reconfiguration 

In the previous section we examined the cases of the reconfiguration of interdependent 

services. In this part, we will focus more specially on the theory concerning the state transfer 

information and the consequences on the reconfiguration of several services. 

The three approaches “full-blocking”, “partial-blocking” and “non-blocking” can directly be adapted: 

 

4.3.4.1 Full-Blocking Approach 

Old version of service A is directly stopped and swapped after calling “Switch”. Then, the state 

transfer is processed. Service B is treated according to the previously defined constraints (swap 

starts as soon as possible after the old version of service A is stopped and before new version 

of service A is started) 

4.3.4.2 Partial-Blocking Approach 

The state transfers to the new version of services A and B are directly started after receiving the 

constructor. As soon as the old version of service A calls “Switch”, service A is swapped and 

the remaining state is transferred. B is swapped after A and before new version of service A is 

started, but the state transfer to the new version of service A should be finished. The remaining 

state information of B is transferred after B is swapped. 

4.3.4.3 Non-Blocking Approach 

The state transfers to the new services A and B are directly started after receiving the 

constructor. As soon as the old version of service A calls “Switch”, the remaining amount of 

state information to transfer to the new version of service A is monitored. If the necessary 

transfer-time is greater then the desired blackout-time, the switch is delayed and then monitored 

again every time the old version of service A is looking for a new job. Otherwise, the swap is 

done and the remaining state information is transferred. 

Again, the service B is swapped after the service A and before the new version of service A is 

started. The remaining state information of B is transferred after the swap. 

 

For a multiple service reconfiguration, the non-blocking approach can be refined. In its original 

form described above, this approach can have a drawback shown in the following example: 

 

4-69 



Chapter 4 - Architecture, Design, Structuring 

 

 Service A: only a small amount of state info to transfer 

 Service B: a large amount of state info to transfer (e.g. a database service for 

service A) 

 

In that case, A will reach the swap state very quickly and therefore B has not much time for the 

state transfer. This causes a big blackout-time due to the amount of remaining state information 

to transfer for B. 

 

This issue can be solved by the following approach: 

 

Non-Blocking-Combined Approach 

In this approach, the remaining amount of state information to transfer is checked for 

A and B. The swap of A is executed only if the time necessary to transfer the remaining 

state of A and B is less the desired blackout-time. 

 

4.3.5 An alternate way to deal with reconfiguration of multiple services: 
In case of A → B, A and B could be independently reconfigured by introducing a temporal 

proxy service AB. This service transforms the requests of the new version of service A to old 

version of service B or vice versa. In that case, a reconfiguration would look like as follows: 

1. Put proxy AB to system. 

2. Replace the old version of service A by the new version of service A, direct all 

jobs from the new version of service A to the old version of service B via the 

proxy AB. 

3. Replace the old version of service B by the new version of service B, then 

reconnect services A and B directly. 

4. Remove the proxy AB. 

 

4.4 Reconfiguration- and Blackout-time bounds 
In this section, we examine the time bounds for the three different approaches. 

 

4-70 



Chapter 4 - Architecture, Design, Structuring 

 

4.4.1 Bounds for the full-blocking approach 
Time bounds for the full blocking approach are easy to determine. Since the old service is fully 

operational until the services are swapped and the swapping time can be neglected2, only the 

state transfer determines the blackout-time. 

 

r
STBlackout =  

 where:  S: amount of state to transfer 

   r: data transfer rate for the state transfer 

The transfer rate r of course depends on the communication medium in case of service 

movement. By replacing a service on the local platform, this rate is mainly determined by the 

processor speed. 

The reconfiguration time is bounded as well: 

 

 TReconfiguration = T Transport + TBlackout

 

where: TTransport: time to transport and plug-in the new service to the  

destination platform 

 

4.4.2 Bounds for the partial-blocking approach 
In this approach, blackout-time and reconfiguration time are bounded as well. Compared to the 

full-blocking approach, the blackout-time is reduced. 

 

 pBlackout S
r
ST −=  

where: Sp: amount of state information transferred while the old version of the 

service is still working 

 

                                                   

2 The swapping time can be neglected due to the fact that swapping is done just by switching table entries in the 
microkernel, as described in the next chapter. 

4-71 



Chapter 4 - Architecture, Design, Structuring 

 

Sp depends on several aspects like e.g. the priority of the reconfiguration job. If this job has a 

low priority, it is processed late and Sp gets bigger.  So it is hard to determine Sp. In the worst 

case, as an upper bound for TBlackout, Sp can be set to 0 leading to the same blackout-time as the 

full-blocking approach. In the average case, Sp will be greater than 0 and the blackout-time is 

reduced. However, in some cases, real-time theory might help: for periodic applications using 

LLF, EDF or RMS, it is possible to compute task’s actual CPU availability. 

The reconfiguration-time is bounded as well and can be calculated in the same way as for the 

full-blocking approach: 

 

 TReconfiguration = T Transport + TBlackout

 

4.4.3 Bounds for the non-blocking approach 
This is the most interesting case since the reconfiguration time can be unbounded. We have to 

investigate under which conditions the reconfiguration time is bounded and the value of this 

bound. 

Figure 26 presents the amount of time between two orders. T0 is the amount of time necessary 

to process order i, while TP is the total amount of time between order i and order i+1. 

  

T0 

TP 

order i order i + 1  

 

Figure 26. Processing time for orders 

Let’s assume: 

∆S : average amount of state changed during execution of an order 

r : data rate for state transfer 

A general condition for the state transfer to terminate is: 

r
T

S

p

≤
∆

(1) 

4-72 



Chapter 4 - Architecture, Design, Structuring 

 

 

which means the change rate of the state must be less or equal the transfer rate for the state. 

 

If this is true, the state transfer terminates after 

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

∆−
=

SrT
Sn

p

cycles, where S is the total amount of states 
to transfer 

(2) 

 

 

Since we are reconfiguring only when a new order arrives, we have to take a look at the last 

cycle of state transfer. The situation depicted in Figure 27 might appear: 

 Remaining 
state to 
transfer 

∆Sr 

New order 
arrives 

Order 
processed 

 

Figure 27. Remaining untransferred state after order processing 

 

If there are massive state changes at the end of the processing of an order, there might be some 

state information ∆Sr left to transfer when the order is processed. Furthermore, there might be 

not enough time to transfer this remaining state information until the ext order arrives. 

This might happen every cycle thus preventing the state transfer from termination. 

 

It does not happen if one of the following two conditions is true: 

1. The state transfer rate is greater than the state change rate: 
This will always prevent that untransferred state information is left at the end of order 

 
0=∆⇒≤ rSr

dT
dS  (3) 

 

4-73 



Chapter 4 - Architecture, Design, Structuring 

 

processing. Of course, this is a restrictive condition. Fortunately, there is a second 

possibility: 

 

2. The time between the end of the order and the start of the next order plus the allowed 
blackout time is big enough to transfer ∆Sr. 

 

( )( ) rTTTS blackoutPr ⋅+−≤∆ 0

Of course, ∆Sr is always less or equal than ∆S: ∆Sr ≤ ∆S 

So ∆S can be used as worst case value for ∆Sr 

It follows: 

 

rTTTS blackoutP ⋅+−≤∆ ))(( 0  

(4)  blackoutP TTT
r
S

+−≤
∆ )( 0  

 

For the state transfer to terminate at all, condition (1) must be true. So we can introduce (1) 

here: 

(5)  
r
STr

T
S

p
P

∆
≥⇒≤

∆
 

Putting (5) into (4) leads to: 

0TTTT PPblackout +−≥  

(6)   0TTblackout ≥

 

 

This means, that the reconfiguration, in the case of non-blocking approach, can complete when 

condition (1) holds and the maximum allowed blackout-time is greater than the time necessary 

to process the order. 

4-74 



Chapter 4 - Architecture, Design, Structuring 

 

 

If this is true, the upper bound for the blackout-time is of course less or equal to the blackout-

time requested by the user or application: 

 

TBlackout ≤ TBlackout requested

 

The reconfiguration time computes to: 

 

TReconfiguration = TTransport + n ⋅ Tp,    

with n: according to equation (2) 

TTransport: time to transport the new service to the destination platform 

 

In this chapter we presented our global approach for the reconfiguration of one or several 

services on a middleware.  

In the next chapter, the implementation of such algorithms will be discussed. 

4-75 





 

Chapter 5 Implementation Aspects 

 

 

 

 

Our goal in implementing the Dynamic Reconfiguration in OSA+ is to evaluate and 

demonstrate the feasibility of such a system on very weight embedded systems. 

OSA+ is a microkernel-based middleware platform, which follows the requirements of real-

time and embedded systems. As a real-time hardware and operating system platform, the 

Komodo microcontroller, a multithreaded real-time Java processor, can be used. The discussion 

of our implementation of dynamic reconfiguration will not cover the implementation and real-

time mechanisms of the OSA+ middleware or the Komodo microcontroller. For further 

explanation of both aspects, the reader should see [32] and [31], which present details of these 

parts. 

 

The topic of this chapter is to focus on the relevant aspects of the implementation concerning 

dynamic reconfiguration. So, we will not discuss standard methods or classes necessary for 

implementation. We will detail only the structures, which are of interest in understanding and 

implementing the key features of our dynamic reconfiguration concepts. 

 

5.1 Microkernel 

This class is part of the standard OSA+, and thus to offer the dynamic reconfiguration features, 

it was necessary to alter it.  

Since the microkernel is the core of OSA+, all modifications done on that level have to be done 

very carefully to not risk deterioration of the good performance of OSA+. It was necessary to 

keep in mind during development that all changes to this class can have bad influences on the 

results of the system. As the core of the system, only the needed parts were done in the 

Microkernel class, i.e., the changes that are necessary for the system. 

For this class, only one method was added. It is the method that is in charge of switching two 

services: then the old version of a service will be replaced by the new version of a service. This 

switch is done only when the DynamicCon service sends a message to OSA+ to request the 

 

5-77 



Chapter 5 - Implementation Aspects 

 

replacement of the old version of the service. The microkernel class is not in charge of checking 

either these two services can be switched; this is the task of the DynamicCon service. 

In the current version of OSA+, the services are identified by two means: 

- The service identifier, which is an integer value given by the system; 

- The service name, which is a table of characters, usually given by the developer of the 

service, but it is also possible to be given automatically. 

ERROR 

oldService = {oldServiceId, “oldServiceName”} 

newService = {newServiceId, “newServiceName”} 

tempName = “name” 

serviceMgr : is an indexedCollection interface 

 

checkings 
Not OK 

OK 

exchange the names with the help of tempName 

exchange the identifiers 

set the former newService as REGISTERED 

[destruct the former oldService] 

serviceMgr.exchange(oldService, newService) 

Figure 28. Process of switching in the microkernel 

On the microkernel level, to replace one service by another one, the names, after being found 

back by the system, are exchanged, and then the service identifiers of both services are 

exchanged too. By exchanging the identifiers, the new service gets the same identifiers as the 

old service, thus all connections remain valid and now, point to the new service. At last, the new 

service is flagged as being ready to receive orders and to send results. 

 

Figure 28 shows the process of switching. It was necessary to implement this switching process 

in the microkernel for the following reasons: 

5-78 



Chapter 5 - Implementation Aspects 

 

• Regarding to the real-time properties, it is necessary to get the shortest possible and 

bounded switching times. So searching service lists is not an option. 

• By exchanging the name and the identifier directly in the data structures of the 

microkernel, the switching process is extremely fast. Not only no search operation 

is necessary, but by swapping the identifiers all related data structures (e.g. job 

queues) are automatically swapped at the same time. The way the swapping is done 

is described in the next section. 

• Due to the already mentioned vital role of the microkernel, accessing the internal 

data structures from outside is not advisable. System integrity may be harmed if this 

would be allowed. 

 

So the switch has been implemented as an additional method of the microkernel. 

 

When the reconfiguration order is sent via the middleware, the microkernel will have to process 

them with respect of their priorities, like any other services. This means that a reconfiguration 

order will be placed in the order queue relatively to the priority. If there are orders with higher 

priorities in the queues, then the microkernel will first send these orders rather than the 

reconfiguration order. It is still possible to have the reconfiguration order placed high in the 

order queue, but it will have to be processed after the other orders with the same priority, which 

were first in the queue. 

In Figure 29, the relationships between the Microkernel class and other basic services are 

shown.  

5-79 



Chapter 5 - Implementation Aspects 

 

Figure 29. Relationships between the Microkernel class and other OSA+ classes. 

 

+ add() 
~ get() 
~ remove() 
~ getIterator() 
~ getSize() 
~ exchange() 

IndexedCollection 

       + sendResult() 
       + ServiceInfo() 
       ~ sendMultiOrder() 
       ~ InsertOrder() 
       ~ InsertResult() 
       ~ existResult() 
       ~ waitResult() 
       ~ existOrder() 
       ~ waitOrder() 
      ~ pendingJobs() 

+ SERVICE_REGISTERED 
+ SERVICE_DESTRUCTED 
+ SERVICE_ASKED_FOR_RECONFIG 
~ mKernel 
~ service 
~ availableOrders 
~ availableResults 
~ serviceState 
~ hostThread 

osa.ServiceInfo 

+ MicroKernel() 
+ platformPopRule() 
+ platformPushRule() 
+ Init() 
+ createConnection() 
+ createConnection() 
+ releaseConnection() 
+ registerService() 
+ unregisterService() 
+ getProcInterface() 
+ addQoSHandler() 
+ getServiceId() 
+ getServiceId() 
+ getService() 
+ getNbActiveConnections() 
+ getNbServices() 
+ switchServices() 
+ setTracer() 
+ getTracer() 
+ printError() 

       ~ serviceMngr 
       ~ qosTable 
       ~ connections 
       ~ tracer 
       - ruleResv 
       - initServiceInf 
       - taskProcInterface

osa.MicroKernel 

+ Tracer() 
+ traceCheckpoint() 
+ computeDispersion() 
+ printInterval() 
+ setOutputFormat() 
+ getDispersion() 
+ getIntervalNames() 
~ shiftVector() 
~ insertValue() 

~ dispersion 
~ intervals 
~ outputFormat 
~ pool 
- traces 
- intervalNames 
- tracePos 

osa.Tracer 
+ RuleResolver() 
+ add() 
+ get() 
+ remove() 
+ exchange() 
+ getIterator() 
+ getSize() 
+ applyRules() 

~ repository 

osa.RuleResolver 

       + createThread() 
       ~ startThread() 

osa.TaskProcInterface 

+ processOrder() 
~ deliverToService() 

osa.QoSHandler 

mKernel 

initServiceInfo 

tracer 

connections 
serviceMngr 

repository 

ruleResv 

taskProcInterface 

qosTable 

 

5-80 



Chapter 5 - Implementation Aspects 

 

5.2 BucketContainer 

The BucketContainer is a class, which maintains buckets of objects. It is used to efficiently 

manage service lists in OSA+ (cf. [32]). This class provides low bounded access times to the 

stored object, and these access times are usually O(log n), with n, the total number of objects, 

which can be stored. It represents a general tree, each node can contain nodeBucketSize links 

(if it is not a leaf) or leafBucketSize references to objects in case of leaf nodes.  

The tree has a depth of treeLevels and it initially contains a user defined number of leaf 

buckets (which is not a complete tree). Still considering the limited amount of available 

resources, the tree size will be extended during runtime when the initial capacity of storage is 

reached or, otherwise, it will be shrunk if a number of decreasingFactor of leaf buckets 

became empty.  

the exchange method is the implementation of the 

indexedCollection.exchange(serviceToBeReplacedId, newServiceId) 

pos1 = serviceToBeReplacedId  

pos2 = newServiceId 

Not OK 

Localisations of pos1 & pos2 

are in range with the tree? 
ERROR 

Not OK 

Browse tree, 

find pos1? 

Browse tree, 

find pos2? 

OK 

Not OK 

ERROR 

OK 

ERROR 

OK 

tempPointer = firstTree.pos1 

firstTree.pos1 = secondTree.pos2 

secondTree.pos2 = tempPointer 

Figure 30. The exchange method 

5-81 



Chapter 5 - Implementation Aspects 

 

 

The class contains methods to browse through all the tree of services, from one node up to 

another one, passing by various branches and leaves. 

 

In this class, a method was added to exchange the position in the tree of the two services. 

Figure 30 shows this. This operation is necessary to perform the switch described in the 

previous section. The identifier of a service is directly retrieved from its position in the bucket 

container. So switching of identifiers means: to switch the position of both identifiers in the 

tree. Checkings are first done to evaluate either it is possible to exchange the position of the 

services in the tree. Then, the BucketContainer service is browsing its different branches to 

find the position, in the tree, of the old version of the service. Then the BucketContainer 

service will try to find the path up to the position of the new version of the service. When both 

positions are found, they will be exchanged. Due to the tree structure of the bucket container, 

this browsing is bounded to O(log n) too. 

If, during the process of browsing, one or both services cannot be found, an error is issued, and 

the reconfiguration is aborted. 

The Figure 31 shows the relationships between this service and the tree-related services, among 

them the LinkedList service, which is an important service for the management of the service 

hierarchy. 

5-82 



Chapter 5 - Implementation Aspects 

 

 

+ add() 
~ get() 
~ remove() 
~ getIterator() 
~ getSize() 
~ exchange() 

IndexedCollection 

+ GeneralTree() 
+ GeneralTree() 
+ setChild() 
+ getChild() 
+ getNodeSize() 
~ setData() 
~ getData() 

osa.GeneralTree 

       ~ data 
       ~ nextLevel 

+ LinkedList() 
+ add() 
+ add() 
+ get() 
+ set() 
+ remove() 
+ clear() 
+ isEmpty() 
+ indexOf() 
+ getListIterator() 
+ size() 
+ getHead() 
+ getTail() 
+ toString() 
- getNode() 

       ~ size 
       ~ head 
       ~ tail 

osa.LinkedList 

+ BucketContainer() 
+ toString() 
+ checkConsistency() 
+ add() 
+ exchange() 
+ get() 
+ remove() 
+ getIterator() 
+ getSize() 
+ getCapacity() 
~ printOnLevel() 
~ getRoot() 
# allocateLeafBuckets() 
- toStringNode() 
- fillTree() 

~ capacity 
- root 
- edge 
- decreasingFactor 
- increasingFactor 
- leafBucketSize 
- treeLevels 
- nodeBucketSize 
- storedObjects 
- allocatedLeafBuckets 
- freeSlots

osa.BucketContainer 

root 

freeSlots 

 

Figure 31. Collaboration diagram for the BucketContainer service. 

 

5.3 ServiceInfo 

The ServiceInfo class is a class implementing communication methods between services. 

Since the services can be dynamically changed, it was necessary to modify some of the methods 

of this class. 

For this class, a service can be in three different states: 

5-83 



Chapter 5 - Implementation Aspects 

 

- registered: This is the normal state for a service among a platform. This means the 

service is known, and is able to process jobs. 

- destructed: A service is in destructed state when it received a destruct order. It is 

still able to send results to other services but it cannot process any more jobs. 

- asked for reconfiguration: In this state, the corresponding service received a 

reconfig order, thus it will be reconfigured by a new version. 

Figure 32 and Figure 33 shows the reconfiguration related issues of the serviceInfo class. 

 

SendResult: 

Service to be 

reconfigured? 
Send result 

Priority of reconfig > 

priority of result? 

No 

Yes 

Yes 

Reconfig! 

Send result 

No 

Figure 32. Principle of the SendResult method 

The method SendResult is sending back to the client service, the results of the job. In our 

case, the SendResult method has to check if the service to be reconfigured is in a 

reconfigurable state. If not, the method SendResult, depending on the error level, just sends 

back the result to the corresponding service. 

5-84 



Chapter 5 - Implementation Aspects 

 

InsertOrder: 

Service to be 

reconfigured? 
Insert order 

Priority of reconfig > 

priority of order? 

No 

Yes 

Yes 

SaveState 

Reconfig! 

Insert order 

No 

Figure 33. Principle of the InsertOrder method 

 

The InsertOrder method puts orders in a queue of pending orders for the service. Depending 

on the order received, this method will define a given service as a service ready to be 

reconfigured. A service can be reconfigured, if, at least, it is present on the platform, and if it is 

registered, without processing order. This means that the service was idle, or just sent a result or 

just received a result, and no action is pending. 

The queue of orders is organized with respect to the priorities given by the client jobs. 

The other methods of this class do not deal directly with the dynamic reconfiguration and are 

dependant of the genuine middleware implementation.  

5-85 



Chapter 5 - Implementation Aspects 

 

 

+ getName() 
+ getMicroKernel() 
+ getServiceType() 
+ getServiceId() 
+ getProcInterface() 
+ kernelNeedControlFlow() 
+ buildOrder() 
+ buildJob() 
+ buildMultiOrder() 
+ pushOrderInMultiOrder() 
+ sendMutliOrder() 
+ existResult() 
+ waitResult() 
+ existOrder() 
+ waitOrder() 
+ sendResult() 
+ serviceLoop() 
~ selServiceId() 
# printError() 

        ~ serviceId 
        ~ name 
        ~ version 
        ~ serviceType 
        ~ accelerator

osa.Service 

       + sendResult() 
       + ServiceInfo() 
       ~ sendMultiOrder() 
       ~ InsertOrder() 
       ~ InsertResult() 
       ~ existResult() 
       ~ waitResult() 
       ~ existOrder() 
       ~ waitOrder() 
       ~ pendingJobs()

+ SERVICE_REGISTERED 
+ SERVICE_DESTRUCTED 
+ SERVICE_ASKED_FOR_RECONFIG 
~ mKernel 
~ service 
~ availableOrders 
~ availableResults 
~ serviceState 
~ hostThread 

osa.ServiceInfo 

osa.PriorityQueue 

+ enqueue() 
~ dequeue() 
~ size() 
~ isEmpty() 

+ MicroKernel() 
+ platformPopRule() 
+ platformPushRule() 
+ Init() 
+ createConnection() 
+ createConnection() 
+ releaseConnection() 
+ registerService() 
+ unregisterService() 
+ getProcInterface() 
+ addQoSHandler() 
+ getServiceId() 
+ getServiceId() 
+ getService() 
+ getNbActiveConnections() 
+ getNbServices() 
+ switchServices() 
+ setTracer() 
+ getTracer() 
+ printError() 

       ~ serviceMngr 
       ~ qosTable 
       ~ connections 
       ~ tracer 
       - ruleResv 
       - initServiceInf 
       - taskProcInterface 

osa.MicroKernel 

availableResults 
availableOrders 

initServiceInf mKernel accelerator service 

Figure 34. Collaboration diagram for the ServiceInfo class 

 

5-86 



Chapter 5 - Implementation Aspects 

 

5.4 DynamicCon 

This service is the most important for our reconfiguration topic, because it is the one managing 

all the tasks concerning the reconfiguration. It is not a service doing all the reconfiguration 

duties, but it is dealing with other services to insure everything is done consistently. 

 

ReplaceService(oldServiceId, newServiceId) 

Still State to 

transfer? 

State transfer is done with state server 

Switch services 

Transfer state with state server 

No 

Service reconfigured 

Result sent to triggering service 

Send message for oldServiceId to be reconfigured 

Yes 

Figure 35. Principle of the replaceService in DynamicCon 

The main method in this service is the ReplaceService method. This method first analyzes 

the order received from any other service to reconfigure a service. Then it extracts from the 

input stream of the sent job two integer values, which are the identifiers for the old version of 

the service and for the new version of the service. 

Of course, all checking is done to insure consistency and to have a basic error-free 

reconfiguration process. Then the reconfiguration order for the old version of the service is 

built, to request it to be set in a reconfigurable state. A connection is established via the system 

to the old version of the service; and the order is sent. The DynamicCon then waits for the 

5-87 



Chapter 5 - Implementation Aspects 

 

result, if no error occurs, then DynamicCon proceeds to the state transfer. And at last, the 

DynamicCon service sends to the service, which triggers the reconfiguration, the result 

concerning the reconfiguration job – i.e. failure or success. 

Figure 35 shows the structure of the DynamicCon service for the replaceService method and 

Figure 36 shows the relationship between any service and the dynamic reconfiguration service, 

DynamicCon. 

 

+ getName() 
+ getMicroKernel() 
+ getServiceType() 
+ getServiceId() 
+ getProcInterface() 
+ kernelNeedControlFlow() 
+ buildOrder() 
+ buildJob() 
+ buildMultiOrder() 
+ pushOrderInMultiOrder() 
+ sendMutliOrder() 
+ existResult() 
+ waitResult() 
+ existOrder() 
+ waitOrder() 
+ sendResult() 
+ serviceLoop() 
~ selServiceId() 
# printError() 

        ~ serviceId 
        ~ name 
        ~ version 
        ~ serviceType 
        ~ accelerator

Service 

+ print() 
+ checkError() 
+ construct() 
+ destruct() 
+ replaceService() 
+ getQoSCapabilities() 
+ createService() 
+ serviceLoop() 

osa.DynamicCon 

Figure 36. Collaboration diagram for the DynamicCon service. 

 

5.5 StateServer 

The StateServer is the service that is responsible for transferring all the state information 

from one version of a service to another version. 

5-88 



Chapter 5 - Implementation Aspects 

 

Basically, there are two ways to deal with the state information of services: 

1. The state information is stored inside the service. The StateServer accesses this 

state information to transfer it. 

2. The state information is stored inside the StateServer. The service accesses this 

state information to operate. 

 

While method 1 is the more natural way, it introduces several problems: the StateServer 

would need references to all state variables inside the service, thus overhead is introduced. 

Furthermore, it is hard to handle concurrent access to state variables by the StateServer and 

by the service. Finally, for the non-blocking approach, it is essential to know the remaining 

amount of state information to transfer. With respect to real-time properties and memory 

overhead, this cannot be done by always comparing the current state variables with previous 

versions. A more efficient way has to be found. 

Therefore, we decided to use method 2. The drawback of this approach is a service has to 

handle its state externally by accessing the StateServer. However, this drawback can be solved 

in future by a compiler or pre-compiler automatically arranging the state information of a 

service to the StateServer. On the other side, the approach to handle the state information in 

the StateServer has a big advantage: It offers a very efficient implementation, allows 

controlling concurrent requests and to maintain the amount of remaining state information to 

transfer without compare or search operations. 

Figure 37 shows the methods of this StateServer. 

Since the state information is handled inside the StateServer, there are three methods to 

access the state information by the application services. CreateStateVariable dynamically 

creates a new state variable of a given type. As result, a reference to the newly created variable is 

returned. Using this reference, the application service can access or update the state variable 

using the functions GetStateVariable or ChangeStateVariable. Id is a unique identifier for 

state variables. The idea behind this is as follows: When updating an old service with a new 

version, the structure of the state information might change. New state variables might be 

introduced, other might be deleted or the type might change. Using the identifiers, the 

StateServer can handle this: 

• if the identifier of a state variable exists in the old and new version of the service, this 

state variable remains. The information contained in this variable has to be transferred. If 

the type information is unchanged, the contents can be transferred directly, otherwise a 

type conversion is necessary. 

5-89 



Chapter 5 - Implementation Aspects 

 

• if the identifier of a state variable does no longer exist in the new version, this state 

variable has been removed, no state information needs to be transferred. 

• if the identifier is newly introduced in the new version and does not exist in the old 

version of the service, this is a new state variable, which will be initialized with a default 

value (e.g. zero). 

 

Methods of the StateServer class: 
 ref  = CreateStateVariable(id, type) 

    ChangeStateVariable(ref, value) 

 value  = GetStateVariable(ref) 

 id, value = SaveState(iterator) 

    RestoreState(id, value) 

 Amount = UnsavedState 

safe state 

access 

state 

Figure 37. Methods of the StateServer class 

The functions SaveState and RestoreState are used to perform the state transfer variable by 

variable using an iterator. The most important function is UnsavedState, which delivers the 

amount of state left to transfer in terms of the number of still unsaved state variables. 

Figure 38 shows the data structure of the state information in the StateServer. It is a linked 

list containing the value, type and identifier for each state variable as well as a “saved” flag (“s”) 

indicating if this state variable has already been transferred. Furthermore, there are some other 

fields: a pointers to the list of already all transferred state variables (saved list), a pointer to 

the list of all variable still to be transferred (unsaved list), the amount of state variables left 

to transfer (unsaved counter) and a mutex to protect the data structure in case of concurrent 

accesses.  

5-90 



Chapter 5 - Implementation Aspects 

 

Data Structure: 

 
value, 
type 

identifier “s” next 

    

    

 …   

    

    

 

saved list 

unsaved list 

ref 

unsaved counter 

mutex 

Figure 38. Data structure used in the StateServer class 

The following enumeration shows how these functions cooperate and how the amount of state 

variables left to transfer is maintained without compare operations: 

• unsaved counter holds the number of the currently unsaved (untransferred) state 

variables. It is initialized to 0 for a newly registered service. 

• CreateStateVariable creates a new state variable and puts it into the top of the 

unsaved list. The unsaved counter is incremented. The “s” (saved) flag is 

cleared. 

• ChangeStateVariable checks if the “s” flag is set. If so, the state variable is 

moved from the saved list to the unsaved list. The “s” flag is then cleared and 

unsaved counter is incremented. 

• SaveState iterates through the unsaved list. It delivers state and identifier of 

the next unsaved variable, puts it into the saved list, sets the “s” flag and 

decrements the unsaved counter. 

• UnsavedState returns the unsaved counter. 

• id identifies a state for state transfer. During transfer, a state variable from the 

source is copied to the variable with the same id in the destination service. 

 

5-91 



Chapter 5 - Implementation Aspects 

 

The Figure 39 presents relationships between the StateServer and the related classes: 

 

+ getName() 
+ getMicroKernel() 
+ getServiceType() 
+ getServiceId() 
+ getProcInterface() 
+ kernelNeedControlFlow() 
+ buildOrder() 
+ buildJob() 
+ buildMultiOrder() 
+ pushOrderInMultiOrder() 
+ sendMutliOrder() 
+ existResult() 
+ waitResult() 
+ existOrder() 
+ waitOrder() 
+ sendResult() 
+ serviceLoop() 
~ selServiceId() 
# printError() 

        ~ serviceId 
        ~ name 
        ~ version 
        ~ serviceType 
        ~ accelerator 

Service 

+ print() 
+ checkError() 
+ construct() 
+ destruct() 
+ createStateVariable() 
+ changeStateVariable() 
+ getStateVariable() 
+ saveState() 
+ restoreState() 
+ getQoSCapabilities() 
+ serviceLoop()

osa.StateServer 

       + sendResult() 
       + ServiceInfo() 
       ~ sendMultiOrder() 
       ~ InsertOrder() 
       ~ InsertResult() 
       ~ existResult() 
       ~ waitResult() 
       ~ existOrder() 
       ~ waitOrder() 
      ~ pendingJobs()

+ SERVICE_REGISTERED 
+ SERVICE_DESTRUCTED 
+ SERVICE_ASKED_FOR_RECONFIG 
~ mKernel 
~ service 
~ availableOrders 
~ availableResults 
~ serviceState 
~ hostThread 

osa.ServiceInfo 

+ print() 
+ checkError() 
+ construct() 
+ destruct() 
+ replaceService() 
+ getQoSCapabilities() 
+ createService() 
+ serviceLoop() 

osa.DynamicCon 

Accelerator 

Service 

 
Figure 39 Collaboration between StateServer and related services. 

 

5.6 Conclusion 

The implementation of the dynamic reconfiguration causes only minor changes in the 

microkernel (cf. 5.1 to 5.3). Most of the classes of the core of OSA+ are untouched. It was a 

main requirement to allow the system to operate as before. Most of the implementation 

(DynamicCon, StateServer) could be implemented as extension services to the microkernel. 

With all the implementation aspects, it was possible to obtain a working middleware allowing 

dynamic real-time reconfiguration. 

 

5-92 



 

Chapter 6 Practical Evaluation 
 

 

 

 

The purpose of an evaluation is to prove and to rate a conception. This can be done in a 

theoretical and a practical way.  

For our approach, we have decided to combine both ways. In the theoretical part described in 

section 4.4 we have determined time bounds for the reconfiguration and blackout time and the 

conditions for these bounds to hold. In this chapter, we will present an additional practical 

evaluation to answer the following questions: 

• how is the overall performance of our approach? How big are the reconfiguration- and 

blackout-time on an average system? 

• how big is the advantage of having a Reconfiguration Service (DynamicCon) instead of 

letting the application services do the reconfiguration? 

• and finally, what is the advantage of the job-based reconfiguration, where reconfiguration 

orders compete with other orders according to their priority? 

 

As evaluation environment, a standard PC has been chosen, running as operating-system 

Microsoft Windows 2000, with the latest service pack available. Because worst-case time 

bounds have been fixed in a theoretical way, we interested beside the minimum and maximum 

performance especially in the average performance in a standard system. So this system 

configuration is a good basis, no special real-time operating system is used. The hardware part is 

based on an AMD XP1900+ which frequency is 1.6 GHz, and 1 GB of RAM. The software 

part, except for the operating system, is composed by the Java Development Kit 1.4.1. The 

development of our implementation was done with the normal JDK classes, i.e. without using 

any Beans nor Swing classes. Of course, to have more relevant experiments, they will be done 

later on a system with RTOS like RT-Linux or VxWorks. 

 

 

6-93 



Chapter 6 - Practical Evaluation 

 

6.1 Overall Performance 
To measure the overall performance of our approach, we created a simple test bed. The system 

will have only the essential services launched. One service, ServiceBeta, will send orders to 

two other services, named OldService and ReconfTrigger. This ReconfTrigger service will 

trigger the reconfiguration of OldService by sending a ReconfOrder to the platform. The 

order will be distributed to the DynamicCon service. This one will initiate the reconfiguration 

process. Then the OldService will be replaced by the NewService. 

OldService and ReconfTrigger receive just orders to print a line on the standard output 

(console mode). ReconfTrigger, after a defined amount of orders received, will trigger the 

reconfiguration as explained above. Once the reconfiguration is done, while ServiceBeta will 

still send orders to both services, but rather than having OldService executing the orders, it 

will be NewService (cf. Figure 40). 

ReconfTrigger 

ServiceBeta 

OldService 
results 

orders 

results 

reconfiguration order for OldService1 

result 

Triggers the 

reconfiguration 

NewVersion 

oders 

results 

orders 

initiates the reconfiguration 

DynamicCon 

Figure 40. Test bed for the reconfiguration of a service 

 

The first result is without state transfer. Table 2 shows the average, maximum and minimum 

blackout times. It represents 100 experiments and for each, 50 orders were sent. A 

reconfiguration order is sent after 10 “normal orders” were sent. As it can be seen, switching is 

performed quickly. 

 

 

6-94 



Chapter 6 - Practical Evaluation 

 

Average Maximum Minimum 

608 µsec 967 µsec 525 µsec 

Table 2. Blackout times, no state transfer 

Since no state transfer is involved, the reconfiguration time is given by adding the transport 

time (to move the new service in place and to plug this service in) to the blackout time (see 

section 4.4). In case of a transport time of 100 msec, the results are as expected and shown in 

Table 3. Transport can be quicker on a local platform, but when transporting a service via the 

network this value dominates the reconfiguration time. 

Average Maximum Minimum 

100.6 msec 101 msec 100.5 msec 

Table 3. Reconfiguration times, no state transfer, 100 msec transport time 

In the case of state transfer, the transfer time is simply added to the reconfiguration time. In the 

full blocking approach, it adds as well to the blackout time. If we have a large amount of state 

information to transfer via a low bandwidth connection, a state transfer time of 1,000 msec and 

more is realistic. Thus, the transfer time dominates the pure switching time of 680 µsec. 

In the partial blocking approach, only a small part of such a state transfer time (a few 

milliseconds on our platform) can be masked in the blackout time. Furthermore, this is not 

guaranteed, see section 4.4. So in worst case we have the same time behavior as for the full 

blocking approach. 

For the non blocking approach, the results shown in Table 2 mark the minimum blackout time 

to be requested. As bigger the value is chosen from this minimum base, as more likely the state 

transfer will terminate due to the conditions shown in section 4.4.3 and as less cycles are needed 

to transfer the state, because the termination window (TRemainingStateTransfer ≤ TBlackout Requested) gets 

bigger. Therefore, a tradeoff between blackout time and reconfiguration time can be chosen. 

 

6.2 Advantages of introducing the Reconfiguration Service 
Basically, there are two ways to handle the reconfiguration. One would be to do the 

reconfiguration by the service requesting it using functionality of the microkernel. The other 

way, our approach, is to introduce a special extension service for this purpose, the 

Reconfiguration Service (DynamicCon). To evaluate the advantages of this approach, let’s recall 

the scenario from  Figure 40. 

6-95 



Chapter 6 - Practical Evaluation 

 

The ReconfTrigger service is triggering the reconfiguration.  At the same time, this service is 

receiving orders by ServiceBeta. Alternativly to our approach, we have implemented a version 

where ReconfTrigger does the reconfiguration on its own without using DynamicCon. Table 4 

shows as result the blackout time of ReconfTrigger, this means the time this service does not 

react to orders sent by ServiceBeta. The state transfer time was set to 2,000 msec in this 

experiment. As it can be seen, the blackout time using DynamicCon is much shorter, because 

DynamicCon cares for the state transfer. In the other case, ReconfTrigger is bothered with 

this task leading to a big blackout. 

Case With DynamicCon Without DynamicCon 

Blackout Time in µseconds for the service triggering the 

reconfiguration 
608 µsec 2,007,906 µsec 

Table 4. Comparison of a reconfiguration with and without DynamicCon 

This shows that a reconfiguration by switching a working service with another one, with the 

help of a dedicated service is more efficient than by doing the reconfiguration internally by the 

triggering service itself. 

 

6.3 Priority experiment 
To evaluate the influence of job-based reconfiguration including priorities, we modified the 

above experiment. Rather than to send the reconfiguration order with the same priority as the 

others, we made several tests, with different value for the reconfiguration order priority. 

Like for the other experiments, we repeated this experiment several times to exclude any 

random results. Only the orders sent to the OldService service got different priority values. In 

our first priority test, all orders are sent with a priority value of 5, which is an average value. As 

all orders have the same priority, they are all processed one after the other. After the 

reconfiguration, the NewService will process the orders sent to OldService. 

Second, we decided to give to the reconfiguration order the highest possible priority value, 

which is 0. This means that the OldService will process the reconfiguration order before 

following orders. Since the reconfiguration order is placed in the order queue of OldService 

before the other orders.  

At last, we gave to the reconfiguration order the lowest possible priority value, which in our 

case is 15. This means that during the time laps orders are placed in the order queue of 

OldService, if normal orders are received before the reconfiguration order is processed, these 

orders will be executed before the reconfiguration order. 

6-96 



Chapter 6 - Practical Evaluation 

 

Table 5 shows a log from our experiment, with the slots marked where the reconfiguration 

order is received by DynamicCon and where the reconfiguration is finally executed. Figure 41 

summarizes the results in a graphic.  

Sequential order First Experiment Second Experiment Third Experiment 

… … … … 

19 *-* order received by 

OldService 

*-* order received by 

OldService 

*-* order received by 

OldService 

20 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

21 *-* order received by 

OldService 

*-* order received by 

OldService 

*-* order received by 

OldService 

22 --- order received by 

DynamicCon 

--- order received by 

DynamicCon 

--- order received by 

DynamicCon 

23 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

24 *-* order received by 

OldService 

*-* order received by 

OldService 

*-* order received by 

OldService 

25 -*- order received by 

NewService 

-*- order received by 

NewService 

*** order received by 

ReconfTrigger 

26 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*-* order received by 

OldService 

27 -*- order received by 

NewService 

-*- order received by 

NewService 

*** order received by 

ReconfTrigger 

28 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*-* order received by 

OldService 

29 -*- order received by 

NewService 

-*- order received by 

NewService 

*** order received by 

ReconfTrigger 

30 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*-* order received by 

OldService 

31 -*- order received by 

NewService 

-*- order received by 

NewService 

*** order received by 

ReconfTrigger 

32 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*-* order received by 

OldService 

33 -*- order received by 

NewService 

-*- order received by 

NewService 

*** order received by 

ReconfTrigger 

34 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*-* order received by 

OldService 

6-97 



Chapter 6 - Practical Evaluation 

 

35 -*- order received by 

NewService 

-*- order received by 

NewService 

-*- order received by 

NewService 

36 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

37 -*- order received by 

NewService 

-*- order received by 

NewService 

-*- order received by 

NewService 

38 *** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

*** order received by 

ReconfTrigger 

… … … … 

Table 5. Priority log 

 

 

New Service 

Old Service 

5 10 15 20 25 30 35 40 45 
order processed 

Experiment 1: same priorities for all orders 

New Service 

Old Service 

5 10 15 20 25 30 35 40 45 
order processed 

Experiment 2: reconfiguration order has higher priority 

New Service 

Old Service 

5 10 15 20 25 30 35 40 45 
order processed 

Experiment 3: reconfiguration order has lower priority 

reconfiguration requested
 

Figure 41. Different priorities of the reconfiguration job 

 

It can be seen, that there is no difference between the first experiment, where all orders have 

the same priority, and the second experiment, where the reconfiguration order has the higher 

6-98 



Chapter 6 - Practical Evaluation 

 

priority. This happens, because the reconfiguration order arrives before the next regular order. 

So regardless if the priority of the reconfiguration order is equal or higher compared to the next 

order, it is executed first. 

This is different, if the reconfiguration order has a lower priority, like in experiment 3. As it can 

be seen in the figure, the reconfiguration is delayed. In that case, the higher priority regular 

orders overtake the reconfiguration order and are executed first. 

This experiment shows, that using job-based reconfiguration including priorities allows a 

smooth integration of the reconfiguration in the overall real-time processing. 

 

6.4 Summary 
Concluding this practical evaluation it is to mention, that it has to be seen as a supplement to 

the theoretical part. It is hard to generate a generic workload. As it has been shown, the state 

transfer time can easily become the dominating part for the reconfiguration time for all 

presented approaches and as well for the blackout time off the full blocking and partial blocking 

approach. Switching time and therefore the blackout time for the non blocking approach can be 

fast. The state transfer terminates, if the conditions defined in chapter 4.4.3 are met. As longer 

the allowed blackout time is given, as easier it is to hold these conditions and to shorten the 

reconfiguration time.  

Due to some time restrictions, it was not possible to do more practical evaluations before 

writing this thesis. Nevertheless, the presented results show the feasibility of our approach. 

 

 

6-99 





 

 
7-101 

Chapter 7 Conclusion and Future Work 

 

 

 

 

7.1 Conclusion 

A middleware is something complex by itself and due to its nature: it is a piece of software, 

which allow and ease other software to communicate and to interact with each other, nearly 

transparently, and whatever the environment, the language, the operating system are. It is an 

interconnected heterogeneous world. 

The purpose of this PhD thesis was to design, conceive and evaluate a middleware-based 

dynamically reconfigurable architecture for distributed real-time systems. Since it should be 

suitable for embedded systems with low resources too, we put our approach on top of OSA+, a 

microkernel middleware architecture especially designed for embedded systems. 

The main contributions of this thesis can be listed as follows: 

• a job-based reconfiguration scheme has been introduced allowing reconfiguration jobs to 

compete with all other jobs in the system according to priorities (or deadlines). This 

scheme integrates the reconfiguration process in the real-time operation of the other 

system tasks. 

• a Reconfiguration Service takes the reconfiguration load from the application services. 

Reconfiguration can be handled in an asynchronous way, the application service triggering 

the reconfiguration is not blocked nor has to wait for the end of the reconfiguration. 

• three approaches regarding the state transfer problem have been introduced. Especially the 

non blocking approach allows to transfer the state of a service while this service is still 

running. This reduces the blackout time, in fact a blackout time can be requested. A trade-

off between the blackout time and the reconfiguration time is possible 

• upper bounds for the reconfiguration time and the blackout time have been calculated. In 

case of the non-blocking approach, conditions for the termination of the state transfer 

have been given. 

• an efficient implementation to maintain and monitor the remaining state information to 

transfer in case of the non blocking approach has been given. 



Chapter 7 – Conclusion and Future Work 

 

• finally, the reconfiguration concept has been integrated and implemented in a full 

microkernel service oriented middleware architecture suitable for embedded systems. 

 

7.2 Future Work 

The current implementation is a prototype with only the basic necessary functionality 

implemented. To make it a mature system, more implementation work has to be done. 

Furthermore, next steps will be to implement, test and evaluate our system on different 

heterogeneous hardware platforms and operating systems like e.g. VxWorks or Komodo. At 

last, it will be time to give a real application a chance, with our middleware. The system will be 

embedded on a automated guided vehicle, which will move thanks to various sensors. 

Our work does not concern the load balancing, but it may be a next research step to evaluate to 

improve the reconfigurability of the middleware for embedded system, though it should not 

interfere with the real-time requirements of the system. 

Finally, organic computing is a new research focus dealing with self-x properties of 

computational systems like self-organizing, self-configuring, self-healing, self-protecting, etc. 

Some of these feature could be realized by dynamic reconfiguration on the middleware level, 

e.g. the automatic relocation of services when a component fails (self-healing). One or more 

organic managers could observe the system and reconfigure it according to the current needs. 

7-102 



 

Bibliography 
 

 

 

 

[1] D.C. Schmidt, R&D Advances in Middleware for Distributed Real-Time and 
Embedded Systems,C|Net, 2002. 

[2]  C.R. Hofmeister, Dynamic Reconfiguration of Distributed Applications, Thesis, 1993. 

[3]  “IBM Websphere Software”, (1994-2004), IBM Websphere Application Server, 
available: http://www.ibm.com/websphere, (accessed: 15th of October, 2004) . 

[4] Novell, Programming a Distributed Application The TUXEDO® System 
Approach,Novell, 1993. 

[5] J. Allaire and JJ. Allaire, (1995), “ColdFusion”, Macromedia, available: 
http://www.macromedia.com/software/coldfusion/, (accessed: 3rd of October, 2004). 

[6] “ObjectWeb”, (1999-2004), available: http://www.objectweb.org/, (accessed: 6th of 
October, 2004). 

[7] University of Illinois, Glossary, 2004. 

[8] “DCE Portal”, (15th of June, 2004), The Open Group, available: 
http://www.osf.org/dce/, (accessed: 14th of July, 2004). 

[9] “DCOM Technical Overview”, (1997-2004), Microsoft, available: 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp, (accessed: 23rd of September, 2004). 

[10] “The Common Object Request Broker: Architecture and Specification”, (February 
1998), Object Management Group, available: http://www.omg.org, (accessed: 15th of 
June, 2004). 

[11] “FAQ”, (1998-2004), comp.realtime newsgroup, available: nntp://comp.realtime, 
(accessed: 3rd of November, 2004). 

[12] P.A. Laplante, Real-Time Systems Design and Analysis, An Engineer's Handbook, 
IEEE Press, 1997. 

[13] J. Magee and J. Kramer, Dynamic Configuration for Distributed Real-Time Systems, 
Arlington, Viginia, USA, 1983. 

[14] S. Gaa, Autonomous Vehicle Controlled by the Komodo Microcontroller,University of 
Karlsruhe - IPR Prof. Brinkschulte, Sion, 2004. 

[15] Object Management Group, OMG's Object Management Architecture, 
http://www.omg.org, 2004. 

[16] Object Management Group, CORBA FAQ, http://www.omg.org, 2004. 

[17] J.M. Grochow, Overload: Creating Value with The New Information Systems 
Technology,Yourdon Press/Prentice Hall, 1997. 

[18] D.S. Linthicum, Reevaluating Distributed Objects, Vol. 10, Miller Freeman, Inc., 1997. 

 

103 

http://www.ibm.com/websphere
http://www.macromedia.com/software/coldfusion/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp


 

[19] F. Golatowski, J. Hildebrandt and D. Timmermann, Rapid Prototyping with 
Reconfigurable Hardware for Embedded Hard Real-Time Systems, Madrid, Spain, 
1998. 

[20] J. Stankovic, M. Spuri, K. Ramamritham and G. Buttazzo, Deadline Scheduling for 
Real-Time Systems,Springler, 1998. 

[21] C. Liu and J. Layland, Journal of the Association for Computing Machinery, 20 (1973). 

[22] Object Management Group, Real-time CORBA Specification,Object Management 
Group, http://www.omg.org, 2002-2004. 

[23] D.C. Schmidt and F. Kuhns, An Overview of the Real-Time CORBA Specification, in 
Computer, 33#6, 2000. 

[24] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L.C. Magalhães and R.H. Campbell, 
Monitoring, Security, and Dynamic Configuration with the DynamicTAO Reflective 
ORB, Springer-Verlag, New York, NY, USA, 2000. 

[25]  D.C. Schmidt and C. Cleeland, Applying Patterns to Develop Extensible ORB 
Middleware, in IEEE Communications Magazine Special Issue on Design Patterns, 
1999. 

[26] F. Picioroaga, A. Bechina, U. Brinkschulte and E. Schneider, OSA+  Real-Time 
Middleware, Results and Perspectives., Vienna, Austria, 2004. 

[27] V. Tosic, D. Mennie and B. Pagurek, Software Configuration Management Related to 
Management of Distributed Systems and Services and Advanced Service Creation, 
Toronto, Canada, 2001. 

[28] P.M. Melliar-Smith, L.E. Moser, V. Kalogeraki and P. Narasimhan, Realize: Resource 
Management for Soft Real-Time Distributed Systems,IEEE, 1999. 

[29] M.A. Wermelinger, Specification of Software Architecture Reconfiguration, Thesis, 
1999. 

[30] P. Tröger and A. Polze, Object and Process Migration in .NET, Workshop on Object-
oriented Real-time Dependable Systems, Guadalajara, Mexico, 2003. 

[31] M. Pfeffer and T. Ungerer, Dynamic Real-Time Reconfiguration on a Multithreaded 
Java-Microcontroller,IEEE International Symposium on Object-oriented Real-time 
distributed Computing, Vienna, Austria, 2004. 

[32] F. Picioroaga, Scalable and Efficient Middleware for Real-Time Embedded Systems. A 
Uniform Open Service Oriented Microkernel Based Architecture, Université Louis 
Pasteur Strasbourg I, Strasbourg, France, 2004. 

 

 

 

104 

http://www.omg.org/


 

Publications 

 

 

1 E. Schneider, F. Picioroagă, U. Brinkschulte: Dynamic Reconfiguration through 
OSA+, a Real-Time Middleware, Middleware 04, 1st Middleware Doctoral 
Symposium, 2004, 18th-22nd October 2004, ACM, Toronto, Canada 

 

2 A. Bechina, U. Brinkschulte, F. Picioroagă, E. Schneider: OSA+ Real-Time 
Middleware. Results and Perspectives. International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2004), Wien, Austria, May 
12 - 14, 2004. 

 

3 U. Brinkschulte, A. Bechina, F. Picioroagă, E. Schneider: Open System 
Architecture for embedded control applications Concepts and results. To be 
published in ICIT'03 International Conference on Industrial Technology, Maribor, 
Slovenia, December 10 - 12, 2003, IEEE. 

 

4 U. Brinkschulte, A. Bechina, B. Keith, F. Picioroagă, E. Schneider: A Middleware 
Architecture for Ubiquitous Computing Systems with Real-Time needs. 2002 
IAR Workshop (Institute for Automation and robotic Research), Grenoble, 
France, November 23-24, 2002 

 

5 U. Brinkschulte, A. Bechina, F. Picioroagă, E. Schneider: Distributed Real-Time 
Computing for Microcontrollers - the OSA+ Approach. International Symposium 
on Object-Oriented Real-Time Distributed Computing (ISORC 2002), 
Washington D.C., 2002, IEEE, p.169-172. ISBN: 0-7695-1558-4 

 

6 U. Brinkschulte, A. Bechina, F. Picioroagă, E. Schneider & Th. Ungerer, J. 
Kreuzinger, M. Pfeffer: A Micro-kernel Middleware Architecture for Distributed 
Embedded Real-Time Systems. 20th Symposium on Reliable Distributed 
Systems, New Orleans, MI, USA, October 28-31, 2001, IEEE, p.218-226, ISBN: 
0-7695-1366-2. 

 

 

7 Bechina, U. Brinkschulte, F. Picioroagă, E. Schneider: Real Time middleware for 
industrial embedded measurement and control application OSA+. The 2001 
International Conference on Parallel and Distributed Processing Techniques and 
Applications, Las Vegas, Nevada, USA, June 25-28, 2001, CSREA, p.843-849, 
ISBN: 1-892512-69-6. 

 

 

105 





Vita 

Vita 

 Etienne Schneider 
etienne@ira.uka.de 

Personal Information 
Marital Status: Married, one son  

Nationality: French               Date of birth : November, the 10th 1971 

 
Summary of Qualifications and Education 

 

2000 - 2004 PhD Thesis candidate at the IPR Laboratory in Karlsruhe, Germany. 

The subject is the Dynamic Reconfiguration of a real-time middleware 
during run-time. 

1999 Université Louis Pasteur – Strasbourg I 
Strasbourg, France 

“DEA d’Informatique”, an equivalent of a Master in Computer Sciences 
degree, ended by a 6 months internship at the LIIA - Laboratoire 
d’Informatique et d’Intelligence Artificielle The objective of the training 
period was related to the Representation of Temporal Knowledge in 
Description Logics. – Java 

1997 Université Louis Pasteur – Strasbourg I 
Strasbourg, France 

I passed the “DESS d’Informatique” degree which corresponds to a Senior 
Level degree (I learnt : AI, Pictures treatment, Network architecture, 
Environment, OOP). – Delphi, VB, C++ 

1996 Université Jules Verne de Picardie – Amiens 
Amiens, France 

I passed the "Maîtrise en Méthodes Informatiques Appliquées à la Gestion des 
Entreprises" degree which regroups knowledge about marketing, 
accountancy, programming techniques, enterprise management. Its 
purpose is to make programmers able to understand the enterprise 
management world. 

1994 Institution Sainte Clotilde – Strasbourg 
Strasbourg, France 

“Brevet de Technicien Supérieur en Comptabilité-Gestion”, which is a degree 
done in two years. The topic was about Accountancy and Management. 

1991 Institution Sainte Clotilde – Strasbourg 
Strasbourg, France 

“Baccalauréat G2 – Techniques Quantitative de Gestion”, which is a degree 
done at the end of senior high-school. The topic was about 
Accountancy and Management. 

 

 

107 

http://bach.u-strasbg.fr/LIIA/ciclop/ciclop.htm
http://bach.u-strasbg.fr/LIIA/ciclop/ciclop.htm


 

 
Professional Experience and University’s Projects 

 

1998 Concept 
Strasbourg, France 

I worked for that company for 2.5 months, after the military period and 
just before the “DEA”‘s courses. I used Microsoft Visual C++ for their 
Accountancy software - Comptawin - main task: solve the Euro 
problem. – C 

1997 TEPRAL – Groupe Kronenbourg 
Strasbourg, France 

I worked for the TEPRAL a Research Center of the Groupe Danone, 
developping 3 projects, one of them was a CGI used in conjuction with 
JavaScript, to conceive dynamic questionnaires about beers on Windows 
NT. That was my internship. After that the TEPRAL hired me in 
purpose to manage the Intranet network, for a month, before my 
military period. – VB and VBA 

1995-1996 CDDP de Picardie 
Amiens, France 

Designing a program for young children in the first years of school 
teaching them the basis of the school procedures (ie : to number, to read 
a map, to find the right/wrong word,...). – VB 

1995 Infor Conseils 
La Wantzenau, France 

Correcting and updating Domus, a program written in MOS a French 
computer language, designed for the real estate agency managers. The 
objective was to solve the Y2K and Euro objectives. – MOS 

 

 

108 



 

 

This thesis can be downloaded at: 

- http://ipr.ira.uka.de/perso/schneider/thesis/ESchneider_thesis.pdf 

- http://et.schneider.free.fr /thesis/ESchneider_thesis.pdf 

 

http://ipr.ira.uka.de/perso/schneider/thesis/ESchneider_thesis.pdf

	Abstract
	Résumé
	Acknowledgments
	Thanks
	Table of Contents
	Introduction and Motivations
	Definitions
	Middleware
	Real-time
	Embedded System
	Reconfiguration
	Reconfiguration and Real-Time

	Motivations and objectives

	State of the Art
	General Concepts and Terminology
	Object Management Architecture
	CORBA
	Distributed ORBs
	Communication Protocols
	Software bus
	Least-laxity first scheduling
	EDF scheduling
	Fixed Priority scheduling
	Mutexes in real-time systems

	Real-Time Middleware
	Real-Time CORBA
	DynamicTAO
	OSA+

	Real-Time Reconfiguration
	The CONIC system
	Software configuration management
	Realize
	Software Architecture Reconfiguration
	Object and Process Migration in .NET
	The Komodo project

	Conclusion

	OSA+ Middleware Architecture
	Services and Jobs
	Microkernel architecture
	Real-time Issues
	Core Issues
	Quality of Service Control and Assessment
	Real-time memory service
	Event service


	Architecture, Design, Structuring
	Basic Concepts
	Detailed presentation of the case
	Design
	Basic algorithm
	Main principle
	Reconfiguration of multiple services
	“Transfer-State” and “Switch” cooperation in multiple servic
	Full-Blocking Approach
	Partial-Blocking Approach
	Non-Blocking Approach

	An alternate way to deal with reconfiguration of multiple se

	Reconfiguration- and Blackout-time bounds
	Bounds for the full-blocking approach
	Bounds for the partial-blocking approach
	Bounds for the non-blocking approach


	Implementation Aspects
	Microkernel
	BucketContainer
	ServiceInfo
	DynamicCon
	StateServer
	Conclusion

	Practical Evaluation
	Overall Performance
	Advantages of introducing the Reconfiguration Service
	Priority experiment
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Publications
	Vita

