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Résumé de la thèse 
 

I. Introduction 

A. Contexte 

Le but des travaux présentés est l’étude des propriétés microscopiques d’adhésifs 

sensibles à la pression (PSAs) acryliques et de composés modèles. Les PSAs acryliques sont 

d’importance industrielle : ils sont utilisés principalement dans la confection d’étiquettes et de 

rubans adhésifs, repositionnables ou non.  

Ils sont actuellement caractérisés principalement à travers leurs propriétés 

macroscopiques, par exemple leurs propriétés adhésives. Ces matériaux nécessitent un 

compromis entre une faible viscosité (pour le caractère collant) et une forte cohésion (pour le 

caractère repositionnable), devant être optimisée pour chaque application particulière, ce qui 

est réalisé à l’heure actuelle à travers le test de nombreuses formulations. La relation entre 

leurs propriétés microscopiques et macroscopiques est incomprise, bien qu’il soit connu 

empiriquement que la température de transition vitreuse (Tg), les propriétés viscoélastiques et 

la réticulation sous toutes ses formes jouent un rôle majeur dans les propriétés adhésives. La 

distance à la Tg et les propriétés viscoélastiques ont un lien étroit avec la dynamique de 

chaîne. La réticulation peut être présente sous forme de réticulation covalente (via 

l’introduction d’agent de réticulation ou bien intrinsèquement du fait de la cinétique de la 

polymérisation), de liaison hydrogène entre les unités monomères d’acide acrylique ou de 

réticulation physique (à travers une nanoséparation de phase).  

Cette thèse s’inscrit dans une recherche à très long terme visant à comprendre le 

mécanisme d’adhésion des adhésifs PSA acryliques, en particulier le rôle joué par des 

propriétés microscopiques comme la nature et le nombre de branches, la dynamique de 

chaîne, l’hétérogénéité dynamique. Une meilleure compréhension du mécanisme d'adhésion 

nécessite tout d'abord de développer de nouvelles techniques de caractérisation de la 

microstructure des échantillons.  La résonance magnétique nucléaire (RMN) du solide a été 

choisie dans ce travail pour caractériser les branches longues, la dynamique de chaîne et 

l’hétérogénéité dynamique dans des échantillons PSA acryliques et des composés modèles.  
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B. Présentation des échantillons 

Les échantillons fournis par Atofina (pas des grades commerciaux) sont des 

copolymères statistiques de poly(acrylates d’alkyles), avec différentes chaînes latérales 

alkyles, contenant aussi d’autres composants. Ils ont été obtenus par copolymérisation en 

émulsion d’acrylate de 2-éthyl-hexyle, d’acrylate de méthyle, d’acide acrylique et d’un agent 

de réticulation comonomère (confidentiel). Du fait du procédé de polymérisation semi-

continu, des copolymères statistiques sont attendus, avec une plus grande densité d’acide 

acrylique en surface des particules et en bout de chaînes polymères. De plus, une 

microstructure branchée est attendue. Ces échantillons, pas complètement solubles dans les 

solvants classiques, ont été caractérisés tout d’abord par mesure du taux de solide et des tailles 

de particules des émulsions, détermination de la Tg des films. Les propriétés adhésives et 

mécaniques des films ont été examinées chez Atofina (confidentielles). La structure chimique 

des échantillons a été étudiée par RMN du solide 1H et 13C. En plus de ces échantillons 

industriels, deux familles d’échantillons modèles ont été étudiées : des homopolymères 

d’acrylates de n-alkyles et de méthacrylates de n-alkyles. 

Les poly(acrylates de n-alkyles) (PnAAs) ont été synthétisés dans ce travail par 

polymérisation radicalaire conventionnelle en solution d’acrylate de méthyle, d’éthyle, de n-

butyle ou de n-hexyle et purifiés par précipitation à froid dans le méthanol. Les 

homopolymères sont obtenus sans additif, mais avec une microstructure branchée et une 

distribution des masses molaires large similaires à celles des échantillons industriels. Les 

masses molaires, déterminées par chromatographie d’exclusion stérique (SEC) multi-

détection avec étalonnage universel, sont suffisamment élevées pour avoir une influence 

négligeable sur les propriétés microscopiques étudiées. Ces échantillons sont atactiques et 

contiennent des branches. 

Les poly(méthacrylates de n-alkyles) (PnAMAs), sont des homopolymères de 

méthacrylate d’éthyle, de n-butyle ou de n-hexyle synthétisés par polymérisation radicalaire. 

Ils ont fait l’objet d’études structurales et dynamiques auparavant dans notre groupe. Les 

PnAMAs diffèrent des PnAAs par un groupe méthyle sur le squelette, résultant en une Tg 

beaucoup plus élevée ; cependant, un comportement similaire est attendu à la même distance 

de la Tg du fait de leur formule chimique similaire. En particulier, puisque le but de cette 

étude à long terme est de caractériser des adhésifs PSA à température ambiante, ce qui 

correspond à Tg+70 K, l’étude des échantillons modèles devrait être centrée autour de Tg 

+70 K. Certains échantillons PnAMA présentent un marquage isotopique sélectif 2H ou 13C. 

Tous les échantillons PnAMA ont une forte tendance à la syndiotacticité, une absence de 
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branche et des masses molaires suffisamment élevées pour avoir une influence négligeable sur 

les propriétés microscopiques étudiées.  

C. Démarche 

La RMN du solide est une technique appropriée à la caractérisation de divers aspects 

de la microstructure d’échantillons polymères. Le taux de branchement peut être quantifié par 

RMN 13C monodimensionnelle, qui peut être appliquée directement aux échantillons 

industriels. La dynamique de chaîne peut être étudiée avec diverses techniques de RMN du 

solide ; cependant, cette étude nécessite des échantillons modèles. La taille d’une structure à 

l’échelle du nanomètre résultant en une hétérogénéité dynamique pourrait être déterminée par 

la technique de diffusion de spin nucléaire 1H avec filtre dipolaire ; les analyses devraient être 

conduites tout d’abord sur des échantillons modèles. 

II. Etude du branchement 

A. Etat de l’art 

Le branchement dans les poly(acrylates d’alkyles) a son origine dans deux réactions : 

le transfert intermoléculaire au polymère crée des branches longues (LCB) qui ont une 

influence sur les propriétés mécaniques et adhésives, le transfert intramoléculaire au 

polymère crée des branches courtes (SCB) et a une influence sur la vitesse de polymérisation. 

Le branchement n’est pas complètement compris et ne peut pas être contrôlé, mais il ne peut 

pas non plus être évité en polymérisation radicalaire ; il est actuellement étudié dans plusieurs 

groupes de recherche. La meilleure technique de quantification du branchement pour les 

poly(acrylates d’alkyles) est la RMN 13C monodimensionnelle ; en revanche, branches courtes 

et branches longues ne sont pas différenciées. Les branches longues peuvent être détectées 

dans les polymères par rhéologie ou SEC multi-détection. 

Avant ce travail, une technique de RMN en solution et une technique de RMN du 

solide en 28 h avaient été publiées pour la quantification du branchement. Cependant, toutes 

deux présentent des inconvénients, comme des problèmes de solubilité et de longs temps de 

mesure. Notre but était de développer une méthode rapide de quantification du branchement, 

directement sur les échantillons PSA industriels. 

B. Quantification du branchement par RMN 13C 

La quantification du branchement dans les polyacrylates par RMN 13C souffre 

principalement d’un faible rapport signal sur bruit (S/N). Pour un échantillon industriel, nous 

avons comparé plusieurs techniques de RMN du solide 13C pour la quantification du 
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branchement. La polarisation croisée (CP) sous rotation à l’angle magique (MAS) peut 

permettre d’augmenter le S/N, mais ce n’est pas une technique quantitative et elle présente 

une très faible résolution pour l’échantillon étudié. L’irradiation simple sous MAS appliquée à 

l’échantillon gonflé par du THF présente une résolution suffisante pour la quantification, mais 

le S/N est faible. Nous avons donc décidé d’adapter aux poly(acrylates d’alkyles) une 

méthode développée pour le polyéthylène. La mesure est conduite sur l’échantillon  pur  

fondu (150 °C au-dessus de Tg), sous rotation à l’angle magique (MAS), ce qui permet 

d’analyser l’échantillon entier, y compris sa fraction insoluble. Elle est réalisée par irradiation 

simple, et permet une estimation fiable du branchement en moins de 3h30 (cf. figure 1). Nous 

concluons que la meilleure technique pour la quantification du branchement dans les 

poly(acrylates d’alkyles) est la RMN du solide 13C appliquée à l’échantillon pur fondu sous 

MAS. Les taux de branchement déterminés sur ces échantillons, de 3 à 5 % des unités 

monomères, sont en accord avec les valeurs (moins précises) de la bibliographie. 

  
Figure 1 : Spectres RMN 13C de l’échantillon Copo3 ; à gauche, par CP-MAS sur l’échantillon pur ; au centre, 
par irradiation simple de l’échantillon gonflé par le THF ; à droite, par irradiation simple de l’échantillon pur 

fondu ; la raie K du point de branchement se trouve à 49 ppm ; cf. partie 2 pour plus de détails. 

La RMN 13C ne différencie pas les branches longues des courtes. Cependant, des 

travaux publiés par d’autres groupes de recherche lors du travail présenté ici montrent que les 

poly(acrylates d’alkyles) présentent des branches longues et courtes, qu’ils soient polymérisés 

en solution ou en émulsion. Pour cette raison, il a été décidé d’utiliser la SEC multi-détection 

pour la caractérisation des branches longues dans les poly(acrylates d’alkyles). 

C. Détection des branches longues par SEC multi-détection 

  L’étude par SEC multi-détection a été limitée aux PnAAs modèles pour des raisons de 

solubilité. Parmi les différentes méthodes de détermination des masses molaires par SEC, 

certaines ne sont pas applicables aux poly(acrylates d’alkyles) : l’étalonnage conventionnel 

(pas d’étalon), l’étalonnage universel utilisant les paramètres de Mark-Houwink-Sakurada 

(MHS, non reproductible), et la diffusion de lumière multi-angles et aux faibles angles 

(MALS/LALS, incrément d’indice de réfraction dn/dC trop faible). Nous avons donc utilisé 

les méthodes de détermination des masses molaires suivantes : étalonnage universel vrai avec 

viscosimètre en ligne (UC) et triple détection (TD). 
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 La méthode classique de détection de branches longues par SEC pour le polyéthylène 

est le diagramme de Mark-Houwink : une droite est obtenue pour les échantillons linéaires, 

une courbe incurvée pour les échantillons ayant de longues branches. Cette technique ne 

donne aucun résultat concluant pour les PnAAs étudiés, peut-être du fait d’une gamme de 

masses molaires trop restreinte ou du fait d’une fréquence de branchement non constante. De 

plus, la présence de branches longues a une influence non seulement sur la viscosité 

intrinsèque mesurée, mais aussi sur la masse molaire déterminée à un volume d’élution donné. 

Pour cette raison, nous proposons de détecter les branches longues par le tracé sur une échelle 

logarithmique des masses molaires déterminées par UC et TD en fonction du volume 

d’élution. Ce tracé a été réalisé pour tous les PnAAs modèles, et montre une différence 

systématique entre les courbes obtenues par UC et TD. Cette différence de masses molaires 

s’explique par la présence de branches longues : à chaque volume d’élution, un mélange de 

chaînes ayant le même volume hydrodynamique mais des topologies et des masses molaires 

différentes est présent. La méthode basée sur la diffusion de lumière (TD) détermine la masse 

molaire moyenne en poids Mw du mélange, celle basée sur la viscosimétrie (UC) détermine la 

masse molaire moyenne en nombre Mn du mélange. 

 Des branches longues ont été détectées dans tous les PnAAs modèles. 

Malheureusement, du fait de diverses difficultés théoriques aussi bien que de problèmes 

techniques, une quantification de ce LCB n’est pas possible à l’heure actuelle pour les 

poly(acrylates d’alkyles). Pour permettre cette quantification, il serait nécessaire tout d’abord 

de coupler la SEC à une technique de séparation des chaînes polymères en fonction de leurs 

caractéristiques de branchement, puis de développer un modèle théorique fiable reliant des 

grandeurs mesurées au taux de branchement pour les poly(acrylates d’alkyles). 

III. Filtre dipolaire et dynamique locale dans des polymères fondus 

A. Présentation des échantillons étudiés 

Les PnAAs présentent une structure locale à l’état fondu : une nanoséparation de 

phase est causée par l’incompatibilité à l’intérieur d’une unité monomère entre le squelette 

polaire et rigide et la chaîne latérale alkyle apolaire et flexible. Cette structure locale est 

détectée par diffraction des rayons X aux grand angles (WAXS), mais elle n’est pas bien 

comprise. Les PnAMAs sont chimiquement similaires aux PnAAs ; ils présentent une 

structure locale mieux organisée et ont été bien plus étudiés. 

La nanoséparation de phase est détectée dans les PnAMAs par WAXS ou diffraction 

des neutrons, et indirectement par des mesures de dynamique par RMN du solide. Les 
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diffractogrammes WAXS des polymères fondus montrent trois halos ; dans la bibliographie, 

deux représentations de cette même structure sont proposées (cf. figure 2). Des mesures de 

RMN du solide ont permis de détecter un processus de relaxation plus lent que la relaxation 

αβ classique dans les polymères fondus ; il est attribué à l’isotropisation des mouvements des 

chaînes principales. 

 

vue de face

vue de côté
Figure 2 : Modèles pour la représentation de la 

structure locale de poly(méthacrylates de n-
alkyles), les squelettes sont représentés en gris 

foncé et les chaînes latérales alkyles en gris 
clair ; à gauche, modèle tridimensionnel de la 

structure ; à droite, modèle local en couches (cf. 
partie 3 pour plus de détails). 

On peut imaginer que l’existence d’une structure locale dans le polymère fondu 

pourrait résulter en des domaines organisés moins mobiles séparés par le reste de l’échantillon 

plus mobile. Si tel était le cas dans les PSA acryliques, cela pourrait avoir une influence sur 

leur propriétés adhésives à travers une réticulation physique. C’est pourquoi les PnAMAs et 

les PnAAs représentent des échantillons modèles intéressants pour la caractérisation d’une 

éventuelle structure locale de phase dans les PSA acryliques. 

B. Technique de diffusion de spin 1H nucléaire avec filtre dipolaire 

La technique de diffusion de spin 1H nucléaire avec filtre dipolaire a été beaucoup 

utilisée pour quantifier la taille d’hétérogénéités dynamiques sur une gamme de 1 à 50 nm, 

dans des échantillons où la structure correspondante est associée à un fort contraste 

dynamique : par exemple des copolymères à blocs à nanoséparation de phase ou des films 

constitués de particules coeur-couronne avec une grande différence entre les Tg des deux 

phases.  

L’expérience de diffusion de spin 1H nucléaire se déroule de la façon suivante. Une 

aimantation macroscopique est tout d’abord créée dans tout l’échantillon. Puis le filtre 

dipolaire est appliqué, qui résulte en la sélection de l’aimantation seulement dans les parties 

les plus mobiles. Ensuite l’aimantation diffuse dans l’échantillon au cours d’un temps de 

mélange pour revenir à l’équilibre ; il ne s’agit pas d’une diffusion physique des molécules 

mais de la diffusion de l’aimantation d’un site à l’autre. Pour différents temps de mélange, 

l’aimantation présente dans les parties les plus mobiles est enregistrée. La courbe décroissante 

obtenue permet d’extraire des informations sur la proportion de parties plus mobiles (via le 

plateau aux longs temps de mélange) et sur la taille des domaines concernés (via la vitesse de 

décroissance linéaire aux courts temps de mélange). 
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C. Contraste dynamique dans les PnAAs et PnAMAs fondus 

Des spectres 1H statiques enregistrés entre Tg-50 K et Tg+130 K ont montré pour  les 

PnAAs et PnAMAs que l’échantillon entier devient plus mobile lorsque la température 

augmente, et ne présente pas de fort contraste dynamique.  

Des spectres 2D-WISE (« wideline separation » bidimensionnelle) ont été enregistrés 

pour caractériser la mobilité des différents sites sélectivement en fonction de leur déplacement 

chimique 13C. Pour le poly(méthacrylate d’éthyle) entre environ Tg-10 K et Tg+80 K, les 

groupes méthyle sont les plus mobiles, celui de la chaîne latérale étant plus mobile que celui 

de la chaîne principale. Pour les PnAAs à environ Tg+70 K, le groupe méthyle terminal de la 

chaîne latérale alkyle est plus mobile que la chaîne principale ; de plus, pour le poly(acrylate 

de n-hexyle), un gradient de mobilité est observé le long de la chaîne latérale alkyle. 

D. Sélection réelle et mécanisme de diffusion de l’aimantation 

Les échantillons modèles et industriels analysés lors de cette thèse constituent un 

nouveau type d’échantillon pour la technique de diffusion de spin 1H nucléaire avec filtre 

dipolaire, puisqu’ils présentent un contraste dynamique très faible. C’est pourquoi leur étude a 

nécessité des modifications de l’analyse des données. Les expériences de diffusion de spin 1H 

nucléaire réalisées sur le PEMA à Tg+67 K produisent apparemment des courbes de diffusion 

de spin typiques, avec un début linéaire suivi d’un plateau (cf. figure 3, gauche).  
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Figure 3 : Evolution de l’aimantation 1H des parties plus mobiles après le filtre dipolaire pour l’échantillon 
PEMA à 409 K (Tg+67 K, différents filtres) ; à gauche, en fonction de la racine carrée du temps de mélange ; au 
centre, en fonction du carré du temps de mélange ; à droite, sur une échelle logarithmique en fonction du temps 

de mélange, après soustraction de la valeur du plateau.  

En supposant que le filtre dipolaire sélectionne la nanostructure, il sélectionnerait la matrice 

plus mobile et désélectionnerait les nanodomaines organisés moins mobiles, ce qui conduirait 

à une taille de structure de 2 à 7 nm, en accord avec la taille typique de 5 à 10 unités 

monomères déterminée par RMN ou WAXS. 

Cependant, compte-tenu du faible contraste dynamique présent dans l’échantillon, il 

était nécessaire de vérifier la sélection réellement faite par le filtre dipolaire. Pour cela, 

l’aimantation des noyaux 1H après le filtre dipolaire a été transférée sur les noyaux 13C voisins 
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(par polarisation croisée de Lee-Goldburg pour assurer un transfert local) pour être détectée 

avec une résolution en déplacements chimiques. Cette expérience a été conduite sur plusieurs 

échantillons PnAA et PnAMA et montre que le filtre dipolaire sélectionne le groupe méthyle 

terminal de la chaîne latérale alkyle et parfois partiellement le(s) groupe(s) méthylène 

suivant(s). Le filtre dipolaire ne sélectionne donc pas de domaine à l’échelle nanométrique, 

mais des sites isolés. C’est pourquoi, le transfert d’aimantation observé ne se produit pas entre 

des domaines à l’échelle du nanomètre, mais le long de la chaîne latérale alkyle et en direction 

de la chaîne principale. Aucune taille de domaine ne peut donc être extraite des données. 

Le mécanisme de diffusion de l’aimantation après le filtre dipolaire a aussi été étudié. 

Un transfert cohérent de l’aimantation par couplage dipolaire résiduel résulterait en une 

décroissance linéaire de l’aimantation des parties plus mobiles en fonction du carré du temps 

de mélange. Un transfert non cohérent de l’aimantation par relaxation croisée résulterait en 

une décroissance linéaire du logarithme de l’aimantation des parties plus mobiles en fonction 

du temps de mélange. A l’échelle de temps de nos expériences, une dépendance linéaire est 

observée seulement dans le deuxième cas (cf. Figure 3, centre et droite), indiquant une 

prédominance du mécanisme de relaxation croisée dans le transfert de l’aimantation après le 

filtre dipolaire. 

E. Quantification de la dynamique locale 

Le signal enregistré après le filtre dipolaire dans les PnAAs et PnAMAs est attribué à 

la décroissance de l’aimantation des groupes terminaux des chaînes latérales alkyles par 

relaxation croisée. Ceci est équivalent à la décroissance de l’intensité d’une raie située sur la 

diagonale dans une expérience bidimensionnelle de NOE (effet Overhauser nucléaire). 

L’expression analytique la plus appropriée existante à notre connaissance pour décrire cette 

décroissance concerne deux groupes de spins équivalents ; l’équation correspondant à l’entité 

CH3-CH2 a été dérivée de données bibliographiques et utilisée dans ce travail :  

( ) ( )⎥⎦
⎤

⎢⎣
⎡ −+⋅= m

AB
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3 0  

Cette équation relie l’aimantation a(τm) enregistrée au temps de mélange τm avec 

seulement deux inconnues : un paramètre dipolaire qAB et le temps de corrélation τC
AB du 

mouvement moléculaire qui module le couplage dipolaire pour induire la relaxation croisée. 

Le paramètre dipolaire a été déterminé indépendamment via le calcul de la distance H-H 

intergroupe moyenne dans une entité CH3-CH2 et via la mesure du second moment de 

spectres 1H enregistrés pour chaque échantillon très au-dessous de sa Tg dans des conditions 

statiques. L’ajustage des données expérimentales permet alors l’extraction du temps de 
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corrélation du mouvement moléculaire qui module le couplage dipolaire pour induire la 

relaxation croisée.  

F. Interprétation des résultats 

Pour les PnAMAs au-dessus d’environ Tg+80 K, une décroissance monoexponentielle 

de l’aimantation est observée, dont a été extrait un temps de corrélation. Pour les PnAMAs 

entre environ Tg+30 K et Tg+80 K, une décroissance biexponentielle de l’aimantation est 

observée, qui a été attribuée à deux processus moléculaires distincts. Le processus rapide 

(correspondant à la décroissance lente) n’est pas quantifiable, il est détecté dans la gamme de 

températures où une forte anisotropie des mouvements moléculaires due à la nanostructure est 

reportée. En revanche, le temps de corrélation du processus lent (correspondant à la 

décroissance rapide) présente la même dépendance linéaire de la température inverse (1000/T) 

de type Arrhenius que le processus unique observé à plus haute température, indiquant un 

processus local. Ces temps de corrélation ont été comparés avec des diagrammes d’Arrhenius 

des PnAMAs tirés de la bibliographie. Le processus détecté par relaxation croisée après filtre 

dipolaire est attribué à la relaxation des nanodomaines alkyles, en tant que mouvements 

couplés de la chaîne principale avec des modes locaux entravés dans les chaînes latérales. 

Dans le cas des échantillons PEMA, du fait du nombre moins élevé de degrés de liberté 

internes, le processus de relaxation β est prédominant. 

Pour les PnAAs entre environ Tg+20 K et Tg+100 K, une décroissance 

monoexponentielle de l’aimantation est observée. Pour chaque PnAA, les temps de 

corrélation extraits présentent une dépendance linéaire de la température inverse (1000/T) de 

type Arrhenius, indiquant un processus local. De plus, une courbe maîtresse est obtenue 

lorsque ces temps de corrélation sont tracés en fonction de la distance de la Tg (T- Tg). Les 

temps de corrélations extraits ont été comparés avec des données de spectroscopie de 

relaxation diélectrique ou mécanique, tirés de la bibliographie ou mesurés sur nos échantillons 

dans le groupe du Prof. Pakula au MPI-P (cf. figure 4). Le processus de relaxation observé par 

l’expérience de NOE est détecté et quantifié pour la première fois dans cette gamme de 

températures. S’appuyant sur la nanoséparation de phase dans les PnAAs, les temps de 

corrélation quantifiés par NOE dans le travail présent ont été attribués à des mouvements 

locaux entravés des chaînes latérales dans les nanodomaines alkyles organisés. 
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Figure 4: Temps de corrélation extraits des expériences de relaxation croisée (NOE) conduites dans le travail 
présenté ici sur les PnAAs modèles ; comparaison avec les données mesurées dans le groupe du Prof. Pakula 

sur les mêmes échantillons par spectroscopie diélectrique ou mécanique ; cf. partie 4 pour plus de détails. 

G. Comparaison de tous les échantillons 

Les PnAAs modèles sont plus mobiles que les PnAMAs modèles à la même distance 

de la Tg au-dessus de Tg+20 K. Cela a été démontré par des spectres 1H et 13C enregistrés dans 

des conditions statiques. De plus, une structure locale est présente dans les deux familles 

d’échantillons avec le même ordre de grandeur de taille, mieux organisée dans le cas des 

PnAMAs. L’expérience de NOE avec filtre dipolaire permet la quantification des processus 

dynamiques liés à la structure locale dans les deux familles. 

Des spectres 1H statiques et des expériences 2D-WISE montrent pour les échantillons 

PSA industriels un comportement plus proche de celui des PnAAs que de celui des PnAMAs. 

Pour les PSAs, l’expérience de NOE avec filtre dipolaire réalisées à température ambiante 

permet la quantification de temps de corrélation du même ordre de grandeur que ceux des 

PnAAs. Cependant, ils ne se trouvent pas sur la courbe maîtresse des PnAAs tracées en 

fonction de la distance de la Tg; cela pourrait être dû au caractère branché de la chaîne latérale 

2EHA. 

IV. Conclusion générale et perspectives 

Ce travail s’inscrit dans une étude à très long terme visant à améliorer les adhésifs 

PSA acryliques, nécessitant pour cela une meilleure compréhension de leur procédé de 

polymérisation ainsi qu’une meilleure compréhension de leur mécanisme d’adhésion. Notre 



Résumé de la thèse 

 xix

contribution est l’apport de nouveaux outils analytiques pour cette étude. Il ouvre la voie à de 

nombreuses études, tant au niveau de la recherche fondamentale qu’à un niveau très appliqué. 

Dans le cadre de la compréhension du procédé de polymérisation, nous proposons une 

technique de RMN 13C du solide par irradiation simple, appliquée au polymère fondu sous 

MAS, qui fournit la première estimation fiable du taux de branchement dans les 

poly(acrylates d’alkyles). Elle est applicable directement aux échantillons industriels réticulés 

et multi-composants. Elle peut encore être optimisée. 

Dans le cadre de la compréhension du mécanisme d’adhésion, nous proposons deux 

nouveaux outils analytiques. Le premier est une méthode de détection des branches longues 

(LCB) dans les poly(acrylates d’alkyles) par SEC multi-détection. Pour rendre cette méthode 

quantitative, il faudrait la coupler à une technique de séparation des chaînes polymères en 

fonction de leur topologie de branchement, et développer des modèles théoriques reliant les 

signaux des détecteurs aux taux de LCB statistique dans les polyacrylates. Le second outil 

analytique est la quantification de dynamique moléculaire locale dans les polymères fondus 

par une expérience de RMN « classique ». L’expérience conventionnelle de diffusion de spin 

nucléaire 1H est utilisée ici pour quantifier sélectivement une dynamique locale sur des 

échantillons sans marquage isotopique et présentant un contraste dynamique. Le filtre 

dipolaire est alors utilisé pour la détermination de temps de corrélation (et non de taille de 

domaines comme c’est habituellement le cas). Il serait intéressant de développer des modèles 

plus élaborés décrivant la relaxation croisée dans des systèmes de spins multiples et 

d’appliquer la méthode développée dans ce travail à d’autres échantillons à chaîne latérale 

alkyle, comme des adhésifs PSA ou des poly(itaconates d’alkyles). Il serait par ailleurs 

passionnant de déterminer les mécanismes moléculaires des différents processus de relaxation 

dans les PnAAs. 

V. Plan du manuscrit de thèse 

Après une introduction générale dans la partie 0, une revue bibliographique sur les 

adhésifs PSA et une introduction à la RMN du solide sont présentées dans la partie 1. La 

partie 2 est consacrée à la présentation de tous les échantillons, ainsi qu’à l’étude du 

branchement dans les poly(acrylates d’alkyles). Dans la partie 3, la possibilité d’utilisation du 

filtre dipolaire pour la quantification de dynamique locale dans les polymères fondus est 

démontrée sur l’exemple du PEMA. La partie 4 est consacrée à l’étude des PnAAs par cette 

technique, la partie 5 à celle des PnAMAs. Une conclusion générale et des perspectives sont 

présentées dans la partie 6. 
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Part 0: General introduction 
 

 

Poly(alkyl acrylates) are of industrial importance, due to their wide use in e.g., 

pressure-sensitive adhesives (PSAs), paintings, coatings.1 Adhesion mechanism of acrylic 

PSAs is influenced by the microscopic and molecular properties of these samples like 

entanglement length, chemical and physical crosslinking.2 Even if the first evidence of a 

substance being used as adhesive dates back to 4,000 B.C.3, the mechanism of adhesion is still 

being thoroughly investigated. New characterization techniques are needed. Solid-state 

nuclear magnetic resonance (NMR)4 was chosen to investigate the microstructure as well as 

the chain dynamics and its heterogeneity in some acrylic PSAs. NMR dates back only to 

1946, but it has rapidly become a powerful tool to investigate the structure and dynamics in 

various media (gases, liquids, solids) for all types of chemical structures, from the diatomic 

gases to crystalline lattices via proteins and synthetic macromolecules. The long term goal of 

this study is to progress towards a better understanding of the adhesion mechanism of these 

samples. 

In order to obtain a first glance of the complex behavior of these multi-component 

industrial samples, we chose to investigate model samples first. Poly(n-alkyl acrylate) 

homopolymers (s. Figure 1) are considered as good model samples, since their chemical 

composition is simpler than that of the industrial samples. Poly(n-alkyl methacrylate) 

homopolymers (s. Figure 1) have a chemical nature close to that of the poly(n-alkyl acrylate) 

homopolymers, and should exhibit similar properties. Furthermore, they have been studied 

more extensively in the past few decades,5 so that they are also suitable as model samples. 

 

C

C

CH2

CH3

OO

CH2

CH3

n

x-1

CH

C

CH2

OO

CH2
CH3

n

x-1

(b) (a) 

Figure 1: General formula of 
(a) poly(n-alkyl methacrylates) 
and (b) poly(n-alkyl acrylates). 
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In the first part, a literature survey will be given. The pressure-sensitive adhesives will 

be presented; in particular, the microscopic characteristics influencing the adhesion properties 

will be underlined. Then, several solid-state NMR techniques will introduced, and a 

methodology will be chosen for the investigation of the industrial PSAs using NMR. 

The second part is dedicated to the characterization of the industrial PSA samples. 

Their synthesis is described first. It should be noted that those samples are not commercial 

grades, but were synthesized for research purposes. Synthesis and characterization of model 

samples will be presented next. Then, different NMR methods for the quantification of the 

branching in the PSA samples will be compared in detail. Multiple detection SEC will be 

evaluated as a complementary technique for the branching detection in model poly(n-alkyl 

acrylates). 

In the third part, the 1H nuclear spin diffusion experiment with dipolar filter will be 

investigated in detail. The dipolar filter6, generally used to probe dynamic heterogeneities in 

polymeric samples, yielding domain sizes on the nanometer length scale, will be applied to 

poly(ethyl methacrylate). The possible occurrence of nuclear Overhauser effect (NOE) will 

have to be considered. Molecular dynamics will be investigated via selection by the dipolar 

filter and NOE for poly(n-alkyl acrylates) in the fourth part, for poly(n-alkyl methacrylates) in 

the fifth part. 
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Part 1: Literature survey and motivation 
 

The goal of the work presented here is to investigate the microscopic properties of 

acrylic pressure sensitive adhesives (PSAs). These materials are of industrial importance and 

are currently characterized mainly according to their macroscopic properties, e.g. adhesive 

properties. Little is known about the exact relation between their microscopic and 

macroscopic properties, although it is empirically known that the former play a major role in 

the latter. Therefore it was decided to characterize the microstructure of the industrial samples 

using solid-state NMR, in order to progress towards a better understanding of the adhesion 

mechanism of these samples.  

In the paragraph I, the pressure sensitive adhesives (PSAs) will be defined and 

described. Their possible compositions will be detailed. Their adhesive properties will be 

exposed, together with the chemical and physical factors influencing them. In the paragraph 

II, the solid-state nuclear magnetic resonance (NMR) spectroscopy will be introduced. 

Several  techniques will be described. In paragraph III, conclusions will be drawn concerning 

the relevant solid-state NMR techniques chosen to investigate relevant microscopic properties 

of the PSA samples. 

I. Pressure sensitive adhesive materials7-10 

The literature review on pressure sensitive adhesives (PSAs) presented here is not 

exhaustive: it is meant as a comprehensive introduction. 

Historically, the first industrially produced PSAs were adhesive tapes and plasters for 

medical applications, derived from natural rubber and blended with resins.11 One of the first 

patents on a PSA is credited to Shecut and Day in 1845.8 Styrene-butadiene rubber (SBR) 

were introduced during World War II12-15 and poly(styrene-isoprene-styrene) triblock 

copolymers (SIS) in the 1960s.16 The suitability of polyacrylates for PSAs was discovered in 

1929,12-15 but they began to be used as such only shortly after World War II,7 attaining their 

current industrial importance in the 1960s.17 The PSA sector is among the fastest growing in 

the adhesive market, making the search for new pressure sensitive products and applications 

highly competitive.10 High throughput development of PSAs has recently been reported.18 

A. Definition and applications 

An “adhesive” is defined as a “non-metallic material that is capable of joining bodies 

together by surface adhesion and internal strength (adhesion and cohesion) without the 
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structure of the bodies undergoing significant changes”.19 The term “pressure-sensitive 

adhesives” designates “adhesives which in dry form are aggressively and permanently tacky 

at room temperature and firmly adhere to a variety of dissimilar surfaces upon mere 

contact without the need of more than finger or hand pressure.[...] They have sufficiently 

cohesive holding and elastic nature so that, despite their aggressive tackiness, they can be 

handled with the fingers and removed from smooth surfaces without leaving a residue”.20 

Their primary advantages are convenience and fast application, their main deficiency the 

weakness of the formed physical bond.8 

Pressure sensitive products are used mainly for adhesive tapes, labels, and films, but 

also for medical products, protective masking sheets and specialty products.7,10 There are 

three categories of applications for PSAs.21 The removable PSAs must exhibit a high 

compliance and a totally adhesive rupture, but need only low adhesion. The general-purpose, 

semi-permanent PSAs need a medium compliance, a relatively good adhesion but no long-

term aging resistance. The permanent, semi-structural PSAs require very high adhesion and 

creep resistance, and a good aging resistance.  

PSAs consist of an adhesive which is coated with a flexible backing, also named 

carrier (s. Figure 1- I-1), e.g. paper or polypropylene. The backing must often exhibit 

different adhesion properties to the adhesive on the two sides, so that e.g. a tape roll can be 

unwounded; therefore, one side of the backing is usually coated with either a release coating 

(for an easier debonding of the adhesive) or a primer (for a stronger adhesion of the 

adhesive). The surface on which the pressure sensitive product will be applied is named 

adherend or substrate. The function of the adhesive is to keep the backing in contact with the 

substrate.  

adherend (or substrate)

backing (or carrier)
primer

release coating

adhesive

Figure 1- I-1: 
Components of a 
pressure sensitive 

product and 
adherend. 

B. Composition 

In addition to the raw material (s. paragraph 3) and the possible solvent (s. paragraph 

1), the industrial PSAs may contain a tackifier (s. paragraph 2) and other additives.10 These 

additives are peel modifiers, wetting agents, rheology modifiers, crosslinking agents, 

antioxidants, plasticizers, etc. They are used to induce or enhance a particular property. 



Part 1, I   Pressure sensitive adhesives (PSA’s) 

 9

1. Possible solvent 

The advantages and drawbacks of solvent-based, water-based and hot-melts PSAs are 

summarized in Table 1- I-1.22 From the 1980´s on, the environmental constraints have 

decreased the consumptions of solvent-based PSAs.16 

 Solvent-based PSAs Water-based PSAs Hot-melt PSAs* 

Ad
va

nt
ag

es
 quick drying 

form homogeneous films 
good adhesion to non polar 

substrate 
good key on certain plastics 

easy cleaning 
good adhesion to polar substrates 
good heat and aging resistance 
environment friendly  
high solid content 

100 % active, 
environment friendly
very fast setting 

D
ra

w
ba

ck
s flammability 

toxicity 
relatively low solid content 
difficult cleaning 

slow drying 
require heat to dry 
poor adhesion on non polar 

substrates 
presence of surfactants 

high equipment costs
require heat 
thermal degradation 
difficult to clean 
can melt the substrate 

*: used as such, applied at high temperature between two substrates, the stuck device is then cooled down  
Table 1- I-1: Advantages and drawbacks of solvent-based, water-based and hot-melt PSAs.22 

2. Tackifiers 

Tackifiers are low molar mass materials (usually 500 to 1500 g·mol-1), which induce 

tack or stickiness. They are mainly based on petroleum streams or on rosin. All rubber based 

adhesives require tackifiers as a main component, while acrylic PSAs require tackifiers in 

smaller amounts. 

Adding a tackifier decreases the resistance to deformation at low rates, while it 

increases it at high rates.19 It also increases the Tg of the mixture (in contrast to a plasticizer), 

owing to a loosened entanglement network and decreased segmental friction.2,10 

3. Used raw materials 

A high molar mass, low crystallinity, low Tg polymer is preferred. The compounds of 

industrial importance are described in Table 1- I-2. The acrylates are additionally described in 

more detail in paragraph 4. Recently, a polymer which monomer is obtained from a renewable 

source has been reported as suitable for PSA.23 

 

Raw material Main applications Other characteristics 
Natural rubber general-purpose 

tapes, diaper tapes, 
masking tapes 

high quality PSA 
requires tackifier, fillers, antioxidants, plasticizers 
used in solution (e.g. hexane, toluene) 

Polyisobutylene,  
Butyl rubber* 

removable labels (low 
peel adhesion needed)

used additives: tackifiers, fillers, low molar mass 
polyisobutylene, amorphous polypropylene 

Poly(vinyl alkyl 
ethers)  

tapes, labels mainly poly(iso-butyl vinyl ether) 

Reclaim 
rubber** 

pipe-wrap  tape, duct 
tape, friction tapes 

used as a blend of low and high molar mass 
polymers 
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Poly(vinyl 
acetate) 
copolymers 

permanent labels no tackifier required 

Silicone 
polymers 

transdermal tapes for 
drug delivery, 
masking tapes for 
printed circuits 

large working temperature range (-100 to 250 °C) 
linear poly(dimethyl siloxane), or linear copolymers 

of dimethyl and diphenyl siloxane 
requires a tackifier  

Styrene-
isoprene-styrene 
(SIS) triblock 
copolymers 

hot-melt PSAs, 
general-purpose 
tapes, duct tapes, 
permanent labels 

short S blocks and long I block 
the aggregated polystyrene domains behave like 

thermolabile crosslinks 
require tackifiers for both blocks 

Styrene-
butadiene 
random 
copolymers 

mainly labels, also 
medical applications, 
freezer labels, pipe 
wrap, electrical tape 

exhibit a broader molar mass distribution than the 
typical styrene-butadiene rubber (SBR), and 
often a fraction of gel 

require a tackifier 
Acrylic 
copolymers 

tapes: transparent, 
strapping, transfer, 
medical, metal-foil 

no tackifier required 
suitable for medical applications 
s. next paragraph for more details 

*: copolymer of isobutylene and a small quantity of isoprene, **: obtained from the digestion of used tires 
Table 1- I-2: Raw materials and characteristics of PSAs of industrial importance. 

4. Acrylic pressure sensitive adhesives 

This paragraph is focused on the acrylic PSAs, the type of PSA samples investigated 

in this work. Acrylic polymers have been known for a long time, but their utilization as PSAs 

is relatively recent.24 Acrylic acid was first synthesized in 1843; by 1901 research was carried 

out on acrylic esters. Poly(methyl methacrylate) was first produced in 1927 by Roehm and 

Haas, and acrylic dispersions by the BASF AG in 1929. Roehm and Haas patented in 1929 

the suitability of polyacrylates for PSAs,12-15 but polyacrylates found extensive use in PSAs 

only in the 1950s. Their applications span over a multitude of tapes, especially transparent, 

strapping, transfer, medical and metal-foil tapes. Acrylic PSAs are typically water- or solvent-

based, but hot-melt acrylic PSAs have also been reported. 

a) Composition 

Acrylics can be used as single-component adhesive, which means that these acrylate 

copolymers do not require tackification: this is an advantage, because low molar mass 

tackifiers can migrate to the surface and thus affect the bond to the substrate.24 Since acrylic 

PSAs can be prepared free from tackifiers and antioxidants, they are less irritating to skin 

(provided there is no residual monomer) and therefore preferred for medical applications. 

Acrylates are superior to the corresponding methacrylates as expected from the large 

difference in glass transition temperature (s. Figure 2- III-2 in Part 2, III.A).24 For acrylates 

with alkyl side chains shorter than octyl, the Tg is reduced with increasing length of the alkyl 

side group (s. Figure 2- III-2 in Part 2, III.A), which leads to an increase in tack strength and 
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lowering of peel strength and resistance to shear.24 The dominant raw materials are n-butyl 

acrylate (BA) and 2-ethyl-hexyl acrylate (2EHA) because they lead to a high tackiness;19 an 

acrylic PSA is a copolymer of one of them (70-97 %) with a polar monomer (2-10 %, e.g., 

acrylic acid, AA) and often other monomers (10-25 %, e.g., ethyl acrylate). The formulation 

depends on the application; the desired Tg for PSA applications at room temperature is 

between –50 °C and –25 °C, because the working temperature must be in the liquid-rubbery 

region of the polymer.24 Indeed, the tack of an acrylic polymer shows a maximum with 

increasing temperature, generally about 50 to 70 °C above the Tg.21,24 n-Butyl, 2-ethyl-hexyl 

and iso-octyl acrylates give an homopolymer with a Tg of –50 °C or less. They are 

copolymerized with an other monomer (e.g. methyl acrylate) to raise the Tg: the glass 

transition temperature is a useful indicator for the choice of comonomers, but not a sufficient 

criterion for fine adjustment of adhesive properties.24 The modifying monomers include 

methyl and ethyl acrylate, vinyl acetate and methyl methacrylate, among many others. The 

polar monomer is mainly acrylic acid, but can also be methacrylic acid, acrylamide, 

acrylonitrile, dimethyl-amino-ethyl methacrylate, hydroxy-ethyl acrylate or methacrylate. The 

effect of copolymerization is discussed in paragraph D.4. 

b) Production process 

Acrylic PSAs are produced by solution or more frequently emulsion polymerization.24 

Solution polymers give homogeneous films (due to the absence of surfactants, wetting agents 

and defoamer), they have better resistance to water, solvent and plasticizer, as well as better 

aging properties and higher shear resistance combined with good tack and peel; on the other 

hand, they are more expensive than emulsion polymers and exhibit safety problems due to the 

solvent. As for acrylic dispersions, they are environmentally safe, easy to handle, economical 

and offer good adhesive properties for most PSA applications. Therefore, emulsion polymers 

are predominantly used except for the applications where they cannot replace solution 

polymers. The emulsions are available at 50-55 % solid content. The commercial latices are 

essentially pigment free.24 Tobing and al.25 compared emulsion and solution copolymer of 

2EHA or BA with AA: the solution PSA had a higher shear holding power due to the 

continuous network (vs. discrete microgels), while the peel and tack are mainly affected by 

the sol-to-gel ratio regardless of the solution or emulsion character of the PSA. They 

showed26 that the thermal crosslinking of the emulsion PSA after filmification increased its 

shear holding power because of the interlinking of the microgels. 
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c) Adhesive properties 

Due to their strong dipolar moment (compared to non-polar polymers), the acrylic 

PSAs adhere generally more strongly to polar surfaces than rubber-based PSAs, but less well 

to non-polar surfaces. Owing to their saturated backbone, they are more stable to light and 

heat than rubber-based adhesives, and retain their properties for years; however, they have 

lower tack and peel strength. Tackifiers are sometimes added to increase peel adhesion and 

tack. Acrylic PSAs build up adhesion with time when aging above Tg.  

The molar mass of emulsion acrylics has no effect on latex viscosity and may be 

106 g·mol-1 and higher. Generally high molar masses result in low tack, molar masses are thus 

sometimes limited by the introduction of a chain-transfer agent in the polymerization. 

However, a lower molar mass implies a too low cohesive strength for many applications and, 

therefore, crosslinking is required. The cohesive strength (s. paragraph C.3) is sometimes 

improved without crosslinking by grafting pendent high Tg blocks, e.g. polystyrene or 

poly(methyl methacrylate), to an acrylic polymer;27 then, the same domain structure as with 

the triblocks SIS described above is obtained, since the polymers are usually not compatible. 

C. Properties and testing 

The properties required from a pressure sensitive adhesive (PSA) can be divided into 

three classes along with their specific test methods:21 

- the adhesive strength (debonding process), tested by peel tests,  

- the conformability (bonding process), tested by tack tests,  

- the cohesive strength of the adhesive, tested by a shear experiment.  

Unlike structural adhesives which change from a liquid to a solid, PSAs do not 

undergo a phase change from the initial stage of adhesion upon wetting the surface to the final 

rupture of the adhesive bond.7 A balance of cohesive strength and viscoelastic properties is 

required, allowing the PSA to spread over a surface with application of minimum pressure 

and be removable from that surface without leaving an adhesive residue.7  

The most important properties of PSAs and their testing methods will be presented 

below. Recommended test procedures have been developed and published in the USA by the 

Pressure Sensitive Tape Council (PSTC)28 and the American Society for Testing and 

Materials (ASTM)29, in Europe by FINAT30 and the Association des Fabricants Européens de 

Rubans Auto-Adhésifs (AFERA)31. The PSAs are not only characterized by their adhesive 

properties: resistance to heat, aging and plasticizers are also of importance.19 

The adhesive properties (tack and peel) will be presented first, followed by the 

cohesive strength. 
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1. Tack and bonding 

a) Definition and requirements for tack 

Tack is defined as “the property of a material which enables it to form a physical bond 

of measurable strength immediately upon contact with another surface” (ASTM D 1878-61T).7 

The wet tack is the ability of an adhesive to form a bond while the adhesive is still wet, the 

green tack the ability of certain polymers to bond to themselves for several hours after drying, 

and the pressure sensitive tack, of specific interest within this report, the ability of a dried film 

to bond tenaciously to most surfaces under light pressure (a few kPa).22 The concept of tack is 

equivalent to stickiness in every day language, and is often evaluated by pressing a finger into 

and withdrawing it from the adhesive. Thus, it involves a bonding and a debonding step; poor 

tack can result from either deficiencies in the initial bonding or low holding power after the 

bond has been formed. In the absence of the precise definition of applied pressure and 

separation force (and time), tack remains a qualitative property. Tack can be quantified either 

as the peak force necessary to remove the probe from the adhesive surface, or as the related 

tack energy (the area under the tack force/time plot).2 

The requirement that the adherend surface is wetted by the adhesive implies that the 

surface energies (or surface tensions) of adhesive and adherend are favorable for a spreading 

of the adhesive. Tack values obtained for various adherend materials with the same adhesive 

increase with the surface energies of the adherends, reaching a maximum when it approaches 

the surface energy of the PSA.32 The second requirement for good bonding is low viscosity. 

In general, PSAs have a viscosity in the range of 105-107 Pa·s at ambient temperatures. It is 

thus desirable that the PSAs are used well above their Tg and have a broad molar mass 

distribution (or that a portion of the chains be of low molar mass). The third requirement is a 

short relaxation time of elastic deformation.  

b) Tests for tack measurement 

Toyama et al.2 distinguish three sets of tack values: (a) primary tack determined by 

rolling ball test and probe-tack at reduced time, (b) secondary tack from probe tack testing at 

proper contact time, and (c) ultimate tack determined from peel-force measurements after 

prolonged standing. In addition to these tests, the loop tack test allows the “immediate” tack 

to be measured. 

In the loop tack test, a loop of substrate is coated with adhesive on its external side, 

applied vertically on an adherend without pressure and immediately withdrawn (s. Figure 1- 

I-2).  
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1 
2

 

Figure 1- I-2: Geometry and 
evolution of a loop tack test. 

In the rolling ball tack test, a ball is rolled down an inclined plane or grooved ramp 

connected to a tape in a horizontal position (s. Figure 1- I-3). The tack value is the distance 

that the ball rolls before stopping on the tape; low numbers imply high tack. This test is 

mainly used in industry. It gives a good indication of tack with elastomer adhesives but is 

unreliable with water-based systems.22 Furthermore, it differentiates adhesives which give 

same results with the loop tack test, but do not have the same “stickiness” when tested by 

imprinting of a finger. 

adhesive tape Figure 1- I-3: Geometry of a 
rolling ball tack test. 

In the probe-tack test, the bonding strength is measured between the flat end of a 

cylindrical probe, brought into contact with adhesive on a backing for a measured dwell time 

and then withdrawn at a specific rate (s. Figure 1- I-4). This test is mainly used in research. A 

cylindrical probe with an hemispherical head is sometimes used in industry.33 

Weight 
Aluminium 

Adhesive film 

Dynamometric probe  

1 2 3

Probe 
 

Figure 1- I-4: 
Geometry and 
evolution of a 

probe-tack test. 

c) Case of acrylic adhesives 

Poly(methyl acrylate) (Tg = 22 °C) is not tacky, while poly(ethyl acrylate) (Tg = -8 °C) 

is slightly tacky, and poly(n-butyl acrylate) (Tg=-43 °C) as well as poly(2-ethylhexyl acrylate) 

(Tg = -58 °C) are extremely tacky at room temperature.1 

2. Peel adhesion and debonding21,34 

Adhesion is the ability to remain permanently attached to surfaces in the absence of 

excessive forces; it depends on both tack and cohesion properties of the PSA. In the peel-
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adhesion test, a tape is applied to a hard surface under specified conditions and removed at a 

specified rate to a specified angle with the substrate, usually 90 or 180° (s. Figure 1- I-5).  

(b) (a) 

 

Figure 1- I-5: 
Geometry of a 
peel test: (a) at 
90°, (b) at 180°.

The adhesion values in a peel test depend on the width and thickness of the adhesive, 

the thickness and modulus of the backing, as well as the peel angle, peel rate and the 

application conditions (time, temperature, pressure, roughness of the surface). Assuming 

constant backing and physical dimensions for the test, however, the forces measured are 

related to the viscoelastic behavior of the adhesive, as well as the interfacial forces between 

adhesive and substrate (briefly: to adhesive and cohesive properties of the PSA). Once failure 

has started, the peel force generally fluctuates about an average value as peeling proceeds. 

Failure can occur in the adhesive layer or in the substrate (cohesive failure), as well as at 

either of the two interfaces (adhesive or interfacial failure).2 The cohesive failure leaves a 

residue of adhesive on the substrate (or more rarely of substrate on the adhesive layer), while 

the adhesive failure leaves no residue. The combination of both is a phenomenon known as 

slip-stick.2 The mode of failure is related to the relaxation properties of the material: the 

cohesive mode corresponds to the terminal zone of relaxation spectra (lowest frequencies), the 

adhesive mode to the rubbery zone, and the slip-stick to the glass transition zone.10 

The Figure 1- I-6 describes the peel force as a function of the peel rate (or 

temperature). At low peel rates (or high temperatures), the peel strength increases with the 

peel rate, and cohesive failure is observed. Indeed, the effective modulus is low at low 

deformation rate and an increase in peel rate causes the adhesive to behave as if it were stiffer; 

it can thus support higher loads before parting from the test surface. At higher peel rates, the 

peel strength decreases when the peel rate increases, and then becomes constant. In this high 

peel region, the cohesive strength of the polymer exceeds the adhesive forces and the material 

separates cleanly from the substrate. At intermediate peel rates, a “slip-stick” failure can be 

observed.35 

pe
el

 fo
rc

e 

log (peel rate)  

Figure 1- I-6: Peel force as a 
function of the peel rate. 
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3. Cohesive strength 

 Cohesive strength, or resistance to shear, is also called holding power. This is the 

internal strength of an adhesive material that resists elongational flow or creep under stress in 

the plane of the surface. To eliminate or minimize creep, the adhesive must be of high molar 

mass or chemically crosslinked. A further possibility is the use of triblock copolymers to 

obtain physical crosslinks. In practice the polymer may contain up to 30-50 % gel. It has been 

experimentally observed that the holding power is inversely related to the adhesive thickness. 

 The holding power is characterized in the shear test, in which a defined area is 

vertically mounted to a steel bar and a weight is hanged on it (s. Figure 1- I-7). The duration 

for which the tape can support the load, without failing or slipping a specified distance, is 

determined. The time to dwell before the load is applied influences the results: acrylics in 

particular may require longer times to fall or slip if the adhesive is allowed 24 hours to effect 

a better bond before the weights are attached. 

Adhesive tape 

Mass 

Figure 1- I-7: Geometry of the 
tests of the resistance to shear and 
of the determination of the SAFT. 

The Shear Adhesion Failure Temperature (SAFT) can also be measured: the 

preceding experimental setup is put into an oven, the temperature is increased and the 

temperature at which the adhesive in shear exhibit a significant viscous flow and can no 

longer support an applied stress is recorded. 

The shear resistance can be tested alternatively in dynamic shear, where a constant 

shear rate is imposed and the force is monitored.21 

D. Influence of chemical and physical factors on the adhesive properties2 

1. Glass transition temperature 

This was already discussed in paragraph B.4.a. 

2. Molar mass 

A low molar mass (MM) polymer sample flows rapidly into close contact with 

adherend surface, but exhibit a low cohesive strength. With increasing MM, peel and tack of 

PSAs are expected to pass through a maximum (at different MM), while shear resistance is 

predicted to rise to a very high MM and then drop dramatically (s. Figure 1- I-8). It is 

generally considered that a polymer must have a degree of polymerization of at last 300 

before its mechanical properties are developed on a useful level due to entanglement; but the 
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MM should be much higher to develop a sufficient resistance to creep, unless the level of non 

covalent bonding is high.24  

MM 

Resistance to shear

Resistance to peel 

Tack
Force 

 

Figure 1- I-8: 
Expected influence 
of molar mass MM 

on adhesive 
properties of PSAs.2 

In a polymer exhibiting a broad MM distribution, high MM fraction should determine 

creep resistance, while peel and tack should be dictated by the low MM fraction. However, a 

polymer exhibiting a broad MM distribution may have a lower cohesive strength than one 

with a narrow distribution and lower MM. Common acrylic PSAs exhibit a quite broad MM 

distribution, containing a considerable amount of the low MM fraction; acrylic emulsion 

polymers contain a considerable gel fraction, so that the MM distribution can only be 

obtained from the soluble fraction of the films.24 

Yang36 developed an emulsion polymerization method with a temperature gradient to 

obtain highly non-uniform acrylic copolymer PSAs. He found that the polydispersity index 

should be higher than 10 to ensure a good balance between adhesion and cohesion. 

3. Entanglement network 

A high average molar mass between entanglements, Me, increases the performance of 

the adhesive in two ways through its influence on the plateau modulus.21 First, it favors the 

bond formation at very short contact time. Second, it favors the formation of fibrils during the 

debonding process (s. paragraph E), thereby increasing the adhesion energy. 

Zosel37 studied the debonding of various PSAs (PIB and acrylics) in the probe tack 

test. He showed that only the PSAs which have a Me higher than 104 to 1.5·104 g·mol-1 are 

able to form fibrils and therefore have a high adhesion energy. This limit corresponds to the 

well-known Dahlquist’s criterion:38 PSAs having an elastic modulus exceeding 105 Pa exhibit 

a poor tack (some exceptions are known39). 

Tobing et al.16 showed that adding a tackifier to an acrylic emulsion PSA can lead to a 

strong decrease of the shear holding power, while it leads to only a small increase in loop tack 

and peel strength. Indeed, the entanglement of uncrosslinked chains with the micro-networks 

present in the particles is impossible due to the increase of Me, and the tackifier can not 

tackify the micro-networks. 
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4. Introduction of functional groups 

Generally, weak non covalent bonds are formed between a PSA and a substrate, with 

the following prevailing order: hydrogen bonding, interaction between two permanent 

dipoles, induction forces between one dipole and a polarisable group, London forces between 

virtual dipoles. Adhesion and cohesion may be improved by incorporation of judicial 

functional groups on an adhesive polymer chain with careful consideration of the substrate 

composition. This can be done by copolymerization. 

Acrylic and methacrylic acids are often copolymerized in acrylate adhesive polymers. 

Dhal et al.40 copolymerized n-butyl acrylate with increasing small quantities of acrylic acid. 

This resulted in an increase in resistance to shear, peel and tack, which is believed to originate 

in the molecular interactions of –COOH groups with each other. Chan et al.35 copolymerized 

ethyl acrylate (EA) with acrylic or methacrylic acid. This increased the resistance to shear and 

the peel strength with respect to pure EA. Furthermore, the tack of samples with increasing 

acid content presents a maximum for 3 to 4 % monomeric units. At low acid levels, adhesion 

was improved by better interfacial interactions with the substrate, while at higher acid 

concentration, the tack is believed to decrease due to hardening of the polymer. 

Chan et al.35 copolymerized EA with other polar comonomers: hydroxyethyl acrylate 

and acrylonitrile. It had similar effects as the introduction of (meth)acrylic acid, but less 

intense.  

They also copolymerized 2EHA with various amounts of non polar comonomers: 

ethyl acrylate, methyl acrylate, ethyl methacrylate. For increasing 2EHA contents, the shear 

strength decreases, while the peel strength increases for adhesives fractures and then 

decreases for cohesive fractures. The tack increases for increasing 2EHA contents even when 

the fracture becomes cohesive (except for MA, for which a maximum is observed at 60 % 

2EHA). These three properties can be reduced to a single master curve using the Williams-

Landel-Ferry (WLF) equation for polymers of similar molar mass, showing that the properties 

are governed by the Tg value. Nevertheless, a change in the molar mass has also strong 

effects. 

5. Crosslinking 

Generally, covalent crosslinking increases the elastic character of the response to shear 

and tension at the expense of the viscous one,24 and therefore lowers the ability of the 

adhesive to establish surface contact.2 Hence, only low amounts of crosslinker are required to 

increase creep and shear resistance, while peel strength and tack are usually adversely 

affected at all levels of crosslinking (a higher crosslinking degree may yield to a non-tacky 
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product).24 Crosslinked adhesives may not exhibit a noticeable transition at all, but fail 

adhesively under all peel rate and temperature conditions.24 The crosslinking should 

preferably take place through long and flexible chains, in order to retain the flexibility and the 

high stress relaxation rate, and therefore minimize the effect in adhesion properties without 

changing the shear and creep improvement.24  

Zosel41 showed that for poly(dimethyl siloxane) (PDMS) samples the tack and peel 

strength have a pronounced  maximum in the range just above the gel point. Plessis et al.42,43 

studied various poly(n-butyl acrylate), PBA, latices. They showed that crosslinking (less than 

50 wt% of gel) increases both the resistance to shear and the peel strength, while an increase 

in the molar mass increases the resistance to shear and decreases the peel strength. All latices 

exhibited a very good tack. 

For PBA adhesives, an increasing copolymerized styrene amount leads to a decrease 

in branching level and fraction of gel, while the tack properties are unchanged, the resistance 

to shear is improved and the peel strength decreased.43 

In the case of films cast from dispersions, if the crosslinking is only performed in the 

particles, there can be little or no increase of shear resistance because failure can happen in 

the weak phase between the particles. If the phase between the particles is crosslinked too 

heavily, tack can be reduced greatly because the mechanical properties are dominated by a 

rigid network structure.24 

Secondary bonding (hydrogen bonding, dipole-dipole or dipole-induced dipole 

interaction) can have the same effect as covalent bonding on the mechanical properties. But 

such polymers can be soluble, and the strength of such bonds decreases rapidly with 

increasing temperature because the bond strength decreases with increasing distance between 

atoms.24 The hydrogen bonding between two carboxyl groups is very important for acrylic 

adhesives, the length of this rather strong bond represented in Figure 1- I-9 ranges from 2.6 to 

3.0 Å for the O-O distance.24  

O

O H

O

OH  

Figure 1- I-9: Hydrogen bond 
between two carboxyl groups of 

acrylic acid units in acrylic 
polymers. 

Physical crosslinking in the form of crystallinity (in semi-crystalline polymers) is used 

in some PSAs instead of chemical crosslinking; but it is not used for acrylics.2 
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6. Viscoelastic properties 

The concepts of viscoelasticity of polymers used in this chapter are presented in 

appendix (s. Part 7, III.A). 

PSAs have the ability to distribute stresses over large volumes of material, thereby 

avoiding the sharp stress concentrations responsible for the failure of structural glassy 

adhesives.44 This specific ability is directly related to their low storage modulus G’ (typically 

in the 104 to 106 Pa range) and relatively high viscoelastic character (tanδ close to 1).44 The 

wider the temperature range over which G’ is in this range, the more effective the PSA.7 If G’ 

is too high, the adhesive will loose its tack, and if G’ is too low the shear resistance of the 

material will be reduced.21 Similarly, the loss modulus G’’ is taken as an indication of the 

amount of viscoelastic losses during debonding, and therefore needs to be as high as possible 

for good adhesion.21 Nevertheless G’ and G’’ can generally not be varied independently over 

a wide range, and a high G’’ implies a high G’ and a loss of tack. Chang45 defined the concept 

of viscoelastic windows for PSAs: he drew a two-dimensional map with storage and loss 

moduli G’ and G’’ as axes, divided in different regions corresponding to different 

characteristics of the PSA (non-PSA, high shear PSA, cold-temperature PSA, removable 

PSA, general purpose PSA). 

The viscoelastic basis of peel adhesion is demonstrated by the construction of master 

curves, relating bond strength (i.e. peel energy) to temperature and peel rate for several 

chemically different PSAs.2 Furthermore, different models of the dependence of the peel force 

on viscoelastic properties have been developed.2 It should be noted that the deformation 

involved in the debonding of an adhesive tape is in the non-linear regime, where the 

mechanical history of the material should affect its behavior. This could seem to be in 

contradiction with the obtainment of a WLF master curve.21 

E. Mechanism of debonding  

1. Early studies 

The early studies on pressure sensitive properties of polymers focused on the 

mechanical aspects of peel tests of soft elastomers from rigid substrates or on the effect of 

surface properties. At that stage, the detachment of the PSA from the surface was implicitly 

assumed to occur by the propagation of a single interfacial crack.44 In 1960, Kaelbe46 detected 

the formation of fibrils of adhesive linking the adhesive layer to the substrate during the peel 

test of a PSA.  
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2. Energy criterion for adhesive strength in peel test 

In 1971, Gent, Kinloch et al.47-49 proposed an energy criterion for the adhesive failure 

of PSAs: a characteristic failure energy per unit area of new surface can be regarded as a 

characteristic measure of the strength of the adhesive bond, since it is independent of the 

geometry of the test. They showed that this adhesive failure energy W is the sum of an 

intrinsic adhesive failure energy W0 (depending only of the substrate surface and on the 

adhesive) and of the energy Ψ dissipated viscoelastically within the adhesive (depending on 

W0, on the rate and temperature of debonding) (s. Equation 1- I-1). W can also be expressed 

as the product of W0 and a function Φ of rate and temperature of debonding: 

)),(1(.),,( 000 vTWvTWWW Φ+=Ψ+=  Equation 1- I-1

In the middle of the 1980’s, Good50 proposed a model for the debonding of adhesives 

forming fibrils, for both PSAs and “brittle” adhesives. In the case of the PSAs involving 

fibrillation, he developed mathematical expressions51 for the energies necessary for 

elongating the fibrils and for detaching the fibril bases from the substrate. They allow to 

predict if the rupture will be cohesive or adhesive and if the debonding energy will be high or 

low (but without quantitative prediction of this energy).  

The experimental curves of adhesion energy as a function of temperature and peel-rate 

obey the WLF time-temperature superposition quite well, indicating that the viscoelastic 

properties of the PSA govern the debonding process, even in regimes where fracture occurs 

by extensive fibrillation.21 

Since the mechanisms of debonding in peel and probe tack tests are similar 

(fibrillation or propagation of an interfacial crack), the results obtained using one technique is 

also relevant for the other technique.38 

3. Zosel’s work on fibrillar debonding in probe tack test 

In the late 1980’s, Zosel52,53 developed an instrument measuring the adhesive failure 

energy in dependence of contact time, contact pressure, rate of separation, temperature, and 

allowing also to study the stress-strain behavior during bond separation. It is similar to the 

probe-tack geometry presented in Figure 1- I-4. The adhesive failure energy is measured as 

the area under the stress-strain curve: at very short contact times, it is the tack of the adhesive, 

at long contact times its maximum energy of separation. This apparatus allows to study the 

influence of the molecular structure of a polymer on its adhesive properties. By coupling his 

instrument with high speed photography perpendicular to the film plane, Zosel41,54 showed 

unambiguously that high strain at break and high adhesive failure energy can be obtained only 

if the polymer is able to form (and deform) a macroscopic fibrillar structure. This case is 
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illustrated on Figure 1- I-10: when the probe moves away from the adhesive layer, the 

adhesive material is split into separate filaments or fibrils which are anchored on both the 

substrate and the probe surface (a); these fibrils are first increasingly stretched (b), causing the 

storage and dissipation of energy; the fibrils then begin to separate from the probe surface by 

purely interfacial failure (c), this failure starts at the rim of the probe where the tensile stress 

has a maximum; after complete debonding the deformed material recovers (d) and finally 

restores the original film surface. A photograph representative of step (c) is shown on (e).54 

(e) 

(d) (c) 

(b) (a) 
probe
 
fibrils 
PSA 
substrate

Figure 1- I-10: Debonding process of a 
PSA forming a macroscopic fibrillar 

structure, s. text for details. 

The stress-strain curves characteristic of PSA debonding41,54 are shown on Figure 1- 

I-11. In the “brittle” case (a), the PSA has a low adhesive failure energy (area below the 

stress-strain curve). In the “fibrillar” case (b), the PSA forms and deforms fibrils, and the 

adhesive failure energy is high. The kind of plateau extending to the right corresponds to the 

fibrils extension. 

σ 

ε 

(a) 

 

σ 

ε 

(b) fibrils extension 

 

Figure 1- I-11: Elongation 
stress-strain curves of a PSA 

during debonding; (a) “brittle” 
case, (b) “fibrillar” case. 

The characteristic size of the PSA fibrils is typically three to four orders of magnitude 

larger than the size of craze fibrils. Their morphology depends on the adhesive and the 

experimental geometry, but also on the substrate (in particular its surface roughness).21 

4. Creton’s work on fibril formation 

Creton et al.33 developed an instrument for the probe tack test allowing the 

simultaneous record of nominal stress and strain curves, as well as pictures of the adhesive 

film from underneath a transparent substrate. They correlated the debonding sub-processes 

with the corresponding parts of the stress-strain curve (s. Figure 1- I-11): first formation of 

cavities randomly at (or near) the probe/film interface during the initial stress increase, then 

lateral growth of these cavities during the first stress decrease, then elongation of fibrils 
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during the pseudo-plateau of stress, and finally rupture of the fibrils during the stress 

decrease.  

Lakrout et al.55 defined a Deborah number for this experiment, De, as the product of 

the strain rate and the relevant relaxation time for the flow of the polymer. This number 

allows to predict the growth type of the cavities: for 10 < De < 1000, lateral growth is limited 

and extensional growth dominates, it is the useful regime for the use as a PSA. Alternatively, 

Creton et al.38 defined a critical parameter G0/E, as the ratio of the energies dissipated at the 

surface and elastically in the bulk: when G0/E increases, a transition is observed from (a) 

interfacial crack propagation to (b) cavitation within the adhesive layer followed by rapid 

detachment of cell walls, then to (c) cavitation followed by extension of the adhesive fibrils to 

large strains. 

In PSAs so far there is little experimental evidence concerning the mechanism of fibril 

growth. Creton21 proposes a picture for macroscopic fibril growth where two processes are 

competing: fibril drawing from the bulk to a constant extension ratio at the fibril/bulk 

interface, and fibril creep at a constant stress once the fibril is formed. All experimental 

observations are consistent with the hypothesis that fibrils grow mainly by chain 

disentanglement, which can limit the use of very high molar masses or highly branched 

polymers in an attempt to increase the creep resistance.  

Zosel56 had studied the increase of the bonding energy for increasing contact force and 

contact time for smooth and rough probes. His experimental results are in accordance with the 

theoretical model developed by Creton et al.57 for contact formation and true contact area on a 

rough surface. He proved that the influence of the surface roughness becomes significant at 

low contact forces and for polymers with comparably high moduli. Chiche et al.58 showed that 

a decreasing probe surface roughness leads to a delay in the formation of the cavities and an 

acceleration of their lateral expansion. 

The cavitation and the fibril extension were also studied theoretically. Gay et al. 

developed models for predicting the number of cavities which will appear during the probe 

tack59 and the shape of the stress-strain curve60. Creton et al. developed a micromechanical 

model to account for debonding mechanisms of soft adhesives from a hard substrate61 and a 

deformation map defining the regions where bulk shape instabilities of crack will propagate62. 

F. Conclusion 

In this comprehensive introduction to pressure sensitive adhesives (PSAs), the main 

features of these materials have been presented: applications, composition, adhesive 

properties and testing, influence of chemical and physical factors on adhesive properties, 



Part 1, I   Pressure sensitive adhesives (PSA’s) 

 24

mechanism of debonding. In particular, the influence on the adhesive properties of the Tg, the 

viscoelastic properties and all sorts of crosslinking was pointed out. The distance from Tg and 

the viscoelastic properties are closely related to the chain dynamics. Crosslinking can be 

present in the form of covalent crosslinking (from the introduction of a crosslinker or 

extensive long chain branching), of hydrogen bonding between acrylic acid units and of 

physical crosslinking (e.g. through nanophase separation). 

II. Basic principles of solid-state nuclear magnetic resonance 

A. General introduction to NMR 

1. Definition and basic concepts63,64 

Nuclear magnetic resonance (NMR) spectroscopy is a branch of spectroscopy which 

consists of all studies of the nature of nuclear magnetic energy levels of material systems and 

of the transitions induced between them through absorption or emission of electromagnetic 

radiation.65 It is possible to record NMR spectra (in gas, solution or solid) of any nuclide 

having a nuclear spin quantum number I different from 0. For example, 12C is not NMR-

active, but 1H is and 13C as well (13C represents 1 % of the C atoms in natural abundance). 

Among other NMR-active nuclides, 2H (deuterium), 15N, 29Si, 31P are widely used for 

chemical and structural investigations.  

Nuclei possess an angular momentum, P, and a charge. The motion of this charge 

gives rise to an associated magnetic moment, µ, such that µ = γ·P, where γ is the 

magnetogyric ratio, constant for each nuclide (and often designated as gyromagnetic ratio, 

contrary to IUPAC recommendations). Both angular momentum and magnetic moment are 

vector quantities. When placed in an external, static magnetic field, B0 (strictly speaking the 

magnetic flux density), the microscopic magnetic moments align themselves relative to the 

field in a discrete number of orientations, because the energy states involved are quantized. 

For a spin of magnetic quantum number I, there exist 2I+1 possible spin states, so for 1H and 
13C (I = 1/2), there are two possible states, denoted +1/2 and –1/2, or α and β, or "spin up" 

and "spin down".  

For a spin-half nucleus, the two states can be considered as orientation of the nucleus 

spin parallel or antiparallel to the static field, the parallel one (or -1/2, or α, or "spin up") 

being of lower energy for positive magnetogyric ratio γ. This situation can be described in 

terms of classical mechanics, with the field imposing a torque on the moment, which therefore 

traces a circular path about the applied field, referred to as Larmor precession (s. Figure 1- 
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II-1). The angular velocity of the precession is ω = -γ·B0. The corresponding frequency 

ν = ω/2π is named Larmor frequency of the nucleus. 

µ

B0 z

y
x 

 

Figure 1- II-1:Precession of a single 
nucleus caused by a static magnetic 
field B0; B0 is conventionally applied 
along the z-axis and the motion of the 

nucleus represented as a vector 
moving on the surface of a cone. 

For a spin-half nuclei, the lower energy level has a slight excess of nuclei, as defined 

by the Boltzmann distribution (s. Equation 1- II-1): 

( )Tk
ENN downup ⋅

∆⋅= exp  Equation 1- II-1

where Ni is the populations of the energy level i, ∆E is the energy difference between the two 

levels, R the gas constant and T the absolute temperature. The differences between spin 

energy levels are rather small, so that the corresponding population differences are similarly 

small, only about 1 spin in 104 spins at the highest. This partly explains why NMR is so 

insensitive compared to other techniques as IR or UV. The tiny population excess of nuclear 

spins can be represented as a collection of spins distributed randomly about the precessional 

cone and parallel to the z-axis. This gives rise to a resultant bulk magnetization vector M0 

along the z-axis at equilibrium (s. Figure 1- II-2 (a)). This magnetization M behavior can be 

described in terms of classical mechanics, it is termed the vector model of NMR. 
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Figure 1- II-2: Evolution of the bulk magnetization in the sample during a pulsed NMR experiment; in the 
rotating frame (top), and in the laboratory frame (bottom); (a) and (d) at equilibrium, (b) during the acquisition 

of the data, (c) during the relaxation delay between consecutive transients. 

 Nuclear magnetic resonance occurs when the nucleus changes its spin state, driven by 

the absorption of a quantum of energy applied as electromagnetic radiation whose frequency 

matches the Larmor frequency of the nucleus. During NMR experiments, the sample is 

irradiated by an oscillating B1 magnetic field, applied in the xy-plane via the electric current 

circulating in a coil around the sample. In order to simplify the understanding, the oscillating 
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B1 field is decomposed in two counter-rotating magnetic vectors in the xy-plane, and 

everything is observed from the own frame of one of the B1 components, where it is static: the 

rotating frame. In the rotating frame, the second component of B1 is precessing at twice the 

Larmor frequency of the nuclei, so that it does not have any effect on the spins and is not 

considered. It should be stressed that the rotating frame is rotating with respect to the 

laboratory frame at the Larmor frequency of the studied nucleus, therefore the precession of 

the spins around the B0 field appears to be frozen in the rotating frame.  

 If spins with different chemical surroundings are present in the sample, they will have 

different Larmor frequencies, so that in the rotating frame of one of them, the other will 

precess at a frequency which is the slight difference between the two Larmor frequencies. 

Therefore the different types of spins will appear at different frequencies in the recorded 

spectrum (corresponding to different chemical shifts). These differences due to the chemical 

environment are in the ppm range relative to the Larmor frequencies. 

2. Evolution of magnetization during pulsed NMR experiments for a spin-half 

nucleus in the rotating frame 

At equilibrium, the bulk magnetization vector is along the z-axis (s. Figure 1- II-2 (a)). 

During the experiments, radiofrequency (rf) pulses are applied to the sample. Applying a 

"pulse" to the sample simply consists in turning on the B1 oscillating field via rf irradiation. 

The rf electromagnetic field imposes a torque on the bulk magnetization vector, in a direction 

that is perpendicular to the direction of the B1 field. For example, applying  the rf field along 

the x-axis will drive the vector from the z-axis toward the y-axis (s. Figure 1- II-3). The phase 

of the pulse (in the laboratory frame) is defined as the rotation axis (in the rotating frame).The 

rate at which the magnetization vector moves is proportional to the strength of the applied rf 

field, so that the total angle from which it turns (tip angle or flip angle) is proportional to the 

amplitude and duration of the rf pulse. If the rf is turned off just after the vector has reached 

the y-axis, it is called a 90° pulse; if it is turned off just after it has reached the –z-axis, it is 

called a 180° pulse, etc. 
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(c) Figure 1- II-3: Effect of a rf 
pulse on the bulk magnetization 
in the vector model of the NMR; 

bulk magnetization (a) at 
equilibrium when the application 
of the rf pulse starts, (b) after a 
90° pulse, (c) after a 180° pulse.

The idea of applying a sequence of pulses of different phase and flip angle is of central 

importance to NMR experiments. The concept of repeating a multipulse experiment with 
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different pulse phases and combining the collected data in an appropriate manner is called 

phase cycling, and is widely used for selecting the signal of interest in an NMR experiment.  

At the end of the pulse program, the response of the sample to the irradiation is 

recorded via the current induced in the same coil by the change of bulk magnetization in the 

sample. At that step of the experiment, the magnetization precesses in the laboratory frame at 

the Larmor frequency around the B0 axis, and is static in the rotating frame. To be able to 

record the magnitude of this magnetic field negligible with respect to the static field B0, the 

acquisition of the data is done in the xy-plane (s. Figure 1- II-2 (b)). 

 Between consecutive transients (single repetitions of the same experiment to 

accumulate data), time is given to the sample to relax (typically 4 s for 1H and 10 s for 13C). 

Relaxation is the process by which the bulk magnetization comes from an non equilibrium 

state, usually in the in the xy-plane or along the –z-axis, back to the ground state along the z-

axis. This process is schematically shown on Figure 1- II-2 (c) in the case of relaxation form 

the xy-plane. It can be decomposed into two sub-processes: the transverse or spin-spin 

relaxation with a time constant T2 in the xy-plane, and the longitudinal or spin-lattice 

relaxation with a time constant T1 along the z-axis. In solution-state NMR, T1 and T2 are of 

the same order of magnitude, while in solid-state NMR T1 (s timescale) is usually larger than 

T2 (ms timescale). T2 characterizes the decay rate of the recorded signal (and hence the total 

acquisition time). T2 relaxation happens through the dephasing of the different individual spin 

precessing in the perpendicular plane due to their slightly different Larmor frequencies. T1 

characterizes the growth of the overall magnetization back along the z-axis (and hence the 

relaxation delay that must be waited between consecutive transients). T1 relaxation happens 

through the transfer of the excess energy of the spins to the surrounding lattice. 

 After the relaxation delay, or recycle delay, the system is back to equilibrium (s. 

Figure 1- II-2 (d)) and the rf irradiation sequence can be repeated. 

 The recorded signal in the time domain, FID for free induction decay, is finally 

Fourier-transformed into the frequency domain to obtain the spectrum. It is indeed easier in 

the frequency domain to read out the resonance frequencies corresponding to the different 

chemical environments of the nuclei. Furthermore, the simultaneous stimulation of all spins 

with a single pulse of rf energy (instead of scanning all the frequencies one by one) allows a 

faster signal-averaging and hence an enormous increasing in signal-to-noise ratio. 
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B. Introduction to solid-state NMR 

1. Resonance line width, dipolar coupling and motion 

a) Types of broadening 

The resonance lines observed in solid-state NMR are generally much broader than in 

solution-state NMR. There are three types of resonance line broadening (s. Figure 1- II-4).66 

An homogeneously broadened line is a sum of lines having the same broadening and no 

chemical shift difference; it is the case that will be developed in this paragraph. An 

inhomogeneous line is a sum of non-overlapping individual lines with no coupling between 

the corresponding spin packets; its line shape is determined by a distribution of shifts. A 

heterogeneous line is the sum of individual lines with different shifts, and whose 

corresponding spin packets are coupled to each other. 

 (a) (c) (b) Figure 1- II-4: (a) homogeneous, 
(b) inhomogeneous and (c) 

heterogeneous line shapes; the grey 
area indicates a coupling between 
the corresponding spin packets. 

Homogeneous line broadening is observed due to dipole-dipole couplings. The dipole-

dipole coupling is an anisotropic direct spin-spin interaction through space. It is present 

between all types of spin with I > 0. In organic solids, the dominant homonuclear couplings 

are usually 1H-1H couplings (because 13C-13C or 15N-15N can only play a role in isotopically 

enriched substances) and the most common heteronuclear coupling is the 1H-13C coupling. 

Dipole-dipole couplings effectively depend on both, the distance rij between the two spins i 

and j involved as well as the angle θij between the internuclear vector and the B0 field. The 

dipolar coupling is proportional to Dij: 

( )ij
ij

ji
ij rD ϑγγ 2cos313 −⋅⋅=  Equation 1- II-2 

where γi denotes the magnetogyric ratio of the nucleus i.67 

b) Line shape and line width 

The resonance line width is usually described either as the full width at half maximum 

(fwhm) or by the second moment. The fwhm is the distance between the points on the curve 

at which the function reaches half its maximum value. The second moment M2 of a 

normalized function f(ω) with a maximum at ω0 is defined in Equation 1- II-3.67 

( ) ( )∫ −= ωωωω dfM 2
02  Equation 1- II-3 
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For a normalized Gaussian line (s. Table 1- II-1), the second moment is ∆2, while the 

fwhm is 2log22∆ . For a normalized Lorentzian (s. Table 1- II-1), the fwhm is 2δ, while the 

second moment does not exist because the integral diverges.68 

Name Gaussian function Lorentzian function 
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Table 1- II-1: 
Mathematical definitions 
of normalized Gaussian 

and Lorentzian functions. 

In a rigid lattice of strongly coupled spins, the dipole-dipole couplings have two 

effects.67 First, each involved nucleus produces at the location of each neighbor a local 

magnetic field due to its own Larmor precession. The resulting static component of the local 

field (along the z-axis) is different at the location of each nucleus, resulting in a slight shift in 

Larmor frequency, and thus in heterogeneous line broadening. Furthermore, the rotating 

component of the resulting local field (in the xy-plane) results in an homogeneous line 

broadening of the order of magnitude of the local field. Second, the coupled spins can 

undergo flip-flop processes: the "spin up" spin becomes "spin down" and vice versa. The total 

magnetization is not changed during this process, but step by step, its spatial distribution in 

the sample evolves in the network of interacting spins. In the case of a rigid lattice of strongly 

coupled spins, this leads to a 1H line shape which can usually be approximated to a Gaussian 

shape, in most cases having a fwhm of the order of magnitude of tens of kHz. It is for 

example generally the case of 1H line shapes of polymeric samples well below their Tg, as 

recorded under static conditions. 

It should be noted that for not abundant nuclei like 13C (or 15N), the homonuclear 13C 

dipole-dipole coupling is negligible with respect to the heteronuclear 1H-13C one. The 

heteronuclear flip-flop contribution is strongly reduced with increasing static magnetic field, 

therefore with the field used these days the heteronuclear coupling leads to detectable 

heterogeneous line broadening if the 1H homonuclear coupling is negligible (e.g. decoupled). 

When molecular motion is present, the motion of the spins results in a variation of the 

induced local field.68 If the variation of the spin lattice is fast compared to the instantaneous 

Larmor precession in the local field due to dipolar couplings, each individual spin "sees" an 

average local field, which is weaker than the instantaneous local field. Therefore the induced 

line broadening is smaller. Finally, compared to the rigid lattice case detailed above, it results 

in line narrowing, usually called motional line narrowing. The faster the molecular motion, 

the stronger the local field averaging, and hence the narrower the resulting line. The very slow 

motions have no influence on the line shape. In the case of very fast molecular motions, the 

assumption of a Lorentzian line shape is satisfying, with a line width of the order of 

magnitude of the second moment of the static line multiplied by the correlation time of the 
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motion. In the intermediate regime, no satisfying correlation between the line width and the 

correlation time of the motion exist, the only developed models requiring strong assumptions. 

2. Applications of solid-state NMR 

Solid-state NMR methods can be divided into two groups depending if the sample is 

spun or not. The recorded spectra exhibit usually very broad lines when the sample is kept 

static. It is possible to spin a rotor containing the sample very fast at a certain angle relative to 

the static B0 field during the measurements. If the angle is chosen equal to 54.7 °, the 

technique is called magic angle spinning (MAS, s. paragraph 3), and increases the resolution 

in the spectrum. 

Hence, high resolution spectra are accessible in solids by MAS (the resolution is 

nevertheless lower than in solution-state NMR). Analyses similar to the ones conducted with 

solution-state NMR can be carried out: structural studies based on lines assignment according 

to chemical shifts. 

Spectra recorded on static samples usually exhibit a very poor resolution. In that case, 

the line shape is investigated. The fact that the neat solid sample is analyzed makes it possible 

to study features of the solid itself (on the contrary to solution-state NMR): its structure 

(distances, angles), orientation, and reorientations of molecules on a ns to a s timescale. 

3. Principle of magic-angle spinning (MAS)69 

In the case of solid samples, NMR spectra are usually severely broadened by 

anisotropic nuclear interactions to which the nuclei in the solid are subjected (s. paragraph1). 

Although motion is usually present in solid samples, it is generally not sufficient to narrow 

the NMR lines to the degree found in liquids. In order to reveal fine structures of the type of 

those found in NMR spectra of liquids, magic-angle spinning (MAS) can be used. The MAS 

procedure consists in rotating the solid sample uniformly about an axis inclined at the angle 

54°44´ to the direction of the static magnetic field of the NMR magnet (s. Figure 1- II-5). 

Very fast rotation compared to the line width is needed and rotation speeds of more than 

25 kHz can now be achieved routinely.  

 Sample 

Static 
magnetic  
field B0 

Magic angle:
θ = 54°44´

 

Figure 1- II-5: 
Magic angle 

spinning (MAS) of a 
solid-state NMR 

sample. 
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 Rapid isotropic motion eliminates the anisotropic interactions from an NMR spectrum, 

like in NMR of liquids. For a sample undergoing uniform spinning at any angle θ, 

calculations of every anisotropic interaction Hamiltonian according to the perturbation theory 

introduces a factor (3cos2θ-1) in the constant term, and periodic terms depending on the 

rotation frequency. Such a mathematical expression proves that spinning at the magic angle 

θΜ=54°44´ for which (3cos2θ-1) = 0 should reduce the anisotropic broadening in principle to 

zero; in addition, rotational sidebands should possibly appear at multiples of the spinning 

frequency. These predictions are borne out by experiments, at every spinning frequency for 

the anisotropic shift interactions that results in an heterogeneous broadening, and only if this 

spinning frequency is higher than the NMR line width in the case of the anisotropic dipole-

dipole interactions that causes a homogeneous broadening. Nuclear quadrupole interactions 

are not completely averaged by simple MAS, but 1H and 13C nuclei do not possess a magnetic 

quadrupole moment.  

Sufficiently fast MAS leaves only isotropic shift interactions and isotropic J 

couplings (indirect electron couplings) on NMR spectra, similar to the ones present in 

NMR spectra of liquids. However, the NMR spectra obtained are still broader than spectra 

of liquids, because of instrumental factors, residual interactions, as well as T2-relaxation and 

motional effects. The instrumental factors are the inhomogeneity of the laboratory magnetic 

field, the imperfect adjustment of the magic angle and its instability, the insufficiently fast 

spinning, and bulk susceptibility effects in inhomogeneous samples. The residual interactions 

are the residual dipole-dipole interactions (related to insufficiently fast spinning), the 

chemical shift distributions, the intermolecular J couplings (electron-coupled interactions), the 

antisymmetric part of the J couplings, some quadrupole and multipole effects (not present in 

the case of 1H and 13C nuclei). The spin-spin (or transversal) relaxation contributes to the 

broadening with a width of order (πT2)-1, where T2 is the spin-spin relaxation time. Under 

rotational resonance conditions (when the spinning frequency is exactly equal to the 

frequency difference between two resonance lines), extensive cross relaxation is observed, 

leading to line broadening. Microscopic molecular motion in solid samples can already 

narrow the lines but can interfere with MAS. For further narrowing due to MAS, the spinning 

frequency must be higher than that of the molecular motion. 

4. Examples of application of MAS 

To illustrate the effect of MAS frequency on NMR spectra of solid samples, we 

recorded spectra of adamantane, PMMA (s. Figure 1- II-6) and sample Copo1 (s. Part 2, I).  
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CH3

C

CH2
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CH3

 

Figure 1- II-6: 
Formulas of 

adamantane (left) 
and PMMA (right). 

Adamantane can be used to calibrate 1H and 13C spectra in solid-state NMR. It is a 

crystalline powder, but the molecule is ball-shaped, so that it is rotating isotropically in the 

crystal. This type of microscopic motion leads to significant line-narrowing even in the static 
1H spectrum, and thus adds to the line-narrowing achieved via MAS (s. end of the previous 

paragraph). 1H-NMR spectra of adamantane have been recorded static and with different 

spinning frequencies ωMAS on a Bruker MSL300 spectrometer at a 1H frequency of 

300.13 MHz at room temperature (s. Figure 1- II-7). The 1H static full width at half maximum 

is 13.7 kHz, so that the narrowing of the line due to MAS becomes apparent in the spectrum 

at ωMAS = 3 kHz but is not complete below ωMAS = 15 kHz. Furthermore, spinning sidebands 

are observed, with a frequency separation of ωMAS between two consecutive sidebands. 
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Figure 1- II-7: Influence of the MAS spinning speed on the 1H-NMR spectrum of adamantane, at room 

temperature and for a 1H frequency of 300.13 MHz; spinning sidebands are marked with *. 

The effect of MAS on the 13C spectrum is illustrated on Figure 1- II-8. CP-MAS 

spectra of PMMA have been recorded at different spinning frequencies ωMAS on a Bruker 

MSL300 spectrometer at a 13C frequency of 75 MHz and at room temperature. Spinning 

sidebands are observed only for the C=O line, with a frequency separation of ωMAS between 

two consecutive sidebands. Therefore, the intensity is concentrated in the centerband for 
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higher spinning frequencies. Furthermore, the resolution is not changed when the spinning 

frequency is increased from 2 to 5 kHz.  
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Figure 1- II-8: Influence of MAS spinning speed on 13C CP-MAS spectrum of PMMA, at room 
temperature and for a 13C frequency of 75 MHz; spinning sidebands are marked with *. 

The importance of MAS for our investigations is illustrated by the case of the 

industrial sample Copo1, statistical copolymer of 2-ethylhexyl acrylate, methyl acrylate and 

acrylic acid (s. Part 2, I for more details on the composition). 1H spectra were recorded at –

20 °C, static at a 1H frequency of 300.13 MHz and under 25 kHz MAS at a 1H frequency of 

500.13 MHz (s. Figure 1- II-9). It should be noted that the line width in kHz of the dipolar 

broadened lines is independent of the 1H Larmor frequency, and that for a 1H Larmor 

frequency of 500.13 MHz, 1 kHz corresponds to 2 ppm. On this example, it is obvious that 

MAS dramatically increases the resolution in the spectrum. 

-3030 0 kHz

4 2 0 kHz  

Figure 1- II-9: 1H solid-state 
single pulse spectra of 

sample Copo1 at –20 °C, 
static at 300.13 MHz (in 
grey, above) and under 

25 kHz MAS at 500.13 MHz 
(in black, above and below). 
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C. Single pulse excitation 

1. 1H-NMR spectra 

The 1H single pulse excitation is the simplest NMR experiment. Its pulse scheme is 

shown on Figure 1- II-10. 

 (a)  (b) 

1H 

90° 

 

Figure 1- II-10: 
Pulse scheme of 1H 

single pulse 
excitation. 

It should be noted that the timescale 
can not be represented correctly in 
the pulse schemes shown here since 
the pulse durations are of the order 
of magnitude of a few µs, while the 

delays between pulses are of the 
order of magnitude of µs to ms, and 
the FID is of the order of magnitude 

of several ms. 

 At equilibrium, the magnetization is along the main magnetic field B0 axis. The 90° 

pulse ((a), applied through an orthogonal magnetic field B1) rotates it into the orthogonal xy-

plane. The detection of the magnetization, (b), is immediately done in the xy-plane, leading to 

the free induction decay (FID), and to the spectrum after Fourier transformation.  

2. 13C-NMR spectra 

There are two classical methods to obtain one-dimensional 13C spectra: single pulse 

excitation and cross-polarization (CP, s. paragraph D.). The 13C single pulse excitation is the 

simplest 13C NMR experiment. Its pulse scheme is shown on Figure 1- II-11. 

 (a)  (b) 

1H 

90° 

DD

13C 
Figure 1- II-11: Pulse 
scheme of 13C single 

pulse excitation. 

In the single pulse experiment, the pulse program consists of one 90° pulse in the 

carbon channel, (a), which flips the 13C magnetization of 13C nuclei in the plane perpendicular 

to B0 where it is immediately recorded (b). During the data acquisition, the 13C nuclei are 

decoupled from the surrounding 1H nuclei by irradiating the 1H nuclei with a continuous rf 
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field. This heteronuclear decoupling procedure eliminates the broadening of the 13C lines due 

to strong heteronuclear dipole-dipole coupling between 1H and 13C. 

D. Cross-polarization (CP) 13C-NMR spectra 

1. Principle70,71 

In natural abundance, 99 % of carbons are 12C nuclei, while only 1 % are 13C nuclei. 

Since only the 13C isotope is NMR-sensitive, and its γ is lower than the one of 1H by a factor 

of 4, the signal in 13C spectra is very low compared to 1H spectra. Consequently, methods 

were developed to increase the sensitivity in spectra of 13C or other rare nuclei. 

Cross polarization (CP) is a method used to obtain 13C magnetization not directly from 

T1 relaxation (like in the case of single pulse excitation), but indirectly via 1H magnetization. 

It usually provides a higher polarization (and therefore more signal), and allows more 

frequent measurements (because the T1 relaxation is faster for the hydrogen than for the 

carbon nuclei). Thus, spectra similar to single pulse 13C spectra can be obtained within a 

shorter measurement time, provided the sample has only a limited mobility. 

The experiment is divided in three parts: the flip of the hydrogen magnetization to the 

xy-plane (a), the transfer of the magnetization between 1H and 13C nuclei in the xy-plane (b), 

and the recording of the FID (c) (s. Figure 1- II-12).  

 (a)    (b)   (c) 

1 H     

90°   

DD CP   

13 C     CP   

magnetization transfer 

Figure 1- II-12: Pulse 
scheme for the 13C CP 

experiment. 

In the first part (a) of the experiment, the 1H magnetization is driven to the xy-plane 

through a 90° pulse. In the part (b) of the experiment, the cross-polarization (CP) is realized 

during a defined contact time TCP. During this time, magnetization is exchanged between 1H 

and 13C nuclei. This polarization transfer is possible via heteronuclear dipole-dipole 

interactions since the 1H nuclei are locked with an rf field B1
1H, while the 13C nuclei are 

irradiated with a different magnetic field B1
13C =  4⋅B1

1H, so that they finally have the same 
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precession frequency ωC = γC
.B1

C = γH
.B1

H = ωH in the locking fields. Under these so-called 

Hartmann-Hahn conditions,72 1H and 13C nuclear spins can efficiently exchange 

magnetization. Detection of the FID of the 13C nuclei takes place in the part (c), with dipolar 

decoupling of the 1H nuclei. 

2.  Optimization of the CP contact time71 

The CP magnetization transfer occurs during the part (b) between 1H and 13C. During 

this period, both 1H and 13C loose magnetization (in the orthogonal plane) through T1ρ 

relaxation phenomena (corresponding to the relaxation under an applied B1 field). Efficient 

magnetization transfer is possible only if the relaxation time constants T1ρ are higher than the 

time constant TCH of the magnetization transfer. As the cross-polarization and the T1ρ 

relaxation of the 1H nuclei are the fastest phenomena, the intensity MC(t) of the 13C nuclei 

magnetization over the time follows approximately Equation 1- II-4: 

)1()( 1
0

CHTtTt
C eeMtM −− −⋅⋅= ρ  Equation 1- II-4

where M0 is the initial 1H magnetization, T1ρ the longitudinal relaxation time of 1H nuclei 

under Hartmann-Hahn conditions, and 1/TCH the magnetization transfer rate from 1H to 13C 

nuclei under Hartmann-Hahn conditions. 

The intensity of the magnetization of a 13C nucleus as a function of the contact time 

TCP is shown on Figure 1- II-13. 

 

TCP

M
C

1-2 ms 

TCH ≈ 50-100 µs 

T1ρ
1Η ≈ 1-50 ms Figure 1- II-13: Intensity 

of the magnetization of 
the 13C nuclei MC as a 

function of contact time 
TCP in a CP experiment. 

 The time constant TCH of the cross-polarization depends on the proximity of 1H nuclei 

close to the 13C nucleus, and on their mobility: the closer the 1H nuclei, the faster the transfer 

occurs; the more mobile the 1H nuclei, the weaker the dipole-dipole coupling and the more 

slowly the transfer occurs. The time constant T1ρ characterizes the relaxation of the 1H nuclei 

bound to the 13C nucleus and depends mostly on the mobility of these 1H nuclei: the more 

mobile, the slower they relax. Finally, the 13C nuclei bound to 1H nuclei can be selected by 

using a short CP contact time, while the ones not bound to a 1H nucleus can be selected by 

using a long CP contact time followed by a waiting time without any pulse (to dephase the 
13C nuclei signal by attached 1H nuclei) preceding the detection of the FID (this procedure is 

known as “gated decoupling”). 
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 The increase of the 13C signal, i.e. the ratio of the intensities obtained using CP and 

single pulse techniques, has in theory a maximal value of γ1H/γ13C = 4. However, this value is 

seldom achieved. Furthermore, in the case of very mobile samples, less signal is obtained 

with CP than with single pulse excitation. 

3. Lee-Goldburg CP 

1H nuclear spin diffusion is the magnetization transfer taking place in a sample 

without material transport. It is occurring via flip-flop processes (s. paragraph B.1.b), due to 

the 1H-1H dipole-dipole couplings which are operative during Hartmann-Hahn cross-

polarization with 50 % of their full strength.73 It hinders the recording of a local information, 

because it spatially averages properties over the groups through which the magnetization has 

traveled. It is nevertheless possible to prevent 1H nuclear spin diffusion during CP by the use 

of Lee-Goldburg cross-polarization (LG-CP) instead of classical CP. 

During LG-CP, an off-resonant B1 field is applied to the 1H spins, in such way that the 

effective field in the rotating frame is inclined at the magic angle θm = 54°44” with respect to 

the static magnetic field along the z-axis.74 The LG irradiation thus significantly suppresses 

the 1H-1H homonuclear dipole-dipole couplings.75 Therefore the 1H nuclear spin diffusion, 

mediated by the 1H-1H homonuclear dipole-dipole couplings, is prevented. 

E. Two-dimensional wideline separation (2D-WISE) 

Information on the mobility in the sample and its correlation with the chemical 

structure can be obtained from two-dimensional wideline separation (2D-WISE) spectra. 

1. Principle73,76 

The 2D-WISE experiment is a two-dimensional version of the CP experiment. Its 

pulse scheme is shown on Figure 1- II-14. The magnetization of the hydrogens of the sample 

is flipped to the xy-plane through a 90° pulse, then it evolves during a given evolution time t1, 

before magnetization transfer is done between hydrogens and carbons through dipole-dipole 

couplings under the Hartmann-Hahn conditions72; finally the carbon magnetization is 

recorded using 1H dipolar decoupling. 
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1 H   

90° 

DDCP

13 C 
magnetization transfer

  CPt 1 t2

Figure 1- II-14: 
Pulse scheme for 

2D- WISE 
experiment. 

Since only 1D data can be directly acquired in conventional NMR (the direct 

dimension, or t2, corresponding to the FID), the second direction must be recorded indirectly. 

This is done by incrementing the evolution time t1 (indirect dimension) and recording 

different FIDs for the various t1 values. Indeed, the intensity of the virtual 1H signal after the 

time t1 is encoded as the intensity at the beginning of the FID recorded during t2. By putting 

side by side these different FIDs, a 2D time-dataset is obtained. A 2D Fourier transform is 

applied to this data to obtain a 2D spectrum. 

2. Information obtained from a 2D-WISE spectrum73,76 

In a 2D-WISE spectrum, the different chemical groups of the molecule are resolved 

according to their chemical shifts in the 13C (direct) dimension, and the line width in the 1H 

(indirect) dimension gives information on the mobility of the corresponding group (the 

narrower the line, the more mobile the chemical group, s. Figure 1- II-15). It should be noted 

that rigorously, the 1H line width does not depend only on the local mobility: CH3 lines are 

usually more narrow than the others due to fast rotation, and CH2 lines are usually broader 

than the CH lines at equivalent mobility, due to the fact that CH2 contains a strongly coupled 

spin pair. 

1 H: mobility

13C: structure

(a)

1 H: mobility

13C: structure

1 H: mobility

13C: structure

(a)

 

Figure 1- II-15: 
Information 

contained in a 2D-
WISE spectrum; (a) 
scheme, (b) example 
of a polymer blend 

of more mobile 
poly(vinyl methyl 

ether) (PVME) and 
less mobile 

polystyrene (PS)76.  

1H nuclear spin diffusion occurring during the CP contact time averages the apparent 

mobility over the groups through which the magnetization has traveled. In order to record a 
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local information, it is possible to prevent 1H nuclear spin diffusion by  using the Lee-

Goldburg CP instead of classical CP (s. paragraph D.3). 

F. 1H Longitudinal or spin-lattice relaxation T1 

The longitudinal relaxation T1 (or spin lattice relaxation) was introduced in paragraph 

A.2. It can be measured by the inversion recovery method introduced by Erwin Hahn.77-79 The 

pulse scheme for 1H is shown on Figure 1- II-16. The 1H magnetization is first flipped to the –

z axis via a 180° pulse. Then it relaxes longitudinally along the z-axis during the evolution 

time τ. Finally it is flipped via a 90° pulse in the xy-plane where it is recorded. 

 

1H 

90°180° 

τ 
Figure 1- II-16: 

Pulse scheme for the 
1H inversion 

recovery experiment. 

 The final intensity is recorded for a series of τ values. The data are fitted with the 

Equation 1- II-5 to  extract the relaxation time T1. 

( ) ( )[ ]10 exp21 TMM ττ −⋅−⋅=  Equation 1- II-5 

In the case of an imperfect inversion pulse, the factor 2 is replaced by a variable factor, which 

is determined via the fit of the experimental data, and should remain close to 2.79  

The longitudinal relaxation can also be measured using a saturation recovery 

experiment, which is faster but less accurate.80 

G. Dipolar filter 

The so-called dipolar filter allows to select the magnetization in some parts of a 

sample according to their mobility. It was introduced by Schmidt-Rohr et al.6 
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1. Concept of mobility 

Mobility in the NMR sense is closely related to local mobility of the molecule. The 

terms mobile and non mobile in NMR depend on the experiment carried out.  

For most of the NMR techniques, the relevant time scale is the one needed by local 

molecular reorientations to average out an anisotropic NMR interaction (e.g. dipole-dipole 

interaction, chemical shift anisotropy). In the case of the dipolar filter technique, the relevant 

interaction is the dipole-dipole interaction and its averaging time scale corresponds to the 

transversal T2 relaxation time. Thus the corresponding local molecular motion takes place in 

the kHz regime. A molecule with local motion slower than the kHz regime will be considered 

as non mobile on the NMR time scale, a molecule with local motion faster than the kHz 

regime will be considered as mobile on the NMR time scale. NMR experiments (e.g. via the 

dipolar filter) are able to differentiate molecules with motion in the kHz regime as more 

mobile (resp. less mobile) if the corresponding local molecular motion is faster (resp. slower).  

  For other NMR experiments, in particular longitudinal T1 relaxation or NOE (s. 

paragraph I), the relevant time scale is the Larmor frequency in the tens or hundreds of MHz 

regime. A molecule exhibiting a local motion with a correlation time shorter than the inverse 

of the Larmor frequency will be considered in the fast motion limit, in the opposite case it will 

be considered in the slow motion limit.  

Possible causes of reduction of mobility on the NMR time scale in polymeric materials 

are lowering of the temperature towards Tg, chain branching, entanglement, or slower 

dynamics of the main chain with respect to the side chain. 

2. The dipolar filter6 

The dipolar filter selects the more mobile parts of a sample with regard to the 

dynamics of the corresponding 1H nuclei. The selection is thus done based on a contrast 

between the dipole-dipole interaction strength in the different parts of the sample. Indeed, the 
1H nuclei with a T2 relaxation constant higher than a critical value have a magnetization at the 

end of this filter. The dipolar filter consists of a succession of 90° pulses with different phases 

(s. Figure 1- II-17). It is designed to average all interactions (dipole-dipole couplings as well 

as the chemical shift) of the 1H nuclei. However, the windows τ between the pulses are not 

kept as short as usual, but are set to rather long values of 10-30 µs. This varies the typical 

limit rate for mobility of less mobile and more mobile parts (its inverse) between 33 and 

100 kHz. As a result, the averaging is not effective for large dipole-dipole couplings (in the 

less mobile parts) and the magnetization of the corresponding 1H nuclei relaxes (with an 

exponential decay of short characteristic time T2). Indeed, spins in the less mobile parts are 
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strongly coupled, therefore can undergo flip-flops easily and frequently, and dephase very 

quickly. The remaining magnetization is located at the more mobile 1H nuclei for which the 

dipole-dipole coupling is small (and the characteristic time T2 long), as a result of partial 

averaging due to high molecular mobility. In this way, only the more mobile regions of the 

sample are magnetized after application of the dipolar filter. To improve the selectivity, the 

filter pulse scheme is repeated up to 20 times. We define the filter strength as the ability of the 

filter to select a lower mobile fraction: it is increased by increasing either the number of 

cycles or the duration τ. 

x 

τ 
τ 
2 

τ 
2 τ τ τ τ τ τ τ τ τ τ 

x x -x -x-xx -x-y -y  y y 
Figure 1- II-17: Pulse 
scheme for the dipolar 
filter (the series of 12 

pulses is repeated up to 
20 times).6 

H. 1H nuclear spin diffusion81,82 

The term spin diffusion has been introduced by Bloembergen to describe the transport 

of spin polarization between spatially separated spins; this spatial spin diffusion is the process 

occurring between equivalent spins.83 The molecular mobility in a sample can be 

characterized according to its spatial heterogeneity using the 1H nuclear spin diffusion 

technique with dipolar filter.6 

1. Concept of nuclear spin diffusion 

Nuclear spin diffusion is the spatial diffusion of the nuclear magnetization, which 

usually takes place without material transport. It is then mediated by dipole-dipole couplings, 

and therefore is most efficient among 1H nuclei. The spins are coupled via dipole-dipole 

interactions, and each spin is in the energy state "spin up" or "spin down". Only a difference 

in the amount of "spin up" and "spin down" spins results in a bulk magnetization. A spin pair 

with one "spin up" and one "spin down" can undergo a coherent flip-flop exchange of 

magnetization if the two spins are dipolar coupled: the "spin up" spin becomes "spin down" 

and vice versa. The total magnetization is not changed during this process, but step by step, its 

spatial distribution in the sample evolves in the network of interacting spins. The 

magnetization transfer involved in the 1H nuclear spin diffusion experiment usually consists 

of a succession of such flip-flop processes. 

2. Goal of the experiment 

The goal of the 1H nuclear spin diffusion experiment with dipolar filter6 is to 

determine the percentage of more mobile 1H nuclei in the sample, as well as the size of the 
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heterogeneities in dynamic heterogeneous samples. Spatial dynamic heterogeneities are more 

mobile micro-domains in a less mobile matrix, or vice-versa. From the surface-to-volume 

ratio of an interface, the domains can be modeled as lamellae, cylinders or spheres.84 1H 

nuclear spin diffusion is an appropriate method for characterization of heterogeneity sizes in 

the range from a half to several tens of nm.84,85 Nevertheless, it is not appropriate for a full 

characterization of the domain shape.85 The principle of the experiment is the following: first 

select the polarization of the more mobile parts only by dephasing the magnetization in the 

less mobile parts of the sample, then allow the magnetization to diffuse during a certain time 

tm and finally record the evolved FID. The original idea of a nuclear spin diffusion experiment 

is from Goldman and Shen;86 the selection is done in the present work through the dipolar 

filter6 (s. paragraph G). It should be noted that the selection in the 1H nuclear spin diffusion 

experiment can also be done according to various other criteria, including T1ρ relaxation time 

or 1H chemical shift.84,87  Nuclear spin diffusion has also been investigated between rare 

nuclei like 13C.88,89 The 1H nuclear spin diffusion with dipolar filter has been applied already 

to various polymer samples, including block copolymers,81 blends,81 core-shell particles82,90 

and conetworks (polymer chains covalently bonded by block of another polymer)91.  

3. Choice of the operating temperature 

Before conducting a 1H nuclear spin diffusion experiment, the optimal operating 

temperature must be chosen. This is done via a study of the 1H line shape at different 

temperatures. At low temperatures, the whole sample is little mobile, so that the 1H spectrum 

is broad, while at high temperatures, all the fractions of the sample are highly mobile, so that 

the 1H resonances are narrow. In the usual case, intermediate temperatures are the interesting 

ones, because the sample contains both less and more mobile parts: the line exhibits a narrow 

component and a broad one (s. Figure 1- II-18). The optimal and usual operating temperature 

is a temperature at which the less and the more mobile parts are present in similar (or 

stoichiometric) amounts, so that the areas of the more and of the less mobile parts in the 

spectrum are similar. 
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Figure 1- II-18: 
Shape of the 1H line 
of an heterogeneous 
sample containing 

more and less mobile 
parts at intermediate 

temperatures. 
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4. Pulse program87 and principle of the experiment 

The 1H nuclear spin diffusion experiment is a typical exchange experiment, consisting 

of an evolution or selection period, a mixing time tm and a detection period. Its pulse scheme 

is shown on Figure 1- II-19. The spatial evolution of the magnetization in the sample is shown 

on Figure 1- II-20. 

n 

τ tm τ τ τ τ τ τ τ τ τ τ 

+x   –y   +x   +x  –y   +x  –x   +y   –x  –x   +y   –x       +x   ±x  

(a) (b) (c)  

Figure 1- 
II-19: 
Pulse 

scheme for 
1H nuclear 

spin 
diffusion 

experiment.

 (a) 

detection 

(b) 

Figure 1- II-20: 
Schematic 

representations of the 
evolution of the 

magnetization in the 
sample during a 1H 

nuclear spin diffusion 
experiment; the more 

mobile parts are shown in 
light grey, the less mobile 
parts in dark grey; left, 
spatial evolution where 

the intensity of the 
magnetization is 

represented by the 
number of arrows; right, 
corresponding schematic 

1H line shape. 

 

The selection of the more mobile parts of the sample is done with a dipolar filter (a) (s. 

paragraph G). At the end of this filter, only the more mobile 1H nuclei of the sample possess 

magnetization. Then the magnetization remaining in the xy-plane is driven to the z-axis. 

During the mixing time tm (b), 1H nuclear spin diffusion (or migration of nuclear polarization) 

occurs, usually through the effective dipole-dipole coupling among 1H nuclei. The remaining 

magnetization diffuses throughout the whole sample, usually mediated via flip-flops, and the 

heterogeneous distribution of polarization achieved by the dipolar filter equilibrates gradually. 

Then the magnetization present along the z-axis is driven to the xy-plane where the FID is 

recorded (c) and analyzed. 

The first structural elements reached by the magnetization through diffusion are those 

in close proximity to the initially polarized 1H nuclei. The morphological organization within 
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a sample therefore determines the time dependence of the magnetization equilibration 

process. Vice-versa, the spin diffusion behavior contains valuable information about typical 

domain size85 and phases geometry.84,85 

5. Data analysis81 

a) Recording of the 1H nuclear spin diffusion curve 

Several FIDs are recorded as a function of mixing time tm and Fourier transformed. 

The line shape changes in two ways over tm: the bottom of the line becomes broader and the 

total intensity (line area) decreases. The broadening of the line indicates that a less mobile 

part of the sample is observed, so that a part of the magnetization has diffused from a more 

mobile to a less mobile part of the sample. The decrease of the total intensity is due to T1 

relaxation (or longitudinal relaxation).  

The decay of the intensity of the more mobile 1H magnetization is monitored over the 

mixing time as the area of the corresponding line. In the usual case of a high mobility 

contrast, the recorded spectrum indeed exhibits only a narrow line for very small tm, and for 

increasing tm a broad line of increasing area appears below it. The area of the narrow line is 

then quantified by adjusting a spectral window narrower than the broad line (to eliminate the 

broad line) and integrating the remaining narrow line.81 

The monitored decay is due to two factors: 1H nuclear spin diffusion and T1 relaxation. 

In order to separate the effects of 1H nuclear spin diffusion and of T1 relaxation, the 

magnetization is alternatively stored along +z and –z during the mixing time tm, and the 

corresponding transients are subtracted.84 To correct the data for T1 relaxation, the recorded 

intensity I of the more mobile parts is divided by the intensity obtained for the same mixing 

time without application of the dipolar filter.81,87 

 The so-corrected intensity is then normalized by the initial intensity I0. A decreasing 

curve is therefore obtained for I/I0 plotted against √tm (s. Figure 1- II-21). Because of the 

appearance of multiple-quantum coherences around tm=0, it is impossible to measure reliably 

the intensity at tm=0.84 Fortunately, the dependence upon tm of the intensity corrected for T1 

relaxation is linear for small tm, so that the intensity at tm=0 can be extrapolated. The 1H 

nuclear spin diffusion curve is then normalized, in such a way that the re-extrapolated 

intensity at tm=0 is equal to 1, to obtain the final (corrected and normalized) 1H nuclear spin 

diffusion curve.84 
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Figure 1- II-21: Typical 
1H nuclear spin diffusion 
curve, corrected for T1 

relaxation, plotted as the 
corrected normalized 

intensity I/I0 against the 
square root of the mixing 

time. 

b) Comparison of the longitudinal relaxation with the diffusion times 

The use of the z-alternation phase cycling described above could not separate T1 and 

spin diffusion effects in the general case.92 However, in the case of a spatially homogeneous 

T1, the recorded data can simply be corrected by multiplication of the data by exp(+tm/T1) 

with a T1 value easily obtained in a measurement without selection,84 or as described above 

using intensities from a reference experiment. If T1 exhibits a strong spatial dependence, then 

this correction for T1 relaxation is not valid any more, and the only reliable data will be 

obtained for mixing times much shorter than the shortest T1.84 In that case of mixing times on 

the order of magnitude of the T1 relaxation, the spin diffusion can still be qualitatively 

distinguished from the T1 relaxation, if one component was completely suppressed initially 

and the z-alternation phase cycle is used.84 

c) Information obtained from the 1H nuclear spin diffusion curve 

The first information obtained from the 1H nuclear spin diffusion curves is the plateau 

value P (s. Figure 1- II-21) which corresponds to the percentage of selected magnetization 

after application of the dipolar filter. It is the percentage of more mobile (in the NMR sense) 
1H nuclei in the sample, according to the chosen filter conditions and temperature. 

The second information is the domain size dsize (lamella thickness, cylinder or sphere 

diameter, s. Figure 1- II-22). It should not be confused with the long period dL determined in 

X-ray scattering (total thickness of 2 successive lamellae, distance between two consecutive 

cylinders or spheres).84 The domain size dsize is related to the intercept of the initial slope with 

the X-axis (s. next paragraph). It should be noted that, according to the Babinet´s principle, 

the initial decay does not exhibit any difference between the case of less mobile domains in a 

more mobile matrix and the inverse case.84 
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Figure 1- II-22: Domain size dsize (dM or dR) determined by 1H nuclear spin diffusion, compared to the 
long period (dL) determined via X-ray scattering; (a) case of lamellae, (b) case of cylinders or spheres.

d) Determination of the plateau value 

Since the transition between the more mobile and the less mobile phases is not an 

actual interface, but rather an interphase, there is no clear definition of phase around 

interphase, and therefore a dependence of plateau value on the filter parameters.90 With 

decreasing interphase thickness, the plateau values determined for a given set of dipolar filters 

become closer to each other. Moreover, a slightly different domain size is determined for each 

curve. In the usual case of a high mobility contrast, the filter is adjusted to select roughly the 

stoichiometric proton ratio of more mobile phase.81,91  

e) Quantification of the domain size 

The domain size dsize (dM or dR, s. Figure 1- II-22) is calculated using the Equation 1- 

II-6: 

*2
meffsize tDd ⋅⋅⋅=

π
ε  Equation 1- II-6 

where *mt  is the intercept of the extension of the initial slope with the X-axis (s. Figure 1- 

II-21), ε the number of orthogonal dimensions relevant for the effective magnetization 

diffusion process (1 for lamellae, 2 for cylinders and 3 for spheres), and Deff the effective 1H 

nuclear spin diffusion coefficient through flip-flops. The inverse of the square root of the 

effective diffusion coefficient Deff is the arithmetic average of the inverses of the square roots 

of the 1H nuclear spin diffusion coefficients of the more mobile and less mobile phases Dmob 

and Drig (s. Equation 1- II-7). 
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For polymeric samples with a high dynamic contrast, the value of the less mobile 

phase 1H nuclear spin diffusion coefficient is usually taken equal to the one measured for PS 

below its Tg: 0.8 nm2.ms-1,81 due to the similar hydrogen densities for organic polymers (in 

the order of magnitude of 0.8·1023 cm-3). The value of Dmob can be determined using its 

correlation with the relaxation time T2. This empirical correlation has been established in the 
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group of Prof. Spiess (s. Figure 1- II-23),81,93 using three different lamellar block copolymers 

(more mobile polyisoprene and less mobile polystyrene, with different molar masses for the 

blocks) and a polymer blend (cylinders of more mobile poly(ethylene oxide) in crosslinked 

poly(hydroxyethyl methacrylate)). The domain sizes of these polymers were known from 

transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR 

experiments were carried out at different temperatures (from 0 to 50 °C) to obtain several 

relaxation times in the more mobile phase of each polymer. 
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Figure 1- II-23: Correlation 
between the time constant for 

transversal relaxation T2 and the 
1H nuclear spin diffusion 

coefficient Dmob; PI: 
polyisoprene, PEO: poly(ethylene 

oxide).81,93 

f) Measurement of the T2 relaxation time64 

The T2 relaxation time has to be measured independently. This measurement can be 

done either using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, or by measuring the 

line width of the static 1H spectrum.  

The CPMG experiment consists of a 90° pulse followed by a delay τ' and by a series 

of 180° pulses, separated by a delay 2·τ' (s. Figure 1- II-24). The magnetization is refocused 

by the 180° pulses and the T2 relaxation constant is the exponential decay constant of the 

intensity recorded at full echoes (in the middle between consecutive 180° pulses, where the 

intensity is maximal). 

τ' 

90° 

2.τ' 2.τ' 

etc.

1st echo 2nd echo 3rd echo

180° 180° 180° 

Figure 1- II-24: 
Pulse scheme of the 
CPMG experiment 

to measure T2.  

It is possible to determine the relaxation time of the more mobile part alone using CPMG 

experiments, by applying the CPMG pulse scheme immediately after a dipolar filter. The 
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CPMG experiments allows to quantify T2 correctly only if the sample is very mobile (liquid-

like); otherwise the 180° pulses do not refocus the magnetization fully, and this causes an 

additional decay of the magnetization. 

 For samples of intermediate mobility, the T2 relaxation time can be quantified via the 
1H static line width. Assuming that the line shape is Lorentzian, the full width at half 

maximum (fwhm) is equal to the ratio 1/(π·T2
*). The constant T2

* is related to the genuine T2 

relaxation time by the equation 1/T2
* = 1/T2 + γ.∆B, where γ.∆B characterizes the additional 

reversible broadening of the line caused by the inhomogeneity of the static field B0. Even if 

the fwhm allows to determine only T2
*, which is not exactly T2, the error done on T2 that way 

is smaller than the error done with CPMG for the samples that are not completely mobile. 

I. Nuclear Overhauser effect (NOE)94 

1. The Overhauser effect 

Albert Overhauser first predicted substantial creation of nuclear polarization via 

saturation of electron spin resonance, through hyperfine coupling.95,96 Felix Bloch then 

described a similar transfer of magnetization occurring between nuclear spins through dipolar 

coupling.97 This nuclear Overhauser effect (NOE) was first measured in relaxation 

experiments conducted on anhydrous hydrofluoric acid HF98,99 and various organic 

compounds: 2,3-dibromothiophene,100 formic acid and acetaldehyde,101 formyl fluoride 

CHFO102. The use of NOE (change of intensity of one resonance when another is irradiated) 

in structural problems has been first demonstrated by Anet and Bourn.103  

NOE has become of central importance in molecular biology where it allows the 

complete determination of the 3D structures of large biological macromolecules in solution. 

However, we will not review this by far predominant application of NOE here, but rather 

concentrate on its less common application to non biological macromolecules. It should be 

noted that NOE spectroscopy was also used for structural studies in various other compounds 

like small molecules crystals,104 coal,105 hydrogels,106 dendrimers,107 transition metal complex 

ion pairs,108 coordination and organometallic oligomers109, surfactants in solution110. 

2. Cross-relaxation mechanism  

Nuclear cross-relaxation is caused by mutual spin flips in pairs of dipolar coupled 

spins which are induced by motional processes. Cross-relaxation leads to a non coherent 

transfer of magnetization between the spins and hence to intensity changes, known as NOE. A 

coherent transfer would imply a periodicity in the time evolution of intensities in a two-spin 

system, which is not the case in non coherent relaxation processes like NOE. In the case of 
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cross-relaxation, the fluctuations of the dipolar interaction between two spins indeed induces 

zero-, single- and double-quantum transitions (and not coherences, s. Figure 1- II-25). Only 

zero- and double-quantum transitions involve simultaneous flips of both spins and contribute 

to NOE.111 The single-quantum transitions only contribute to independent spin-lattice 

relaxation of the individual spins. 

αβ

ββ

αα

βα
W0

W2

W1A W1B

W1AW1B

Figure 1- II-25: Energy level 
diagram for a two spin system, 

showing definitions for transition 
probabilities W and spin states; 
the subscripts 0, 1X, 2 designate 

respectively zero-quantum 
transition, single-quantum 

transition with flip of X spin (left: 
spin A, right: spin B), double-

quantum transition.94 

The transition probabilities depends on the motional correlation time τc. τc is the 

correlation time of the isotropic random process which modulates the dipolar coupling 

interaction.112,113 It is designated by Levitt as the rotational correlation time and roughly 

defined as the average time taken by a molecule to rotate by one radian in the case of 

molecular tumbling in liquids.114 The evolution of the transition probabilities with τc is shown 

on Figure 1- II-26. The usefulness of the NOE technique strongly depends on the time scale 

of the motional processes involved. The fast motion limit, or extreme narrowing limit, 

corresponds to a motion with a correlation time τc much lower than the inverse of the Larmor 

frequency ω0; it applies to small molecules in non viscous solutions. The slow motion limit, 

or spin diffusion limit, corresponds to τc >> ω0
-1; it applies to macromolecules at high 

magnetic field. 

W0

W2

W1X

log ω0τc0

lo
g 

W

fast 
motion

slow 
motion

Figure 1- II-26: Evolution 
of the transition 

probabilities W with the 
motional correlation time 

τc (right).94 

It is clearly seen on Figure 1- II-26 that cross-relaxation occurs predominantly by 

double-quantum transitions in the fast motion regime, and predominantly by zero-quantum 

transitions in the slow motion regime.111 This results in negative cross-relaxation rates -RAB 

and -RBA (s. Equation 1- II-8 and Equation 1- II-9 for notations) in the case of fast motion 
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limit, and in positive cross-relaxation rates in the case of slow motion limit. The physical 

meaning of positive or negative cross-relaxation rate is represented on Figure 1- II-27. In the 

slow motion limit, the spin-lattice relaxation is inefficient, and the rate of cross-relaxation is 

very fast.115 For a critical correlation time of 
02

5
ω⋅

, the cross-relaxation rates are equal to zero. 

A

B

-RAB>0(a)

A

B

-RAB>0(a)

A

B

-RAB<0
(b)

A

B

-RAB<0
(b)

Figure 1- II-27: Visualization of the magnetization transfer process; (a) positive cross-relaxation rate in the 
slow motion limit, (b) negative  cross-relaxation rate in the fast motion limit.114 

3. Different kinds of NOE experiments 

a) Steady-state NOE 

Early 1D NOE measurements were mostly concerned with steady-state Overhauser 

effects obtained by selectively saturating one spin while observing the intensity changes 

occurring on other spins. This is expected to induce a positive enhancement in the fast motion 

limit. In the slow motion limit, it is expected to result in a rapid saturation of all resonances 

and a lack of sensitivity due to extended spin diffusion116 (i.e. coherent magnetization transfer 

via dipolar couplings). 

Measurements of steady-state NOE were used to investigate structural and dynamical 

features in bulk polymers. Concerning the structural aspects, the studies followed a method 

reported at the first occurrence of intermolecular 1H-1H NOE experiments117 on a mixture of 

chloroform, cyclohexane and tetramethylsilane. Intermolecular 1H-1H steady state NOE 

experiments were used to probe miscibility on the molecular level in polymer blends via the 

proximities between protons in the different polymer chains, for polystyrene/poly(vinyl 

methyl ether)118,119 and polybutadiene/polyisoprene120 melts. A similar work was done on a 

poly(ethylene oxide)/crosslinked polysiloxane semi-interpenetrated network (semi-IPN).121 

Intermolecular 1H-13C NOE experiments were used for the same purpose in various polymer 

blends.122 

Measurements of intramolecular 1H-13C NOE were used to investigate molecular 

dynamics in polymer melts, either by detecting changes of motional regime by changes of 

NOE enhancement, or by comparing NOE enhancement variations with e.g., temperature, 
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with molecular dynamics models. This was done on various polymer melts: polyethylene,123-

125 polypropylene,126 polyisoprene,127 polybutadiene,128 polyoxymethylene129. 

b) Transient one-dimensional NOE 

Compared to steady-state NOE, more specific information can be obtained from 

transient Overhauser effects where the redistribution of the magnetization is studied as a 

function of time after a selective inversion of one spin. The first NOE measurements, carried 

out on HF, were transient 1H-19F and 19F-1H NOE experiments.98 In the fast motion limit, 

transient 1D NOE is expected to result in weak positive transient enhancement. In the slow 

motion limit a negative effect is expected to be rapidly washed out by extended spin diffusion.  

In the slow motion limit, the initial build up rates of the NOE’s depend only on the 

cross-relaxation coefficient between the irradiated spin and the observed nuclei and thus are 

directly related to the inverse of the sixth power of the internuclear distances in the three-

dimensional structure of the macromolecule.130 After reaching a maximum, the lines decay to 

zero via spin-lattice relaxation, thus allowing to determine spin diffusion pathways in 

macromolecules.130 

Measurements of 1D 1H-13C transient NOE were used to investigate structural features 

in bulk polymers. In polystyrene and polycarbonate based glassy homopolymers the NOE 

originates in methyl groups, and the 1H nuclear spin diffusion leads to decrease in build-up 

rate and increase in induction delay for increasing distances from the methyl group.131 In 

branched polyethylene melts, NOE was used to differentiate branch lengths longer than six 

carbons according to their respective build-up rate.132  

c) Two-dimensional NOE spectroscopy (NOESY) 

The original idea of 2D NMR was proposed by Jeener,133 while the theory and 

experiments were first published by Ernst’s group.134 It consists in irradiating the sample with 

a series of two pulses separated by a delay t1, before recording the FID during the time t2. The 

t1 delay is varied and a FID is recorded for each t1 value. A two-dimensional Fourier 

transform is applied to the two-dimensional signal intensity (2D since depending on t1 and t2), 

to obtain a two-dimensional spectrum. 

The 2D NOE spectroscopy was introduced by Jeener, Ernst et al.135 The pulse scheme 

for the homonuclear experiment is shown in Figure 1- II-28. It consists of a sequence of three 

non selective 90° pulses. During the variable evolution time t1, the components are frequency-

labeled. During the fixed mixing time τm, cross-relaxation leads to incoherent transfer of 

magnetization between nearby protons through mutual dipolar interactions. In the obtained 

2D spectrum, the intensity on the diagonal depends on the specific relaxation rate of each 
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nucleus, while the cross peaks relate the components between which magnetization was 

transferred to each other. 

1H 

90°

τm

90° 90° 

t1 t2 

evolution mixing detection 

 

Figure 1- II-28: 
Pulse scheme for 
homonuclear 2D 
NOE experiment. 

The 2D NOE technique is expected to induce weak negative cross peaks in the fast 

motion limit, and strong positive cross peaks in the slow motion limit (s. Figure 1- II-29).  
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Figure 1- II-29: Schematic form of the NOESY spectrum (a) in the case of slow motion limit, (b) in the case of 
fast motion limit.114 

It should be pointed out that this is opposite to what is expected in a 1D transient 

experiment. Indeed, the cross-relaxation rates are of same sign in both experiment, but the 

initial conditions are opposite. Apart from this sign, 2D and transient 1D NOE experiments 

produce identical enhancements for the whole course of the experiment, except for a factor of 

2.115 2D NOESY has a two advantages over 1D-NOE experiments:136 since it consists in a 

simultaneous investigation of all NOE processes,112,113 it saves time and avoids problems 

arising from a non perfectly selective pre-irradiation. This experiment is extensively used in 

liquid-state NMR and predominantly applied to the investigation of biological 

macromolecules in solution, since it allows studies in non deuterated water, thus in native 

conditions.137 

2D transient 1H-1H NOE spectroscopy was used under MAS to investigate slow chain 

motions in SBR elastomers;138 a theory relating the cross-relaxation rate with the rotor 

spinning frequency and the motion correlation time(s) was developped.139 

The logical extension of 2D NOE experiment is the 3D NOE experiment. Its 

theoretical aspects were presented together with experimental data,140 but no application to 

non biological macromolecules was reported up to now. 
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4. Equations describing the cross-relaxation between two groups of 

equivalent spins in NOESY 

a) General case 

The first relaxation equations including cross-relaxation were presented by Solomon.98 

The theory underlying two-dimensional studies of cross-relaxation and of transient nuclear 

Overhauser effect was detailed by Macura and Ernst.112,113 A clear and simple explanation of 

the concepts, the matricial description, and data processing in the slow motion limit is 

presented by Likic.141 The results detailed by Macura and Ernst112,113 will be presented here. 

As noted above, 2D and transient 1D NOE experiments produce identical enhancements for 

the whole course of the experiment (except that the 2D NOE rate is the double of the 1D 

one).115 

The cross-relaxation occurring in a system composed of nA magnetically equivalent A 

spins and nB magnetically equivalent B spins with spin quantum number I=1/2 is considered 

here. The respective Larmor frequencies are noted ωA and ωB. The vector m, comprising the 

deviation of the longitudinal magnetization components from equilibrium, obeys Equation 1- 

II-8, where Rxx and Rxy respectively correspond to the spin-lattice relaxation rates ρ and the 

cross-relaxation rates σ in Solomon’s notation98; m&  designates the time derivative of m. 
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The elements of the cross-relaxation matrix can be expressed by the transition 

probabilities W, resulting from AA, AB and BB interactions, and by the external relaxation 

rates R1A and R1B, which take into account possible interactions with further spins (s. 

Equation 1- II-9). In this equation, the subscripts 0, 1(A) and 2 relate respectively to zero-

quantum transition, single-quantum transition (with flip on A nucleus), double-quantum 

transition; the superscripts ij relate to both nuclei involved in the corresponding transition. 
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The transitions probabilities W obey Equation 1- II-10, with the spectral densities 

Jxy(ω) and the constants qxy defined in Equation 1- II-11. In the latter, τC
xy is the correlation 

time of the isotropic motion which modulates the xy interaction, µ0 is the permeability of 

space, γx is the magnetogyric ratio of spin x, ħ is the reduced Planck´s constant, and rxy the 

internuclear xy distance. It should be noted that the equation given for the spectral density is 

obtained for a rigid molecule undergoing isotropic random motions.141 It should pointed out 
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that the investigated phenomenon is local due to its dependence on the inverse sixth power of 

the internuclear distance. 
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The evolution of the diagonal and cross-peaks intensities with the mixing time τm then 

obeys Equation 1- II-12, where M0 is the total equilibrium magnetization of the nA+nB nuclei. 
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RL and RC are defined in Equation 1- II-13. 
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The complicated general equation Equation 1- II-12 for the time evolution of the 

diagonal and cross-peaks intensities can be simplified according to several assumptions. Only 

the case of slow motion limit in an homonuclear spin system will be considered here. In the 

slow motion limit, ωXτC >> 1 and in an homonuclear system (ωX-ωY)τC ≈ 0, therefore 

W1
XY=W2

XY=0, and only the zero-quantum transitions contribute to cross-relaxation. They are 

responsible for the energy-conserving flip-flop transitions αβ⇔ βα. These transitions lead to 

spin diffusion and to an exchange of energy between the two spins. In that case, the cross-

relaxation process is a pure spin diffusion process.112 Assuming equal external relaxation rate 

R1 for all nuclei, simple equations are derived for the time evolution of the diagonal and 

cross-peaks intensities. 

b) Case of an homonuclear spin pair in the slow motion limit112 

In a two-spin system AB, the zero-quantum transition probability is W0
AB=q⋅τC, and 

the evolution of the diagonal and cross-peaks intensities with the mixing time τm obeys 

Equation 1- II-14. 
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An example of evolution of the diagonal and cross-peaks intensities with the mixing 

time τm in a two spin system in the slow motion limit is shown on Figure 1- II-30. 
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Figure 1- II-30: Example 
of dependence of the 

diagonal and cross-peaks 
intensities with the mixing 

time τm in a 2D NOE 
experiment conducted on a 
two spin system AB in the 

slow motion limit.112 

c) Case of two groups of equivalent homonuclear spins AnBn in the 

slow motion limit112 

In a system composed of two groups of n equivalent nuclei AnBn, the zero-quantum 

transition probability is W0
AB=n⋅qAB⋅τC

AB, and the time evolution of the diagonal and cross-

peaks intensities obeys Equation 1- II-15. 
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d) Cross-relaxation in other spin systems 

Likic141 describes three- and four-spin systems in the slow motion limit, in which the 

influence of indirect magnetization transfer (from spin A to spin B, then to spin C) competing 

with cross-relaxation (direct transfer from A to C) in multi-spin systems is illustrated. It leads 

to multiexponential behavior of the peaks intensities, and thus to erroneous data interpretation 

when assuming monoexponential behavior. 

A theory of transient NOE relaxation for rigid proteins in solution (with only CH3 

rotation as internal motion) was developed by Kalk and Beredsen.116 It shows a cross 

relaxation rate inversely proportional to the sixth power of the distance between the involved 

nuclei.  

Theories were also developed to describe cross-relaxation rates in linear arrays of 

spins,142 and in infinite model systems composed of regular lattices or helices.143 

An exact solution for NOE enhancement intensities beyond the initial rate region can 

be obtained for multispin systems using matrix equations; alternatively numerical integration 

of the Solomon equation can be computed.115 
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III. Conclusion and strategy 

The goal of this Ph.D. work is to characterize industrial pressure sensitive adhesive 

samples, using solid-state NMR techniques. The samples provided by Atofina are statistical 

poly(alkyl acrylates) copolymers, with different alkyl side chains, containing also other 

components (s. Part 2, I). The literature survey on PSAs (s. Part 1, I) showed that these 

materials are currently characterized mainly according to their macroscopic properties 

(adhesive, cohesive, mechanical), and that little is known about the exact relation between 

these macroscopic properties and the molecular chain dynamics or the crosslinking. However, 

it is empirically known that chain dynamics, as well as crosslinking (e.g. in the form of 

branching or nanophase separation) play a major role in the adhesive properties of the 

materials. The solid-state NMR was introduced in paragraph II, and several techniques were 

detailed. We will now propose several promising ways to characterize nanophase separation, 

branching and chain dynamics in PSA samples during this Ph.D. work. 

A. Branching 

Crosslinking in general is of major importance in the adhesive properties of PSAs. 

Crosslinking can occur in the form of covalent crosslinking (from the introduction of a 

crosslinker or extensive long chain branching), of hydrogen bonding between acrylic acid 

units and of physical crosslinking (through nanophase separation). Branching in poly(alkyl 

acrylates) occurs at a significantly higher level than in e.g., poly(alkyl methacrylates),144 and 

is currently under investigation in several research groups (s. Part 2, II.C).  

The branching is best quantified in poly(alkyl acrylates) using 13C 1D NMR. Up to 

now, a solution-state technique using single pulse excitation145,146, as well as a solid-state 

technique using cross-polarization147,148 have been reported. However, both present 

drawbacks, such as poor solubility or long measuring time. Therefore it would be useful to 

optimize the chain branching quantification via 13C NMR. Our work on this topic will be 

presented and discussed in Part 2, II.B, the investigations were conducted directly on the PSA 

samples. 

It should be emphasized here that high resolution 13C NMR allows the quantification 

of branching, but doesn’t differentiate between short chain and long chain branches, because 

it characterizes the structure of the branch points, which is the same for the two of them in 

polyacrylates.149 No experimental method is known to quantify separately these two 

contributions. However, other methods exist which allow the detection of long chain 

branches. These are e.g., dynamic mechanical analysis and multiple-detection size-exclusion 
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chromatography (SEC). However, emulsion poly(alkyl acrylates), as a result of their 

polymerization process, contain a considerable portion of high molar mass and / or highly 

branched or crosslinked polymer (gel), which is only swellable but not completely soluble in 

common solvents.24 Our characterization of some model samples using multiple detection 

SEC will be detailed in Part 2, III.E. 

B. Chain dynamics 

The distance from Tg and the viscoelastic properties play a major role in the adhesive 

properties of PSAs. Both are closely related to chain dynamics. Diverse solid-state NMR 

techniques allow for the characterization of chain dynamics in polymers.4 An elegant way to 

quantify chain dynamics, combined with the elucidation of molecular mechanism, was 

presented by Wind5,150,151 and Kuebler152 via 1D and 2D solid-state NMR techniques in 

poly(n-alkyl methacrylate) melts. Due to their similar chemical nature differing only in a 

methyl group on the backbone (s. Figure 1- III-1), these techniques could be easily applied to 

poly(alkyl acrylates). 
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Figure 1- III-1: Chemical 
structure of (a) poly(n-alkyl 

acrylates) and (b) poly(n-alkyl 
methacrylates). 

However, these techniques require 13C and 2H selectively labeled samples. Thus, they 

can not be applied directly to the industrial samples, but model samples are needed. The 

poly(n-alkyl acrylates), PnAAs, are appropriate model samples for the investigated industrial 

PSAs, whose major component is a poly(alkyl acrylates) copolymer. Our work concerning the 

synthesis of selectively labeled PnAAs is detailed in Part 2, III.C.1. 

C. Nanostructuring 

As stated above, crosslinking can occur in the form of physical crosslinking through 

nanophase separation. Physical crosslinking was extensively characterized in styrene-

isoprene-styrene triblock copolymer PSAs. A similar kind of nanostructuring, by far much 

weaker, could occur in acrylic PSAs. Such a nanostructuring has indeed already be revealed 

in poly(n-alkyl methacrylates), PnAMAs5,153 (s. Part 3, I). There, the molecular motion is 

hindered by the presence of organized nanodomains.150 Due to their similar chemical nature 
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(s. Figure 1- III-1), the poly(alkyl acrylates) could exhibit a similar local organization, which 

would influence the adhesive properties of acrylic PSAs. 
1H nuclear spin diffusion is a method of choice to investigate structuring on the 

nanometer length scale (s. paragraph II, H), provided one of the phases can be selected. In the 

case of a mobility contrast, as expected here, the dipolar filter is particularly well suited (s. 

paragraph II, G). In order to detect a possible nanostructuring in poly(alkyl acrylates), the 1H 

nuclear spin diffusion technique with dipolar filter has to be tested first on models samples, in 

which a nanophase separation is present. The PnAMAs are particularly appropriate for this 

purpose. If this test is conclusive, the same technique could be applied to PnAAs, and then to 

the multicomponent PSAs. Our work using the 1H nuclear spin diffusion technique and the 

dipolar filter is presented in Parts 3 to 5. 
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Part 2: Presentation and characterization of PSA 

and model samples 
 All the samples investigated during the present Ph.D. work are presented in this Part 2. 

Apart from the industrial PSA samples provided by Atofina, the complex solid-state NMR 

investigations required model samples. All the characterizations using rather fast methods will 

be detailed in this part. The investigations using more complex solid-state NMR methods will 

be presented in the following parts 3 to 5.  

 The industrial pressure-sensitive adhesive samples will be described in paragraph I, 

together with their simplest characterization. Then the available model poly(n-alkyl 

methacrylates) and the synthesized model poly(n-alkyl acrylates) will be presented in 

paragraph II, together with their simplest characterization. In paragraph III, the branching 

quantification in PSA samples using solid-state NMR will be detailed. In paragraph IV, the 

multiple detection SEC investigation of the model poly(n-alkyl acrylates) will be shown. 

I. Description and characterization of the industrial pressure sensitive 

adhesive samples 

A. Description 

1. Chemical composition 

The samples provided by ATOFINA (Cerdato, Serquigny, France) were obtained via 

emulsion copolymerization of 2-ethyl-hexyl acrylate, methyl acrylate, acrylic acid and a 

crosslinking comonomer (s. Figure 2- I-1). They are not commercial grades, but similar to 

commercial samples and synthesized for research purposes. Since the nature of the crosslinker 

is confidential, it will only be designated by CL below. The crosslinking is assumed not to be 

covalent but rather to occur via hydrogen bonds between CL monomeric units and acrylic 

acid monomeric units.  

O O

2-ethyl-hexyl acrylate (2EHA) 
methyl 
acrylate 
(MA) 

acrylic
acid 
(AA) 

O OHO O

+ CL 

Figure 2- I-1: Comonomers used to synthesize the studied samples. 
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The quantitative composition of the samples is given in Table 2- I-1. The samples 

Copo2 and Copo3 differs only by the synthesis temperature (85 °C for Copo3, 60 °C for all 

other PSA samples). 

Sample Composition (wt%) 
Homo2EHA 2EHA + AA (1 %) 
Copo1 2EHA (80 %) + MA (19 %) + AA (1 %) 
Copo2 2EHA (79.5 %) + MA (18.75 %) + AA (1 %) + CL (0.38 %) + MMA (0.38 %)
Copo3 2EHA (79.5 %) + MA (18.75 %) + AA (1 %) + CL (0.38 %) + MMA (0.38 %)

Table 2- I-1: Quantitative composition of the PSA samples. 

 The samples were provided in the form of a latex. The sample Copo1 contains a 

biocide, which prevents bacteria from growing in the sample, and should not be detected in 

the NMR experiments since only 0.1 % of a 0.1 % solution has been added to the sample. The 

crosslinker CL is added in form of a comonomer mixture containing exactly 50 % of CL and 

50 % of methyl methacrylate, and the percentage given below is the percentage of CL alone 

and not the one of the added mixture. All the percentages given for chemicals in this work are 

weight percentages. It should be noted that a 80 / 20 2-ethyl-hexyl acrylate / methyl acrylate 

weight ratio corresponds to a 66 / 33 molar ratio. The molar masses of the polymers in the 

samples is expected to be higher than 500,000 g.mol-1, based on confidential DMA results. 

Indeed, as a result of their polymerization process, emulsion poly(alkyl acrylates) contain a 

considerable portion of high molar mass and / or highly branched or crosslinked polymer 

(gel), which is only swellable but not completely soluble in common solvents, so that the 

molar mass distribution could only be obtained from the soluble fraction of these films).24  

The only additives expected to be seen during NMR measurements are the surfactants. 

The latex samples contain one anionic and one non-ionic surfactant, whose characteristics are 

given in Table 2- I-2. The role of the anionic surfactant is to provide electrostatic stability, the 

role of the non ionic one to provide steric stability (this one is rather soluble in the 

polymerizing particle as long as it is swollen with monomer). The surfactants are available in 

the form of an aqueous solution, with 70 % content for the non-ionic one, 30.7 % for the 

anionic one.  

Name, 
type 

Formula wt% in 
samples 

Disponil 
AES63IS, 
anionic O CH2 CH2 OSO3

-

30

C9H19 Na+

 

1 % 

Disponil 
NP307, 
non ionic O CH2 CH2 OH

30

C9H19

 

1 % 

Table 2- I-2: 
Description 

of the 
surfactants. 
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2. Synthesis 

The samples were synthesized at Cerdato using a semi-batch (or semi-continuous) 

process. It is schematically described on Figure 2- I-2, a more detailed description can be 

found in appendix in Part 7, I.A. 
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Figure 2- I-2: Schematic description of the three steps of the semi-continuous seeded emulsion 
polymerization of the industrial PSA samples. 
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3. Expected copolymer structure 

In free-radical emulsion copolymerization, the homogeneity of the monomer 

sequences along the polymer chains depends on the reactivity ratios and the relative water 

solubilities of the monomers, as well as on the type of polymerization process employed.154 In 

the case of the copolymerization of two monomers A and B, the terminal model155 associated 

with the Q-e scheme developed by Alfrey and Price156 is often used to predict the statistics of 

the monomeric unit sequences for some monomers. For the free radical copolymerization of 

2EHA and MA, the following values can be calculated: r2EHA=0.91 and rMA=0.94.157 These 

two ratios are very close to 1, meaning that a statistical copolymer should be obtained. 

Concerning the behavior of AA, its copolymerizations with 2EHA and MA are governed by 

rAA values higher than 1, what would imply that AA tends to homopolymerize. Finally, the 

composition implied by the reactivity ratios alone would be a statistical copolymer, in which 

AA tends to form blocks.  

However, many studies proved that the terminal model is not valid, because it doesn’t 

take into account the influence of the penultimate unit.158-161 Therefore, the Q-e scheme based 

on it is also not valid. Finally, the reactivity ratios for the copolymerization (r1 and r2 based on 

the terminal model) are only experimental fitting parameters, which can be used only for the 

pair of monomers on which they were determined. Since they have not been determined for 

2EHA/MA, MA/AA or 2EHA/AA pairs, we can not apply them to our samples. 

 Since the microstructure of the polymer can not be determined using reactivity ratios, 

it can be estimated with regard to the water solubility and the type of polymerization process. 

The water solubilities of the three comonomers are very different (s. Table 2- I-3), therefore 

the polymerization tends to be heterogeneous: AA is partitioned between the aqueous and the 

polymer phase, while 2EHA and MA are located almost only in the latter one. Furthermore, 

since the initiator is water soluble, the initiation and the first steps of propagation occur in the 

aqueous phase, so that the monomeric units located at the end of the polymer chains are 

preferentially AA, and then MA. 

Monomer Water solubility 
(g of monomer per 100 g of water)

Ref.

2EHA 0.01 162 
MA 5.2 163 
AA Infinite 164 

Table 2- I-3: 
Solubility of 
the involved 
monomers in 

water. 

 

The polymerization process implies the most homogeneous possible copolymerization: 

it is a semi-continuous process, under monomer-starved conditions. Consequently, a statistical 

copolymer is expected. Furthermore, with this process, the monomer concentration is low in 
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the particles during the polymerization, while the polymer concentration is high. Thus it 

promotes a high degree of inter-or intramolecular transfer to the already formed polymer, 

resulting in a branched polymer structure:146 We expect a branching level of  few percents of 

the monomeric units.  

Finally, branched statistical copolymers are expected, with possibly a higher density 

of AA monomeric units at the surface of the particles and at the end of the polymer chains. 

B. Solid content, particle size and calorimetric properties 

A classical characterization of the samples has first been realized through 

measurement of the solid content and the particle size of the latices, as well as measurement 

of the Tg of the films. This first step had two goals: first, to be sure that the received sample 

didn’t degrade during the transportation, and second to create a databank on the analysis of 

our samples with the apparatus in Mainz, in order to check the non-degradation of the samples 

over time. The values specified by Atofina won’t be reported here for confidentiality reasons. 

1. Solid content and particle size 

The solid content was measured by gravimetry and the particle size by light scattering. 

The results for the PSA latices are indicated in Table 2- I-4.  

Sample Homo2EHA Copo1 Copo2 
Solid content 56 % 55 % 55 % 
Mean particle diameter 260 ± 6 nm 214 ± 6 nm 210 ± 6 nm

Table 2- I-4: Solid 
content and particle size 

of the PSA samples. 

2. Glass transition temperature  

a) Differential scanning calorimetry measurements 

The results of the DSC measurements are shown in Table 2- I-5. Only one Tg is 

detected for each sample, which is in accordance with the expected statistical character of the 

copolymers.  

Sample Homo2EHA Copo1 Copo2 
Tg (°C) 213 (-60 °C) 225 (-48 °C) 226 (-47 °C)
∆Cp (J.g-1.K-1) 0.35 0.35 0.35 

Table 2- I-5: Tg of the PSA 
samples, measured with DSC 

at 10 K.min-1. 

A first order endothermic peak is observed around 40 °C for the sample Homo2EHA. 

It is in fact the superposition of the melting peaks of the anionic and non-ionic surfactants, 

respectively located at 39 and 45 °C. They probably correspond to the crystallization of the 

oligo(ethylene oxide) units (as a comparison, pure high molar mass poly(ethylene oxide), 

PEO, exhibits a melting point of 65 °C). These values were measured on pure surfactants 

samples (available as aqueous solutions, which were freeze-dried), using the same 

temperature cycle as for the polymer samples. It should be noted that this peak is seen only 

for the homopolymer of 2EHA, which has the lowest Tg. Furthermore, this peak is clearly 
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seen even if the total amount of surfactants is 1 wt%, since the first order transitions (e.g. 

melting) are more energetic than the second order ones (e.g. glass transition). 

b) Comparison with literature values 

Several values can be found for the Tg of 2EHA, varying from 188 K (dilatometry154) 

to 223 K162,165, depending on the method used for the measurement. A value of 215 K 

measured by DSC at 20 K.min-1 has been reported,1 which is in accordance with the value 

reported here. 

The Tg of a copolymer of two monomers A and B can be approximately calculated 

from several equations,166 of which the probably most well known is the Fox-equation167: 

B
B

A
A

Tg
w

Tg
w

Tg +=1  Equation 2- I-1

where wA and wB are the mass fractions of the monomeric units A and B, TgA and TgB are the 

respective glass transition temperatures of the corresponding homopolymers in Kelvin. The 

glass transition temperatures of the involved comonomers are given in Table 2- I-6. 

Homopolymer Tg (K) 
poly(2EHA) 215 (-58 °C) 
poly(MA) 295 (22 °C) 
poly(AA) 403 (130 °C) 

Table 2- I-6: Glass transition 
temperatures of the involved 
comonomers, measured with 

DSC at 20 K.min-1.1 

A statistical copolymer of 80 % of 2EHA with 20 % MA would have a Tg of: 

004399.0295
2.0

215
8.01

2
2 =+=+=

MA
MA

EHA
EHA

Tg
w

Tg
w

Tg , thus ( )CKTg °−= 46227  

which is in agreement with the measured values. 

 As a conclusion, all the measured Tg values are in good agreement with the values 

found in the literature. 

3. Thermogravimetric analysis 

 The results of the TGA measurements are shown Table 2- I-7.  

Sample Homo2EHA Copo1 Copo2 
Decomposition 
temperature (K) 

399 
(Tg+186 K)

375 
(Tg+151 K)

381 
(Tg+155 K)

Table 2- I-7: 
Characterization of the 
PSA samples with TGA. 

At temperatures higher than the measured decomposition temperature, transesterification 

could occur in the samples.168 Therefore it was chosen not to exceed Tg+110 K in the 

investigations done in the present Ph.D. work.  

C. Adhesive and mechanical properties 

The mechanical and adhesive properties of films cast from the PSA samples were 

investigated at Cerdato. For testing the adhesive properties, the latex samples were coated to a 

poly(ethylene terephtalate) backing. With this setup, rolling ball tack, loop tack, 180° peel 
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adhesion, static shear and SAFT tests were done (s. Part 1, I.C. for a description of the tests). 

The results of these tests are confidential. 

 The following mechanical properties of the PSA samples were investigated at Cerdato: 

master curves representing the storage and loss moduli (G’ and G’’) as a function of the 

frequency, the dependence of storage and loss moduli on the temperature, the dependence of 

the tan δ value (ratio of the G’ to the G’’ moduli) on the temperature (s. Part 7, III.A for a 

short reminder of viscoelastic properties). These mechanical properties are confidential.  

It sometimes happens that a sample exhibits a higher G’ value in the rubber plateau than other 

samples (indicating that it is more crosslinked), but also a worse cohesion. A possible 

explanation would be an heterogeneous distribution of the crosslinking points in the sample, 

preventing the crosslinking points to percolate in the material (s. Figure 2- I-3). 

Homogeneous distribution Heterogeneous distribution 

Crosslinking
point

Limit of a more 
crosslinked zone 

Direction of 
percolation for 

crosslinking points
 

Figure 2- I-3: 
Possible distributions 

of the branching 
points in PSA 

samples. 

D. Chemical characterization of the samples via solid-state NMR 

1. 1H spectra 

The chemical structure of the samples was studied using 1H solid-state NMR. A good 

resolution was achieved by recording the spectra with single pulse excitation, at a 1H Larmor 

frequency of 500.13 MHz, using fast MAS. The lines of the spectra were assigned to the 

corresponding 1H nuclei of the polymer (s. Figure 2- I-4 for the assignment and Figure 2- I-5 

for the proton identification by number of the next carbon atom), according to incremental 

calculations of the chemical shift for each proton. 
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Figure 2- I-4: 
1H solid-state 

NMR spectra of 
the PSA 

samples, 1H 
frequency: 

500.13 MHz, 
60 °C, 25 kHz 

MAS (80 °C and 
12 kHz MAS for 
sample Copo1); 

the line 
assignment is 
the same for 
Copo1 and 
Copo2, it 

contains also 
the lines 

assigned for 
Homo2EHA. 
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Figure 2- I-5: 
Identification of the 

protons and carbons of 
the different monomeric 

units of the PSA 
samples. 

 

2. 13C spectra 

The chemical structure of the samples was also studied using 13C solid-state NMR. 

There are two classical methods to obtain one-dimensional 13C spectra, combined with MAS: 

single pulse excitation and cross-polarization (CP-MAS) (s. Part 1, II.C and D. for more 

details). 
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a) Single pulse excitation 

The lines were assigned to the corresponding 13C atoms of the different monomeric 

units (s. Figure 2- I-6), according to incremental calculations of the chemical shift for each 
13C nucleus (s. paragraph E.1.).  
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CH3 (15) 
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C=O (3, 18) 

C=O (14) 

CH2 (12) 

CH (13) 

Figure 2- I-6: 13C single pulse excitation NMR spectra of the PSA samples, 1H frequency: 300.13 MHz, 
5 kHz MAS, room temperature; the line assignment is the same for Copo1 and Copo2, it contains also the 

lines assigned for Homo2EHA. 

b) 13C CP-MAS 

 For each sample, the CP contact time was varied, in order to study its influence on the 

intensities of the lines (s. Figure 2- I-7 to Figure 2- I-9). The lines of the spectra are located at 

the same chemical shifts as the lines obtained by single pulse experiments. 
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Figure 2- I-7: 13C CP-MAS spectra of the sample Homo2EHA recorded for different CP contact 

times, 1H frequency: 300.13 MHz, 5 kHz MAS, room temperature. 
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Figure 2- I-8: 13C CP-MAS spectra of the sample Copo1 recorded for different CP contact times, 1H 
frequency: 300.13 MHz, 5 kHz MAS, room temperature. 
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 Figure 2- I-9: 13C CP-MAS spectra of the sample Copo2 recorded for different CP contact times, 

1H frequency: 300.13 MHz, 5 kHz MAS, room temperature. 

 At least one broad line can be distinguished from the noise for the samples Copo1 and 

Copo2, what is not the case for the sample Homo2EHA. This can be explained by the higher 

rigidity of the first two samples, which have a higher Tg due to the presence of the MA 

comonomer. 

3. Conclusion 

It has been checked by 1H and 13C solid-state NMR spectroscopy that the chemical 

structure of the industrial sample corresponds to the one expected from monomers used in the 

synthesis. 

Furthermore, it is observed that at room temperature single pulse excitation gives 

significantly higher signal-to-noise ratio and resolution than CP for the investigated PSA 

samples. 

 

II. Description, synthesis and characterization of model samples 

The model samples are poly(n-alkyl methacrylates), PnAMAs and poly(n-alkyl 

acrylates), PnAAs. All were used as model samples for the investigations using the dipolar 

filter. Furthermore, 13C and 1H selectively labeled PnAAs were meant to be used as model 

samples for the investigations of chain dynamics. PnAAs and PnAMAs in general will be 

compared first in paragraph A. Then, the PnAMAs available in our group will be described in 
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paragraph B. Finally, the synthesis and characterization of PnAAs will be detailed in 

paragraphs C and D. 

A. Comparison of poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) 

The poly(n-alkyl acrylates), PnAAs, and poly(n-alkyl methacrylates), PnAMAs, have 

a very similar chemical structure, since they only differ in a methyl group on the backbone (s. 

Figure 2- II-1).  
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(b) 
Figure 2- II-1: General 

formulae for (a) 
poly(n-alkyl acrylates) 

and (b) poly(n-alkyl 
methacrylates). 

Nevertheless, the presence or absence of the methyl group gives rise to very different 

physical properties for the two families of polymers. In particular, the PnAMAs have a much 

stiffer backbone, so that the dynamics of the polymer chains is much slower than in PnAAs; 

this results in a much higher Tg for the PnAMAs with small alkyl side chains (shorter than 8 

carbons, s. Figure 2- II-2). It should be noted that the tacticity has an influence on the Tg of 

the polymer only for PnAMAs.169 PnAAs produced by free-radical polymerization are atactic, 

while PnAMAs produced by free-radical polymerization have a high syndiotactic content. 
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Figure 2- II-2: Glass transition temperature of PnAAs and PnAMAs as a function of the 

length of the alkyl side chain, from Kine et al.162, Plazek et al.169, Penzel et al.1 and this work. 
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Besides these very different physical properties, the two families of polymers have a 

polar backbone (including the carbonyl group) and flexible non polar alkyl side chains in 

common. Therefore similar dynamic and structural features as the ones observed in PnAMAs 

could be present also in PnAA’s. It has to be noted that comparison studies carried out on 

PnAMAs and PnAAs have to be conducted not at the same temperature, but at the same 

temperature difference relative to Tg. In particular, since the long term goal of our study is to 

investigate PSA samples at room temperature, corresponding to Tg+70 K, the investigation of 

the model samples should be centered at Tg+70 K. 

B. Presentation of model poly(n-alkyl methacrylate) homopolymers 

1. Presentation of the samples 

The model poly(n-alkyl methacrylate), PnAMA, samples were provided by Wind. 

They were obtained by free-radical polymerization. The glass transition temperature (Tg) was 

measured with differential scanning calorimetry (DSC) at 10 K.min-1. Furthermore, all 

samples have a high tendency to syndiotacticity (60 to 70 % of rr triads were measured with 

high resolution NMR in solution in CDCl3, s. Part 7, III.B. for definitions and notations). 

More details can be found in the Ph.D. thesis of Wind5 and Kuebler152. 

Sample Polymer, label Tg (K) 
PMMADMC poly(ethyl methacrylate), 2H on main chain (100 %) 398 (125 °C) 
PEMA poly(ethyl methacrylate), no label 342 (69 °C) 
PEMA13C poly(ethyl methacrylate), 13C at C=O (20 %) 338 (65 °C) 
PEMADSC poly(ethyl methacrylate), 2H on side chain (100 %) 353 (80 °C) 
PEMADMC poly(ethyl methacrylate), 2H on main chain (100 %) 345 (72 °C) 
PBMA poly(n-butyl methacrylate), no label 302 (29 °C) 
PBMA13C poly(n-butyl methacrylate), 13C at C=O (20 %) 307 (34 °C) 
PHMA13C poly(n-hexyl methacrylate), 13C at C=O (20 %) 277 (4 °C) 

Table 2- II-1: Presentation and glass transition temperature of the model PnAMAs. 

2. Calculation of true molar masses 

The average molar masses Mn and Mw were determined using size exclusion 

chromatography (SEC) calibrated with PMMA standards, in THF at room temperature.5,152 As 

will be detailed in paragraph IV.A, the conventional calibration done with PMMA standards 

yields true molar masses only if the investigated polymers are of same chemical nature, i.e. 

PMMA. In the case of PEMA, PBMA, PHMA, the true molar masses can be calculated from 

those determined with PMMA calibration by using universal calibration. The universal 

calibration equation of Benoît,170,171 BBAA MM ⋅=⋅ ][][ ηη , is combined with the Mark-Houwink-

Sakurada (MHS) equation, [ ] αη MK⋅= , where [η] is the intrinsic viscosity, M the molar mass, 

K and α the MHS parameters which can be found in the literature. Equation 2- II-1 is 
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obtained, which allows to convert the molar mass MPMMA determined for polymer X using 

PMMA calibration into the true molar mass MX of polymer X.172 

1
1

1 ++
⎟
⎠
⎞

⎜
⎝
⎛= XPMMA

PMMA
X

PMMA
X M

K
KM

αα  Equation 2- II-1 

The MHS parameters K and α are given in Table 2- II-2 for the investigated PnAMAs. 

It should be noted that the parameter given for PMMA, PEMA and PBMA are recommended 

by the IUPAC working party on “modeling of polymerization kinetics and processes”, and 

thus selected among different literature values. On the contrary, the parameters given for 

PHMA are extracted from a single literature source. 

Sample K⋅105 (dL.g-1) α ref.
PMMA 9.44 0.719 173 
PEMA 9.70 0.714 173 
PBMA 14.8 0.664 173 
PHMA 1.94 0.76 174 

Table 2- II-2: Mark-
Houwink-Sakurada 

(MHS) parameters for 
investigated PnAMAs 

in THF at 30 °C. 

 

Using Equation 2- II-1, the true molar masses were calculated from the molar masses 

previously determined using conventional calibration with PMMA standards. 

PMMA calibration5,152 True molar masses Difference (%)Sample 
Mn Mw Mw/Mn Mn Mw Mw/Mn Mn Mw 

PMMADMC 68 300 124 500 1.83 - - - - - 
PEMA 112 900 153 300 1.36 115 000 156 200 1.36 1.8 1.9 
PEMA13C 54 500 120 000 2.20 55 400 122 200 2.21 1.6 1.8 
PEMADSC 117 100 170 000 1.46 119 300 173 300 1.45 1.8 1.9 
PEMADMC 76 400 105 700 1.38 77 700 107 600 1.38 1.7 1.8 
PBMA 44 600 80 400 1.80 48 500 89 100 1.84 8.7 9.8 
PBMA13C 125 700 203 300 1.83 141 400 232 400 1.64 11.8 13.4 
PHMA13C 129 800 278 800 2.15 65 500 138 300 2.11 -65.8 -76.4 

Table 2- II-3: Molar masses of the model PnAMAs; Mn and Mw are given in g.mol-1; the error is calculated 
with respect to the average of the two values. 

It is observed that the difference between the molar masses obtained using PMMA 

calibration and the true molar masses is very low for PEMA samples (lower than 2 percents); 

it is lower than the experimental error coming from the SEC analysis itself, evaluated at 

roughly 5 to 10 % for Mw and 15 to 20 % for Mn.175 It should be noted that a difference in 

tacticity could lead to and additional 20 % error in the case of PEMA,176 but that the PMMA 

standards and the investigated PEMA samples had a similar syndiotactic content. In this case, 

the use of the molar masses determined using PMMA calibration introduces a negligible 

error. It is not the case of the PBMA samples, for which the introduced error is approximately 

as high as the experimental error, and can not be neglected any more. However, the order of 

magnitude of the measured value is still valid. In the case of PHMA sample on the contrary, 

the molar masses determined using a PMMA calibration are totally erroneous. An error larger 
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than 60 % is observed with respect to average of the two molar masses, which corresponds to 

an error of 100 % with respect to the true molar masses. Therefore it is necessary in the case 

of PHMA samples to consider the universal calibration and recalculate the true molar masses. 

The difference in behavior of model PnAMAs might be attributed a different solubility in 

THF at 30 °C. 

It should be noted that the molar masses are high enough to have no influence on the 

local chain dynamics investigated in Parts 3 to 5. 

C. Synthesis of model poly(n-alkyl acrylate) homopolymers 

1. Target poly(alkyl acrylates) 

Model poly(alkyl acrylates) were needed for studying the chain dynamics and for the 

investigations using the dipolar filter (s. Part 1, III.C). Our aim was to synthesize alkyl 

acrylates homopolymers with different linear alkyl side chains (s. Figure 2- II-1(a)) to study 

the influence of alkyl side chain length. Since these polymers tend to crystallize for alkyl side 

chains longer than octyl,177 we decided to synthesize the homopolymers with the following 

alkyl side chains: methyl (PMA, x=1), ethyl (PEA, x=2), butyl (PBA, x=4), hexyl (PHxA, 

x=6). 

Apart from the non labeled polymers, it would have been interesting to synthesize also 

labeled ones for the investigation of the chain dynamics (s. Part 1, III.B). However, the 

synthesis of labeled alkyl acrylates turned out to be much more time consuming than the one 

of labeled methacrylate monomers (s. Part 7, I.B.2), and thus too time consuming for a Ph.D. 

work were the main focus is on characterization. Therefore we decided to synthesize only non 

labeled samples and to study them using appropriate NMR methods to spare synthetic efforts.  

The model samples have to be as similar as possible to the industrial ones (e.g., 

concerning the branching level and the broad molar mass distribution). Therefore we chose to 

homopolymerize the n-alkyl acrylates using conventional free-radical polymerization and not 

controlled free-radical polymerization or anionic polymerization. To avoid the presence of 

surfactants in the model samples, we chose to carry out the polymerizations in toluene 

solution and not in emulsion. 

2. Free-radical polymerization of the acrylates 

Each n-alkyl acrylate has been polymerized as a 4.7 mol.L-1 solution in toluene 

initiated by 0.5 mol% of AIBN with respect to the acrylic monomer. The polymerization has 

been carried out at 60 °C under nitrogen for 20 hours. The obtained polymers were purified 

by precipitation at low temperature. More details can be found in appendix in Part 7, I.B.1. 
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D. Characterization of the poly(n-alkyl acrylate) homopolymers 

1. Differential scanning calorimetry and thermogravimetric analysis 

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were 

carried out at 10 °C.min-1. The results of DSC and TGA are given in Table 2- II-4. The 

detected Tg is in accordance with the values found in the literature for each sample (taking 

into account the influence of the heating rate on the detected Tg).  

Sample PMA PEA PBA PHxA 
Tg (K) 
DSC, 10 K.min-1 

294 
(21 °C) 

259 
(-14 °C) 

227 
(-46 °C) 

213 
(-60 °C) 

Tg (K) 
20 K.min-1  1 295 265 230 222 

Decomposition 
temperature 
(TGA, K) 

500 
(Tg+206 K) 

507 
(Tg+248 K) 

514 
(Tg+288 K) 

520 
(Tg+307 K) 

Table 2- II-4: 
Characterization 

of the model 
PnAAs using DSC 

and TGA. 

It should be noted that decomposition of the PBA and PHxA samples was observed during 

NMR measurements after several hours at ca Tg+150 K. 

2. Size exclusion chromatography (SEC) 

Poly(alkyl acrylates) can not be properly characterized using SEC with conventional 

calibration (s. paragraph IV). Multiple detection SEC has to be used for the determination of 

the molar masses. The investigations done using multiple detection SEC require a short 

presentation of the possible multiple detection techniques, and allow to draw conclusions also 

concerning branching in the samples. Therefore, they will be detailed in the separate 

paragraph IV. 

3. Branching level and tacticity 

The tacticity and the branching level of the model PnAAs were measured on 13C 

solution-state NMR spectra of the samples dissolved in CDCl3 at a 13C frequency of 

125.76 MHz. 

a) Branching level (BL) 

According to the literature, the chain branching is much higher in poly(alkyl acrylates) 

than in e.g. poly(alkyl methacrylates) or polystyrene: it can reach a few percents of the 

monomeric units (s. paragraph III, C.2). The branching level (BL, in percents of the 

monomeric units) is measured by dividing the hundredfold of the area of the branched 

quaternary carbon line in a 13C spectra with the sum of the areas of this carbon and the 

corresponding non-branched tertiary carbons on the same spectrum (s. Figure 2- II-3). 
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Figure 2- II-3: Branching in poly(alkyl acrylates), R=alkyl; (a) branched chain with a quaternary 
carbon Cq , (b) linear chain with the corresponding tertiary carbon CHt , (c) formula used to 

calculate the branching level. 

The 13C chemical shifts assignment (including the branched Cq carbon) can be found 

in the literature at 47.2-48.4 149 and 46.5-48.0 178 ppm for PBA and at 47.2-48.4 145 and 

48.0 148 ppm for P2EHA, for solution-state and solid-state NMR. Since the chemical structure 

of the PnAAs are similar, the 13C chemical shifts of the Cq carbon in the four model polymers 

are similar. The integration of Cq and CHt signals was done for the model PMA, PEA, PBA 

and PHxA. The representative example of PEA is given in Figure 2- II-4 and all the results 

are given in Table 2- II-5.  

Figure 2- II-4: 
Integration of branched 

Cq and non branched CHt 
for the model PEA (13C 
solution-state NMR at 
125.76 Hz in CDCl3, at 

room temperature). 

 

Sample BL (%) δ  of Cq (ppm) 
PMA 2.1 ± 0.5 47.1 to 47.9 
PEA 1.6 ± 0.5 47.4 to 48.1 
PBA 2.3 ± 0.5 47.1 to 48 .4 
PHxA 1.8 ± 0.5 47.2 to 48.4 

Table 2- II-5: Branching levels 
for the model PnAAs. 

b) Tacticity 

Definitions and notations are detailed in appendix (s. Part 7, III.B). For PMA, the 

different triads can be detected on the CH line at 41.3-41.6 ppm. Incomplete179 and 

complete180 assignments of the different triads can be found in the literature. For PEA, PBA 

and PHxA the different triads can be detected on the O-CH2 line at 60.4-60.6 ppm for PEA, at 

64.4-64.6 ppm for PBA and PHxA. The assignment can be found in the literature for PEA179, 

PBA180 and poly(pentyl acrylate)181. Since it is the same for PBA and poly(pentyl acrylate), it 
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is assumed to be the same also for PBA and PHxA. The integration of the triad signals was 

done for the model PMA, PEA, PBA and PHxA. The representative examples of PMA and 

PHxA are given in Figure 2- II-5 and all the results are given in Table 2- II-6. 
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Figure 2- II-5: Integration of 
triads signals for (a) PMA and 
(b) PHxA (13C solution-state 

NMR spectra at 125.76 MHz in 
CDCl3, at 29 and 33 °C); the 

curves in black are the recorded 
spectrum and the difference of it 
and of the fitted lines; the curves 
in red, green and yellow are the 

fitted lines. 

 

Sample δ (ppm) Assignment Content (%) Tacticity 
PMA 41.14 rr 36.8 
 41.02 mr 33.1 
 40.90 mm 30.1 

atactic (tendency to 
syndio- and isotacticity) 

PEA 60.37 rr 23.2 
 60.23 mr 51.3 
 60.15 mm 25.5 

atactic 

PBA 64.31 mm 20.8 
 64.18 mr 52.0 
 64.10 rr 27.2 

atactic (slightly 
isotactic) 

PHxA 64.32 mm 23.9 
 64.19 mr 48.5 
 64.11 rr 27.6 

atactic 

Table 2- II-6: 
Tacticity of the 
model PnAAs. 

n.b.: The spectra were first recorded at a frequency of 75.47 MHz, but the signal-to-

noise ratio (S/N) obtained in one week-end at 50 °C was sufficient to quantify only the 

tacticity, and not the branching level.  

 

III. Quantification of branching in PSA samples using 13C NMR 

Branching in poly(n-alkyl acrylates) is not fully understood and cannot be controlled, 

nor avoided in free-radical polymerization. Branching characterization is a relevant issue in 

polymeric materials in general, as it has a significant influence on the material properties.182  
13C NMR spectroscopy (solid-state or solution-state) allows to quantify branching in 

polymeric samples. However, 13C NMR spectroscopy is highly sensitive to short- and mid-

chain branching but typically cannot distinguish branches of 6 carbon atoms or more.182 High 

resolution NMR indeed characterizes the structure of the branch points, which is the same for 

all of them.149 SEC and rheological measurements are both sensitive to long chain branching 
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in the molecule at branch lengths of about 20 carbon atoms or more.182 It thus becomes 

evident that no single analytical technique can uniquely describe the complete branching state 

of a macromolecule.182 Spectroscopic (13C NMR) and chromatographic (multiple detection 

SEC) techniques can supplement each other, as neither is capable of fully describing the 

molecular architecture imparted by the various types of branching.182 

Our investigation of branching in poly(alkyl acrylates) samples is composed of two 

parts. The 13C NMR investigations aim to quantify the total branching level (s. this 

paragraph), and the multiple detection SEC investigations aim to gain information on the 

branching topology (s. paragraph IV).  

Concerning the 13C NMR investigations, our aim was to propose a fast method for 

branching quantification, directly applicable to the industrial PSA samples. The branching is 

best quantified in poly(alkyl acrylates) using 13C 1D NMR. Up to now, a solution-state 

technique,146,183 as well as a solid-state technique147,148 in 28 h have been reported to quantify 

the branching. However, both exhibit drawbacks, respectively solubility problems and long 

measuring time. Therefore it would be useful to optimize the chain branching quantification 

via 13C NMR. The molecular origin of branching in polyacrylates will be presented in 

paragraph A. Then literature survey and our work will be presented and compared, first 

concerning the possible NMR techniques to measure branching (s. paragraph B), then 

concerning the branching levels and branching topology (s. paragraph C). 

A. Molecular origin of branching and crosslinking in poly(alkyl acrylates) 

1. Possible branch topologies 

In order to understand the different possible branch topologies, a few definitions from 

the “glossary of basic terms in polymer science” published by IUPAC184 are cited below. A 

branch is defined as an oligomeric or polymeric offshoot from a macromolecular chain. A 

branch point is a point on a chain at which a branch is attached (in a network, it may be 

termed junction point). A short-chain branch is an oligomeric branch, i.e. a branch having an 

intermediate molecular weight and essentially comprising a small plurality of units derived, 

actually or conceptually, from molecules of low relative molecular mass. A long-chain 

branch is a polymeric branch, i.e. a branch having a high relative molecular mass and 

essentially comprising the multiple repetition of units derived, actually or conceptually, from 

molecules of low relative molecular mass. A star macromolecule is a macromolecule 

containing a single branch point from which linear chains (i.e. arms) emanate. A comb 

macromolecule is a macromolecule comprising a main chain with multiple trifunctional 

branch points, from each of which a linear side chain emanates; if at least some of the branch 
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points are of functionality greater than three, the macromolecule is a brush macromolecule. A 

branched macromolecule should not be mistaken for a graft macromolecule, i.e. a 

macromolecule with one or more species of block connected to the main chain as side-chains, 

these side-chains having constitutional or configurational features that differ from those in the 

main chain. 

The possible branch topologies are illustrated on Figure 2- III-1. A particular branch 

topology is also included, in which multiple branching leads to a “tree-geometry”, with 

branches on branches; this topology is typical of low density polyethylene (LDPE). 

(a) (d) 

(c) 

(b) 
(e) 

 
Figure 2- III-1: Possible branch topologies; (a) comb macromolecule with long-chain branches, (b) comb 

macromolecule with short-chain branches, (c) comb macromolecule with long- and short-chain branches, (d) 
star macromolecule, (e) “tree-geometry” originating in multiple branching and resulting in branches on 

branches. 

2. The origin of branching and crosslinking in poly(alkyl acrylates) 

The kinetic scheme of alkyl acrylate polymerization is presented first, before a 

discussion on the origin of branching and crosslinking topology.  

a) Kinetic scheme of alkyl acrylate polymerization144,185,186 

The kinetic scheme of alkyl acrylate polymerization is shown in the next figures: 

initiation (s. Figure 2- III-2), propagation (s. Figure 2- III-3), termination (s. Figure 2- III-4), 

transfer reactions (s. Figure 2- III-5) and other side reactions (s. Figure 2- III-6).  
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Figure 2- III-2: Initiation step 
of polymerization of alkyl 

acrylates (R=alkyl). 
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Figure 2- III-3: Propagation step of polymerization of alkyl acrylates (head-to-tail addition, R=alkyl).
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Figure 2- III-4: Termination step of polymerization of alkyl acrylates; (a) by combination, (b) by 
disproportionation (R=alkyl). 
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Figure 2- III-5: Transfer reactions of the polymerization of alkyl  acrylates; (a) intermolecular chain 
transfer to polymer, (b) intramolecular transfer to polymer (back-biting if p is small); (c) transfer to any 

species, after which the produced T . radical can act as an initiator (R=alkyl). 
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Figure 2- III-6: Other side reactions of the polymerization of alkyl acrylates; (a) β-scission, (b) 
propagation to a terminal bond produced by β-scission, (c) propagation to a terminal bond produced by 

termination by disproportionation (R=alkyl). 

The transfer to polymer produces a tertiary radical which can reinitiate (leading to 

branches) or undergo β-scission. The β-scission occurs in a polymer chain containing a 

tertiary radical and produces a macromonomer (polymer chain with a terminal double bond). 

Macromonomers are produced in β-scission or in termination by disproportionation, and 

could further copolymerize (leading also to branches). 

b) Discussion of the branching/crosslinking origin and topology 

Acrylic monomers tend to exhibit a significantly more frequent transfer to polymer (s. 

Figure 2- III-5) than styrene or methacrylic monomers.144 This results in branching of 

poly(alkyl acrylates), especially during emulsion polymerization (because the local 

concentration of polymer is higher than during solution polymerization).146 Via termination 

by combination of branched polymers (s. Figure 2- III-4), it can lead to crosslinking, although 

it is possible to prepare highly branched and not crosslinked polyacrylates.  

The amount of intermolecular chain transfer to polymer is characteristic of the 

monomer, and is difficult to control directly even by varying the polymerization temperature 
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(because its temperature dependence is unknown). On the contrary, introducing a crosslinker 

makes it possible to control more precisely the amount of crosslinking (by varying the 

crosslinker concentration, but this only increases the amount of crosslinking). Secondary 

bonding is also often used for crosslinking, e.g. by introduction of acrylic acid units in a 

poly(alkyl acrylates) to form hydrogen bonds. 

 In the case of branching, the nature of the resulting branches depends on the type of 

transfer to polymer occurring during the synthesis. Short-chain branches (SCB) result from 

intramolecular transfer to polymer (s. Figure 2- III-5) with a low p value (usually 1, 2 or 3). 

Long-chain branches (LCB) result from intermolecular chain transfer to polymer, or from 

intramolecular transfer to polymer with high p value. These two transfer modes are sometimes 

both designated as intermolecular chain transfer to polymer, because they both lead to a LCB. 

3. Effects of branching and crosslinking on the material properties 

The presence of short chain branching (SCB) affects the crystallinity (in semi-

crystalline polymers), chemical reactivity, hardness, glass-transition temperature, and so forth, 

whereas long chain branching (LCB) has a more pronounced effect on viscoelastic properties 

such as the intrinsic viscosity, sedimentation behavior, and angular distribution of scattered 

radiation of dilute solutions, as well as the viscosity and elasticity of melts.182 Branching also 

plays a role in the adhesive properties of PSAs; the effect of branching and crosslinking on 

mechanical and adhesive properties was already detailed in Part 1, I.D.5. 

In dispersion films, the crosslinking can take place either internally (i.e., inside the 

particles) or in the phase between the particles, as shown in Figure 2- III-7.24 During the latex 

film formation, the coupling between the particles is due to interdiffusion of polymer chains 

and chain ends across the interface, leading to formation of physical entanglements between 

former separated particles.187 This interdiffusion occurs only above Tg.188 In a study of the 

mechanical behavior of crosslinked poly(n-butyl methacrylate) (PBMA), Zosel et al.189 

explained the brittleness of the film, after annealing of the sample, by the absence of physical 

interdiffusion of polymer chains between the particles, because of the intra-particle 

crosslinking. As a conclusion, intra-particle crosslinking in a latex can hinder the formation of 

an homogeneous film, while intra-particle branching can result in a dramatic increase in 

reptation time. 



Part 2, III   Branching quantification in PSA samples 

 84

internal (intra) 

between 
particles (inter)

Figure 2- III-7: Types of 
crosslinking patterns in 

acrylic emulsions.24  

4. Characterization of the crosslinking of homogeneous networks 

Several methods are known to characterize crosslinking in networks, but always 

assuming an homogeneous network. Since the investigated industrial PSAs are partly soluble, 

they can not be considered as homogeneous networks. Therefore the techniques have not been 

used in the present work. However, considering the importance of crosslinking in the 

adhesive properties of PSAs, a brief overview of these methods is given in appendix in Part 7, 

III.C.  

B. Choice of a 13C NMR technique to quantify branching in poly(alkyl acrylates) 

The method of choice for the characterization of the branching appears to be 13C 

NMR. Indeed, branched and not branched backbone carbons exhibit different chemical shifts. 

Our aim was to develop a fast method for branching quantification, directly on the industrial 

PSA samples. This requires both spectral resolution and sensitivity. To increase the sensitivity 

in solid-state NMR, it is possible to use CP-MAS at low temperature. To increase the spectral 

resolution, it is necessary to increase the effective mobility, either by using solution-state 

NMR, or by swelling the samples and use fast MAS, or by melting the sample and use slow 

MAS. 

The most studied poly(alkyl acrylates) are poly(n-butyl acrylate), PBA, and poly(2-

ethylhexl acrylate), P2EHA. In the case of P2EHA, Heatley et al.145 determined that transfer 

to polymer occurs predominantly by abstraction of the hydrogen atom on the tertiary CH from 

the backbone and not from the side group (s. Figure 2- III-8). 

n

O
C

O

CH2

CH
CH2

CH2

CH2
CH3

CH
CH2

CH2
CH3

Figure 2- III-8: Poly(2-ethylhexyl 
acrylate); in circles the hydrogen atoms 

bond to tertiary carbons. 

 A list of the chemical shifts of all detected lines in the industrial PSA samples will be 

given first, before an overview of the possible 13C NMR techniques. For each technique, the 

present work will be compared to published works. 
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1. Determination of chemical shifts 

It is important to determine first the chemical shifts of all involved species. The only 

components that could be detected by 1H or 13C NMR in the investigated industrial PSAs 

(except the acrylic monomers) are surfactants, crosslinker, water (and possible solvent when 

there is one). In order to perform a complete assignment of the spectra, the chemical shift of 

their characteristic lines must be determined first. 

a) Determination of chemical shifts of other components 

Solution-state NMR was used to determine the chemical shifts of the surfactants 

present in the studied samples. The assignment of all the observed lines is given in the Table 

2- III-1. 

Sample Nucleus δ (ppm) Intensity 
(%) 

Assignment 

0.6 to 1.8 13 alkyl group C9H19 
3.7 84 ethoxy chain –(CH2-CH2-O)- 

Disponil 
NP307 

1H 

6.8 and 7.2 3 aromatic ring 
0.7, 0.9, 1.3 and 1.7 13 alkyl group C9H19 

3.7 84 ethoxy chain –(CH2-CH2-O)- 
Disponil 
AES63IS 

1H 

6.8 and 7.2 3 aromatic ring 
10 to 40 12 alkyl group C9H19 

72 80 ethoxy chain –(CH2-CH2-O)- 
Disponil 
NP307 and 
AES63IS 

13C 

116, 129, 143 and 158 8 aromatic ring 
Table 2- III-1: Assignment of the NMR signals of the surfactants (s. Table 2- I-2 for chemical structures). 

 The chemical shifts of the crosslinker are known but are confidential. 

The different chemical shifts of the solvents used in the experiments can be found in 

the literature and are summarized in the Table 2- III-2.  

Solvent Nucleus δ (ppm) Assignment 
D2O 1H 4.8 H2O, HOD 

1H 7.27 CHCl3 CDCl3 
13C 77.2 CDCl3 

2.75 and 2.90 methyl groups  1H 
8.03 aldehyde group  

29.8 and 34.9 methyl groups 

DMF-d7 

13C 

163.2 aldehyde group 
1.75 CH2 group in β from O  1H 
3.60 CH2 group in α from O 
25.4 CH2 group in β from O 

THF-d8 

13C 

67.6 CH2 group in α from O 

Table 2- III-2: 
Chemical shifts of 
the solvents used 

in the NMR 
experiments (the 

1H chemical shifts 
reported are the 
ones of residual 

protonated 
species). 

b) Line assignment for 2EHA, MA and AA monomeric units 

The 13C chemical shifts of the different nuclei of 2EHA, MA and AA monomeric units 

have been assigned by comparison of the measured values with calculated values (from 
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incremental calculations190) and with values from the literature145,148,180 (s. Table 2- III-4 and 

Table 2- III-3, as well as Figure 2- I-5 for the identification of the carbon atoms).  

Monomeric 
unit 

δ (ppm)  in 
copolymers 
(measured) 

Assignment δ (ppm) in 
homopolymers 

(calculated) 

δ (ppm) in 
homopolymers 
(literature)180 

35.7 to 36.9 12 CH2 24 to 25 34.5 to 35.9 
42.2 13 CH 40 41.3 to 41.6 
51.7 15 O-CH3 48 51.5 

MA 

175.0 14 C=O  174.9 
35.9 to 36.7 16 CH2 25 38.7 to 41.5 

42.2 17 CH 42 47.7-49.8 
AA 

175.0 18 C=O  187.3 

Table 2- 
III-3: 

Assignment 
of the 13C 
chemical 

shifts of MA 
and AA 

monomeric 
units. 

 

δ (ppm)  in 
copolymers 
(measured) 

Assignment δ (ppm)  in 
homopolymer 
(calculated)19

0 

δ (ppm)  in 
homopolymer 
(literature)148 

δ (ppm)  in 
homopolymer 
(literature)145 

11.4 9 CH3, side-group 11 10.3 14 
14.5 11 CH3, side-group 14 13.4 10.7 
23.8 8 CH2, side-group 23 22.6 23.0 
24.5 10 CH2, side-group 26 23.5 23.5 
29.8 7 CH2, side-group 30 28.6 28.9 
31.2 6 CH2, side-group 33 30.1 30.1 
35.9 to 36.7 1 CH2, backbone  24 to 25 34.8 to 35.6 33.5 to 37.3 
39.6 5 CH, side-group 45 38.5 38.5 
42.2 2 CH, backbone  40 41.2 41.5 
48.5 2’ branched Cq, 

backbone 
51 48.0 47.2 to 48.4 

67 to 68 4 O-CH2, side-
group  

71 66.0 66.9 

172.6 3’ branched or 
terminal C=O 

 171.2  

175.0 3 C=O  173.5 174.3 
Table 2- III-4: Assignment of the 13C chemical shifts of 2EHA monomeric units. 

2. Solution-state NMR 

Solution-state NMR exhibits the advantages of wider accessibility, as well as higher 

spectral resolution. 

a) Published works 

Lovell et al.146 investigated branching in PBA latices using 13C solution-state NMR at 

75.5 MHz of solutions or gels in C6D6, after dialysis. They quantified the branching levels 

with the relative intensities of the branched and non-branched carbon lines without NOE 

enhancement. In the same group, Ahmad et al.149 recorded 13C NMR spectra of the PBA in 

solution in CDCl3, at room temperature and 125.8 MHz. 
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Heatley et al.145 investigated P2EHA. The samples were dried under vacuum, then 

dissolved in CDCl3 and single pulse 13C spectra were recorded at 125 MHz using continuous 

proton decoupling and either a flip angle of 45 ° with a delay of 0.5 s between transients, or 

inverse gated decoupling with a delay of 10.5 s between transients. 

Two more works were published during the present Ph.D. work. Farcet et al.191 

investigated PBA homopolymers. The branching level was quantified using 13C solution-state 

NMR in CDCl3 at 125.76 MHz using a flip angle of 20 °, a recycle delay of 20 s, and inverse 

gated decoupling to suppress NOE. Gilbert et al.192 investigated PBA latices, dialyzed prior to 

analysis. Branching levels were quantified using solution 13C NMR at 100 MHz. 

These successful investigations of PBA and P2EHA model samples show the 

feasibility of branching quantification using 13C solution-state NMR in CDCl3 for some 

poly(alkyl acrylates) samples. 

b) Our work 

The branching level was successfully investigated in the model PnAA samples using 
13C solution-state NMR; it was presented in paragraph II.D.3.a. 

In the case of the industrial PSA samples however, the solubility in CDCl3 is low, so 

that 3 days measurements at 33 °C do not give sufficient signal-to-noise ratio (S/N) for the 

branching quantification. To overcome the latter problem, a spectrum of Homo2EHA (the 

most soluble of the three samples) was recorded in solution in C2D2Cl4 at 100 °C for 3 days. 

The S/N was still not sufficient to detect any branching line (s. Figure 2- III-9). Therefore it 

was decided to investigate the branching in industrial PSAs using solid-state NMR. 

(ppm) 404448 52 

Figure 2- III-9: Part of the 13C 
solution-state NMR spectrum of 

Homo2EHA (125.76 MHz, in 
C2D2Cl4, 100°C, 56h):  no 

branching line can be detected 
around 48 ppm. 

3. Solid-state NMR with cross-polarization 

Solid-state NMR in general exhibits the advantage over solution-state NMR of 

investigating the whole sample, regardless of solubility problems. There is no published work 

concerning the quantification of branching in poly(alkyl acrylates) using cross-polarization. 

However, the branching quantification requires an optimization of the S/N, and the S/N might 

be increased by the use of cross-polarization (s. Part 1, II.D). In contrast to 13C single pulse 

excitation, the CP-MAS experiment is not quantitative, because it is more sensitive to less 
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mobile carbons. A calibration using single pulse excitation experiments is thus necessary. It 

will then be interesting only if it is much quicker than quantification using single pulse 

excitation. 

The preliminary solid-state NMR study of the branching was done on the sample 

Copo3, which differs from Copo1 only by a higher synthesis temperature. Therefore it could 

present a higher amount of branches than the other studied samples. 13C solid-state CP-MAS 

spectra of sample Copo3 were recorded at low temperature (-20 °C), at 125.76 MHz, under 

3.6 kHz MAS with a repetition time of 3 s between consecutive transients, and a total number 

of 5120 transients. The MAS speed was chosen so that no spinning sideband of another line 

could interfere with the line of the branched carbon that has to be quantified and the lines of 

the backbone carbons, and not too high so that it should not fully average the dipolar coupling 

needed for the polarization transfer. A 4 µs 90° proton pulse was used, as well as a ramp for 

the 1H pulse during the contact time193 and a TPPM composite pulse decoupling of 63 kHz for 

the protons during the acquisition. The ramp is used to compensate for the imperfection of the 

experimental setup and the possible spectrometer drift effects. 4 mm outer diameter rotors 

were used. CP-MAS spectra were recorded at low temperature. The contact time was 

optimized at 500 µs with regard to the line of the quaternary branched carbon at 48 ppm (s. 

Figure 2- III-10). 

Figure 2- III-10: 13C CP-MAS 
spectrum of sample Copo3 at 

75.47 MHz, 3.6 kHz MAS, -20 °C, 
4h30. 

 The S/N scales with the square root of the measuring time. Therefore the S/N achieved 

in this work in 4h30 must be multiplied by 6 to be compared to the S/N achieved by Plessis et 

al.148 in 28 h using single pulse excitation (s. paragraph 4.a). Then both are of the same order 

of magnitude. Therefore, it doesn’t compensate for the additional work of deconvolution of 

the spectrum and calibration with 13C single pulse excitation experiments. For that reason, 13C 

CP-MAS has not been used to quantify the branching level. 
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4. Solid-state NMR with single pulse excitation on swollen sample 

a) Published works 

The abbreviation HR-MAS (high-resolution MAS) is often used to designate the 

technique consisting in recording routinely 13C single pulse spectra of swollen samples under 

MAS. Plessis quantified branching levels in PBA and P2EHA using HR-MAS.17,148 The films 

were first dried under vacuum, then slightly swollen with THF and packed in a 7 mm rotor. 

The single pulse 13C spectra were recorded at 45 °C on a Bruker Avance DSX300 at 1.3 kHz 

MAS, using inverse gated decoupling and composite phase decoupling, with a recycle delay 

of 4 s. At least 25 000 transients were acquired for each spectrum, which corresponds to a 

minimum measuring time of 28 h, and is the shortest measuring time found in literature for 

quantitative measurements. A typical spectrum is shown for PBA on Figure 2- III-11. 

Figure 2- III-11: Single pulse 13C spectrum of swollen 2EHA homopolymer and lines assignment 
including the quaternary line due to branching.148 
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b) Our work 

The swelling agent was chosen according to the following criteria: it has to be a good 

solvent of 2EHA and MA monomeric units to be able to swell them, and it must have a high 

boiling point to allow the swollen sample to be heated to increase the resolution. Due to their 

relative polarity, poly(alkyl acrylates) with short side-groups are soluble in polar solvents, 

aromatic hydrocarbons and chlorinated hydrocarbons; common solvents include THF, DMF, 

acetone, butanone, ethyl acetate, CHCl3;1 the swelling ability of the solvents increases in the 

following order: alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, ketones and 

esters.24 DMF and THF are thus good swelling agents for the poly(alkyl acrylates). DMF has a 

high boiling point (153 °C), what allows to heat the sample at 80°C, but it has a line 

overlapping one of the backbone carbons (s. paragraph 1), what prevents us from using it for 

the quantification. Therefore THF was chosen (as by Plessis): it has a lower boiling point 

(66 °C) but it can be heated to 50 °C for several hours as swelling agent.148 The spectra were 

recorded on samples containing roughly 50 % of swelling agent. 

The single pulse 13C experiments were carried out at a frequency of 125.76 MHz, 

under 5 kHz MAS, with 4 µs 90° pulse, continuous wave decoupling at 50 kHz, and a delay 

of 5 s between consecutive transients. 2096 transients were acquired at room temperature, and 

4 mm outer diameter rotors were used. The acquisition time of the FID was optimized to 

102 ms: a too short duration leads to a decrease in resolution (via convolution), while a long 

duration requires a lower decoupling power, which also leads to broadening of the lines; 

moreover, the irradiation duration has to be lower than 2 % of the delay between consecutive 

transients to avoid damages in the electronic parts. The 13C T1 relaxation time of the sample 

was measured using the saturation recovery method to optimize the delay between 

consecutive transients: for all the lines except the carbonyl group, the T1 value is in the range 

200 ms to 1 s, so that the delay between consecutive transients is kept at 5 s. 

A typical spectrum is shown on Figure 2- III-12. The very broad line centered around 

105 ppm arises from the material forming the cap of the rotor (KelF). The S/N obtained in 3 h 

is not high enough to quantify the branching, but is promising: the S/N obtained in 28 h 

should allow for a quantification, like Plessis et al.148 did. Nevertheless, a faster 

quantification seems unrealistic.  

It can be argued that some progresses could still be done using single pulse excitation. 

However, they would require a degradation of the sample (by mixing a relaxation agent, 

which can not be extracted afterwards) or the use of especially modified probeheads or 

advanced pulse sequences, which would severely reduce the applicability of the method by 

non-NMR specialists. 
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Figure 2- III-12: Single 
pulse 13C spectrum of 
sample Copo3 swollen 

in THF, at 
125.76 MHz, under 
5 kHz MAS, at room 

temperature, 3h. 

 Therefore, it was chosen not to continue investigating swollen samples, but rather to 

study the PSA samples in the melt. 

5. Solid-state NMR with single pulse excitation in the melt 

Similarly to swollen samples, the molten samples exhibit a high mobility and thus a 

high resolution (considering solid-state NMR). 

a) Published work 

The branching quantification in polymeric samples in the melt, using solid-state NMR 

under slow MAS, was developed in our group by Pollard et al. with polyethylene.132 They 

could detect branching levels down to 0.02 % of the monomeric units in one day in this 

chemically simple polymer. The measurements are done on the pure sample, which allows to 

measure a bigger sample amount (and therefore get more signal), as well as to measure the 

whole sample including its insoluble fraction (crosslinked or high molar mass). This method 

had never been applied to any other polymer than polyethylene. 

b) Our work 

The chain branching level was quantified in the PSA samples using the solid-state 

NMR method developed by Pollard et al.132 for PE. The measurements were carried out in the 

melt (at 90 °C or 100 °C) to increase the mobility of the sample, and hence the resolution of 

the spectrum. 7 mm outer diameter rotors were used. 

The first 13C NMR spectrum was recorded for sample Copo3 at 100 °C on a Bruker 

DSX300 spectrometer, at a 13C Larmor frequency of 75.47 MHz, under 3 kHz MAS, using 

single pulse excitation with a 5 µs 90° pulse, inverse gated decoupling, TPPM composite 

pulse decoupling at 50 kHz and a relaxation delay of 10 s (to obtain a quantitative spectrum). 

The spectrum is shown on Figure 2- III-13. The signal-to-noise ratio obtained in 3h30 is more 
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than sufficient to quantify the chain branching level in the sample using the area of the 

quaternary branched carbon at 49 ppm (J). 
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Figure 2- III-13: 13C single pulse NMR spectrum of molten Copo3 (75.47 MHz for 13C, pure sample, 3 kHz 

MAS, 100°C, 3h30): the chain branching line K at 49 ppm can be quantified precisely. 

In order to carry out an even faster quantification, the static magnetic field was 

increased. The 13C NMR spectrum of samples Homo2EHA and Copo2 were recorded at 

90 °C on a Bruker DSX500 spectrometer, at a 13C Larmor frequency of 125.76 MHz, under 

2.8 kHz MAS, using single pulse excitation with a 5 µs 90° pulse, inverse gated decoupling, 

continuous wave decoupling at 42 kHz and a relaxation delay of 10 s to record quantitative 

spectra. A spectrum is shown for sample Copo2 on Figure 2- III-14. The signal-to-noise ratio 

obtained in 18 h is higher than for a Larmor frequency of 75.47 MHz (not shown), and 

sufficient to quantify precisely the chain branching level in the sample. However, on the 

contrary to a Larmor frequency of 75.47 MHz, at a Larmor frequency of 125.76 MHz 

spinning side bands are present between 10 and 60 ppm, so that the MAS frequency has to be 

chosen more carefully in order to avoid overlapping between these side bands and the 

integrated lines. 
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Figure 2- III-14: 13C single pulse NMR spectrum of molten Copo2 (125.76 MHz for 13C, pure sample, 2.8 kHz 
MAS, 90°C, 18 h): the chain branching line K at 49 ppm can be quantified precisely. 

6. Conclusion on the choice of the 13C NMR technique 

Several 13C NMR techniques have been used to investigate branching in poly(alkyl 

acrylates), and our work has been compared with the published works on this topic. It has 

been shown that solution-state NMR is suitable for model PnAAs, for which it was preferred 

due to easier accessibility. However, on the contrary to solid-state NMR, it provides a lower 

signal-to-noise ratio for identical measuring time, and the risk of not taking into account 

possible microgels. Therefore this technique should not be recommended in cases where a 

very precise branching quantification is required. 

The industrial PSA samples exhibit a too low solubility in common NMR solvents to 

be investigated by solution-state NMR, and were thus investigated using solid-state NMR. 

CP-MAS spectra do not exhibit a significantly higher signal-to-noise ratio than single pulse 

excitation spectra, and on the other hand exhibit a low resolution due to low temperature and 

are not quantitative. Therefore CP-MAS was not used for quantification. Single pulse 

excitation spectra of swollen samples are suitable for branching quantification, as shown by 

Plessis et al.,148,178 but the experimental optimizations done in the present work did not 

achieve a faster quantification. A new method was proposed for quantification of branching in 

poly(alkyl acrylates). It is adapted from a branching quantification method for PE132, using 
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single pulse excitation under slow MAS in the melt. It is faster and more precise than the 

methods published up to now for poly(alkyl acrylates), and can be applied directly to 

industrial PSA samples. Therefore this method should be recommended in cases where a very 

precise branching quantification is required, e.g. for the determination of a kinetic constant. 

C. Branching level quantification and discussion of the branching topology 

The way of extracting the branching level from the recorded 13C NMR spectrum will 

be presented in paragraph 1, while the branching levels and branching topology will be 

detailed and discussed in paragraph 2. 

1. Branching quantification from 13C NMR spectrum 

a) Published works 

Ahmad et al.149 define the mole percent of branched repeat units in PBA samples by 

referencing the integrals of the quaternary carbon and of the adjacent CH and CH2 groups to 

the total integral for backbone carbons. The corresponding Equation 2- III-1 is explicitly 

written and used by Farcet et al. for PBA homopolymers.191 In this equation, A(x) is the area 

of the line x and the carbons H, J, K, X, Y are defined on Figure 2- III-15. 
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Figure 2- III-15: Structure of 
the branched carbons in 

polyacrylates, with definition 
of the different moieties used 
for branching quantification 
by Farcet et al.191 (R alkyl). 

Plessis et al. used Equation 2- III-2 to quantify the branching level BL in PBA in % of 

monomeric units.178 The carbons H, J, K, X are defined on Figure 2- III-16. 
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Figure 2- III-16: 
Structure of the 

branched carbons in 
polyacrylates, with 

definition of the 
different moieties seen 

in NMR (R alkyl). 
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Heatley et al.145 investigated P2EHA and showed that the adjacent CH2 (X) is 

overlapping with the side chain CH signal. Therefore, Plessis et al. used Equation 2- III-3, 

from which A(X) is absent, to quantify the branching level BL in P2EHA in % of monomeric 

units.148 

1002)()(
)( ⋅++= HJAKA

KABL  for P2EHA Equation 2- III-3

b) Our work 

The most precise way of calculating the branching level in poly(alkyl acrylates) is 

Equation 2- III-1, used by Ahmad et al.149 and Farcet et al.191. However, our PSA samples 

contain 2EHA monomeric units and in that case the branch CH2 signal is not resolved.145 

Therefore Equation 2- III-3148 has to be used.  

The determination is complicated here by the fact that a copolymer and not an 

homopolymer is investigated. Luckily, each backbone carbon exhibits the same chemical shift 

in the three monomeric units (s. paragraph B.1 for the chemical shift assignment and Figure 

2- III-17 for the molecular assignment). Therefore, the hundredfold of the ratio of area of K 

with the sum of area of K and half the areas of H and J has to be done to calculate the 

branching level. 

CH

CH2
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(a) H

CH

CH2

n
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J(K)
(b) H Figure 2- III-17: 

Definition of the NMR 
lines of interest for the 

quantification of 
branching for 2EHA and 
MA monomeric units; K 
designates the branched 

carbon, J the non 
branched one. 

However, the lines corresponding to H and J are not sufficiently resolved (s. Figure 2- 

III-13 and Figure 2- III-14) and have to be integrated together with the line corresponding to 

I. In order to calculate the areas of H and J alone, an area equal to the one of I has to be 

subtracted from the area of H and I and J together. The line A is perfectly resolved and also 

corresponds to one carbon (CH3) in the side chain of 2-ethyl hexyl acrylate comonomer. 

Therefore, the branching level BL, in percents of the monomeric units, can be expressed as: 

2
)()()(

100)(

2
)()(

100)(
AAJIHAKA

KA
JHAKA

KABL −+++

⋅=++

⋅=  Equation 2- III-4 

The determined branching levels, expressed in percents of the monomeric units, are 

reported in Table 2- III-5.  

Sample Homo2EHA Copo1 Copo2 Copo3 
BL 4.7 5.2 3.4 6.0 

Table 2- III-5: Branching level quantified in 
the PSAs, in percents of the monomeric units. 
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It should be noted that the branching level is higher in the PSA samples than in the 

PnAAs (1.5 to 2.5 % of the monomeric units, s. paragraph II.D.3.a). This general trend was 

expected from the synthesis procedures (free radical polymerization, respectively in emulsion 

under monomer starved conditions and in solution). 

2. Branching topology 

13C NMR allows to determine the total branching level, but does not differentiate 

between SCB and LCB. The branching topology was investigated using multiple detection 

SEC only for model PnAAs (s. paragraph IV), due to incomplete solubility of the industrial 

PSAs. Considering the importance of the branching topology in the industrial PSA samples, a 

survey of the published works concerning branching topology in poly(alkyl acrylates) in 

general will be presented here. When measured, the branching levels will be indicated. 

a) Zosel’s work on poly(n-butyl acrylate) latices 

Zosel et al.189 have synthesized various PBA latices with different amounts of either 

crosslinking monomer (difunctional methallyl methacrylate, MAMA), or chain transfer agent 

(tert-dodecyl mercaptan, DMCT). Studying the viscoelastic behavior of these samples at 

small strains and 23 °C, they proved that PBA made without any additive is slightly 

crosslinked, since the storage modulus G’ is higher than the loss modulus G’’ for the low 

frequencies (or high temperatures). Furthermore, at least 0.3 % DMCT must be introduced 

during the polymerization to obtain a non-crosslinked behavior with viscous flow. It should 

be noted that the samples recognized as crosslinked by this method were not only branched, 

but really crosslinked, because they presented a gel fraction. 

b) McCord’s work on copolymerization of poly(alkyl acrylates) 

McCord et al.194 have studied the microstructure of short-chain branches in PE 

copolymers with (meth)acrylates synthesized at high pressure, using 1H, 13C, 1D and 2D 

liquid-state NMR. They have shown that (a) the short-chain branching mechanism also 

involves comonomeric units in the chain, (b) most of the intramolecular back-biting originates 

from ethylene, and not from the comonomer radicals, and (c) hydrogens opposing acrylate 

side groups are prone to abstraction by backbiting. 

c) Chiefari’s work on poly(alkyl acrylates) in solution 

Chiefari et al.195 report the synthesis in solution (in toluene, n-butyl acetate, n-butanol 

and n-amyl acetate) of several polyacrylate macromonomers through propagation, transfer to 

polymer and β-scission. They suggest that the predominant mechanism for the transfer to 

polymer is intramolecular (back-biting) at lower monomer concentrations, and intermolecular 



Part 2, III   Branching quantification in PSA samples 

 97

at higher ones. This would lead to mostly SCB in the former case, and to LCB in the latter 

one.  

d) Lovell’s work on n-butyl acrylate and 2-ethylhexyl acrylate in 

emulsion and solution polymerization 

Lovell et al.146 synthesized PBA latices at 75 °C. They estimated branching levels of 2 

to 4 % of the monomeric units. In the same group, Ahmad et al.149 performed polymerization 

of BA in cyclohexane at 70 °C and measured branching levels ranging from 1 to 6 % of the 

monomeric units. 

Also in the same group, Heatley et al.145 carried out polymerization of 2-ethylhexyl 

acrylate (2EHA) in solution in cyclohexane at 70 °C. Branching levels ranging from 2 to 8 % 

of the monomeric units were quantified. It was proved that the extent of transfer to polymer 

increases for 2EHA with increasing conversion and decreasing initial monomer concentration; 

furthermore the extent of transfer is higher for 2EHA than for BA polymerized under the 

same conditions. 

e) Plessis’ work on the branching of n-butyl acrylate and 2-ethylhexyl 

acrylate during emulsion polymerization 

Plessis studied the seeded semi-continuous emulsion polymerization of BA and 2EHA 

at 75 °C under starved conditions.17 Plessis et al.147 showed that highly branched PBA was 

formed (0.9 to 3.4 % of branched monomeric units). The PBA contains up to 50 to 60 % gel 

(weight fraction of the polymer insoluble in THF under reflux), and interestingly, no 

correlation between branching level and gel content was found. This indicates that the 

branching level measured by NMR is predominantly caused by intramolecular transfer to 

polymer leading to short-chain branches. 

A kinetic model was developed to simulate this polymerization.196 The experimental 

dependence of branching level on initiator concentration, the experimental dependence of gel 

fraction and mass-average molar mass of the soluble part on conversion were fitted for many 

experiments with a solid content ranging from 55 to 60 % and percentages of gel ranging 

from 1.7 to 2.8 %. To obtain correct fits, intra- and intermolecular transfer to polymer needed 

to be introduced, as well as the lower reactivity of the tertiary radical and propagation to the 

terminal bonds, but β-scission was not taken into account. The fit of the experimental values 

by the model indicated that most of the branches were SCB produced by back-biting and not 

LCB. This is in accordance with the fact that an increase in the initiator concentration leads to 

an increase in branching level (which involves both SCB and LCB), but does not much affect 

the gel content (which involves only LCB).  
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Plessis et al. also studied briefly the emulsion polymerization of 2EHA,148 for which 

they fitted two experiments with the model developed for BA. They showed that this 

monomer exhibits the same features as BA and concluded that the two monomers follow a 

similar polymerization scheme. According to this mechanism, the main branching mechanism 

for 2EHA would be back-biting, so that most of the branches would be SCB. Nevertheless, 

some LCB are also formed since there is gel formation. Branching levels of 1.4 and 2.3 % 

were measured. 

The emulsion polymerization of BA was then studied in more detail by Plessis et al.178 

They proved that the introduction of a chain transfer agent decreases the gel fraction, while it 

does not affect the branching level.42 Therefore, the dominant transfer to polymer is 

intramolecular, leading to SCB. Moreover they demonstrated that the introduction of styrene 

as a comonomer dramatically decreases the gel fraction, and only slightly decreases the 

branching level.43 

Plessis et al. quantified branching levels ranging from 0.2 to 0.7 % of the monomeric 

units in PBA synthesized in solution and in bulk (obtained by pulsed laser 

photopolymerization, PLP).197 

f) Farcet’s work on branching of PBA in bulk and emulsion 

Farcet et al.191 investigated PBA homopolymers prepared via nitroxide-mediated 

controlled radical polymerization in bulk and miniemulsion at 112 °C. Branching levels 

ranging from 1 to 1.8 % were measured, increasing with the monomer conversion.  

Some of the polymer were investigated using MALDI-TOF-MS, and the spectra did 

not exhibit the 1:2:1 proportion of chains with respectively 0, 1, and 2 nitroxide chain ends, 

that would be expected if intermolecular chain transfer to polymer was the dominant process 

throughout the polymerization. They concluded that the branches seem to be produced 

predominantly by intramolecular transfer to polymer (presumably back-biting). However, a 

small portion of chains seem to undergo intermolecular chain transfer to polymer. 

g) Gilbert’s work on branching of PBA in emulsion 

Gilbert et al. investigated PBA synthesized via free radical emulsion polymerization, 

between 60 and 80 °C, either using the batch procedure, or the seeded procedure under 

starved conditions.192 Branching levels ranging from 0 to 6.7 % were quantified. 

During dynamic mechanical measurements on the samples, they detected no reduction 

in the plateau modulus observed at high frequencies; this indicates that no large amount of 

LCB (long branches) is present. Furthermore, the results are compatible with an enlargement 

of the reptation tube due to a large amount of SCB (short branches). These conclusions should 
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be drawn carefully since the influence of molar mass on rheological properties is masking the 

influence of chain branching, as was already observed by Ahmad et al.198 

h) Castignolles’ work on branching of PBA and P2EHA in solution 

Castignolles199,200 synthesized PBA and P2EHA by pulsed laser polymerization (PLP) 

in solution in toluene at temperatures ranging from –34 °C to 22 °C. The obtained polymers 

were investigated by SEC. The chromatograms and the comparison of the molar masses 

calculated by triple detection and universal calibration (s. paragraph IV.C) indicate the 

presence of long branches in the samples. However, no conclusion can be drawn on the 

quantity of LCB as the current correlation between hydrodynamic volume and LCB fails.  

i) IUPAC working party on “Modeling of polymerization kinetics and 

processes” 

Asua et al. reviewing the work published on the polymerization kinetics of alkyl 

acrylates, and in particular simulation works201,202.186 They conclude that intramolecular 

transfer to polymer occurs in solution polymerization of BA via PLP, leading to SCB. 

3. Conclusion on the branching levels and branching topology 

The spectra recorded on the industrial PSAs with the 13C solid-state NMR method 

developed in the present work have been used to extract branching levels. Equations from 

published work have been discussed and adapted to the case of copolymers. The measured 

branching levels are in the same range as those given in published works. 

The nature of the chain branches (SCB or LCB) was not known at the beginning of 

this Ph.D. work. It was only sure that branching occurs by abstraction of the backbone proton 

opposite the acrylate side group and not by abstraction of a side group proton. The different 

works published during this Ph.D. indicate that branching would occur in poly(alkyl 

acrylates) mainly by back-biting during emulsion polymerization, leading to a predominance 

of SCB over LCB. In the case of solution polymerization, the LCB amount would be 

sufficient to be detected by multiple detection SEC, and the occurrence of SCB was 

demonstrated by simulation. In both cases (emulsion and solution), a “tree-geometry” (s. 

Figure 2- I-1 in paragraph A.1) is then expected for the PnAAs synthesized by free-radical 

polymerization. 

The branching levels determined for the model PnAAs synthesized via solution 

polymerization (1.5 to 2.5 %) are comparable to those determined by Ahmad et al. for BA 

obtained with a similar synthesis (1 to 6 %)149, and rather lower than those determined by 

Heatley et al. for P2EHA obtained with a similar synthesis (2 to 8 %)145. The branching levels 

determined for the industrial samples (3.5 to 5.5 %) are significantly higher than those 
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determined by Plessis for P2EHA using also emulsion polymerization (1.4 and 2.3 %)148; 

considering the much lower S/N obtained by Plessis (ca 2) than the one obtained in this work 

(at least 7), it is concluded that the values measured by Plessis are less precise and 

underestimated. 

 

IV. Multiple-detection SEC of the model poly(n-alkyl acrylates) 

Poly(alkyl acrylates) can not be properly characterized using SEC with conventional 

calibration (s. below). Therefore we will detail the different methods of SEC in paragraph A, 

before giving the obtained molar masses with the chosen methods in paragraph B. Then the 

investigation of long chain branching will be detailed in paragraph C, and conclusions will be 

drawn in paragraph D. 

A. Overview of the possible SEC methods199,203 

SEC is a separation method of polymer chains, in a series of columns (by a size 

exclusion mechanism), according to their hydrodynamic volume (and not to their molar 

mass). Different methods to determine the molar mass are then possible, depending on the 

used detector(s). 

The most simple SEC setup uses only a refractometer (or another “concentration” 

detector), which is sensitive to the quantity of polymer. In that case, a calibration curve 

logM=f(Ve) (correlating the molar mass M of the polymer chains with the corresponding 

elution volume Ve) is first done with polymer standards, and then used to determine the molar 

mass of polymer samples of the same chemical nature as the standards: it is the conventional 

calibration (CC). If no standard is available for the studied polymer, it is also possible to 

apply the universal calibration (UC) to convert the calibration curve logMM=f(Ve) for 

polymers of another chemical nature. This conversion is done considering the UC relation of 

Benoît at a given Ve for polymers A and B: BBAA MM ⋅=⋅ ][][ ηη ,170,171 and the Mark-Houwink-

Sakurada (MHS) equation: MK⋅= αη][ ,172 where [η] is the intrinsic viscosity, M the molar 

mass, K and α the MHS parameters which can be found in the literature, but are not universal. 

It is possible to use a refractometer and a viscosimeter, doing a proper universal 

calibration (UC). Here, the calibration curve log(M.[η])=f(Ve) is determined with polymer 

standards, using the viscosimeter instead of the MHS parameters to determine [η]. This 

calibration curve is then used for the determination of the molar mass distribution of polymer 

samples of any chemical nature.  
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Finally a refractometer combined with light scattering (LS) can be used. This setup 

requires no calibration curve. It utilizes the Rayleigh equation for the determination of the 

molar mass: CAPMR
Ck ⋅⋅+⋅=⋅

22)(
1

θϑ
, where k is a constant for a given polymer, C is the 

concentration, Rθ the ratio of the light intensity scattered at the angle θ to the initial intensity, 

M the molar mass, P(θ) the form factor and A2 the second virial coefficient. The term 2.A2
.C 

is neglected (since C is very low in SEC), C is determined by the refractometer, Rθ by the LS. 

The form factor P(θ) can be determined: 

- when θ is very low, P(θ)=1. This is the low angle laser light scattering (LALLS). 

- when Rθ is measured at several angles, the value of M is extrapolated at θ=0 where 

P(θ)=1. This method is named the multi-angle laser light scattering (MALLS). 

- when Rθ is measured at 90° using LS and [η] is measured additionally via a 

viscosimeter, P(θ) is calculated using a Flory formula correlating P(θ) with M and [η]. 

This method is called triple detection (TD). 

It should be noted that other detectors can be in principle coupled to the SEC. This has 

been reported with osmometry,204 and receives more attention with MALDI-TOF-MS.205 

 

It is interesting to compare the advantages and drawbacks of the different methods. 

The CC is the easiest, fastest and least expensive method, as well as the most accurate and 

robust, but is applicable only to polymers for which standards exist, namely PS and PMMA. 

The UC using the MHS parameters is also simple, but not really universal since it is limited to 

the polymers for which reliable MHS parameters can be found in the literature; it is in 

particular not valid for branched polymers like polyacrylates.200 The UC using a viscosimeter 

is truly universal. However, CC and UC methods have the big drawback of needing a 

calibration curve, which depends on the separation mechanism in the columns (purely steric 

exclusion or also contribution of some adsorption phenomena). 

The LS methods have in common the advantage of not needing a calibration curve, 

and the drawback of necessitating to know the refractive index increment dn/dc of the 

polymer in the eluent. While the LALLS technique suffers from the lowest signal-to-noise 

ratio, the MALLS technique necessitates a perfect optics to know the scattering angles 

precisely. The TD is the least noisy LS method, but is based on the assumption that a Flory 

equation is valid, which was not proved. 
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B. Determined molar masses 

The determination of reliable molar masses of PnAAs is not possible using SEC, 

unless a multi-detection SEC is used (UC, LALLS, MALLS or TD). These methods were not 

available at the Polymer Analysis service of the MPI-P in Mainz (Germany), where only a 

conventional calibration was possible. Therefore, another SEC analysis was performed in 

Paris (France) in the Laboratoire de Chimie des Polymères using a triple detector device.206 

An example of molar mass distributions is shown on Figure 2- IV-1 for sample PMA. 

It can be noted that TD and LS yield higher molar masses than UC, this will be commented 

below. 
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Figure 2- IV-1: 
Molar mass 

distribution of 
sample PMA 

determined by 
different techniques 
on a single run with 

the TDA in Paris 
(CC done with PS 

standards). 

The average molar masses determined for the model PnAA samples using SEC are 

given in Table 2- IV-1. The results obtained for all the synthesized PnAA samples (including 

the samples synthesized in small quantities to test the synthesis procedure) are presented in 

appendix (s. Part 7, I.C).  

CC in Mainz TDA in Paris Samples 
PMMA PtBMA PS CC PS Diff. UC TD LALLS 

Mn 44 600 51 600 36 900 39 900 +8 55 000 61 000 65 700 
Mw 133 000 139 000 110 000 119 000 +8 128 000 138 000 139 000 

PMA 

Mw/Mn 3.0 2.7 3.0 3.0 0 2.3 2.3 2.1 
Mn 84 700 96 100 70 000 80 700 +14 69 300 62 900 112 000 
Mw 216 000 222 000 184 000 221 000 +18 169 000 200 000 215 000 

PEA 

Mw/Mn 2.6 2.3 2.6 2.7 +4 2.4 3.2 1.9 
Mn 67 200 76 500 55 600 51 800 -7 100 000 89 900 119 000 
Mw 230 000 236 000 197 000 228 000 +15 318 000 248 000 273 000 

PBA 

Mw/Mn 3.4 3.1 3.6 4.4 +20 3.2 2.8 2.3 
Mn 87 200 97 800 75 200 58 800 -24 88 500 144 000 165 000 
Mw 300 000 306 000 288 000 269 000 -7 395 000 335 000 347 000 

PHxA 

Mw/Mn 3.4 3.1 3.8 4.6 +19 4.5 2.3 2.1 
Table 2- IV-1: Characterization of the model PnAAs using SEC; in the column Diff. the relative difference of CC 

with PS standards in Mainz and in Paris is given; Mn and Mw are indicated in g.mol-1. 

 A few general remarks should be made about these results. First, CC-SEC results from 

Mainz and Paris are reproducible. Furthermore, the Mn value can not be determined very 
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precisely (e.g., TD and LALLS values of PEA). This is caused by the presence of oligomers 

in the samples (according to IUPAC round robin tests, this can lead to an uncertainty of up to 

800 % on the Mn value for PS,207 due to a different definition of the baseline and of the peak 

integration limits). It can be noted that the non-uniformity with respect to molar mass is 

higher measured by CC than by UC, TD and LALLS. Moreover, the LALLS results is more 

noisy than the TD or UC results, as can be seen on Figure 2- IV-4. 

Two conclusions may be drawn. First, the most reliable molar masses for our branched 

PnAAs are obtained with UC and TD. Moreover, LS is more sensitive to high molar masses 

than viscosimetry, so that TD (and LALLS) give higher Mn and Mw than UC. Second, the 

sample PMA contains shorter polymer chains than PEA, PBA and PHxA. 

C. Investigation of branching 

As stated in paragraph III, spectroscopic (13C NMR) and chromatographic (multiple 

detection SEC) techniques can supplement each other, as neither is capable individually of 

completely describing the molecular architecture imparted by the various types of 

branching.182 

The investigation of branching in the model PnAAs using multiple detection SEC has 

been done in two steps. First by proving the actual detection of long chain branches, second 

by attempting to quantify the amount of LCB. It should be noted that it was not applied to 

industrial samples because of their lack of solubility. 

1. Detection of long chain branching 

The presence of LCB results in a shrinkage of the hydrodynamic volume, and 

therefore in a decrease of the intrinsic viscosity at constant molar mass.208 In the case of a 

constant branching frequency for all molar masses, this effect is more pronounced for high 

molar masses, so that LCB results in a downward curvature in the plots of the intrinsic 

viscosity [η] versus the molar mass on a log-log scale (s. Figure 2- IV-2).182 

Figure 2- IV-2: Plot of the 
intrinsic viscosity as a 

function of the molar mass 
on a log-log scale for 

polyethylene; the linear 
chains exhibit a linear 
dependence, while the 

branched chains with a 
constant branching 
frequency exhibit a 

downwards curvature.182 
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Similar curves have been plotted for all PnAAs. The example of PMA is shown on 

Figure 2- IV-3, some others are given in appendix with all the MHS parameters values used 

from literature (s. Part 7, IV.D.1). It should be note that the MHS parameters quoted from 

literature were all determined for PMA samples synthesized using free-radical 

polymerization, thus very likely branched. It is clearly seen that no curvature is observed for 

our samples, probably due to an insufficient molar mass range or a non constant branching 

frequency. However, we lack a linear equivalent to be able to compare the respective intrinsic 

viscosities at a given molar mass. Furthermore, it should be underlined here that LCB has an 

influence on the intrinsic viscosity, but also on the determined molar mass, so that the plot of 

the intrinsic viscosity versus molar mass is rather difficult to interpret. 
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Figure 2- IV-3: Intrinsic 
viscosity as a function of 
the molar mass on a log-

log scale for the 
investigated PMA sample, 

as well as other PMA 
samples (MHS parameters 

from literature: 
Castignolles,200 Penzel,209 

Hutchinson210,211). 

Another plot is proposed as more appropriate to prove the detection of the LCB. It is 

the comparison of the plots of the molar mass versus the elution volume obtained by UC and 

LS. The case of sample PEA is shown on Figure 2- IV-4. The molar mass determined at a 

given elution volume on the same run depends on the SEC method used: UC, or LS-based 

(TD, LALLS). Due to the logarithmic scale used on the molar masses axis, this difference is 

definitely significant. The chromatogram is indicated to show that this difference is present in 

the elution volume range where the sample is detected. This difference is not observed when 

linear samples are injected, but is observed for a variety of branched poly(alkyl acrylates).200 

Therefore, it must be caused by the presence of LCB. 
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The explanation of the higher molar masses determined light scattering (TD or 

LALLS) as compared to UC was detailed by Castignolles.200 In the case of statistically 

branched samples, the SEC separation is not complete. The separation is done according to 

hydrodynamic volume, so that at each elution volume, there is a mixture of chains with 

different branching levels, exhibiting different molar masses but identical hydrodynamic 

volume. The techniques based on light scattering determine the mass average molar mass of 

this mixture.212,213 The UC determines the number average molar mass of this mixture, which 

is lower than its mass average molar mass.200 Since an average molar mass is determined at 

each elution volume, and since this average depends on the used method, only apparent molar 

masses and no true molar mass are determined. 

2. Quantification of long chain branching 

a) Models 

Several models exist which should allow the quantification of LCB using multiple 

detection SEC with online viscosimeter.182,214,215 They are based on comparison of the 

branched molecule with its linear equivalent, following a theory developed by Zimm and 

Stockmayer.216 Considering the contraction caused by LCB, the branching ratio g is defined 

as the ratio of the radii of gyration of the branched and linear molecules of same molar mass 

(s. Equation 2- IV-1).216 Alternatively, the experimental ratio g’ is defined as the ratio of the 

intrinsic viscosities of the branched and linear molecules of same molar mass (s. Equation 2- 

IV-1).216 Both are linked by the Debye/Bueche viscosity shielding ratio ε through εgg =' .182  

( )Mlineargbranchedg RRg=  and [ ] [ ]( )
Mlinearbranchedg ηη='  Equation 2- IV-1 
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In real polymeric systems, distributions of molar masses and of branching numbers are 

present. In that case, and for trifunctional branching points, the following relationship 

between the branching ratio g and the weight average branching number Bn is calculated.216 
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This function is a monotonic decreasing function of Bn (s. Figure 2- IV-5), so that the 

determination of g leads to a unique value of Bn. However, to our knowledge this equation 

was not experimentally validated. 
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Figure 2- IV-5: 
Branching ratio g 

versus weight average 
branching number Bn. 

The intrinsic viscosities are experimentally accessible through the viscosimetric 

detected SEC for the investigated branched samples and through MHS equation172 of the 

linear reference. The radii of gyration are experimentally accessible only trough SEC-MALLS 

for the investigated branched samples,182 or through an equation relating it to the intrinsic 

viscosity, the molar mass and the α MHS parameter.217 

 The main weakness of the method using g’ consists in the dependence of the ε 

exponent upon polymer chemical nature, solvent and temperature, and possibly also upon 

molar mass.182 ε is related to the draining characteristics of the polymer in solution. 

Experimental values of ε range from 0.5 (for high molar mass regular stars) to 1.5 (for comb 

polymers in good solvents), most of them being in the range from 0.7 to 0.8.182  

b) Case of poly(alkyl acrylates) 

 The TDA device used in this work was not equipped with MALLS detection, so that 

LCB would have to be calculated using the g’ ratio. To our knowledge, the ε value for 

branched poly(alkyl acrylates) synthesized using conventional free-radical polymerization is 

not known. Furthermore, the MHS parameters for linear reference are known only for 

PBA.200,214 Data processing for the quantification of LCB would thus require to first 

determine MHS parameters on linear polyacrylates synthesized by anionic polymerization. 

 Moreover, a technical problem is observed on the TDA equipment used. Indeed, the 

intrinsic viscosity calculated by the software at a given elution volume depends on the 
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technique used for molar mass calculation from the same set of raw data: UC, TD or LALLS 

(s. Figure 2- IV-6). This should not be the case. A possible explanation of this observation is a 

change of the integration limits depending on the molar mass determination method, which is 

illustrated on Figure 2- IV-1. The concentration used to calculate the intrinsic viscosity from 

the viscosimeter signal is indeed calculated through integration of the refractometer signal 

over the whole chromatogram.217 The significant difference observed depending on the molar 

mass determination method is technically not satisfying. 

14 16 18 20 22

-2

-1

0

 UC
 TD
 LALLS

lo
g[

η]

Ve (mL)

20

30

40

50
 R

I Figure 2- IV-6: Intrinsic 
viscosity versus elution 

volume depending on the 
molar mass determination 
method (UC, TD, LALLS) 

for sample PMA; the 
chromatogram is indicated 
on the same elution volume 

scale. 

Furthermore, due to the incomplete separation of branched macromolecules in SEC (s. 

paragraph 1), the measured intrinsic viscosity is an average intrinsic viscosity for the mixture 

detected at a given elution volume. In order to determine an intrinsic viscosity corresponding 

to a single type of macromolecule, the chains must thus be separated according to their 

branching level (and branching topology) prior to viscosimetric measurement. This could be 

achieved by coupling the SEC with another separation technique, e.g. critical chromatography 

or HPLC. The incomplete separation of the polymer chains is also technically not satisfying. 

As a conclusion, no quantification of LCB in model PnAAs using multiple detection 

SEC is currently possible. 

D. Conclusion on the multiple detection SEC investigations 

Poly(alkyl acrylates) can not be properly characterized with SEC using conventional 

calibration, due to long chain branching (LCB). However, it has been shown that a reliable 

estimation of the molar masses can be obtained using multiple detection techniques, namely 

universal calibration, triple detection and LALLS. Furthermore, multiple detection SEC is a 

very sensitive tool to detect LCB in polymeric samples. 
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LCB was detected in all investigated model PnAAs, but its quantification necessitates 

complementary extensive investigations, both on theoretical and experimental levels. 

Nevertheless, it would be interesting to continue these investigations. It would indeed yield a 

quantification of LCB, which could then be compared to the overall branching quantification 

done on the model PnAAs using 13C NMR, and lead to a better understanding of the 

branching topology in those samples. 

The quantification of LCB will necessitate for comparison of a linear sample of 

similar molar mass, the synthesis of which has to be realized via anionic polymerization (and 

subsequent characterization is needed). Then the quantification of LCB could be done via the 

branching ratio g or the g’ ratio. On one hand, SEC-MALLS analysis is necessary to 

determine the branching ratio g. We are not equipped with SEC-MALLS, and first trials of 

SEC-MALLS of poly(alkyl acrylates) did not give convincing results.200 On the other hand, 

the use of the g’ ratio necessitates to do assumptions concerning the exponent ε in the 

relationship g’=gε or extensive literature research, as well as probable modelization work, in 

order to determine a more reliable relationship between g’ and the weight average branching 

number Bn. 

 

V. Conclusion on samples presentation and characterization 

 All the samples investigated during the present Ph.D. work have been presented. The 

industrial PSA samples were provided by Atofina and are copolymers of alkyl acrylates. 

Model poly(n-alkyl methacrylates), isotopically labeled or not, were available in our group. 

Model poly(n-alkyl acrylates) have been synthesized. Poly(alkyl acrylates) exhibit a high 

branching levels, which influence their physical properties, in particular their adhesive 

properties, and prevent from using SEC with conventional calibration to determine reliable 

molar masses. Therefore, more complex 13C solid-state NMR investigations have been carried 

out to quantify the branching. Furthermore, multiple detection SEC investigations have been 

conducted to determine reliable molar masses and detect LCB. 

A new solid-state NMR method for quantifying the branching level in poly(alkyl 

acrylates) is proposed. The measurement is done on the pure sample in the melt, under slow 

MAS, which allows to measure the whole sample including its insoluble fraction (on the 

contrary to solution-state NMR). It is conducted using single pulse excitation, and allows for a 

precise branching quantification in less than 3h30, which is significantly faster than the 

method used by Plessis et al. in 28 h, due to a significant signal-to-noise ratio improvement. It 

is concluded that our quantification of the branching level is faster and more precise than the 
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one developed by Plessis et al. Furthermore, it has been applied successfully to industrial 

PSA samples, which are copolymers of poly(alkyl acrylates), and contains as well other 

components. 

Poly(alkyl acrylates) can not be properly characterized with SEC using conventional 

calibration. However, it has been shown that a reliable estimation of the molar masses can be 

obtained using multiple detection techniques, namely universal calibration, triple detection 

and LALLS. Furthermore, LCB was detected in all investigated model PnAAs using those 

techniques. Its quantification would necessitate complementary extensive investigations, both 

on theoretical and experimental levels.  
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Part 3: Using and misusing the dipolar filter, 
example of PEMA 

 

It was stated in Part 1, III.C that a possible nanostructuring in a pressure-sensitive 

adhesive (PSA) could play a role in its adhesive properties, and that the 1H nuclear spin 

diffusion technique with dipolar filter might allow to characterize such a nanostructuring. It 

was also mentioned that poly(n-alkyl methacrylates), PnAMAs, are appropriate model 

samples for such study. The goal of this chapter is thus to investigate the possibility of 

characterizing local nanostructuring by using the 1H nuclear spin diffusion technique with 

dipolar filter. 

The model PnAMAs have already been described in Part 2, II.B. A literature survey 

on their tendency to local nanophase separation will be presented in paragraph I, showing 

their suitability as model samples in the present investigation of local nanostructuring. 

Poly(ethyl methacrylate), PEMA, is retained as example; its dynamic contrast is investigated 

in paragraph II. The results obtained at Tg+70 K with the 1H nuclear spin diffusion technique 

with dipolar filter will be detailed in paragraph III, together with the modifications 

implemented in the data analysis. The actual magnetization selection and equilibration 

mechanism will be demonstrated in paragraph IV, followed by a conclusion on the use and 

misuse of the dipolar filter in paragraph V.  

I. Literature survey on nanostructuring in poly(n-alkyl methacrylates) 

and poly(n-alkyl acrylates) 

The study of nanophase separation in homopolymers with alkyl side chain218 is 

closely related to the study of the relaxation behavior of these polymers, which began in the 

1950s for the poly(n-alkyl methacrylates).219 We chose to present here only the results that 

are of direct relevance for the discussion of our own results, namely parts of the Ph.D. work 

of Wind5 on molecular dynamics and nanophase separation in poly(n-alkyl methacrylates), 

and parts of the habilitation work of Beiner220 on relaxation and nanophase separation in 

poly(n-alkyl methacrylates), PnAMAs, and poly(n-alkyl acrylates), PnAAs. 

A. Molecular dynamics and nanophase separation in poly(n-alkyl 

methacrylates) (Ph.D. work of Wind)5,221 

Heating an amorphous polymer above its glass transition generally yields an isotropic 

melt. In this respect, poly(n-alkyl methacrylates), PnAMAs, are of special interest, since 

these macromolecules exhibit highly anisotropic motional processes in the molten state, as 
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shown by Kulik et al.222 For poly(ethyl methacrylate), PEMA, and its higher homologues, the 

time scales of the usual segmental α-relaxation and the isotropization process are clearly 

separated. 

C

C

CH2

CH3

OO

CH2
CH3

n

x-1  

Figure 3- I-1: Poly(n-alkyl methacrylates), 
PEMA for x=2. 

1. Isotropization of atactic poly(ethyl methacrylate) 

The isotropization process is a relaxation process which leads the macromolecule 

from a state where some motions are anisotropic within a given time window, to a state 

where the motions are isotropic. The isotropization in atactic poly(ethyl methacrylate), a-

PEMA, was characterized using solid-state NMR on a sample of PEMA statistically labeled 

with 13C on 20 % of the C=O groups. It has a Tg of 338 K, a high molar mass, and in fact a 

high syndiotactic content (63 % of rr triads), s. Part 2, III.B for more details. 

a) Geometry of the isotropization151 

2D 13C exchange spectra76 were recorded under static conditions, with a mixing time 

of 2 ms, at various temperatures above Tg (s. Figure 3- I-2). In this experiment, the intensity 

at a spectral point (ω1, ω2) is the joint probability that a species having a frequency ω1 at the 

beginning of the experiment has a frequency ω2 after the mixing time tm. Neither elliptic 

patterns, characteristic of discrete reorientations at defined angles, nor patterns characteristic 

of isotropic rotational diffusion, simulated for various correlation times, were observed. 

At a lower temperature, 394 K=Tg+56 K, the intensity near the diagonal represents 

the diffusive motions of the main chain at small angles, while the non structured distribution 

of intensity over the whole 2D exchange plane represents the reorientation processes with 

wide angles and variable amplitude. A spectrum simulated assuming an isotropic random 

jump model and a single correlation time (tI=3.3⋅10-3 s at 394 K)  reflected all characteristic 

properties of the experimental spectrum (s. Figure 3- I-2). The fact that a single correlation 

time is involved, and not a distribution of correlation times, was proved by measurement of 

Hahn-echo decay curves. 

At higher temperatures, 405 K=Tg+67 K and 416 K=Tg+78 K, the recorded spectra 

were also successfully simulated using a random jump model (s. Figure 3- I-2). 
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Figure 3- I-2: Static 2D 
13C exchange spectra of 
a-PEMA, statistically 

labeled with 13C on 20 % 
of the C=O groups (on 

the left side), and 
corresponding 

simulations using a 
random jump model with 
a single correlation time 
(on the right side); the 

mixing time was 2 ms; Tg 
is 338 K. 

b) Time scale of the isotropization151 

The geometry of the isotropization motion had been established using the 2D 

exchange experiments presented above. Therefore 1D line shape analysis could be used for a 

faster determination of correlation times. 1D 13C static, cross-polarization (CP) or single 

pulse excitation, spectra were recorded for the labeled a-PEMA, at various temperatures. 

Each spectrum was simulated using a random jump model to obtain the single correlation 

time of the isotropization motion (s. Figure 3- I-3). 
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 All measured correlation times related to the isotropization motion of a-PEMA were 

plotted against the inverse temperature on an Arrhenius diagram for this polymer (s. Figure 

3- I-4) to compare them with known correlation times of α- and β-relaxation processes taken 

from literature.221 These α- and β-relaxation processes are historically named so from 

dielectric spectroscopy measurements, where the slowest observed process was named α-

relaxation, the next faster one was named β-relaxation. The α-process corresponds to 

cooperative motions of polymer chains, usually the cooperative reorientation of several 

monomeric units in the main chain also called glass transition. The β-process corresponds to 

local motions, in the case of side chain polymers like PnAMAs it is usually the reorientation 

of individual ester side chains. Above the crossover temperature, both α- and β-relaxation 
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merge into the αβ-relaxation. The Arrhenius diagram of a-PEMA shows that the 

isotropization is clearly slower than the α- and αβ-relaxations.  
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Figure 3- I-4: Arrhenius 
diagram of the separation 
of the dynamic time scales 
in a-PEMA melts. All the 

data were scaled with a Tg 
of 338K. The measured 

correlation times tR/I  of the 
main chain measured 

using 1D 13C and 2D 13C 
exchange NMR147 were 

compared with the 
correlation times of α-, β- 
and αβ-relaxations taken 
from literature (PCS is 

photon correlation 
spectroscopy).221  

The β-relaxation time scale exhibit an Arrhenius behavior, while the α-relaxation and 

the isotropization time scales are described by a Williams-Landel-Ferry (WLF) equation223 

(s. Appendix in Part 7, III.A.3): 
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where t(T) is the correlation time at the temperature T (K), and C1 and C2 are constants 

characteristic of the material. The reference temperature T0 is often chosen equal to Tg, which 

generally results in values of ca C1
g = 17.4 and C2

g = 51.6 K for the α-relaxation process. In 

the case of a-PEMA shown here, the reference temperature was chosen equal to Tg = 338 K, 

which leads to C1
g = 10.6 and C2

g = 52.6 K for the isotropization process. (This is clearly 

different from the parameters obtained for αβ-relaxation of a-PEMA from dielectric 

spectroscopy: C1
g = 15 to 21, C2

g = 65 K, Tg = 335 K). 

c) Length scale of the isotropization150 

The length scale of the isotropization in a-PEMA was probed by recording static 1D 
13C CP spectra of a-PEMA samples of different mass-average molar masses Mw with 13C in 

natural abundance, at Tg+56 K (s. Figure 3- I-5). These samples were synthesized by anionic 

polymerization in order to obtain narrow molar mass distributions. The spectra of the 
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polymers containing 56 and 12 monomeric units can be described by a random jump model 

with a single correlation time corresponding to the one of the a-PEMA of higher Mw which 

proves that the isotropization process occurs in these polymers. On the contrary, the oligomer 

containing on average four monomeric units exhibits a spectrum which is fully averaged by 

isotropic motions, without an axial-symmetric tensor, and the measured correlation time is 

the one of the αβ-relaxation; this proves that the isotropization motion does not occur in it. 

Finally, it can be deduced that the isotropization motion involves a segment of polymer 

chain containing 5 to 12 monomeric units. 

* 

σ  iso  

200 150 100 250 [ppm] 

* * 

* 

Mw = 460 g.mol-1 
(4 monomeric units)

Mw = 1 370 g.mol-1  
(12 monomeric units)

Mw = 6 400 g.mol-1  
(56 monomeric units) 

Figure 3- I-5: Static 1D 
13C CP spectra of a-

PEMA, with 13C in natural 
abundance at Tg+56K (the 

lines marked with an 
asterisk * arise from the 
polymerization initator, 
diphenyl hexyl lithium). 

2. Influence of the tacticity on the isotropization process of poly(ethyl 

methacrylate)150 

The length scale of the isotropization process in a-PEMA (5 to 12 monomeric units) is 

the same as the statistical length of syndiotactic sequences in a-PEMA, so that the 

isotropization process could be related to the tacticity of PEMA. High molar mass isotactic 

PEMA (i-PEMA) was synthesized using anionic polymerization in toluene. Since the 

relaxation behavior of i-PEMA had never been characterized before, non labeled i-PEMA 

was used to determine the time scales of α- and αβ-relaxations (using mechanical and 

dielectric spectroscopy) and the time scale of β-relaxation (via solid-state NMR). The time 

scale of the isotropization process in i-PEMA was determined by recording 2D 13C exchange 

and 1D 13C, CP or single pulse spectra of a sample statistically labeled with 13C at 20 % of 

C=O groups. The results are shown on Figure 3- I-6. The parameters of the WLF equation 

describing the isotropization process of i-PEMA are Tg=290 K, C1
g=11.5, C2

g=58 K. Since 

the WLF parameters of i-PEMA and a-PEMA are the same for the isotropization process, as 

well as for α-relaxation, the isotropization process of PEMA is observed for both syndio- 

and isotactic sequences. 
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Figure 3- I-6: Arrhenius 
diagram of the separation 
of the dynamic time scales 
in i-PEMA melts. All the 

data were scaled with a Tg 
of 290 K. 

3. Influence of the side chain length on the isotropization process150 

Several poly(n-alkyl methacrylates) were synthesized, statistically labeled with 20 % 
13C on C=O. The side chain length was varied: methyl (PMMA), ethyl (PEMA), n-butyl 

(PBMA), n-hexyl (PHxMA). They all exhibit a high molar mass, their Tg determined by 

differential scanning calorimetry (DSC) are shown in Table 3- I-1 (s. Part 2, III.B for details). 

Sample PMMA PEMA PBMA PHxMA
Tg 

(DSC at 10K/min) 401 338 307 277 

Table 3- I-1: Tg of atactic poly(n-alkyl 
methacrylates), 20 % statistically 13C 

labeled on C=O. 

 The time scale of the isotropization motion was investigated for each of these 

polymers by recording static 1D 13C, CP or single pulse excitation, spectra at different 

temperatures and fitting them using a random jump model to determine the correlation time 

of the isotropization motion (s. Figure 3- I-7). It appears that the isotropization process can 

be described by similar and consistent sets of WLF parameters for all poly(n-alkyl 

methacrylates) except PMMA.  
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Figure 3- I-7: (a) Static 
1D 13C CP spectra of 
various poly(n-alkyl 

methacrylates) 
statistically labeled 

with 13C on 20 % of the 
C=O groups; (b) 

Arrhenius diagram of 
the correlation times, 

extracted by fitting 
these spectra using a 
random jump model 

with a single 
correlation time. 
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 The time scale of the isotropization process measured by Wind150 has been compared 

to the time scale of the αβ-relaxation for each polymer except PMMA by plotting them on an 

Arrhenius diagram (s. Figure 3- I-8). The correlation times for α-, β, and αβ-relaxations 

quoted by Wind were measured by NMR, photon correlation spectroscopy, dielectric 

spectroscopy, mechanical spectroscopy and calorimetric measurements. These diagrams 

show that the αβ-relaxation time scale comes closer to the isotropization time scale when the 

side chain length is increased. 
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Figure 3- I-8: 
Arrhenius 

diagrams of the 
separation of the 

dynamic time 
scales in poly(n-

alkyl methacrylate) 
melts. 

 

4. Local structure of poly(n-alkyl methacrylates)153  

The local structure of the PnAMAs was studied using wide-angle X-ray scattering 

(WAXS). The WAXS studies of these polymers show the presence of two or three clearly 

different peaks, except for PMMA (since the systems are amorphous, the term halo would be 

correct, but the term peak is more usual and will be used here). Apart from the peak (I) 

around 13 nm-1, a peak (II) appears around 8 nm-1 for lower homologues and a peak (III) in 

the range 3.5 to 6 nm-1 (s. Figure 3- I-9). 
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Figure 3- I-9: (a) WAXS curves of poly(n-alkyl methacrylates) at 300 K. (b) Corresponding Bragg distances as 

a function of the number of carbons in the ester side group; the data recorded by Michael Wind (hollow 
circles) are plotted together with other values from the literature (full squares, triangles, and diamonds).5 
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 Several arguments of different origins were used to assign the observed peaks to 

structural features of the poly(n-alkyl methacrylates). The peak (I) is assigned to side chain 

groups according to a wide-angle neutron scattering (WANS) study of selectively deuterated 

polymers. This peak corresponds to an intrasegmental phenomenon since its intensity is 

independent of the temperature. Furthermore, a change in temperature around the glass 

transition has no influence on it, so that it can be assigned to non-bonded neighbors atoms. 

The peak (II) is assigned to main chain groups according to a WANS study of selectively 

deuterated polymers; this peak corresponds to an intersegmental phenomenon since its 

intensity increases with increasing temperature; furthermore the increase of the 

corresponding distance with temperature is related to the decrease of the density in the 

polymer. The peak (III) is assigned to side chain groups and intersegmental phenomena 

according to a WANS study. 

 A structure had already been proposed by Adam224 to describe the structure of 

macromolecules with incompatible stiff main chains and flexible side chains (polyesters, 

polyamides and polyimides). This structure was proposed again here to describe locally the 

PnAMAs (s. Figure 3- I-10), since it is in accordance with all the observations detailed 

before. 
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isotactic

Main chain

Side chain

dI

dIII

 

dIII

dII
dII

dIII

modification A modification B

dIII

dII
dII

dIII

modification A modification B

Figure 3- I-10: Ideal packing 
model for macromolecules 
with a stiff backbone and 
flexible side chains. This 

model, considered for a local 
structure, is on accordance 
with all measurements done 

on PnAMAs. 

 

The driving force of the nanophase separation in PnAMAs is the incompatibility of 

stiff polar main chains with the flexible non polar alkyl side chains. It should be noted that 

the term polar will be used in this work for the main chain including the COO group, even if 
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this group would be considered as little polar by most chemists. In the case of syndiotactic 

PnAMAs, two arrangements of the main chains are possible (modifications A and B), and 

modification B is the most probable due to steric hindrance. This model must be considered 

as an abstract limiting structure to illustrate the local order in the real systems, on a length 

scale of 5 to 10 monomeric units. This structure and the stability that it implies would 

explain the anisotropic motion observed in the polymethacrylate melts. 

B. Nanophase separation in poly(n-alkyl methacrylates) and poly(n-alkyl 

acrylates) (habilitation work of Beiner220) 

Beiner et al.219 recorded the evolution of shear loss modulus with temperature for 

different PnAMAs at 10 rad.s-1. Besides α-, β- and αβ-relaxations, an additional relaxation 

process at low temperatures was observed for all members above propyl (x=3, s. Figure 3- 

I-1 for notation). It is shown on Figure 3- I-11. This process is very little or not active in 

dielectric relaxation, but active in temperature modulated DSC, indicating a cooperative 

relaxation process of the alkyl side chains. It was called polyethylene-like glass transition, 

αPE. Since the α-process is associated with the glass transition measured using conventional 

DSC, the samples exhibit two glass transition-type processes. The αPE-relaxation process, 

active in the glassy homopolymers, can originate from a phase separation between polar main 

chains and non polar side chains on a nanometer length scale. It can also originate from a 

dynamic pattern, fluctuating in time and space, with two inherent time and length scales. The 

static picture of the nanophase separation is preferred by Beiner et al., and is in accordance 

with the existence of two pronounced peaks in WAXS (peaks I and III of Figure 3- I-9).  
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Figure 3- I-11: Relaxation 
temperatures for different 

relaxation processes α, β, αβ 
and αPE as a function of side 

chain length; the symbols 
correspond to the maxima 
positions in the shear loss 

moduli at 10 rad.s-1. 219 

Beiner225 reviewed the results concerning the relaxation behavior in the crossover 

region between α and αβ relaxation, as well as the nanophase separation for PnAMAs. The 

coexistence of two glass transitions is rather unusual for homopolymers, but typical of 

microphase separated block copolymers and other systems showing a static structure on a 

larger scale. Therefore, a kind of local phase separation is also expected for the amorphous 

poly(n-alkyl methacrylates) with a long enough alkyl side chain (more than three carbon 

atoms), due to the incompatibility of the polar backbones and the non polar side chains. Two 
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of the three peaks observed in WAXS are discussed. The main peak at 0.5 nm (I in Figure 3- 

I-9) was attributed to chain-to-chain distance since it is a typical Van der Waals separation of 

non-bonded neighbors. The peak at 1 to 1.8 nm (III in Figure 3- I-9) was attributed to either 

the backbone to backbone distance or to the typical repeating distance of the polyethylene-

like nanodomains in the melt (s. Figure 3- I-12). 

III
III

(a) (b) Figure 3- I-12: Simple structure 
models for nanophase –separated 

side-chain polymers; (a) one-
dimensional and (b) three-

dimensional model for structure; 
polyethylene-like nanodomains 

are represented in gray and 
backbone in bold lines.225 

Beiner et al.226 summarized the structural and dynamic heterogeneities in higher 

homologues of PnAMAs in which no side-chain crystallization occurs. They show small-

angle X-ray scattering (SAXS) data for side chains ranging from n-butyl (x=4) to n-decyl 

(x=10), as well as n-octadecyl (x=18) and a random copolymer of n-hexyl and n-butyl 

(x=4.9) (s. Figure 3- I-13). They observe that the higher Bragg spacing increases 

monotonically with the alkyl side-chain length, but not linearly. The dependence has an 

exponent close to 0.5 for propyl to nonyl, indicating a Gaussian coil-like conformation of the 

side chain. Interestingly, random copolymers behave similar to homopolymers with the same 

average side chain length. The morphology of the PnAMAs is a situation with alkyl 

nanodomains containing the aggregated alkyl groups of different monomeric units 

surrounded by carboxylic groups (belonging to main chains). However, the shape of the 1 to 

2 nm large alkyl nanodomains is not clear so far. 

(a) (b)

III

Figure 3- I-13: SAXS 
data for several poly(n-
alkyl methacrylates) at 
25°C; (a) raw data, the 

labels indicate the 
number of alkyl carbons, 

a random copolymer 
with label 4.9 is 

included; (b) equivalent 
Bragg spacings I and III 

as function of the 
number of carbons in 

the alkyl rest.226 

Hempel et al.227 characterized PnAMAs with longer alkyl side chains (10 to 18 

carbons), using SAXS, calorimetric and dielectric methods. They showed that PnAMAs 
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undergo partial crystallization of the nanodomains composed of alkyl side chains for side 

chains longer than 12 carbons. 

Pascui et al.228 studied the molecular dynamics of poly(n-hexyl methacrylate) (x=6) in 

the range Tg to Tg+40 K using solid-state NMR, in order to assign the molecular dynamics of 

the different subunits of the monomeric units to the different relaxation processes that were 

detected by dielectric and mechanical relaxations. They used 13C 1D-exchange techniques 

under MAS and developed a method to correct the data for 1H nuclear spin diffusion which 

occurs in the samples under MAS at the same time scale as the investigated molecular 

reorientations (even in the samples naturally abundant in 13C). They probed the dynamics of 

the side-chain using the O-CH2 group, and showed that it is involved only in the localized β-

process. They probed the dynamics of the main chain using the quaternary carbon and 

showed that it is involved in the localized β-process as well as in the cooperative α-process. 

They showed that the COO group dynamics is dominated by the β-process around Tg, while 

at higher temperatures both α and β contribute to it. 

Beiner and Huth229 showed that nanophase separation of incompatible main and 

side-chain parts is a general phenomenon in amorphous polymers with long alkyl side 

chains. This conclusion was achieved by comparing relaxation dynamics and scattering data 

for PnAAs, PnAMAs, poly(di-n-alkyl itaconates) and hairy rod polyimides. SAXS data 

exhibit two main peaks (s. Figure 3- I-14 and Figure 3- I-15 for the peak III). As detailed 

above, this indicates an aggregation of the alkyl groups from different monomeric units, 

belonging to one or different polymer chains, in the amorphous material. This side chain 

aggregation occurs on a length scale of 1 to 2 nm. 
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Figure 3- I-14: Peak III in SAXS data at 
25°C for PnAAs (top) and PnAMAs 

(bottom);153 C is the number of carbons in 
the alkyl side chain. 
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 Figure 3- I-15: Equivalent Bragg spacing 

III from SAXS data vs number of carbons 
in alkyl side chain, for 
PnAAs (filled squares), 
PnAMAs (filled circles), 
polyitaconates (stars), 
polyimides (diamonds), 

poly(alkylbenzimidazol-alt-thiophenes) 
(open squares), 

poly-1-olefins (open circles). 
The dashed line indicates the length of 

extended alkyl groups (all trans).229 

A similar polyethylene-like glass transition is observed in all families cited above,229 

which depends only on the alkyl side chain length, but not on nature of the main chain (s. 

Figure 3- I-16). In PnAAs and PnAMAs the size of cooperatively rearranging regions 

(CRRs230) involved in the αPE process is a few nanometers (as extracted from calorimetric 

data or measured by solid-state NMR). This is comparable to the size of the alkyl 

nanodomains. Therefore Beiner and Huth interpret the αPE process as an hindered glass 

transition in self-assembled alkyl nanodomains. 
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Figure 3- I-16: Relaxation temperature of 
the α  process and of the polyethylene-like 
αPE process vs alkyl side chain length for 

different polymer series; the data are taken 
from dielectric and shear data at 10 rad.s-1 

for PnAAs (squares) and PnAMAs 
(circles), and from shear data at 6.28 
rad.s-1 for polyitaconates (stars) and 

polyimides (diamonds); the Tg for 
amorphous polyethylene and the relaxation 

temperature of the γ-process in semi-
crystalline polyethylene are given for 

comparison (triangles).229 

Hiller et al. investigated a series of n-butyl methacrylate samples with different 

degrees of polymerization (1, 2, 6, 10, 25, 52, 405) using SAXS.231 They observed that the 

main features of the nanophase structure are nearly identical for all polymers and oligomers 

containing more than 25 monomeric units. Furthermore, this structure is significantly 

different only for the shortest oligomers (less than 10 monomeric units), especially for the 

monomer and the dimer. This confirms the conclusion of Wind150 from NMR results (s. 

paragraph A) that the isotropization motion, and hence the nanophase separation, involves a 

segment of polymer chain containing 5 to 12 monomeric units. 

C. Conclusion 

X-ray scattering (SAXS) data show a similar behavior for PnAAs and PnAMAs229 (s. 

Figure 3- I-15). In addition to the van der Waals peak below 1 nm, both exhibit a peak at a 

Bragg distance linearly increasing with the alkyl side chain length. However, a major 

difference between PnAMAs and PnAAs should be emphasized here: an intermediate peak is 

clearly seen for lower PnAMAs and not for the PnAAs. This intermediate peak was assigned5 

to the distance between two consecutive side chains attached to the same backbone. 

Therefore the PnAAs probably adopt a local nanostructure, similar to PnAMAs, but are less 

ordered within the respective domains. This type of structure, more or less ordered, has 

already been observed for stiff macromolecules with incompatible flexible side chains, for 

which a layered geometry was observed (s. Figure 3- I-17).224 
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(a) (c) (b) 

Figure 3- I-17: Layered structures observed for "hairy rods"4: (a) almost no order within the layer, 
(b) order within the layer, (c) order within the layer only present in some parts of the sample. 

As a conclusion, both PnAMAs and PnAAs exhibit a local ordering on the nanometer 

length scale, as it is the case for numerous side chain polymers.232 This ordering most 

probably results in a dynamic contrast: the structured nanodomains should be less mobile 

than the rest of the sample. Therefore both sample families are appropriate model samples for 

a 1H nuclear spin diffusion investigation with dipolar filter. However, since the nanostructure 

is more pronounced in the PnAMAs, those are assumed to be better model samples for this 

investigation. The most studied PnAMA is PEMA. Furthermore, the investigations should be 

conducted at the same distance from Tg for all samples, and the temperature of interest for 

the industrial samples is room temperature, i.e. ca Tg+70 K. Finally, we chose to investigate 

first PEMA at Tg+70 K. 

 

 

II. Dynamic contrast in poly(ethyl methacrylate), PEMA 

The dynamic contrast is the difference in mobility between the more mobile and the 

less mobile parts of a sample. It was characterized in PEMA by solid-state NMR, in 

particular 1H static spectra and 2D-WISE experiments.  

A. 1H static spectra 

All recorded spectra are shown in the appendix (Part 7, IV.A.1), a few representative 

spectra are shown in Figure 3- II-1 (remarks on the small very narrow line are made in 

appendix in Part7, I.C). At none of these temperatures, the simple superposition of a broad 

and a narrow line is observed: the line gets narrower in a visually homogeneous way with 

increasing temperature. This means that the whole sample is becoming more mobile with 

increasing temperature, and exhibits no strong dynamic contrast. However, less pronounced 

dynamic contrast within the sample might still be present and probed using the dipolar filter. 
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In this case, the static spectra would be a superposition of two lines with similar line widths, 

so that it would be difficult to visually differentiate them. 

1e+05 0e+00 Hz

1e+05 0e+00 Hz

1e+05 0e+00 Hz

297 K = Tg-45 K

342 K = Tg

382 K = Tg+40 K

1e+05 0e+00 Hz

1e+05 0e+00 Hz

1e+05 0e+00 Hz

1e+05 0e+00 Hz

397 K = Tg+55 K

442 K = Tg+100 K

427 K = Tg+85 K

412 K =Tg+70 K

1e+05 0e+00 Hz

362 K = Tg+20 K

 
Figure 3- II-1: Influence of the temperature on the shape of the 1H spectrum of sample PEMA (spectra 

recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions); the dotted frame indicates the 
temperature at which the investigation using the dipolar filter was carried out first. 

B. 2D-WISE 

In order to characterize more precisely the dynamic contrast in PEMA with a higher 

structural resolution, the 2D-WISE technique was used. This technique is described in Part 1, 

II.E. In a 2D-WISE spectrum the different chemical groups of the molecule are resolved 

according to their chemical shifts in the 13C (direct) dimension and are correlated with the 

line width in the 1H (indirect) dimension. This experimental procedure provides information 

on the mobility of the corresponding group: the narrower the line, the more mobile the 

chemical group. 

1. Sample PEMA13C 

In the case of sample PEMA13C, all parts of the monomeric units are detected. The 

contour spectra and the extracted 1D 13C spectra are shown in the appendix (Part 7, IV.A.2). 

The 1D 1H spectra extracted from the 2D-WISE spectra are presented in Figure 3- II-2. The 
13C chemical shifts assignment is detailed in Table 3- II-1. It should be noted that the line 
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width of the quaternary C and C=O signals can not be interpreted in terms of mobility only, 

due to the absence of directly bond 1H nuclei. 

At Tg-11 K, no significant line width difference is observed for the side chain and 

main chain CH3 and CH2 groups. At Tg+35 K, the lines exhibit the following order for 

decreasing mobility: CH3 groups, then CH2 groups. At Tg+81 K, the lines exhibit the 

following order for decreasing mobility: side-chain CH3, then main chain CH3, then CH2 

groups. 

17 ppm
45 ppm

20- 2 kHz

60 ppm
100 to 250 ppm

11 ppm

50- 5 kHz

50- 5- 10 kHz

327 K = Tg-11 K

419 K = Tg+81 K

373 K = Tg+35 K

Figure 3- II-2: 1D 1H 
spectra extracted from 
the 2D-WISE spectrum 
of sample PEMA13C 
(1H Larmor frequency 
of  300.13 MHz, static, 

LG-CP and π-pulse 
during t1). 

 

δ (ppm) Assignment106 
11 side chain CH3 
17 main chain CH3 
45 main chain C 
60 side chain CH2 and main chain CH2

100 to 250 C=O 

Table 3- II-1: 
Assignment of the 

13C chemical shifts 
of poly(ethyl 

methacrylate) . 

 

It should be pointed out here that the apparent difference in mobility is decreased by 

possible 1H nuclear spin diffusion during the CP contact time (s. Part 1, II.E). Therefore Lee-

Goldburg CP was used here. However, an accurate adjustment of the Lee-Goldburg 

conditions is only possible under MAS, due to the presence of heteronuclear dipolar 

couplings under static conditions. The 1H nuclear spin diffusion was thus not properly 

suppressed but only weakened in the 2D-WISE recorded here under static conditions. 
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Finally, the apparent difference in mobility is lower than the actual one, but still high enough 

to be detected. 

As a conclusion, the CH3 groups are the most mobile ones, and the side chain CH3 is 

more mobile than the main chain one, as observed at Tg+81 K where they can be 

differentiated. The CH2 groups are less mobile groups than the CH3 groups. It should be 

noted that main chain and side chain CH2 groups cannot be differentiated in this experiment 

because of the poor spectral resolution in the 13C dimension. 

2. Sample PEMADSC 

The sample PEMADSC is deuterated on the side chain, so that only the main chain is 
1H-NMR-active. Therefore only the CH3 and CH2 groups of the main chain contribute to the 

spectral intensity (respectively at 17 to 20 and 50 to 55 ppm)180.  

The contour spectra and the extracted 1D 13C spectra are shown in the appendix (Part 

7, IV.A.2). The 1D 1H spectra extracted from the 2D-WISE spectra are shown in Figure 3- 

II-3. For all the temperatures, it can be clearly seen that the CH3 group is more mobile than 

the CH2 group. This is due to the fast rotation of the CH3 group. 

5- 5- 10 kHz10

0 5- 5 kHz

420- 2- 4 kHz

0

50 to 55 ppm (CH2)
17 to 20 ppm (CH3)344 K = Tg-9 K

434 K = Tg+81 K

390 K = Tg+37 K

Figure 3- II-3: 1D 1H 
spectra extracted from 

the 2D-WISE 
spectrum of sample 

PEMADSC (1H 
Larmor frequency of  
300.13 MHz, static, 
LG-CP and π-pulse 

during t1). 
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C. Conclusion on the dynamic contrast  

1H static spectra were recorded on PEMA at temperatures ranging from Tg-45 K to 

Tg+115 K. They showed that the whole sample is becoming continuously more mobile with 

increasing temperature, and does not exhibits a strong dynamic contrast. 

2D-WISE spectra were recorded at temperatures ranging from ca Tg-10 K to Tg+80 K 

for samples PEMADSC and PEMA13C. It was shown that the CH3 groups are more mobile 

than the CH2 groups, the CH3 of the side chain being more mobile than the CH3 of the main 

chain. Furthermore, the main chain and the side chain CH2 are not differentiated. 

Finally, the dynamic contrast is very low in PEMA sample, but might still be present 

and detected by other solid-state NMR experiments like 1H nuclear spin diffusion technique 

using the dipolar filter (s. next paragraph). 

 

 

III. Monitoring the 1H magnetization of the more mobile parts after the 

dipolar filter 

The sample PEMA, as well as all model and industrial sample investigated in this 

work, represent a new kind of sample for the 1H nuclear spin diffusion technique with dipolar 

filter, since they exhibit a very low dynamic contrast, as explained in paragraph A. Therefore, 

its investigation required several changes in the data analysis, which are presented in 

paragraph B. The obtained results are detailed in paragraph C. 

A. New type of sample for the 1H nuclear spin diffusion technique with dipolar 

filter 

The 1H nuclear spin diffusion technique using the dipolar filter6 had been previously 

applied to various polymers, including block copolymers,81 blends,81 core-shell particles82,90 

and conetworks (polymer chains covalently bonded by blocks of another polymer)91. These 

different samples had in common a phase separation on the nanometer length scale in the 

material, leading to the formation of two phases composed of one homopolymer each. 

Various geometries have been observed for the phase separations. Furthermore, all samples 

exhibited two glass transition temperatures (Tg), each corresponding to one phase, and the 

difference between the Tg values was substantial in each sample: from 80 K to 160 K in the 

block copolymers,81 170 K in the blend sample,81 160 K in the core-shell particles,82,90 and 

from 150 K to 175 K in the conetworks91. In all cases, the 1H nuclear spin diffusion 

experiments were conducted at an intermediate temperature between the two Tgs. This 
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implies a high difference of mobility between the phases at the measurement temperature, i.e. 

a high mobility contrast. The case of the conetworks is illustrated on Figure 3- III-1 by the 1H 

static line shape. The more mobile phase (PIB) exhibits a narrow line, while the less mobile 

one (PHEMA) exhibits a broad line. The difference in the line width of the two phases (in 

Hz) is higher than one order of magnitude.91 

-40000 -20000 0 20000 40000

PHEMA

PIB

Hz

Figure 3- III-1: 1H static NMR 
spectra of two amphiphilic conetwork 
samples with different compositions; 

they are composed of poly(2-
hydroxyethyl methacrylate) (PHEMA) 

chains covalently bonded by 
polyisobutylene (PIB) blocks; the 

solid line marks the spectrum of the 
63 % w/w and the dotted line the 

24 % w/w PIB containing sample.91 

In order to characterize pressure-sensitive adhesives, we have applied the 1H nuclear 

spin diffusion technique to statistical copolymers and homopolymers (s. sample descriptions 

in Part 2, I to III). The statistical copolymers are industrial latices composed of statistical 

copolymers of 2-ethyl hexyl acrylate, acrylic acid (and methyl acrylate for some of them). 

The homopolymers are poly(n-alkyl acrylates) (methyl, ethyl, butyl and hexyl members) and 

poly(n-alkyl methacrylates) (ethyl, butyl and hexyl members). All samples exhibit a single 

Tg, as measured by differential scanning calorimetry (s. Part 2, I to III). It implies that all 

samples will exhibit a rather homogeneous mobility, i.e. a low mobility contrast, for all 

accessible temperatures. This is indeed the case, as will be detailed in Parts 4, I and Part 5, I. 

The representative example of PEMA was detailed in paragraph II: the whole sample is 

becoming more mobile with increasing temperature, and exhibits no significant difference in 

the mobility of all parts of the sample. However, less pronounced dynamic contrast within 

the sample is present, and the 1H spectra is in fact a superposition of lines with a similar line 

width, that can not be distinguished visually. This type of samples exhibit a low mobility 

contrast and is therefore more complicated to investigate with the 1H nuclear spin diffusion 

technique with dipolar filter, what has not been done before. 

B. Changes done to data analysis 

The classical data analysis was detailed in Part 1, II.H.5. 
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1. Recording of the 1H nuclear spin diffusion curve 

a) Choice of the height instead of the area of the recorded 1H line 

In a 1H nuclear spin diffusion experiment, the magnetization of the more mobile 1H 

nuclei is usually monitored as the area of the narrower line. This technique is difficult to 

apply here, because the contrast in mobility (and thus the line width difference) is too low. 

Typical spectra recorded for sample Copo2 are shown on Figure 3- III-2. It is obvious that a 

broader component appears over tm. Nevertheless, the line width difference between the 

initial line and the appearing broader line is too low to eliminate only one of them by 

reducing the spectral window. Furthermore, it is difficult to integrate only one line in the 

total 1H spectrum without including the other one. This could possibly be achieved after an 

elaborate deconvolution, which is very time-consuming and difficult at low signal-to-noise 

ratio. Therefore it was decided to simply monitor the height of the maximum of the total 1H 

spectrum as a function of the mixing time, which is more sensitive to the narrower 

component. This estimate allows to monitor the time dependence of the magnetization 

exchange. The absolute values of the degree of exchange, e.g. the plateau value, should, 

however, be interpreted with care. 

-40-2040 20 0 ppm

tm = 0.1 ms
tm = 8 ms

Figure 3- III-2: 
Gradual broadening 

of the basis of the line 
during the 1H nuclear 

spin diffusion 
experiment, for 
sample Copo2 

(dipolar filter with 
15 µs delay and 8 
cycles, tm: mixing 

time). 

b) Correction for longitudinal relaxation 

In the case of samples with a very low mobility contrast, the T1 relaxation was 

characterized in the samples using the inversion recovery experiment. It exhibited a 

monoexponential decay, characteristic of a spatially homogeneous T1 relaxation, or for 

samples with a relaxation sink and extensive 1H nuclear spin diffusion. Furthermore, all T1 

times are longer than 450 ms (s. Part 4, III.A and Part 5, III.A). The part of the diffusion 

curves that were processed for all the samples (initial linear slope and beginning of the 

plateau) correspond to √tm values smaller than 10 √ms (s. curves in appendix in Part 7, IV), 

and thus to tm values smaller than 100 ms. This is much smaller that the T1 relaxation values. 
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Therefore the corresponding parts of the 1H nuclear spin diffusion curves could be easily 

corrected for T1 relaxation using the procedure described in Part 1, II.H.5.a and b.  

The relevance of the T1 correction and its accuracy are illustrated in Figure 3- III-3. 

For a few representative samples and temperatures, the normalized intensity is plotted as a 

function of √tm before and after T1 correction. The judicious √tm values were chosen as 

follows: initial point, end of the linear decay, (end of the second linear decay, when it exists, 

s. Part 5), random point on the plateau. It can be clearly seen that the T1 correction introduces 

a non negligible difference in normalized values, and that a plateau can be obtained only after 

T1 correction. 
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Figure 3- III-3: 
Illustration of the 

relevance and accuracy 
of the T1 correction in 
the experiments using 
the dipolar filter for 

representative samples 
and temperatures; for 

each sample and 
temperature, the two 
extreme filters are 

shown; the dotted and 
solid lines represent the 
intensities resp. before 
and after T1 correction.

2. Determination of the plateau value 

For some experiments, the curve was slowly decaying for long mixing times (s. 

Figure 3- III-4). In that case, the beginning of  plateau can be seen before the slow decay. 

The height of this short plateau was chosen as plateau value to determine the selected mobile 

content (s. dashed line). The quality of the T1 correction indeed decreases with increasing 

mixing times, since the approximation that tm is much smaller than T1 becomes less and less 

valid, as explained in Part 1, II.H.5.b). 
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Figure 3- III-4: 
Corrected magnetization 
decay of the mobile parts 

for sample PBMA at 
372 K (Tg+70 K), using a 
dipolar filter with 10 µs 
delay and 1 cycle; the 
dashed line shows the 

value considered for the 
plateau value. 

3. Determination of the average diffusion coefficient 

The average diffusion coefficient Deff is calculated from the diffusion coefficients of 

the more and the less mobile phase, resp. Dmob and Drig, as indicated in Equation 3- III-1. 
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⎝
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+=

rigmobeff DDD
11

2
11  Equation 3- III-1

In our case of low mobility contrast, the whole sample is much more mobile than 

polystyrene below its Tg, so that the less mobile phase can not be assumed to have a diffusion 

coefficient of 0.8 nm2.s-1. Furthermore, it is practically possible to determine only one value 

of diffusion coefficient. Since both phases have a similar mobility and 1H spin density, they 

have similar diffusion coefficients. Therefore the average of the diffusion coefficients is 

close to the diffusion coefficient of the more mobile phase. It should also be noted that due to 

the way of averaging, the diffusion coefficient of the more mobile phase has more influence 

on the average than the other one, since it is lower. Finally, it was decided to determine the 

diffusion coefficient of the more mobile phase only, and assume that it is similar to the one of 

the less mobile phase, thus to the average diffusion coefficient. 

The diffusion coefficient of the more mobile phase has been determined via the T2 

relaxation time.81 Both methods (CPMG experiment, line width) have been used for all 

samples. It was decided to consider only the value coming from the line width measurement 

for two reasons. First, the line is broader at the temperature of the 1H nuclear spin diffusion 

measurements than at higher temperatures (indicating an intermediate mobility). Second, the 

diffusion coefficients determined through CPMG are higher than the ones determined from 

the line width of the 1H static spectrum (after a dipolar filter), and both methods overestimate 

the diffusion coefficient; therefore the lower value is assumed to be more accurate. 
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4. Choice of the dimensionality 

The last unknown left in the Equation 3- III-2 at that stage is the dimensionality ε of 

the detected structure (s. Part 1, II.H.5.e for notations). 

*2
meffsize tDd ⋅⋅⋅=

π
ε  Equation 3- III-2 

We have no indication concerning the geometry of the structure. Furthermore, we 

could not get information on it through, e.g., X-ray diffraction which detects a smaller 

structure (s. paragraph I), or electron microscopy for which the contrast is too low in 

homopolymers (or statistical copolymers). However, there is no reason why the structure 

should be composed of regular cylinders or lamellae or spheres.  

Therefore we decided to choose a dimensionality value as general as possible for an 

irregular structure. This kind of structure is illustrated on Figure 3- III-5 by the case of a hard 

sphere model of the dynamic heterogeneities in glass formers close to Tg.233,234 It should be 

underlined that these dynamic heterogeneities probably have no link with the dynamic 

heterogeneities investigated here. These aggregates of spheres have a dimensionality between 

2 and 3: it is the number of orthogonal directions along which the magnetization can go out 

of the domain in a short way. Finally, for simplicity reasons, it was decided to assume a 

dimensionality of 2 in the investigated samples. 

Figure 3- III-5: Computer 
simulation of dynamic 

heterogeneities in hard-
sphere model for the glass 

formers close to Tg.233 

C. Results obtained for poly(ethyl methacrylate) at ca Tg+70 K 

1. Modeling of the structured nanodomains 

In a sample exhibiting a high dynamic contrast and no interphase, the distribution of 

the transverse relaxation times T2 values would be bimodal, and the application of slightly 

different dipolar filters between these two populations would always select the same mobile 

fraction (s. Figure 3- III-6). 
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Figure 3- III-6: Schematic 
description of a sample 

with a high dynamic 
contrast and no 

interphase; (a) spatial 
distribution, (b) resulting 

T2 distribution. 

In the investigated model PEMA the dynamic contrast is very low. Therefore the 

bimodal distribution of the transverse relaxation times T2 is narrower, and the application of 

different dipolar filters at different places of this distribution is able to select slightly different 

mobile fractions (s. Figure 3- III-7). 
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Figure 3- III-7: Schematic 
description of a sample 

with a low dynamic 
contrast; (a) spatial 

distribution, (b) resulting 
T2 distribution. 

 

2. Monitoring 1H magnetization after the dipolar filter 

In PEMA at Tg+67 K, 1H polarization transfer occurs after the dipolar filter. It is 

proved by the gradual broadening of the basis of the line with increasing mixing time. The 

broadening of the basis of the line is due to parts of the samples with stronger dipole-dipole 

couplings (and lower mobility). These parts are deselected by the dipolar filter, and receive 

magnetization during the mixing time. 

The evolution of the 1H magnetization of mobile species with the mixing time after 

the dipolar filter is plotted on Figure 3- III-8 for sample PEMA at Tg+67 K. 
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Figure 3- III-8: 
Evolution of the 

1H magnetization 
of mobile species 
with the square 

root of the mixing 
time for the 

sample PEMA at 
409 K (Tg+67 K, n 

cycles of 12 
τ−spaced pulses in 
the dipolar filter). 

This evolution is the typical evolution of the normalized and corrected intensity as a 

function of √tm in a 1H nuclear spin diffusion experiment using the dipolar filter: a 

magnetization decay apparently linear in the square root of the mixing time for small mixing 

times and a plateau for long mixing times. Assuming that the dimensionality of the selected 

parts is 2 (s. paragraph B.4), and estimating the effective diffusion coefficient from the 1H 

static line width after the dipolar filter (s. paragraph B.3), apparent domain sizes of 2.8 to 

5.7 nm are determined. Furthermore, the plateau values range from 53 to 70 %. 

3. Conclusion 

As a conclusion, if it is assumed that the dipolar filter detects the nanostructuring in 

PEMA at Tg+67 K, then the dipolar filter would deselect the organized nanodomains, which 

are less mobile than the rest. These nanodomains have no reason to exhibit a particular shape, 

therefore a dimensionality of 2 is a fair assumption. The 1H magnetization of the selected 

more mobile parts with time apparently shows a typical diffusive behavior. The detected 

structure would have a size of a 3 to 6 nm, which is in accordance with the typical length of 5 

to 10 monomeric units determined in NMR150 and X-ray scattering231 studies. 

 

IV. Investigation of the actual selection done by the dipolar filter and of 

the actual subsequent transfer mechanism 

The data were processed in the preceding paragraph assuming that the dipolar filter 

would select domains on the nanometer length scale, and that the following magnetization 

transfer would occur by 1H nuclear spin diffusion, i.e. coherent flip-flop processes. However, 

these assumptions are questionable, in particular considering the weak dynamic contrast 
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involved. An alternative is that the different mobilitites within a monomeric unit would 

provide the basis for the selection by the dipolar filter. 

The actual selection done by the dipolar filter will be determined in paragraph A, then 

the actual magnetization transfer mechanism will be discussed in paragraph B. Finally, the 

mathematical equations describing the magnetization decay of the mobile parts will be given 

in paragraph C, and conclusions will be drawn in paragraph D on the kind of information on 

the sample which can be extracted. 

A. Actual selection done by the dipolar filter 

1. Discussion of the experimental conditions 

In order to check which selection the dipolar filter actually does, the selected signal 

was transferred to 13C nuclei and acquired in the 13C channel, to gain chemical shift 

resolution. The magnetization transfer from 1H to 13C nuclei is done via cross-polarization, 

CP (s. Part 1, II.D). To probe a very local information, it is necessary to avoid 1H nuclear 

spin diffusion during the CP contact time, and thus to use Lee-Goldburg CP, LG-CP (s Part 

1, II.D.3).  

It would be best to carry out the LG-CP experiments under the exact same conditions 

as the experiments using the dipolar filter described in the preceding paragraph, namely 

under static conditions and at Tg+70 K. It should be noted indeed that both, the dipolar filter 

selection and the following magnetization transfer could change when going from static to 

MAS conditions. However, the static conditions exhibit the double drawback of the lower 

chemical shift resolution and of the impossibility to properly adjust the Lee-Goldburg 

irradiation on 1H nuclei (s. paragraph II.B.1). At Tg+70 K under static conditions, the 

chemical shift resolution is high enough to differentiate all chemical groups of the 

monomeric unit of PEMA. Nevertheless, the improper adjustment of the Lee-Goldburg 

conditions leads to extensive 1H nuclear spin diffusion during the CP contact time and thus 

prevents from determining the actual selection done by the dipolar filter. 

Therefore, it was decided to carry out the LG-CP investigations under MAS. It should 

be noted that the 4 mm MAS probeheads available at the DSX300 do not have a temperature 

range as extended as the static probehead: they are limited to 393 K, which corresponds to 

Tg+45 K for sample PEMA. Finally, it was decided to carry out the LG-CP investigations on 

sample PEMA under MAS, at 390 K, i.e. ca Tg+45 K. (The temperature should not have a 

major influence on the selection and magnetization transfer mechanism well above Tg, s. 

Parts 4 and 5). 
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2. Obtained results for PEMA at ca Tg+45 K 

The pulse schemes used to investigate the selection done by the dipolar filter using 

Lee-Goldburg CP are presented in Figure 3- IV-1. In the experiment (a), a simple LG-CP 

spectrum is recorded to obtain a reference spectrum. In the experiment (b), a dipolar filter is 

applied directly followed by LG-CP spectrum, in order to determine the parts of the sample 

actually selected by the dipolar filter. Experiment (c) corresponds to (b), where a mixing time 

τm is introduced between the dipolar filter and LG-CP, in order to observe the sample back at 

equilibrium. The corresponding spectra for sample PEMA at Tg+45 K are shown on Figure 

3- IV-2. The carbonyl signal was too weak to be detected and is not shown here. 

(a) 1H DD 
13C LG-CP 

LG-CP 
90° 

1H 
90° 

DD 
13C 

LG-CP 

LG-CP 

DF (b) 

1H DD 
13C 
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LG-CP 

DF τm 
90° 

(c) 
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(c)

(b)

CH2(SC)
CH2(MC) Cq CH3(MC) CH3(SC)

 
Figure 3- IV-1: Pulse schemes used to investigate the 
selection done by the dipolar filter in model samples 

using Lee-Goldburg CP; the abbreviations LG-CP, DD, 
DF and τm designate respectively Lee-Goldburg cross-

polarization, dipolar decoupling, dipolar filter and 
mixing time. 

Figure 3- IV-2: 13C LG-CP spectra of sample PEMA 
at 390 K (ca Tg+45 K at 75.47 MHz under 3 kHz 

MAS; the corresponding pulse schemes are shown on 
the figure on the left; the CP contact time was 

500 µs, the dipolar filter had a 20 µs delay and 1 
cycle; the abbreviations MC, SC and q designate 

main chain, side chain and quaternary respectively. 

The 13C LG-CP spectrum shown on Figure 3- IV-2(a) exhibits a chemical shift 

resolution high enough to resolve all the chemical sites of the monomeric unit of PEMA. 

Furthermore, it gives their reference intensities in a LG-CP spectrum. 

It can be clearly seen on the 13C LG-CP spectrum on Figure 3- IV-2(b) that the 

dipolar filter actually selects essentially the CH3 group of the side chain of PEMA. A small 

amount of CH3 groups of the main chain is also selected. It should be noted that the plateau 

values observed on Figure 3- III-8, which correspond to the selected mobile fraction under 

static conditions, are in the range from 0.5 to 0.7. This is in agreement with a selection of all 

the side chain CH3 groups and partly the main chain CH3 groups, which represent a fraction 

between 0.3 and 0.6 of the 10 1H nuclei of the monomeric unit of PEMA. 
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The 13C LG-CP spectrum shown on Figure 3- IV-2(c) is identical to the one shown on 

Figure 3- IV-2(a), proving that the magnetization is back at equilibrium 50 ms after the 

application of the dipolar filter. 

3. Conclusion 

It was assumed for the data processing in paragraph III that the dipolar filter deselects 

the structured nanodomains present in PEMA, which would be less mobile than the rest. This 

would lead to the selection of some whole monomeric units, and the deselection of whole 

other ones. Therefore it would result in the presence of all the chemical parts of the 

monomeric units in the 13C LG-CP spectrum recorded after the dipolar filter and no mixing 

time. 

However, the LG-CP investigations conducted on PEMA at Tg+45 K clearly showed 

that the dipolar filter actually selects essentially the CH3 group of the side chain. This proves 

that the assumption of the detection of structured domains on the nanometer length scale 

using the dipolar filter is wrong in PEMA at ca Tg+45 K. Indeed, the dipolar filter selects the 

end group of the alkyl side chain only.  

B. Coherent or incoherent magnetization transfer ? 

1. Importance of this question 

It was assumed in paragraph III that the magnetization transfer would occur via 

coherent energy conserving flip-flops, as it is the case in a typical 1H nuclear spin diffusion 

experiment. It was proved in paragraph A, however, that the dipolar filter selects essentially 

the end group of the alkyl side chain and not domains on the nanometer length scale. 

Therefore, we do not observe magnetization transfer from a domain to an other domain, as it 

is the usual case in a 1H nuclear spin diffusion experiment, but rather magnetization transfer 

from the end group of the alkyl side chain along the alkyl side chain and further to the main 

chain.  

Such a magnetization transfer along an alkyl side chain can occur via either coherent 

or incoherent transfer. In the case of coherent transfer, the residual dipolar couplings would 

cause zero-quantum transitions, i.e. coherent flip-flops, what is called, in the limit of many 

flip-flop transitions, 1H nuclear spin diffusion. In the case of incoherent transfer, the 

fluctuation of the dipolar coupling due to the chain motion would cause cross-relaxation 

occurring via incoherent zero-quantum or double-quantum transitions, what is called NOE. 

In the case of coherent transfer, and in the limit of many steps, the data should be processed 

using the diffusion equations detailed in Part 1, II.H.5 and paragraph III.B. (It should be 
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noted that in the case of a single coherent step, an oscillatory transfer would be observed). In 

the case of incoherent transfer, the data should be processed using cross-correlation equations 

presented in Part 1, II.I. Therefore it is necessary to determine the type of magnetization 

transfer before processing the data. 

2. Discussion of the type of magnetization mechanism 

Fritzhanns et al.139 investigate the magnetization transfer mechanism in 

multidimensional NOE experiments carried out on elastomers under MAS; they indicate 

coherent transfer in the case of static measurements, and incoherent transfer in the case of 

MAS measurements. Demco et al.235 conducted a detailed study of SBR elastomers at 

Tg+70 K using NOE experiments under static conditions, and claim a coherent transfer 

mechanism for the short mixing times. This results in a quadratic decay of the magnetization 

Mz with the mixing time τm, described by Equation 3- IV-1, where M0 is the initial 

magnetization and <DC> the average residual dipolar coupling. The quadratic behavior is 

experimentally observed for mixing times up to 400 µs. 

( )2
0 5.01 mz DCMM τ⋅⋅−⋅=  Equation 3- IV-1 

In our investigation of PEMA around Tg+70 K under static conditions, a coherent 

transfer of magnetization is also expected for very short mixing times, on the same time 

range of 400 µs or shorter, due to the lower mobility of PEMA. However, the time of 400 µs 

would be between our second and third experimental points. Furthermore, the magnetization 

decay of interest in our study is on the order of several ms (s. Figure 3- III-8 and Parts 4, 5 

and 7), thus of a factor 10 to 100 longer than the time range of coherent transfer. Indeed, 

plotting our experimental magnetization decays as a function of the square of the mixing time 

did not result in a linear behavior for very short mixing times (s. Figure 3- IV-3). 
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Figure 3- IV-3: 
Evolution of the 1H 
magnetization of 

mobile species with 
the mixing time, after 
subtraction of plateau 

value and 
normalization, on a 

logarithmic scale, for 
the sample PEMA at 
409 K (Tg+67 K, n 

cycles of 12 τ−spaced 
pulses in the dipolar 

filter). 
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Therefore, it is concluded that in PEMA at ca Tg+70 K the magnetization transfer occurs 

after the dipolar filter predominantly via incoherent zero- and double-quantum transitions. 

A further argument can be quoted in favor of an incoherent magnetization transfer. 

Filip et al.236 developed a theory describing MAS spectra using a combination of formalized 

Floquet theory and perturbation theory. They show that for high spinning frequencies, the 

weaker dipolar couplings are refocused by MAS, and for sufficiently high spinning 

frequency the system can be described as an isolated spin pair. Since only the stronger 

residual dipolar couplings are left under MAS, the transfer should look coherent. Under static 

conditions on the contrary, a superposition of strong and weak dipolar coupling is observed 

(with a broad range), which looks like incoherent. 

Therefore our magnetization transfer data should be processed considering incoherent 

zero-quantum and double-quantum transitions, i.e. a NOE mechanism (s. Part 1, II.I). This 

transfer mechanism indeed results in an exponential decay of the magnetization, as detailed 

in the following paragraph C. This exponential decay is in complete agreement with the 

linear behavior observed for the recorded magnetization decay after subtraction of the plateau 

value, normalization and plot on a logarithmic scale (s. Figure 3- IV-4). 
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Figure 3- IV-4: 
Evolution of the 1H 

magnetization of mobile 
species with the mixing 

time, after subtraction of 
plateau value and 

normalization, on a 
logarithmic scale, for the 
sample PEMA at 409 K 
(Tg+67 K, n cycles of 12 
τ−spaced pulses in the 

dipolar filter). 

C. Mathematical equations describing the magnetization decay 

1. Equivalence to 2D-NOE experiment 

It was concluded in paragraph B that the magnetization transfer after application of 

the dipolar filter in PEMA at Tg+70 K occurs predominantly via incoherent zero-quantum 

and double-quantum transitions, i.e. a NOE mechanism. The NOE experiments and data 

processing were detailed in Part 1, II.I, where it was seen that different initial conditions and 

different transfer conditions are possible. 
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In our experiments, the line height is monitored (and not its area), which is equivalent 

to integrate over a thin slice of the spectrum, or to integrate only the mobile component of a 

superposition of a more mobile component and a less mobile component. Furthermore, in our 

experiments, magnetization is present initially only at the more mobile sites, and is 

transferred in the course of our experiment to all more and less mobile sites. Thus our 

monitoring way is formally equivalent to an experiment where two components A and B 

would be resolved on the chemical shift scale, where all the magnetization would be present 

at A sites initially, where the magnetization would be transferred between all A and B sites in 

the course of the experiment via cross-relaxation, and where only the A component would be 

integrated (s. Figure 3- IV-5). This latter case is also equivalent to a 2D NOE experiment, 

where the AA line would be initially selected, and where cross-relaxation would occur over 

time during A and B, and where the AA line would be monitored over time as its integral in 

two dimensions (s. Figure 3- IV-5). 
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Figure 3- IV-5: Formal equivalence between our NOE experiment (left) and two other experiments (middle 

and right); the dashed surface represent the integrated component; in the middle experiment, from two 
components resolved on the chemical shift scale, the component A would be initially selected and then 

monitored over time during cross-relaxation between A and B; in the right experiment, the AA component 
would be initially selected, and then monitored over time during cross-relaxation between A and B. 

Finally, our way of monitoring the magnetization decay is equivalent to the 

integration over time of a diagonal line in a 2D NOE experiment. It should be noted that our 

initial conditions (only the monitored line has magnetization) differ from the classical 2D 

NOE initial conditions, where all diagonal lines have magnetization. However, “having 

magnetization” only means that for this particular species, there is of the order of magnitude 

of ppm (parts per millions!) excess of spin orientation in one direction. Therefore, it doesn’t 

make a difference for the cross-relaxation at the level of the single spins if only one species 

A has initially magnetization or if all species A and B have. 

Finally, the mathematical equations detailed in Part 1, II.I for the time evolution of 

the diagonal lines intensity in a 2D NOE study directly apply here to our one-dimensional 

monitoring of the more mobile sites magnetization. 
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2. Case of two groups of equivalent homonuclear spins AnABnB in the slow 

motion limit 

The investigated samples are macromolecules in bulk, therefore they are in the slow 

motion limit. In an homonuclear system composed of a group of nA equivalent A nuclei and a 

group of nB equivalent B nuclei in the slow motion limit, the time evolution of the diagonal 

and cross-peaks intensities is not explicitly given by Macura and Ernst.112,113 However, it can 

be easily calculated from Equation 1- II-12 (s. Part 1, II.I.4.a for equations and notations). 

In the slow motion limit, ωXτC >> 1 and in an homonuclear system (ωX-ωY)τC ≈ 0, 

therefore W1
XY=W2

XY=0, and only the zero-quantum transitions contribute to cross-

relaxation, with a transition probability of AB
CAB

AB qW τ⋅=0 . 

The elements of the cross-relaxation matrix are thus reduced to A
AB

BAA RWnR 10 += , 

B
AB

ABB RWnR 10 += , AB
AAB WnR 0−=  and AB

BBA WnR 0−= . Assuming equal external relaxation R1 for 

A and B nuclei, the quantities RC and RL can then be calculated as follows: 
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 Finally, the equations describing the intensities of the diagonal lines and of the cross 

lines are shown in Equation 3- IV-2. 
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 Equation 3- IV-2 

3. Magnetization decay for the more mobile parts 

In the present work, the magnetization decay of the more mobile parts is described by 

Equation 3- IV-3 where nA, nB, M0 are constants, qAB is a parameter, R1 is rate of leakage of 

magnetization towards the lattice, τm is the mixing time and τC
AB is the correlation time of 

the molecular motion involved. 



Part 3, IV   Actual selection and subsequent magnetization transfer mechanism 

 146

( ) ( ) ( ) ( )( )⎢
⎣

⎡
⎥⎦
⎤+−⎟

⎠
⎞

⎜
⎝
⎛

+
−−+⎟

⎠
⎞

⎜
⎝
⎛

+
−+⋅−

+
= mAB

CABBA
BA

BA

BA

BAm
BA

AmAA qnn
nn
nn

nn
nnR

nn
Mna ττττ exp11exp

2 1
0  Equation 3- IV-3 

Thus, the processing of the data recorded after application of the dipolar filter allows 

us to extract information on the molecular dynamics, via the determined the correlation time 

of the involved molecular motion τC
AB. 

D. Conclusion on the actual selection and subsequent magnetization transfer 

Using LG-CP and 13C detection, it was shown in paragraph A that the dipolar filter in 

PEMA at ca Tg+70 K does not select domains of the sample on the nanometer length scale, 

but it selects only the CH3 end group of the alkyl side chain. Therefore the observed 

magnetization transfer is not occurring between domains on the nanometer length scale, but 

along the alkyl side chain and further to the main chain. It was then proved in paragraph B 

that the actual magnetization transfer mechanism is not coherent zero-quantum transitions 

(i.e. coherent flip-flops) like in the usual 1H nuclear spin diffusion experiment, but that this 

transfer occurs predominantly via incoherent zero-and double-quantum transitions (i.e. cross-

relaxation) like in the usual NOE experiments. Furthermore, it was shown in paragraph C 

that the usual equations developed for NOE experiments describe the magnetization decay 

observed here. In those equations, the extracted information is proportional to the correlation 

time of the molecular motion which modulates the dipolar coupling to give rise to the cross-

relaxation. Therefore, processing the recorded magnetization decay of the more mobile parts 

after the dipolar filter in PEMA at ca Tg+70 K allows us to extract information on the chain 

dynamics, and not on the nanostructure like in the usual 1H nuclear spin diffusion 

experiment. 

 

 

V. Conclusion on use and misuse of the dipolar filter 

A. Summary of the investigation of PEMA at ca Tg+70 K 

The poly(n-alkyl methacrylate), PnAMA, samples exhibit a nanostructure based on 

the tendency to phase separation between their polar stiff backbone and their non polar 

flexible side chains. This results in the presence of less mobile structured domains of a few 

nanometers, as reviewed in paragraph I. Therefore, they could be investigated by the 1H 

nuclear spin diffusion technique with dipolar filter, in order to quantify the size of the less 

mobile domains. It was chosen to investigate first poly(ethyl methacrylate), PEMA, at ca 

Tg+70 K.  
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Based on 1H and 2D-WISE spectra recorded at different temperatures under static 

conditions, it was shown in paragraph II that the whole sample is becoming more mobile 

with increasing temperature above Tg, and does not exhibit a strong dynamic contrast. 

Furthermore, the CH3 groups are the most mobile ones, and that the side chain one is more 

mobile than the main chain one. 

The application of the 1H nuclear spin diffusion technique with dipolar filter to 

PEMA at Tg+67 K was presented in paragraph III. Some adaptations had to be done to the 

usual data processing due to the weak dynamic contrast. After correction for T1 relaxation, 

the recorded magnetization decay for the more mobile parts exhibits a typical diffusional 

behavior, namely a linear decay with the square root of the mixing time at short mixing times 

and a plateau at long mixing time. The data were processed assuming that the less mobile 

nanodomains are deselected by the dipolar filter and that the subsequent magnetization 

transfer occurs via coherent flip-flops. The detected structure would then have a size of a 3 to 

6 nm, which is in accordance with the typical length determined in NMR150 and X-ray 

scattering231 studies. 

Using LG-CP and 13C detection however, it was shown in paragraph IV that the 

dipolar filter in PEMA at ca Tg+70 K selects only the CH3 end group of the alkyl side chain, 

and does not select domains on the nanometer length scale. The subsequent magnetization 

transfer thus occurs along the alkyl side chain and further to the main chain, and not between 

domains on the nanometer length scale. It was also shown that the actual magnetization 

transfer mechanism is not coherent zero-quantum transitions (i.e. coherent flip-flops) like in 

the usual 1H nuclear spin diffusion experiment, but that this transfer occurs predominantly 

via incoherent zero- and double-quantum transitions (i.e. cross-relaxation) like in the usual 

NOE experiments. Furthermore, the usual equations developed for NOE experiments 

describe the magnetization decay observed here, so that processing the recorded 

magnetization decay of the more mobile parts after the dipolar filter allows us to extract 

information on the chain dynamics, and not on the nanostructure like in an usual 1H nuclear 

spin diffusion experiment. 

B. Conclusion on the use and misuse of the dipolar filter 

As a conclusion, it should be emphasized that the results obtained with the 1H nuclear 

spin diffusion technique with dipolar filter should in general be considered carefully. The 

existence of a nanostructure associated with a dynamic contrast, as well as the typical 

diffusional behavior of the magnetization decay are not sufficient proofs of the actual 

characterization of the nanostructure. This is particularly the case for weak dynamic 
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contrasts. Therefore the actual selection done by the dipolar filter has to be checked by a 

complementary technique. 

A second finding within this thesis should be pointed out. New possibilities have been 

opened for the dipolar filter. It has been proved in this chapter that it can be applied to 

samples exhibiting a very weak dynamic contrast, and still provide a proper selection based 

on mobility. Furthermore, the application of the usual 1H nuclear spin diffusion technique 

with dipolar filter to PEMA at ca Tg+70 K turned out to be a NOE experiment. Therefore it is 

a new way of investigating and quantifying molecular dynamics, as opposed to extract 

structural information like in all previous applications of the dipolar filter. 
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Part 4: Nuclear Overhauser Effect investigated in 

model poly(n-alkyl acrylates) using the dipolar filter 
  

 It has been demonstrated in Part 3 that the application of the 1H nuclear spin diffusion 

technique with dipolar filter to homopolymers exhibiting a weak dynamic contrast can lead to 

erroneous results when considered not carefully enough. It has been shown that first the 

dipolar filter selects the end group of the alkyl side chain, and second the following 

magnetization transfer is incoherent. 

 These results indeed open new possibilities for the dipolar filter: by selecting end 

groups of alkyl chains, and following the subsequent magnetization transfer occurring by 

cross-relaxation inside a monomeric unit, it allows to investigate the involved molecular 

dynamics selectively. This experiment has been applied to poly(n-alkyl methacrylates), 

PnAMAs and poly(n-alkyl acrylates), PnAAs, which are models for industrial PSA samples. 

The work done on PnAA’s will be described in detail in Part 4, the work done on PnAMAs in 

Part 5. First measurements done on industrial PSA samples will be shown in Part 5. 

 Concerning the model PnAAs, the investigation of the dynamic contrast will be 

presented in paragraph I, the results of the NOE experiments using the dipolar filter in 

paragraph II. These results will be interpreted in terms of molecular dynamics in paragraph 

III. 

I. Investigation of the dynamic contrast in model poly(n-alkyl acrylates) 

The dynamic contrast (difference in mobility between the more mobile and the less 

mobile parts of a sample) was characterized in the model PnAAs by solid-state NMR, in 

particular 1H static spectra and 2D-WISE experiments. 

A. 1H static spectra 

All spectra are shown in the appendix (Part 7, IV.B). For the model PnAA samples the 

line shapes were similar to those of the sample PEMA at the same distance from Tg (s. Figure 

3- II-1 in Part 3, II.A), apart from two exceptions. Therefore it can be concluded that these 

samples exhibit no strong dynamic contrast. 

The first exception concerns the sample PMA. This sample is not completely dry, 

since a very narrow line characteristic of small, highly mobile molecules is present (s. Figure 

4- I-1) in the spectra. These small molecules may be solvents or oligomers, and could not be 
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eliminated after storage in a dessicator at room temperature under vacuum for a few months. 

The relatively high fraction of small molecules most probably acts as a plasticizer, increasing 

the chain mobility and thus decreasing the line width. For this sample, the full width at half 

maximum (fwhm) of the line was measured without taking into account the presence of the 

narrow line. 

-5e+045e+04 0e+00 Hz  

Figure 4- I-1: Line shape of 
1H spectrum for sample PMA 

at Tg-30 °C (spectrum 
recorded at a 1H Larmor 
frequency of 300.13 MHz, 
under static conditions). 

The second exception concerns all PnAA samples at high temperatures: contrary to the 

PnAMAs, the resolution is here sufficient to observe several lines (s. Figure 4- I-2). The 

spectra were therefore fitted with the individual lines for all the temperatures where it was 

possible, in order to evaluate the fwhm of the individual lines and not of the recorded 

superposition of lines. The fraction of the individual fitted lines was always in accordance 

with the theoretical fractions expected from the chemical structure. The weighted average of 

the individual line widths was taken into account.  

-3000-100010003000 -400004000 -200002000 -200002000

PMA PHxA PBA PEA 

(Hz)

 
Figure 4- I-2: Line shape of 1H spectra for samples PMA, PEA, PBA and PHxA at Tg+121 °C, Tg+115 °C, 

Tg+110 °C, Tg+108 °C respectively (spectra recorded at a 1H Larmor frequency of 300.13 MHz, under static 
conditions); the recorded spectrum is shown in black, the fitted individual lines are shown in red, yellow and 

green, the difference between the sum of the fitted lines and the experimental spectrum is shown in black. 

A summary of the fwhm as a function of temperature for all the model PnAA samples 

is shown in Figure 4- I-3. For all samples, at none of the temperatures where experimental 

data have been acquired, a simple superposition of one broad and one narrow line is observed. 

The observed line(s) become narrower in a visually homogeneous way with increasing 

temperature. This means that the whole sample is becoming more mobile with increasing 

temperature, and does not exhibit a strong dynamic contrast. However, less pronounced 

dynamic contrast within the sample might be possible and experimentally accessible. In this 

case, the static spectra would be a superposition of lines with similar widths, so that it would 

be difficult to differentiate them via visual inspection.  



Part 4, I  Dynamic contrast in poly(n-alkyl acrylates) 

 153

-40 -20 0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

 PMA
 PEA
 PBA
 PHxA

fw
hm

 (k
H

z)

T-Tg (K)  

Figure 4- I-3: 
Influence of the 

temperature on the 
fwhm of the 1H 
spectrum of the 
model PnAAs 

(spectra recorded at 
a 1H Larmor 
frequency of 

300.13 MHz, under 
static conditions). 

It can be noted that the line width of all PnAAs exhibits a similar temperature 

dependence relative to Tg. However, they exhibit significant line width differences at a given 

temperature, reflecting a significant difference in mobility. Below Tg, the following order is 

observed for decreasing mobility: PMA, then PEA, then PBA, then PHxA. Above Tg, the 

inverse order is observed, except above Tg+40 K, where PMA has a mobility intermediate 

between PEA and the others. 

Furthermore, the steep decay observed for the fwhm as a function of temperature 

corresponds to a sharp glass transition, similar for all samples. This glass transition starts at a 

temperature much lower than the glass transition temperature Tg measured by DSC. This is 

due to the fact that DSC mainly detects the glass transition of the backbone, while the alkyl 

side chain is already mobile at lower temperatures. 

B. 2D-WISE  

In order to characterize more precisely the dynamic contrast in the model PnAAs, the 

2D-WISE technique (fully described in Part 1, II.E) was used. In a 2D-WISE spectrum, the 

different chemical groups of the molecule are resolved according to their chemical shifts in 

the 13C (direct) dimension; furthermore, the line width in the 1H (indirect) dimension gives a 

rough information on the mobility of the corresponding group: the narrower the line, the more 

mobile the chemical group. Measurements were done at Tg+70 K for all PnAAs. The contour 

spectra and the extracted 1D 13C spectra are shown in the appendix (Part 7, IV.B). The 1D 1H 

spectra extracted from the 2D-WISE spectra are presented in Figure 4- I-4. The 13C chemical 

shifts assignment is detailed in Table 4- I-1. 
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Figure 4- I-4: 1D 1H 
spectra extracted from 
the 2D-WISE spectra 

of model PnAAs at 
Tg+70 K (1H Larmor 

frequency of 
300.13 MHz, static, 
LG-CP and π-pulse 

during t1. 

 

δ (ppm) Assignment (PMA)180  δ (ppm) Assignment (PEA)180 
35 CH2 (SC) 14 CH3 (SC) 
42 CH (MC) 35 CH2 (MC) 
52 O-CH3 (SC) 42 CH (MC) 
175 C=O  60 O-CH2 (SC) 
δ (ppm) Assignment (PBA)180  175 C=O 
14 CH3 (SC) δ (ppm) Assignment (PHxA) 
19 CH2-CH3 (SC) 14 CH3 (SC) 
30 CH2-CH2-CH3 (SC) 22, 26, 29, 32 CH2 (SC, except OCH2) 
35 CH2 (MC) 35 CH2 (MC) 
40 CH (MC) 42 CH (MC) 
64 O-CH2 (SC) 65 O-CH2 (SC) 
175 C=O  175 C=O 

Table 4- I-1: 
Assignment 
of the 13C 
chemical 
shifts of 

PnAAs (MC: 
main chain, 

SC: side 
chain). 

 



Part 4, I  Dynamic contrast in poly(n-alkyl acrylates) 

 155

It should be noticed that in the WISE spectra of none of the samples the C=O group is 

detected. There are two reasons. First, it is not covalently bonded to a 1H nucleus, which 

results in a very low cross polarization efficiency. Second, the 13C chemical shift tensor is 

much broader for C=O than for the other groups. 

For PMA, the lines exhibit the following order for decreasing mobility: side chain 

CH3, then main chain CH, then main chain CH2. For PEA, the lines exhibit the following 

order for decreasing mobility: side chain CH3 and O-CH2 groups, then main chain CH and 

CH2 groups. For PBA, the lines exhibit the following order for decreasing mobility: side chain 

CH3 and CH2 groups (except O-CH2), then main chain CH and side chain O-CH2. 

Furthermore, the main chain CH2 line (35 ppm) overlaps with the main chain CH (40 ppm) 

line, as can be deduced from the relative intensities in the extracted 13C spectrum. Thus, in 

PMA, PEA and PBA at Tg+70 K, the side chain end is clearly more mobile than the main 

chain. This explains the decrease in overall line width observed for increasing side chain 

length above Tg (with the exception of PMA above Tg+40 K). It should be noted that the 

mobility of the CH group is overestimated by the 1H line width (compared to CH2 groups), 

due to the presence of a strongly coupled spin pair in the CH2 groups. However, since it is 

always detected among the less mobile groups, it does not change the mobility order. 

For sample PHxA, the lines exhibit the following order for decreasing mobility: side 

chain CH3, then side chain CH2 groups (except O-CH2), then side chain O-CH2. The signal of 

the main chain is too low to allow for any conclusion. Thus, in PHxA at Tg+70 K, an obvious 

mobility gradient is observed along the alkyl side chain, starting form the more mobile CH3 

end group. 

C. Conclusion on the dynamic contrast 

From the line shape of 1H spectra recorded under static conditions, it can be concluded 

that the investigated PnAAs exhibit no strong dynamic contrast. However, the investigations 

conducted via 2D-WISE to gain chemical shift resolution showed mobility differences at 

Tg+70 K. Indeed, the side chain end is clearly more mobile than the main chain in PMA, PEA 

and PBA, while in PHxA, an obvious mobility gradient along the alkyl side chain starting at 

the more mobile CH3 end group is observed. 

 



Part 4, II  Measurement of NOE in poly(n-alkyl acrylates) with the dipolar filter 

 156

II. Investigation of NOE in the model poly(n-alkyl acrylates) using the 

dipolar filter 

The principle of the Nuclear Overhauser Effect measurement using the dipolar filter 

has been described in Part 3. The actual selection done by the dipolar filter will be 

investigated in paragraph A, while the exact data processing will be explained in paragraph B 

on the example of PEA at Tg+70 K. The temperature dependence of the extracted correlation 

time will be determined in paragraph C for sample PEA, in paragraph D for all PnAAs. 

A. Actual selection done by the dipolar filter 

 For reasons outlined in Part 3, IV.A.1, the LG-CP experiments using the dipolar filter 

were carried out under 3 kHz MAS on samples PEA and PBA at ca Tg+70 K. In the first 

experiment, a simple LG-CP spectrum was recorded to obtain a reference spectrum. In the 

second experiment, a dipolar filter was applied and immediately afterwards a LG-CP 

spectrum was recorded, in order to determine the parts of the sample actually selected by the 

dipolar filter. In the third experiment, the same dipolar filter was applied, followed by a rather 

long mixing time and subsequent recording of a LG-CP spectrum, in order to observe the 

sample relaxing back at equilibrium. The corresponding spectra are shown on Figure 4- II-1 

and Figure 4- II-2. The weak carbonyl signal is not shown here. 

80 60 40 20 ppm

(b)

(c)

(a)
CH2(SC) CH2(MC)CH

CH3 Figure 4- II-1: 13C LG-CP 
spectra of sample PEA at 

329 K (ca Tg+70 K) at 
75.47 MHz under 3 kHz 
MAS with 1.5 ms contact 

time; (a) LG-CP; (b) 
dipolar filter with 20 µs 
delay and 4 cycles, no 

mixing time and LG-CP; (c) 
dipolar filter with 20 µs 

delay and 4 cycles, 50 ms 
mixing time and LG-CP; 

the abbreviations MC and 
SC designate main chain 

and side chain. 

The 13C LG-CP spectrum shown on Figure 4- II-1(a) exhibits a chemical shift 

resolution sufficient to resolve all chemical parts of the monomeric unit of PEA. Furthermore, 

it gives their reference intensities in a LG-CP spectrum. It can be clearly seen on the 13C LG-

CP spectrum on Figure 4- II-1(b) that the dipolar filter actually selects the CH3 end group of 

the side chain and partly the next CH2 group, i.e. it selects the end of the side chain of PEA. It 
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should be noted that a negligible amount of CH groups of the main chain is also selected. The 
13C LG-CP spectrum shown on Figure 4- II-1(c) is similar to the one shown on Figure 4- 

II-1(a), proving that the magnetization is back at equilibrium 50 ms after the application of the 

dipolar filter. 

80 60 40 20 ppm

(b)

(c)

(a)

OCH2
CH3

CH2-CH3
CH2-CH2-CH3

MC
Figure 4- II-2: 13C LG-CP 

spectra of sample PBA at room 
temperature (ca Tg+70 K) at 
75.47 MHz under 3 kHz MAS 

with 3 ms contact time; (a) LG-
CP; (b) dipolar filter with 

20 µs delay and 8 cycles, no 
mixing time and LG-CP; (c) 

dipolar filter with 20 µs delay 
and 8 cycles, 50 ms mixing 

time and LG-CP; the 
abbreviation MC designates 

main chain. 

It can be seen on Figure 4- II-2(a) that all the chemical parts of the monomeric unit of 

PBA are resolved in the 13C LG-CP spectrum. However, the intensity of the main chain lines 

is not high enough to be properly detected; it may relax efficiently via T1ρ during the CP 

contact time. On the spectrum shown on Figure 4- II-2(b), it is observed that the dipolar filter 

actually selects the CH3 end group of the side chain and partly the next two CH2 groups, i.e. it 

selects the end of the alkyl side chain in PBA. The spectra displayed on Figure 4- II-2(c) and 

Figure 4- II-2(a) are identical. This shows a return to equilibrium 50 ms after the application 

of the dipolar filter. 

As a conclusion, the LG-CP investigations carried out on PEA and PBA at ca Tg+70 K 

proved that the dipolar filter actually selects only the CH3 end group of the side chain and 

partly the next CH2 group(s). As observed for PEMA in Part 3, IV.A.3, the dipolar filter does 

not select domains on a nanometer length scale in PnAAs, but it actually selects the end of the 

alkyl side chain. 

B. Recording and processing NOE data using the dipolar filter in PEA at 

Tg+70 K 

The example of PEA at Tg+70 K will be presented here. The results obtained as a 

function of temperature for this sample will be shown in paragraph C, the results obtained for 

the other PnAAs in paragraph D. 
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1. Conducted experiments and recorded magnetization 

NOE investigations using the dipolar filter were conducted on sample PEA at 329 K, 

i.e. Tg+70 K. In those experiments, a dipolar filter is applied to the sample, after which the 

remaining magnetization is stored along the Z-axis, and then and a variable mixing time is 

waited before recording the 1H signal. The height of the recorded line is monitored as a 

function of the mixing time. It is first divided by the height of the recorded line after the same 

mixing time in the absence of dipolar filter in order to compensate for longitudinal relaxation. 

The obtained quantity corresponds to the intensity of the selected more mobile parts. Several 

dipolar filters were used, with delays ranging from 10 to 20 µs, and cycles numbers ranging 

from 4 to 12. The evolution of the recorded magnetization with mixing time is shown on 

Figure 4- II-3. 
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Figure 4- II-3: Evolution 
of the 1H magnetization 
of mobile species with 
the mixing time for the 
sample PEA at 329 K 

(Tg+70 K, n cycles of 12 
τ−spaced pulses in the 

dipolar filter). 

It was shown in paragraph A that the dipolar filter actually selects the CH3 end group 

of the alkyl side chain, and partly the adjacent CH2 group. The discussion developed in Part 3, 

IV.B on the actual mechanism for transfer magnetization after the dipolar filter in PEMA at 

Tg+70 K is also valid for PEA at Tg+70 K: the magnetization transfer occurs after the dipolar 

filter via incoherent zero- and double-quantum transitions, also called cross-relaxation or 

NOE. This is also in accordance with the linear dependence upon mixing time of the recorded 

magnetization plotted on a logarithmic scale (s. Figure 4- II-4). Since the PEA at Tg+70 K is 

in the slow motion limit, zero-quantum transitions (i.e. flip-flops) are predominant. 
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Figure 4- II-4: Evolution 
of the 1H magnetization 
of mobile species on a 
logarithmic scale with 
the mixing time for the 
sample PEA at 329 K 

(Tg+70 K, n cycles of 12 
τ−spaced pulses in the 

dipolar filter). 

2. Mathematical equation governing the recorded magnetization decay 

The mathematical equation governing the monitored decay is the one describing the 

decay of the intensity of a diagonal line in a 2D-NOE experiment in the slow motion limit, as 

justified in Part 3, IV.C. Furthermore, the initial magnetization is mainly located at the CH3 

end group of the alkyl side chain. Therefore we chose to use the decay equation calculated for 

two groups of equivalent nuclei in Part 3, IV.C.2, and to consider a CH3-CH2 moiety. It 

should be emphasized here that it does not correspond to the whole PEA monomeric unit, but 

that no analytical equation is available for moieties larger than two groups of equivalent 

nuclei. Moreover, since the initial magnetization is mainly located at the CH3 end group, the 

CH3-CH2 contribution should be dominant in the initial magnetization decay. The same 

equation will be used for all the other PnAAs in paragraph D; the case of PMA will then be 

problematic, since its CH3 group doe not have an adjacent CH2. However, no available model 

appears more satisfying, so that the same equation is used as for the other PnAAs. In the case 

of samples PBA and PHxA, it could be argued that a CH2-CH2 behavior is superimposed to 

the CH3-CH2 one, due to the partial selection of CH2 group(s) by the dipolar filter. However, 

the only difference between the results extracted using the CH3-CH2 and the CH2-CH2 models 

is the extraction of the product 4qAB⋅τC
AB

 instead of 5qAB⋅τC
AB

 (s. Equation 4- II-1), thus a 

factor 4/5 on the determined correlation times. Considering the inaccuracy of the determined 

correlation times, originating in particular in the determination of the qAB factor, this can be 

neglected. Finally, it was decided to process the recorded data using the CH3-CH2 model for 

all PnAAs. 

The evolution with mixing time τm of the intensity of a diagonal line in a 2D-NOE 

experiment concerning a CH3-CH2 moiety follows Equation 4- II-1 (s. Equation 3- IV-12 in 

Part 3, IV.C.2). 
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In this equation, nA=3, nB=2, M0 is a constant, RL is the rate of leakage of magnetization 

towards the lattice, qAB is a parameter defined in Equation 4- II-2 and τC
AB is the correlation 

time of the involved molecular motion. 
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After correction of the longitudinal relaxation as explained in Part 3, III.B.1.b and paragraph 

1, the exponential factor ( )mR τ1exp −  is compensated and the corrected intensity follows 

Equation 4- II-3: 

( ) ( )[ ]mAB
CABmAA qMa τττ 5exp5

4
5
6

10
3 0 −+⋅=  Equation 4- II-3 

In this equation, everything is known except qAB and τC
AB. Fitting the experimental data 

allows to determine the product qAB⋅τC
AB. Thus, a parallel determination of qAB leads to 

extraction of the correlation time of the involved motion τC
AB. 

3. Determination of the qAB parameter 

The qAB constant can be determined by two different ways. First, it can be calculated 

according to Equation 4- II-2, where all the terms are known factors, except the internuclear 

distance rAB, which has to be calculated (s. paragraph a). Second, it can be calculated as a 

value proportional to the second moment of the 1H line recorded below Tg under static 

conditions(s. paragraph b). 

a) Case of the distance calculation for a CH3-CH2 moiety 

In the homonuclear 1H-1H case, the qAB factor can be calculated for an internuclear 

distance of 1 Å=10-10 m from the magnetogyric ratio of 1H ( 117 ..107522128.26 −−−⋅ Tsrad )237 

and the physical constants µ0/4π and ħ (10-7 N.A-1 and 1.134 ..2/106260755.6 −−−⋅ radsJπ  

respectively)238. This yields a value of 56.9627.109 rad2.s-2 for qAB. In order to extract the 

correlation time τC
AB in s from the product qABτC

AB determined using a mixing time in s, the 

qAB parameter must be calculated in s-2 and not rad2.s-2. Thus the value in rad2.s-2 has to be 

divided by (2π)2, yielding qAB=1.44288 s-2 for 1H-1H and rAB= 1 Å. 

Then, the calculation of the actual internuclear distance allows for determining the 

actual qAB value. The distance between a 1H nucleus of the CH3 and the 1H nucleus of the CH2 

group is a function of the dihedral angle involved. Thus an average of this distance over all 

dihedral angles has to be done. 
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The H-C-C-H bonds are first assumed to be planar. This system is shown on Figure 4- 

II-5. In this system, the H-H internuclear distance is equal to 

( ) ( )[ ] 273.24.19sin20sin113.1523.1523.1 =°+°+=++= bac Å 

C C

HH

1.523 Å

1.113 Å1.113 Å 109.4 °110 °

a b
c

C C

HH

1.523 Å

1.113 Å1.113 Å 109.4 °110 °

a b
c

Figure 4- II-5: Planar 
configuration of the H-C-C-H 
bonds in a CH3-CH2 moiety, 

with corresponding angles and 
distances (CH2 left, CH3 right). 

After introduction of the dihedral angle ϕ, the system is represented on Figure 4- II-6. 
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1.113 Åϕ1.113 Å

d

C

HH

1.113 Åϕ1.113 Å

H

HH c

d rHH(ϕ)
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d rHH(ϕ)
Figure 4- II-6: Representation of the    

H-C-C-H bonds in a CH3-CH2 moiety, 
taking into account the dihedral angle ϕ, 
(left perpendicular to the C-C direction, 

right parallel to the C-C direction). 

In this system the internuclear distance d is calculated first, to allow the calculation of the 

dependence of the internuclear distance of interest, rHH(ϕ), upon dihedral angle ϕ (s. Equation 

4- II-4): 

⎟
⎠
⎞⎜

⎝
⎛×=⎟

⎠
⎞⎜

⎝
⎛××= 2sin226.22sin113.12 ϕϕd  and  

( ) ⎟
⎠
⎞

⎜
⎝
⎛×+=⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛×+=+= 2sin955.4167.52sin226.2273.2 2

2
222 ϕϕϕ dcrHH  Equation 4- II-4 

In order to calculate qAB from rHH(ϕ), an average of rHH(ϕ) has to be calculated over all 

dihedral angles ϕ. It had first to be decided which kind of average should be calculated. The 

average could be done indeed according to rHH(ϕ) or various powers of rHH(ϕ). It was decided 

to average rHH according to the dipolar coupling, which is proportional to rHH
-3 (s. Equation 1- 

II-2 in Part 1, II.B.1.a), and thus to calculate the average of rHH(ϕ)-3 values. This was done the 

following way: first calculating 100 values of angles equally distributed between 0 and 180°, 

then calculating the value of rHH(ϕ)-3 for each angle, and finally calculating the average 

distance rHH
-3 to extract from it the average distance rHH. It was checked that 100 angle values 

are enough to determine rHH(ϕ) with a precision of 0.001 Å. The determined average distance 

is rHH=2.670 Å.  

 The qAB constant is thus 2
6

9
983.3670.2

1044288.1
kHzqAB =

⋅
=  for a CH3-CH2 moiety. 
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n.b.: it should be noted that it is very important to consider an average distance to calculate 

qAB. Indeed, the dihedral angle has a significant influence on the qAB value: it ranges from 

413 kHz2 for the minimal distance of rHH(0 °)=2.273 Å to 55 kHz2 for the maximal distance of 

rHH(180 °)=3.182 Å via 258 kHz2 for the optimal dihedral angle of 49.9 ° 

(rHH(49.9 °)=2.459 Å). On the contrary, the type of average considered has much less 

influence on the qAB value: the latter is 133 kHz2 for an average according to rHH, 144 kHz2 

for an average according to 1/rHH, and 177 kHz2 for an average according to 1/rHH
6. 

b) Case of the second moment 

The equation describing the qAB factor (s. Equation 4- II-2, in MKSA unit system) is 

very similar to the one describing the second moment M2 of the rigid lattice. In the case of a 

powder of crystalline sample exhibiting a cubic lattice, M2 is expressed as Equation 4- 

II-5,239,67 in CGS unit system, where I is the spin quantum number, and d the lattice constant.  

( ) 6
24

2
1110

51
dIIM += hγ  Equation 4- II-5 

The knowledge of the relationship between the qAB factor and the second moment M2 

is useful for two reasons. First, the second moment can be calculated by numerical integration 

from an experimental 1H spectrum (recorded well below Tg and under static conditions), 

which avoids the assumption of the CH3-CH2 moiety and the calculation of the average 

internuclear distance presented in the paragraph a. Second, it is an independent way of 

determining the same parameter qAB, therefore useful for comparison with the result of the 

calculation presented in paragraph a. For a better understanding, the second moment will be 

defined first. Then its general mathematical formula will be given, and simplified according 

to various assumptions, in order to compare it to the qAB factor.  

The moments of an NMR line are defined using integrals of the mathematical function 

f(ω) describing the line shape. The first moment M1 is defined as Equation 4- II-6, it 

corresponds to the average frequency of the spectrum.240 

( )
( )∫

∫
∞

∞

⋅

⋅⋅
=

0

0
1

ωω

ωωω

df

df
M  Equation 4- II-6 

The second moment M2 is defined as Equation 4- II-7, it is of the order of the square of the 

line width.240 Its unit is Hz2 in the MKSA unit system. Rigorously, the full width at half 

maximum, fwhm, obeys to the equation 2
2 2ln2 Mfwhm ⋅⋅=  in the case of a gaussian line shape, 

and the second moment is not defined in the case of a lorentzian line shape due to the 

divergence of the integral (s. Part 1, II.B.1.b).67 The second moment of a rigid lattice 

designates the second moment calculated on a spectrum recorded under static conditions, on a 
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sample where rigorously no molecular motion occurs (in practice, this could be a crystalline 

sample, or a polymeric sample well below its Tg). 

( ) ( )
( )∫

∫
∞

∞

⋅

⋅⋅−
=

0

0

2
1

2
ωω

ωωω

df

dfM
M  Equation 4- II-7 

 In the MKSA unit system, the homonuclear second moment for a rigid lattice is 

expressed as Equation 4- II-8241 or Equation 4- II-9242,243 where µ0 is the permeability of 

space, γ is the magnetogyric ratio of the spins, ħ is the reduced Planck’s constant, I the spin 

quantum number, N is the number of spins, rij is the internuclear ij distance, and θij is the 

angle of the ijr  vector with the applied magnetic field. 
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⎠
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Both equations are equivalent. Indeed, assuming that all nuclei are equivalent, all the sums 

∑
j ijr6

1 are equal, so that ∑∑∑ =
j iji j ij rrN 66

111 .67 Furthermore, the average of ( )22cos31 ijθ−  over all 

the orientations in a powder sample is equal to 4/5.67 Introducing the equivalence of all nuclei 

in the first equation and the averaging over all orientations in the second one, then taking into 

account the value I=1/2 for 1H nuclei, the following expression is obtained for M2 (s. 

Equation 4- II-10). 

∑⎟
⎠
⎞

⎜
⎝
⎛=

j ijrM 6
24

2
0

2
1

420
9 hγπ

µ  Equation 4- II-10

Then a further assumption has to be done in order to simplify the residual sum. Two simple 

cases will be considered here: an isolated spin pair and a simple cubic lattice. In the case of 

the isolated spin pair, only one internuclear distance r has to be taken into account, therefore 

66
11
rrj ij

=∑ . The resulting second moment is shown in Equation 4- II-11.244,245  

( ) 6
24

2
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2
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rpairspinM hγπ
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⎞

⎜
⎝
⎛=  Equation 4- II-11 

In the case of a cubic lattice, the sum can be expressed as a function of the distance to the next 

neighbor r (equal to the lattice constant) as 66 2
171
rrj ij

=∑ .67 The resulting second moment is 

shown in Equation 4- II-12. 
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( ) 6
24

2
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⎟
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⎞

⎜
⎝
⎛=  Equation 4- II-12 

It should be underlined here that our case is rigorously neither a spin pair nor a cubic lattice, 

but that it can be considered as situated in-between. 

 As a conclusion, by simple comparison of Equation 4- II-2 with Equation 4- II-11 and 

Equation 4- II-12, it is deduced that ( ) ABAB qqpairspinM 5.42
9

2 ==  and 

( ) ABAB qqlatticecubicM 25.384
153

2 == . It should be underlined here that our case is rigorously 

neither a spin pair nor a cubic lattice. The factor of 8.5 found between the results of the two 

approaches originates mainly in the presence of 6 next neighbors (and some more remote 

ones) in the case of the cubic lattice versus a single one in the case of the spin pair. The 

geometry of our system is not sufficiently known to draw conclusions on the number and 

positions of the neighbors. However, even considering only intramolecular interactions, 

several neighbors are present, so that the simple cubic lattice approximation is much more 

realistic than the spin pair approach Therefore it was decided to use exclusively the former 

one. Finally, the numerical value of qAB can be obtained in dividing the experimental value of 

M2 by a factor of 38.25. 

4. Methodology for extraction of the qAB⋅τC
AB product 

The decay of the monitored magnetization follows Equation 4- II-3. In order to fit 

experimental data, programs were written using the Matlab® (The MathWorks) software. 

These programs handle simultaneously a series of measurements done at one temperature 

using different parameters for the dipolar filter. The general shape of a curve described by 

Equation 4- II-3 is an exponential decay followed by a plateau, from which the exponential 

decay rate AB
CABq τ5  is extracted. 

The plateau value was first determined as the average of all experimental values 

measured for mixing times longer than a chosen one. This determined plateau value was 

subtracted from all experimental values in order to obtain an exponential decay only (s. 

Equation 4- II-13). 

( ) ( )mAB
CABm qMf τττ 5exp5

4
10

3 0 −⋅=  Equation 4- II-13 

Then, the experimental data were normalized so that the exponential decay begins at 1 

for τm=0. The resulting data are described by Equation 4- II-14. 

( ) ( )mAB
CABm qg τττ 5exp −=  Equation 4- II-14 
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Finally, the resulting data were fitted with a monoexponentially decaying function to 

extract the AB
CABq τ5  values.  

5. Measured data and extracted results 

In the case of PEA at Tg+70 K, the fits yielded as series of AB
CABq τ5  values 

characterized by an average of 129.18 Hz, a range of 5.17 Hz and a standard deviation of 

1.90 Hz. A simple division by a factor of 5 yielded a series of AB
CABq τ⋅  values characterized by 

an average of 25.84 Hz, a range of 1.03 Hz and a standard deviation of 0.38 Hz. 

The qAB value was determined by two independent ways. First, the assumption of a 

CH3-CH2 moiety and the calculation of the average internuclear distance yielded a value of 

qAB=3.983 kHz2 (s. paragraph 3.a). Second, the numerical integration of a 1H spectrum 

recorded under static conditions at Tg-35 K (s. Part 7, IV.B.1) yielded a second moment value 

of M2=441.60 kHz2; after division by a factor of 25.384153 = , this yielded values of 

qAB=8.89 kHz2 (s. paragraph 3.b). 

Finally, the first method yielded a correlation time of τC
AB=6.48⋅10-6 s (with a range of 

1.3⋅10-7 s and a standard deviation of 9.5⋅10-8 s). The second method yielded an value of 

2.23⋅10-6 s for the correlation time τC
AB (with a range of 4⋅10-8 s and a standard deviation of 

2⋅10-8 s). These correlation times are different but of the same order of magnitude. For an 

easier comprehension, only values of qAB⋅τC
AB products will be given in this paragraph II for 

all PnAA samples. 

C. Temperature dependence of qAB⋅τC
AB for sample PEA 

The NOE experiment with dipolar filter was carried out on PEA at temperatures 

ranging from Tg+20 K to Tg+100 K. For each temperature, various parameters were used for 

the dipolar filter, and the data were processed as presented in paragraph B. The shape of the 

curves were identical to those obtained at Tg+70 K, only the numerical values varied. The 

obtained qAB⋅τC
AB products are shown on Figure 4- II-7. All numerical values are given in 

appendix in Part 7, IV.B.3. It is observed that the dependence on inverse temperature is nearly 

linear. A linear regression of the extracted qAB⋅τC
AB products yields an activation energy of 

1.18 −molkJ . 
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Figure 4- II-7: 
Evolution with the 

inverse temperature 
of the product 

qAB⋅τC
AB extracted 

from NOE 
experiment with 
dipolar filter for 

sample PEA; error 
bars indicate the 
range over which 

the data were 
measured; the 

dashed line is a 
guide to the eyes. 

D. Temperature dependence of qAB⋅τC
AB for all PnAA samples 

The NOE experiment with dipolar filter was carried out on all PnAAs at temperatures 

ranging from Tg+40 K to Tg+100 K for sample PMA, and from Tg+20 K to Tg+100 K for 

samples PEA, PBA and PHxA. For each temperature, various parameters were used for the 

dipolar filter, and the data were processed as presented in paragraph B. The shape of the 

curves were similar to those obtained for sample PEA, with different numerical values. It 

should be noted that at high temperatures (Tg+85 K and Tg+100 K), several lines are resolved 

in the 1H spectrum, except for sample PEA (s. paragraph I.A and Part 7, IV.B.1). However, 

the processing of all lines intensity as a function of mixing times yielded independently the 

same exponential decay rate. Therefore only one qAB⋅τC
AB product is extracted from 

measurements done at the same temperature. The obtained qAB⋅τC
AB products are shown on 

Figure 4- II-8. All numerical values are given in appendix in Part 7, IV.A.3. It is observed that 

the dependence on inverse temperature is nearly linear. Linear regressions of the extracted 

qAB⋅τC
AB products yield activation energies of 22, 18, 13 and 12 kJ.mol-1 for the samples 

PMA, PEA, PBA and PHxA respectively. 
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Furthermore, the products qAB⋅τC
AB fall on a master curve when plotted as a function 

of the distance from Tg (s. Figure 4- II-9). 
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Figure 4- II-9: 
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E. Conclusion on the measurement of NOE in model PnAAs 

The investigated PnAAs exhibit no strong dynamic contrast, as shown in paragraph I. 

However, the side chain was found to be clearly more mobile than the main chain in PMA, 

PEA and PBA, while in PHxA, there is an obvious mobility gradient along the alkyl side 

chain starting at the more mobile CH3 end group. Applying the dipolar filter to these samples 

results in a selection according to mobility. It has been demonstrated using Lee-Goldburg CP 

and 13C detection that the dipolar filter indeed selects the end of the alkyl side chain in PEA 

and PBA at Tg+70 K, i.e. the CH3 end group and partly the next CH2 group(s) (s. paragraph 

A). For sample PEA at Tg+70 K (s. paragraph B), it has been shown that applying the 1H 

nuclear spin diffusion experiment with dipolar filter does not result in a coherent 

magnetization transfer and in the determination of domain size as it is usually the case. On the 
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contrary, it results in a non coherent magnetization transfer and yields information on the 

chain dynamics via the extraction of a correlation time τC
AB (as it was shown for sample 

PEMA in Part 3). The mathematical equation describing this cross-relaxation process was 

detailed; it allows for the determination of the product qAB⋅τC
AB. Then, two independent 

methods were presented for the determination of the qAB parameter, in order to deduce the 

correlation time τC
AB. The methodology used to process the experimental data was detailed. 

Finally, the evolution of the qAB⋅τC
AB product with temperature over the range from ca 

Tg+20 K to Tg+100 K was determined for all PnAAs. The interpretation of those numerical 

results will be done below. 

 

III. Interpretation of NOE results in model poly(n-alkyl acrylates) 

The various NMR data obtained during this work (NOE with dipolar filter, T1 

relaxation, line width) may give valuable information on the chain dynamics in model 

PnAAs. 1H T1 relaxation data will be presented in paragraph A. The correlations times 

determined in the present work will be compared to other relaxation data found in the 

literature or measured by other techniques in paragraph B. 

A. 1H longitudinal relaxation in model PnAAs 

1H longitudinal (or spin-lattice, or T1) relaxation times have been measured on model 

PnAAs using the inversion recovery technique (s. Part1, II.F). The measurements were done 

under the same conditions as the NOE experiments with dipolar filter: at a Larmor frequency 

of 300.13 MHz, under static conditions, and approximately over the range from Tg to 

Tg+100 K. It should be emphasized here that the T1 relaxation times shown in the present 

paragraph characterize the magnetization relaxation, and are by nature fully different of the 

correlation times τm extracted from NOE measurements, which are related to local motions of 

the polymer chain leading to magnetization decay on another timescale. 

For each measurement, a single exponential behavior was observed. This can result 

either from an identical relaxation time of all protons in the monomeric unit, or from the 

faster relaxation of some 1H nuclei, combined with extensive 1H nuclear spin diffusion or 

extensive cross-relaxation. Kalk and Berendsen indeed developed a model describing a rigid 

protein in solution with only CH3 rotation as intramolecular motion (and thus relaxation sink); 

they observed that in the case of efficient cross-relaxation, CH3 rotation leads to a short and 

unique T1 relaxation time for all protons of the molecule.116 They concluded that, due to NOE, 

there can be no straightforward conclusion on local motion from T1 relaxation data for fields 
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above 100 MHz and molecular weights above 20 000 g.mol-1.116 In the PnAAs, the single 

exponential behavior was thus attributed to the faster relaxation of some 1H nuclei, combined 

with extensive 1H nuclear spin diffusion or extensive cross-relaxation. The extracted 

relaxation times are shown on Figure 4- III-1. It should be noted that for PMA, PBA and 

PHxA at high temperatures, several lines are resolved, but they all exhibit nearly identical 

relaxation times. 
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Figure 4- III-1: 
Evolution with 

temperature of the 
single 1H longitudinal 

(or spin-lattice) 
relaxation time 

measured using the 
inversion recovery 
technique on model 
PnAAs (300.13 MHz 
Larmor frequency, 

under static 
conditions). 

It is clearly seen that the T1 relaxation time decreases with alkyl side chain length. 

Furthermore, PMA and PEA exhibit significantly higher T1 relaxation times than PBA and 

PHxA. These observations were interpreted as follows. In PMA and PEA samples, which 

have a short alkyl side chain, there is no motional mode close enough from the Larmor 

frequency to induce fast relaxation. On the contrary, in PBA and PHxA, which have longer 

alkyl side chains, and thus more motional modes, there is a motional mode which exhibits a 

frequency in good range to relax efficiently (the CH3 rotation is probably too fast, but one of 

the CH2 side groups would have an appropriate motional mode). The 1H-1H cross-relaxation, 

or the 1H nuclear spin diffusion, then induces a fast relaxation of all parts of the molecule. 

It is also observed that the temperature dependence of the T1 relaxation time is weaker 

in PBA and PHxA. The T1 relaxation time does not exhibit a common dependence for all 

PnAAs upon temperature (s. Figure 4- III-1) or distance from Tg (s. Figure 4- III-2). 

Furthermore, it does not exhibit an evolution comparable to the one of the qABτC
AB factor 

extracted from the NOE measurements with dipolar filter (s. Figure 4- II-9). Considering the 

resulting difficulty of using 1H T1 relaxation data in the interpretation of NOE data, as well as 

the complexity of the various underlying motional modes, it was decided not to interpret the 
1H T1 relaxation data any further. 
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Figure 4- III-2: 
Evolution with distance 
from Tg of the single 1H 
longitudinal (or spin-

lattice) relaxation time 
measured using the 
inversion recovery 
technique on model 
PnAAs (300.13 MHz 
Larmor frequency, 

under static 
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It should be emphasized here that the 1H T1 relaxation times are long enough to 

observe NOE effect on the time scale of a few tens of ms. 

B. Relaxation processes in model PnAAs 

It was shown in paragraph II.A that the dipolar filter selects the end of the alkyl side 

chains in PnAAs, but rigorously not only the end CH3 group. It has then been discussed in 

paragraph II.B.2 that the CH3-CH2 model does not fully describe the NOE measurements in 

the investigated PnAAs, even if it is the most appropriate analytical one. For these reasons, 

the extracted correlations times should be considered carefully.  

A correlation time can be deduced from an extracted qAB⋅τC
AB product either via the 

calculation of the qAB parameter for a CH3-CH2 moiety, or via the measurement of the second 

moment from an experimental 1H spectrum (s. paragraph II.B.3). Both methods have been 

used in the present work. The extracted correlation times are plotted together with mechanical 

and dielectric relaxation data from literature (s. Figure 4- III-3 to Figure 4- III-6). Due to the 

lack of reliable literature data for the local relaxation processes in most of the PnAAs, 

dielectric and mechanical spectroscopy measurements were conducted on the investigated 

PnAAs in the group of Prof. Pakula at the MPI-P.246 The moduli were calculated from the 

measured permittivity, and the maxima of the moduli as a function of frequency were fitted 

using Havriliak-Negami functions;247 the results are also indicated on Figure 4- III-3 to Figure 

4- III-6.  
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Figure 4- III-3: Correlation times extracted from the NOE measurements performed in the present work for 
sample PMA, comparison with data measured in the group of Prof. Pakula on the same sample via dielectric 

and mechanical spectroscopy246, comparison with literature data (Buerger248, de Brouckere249, Gomez Ribelles 
JAPS250, Gomez Ribelles PRCPA251, Kahle252, McCrum253, Mead254, Reissig255, Soen256). 
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Figure 4- III-4 : Correlation times extracted from the NOE measurements performed in the present work for 
sample PEA, comparison with data measured in the group of Prof. Pakula on the same sample via dielectric and 
mechanical spectroscopy246, comparison with literature data (Gomez Ribelles JAPS250, McCrum253, Reissig255). 
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Figure 4- III-5: Correlation times extracted from the NOE measurements performed in the present work for 
sample PBA, comparison with data measured in the group of Prof. Pakula on the same sample via dielectric 
and mechanical spectroscopy246,comparison with literature data (Beiner229, Fioretto257, Fitzgerald258, Gomez 

Ribelles JAPS250, Hayakawa259, Jourdan260, Reissig255). 
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Figure 4- III-6: Correlation times extracted from the NOE measurements performed in the present work for 
sample PHxA, comparison with data measured in the group of Prof. Pakula on the same sample via dielectric 

and mechanical spectroscopy246, comparison with literature data (Beiner229). 

The correlation times determined independently via the calculation of qAB and via the 

second moment are different but of the same order of magnitude for each measurement, thus 

in fair agreement considering the approximations involved in both cases. Furthermore, no 

relaxation process is detected by the other methods on the same time and temperature ranges 

with the same temperature dependence. Thus the relaxation process observed by the NOE 

experiment is detected and quantified for the first time on this temperature range. All 

samples exhibit a linear dependence of the determined correlation time upon inverse 
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temperature. The investigated temperature range is broad enough to detect a possible 

curvature, e.g. if a WLF relaxation process would take place. The observed linearity thus 

indicates rather a local relaxation process than a collective process related to main chain 

motions. Therefore it will be compared below to the other local relaxation processes, namely 

the β-relaxation process and the relaxation process labeled as “local”. Linear regressions of all 

concerned correlation and relaxation times as a function of temperature were done, and the 

results are detailed in appendix (s. Part 7, IV.B.3). 

For sample PHxA, the activation energy of the process detected by NOE, 12 kJ.mol-1, 

is intermediate between those of the local relaxation and of the β-relaxation (10 kJ.mol-1 and 

from 15 to 25 kJ.mol-1 respectively). The same is observed for PBA sample, with respective 

activation energies of 13 kJ.mol-1, 10 kJ.mol-1 and 18 kJ.mol-1 for the process detected by 

NOE, the local and the β-relaxations. In the cases of PEA and PMA, it is also seen that the 

activation energies of the process detected by NOE (respectively 18 kJ.mol-1 and 22 kJ.mol-1) 

are higher than those of the local relaxation (ranging respectively from 8 to 14 kJ.mol-1 and 

from 11 to 19 kJ.mol-1). For samples PEA and PMA, no β-relaxation process was detected by 

dielectric spectroscopy in the curves of moduli as a function of frequency. However, it could 

be present but insufficiently resolved from the α-relaxation process, due to proximity in 

frequency and a lower intensity of the β-relaxation. It might be detected while processing the 

recorded data as a function of temperature, or using mechanical measurements with another 

geometry. 

The α-relaxation is usually attributed to motions of the main chains, αβ-relaxation to 

motions of the main chains coupled to reorientations of the side chains, β-relaxation to 

reorientations of the whole COO-alkyl side chains, and local relaxation to reorientations of 

parts of these side chains in PnAAs.253 Thus the process detected by NOE is naturally 

attributed to reorientations of parts of the side chains, i.e. to a superposition of β-relaxation 

and more local relaxation. It is very surprising that the corresponding motions of the side 

chain are slower than those of the main chain (α- and αβ-relaxations) on the temperature 

range where the measurements were carried out. However, it should be noted that the motions 

detected by the NOE experiment with dipolar filter are not the slowest ones, as indicated by 

the process labeled as slow, and detected by dielectrics for samples PMA and PEA (for which 

only the order of magnitude can be trusted in the present state of data processing). 

Furthermore, it should be underlined here that different relaxation processes may be detected 

by NOE with dipolar filter and by dielectric spectroscopy, due to the detection method. The 

dielectrics indeed primarily detects motions via the permanent dipole located at the carbonyl 
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group in the laboratory frame, while the NOE probes motions more locally via relative 

motions of neighboring 1H nuclei causing a modulation of the dipolar coupling in their local 

molecular frame.  

However, in the context of locally organized samples, it is conceivable that the side 

chain motions would be slower than those of the main chain (s. work Beiner et al.229 for 

PnAMAs and PnAAs in Part 3, I.B). In those samples, organized nanodomains of alkyl side 

chains are separated by main chains. Then the positions of the main chains might fluctuate in 

the regions between organized nanodomains, while the alkyl side chains motions might be 

hindered inside the organized alkyl nanodomains and thus slower. The NOE experiment 

would then detect hindered motions of the side chains inside the nanodomains, resulting 

from β-relaxation and more local relaxations. 

The correlation times extracted from NOE measurements are plotted together with 

mechanical and dielectric relaxation data measured on the same sample on Figure 4- III-7. 

The process detected by NOE seems to be approaching the slow process similarly to the way 

the β-relaxation approaches the α-relaxation. It would be fascinating to investigate if these 

two processes actually merge at a higher temperature into a process similar to the αβ-

relaxation.  
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Figure 4- III-7: Correlation times extracted from the NOE measurements performed in the present work for 
model PnAAs using the NOE experiment with dipolar filter, comparison with data measured in the group of 

Prof. Pakula on the same samples via dielectric and mechanical spectroscopy246. 
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IV. Conclusion on NOE in model poly(n-alkyl acrylates) 

A. Conclusion 

Applying the 1H nuclear spin diffusion technique with dipolar filter to homopolymers 

exhibiting a weak dynamic contrast can allow to carry out NOE measurements (s. Part 3). 

This NOE technique with dipolar filter has been applied successfully to model PnAAs, which 

are model samples for industrial acrylic PSAs. 

The investigated PnAAs do not exhibit a strong dynamic contrast (from the line shape 

of 1H spectra recorded under static conditions). However, the side chain end is clearly more 

mobile than the main chain in PMA, PEA and PBA, while in PHxA, there is an obvious 

mobility gradient along the alkyl side chain starting at the more mobile CH3 end group (from 

2D-WISE). Applying the dipolar filter to these samples results in a selection according to 

mobility: the end of the alkyl side chain is selected, i.e. the CH3 end group and partly the next 

CH2 group(s). The following magnetization transfer occurs in a non-coherent way via cross-

relaxation, and thus yields information on the involved local dynamics via the extraction of a 

correlation time τC
AB. A methodology was developed for extracting the product qAB⋅τC

AB from 

the recorded data, as well as for calculating the qAB parameter (in two independent ways) to 

deduce the correlation time τC
AB. 

The extracted correlation times τC
AB were compared with mechanical and dielectric 

relaxation data, from literature or measured on the same samples in the group of Prof. Pakula 

at the MPI-P. The relaxation process detected by the NOE experiment is detected and 

quantified for the first time on this temperature range. Based on the picture of Beiner at 

al.229 of local nanophase separation in PnAAs, the correlation times quantified by the NOE 

measurements in the present work have been attributed to hindered local motions of the 

side chains in organized alkyl nanodomains. It might be related to the slow relaxation, 

exhibiting a WLF behavior on a time scale slower than the α-relaxation. 

B. Outlook 

In order to process the NOE data, the PnAAs were modeled as CH3-CH2 moieties, due 

to the initial selection of mainly the end CH3 group of the alkyl side chain, and due to the 

absence of more elaborate analytical equations to describe NOE (to our knowledge). 

However, a CH3-CH2 moiety does not model the whole monomeric unit of PEA, PBA and 

PHxA, and definitely fails to model the one of PMA. Thus the determined correlation times 
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τC
AB suffer  from this inaccuracy of the available model, and should be considered carefully. 

It would be useful to look for and develop more elaborate analytical models or simulation 

programs to process the recorded NOE decay, in order to extract more accurate correlation 

times τC
AB for the model PnAAs. 

Concerning the complementary dielectric and mechanical measurements, it would be 

helpful to obtain data on the β-relaxation process in the samples PMA and PEA. A new 

processing of the already recorded dielectric data plotted as moduli vs temperature for a given 

frequency could allow the detection of this process, due to a better separation from the α-

relaxation on a temperature scale than on a frequency scale. Alternative mechanical 

measurements with a different sample geometry could also allow to detect the β-relaxation 

process. 

It would be very interesting to investigate a possible link between the process detected 

by NOE and the slow relaxation process detected by dielectric spectroscopy in samples PMA 

and PEA. First, a more accurate quantification of the slow process should be done by 

processing the dielectric data, then its presence in samples PBA and PHxA should be 

investigated. The slow process as well as the process detected by NOE should be investigated 

at higher temperatures, in particular in order to look for a possible merging. 
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Part 5: Nuclear Overhauser Effect investigated in 

model poly(n-alkyl methacrylates) using the dipolar 

filter; comparison with acrylate models and PSAs 
 

The application of the 1H nuclear spin diffusion technique with dipolar filter can lead 

to erroneous results for homopolymers exhibiting a weak dynamic contrast. It allows in fact to 

investigate the local molecular dynamics. This experiment has been applied to poly(n-alkyl 

acrylates), PnAAs (s. Part 4). The same investigation is presented in this part for poly(n-alkyl 

methacrylates), PnAMAs. First measurements done on industrial PSA samples will also be 

shown. 

 Concerning the model PnAMAs, the dynamic contrast has been investigated (s. 

paragraph I) and NOE experiments using the dipolar filter have been performed (s. paragraph 

II). The results will be interpreted in terms of chain dynamics (s. paragraph III). Results 

obtained for the model PnAMAs will be compared to those obtained for model PnAAs 

(already detailed in Part 4) and industrial PSA samples (s. paragraph IV). 

I. Investigation of the dynamic contrast in model poly(n-alkyl 

methacrylates) 

The dynamic contrast (difference in mobility between the more mobile and the less 

mobile parts of a sample) was characterized in the model PnAMAs by solid-state NMR, in 

particular 1H static spectra and 2D-WISE experiments.  

A. 1H static spectra 

All the recorded spectra are shown in the appendix (Part 7, IV.A). A few 

representative spectra are shown in Part 3, II.A (Figure 3- II-1) for sample PEMA. For all 

investigated model PnAMAs the line shape was similar at the same distance to Tg (except for 

sample PHMA13C at low temperatures). The line gets narrower in a visually homogeneous 

way with increasing temperature. As detailed in Part 3, II.A, this means that the whole sample 

is becoming more mobile with increasing temperature, and exhibits no strong dynamic 

contrast. Nevertheless, less pronounced dynamic contrast within the sample might still be 

present and probed using the dipolar filter. 

A characteristic spectrum of PHMA13C is shown in Figure 5- I-1: this sample is not 

completely dry, the remarks concerning sample PMA in Part 4, I.A apply here as well. 
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Figure 5- I-1: Line shape 
of 1H spectrum of sample 
PHMA13C at Tg-56  °C 
(spectrum recorded at a 
1H Larmor frequency of 

300.13 MHz, under static 
conditions). 

A summary of the fwhm as a function of temperature for all the PnAMA samples is 

shown in Figure 5- I-2. It can be noted that all investigated PnAMAs have a similar line width 

evolution at the same distance from Tg. However, they exhibit significant line width 

differences at a given temperature. The fwhm of PEMADMC (poly(ethyl methacrylate) 

deuterated on the main chain) is smaller than the ones of the non deuterated poly(ethyl 

methacrylate) samples, since only the more mobile side chain is recorded. Furthermore, the 

fwhm of PHMA13C is smaller than the ones of all the other non deuterated model PnAMAs, 

since the small molecules present inside sample PHMA13C play the role of a plasticizer. 

Furthermore, for the non deuterated samples above Tg-20 K, the line width is decreasing with 

increasing alkyl side chain length. Significant differences between non labeled and 13C 

labeled samples for a few temperatures have not be attributed. 
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Figure 5- I-2: Influence 
of the temperature on 

the fwhm of the 1H 
spectrum of the model 

PnAMAs (spectra 
recorded at a 1H Larmor 

frequency of 
300.13 MHz, under 
static conditions). 

For all samples, a slow decay of the fwhm as a function of temperature is observed, 

which corresponds to a broad glass transition. The slowness of this decay is attributed to the 

local structure of the samples, present between ca Tg+30K and ca Tg+80K on the NMR time 

scale, which induces strongly anisotropic motions and thus stronger dipolar couplings (s. Part 

3, I.). This glass transition starts at a temperature much lower than the glass transition 

temperature Tg measured by DSC. This is due to the fact that DSC mainly detects the glass 

transition of the backbone, while the alkyl side chain is already mobile at lower temperatures. 
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Furthermore, for increasing alkyl side chain length, the fwhm at Tg decreases, indicating that 

the glass transition process starts at a lower temperature.  

B. 2D-WISE 

The 2D-WISE technique was used to characterize more precisely the dynamic contrast 

in the model PnAMAs. It was detailed in Part 3, II.B.  

C. Conclusion on the dynamic contrast 

The investigated PnAMAs exhibit no strong dynamic contrast from the line shape of 
1H spectra recorded under static conditions. However, 2D-WISE investigations on poly(ethyl 

methacrylate) samples revealed mobility differences. Indeed, the CH3 groups are the most 

mobile ones, and the side chain one is more mobile than the main chain one. 

Finally, the dynamic contrast is very low in PnAMA sample, but might still be present 

and detected by other solid-state NMR techniques like the dipolar filter (s. next paragraph). 

 

II. Investigation of NOE in the model poly(n-alkyl methacrylates) using 

the dipolar filter 

The principle of the Nuclear Overhauser Effect measurement using the dipolar filter 

dipolar filter is described in Part 3. The actual selection done by the dipolar filter will be 

investigated in paragraph A, while the exact data processing will be explained in paragraph B 

on the example of PEMA at Tg+70 K. The temperature dependence of the extracted 

correlation time will be determined in paragraph C for sample PEMA, in paragraph D for all 

investigated PnAMAs. The biexponential behavior observed at low temperatures will be 

discussed in paragraph E. 

A. Actual selection done by the dipolar filter 

 For reasons detailed in Part 3, IV.A.1, the LG-CP experiments using the dipolar filter 

were carried out under 3 kHz MAS on samples PEMA, PEMADMC and PBMA, at ca 

Tg+70 K for PBMA and at ca Tg+45 K for the others. In the first experiment, a simple LG-CP 

spectrum was recorded to obtain a reference spectrum. In the second experiment, a dipolar 

filter was applied and immediately afterwards a LG-CP spectrum was recorded, in order to 

determine the parts of the sample actually selected by the dipolar filter. In the third 

experiment, the same dipolar filter was applied, followed by a rather long mixing time and the 

recording of a LG-CP spectrum, in order to observe the sample relaxing back at equilibrium. 
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For samples PEMA and PBMA, a LG-CP spectrum was also recorded for an intermediate 

mixing time. The corresponding spectra are shown on Figure 5- II-1, Figure 5- II-2 and Figure 

5- II-3. The carbonyl signal is not observed. 
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Figure 5- II-1: 13C LG-CP 
spectra of sample PEMA at 
ca 390 K (ca Tg+45 K) at 
75.47 MHz under 3 kHz 
MAS with 500 µs contact 

time; (a) LG-CP; (b) dipolar 
filter with 20 µs delay and 1 

cycle, no mixing time and 
LG-CP; (c) dipolar filter 

with 20 µs delay and 1 cycle, 
1 ms mixing time and LG-
CP; (d) dipolar filter with 
20 µs delay and 1 cycle, 

50 ms mixing time and LG-
CP; the abbreviations MC 

and SC designate main 
chain and side chain. 

The spectra shown on Figure 5- II-1 (a), (b), and (d) have been commented in Part 3, 

IV.A.2. The dipolar filter actually selects only the CH3 group of the alkyl side chain in sample 

PEMA. It can be noticed that this selection of the CH3 end group occurs more accurately than 

in the PnAAs. Furthermore, it is seen on Figure 5- II-1 (c) that there is no significant 

difference in the spectra recorded after 1 ms or 50 ms mixing time. This will be discussed in 

Part II.E. 
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Figure 5- II-2: 13C LG-CP spectra 
of sample PEMADMC at ca 

390 K (ca Tg+45 K) at 75.47 MHz 
under 3 kHz MAS with 500 µs 
contact time; (a) LG-CP; (b) 

dipolar filter with 10 µs delay and 
1 cycle, no mixing time and LG-
CP; (c) dipolar filter with 10 µs 
delay and 1 cycle, 8 ms mixing 

time and LG-CP; the abbreviation 
MC designate the main chain. 

No signal is recorded for the carbons of the main chain in sample PEMADMC (Figure 

5- II-2 (a)), as expected for this sample deuterated on the main chain. Furthermore, this 13C 

LG-CP spectrum gives the reference intensities in a LG-CP spectrum. It can be clearly seen 

on the 13C LG-CP spectrum on Figure 5- II-2 (b) that the dipolar filter actually selects the CH3 

end group of the side chain, i.e. it selects the end of the side chain of PEMADMC. It should 

be noted that a negligible amount of CH2 groups of the main chain is also selected. The 13C 

LG-CP spectrum shown on Figure 5- II-2 (c) is identical to the one shown on Figure 5- II-2 

(a), proving that the magnetization is back at equilibrium 8 ms after the application of the 

dipolar filter. 
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Figure 5- II-3: 13C LG-CP 
spectra of sample PBMA at ca 

370 K (ca Tg+70 K) at 
75.47 MHz under 3 kHz MAS 
with 500 µs contact time; (a) 
LG-CP; (b) dipolar filter with 

15 µs delay and 1 cycle, no 
mixing time and LG-CP; (c) 

dipolar filter with 15 µs delay 
and 1 cycle, 5 ms mixing time 
and LG-CP; (d) dipolar filter 
with 15 µs delay and 1 cycle, 

50 ms mixing time and LG-CP; 
the abbreviation MC designates 

main chain. 
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All the chemical sites of the monomeric unit of PBMA are resolved in the 13C LG-CP 

spectrum (Figure 5- II-3 (a)). The dipolar filter actually selects the CH3 end group of the side 

chain and partly the next two CH2 groups and the main chain CH3 group (Figure 5- II-3 (b)), 

i.e. it selects the end of the alkyl side chain and partly the α-methyl group in PBMA. The 

spectra recorded without mixing time and with 50 ms mixing time are identical (Figure 5- II-3 

(a) and (d)), indicating a return to equilibrium 50 ms after the application of the dipolar filter. 

Furthermore, no difference in the spectra recorded after 5 ms or 50 ms mixing time (Figure 5- 

II-1 (c)). This will be discussed in Part II.E. 

As a conclusion, the LG-CP investigations carried out on PEMA and PEMADMC at 

ca Tg+45 K proved that the dipolar filter actually selects only the CH3 end group of the alkyl 

side chain in poly(ethyl methacrylate). It was proved that the dipolar filter actually selects 

only the CH3 end group of the alkyl side chain and partly the next CH2 groups in PBMA at ca 

Tg+70 K, as well as partly the α-methyl group. 

B. Recording and processing NOE data using the dipolar filter in PEMA at 

Tg+67 K 

1. Conducted experiments and recorded magnetization 

NOE investigations using the dipolar filter were conducted on sample PEMA at 

409 K, i.e. Tg+67 K (s. Part 4, II.B.1 for details). The evolution of the recorded magnetization 

with mixing time is shown on Figure 5- II-4. It was proved (s. Part 3, IV.B)that the 

magnetization transfer occurs after the dipolar filter via incoherent zero- and double-quantum 

transitions, also called cross-relaxation or NOE. Since the PEMA at Tg+67 K is in the slow 

motion limit, zero-quantum transitions (i.e. flip-flops) are predominant. 
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Figure 5- II-4: 
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time for the sample 
PEMA at 409 K 

(Tg+67 K, n cycles of 
12 τ−spaced pulses in 

the dipolar filter). 
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2. Mathematical equation governing the recorded magnetization decay 

The mathematical equation governing the monitored decay is the one describing the 

decay of the intensity of a diagonal line in a 2D-NOE experiment in the slow motion limit, as 

justified in Part 3, IV.C. Furthermore, the initial magnetization is located at the CH3 end 

group of the alkyl side chain. Therefore we chose to use the decay equation calculated for two 

groups of equivalent nuclei in Part 3, IV.C.2, and to consider a CH3-CH2 moiety, as was 

already done and discussed for model PnAAs in Part 4, II.B.2. The validity of the CH3-CH2 

approximation should be discussed again here. Indeed, it is rigorously valid for sample 

PEMADMC, where only a CH3 and a CH2 group are present, and in which the dipolar filter 

properly selects the CH3 group.  

The evolution with mixing time τm of the intensity aAA of a diagonal line in a 2D-NOE 

experiment concerning a CH3-CH2 moiety follows Equation 5- II-1, where τC
AB is the 

correlation time of the involved molecular motion (s. Equation 4- II-3 in Part 4, II.B.2). 

Fitting the experimental data allows to determine the product qAB⋅τC
AB. Thus, a parallel 

determination of qAB leads to extraction of the correlation time of the involved motion τC
AB. 

( ) ( )[ ]mAB
CABmAA qMa τττ 5exp5

4
5
6

10
3 0 −+⋅=  Equation 5- II-1 

3. Determination of the qAB parameter 

Two possible ways of determining the qAB parameter have been discussed in Part 4, 

II.B.2. This discussion is also valid for the model PnAMAs. 

4. Methodology for extraction of the qAB⋅τC
AB product 

The methodology for the extraction of the qAB⋅τC
AB product from the experimental 

magnetization decay was already detailed in Part 3, IV.B. It was done exactly the same way 

for the model PnAMAs at high temperatures (roughly higher than Tg+80 K for samples 

PEMA, PEMADMC, and PBMA).  

For the lower temperatures, a biexponential behavior was observed for the recorded 

magnetization decay from 1 to 0. In that case, the data were fitted using the MicrocalTM 

Origin® software. The slow decay was fitted first as a linear decay of the logarithm of the 

magnetization versus mixing time. Then the fast decay was fitted as one component of a 

biexponential decay where the other component was set as the slow decay determined 

previously. Both extracted values of the qAB⋅τC
AB products will be indicated. It should be 

emphasized that the slower recorded magnetization decay corresponds to the faster involved 

molecular motion, and thus will be designated as “fast” in the following. 
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5. Measured data and extracted results 

In the case of PEMA at Tg+67 K, the fits yielded as series of AB
CABq τ5  values 

characterized by an average of 1376 Hz, a range of 77 Hz and a standard deviation of 28 Hz 

for the monoexponential decay. AB
CABq τ  values are then characterized by an average of 

275.2 Hz, a range of 15.4 Hz and a standard deviation of 5.6 Hz. 

The numerical integration of a 1H spectrum recorded under static conditions at Tg-

45 K (s. Part 7, IV.B.1) yielded a second moment value of M2=342.25 kHz2; thus a value of 

qAB=8.95 kHz2 for a cubic lattice. 

Finally, the CH3-CH2 moiety method yielded a correlation time of τC
AB=6.91⋅10-5 s 

(with a range of 1.9⋅10-6 s and a standard deviation of 1.4⋅10-6 s). The second method yielded 

a value of 3.08⋅10-5 s for the correlation time τC
AB (with a range of 9⋅10-7 s and a standard 

deviation of 3⋅10-7 s). Considering the significant difference between this values of τC
AB, only 

values of qAB⋅τC
AB products will be given in this paragraph II for all investigated PnAMA 

samples. 

C. Temperature dependence of qAB⋅τC
AB for poly(ethyl methacrylate) samples 

The NOE experiment with dipolar filter was carried out at temperatures ranging from 

Tg+55 K to Tg+115 K for PEMA, and from Tg+60 K to Tg+100 K for PEMADMC. For each 

temperature, various parameters were used for the dipolar filter, and the data were processed 

as detailed in paragraph B. The obtained qAB⋅τC
AB products are shown on Figure 5- II-5 for 

samples PEMA and PEMADMC. All numerical values are given in appendix in Part 7, 

IV.A.3. It is observed that the dependence of qAB⋅τC
AB on inverse temperature is nearly linear. 

Furthermore, the values determined for sample PEMADMC are in agreement with those 

determined for sample PEMA, validating the assumption of the predominance in the initial 

magnetization decay of the cross-relaxation from the CH3 to the CH2 group inside the alkyl 

side chain. A linear regression of the extracted qAB⋅τC
AB products yields an activation energy 

of 1.27 −molkJ . 
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Figure 5- II-5: 
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the product qAB⋅τC

AB 
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motion, corresponding 
respectively to the fast 

and slow recorded 
magnetization decay). 

 It should be noted that the shape of the curves for high temperatures (above Tg+60 K 

for PEMA and above Tg+90 K for PEMADMC) were identical to those obtained at Tg+67 K 

for PEMA, only the numerical values varied. At lower temperatures, the recorded 

magnetization exhibited a biexponential decay, which will be discussed in paragraph E. 

D. Temperature dependence of qAB⋅τC
AB for model PnAMA samples 

The NOE experiment with dipolar filter was carried out on other model PnAMAs, at 

temperatures ranging from Tg+82 K to Tg+130 K for sample PBMA, from Tg+55 K to 

Tg+115 K for sample PHMA13C, and at Tg+77 K for sample PBMA13C. For each 

temperature, various parameters were used for the dipolar filter, and the data were processed 

as detailed in paragraph B. The shape of the curves were similar to those obtained for sample 

PEMA, with different numerical values. The obtained qAB⋅τC
AB products are shown on Figure 

5- II-6 (all numerical values are given in appendix in Part 7, IV.A.3). It is observed in all 

cases that the dependence on inverse temperature is nearly linear. Linear regressions of the 

extracted qAB⋅τC
AB products yield activation energies of 27, 28 to 30, and 17 kJ.mol-1 for the 

samples PEMA (together with PEMADMC), PBMA (together with PBMA13C), and 

PHMA13C respectively. 
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from NOE experiment with 
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Contrary to model PnAAs (s. Part 4, II.D), the products qAB⋅τC
AB do not fall on a 

master curve when plotted as a function of the distance from Tg (s. Figure 5- II-7). 
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AB 
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E. Discussion of the biexponential behavior observed at low temperatures 

In the NOE experiment with dipolar filter, a biexponential decay is observed for the 

recorded magnetization for samples PEMADMC and PBMA below Tg+90 K, and for sample 

PEMA below Tg+60 K. Thus, the superposition of two cross-relaxation phenomena with 

different rates is seen. These two processes could be either processes occurring in different 

parts of the monomeric units, or processes occurring in the same part of the monomeric unit 

but at different rates. It should be noted that this phenomenon could hardly be due to an 

improper correction for T1 relaxation, since a well defined plateau is observed after the end of 

the second decay. 
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The end of the faster recorded magnetization decay (corresponding to the slower 

involved molecular motion) is observed around 1 ms for sample PEMA at Tg+40 K, and 

around 5 ms for sample PBMA at Tg+77 K. Therefore, in the investigations of the selection 

done by the dipolar filter presented in paragraph A, a LG-CP spectrum was recorded after 

1 ms or 5 ms mixing time respectively for sample PEMA at ca Tg+45 K and sample PBMA at 

ca Tg+70 K. No significant difference was observed between this spectrum and the spectrum 

observed after 50 ms mixing time and return to equilibrium. Therefore the two different rate 

do not have a molecular origin, but rather a dynamical origin. It is concluded that the cross-

relaxation processes occurring with different rates are not occurring in different parts of the 

monomeric units. 

Thus, the biexponential decay is attributed to cross-relaxation processes occurring in 

the same part of the monomeric unit but at different rates. This behavior is observed for 

poly(ethyl methacrylate) and poly(n-butyl methacrylate) over the range from ca Tg+40 K to ca 

Tg+60 K or Tg+90 K. This corresponds to the temperature range where the strong anisotropy 

of the molecular motion due to the local structure has been reported (from ca Tg+30 K to ca 

Tg+80 K on the NMR time scale, s. Part 3, I). Therefore it is concluded that the NOE 

measurement detects the local structure. The NOE experiment with dipolar filter is thus able 

to detect the faster involved molecular motion (without allowing a precise quantification, s. 

error bars on Figure 5- II-6). This detection is done in a non isotopically labeled sample, using 

rather simple NMR techniques: a classical exchange experiment combined with the dipolar 

filter. 

F. Conclusion on the measurement of NOE in model PnAMAs 

Applying the dipolar filter to PnAMAs results in a selection according to mobility. It 

indeed selects only the CH3 end group of the alkyl side chain in PEMA and PEMADMC at ca 

Tg+45 K; in PBMA at ca Tg+70 K, it actually selects the CH3 end group of the alkyl side 

chain and partly the next CH2 groups, as well as partly the α-methyl group (s. paragraph A). 

Correlation times τC
AB were extracted from the recorded NOE magnetization decay. A 

biexponential behavior of this decay is observed at low temperatures in PEMA, PEMADMC 

and PBMA samples; it is attributed to the structure present in the sample over the same 

temperature range (s. Part 3, I), resulting in a strong anisotropy of the motion.  

Finally, the qAB⋅τC
AB product has a linear evolution with inverse temperature for 

PnAMAs over the range from ca Tg+50 K to ca Tg+130 K, which will be interpreted below. 
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III. Interpretation of NOE results in model poly(n-alkyl methacrylates) 

Valuable information on the chain dynamics in model PnAMAs may be obtained 

through the comparison of various NMR data obtained during the present Ph.D. work (NOE 

with dipolar filter, T1 relaxation, line width). 1H T1 relaxation data will be presented in 

paragraph A. The correlations times determined in the present work will be compared to other 

relaxation data found in the literature or measured by other techniques in paragraph B. 

A. 1H longitudinal relaxation in model PnAMAs 

1H longitudinal (or spin-lattice, or T1) relaxation times have been measured on model 

PnAMAs using the inversion recovery technique (s. Part1, II.F). The experiments were 

carried out under the same conditions as the NOE experiments with dipolar filter: at a Larmor 

frequency of 300.13 MHz, under static conditions, and approximately over the range from Tg 

to Tg+100 K. A single exponential behavior was observed for each measurement. This can 

result either from an identical relaxation time of all protons in the monomeric unit, or from 

the faster relaxation of some 1H nuclei, combined with extensive 1H nuclear spin diffusion or 

extensive cross-relaxation (already discussed in Part 4, III.A). The single exponential 

behavior was attributed to the latter for the model PnAMAs. The extracted relaxation times 

are shown on Figure 5- III-1. 
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Figure 5- III-1: 
Evolution with 

temperature of the 
single 1H longitudinal 

(or spin-lattice) 
relaxation time 

measured using the 
inversion recovery 
technique on model 

PnAMAs 
(300.13 MHz Larmor 

frequency, under 
static conditions). 

13C labeling has no influence on the measured 1H T1, as identical values are measured 

for PBMA ad PBMA13C samples. This allows to compare sample PHMA13C with the non 

labeled PEMA and PBMA: the T1 relaxation time decreases with alkyl side chain length for 

the non deuterated samples. Furthermore, the 1H longitudinal relaxation for PEMA is 

significantly slower than for PEMADSC (deuterated on the side chain), and one order of 
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magnitude faster than for PEMADMC (deuterated on the main chain). This is attributed to the 

hindered rotation of the α-CH3 group (main chain methyl group), which would be in the 

frequency range of the Larmor frequency (300 MHz), and thus relaxes efficiently (s. 

calculation below). Therefore PEMADSC, in which only the main chain is protonated, relaxes 

very fast through 1H nuclear spin diffusion or cross-relaxation towards the relaxation sink. In 

PEMA, where protons are present further from the relaxation sink, the relaxation is 

significantly slower. In PEMADMC, the relaxation sink is absent and thus the relaxation is 

one order of magnitude slower. The CH3 group in the side chain is probably rotating too fast 

to relax efficiently. Therefore, with increasing alkyl side chains length (and increasing 

number of motional modes), there should be a mode closer to the Larmor frequency, thus 

allowing more efficient relaxation, i.e. shorter 1H T1 relaxation time. Indeed the relaxation 

time is longer for PMMADMC than PEMADMC: in PMMADMC only the side chain CH3 

has protons, while in PEMADMC, the side group CH2 is also present. This is also observed 

through the decreasing relaxation time with increasing side chain length in samples PEMA, 

PBMA and PHMA13C. 

The frequency of the hindered rotation of the α-CH3 group in PnAMAs exhibits an 

Arrhenius behavior at high temperatures (higher than 150 K for PMMA).261 The activation 

energy was determined by various research groups in the range from 27 to 29 kJ.mol-1 

(varying slightly with tacticity).262 Tanabe et al. report a rotation frequency of 20 MHz at 

260 K for poly(methyl methacrylate), poly(ethyl methacrylate) and poly(n-butyl 

methacrylate), measured as the minimum of the T1 relaxation time.263 They report 

measurements on other polymeric samples and deduce a rotation frequency of 50 MHz at 

270 K and an activation energy of 27 kJ.mol-1 for any CH3 group bonded to a quaternary 

carbon;263 however, this value is not in agreement with the frequency of 20 MHz at 260 K, so 

that it was not considered here. For all PnAMAs a frequency of 20 MHz at 260 K, and an 

activation energy of 28 kJ.mol-1 were considered in a first approximation. The frequency f is 

assumed to follow an Arrhenius behavior (s. Equation 5- III-1, where A is the prefactor, Ea 

the activation energy, R the gas constant and T the absolute temperature). 

⎟
⎠
⎞⎜

⎝
⎛−⋅= RT

EAf aexp  Equation 5- III-1 

Knowing the frequency f1 (20 MHz) at the temperature T1 (260 K), the frequency f2 at the 

temperature T2 can be calculated using Equation 5- III-2. 
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The obtained frequencies are shown in Table 5- III-1. The rotation frequency is equal to the 

Larmor frequency between 300 and 350 K, and is of the order of magnitude of the Larmor 

frequency (300 MHz) over the temperature range over which the 1H T1 relaxation 

measurements were conducted on PEMA, PBMA and PHMA13C in the present work (from 

277 K to 460 K, s. Figure 5- III-1). It should be noted that these values are in agreement with 

rotation frequencies of the order of 314 MHz determined roughly between 200 and 400 K in 

syndiotactic PMMA samples via 13C T1 relaxation minima.264 

Temperature (K) 260 300 350 400 450 500 
Frequency (MHz) 20 110 560 1 900 4 700 10 000 
Table 5- III-1: Rotation frequencies of the α-CH3 group in PnAMAs, determined considering an 

Arrhenius behavior, a frequency of 20 MHz at 260 K and an activation energy of 28 kJ.mol-1. 

The 1H T1 relaxation times measured in the present work do not exhibit a common 

dependence  for all investigated PnAMAs upon temperature (s. Figure 5- III-1) or distance 

from Tg (s. Figure 5- III-2). Furthermore, it does not exhibit an evolution comparable to the 

one of the qAB⋅τC
AB factor extracted from the NOE measurements with dipolar filter (s. Figure 

5- II-7). Considering the resulting difficulty of using 1H T1 relaxation data in the 

interpretation of NOE data, as well as the complexity of the various underlying motional 

modes, the 1H T1 relaxation data were not interpreted any further. 
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Figure 5- III-2: 
Evolution with distance 
from Tg of the single 1H 
longitudinal (or spin-

lattice) relaxation time 
measured using the 
inversion recovery 
technique on model 

PnAMAs (300.13 MHz 
Larmor frequency, 

under static 
conditions). 

It should be emphasized here that the 1H T1 relaxation times are long enough to 

observe NOE effect on the time scale of a few tens of ms. 

B. Relaxation processes in model PnAMAs 

It has then been discussed in paragraph II.B.2 that the CH3-CH2 model used to fit the 

NOE data is rigorously valid only for the sample PEMADMC. For the other PnAMAs, the 

extracted correlations times should be considered carefully. The extracted correlation times 

are plotted together with various relaxation data from the literature5,150,221 (NMR, photon 
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correlation spectroscopy, calorimetry, dielectric spectroscopy, mechanical spectroscopy, s. 

Figure 5- III-3 to Figure 5- III-5). 

 
Figure 5- III-3 : Correlation times extracted from the NOE measurements performed in the present work for 
samples PEMA and PEMADMC, comparison with literature data5,150,221; for NOE in case of a biexponential 
decay: full symbols for fast decay and  open symbols for slow decay in the case of a biexponential decay of 

the recorded magnetization.  
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Figure 5- III-4: Correlation times extracted from the NOE measurements performed in the present 
work for samples PBMA and PBMA13C, comparison with literature data5,150; for NOE in case of a 
biexponential decay: full symbols for fast decay and  open symbols for slow decay in the case of a 

biexponential decay of the recorded magnetization. 
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Figure 5- III-5: Correlation times extracted from the NOE measurements performed in the 

present work for samples PHMA13C, comparison with literature data5,150. 

The correlation times determined independently via the calculation of qAB and via the 

second moment are different but of the same order of magnitude for each measurement, thus 

in fair agreement considering the approximations involved in both cases. Furthermore, the 13C 

labeling on 25 % of the carbonyl groups do not have a significant influence on the NOE 

experiment, as shown for samples PBMA and PBMA13C. Similarly, deuterating the main 

chain has little influence on the NOE experiment, as observed for samples PEMADMC and 

PEMA. 

A linear dependence of the determined correlation time upon inverse temperature is 

observed for all samples on a broad temperature range, indicating a local Arrhenius-type 

relaxation process. Therefore it will be compared preferentially to the β-relaxation process, 

which is also a local relaxation process. Linear regressions of all concerned correlation and 

relaxation times as a function of temperature were done, and the results are detailed in 

appendix (s. Part 7, IV.A.3). 

For samples PEMA and PEMADMC, the activation energy of the slow process 

detected by NOE, 27 kJ.mol-1, is the same as the one of the β-relaxation (27 kJ.mol-1 to 

31 kJ.mol-1). Both processes also have the same prefactor (10-14 s). The β-relaxation 

corresponds to the reorientation of the COO-alkyl side group in PnAMAs.265 Therefore the 

slow process detected by NOE corresponds most probably also to the reorientation of the 

COO-alkyl side group in PEMA samples. Moreover, the correlation times of the slow 

process detected by NOE correspond to those of the isotropization process on the same 



Part 5, III  Interpretation of NOE results in poly(n-alkyl methacrylates) 

 195

temperature range, within the experimental error. Thus it is possible that the slow process 

detected by NOE also corresponds to the relaxation of the organized alkyl nanodomains (s. 

work of Wind et al.221 presented in Part 3, I.A). Furthermore, the correlation times of the fast 

process detected by NOE correspond to those of the αβ-relaxation process in the same 

temperature range (this should be considered carefully due to the significant experimental 

error). All those observations are in agreement with the picture of the local phase separation 

in PnAMAs (s. Part 3, I). One possible explanation would be that the slow process detected by 

the NOE experiment would be the hindered motion of the side chain to disengage from the 

organized nanodomains, at high temperatures were it would be coupled to the corresponding 

motions of the main chains, which would thus be the relaxation of the organized 

nanodomains. In that context the fast process detected by NOE could be the αβ-relaxation, 

corresponding to the anisotropic cooperative relaxation of the main chain, coupled to side 

chain motions. 

For the PBMA and PHMA samples, a similar argumentation can be conducted. The 

main difference is that the slow process detected by NOE moves away from the β-relaxation 

process with increasing side chain length (the respective activation energies are ca 29 kJ.mol-1 

and 49 kJ.mol-1 for PBMA samples, 17 and ca 50 kJ.mol-1 for PHMA samples). This is in 

agreement with the arguments developed above, considering that the NOE would detect 

motions inside the side chain as slow process, which is a superposition of the β-relaxation 

process and more local relaxation modes for PBMA and PHMA samples. Indeed, with 

increasing side chain length, the number of more local modes exhibiting a lower activation 

energy than the β-relaxation increases, thus decreasing the activation energy of the detected 

slow process. It would be interesting to dispose of complementary data on these local modes. 

Furthermore, for PHMA samples only one process is detected, which is in accordance with 

the very similar correlation times of the αβ-relaxation and of the isotropization processes. 

 

IV. Comparison of model and industrial samples 

A. Comparison of all model samples 

1. Mobility from NMR 

Above Tg+20 K, the PnAAs are more mobile than the PnAMAs. This is indicated first 

by a lower fwhm of 1H static spectra as a function of temperature (s. Figure 5- IV-1), due to 

the broader glass transition in PnAMAs. It is also indicated by 13C static spectra. Spectra 

recorded on a Tecmag spectrometer for sample PEA at 75.47 MHz with single pulse 
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excitation and Hahn echo acquisition are shown in Figure 5- IV-2 next to the PEMA13C 

spectra recorded by Wind5,150,151. A large axial-symmetric C=O tensor in the case of 

PEMA13C below Tg+100 K indicates a highly anisotropic motion of the main chain. A 

narrower, nearly isotropic symmetric tensor line shape in the case of PEA above Tg+30 K 

indicates a nearly isotropic motion of the main chain. It can be concluded that at the same 

distance to Tg, the main chain has a more anisotropic motion in PEMA than PEA. This 

indicates stronger constraints in the PEMA structure. It is in accordance with the higher 

mobility detected in PEA compared to PEMA, at the same distance to Tg, above Tg+20 K. 
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Figure 5- IV-1: Influence of the 
temperature on the fwhm of the 1H 
spectrum of all investigated model 
samples (spectra recorded at a 1H 
Larmor frequency of 300.13 MHz, 

under static conditions). 
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Figure 5- IV-2: Evolution of the static 
C=O tensor line shape with temperature 
for samples PEMA13C (left)5,150,151 and 

PEA (right); in black: measured spectra, 
in red: simulation. 
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2. Local structure from NMR and X-ray scattering 

The features detected by X-ray scattering and solid-state NMR for PnAAs and 

PnAMAs are summarized in Table 5- IV-1. It can be concluded that similar local structures 

are present in PnAAs and PnAMAs, with a better organization in PnAMAs (more regular and 

less flexible structure). 

  PnAMAs PnAAs 
nanostructure yes yes X-rays 
correlation between  
side chains in their domains 

yes no 

13C NMR anisotropic main chain motion high low 
1H NMR mobility above Tg+20 K lower higher 

Table 5- IV-1: 
Comparison of the 

features detected with 
X-ray scattering and 

static solid-state NMR 
for PnAMAs and 

PnAAs. 

It is expected that PnAMAs are better organized than PnAAs for three reasons. First, 

their tacticity is different: PnAAs are atactic while PnAMAs are highly syndiotactic when 

produced by free-radical polymerization (s. Part 2). The higher tacticity of PnAMAs should 

lead to a higher tendency to order. Second, the PnAAs exhibit chain branching (2 % of the 

monomeric units, s. Part 2, II), while chain branching has never been detected in PnAMAs. 

Order should be disturbed around the branching points. Third, the PnAMA backbone contains 

a CH3 group where the PnAA backbone contains a less bulky hydrogen. Therefore, the PnAA 

backbone is much more flexible than the PnAMA one.  

An idealized structure can be proposed for the PnAAs and PnAMAs, which is shown 

in Figure 5- IV-3. The shown slices must be repeated to obtain a local structure, with 

alternating layers of side chains and main chains5,153 or with nanodomains of side chains 

separated by main chains225. It must be emphasized here that these structures are idealized 

ones, meaning that it is not as well organized in reality. Moreover, this structure is valid only 

for a few monomeric units long along the backbone. 

side  
chains 

methacrylates: 
main  
chains 

acrylates: 

Figure 5- IV-3: Idealized 
local structures proposed 

for poly(n-alkyl 
methacrylates) and 

poly(n-alkyl acrylates); s. 
text for details. 

3. Local relaxation NOE experiment with dipolar filter 

A concise comparison of the information obtained for model PnAAs and PnAMAs 

using the NOE experiment with dipolar filter will be presented in paragraph V.B. 
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B. Comparison of model and industrial samples 

1. Dynamic contrast 

The dynamic contrast was characterized in the PSAs by solid-state NMR, in particular 
1H static spectra and 2D-WISE experiments. All the recorded 1H static spectra are shown in 

the appendix (Part 7, IV.C.1). As for model samples, the whole samples become more mobile 

with increasing temperature, and exhibit no strong dynamic contrast. The fwhm as a function 

of temperature is compared for all samples in Figure 5- IV-4. The PSA samples exhibit the 

same behavior as the model PnAA samples for the fwhm as a function of temperature (at the 

same distance from Tg). 
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Figure 5- IV-4: 
Influence of the 

temperature on the 
fwhm of the 1H 

spectrum of 
investigated samples 
(spectra recorded at 

a 1H Larmor 
frequency of 300 

MHz, without MAS).

The 1D 1H spectra extracted from the 2D-WISE spectra are shown in Figure 5- IV-5. 

The contour plots and the extracted 1D 13C spectra are shown in the appendix (Part 7, IV.C.2). 

The 13C chemical shifts assignment is detailed in Part 2, III.B.1.b. A comparison of the CH2 

line widths demonstrate that the side chain (except O-CH2) is more mobile than the main 

chain, as it is also the case in the model samples. 



Part 5, IV  Comparison of model and industrial samples 

 199

151050- 5- 10- 15 kHz

11 ppm
15 ppm
25 ppm
31 ppm
40ppm

68 ppm
50 ppm

Copo2

151050- 5- 10- 15 kHz

11 ppm
15 ppm
25 ppm
31 ppm
40 ppm
68 ppm

Homo2EHA

151050- 5- 10- 15 kHz

11 ppm
15 ppm
25 ppm
31 ppm
40ppm

68 ppm
50 ppm

Copo1

Figure 5- IV-5: 1D 1H 
spectra extracted from 
the 2D-WISE spectra of 
PSA samples at room 

temperature (1H 
Larmor frequency of 
300.13 MHz, static, 
LG-CP and π-pulse 

during t1). 

2. NOE experiment with dipolar filter 

The NOE experiment with dipolar filter was applied to the industrial PSA samples at 

room temperature. For all samples, a monoexponential decay of the recorded magnetization 

was observed. Data were processed using the same methodology as for the model samples, in 

order to extract the qAB⋅τC
AB product. Then the correlation time τC

AB was deduced using the 

qAB value calculated for a CH3-CH2 moiety. It should be noted that no 1H spectrum was 

recorded well below Tg for the industrial samples, due to their low Tg and the technical 

difficulty to cool down below it. However, the determination of τC
AB via the qAB value or the 

second moment should yield similar results, as demonstrated for all model samples.  

The extracted correlation times are plotted together with those of the model PnAAs, on 

Figure 5- IV-6 versus inverse temperature, on Figure 5- IV-7 versus distance from Tg. It is 

clearly seen that an identical correlation time is detected for both copolymers (Copo1 and 

Copo2), which is slightly different of the one of the homopolymer. None of them falls on the 

master curve observed for model PnAAs as a function of the distance from Tg. This could be 

due to the branched character of the 2EHA alkyl side chain, while the model PnAAs all have 

linear alkyl side chains. It would explain why the copolymers Copo1 and Copo2, which 

contain 33 % of linear methyl side chains exhibit a behavior closer from the model PnAAs 

than the homopolymer Homo2EHA, containing only branched 2EHA side chains (s. Figure 5- 
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IV-7). When observed as a function of temperature, the correlation times determined for the 

PSAs are in the same range as those determined for the model PSAs (s. Figure 5- IV-6).  

The molecular nature of the motion detected by NOE can not be known as the 

temperature dependence of the correlation times from NOE, and the relaxation from other 

methods, have not been determined. 
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V. Conclusion on NOE in model poly(n-alkyl methacrylates) and on the 

comparison of all samples 

A. Local nanophase separation 

PnAMAs and PnAAs exhibit similar features of weak mobility contrast and higher 

mobility in the alkyl side chain than in the main chain. Moreover, both exhibit a local 

nanophase separation, which is better organized in PnAMAs than in PnAAs. This results in 

strongly anisotropic chain motions on the range from ca Tg+30 K to ca Tg+80 K. On that 

temperature range, the NOE experiment with dipolar filter detects this anisotropy via a 

biexponential behavior of the recorded magnetization decay. Therefore the NOE experiment 

with dipolar filter could be used to detect a local nanophase separation resulting in strongly 

anisotropic chain motions in other side chain polymers, on non isotopically labeled samples 

and using relatively simple NMR techniques (the classical exchange experiment combined 

with the dipolar filter). 

B. Local relaxation processes detected by the NOE with dipolar filter 

For PnAMAs, 1H T1 relaxation data revealed mostly the strong influence of the α-CH3 

rotation and did not help for the molecular interpretation of the NOE data. The results 

obtained using the NOE experiment with dipolar filter have been interpreted in the context of 

local nanophase separation present in PnAMAs. The correlation times of the slow process 

quantified by the NOE measurements in the present work has been attributed to the 

relaxation of the alkyl nanodomains, as a coupled motions of the main chain and of 

hindered local modes in the side chain. In the case of PEMA samples, due to less numerous 

internal degrees of freedom, the β-relaxation process is predominant. For the PnAAs, only 

one process was detected by the NOE experiment. However, all processes detected for PnAAs 

and PnAMAs can be interpreted in the frame of a locally phase separated structure. 

The model of the CH3-CH2 moiety for processing the NOE data is not rigorously valid 

for PnAMAs, except for PEMADMC. More elaborate analytical models or simulation 

programs would be useful to extract more accurate correlation times τC
AB for the model 

PnAMAs (except PEMADMC) from the recorded NOE decay. Furthermore, in order to assign 

the relaxation processes detected by the NOE experiment with dipolar filter, some relaxation 

times of the local relaxation processes faster than the β-relaxation in the PBMA and PHMA 

would be helpful (these data could be obtained via literature search, and possibly by 

conducting complementary experiments). 
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C. Comparison with industrial samples 

Concerning the dynamic contrast as detected via the 1H static line width and 2D-

WISE, the industrial PSA samples investigated in the present work exhibit features closer to 

those of the model PnAAs than to those of the model PnAMAs. The correlation times 

extracted from NOE measurements conducted at room temperature are in the same range as 

those of model PnAAs, but they do not fall on the master curve observed for PnAAs as a 

function of the distance from Tg. This could be explained by the branched character of the 

2EHA side chain. 
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Part 6: General conclusion and outlook 
 

I. General conclusion 

The adhesion mechanism of acrylic PSAs is empirically known to be influenced by 

microscopic and molecular properties of the samples, e.g. chain dynamics and crosslinking 

(which can be related to branching, nanophase separation, etc.). However, little is known 

about their exact relation because little was done to characterize the microscopic and 

molecular properties. The goal of the present Ph.D. work has been to characterize the 

microstructure and chain dynamics in industrial acrylic pressure sensitive adhesive samples 

by solid-state NMR. On a long term, it is aimed to progress towards a better understanding of 

the adhesion mechanism of acrylic PSAs. 

The PSA samples provided by Atofina are statistical poly(alkyl acrylates) copolymers, 

with different alkyl side chains, containing also other components. It should be noted that 

those samples are not commercial grades, but were synthesized for research purposes. Model 

poly(n-alkyl acrylates), PnAAs, were synthesized using conventional free-radical 

polymerization in solution. Model poly(n-alkyl methacrylates), PnAMAs, which have a 

similar chemical nature and are extensively characterized, have also been investigated. 

A. Branching 

Branching in poly(alkyl acrylates) occurs at a significantly higher level than in e.g. 

poly(alkyl methacrylates), and is currently under investigation in several research groups. 

LCB plays a role in the adhesive properties, therefore it is important for poly(alkyl acrylates) 

not only to quantify the branching level, but also to determine its nature (relative amounts of 

LCB and SCB). 

The different method of branching level quantification via 13C NMR (in solution, in 

the swollen polymer, using CP and in the molten state) have been compared. The best method 

consists in recording a solid-state 13C NMR spectrum of the molten polymer using single 

pulse excitation (s. Figure). It is applicable directly on the pure PSA samples. This technique, 

only applied to polyethylene up to now, proved to be significantly the most accurate one to 

quantify the branching level in poly(alkyl acrylates). 
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Multiple detection SEC investigations were carried out on model PnAAs to obtain 

information on the branching nature (SEC is not applicable to industrial PSA samples due to 

their imperfect solubility). The difference of the molar masses determined at a given elution 

volume by universal calibration and light scattering-based techniques indicates the presence 

of LCB. However, no satisfying model was found to quantify it. 

B. Nanophase separation 

A local nanophase separation occurs in PnAAs and PnAMAs between the side chains 

and the backbones, with higher organization in PnAMAs. This nanophase separation could 

result in physical crosslinking, playing a role in the adhesive properties. Among NMR 

methods, the 1H nuclear spin diffusion technique with dipolar filter seemed a priori to be a 

good candidate to determine the size of the nanodomains. This experiment had been 

previously exclusively used to quantify domain sizes in samples exhibiting structures on the 

nanometer length scale associated to a strong dynamic contrast. In fact, in the case of PnAAs 

and PnAMAs, the 1H nuclear spin diffusion technique with dipolar filter quantifies a time 

scale of local motions via a NOE mechanism. Thus no size information was obtained. 

However, the above described NOE experiment may indirectly detect the nanophase 

separation in PnAMAs via a biexponential behavior of the recorded magnetization decay, on 

the temperature range where the nanophase separation results in strong anisotropic chain 

motions. 
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C. NOE with dipolar filter 

The classical 1H nuclear spin diffusion technique with dipolar filter can be used as 

NOE experiment to investigate the local chain motion in samples exhibiting a weak dynamic 

contrast. In the PnAAs and PnAMAs, the selection done by the dipolar filter is based on 

mobility, and the following magnetization transfer occurs via non coherent cross-relaxation or 

NOE. A methodology was developed to extract the correlation time of the involved dynamic 

processes for PnAAs and PnAMAs, by two independent ways which proved to yield results in 

good agreement. 

D. Chain dynamics 

The correlation times determined for model PnAAs and PnAMAs using the NOE 

experiment were compared with complementary relaxation data obtained mainly by dielectric 

and mechanical spectroscopy, as well as other NMR techniques. For the model PnAAs, 

literature data are rare, therefore their relaxation behavior was determined for the same 

samples in the group of Prof. Pakula at the MPI-P by mechanical and dielectric spectroscopy 

(s. Figure). For PnAMAs, numerous reliable data were available. 
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The correlation times of the processes detected by the NOE experiment were 

interpreted in the context of local nanophase separation in PnAAs and PnAMAs. For the 
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PnAAs the correlation times quantified by the NOE measurements in the present work are 

attributed to hindered local motions of the side chains in organized alkyl nanodomains. For 

the PnAMAs, the correlation times of the slow process quantified by the NOE 

measurements in the present work has been attributed to the relaxation of the alkyl 

nanodomains, as a coupled motions of the main chain and of hindered local modes in the 

side chain. In the case of PEMA samples, due to a lower number of internal degrees of 

freedom, the β-relaxation process is predominant. 

 

II. Outlook 

The present work has opened numerous relevant topics to be investigated, on a 

fundamental research level as well as on a very applied level. 

A. Branching 

The solid-state 13C NMR of the molten polymer makes it possible to quantify 

branching levels in any poly(alkyl acrylate) sample, even multi-component and crosslinked 

ones. The significant gain in accuracy opens new possibilities, for example the determination 

of accurate kinetic constants for the transfer to polymer. This would allow a better control of 

the industrial production processes, as well as of the obtained material properties. In the 

specific case of acrylic PSAs, controlling the LCB level would help to adjust the crosslinking 

density and thus the adhesive properties. 

The quantification of LCB alone in poly(alkyl acrylates) might be possible by 

multiple-detection SEC. However, work should be invested to obtain reliable hardware and 

software, as well as satisfying models for the effects of LCB on SEC separation and detection. 

B. Nanophase separation 

The NOE experiment with dipolar filter would be interestingly applied to other side 

chain polymers as a tool to detect local nanophase separation. It does not allow simple time 

scale quantification, but it has the advantage of being easily accessible: the samples do not 

need to be labeled and the NMR techniques (dipolar filter, typical exchange experiment) are 

available on classical spectrometers. Possible interesting polymer samples would be side 

chain polymers in general (acrylates, methacrylates, itaconates, etc.). In particular, the 

investigation of PnAA samples exhibiting different branching characteristics (no branching 

from anionic polymerization, controlled branching from copolymerization with 
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macromonomers, statistical branching from free-radical polymerization) would allow to 

investigate the effects of branching on the nanophase separation. 

C. Chain dynamics 

Complementary relaxation data are necessary to properly assign the local molecular 

motion associated to the correlation time detected by the NOE experiment with dipolar filter. 

On a short term, reference correlation times are needed for the β-relaxation in PMA and 

PEA. These might be determined by reprocessing the existing dielectric relaxation data as a 

function of temperature instead of processing them as a function of frequency. An alternative 

measurement method is mechanical spectroscopy with a different geometry. For the 

PnAMAs, reference correlation times are needed for the local relaxations faster than the β-

relaxation in the glassy state. They might be obtained by extensive literature search or 

complementary measurements, e.g. via dielectric spectroscopy. This is currently being 

investigated. 

It would be very interesting to investigate a possible link between the process detected 

by NOE and the slow relaxation process detected by dielectric spectroscopy in samples PMA 

and PEA. First, a more accurate quantification of the slow process should be done by 

processing the existing data, then its presence in samples PBA and PHxA should be 

investigated. The slow process as well as the process detected by NOE should be investigated 

at higher temperatures, in particular in order to look for a possible merging. 

The chain dynamics is by far not as well understood for the PnAAs as for the PnAMAs. 

On a long term, it would be fascinating to investigate the actual molecular mechanism 

associated with the different relaxation processes already quantified for the PnAAs. This has 

already been achieved for PnAMAs, by applying various solid-state NMR techniques to 

selectively 2H or 13C labeled samples. The synthesis of selectively labeled monomers is 

tedious, but it would allow to progress in the understanding of the material properties in 

general. The comparison of samples exhibiting different branching characteristics (no 

branching from anionic polymerization, controlled branching from copolymerization with 

macromonomers, statistical branching from free-radical polymerization) would allow to 

investigate the effects of branching on chain dynamics. 

D. NOE with dipolar filter 

The accuracy of the correlation times measured using the NOE experiment with dipolar 

filter may be improved by a better mathematical model for the description of the recorded 

magnetization decay. To our knowledge, the most elaborate analytical model is a CH3-CH2 
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moiety, which is rigorously valid only for sample PEMADMC. More elaborate analytical 

equations or simulation programs are needed to describe a full monomeric unit, or at least side 

chain parts longer than a CH3-CH2 moiety. 

 Furthermore, the NOE experiment with dipolar filter can be applied to a variety of 

other polymer samples to investigate local dynamics, provided that there is a dynamical 

contrast. This contrast can be weak. Due to a detection in the local molecular frame, it might 

allow to quantify the time scale of slow local relaxation processes at temperatures were other 

method like dielectric spectroscopy can not detect them in the laboratory frame. In particular, 

it would be interesting to check its applicability to multi-component samples like the 

industrial PSAs, for which only preliminary measurements were carried out. 

E. Characterization of PSAs 

Crosslinking in industrial PSAs might be adjusted using a comonomer forming 

hydrogen bonds. The exact mechanism of this crosslinking could be investigated using 

advanced solid-state NMR methods (e.g. multiple quantum techniques). Model PnAA 

homopolymers containing a few percents of this comonomer should be investigated first. 

Finally, the characterization of PSAs by solid-state NMR opens the way to new 

models for the adhesion mechanism of acrylic PSAs. These models, considering accurate 

LCB and SCB levels as well as a possible local nanophase separation, may allow a better 

understanding of the adhesion mechanism, and hence an easier tailoring of the future 

industrial acrylic PSAs with respect to their respective applications. 
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Part 7: Appendices 

I. Properties of the investigated samples 

A. Synthesis of the industrial pressure sensitive adhesive samples 

The samples were synthesized at Cerdato using a semi-batch (or semi-continuous) 

process. This process allows to adjust product properties by changes in the type of 

monomer or the experimental parameters (e.g. temperature, pH).24 

The polymerization is done using four different mixtures. The first one is an 

emulsion of surfactants and water, and is present from the beginning in the reactor (micelle 

diameter of several nm). The second one is a pre-emulsion composed of the monomers, 

surfactants and water (micelle diameter of a few nm). The two last ones are “initiator” 

solutions in water. 

The radical polymerization itself consists of three steps. The synthesis of seeded 

particles (or nucleation) is first done in situ. Therefore, the two “initiator” solutions and a 

small part of the monomer pre-emulsion are added to the emulsion in the batch, and the 

polymerization is carried out. The reaction mixture at the beginning of this step consists of 

a continuous water phase and an emulsion of monomer droplets (of a few µm). Most of the 

monomer is localized in the large droplets, but some monomer is also dissolved in water.24 

The mechanism is the following: AA and MA are soluble in water (respectively totally and 

partially), so that various quantities of these monomers are present in the water phase. The 

radical initiator initiates their polymerization in the water phase to give first oligomers. 

When an oligomer continues to polymerize, its water solubility gradually decreases, and 

for a critical size it either enters a monomer micelle, or precipitates and is then stabilized 

by surfactants which form a new micelle. The particles are created within a few minutes.24 

The carboxylic acid comonomer forms a major component of the water-soluble chains on 

the surface of the particle, providing both steric and electrostatic stabilization of the 

colloid.266 

The second step is the polymerization itself. It is carried out semi-continuously, by 

continuously adding the rest of the monomer pre-emulsion to the seeded particles 

emulsion, within a few hours. The reaction mixture at the beginning of this step consists of 

monomer swollen polymer particles and monomer droplets; ca. 90 % of the monomer is 

present in the droplets.24 The monomer molecules continue to diffuse through the aqueous 

phase into the seeded particles where the polymerization takes place. The surfactant 
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molecules stabilize the growing particles. At the end of the polymerization, the particle 

diameter is of a few hundreds of nm. This second step can also be considered as two 

different steps: at the end of the polymerization, the polymer concentration is higher in the 

particles than at the beginning. It is also higher than in solution polymerization, so that the 

obtained polymer is expected to be more branched.24 (s. Part 2, III for a discussion of 

branching). 

The third step is the polymerization of all the monomer residues. It takes place after 

all the pre-emulsion has been fed, and a waiting time is over. A post-polymerization 

initiator is added, which initiates the residual monomer in the polymer droplets and in the 

aqueous phase. This decreases the residual monomer amount to a value of a few ppm. This 

post-polymerization step is important for adhesive purpose (the monomer is a plasticizer 

that decreases the cohesive strength of the PSA), as well as safety purpose (the acrylic 

monomers are highly toxic).  

B. Synthesis of the model poly(n-alkyl acrylates) 

1. Synthesis and purification of the non-labeled poly(n-alkyl acrylates) 

a) Synthesis 

Prior to polymerization, the n-alkyl acrylate monomers (Aldrich) were distilled 

under vacuum in a Kugelrohr distillation apparatus to remove the inhibitor, and then stored 

in the freezer. The recrystallized AIBN was also stored in the freezer. 

Each n-alkyl acrylate has been polymerized as a 4.7 mol.L-1 solution in toluene 

initiated by 0.5 mol% of AIBN with respect to the acrylic monomer. The polymerization 

has been carried out at 60 °C under nitrogen for 20 hours. The conversion is quasi-

complete (99 % measured after evaporation of residual monomer and solvent in a fume 

hood). After successful tests with 1 g of monomer (s. paragraph C for the characteristics of 

the polymers), the polymerizations have been done again starting with 3 to 5 g of each 

monomer. Only the polymers synthesized with several g of monomers were investigated 

using solid-state NMR and will be presented in this thesis. 

b) Purification 

After the polymerization, the polymers had to be purified to eliminate the solvent, 

the possible residual monomer and the AIBN-products. After dissolving the reaction 

mixture in an equal volume of dichloromethane, the polymer has been precipitated in 

methanol, filtered and finally dried in an oven (60 °C) under vacuum for one night.  
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Since the polymers have a very low Tg (-14 °C to -60°C for PEA, PBA and PHxA), 

they are viscous and sticky at room temperature, so that it is difficult to separate them from 

the filter and to recover them from the tools they stick on. Therefore the purification has to 

be done below the Tg of the polymers. During the purification, the methanol beaker was 

regularly cooled by holding it in a Dewar vessel containing liquid nitrogen, to reach 

approximately the melting point of methanol (-98 °C). The polymer precipitated at the 

bottom of the beaker, and the methanol solution was then filtered on a cellulose filter with 

1 µm pores; this was done in such a way that the polymer and the stirrer where left in the 

beaker. The vessel used for the filtration was previously cooled in the freezer for a few 

hours. The beaker containing the polymer and the stirrer was cooled again using liquid 

nitrogen, to reach a temperature below the glass transition temperature of the polymer. 

Then the polymer was broken to separate it from the stirrer.  

This protocol has been applied with satisfactory yields: 98 % for PMA, 78 % for 

PEA, 94 % for PBA and 92 % for PHxA. In the case of purification at room temperature, 

the yield was significantly lower (only 53 % for PBA). 

2. Approach for the synthesis of labeled samples 

a) Target samples 

Apart from the non isotopically labeled poly(n-alkyl acrylates), it would have been 

interesting to synthesize also selectively labeled ones for the investigations of the chain 

dynamics. Indeed, we could then have carried out on those samples a dynamical study 

similar to the one Wind5 and Kuebler152 have done on the poly(n-alkyl methacrylates). 

These polymers would be typically statistically 20 % 13C labeled on C=O (to study the 

main chain relaxation dynamics), or be fully deuterated on the main chain or on the side 

chain (to compare main and side chain dynamics and to study selective 1H nuclear spin 

diffusion) (s. Figure 7- I-1).  
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b) Synthetic pathways 

Since the labeled monomers are not commercially available, they have to be 

specifically synthesized. The retained strategy was the esterification of acrylic acid with a 

linear alcohol; alternative starting products to acrylic acid are acryloyl chloride or methyl 

acrylate (s. Figure 7- I-2). 
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Figure 7- I-2: Synthesis of n-alkyl acrylate monomers by esterification of acrylic acid (or acryloyl chloride or 
methyl acrylate). 

 Labeled acrylic acid and/or labeled linear alcohol had to be used. The fully 

deuterated linear alcohols are commercially available, but not the labeled acrylic acid 

(deuterated or 13C labeled). This implies that the synthesis of the acrylic acid itself would 

have to be done, starting from labeled materials, but it is too tedious to be done during a 

Ph.D. thesis where the main focus is on characterization. It was then decided to synthesize 

only the homopolymers deuterated on the side chain as labeled model samples. 

 The search of a synthetic pathway to the homopolymers deuterated on the side 

chain was aggravated by the necessity to handle only small quantities (as the materials are 

expensive). The esterification was tried using phosphorous pentoxide to eliminate the 

water formed during the reaction, which is the reaction used in our group to esterify the 

methacrylic acid (s. Figure 7- I-3a). Nevertheless, the yield was poor and it was impossible 

to separate the obtained methyl acrylate from the starting materials. The esterification was 

then tried by the Mitsunobu reaction267 (s. Figure 7- I-3b), and the yield was satisfactory, 

but once again the purification of the obtained methyl acrylate was not successful.  

(b) 

(a) 

O O
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O OH

+ HO
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O O
CnH2n+1O OH
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CH3

CH3H3C

H3C
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Figure 7- I-3: Esterification of acrylic acid by a linear alcohol (a) using phosphorous pentoxide, (b) using the 

Mitsunobu reaction. 
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Therefore, it was decided to conduct a literature search for other possible pathways, 

but no route could be found which would be applicable to small quantities, starting from 

acrylic acid, acryloyl chloride or methyl acrylate. The synthetic route of transesterification 

of ethyl acrylate used by Atofina at the CRDE is also not applicable to small quantities. 

c) Conclusion 

The synthesis of labeled n-alkyl acrylates has proved to be tedious. Therefore we 

chose to investigate non labeled model homopolymers with appropriate NMR methods to 

spare the synthetic effort. 

C. Characterization of the first synthesized poly(n-alkyl acrylates) 

The Tg measured using DSC at 10 K.min-1 are given in Table 7- I-1. The conditions 

are detailed in paragraph II. 

Sample PMA1 PEA1 PEA2 PBA1 PBA2 PBA3 PHxA1
Tg (K) 294 261 260 227 225 226 217 

Table 7- I-1: Tg of the first 
synthesized model PnAAs. 

 The average molar masses determined in Mainz and Paris are given in Table 7- I-2 

(s. paragraph II.A and Part 2, III.E for more experimental details).  

CC in Mainz TDA in Paris Samples 
PMMA PtBMA PS CC PS Diff UC TD LALLS 

Mn 35 900 39 700 30 600 31 200 +2 31 700 44 600 65 100 
Mw 142 000 150 000 126 000 121 300 -4 114 700 139 000 144 000 

PMA1 

Mw/Mn 4.0 3.8 4.1 3.9 -5 3.6 3.1 2.2 
Mn 218 000 231 000 190 000 161 000 -20 127 000 172 000 247 000 
Mw 327 000 332 000 306 000 335 000 +9 252 000 303 000 320 000 

PEA1 

Mw/Mn 1.5 1.4 1.6 2.1 +27 2.0 1.8 1.3 
Mn 104 000 117 000 88 600 83 400 -6 72 600 94 400 101 000 
Mw 200 000 208 000 182 000 173 000 -5 132 000 162 000 164 000 

PEA2 

Mw/Mn 1.9 1.8 2.1 2.1 0 1.8 1.7 1.6 
Mn - 126 000 96 200 96 300 +0 179 000 147 000 181 000 
Mw - 255 000 232 000 257 000 +10 356 000 278 000 319 000 

PBA1 

Mw/Mn - 2.0 2.4 2.7 +12 2.0 1.9 1.8 
Mn - 50 700 42 900 60 300 +34 113 000 105 000 124 000 
Mw - 249 000 227 000 242 000 +6 335 000 264 000 288 000 

PBA2 

Mw/Mn - 4.9 5.3 4.0 -28 3.0 2.5 2.3 
Mn - 38 100 33 100 42 700 +25 76 100 79 400 98 400 
Mw - 266 000 246 000 244 000 -1 334 000 265 000 295 000 

PBA3 

Mw/Mn - 7.0 7.4 5.7 -26 4.4 3.3 3.0 
Mn 72 300 80 100 62 100 56 000 -10 76 400 148 000 161 000 
Mw 308 000 313 000 296 200 288 000 -3 423 000 352 000 359 000 

PHxA1 

Mw/Mn 4.3 4.0 4.8 5.1 +6 5.5 2.4 2.2 
Table 7- I-2: Characterization of the first synthesized PnAAs using SEC; Mn and Mw are given in g.mol-1, the 

difference Diff. between CC PS in Mainz and in Paris is given in %. 
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D. Samples storage 

All the model PnAMAs were analyzed using 1H solid-state static spectra at a 

Larmor frequency of 300.13 MHz. For some of the samples, the recorded 1H spectra 

exhibited a very narrow line below Tg in addition to the expected very broad line. This 

narrow line arises from a very mobile component and has been assigned to small molecules 

present in the sample (solvent, monomer from the synthesis, or water from the air), and not 

to the sample itself. Storing the samples in a dessicator under vacuum for a few days has 

proved to make the very narrow line disappear (e.g. for sample PEMADMC, s. Figure 7- 

I-4) or at least decrease drastically in intensity. A stronger drying of the samples (e.g., at a 

higher temperature) can not be done without a risk of degradation. The deconvolution of 

the recorded spectra made it possible to quantify the small molecule content in the different 

samples, before and after storage in the dessicator: from 0 to 4 %. All model PnAMA and 

PnAA samples have therefore been stored in a dessicator under vacuum to remove the 

small molecules. 

0 kHz -6 -4 -2 4 2  0 kHz-6 -4 -2 42

Figure 7- I-4: Presence 
of small molecules in 
sample PEMADMC, 
detected on 1H static 

spectra at Tg-40K 
(305 K, 300.13 MHz); 

left: after normal 
storage in the room, 
right: after 8 days 

storage in a dessicator 
under vacuum. 

It should be noted that the PSA samples were not stored under vacuum, because 

they are not used as adhesives under vacuum. These samples do not contain antifreeze 

stabilizers, so that a storage at a temperature below 5 °C could affect the stability of the 

emulsion. On the contrary, a storage at a temperature above 20 °C could cause the rapid 

growth of the bacteria coming from the air and that could contaminate the emulsion. 

Therefore, a storage temperature between 10 °C and 15 °C seems best suited. The samples 

were stored at 11 °C. Average shelf lives of at least six months to one year without 

sedimentation are expected nowadays, and most acrylic dispersions meet these 

expectations.24  

 



Part 7, II   (Appendix) Conditions of the experiments 

 219

II. Conditions of the experiments 

A. DSC, TGA, SEC and solution-state NMR 

The glass transition temperature (Tg) of the polymers have been obtained using 

differential scanning calorimetry (DSC) on a Mettler Toledo Star System. The 

measurements were done at a nitrogen flow of 30 mL.min-1, with the following 

temperature cycle: heating from –100 °C to 150 °C at 10 °C.min-1, then cooling from 

150 °C to –100 °C at 10 °C.min-1, and finally heating from –100 °C to 150 °C at 

10 °C.min-1. The first heating and cooling steps are used to erase the thermal history of the 

sample and detect evaporation of little molecules possibly trapped in the samples. The 

measurements were done on the second heating step. 

The thermogravimetric analysis (TGA) was carried out on a TG 50 Mettler device 

under nitrogen atmosphere; the temperature was increased from room temperature to 

900 °C at 10 °C.min-1. The sample mass was recorded during this increase, and the left 

limit of its decrease was measured: it is the temperature at which molecules begin to 

evaporate from the samples (detected as the loss of one percent of the mass), indicating 

sample decomposition. 

The size exclusion chromatography (SEC) was done in Mainz with a conventional 

SEC equipment comprising a Waters 515 pump, 3 columns from PSS (with pores of 106, 

104 and 500 nm respectively), a RI 101 ERC refractometer, the software WinGPC6. Eluent 

was THF at 30 °C and 1 mL.min-1. The SEC was done in Paris with a Triple Detector 

Array (TDA, from Viscotek) equipment composed of an online degasser, pump, manual 

injector, a precolumn and three columns (two mixed-C and one 102
 Å) from Polymer Lab., 

the TDA (including in serie RALLS, LALLS at 7°, refractometer and finally viscosimeter), 

the software Trisec 2000. Eluent was THF at 40 °C and 1 mL.min-1.  
13C solution-state NMR spectra of the model PnAAs dissolved in CDCl3 were 

recorded on a Bruker DRX500 at a 13C frequency of 125.76 MHz. The spectra were 

recorded at 29 to 33 °C, except for PEA (room temperature). Single pulse excitation with a 

6.70 µs 90° pulse and inverse gated decoupling was used with a relaxation delay of 10 s to 

record quantitative spectra 19 500 to 21 000 transients were recorded. The ppm-scale was 

calibrated with the middle line of CDCl3 at 77.00 ppm. 

Solution-state NMR was also used to determine the chemical shifts of the 

surfactants present in the PSAs. The surfactants, available in aqueous solution, were 

lyophilized (i.e. freeze-dried), then dissolved in D2O, and TMS was added as an internal 

standard. The spectra were recorded on a Bruker AMX300 spectrometer at a 1H frequency 
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of 300.13 MHz, with 1H and 13C single pulse excitation, and the ppm scale was calibrated 

with the TMS resonance at 0 ppm.  

B. Solid content and mean particle diameter of latices, casting of films 

The solid content of the latices is measured as follows: around 2 g of the latex 

sample are put in a 1g aluminum shell. Then the samples are dried at 100 °C under vacuum 

for 1 night. All masses are precisely weighted (precision: ± 0.01 g). Three measurements 

are done simultaneously, and the average value is calculated. 

The mean diameter of the particles in the latices were measured by light scattering 

on a Zetasizer 5000 (Malvern Instruments Ltd., Malvern, UK) with a cell ZET 5110. The 

dispersions were diluted in water, until a slightly turbid dispersion was obtained. The 

photomultiplier should indeed record between 50 and 140 kcounts.s-1 to reduce dead time 

problems, avoid multiple scattering and increase sensitivity. The measurements were done 

at room temperature, with an incident wavelength of 633 nm. The angle between the 

incident beam and the recorded scattered beam was 90°. For each measurement, 30 records 

were done and their average was calculated. 

Films were cast from the latex samples on microscope object slides. Only new 

object slides were used, and washed twice with ethanol and twice with acetone beforehand, 

in order to eliminate grease. Some latex sample was then put on the surface and spread 

with a spatula. During the first trial, the samples were left 50 minutes in the room, until the 

film became transparent, then dried 1 night at 80 °C under vacuum, and then left in the 

room again. This films were slightly yellow and considered as having been somehow 

degraded in the oven. Therefore we chose to let the samples dry at room temperature for at 

least seven days; weighting and DSC proved that they were dry. 

C. Solid-state NMR 

1. Experimental conditions 

a) Chemical characterization of the PSA samples 
1H MAS spectra with a good resolution were recorded with single pulse excitation, 

on a Bruker DSX500 spectrometer at a 1H Larmor frequency of 500.13 MHz, using fast 

MAS. The operating temperature has been chosen according to the following arguments: it 

should not be too high, in order not to destroy the hydrogen bonds assumed to crosslink the 

sample; but the higher the temperature is, the higher the resolution of the spectrum, 

allowing for a better chemical characterization of the sample. Therefore spectra were 

recorded at different temperatures for the crosslinked sample (s. Figure 7- II-1).  
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Figure 7- II-1: 
1H-NMR 
spectra of 

sample Copo2, 
1H frequency: 
500.13 MHz, 
25 kHz MAS. 

No line is observed in the 10 to 12 ppm range, where the hydrogen-bonded 1H 

nuclei are expected. Furthermore, the higher the temperature, the better the resolution, but 

no line disappears (it would have proved the existence of crosslinking through hydrogen 

bonds). Finally, it was decided to record the spectra at 60 °C and 25 kHz MAS, except for 

Copo1, for which only 12 kHz MAS was possible (due to a technical problem), and which 

was recorded at 80 °C to enhance the resolution. 

The 13C single pulse excitation and CP spectra were recorded on a Bruker MSL300 

spectrometer, at a 13C Larmor frequency of 75.47 MHz, with 5 kHz MAS, at room 

temperature. 

b) 1H static spectra 

Static 1H spectra were recorded for all model samples on a Bruker DSX300 

spectrometer, at a 1H frequency of 300.13 MHz, using single pulse excitation under static 

conditions. A 4 µs 90 ° pulse was used. MAS was avoided in order to prevent interference 

between different homodipolar averaging mechanisms. Temperatures ranged between circa 

Tg-40 K (were the full width at half maximum of the lines, fwhm, levels off) and ca 

Tg+120 K (where a low fwhm is obtained, due to motional averaging). For sample 

PEMADSC, the spectra were recorded using single pulse excitation followed by a solid 

echo268 in order to avoid artifacts coming from the absence of the first points of the FID; 

no line width was extracted for this sample 
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1H spectra were recorded for sample Copo2 on a Bruker DSX300 spectrometer at a 
1H Larmor frequency of 300.13 MHz, under static conditions, at temperatures ranging 

from Tg to Tg+70 °C. A 4 µs 90° pulse was used. 1H spectra were also recorded for 

samples Homo2EHA, Copo1 and Copo2 on a Bruker MSL300 spectrometer at a 1H 

Larmor frequency of 300.13 MHz, under static conditions, at temperatures ranging from –

20 K to 60 K. A 6 µs 90° pulse was used. 

c) LG-CP investigations 

The Lee-Goldburg CP spectra were recorded on a Bruker DSX300 spectrometer, at 

a 13C Larmor frequency of 75.47 MHz using 4 mm MAS rotors. They were recorded under 

3 kHz MAS. 3 µs 90 ° pulses were used on the 1H channel, and relaxation delays of 3 s. 

The LG-CP irradiation was adjusted on the 1H nuclei the following way. First, the 

corresponding offset irradiation frequency was calculated. Second, the irradiation power 

was finely tuned by optimizing the best resolved 13C multiplets while the under 1H 

decoupling was done under LG-CP irradiation. It should be noted that no temperature 

calibration was available for this probehead, so that the display temperature is indicated 

and not the actual sample temperature; however, the error done under slow MAS should be 

small and anyway not significant for the qualitative measurements carried out. 

The following series of experiments was conducted: first a simple LG-CP spectrum, 

second, a LG-CP spectrum recorded immediately after a dipolar filter, third a LG-CP 

spectrum recorded after the same dipolar filter experiment and a mixing time (possibly 

several mixing times). The experiments were conducted on PEMA at ca 390 K (ca 

Tg+45 K) with a CP contact time of 500 µs, a filter with 20 µs delay and 1 cycle, mixing 

times of 1 ms and 50 ms, and respectively 1 536, 25 600, 32 768, 46 080 transients for the 

four spectra. The experiments were conducted on PEMADMC at ca 390 K (ca Tg+45 K) 

with a CP contact time of 500 µs, a filter with 10 µs delay and 1 cycle, a mixing time of 

8 ms, and respectively 4 096, 8 192, 15 360 transients for the three spectra. The 

experiments were conducted on PBMA at ca 370 K (ca Tg+70 K) with a CP contact time of 

500 µs, a filter with 15 µs delay and 1 cycle, mixing times of 5 ms and 50 ms, and 

respectively 1 024, 5 120, 10 240, 15 360 transients for the four spectra. The experiments 

were conducted on PEA at ca 329 K (ca Tg+70 K) with a CP contact time of 1.5 ms, a filter 

with 20 µs delay and 4 cycles, a mixing time of 20 ms, and respectively 2 560, 5 120, 

8 192 transients for the three spectra. The experiments were conducted on PBA at room 

temperature (ca Tg+70 K) with a CP contact time of 3 ms, a filter with 20 µs delay and 8 
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cycles, a mixing time of 50 ms, and respectively 3 072, 8 192, 8 192 transients for the three 

spectra. 

d) 2D-WISE 

The spectra were recorded on a Bruker DSX300 spectrometer, at a 1H Larmor 

frequency of 300.13 MHz and a 13C frequency of 75.47 MHz. They were recorded for all 

samples (model and industrial) under static conditions, because of the impossibility to pack 

the industrial samples in a rotor which would spin for more than one day.  

A 5 µs 90 ° 1H pulse was used, followed by a 180° pulse in the middle of t1 to 

refocus the chemical shifts, 500 µs contact time for the Lee-Goldburg cross-polarization 

(except for samples Homo2EHA and Copo1: 1 ms), and 2 s delay between consecutive 

transients. For the PnAMAs, 128 to 164 transients were acquired in the indirect 1H 

dimension, and 256 to 288 transients in the direct 13C dimension. 2D-WISE spectra were 

recorded for sample PEMADSC at Tg-9 K, Tg+37 K and Tg+84 K, for sample PEMA13C 

at Tg-11 K, Tg+35 K and Tg+81 K. For the PnAAs, 144 to 176 transients were acquired in 

the indirect 1H dimension, and 240 to 304 transients in the direct 13C dimension, and the 

2D-WISE spectra were recorded at Tg+70 K. For the PSAs, 128 transients were acquired in 

the indirect 1H dimension, and 320 transients in the direct 13C dimension, and the 2D-

WISE spectra were recorded at room temperature. 

e) NOE experiments using the dipolar filter 

NOE experiments using the dipolar filter were carried out on a Bruker DSX300 

spectrometer at a 1H frequency of 300.13 MHz, under static conditions. 90° pulses of 4 µs 

were used. The delay τ between pulses in the dipolar filter was varied from 10 to 20 µs, 

and the number n of cycles in the dipolar filter from 1 to 12, depending on the sample and 

the temperature. The measurements were carried out at temperatures ranging from 

Tg+75 K to Tg+100 K on sample PMA, from Tg+20 K to Tg+100 K on samples PEA, PBA 

and PHxA, from Tg+55 K to Tg+115 K on sample PEMA, from Tg+60 K to Tg+100 K on 

sample PEMADMC, from Tg+45 K to Tg+130 K on sample PBMA, at Tg+77K on sample 

PBMA13C, from Tg+55 K to Tg+115 K on sample PHMA13C, and at room temperature 

for all PSA samples. 

f) 1H longitudinal relaxation 
1H longitudinal relaxation measurements were carried out on all model samples 

using the inversion recovery technique (s. Part 1, II.F), at a 1H Larmor frequency of 

300.13 MHz, under static conditions. 90° pulses of 4 µs were used and 27 data points 

recorded (only 15 data points for sample PMMADHK). The covered temperature range 
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was from Tg+8 K to Tg+108 K for sample PEMA, from Tg to Tg+80 K for sample 

PBMA13C, from Tg+40 K to Tg+10 K for sample PMA, from Tg-20 K to Tg+140 K for 

sample PEA, from Tg to Tg+133 K for sample PBA, from Tg+20 K to Tg+120 K for sample 

PHxA, and from Tg to Tg+100 K for all other samples. 

2. Remark on the adjustment of the receiver gain in the NOE experiments 

using the dipolar filter 

The receiver gain has to be adjusted in order to record the highest signal-to-noise 

ratio, without saturating the receiver (and thus introducing artifacts in the recorded 

spectra). In the recorded NOE data after a dipolar filter, the FID intensity decreases for 

increasing mixing times. Therefore, the receiver gain was initially adjusted for the smallest 

mixing time, where the FID intensity is maximal.  

However, the receiver gain must be adjusted for the mixing time for which the 

intensity of a single transient is maximal. It does not necessarily coincide with the mixing 

time for which the intensity of the total FID (sum of the single transients) is maximal. They 

coincide in the absence of a dipolar filter, but not when a dipolar filter is used.  

The evolution of the magnetization during a NOE experiment using the dipolar 

filter is the following. The equilibrium magnetization, situated along the Z-axis, is first 

flipped in the XY-plane. Then the dipolar filter is applied, after which only the 

magnetization of the selected mobile fraction is still in phase, while the rest is dephased. 

The magnetization which is still in phase is next flipped on, and stored along the Z-axis. 

During the mixing time, NOE occurs, as well as a longitudinal relaxation of the dephased 

components of the magnetization from the XY-plane to the Z-axis. At the end of the 

mixing time, the magnetization along the Z-axis is flipped back to the XY-plane where it is 

recorded.  

In order to be able to correct for T1 relaxation by dividing the recorded data by 

equivalent data recorded without dipolar filter (s. Part 3), the following phase cycle must 

be applied.84 First, the magnetization M is stored for the mixing time along the +Z-axis, 

and recorded as M1 in the direction corresponding to the +Z-axis. Second, the same 

magnetization M is stored for the mixing time along the -Z-axis, and recorded as M2 in the 

direction corresponding to the -Z-axis. When these two single transients are added, the 

following operation is in fact conducted: M1-(-M2) = M1+M2. In the absence of dipolar 

filter, M = M1 = M2, and M1+M2 = 2M. When the dipolar filter is used, the dephased 

components relax to the +Z-axis, thus increasing M1 and decreasing M2 (along the –Z-axis, 

and consequently increasing it along the +Z-axis). For long mixing times, if the receiver 
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gain is too high, both M1 and M2 saturate the receiver in the direction corresponding to the 

+Z-axis, and the maximal value Max is recorded. In that case, M1+M2 = Max-Max = 0, the 

first points of the total FID are zero, leading to a strong oscillation of the baseline of the 

spectrum after Fourier transformation and thus to a fast decrease of the line intensity. This 

problem starts at a given mixing time and then becomes worse with increasing mixing 

time. This starting mixing time decreases for increasing dipolar filter strength. 

Nevertheless, it doesn’t affect the measurement for mixing times shorter that this starting 

mixing time.  

However, this problem can be easily avoided, by adjusting the receiver gain for the 

longest mixing time when the dipolar filter is used, and for the shortest mixing time, when 

no dipolar filter is used. 

3. Temperature calibration of the static NMR experiments 

a) Motivation 

The temperature indicated on the spectrometer display is not exactly the 

temperature within the sample. One reason for this is the geometry of the probehead: the 

thermocouple measuring the temperature is not located in the sample, but in the heating 

gas flow before the sample, introducing a geometrical error. Furthermore, there might be 

an internal correction in the temperature regulation program to compensate for this 

geometrical error.  

The Tg values cover a wide temperature range for all model samples (213 K to 

398 K, s. Part 2, I and III). For the model samples, the 1H static spectra and the NOE 

experiments using the dipolar filter have been conducted at temperatures ranging from ca 

Tg-40 K to Tg+130 K, (s. Part 4 and 5). Therefore we needed to calibrate the actual sample 

temperature (as a function of the display temperature) for the probeheads used for those 

measurements over their whole temperature range. 

b) Literature data 

Lead nitrate, Pb(NO3)2, is a thermometer appropriate for NMR experiments for two 

reasons.269 First, it is highly NMR sensitive (through the 207Pb nucleus) and possesses 

sharp NMR lines. Second, its chemical shifts are strongly varying with temperature. It is 

thermally stable at temperatures below 400 °C.270 Nevertheless, it lacks a proper standard 

for the calibration of the ppm scale.271 

The temperature dependence of the isotropical chemical shift of lead nitrate was 

determined by several groups for MAS measurements. Bielecki and Burum determined it 

from 143 K to 423 K using three melting points (also determined by calorimetry), under 
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2 kHz MAS, and found a linear relationship.269 Takahashi et al. determined it from 303 K 

to 673 K using four melting points and two phase transitions (also determined by 

calorimetry), under 2.5 kHz MAS, and found a quadratic relationship.270 

 The 207Pb spectrum of lead nitrate recorded under static conditions is very broad 

due to its large chemical-shift anisotropy. In order to be able to use the relationships 

established under MAS, the isotropic chemical shift must be extracted from the powder 

spectrum. Beckmann and Dybowski did so for the temperature range from room 

temperature to 370 K, and determined a linear relationship between the temperature T (in 

K) and the chemical shift of the maximum of the powder spectrum δmax (which 

corresponds to one principal value, in ppm):272 

( ) { } { }TKppmppmT ⋅±+±−= /0003.0666.01.06.3670maxδ  Equation 7- II-1

However, they did not check this relationship by measuring any melting point. 

Since there is no appropriate standard to calibrate the 207Pb scale,271 the scale has to 

be indirectly calibrated. Otherwise, only the slope of the relationships between 207Pb 

chemical shifts and temperature cited above can be used. The indirect ppm scale 

calibration can be done by calculating the 207Pb frequency at 0 ppm from the 1H frequency 

measured at 0 ppm for tetramethylsilane.5 Nevertheless, due to the uncertainty on the 

magnetogyric coefficients γ used in this calculation, this method is not precise. The indirect 

calibration can also be done by measuring a given temperature (e.g., melting point) known 

from calorimetric measurements with NMR experiments. Together with the slope taken 

from the literature, this allows to establish the calibration of the temperature in the sample. 

It should be noted that the calibration problem of the ppm scale could be avoided 

by measuring 119Sn spectra of Sm2Sn2O7 in which tin oxyde is an internal standard.273 

However, this NMR thermometer is not appropriate for static measurements, because the 

lines are too broad,274 and the 119Sn frequency can not be reached by all probeheads. 

Vanadocene has also been reported as an appropriate thermometer for MAS 

measurements.275 

c) Experimental conditions 

The temperature calibration was carried out on the 7.5 mm static probeheads of a 

Bruker DSX300 and of a Bruker DSX500 spectrometers. The temperature range was 200 

to 540 K on the DSX300 and 200 to 473 K on the DSX500, the nitrogen flow was 

1200 L.h-1 on the DSX300 and 1000 L.h-1 on the DSX500. The temperature range over 

which the calibration has been done was chosen as follows. The probehead should not be 

used below 203 K, so that we set the minimal display temperature at 200 K. Both 
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probeheads were built up to be used up to 573 K, but it is impossible to reach display 

temperatures higher than 540 K on the DSX300, and this can be achieved only using 

1200 L.h-1 nitrogen. On the DSX500, the program regulating the temperature had a higher 

allowed value set at 473 K. 

On the DSX300, the measurements were done with the top of the magnet hole 

partially open to evacuate the heat. 207Pb single pulse excitation was used at a frequency of 

67.8 MHz, with 3 µs 90 ° pulses, and 64 transients were acquired without decoupling with 

a relaxation delay of 5 s. On the DSX500, the measurements were done with a Dewar glass 

tube set above the probehead to evacuate the heat. 207Pb single pulse excitation was used at 

a frequency of 104.6 MHz, with 4 µs 90 ° pulses, and 64 transients were acquired without 

decoupling with a relaxation delay of 5 s. The spectra were acquired after at least 15 min 

equilibration at each temperature; it was checked for the lowest and the highest 

temperature that there was no detectable change in the spectrum, and therefore in 

temperature, after 15 min. 

The chemical structures of all investigated compounds and typical spectra are 

displayed respectively in paragraphs h and i. 

d) Intermediate calibration using published data 

In a first step, we assumed that there was no error done at 300 K, i.e., that the 

sample temperature was also 300 K for this display temperature. Using the published 

slope272 (s. Equation 2- IV-1), this led to the following intermediate calibrations (in K): 

Tsample=1.089·Tdisplay-26 for the DSX300 over the range from 200 to 540 K and 

Tsample=1.050·Tdisplay-13 for the DSX500 over the range from 200 to 473 K. 

In the next step, a phase transition was determined for a liquid crystal, 4-hexyloxy-

benzoic acid-(4’-ethoxy)-phenyl ester,276 using 1H static spectra under the same heating 

conditions as the 207Pb spectra. The phase transition from mesophase to liquid of this 

molecule by heating was chosen because it is fast and reversible. It was determined at 

367.2 K with a Buechi melting point device at 0.1 K.min-1. It corresponds to the second 

narrowing of the peaks on the 1H spectrum (the first narrowing being the transition from 

solid to mesophase). 1H spectra were recorded with 0.1 K steps and 15 min equilibration 

time on the DSX300, and with 0.25 K steps and 20 min equilibration time on the DSX500. 

The melting point was detected at 369.4 K on the DSX 300 and at 360.2 K at the DSX500. 

The intermediate calibration curves determined above where then shifted in the Tsample 

direction to take into account the melting point of the liquid crystal. The following second 

intermediate calibration curves were then obtained: Tsample=1.089·Tdisplay-30 for the 
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DSX300 over the range from 200 to 540 K and Tsample=1.050·Tdisplay-9 for the DSX500 

over the range from 200 to 473 K. 

e) Check of the intermediate calibration with melting points 

We decided to check the validity of this second intermediate calibration by 

measuring two other melting points, one at a very low and one at a very high temperature. 

The end of the melting by heating had been previously determined as the right limit of the 

melting peak (and not the minimum!) in differential scanning calorimetry (DSC) at 

1 K.min-1; it was 207 K for dimethyl formamide, 429 K for citric acid. It corresponds on 
1H static spectra to the disappearance of the broad component. It has been measured 

respectively at 223.0 K and 414.5 K display temperatures on the DSX300 (steps of 0.5 K 

with 20 min equilibration), at 211.0 K and 411.0 K display temperatures on the DSX500 

(steps of 0.5 K with 15 min equilibration). 

The measured points (sample temperature as a function of display temperature) are 

not located on the second intermediate calibration curve determined above, but they are 

aligned with the melting point of the liquid crystal. Therefore we had to choose for the 

final calibration between the set of three melting points on one hand, and the 207Pb spectra 

together with the published slope and one melting point on the other hand. 

We decided to take the set of three aligned melting points, determined 

independently with 1H spectra and with two calorimetric methods, to determine the final 

calibration curve. In this way, we do not rely on the published data. Nevertheless, the data 

measured on the 207Pb spectra are needed to check if this calibration is linear, and to 

estimate its precision. Therefore we corrected the data measured on the 207Pb spectra, so 

that their linear fit Tsample=f(Tdisplay) is identical to the linear fit Tsample=f(Tdisplay) of the set 

of three melting points. These corrected 207Pb data were then fitted again, to obtain the 

final calibrations with their errors. 

f) Final calibration 

A temperature calibration is presented for the 7.5 mm static probeheads of the 

Bruker DSX300 and DSX500 spectrometers. It should be noted that we have determined 

the Tsample=A·Tdisplay+B calibration, while the temperature correction is done in the NMR 

program using the equation Tdisplay=Slope·Tsample+Offset, where Slope=1/B and Offset=-

B/A. The final calibration, as well as the Slope and Offset coefficients and the 

experimental conditions are reported in Table 7- II-1. 

Spectrometer DSX300 DSX500 

Range 200 to 540 K (display) 
179 to 573 K (sample) 

200 to 473 K (display) 
182 to 500 K (sample) 
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Calibration 
(in K) { } { }3.253006.0159.1 ±−⋅±= displaysample TT { } { }2.250006.0162.1 ±−⋅±= displaysample TT

Slope  0.8626 0.8604 
Offset (in K) 46 43 

Conditions 1200 L.h-1 nitrogen 
Top of magnet hole partially open 

Nitrogen flow equivalent to 1000 L.h-1 
air at 20 °C 

Dewar glass tube above probehead 
Table 7- II-1: Final temperature calibration of the 7.5 mm static probeheads of the Bruker DSX300 and DSX500 
spectrometers; the equation correlating the actual temperature in the sample with the temperature indicated on 

the display (without correction) is given, as well as the coefficients to be entered in the program to do the 
automatic temperature correction and the conditions for which these are valid. 

g) Remarks 

On both probeheads, the temperature in the sample is higher than the display 

temperature for high temperatures, and lower than it for low temperatures. This seems to 

be in contradiction with the location of the thermocouple in the hot (or cold) gas flow 

before it reaches the sample. Two reasons could explain this apparent contradiction. First, 

the thermocouple might not be situated exactly in the gas flow, but next to it; this is 

impossible to check without breaking a seal in the probehead. Second, there might be an 

internal correction of the display temperature in the program regulating it to compensate 

for the difference between the temperatures at the thermocouple and in the sample. 

The same work has also been done for the temperatures above room temperature 

with air as gas. The calibration determined was the same as with nitrogen on the DSX500, 

and different from it on the DSX300. This does not make sense and could be due to the 

fact that the gas flow is directly measured using a metal ball located in the flow on the 

DSX500, while it is probably indirectly measured through its pressure on the DSX300. 

Moreover, the entering air pressure is very different from the entering nitrogen pressure, 

and changing with time (because of regular compression). Therefore the calibration with 

air as gas can not be trusted (which is not a problem in our case, since all measurements 

were done under nitrogen). 

h) Molecules on which melting points have been measured 

The molecules on which melting points have been measured are shown on Figure 

7- II-2. The melting (to the isotropic melt) of the liquid crystal (a) is fast and reversible, 

and has a narrow temperature range (melting point determined at 367.2 K, i.e. 94.1 °C, 

with a Buechi melting point device at 0.1 K.min-1). The melting of dimethylformamide (b) 

and citric acid (c) are slower and have a wider temperature range (right limit of melting 

peaks determined respectively at 207 K, i.e. –66 °C, and 429 K, i.e. 156 °C, with DSC at 

1 K.min-1). The melting of dimethylformamide (b) is reversible, while the melting of citric 

acid (c) is not. Indeed, citric acid decomposes and evaporates just above its melting point.  
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Some experimental tricks should be mentioned here for packing these substances. 

The liquid crystal and the dimethylformamide can be packed in zirconium rotors with a 

KelF cap without hole. The citric acid can be packed in a zirconium rotor, but neither with 

a normal KelF cap (it would shrink at high temperatures), nor with a BN cap (it would 

break if citric acid evaporates). It should be packed with an old KelF cap, already shrunk, 

wrapped with Teflon tape to fit exactly in the rotor. Moreover, since the melting of citric 

acid is not reversible, new citric acid should be packed in the rotor every time it has 

molten. 
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Figure 7- II-2: Molecules on which melting points have been measured; (a) 4-hexyloxy-benzoic acid-(4’-
ethoxy)-phenyl ester (liquid crystal), (b) dimethylformamide, (c) citric acid. 

Other substances should be mentioned here, and are presented in Figure 7- II-3. 

Dimethyl terephtalate (a) has a fast and reversible melting over a narrow temperature range 

at 414 K, i.e. 141 °C, but it is not appropriate for 1H static NMR measurements of the 

melting point, since the solid can not be distinguished from the liquid which exhibits a 

broad line (the liquid probably orientates in the magnetic field). Hydrochinone (b) has a 

reversible melting point at 445 K, i.e. 172 °C, and is appropriate for 1H static NMR 

measurements of the melting point. 

OCH3

O
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O

OHHO

(a) (b) 

 

Figure 7- II-3: (a) dimethyl 
terephtalate, (b) hydroquinone. 
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i) Typical 207Pb and 1H static spectra 

-100100 0 ppm 4050607080 ppm

-100100 0 ppm

-100100 0 ppm

-100100 0 ppm

140150160170180 ppm

100110120130140 ppm

708090100110 ppm

T = 178 K = -95 °C

T = 550 K = 177 °C

T = 503 K = 230 °C

T = 457 K = 184 °C

T = 411 K = 138 °C

T = 527 K = 254 °C

T = 411 K = 138 °C

T = 295 K = 22 °C

 
Figure 7- II-4: Typical static 207Pb spectra recorded on the Bruker DSX300, with 

single pulse excitation, without decoupling, with 64 scans; the shift of the chemical 
shift with temperature is illustrated on the left, the narrowing of the tensor at high 
temperatures on the right; actual sample temperature is indicated in the figure; the 

zero of the ppm scale was set at the tensor maximum at 295 K. 
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-100-50150 100 50 0 ppm

-515 10 5 0 ppm

-100-50150 100 50 0 ppm

-100-50150 100 50 0 ppm

mesophase
T = 360 K = 86.9 °C

solid
T = 340 K = 66.9 °C

liquid
T = 364.9 K = 91.8 °C

T = 364.8 K = 91.7 °C

Figure 7- II-5: Typical static 1H spectra recorded for 4-hexyloxy-benzoic acid-(4’-ethoxy)-phenyl ester (liquid 
crystal) at a Larmor frequency of 500 MHz; above: spectra of the solid and the mesophase, middle: spectrum 
of a mixture of mesophase and liquid, below: spectrum of liquid; display temperatures without correction are 

indicated. 

 



Part 7, II   (Appendix) Conditions of the experiments 

 233

-100-50150 100 50 0 ppm

T = 203 K = -70 °C

-100-50150 100 50 0 ppm

15 10 5 0 ppm

T = 223 K = -50.1 °C

-100-50150 100 50 0 ppm

T = 222.5 K = -50.6 °C

Figure 7- II-6: Typical static 1H spectra recorded for dimethylformamide at a Larmor frequency of 
300.13 MHz; above: spectra of the solid, middle: spectrum of a mixture of solid and liquid, below: spectrum 

of liquid; display temperatures without correction are indicated. 
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-150-100-50150 100 50 0 ppm

room temperature

-150-100-50150 100 50 0 ppm

T = 411 K = 137.9 °C

-515 10 5 0 ppm

-150-100-50150 100 50 0 ppm

T = 410.5 K = 137.4 °C

Figure 7- II-7: Typical static 1H spectra recorded for citric acid at a Larmor frequency of 300.13 MHz; 
above: spectra of the solid, middle: spectrum of a mixture of solid and liquid, below: spectrum of liquid; 

display temperatures without correction are indicated 
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III. Viscoelastic properties and stereochemistry of polymers, 

characterization of homogeneous networks 

A. Basic concepts relative to viscoelastic properties 

1. Viscoelasticity in simple shear or uniaxial deformation277,278 

Viscoelasticity is the time-dependent response of a liquid or a solid subjected to 

stress or strain. Both viscous and elastic responses are needed for the description of 

viscoelastic behavior. Indeed, deformation (the relative displacement of points of a body) 

can be divided into two types: flow and elasticity. Flow is irreversible deformation: when 

the stress is removed, the material does not revert to its original configuration. This implies 

that work is converted to heat. Elasticity is reversible deformation: the deformed body 

recovers its original shape, and the applied work is largely recoverable. Viscoelastic 

materials show both flow and elasticity. Polymers are viscoelastic materials. 

In mechanical models, the viscous component of the response to applied stress is 

represented by a dashpot, the elastic one by a spring (s. Figure 7- III-1). 

(a) (b) 
 

Figure 7- III-1: Building blocks used for mechanical models; the 
dashpot represents the viscous response, the spring the elastic one.

Elastic deformation is a function of the applied stress (force normalized to area) 

and is expressed in terms of relative displacement or strain. Strain may be expressed in 

terms of relative change in volume, length or other measurement depending on the nature 

of the stress. 

A modulus is the quotient of stress and strain, where the type of stress and strain is 

defined by the type of deformation employed. The bulk modulus K is the quotient of 

hydrostatic pressure and bulk compression, the Young’s modulus E is the quotient of 

uniaxial stress, and stress at the limit of zero strain (and may be named tensile modulus if 

determined using tensile deformation), the shear modulus G is the quotient of shear stress 

and shear strain. 

An elastic modulus or modulus of elasticity is a modulus of a body for which the 

applied stress is proportional to the resulting strain (s. Figure 7- III-2). The material is then 

said to have a linear viscoelastic behavior, and the measurement is done in the linear 

regime. 

st
re

ss
 

strain 

modulus of
elasticity

Figure 7- III-2: Definition 
of the elastic modulus as 

the slope of the stress as a 
function of strain, in case 
this modulus  is constant. 
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The dimensionless Deborah number, De, is defined as the fluid’s characteristic 

relaxation time divided by a time constant characterizing the flow.279 For a high Deborah 

number, the material responds elastically, whereas for a low Deborah number it exhibits a 

viscous behavior. 

2. Forced oscillations277,278 

Forced oscillations are the deformations of a material by the application of a small 

sinusoidal strain γ such that γ = γ0·sin(ωt), where γ0 is the strain amplitude, ω the angular 

velocity, and both are positive constants. For a linear viscoelastic behavior, a sinusoidal 

stress σ results from the sinusoidal strain with σ = σ0·sin(ωt+δ), where σ0 is the stress 

amplitude and δ the phase angle or loss angle between stress and strain. 

The storage modulus (G’ in simple shear, E’ in uniaxial deformation) is the ratio of 

the amplitude of the stress in phase with the strain, to the amplitude of the strain: 

G’ = σ0·cosδ/γ0. The loss modulus (G’’ in simple shear, E’’ in uniaxial deformation) is the 

ratio of the amplitude of the stress 90° out of phase with the strain, to the amplitude of the 

strain: G’’ = σ0·sinδ/γ0. The complex modulus (G* in simple shear, E* in uniaxial 

deformation) is the ratio of the complex stress σ* (σ* = σ0·exp(i(ωt+δ))) to the complex 

strain γ* (γ* = γ0·exp(iωt)). It is related to the storage and loss moduli via G* = G’+iG’’. It 

should be noted that the real part of the complex strain is the strain which is actually 

applied to the material. Furthermore, the material actually experiences the real part of the 

complex stress. 

The storage modulus G’ is a measure of elasticity: it is associated with the energy 

stored in elastic deformation. It is high when a polymer is in its glassy state, and drops 

dramatically with increasing temperature as the polymer goes through its glass transition 

and becomes soft and rubbery (s. Figure 7- III-3). If the polymer is crosslinked, the storage 

modulus does not drop so far after the glass transition (the exact level depends on the 

degree of crosslinking). The loss modulus G’’ is associated with viscous energy 

dissipation, i.e. damping. The loss factor (or loss tangent), tanδ, is the tangent of the phase 

angle difference δ between stress and strain during forced oscillations. It is also equal to 

the ratio of loss to storage moduli: tanδ = G’’/G’. 
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Figure 7- III-3: Generalized 
modulus-temperature curves for 
polymeric materials showing the 
high modulus glassy state, glass 
transition regions for cured and 

uncured polymers, plateau regions 
for crosslinked polymers, and the 

drop-off modulus for a linear 
polymer. 

3. Master curves142 

It is currently impossible to investigate the full range of the relaxation spectrum at a 

single temperature with a single experimental technique. However, a change in 

temperature may bring relaxation features of interest within an accessible time scale. Time-

temperature equivalence in its simplest form implies that the viscoelastic behavior at two 

temperatures can be related by a change in time scale only (shift of the modulus value by 

an amount log(aT)). For time-temperature superposition to be exact, the spectrum of 

relaxation times must continuously shift to shorter times when the temperature is 

increased. Materials with this characteristic are said to be thermorheologically simple (e.g., 

no phase transition is encountered). For such polymers, it is possible to predict the 

behavior for viscoelastic deformation under variable temperature conditions. 

Williams, Landel and Ferry showed that the shift factor-temperature relation close 

to Tg was approximately identical for all amorphous polymers, having the form of the 

Williams-Landel-Ferry equation223 (WLF equation): 

)(
)()log(

2

1

r

r
T TTC

TTCa
−+
−⋅

=  Equation 7- III-1 

where C1 and C2 are constants and Tr is a reference temperature appropriate for a particular 

polymer, usually taken equal to Tg. The WLF equation is typically valid over the range Tg 

to Tg+100 °C. 

4. Viscoelastic window for PSAs 

Chang45 defined the concept of viscoelastic windows for PSAs (s. Figure 7- III-4). 
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Figure 7- III-4: Representation of the concept of viscoelastic windows for PSAs as a two-dimensional 
map with storage and loss moduli G’ and G’’ as axes, divided in different regions corresponding to 

different characteristics of the PSA (non-PSA, high shear PSA, cold-temperature PSA, removable PSA, 
general purpose PSA).45 

B. Stereochemical definitions and notations280-282 relative to tacticity 

Tacticity means the orderliness of the succession of configurational repeating units 

in the main chain of a polymer molecule (a configurational repeating unit is a 

constitutional repeating unit, the configuration of which is defined at one or more sites of 

stereoisomerism, the pseudochiral carbon(s)). The configuration (which refers to the 

different arrangements of the atoms and substituents in a molecule which can be 

interconverted only by the breakage of chemical bonds) should not be mistaken with the 

conformation (which refers to the different arrangements of the atoms and substituents in a 

molecule which come about from rotations around single bounds). A tactic polymer is a 

regular polymer, the molecules of which can be described in terms of only one species of 

configurational repeating unit in a single sequential arrangement: an isotactic polymer is a 

succession of identical configurational base units, a syndiotactic polymer an alternation of 

enantiomeric configurational base units. An atactic polymer a succession of an equal 

number of all possible configurational base units in a random sequence distribution. 

When two consecutive pseudochiral carbons bearing differents substituents are 

contiguous, their relative configurations are called erythro (when they are identical) or 

threo (when they are enantiomeric). When two consecutive pseudochiral carbons bearing 

the same substituents are linked by a symmetric connecting group (CH2 in the case of 

polyacrylates and polymethacrylates), their relative configurations are called meso, 
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abbreviation m (when they are identical) or racemo, abbreviation r (when they are 

enantiomeric) (s. Figure 7- III-5). 
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Figure 7- III-5: Relative configurations of consecutive prochiral carbons in a polymer chain ; (a) erythro, 
(b) threo, (c) meso or m, (d) racemo or r, /\/\ represents a symmetric connecting unit. 

A series of two, three, four, five, etc. consecutive configurational base units, 

containing therefore two, three, four, five, etc. consecutive pseudochiral carbons, may be 

called respectively diad, triad, tetrad, pentad, etc. In vinyl polymers (and in particular in 

polyacrylates and polymethacrylates), there are meso (or m) and racemo (or r) diads. A 

triad is the combination of two diads among m and r, which can be mm, mr or rr; they may 

be called isotactic, heterotactic and syndiotactic triads, respectively. 

The fractions of diads and triads are designated by (m), (r), and (mm), (mr), (rr) 

respectively. They satisfy by definition a sum equal to unity: (m)+(r)=1 on one hand, 

(mm)+(mr)+(rr)=1 on the other hand. Furthermore, the triads being a combination of two 

diads, the following equations are also true: (m)=(mm)+(mr)/2 and (r)=(rr)+(mr)/2. A 

perfect atactic polymer is one with a random distribution of diads and triads, in which 

therefore (r)=(m)=0.50, (mm)=(rr)=0.25 and (mr)=0.50. The completely isotactic polymer 

has (m)=(mm)=1. The completely syndiotactic polymer is defined by (r)=(rr)=1. For 

random distributions with (m)≠(r)≠0.50 or (rr)≠(mm)≠0.25, one has different degrees of 

syndiotacticity or isotacticity. Isotacticity predominates when (m)>0.5 or (mm)>0.25 and 

syndiotacticity predominates when (r)>0.5 or (rr)>0.25.  

High resolution, 1H and 13C, NMR is the technique of choice for the determination 

of the polymer sequence distributions (diads, triads, tetrads, etc.). The obtained results can 

be analyzed by statistical propagation models to gain insight into the stereochemistry of 

polymerization, where Pm is the probability of an active center to give a diad m. The most 

frequently used are the Bernoulli statistical model (which assumes that only the chain end 

unit in the propagating chain is important in determining the polymer stereochemistry, 

resulting in (mm)=Pm
2, (mr)=2Pm(1-Pm), (rr)=(1-Pm)2), and the first-order Markov model 

(which describes a polymerization where the penultimate unit is important in determining 

the subsequent stereochemistry, resulting in (mm)=(1-Pmr)Prm/(Pmr+Prm), 

(mr)=2PmrPrm/(Pmr+Prm), (rr)=(1-Prm)Pmr/(Pmr+Prm)). 
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C. Characterization of the crosslinking of homogeneous networks 

Several methods are known to characterize crosslinking in networks, assuming an 

homogeneous network. They allow the determination of a molar mass between 

entanglements or a crosslinking density. Since the investigated industrial PSAs are partly 

soluble, they can not be considered as homogeneous networks. Therefore the techniques 

detailed here have not been used in the present work. However, considering the importance 

of crosslinking in the adhesive properties of PSAs, a brief overview of these methods is 

given here. 

Highly crosslinked homogeneous polymer networks can be characterized by 

measurement of their linear viscoelastic behavior. In the rubber-like state, the storage 

modulus G’ is independent of the analysis frequency and is related to crosslink density via 

the equation RTMcG ρ=' , where ρ is the density, R the gas constant, T the temperature (in 

Kelvin) and Mc the mean molar mass between two crosslink points.189 In the case of a 

copolymer of a monofunctional acrylate and a bifunctional one, well above Tg, the 

equation ´
)1(3

G
xRTeMc −=+ ρ  relates the dependence of the storage modulus G’ on the 

temperature T to the molar mass Mc+e of network chains between chemical crosslinks (c) 

and chain entanglements (e) and the volume fraction x of monofunctional acrylate.283 

Homogeneous polymer networks can also be characterized by swelling 

measurements in a solvent for the corresponding non-crosslinked polymer. The swelling is 

governed by the Flory-Huggins equation: 0)
2

.(..)1ln( 3/1
1

2 =−+++− P
PPPP

vvVvvv νχ , 

where ν is the crosslink density, νP the volume fraction of the polymer in the swollen gel, 

V1 the molar volume of the solvent and χ the Flory-Huggins parameter describing the 

interaction between the polymer and the swelling agent.189 The crosslink density can be 

determined by measuring the solvent uptake of the poly(alkyl acrylate) films (suitable 

solvents are THF or DMF, in which the non-crosslinked poly(alkyl acrylates) are 

completely soluble). The relationship between swelling and crosslink density can be 

derived from a model used to describe rubber elasticity.1  

 Vega et al.284 have studied poly(dimethyl siloxane) model networks using 

transverse 1H relaxation T2 in solid-state NMR. The networks contained elastic chains 

(attached to the network at both ends) and pendant chains (attached to the network at one 

end) but no soluble molecules. Pendant chains have an isotropic motion while elastic 

chains have an anisotropic one, and 1H-NMR is sensitive to the different behaviors. A fit of 
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the transverse magnetization decays measured by a Hahn spin echo pulse sequence yielded 

the proportion of pedant chains. 

 Barth et al.285 have studied the crosslink density in homogeneously crosslinked 

natural rubber samples using NMR imaging. They recorded the spatial dependence of the 

longitudinal relaxation in the rotating frame T1ρ, and fitted them with the defect diffusion 

model to obtain the crosslink density. 
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IV. NMR spectra and SEC results 

A. NMR spectra of model poly(n-alkyl methacrylates) 

1. 1H static spectra 
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Figure 7- IV-1: Influence of the temperature on the shape of the 1H spectrum of sample PEMA (spectra 

recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-2: Influence of the temperature on the shape of the 1H spectrum of sample PEMA13C (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-3: Influence of the temperature on the shape of the 1H spectrum of sample PEMADSC (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-4: Influence of the temperature on the shape of the 1H spectrum of sample PEMADMC (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-5: Influence of the temperature on the shape of the 1H spectrum of sample PBMA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-6: Influence of the temperature on the shape of the 1H spectrum of sample PBMA13C (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-7: Influence of the temperature on the shape of the 1H spectrum of sample PHMA13C (spectra 

recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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2. 2D-WISE spectra 
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434 K = Tg+81 K
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Figure 7- IV-8: 1D 13C 
spectra extracted from 
the 2D-WISE spectra of 
sample PEMADSC (1H 
Larmor frequency of  

300.13 MHz, static, LG-
CP and π-pulse during 

t1). 
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Figure 7- IV-9: 1D 13C 
spectra extracted from 
the 2D-WISE spectra of 
sample PEMA13C (1H 
Larmor frequency of  

300.13 MHz, static, LG-
CP and π-pulse during 

t1). 
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Figure 7- IV-10: Contour 
spectra extracted from the 

2D-WISE spectra of sample 
PEMADSC (1H Larmor 

frequency of  300.13 MHz, 
static, LG-CP and π-pulse 

during t1); top: Tg -9 k, 
middle: Tg +37 K, bottom: 

Tg +81 K. 
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Figure 7- IV-11: Contour 
spectra extracted from the 

2D-WISE spectra of sample 
PEMA13C (1H Larmor 

frequency of  300.13 MHz, 
static, LG-CP and π-pulse 
during t1); top: Tg -11 k, 

middle: Tg +35 K, bottom: 
Tg +81 K. 
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3. NOE data 

Sample 
(M2) 

T (K) /  
T- Tg (K) 

qAB⋅τC
AB 

(Hz) 
τC

AB (s) 
 from CH3-CH2 

τC
AB (s) 

 from M2 
Nb. of 
exp. 

397 / 55 710±140  
and 77±63 

1.8⋅10-4±4⋅10-5  
and 1.9⋅10-5±1.6⋅10-5

8.0⋅10-5±1.6⋅10-5  
and 8.6⋅10-6±7.1⋅10-6 

9 

409 / 67 275±8 6.9⋅10-5±2⋅10-6 3.08⋅10-5±9⋅10-7 8 
427 / 85 150±10 3.8⋅10-5±2⋅10-6 1.7⋅10-5±1⋅10-6 8 
442 / 100 93±9 2.3⋅10-5±2⋅10-6 1.0⋅10-5±1⋅10-6 17 

PEMA 
(342 kHz2) 
 

457 / 115 48±5 1.2⋅10-5±1⋅10-6 5.4⋅10-6±5⋅10-7 12 
405 / 60 340±80  

and 23±35 
6.4⋅10-6±1.5⋅10-6  
and 4.3⋅10-7±6.6⋅10-7

5.4⋅10-5±1.3⋅10-5  
and 3.7⋅10-6±5.6⋅10-6 

6 

425 / 80 136 and 3 3.4⋅10-5 and 8.5⋅10-7 2.2⋅10-5 and 5.4⋅10-7 1 

PEMADMC 
(240 kHz2) 

445 / 100 64±6 1.6⋅10-5±1⋅10-6 1.0⋅10-5±1⋅10-6 5 
384 / 82 160±40  

and 19±27 
4.0⋅10-5±1.1⋅10-5  
and 4.8⋅10-6±6.8⋅10-6

1.4⋅10-5±4⋅10-6  
and 1.6⋅10-6±2.3⋅10-6 

15 

387 / 85 100±30  
and 12±13 

2.5⋅10-5±8⋅10-6  
and 3.1⋅10-5±3.6⋅10-6

8.5⋅10-6±2.6 ⋅10-6  
and 1.1⋅10-6±1.1⋅10-6 

10 

402 / 100 41±4 1.02⋅10-5±9⋅10-7 3.5⋅10-6±3⋅10-7 9 
417 / 115 24±1 5.9⋅10-6±2⋅10-7 2.02⋅10-6±6⋅10-8 8 

PBMA 
(447 kHz2) 

432 / 130 15±1 3.8⋅10-6±2⋅10-7 1.30⋅10-6±8⋅10-8 12 
PBMA13C 
(319 kHz2) 

384 / 77 117±10 2.9⋅10-5±3⋅10-6 1.4⋅10-5±1⋅10-6 6 

332 / 55 140±10 3.5⋅10-5±3⋅10-6 1.2⋅10-5±1⋅10-6 8 
349 /72 78±6 1.9⋅10-5±1⋅10-6 6.6⋅10-6±5⋅10-7 8 
362 / 85 47±4 1.3⋅10-5±1⋅10-6 4.0⋅10-6±4⋅10-7 9 
377 / 100 28±2 7.0⋅10-6±7⋅10-7 2.4⋅10-6±1⋅10-7 8 

PHMA13C 
(447 kHz2) 

392 / 115 16±1 4.0⋅10-6±2⋅10-7 1.37⋅10-6±8⋅10-8 9 
Table 7- IV-1: Correlation times of local molecular motion extracted from the NOE experiment with dipolar 

filter for model PnAMAs. 

 

Sample Process logA A (s) Ea/R Ea (kJ.mol-1) R2 ref. 
-12.2 6⋅10-13 3.21 26.7 0.998 221, Θ Ο β-relaxation 
-13.7 2⋅10-14 3.77 31.3 0.9998 221, ⊕  

NOE from CH3-CH2 -12.2 7⋅10-13 3.30 27.4 0.973 p.w. 

PEMA and 
PEMADMC 

NOE from M2 -12.5 3⋅10-13 3.30 27.5 0.976 p.w. 
β-relaxation -20.6 2.5⋅10-21 5.83 48.5 0.995 150 
NOE from CH3-CH2 -13.2 6⋅10-14 3.35 27.9 0.970 p.w. 

PBMA and 
PBMA13C 

NOE from M2 -14.2 6⋅10-15 3.56 29.6 0.970 p.w. 
-21.2 6⋅10-22 5.65 47.0 0.990 150 β-relaxation 
-24.4 5⋅10-24 6.54 54.4 0.998 150 

NOE from CH3-CH2 -10.6 3⋅10-11 2.05 17.0 0.997 p.w. 

PHMA13C 

NOE from M2 -11.1 9⋅10-12 2.05 17.0 0.997 p.w. 
Table 7- IV-2: Prefactor A  and activation energy  Ea  for the relaxations processes detected in model PnAMAs 
and following an Arrhenius behavior; the abbreviations R2 and  p.w. designate respectively the coefficient of 

determination and the present work. 
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B. NMR spectra of model poly(n-alkyl acrylates) 

1. 1H static spectra 
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Figure 7- IV-12: Influence of the temperature on the shape of the 1H spectrum of sample PMA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-13: Influence of the temperature on the shape of the 1H spectrum of sample PMA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-14: Influence of the temperature on the shape of the 1H spectrum of sample PEA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 

 



Part 7, IV   (Appendix) NMR spectra and SEC results 

 256

-2000-10002000 1000 0 Hz

-20002000 0 Hz

-4000-20004000 2000 0 Hz

-2000-10002000 1000 0 Hz

-2000-10002000 1000 0 Hz

328 K = Tg+69 K

374 K = Tg+115 K

363 K = Tg+104 K

351 K = Tg+92 K

340 K = Tg+81 K

5e+04 0e+00 Hz

-50005000 0 Hz

-1e+041e+04 0e+00 Hz

-1e+041e+04 0e+00 Hz

-2e+042e+04 0e+00 Hz

-5e+045e+04 0e+00 Hz

-5e+045e+04 0e+00 Hz

-5e+045e+04 0e+00 Hz

224 K = Tg-35 K

268 K = Tg+11 K

259 K = Tg

247 K = Tg-12 K

293 K = Tg+34 K

305 K = Tg+46 K

316 K = Tg+57 K

282 K = Tg+23 K

Figure 7- IV-15: Influence of the temperature on the shape of the 1H spectrum of sample PEA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-16: Influence of the temperature on the shape of the 1H spectrum of sample PBA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-17: Influence of the temperature on the shape of the 1H spectrum of sample PBA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-18: Influence of the temperature on the shape of the 1H spectrum of sample PHxA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions). 
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Figure 7- IV-19: Influence of the temperature on the shape of the 1H spectrum of sample PHxA (spectra 
recorded at a 1H Larmor frequency of 300.13 MHz, under static conditions 
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2. 2D-WISE spectra 
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Figure 7- IV-20: 1D 13C 
spectra extracted from the 
2D-WISE spectra of model 

PnAAs at Tg+70 °C (1H 
Larmor frequency of  

300.13 MHz, static, LG-CP 
and π-pulse during t1). 
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Figure 7- IV-21: Contour spectrum 
extracted from the 2D-WISE spectrum 

of sample PMA at Tg+70 °C (1H 
Larmor frequency of  300.13 MHz, 

static, LG-CP and π-pulse during t1). 
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Figure 7- IV-22: Contour spectrum 
extracted from the 2D-WISE spectrum 

of sample PEA at Tg+70 °C (1H Larmor 
frequency of  300.13 MHz, static, LG-

CP and π-pulse during t1). 
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Figure 7- IV-23: Contour spectrum 
extracted from the 2D-WISE spectrum 

of sample PBA at Tg+70 °C (1H Larmor 
frequency of  300.13 MHz, static, LG-

CP and π-pulse during t1). 
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Figure 7- IV-24: Contour spectrum 
extracted from the 2D-WISE spectrum 

of sample PHxA at Tg+70 °C (1H 
Larmor frequency of  300.13 MHz, 

static, LG-CP and π-pulse during t1). 
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3. NOE data 

Sample 
(M2) 

T (K) /  
T- Tg (K) 

qAB⋅τC
AB 

(Hz) 
τC

AB (s) 
from CH3-CH2 

τC
AB (s) 

from M2 
Nb. of 
exp. 

334 / 40 141.0±0.6 3.54⋅10-5±2⋅10-7 1.675⋅10-5±7⋅10-8 2 
368 / 74 26±1 6.6⋅10-6±3⋅10-7 3.1⋅10-6±1⋅10-7 9 
379 / 85 15±0.3 3.76⋅10-6±8⋅10-8 1.78⋅10-6±4⋅10-8 8 

PMA 
(322 kHz2) 

394 / 100 9.0±0.3 2.26⋅10-6±7⋅10-8 1.07⋅10-6±3⋅10-8 7 
279 / 20 380±20 9.6⋅10-5±4⋅10-6 3.3⋅10-5±1⋅10-6 4 
299 / 40 145±8 3.6⋅10-5±2⋅10-6 1.25⋅10-5±7⋅10-6 7 
314 / 55 63±2 1.58⋅10-5±4⋅10-7 5.5⋅10-6±1⋅10-7 8 
328 / 69 25.8±0.5 6.5⋅10-6±1⋅10-7 2.23⋅10-6±5⋅10-8 9 
344 / 85 13±2 3.3⋅10-6±4⋅10-7 1.1⋅10-6±1⋅10-7 8 

PEA 
(442 kHz2) 

359 / 100 8.2±0.6 2.1⋅10-6±2⋅10-7 7.1⋅10-7±5⋅10-8 9 
247 / 20 317±4 8.0⋅10-5±1⋅10-6 3.23⋅10-5±5⋅10-7 3 
267 / 40 110±20 2.8⋅10-5±4⋅10-6 1.1⋅10-5±2⋅10-6 20 
282 / 55 52±2 1.31⋅10-5±6⋅10-7 5.3⋅10-6±2⋅10-7 7 
291 / 64 31±1 7.7⋅10-6±3⋅10-7 3.1⋅10-6±1⋅10-8 9 
297 / 70 24±2 6.1⋅10-6±5⋅10-7 2.5⋅10-6±2⋅10-7 18 
312 / 85 15±2 3.8⋅10-6±5⋅10-7 1.5⋅10-6±2⋅10-7 9 

PBA 
(375 kHz2) 

327 / 100 8.4±0.2 2.11⋅10-6±4⋅10-8 8.6⋅10-7±2⋅10-8 9 
233 / 20 247±6 6.2⋅10-5±1⋅10-6 2.82⋅10-5±7⋅10-7 6 
253 / 40 100±20 2.4⋅10-5±4⋅10-6 1.1⋅10-5±2⋅10-6 9 
268 / 55 46±2 1.15⋅10-5±4⋅10-7 5.2⋅10-6±2⋅10-7 8 
275 / 62 34±2 8.6⋅10-6±6⋅10-7 3.9⋅10-6±3⋅10-7 9 
298 / 85 11.2±0.3 2.81⋅10-6±6⋅10-8 1.28⋅10-6±3⋅10-8 8 

PHxA 
(335 kHz2) 

313 / 100 6.0±0.1 1.51⋅10-6±3⋅10-8 6.8⋅10-7±2⋅10-8 8 
Table 7- IV-3: Correlation times of local molecular motion extracted from the NOE experiment with dipolar filter 

for model PnAAs 

 

 
Sample 

Process logA A (s) Ea/R Ea (kJ.mol-1) R2 ref. 

-13.0 9⋅10-14 1.46 12.1 0.997 246 
-13.7 2⋅10-14 1.69 14.1 0.999 255 
-13.9 1⋅10-14 2.26 18.8 0.999 252 
-11.2 6⋅10-12 1.28 10.7 0.994 252 
-13.4 4⋅10-14 1.78 14.8 1 248 
-12.9 1⋅10-13 1.75 14.6 0.991 253 

local relaxation 

-10.3 5⋅10-11 1.39 11.6 1 250 
NOE from CH3-CH2 -12.4 4⋅10-13 2.65 22.0 0.998 p.w. 

PMA 

NOE from M2 -12.7 2⋅10-13 2.65 22.0 0.998 p.w. 
-11.6 2⋅10-12 0.97 8.1 0.982 246 
-14.4 4⋅10-15 1.52 12.6 0.998 255 
-9.1 9⋅10-10 0.98 8.1 0.995 250 

local relaxation 

-12.8 2⋅10-13 2.00 13.5 0.999 253 
NOE from CH3-CH2 -11.8 2⋅10-12 2.17 18.0 0.994 p.w. 

PEA 

NOE from M2 -12.2 6⋅10-13 2.17 18.0 0.994 p.w. 
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-13.8 2⋅10-14 2.17 18.0 0.982 246 β-relaxation 
-13.0 1⋅10-13 2.11 17.5 0.993 229 
-13.3 5⋅10-14 1.21 10.1 0.987 246 local relaxation 
-12.8 2⋅10-13 1.20 10.0 0.996 255 

NOE from CH3-CH2 -10.6 3⋅10-11 1.61 13.4 0.998 p.w. 

PBA 

NOE from M2 -10.2 6⋅10-11 1.61 13.4 0.997 p.w. 
β-relaxation no satisfying fit possible,  

Ea in the range from 15 to 25 kJ.mol-1 
229,246 

local relaxation -13.1 7⋅10-14 1.22 10.2 0.997 246 
NOE from CH3-CH2 -10.5 3⋅10-11 1.49 12.3 0.993 p.w. 

PHxA 

NOE from M2 -10.1 9⋅10-11 1.49 12.3 0.993 p.w. 
Table 7- IV-4: Prefactor A  and activation energy  Ea  for the relaxations processes detected in model PnAAs 
and following an Arrhenius behavior; the abbreviations R2 and  p.w. designate respectively the coefficient of 

determination and the present work. 

C. NMR spectra of PSA samples 

1. 1H static spectra 

 
T = - 33 °C 

T = -10 °C 

T = 13 °C 

T = 36 °C

T = 60 °C

kHz- 10 0 10 

kHz- 5 0 5 

kHz- 5 0 5 

kHz- 5 0 5 

kHz- 5 0 5 

 

Figure 7- IV-25: 
Influence of the 
temperature on 
the shape of the 
1H spectrum of 

sample 
Homo2EHA 

(spectra 
recorded at a 1H 

Larmor 
frequency of 
300.13 MHz, 
under static 

conditions on a 
Bruker MSL300 
spectrometer). 
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Figure 7- IV-26: 
Influence of the 
temperature on 
the shape of the 
1H spectrum of 
sample Copo1 

(spectra 
recorded at a 1H 

Larmor 
frequency of 
300.13 MHz, 
under static 

conditions on a 
Bruker MSL300 
spectrometer). 
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 T = - 33 °C 

T = -10 °C 

T = 13 °C 

T = 36 °C

T = 60 °C 
kHz- 10 0 10 

kHz- 5 0 5 

kHz- 5 0 5 

kHz- 5 0 5 

kHz- 5 0 5 

 

Figure 7- IV-27: 
Influence of the 
temperature on 
the shape of the 
1H spectrum of 
sample Copo2 

(spectra 
recorded at a 1H 

Larmor 
frequency of 
300.13 MHz, 
under static 

conditions on a 
Bruker MSL300 
spectrometer). 

 

  

- 60 0 60 

- 60 0 60 

- 60 0 60 

- 40 0 40 

- 40 0 40 kHz

kHz

kHz

kHz
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- 40 0 40 kHz

- 40 0 40 kHz

- 40 0 40 kHz

T = - 68 °C 

T = - 56 °C 

T = - 45 °C 

T = - 33 °C 

T = - 22 °C 

T = - 10 °C 

T = 2 °C 

T = 13 °C 

 

Figure 7- 
IV-28: 

Influence of 
the 

temperature 
on the shape 

of the 1H 
spectrum of 

sample Copo2 
(spectra 

recorded at a 
1H Larmor 

frequency of 
300.13 MHz, 
under static 

conditions on 
a Bruker 
DSX300 

spectrometer).
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2. 2D-WISE spectra 

200 180 160 140 120 100 80 60 40 20 0 ppm

Copo2

Homo2EHA

Copo1

Figure 7- IV-29: 
1D 13C spectra 
extracted from 
the 2D-WISE 

spectra of model 
PSAs at room 

temperature (1H 
Larmor 

frequency of  
300.13 MHz, 
static, LG-CP 
and π-pulse 
during t1). 
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Figure 7- IV-30: Contour spectra extracted from 
the 2D-WISE spectra of PSA samples (1H 

Larmor frequency of  300.13 MHz, static, LG-CP 
and π-pulse during t1); top: sample Homo2EHA, 

middle: sample Copo1, bottom: Copo2. 
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3. NOE data 

Sample Temperature (K) 
/ T- Tg (K) 

qAB⋅τC
AB (Hz) τC

AB (s) 
from CH3-CH2 

Number of 
experiments

Homo2EHA 298 / 85 35±2 8.8⋅10-6±7⋅10-7 9 
Copo1 298 / 72 42±5 1.1⋅10-5±2⋅10-6 9 
Copo2 298 / 73 42±5 1.0⋅10-5±2⋅10-7 9 
Table 7- IV-5: Correlation times of local molecular motion extracted from the NOE experiment with 

dipolar filter for industrial PSAs 
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D. SEC results of poly(n-alkyl acrylates) 

1. Plots of the intrinsic viscosity as a function of the molar mass 

4.0 4.5 5.0 5.5 6.0
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0.0

0.5

lo
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logM

 UC, this work
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 TD, this work

Figure 7- IV-31: 
Intrinsic viscosity as 

a function of the 
molar mass on a log-

log scale for the 
investigated PMA 
sample, as well as 

other PMA samples 
(MHS parameters 
from literature: 
Castignolles,200 

Penzel,209 
Hutchinson210,211). 
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Figure 7- IV-32: 
Intrinsic viscosity as a 
function of the molar 

mass on a log-log scale 
for the investigated 

PEA sample, as well as 
other PEA samples 

(MHS parameters from 
literature: 

Castignolles,200,286 
Penzel,209 

Hutchinson210). 

 

Sample K (dL.g-1) α Temperature Ref. 
9.48⋅105 0.719 30 °C 200 
1.00⋅106 0.73 25 °C 209 PMA 
1.95⋅106 0.660  210,211 
5.68⋅105 0.774 30 °C 200,286 
8.9⋅105 0.75 25 °C 209 PEA 
1.81⋅106 0.626  210 

PBA 7.4⋅105 0.75 25 °C 209 
PHxA 5.5⋅105 0.76 25 °C 209 

Table 7- IV-6: 
Mark-Houwink-
Sakurada (MHS) 
parameters for 

poly(n-alkyl 
methacrylates) in 
THF, used in the 

preceding 
figures. 
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A critical comparison of the different sets of MHS parameters can be found in the 

Ph.D. thesis of Castignolles.200  

2. Plots of the molar mass as a function of the elution volume 
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Figure 7- IV-33: Molar 
mass as a function of the 

elution volume for sample 
PMA, on a logarithmic 

scale; the different molar 
masses have been 

determined respectively by 
UC, TD and LALLS; the 

chromatogram is indicated 
for information (right 

scale). 
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Figure 7- IV-34: Molar 

mass as a function of the 
elution volume for sample 

PEA, on a logarithmic 
scale; the different molar 

masses have been 
determined respectively by 
UC, TD and LALLS; the 

chromatogram is indicated 
for information (right 

scale). 
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V. Abbreviations and symbols 

A. Investigated samples 

PnAMA poly(n-alkyl methacrylate) 

PMMADMC poly(methyl methacrylate), fully 2H labeled on the main chain (Tg = 398 K) 

PEMA13C poly(ethyl methacrylate), 20 % 13C labeled at C=O (Tg = 338 K) 

PEMADSC poly(ethyl methacrylate), fully 2H labeled on the side chain (Tg = 353 K) 

PEMADMC poly(ethyl methacrylate), fully 2H labeled on the main chain (Tg = 345 K) 

PBMA poly(n-butyl methacrylate), not isotopically labeled (Tg = 302 K) 

PBMA13C poly(n-butyl methacrylate), 20 % 13C labeled at C=O (Tg = 309 K) 

PHMA13C poly(n-hexyl methacrylate), 20 % 13C labeled at C=O (Tg = 277 K) 

 

PnAA poly(n-alkyl acrylate) 

PMA poly(methyl acrylate) (Tg = 294 K) 

PEA poly(ethyl acrylate) (Tg = 259 K) 

PBA poly(n-butyl acrylate) (Tg = 227 K) 

PHxA poly(n-hexyl acrylate) (Tg = 213 K) 

 

PSA pressure sensitive adhesive 

Homo2EHA statistical copolymer of 99 % 2EHA and 1 % AA 

Copo1 statistical copolymer of 80 % 2EHA, 19 % MA and 1 % AA 

Copo2 statistical copolymer of 80 % 2EHA, 19 % MA, 1 % AA, and a crosslinker 

B. Monomers, polymers and other chemicals 

2EHA 2-EthylHexyl Acrylate 

AA Acrylic Acid 

AIBN Azo-bis-IsoButyroNitrile 

a-PEMA Atactic Poly(Ethyl MethAcrylate) 

BA n-Butyl Acrylate 

DMF DiMethylFormamide 

EA Ethyl Acrylate 

MA Methyl Acrylate 

MMA Methyl MethAcrylate 

P2EHA Poly(2-EthylHexyl Acrylate) 

PBA Poly(n-Butyl Acrylate) 
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PBMA Poly(n-Butyl Methacrylate) 

PE PolyEthylene 

PEMA Poly(Ethyl MethAcrylate) 

PHxMA Poly(n-Hexyl MethAcrylate) 

PMMA Poly(Methyl MethAcrylate) 

PIB PolyIsoButylene 

PS PolyStyrene 

PtBMA Poly(t-Butyl MethAcrylate) 

SIS Styrene-Isoprene-Styrene triblock copolymer 

THF TetraHydroFurane 

TMS TetraMethylSilane 

C. Nuclear magnetic resonance 

1D monodimensional 

2D two-dimensional  

2D-WISE two-dimensional WIdeline SEparation 

δ chemical shift 

ε number of orthogonal dimensions relevant for an effective spin diffusion 

process 

τ delay between two pulses in the dipolar filter of a spin diffusion experiment 

B0 static magnetic field 

B1 oscillating magnetic field 

CP Cross-Polarization 

CPMG Carr-Purcell-Meiboom-Gill 

DD Dipolar Decoupling 

Deff effective diffusion coefficient of 1H nuclear spin diffusion through flip-flops 

DEPT Distorsionless Enhancement Polarization Transfer 

DRouse diffusion coefficient of 1H nuclear spin diffusion through chain translation 

FID Free Induction Decay 

fwhm Full Width at Half Maximum 

LG-CP Lee-Goldburg Cross-Polarization 

MAS Magic-Angle Spinning 

NMR Nuclear Magnetic Resonance 

NOE Nuclear Overhauser Effect 

NOESY Nuclear Overhauser Effect SpectroscopY 
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rf RadioFrequency 

S/N Signal-to-Noise ratio 

T1 time constant for spin-lattice relaxation (or transversal relaxation) 

T1ρ time constant for relaxation under an applied B1 field 

T2 time constant for spin-spin relaxation (or longitudinal relaxation) 

tm mixing time 

D. Others 

ASTM American Society for Testing and Materials 

BASF AG Badische Anilin- und SodaFabrik AktienGesellschaft 

BL Branching Level 

CC Conventional Calibration (in SEC) 

CERDATO Centre d´Etude de Recherche et Développement d´ATOfina  

CRDE Centre de Recherches de l´Est (Atofina) 

DMA Dynamic Mechanical Analysis 

DSC Differential Scanning Calorimetry 

G’, G’’ storage, loss modulus 

HPLC High Performance Liquid Chropmatography 

IR InfraRed 

IUPAC International Union of Pure and Applied Chemistry 

LALLS Low-Angle Laser Light Scattering (in SEC) 

LCB Long Chain Branch(ing) 

MALDI-TOF-MS Matrix-Assisted Laser Desorption Ionization – Time Of Flight Mass 

Spectrometry 

Me average molar Mass between Entanglement 

mm syndiotactic triad 

MM Molar Mass 

MPI-P Max Planck Institute for Polymer Research 

Mn number-average molar mass 

mr atactic triad 

Mw mass-average molar mass 

PSA Pressure Sensitive Adhesive 

rr isotactic triad 

SAFT Shear Adhesion Failure Temperature 

SAXS Small-Angle X-ray Scattering 
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SCB Short Chain Branch(ing) 

SEC Size Exclusion Chromatography 

tanδ loss factor, or loss tangent 

TD Triple Detection (in SEC) 

TDA Triple Detection Array (for SEC) 

Tg glass transition temperature 

TGA ThermoGravimetric Analysis 

UC Universal Calibration (in SEC) 

UV UltraViolet 

WAXS Wide-Angle X-ray Scattering 

WLF Williams-Landel-Ferry 
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Summary 
Industrial acrylic pressure sensitive adhesives (PSAs), poly(n-alkyl acrylate) and poly(n-alkyl 

methacrylate) model samples were investigated using predominantly solid-state NMR (nuclear magnetic 
resonance). The long term goal is to understand the influence of their microscopic properties on adhesion. 
Our contribution was to provide analytical tools to characterize branching, local dynamics and dynamic 
heterogeneity of poly(alkyl acrylates). 

Several 13C NMR techniques were compared for branching quantification in poly(alkyl acrylates) 
and single pulse excitation of the molten sample under magic angle spinning (MAS) was proved to be the 
most accurate. This provided the first reliable estimate of branching in poly(alkyl acrylates) and is directly 
applicable to crosslinked and multi-component industrial samples. This will help the understanding of the 
polymerization process for these samples. 

In the context of a better understanding of the adhesion mechanism, an alternative method of 
multiple detection size exclusion chromatography (SEC) was presented to detect long branches (LCB) in 
soluble poly(alkyl acrylates). Extensive experimental and theoretical work will be necessary to obtain 
quantitative results. The use of solid-state NMR to quantify local motion of specific chemical sites in non 
isotopically labeled polymeric samples in the melt was investigated. The experimental scheme is the same 
as conventional 1H spin diffusion with dipolar filter, previously widely used to quantify the size of 
dynamic heterogeneities in polymeric samples exhibiting a strong dynamic contrast. In poly(alkyl 
acrylates) and poly(alkyl methacrylates) with a weak dynamic contrast within the monomeric unit, the 
hindered dynamics of the side chains in alkyl nanodomains was quantified via cross-relaxation analysis. 

 
Keywords: pressure sensitive adhesives (PSA), poly(alkyl acrylates), poly(alkyl methacrylates),  
long chain branching (LCB), solid-state nuclear magnetic resonance (NMR),  dipolar filter,  
cross-relaxation (NOE), multiple detection size exclusion chromatography (SEC) 

Résumé 
Des adhésifs sensibles à la pression (PSAs) acryliques industriels, des polyacrylates et 

polyméthacrylates de n-alkyles modèles, ont été étudiés principalement par RMN (résonance magnétique 
nucléaire) du solide. Le but à long terme est de comprendre l’influence des propriétés microscopiques sur 
l’adhésion. Notre contribution est l’apport d’outils analytiques pour la caractérisation du branchement, de 
la dynamique locale et de l’hétérogénéité dynamique. 

Après comparaison de plusieurs techniques de RMN 13C, une méthode de quantification du 
branchement dans les poly(acrylates d’alkyles) par irradiation simple de l’échantillon fondu sous rotation 
à l’angle magique (MAS) a été proposée. Cela a permis la première estimation fiable du branchement 
dans les poly(acrylates d’alkyles) et est applicable directement aux échantillons industriels réticulés et 
multi-composants. Cela facilitera la compréhension du procédé de polymérisation. 
Dans le cadre d’une meilleure compréhension du mécanisme d’adhésion, une méthode de 
chromatographie d’exclusion stérique (SEC) multi-détection a été proposée pour la détection des longues 
branches (LCB) dans les poly(acrylates d’alkyles) solubles. L’utilisation de la RMN du solide pour la 
quantification sélective de mouvements locaux dans des polymères fondus sans marquage isotopique a été 
étudiée. La technique expérimentale est la même que celle de la diffusion de spin 1H conventionnelle avec 
filtre dipolaire, beaucoup utilisée antérieurement pour quantifier la taille d’hétérogénéités dynamiques 
dans des polymères ayant un fort contraste dynamique. Dans les poly(acrylates d’alkyles) et les 
poly(méthacrylates de n-alkyles), qui présentent un contraste dynamique faible au sein de l’unité 
monomère, la dynamique entravée des chaînes latérales dans les nanodomaines alkyles a été quantifiée 
via une analyse de relaxation croisée. 
 
Mots-clefs : adhésif sensible à la pression (PSA), poly(acrylates d’alkyles),  
poly(méthacrylates d’alkyles), branchement long (LCB),  
résonance magnétique nucléaire (RMN) du solide, filtre dipolaire, relaxation croisée (NOE), 
chromatographie d’exclusion stérique (SEC) multi-détection 
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