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Résumé français circonstancié 

Le processus de découverte et développement d’un nouveau agent thérapeutique exige 

un engagement et un investissement à long terme (7 à 15 ans). Seul un nombre restreint 

des nombreux projets lancés réussit à produire une « nouvelle entité chimique » (NCE, 

30-50 par an). En effet, sur les centaines de milliers de composés testés, au plus 1% est 

identifié comme « touche ». Des analyses plus approfondies permettent de sélectionner 

parmi ces touches les structures dites « tête de file » qui continueront vers la phase de 

développement et cliniques. Jusqu'à ce qu'un NCE soit admis sur le marché par la Food 

and Drug Administration (FDA) des États-Unis (ou son homologue européen ou 

japonais), les raisons d'échec peuvent être diverses (Kubinyi, 2003). La qualité initiale 

des chimiothèques aide à éviter ces impasses. En effet, le problème de la conception de 

chimiothèques a joué un rôle important dans beaucoup d'approches essayant accélérer le 

processus de conception d’un médicament. La tendance actuelle privilégie la conception 

rationnelle des ligands par rapport à la découverte fortuite ou le criblage systématique. 

Face à l’impossibilité de l’étude complète de l'espace chimique contre l'espace des 

cibles, l'organisation des molécules de faible poids moléculaire et des protéines en des 

classes de châssis moléculaires et des familles de protéines, respectivement, offre une 

certaine abstraction qui laisse établir des rapports de chemogénomique. En effet, la 

pratique de la pharmacochimie et celle du criblage biologique ont révélées que les 

composés agissant sur une famille donnée de protéines sont rarement éloignés dans 

l'espace chimique (Lipinski & Hopkins, 2004). Cependant, l'évaluation du potentiel 

« candidat-médicament » d’une molécule ainsi que sa catégorisation dans les classes de 

châssis ont été traditionnellement réalisées par inspection visuelle par les 

pharmacochimistes. Ceci a habituellement conduit à des contradictions dans la 
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conception de chimiothèques ainsi que dans l'acquisition de composés (Lajiness et al., 

2004) et accentue le besoin de développer des méthodes informatiques robustes qui 

peuvent aider le chimiste. 

Le défi de la "simplexité" a été récemment formulé par Compain (Compain, 2003) dans 

le contexte de la combinaison du simple et de la complexité dans la synthèse organique. 

Cette idée réinterprétée pour l'informatique combinatoire moléculaire, notre stratégie 

consistera dans la construction de molécules virtuelles qui acquièrent leur complexité 

structurale par des combinaisons d’entités moléculaires simples. Les travaux 

fondamentaux de Bemis et de Murcko (Bemis & Murcko, 1996; Bemis & Murcko, 

1999) concernant l’analyse sousstructurale des médicaments admis sur le marché ont 

fortement inspirés ce travail. Afin de concilier les avancées de la chimie combinatoire et 

de la conception rationnelle basée sur la structure protéinique, le défi scientifique 

abordé par ce sujet de thèse est de créer le maximum de diversité en générant un 

minimum de molécules constituant une chimiothèque. Nous avons choisi de partir d’une 

structure de Markush (Markush, 1924) ayant le rôle de châssis moléculaire ( scaffold ) 

et de lui greffer à chaque position de substitution un espaceur ( linker ), puis un 

groupement fonctionnel( functional group ); nous avons intitulé cette approche SLF 

(Figure I). 

C’est le chimiste organicien qui propose cette structure ou le sélectionne parmi une 

chimiothèque de châssis moléculaires dont il attend une activité. Le nombre totale de 

molécules générées s’obtient par : 

( L × F )S

où L = nombre d’espaceurs 

 F = nombre de groupements fonctionnels 

 S = nombre de positions de substitution sur la structure de Markush 
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Scaffold

Linker

FG

Scaffold

Linker

FG  

Figure I. Illustration de SLF 

Le châssis moléculaire adéquat est supposé orienter ses substituents dans des positions 

optimales à l’interaction avec la protéine, mais aussi interagir lui-même avec la 

protéine. Son nombre de points de substitution (S) peut théoriquement varier de l’unité 

à l’infini, mais en général S varie pour la majeure partie des châssis moléculaires entre 1 

et 10.  

Le rôle de l’espaceur est de moduler la distance d’interaction entre le 

« châssis/groupement fonctionnel » et la protéine cible. Dans un premier tour de 

criblage, trois à quatre espaceurs sont choisis parmi les séries polyméthyléniques 

ouvertes (-[CH2]-). Les groupements fonctionnels sélectionnés (entre huit et dix 

fragments) représentent les propriétés pharmacophoriques (charge négative/positive, 

accepteur/donneur d’hydrogène, lipophile/aromatique). Ils servent à sonder le site actif 

si peu d’informations structurales sont disponibles. 
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Dans un premier temps, il fallait trouver la représentation adéquate pour coder les 

structures de Markush et les fragments moléculaires (espaceurs et groupements 

fonctionnels). Plusieurs critères ont guidé notre choix :  

1. Diminuer au mieux les pertes d’informations lors de conversions en différents 
formats moléculaires. 

2. Garder la taille du fichier de sortie contenant les structures moléculaires raisonnable 
( => mémoire morte ). 

3. Empêcher une erreur de mémoire vive insuffisante lors de l’exécution du 
programme. 

Le SMILES (Weininger, 1988; Weininger et al., 1989), un format « 0D » ( zéro 

dimension ), a été adopté. L’information d’une molécule (atomes, liaisons, topologie) 

est représentée par une ligne de caractères alphanumériques. Le caractère « * » (étoile) 

marque la position de substitution sur les fragments moléculaires. 

L’application SLF_LibMaker ( Scaffold-Linker-Functional Group Library Maker ) 

implémentant cette méthode de génération de molécules est écrite en langage C++ et, 

outre les bibliothèques standards du C++, se base sur la bibliothèque OEChem 

développée par OpenEye Scientific Software("OEChem", 2004). Les combinaisons 

espaceurs / groupement fonctionnels sont d’abord générées et stockées dans un fichier 

temporaire. Puis le nombre de points de substitution sur le châssis moléculaire est 

déterminé pour énumérer de façon systématique toutes les combinaisons possibles entre 

châssis moléculaire et espaceurs / groupement fonctionnels. 

L’application garde un caractère générique, car elle peut générer des chimiothèques de 

taille importante (de l’ordre du milliard de molécules) qui peuvent servir au criblage 

virtuel à haut débit. Cependant notre objectif est de générer une chimiothèque d’une 

taille raisonnable (une centaine de structures) pour la synthèse et l’évaluation 

biologique. 
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En cas d’absence d’idée concrète sur le châssis moléculaire, le chimiste a la possibilité 

de consulter une chimiothèque de châssis moléculaire pour planifier la conception des 

prochaines molécules à synthétiser. Soucieux de la réalité physique des molécules, la 

stratégie de constitution de la chimiothèque de châssis moléculaires (« scaffoldthèque ») 

a été basée sur une classification de chimiothèques commerciales qui de plus a conduit 

au développement de nouvelles métriques de la diversité moléculaire (Figure II).  
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Figure II. Organigramme du traitement des chimiothèques commerciales et de la 
constitution de la scaffoldthèque 

Ces collections de criblage de criblage constituent une source importante de molécules 

potentiellement bioactives (environ 2 millions de molécules disponibles dans un délai 

d’un mois). L’analyse du potentiel médicament (« drug-likeness ») (Baurin et al., 2004; 

Charifson & Walters, 2002) et de la diversité moléculaire (Bradley, 2002) de ces 
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collections de criblage est importante dans la sélection des molécules à tester. Dans 

notre cas, la procédure de préparation de chaque chimiothèque passe par une étape de 

filtrage, puis par l’élimination des structures redondantes (Figure II). Les molécules qui 

ont été classées correspondent à celles ayant passées les filtres, définis comme un 

certain intervalle de propriétés physico-chimiques et l’absence de certains groupements 

fonctionnels jugés trop réactifs. L’analyse de diversité a été alors effectuée sur les 

classes comportant au moins 25 composés. Ce nombre de molécules analogues 

comportant le même châssis moléculaire est nécessaire du point de vue du 

pharmacochimiste (Nilakantan & Nunn, 2003) pour garantir une exploration minimale 

lors d’un criblage. Un autre avantage réside dans la possibilité d’établir une relation 

structure-activité préliminaire. Les classes ne remplissant pas ce critère de taille 

minimale ont été conservées dans une chimiothèque de châssis rares. Les descripteurs 

choisis lors de l’analyse de diversité doivent quantifier la diversité moléculaire 

intrinsèque d’une chimiothèque. Le nombre (NC50C) et le pourcentage (PC50C) de 

classes auxquelles appartiennent 50% des composés classés sont extrapolés de la courbe 

de distribution cumulative des pourcentages des composés appartenant à une classe. 

Nous avons retrouvé de manière qualitative la nature de la chimiothèque en reportant la 

taille de chimiothèque en fonction des deux métriques de diversité (PC50C, NC50C) 

(Figure III). En effet, les collections issues de chimie combinatoire sont de taille 

importante mais peu diversifiées en châssis moléculaires. Diverses collections de taille 

intermédiaire présentent également une faible diversité. Seul un petit nombre de 

collections, qui sont connues pour être optimisées par leur fournisseur, présente un bien 

meilleur rapport taille/diversité. On remarquera que ce sont celles qui se rapprochent 

également le plus de la MDDR (MDL Drug Data Report), chimiothèque de référence 
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pour molécules bioactives, ayant subi le même processus que les collections 

commerciales. 
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Figure III. Diversité des châssis moléculaires issues des collections de criblages 
disponibles chez des fournisseurs commerciaux 
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La méthode développée sur le concept de l’énumération complète de « scaffold, linker, 

functional group » a été appliquée à l’optimisation d’inhibiteurs de PDE4 

( phosphodiesterase IV ). Grâce aux données structurales récemment disponibles sur la 

PDE4 (Huai et al., 2003; Lee et al., 2002) et en dérivant la zardaverine (molécules 

spécifique de la cible), les 320 molécules de la chimiothèque ainsi générée pouvaient 

être évaluées à partir de leurs interactions moléculaires avec la protéine. Plus 

concrètement, ceci se traduit par le « docking automatisé » utilisant le logiciel FlexX 

(Rarey et al.). Ainsi neuf molécules ont été choisies prioritairement pour la synthèse 

chimique et pour des mesures d’affinité consécutives. Cinq des neufs composés se sont 

avérés être de inhibiteurs plus puissants in vitro que la zardaverine. Le composé ayant 

montré la plus haute affinité (CI50 = 0,88 nM) (Figure IV) a permis un gain en affinité 

de trois unités logarithmiques par rapport à la référence interne utilisée (CI50 = 2 µM). 
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Figure IV. Distribution de l’affinité des molécules sélectionnées par rapport à la 
référence (en 1).  

De plus, une sous-poche dans le site actif de la PDE4 a été identifiée, présentant une 

variation en acides aminés par rapport aux autres PDE. Ceci peut fournir le point de 
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départ à la conception de structures surmontant les problèmes de sélectivité connus 

jusqu’à présent chez les inhibiteurs en phase cliniques. 

Au cours d’autres projets impliquant la génération d’une chimiothèque virtuelle, le 

logiciel a été ajusté au besoin de l’utilisateur. Afin de faciliter l’analyse 

« post-criblage », une nomenclature unique rendant compte du nom initial des 

fragments a été mis en place. Un autre point à ajuster est le cas des châssis moléculaires 

adoptant une conformation difficilement prévisible, car les outils usuels de générations 

de coordonnées trois-dimensionnelles s’avèrent insuffisants. Par conséquent, le logiciel 

va évoluer vers l’extension de l’approche en trois dimensions, permettant ainsi de 

prendre en charge une conformation de châssis moléculaire prédéfinie. 

Ce travail de thèse nous a permis de développer une méthodologie qui applique les 

principes d’explorations topologiques d’une cible thérapeutique de façon systématique à 

la conception des ligands, ainsi permettant d’accélérer le processus de la touche au 

candidat médicament. De plus, des chimiothèques des fragments élémentaires d’intérêt 

thérapeutique ont été constituées : d’un part, celles d’espaceurs et de groupement 

fonctionnels sur des critères empiriques et d’autre part, celle de châssis moléculaires 

extraits à partir de collections de criblage commerciales. La scaffoldthèque peut en 

outre servir à la rationalisation de l’acquisition de composés ; c'est-à-dire (i) on comble 

l’espace chimique « intéressant » et (ii) empêche d’acquérir des composés ayant des 

propriétés indésirables. De plus, la constitution de la scaffoldthèque a mené au 

développement de nouvelles métriques de la diversité moléculaire. 
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Chapter 1 

1. Introduction 

Long term engagement and investment are required to the process of drug research and 

development. Only a small number of the many initiated projects succeed in producing 

a new chemical entity (NCE, 30-50 per year). Meanwhile hundreds of thousands of 

compounds will have been screened, thus providing hits. Few turn out to be lead 

structures requiring additionally thousands of compounds to be synthesized. Until a 

NCE is approved by the US Food and Drug Administration (FDA) (or its European or 

Japanese regulatory organization), the reasons of failure can be manifold (Kubinyi, 

2003). The initial quality of the screening libraries helps avoiding dead-ends. Indeed, 

the library design problem has played an important role in many approaches trying to 

accelerate the drug design process. There has been a shift from ligands discovered by 

serendipity or by systematic screening to rational design. As it is impossible to 

investigate the chemical space against the target space, the organization of low 

molecular weighted molecule and proteins in scaffold classes and families, respectively, 

offers a certain abstraction that permits to establish chemogenomics relationships. 

Indeed, the practice of medicinal chemistry and biological screening let scientists 

deduce that compounds acting upon a given protein family lie rarely far apart in 

chemical space (Lipinski & Hopkins, 2004). Nevertheless, the assessment of a 

compound’s drug-like or lead-like nature and its categorization in compound classes has 

been traditionally realized through visual inspection by medicinal chemists. This usually 

have led to inconsistencies in library design and compound acquisition (Lajiness et al., 

2004) and re-emphasize on the need of robust computational methods that can assist the 

bench chemist. 
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The challenge of “simplexity” has been recently formulated by Compain (Compain, 

2003) in the context of the combination of the simple and the complex in organic 

synthesis. Taking up this idea for molecular combinatorial informatics, our strategy will 

consist in building virtual molecules which acquire their structural complexity through 

combinations of simple building blocks. The seminal papers of Bemis and Murcko 

(Bemis & Murcko, 1996; Bemis & Murcko, 1999) about their substructural analysis of 

marketed drugs strongly influenced this work. In a first part, we will define the most 

salient notions relative to rational design of focused libraries. The second part will deal 

mainly with the realization of a ‘core building block’ library and its related diversity 

issue. Finally, the investigated strategy will be implemented and applied to a protein 

target for a first validation. 
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Chapter 2 

2. The role of the scaffold in the drug design 

process 

The main goal of this present chapter is to extend the existing approaches of library 

design and illustrate the significant potential of this combinatorial-based strategy that 

supplements the rational design of a core structure by an exhaustive variation of 

distance-modulated pharmacophoric features. Numerous examples in the literature 

adopt a cognate approach.  

Considering the mental model on which the medicinal chemist bases his search for new 

lead structures helps developing new drug design methods. A combinatorial design 

effort usually starts upon the choice of a scaffold. Therefore, the scaffold concept is the 

cornerstone in many medicinal chemist projects. Computer-assisted scaffold detection 

among a series of compounds has evolved with the progress made in chemical 

information technology, but also with the practice of medicinal chemistry.  

The requirement for task automation triggered the development of terminology and 

languages for scaffold/fragment representation which will be addressed in a first part of 

this chapter. 

2.1 Computer representations of chemical structures 

Computer methods that record and keep track of steadily increasing amount of chemical 

structure information have been developed over the last six decades. Computer memory 

evolved from plain paper to edge-notched punch cards, magnetic tapes and finally hard 

disks. This implied the abstraction of a molecule into its chemical graph and the storage 

as strings of alpha-numeric characters or as derivatives of the adjacency matrix. The 
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purpose of machine-readable structure representations is to mine the molecular 

information and have to be suitable for the most common operations on molecules that 

can be highlighted as (1) storage/retrieval, (2) identity, (3) mixture relationships, (4) 

substructure/superstructure relationships, (5) similarity, (6) transformational 

relationships (tautomerism, formal charge representation) and (7) multivariate 

relationships (clustering, discrimination). 

Chemical substructures are a special class of structures. In order to understand the 

representation of a chemical substructure, we also emphasize on historical evolution of 

computational representation of a structure. Let us review the different levels of 

abstraction. 

2.1.1 Structure diagram 

The bench chemist makes regularly use of a structure diagram by sketching the structure 

and reaction in his lab book or in a registry system. The conventions that govern 

orientation, suppression of hydrogen atom and carbon atom labels, and implicitly 

assumed using valence model considerations, are acquired naturally by the chemist 

during its training. Structural diagrams are ideograms(Garfield, 1972) which have the 

advantage that chemists speaking different languages will nevertheless catch the same 

chemical information at sight of the structure diagram. 

2.1.2 Connection Table 

With improvement of computer technology, the storage capacity shifted away from the 

punch cards to hard disks. This permitted faster retrieval. Further, computer graphics 

capabilities were improved and later released as the first commercial system named 

CROSSBOW(Hyde & Thomson, 1968) that printed a molecular graph in high-quality. 

Graphic display became a standard.  

8



Chapter 2 

 
Figure 2.1 Use of a light pen and computer to draw a chemical structure (1976), 

Courtesy Chemical Abstracts Service (CAS) 

Following these developments, connection tables became of interest. These are structure 

representations of tabular form listing atoms and bonds. Molecular Design Limited 

(MDL) started to develop the chemical table file (CTfile) (Dalby et al., 1992; MDL, 

2003) format of which Structure-Data File (SDF) is nowadays a standard exchange 

format for the chemoinformatics community. 

2.1.3 Line notation (LN) 

In the pre-computer days, the question was to find a way to search for a molecule. The 

answer to this problem was provided by line notation, as graphs could not be sorted into 

a list. With the emergence of computers in chemical documentation, line notation were 

further developed because the processing of a (1D) string of characters was relatively 

quick and easy taking into account hardware possibilities of these days. Loschmidt had 

standardized the line-formula delineation in 1861, but the defined symbol set had to be 

simplified and hence adapted to standard typewriter keyboards (Wiswesser, 1985). A 
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molecule is broken down in its smallest parts called tokens in computer science. The 

most acquainted line notations are Wiswesser Line notation (WLN) (Wiswesser, 1982), 

ROSDAL (Representation Of Structure Diagram Arranged Linearly) (Barnard et al., 

1989), SMILES(Weininger, 1988; Weininger et al., 1989) and derived Sybyl Line 

Notation (SLN) (Ash et al., 1997) and most recently InChI (Stein et al., 2005). There 

have been great achievements in two- and three-dimensional structure display, but the 

enduring value of linear descriptions is that they are approximately 110 times less costly 

to process and it takes about 1% of a connection table for storage.  

Molecule LN type LN code 

WLN T56 BMVVJ 

ROSDAL 1=2-3=4-5-6-1-9N-8-7-6,7=10O,8=11O 

SMILES O=C(N([H])C2=CC=CC=C12)C1=O 

SLN O=C(N(H)C[2]=CC=CC=C(@4)@2)C[4]=O 

N
O

O

H

 
Isatine 

InChI InChI=1/C8H5NO2/c10-7-5-3-1-2-4-6(5)9-8(7)11/h1-4H,(H,9,10,11) 

Table 2.1 Example molecule isatine (also known as indoledione) and its different line 

notations 

The pioneer was Wiswesser who developed a line notation (Wiswesser, 1982) in 1949. 

WLN is a fragment-oriented description of a molecule, which is similar to how a 

chemist thinks of the molecule. It has a long list of predefined fragments, but there are 

no rules for canonization. Wiswesser noted in his 1950 memo file: “The greatest 

difficulties in notation and nomenclature are not with the acyclic and monocyclic 

structures, but with the multicyclic ring structures, which seem to contain no logical 

beginning-to-end sequences for simple delineation” (Wiswesser, 1985). WLN and its 
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evolution to advanced WLN (AWLN) were adopted for internal use by many 

pharmaceutical companies as tool to store, retrieve and manipulate chemical structures. 

It allows substructure analysis and had therefore been used to establish structure-activity 

relationships (Adamson & Bawden, 1975). However, WLN was not free from 

definitional problems. 

In the late 1970s, as graphics input and display methods improved, the relevance of line 

notations declined (Lynch, 2002). Surprisingly, line notation had a revival with 

character codings aimed to be readable by a trained chemist and not such much because 

of its character economics. From 1985 on, ROSDAL Syntax was developed by Welford, 

Barnard and Lynch granted by the Beilstein Institut(Barnard et al., 1989). Six rules 

permit to code the organic molecule into an alpha-numeric string. Nevertheless, its use 

was restricted to Beilstein system. One year later, Weininger released SMILES 

(Simplified Molecular Input Line Entry System), but, unlike ROSDAL, atoms are 

encoded by their element character (Weininger, 1988). SMARTS (SMiles ARbitrary 

Target Specification) (Daylight, 2005) is an extension of SMILES and the equivalent of 

the MDL RG (ISIS query) files permitting substructural pattern search. The SMIRKS 

(SMIles ReaKtion Specification) (Daylight, 2005) language has been developed for 

encoding reaction transforms. STRAPS (Smiles TRAnsformation Pattern Specification) 

(Daylight, 2005) is a superset of SMIRKS and SMILES. For the latter the variation is 

too subtle to be noticed even by a expert. Further, the Daylight group developed 

languages for combinatorial chemical mixtures (CHUCKLES, CHORTLES and 

CHARTS) to reflect the mixture obtained by genuine combinatorial synthesis. 

Monomer symbols are used in CHUCKLES (Siani et al., 1994) in the same way as 

atomic symbols are used in SMILES. An extension to the CHUCKLES language that 

represents regular mixtures is CHORTLES (Siani et al., 1995). Finally CHARTS 
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(Daylight, 2005) provides a language for monomer-level patterns specified in 

CHUCKLES and CHORTLES much like the SMARTS language for molecular patterns 

specified in SMILES. 

The latest line notation in the round is the IUPAC’s International Chemical Identifier 

(InChI) (Stein et al., 2005). Like SMILES language (in fact USMILES), the InChI 

allows a canonical serialization of molecular structure. However, SMILES is proprietary 

and unlike InChI is not an open project. There have been several modifications not 

described in the literature to resolve canonization issues. This has led to the use of 

different generation algorithms and/or different implementations, and thus, different 

SMILES versions of the same compound can be found. On the one hand, SMILES is 

certainly more human-readable by an expert and can be used for substructure search and 

analysis. On the other hand, InChI allows with its option that detects mobile hydrogens 

to detect tautomeric forms and group them together. Its very first purpose is to identify a 

compound in a unique manner. InChI is more a concurrent for the proprietary CAS 

Registry Number than for SMILES which it will complement. Recently, InChI was 

reported to improve chemical semantic web (Coles et al., 2005) and to curate, index and 

query 3-D structures (Prasanna et al., 2005). 
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 WLN ROSDAL SMILES InChI 

Canonical   (X) X 

Normalized    X 

Stereochemical X X X X 

Tautomerism    X 

Reaction encoding   X  

Generic atoms   X  

Widespread   X X 

Convertible back to graph (X) (X) X X 

Table 2.2 Line notations and their properties The use of brackets marks that the 

property is in theory described, but practically flaws appeared. 

2.1.4 Markush structure  

Since the mid-1980s three separate groups have been developing operational systems 

for topological storage and retrieval of Markush structures storage and retrieval systems 

of chemical structure information (Berks, 2001). The origin of Markush structure goes 

back to Eugene Markush (Markush, 1924). Nowadays, it commonly occurs in patents 

for protecting compounds relating to an invention. It allows condensing the notation of 

all possible structures emerging from the different substituent possibilities. Abusive 

forms of Markush claims, the so-called “Nasties”, are very difficult to interpret and 

nearly impossible to index (Berks, 2001), whether for MARPAT or Markush DARC 

(Dubois, 2002).  
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Variations used in Markush structures can be of the following types (example given in 

Figure 2.2): 

• Substituent variation; list of specific alternatives (R1). 

• Positional variation; the point of attachment is variable. Example is the summarizing 

of ortho, meta and para substitution (R2) 

• Frequency variation; multiple occurrences of groups (n) 

• Homology variation; generically described groups like alkyl or aryl (R3) 

• Atom variation (R4) 

R1 = methyl, benzyl, naphthyl, adamantyl  

R2 = F 

R3 = alkyl 1-4C 

R4 = O, S 

N
N

N n 

R3
R4

N
R1

R2

 

n = 1, 3, 5 

Figure 2.2 Example of a Markush structure (left) and its substituents (right) 

The type of variability which is the most difficult to understand by computer is the 

positional variation, e.g. an R-group point from the center of a benzene ring.  

Combinatorial chemistry adopted Markush structures and developed its own jargon 

(Leland et al., 1997). “Specifics” are the whole, concrete structures. Markush structures 

are a formal representation of all specifics of a combinatorial library. “Subgenerics” are 

the intermediate structures, meaning that one R-group is explicitly enumerated while the 

substitution point marks remain. 
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Figure 2.3 Markush Structure and specifics of the InterBioScreen Scaffold library 

Markush structure handling remains cumbersome. The chemist is currently endowed 

with several applications to store, retrieve and manipulate specifics. Applications, 

permitting the elementary operations on generic structures, are only available in 

chemical information systems. A first case study could be the reorganization a vendor’s 

compound collection files and its associated scaffold file like InterBioScreen (IBS) 

provide to their customers. As Schuffenhauer et al. point out, the Markush structure 

represents the scaffold as most stringent substructure query of a set of compounds 

(Schuffenhauer et al., 2004). However no standard have been defined which permits 

conversion and exchange. As there is a relationship between a generic structure and its 

specific (Leland et al., 1997), a given file format should be able to represent this 

hierarchy. From that perspective; XML-based Chemical Markup Language (CML) 

(Gkoutos et al., 2001; Murray-Rust & Rzepa, 1999, 2001, 2003; Murray-Rust et al., 

2004) is the ideal candidate molecular format to represent such a hierarchy by defining a 

new entity in the formal specification (DTD) and could soon become the standard 

exchange format for molecular relational databases.  
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2.1.5 Fragmentation codes 

Fragmentation codes were developed in order to index a molecule by specific chemical 

fragments. They originate with 80-column computer punch cards (Figure 2.4). For each 

molecule one card was used and each position on the card was allocated a structural 

feature. If the feature was present in the molecule, then a hole was punched at the 

corresponding position. Several organizations and database producers designed their 

own code which best represent the types of structures they dealt with. Some examples 

are SK&F Code (Craig & Ebert, 1969), IDC GREMAS code, Derwent's CPI code IFI 

Comprehensive Code, but only the latter two are survivors of the fragmentation code 

systems. The machine picked out all cards with given structural characteristics (Figure 

2.4). This sort of search would have been almost impossible, or at least very expensive, 

using the traditional book-based techniques. Nowadays that sort of description is called 

a fingerprint (for example MACCS key fingerprint).  

 
Figure 2.4 Punched cards (left) were sorted via the IBM 101 Electronic Statistical 

Machine (right). Courtesy from Claire K. Schultz, information scientist at Merck, Sharp 

& Dohme, in charge of their retrieval system.  
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2.2 Defining the Scaffold 

2.2.1 Fragment-based drug discovery 

The basic hypothesis underlying fragment-based drug discovery is that a combination of 

basic fragments builds every bio-active molecule. 

A comprehensive review by Rees et al. (Rees et al., 2004) enumerates four categories of 

fragment-based approaches, i.e. fragment evolution, fragment linking, fragment self-

assembly and fragment optimization. The first and the last undergo structural 

modifications by adding supplementary fragments, but the difference consists in 

improvement of binding affinity for the first and of ADMET1 for the last. Fragment 

linking refers to the combination of two (or more) fragments moderately affine for the 

same target and leading to significant gain in binding affinity. Fragment self-assembly 

uses mixtures (libraries) of constituents that react directly in situ the molecular target. 

Dynamic combinatorial libraries (Huc & Lehn, 1997; Lehn & Eliseev, 2001) and click 

chemistry (Kolb et al., 2001; Lewis et al., 2002) are associated concepts. 

In a series of two papers entitled “The properties of known drugs” (Bemis & Murcko, 

1996; Bemis & Murcko, 1999), the authors Bemis and Murcko conducted a 

substructural analysis of the 5120 marketed drugs 2  in order to infer which 

two-dimensional molecular shapes are prerequisite for biological activity. A similar 

study conducted by Cramer et al. (Cramer III et al., 1974) twenty years before, had been 

based on a less sophisticated substructural system (SK&F fragment code) and 

comprised 770 structures tested for antiarthritic-immunoregulatory activity. Cramer et al. 

                                                 
1 Acronym for "Absorption, Distribution, Metabolism, Excretion and Toxicity" 
2 Filtered from the Comprehensive Medicinal Chemistry (CMC) database v94.1. The CMC indexes 8757 

compounds for which 8685 have 3D models (07/2005). Approximately 250 molecules, identified for the 

first time in the United States Approved Names (USAN) list, are added by year. 
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could conclude that substructural analysis is a worthwhile method to develop, since 

advances would be expected (i) in computer and programming technology to allow a 

direct computer manipulation of complete structural records and (ii) in databases acting 

as compendium of known drugs or bioactive molecules.  
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Figure 2.5 Example of molecular dissection according to Bemis and Murcko. Level 0 

presents the initial drug molecule and its all-carbon graph representation. Level 1 

depicts the first dissection into sidechains and framework for both atomic and all-carbon 

graphs. Level 2 is the result of subsequent dissection of the framework into ring systems 

and linkers (open valences on each end). 

Back to the 90s, Bemis and Murcko (Bemis & Murcko, 1996) described a simple, but 

not simplistic, approach to dissect a molecule (its all-carbon graph) in four entities 
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(related through a hierarchical relationship). A drug molecule is composed of sidechains 

and a framework which are in turn composed of ring systems and linkers (Figure 2.5).  

Later published papers (Schuffenhauer, 2005) refer to atomic framework as the 

“Murcko scaffold” and the fragmentation methodology (see below for definition and 

variants of both concepts scaffold and fragmentation methods) is one of most widely 

used method by the community. In some embodiments, carbonyl groups are considered 

to be part of the framework. This can be justified by the fact that the presence of the 

carbonyl moiety imparts significant property differences to the frameworks (Katritzky et 

al., 2000).  

A lead optimization program often generates compounds sharing the same invariant 

substructural moiety. In the literature, this latter moiety is named interchangeably 

scaffold, template, core structure, chemotype or molecular framework.  

A scaffold (Bemis & Murcko, 1996; Xue & Bajorath, 1999) may also be defined as the 

Markush structure without R-groups. Moreover, the “R-group” is defined as a 

functional group or (non-ring) side chain with only one connection point to the rest of 

the molecule. Thus, an R-group is distinct from linkers which connect ring structures 

and that are part of the scaffolds. Leland et al. (Leland et al., 1997) emphasize that 

R-groups can be nested, i.e. an R-group can be contained in a bigger R-group. Scaffolds 

are associated with the computer representation of Markush structures. 
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 Biological scaffold 

N
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O
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R  

Herpesvirus polymerase 

inhibitor 
Topological scaffold 

 N
H

O
R'

R
 

 Synthetic scaffold 

Table 2.3 Example of compound and its respective biological, topological and synthetic 

scaffolds. adapted from (Xu & Johnson, 2001) 

Xu (Xu, 2002) outlines the distinction between topological, biological and synthetic 

scaffold (Table 2.3). The “topological scaffold” is considered as the molecules depleted 

by its side chains (same definition as “scaffold”). The definition of “topological” 

implies some knowledge of the environment; thus the use of this qualification should 

imply explicit points on the scaffold at which R-groups are to be attached or consider 

atom-augmented scaffolds. The “synthetic scaffold” can also be called building block. 

Examples can be found at the suppliers download pages (Figure 2.3). The synthetic 

scaffold is somewhat smaller in terms of atom count than the others. The “biological 

scaffold” is thought to be the structure common to a particular compound series having 
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demonstrated activity (binding affinity/ADME) associated to a biological target. On one 

hand, the scaffold may provide the main contribution to the interaction with the 

biological target. On the other hand, the three-dimensional conformation of the scaffold 

is thought to help orientate the substitutions in space. Therefore, scaffolds can be 

considered as organizational units (Ramstroem & Lehn, 2001). 

In the quest of the universal scaffold, the minimum required qualities are bioavailability 

and synthetic expansion. Several groups (Opatz et al., 2003; Thanh Le et al., 2003) 

propose sugar as platform to tailor molecular diversity. Monosaccharide-based scaffolds 

consist of a single cyclized poly-functionalized aldehyde or ketone unit. The six-carbon 

sugar D-glucose is most abundant monosaccharide in nature. Its five chiral hydroxyl 

functions can be diversified for example by an esterification. Carbo-hydrate like 

scaffolds have been used for exploration of several pharmacologically important target 

like SST5 and MC4 receptors, protein kinases and bacterial cell wall proteins. In this 

context, privileged structures are defined as scaffolds being able to bind multiple 

distinct protein classes (Evans et al., 1988). Recently, Horton et al. reviewed the 

combinatorial synthesis of some twenty bicyclic privileged structures (Figure 2.6) and 

prefer the term “privileged substructure” (Horton et al., 2003). 

N

N
H  

N
H

N

O

 

Phenyl-substituted monocycles Fused [7-6] Ring Systems 

O  
N
H  
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Fused [6-6] Ring Systems Fused [5-6] Ring Systems 

Figure 2.6 Representative examples of bicyclic privileged structures 

Types of scaffolds can be separated mainly into linear and globular scaffolds 

(Ramstroem & Lehn, 2001). These topologies correspond to acyclic and ring-systems 

frameworks. Beilstein generic categories (Figure 2.7) provide further subdivisions based 

on the atom composition.  

 
Figure 2.7 The different Beilstein Generic categories. An asterisk on the generic group 

(i.e. G*) allows ring closure between the group and the rest of the structure. 

Acyclic frameworks account for less than ten percent of the marketed drugs (Bemis & 

Murcko, 1996), although a substantial number of combinatorial libraries based on 

acyclic structures have been produced. The main reason may be the synthetic 

tractability of these combinatorial libraries where a part or even the entire scaffold 

originates from the R-reagents during the synthesis. Brady et al. (Brady et al., 1998) 
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provided such an example where the urea scaffold is completely constructed by the two 

R-reagents. Nature’s best example of a linear scaffold is the protein backbone composed 

of polypeptide subunits. However, a bioactive molecule coming from such libraries, 

carrying cycles at the extremities, will be decomposed into the ring systems and the 

linear part considered as linker. Another arguable case is a branching acyclic template. 

The question is whether is should be considered as linker (by definition, a linker has 

two connection points) or as a mono-atomic scaffold. 

Cyclic templates, whether they are mono-, di-, poly-, fused or spiro cycles, are 

considered to be key features by the chemists (Lipkus, 2001; Nilakantan et al., 1990). 

Moreover, of these, heterocylic structures dominate the chemical scaffold space. De 

Laet et al (De Laet et al., 2000) reported that 53% of compounds contained in the 

Beilstein are heterocyclic. This proportion increases to 68% (at least two third) when 

analyzing molecules having reached at least clinical studies. Much of the structural 

variety of the drug-like space arises from heterocyclic rings and combinations thereof. 

Nevertheless, the ratio of heteroatoms to carbon atoms must lie in the recommended 

range between 0.1 and 1.8 (Feher & Schmidt, 2003; Zheng et al., 2005), if the 

application field of the structures should be pharmaceutical and not petrochemicals or 

explosives. 

Recently, the docking problem (i.e. how to find the optimal interaction between two 

molecules) was associated to the scaffold concept. In a first example, Lamb et al. (Lamb 

et al., 2001) have developed a rapid docking method by evaluating multiple libraries 

against multiple biological targets during the design stage. The method involves three 

main stages: (i) dock the scaffold; (ii) select the best substituents at each site of diversity 

(scaffold plus single substituent is constructed for each site and docked); (iii) compare 

the resultant fully substituted molecules within and between libraries. This approach 
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provides a rapid way of exploring large lists of possible substituents with linear rather 

than combinatorial time dependence. The method has been exemplified for three 

libraries (one peptide, two non-peptides) docked into three different serine proteases. In 

this way, libraries can be designed to hit families of proteins, or conversely, selectivity 

issues can be explored. However, simple docking of a “bare” scaffold is not a good 

method of placing the scaffold into productive geometries. A site generated evaluation 

filter has proved to be valuable. In a second distantly related approach, Su et al (Su et al., 

2001) suggest that a segregation of potential ligands into families of related molecules 

should increase the diversity of hits. The third example outlines scaffold-driven docking 

proposed by Chema et al. (Chema et al., 2004). In order to identify preferred binding 

mode(s) of a scaffold, a large set of different ligands sharing the same scaffold is 

docked to the same protein target. The method is applied to members of protein kinase 

family as target and suggests that predicted alternative binding modes could be an aid to 

experimentalists.  

2.2.2 MCS, mcs and MOS 

We saw that the scaffold is defined as the invariant part among the compounds 

composing a combinatorial library. Therefore, it can be represented as a Markush 

structure. In many real world problems, the common invariant moieties, if not defined, 

have to be detected. Hattori et al. (Hattori et al., 2003) for example, applied an MCS 

search implemented with heuristics to the KEGG/LIGAND database of metabolites. 

The purpose of this project was to identify biochemical meaningful substructures and 

establish the correspondence to the KEGG pathway map numbers. MCS algorithms are 

also applied by Bioreason ClassPharmer (Bioreason, 2005) and Tripos Distill (Tripos, 

2005) to organize thousands of “active” compounds into meaningful groups. Statistical 

methods are subsequently applied to structures and related data to learn as much 
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information as possible. Hence, 2-3 series of compounds can be rationally selected by 

the medicinal chemist for follow-up studies.  

The MCS problem belongs to the class of graph theoretic problems called isomorphism 

algorithms. Wheland (Wheland, 1949) and Mooers (Mooers, 1951) independently 

suggested to record chemical structural formulas as graphs on a computer for structure 

and substructure searches. Graphs are indeed a particularly convenient abstraction of a 

molecule (Figure 2.8). The atoms and bonds equal the set of vertices (nodes) and of 

edges (arcs), respectively (Hansen & Jurs, 1988). Lipinski recalls in his publication 

about the “Rule of Five” (Lipinski, 1997) that chemist’s very strong skills in pattern 

recognition and their outstanding chemistry structural recognitions skills are likely to 

enhance information transfer. 

N N
O

S
NH

O

O
 

Figure 2.8 Molecule and its abstraction into graph 

Several subgraph concepts have been defined in the literature (McGregor & Willett, 

1981). MCS stands for maximum common substructure or subgraph. This acronym can 

also be employed for minimum common superstructure or supergraph, but in order to 

distinguish the latter from MCS, we will denote it “mcs”. Their intuitive relationship is 

confirmed in the sense that computation of the one can be reduced to the computation of 

the other (Bunke et al., 2000; Fernández & Valiente, 2001). MCS is often used as 

collective term. Sometimes MCS is used in equivalent manner than the Vleduts 

definition of “maximal overlapping substructure” (MOS) (Vleduts, 1977). Another 

definition sets the MCS equal to the largest single contiguous substructure, whereas the 
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substructures of MOS do not need to be connected. Yet, Raymond (Raymond et al., 

2002) defined the maximum common induced subgraph (MCIS) and the (disconnected) 

maximum common edge subgraph (MCES) as the common substructure consisting of 

the most atom pairs and bond pairs, respectively. Figure 2.9 depicts two PDE4 

inhibitors, Rolipram and Cilomilast, with their respective MCIS and MCES highlighted 

in bold. 

N

O

O

O

O

HN

O

O

O

H  

MCIS or MCS 

Rolipram                                       Cilomilast  

N

O

O

O

O

HN

O

O

O

H  

MCES or MOS 

Figure 2.9 Different common subgraphs of two PDE4 inhibitors 

Different algorithms to uncover the MCS have been developed. The search for the MCS 

is a NP-complete problem3, which implies that all exact algorithms have a worst-case 

time complexity very likely being exponential to the number of vertices in the graph. 

The MCS problem is reduced to the maximal clique (Kann, 2000) problem, but remains 

a NP-complete problem. Thus, the introduction of heuristics is required. Search space 

                                                 
3 NP stands for "nondeterministic polynomial time" (Lopez-Ortiz, 2000). 
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may be pruned by removing redundant matching units for example (Raymond et al., 

2002). Often a threshold size (heavy atom count) has to be defined to ensure that the 

user is not overwhelmed by the huge output consisting primarily of small common 

substructures with little structural significance.  

MCS algorithm

exact approximate

connected unconnected connected unconnected

MCS algorithm

exact approximate

connected unconnected connected unconnected  
Figure 2.10 Classification of MCS algoritms, adapted from Raymond (Raymond, 2002). 

A number of maximum clique detection algorithms have been published in the literature; 

among those can be cited Bron-Kerbosch, Crandell-Smith and Rascal algorithms. The 

fastest algorithm at present has been reported to be Rascal (Stahl et al., 2005). These 

algorithms can be categorized (Figure 2.10). Nevertheless, due to vague or ambiguous 

descriptions, categorization appears to be very difficult to realize. 

2.2.3 Fragmentation methods 

In order to conduct substructure analysis or make use of one of the fragment-based 

approaches, existing molecules (preferred are drugs or drug-like) have to be fragmented. 

We describe selected approaches of partitioning a molecular graph. 

The most obvious way fragmentation of a molecule is breaking it down into its 

elementary parts, the atoms and bonds. Solov’ev et al. generated several different 

ensembles of subgraphs (atom/bond sequences and “augmented atoms”) from which 

upon statistical criteria the optimal molecular fragment is selected (Solovév et al., 2000). 
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As described before, Murcko and Bemis provided a pregnant method of fragmentation 

for their substructural analysis (Bemis & Murcko, 1996). Xue and Bajorath used a 

kindred method to isolate scaffold and R-groups of from large compound collections 

(Xue & Bajorath, 1999). Another way of fragmentation is used by docking methods. 

Molecules are cut into fragments by splitting at rotatable bonds. This is also how the 

medicinal chemist proceeds when deconstructing a hit.  

In the RECAP method (Retrosynthetic Combinatorial Analysis Procedure) (Lewell et 

al., 1998), molecules are fragmented in silico based on chemical knowledge. Eleven 

chemical bond types have been defined to cleave the molecule in fragments (Table 2.4). 

These bond types are derived from common chemical reactions. The cleavage of ring 

bonds is prohibited in order to preserve ring motifs. Thus the rules are restricted to 

cleave acyclic bonds. Fragments are defined to belong to two categories: terminal 

monomer (one connection point) and core template (two or more connection points). In 

order to avoid “trivial” fragments, possible terminal fragments either consisting of 

hydrogen, methyl, ethyl, propyl and butyl (and in some embodiments also phenyl) is not 

cleaved off. Later, Lewell at al. created a drug ring database by deconstructing the 

molecules at single and olefinic non-cyclic bonds (Lewell et al., 2003). Katritzky et al. 

propose an outline of an expert system that permits to define the principal template of a 

molecule and defines simple rules helping to decide whether two compounds belong to 

the same template or not (Katritzky et al., 2000).  
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Bond Type Cleavage rule SMIRKS 

Amide N

O

 

[O:3]=[C!$(C([#7])(=O)[!#1!#6]):2]-[#7!$([#7][!#1!#6]):1] 

>>[O:3]=[C:2].[#7:1] 

Ester 
O

O

 

[#6!$([#6](O)~[!#1!#6])][O:2][C:1]=O 

>>[C:1]=O.[#6][O:2] 

Amine N

 

[#6:2]-[N!$(N[#6]=[!#6])!$(N~[!#1!#6])!X4:1] 

>>[N:1].[#6:2] 

Urea N N

O

 

N[C:1]([N:2])=O 

>>N[C:1]=O.[N:2] 

Ether O

 

[#6]-[O!$(O[#6]~[!#1!#6]):1]-[#6:2] 

>>[#6:2].[O:1]-[#6] 

Olefin C C  
[C:1]=[C:1] 

>>[C:1].[C:1] 

Quaternary nitrogen N
+

 

[#6:1]-[N$(N([#6])([#6])([#6])[#6])!$(NC=[!#6]):2] 

>>[#6:1].[N:2] 

Aromatic nitrogen 

- 

Aliphatic carbon 

Nar C(r0)  
[n:1]-[#6!$([#6]=[!#6]):2] 

>>[n:1].[#6:2] 

Lactam nitrogen 

- 

Aliphatic carbon 

Rn

N
Rn

O

Rn

C(r0)  

[C:3](=[O:4])@-[N:1]!@-[#6!$([#6]=[!#6]):2] 

>>[C:3](=[O:4])[N:1].[#6:2] 

Aromatic carbon 

- 

Aromatic carbon 

Car Car  
[c:1]-[c:1] 

>>[c:1].[c:1] 

Sulphonamide S N
O

O  

[#7:1][S:2](=O)=O 

>>[#7:1].[S:2](=O)=O 

Table 2.4 Eleven RECAP bond cleavage types with corresponding SMIRKS 
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2.3 On the diversity and complexity in molecular library 

design 

Diversity, like its antonym similarity, is in the eye of the beholder. Indeed, there is no 

consensus about the manner to quantify molecular diversity (Martin, 2001; Monev, 

2004). We are electing to restrict ourselves to considerations on molecular diversity that 

deal with the design of a screening set. This set may stem from a collection of 

individual compounds or a combinatorial library. Similarity property principle states 

that structural similarity engenders similar properties. Conversely, diverse properties are 

represented by diverse structures. A ‘cherry-picking’ approach is adequate for collection 

of individual compounds. Before continuing with the review of available methods, let 

us first present some aspects of the quantification of molecular diversity. 

A currently standard approach to assess the diversity of chemical structure databases 

consists in the characterization of the Tanimoto indices distribution. From a conceptual 

point of view, two objects are compared by their characteristics to measure their 

difference or overlap. In order to be comparable, the same measure composed of 

coefficient and descriptors must be applied to all object/molecule pairs. Holliday et al. 

investigated on the characteristics of 14 standard similarity coefficients (Holliday et al., 

2003) and were particularly interested by the tendency of the Tanimoto (alias Jaccard) 

coefficient to select small compounds in dissimilarity selection. It should be noted that 

the coefficient has to be appropriate to a specific goal. Monev provides an indicative 

guide which distinguishes between three types (a representative is cited in brackets): 

similarity coefficient (Tanimoto), dissimilarity coefficient (Euclidean distance) and 

composite coefficient (Tversky) (Monev, 2004). The other issue is the dependency of 

the measure on the chosen characteristics. For a molecule, these characteristics are 

interchangeably called properties, descriptors, features, attributes, etc. These have to be 

30



Chapter 2 

independent of each other and discriminating. Several research groups have 

investigating descriptors selection methods appropriate for a given problem. For 

example, Hert et al described the use topological descriptors in ligand-based virtual 

screening (Hert et al., 2004). Meanwhile, the literature (Livingstone, 2000) counts a 

plethora of descriptors (Dragon software (Talete, 2005) calculates currently 1664), 

mostly developed for establishing quantitative structure-activity relationship (QSAR). 

Common used categories are constitutional, topological, electrostatic, geometrical, 

quantum chemical and statistical mechanical descriptors. An unbiased criterion for 

measuring dissimilarity between molecules should be established, independent of the 

fingerprints or descriptors used for similarity searching. Jenkins et al suggest to cluster 

in scaffold classes (Jenkins et al., 2004) using molecular equivalence indices (Meqi) 

developed by Xu and Johnson (Xu & Johnson, 2001; Xu & Johnson, 2002). The Meqi 

scaffold is defined as a“recognizable structural feature” (in fact a pseudo-graph) shared 

by an exhaustive subset of molecules. These latter are reduced to their topology and 

their memberships do not shift, if more compounds are added to the dataset, as in other 

clustering methods. Graph reduction also opened up the possibility for scaffold hopping 

(Barnard et al., 1989; Gillet et al., 2003). 

Beyond mere random subset selection, techniques borrowed from machine-learning 

literature like clustering, cell-based, dissimilarity-based and optimization-based 

methods have applied to the chemical context (Willett, 2000). Regardless the method, a 

similarity function for pairs of molecules is needed. The simple idea behind the 

application of clustering (Downs & Barnard, 2002) and cell-based algorithms (Xue et 

al., 2004) to a compound collection is that once clusters are formed, one selects a 

limited number of compounds from each cluster to be tested. Thus, the subset is 

expected to be representative and diverse. If a compound has been confirmed as hit, its 
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cluster members are assayed subsequently. Dissimilarity-based compound selection 

(Snarey et al., 1997) comprises several maximum-dissimilarity and sphere-exclusion 

methods. Whereas the maximum-dissimilarity algorithm aims at minimizing the sum of 

all pair similarities in the subset, in a sphere-exclusion algorithm the largest subset is 

selected in which the pair similarity between any pair of molecules does not exceed a 

given threshold. The latter has also the problem that final subset size can not be set the a 

priori, unless one wants to risk uneven sampling. Examples of the optimization-based 

methods have been implemented by simulated annealing (SA) (Agrafiotis, 1997; Brown 

et al., 2000; Zheng et al., 1999) and genetic algorithms (GA) (Gillet et al., 1999).  
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Figure 2.11 Combinatorial reagent- and product-based design 

Moreover, these methods can be used for ‘product-based design’ of combinatorial 

libraries (Figure 2.11). Let us take the example of a combinatorial synthesis describing a 

two-component reaction with M reagents of type A and N reagents of type B, yielding 
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MN products of type AB. Product-based design involves selecting the mn products from 

the fully enumerated set of MN possible products. A reagent-based design procedure 

(Figure 2.11) (Gillet et al., 2002), conversely, involves selecting a diverse m-member 

subset from all of the M available reagents of type A and a similar n-member subset 

from all of the N available reagents of type B (Martin et al., 1995). Whether 

reagent-based selection is less (Brown et al., 2000) or more (Sheridan et al., 2000) 

demanding of computational resources may depend on its implementation, but it may 

result in libraries that are less diverse than those resulting from product-based 

approaches (Gillet et al., 1997). 

The objective of a library determines whether one strives for maximal diversity or a just 

diverse enough library (Martin, 2001). Three types of libraries in the context of 

screening are currently distinguished: (i) large, exploratory libraries, (ii) medium-sized, 

targeted libraries and small focused libraries. In the case of minimal information about 

the biological target, largest libraries screened nowadays contain between 105 and 106 

compounds (Posner05). A decade ago, large combinatorial libraries had several 

drawbacks, like lack of diversity and drug-like qualities, as well as deconvolution, 

isolation and identification problems from compound mixtures. A high number of 

compounds tested did not guarantee a high number of actives.  

A step further in the drug design process, more biological activity data ought to be 

known. A preliminary selectivity profile might be established with the help of targeted 

libraries. These are sets of individual pure compounds biased towards protein families, 

mostly G-protein coupled receptors (GPCR), kinases, nuclear receptors, proteases and 

ion channels. The scaffolds underlying those compounds stem from the “privileged 

substructures”. Cell-based algorithms are often applied to the design of targeted libraries 

in order to ensure that the designed library covers all members of the protein class (Xue 
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et al., 2004). Nilakantan addresses well the question by asking whether it is better to 

start from 10 000 mutually dissimilar compounds or 100 analogs each of 100 different 

scaffolds (Nilakantan & Nunn, 2003). The author has a preference for the latter 

approach and argues that hit identification may be followed by a preliminary SAR. A 

hypothesis was formulated that small multiple-scaffold libraries are superior to large 

single-scaffold libraries in terms of their potential to hit a broad panel of biological 

targets (Sauer & Schwarz, 2003). This hypothesis was verified through computation of 

three-dimensional shape descriptors (normalized ratios of principal moments of inertia). 

Focused libraries are designed for one protein target and its primary goal is the 

optimization of lead structure, i.e. to bring the affinity to the low nanomolar range. The 

scaffold will orient the ligands in a uniform way and an increase in average affinity of 

these ligands to the target protein is expected. However, the difference between focused 

and targeted libraries concepts seems to be a question of semantics. Indeed, it should be 

noted that both concepts are used in an interchangeable manner and any categorization 

attempt will be artificial. The size of such libraries varies from 104 down to 102 

compounds, the latter named mini-libraries (Nilakantan & Nunn, 2003). Hence, 

diversity is inversely proportional to the knowledge about the target. 

With the advent of the chemical genetics concept, small organic molecules can also act 

as a chemical tool to help target discovery (Stockwell, 2000). Shedden et al. coined the 

term “supertargeted chemical library” (Shedden et al., 2003) and define it as a large 

collection of compounds designed to localize to a specific organelle or subcompartiment. 

An application case was the design of a fluorescent library based on a stryryl scaffold 

targeting the organelle. In this example, scaffold-based library was used as molecular 

tool with optical properties.  
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Diversification of a molecular library can be achieved by incorporating not only various 

scaffolds, but also with various degrees of complexity. Recently, Schuffenhauer et al. 

reported that some diversity selection algorithms are biased towards molecules with 

lower complexity (Schuffenhauer et al., 2004). However, the more complex a molecule 

(in terms of structural features), the higher its biological activity (Hann et al., 2001). 

Natural products as source of scaffold have been suggested to present a much higher 

level of sophistication (Ortholand & Ganesan, 2004). Traditional combinatorial 

chemistry fails to provide (among other properties) complex rings systems and enough 

stereocenters (Feher & Schmidt, 2003). With diversity-oriented synthesis (DOS) 

approach (Burke et al., 2004; Burke & Schreiber, 2004; Tempest & Armstrong, 1997), 

it is now possible to synthesize molecules with diverse skeletons right from the start. 

Natural product-like cyclic architectures are predominant in compounds synthesized by 

DOS, although obtained by short, efficient synthetics routes. 

There is general tendency to focus on smaller scaffold-based libraries and design them 

joining up chemoinformatics, medicinal and combinatorial chemistry approaches. 
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2.4 Enumerative molecular library design 

Virtual library design and enumeration is currently regarded as an important capability 

in drug discovery. Many pharmaceutical companies have developed programs to 

address this need (Leach et al., 1999; Yasri et al., 2004). Possible objectives for virtual 

combinatorial library generation are: 

• Enumeration of a library for registration 

• Properties investigation of library 

• Structure-based evaluation, diversity analysis of large libraries. 

The basic enumeration strategy is illustrated by the Figure 2.12. Full connection tables 

(CT) are obtained by assembling the generic structures according the given instructions. 

A subsequent deployment step permits to generate 2D or 3D coordinates. A 

concatenated name is associated to the CT. 

Generic Structure Assembly Instructions

Concatenated Name

CT Structure

Coordinates

Generic Structure Assembly Instructions

Concatenated Name

Assembly Instructions

Concatenated Name

CT Structure

Coordinates

CT Structure

Coordinates
 

Figure 2.12 Basic enumeration strategy, adapted from Leland (Leland et al., 1997) 

The following sections are technical discussions about the possibility to enumerate in a 

quick manner fragments to specifics. 

Two types of enumeration are distinguished: complete, so-called “bulk” enumeration 

and constrained enumeration (Leland et al., 1997), the latter resulting in a subset of 

structures of the former. The enumeration can be constrained by a list of disallowed 

bond and angles (Rotstein & Murcko, 1993) or a set of selectivity rules imposing 
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property ranges For example, Nilakantan submitted a method for structure generation 

by random combination of known fragments (Nilakantan et al., 1991). Subsequent 

selection removes the gross of chemically unstable or very unlikely structures. This 

resulted in a at least 99 % rejected structures. The selection of the reagents can be 

handled by subset selection algorithms (previous section) or the user interactively.  

The generic structures are either joined by fragment marking (also known as the 

Markush approach) or reaction transform (Agrafiotis et al., 2002). In the Markush 

structure approach, the fragments are marked by a special character to define the 

substitution points (Figure 2.13). The following examples illustrate the strategy. 

SMILIB (Schuller et al., 2003) was developed to perform virtual reactions of building 

blocks and linkers with scaffolds using SMILES notation. The “Any” (“[A]”) atom 

symbol is replaced by a "%N" (N is an integer above 9), it becomes a bond symbol. 

Concatenation of the incomplete ring closure characters (“%”) containing strings using 

the dot disconnect character results in unconventional, but nevertheless valid SMILES. 

Serving as input for 2D or 3D coordinates generators, a complete molecule is created. 

The same result is obtained using an OpenEye(OpenEye, 2005) SMILES extension for 

external attachment points, an integer value following the “&” character corresponding 

to the atoms map index. "&1" is identical to "R1" and to "[*:1]".  

N1([*:1])N=NC([*:2])=C1[*:3]

N
N

N

*2 *
3

*1
R1 *

R2 *

R3 *

N
N

N

R2 R3

R1

+

N1([*:1])N=NC([*:2])=C1[*:3]

N
N

N

*2 *
3

*1
R1 *

R2 *

R3 *

N
N

N

R2 R3

R1

+

 
Figure 2.13 Fragment marking of 1,2,3-triazole core and R-groups 
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Zauhar et al. implemented with their program ALMS (Automated Ligand-binding with 

Multiple Substitutions) (Zauhar et al., 2003), written in the SYBYL programming 

language (SPL), a strategy to assemble hit fragments to a selected framework in a 3D 

conformation. This latter was prepared by considering each ring hydrogen of the 

framework and each nonring hydrogen of a hit fragment as a possible attachment point, 

marked by a dummy atom. A fragment was attached to the framework by removing the 

dummy atoms on both the hit and the target inhibitor site and replacing these with a 

single bond linking the inhibitor and the fragment. The orientation of the newly attached 

fragment was then optimized using FlexiDock, the genetic-algorithm-based optimizer 

included with the SYBYL modeling package.  

The “reaction transform” approach proceeds by mapping the atoms of the implicated 

reagents. Thus atoms that change during the reaction are mapped and identified on the 

reactant and product side. Atom maps can convey the reaction mechanism (Figure 2.14). 

Reaction sequence, as implemented in ChemAxon Reactor (ChemAxon, 2005), allows 

in addition to process reaction sequentially. Highly adapted formats are the MDL RXN 

or RDF, as well as Daylight SMIRKS. 
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Figure 2.14 Huisgen 1,3-dipolar cycloaddition of azides and acetylenes by SMIRKS to 

give 1,2,3-triazoles 

Lobanov et al. report about the construction of virtual combinatorial libraries (Lobanov 

& Agrafiotis, 2002) by implementing a reaction scripting language (RSL). The 
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definition of each combinatorial reaction equals a named Tcl (Tool command language) 

and is composed of three blocks; definition of reagents and the products, then assembly 

instructions and lastly, a statement triggering the mappings of the reactive patterns onto 

the reagents, compiling the assembly instructions and storing the virtual library into a 

file. Substructural patterns are encoded in SMARTS, not in SMIRKS. The latter are 

restricted in reaction functionalities, i.e. bond queries are not available and if the bond 

order or the connectivity changes, atomic expressions can not contain queries. 

Recently, Wolber at al. proposed CombiGen (Wolber & Langer, 2000). Three phases: 

parameterization, compound generation and filtering. In the parameterization phase, the 

program has as additional feature the possibility to evaluate and prioritize parts of the 

fragments according to their reactivity potential. Before the compound generation 

process starts, the set of rules, defining assembly, is extracted from the user-defined 

fragment pool and interactivity permits to adapt those rules if necessary. A sequencer 

class generates arrays of integer upon the user-defined constraints which represents 

fragment index sequences. In the filtering phase, the constraints like range of molecular 

weight, number of atoms and chemical features are evaluated in order to retain only 

corresponding molecules. Selected fragments are then combined to constitute the virtual 

combinatorial library. 

MOLGEN-COMB (Gugisch et al., 2000) let the user choose or define interactively the 

core and building blocks. The symmetry group of a molecule is taken into account 

during the combinatorial generation of a non-redundant compound library. 

De Novo design techniques dispose all of a structure generation module like those 

described herein. For a more informative introduction to the field of De novo design, 

detailed texts are available (Schneider & Fechner, 2005). 
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Virtual combinatorial chemistry, as well as its real world congener, is shifting away 

from the mix-and-split era, where fragments were added together just for the sake of 

creating new combinations and thus increase the number of molecules. 

2.5 Conclusion 

This chapter has presented some salient concepts that are of interest for 

computer-assisted library design. Of particular interest to this work is the MCS problem 

as it pertains to scaffold detection. Considering the literature and taking into account our 

objectives which are to develop and to explore a strategy for design of small-sized, yet 

diverse libraries and its related scaffold database, we based ourselves mainly on an 

“inverted” fragmentation method (Bemis & Murcko, 1996). As we saw before, this 

method decomposes a molecule in a hierarchical manner. 
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3.1 Abstract 

High-throughput screening nowadays requires compound libraries in which the 

maximal chemical diversity is reached with the minimal number of molecules. 

Medicinal chemists have traditionally realized assessment of diversity and subsequent 

compound acquisition although a recent study suggests that experts are usually 

inconsistent in reviewing large datasets. In order to analyze the chemical diversity of 

commercially available screening collections, we have developed a general workflow 

aimed at (1) identifying drug-like compounds, (2) cluster them by maximum common 

substructures (scaffolds), (3) measure the scaffold diversity encoded by each screening 

collection independently of its size, and finally (4) merge all common substructures in a 

non-redundant scaffold library that can easily be browsed by structural and topological 

queries. Starting from 2.4 million compounds out of 12 commercial sources, four 

categories of libraries could be identified: large and medium sized combinatorial 

libraries (low scaffold diversity), screening libraries (medium diversity, medium size) 

and diverse libraries (high diversity, low size). The chemical space covered by the 

scaffold library can be searched to prioritize scaffold-focused libraries. 
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3.2 Introduction 

With the advent of initiatives like the CNRS “National Chemical Library”("National 

Chemical Library, National Center for Scientific Research (CNRS)") or the NIH 

Molecular Libraries Initiative (Austin et al., 2004), public research rejoined the 

pharmaceutical industry in its effort to organize and to curate small molecular-weight 

molecules for the purpose of drug discovery and target de-orphanization. The drastic 

and steady increase of commercially available compounds beginning in the early 1990s 

(Webb, 2005), provided chemical information scientists the opportunity to enhance the 

diversity of their proprietary compound collection. The main challenge that remained 

over the years which is regularly revisited (Bocker et al., 2005) is the way of measuring 

the diversity of a compound library. Very informative testimonials about this key aim 

were shared with the community elsewhere (Martin, 2001). Nevertheless, molecular 

diversity is heavily depending on descriptors, metrics and multivariate methods used to 

assess it. Most studies on commercially available compound libraries (Baurin, Baker et 

al., 2004; Cummins et al., 1996; Shemetulskis et al., 1995) have traditionally used 

physicochemical and topological descriptors, summed up into a score (Sirois et al., 

2005) or encoded into fingerprints (McGregor & Pallai, 1997) or hash codes 

(Nilakantan et al., 1997; Voigt et al., 2001) to evaluate the uniqueness and diversity of 

such libraries. Although fingerprints can be quickly computed for large collections of 

compounds, it results in classifications of molecular libraries that are not very intuitive 

for medicinal chemists because a single class of compounds may contain quite different 

molecular scaffolds accessible by very different synthetic routes. Traditionally, 

medicinal chemists mining high-throughput screening (HTS) data have organized hits 

into homogeneous chemical series. Why not use the same partitioning method before 

the virtual or real screening process? Archiving compounds by scaffolds is much more 
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natural but computationally more demanding if calculated ad hoc. Moreover, various 

definitions of a scaffold (Table 2.3) are possible such as maximum common 

substructure (McGregor & Willett, 1981), largest rigid fragment (Su et al., 2001), 

molecular frameworks or graph frameworks (Bemis & Murcko, 1996) with or without 

descriptors (e.g. topological torsions) (Nilakantan et al., 1987) and fragments as 

generated by the RECAP method (Lewell et al., 1998). 

During a medicinal chemistry project, it is not uncommon that structural parts of the 

scaffold are redefined by either extension or reduction. If the limit of one extreme is 

reached by setting the full compound equal to the scaffold, how far can one reduce the 

compound structure to obtain a chemically meaningful scaffold? 

In the present study, we classified 17 commercially-available screening collections 

according to graph-based maximum common substructures("ClassPharmer Suite") and 

joined the resulting classification into a single library of non-redundant classes. A new 

metric (PC50C) is proposed to assess the diversity of a screening collection, by 

computing the percentage of classes accounting for 50% of classified compounds. Since 

this metric is independent of the size of a library, it can be used to compare collections 

of different sizes.  
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3.3 Methods 

The overall workflow for reading, processing and extracting molecular scaffolds out of 

commercial libraries is illustrated in Figure 3.1 and further detailed in the following 

paragraphs. 
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Figure 3.1 General workflow for processing screening libraries 

3.3.1 Database Processing 

The screening collections used in this study date from the last quarter 2003 except the 

MDDR for which the first 2004 release has been used. A total of 17 libraries from 12 

suppliers (Table 3.1) plus the MDDR describe the commercially-available chemical 

space addressed by the current report. 
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Supplier Collection Code 

Asinex Gold ASIg 

 Platinum ASIp 

ChemBridge EXPRESS-Pick + H2LS CBG 

Chemical Diversity CombiLab CDIc 

 International Diversity CDIi 

CNRS National Chemical Library CNR 

ChemStar  CST 

InterBioScreen Natural IBSn 

 Synthetic IBSs 

Maybridge  MAY 

Bionet  NET 

Specs  SPE 

Timtec Natural TIMn 

 Synthetic TIMs 

Tripos  TRI 

Vitas-M Stock VITs 

 Tulip VITt 

MDDR 2004.1 MDDR 

Table 3.1 Screening collections used in the study

It covers 2 410 857 compounds easily available as powders in vials. The collections 

need also to have a computer-readable counterpart, delivered as SDFile on a CD-ROM 

or downloadable from the supplier webpage (Sirois et al., 2005). The very first 

processing steps consisted in standardizing the structure and data headers of SD files 

using an in-house Perl script. Property or functional group-based filtering rules 

(Charifson & Walters, 2002) implemented in OpenEye’s Filter ("Filter 1.0") program, 
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were then used to select the most suitable compounds for each library (see filtering rules 

in Supporting Information). In this step, counter-ions were removed and the ionization 

state of each compound at physiological pH was assigned. For each collection, an 

additional step consisted of eliminating remaining redundant compounds taking 

stereochemical information into account using the CLIFF program ("Cliff") (please note 

that CLIFF has recently been split into several separated routines). 

3.3.2 Compound Classification 

One of the major challenges was to obtain an organization of the screening collections 

into chemically meaningful classes. ClassPharmer™ Suite’s proprietary clustering 

methodology ("ClassPharmer Suite") was adopted. In order to make a clear distinction 

with the common association of clustering with fingerprints in chemoinformatics, the 

grammatical root “class” (classes/classification) is preferred over “cluster” 

(clusters/clustering). But in strictly algorithmic terms, the method used herein happens 

to be a clustering algorithm and not a classification where one starts from predefined 

scaffolds (Roberts et al., 2000). 

Two parameters mainly influence the outcome of the classification: the homogeneity 

and the redundancy level. Homogeneity is related to the size (heavy atom count) of 

scaffold divided by the size of largest compound in the class. Redundancy describes to 

which extent a compound is allowed to appear in multiple classes. Hence the classes are 

represented by a scaffold assimilated to the maximum common substructure (MCS). 

The underlying algorithm is covered by trade secret but can however be approximately 

described as follows: given a dataset of N compounds, (i) find topologically aware 

(approximated) MCS for all pairs, triplets, quadruplets, …, N-1 groups of compounds; 

(ii) eliminate MCS that do not fulfill the user-defined homogeneity level; (iii) select the 

smallest number of MCS that fulfils the user-defined redundancy level while giving the 
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minimal number of singletons and, if the option is selected, (iv) generate subclasses 

with larger (exact) MCS where subsets of a class with higher homogeneity can be 

found. The implementation of the algorithm is preceded by a normalization process of 

the input structures. For the present classification, the homogeneity and redundancy 

were set to medium and low, respectively. Exact ring closure and exact atom match 

parameters were chosen to define classes. No subclasses were computed. 

3.3.3 Scaffold Distribution 

The non-hierarchical disjunctive algorithm which was used, allows that a compound 

belongs to more than one class. In order to compare the scaffold distribution of different 

libraries, the inter-classes redundancy of a compound was removed using a Python 

script based on OpenEye’s OEChem1.3 library.("OEChem") This task was achieved by 

computing the Central Scaffold Score (CSS) of each compound/class pair and assigning 

the compound to the class presenting the lowest CSS, calculated by the following 

equation: 
R

scaffoldcompound

N
MWMW

CSS
−

=  

where MWcompound is the molecular weight of a compound, MWscaffold the molecular 

weight of the scaffold, and NR the number of substitution points (R-groups).  

For every screening collection, the classes were ordered by decreasing population and 

two metrics (NC50C, PC50C) computed. NC50C describes the number of non-

redundant classes describing 50% of classified compounds. PC50C features the 

percentage of classes covering 50% of classified compounds. Two classifications were 

analyzed. In the first one, all classes of at least two unique compounds were 

investigated. In the second one, a threshold of 25 was assigned to the minimal size of a 
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class (number of unique compounds). Classes populated by less than 25 unique 

compounds will be referred to as 'rare scaffolds' (Figure 3.1). 

3.3.4 R-group decomposition 

The topology around the scaffold and generation the corresponding of SMILES strings 

(Weininger, 1988) were obtained by R-group decomposition. A compound subset and 

its corresponding scaffold were the input for finding the minimum common supergraph 

(Willett, 1985) under the form of a Markush structure. For each compound/scaffold pair, 

the substitution points were determined and a scaffold with R-groups was generated. 

Among this R-group labeled scaffold, isomorphs were eliminated and pair-wise 

substructure relationship was checked. This reduced considerably the number structures 

to compare. The remaining N Markush structures were then used to find the minimum 

common super-Markush-structure. The processing is similar to the one described by 

Brown and al. which identifies the hyperstructure (Brown et al., 1992) and is outlined as 

follows: 

SuperStructure := MarkushStructure(1) 

FOR n :=2 to N DO 

BEGIN 

COMPARE(SuperStructure, MarkushStructure(n)) 

UPDATE_CT() 

END 

As for the removal of inter-classes redundancy, the R-group decomposition was 

implemented in Python based on OpenEye’s OEChem ("OEChem"). 
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3.3.5 Setting-up a scaffold library 

All classes (excluding the singletons) were assembled from the generated classifications 

to form a scaffold library. Computing InChI ("InChI (IUPAC International Chemical 

Identifier)", 2005) representations ('Mobile H Perception' option ON) for all scaffolds 

gave the possibility to identify tautomeric forms and group them together. All structural 

data were deposited in a relational database (MySQL 4.1; for database structure, see 

Supporting Information Scheme A). Each scaffold was annotated with molecular 

properties (AlogP, PSA, hydrogen bond donor and acceptor count, rotatable bond and 

ring systems count) and the Markush structure SMILES. The main scaffold structure 

table can be browsed and queried by similarity, substructure or superstructure using 

JChemBase ("JChemBase"). 

3.4 Results and discussion 

3.4.1 Processing the libraries 

In a first step, 17 commercially-available screening collections were processed to retain 

unique drug-like molecules. In addition, a prototypical collection of drug-like 

compounds (MDDR) was taken as reference to delimit true drug-like chemistry space. 

In agreement with previous reports (Baurin, Baker et al., 2004; Charifson & Walters, 

2002), the percentage of drug-like molecules varies from ca. 30% (ChemStar) to 60% 

(Asinex Platinum) (see Table 3.2). No relationships could be established between size 

and drug-likeness of the libraries. It should be noted that a set of very strict rules (see 

Supporting Information Chart A) especially regarding molecular weight (250 <MW 

<500) and Lipinski's rule of five violations (none) was used herein.  
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Code Initial 
size 

filtereda % 
druglike

Uniqueb Exclusivec Classifiedd

ASIg 201 304 86 185 42.8 86 153 17 322 85 516 

ASIp 120 563 71 255 59.1 71 255 69 716 70 978 

CBG 709 975 327 716 49.5 181 291 72 484 161 827 

CDIc 230 529 104 606 47.8 104 604 62 361 104 520 

CDIi 133 085 39 859 45.9 39 831 13 571 39 401 

CNR 12 670 4 978 39.3 4 806 4 571 4 770 

CST 73 552 21 899 29.8 21 852 4 857 21 758 

IBSn 30 749 14 196 46.2 13 936 890 13 882 

IBSs 287 945 112 882 43.2 112 695 61 944 111 562 

MAY 59 204 20 754 35.1 20 726 17 793 20 680 

NET 38 416 14 031 36.5 14 029 13 276 13 992 

SPE 172 970 65 563 37.9 65 539 20 499 65 319 

TIMn 4 202 2 083 49.6 1 945 147 1 941 

TIMs 95 469 33 669 35.3 33 560 7 873 33 408 

TRI 84 604 46 866 55.4 46 546 44 969 46 543 

VITs 134 167 52 583 39.2 52 544 8 796 52 204 

VITt 21 453 7 190 33.5 7 182 3 778 7 164 

MDDR 98 880 37 857 38.3 35 563 35 142 35 033 

a Using Filter 1.0 ("Filter 1.0") 
b Using Cliff ("Cliff") with options “-unique 1 -usestereo 1” 
c compounds not found elsewhere by comparison of canonical SMILES with 
PipelinePilot 4.5. ("Pipeline Pilot") 
d after normalization step in ClassPharmer ("ClassPharmer Suite"). 

Table 3.2 Library processing and classification 
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Considering the MDDR as a reference drug-like dataset, we can thus consider most of 

the screening collections investigated here to be drug-like, reflecting the effort of 

vendors to produce higher quality collections (Webb, 2005). Internal duplicates 

(compounds present several times within the same collection) ranged from none (ASIp) 

to 320 compounds (TRI). An exceptional high number (146 425) was found for CBG, 

but could be explained by the previous merge of the screening collections (EXPRESS-

Pick and Hit2Lead) into a single dataset. Retrospectively, only 2 compounds would 

have been duplicated in CBG Express-Pick. For the MDDR, there were still 2 294 

duplicates left, most of them arising from different counter ions. 

An exclusivity analysis of all screening collections shows that only five of them (ASIp, 

CNR, MAY, NET, TRI) could be described as original as they contain more than 85% 

drug-like compounds not present elsewhere (Table 3.2). Significant pair-wise overlap 

exists between several libraries (e.g. ASIg, CBG, IBSs, CDIc, VITs; see Tables A and B 

in Supporting Information). However, having several commercial sources for a 

compound may be an advantage since it still guarantees a purchase even if the 

corresponding molecule is no longer available from a particular supplier. 

3.4.2 What is the scaffold diversity of commercial libraries? 

A first scaffold classification (Classification 1, Table 3.3) has been realized on the 

global set of 846 408 molecules passing the ClassPharmer normalization step. A second 

one (Classification 2) is a subset of the first one since it accounts for classes populated 

by at least 25 unique molecules. The second classification was undertaken to depict the 

optimization potential of each class.  
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 Classification 1a Classification 2b

Code #Classes #Singlc %Redd NC50Ce PC50Cf #Classes NC50C PC50C

ASIg 3 491 5 476 7.25 52 1.49 400 27 6.75

ASIp 1 968 2 907 9.27 27 1.37 252 19 7.54

CBG 3 199 5 269 15.79 45 1.41 709 32 4.51

CDIc 3 430 5 171 6.29 86 2.51 528 57 10.80

CDIi 2 306 3 447 7.99 62 2.69 219 27 12.33

CNR 391 662 2.74 26 6.65 33 7 21.21

CST 1 011 1 719 9.19 25 2.47 123 13 10.57

IBSn 757 1 188 2.02 20 2.64 75 8 10.67

IBSs 3 490 5 370 5.25 68 1.95 492 48 9.76

MAY 1 544 2 501 12.59 84 5.44 151 30 19.87

NET 941 1 230 5.72 58 6.16 107 21 19.63

SPE 3 261 4 971 8.11 59 1.81 313 27 8.63

TIMn 162 316 1.29 12 7.41 14 5 35.71

TIMs 1 956 3 445 7.23 67 3.43 207 28 13.53

TRI 1 341 2 041 11.55 33 2.46 282 22 7.80

VITs 2 153 3 134 8.85 35 1.63 237 20 8.44

VITt 402 513 6.59 16 3.98 48 9 18.75

MDD
R 3 058 4 620 8.51 177 5.79 203 35 17.24
a Class defined as containing at least 2 unique compounds  
b Class defined as containing at least 25 unique compounds  
c Number of singletons   
d Percentage of inter-classes redundancy  (percentage of compounds present in multiple classes) 
e Number of classes accounting for 50% of classified compounds  
f Percentage of classes accounting for 50% of classified compounds 

Table 3.3 Classification results 
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Hence, a class described by a low number of compounds might be of lower interest for a 

medicinal chemist due to a possible lack of synthetic tractability or insufficient statistics 

if the library has to be assayed experimentally. On account of a possible overemphasis 

on combinatorial libraries, the minimal size was set to a lower value than that of 100 

compounds advocated by Nilakantan for ring-scaffold focused libraries (Nilakantan & 

Nunn, 2003). 

Using our classification method (see Methods), there are generally 10-30 times less 

classes (scaffolds) than molecules (Table 3.3). Classification 1 afforded a total of 

34 961 classes and 53 980 singletons. Interestingly, the number of singletons always 

exceeds that of classes for all libraries. Considering the homogeneity of the input 

libraries which was set to medium prior to the classification, most singletons do not 

describe unique scaffolds but rather compounds which failed to pass the homogeneity 

threshold level (i.e. the number of heavy atoms in the scaffold is too small in 

comparison to the overall size of the largest molecule in the class). Classification 2 

(only classes populated by at least 25 compounds) led to a smaller set of 4 390 classes. 

Since a single compound may be classified in different classes for a single library, there 

is a significant level of redundancy across the classes generated by ClassPharmer (about 

10% on average, Table 3.3) which biases relationships between the number of classes 

and the number of compounds within a library. To get unbiased relationships and a 

clearer comparison of the scaffold diversity of input libraries, the redundancy was 

removed by a simple strategy aimed at selecting the most central scaffold for a 

compound appearing in multiple classes (Table 3.4). It is important to point out that 

class redundancy among different libraries has not been considered at this stage. 
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Compounda MW(scaffold) NR
b CSSc

F
CN

N

N

S

NH

Cl

Cl

 

198 6 33 

F
CN

N

N

S

NH

Cl

Cl

 

218 4 55 

F
CN

N

N

S

NH

Cl

Cl

 

184 3 61 

a The compound exemplified here (CD 05668, Maybridge) has a molecular weight of 

413 and three proposed scaffolds highlighted in bold. 

b NR: Number of R-groups 

c CSS (Central Scaffold Score) =
R

scaffoldcompound

N
MWMW −

 

Table 3.4 Example of inter-classes redundancy 
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Two metrics (NC50C, PC50C) have been developed to measure and compare the 

scaffold diversity of screening collections. The first one (NC50C) is a simple measure 

of the number of classes accounting for 50% of classified compound for a particular 

collection. The NC50C descriptor has been derived from a first plot (Figure 3.2) 

describing the density (percentage of classified compounds) of each class which was 

then transformed into a cumulative plot (Figure 3.3) allowing to interpolate the number 

of classes required to describe 50% of classified compounds. 
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Figure 3.2 Density of ClassPharmer classes (ASIg collection) featuring the percentage 

of classified compounds for all classes. A zoom on the most populated classes is boxed 

within the graph. 
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Figure 3.3 Interpolating the NC50C value by plotting the number of classes versus the 

cumulative percentage of classified compounds (ASIg collection). A zoom around the 

NC50C value is boxed within the graph. 

The NC50C descriptor can be regarded as the absolute scaffold diversity of the 

collection. As expected, larger collections have higher NC50C values (Figure 3.4 A), 

except for four collections which either present a quite large panel of classes with 

respect to their size (MAY, NET and especially MDDR) or a low number of classes 

(CBG). Discarding these four libraries, a significant correlation could be found between 

size (number of classified drug-like compounds) and NC50C (r =0.70, n=14, p=0.002). 

Compared to the absolute scaffold diversity for classes containing at least 25 

compounds (figure 3.4 B), all collections shift to lower NC50C values with the 

reference MDDR (Table 3.3) performing the most notable shift to the left, thus joining 

commercially-available collections. For classification 2, a significant correlation is also 

observed between size and NC50C for all collections (r = 0.75, n=16, p =0.002). 
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Figure 3.4 Scaffold diversity of screening collections 

Since the first metric is dependent on the size of each collection, it cannot be used to 

compare the intrinsic scaffold diversity. We therefore computed a second descriptor 

(PC50C) estimating the percentage of classes accounting for 50% of classified 
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compounds (Table 3.3). It presents the advantage to be independent of the size of the 

library and therefore more suitable for a comparative analysis (Figure 3.4 C). Strikingly, 

plotting the PC50C versus the size of each collection allows segregating the herein 

analyzed 18 collections into four categories (Figure 3.4 C). A first category (CBG, IBSs, 

CDIc), in agreement with a previous report (Xue & Bajorath, 1999), regroups large 

combinatorial libraries for which a very tiny percentage of scaffold (less than 3 %) have 

been overrepresented.  

Category Scaffold Identifier Suppliers Uniques 
compounds 

Large 
combinatorial 

Libraries 
N
H

 

SBI_5287 15 22 988 

Medium 
combinatorial 

Libraries 
N
H

S
O O

 

SBI_3167 10 8 592 

Screening 
Libraries 

N
NH

O

 

SBI_2894 1 322 

Diverse 
Libraries 

N
N

S  

SBI_22704 1 106 

Table 3.5 Example of characteris c scaffolds for the four categories of screening 

Corresponding scaffolds are usually very simple (e.g. N-benzylaniline, quinoline, Table 

3.5), account for over 10,000 unique compounds and are available at a majority of 

suppliers. Typical scaffolds from the first category of libraries (e.g. 

N-phenylbenzenesulfonamide, Table 3.5) are also found in the second category which 

also regroups combinatorial libraries but of lower size (ASIg, ASIp, SPE, TRI, VITs). 

ti

collections 

65



Chapter 3 

In a third group are found libraries of smaller size (<50,000 drug-like unique 

compounds) with more original and less populated scaffolds (CDIi, CST, IBSn, TIMs). 

Last, a fourth category of libraries (MAY, NET, TIMn, VITt) was identified nearby the 

reference MDDR dataset (Figure 3.4 C). The latter libraries are really diverse in terms 

of scaffold architecture and generally present a larger choice of proprietary low-

populated scaffolds. These libraries are either collections of compounds from various 

origins (CNR, MDDR), from natural sources (TIMn, VITt) or have been synthesized by 

the supplier itself with the purpose of optimizing diversity versus size (NET, MAY). 

For example, the French National Chemical Library (CNR) ("National Chemical 

Library, National Center for Scientific Research (CNRS)") is a repository of compounds 

collected at 22 academic laboratories, each of them with a different medicinal chemistry 

history. Likewise, collections labeled “natural products” (TIMn, VITt) are in fact 

synthetic compound libraries that are based on structures found in nature (Feher & 

Schmidt, 2003). Acknowledging the high scaffold diversity found in natural products, it 

is therefore logical to group them into the fourth category of diverse libraries. 

Interestingly, looking at the scaffold diversity of the same libraries considering only 

those scaffolds populated by at least 25 compounds leads to identical clusters with a 

simple shift of PC50C towards higher values (Figure 3.4 D). Simple rules based on the 

size (number of classified drug-like and unique compounds) and on PC50C values (all 

classes, classes with more than 25 compounds) of 18 collections are provided (Table 3.6) 

as a guide to classify libraries not investigated herein. 
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Category Librariesa Sizeb PC50Cc PC50C_25d

Large combinatorial 
Libraries 

CBG, CDIc, IbSs  >100 K < 3 <13 

Medium combinatorial 
Libraries 

ASIg, ASIp, SPE, 
VITs 

50-100 K < 3 < 13 

Screening Libraries CDIi, CST, IBSn, 
TIMs 

<50K < 4 10-15 

Diverse Libraries CNR, MAY, MDDR,  

NET, TIMn, VITt 

< 50K > 4 > 15 

a Libraries are indexed as shown in Table 1 
b Number of drug-like and unique compounds passing the ClassPharmer normalization 
step 
c PC50C value derived from all classes of a library 
d PC50C value derived from classes populated by at least 25 representatives. 

Table 3.6 Classification of collections according to their size and relative scaffold 

diversity (PC50C) 

3.4.3 Setting-up a library (SBI) of non-redundant classes 

In order to set-up a single dataset for registering all commercially-available scaffolds, 

all classes (except those arising from the reference MDDR database) depicted by the 

previous analysis were merged into a single library. Redundancy of the scaffolds was 

removed by working with InChI codes which enable the detection of duplicates and of 

tautomers. The resulting SBI collection contains a total of 21 393 unique classes out of 

which a surprisingly high number (16 583) are exclusively found at one supplier (Tables 

3.7 and 3.8).  
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Library Classesa Exclusive Classesb

ASIg 3 485 1 240 (36%) 

ASIp 1 964 1 729 (88%)

CBG 3 194 1 213 (38%)

CDIc 3 425 2 325 (68%)

CDIi 2 306 974 (42%)

CNR 391 299 (76%)

CST 1 010 307 (30%)

IBSn 756 504 (67%)

IBSs 3 484 1 845 (57%)

MAY 1 543 1 052 (68%)

NET 941 722 (77%)

SPE 3 260 1 504 (46%)

TIMn 162 48 (30%)

TIMs 1 954 700 (36%)

TRI 1 338 1 098 (82%)

VITs 2 149 759 (35%)

VITt 402 264 (66%)

a non-redundant classes by comparison of INChI codes (Mobile H Perception' option 

on). For duplicate classes, a single copy has been conserved corresponding to the first 

encountered library sorted by alphabetical order. 

 b classes not found elsewhere (by comparison of INChI codes)  

Table 3.7 Distribution of classes for the SBI scaffold library 
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 InChI InChI & at least 25 compds. 

# of 

DBs n 

# of scaffolds 

in at least 

n DBs 

# of scaffolds 

in exactly 

n DBs 

# of scaffolds 

in at least 

n DBs 

# of scaffolds 

in exactly 

n DBs 

1 21 393 16 583 2 498 921

2 4 810 2 532 1 577 431

3 2 278 1 009 1 146 106

4 1 269 501 853 251

5 768 300 602 194

6 468 179 408 133

7 289 97 275 84

8 192 71 191 70

9 121 39 121 39

10 82 25 82 25

11 57 20 57 20

12 37 19 37 19

13 18 3 18 3

14 15 6 15 6

15 9 7 9 7

16 2 1 2 1

17 1 1 1 1

Table 3.8 Number of scaffolds which are at least/exactly in n screening collections 

(DBs) 
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Figure 3.5 The SBI scaffold library. A) Distribution of the number of R-groups for each 

scaffold, B) Browsing the library. For each scaffold, molecular descriptors (AlogP98, 

Number of rotatable bonds, topological polar surface area, number of H-bond donors 

and acceptors, number of rings, molecular weight, number of unique compounds), 

vendor information (identity and number of suppliers) and a unique SBI code enables an 

easy navigation in the chemistry space covered by commercial scaffolds. Selecting a 

particular scaffold (e.g. 2-phenylthiazolidin-4-one) returns the corresponding classes 

indexed by commercial sources (TRI_3, VITs_1422; see a list of index in Table 1) and 

the related Markush structures 
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Compounds contained in the classification represent 811 375 compounds out of which 

556 107 have a unique InChI representation. A more restrictive dataset of 2 498 classes 

comprises scaffolds with a density of at least 25 compounds. Of these, 921 classes have 

only one supplier as source. 329 (1.5%) scaffolds have been discarded when the 

compounds contained in a class are checked for uniqueness by InChI. An R-group 

decomposition of all classes into Markush structures indicates a distribution of 

substituents following a mono-exponential decay (Figure 3.5 A). 75% of the stored 

scaffolds offer at least two substituents and thus real diversity. The scaffold library can 

be easily browsed by substructure, physicochemical properties or suppliers of the 

corresponding compounds (Figure 3.5 B). A unique code for each scaffold refers to the 

individual suppliers and the corresponding Markush structures thereby enabling the 

comparison of commercial sources for a particular scaffold (Figure 3.5 B).  

A molecular complexity of the SBI scaffold library was investigated as described by 

Selzer et al. (Selzer et al., 2005) by computing circular FCFP_4 fingerprints and 

extracting FCFP_4 sizes and densities (Figure 3.6). FCP4_density calculated for all 

scaffolds of the SBI library indicate that a large majority of scaffolds are complex 

enough (FCFP_4 density > 1) to ensure biological activity. A putative application of the 

SBI library could then be the selection of low molecular-weight fragments for NMR 

screening (Baurin, Aboul-Ela et al., 2004; Schuffenhauer et al., 2005; Zartler & Shapiro, 

2005). Due to their small size, the scaffolds selected herein present a relatively high 

average self-similarity (average Tanimoto coefficient of 0.74 using FCFP_4 

fingerprints). Customizing a fragment library out of the SBI dataset would therefore 

require the selection of the "least-substituted" compounds for a subset of dissimilar 

molecular scaffolds. 
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Figure 3.6 Analyzing the molecular complexity of the scaffold library. A) number of 

heavy atoms; B) FCFP_4 size: number of bits set in the SciTegic functional 

connectivity fingerprints("Pipeline Pilot") using a fragment diameter up to four bonds; 

C) Self-similarity plot using FCFP_4 fingerprints and Tanimoto coefficient; D) FCFP_4 

density: FCFP_4 size / number of heavy atoms. 

It should be noted that several scaffold-based libraries have already been reported in the 

past. Agrafiotis et al. (Agrafiotis et al., 2002) described a probe library based on. 50 

representative scaffolds comprising 300 000 drug-like compounds dedicated to primary 

screening. Another design of a scaffold-library was recently reported by Card et al. 

(Card et al., 2005) where 275 555 compounds (starting with 1 994 133 molecules from 

17 vendors, then filtered by MW range) have been clustered according to their 

constituent fragments (segmented at rotatable bonds) and similar compounds were 

grouped (Tanimoto index > 0.85). This resulted in 20 360 small molecular-weight 
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fragments covering approximately 80 % of the scaffold component space. Our library 

presents the advantage to cover most commercially-available compounds and to archive 

scaffolds as a medicinal chemist would do by intuition, thus enabling an easy navigation 

in scaffold space and the selection of the most relevant compounds according to simple 

user-defined queries. 

3.4.4 On the use of ClassPharmer scaffolds 

There are both advantages and drawbacks in utilizing ClassPharmer for computing 

molecular scaffolds out of large libraries. A first true advantage is the ad-hoc detection 

of MCS which enables a classification of all compounds of the library. Alternative 

strategies based on the storage of pre-computed chemical features (Roberts et al., 2000) 

do not guarantee this exhaustiveness. Secondly, the fuzziness of ring closure and atom 

match definitions can be customized depending on purpose. We here chose exact 

definitions of the latter parameters to ensure a chemically unique definition of each 

scaffold. Although tolerating non exact atom matches would enable taking into account 

bioisosterism in the scaffold definition and thus significantly decrease the number of 

scaffolds, fuzzy ring closure is clearly not suited for archiving scaffolds as it would 

allow the definition of substructures (e.g. 3 carbon atoms of a phenyl ring) as classes. 

Thirdly, ClassPharmer MCS describe not only the minimum common substructure but 

also its chemical environment which enables a classification mirroring mostly the 

intuition of a medicinal chemist. Hence, many scaffolds already identified by vendors 

within their collections (De Laet et al., 2000) can be recovered in our SBI scaffold 

library. Lastly, importing compounds from a new collection into an existing 

classification allows the quick evaluation of the scaffold overlap of both collections. 

A clear drawback of our approach is its low speed. Using a standard PC with 1GB RAM, 

only collections with less than 150 K compounds can be classified within 48 cpu hours. 
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The regular upgrade of the scaffold library is thus considerably penalized. Meanwhile 

alternative classification approaches (Stahl & Mauser, 2005; Wilkens et al., 2005) have 

been developed and might be considered under the conditions that (i) it also produces 

chemically meaningful classes and (ii) a significant increase in performance can be 

observed for the same initial (huge) library size.  

A limitation, for the purpose of scaffold archiving, is the redundancy observed in the 

clustering (e.g. a particular compound is often found in multiple classes). Although 

class redundancy is not necessarily a problem in mining HTS data as it exactly reflects 

the point of view of a medicinal chemist, it was a real hurdle in our study to quantify the 

population covered by each class. To overcome this problem, we developed a very 

simple approach which selects the most 'central scaffold' in the structure of each ligand. 

It should be stated that our protocol still generates a significant number of singletons. 

Because of the overall low speed of the classification procedure, we have not considered 

merging all singletons and reclassifying this subset to populate existing classes or to 

generate additional clusters. Likewise, reclustering singletons by similarity to existing 

cluster substructures (Stahl & Mauser, 2005) is another interesting alternative to reduce 

the number of singletons. 

3.5 Conclusions 

The molecular diversity of 17 commercially-available screening collections covering 

2.4 million compounds was evaluated by computing graph-based maximum common 

substructures for each library. Two metrics (NC50C, PC50C) were developed to 

facilitate the comparison of libraries of various sizes. The herein analyzed commercial 

collections could be grouped into four categories depending on their size and PC50C 

value (percentage of scaffolds accounting for 50% of classified compounds). Our 
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classification reflects the history of each collection and the way it had been compiled 

(combinatorial libraries, screening collections, medicinal chemistry libraries). Merging 

all classes led to a library of non-redundant scaffolds that can easily be browsed for 

different purposes like (i) defining a scaffold-focused library (Krier et al., 2005) starting 

from an existing hit and thus quickly generate structure-activity relationships, (ii) 

defining a general purpose library where a few copies of user-selected diverse scaffolds 

are cherry picked (Card et al., 2005), (iii) setting-up a collection of small molecular 

weight fragments for structural biology screening (Zartler & Shapiro, 2005) (X-ray, 

NMR) by selecting the least substituted compound(s) for user-defined classes. 
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4. Design of small-sized libraries by 

combinatorial assembly of linkers and functional 

groups to a given scaffold : Application to the 

structure-based optimization of a 

phosphodiesterase 4 inhibitor* 

*J. Med. Chem. 45, 3816-3822, 2005; Part of this paper was the subject of a poster 

presentation at the 3rd Joint Conference on Chemoinformatics, 21-23 April, 2004, 

Sheffield, UK. 

 

4.1 Scope and critical evaluation of the project 

(Not included in the publication) 

The goal of this project was to validate the Scaffold-Linker-Functional Group Approach 

implemented during this thesis in a C++ program. Together with the bench chemists and 

biologists at the Faculty of Pharmacy, a common protein target, the phosphodiesterase 

IV (PDE4), was adopted in order to be our application case. Phosphodiesterase 

inhibitors have been developed for more than 20 years, but an X-ray structure was only 

obtained in the 2001. Two years later, a 3D-structure of a PDE4 co-crystallized with 

zardaverine has been resolved and as the chemist have been attracted to optimize this 

structure in order to develop a more potent inhibitor, it seemed to be the ideal test case 

for our SLF approach.  
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Phosphodiesterase IV is a member of the 3'5'-cyclic nucleotide phosphodiesterases, 

which is composed of 21 human PDE genes coding for11 family members and over 60 

isoforms. A typical signature of the catalytic domain H-D-[LIVMFY]-x-H-x-[AG]-x(2)-

[NQ]-x-[LIVMFY] of this family have been deposited in PROSITE under the entry 

name PDEASE_1 (Accession number PS00126). PDEs are soluble proteins that 

functions as intracellular second messenger. The function of PDEs is to maintain 

cellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine 

monophosphate (cGMP) which mediate various biological responses from a great 

number of extracellular stimuli. PDEs (E.C. 3.1.4.17) catalyze the hydrolysis of cAMP 

or cGMP to the corresponding nucleoside 5' monophosphates. We refer the reader to the 

recently published review by Lugnier (Lugnier, 2005) to enhance their knowledge about 

the properties, tissue and subcellular distributions of cyclic nucleotide 

phosphodiesterase superfamily. 

PDE ligands are widely used in a variety of clinical applications like anti-inflammatory 

agents, anti-asthmatics, vasodilators, smooth muscle relaxants, cardiotonic agents, 

antithrombotics, antidepressants, and improving cognitive functions. Manallack et al. 

(Manallack et al., 2005) summarized a large number of compounds that bind to PDEs. 

Table 4.1 focuses on the PDE ligands co-crystallized and deposited in the Protein Data 

Bank.  
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Ligand Name Isoform 
PDB code 

(resolution, Å) 
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H H

H

H
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AMP 

4B 
4B 
4D 
4D 

1TB5 (2.15) 
1ROR (2.0) 
1PTW (2.4) 
1TB7 (1.63) 

N

N

N

N

O
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O

O

O
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O

O
O

O H

H

H
H

H
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GMP 5A 1T9S (2.0) 

N

N

O

P

N

N

O

O

Br

O

O

O

N

O

H H

H

H

H

H

 

8-BromoAMP 4B 1RO9 (2.13) 

N

N

N

N

O

O
H

 

IBMX 

3B 
4D 
5A 
7A 
9A 

1SOJ (2.9) 
1ZKN (2.1) 
1RKP (2.05) 
1ZKL (1.67) 
1TBM (2.23) 

Table 4.1 Co-crystallized ligands with proteins of the PDE family 
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Ligand Name Isoform 
PDB code 

(resolution, Å) 

S

N

N
N

N

N
O O

N

O

OH

 

Sildenafil 

 

4B 

5A 

5A 

1XOS (2.28) 

1TBF (1.3) 

1UDT (2.3) 

N

S

N

N

N

N
O O

N

O

OH

 

Vardenafil 

5A 

5A 

4B 

1UHO (2.5) 

1XP0 (1.79) 

1XOT (2.34) 

N

N

N
O

O

O

O

H
H

Tadalafil 
5A 

5A 

1UDU (2.83) 

1XOZ (1.37) 

Table 4.1 (continued) Co-crystallized ligands with proteins of the PDE family 
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Ligand Name Isoform 
PDB code 

(resolution, Å) 

N

O
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O
Cl

Cl

O

H

 

Piclamilast 
4D 

4B 

1XON (1.72) 

1XM4 (2.31) 
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O
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O
Cl

Cl

F

F
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Roflumilast 
4B 

4D 

1XMU (2.3) 

1XOQ (1.83) 

N

O

O

O

O

H  

Cilomilast 
4B 

4D 

1XLX (2.19) 

1XOM (1.55) 

O N

O

O
O

H

 

(R)-mesopram 4B 1XM6 (1.92) 

N

O

O

O

H  

(R,S)-rolipram 

4B 

4D 

4B 

4D 

1XN0 (2.31) 

1OYN (2.0) 

1RO6 (2.0) 

1TBB (1.6) 

Table 4.1 (continued) Co-crystallized ligands with proteins of the PDE family 
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Ligand Name Isoform 
PDB code 

(resolution, Å) 

N

O

O

O

H  

(R)-rolipram 
4B 

4D 

1XMY (2.40) 

1Q9M (2.3) 

O

N
O

O N

O

H
H

H

 

Filaminast 4B 1XLZ (2.06) 

N
N

O

O

F F

O

H  

Zardaverine 
4D 

4D 

1MKD (2.9) 

1XOR (1.54) 

N
N

N

O

O

I

H

H

H

 

Merck-1 3B 1SO2 (2.4) 

Table 4.1 (continued) Co-crystallized ligands with proteins of the PDE family 
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Ligand Name Isoform 
PDB code 

(resolution, Å) 

N
N

O

O
H

 

Plexxikon2 4D 1Y2B (1.4) 

N
N

O

O

 

Plexxikon8 4D 1Y2C (1.67) 

N
N

O

O
O

 

Plexxikon17 4D 1Y2D (1.7) 

N
N

O

O
N

H

H

 

Plexxikon19 4D 1Y2E (2.1) 

N
N

O

O

Cl  

Plexxikon20 4B 1Y2H (2.55) 

N
N

O

O

N
+

O
O

 

Plexxikon21 
4B 

4D 

1Y2J (2.55) 

1Y2K (1.36) 

Table 4.1 (continued) Co-crystallized ligands with proteins of the PDE family 

Synthetic PDE ligands such as Theophylline and IBMX were first inhibitors described 

in literature. They have been used as non-specific inhibitors and serve mainly as 

pharmacological tool for characterization. Manallack et al. (Manallack et al., 2005) 

suggests that most of the PDE inhibitors adopt a planar conformation in order to mimic 

the planarity of the purine structure. The ability to interact with the active site in more 

than one orientation contributes to the non-selectivity. The authors therefore propose to 
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take reduction of multiple binding orientations into account when attempting to increase 

selectivity of new inhibitors. 

Rolipram has been the lead structure targeting PDE4 for a series of bicyclic compounds 

containing a catechol moiety. Side effects like emesis stopped their development in 

clinical phase. The clinical candidates that are the furthest advanced are cilomilast 

(Compton et al., 2001) and roflumilast (Timmer et al., 2002). These next generation 

inihibitors promise to be less emetic, but “unimpressive results from a phase III study of 

roflumilast do not appear to provide strong enough long-term efficacy data to warrant 

approval by the FDA” (http://www.pharmaceutical-business-review.com, Feature of 6 

July 2005). 

Although IBMX is a non-specific inhibitor for PDE1 to PDE5 and both PDE8 and 

PDE9 are IBMX insensitive, this structure is a valuable core template. Heizmann and 

Eberle (Heizmann & Eberle, 1997) showed that xanthines are synthetically tractable 

scaffold for combinatorial chemistry. Their paper described a five-step solid-phase 

synthesis of xanthine derivatives consisting of alkylations, a nucleophilic displacement 

reaction at a heterocycle and a ring closure reaction by condensation of a nitroso 

function with an activated methylene group. Hence, a small-molecule combinatorial 

compound library being highly diverse was set up.  

Recently, Card et al. (Card et al., 2005) described PDE4 co-crystallized ligands on the 

basis of a ethyl 3,5-dimethyl-1H-pyrazole-4-carboxylate scaffold increasing the activity 

from 60/82 µM (IC50 PDE4B/PDE4D) to 0.033/0.021 µM (IC50 PDE4B/PDE4D, PDB 

code 1Y2J/1Y2K). 

Some additional difficulties like water-mediated binding and metal coordination made 

the virtual screening (under the form of docking) more challenging. As experience in 
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our laboratory showed before, the active site properties induce the choice for the 

appropriate docking program/scoring function. FlexX performed in the most accurate 

way (Table 4.4). The PDE4 active site can be subdivided in several pockets: (i) the 

catalytic site with the two metal centers, (ii) the hydrophobic clamp with its two 

subpockets and its superfamily invariant glutamine. The later permits directional 

interactions. The absence of metal centers contributed to the failure of the other 

combinations. Gold has the constraint that an atom parameterized as a metal ion has to 

be coordinated to at least two protein atoms or water molecules so that Gold can 

determine the correct coordination geometry. But alignment of the different three-

dimensional protein structures along alpha carbons didn’t reveal any structural 

(invariant) water molecule for the second metal ion. Surflex is building up a negative 

mold of the active site by placing voxels (contraction for “volumetric pixel”) 

complementary in property to the protein amino acids. This pseudo-molecule, also 

called the protomol, is composed of molecular fragments being of nature C=O (probe-a), 

CH4 (probe-s), NH (probe-d). The three ways of protomol generation were investigated: 

(1) ligand-based, (2) residue-based and (3) neither of them (in other words the user 

makes no indication of putative active site and ligand). Nevertheless, Surflex did not 

succeed in placing the reference ligand accurately. 

This published test case demonstrated the successful application of our approach. 

Indeed potency was increased by a factor of almost 103 by evaluating computationally 

only 320 compounds build by the approach and testing 9 of these. Five showed an 

improved potency over the reference compound zardaverine.  
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Another application case for SLF approach was the generation of a combinatorial 

library based on the scaffold of secretory phospholipase A2 inhibitors (unpublished data, 

Muller et al.). This project is the logical sequel to the in silico guided target 

identification by a molecular scaffold. Briefly describing this precedent work, a 

collection of 2,150 active sites from the Protein Data Bank was screened by high-

throughput docking to identify putative targets for five representative molecules of a 

combinatorial library sharing a triazepanedione scaffold. Five targets were prioritized 

for experimental evaluation by computing enrichment rates of individual protein entries 

among the top 2% scoring targets. Out of the five proposed proteins, phospholipase A2 

had shown to be a true target for a panel of triazepanediones which exhibited 

micromolar affinities toward several isoforms of the latter enzyme. 

The virtual combinatorial library was based on a cyclic urea, the triazepanedione 

scaffold. It was created in two steps. First, R2-substituted 16 scaffolds were created. 

Secondly, these scaffolds were substituted independently at the three positions R3, R4 

and R5 by 3 linkers and 10 functional groups. Hence 1440 (16 × 3× 10 × 3) have been 

rapidly assembled by this way (Table 4.2).  

Docking studies were performed using GOLD (v2.0) for the binding predictions of the 

1440 structures. As protein structure model served the X-ray PLA2 isoform hGX (PDB 

code 1LE6). 48 structures scored above 61 (GoldScore) and are mainly substituted on 

R5 position and carry a benzyl group on R2 position. 

Four molecules were subsequently synthesized and for two, a preliminary activity was 

determined on isoforms V and X.  
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Scaffold Linker Functional Group 
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O
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NH NH2  

*
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Table 4.2 Scaffold, linkers and functional groups used for the combinatorial 
enumeration of a PLA2-focused library 
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 R2 R5 IC50 (µM) 

Compound L FG L FG PLA2 hGV PLA2 hGX 

N N

N

O

O

H

H

H

OOH

 

1 
*

3 
*

OH O  

41 52 

N N

N

O

O

H

H

H

ONH2

 

1 
*

3 

*

NH2 O
40 77 

N N

N

O

O

H

H

H

OH

O

 

1 
*

1 
*

OH O  

N/A N/A 

N N

N

O

O

H

H

H

NH2

O

 

1 
*

1 

*

NH2 O
N/A N/A 

Table 4.3 PLA2 hGV and PLA2 hGX inhibition of compounds 
 

During other structure-based design projects involving the SLF approach, the generation 

of three-dimensional coordinates by external application led to conformations of the 

core structure which were too distant (in terms of root-mean square deviation) from 

initial co-crystallized scaffold conformation. Therefore, the SLF approach should be 

extended to a topographic mode taking a predefined scaffold conformation into account. 
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4.2 Abstract 

Combinatorial chemistry and library design have been reconciled by applying simple 

medicinal chemistry concepts to virtual library design. The herein reported "Scaffold-

Linker-Functional Group" (SLF) approach has the aim to maximize diversity while 

minimizing the size of a scaffold-focused library with the aid of simple molecular 

variations in order to identify critical pharmacophoric elements. Straightforward rules 

define the way of assembling three building blocks: a conserved scaffold, a variable 

linker and a variable functional group. By carefully selecting a limited number of 

functional groups not overlapping in pharmacophoric space, the size of the library is 

kept to a few hundred. As an application of the SLF approach, a small-sized 

combinatorial library (320 compounds) was derived from the scaffold of the known 

phosphodiesterase 4 inhibitor zardaverine. The most interesting analogs were further 

prioritized for synthesis and enzyme inhibition by FlexX docking to the X-ray structure 

of the enzyme, leading to a 900-fold increased affinity within 9 synthesized compounds 

and a single screening round. 
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4.3 Introduction 

With combinatorial chemistry as a tool, infinite variations on a core template are 

theoretically possible (Alper, 1994). However, in the drug discovery process, it is 

desirable to gain the maximum of information (Bradley et al., 2003) out of a minimum 

of experiments. For the medicinal chemist, this means the optimization of a screening 

library, i.e. a minimal size with a maximal chemical diversity. Hence, focused libraries 

designed around a selected scaffold can only span a wide range of physicochemical and 

structural properties, when the decorations are diverse enough. To date, a lot of 

combinatorial structure generation tools have been developed and most of them are 

generating rather large virtual libraries (Beavers & Chen, 2002; De Julian-Ortiz, 2001). 

However, awareness that the highest possible number of compounds do not 

automatically increase the hit rate and the fact that most of the generated molecules are 

synthetically not easily available make computational chemists apply a second 

algorithm to select a representative subset. Indeed, to stay in the order of magnitude of a 

hundred compounds (Nilakantan & Nunn, 2003), virtual combinatorial libraries are 

assessed by different techniques like Monte Carlo calculations (Langer & Wolber, 

2004), genetic algorithms (Wright et al., 2003), artificial neutral network or simply 

statistical sampling with user-defined property ranges (Weaver, 2004). 

In contrast to the latest, we propose an alternative approach to optimize size versus 

diversity that relies on the combinatorial assembly of user-selected building blocks: a 

scaffold, a linker and a functional group (Figure 4.1). Thus, each enumerated molecule 

can be considered as a chemical tool to probe the protein active site. Similar approaches 

published recently are implemented in COREGEN (Aronov & Bemis, 2004) and 

SMILIB (Schuller et al., 2003). Based on homology and molecular diversity concepts, 

combining a limited number of linkers and functional groups (cations, anions, hydrogen 
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bond acceptor-donor systems, aromatics/lipophilics) easily affords small-sized 

polyfunctionalized compounds (Bemis & Murcko, 1996; De Laet et al., 2000). 

(LxF)S

Scaffold

Linker

FG

(LxF)S

Scaffold

Linker

FG

Scaffold

Linker

Scaffold

Linker

FG  

Figure 4.1 Schematic representation of the three types of molecular fragments and the 
assembly rule for the complete library enumeration 

Indeed, chemists succeeded over the years to apply combinatorial synthesis strategies to 

simple rings and chains to form small organic molecules (Janvier et al., 2002; 

Kuznetsov et al., 2004) and not stay limited to peptides and oligonucleotides polymers. 

Thus, the virtual combinatorial library has to be designed in order to have its physical 

counterpart and to guarantee that all compounds are synthesizable. We herewith present 

the combinatorial assembly method encoded in the SLF_Libmaker program and its 

coupling to the structure-based prioritization of the most interesting compounds applied 

to the optimization of a known phosphodiesterase 4 (PDE4) inhibitor. 
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4.4 Materials and Methods 

4.4.1 Virtual library construction 

The three-fragment assembly rule is “scaffold, linker, functional group” (Lewell et al., 

2003) instead of a more common use of binary combinations of building blocks (De 

Julian-Ortiz et al., 1999). A more detailed look at the different building blocks is given 

as follows. Two hypotheses about the scaffold (Lipkus, 2001) are usually cited: (i) a 

suitable scaffold is believed to optimally orient the attached substituents for binding and 

(ii) the scaffold itself interacts with the protein as an anchor. The maximum number of 

possible connection points equals the number of removable hydrogen atoms, but the 

most encountered examples of scaffolds have from one to four substituted positions. 

The linker has two substitutions points. Its main role is frequency variation, i.e. to 

modulate the distance between the molecular scaffold and the protein active site. For a 

first screening round, the linkers are chosen in the acyclic polymethylenic series 

(Scaffold-[CH2]n-FG; FG: Functional Group). Thus, by expanding an alkyl chain, the 

hydrophobicity of the molecule is increased (Wermuth, 2003). 

Functional groups represent basic pharmacophoric features resulting from steric, 

electronic, lipophilic and H-bonding properties. “H” is always the reference substituent. 

The other substituents are smallest possible representative fragments and will mostly 

mix property information, e.g. carboxylate shows anionic or H-bond acceptor behavior 

depending on its interaction partner.  

The complete number N of enumerated molecules (Scheme 1) can be expressed as: 

N = ( L × F )S
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where L is the number of linker fragments, F is the number of functional groups and S 

is the number of substitution points marked on the scaffold. The complete enumeration 

with a core structure showing a local symmetry in substitution points gives a lower 

number of unique structures according to the Pólya counting theory (van Almsick et al., 

2000). The complete enumeration method is implemented in SLF_LibMaker, a C++ 

program based on OpenEye’s OEChem1.3 library ("OEChem", 2004). The molecular 

fragments (scaffolds, linkers, functional groups) are encoded as SMILES (Weininger, 

1988). or SDF (MDL) file formats with connecting  pseudo-atoms represented by “*” in 

both formats. Depending on the user-defined selection of scaffolds, linkers and 

functional groups in separate data files, the desired combinatorial library is assembled in 

SMILES or SD file format and converted into 3-D structures using Concord (Pearlman). 

In the current example, a library of 320 compounds was build from a selection of 4 

scaffolds, 5 linkers and 16 functional groups, chosen in agreement with medicinal 

chemists. OpenEyes's Filter ("OEChem", 2004) program was finally used to ionize 

compounds at physiological pH. For the specific case of the benzylamino linker, it 

should be noticed that both neutral and ionized states were explicitly considered. 

4.4.2 Automated docking  

The crystal structures of the human phosphodiesterase 4D (PDE4D) catalytic domain in 

complex with zardaverine (Lee et al., 2002) and Rolipram (Huai, Wang et al., 2003) 

(Chart 4.1) were retrieved from the Protein Data Bank (pdb entries 1mkd and 1q9m, 

respectively) (Berman et al., 2000). The numbering of the UniProt (Apweiler et al., 

2004) entry CN4D_HUMAN (Q08499) was selected as a reference. These structures 

were used to generate two series of input coordinates including the holo-protein, the 

corresponding active site and its native ligand. The protein active site was defined as the 

set of amino acids for which at least one atom is included in a 6.5 Å-radius sphere 
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surrounding any non-hydrogen atom of the bound ligand. All metal ions were assigned 

as Zn2+ ions, although their real nature is still a matter of debate (Huai, Colicelli et al., 

2003; Huai, Wang et al., 2003; Xu et al., 2000), and included in the binding site. All 

water molecules were removed, except the one supposed to be a hydroxide ion4 that is 

thought to be a bridging element between the metal ions and the pyridazinone moiety of 

zardaverine. Atomic types and protonation states of protein atoms were manually 

checked. Hydrogen atoms were finally added by using the BIOPOLYMER module of 

SYBYL package ("SYBYL", 2003). 

N N
H

O

O

O

F
F

N
H O

O

O

 
         zardaverine (1)      rolipram 

Chart 4.1 Structure of a two PDE4 inhibitors 

In order to determine which docking tool was the most appropriate in the current 

context, FlexX1.12 (Rarey et al., 1996), Gold2.1 (Verdonk et al., 2003) and 

Surflex1.1(Jain, 2003) programs were used as previously described (Kellenberger et al., 

2004), to reproduce the enzyme-bound pose of zardaverine. Docking was considered 

successful, when the best-scored pose was found within 2.0 Å root-mean square 

deviation (rmsd) from the X-ray pose. Cross-docking of zardaverine to the 1q9m entry 

and of rolipram to the 1mkd structure was then achieved in order to select the best set of 

holoprotein coordinates for both inhibitors. 

Full database docking was realized using the 1q9m coordinates and FlexX as described 

above. The final hitlist was prioritized (i) by FlexX-score; (ii) by analysis of binding 

96



Chapter 4 

modes achieved by a nearest-neighbor clustering of FlexX poses based on the Cartesian 

coordinates of the common dimethoxyphenyl substructure; and (iii) visual inspection of 

all compounds. 

4.4.3 Synthesis.  

The synthesis of compounds 2-10 and structurally-related molecules will be described 

elsewhere (M.S and J-J.B, manuscript in preparation) 

4.4.4. PDE4 inhibition 

PDE4 was isolated from the media layer of bovine aorta by anion exchange 

chromatography as previously described (Lugnier & Komas, 1993; Lugnier et al., 1986) 

and its activity was measured at a concentration of 1 µM cAMP by radioenzymatic 

assay (Keravis et al., 1980). To prevent the interaction of contaminating PDE3 in the 

assay of isolated PDE4, studies were always carried out in the presence of 100 µM 

cGMP. New compounds were dissolved in DMSO or ethanol with a final concentration 

(1%) which did not significantly affect PDE activity. The inhibition study on PDE4 

activity included six concentrations of the drug. The IC50 values were calculated by 

nonlinear regression using the Prism Software (GraphPad Software, Inc., San Diego, 

CA 92130 USA) 

4.5 Results 

4.5.1 Selection of the most appropriate docking tool 

Predicting the best possible docking/scoring strategy from the simple knowledge of a 

protein binding site is still very difficult (Bissantz et al., 2000). Therefore, three 

accurate docking engines (Kellenberger et al., 2004) (FlexX, Gold, Surflex) in 

combination with four scoring functions (FlexXscore, Goldscore, Chemscore, Surflex) 

were selected for a preliminary study aimed at determining which X-ray structure 
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(1q9m, 1mkd) is the most suitable and which docking strategy recovers the X-ray pose 

of zardaverine. Out of the three docking tools tested herein, FlexX was the only 

program able to predict with a reliable accuracy (below 2.0 Å rmsd ) the X-ray pose of 

zardaverine, whatever the scoring function used and the protein coordinates (Table 4.4). 

FlexX was then selected for further docking the zardaverine-focused library, using the 

original FlexX score for primary sorting the virtual hits and the 1q9m coordinates of the 

holoprotein. 

Docking/Scoring Method 1mkd 1q9m 

Docking/Scoring Method best scorea best rmsdb best score best rmsd 

FlexX/FlexScore 0.66 0.66 (1) 1.02 0.51 (7) 

Gold/GoldScore 8.14 6.44 (29) 10.04 7.46 (10) 

Gold/ChemScore 6.73 1.40 (7) 1.39 1.27 (3) 

Surflex 7.05 1.49 (3) 5.84 5.56 (4) 

a best-scored solution 
b solution with the lowest rmsd from the X-ray pose. The ranking of the corresponding 

pose is indicated in commas. 

Table 4.4 Docking of zardaverine to two 1mkd and 1q9m coordinates of human PDE4. 
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a "*" indicates a connecting pseudo-atom used for the combinatorial assembly of 

scaffolds, linkers and fragments. 

Table 4.5 zardaverine-derived scaffolds, linkers and functional groups used for the 
combinatorial enumeration of a PDE4-focused library 
 

4.5.2 Setup and docking of a PDE4 focused library 

The molecular fragments (Table 4.5) were assembled according to the rules described 

above. Four scaffolds with a single substitution point were derived from zardaverine, 

replacing the difluoromethoxy by a methoxy group. Moreover the unsaturated 

pyridazinone moiety was topologically explored at position N2, C4 and C5, whereas the 

dihydropyridazinone was substituted only at position N2 (Table 4.5). The linkers were 

chosen to be three odd-numbered (C1, C3, C5) and two even-numbered polymethylene 

chains (C4, C6). The functional groups were finally selected for their pharmacophoric 

properties and for their synthetic feasibility. 320 structures were altogether generated to 

be part of the virtual library that was docked against the PDE4 target. FlexX scores 
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range from –42.9 to –13.5 kJ/mol, zardaverine being scored at -22.3 kJ/mol. For most of 

the structures, a single binding mode of the dimethoxyphenyl substructure, very close to 

that observed for zardaverine was found (Figure 4.2).  

Phe674

Gln641

Asp574

Glu532

Ser510
His506

Gln645

Glu641
Phe642

A

B Phe674

Gln641

Asp574

Glu532

Ser510
His506

Gln645

Glu641
Phe642

A

B

 

Figure 4.2 Docking of a scaffold-based library of 320 compounds into the X-ray 
structure of the human PDE4 catalytic domain. The best-ranked pose of each compound 
is displayed as a color-coded wireframe in the active site of PDE4D represented as a 
MOLCAD("SYBYL", 2003) solid surface color-coded by cavity depth (blue  yellow: 
accessible  buried surfaces). Important side chains are displayed as capped sticks and 
labeled at the Cα atom. Subsites A and B are indicated by white arrows. 

Other energetically-favored binding modes were not discovered through visual 

inspection of all poses. Browsing the top-ranked pose of all compounds suggest that two 

additional pockets (named A and B in Figure 4.2) could be targeted by numerous 

compounds. Hitlist prioritization was then achieved by selecting any compound whose 

Flex score was lower than -15 kJ/mol and for which the rmsd of the dimethoxyphenyl 
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substructure from that of zardaverine in its X-ray pose was lower than 1.0 Å. Nine 

compounds exploring additional pockets A and B unoccupied by zardaverine were 

finally selected, synthesized and tested (Tables 4.6 and 4.7). Seven out of these nine 

compounds were N2-substituted dihydropyridazinones exploring two additional pockets 

of PDE4 not investigated by either zardaverine or rolipram. A first hydrophobic channel 

(His462, His506, Phe642; site A) topped by polar side chains (Glu641, Gln645) favors a 

phenyl ring 1 to 6 carbon atoms from the N2-pyridazine ring (Figure 4.3 B). A second 

negatively-charged subsite around Glu532 and Asp574 (site B) favors basic amines 

(primary amine or amidine) 6 carbon atoms from the N2 pyridazine ring (Figure 4.3 C). 

N N

C
H2

OO

O

FG
n
 

 

Compound 
Functional Group 

(FG) 
n FlexX scorea IC50, nMb

1 (Zardaverine)   -22.31  800 

2  H 0 -20.84             2000 

3 Ph 1 -19.45    60 

4 Ph 3 -17.17    20 

5 Ph 5 -15.63          0.9 

6 Ph 6 -16.85   80 

7 NH2 6 -26.84   20 

8 NHC(NH)NH2 6 -20.74           60000 
a FlexX score, in kJ/mol 
b The IC50 was calculated by non linear regression and represents the mean value of 

three independent determinations. The experimental error is about 15%. 

Table 4.6 PDE4 inhibition of compounds 1-8 
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Figure 4.3 Close up to the human PDE4 inhibitor binding site filled with zardaverine 1 
(A, X-ray pose), compound 5 (B, FlexX best-scored pose) and compound 7 (C, FlexX 
best-scored pose). Left panels represent the inhibitor (zardaverine, cyan; compound 5, 
orange; compound 7, magenta) bound to PDE4 (green). Zn2+ and OH- ions are displayed 
by balls. The molecular surface of the binding site was rendered using the SYBYL 
implementation of MOLCAD("SYBYL", 2003) and color-coded by hydrophobicity 
(brown  blue: hydrophobic  hydrophilic). The view was prepared with PyMol 
version 0.95 (http://www.pymol.org) 
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Compound 
Functional Group 

(FG) 
n FlexX scorea IC50, nMb

9 Ph 1 -22.08      8,000 

10 Ph 3 -20.40            >10,000 
a FlexX score, in kJ/mol 

b The IC50 was calculated by non linear regression and represents the mean value of 

three independent determinations. The experimental error is about 15%. 

Table4.7 PDE4 inhibition of compounds 9-10 

The last two selected compounds (Table 4.7) belong to the series of 4-substituted 

pyridazinones, with again a phenyl ring connected via one or three carbon atoms to the 

C4 pyridazine atom, and predicted to interact with the above mentioned hydrophobic 

channel after 180° rotation of the dihedral angle linking the dimethoxyphenyl moiety to 

the pyridazine ring. 

4.5.3 PDE4 inhibitory potency 

Out of the nine synthesized compounds, five exhibit a stronger in vitro inhibition of 

bovine smooth muscle PDE4 than zardaverine 1. Considering the very high sequence 

conservation among PDE4s in mammals, we can expect very similar results with the 

human PDE4 that has been modeled in the current study. A significant enhancement of 

enzymatic inhibition is observed by adding a phenyl ring at various distance (1 to 6 

carbon atoms) from the N2-pyridazine atom, the best inhibitor being compound 5, 

bearing a phenylpentyl substituent and exhibiting a subnanomolar IC50 (Table 4.6). A 

potent inhibitor (compound 7, IC50 = 20 nM) combining a hexyl linker and a primary 
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amine functional group was also discovered (Table 4.6). Surprisingly, the corresponding 

amidine 8 was found much less potent. Last, the two 4-substituted pyridazinones 9 and 

10 (Table 4.7) were much less active than the corresponding 2-substituted 

dihydropyridazinones 3 and 4 and show only micromolar affinities for the PDE4. 

4.6 Discussion 

We herewith present a simple and straightforward method to design small combinatorial 

libraries while optimizing size versus diversity. A key advantage of the SLF approach is 

that diversity is encoded in a simple pharmacophoric space. The method relies on three 

building blocks that are all under the control of the user: an invariable scaffold, a 

variable linker, a variable functional group. The linker has the simple role of varying the 

distance between the core of the molecule (the scaffold) and a few functional groups 

carefully selected to cover all possible intermolecular interactions. Therefore, additional 

interactions may be gained either locally or at a remote site within a single round of 

library design.  

The concept of enumerating combinatorial libraries by assembling building elements 

(scaffolds, ring systems, linkers, building blocks) has been recently described in several 

methods (Aronov & Bemis, 2004; Schuller et al., 2003). COREGEN (Aronov & Bemis, 

2004) is a fragment-based design method for assembling linkers and rings frequently 

occurring in known kinase inhibitors. By decomposing a molecule into R ring-building 

blocks and L linkers, a combinatorial library of R * L * P compounds (P being the 

number of positions that can be derivatized) is generated. SMILIB (Schuller et al., 2003) 

assembles scaffolds, linkers and functional groups in product-space. However, the latter 

do not necessarily describe the pharmacophoric space well. Thus the combinatorial 

assembly is unrestricted and generates very large libraries unless subset selection 
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according to user-defined queries (e.g. drug-likeness) is performed to reduce the size of 

the library. A basic difference with the above-mentioned methods is that our approach 

does not fully optimize the starting lead in a single round, but ensures at each design 

step, a significant affinity gain by an incremental optimization of both the linker and the 

functional group. Once a linker-functional group combination has been identified in the 

first design round, both building blocks may be optimized in a second round to fine tune 

the best possible combination by exploring the local chemical space around the selected 

building blocks. 

The SLF approach has been applied to the structure-based optimization of a known 

micromolar PDE4 inhibitor, zardaverine. By carefully selecting, in agreement with 

medicinal chemists, a limited number of linkers and functional groups, a zardaverine-

focused library of 320 compounds has been enumerated and docked to the X-ray 

structure of PDE4 according to settings previously known to reproduce the X-ray pose 

of zardaverine in the enzyme. The catechol substructure in both zardaverine and 

rolipram, two known PDE4 inhibitors, are positioned in the most hydrophobic sub-

pocket of the active site between Ile638 and Phe674 (Huai, Wang et al., 2003; Lee et al., 

2002). Both ether oxygen atoms are involved in bifurcated hydrogen bonds to the side-

chain of Gln671 (Figure 4.3 A). The same binding mode is observed for the very large 

majority of compounds in the virtual library (Figure 4.2) indicating that unrestrained 

FlexX docking is able to properly locate most of these ligands in the protein active site. 

The advantage of the herein proposed library design is exemplified by a series of 

zardaverine-based compounds for which additional interactions with remote pockets 

have been disclosed (Figures 4.2, 4.3). N2-substituted pyridazines 3-6 (Table 4.6) 

interact with hydrophobic pocket A (His462, His506, Phe642) through a phenyl 

functional group that can be linked to the pyridazine core by polymethylene spacers of 
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various lengths (1 to 6 carbon atoms; Figure 4.3 B). Compound 7 discloses another 

remote polar subsite B (Glu532, Asp574) through a primary amine 6 carbon atoms from 

the N2 pyridazine atom. The folded conformation of the spacer however suggests that 

shorter polymethylene spacers (e.g. butyl) may be appropriate as well. 

In the current study, the design effort has only been focused towards potency for a given 

PDE. However, the lack of selectivity of most PDE inhibitors towards other PDE 

isoforms (Bischoff, 2004) and genes probably account for observed side effects such as 

emesis and arrhythmia, which dramatically restricts the clinical development of PDE4 

inhibitors as anti-inflammatory compounds(Lipworth, 2005). Thus, it may be valuable 

to identify specific 3-D features in the selected PDE target to direct the design of potent 

and selective inhibitors. A systematic survey of the amino acid sequence of 21 human 

PDEs in the UniProt database (Apweiler et al., 2004) and a subsequent multiple 

alignment indicates that the acidic subsite B is fully conserved in all PDEs ( see 

Supporting Information by (Manallack et al., 2005)). We therefore anticipate that the 

additional interactions gained by compound 7 will not affect its selectivity profile with 

respect to zardaverine. Conversely, hydrophobic subsite A targeted by compounds 3-6 

shows some degree of variation among PDEs, especially at Ser510 and Cys660, as 

exemplified by the recently-described crystal structure of phosphodiesterase 4B in 

complex with (S)- and (R)-rolipram (Xu et al., 2004). The present data can thus be used 

to try and design potent and selective PDE inhibitors by simultaneously targeting the 

two remote subsites and directing the interaction with variable residues of the 

hydrophobic pocket A. 
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4.7 Conclusion 

The SLF method allows medicinal chemists to use their knowledge in an iterative 

"design-synthesize-screen-analyze" process. There are still certain shortcomings to the 

current implementation of the method and many further refinements are possible. For 

example, a user-defined 3-D conformation (e.g. X-ray conformation) of a scaffold could 

be selected as a rigid body to avoid incorrect conformer generation from a simple 1D 

representation (i.e. complex ring systems). Furthermore, the automatic detection of 

symmetry centers and /or axes would avoid the enumeration of duplicates and spare an 

additional post-processing step.  Last, a scaffold library designed from commercially-

available screening collections (Baurin et al., 2004) will soon enable the choice of 

multiple scaffolds fulfilling similarity/diversity-based queries. The SLF method can be 

used for a fast lead optimization consisting of the systematic search of remote 

subpockets in the neighborhood of a given scaffold by optimizing both the length of the 

necessary linker and the nature of the terminal functional groups. 
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5. Conclusion 

During this thesis work, we extended existing approaches of rational library design by a 

combinatorial-based strategy that combines a core structure by an exhaustive variation 

of distance-modulated pharmacophoric features. This strategy originates from the 

practice of medicinal chemistry and conceals it with combinatorial chemistry principles. 

Thereby, we achieve maximum diversity while keeping the size of the library low. 

At first, the assembling rules were investigated and defined to be the inverse of the 

hierarchical fragmentation method described by Bemis and Murcko (Bemis & Murcko, 

1996; Bemis & Murcko, 1999) during their substructural analysis of 5120 marketed 

drugs. We dubbed it the SLF approach (Figure 5.1) because it is based on three types of 

molecular building blocks: the invariant scaffold (S), the distance-modulating linker (L) 

and variable functional group (F).  

Scaffold

Linker

FG

Scaffold

Linker

FG  

Figure 5.1 SLF illustration: a metaphor to Emil Fisher’s lock –and-key concept 
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The implementation of this assembly rule is kept generic, i.e. a huge number of 

compounds could be generated, but we deliberately focused on small-sized libraries. 

The careful selection of the fragments was, beneath the way of assembling the 

fragments, the most critical step. Hence, we created three databases for the different 

building blocks types. The functional groups were chosen to be simple non-overlapping 

representational fragments of the pharmacophoric space. The linker library is mainly 

composed of alkyl chains to fulfill the role as distance-modulator. For a second-round 

screening, ethers, amide or benzene have been foreseen. For the scaffold, the user (i.e. 

the medicinal chemist) has the possibility to bring in his scaffold or to browse through a 

scaffold library for selection. This scaffold library has been extracted from supplier 

screening collections. This has the advantage that the scaffolds are synthetically 

tractable. Starting initially from 2.4 million compounds provided by 17 commercially 

available screening collections, we ended up with a scaffold library of 21 393 

non-redundant scaffolds computed by MCS detection algorithms. While constructing 

the scaffold library, we developed a work flow including two novel diversity metrics in 

order to evaluate the diversity of the different commercially available screening 

collections. These two metrics, named NC50C and PC50C, represent the number and 

the percentage of scaffolds accounting for 50% of classified compounds, respectively. 

The latter permitted to partition these collections in four categories corresponding to 

their origin. Moreover, in addition to dispose of a scaffold library required for the SLF 

approach, a cherry-picked probe library or a fragment library can be constructed. 

In order to demonstrate the strategy, we generated 320 molecules out of four scaffolds 

derived from zardaverine, a known PDE4 inhibitor, with all possible combinations of 

five linkers and sixteen functional groups. Subsequently, these molecules have been 

docked into to X-ray structure of PDE4 and ranked by predicted binding probability. 
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Nine compounds had been selected for subsequent synthesis and assaying. Of these, 

five compounds had a higher affinity then the reference compound. Within a 

single-screening round, the binding affinity had been increased by 900-fold. 

Further application cases will be implemented to confirm the ability of the SLF 

approach to accelerate the drug design process. 
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Chart A. filtering rules in OpenEye's Filter program (filter.txt configuration file) 

 

MIN_MOLWT                         250         "Minimum molecular weight" 

MAX_MOLWT                        500         "Maximum molecular weight" 

 

MIN_SSSR_RINGS          0                       "Minumum number of SSSR rings" 

MAX_SSSR_RINGS          7                       "Maximum number of SSSR rings" 

 

MAX_RING_SIZE           7                       "Maximum size of any SSSR ring" 

 

MIN_CARBONS             5                       "Minimum number of carbons" 

MIN_HETEROATOMS         2                       "Minimum number of heteroatoms" 

MIN_Het_C_Ratio         0.10            "Minimum heteroatom to carbon ratio" 

MAX_Het_C_Ratio         1.0                     "Maximum heteroatom to carbon ratio" 

 

#count ring degrees of freedom = (#BondsInRing) - 4 - (RigidBondsInRing) - 

(BondsSharedWithOtherRings) 

#must be >= 0, from JCAMD 14:251-265,2000. 

ADJUST_ROT_FOR_RING_TRUE                        "BOOLEAN for weather to estimate 

degrees of freedom in rings" 

#ADJUST_ROT_FOR_RING_FALSE 

 

MIN_ROT_BONDS           0                       "Minimum number of rotatable bonds" 

MAX_ROT_BONDS           15                      "Maximum number of rotatable bonds" 

 

MIN_RIGID_BONDS         0                       "Minimum number of rigid bonds" 

MAX_RIGID_BONDS         50                      "Maximum number of rigid bonds" 

 

MIN_HBOND_DONORS        0                       "Minimum number of hydrogen-bond 

donors" 

MAX_HBOND_DONORS        5                       "Minimum number of hydrogen-bond 

donors" 
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MIN_HBOND_ACCEPTORS     0                       "Minimum number of hydrogen-bond 

acceptors" 

MAX_HBOND_ACCEPTORS     10                      "Minimum number of hydrogen-

bond acceptors" 

 

MIN_COUNT_FORMAL_CRG            0                       "Minimum number formal 

charges" 

MAX_COUNT_FORMAL_CRG            3                       "Maximum number of formal 

charges" 

MIN_SUM_FORMAL_CRG             -2                       "Minimum sum of formal 

charges" 

MAX_SUM_FORMAL_CRG              2                       "Maximum sum of formal 

charges" 

 

MIN_XLOGP                       -2.0                    "Minimum XLogP" 

MAX_XLOGP                       6.0                     "Maximum XLogP" 

 

MIN_2D_PSA                      0.0                     "Minimum 2-Dimensional (SMILES) 

Polar Surface Area" 

MAX_2D_PSA                      140.0           "Maximum 2-Dimensional (SMILES) Polar 

Surface Area" 

 

ALLOWED_ELEMENTS        H,C,N,O,F,S,P,Cl,Br,I 

ELIMINATE_METALS 

Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd 

 

#acceptable molecules must have <= instances of each of the patterns below 

 

#specific, undesirable functional groups 

RULE    0       Carbazides 

RULE    0       Acid_anhydrides 

RULE    0       Pentafluorophenyl_esters 

RULE    0       Paranitrophenyl_esters 

RULE    0       HOBT_esters 
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RULE    0       Triflates 

RULE    0       Lawesson_s_reagent 

RULE    0       Phosphoramides 

RULE    0       Aromatic_azides 

RULE    0       Beta_carbonyl_quart_nitrogen 

RULE    0       Acylhydrazide 

RULE    0       Quarternary_C_Cl_I_P_or_S 

RULE    0       Phosphoranes 

RULE    0       Chloramidines 

RULE    0       Nitroso 

RULE    0       P_S_Halides 

RULE    0       Carbodiimide 

RULE    0       Isonitrile 

RULE    0       Triacyloxime 

RULE    0       Cyanohydrins 

RULE    0       Acyl_cyanides 

RULE    0       Sulfonyl_cyanides 

RULE    0       Cyanophosphonates 

RULE    0       Azocyanamides 

RULE    0       Azoalkanals 

RULE    0       Polyenes 

RULE    0       Saponin_derivatives 

RULE    0       Cytochalasin_derivatives 

RULE    0       Cycloheximide_derivatives 

RULE    0       Monensin_derivatives 

RULE    0       Cyanidin_derivatives 

RULE    0       Squalestatin_derivatives 

 

#functional groups which often eliminate compounds from consideration 

RULE    0       acid_halide 

RULE    0       aldehyde 

RULE    0       alkyl_halide 

RULE    0       anhydride 

RULE    0       azide 
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RULE    0       azo 

RULE    0       di_peptide 

RULE    0       long_aliphatic_chain                    //(>7 atoms) 

RULE    0   michael_acceptor 

RULE    0       beta_halo_carbonyl 

RULE    0   nitro 

RULE    0       peroxide 

RULE    0       phosphonic_acid 

RULE    0       phosphonic_ester 

RULE    0       phosphoric_acid 

RULE    0       phosphoric_ester 

RULE    0       sulfonic_acid 

RULE    0       sulfonic_ester 

RULE    0   triphenyl_phosphene 

RULE    0       epoxide 

RULE    0       hetero_hetero 

RULE    0       sulfonyl_halide 

RULE    0       halopyrimidine 

RULE    0       perhalo_ketone 

RULE    0       methyl_ketone 

RULE    0       aziridine 

RULE    0       imine 

RULE    0       oxalyl 

 

 

#the dye group includes a set of patterns which describe all cpds with colors in their 

names from the ACD98.2 

 

RULE    0       dye 

 

#functional groups which are allowed, but may not be wanted in high quantities 

#common functional groups 

 

RULE    6       alcohol 
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RULE    8       alkene 

RULE    4       amide 

RULE    4       amino_acid 

RULE    4       amine 

RULE    4       primary_amine 

RULE    4       secondary_amine 

RULE    4       tertiary_amine 

RULE    4       carboxylic_acid 

RULE    6       halide 

RULE    1       iodine 

RULE    4       ketone 

RULE    4       phenol 

 

#other functional groups 

 

RULE    4       alkyne 

RULE    4       aniline 

RULE    4       aryl_halide 

RULE    4       carbamate 

RULE    4       ester 

RULE    4       ether 

RULE    4       hydrazine 

RULE    4       hydrazone 

RULE    4       hydroxylamine 

RULE    4       nitrile 

RULE    4       sulfide 

RULE    4       sulfone 

RULE    4       sulfoxide 

RULE    4       thiourea 

RULE    4       thioamide 

RULE    4       thiol 

RULE    4       urea
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Chart B. Queries to analyze the overlap of the screening collections 

 

 

In order to evaluate inter-supplier classes overlap, we have several possibilities to query 

the scaffold database under mysql. 

The following query helped establish Table A. 

 

SELECT count(*) FROM cpdsinclass as c1,cpdsinclass as c2 

WHERE c1.class_id rlike 'DB1' AND c2.class_id rlike 'DB2' 

AND c1.inchi=c2.inchi 

AND c2.class_id <> c1.class_id; 

 

Table B is derived from Table A. 

Another approach for evaluation is obtained by the following query leading to Tables C 

and D 

 

SELECT count(*) FROM supplierscaf as s1, supplierscaf as s2 

WHERE s1.inchi=s2.inchi AND s1.class_id<>s2.class_id  

AND s1.class_id rlike 'DB1' AND s2.class_id rlike 'DB2' ; 
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Scheme A. Database scheme with the central table “structures” containing the essential information relative to 21,393 scaffolds. The four tables 

in the third column contain the re-classification of the scaffold library with different parameters. 
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Table A. Number of classified compounds overlapping pair-wise 

   ASIg ASIp CBG CDIc CDIi CNR CST IBSn IBSs MAY NET SPE TIMn TIMs TRI VITs VITt

ASIg 0 0 39 490 17 042 8 800 39 7 385 1 274 18 829 953 211 14 830 593 8 178 371 13 826 1 053 

ASIp 0 0     11 237 25 0 8 2 45 31 27 916 0 27 32 69 3

CBG  39 490 11 57 21 452 14 132 62 9 884 2 259 24 504 1 156 240 23 125 642 11 189 980 28 243 1 285 

CDIc 17 042 237 21 452 17 49 17 4 284 984 14 109 562 124 9 833 466 7 831 109 7 396 588 

CDIi 8 800 25 14 132 49 2 24 2 592 672  329 111 4 949 129 5 016 218 4 388 262 

CNR   39 0 62 17 24 0 25 16 23   34 11 16 5 29 1 13 3

CST 7 385 8 9 884 4 284 2 592 25 1 208 3 070 264 48 5 161 116 3 586 68 5 969 251 

IBSn 1 274 2 2 259 984 672 16 208 11 29   93 10 401 197 428 4 298 130

IBSs 18 829 45 24 504 14 109 23 3 070 29 46 638 132 8 774 444 4 811 145 11 111 798 

MAY    953 31 1 156 562 329 34 264 93 638 10 160 404 56 532 183 434  43

NET    211 27 240 124 111 11 48 10 132 160 0 83 7 82 24 87  4

SPE 14 830 916 23 125 9 833 4 949 16 5 161 401 8 774 404 83 0 319 8 923 204 9 575 550 

TIMn    593 0 642 466 129 5 116 197 444 56 7 319 0 1 210 0 225 36 

TIMs 8 178 27 11 189 7 831 5 016 29 3 586 428 4 811 532 82 8 923 1 210 10 136 6 003 344 

TRI    371 32 980 109 218 1 68 4 145 183 24 204 0 136 0 340  0

VITs 13 826 69 28 243 7 396 4 388 13 5 969 298 11 111 434 87 9 575 225 6 003 340 14 1 599 

VITt 1 053 3 1 285 588 262 3 251 130 798 43 4 550 36 344 0 1 599 0 
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Table B. Percentage of overlap of classified compounds of a database A with database B. For example, 4.6% of the Maybridge compounds can 

also be found in the Asinex Gold collection and conversely 1.1% of the Asinex Gold classified compounds are also among the Maybridge 

compounds. 

         ASIg ASIp CBG CDIc CDIi CNR CST IBSn IBSs MAY NET SPE TIMn TIMs TRI VITs VITt

ASIg 0.0 0.0   24.4 16.3 22.3 0.8 33.9 9.2 16.9 4.6 1.5 22.7 30.6 24.5 0.8 26.5 14.7

ASIp 0.0 0.0   0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.2 1.4 0.0 0.1 0.1 0.1 0.0

CBG  46.2 0.0 0.0  20.5 35.9 1.3 45.4 16.3 22.0 5.6 1.7 35.4 33.1 33.5 2.1 54.1 17.9

CDIc   19.9 0.3 13.3 0.0 0.1 0.4 19.7 7.1 12.6 2.7 0.9 15.1 24.0 23.4 0.2 14.2 8.2 

CDIi   10.3 0.0 8.7 0.0 0.0 0.5 11.9 4.8 0.0 1.6 0.8 7.6 6.6 15.0 0.5 8.4 3.7 

CNR   0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.3 0.1 0.0 0.0 0.0 

CST   8.6 0.0 6.1 4.1 6.6 0.5 0.0 1.5 2.8 1.3 0.3 7.9 6.0 10.7 0.1 11.4 3.5 

IBSn   1.5 0.0 1.4 0.9 1.7 0.3 1.0 0.1 0.0 0.4 0.1 0.6 10.1 1.3 0.0 0.6 1.8 

IBSs   22.0 0.1 15.1 13.5 0.0 0.5 14.1 0.2 0.0 3.1 0.9 13.4 22.9 14.4 0.3 21.3 11.1 

MAY   1.1 0.0 0.7 0.5 0.8 0.7 1.2 0.7 0.6 0.0 1.1 0.6 2.9 1.6 0.4 0.8 0.6 

NET   0.2 0.0 0.1 0.1 0.3 0.2 0.2 0.1 0.1 0.8 0.0 0.1 0.4 0.2 0.1 0.2 0.1 

SPE   17.3 1.3 14.3 9.4 12.6 0.3 23.7 2.9 7.9 2.0 0.6 0.0 16.4 26.7 0.4 18.3 7.7 

TIMn   0.7 0.0 0.4 0.4 0.3 0.1 0.5 1.4 0.4 0.3 0.1 0.5 0.0 3.6 0.0 0.4 0.5 

TIMs   9.6 0.0 6.9 7.5 12.7 0.6 16.5 3.1 4.3 2.6 0.6 13.7 62.3 0.0 0.3 11.5 4.8 

TRI   0.4 0.0 0.6 0.1 0.6 0.0 0.3 0.0 0.1 0.9 0.2 0.3 0.0 0.4 0.0 0.7 0.0 

VITs   16.2 0.1 17.5 7.1 11.1 0.3 27.4 2.1 10.0 2.1 0.6 14.7 11.6 18.0 0.7 0.0 22.3 

VITt   1.2 0.0 0.8 0.6 0.7 0.1 1.2 0.9 0.7 0.2 0.0 0.8 1.9 1.0 0.0 3.1 0.0 
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Table C. Number of overlapping classes by pair-wise comparison 

         ASIg ASIp CBG CDIc CDIi CNR CST IBSn IBSs MAY NET SPE TIMn TIMs TRI VITs VITt

ASIg 6 138   1 046 543 644 45 383 110 844 239 93 836 42 583 111 726 63

ASIp 138 4   110 85 66 23 60 15 81 78 43 110 8 84 33 103 20

CBG  1 046 110 5  446 611 47 368 103 671 221 110 892 34 534 110 694 55

CDIc   543 85 446 6 146 32 201 68 458 132 64 432 30 330 50 326 48 

CDIi   644 66 611 146 3 46 264 93 477 177 76 518 28 482 107 351 46 

CNR   45 23 47 32 46 0 38 23 45 56 35 49 6 45 22 37 9 1

CST   383 60 368 201 264 38 1 54 278 143 60 320 18 295 61 344 45 

IBSn   110 15 103 68 93 23 54 1 87 36 19 66 20 71 13 56 8 2

IBSs   844 81 671 458 477 45 278 87 6 178 82 584 29 417 71 511 52 

MAY   239 78 221 132 177 56 143 36 178 1 114 228 19 191 92 174 33 

NET   93 43 110 64 76 35 60 19 82 114 0 05 7 85 34 67 1 1 2

SPE   836 110 892 432 518 49 320 66 584 228 105 1 30 579 99 565 55 

TIMn   42 8 34 30 28 6 18 20 29 19 7 30 0 80 7 24 7 

TIMs   583 84 534 330 482 45 295 71 417 191 85 579 80 2 84 400 51 

TRI   111 33 110 50 107 22 61 13 71 92 34 99 7 84 0 96 8 1

VITs   726 103 694 326 351 37 344 56 511 174 67 565 24 400 96 4 68 

VITt   63 20 55 48 46 19 45 28 52 33 21 55 7 51 18 68 0 
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Table D. Percentage of of overlapping classes by pair-wise comparison of a database A with database B. For example, 15.5% of the Maybridge 

classes can also be found in the Asinex Gold collection and conversely  6.8% of the Asinex Gold classes are also among the Maybridge classes. 

         ASIg ASIp CBG CDIc CDIi CNR CST IBSn IBSs MAY NET SPE TIMn TIMs TRI VITs VITt

ASIg 0.3 7.0   32.7 15.8 27.9 11.5 37.9 14.5 24.2 15.5 9.9 25.6 25.9 29.8 8.3 33.7 15.7

ASIp 4.0 0.2   3.4 2.5 2.9 5.9 5.9 2.0 2.3 5.1 4.6 3.4 4.9 4.3 2.5 4.8 5.0

CBG  30.0 5.6 0.2  13.0 26.5 12.0 36.4 13.6 19.2 14.3 11.7 27.4 21.0 27.3 8.2 32.2 13.7

CDIc   15.6 4.3 13.9 0.2 6.3 8.2 19.9 9.0 13.1 8.5 6.8 13.2 18.5 16.9 3.7 15.1 11.9 

CDIi   18.4 3.4 19.1 4.3 0.1 11.8 26.1 12.3 13.7 11.5 8.1 15.9 17.3 24.6 8.0 16.3 11.4 

CNR   1.3 1.2 1.5 0.9 2.0 0.0 3.8 3.0 1.3 3.6 3.7 1.5 3.7 2.3 1.6 1.7 4.7 

CST   11.0 3.0 11.5 5.9 11.4 9.7 0.1 7.1 8.0 9.3 6.4 9.8 11.1 15.1 4.5 16.0 11.2 

IBSn   3.2 0.8 3.2 2.0 4.0 5.9 5.3 0.1 2.5 2.3 2.0 2.0 12.3 3.6 1.0 2.6 7.0 

IBSs   24.2 4.1 21.0 13.4 20.7 11.5 27.5 11.5 0.2 11.5 8.7 17.9 17.9 21.3 5.3 23.7 12.9 

MAY   6.8 4.0 6.9 3.8 7.7 14.3 14.1 4.8 5.1 0.1 12.1 7.0 11.7 9.8 6.9 8.1 8.2 

NET   2.7 2.2 3.4 1.9 3.3 9.0 5.9 2.5 2.3 7.4 0.0 3.2 4.3 4.3 2.5 3.1 5.2 

SPE   23.9 5.6 27.9 12.6 22.5 12.5 31.7 8.7 16.7 14.8 11.2 0.0 18.5 29.6 7.4 26.2 13.7 

TIMn   1.2 0.4 1.1 0.9 1.2 1.5 1.8 2.6 0.8 1.2 0.7 0.9 0.0 4.1 0.5 1.1 1.7 

TIMs   16.7 4.3 16.7 9.6 20.9 11.5 29.2 9.4 11.9 12.4 9.0 17.8 49.4 0.1 6.3 18.6 12.7 

TRI   3.2 1.7 3.4 1.5 4.6 5.6 6.0 1.7 2.0 6.0 3.6 3.0 4.3 4.3 0.0 4.5 4.5 

VITs   20.8 5.2 21.7 9.5 15.2 9.5 34.0 7.4 14.6 11.3 7.1 17.3 14.8 20.4 7.2 0.2 16.9 

VITt   1.8 1.0 1.7 1.4 2.0 4.9 4.5 3.7 1.5 2.1 2.2 1.7 4.3 2.6 1.3 3.2 0.0 
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Annex 2 

SLF implementation 

The reformulation of the algorithm in C++ uses the OpenEye OEChem Toolkit library.  

As the implementation depends on the OpenEye OEChem Toolkit (i.e. linkable 

libraries), the portability depends on the latter and on the disposability of C++ compilers. 

In the laboratory, the program is operational under SGI/IRIX, PC/LINUX and 

PC/Windows with gcc as compiler. 

The program is launched in a command-line manner in a console window with the 

following options: 

Mandatory    

-scaf <SCAFFOLD-FILE> Name of the file containing the scaffold(s) 

-link <LINKER-FILE> Name of the file containing the linkers 

-func <FUNCTIONAL-FILE> Name of the file containing the functional 

groups  

Optional   

-out <OUTPUT-FILE> Name of the output file,  

different molecular file formats possible 

-help HELP Displays this guidelines 

 

Example : 

SLF_LibMaker –scaf Scaffold.smi –link AlkylLinker135.smi –func FG.smi –out Specifics.smi 
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Nature Reviews Drug Discovery. Comment on the paper by 
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C., et al. (2005). Design of small-sized libraries by combinatorial assembly of linkers 

and functional groups to a given scaffold: application to the structure-based 

optimization of a phosphodiesterase 4 inhibitor. J. Med. Chem., 48, 3816-3822. 

 

Kirkpatrick, P. (2005). Medicinal chemistry - Best of both worlds? Nature Reviews 

Drug Discovery, 4, 540-540. 
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Abstract 
The main goal of this present work was to develop a new approach making the 
compromise between a minimum size and maximal molecular diversity for a compound 
library. This key issue in medicinal chemistry was tackled with computer assisted 
library design enumerating systematically molecules which acquire their structural 
complexity through combinations of three types of building blocks: scaffolds (S), 
linkers (L) and functional groups (F). A scaffold library was created from commercially 
available screening collections. In order to analyze the chemical diversity of these 
libraries, a general workflow was developed aimed at (1) identifying drug-like 
compounds, (2) cluster them by common substructures (scaffolds) and (3) measure the 
scaffold diversity encoded by each screening collection independently of its size. The 
combinatorial scaffold-based library concept (SLF) was illustrated by the lead 
optimization of a known PDE4 inhibitor, zardaverine. A library of 320 molecules was 
evaluated by virtual screening techniques which selected 9 compounds for synthesis and 
biological assay. This led to a 900 fold increase of affinity in comparison to zardaverine 
in one screening cycle.  

 

Résumé 
Le but principal de ce travail de thèse a été de développer une nouvelle approche 
cherchant le compromis entre une taille minimale et une diversité moléculaire maximale 
pour une chimiothèque. Cette problématique clef de la pharmacochimie a été traitée à 
l’aide d’une conception assistée par ordinateur énumérant systématiquement des 
molécules qui acquièrent leur complexité structurale par des combinaisons de trois types 
d’entités moléculaires : les châssis moléculaires (S), les espaceurs (L) et les 
groupements fonctionnels (F). Une chimiothèque de châssis moléculaires a été crée à 
partir de collections de criblage disponibles chez des fournisseurs. Afin d’analyser la 
diversité de ces collections, une chaîne de travail a été développée dans le but (1) 
d’identifier des composés à potentiel médicamenteux, (2) de les regrouper par 
sous-structures communes (châssis) et (3) de mesurer la diversité en châssis contenus 
dans chaque collections de criblage indépendamment de leur taille. Le concept de 
chimiothèque combinatoire basée sur châssis (SLF) a été illustré par l’optimisation 
d’une tête de série d’un inhibiteur connu de la PDE, la zardaverine. Une chimiothèque 
de 320 molécules a été évaluée par des techniques de criblage virtuel sélectionnant ainsi 
9 composés pour la synthèse et le test biologique. Ceci a mené à une augmentation de 
l’affinité par 900 fois par rapport à la zardaverine en un seul cycle de criblage.  

 

Mots-clefs 
Chimiothèque, Diversité moléculaire, Phosphodiesterase, Chemoinformatique 
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