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Abstract
The objective of this work has been to contribute to the physical understanding of in-
teractions of visible light with sub-micrometric spherical particles, in particular in the
near field. Two different phenomena have been studied, the possibility to concentrate
light in a photonic jet and the electromagnetic couplings between two close particles.
The Lorenz-Mie theory and the T-matrix algorithm, which is an extension to simulate
rigorously light interaction with several spheres, have been used for simulations. In the
two cases, the Maxwell equations have been analytically solved.

First, we have observed the possibility with spherical dielectric particles to highly
concentrate energy under the diffraction limit and to reach the diffraction limit in the
near field. We have shown that the laws of these focusing are different from the geo-
metrical optics. This near field focusing occurs when the radius size can be compared
to the wavelength but also for larger spheres. When the focus point is just on the
surface of the sphere or a few wavelengths behind, the width (FWHM) of the beam
can be smaller than the wavelength, the beam has a low divergence and the energy is
highly concentrated. Such a focused beam is called a photonic jet. We have shown its
existence for spherical particles and described its main physical properties according to
the optical properties of the sphere. Several possible applications have been presented.

This energy concentration in the near field has raised the question of possible elec-
tromagnetic couplings between particles inside an aggregate of dielectric spheres. To
study these electromagnetic couplings, we have simulated couples of micrometric par-
ticles. The study has been performed for two dielectric and two perfectly conductive
spheres for several orientations. Our objective has been to propose physical interpre-
tations of the possible electromagnetic couplings between two close particles.

For a couple of particles, which would be orthogonal to the incident plane wave vec-
tor, a comparison with circular Young slits has been made. In single scattering, the
scattered intensity in the far field can be described as interferences and diffraction. We
have extended this comparison to multiple scattering regimes and we have shown that
interactions due to multiple scattering mainly change the ratio of the incident wave
that interacts with the particles.

We have also considered a couple of particles parallel to the incident wave vector.
In multiple scattering and in backward direction, we have pointed out a shadow effect
for perfectly conductive spheres that makes the interference intensity decreases. In
opposition, a Perot-Fabry effect (cavity resonances) has been observed for a couple of
dielectric spheres. This effect makes the interference intensity increases and can be
used in future applications.
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Résumé
L’objectif de ce travail a été de contribuer à la compréhension physique de l’interaction
de la lumière visible avec des particules sub-microniques, en particulier en champ
proche. Deux phénomènes particuliers ont été étudiés, la possibilité de concentrer
la lumière en un jet photonique et les couplages électromagnétiques entre particules
proches. La théorie de Lorenz-Mie et l’algorithme de la T-matrice, qui est une exten-
sion pour simuler rigoureusement l’interaction de la lumière avec plusieurs sphères, ont
été utilisés pour les simulations. Dans les deux cas, les équations de Maxwell ont été
résolues analytiquement.

En premier lieu, nous avons observé la possibilité qu’avaient des sphères diélectriques
de focaliser jusqu’à la limite de diffraction et de fortement concentrer l’énergie en
champ proche. Cette focalisation en champ proche a lieu quand le rayon de la sphère
a une taille comparable avec la longueur d’onde, mais aussi pour des sphères de taille
plus grande. Quand le point focal est juste sur la surface de la sphère ou à quelques
longueurs d’onde devant, la largeur (FWHM) du faisceau peut être plus petite que la
longueur d’onde, le faisceau est faiblement divergent et l’énergie peut être fortement
concentrée. Un tel faisceau focalisé a été appelé un jet photonique. Nous avons montré
son existence pour des particules sphériques et avons décrit ses principales propriétés
en fonction des propriétés optiques de la sphère. Plusieurs applications possibles ont
été présentées.

Cette concentration d’énergie en champ proche a posé la question des couplages électro-
magnétiques qui peuvent intervenir entre particules au coeur d’un agrégat de sphères
diélectriques. Pour étudier ces couplages, nous avons simulé des couples de particules.
L’étude a été réalisée avec des couples de sphères diélectriques et des couples de sphères
conductrices parfaites et ceci pour plusieurs orientations. Notre but a été de proposer
une interprétation physique des phénomènes de couplages qui peuvent avoir lieu entre
deux particules proches.

Pour un couple de particules qui serait orthogonal au vecteur d’onde de l’onde plane
incidente, une comparaison avec des trous d’Young a été faite. En diffusion simple,
l’intensité diffusée en champ lointain peut être décrite en terme d’interférences et de
diffraction. Nous avons étendu cette comparaison aux cas où il y a diffusion multiple
et nous avons montré que les interactions dues à la diffusion multiple influaient essen-
tiellement sur la fraction de l’onde incidente qui interagissait avec les particules.

Nous avons également considéré le cas où le couple de particules serait parallèle au
vecteur d’onde de l’onde plane incidente. En diffusion multiple et dans la direction de
rétro diffusion, nous avons mis en évidence un phénomène d’ombrage dans le cas de
sphères conductrices parfaites, qui fait décroître l’intensité des interférences observées.
A l’inverse, un effet de type Fabry-Perot (résonances d’une cavité) a été observé pour un
couple de particules diélectriques, effet qui fait augmenter l’intensité des interférences
observées et qui pourra être utilisés pour des applications futures.

Micrometric particles light scattering 8/163 PhD, Sylvain Lecler 2002-2005
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Figure 1: Jacques Harthong.

I would like to dedicate this thesis to Jacques Harthong,
who honored me by accepting to be in the jury of thesis,
but whose life was cut short.

You are sorely missed.

See his web site : http://moire4.u-strasbg.fr

"Peut-être vous demandez-vous pourquoi cette" These"... est en anglais. ...La vraie
raison est simple : ...l’anglais est la seule langue qui peut être comprise aussi bien par
un Allemand, un Italien, un Néerlandais, un Espagnol, un Anglais, un Suédois, ou un
Français. La langue utilisée ici n’est d’ailleurs pas vraiment l’anglais, ni l’américain;
c’est tout simplement le Basic English, la langue internationale."
Extrait de la page d’accueil du site web de Jacques Harthong.

What could have been translated in English:
Perhaps you ask yourself why this thesis... is in English. The reason is easy to under-
stand: ... English is the only language that can be understood by a German, an Italian,
a Dutchman, a Spaniard, a British, a Swedish or a French. However, the used language
is not really the English, nor American, it is only the Basic English, the international
language.
(Inspired from the first page of the website of Jacques Harthong).

Unfortunately some spelling mistakes are still in this thesis. Pardon me...
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Foreword : PhD work and scientific work
I did not do a PhD just to have a new degree, that was not an opportunity, but
something substantial I had wanted to do for a long time. A PhD has been one of
the possibility to have time to observe and try to understand the reality with rational
arguments. Therefore among all the scientific domains, mine was necessarily physics.
Physics not in opposition to biology or chemistry, but as Physis, the word used by
Aristote to describe the nature. Because I am very surprised by the accuracy of science
but I am more surprised by nature itself.

In scientific work as a thesis, there is a technical aspect: making programs, formu-
lae demonstrations, plotting curves, but all these indispensable steps are not scientific
results, there are tools to find meaning. A real result is what we call the physical
understanding of a phenomenon, probably not the true explanation of a phenomenon
but something that makes sense.

Mathematics are one of the tools that physicists use. They often consider that physics
has its reasons that mathematics ignore. One of the things that I have learned during
my PhD, is that a good (experimental or theoretical) physicist does not have to be
a specialist in mathematics but has to apply the same strictness as in mathematic.
What we call an approximation, can be inspired by physical intuitions but must be
mathematically controlled. What we call an experimental error is necessary but must
be rigorously determined.

Another thing that I have learned during my PhD is that independent of our results or
knowledge, independent of the apparently power of science, one of the main qualities
of a scientist must be his humility. This quality is necessary to learn, to ask oneself
questions, to observe and to be able to progress. Paradoxically teaching can be a good
school for humility, with this condition, to be open to all questions.

At the beginning of my PhD work, I hoped to progress more rapidly. I did not know
that understanding needs more time than doing. I would have liked to plan my work,
but I was not aware that in science, it is the unexpected results that have more interest
than the other ones. Actually, during my PhD work, I probably asked myself more ques-
tions than I found answers, but I have tried to explain what I have come to understand.

Sylvain Lecler

September 2005
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Introduction
La lumière et plus généralement les ondes électromagnétiques sont un moyen privilégié
pour sonder et observer le monde qui nous entoure. Cependant pour que le scientifique
puisse extraire à partir de ses mesures optiques une information objective sur le milieu
qu’il étudie, il est nécessaire qu’il connaisse les lois d’interaction de la lumière avec
la matière. Au cours de l’histoire, afin d’en déterminer les lois, ces interactions ont
été divisées en sous-familles dont les principales sont la réfraction, la diffraction et la
diffusion [3]. Cette dernière, la diffusion, est sans aucun doute la plus générale car elle
englobe les deux autres. C’est elle qui en faisant des objets des sources secondaires, les
rend perceptibles par notre oeil. Quand un faisceau lumineux interagit avec une sur-
face rugeuse ou un milieu hétérogène, sa puissance va être redistribuée dans toutes les
directions de l’espace. C’est cette redistribution de l’intensité dans toutes les directions
qui semble le mieux caractériser la diffusion lumineuse. Dans la lumière diffusée, on
distinguera la diffusion spéculaire, qui correspond à la fraction de lumière réfléchie au
sens de la formule de Snell-Descartes et la partie liée aux formes des objets rencontrés
et qui correspond à la diffraction.

Les premières études de la diffusion lumineuse ont été faites dans le cadre de l’observation
astronomique [3]. En effet le flux lumineux qui vient des étoiles jusque dans nos téle-
scopes a subi une atténuation due à la lumière diffusée dans les nuages de poussières
qu’il a rencontré sur sont parcours. La diffusion apparaît donc là comme un défaut que
les astronomes ont voulu estimer. Mais les physiciens se sont très vites rendu compte
que cette diffusion n’avait pas seulement atténué le faisceau de lumière mais avait
changé ses propriétés, entre autre de polarisation. A partir de là, la diffusion n’était
plus vue comme un défaut. L’étude des propriétés de la lumière collectée allait devenir
un moyen de déduire les propriétés des nuages interstellaires traversés : propriétés de
densité du gaz, de taille et de forme des particules [4, 5, 6], mais à la condition d’avoir
de bons modèles.

17



LIST OF TABLES

Les premiers modèles développés (fin XIX et début XX), et qui sont encore très util-
isés, sont la diffusion de Rayleigh [7] et la théorie de Lorenz-Mie [8, 9]. La diffusion de
Rayleigh concerne la diffusion de la lumière par des particules très petites comparées
à la longueur d’onde. La théorie de Lorenz-Mie décrit, elle, la diffusion de la lumière
par une particule sphérique de taille quelconque. Ces deux modèles sont très perfor-
mants mais possèdent deux limites importantes. D’abord ils ne rendent pas compte des
propriétés de diffusion de particules n’ayant pas une symétrie sphérique, ensuite ils ne
peuvent être utilisés que dans le cas où les particules sont suffisamment espacées entre
elles pour que leurs interactions puissent être négligées. C’est à dire que ce sont des
modèles adaptés à l’étude de la diffusion de milieux peu denses. On parle de diffusion
simple.

Cependant, de nouveaux besoins ont vu le jour concernant la diffusion de la lumière
par des particules non forcément sphériques et dans des milieux plus denses. Comme
exemples peuvent être citées l’étude du rayonnement thermique dans des milieux denses
en combustion [10, 11] et l’interaction de la lumière avec des matières biologiques [12].
Dans ces cas là, on parle de diffusion multiple. Une particule ne diffuse pas seule-
ment l’onde incidente, mais également le champ diffusé par les autres particules. De
nouveaux modèles et algorithmes ont été développés d’abord pour tenir compte de la
forme des particules diffusantes, ensuite pour prendre en considération leurs interac-
tions. Les deux grandes familles d’algorithme [13] sont d’une part les algorithmes basés
sur l’expression des équations différentielles dans un espace discrétisé et d’autre part les
algorithmes modales qui décrivent avec le théorème intégral le lien entre les fonctions
d’une base sur laquelle les champs électromagnétiques sont décomposés.

Là encore, ces algorithmes ont une limite. S’ils permettent de décrire la diffusion
de la lumière par des agrégats de particules complexes, ils ne permettent pas toujours
d’identifier les phénomènes physiques élémentaires qui ont lieu. C’est dans ce cadre
que c’est placé mon travail de thèse. Notre but a été d’amener des éléments de com-
préhension concernant les couplages électromagnétiques entre particules proches et en
particulier de sonder ce qu’il se passait en champ proche. Ceci afin de mieux compren-
dre la diffusion par des milieux complexes et de permettre une meilleure exploitation
de la lumière pour sonder le réel. Nous nous sommes restreints au cas de particules
sphériques, diélectriques ou parfaitement conductrices et ayant une taille de l’ordre de
grandeur de la longueur d’onde. Les algorithmes rigoureux que nous avons utilisés sont
la théorie de Mie et l’algorithme de la T-matrice.

Les premiers résultats que nous revendiquons concernent l’interprétation physique du
couplage entre particules en fonction de leurs natures, de leurs orientations et de la
distance qui les sépare [14]. Le deuxième résultat important concerne la mise en évi-
dence et l’étude d’une concentration d’intensité en champ proche que l’on nomme jet
photonique [15]. Quand les conditions sont réunies, ce faisceau focalisé se manifeste à
la surface de particule diélectrique et permet d’atteindre la limite de diffraction. Ce
faisceau est intense, peu large et peu divergence, c’est ce qui fait son intérêt.

Micrometric particles light scattering 18/163 PhD, Sylvain Lecler 2002-2005



LIST OF TABLES

Propriétés et étude de la diffusion lumineuse
Quand la lumière interagit avec un agrégat de particules, la lumière diffusée dépend
de nombreux paramètres [3, 13]: la taille des particules comparées à la longueur
d’onde, leurs propriétés optiques (absorption, indice de réfraction, conductivité), leur
forme, l’orientation de l’agrégat par rapport à l’onde incidente, la densité en partic-
ules de l’agrégat, la nature plus ou moins homogène et isotrope de la répartition et de
l’orientation des particules dans l’agrégat, la forme de l’agrégat, etc.

Si l’agrégat est beaucoup plus petit que la longueur d’onde, on pourra utiliser la dif-
fusion de Rayleigh [7, 3]. Dans ce cas l’intensité de lumière diffusée est inversement
proportionnelle à la λ4 (λ est la longueur d’onde de la lumière incidente). La lumière
diffusée a la même polarisation que l’onde incidente et si l’onde incidente est linéaire-
ment polarisée le diagramme de diffusion sera similaire au diagramme d’émission d’un
dipôle oscillant. Quand l’agrégat est plus volumineux, on peut dans de nombreux cas
l’assimiler à une sphère et utiliser la théorie de Mie.

Dans la théorie de Mie [9, 8], on décompose les ondes incidentes, diffusées et le champ
à l’intérieur de la sphère sur la base des fonctions vectorielles sphériques. Ces fonctions
sont les solutions de l’équation de propagation vectorielle exprimée en coordonnées
sphériques. En appliquant la continuité des composantes tangentielles du champ à la
surface des particules on trouve les lois qui décrivent le lien entre les coefficients de
décomposition de l’onde incidente et ceux de l’onde diffusée et interne à la sphère. Le
nombre d’ordre à prendre en compte dans cette décomposition des champs, dépend de
la taille en unité de longueur d’onde de l’agrégat de particules. Si la particule est très
petite comparée à la longueur d’onde, on retombe sur la diffusion de Rayleigh. Seul le
premier ordre est excité. Plus la particule est grande comparée à la longueur d’onde
plus le nombre de modes excités sera grand. Pour certaines longueurs d’onde et pour
une taille de particule donnée, des résonances peuvent apparaître. En diffusion de Mie
plusieurs lobes de diffusion peuvent être observés dont le nombre, la taille et l’intensité
dépendent les propriétés de la particule. Si l’onde incidente est linéairement polarisée,
l’onde diffusée pourra, elle, avoir une polarisation linéaire, circulaire ou elliptique selon
la direction d’observation.

La figure 2 représente la section efficace normalisée d’une particule sphérique d’indice
1.52 en fonction de son rayon en unité de longueur d’onde. Par définition le produit de
la section efficace normalisée par la section géométrique de la particule (πR2) et par le
flux incident, donne le flux total diffusé. Quand la particule est très petite (R < 0.2λ),
la courbe est croissante en puissance de 4, il s’agit de la diffusion de Rayleigh. Quand
la particule est plus grande, on voit apparaître des résonances et une courbe décrivant
le flux total diffusé qui devient plus complexe. C’est la diffusion de Mie.

Cependant quand l’agrégat de particules ne peut pas être ramené à une simple partic-
ule sphérique, que la forme des particules et leurs interactions doivent être prises en
compte (diffusion multiple), d’autres modèles sont utilisés [13]. Les modèles basés sur
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Figure 2: Section efficace normalisée d’une sphère de rayon R et d’indice de réfraction
n2 = 1.52. Onde incidente plane linéairement polarisée.

les éléments finis ou les différences finies comme la FDTD [16] résolvent les équations
de Maxwell dans un espace discrétisé. Ce sont des méthodes génériques mais qui né-
cessitent de grande capacité de calcul et beaucoup de place mémoire. La DDA [17] est
une autre méthode qui décrit la particule comme une matrice de dipôles en interaction
et qui considère le flux diffusé comme la somme des contributions de tous ces dipôles.
Enfin les méthodes modales [13] sont basés sur une décomposition des champs sur une
base de fonctions orthogonales. L’application des théorèmes intégral [18] permet de
retrouver les liens entre les coefficients de décomposition des champs. L’algorithme de
la T-matrice, que j’ai codé pendant la thèse, fait partie de cette catégorie de méthode.
Il constitue un outil idéal car rapide et rigoureux pour permettre l’étude des couplages
entre particules.

L’algorithme de la T-matrice
L’algorithme de la T-matrice [19, 13, 20] est considéré comme une extension de la
théorie de Mie au cas d’un agrégat de particules sphériques. C’est une méthode modale.
La base des fonctions sur lesquelles les champs sont décomposés est la même que celle
de la théorie de Mie. Il s’agit de la base des fonctions vectorielles sphériques. La T-
matrice est la matrice qui lie les coefficients de décomposition de l’onde diffusée aux
coefficients de décomposition de l’onde incidente.

Pour calculer cette T-matrice, le champ en un point quelconque, hors de l’agrégat
est exprimé comme une somme de l’onde incidente et (l’intégrale) des composantes
tangentielles du champ à la surface des particules multipliées par la fonction de Green
qui contient un terme de déphasage. Une formulation légèrement différente permet
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d’avoir l’expression du champ aux points situés à l’intérieur de l’agrégat. Ces deux
équations permettent d’établir le lien entre l’onde incidente et l’onde diffusée à con-
dition d’être capable de calculer les intégrales décrites. Le champ étant décomposé
sur une base de fonctions adaptée aux coordonnées sphériques, les termes intégrales
sont faciles à calculer quand le repère est placé au centre de la sphère sur laquelle est
réalisée l’intégration. Comme il y a plusieurs sphères et un seul repère, le théorème
de translation addition est utilisé. Il permet d’exprimer les fonctions données dans un
repère sphérique comme une combinaison linéaire des mêmes fonctions données dans
un autre repère sphérique.

Toutes ces formules étant connues sous leurs formes littérales les coefficients de la
T-matrice peuvent être calculés analytiquement, ce qui fait de cette méthode, une des
méthodes les plus rapides et précises. L’étude des temps de calcul a été faite. Deux
approximations sont faites dans le calcul. Les champs sont décomposés sur une base
tronquée, c’est à dire sur un nombre fini de fonctions. Une inversion de matrice, néces-
saire dans le processus de calcul, est réalisée numériquement. Ces deux approximations
ont une conséquence s’est de limiter la taille maximale de l’agrégat simulé. Les agré-
gats simulés pourront atteindre une centaine de longueurs d’onde de diamètre, ce qui
fait de cette méthode une des méthodes capable de simuler les agrégats les plus gros [13].

Nous avons codé notre propre algorithme sous Matlab afin d’en avoir une bonne maîtrise
(interface figure 3). Notre travail s’est basé sur la publication de Peterson et Ström
[20]. Une fois calculé le champ diffusé, plusieurs autres programmes ont été codés pour
exploiter les résultats obtenus. Parmi les grandeurs physiques que nous avons calculées,
on peut trouver, les composantes du champ électromagnétique, le vecteur de Poynting,
le diagramme de diffusion 2 et 3D, les éléments de Stokes décrivant les états de polari-
sation, les axes de polarisation, ainsi que les sections efficaces de diffusion, d’extinction
et de rétrodiffusion. L’ensemble constituant l’outil de base pour notre étude.

Figure 3: Interface permettant de décrire l’agrégat et l’onde incidente pour ensuite
calculer le champ diffusé.
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Couplages électromagnétiques entre particules
Notre but était de pouvoir identifier et interpréter les phénomènes physiques élémen-
taires qui surviennent quand il y a des couplages électromagnétiques entre des partic-
ules. C’est pour cette raison que nous nous sommes restreints à l’étude d’un système
à deux particules identiques. L’étude a été réalisée avec des particules similaires, pour
plusieurs tailles, avec deux orientations des particules et deux polarisations incidentes
différentes et cela pour des particules diélectriques et parfaitement conductrices [21, 14].
L’étude a été réalisée avec l’algorithme rigoureux de la T-matrice.

Pour savoir si nous étions en diffusion simple ou multiple, c’est à dire pour savoir
s’il y avait interaction où pas entre les particules, nous avons étudié la rétrodiffusion
du couple de particules en fonction de la distance qui les séparait (figure 4a). Nous
avons comparé le résultat avec ce que l’on aurait eu en sommant les champs (modèle
cohérent) rétrodiffusés par chaque particule seule. Nous avons évidement tenu compte
du déphasage qui pouvait venir de leurs positions différentes. Quand la distance qui sé-
pare les particules est grande comparée au rayon des particules, l’intensité rétrodiffusée
est équivalente à la somme (cohérente) des champs rétrodiffusés par les deux particules.
Par contre quand les particules sont proches l’une de l’autre, par exemple quand leurs
centres sont séparés de quelques rayons, il apparaît une différence. C’est ce cas, où il y
a interaction, que nous avons voulu étudier afin de donner une interprétation physique
de l’interaction. Comme nous l’avons constaté l’interprétation physique est différente
selon l’orientation des particules et la nature des particules.

Nous avons d’abord considéré le cas où l’onde incidente se propage dans le plan normal
à l’axe portant les deux sphères. Nous avons comparé le diagramme de diffusion vers
l’avant et vers l’arrière du couple de sphères avec la figure de diffraction créée par deux
ouvertures circulaires ayant le même rayon que les sphères et étant séparées par la
même distance qui sépare les deux sphères (Trous d’Young [8]). L’avantage de cette
comparaison est qu’elle permet une interprétation physique du diagramme de diffusion.
Quand les sphères sont suffisamment éloignées l’une de l’autre pour qu’il n’y ait pas
d’interaction, les deux courbes (intensités en fonction de l’angle) correspondent bien
(figure 4b). Le maximum d’intensité correspond à la fraction du flux incident qui a
interagit avec les particules (à la section efficace autrement dit). La distance entre deux
maxima consécutifs est lié au phénomène d’interférence entre les ondes diffusées par
chaque particule, c’est à dire dans notre cas à la distance inter-billes. Enfin l’enveloppe
globale représente le terme de diffraction, c’est à dire la géométrie et la taille des struc-
tures vues par l’onde. Dans le cas sans interaction, la diffraction est liée à la section
géométrique d’une particule.

Qu’est ce que le couplage entre particules va changer ? Pour répondre à cette ques-
tion, nous avons refait la comparaison entre le diagramme de diffusion et la diffraction
par des trous d’Young, mais dans le cas où nous avions identifier qu’il y avait inter-
action. Notre conclusion est la même pour les particules diélectriques et parfaitement
conductrices. Le phénomène d’interférence reste à peu près identique au cas sans in-
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teraction. La taille et la géométrie de la structure vue par l’onde reste similaire à la
section géométrique d’une particule. Le paramètre qui change le plus est celui de la
section efficace du couple de particules, c’est à dire la fraction de l’onde incidente qui
interagit avec les particules. Selon la distance qui sépare les particules, elle peut être
plus grande ou plus faible.

Nous nous sommes également posé la question de l’interprétation du couplage dans

0 10 20 30 40 50
2

2.5

3

3.5

4

4.5

5

5.5

kd

σ bn

Normalized backscattering cross section

 kR=2, σ=∞ Ei=Ey

−1 −0.5 0 0.5 1
0

5

10

15

20

25

sin(α)

In
te

ns
ity

(1) Forward Scattering and (2) Young slits

(1)
(2)

(a) (b)

Figure 4: (a) Section efficace de rétrodiffusion (b) Comparaison entre la diffraction par
des trous d’Young (− −) et la lumière diffusée (–). Système diffusant : 2 sphères, rayon
a: ka = 2, conductivité σ2 = ∞, distance entre le centre des 2 sphères d: kd = 45.
Le vecteur d’onde ~k et le champ électrique, linéairement polarisé, sont orthogonaux à
l’axe des 2 particules.

le cas où les deux sphères sont dans l’axe du vecteur d’onde incident. Dans ce cas
l’interprétation physique n’est pas la même selon que la particule est diélectrique ou par-
faitement conductrice. Pour les sphères parfaitement conductrices, un effet d’ombrage
se manifeste qui fait décroître la section efficace des deux sphères quand elles se rap-
prochent (figure 5(a)). A l’inverse quand les deux sphères sont diélectriques, la section
efficace des deux sphères aura tendance à augmenter quand elles se rapprochent (figure
5(a)). Dans ce cas, il y a un effet similaire à un Fabry-Perot [8], l’espace entre les deux
particules se conduit comme une cavité avec des maxima de transmission.

Cette étude montre bien les couplages électromagnétiques qui apparaissent entre des
particules illuminées quand celles-ci se rapprochent. Nous avons interprété physique-
ment comment se manifeste ce couplage, mais pour mieux comprendre sa cause, nous
avons étudié la répartition d’intensité en champ proche, c’est à dire autour d’une par-
ticule.
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Figure 5: Section efficace de rétrodiffusion en fonction de la distance d entre les sphères.
Rayon a: ka = 2. Ici les deux sphères sont dans l’axe du vecteur d’onde incident ~k.

Le jet photonique
En général, lorsqu’on étudie l’interaction de la lumière avec des particules de taille
comparable à la longueur d’onde, on ne considère que le champ diffusé et l’observation
est faite en champ lointain [3]. Pour mieux comprendre la cause des couplages entre
particules, nous avons étudié la répartition d’intensité autour d’une particule diélec-
trique en champ proche [15]. Dans ce cas, dans la théorie de Mie, le champ hors de
la particule est la somme du champ diffusé et du champ incident. Ce que nous avons
calculé et qui corrobore les simulations de Taflove effectuées par FDTD sur des cylin-
dres diélectriques [22], est qu’il pouvait y avoir une très forte concentration d’intensité
en champ proche (figure 6). Cette forte concentration d’intensité est appelée un jet
photonique. Nous avons voulu mieux comprendre ses propriétés et son origine.

Nos simulations montrent qu’une sphère diélectrique de quelques longueurs d’onde,
selon son indice de réfraction peut concentrer (focaliser) l’intensité dans la sphère (fort
indice de réfraction) ou hors de la sphère (faible indice). Si on appelle point focal le
lieu sur l’axe optique où l’intensité est maximale, alors ce point focal n’obéit pas aux
lois habituelles de l’optique géométrique. Pour une sphère de taille donnée, nous avons
montré que le maximum d’intensité était atteint quand le point focal tombait juste à
la surface de la sphère. Si la sphère ne fait que quelque longueur d’onde, nous avons
montré qu’il fallait utiliser un matériau ayant un indice de réfraction de l’ordre de 1.6.
Si la particule est plus large, l’indice nécessaire tendra vers 2.

La deuxième observation importante était que ce jet photonique pouvait atteindre
la limite de diffraction, c’est à dire atteindre une largeur totale à mi hauteur d’une
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Figure 6: Intensité du champ électrique autour d’une sphère de rayon R = 5λ et
d’indice n2 = 1.3. La largeur totale à mi-hauteur du faisceau est inférieure à λ. Le
calcul a été fait avec un ordre Lmax = 45 et pour une onde incidente plane linéairement
polarisée Hi = Hy and ki = kz.

demi-longueur d’onde. Nous avons alors recherché dans quel cas la largeur du faisceau
focalisé allait garder une largeur inférieure à la longueur d’onde sur la plus longue dis-
tance de propagation possible. Pour avoir un tel phénomène, nous avons montré qu’il
fallait focaliser, non plus juste à la surface de la particule, mais quelques longueurs
d’onde derrière (figure 6). Indépendamment de la taille de la particule, la longueur
maximale de propagation en dessous de la longueur d’onde est atteinte pour un indice
de réfraction de l’ordre de 1.3.

Nous nous sommes également intéressé à la nature électromagnétique d’un jet pho-
tonique. Nous avons montré que sa polarisation (en champ proche) était la même que
celle de l’onde incidente et cela malgré que le champ dans une direction quelconque
proche de la particule n’est plus rigoureusement transverse. En effet, en champ proche,
la composante radiale du champ électrique n’est pas nulle dans toutes les directions.

Enfin nous avons voulu savoir pour quelle taille de particules le phénomène du jet
photonique pouvait avoir lieu. Il n’a pas lieu dans le régime de Rayleigh (kR < λ).
Dans ce cas, quand la particule est trop petite comparée à la longueur d’onde, les max-
ima d’intensité ne sont plus sur l’axe optique mais de part et d’autre de la particule
[23]. Si nous avons trouvé une taille minimale, en revanche nous n’avons pas trouvé
de taille maximale. Un jet photonique avec les mêmes propriétés que celles décrites
ci-dessus semble pouvoir être réalisé avec des particules de grandes tailles (R >> 20λ).
Ce qui semble montrer que l’apparition d’un jet photonique ne serait pas due à la taille
de la particule mais bien à la proximité du point focal avec la surface de la particule.

Pour résumer, dès qu’une particule diélectrique a un rayon supérieur ou de l’ordre
de la longueur d’onde, il est possible en choisissant un indice de réfraction n2 qui per-
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mette de focaliser juste à sa surface (1.6 < n2 < 2) ou bien juste derrière la sphère,
d’avoir un jet photonique, c’est à dire un faisceau focalisé, avec une largeur inférieure à
la longueur d’onde, avec une très forte intensité et une faible divergence. Cela permet
mieux de comprendre pourquoi deux particules proches peuvent se comporter comme
une petite cavité avec un effet Fabry-Perot. Mais le jet photonique seul pourrait aussi
être utilisé dans de nombreuses applications comme nous allons le voir.

Conclusion
Afin d’étudier les couplages électromagnétiques en diffusion multiple et pour en obtenir
une interprétation physique nous avons codé deux algorithmes rigoureux de résolution
des équations de Maxwell: la théorie de Mie et l’algorithme de la T-matrice.

Grâce à l’algorithme de la T-matrice nous avons pu mettre en évidence et inter-
préter physiquement le couplage entre deux particules qui survient quand elles sont
très proches [14]. Nous avons montré que quand les particules sont orthogonales à la
direction de propagation, le couplage se traduisait majoritairement par un changement
de la fraction de l’onde incidente qui était diffusée. Les phénomènes de diffraction et
d’interférence étaient très faiblement affectés par l’interaction. Nous avons également
étudié le cas où les particules sont alignées dans la direction de propagation de l’onde
incidente. Un phénomène d’ombrage, se traduisant par une baisse de la section efficace
de diffusion est observé si les particules sont parfaitement conductrices. A l’inverse
un phénomène similaire aux pics de transmission d’une cavité Fabry-Perot est observé
sous la forme d’une augmentation de la section efficace de diffusion lors de l’interaction
de deux particules diélectriques.

Une étude complémentaire de l’intensité en champ proche autour d’une particule diélec-
trique a permis de mettre en évidence la possibilité qu’elle avait de fortement concentrer
l’intensité. Ceci en plus de permettre une meilleure compréhension des couplages entre
particules proches, constitue un phénomène intéressant en soi. Ce faisceau focalisé,
appelé jet photonique, survient quand le point de focalisation est juste sur ou juste
derrière la surface de la sphère. Il atteint une très grande intensité, peut rester avec
une largeur inférieure à la longueur d’onde sur plusieurs longueurs d’onde de propaga-
tion et a une faible divergence [15].

Ce jet photonique pourrait avoir plusieurs applications intéressantes :

• amélioration de l’usinage laser [23],

• amplification de phénomènes non linéaires optiques,

• augmentation des capacités des mémoires optiques (CD),

• détection de nano-particules [24],

• amélioration de la résolution en microcopie [25], SNOM par exemple.
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L’exploration de ces pistes semble prometteuse. La mise en évidence expérimentale
d’un jet photonique reste également un défi intéressant. Indépendamment de cela
l’amélioration des algorithmes d’étude de la diffusion multiple sera une étape néces-
saire pour simuler des agrégats plus gros, plus réalistes et pour permettre de mieux
comprendre les couplages électromagnétiques dans les milieux hétérogènes.
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Chapter 1

Introduction

1.1 Introduction
In the Bible, if God created light the first day, that was probably to observe his cre-
ation. Actually, light may be one of the best means of observing reality. Light is able
to go through a medium, to have various interactions according to the shape and the
properties of the matter. Often these interactions do not affect the observed object.
The information propagates fast and ends up in our eyes or sensors. However our small
brain must know the laws of interaction of light with matter to deduct information
about this light. In order to know that we see an object before us, we must (uncon-
sciously) know that the surface of the object scatters light and behaves as secondary
sources. We must know the law of refraction and reflection of the propagating light,
etc. The physicist must understand the same kind of knowledge about light to be
able to extract objective data from the reality. That is the reason for explaining the
interest for studying interaction between light and matter. In this work, we focus our
attention on the description of one of these interactions: light scattering. I will explain
this choice more in depth below.

Since the first laws of Lord Rayleigh in 1871 which deal with light scattering of parti-
cles with a size small compared with the wavelength, significant improvement has been
made for a better description of this phenomenon [3, 26]. We can cite, for example, the
Mie theory in 1908 [9, 27, 28], and before the work of Lorenz [29, 30], which describes
rigorously light scattering by spherical particles. However, most of these developments
only deal with single scattering. That is, when each particle is supposed to scatter only
the incident light independently of the other particles. This hypothesis is true when the
distance between particles is large compared to the wavelength. When light is scattered
by a dense cloud of particles, multiple scattering must be taken into account. Each
particle scatters the incident light but also the light scattered by the other particles.
The study of these electromagnetic interactions between the particles is more difficult
to describe and often needs the use of a numerical resolution of Maxwell equation.

Several specific algorithms have been developed these two last decades (see section
2.6) to describe such multiple scattering interactions. The need to understand multiple
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scattering that occurs in many new applications can probably explain the increase of
interest for this subject.

Yet another great change can explain the increase of light scattering interest. For
a long time, light scattering has been considered a cause of loss of information and
power during propagation. For example, the light scattered by cosmic particles ex-
plains a part of the decrease of light collected by astrophysicists telescopes, what is
called the extinction phenomenon [3]. Scattering can be considered too, as a reason for
decrease of polarization degree of a beam propagating in a medium. However it is now
understood that the optical properties of the scattered field can be used to learn in-
formation on the media. The intensity scattered according to the direction (scattering
phase function) and the degree of linear polarization of the scattered field can be used
to find the density, the shape, the optical properties of particles or aggregates of par-
ticles. Scattering phenomena are no longer a drawback but become a non-destructive
means to investigate matter.

The need to understand multiple scattering effects and to solve inverse problems to
obtain information about media, can probably explain the increased interest for light
scattering. As a result many new numerical methods have been developed to improve
the understanding of light scattering. Because of the size of particles, which can be com-
pared to the wavelength, these methods are based on the rigorous Maxwell’s equations.
Differential methods as Finite Element Method (FEM) [31][32] or Finite Difference
Time Domain Method (FDTD) [33, 16, 34] have been used in 2D. New methods based
on a physical description of matter have been developed such as the Discrete Dipole
Approximation (DDA) [35, 36]. These methods allow the study of 3D problems, al-
though only for small particles or aggregates. Actually only the integral methods, such
as the T-matrix algorithm [37], have shown to be capable of modelling light scattered
by large irregular particles or aggregates.

In this context, the main objective of this PhD work is to contribute to bring com-
plementary physical explanations of some basic phenomena that occur in visible light
scattering for sub-micrometric particles, in particular in the near field region. The work
is theoretical but has been carried out by considering experimental conditions. In single
scattering, we have analyzed the possibility with dielectric spheres to focus light until
the diffraction limit and to obtain a high spatial concentration of energy in the near
field, what is called a photonic jet. This possibility can have applications in microscopy
or in laser processing, but it also illustrates the high electromagnetic coupling that can
appear inside an aggregate of particles. That is the reason why we have also studied
in the far field the electromagnetic coupling between a couple of close particles. Our
objectives were not only to study the influence of several optical parameters but to
give physical interpretations of these effects. In particular the transition between sin-
gle and multiple scattering has been described as interferences, diffraction and energy
coupling. Such a knowledge may have applications for aggregate characterization by
light scattering. To carry out these theoretical studies, a T-matrix algorithm has been
coded and will be described in this report.
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Before introducing our work, we would like to summarize the main historical steps
in the understanding of volume light scattering and corresponding applications.

1.2 Light scattering: short history and background
This section deals with the main steps in the understanding and applications of light
scattering in order to situate our work in a more general context.

- XIXth century : the birth of electromagnetism
Several observations and famous experiments in the XVIIIth century led to the appari-
tion of two different domains, the electrostatic and the magnetostatic. They respec-
tively describe strength created by charges and magnets on other charges and magnets.
Because of new experiments such as the experiment of Oersted, these two domains have
been brought together by Maxwell [38] at the end of the XIXth century to create the
electromagnetism. The main historical contributions in electromagnetism are summa-
rized in appendix A.1. The understanding of light scattering was mainly to be carried
out in the XXth century.

- 1871 The Rayleigh scattering
Lord Rayleigh (figure 1.1) is one of the first to rigorously describe light scattering by
particles smaller than wavelength [7, 1]. By using symmetries and a dimensional study,
he deduced that the scattered intensity of such a particle is inversely proportional to
λ4, where λ is the wavelength of light (see section 2.2). Thus he explained that the
small water drops in the sky scatter more blue light than red, that is the reason why
the sky is blue (scattered light) in the day and red (direct light) immediately before
and after the sunset.

Figure 1.1: Lord Rayleigh: J.W. Strutt 1842-1919 Cambridge [1]

- Physical colors
Colors are often a consequence of absorption properties of material. However colors can
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also be a consequence of physical phenomena, for example the "prism effect". Scatter-
ing is another example of physical colors [39]. We have yet pointed that the scattered
intensity in the Rayleigh case depends on the wavelength and that it explains why the
sky is blue. The white color of ice and paper can also be explained by multiple scat-
tering. Their components (crystal and chalk) are smaller than the visible wavelengths,
thus all the colors are scattered and create together a white appearance. The color
of some butterflies (figure 1.2) can also be explained by scattering [2] and the color of
some glasses are produced by including nano-size metallic objects in the glass.

Figure 1.2: Microscope view of the scattering structure on the wing of a butterfly called
pieris brasicae[2].

- 1891 Lorenz and 1908 the Mie scattering
Gustave Mie (1868-1957) used the analogy with sound to solve the propagation equa-
tion of electromagnetic waves in a dielectric sphere [8, 9, 27, 28](see section 2.3). A
similar work had been made before by Lorenz [29, 30]. The Mie theory makes the
calculation of light scattering possible for spheres larger than the wavelength. This
theory is also called the Lorenz-Mie theory.

- Atmospheric applications
During half a century, all scattering problems were described as the sum of light scat-
tered by spheres. The effective shape of a particle and the electromagnetic interaction
between particles were considered as negligible [3]. The main family of applications
were the atmospheric ones. The effects (extinction, polarization change) of aerosols,
cloud or haze scattering about atmospheric optics [40] as radar and satellite commu-
nications were studied. Light scattering was also used to observe atmosphere for the
meteorology and pollutant quantification.

- 1966 Waterman: arbitrary shape particles
The conceptual contribution of Waterman [19] is very important because it lead the
way to the future methods. By using an integral formulation and the vectorial Green
function, he described light scattering by a particle with an arbitrary shape (will be dis-
cussed in chapter 3). The Green function describes an electromagnetic impulse source.
The integral formulation is the vectorial analogue of the Huygens-Fresnel integral in
scalar theory. This new theory is considered as the birth of the T-matrix algorithm and
is also called the Extended Boundary Condition Method (EBCM). At the beginning,
this formulation was applied for spheroidal particles in order to be able to carry out
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analytical calculations. Recently because of advance of computers this method has
been applied for more arbitrary shapes (discus in section 2.6).

- 1973 Peterson and Ström: scattering by an aggregate of particles
The contribution of Peterson and Ström is the second great contribution in light scatter-
ing description related to this work. The integral formulation of Waterman is extended
for the scattering of several particles [20]. Thus dependent (that is with phase effects)
and multiple scattering can be rigorously taken into account. Other algorithms have
been developed to simplify computing by using assumption (see section 2.6). More
recently Mishchenko has contributed to the development of the T-matrix algorithm
and of its use in several domains [37, 13].

- Astrophysical observations and particle characterization
Light scattering is of a great interest in astrophysics. Initially what has been under-
stood is that light scattering was a reason for the decrease of the incident flux in our
telescope. This extinction of light is due to absorption and light scattering by the
interstellar particles. Auguste Comte in the XIXth century considered the studies of
astrophysical object impossible because of their distance and cited them as examples
of the limits of science [41]. Electromagnetism has contradicted his point of view.

The scattering phenomena change the properties of the transmitted light. More re-
cently physicists have understood that the study of these properties (scattering phase
function, polarization) was a means to study these interstellar particles (size, shape,
density, etc.). Among the particles of interest are the stellar particles, the comets (sur-
face and tail), the regolith (dust on the planet surfaces).

In order to have a better understanding the interaction of light with matter in micro-
gravity, to describe planetary formations and to understand the light scattering prop-
erties in function of the scattering aggregates, several projects have been carried out.
PROGRA2 [4, 5][Web1] and the ICAPS (Interaction in Cosmic and Atmospheric Parti-
cle Systems) project [6], where some experiments will be carried out in the International
Space Station (ISS), are two of these projects.

- Dense media and biological applications
Because of the possibility to describe more realistic scattering phenomena, light scatter-
ing is now used in new domains such as oceanography, colloidal chemistry, biophysics,
among others.

One of the more recent aims is to describe light scattering by dense media of par-
ticles or propagation of light in dense media of particles (powder, dust, heterogenic
media). In this case, electromagnetic couplings between particles occur, there is mul-
tiple scattering. Such descriptions of scattering by dense media often use radiative
transfer (see section 2.6) and need the calculation of the scattering phase function in
the material. To be computed, this last function may need assumption. In particular
the propagation of near infrared light in biological tissues [12] (they are slightly ab-
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sorbed) is a new cheap studied means, that could be used to make 3D reconstructions
of organs (optical tomography)[42].

1.3 Necessity of understanding light-matter interac-
tions

As we have seen in the previous part, light scattering can be used for particles char-
acterizations. For example, polarization response are linked to the shape of scatterers.
A comparison between polarization response of spherical and spheroidal particles is
presented in reference [43] and illustrates this possibility.

However, we must underline the limitation of such an inverse problem. The properties
of the light scattered by an aggregate depend on a large number of parameters:

• shape and dispersion of shape of particles,

• size and dispersion of size of particles,

• density, that is the number of particles per volume unit,

• structure of aggregates (fluffy, fractal, dense, etc.),

• optical properties of particles (permittivity, absorption, isotropy),

• quality of particle surfaces (roughness, buffing, etc.).

An inversion problem is possible if only some of the parameters are unknown and only
if the dispersion of the characteristic of particles is low. The particle description ob-
tained by inversion may have significant errors. Different kinds of scatterers can also
give the same scattering phase function or polarization properties. That is the reason
why for a given optical response there is not necessarily only one solution to an inver-
sion problem. These inversion algorithms use numerical methods, whose limitations do
not permit sufficient modelling compared with the complexity of reality. Therefore the
better understanding of scattering that we would like to reach in this work, can also
have interest to develop better inversion algorithms.

To understand the interaction between matter and light, we need:

• new more accurate scattering measurements,

• a better characterization of the scattered particles (microscopy),

• development of more powerful algorithms (able to describe interactions between
larger aggregates or media),

• a better physical comprehension of the phenomena.
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The objective of this work is to contribute to this last point, in particular by under-
standing what happens in the near field region, just around the particle. What is
the intensity map around a single dielectric particle? What are the electromagnetic
couplings between particles close compared to the wavelength?

1.4 Objective and outline of the dissertation
In this dissertation, first the fundamentals of light scattering phenomena will be out-
lined. After that, different methods used to model light scattering by particles will be
discussed. Then, in chapter 3, we will describe the electromagnetic approach that we
have used to model the interaction of visible light with close sub-micrometric particles.
In the context of this work only a small number of particles, and particles with a size
smaller or comparable with a few wavelengths will be considered. The wavelengths are
assumed to be in the visible light. Most of the considered particles will be dielectric
and without absorption. The case of perfectly conductive sphere, or of dielectric sphere
with absorption, will only be studied in few cases. The physical measurable values will
also be described.

Our studies have been carried out with a T-matrix algorithm and the Lorenz-Mie
theory that have been programmed during the thesis with Matlab (programs will be
accessible in Internet). The principles and limitations of this algorithm will also be
presented in chapter 3. Then two main sets of results will be presented. The first
result described in chapter 4 (and published in [15]) is the possibility with a simple
sphere, that scatters in the far field, to focus in the near field in a point smaller than
the wavelength and to highly concentrate energy the near field. This focused beam
in the near field has been called a photonic jet. This new observation can open the
way to applications but also points out the particular phenomena that can occur in-
side an aggregate of particles. The second main result, described in chapter 5 (and
presented in [14]): is about a proposed physical interpretation of the electromagnetic
coupling between two spheres. If a single dielectric sphere is able to concentrate energy
in the near field, importance of electromagnetic couplings between close particles can
be understood. The chapter 6 will summarize our main results and outline the future
problems and potential research directions.
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Chapter 2

Light scattering

After giving a general definition of what light scattering is, here we will discuss the fun-
damentals equations and properties induced with light scattering phenomena. Scatter-
ing regimes will be described depending on size and refractive index, for single particle
and aggregates. Then a-state-of-the-art in measurement techniques and rigorous elec-
tromagnetic solvers for light scattering, will be presented. The transition from single
to multiple scattering will also be discussed. More detailed technical aspect will be left
to the next chapter.

Light scattering is the general concept to point out light interaction with matter. First
we must distinguish several particular cases that are also included in light scattering:

• We discuss refraction and reflection when the boundaries between materials
are plane or with smooth variation on a large scale compared to the wavelength.
The material must be homogeneous and able to be described by the macroscopic
concept of refractive index. In this case the Snell-Descartes laws (geometric op-
tics) and reflective coefficient of Fresnel can be used to describe light path.

• We discuss diffraction, when we consider the optical effect of a spatial change in
the optical property of a material, if this change has a size of the same order of the
wavelength and if this change has a regular shape or is periodically repeated. In
this case the electric field must be considered as a wave: Fourier optics, gratings
etc. [44, 45, 46].

• We discuss scattering when we consider small, irregular spatial variations of
the optical properties of the matter (permittivity, shape). When these variations
cannot be easily described (random media, roughness, inhomogeneities, etc.). As
represented in figure 2.1 the three previous regimes are included in light scatter-
ing phenomena.

• We discuss quantum optic when we must take into account the quantification of
the energy exchanges that occur during light material interactions. That is when
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the incident flux contains only few photons. (Laser is not necessary considered
quantum optics).

Reflection

Refraction

Diffraction

Figure 2.1: Refraction, reflection and diffraction in scattering phenomena.

Diffraction is included in light scattering phenomena, however the difference between
scattering and diffraction is not always clear. For example the interaction between
light and one spherical particle or aligned spherical particle may simply be considered
as diffraction, whereas the interaction of light with randomly positioned spheres is light
scattering. In the case of random spheres, if there is independent and single scattering,
the laws will be very similar to the case of light scattering by one particle. The only
difference will be the use of a function describing the density of particles. In these
two cases (random and regular structures) the Lorenz-Mie theory can be used to de-
scribe the phenomenon, what illustrates similarities between diffraction and scattering
in some cases.

In this work, the considered medium are random with irregular change of optical prop-
erties. This change is assumed to be small compared to the wavelength but large enough
compared to molecular size. The flux are assumed to be enough to neglect quantum
effects. It is why we consider the word "scattering" as being more appropriate for the
approach discuss here.

Usually surface and volume scattering are separately studied. Surface scattering deals
with surface quality and roughness [47, 48], whereas volume scattering describe the
light scattering by particles or inhomogeneities [13]. A lot of works have already been
report on surface scattering [47, 48], but in this thesis we will deal only with volume
scattering.
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2.1 Single and independent scattering
We must also distinguish dependent and independent scattering, that is when phase
effects can occur or not:

Independent scattering: if the scattering particles are far from each other and
if the incident wave is slightly coherent, no phase effect will appear (no interference
between the wave scattered by each particle). The global scattered intensity is the sum
of the intensities scattered by each particle.
As approximative criterium, it can be considered that independent scattering occurs
when the distance between particles is larger than 3 times de radius of one particle (for
few wavelengths radius particles) [3, 21].
Light scattering by the clouds (Drops of 1mm, density : 1drop/cm3) is an example.
Another case can justify independent scattering when the incident field is coherent.
There is independent scattering with a coherent incident wave, if the speed of motion
v of particles are larger compared to the integration time t of the quadratic sensor
(λ/v > t with λ the wavelength); for example, a gas of particles [7].

Dependent scattering: if the scattering particles are close together, scattered waves
interfere [3]. The global scattered intensity must be computed as the mean square of
the electric field. Dependent scattering can also partially occur for an incoherent in-
cident wave. This is the case in the opposition effect (in backscattering, see section 2.4).

The scattering laws, as the electromagnetic ones, do not depend on the size of the parti-
cle but of the ratio a/λ where a is the characteristic size of the particle and λ the wave-
length. That is the reason why one talks about the size parameter x = ka = 2πa/λ
(k is the wave vector). We will use these notations in the following. We first consider
particles that scatter independently of the other particles. Depending on the refrac-
tive index and of the size parameter of these particles, different approximations can be
made. Each of these approximations correspond to a particular family of scattering.
These families are represented in figure 2.2.

For single independent scattering, we distinguish [3]:
Rayleigh scattering (1871): the particle is very small compared to the wavelength
(a << λ). This case will be studied section 2.2.
Rayleigh-Gans scattering (1925): it is an extension of Rayleigh scattering for larger
particle but with a small refractive index, a small absorption and a parameter size ka
such as |n − 1| << 1 and ka|n − 1| << 1. This case will not be studied but is very
similar to Rayleigh scattering.
Anomalous diffraction: the particle is bigger than the wavelength but the refractive
index is small |n − 1| << 1. Reflection and diffraction are low. The particle only
introduces a phase shift 2(n− 1)ka, what will create interferences.
Geometrical optics: for very large particle a >> λ, (ka > 300). Ray tracing can be
used to study this case.
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Figure 2.2: Several different scattering regimes as functions of R and n [3].

2.2 Rayleigh scattering
The Rayleigh scattering is historically the first quantitative description of light scatter-
ing phenomena. Its success came from its ability to justify why the sky appears blue.
This model assumes single scattering and incoherent sum of intensities in the far field.
We will discuss Rayleigh scattering below for the cases of polarized and unpolarized
incident field.

Basic characteristics [3]
Consider particles with radius a, which is small compared with the wavelength (a << λ)
and a density of particles not too large. In this case, the linear polarized light is scat-
tered with a scattering phase function (describing the scattered intensity according to
the direction) which appears like in figure 2.3 (dimpled-ellipsoid). There is no local
intensity maximum. No light is scattered in the axis of the incident electric field vector,
but light is scattered in all the other directions. When particles are larger the scat-
tering phase function is modified: local intensity maxima appear in several directions,
with angle-widths which are more narrow. The forward scattering increases (figure 2.4
a and b).

In Rayleigh scattering the scattered field has the same polarization than the incident
wave. In figure 2.6c, for an linear polarized incident wave, we can see that the degree of
polarization is equal to 1 in all directions and that S3 ' 0, consequently the polariza-
tion of the scattered field is linear in all direction. The orientation of the electric field
is represented in figure 2.6b. However if the incident wave is unpolarized, the light will
be scattered in all directions, the light will stay unpolarized in forward and backward
directions but will be linearly polarized in the orthogonal plane of propagation. This
can explain the partially polarization of a clear sky light [7].
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Now if we put a small particle in an unitary incident plane wave, we would like to
know what is the ratio of the incident flux that is scattered? To find the answer, we
study the normalized scattered cross section. The scattered cross section multiplied
by the incident flux yields the total scattered power by the particle (definition). This
cross section can be normalized by dividing by πa2 (see section also 3.7). Figure 2.5
shows that the part of flux that will be scattered does not depend only on the effective
section πa2 of the particle (if it was the case the normalized cross section would be
equal to 1) but falls when the radius of the particle decreases.
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Figure 2.3: (a) I(θ, ϕ) for one sphere a = 0.1λ, n = 1.52, Hi = Hy, k = kz (angles in
degree). (b) Spherical coordinates.

Qualitative demonstration
To understand the phenomenon of light scattering by small particles, we will first use
the same qualitative reasoning given by Lord Rayleigh in 1871 [7].
One assumed that because of the particles motions, no phase effect (interferences) are
taken into account (Note: it is not true in the forward and backward direction, see
the opposition effect in section 2.4). Therefore the total scattered intensity is the sum
of the intensity scattered by each particle. Because of the very small size of particles
compared to the wavelength, the shape of the particle is assumed not to have influence
(it is not always true [49]), the particle is assumed isotropic and homogeneous. That is
the reason why the particle behaves as punctual disturbance, from which the scattered
waves disperse outward.
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Figure 2.4: I(θ, ϕ = 0)/(k2Csca) for a sphere with n = 1.52, Hi = Hy, k = kz and 3
different radii a. ϕ = 0 corresponds to the forward scattering. Cscais a normalization
constant.

If a linear polarized wave is considered, we can find the polarization state of the scat-
tered wave by using a geometrical method (see figure 2.6a). The scattered field at a
distance r far from the particle will be in the transverse plane (plane orthogonal to the
propagation direction ~ks). Rayleigh explains that this vector will also be in the plane
containing the particle, the observation point and the incident electric field (vector).
The intersection of the two planes gives the orientation of the electric field. We also
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deduce that no field will be scattered in the ~Ei axis.

Rayleigh used a dimensional study to find the law describing the total scattered inten-
sity. The electric field amplitude may depend directly on the incident field amplitude
Ei, directly on the volume of the particle V (and not of its surface), indirectly of the
distance r between observation and particle, and also depends on the wavelength λ.
The light velocity in free space cannot appear because it would be the only term with a
time dimension. Other dimensionless terms can appear (as the refractive index) but we
can not find their influences with this method. If we want an homogeneous equation:

Esα
EiV

rλ2
and Isα

I iV 2

r2λ4

The 1/λ4 dependence is obvious from this relationship. Rayleigh went on to demon-
strate with a mathematical analogy to mechanics, which was usual at his time.

Theoretical models
Several rigorous methods allow to derive the Rayleigh’s law:
- by using the potential vector [8],
- by considering only the first order of the Lorenz-Mie theory ~Es(~r) = a1

~Ψ1(~r) (see
appendix B.4),
- by analogy with a dipole of polarizability α [3].

In this last case the scattering cross section is [3]:

Csca =
8

3
πk4|α|2
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Figure 2.6: (a) Geometrical description of Rayleigh scattering. (b) Scattered electric
field vector. (c) Stokes parameters. a = 0.1λ, n2 = 1.52, Hi = Hy, k = kz.

and the scattering diagram [3]:

I(θ) =
1 + cos2 θ

2r2
k4|α|2I0
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These two values are in 1
λ4 .

The polarizability when the particle is spherical with a radius R is:

α =
n2 − 1

n2 + 2
R3

When the radius of the particle increases, the intensity of forward scattering grows
but with a smaller angle of scattering and other directions of scattering appear (figure
2.4c), the forward scattering is dominated by the Fraunhoffer diffraction. If particles
are spherical, their scattering can be described by the Lorenz-Mie Theory.

2.3 The Lorenz-Mie theory: a summary
Lorenz-Mie theory is exact analytical solution of Maxwell equations for spherical parti-
cles. Demonstration was made by Gustav Mie in 1908 [9, 27, 28] and had been studied
before by Lorenz in 1891 [29, 30]. The demonstration is detailed in section 3.2. A Mie
code can be download for example in [Web2], yet we have written a program for our
work in order to have a better understanding of it.

The Helmholtz equation (2.1) can be expressed in spherical coordinates (r, θ, ϕ). These
coordinates are represented in figure 2.3(b).

∆ ~E + k2n2 ~E = 0 (2.1)

As it will be shown in section 3.2, solution of this equation can be described by the
Spherical Vectorial Functions (SVF) noted ~Ψn(r, θ, ϕ). Because of the superposition
principle, the total electromagnetic field out of the sphere can be described as the
sum of the incident field ~Ei and the scattered field ~Es. ~Ew is the field inside the
particle. Each of these fields can be decomposed in spherical vectorial functions (2.2)
with respective components ai

n, as
n and aw

n .

Eα =
∑

n

aα
n<e[ψn] with α = (i, w)

Es =
∑

n

as
nψn (2.2)

The ai components are known. Because of the linearity of Maxwell equations, there is
a linear relation between ai and as that can be described with a matrix product. The
T-matrix is the matrix T such as as = Tai. This matrix can be found by applying the
boundary conditions on the tangential components of the electric and magnetic field
[20, 37] (For perfectly conductive spheres, the tangential component of the magnetic
field is not continuous but the discontinuity is known and can be described by surface
currents). In the case of a single sphere the T-matrix is diagonal because the SVF,
which constitute the basis of expansion, are the eigenmodes. In the Lorenz-Mie theory,
the scattered field is analytically calculated.

Mie scattering can be used for spherical particles. This kind of particles, with size

Micrometric particles light scattering 43/163 PhD, Sylvain Lecler 2002-2005



2.3. THE LORENZ-MIE THEORY: A SUMMARY

that can be compared with the wavelength of visible light, are relatively usual in na-
ture. It can be applied for dependent (sum of the amplitudes) or independent (sum
of the intensities) scattering, but considers only single scattering, that is, each particle
scatters only the incident wave.

In Mie scattering, the scattering phase function has local maxima in several specific
scattering directions. The main scattering direction is the forward direction (with a
narrow forward scattering angle). The lower secondary maxima at other angles (see
figure 2.4) can be used to find the properties of the scatterer. The laws describing the
total scattered intensity as a function of the incident wavelength and particles proper-
ties areF more complex than for Rayleigh scattering. The 1/λ4 dependence of the total
scattered intensity in the Rayleigh case is not true in the general case for the Lorenz-
Mie theory. These laws depend on the radius, the refractive index and the absorption
of the particle. This complexity is due to resonances can occur with the cavity modes
inside the sphere.
For a linear incident wave, the polarization of the scattered wave is not necessarily
linear as in the Rayleigh case. It will depend on the direction and will be elliptic in
the general case (see our computing of S3 in figure 2.7). For a long time, scatterers
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Figure 2.7: Parameter S3 of Stokes for a sphere of radius a = 1λ, index n = 1.52 and
for an linear polarized incident wave Hi = Hy, k = kz. Black: circular polarization,
white: linear polarization, gray: elliptic polarization.

have been considered as approximately spherical particles. But some phenomena can
not be described by light scattering of spherical particles:

• halos and arc observed for atmospheric ice crystals light scattering. [50, 51],

• induced polarization by oriented grains [52],

• depolarization effect in radar scattering by Cirrus Crystals.

Note that the Lorenz-Mie theory describes only single scattering.
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2.4 Multiple scattering and aggregates
We must now consider the case of multiple and dependent scattering and first clearly
distinguish single and multiple scattering. Then we will give some examples where mul-
tiple scattering occurs and some observations about light scattering by real particles.

Single scattering occurs if the density of particles is low or if particles are far from
others compared to the wavelength. Each particle only scatters the incident light. Light
scattered by N particles is N times the light scattered by one particle.

Multiple scattering occurs if the density of particles is high or if the particles are
close to each other compared to the wavelength. Each particle does not only scatters
the incident light but the light scattered by the others too. Resonances between par-
ticles can affect the scattered light profiles.
For example, in clouds only 10% of the scattered light is due to single scattering, the
rest is due to multiple scattering. Several criteria can be used to identify multiple scat-
tering process. There is multiple scattering when an increase in the number of particles
induces not the same increase of the scattered intensity. Multiple scattering can also
be identify when the extinction increases faster than the number of particles. Multiple
scattering also often causes a decrease in the polarization degree.

When there is single scattering, the scattering diagram (or scattering phase function)
of each individual scatterer is calculated and the global scattering is found by adding
the effect of each scatterer. In multiple scattering, the method must take into account
the interaction between particles, that is called electromagnetic coupling.

Multiple volume scattering can mainly be considered in three cases:
-dense media of particles,
-aggregate of particles,
-description of a non-spherical particle by an aggregate of subwavelength particles.

Dense media of particles
The study of dense media of particles is difficult because of the great number of par-
ticles, of their difference of shape and orientation, and because of the large scale of
electromagnetic coupling. In theoretical simulations, because of algorithm limitations,
multiple scattering is only considered along several wavelengths. The dense media of
particles are often described as a group of aggregates, but these descriptions are not
always accurate.
Macroscopic media are often made of a great number of anisotropic particles with ran-
dom orientations. If this random orientation is described by an uniform law, that is if
all orientations are equally probable, scattering properties are independent of the inci-
dent polarization and have an axis symmetry, they depend only on the phase angle,
that is the angle between the incident and the scattered direction. To simulate such
media, Mishchenko [53, 13] has proposed to average the scattered light on the various
orientations of the particle by using the Euler’s angles (figure 2.8).
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In some easier cases, when particles are smaller than the wavelength, the scatter-
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Figure 2.8: The Euler angles allow to describe the orientation of a particle. α is in the
(O, x, y) plane and describe the line Γ. z′ is orthogonal to Γ and makes an angle β with
z. γ is the angle between Γ and y′ in the plane orthogonal to z′.

ing medium can be described by an effective complex index (Maxwell-Garnett formula
[8] p.634).

Aggregate of particles case
In many practical cases, the scatterer is an aggregate of particles. Multiple scattering
occurs inside aggregates but not between aggregates. Several natural phenomena can
cause such an aggregation. Cluster-Cluster Aggregation (CCA) and Cluster-Particle
Aggregation (CPA) are often distinguished [54]. These two process create several kind
of aggregates, with different densities. In some papers [55, 54], these aggregates are
described as fractal structures with fractal dimensions, inspired by the work of Man-
delbrot (example of dimensions d: Masse = Rd or Rayon = Nd with N the number of
particles).

Non-spherical particle case
In the previous case the scatterers were real aggregates, but an aggregate of particles
small compared to the wavelength can be used to describe a non-spherical particle.
That is the method used in the DDA algorithm. Other algorithms have been coded to
generate automatically the shape of non-spherical particles as random gaussian-sphere
generated by the code of K. Muinonen [51]. In this thesis, we will consider only spher-
ical particles and aggregates of spherical particles. However the T-matrix algorithm
that we have used can be adapted to non-spherical particles.
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Observations and comments
Some other scattering effects have been observed on real particles or aggregates:
-the particle absorption increases backscattering and decreases forward scattering,
-roughness on particles’ surfaces decreases forward scattering and increases lateral scat-
tering,
-in forward and backward directions the phase effect can not be neglected. A con-
sequence may be the opposition effect [56] and the negative polarization [57]
observed in backscattering.

The opposition effect is a non-linear increase of backscattering intensity when the
number of particles increases. The first controlled experimental observation of this
phenomenon has been carried out by Kuga and Ishimaru in 1984 [56]. The negative
polarization is a small linear polarization observed in backscattering [57] for an unpo-
larized incident wave. The negative expression only describes the orientation of this
linear polarization in opposition to the positive polarization that can be measured for
α = 90 and which is orthogonal to the negative one. In general, this branch of negative
polarization for small phase angles may appear for dense aggregates (with multiple
scattering) with high absorption and a size parameter bigger than 1 [49]. The more
the refractive index of particles is high, the more we would have a chance to observe
negative polarization. The typical curves of these two phenomena are represented in
figure 2.9, they are still badly understood. We will not study these phenomena.
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Figure 2.9: Typical curves of intensity and linear polarization degree illustrating neg-
ative polarization and opposition effect.

Light scattering by such an aggregate can be studied experimentally or with numerical
calculation.
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2.5 Measurements
In this section, we present a rapid overview of measurement techniques used to ob-
served light scattering and the possible problems.

A great number of measurement techniques have been reported in the atmosphere
and in astronomy:

• a negative polarization was observed in backscattering of light by the surface of
the Moon by Lyot in 1924 [58] and recently by Shkuratov in 1992 [59, 49],

• light scattering by asteroids, such as comets, has been measured [60] (brightness
and linear polarization degree),

• light scattering by dust (regoliths) of planets or satellites such as Titan [61] or
Mars [62] has been carried out, respectively by the space probe Huygens and the
space probe Pathfinder,

• interstellar dusts have been studied [63, 64].

In all these cases, the incident light is unpolarized and originates from stars. The
scattered light is partially linearly polarized around the orthogonal plane (phase angle
α = 90o) and unpolarized in the other directions. A negative polarization can appear in
backscattering. Light scattering makes the observed intensity by telescopes decrease,
but is also used to identify the structure of scatterers (regoliths, dusts, solar ejections,
etc.)[5]. For example, such an information is useful to understand planet formations.
Most of the observations were made by satellites. Some new experiments are planned
in the International Space Station (ISS) and the details are given in [6].

Experimental Difficulties
Some physical properties of the scatterers and of the scattered light cannot be easily
measured. Some measurements are not easy to carry out. That can contribute to
explain the difficulty to correlate observations and numerical simulations.
For example, an integration sphere is necessary to measure the total scattering cross
section, that is why physicists prefer to measure backscattering or extinction (forward)
cross section. Backscattering measurements are not easy because they are to be per-
formed in the same direction of the incident wave. For this purpose beam separators
can be used [57].
In experiments, assumptions concerning particles motion is made. The motion of parti-
cles can yield a Doppler effect. This can also justify incoherence of light. The immobil-
ity can also be assumed; however the verification of these variations is always difficult.
Another difficulty is finding the absorption coefficient of dielectric material. Some low
absorption coefficients of material can create high absorption in aggregate because of
multiple scattering. This interaction increases the mean path in the material and thus
the absorbed light. The absorption cross section of an aggregate can be measured, but
its link with the absorption of the material is difficult to find.
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Another important question is to find statistical information about random media.
When it is possible, microscope image analysis is used to find size dispersion, shape,
etc. However these data are imperfect. The fabrication of controlled samples of which
properties would be known has been tried [65].
In order to carry out comparisons with numerical simulations, the knowledge of the
total scattered power or of the incident flux would be useful. Unfortunately these two
values are often unknown in experimental measurements. For example, if the scattering
of solar light is studied, an integration sphere will be impossible to use and the total
scattered power will be unknown.

Microwave analogue experiments
The micro wave analogies are another kind of experiment that have interest [66]. In the
electromagnetic theory, spatial dimensions only depend on the ratio of size divided by
the wavelength. Thus by using microwave, known macroscopic particles or aggregates
can be used to carry out studies. With microwave, electric field can be directly mea-
sured. But this method has some limitations. Firstly the optical properties of material
for microwave are rarely the same as for visible light. Moreover, in microwave, far field
meas urements become difficult (the far field area depends on the wavelength and on
the particle size) and precautions must be taken (sensor size, position, etc.).

Even though there are many measurement techniques which have been carried out,
it is still difficult to correlate measurements with numerical simulations. There is also
significant limitation on simulations such as the difficulties to simulate large aggregates.
The next section will describe the numerical simulation methods commonly used in the
literature.

2.6 Electromagnetic solvers: libraries and comments
Several algorithms are used to simulate scattering media and are summarized in table
2.1 and in figure 2.11. Figure 2.11 is a non-exhaustive classification of algorithm used
to study light scattering. We propose for this classification to ask the following five
questions for each algorithm:

1. How does the algorithm take into account the time components? Does it compute
the time evolution or calculate the stationary case?

2. How is the physical space described? By sampling or by using an expansion of
field on a basis of functions?

3. How are the material properties described? With discrete values, with continuous
functions or with a physical system (dipoles for example)?

4. How are the physical equations introduced? By the Maxwell equations (with
finite elements or with finite differences), by the Helmholtz propagation equation
or by the integral formulation?
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5. How are the boundaries considered? With surface currents, with the continuity
of the tangential components of the electromagnetic field?

This method of classification we propose is not perfect. However this classification
makes it possible to have a global overview of algorithms that are used to study light
scattering.

In our case, scatterers are close together. So we cannot only consider the scattered
intensity but we must calculate the electromagnetic field. Moreover we do not have to
study each scatterer alone but we must take into account interactions between scatter-
ers (multiple and dependent scattering). The methods able to simulate such systems
are outlined below:

• Separation of Variables Method (SVM). If particle shapes are well-defined,
adapted coordinates are searched in order to find analytical solutions of the
Helmholtz equation. These analytical solutions are used as an expansion ba-
sis for the electromagnetic field. The relation between incident and scattered
field is found by applying boundary conditions. This approach was followed for
sphere by Mie [9] (see section 3.2), for concentric core-mantle spheres by Aden and
Kerker [67], for concentric multilayered spheres [68] and homogeneous isotropic
infinite cylinders [69] by Wait, for infinite isotropic elliptical cylinders by Kim
and Yed [70], and for homogeneous isotropic spheroids by Asano and Sato [71].

• Finite Difference Time Domain (FDTD) [33, 16, 34] is a numerical method,
which uses finite difference in space and time to solve the differential equa-
tions of Maxwell (Yee formulae [33]). This method makes it possible to have
the evolution in time of the electromagnetic field in space by iterative com-
puting among the initial value of the field. Space and time are discretized
(∆x ' λ/20, ∆t = c/(2∆x) in 2D). The discretization lattice of space is carte-
sian like. It is often difficult to find a suitable lattice adapted to the geometry of
complex problems. Another difficulty is the choice of numerical boundary condi-
tions that calculate the field close to the computed zone to simulate infinite free
space around. These boundary conditions, called Absorbing Boundaries Condi-
tions (ABC) can create non physical reflections. The usual numerical boundaries
conditions are the Mur [72] conditions or the Perfectly Matched Layer of Berenger
(PML) [73]. The main drawback of FDTD in our case is the time of calculation,
and especially because we do not search the evolution in time but only the sta-
tionary state. Simulations are often limited to 2D systems because of the large
amount of memory needed. Because of the same problem of memory needed,
only the field around the studied object is calculated, but integral methods can
be used after to calculate far-field [14b].

• Finite Element Method (FEM) [31][32]. In this approach, space is also dis-
cretized but with a triangular lattice. The Helmholtz’s equation (and not the
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Maxwell equations as in FDTD) is expressed in all points as a linear system,
which must be solved. The stationary solution are directly found. This system
can be described with sparse matrix and is solved by using optimization methods
as Conjugate Gradient Method or Gaussian Elimination [32]. The main draw-
back of this method is the memory needed for the calculation.

• Point Matching Method (PMM) [74]. In this approach, the incident field,
the scattered field and the field inside the sphere are expanded on the spherical
vectorial functions. To calculate the expansion coefficients, boundary conditions
are applied by applying the mean square method at as many discrete points on
the surface of the particles as is necessary. The method is accurate if the particle
is not too large and displays symmetry. This method lets us know the field inside
the particle.

• Method of Moments (MoM) [75]. This method is also called the Volume
Integral Equation Method and is based on a volume integral (2.3).

~Et(~r) = ~Ei(~r) + k2

∫

V

d3~r′[I +
1

k2
∇∇]

exp(ik(~r − ~r′))

4π(~r − ~r′)
[n2 − 1] ~E(~r′) (2.3)

(I and ∇∇ are described section 4.1). The total electric field ~Et at the position
~r is given as the sum of the incident field ~Ei and an integral on the volume of the
particle. The Green function is used: exp(ik(~r − ~r′))/(4π(~r − ~r′)).
The scattered field is calculated in two steps:
1-the scatterer is discretized in small cubes around the size λ/20. This integral is
expressed for each cube and interactions can be described as a matrix equation.
An optimization method makes it possible to solve this equation and to find the
field inside the aggregate,
2-the field outside the aggregate is calculated by using the integral and the field
computed in the previous step.
Each volume of the scatterer can be considered a secondary source. This method
makes it possible to simulate inhomogeneous, anisotropic or active media.

• Discrete Dipole Approximation (DDA) [17, 35, 36]. This method is an-
other version of the Method of Moment. One version can be download in [Web5].
The volume of the particles is described with an array of discrete dipoles. The
N dipoles scatter the incident light and the light scattered by the N-1 others.
When the polarizability (oscillating polarization) of dipoles are known, these in-
teractions can be written as a linear equation. Two methods are currently used
to calculate the polarizability of each dipole: the Lattice Dispersion Relation
(LDR)[54] and the a1-term method, which uses the first expansion coefficient of
the Lorenz-Mie theory as polarizability.

Micrometric particles light scattering 51/163 PhD, Sylvain Lecler 2002-2005



2.6. ELECTROMAGNETIC SOLVERS: LIBRARIES AND COMMENTS

• Radiative Transfer [13, 10, 11]. This method has the originality of describing
directly quadratic values (intensities). Its equation gives the variation of lumi-
nance at a point along an optical path as function of the luminance at this point
and of the luminance around (2.4). With this method the luminance in space
can be found but the knowledge of the scattering phase function of each point
is needed. This equation is equivalent to an energy balance in a small volume
(figure 2.10):

dL(τ, ~µ)

dτ
= −βoL(τ, ~µ) + KL(τ, ~µ) +

∫

4π

L(τ, ~µ′)M(τ, ~µ, ~µ′)d~µ′ (2.4)

~µ is an unit vector describing the direction of propagation.
τ is the optical thickness along the direction ~µ. τ is homogeneous with a refractive
index. For example if we consider a gradient of optical index along the z-axis,
τ = τoe

−αz.
L(τ, ~µ) is the luminance at the position τ in the direction ~µ. Its unit is Wm−2sr−1.
βo is the extinction coefficient (sum of absorption and scattering coefficients).
K is an eventual gain if the medium is active such as the gain due to Plank’s
blackbody emission.
M(τ, ~µ, ~µ′) is the scattering phase function

This equation can be vectorial if we replace the luminance L by the Stokes

L(m)

dt
L(m)+dL

L(m�)

b

Figure 2.10: Energy balance in a small volume of a scattering medium used in radia-
tive transfer method. L is the luminance, τ the optical thickness, β the extinction
coefficient, µ the angular direction.

parameters and the scattering scattering phase function M by the phase matrix
(or Mueller Matrix). However the difficulty will often be to find this phase ma-
trix, that is the reason why this method is only applied for particular cases such
as atmospheric scattering or with approximations. Another limitation is that this
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method only considers far field luminance: The phase matrix is applied to the
Stokes parameters, that is in a region where the electromagnetic field is trans-
verse. Close to the scatterers it is not always the case (see discussion in part 4.6).

• T-matrix method [37]. In this family of methods the electromagnetic field is
decomposed on a basis of functions adapted to the geometry of the scatterer.
The T-matrix is a matrix, which links the components of decomposition of the
incident wave on this basis to those of the scattered wave. Such a matrix exists
because of the linearity of the problem. As explained in section 3.4, we use this
method for studying of electromagnetic couplings between particles. There are
several methods to calculate this T-matrix:

– the Discrete Dipole Approximation (DDA),
– the FDTD is used to calculate the stationary states. The result is decom-

posed on the chosen orthogonal basis,
– the Point Matching Method (PMM),
– in independent scattering, by experimental measurements of the scattered

intensity and projection on the orthogonal basis,
– the Extended Boundary Condition Method (EBCM): this integral

method using the Green function will be developed in section 3.4. EBCM
and T-matrix are often assimilated.

Several names are used to describe T-matrix algorithm or algorithms very similar
to it:

– Extended Boundary Condition Method [13]
– Multipole expansion method [76]
– KKR Method (for photonic crystals) [77, 78, 79]
– Multi-Level Fast Multipole Algorithm (MLFMA) [80]

We must also cite other approximative methods:

Equi-Phase Sphere method (EPS): in this method [81] a homogeneous non-spherical
particle is replaced by a sphere with the same refractive index and with a diameter cor-
responding to the longer path that light may make in the non-spherical particle. The
equivalent sphere depends on the incident wave direction of propagation.

Monte-Carlo Ray tracing: This method [82] adapted to particles larger than the
wavelength is based on a Monte-Carlo algorithm. Random optical rays are traced by
applying Fresnel and refractive laws. Phase of each ray is computed. The angular
density of rays makes possible to approximate the scattering phase function.
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Table 2.1: Comparison of rigorous algorithms for electromagnetic problems. x = ka is
the size parameter. The computing time is given as a proportion of the parameter size,
in some case different algorithm can be used.

Method Size Computing time Advantages Disadvantages
SVM x<40 x3 or x4 fast and accurate

for simple geome-
tries

badly scaled if kR,
n or absorption are
too important

FDTD x<10 x4 in 2D easy to code, com-
puting for several λ

needed memory,
computing time,
bad accuracy, 2D

FEM x<10 x4 or x7 in 2D simple principles,
adaptability

similar to FDTD

PMM x<1 x7 field inside particles
computed

not accurate for
large particle, long
time of computing

MoM x<1 x7 or x9 known field inside
the scatterer

long computing
time, only for small
particles

DDA x<1 x7 or x9 similar to MoM similar to MoM
T-matrix x<100 x3 or x4 fast and accurate hard to code

2.7 Comments on the choice of the T-matrix approach
There are several reasons for our choice of the T-matrix algorithm for the numerical
calculations. They are enumerated below:

• T-matriw approach allows multiple scattering modelling,

• it is a very fast algorithm,

• it can be adapted to very different configurations and geometries,

• it can be used to model large aggregates (ka = 100) and multiples of particles
(up to 100).

• it allows the study of polarization effects,

• corresponding numerical errors are low, because the main part of the solution is
analytically calculated.

The T-matrix algorithms have other advantages, as

• they can be adapted to non-spherical particles,

• they allow averaging on all orientations of particles,

• they allow the calculation of the Mueller matrix elements.

Micrometric particles light scattering 54/163 PhD, Sylvain Lecler 2002-2005



2.7. COMMENTS ON THE CHOICE OF THE T-MATRIX APPROACH

Time Space Functional
definition

Equation Boundaries

Stationary
exp(iwt)

Initial
conditions
+ evolution

Finite
Elements

Finite
Difference

modal
f(r)

discrete

Dipolar
moments

Discrete
functions

Finite
Elements

Finite
Difference

Integral
Methods

Continuous
functions

Boundary
conditions

Analytical
expression

Discrete
surfaces

Surface
currents

FDTDFETD

DDA

FEM

PMM

EBCM MIE

Matrix
inversion

Optimisation
algorithms

FDM

solution

Figure 2.11: Non-exhaustive classification of rigorous algorithms used to study light
scattering.

Yet, like all algorithms, the T-matrix has its intrinsic limitations:

• Its first drawback is its theoretical complexity and the difficulties to program it.
Mishchenko provides a free code on his website [Web6]; however, in this study we
have preferred to use our own code.

• Analytical solution of Maxwell’s equations for an aggregate of spheres would
need the incident and the scattered field to be expanded on an infinite basis of
spherical vectorial functions. In order to carry out the numerical calculations
only a finite number of these functions is used. This simplification may cause
small discrepancies (see section 3.5).

• Numerical errors can occur in the necessary matrix inversion. If too many orders
are used in the field expansion, the matrix to invert can be badly conditioned.

• The computed results are difficult to validate. The validation can be carried out
by comparing with measurements or with other algorithm simulations. Some
physical properties, like energy conservation or symmetries, can be verified.

To calculate the T-matrix algorithm with the EBCM method, as it will be described
in the 3.4 section, there are several necessary conditions:
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• the particle geometry has to allow the decomposition in a discrete orthogonal
basis,

• the scatterer has to be made of an isotropic material which response has to be
linear regarding the electromagnetic field,

• a point inside each scatterer must exist such as if this point is chosen as the origin
of a spherical coordinate system, the surface of the scatterer could be described
as a continuous function r(θ,ϕ),

• the surface of scatterers must be continuous and piecewise smooth.

Chapter conclusion
In this chapter we have outlined the physical details of Rayleigh scattering and Lorenz-
Mie theory. We have also shown that for more complex aggregates other algorithms are
needed and that the physical properties of the scattered field was different. Newsletters
which deal with light scattering by particles can be found in [Web3] and [Web4]. The
next chapter will describe the electromagnetic approach that we have adopted for the
discussion involved in this thesis work. The Lorenz-Mie theory, that has been used in
this work to study the light in the near field area of a single particle will be presented,
but also the T-matrix algorithm used to study in the far field the consequences of
electromagnetic couplings between close particles.
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Chapter 3

Light scattering by spheres via
T-matrix approach

In this chapter, we describe the rigorous electromagnetic approach which we have
used to study light scattering by spheres. We begin with the Lorenz-Mie theory that
describes interaction of light with a single sphere and go on with the T-matrix algorithm
that generalizes this interaction to several spheres. The Lorenz-Mie theory allows us
to study what happens in the near field around a single dielectric particle, whereas the
T-matrix permit to study in the far field the consequences of electromagnetic couplings
between close particles. The origins of these algorithms are rigorously explained. Some
complementary calculations are provided in Appendices B,C,D. Then, some useful
physical values are defined and their meanings are discussed.

3.1 Description of the problem
We use the Lorenz-Mie theory to outline the absorption and scattering of electromag-
netic waves by a spherical particle. There, we consider a sphere (figure 3.1) with a
radius a, which is comparable to the wavelength of the incident electromagnetic wave.
More precisely, we consider a size range limited by 0.1λ ≤ a ≤ 6λ. Note that even
though absorption has been modelled in the program, it has not been studied. There
is no absorption in the surrounding medium. The case of a perfectly conductive sphere
has been taken into consideration. Only low refractive indexes n2 for the sphere have
been considered 1 < n2 < 3. Spheres are assumed to be passive, non-magnetic, isotropic
and homogeneous. No surface roughness is considered. Spheres must be able to be very
close together (compare to the wavelength) but not to overlap. Therefore electromag-
netic interactions between spheres must be taken into account.

The system of Maxwell’s equations is considered linear. Therefore harmonic func-
tions (functions whose evolution in time is eiωt) will be conserved. All incident wave
can be expanded on harmonic functions, the associated scattered wave will be the sum
of the scattering of each harmonic wave. That is the reason why we will only consider
monochromatic stationary states (the harmonic functions). The temporal dependence
is assumed to be e−iωt. Note that some other books use other sign convention; see for
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example [3].

We want to find the electromagnetic field not only in the far field but also in the
near field. The near field is considered to be just around the particle or the aggregate.
It will not always be possible to find the field inside the aggregate (the reasons will be
discussed in section 3.5).
The far field is computed as an asymptotic expansion and corresponds to a transverse
wave. All harmonic transverse wave can be considered the superposition of two orthog-
onal independent linear polarized waves [8]. Therefore, the scattering of a harmonic
function in the far field can be described by the S-matrix:

(
E‖
E⊥

)
=

(
S1(θ, φ) S2(θ, φ)
S3(θ, φ) S4(θ, φ)

)
ei(kr−ωt)

ikr

(
E‖o
E⊥o

)
(3.1)

where E‖ and E⊥ are the two orthogonal linear polarized waves and the index o indicates
the incident field. This matrix S is also called the amplitude matrix.

X

Zki=2p/l

Y

a

s2 n1n2

X

Z

Y

Et=Ei+Es

Ew

(a) (b)

Figure 3.1: (a) Description of the sphere of radius a, refractive index n2, conductivity
σ2. (b) Electromagnetic fields.

3.2 Scattering by a single sphere : the Lorenz-Mie
theory

To explain the principles of the detailed light scattering approach, we will firstly con-
sider the most simple case, the scattering by a single dielectric sphere. The Lorenz-Mie
theory explains these interactions accurately [8][3]. This demonstration with more de-
tails is in appendix B. A Mie code can be download for example in [Web2]; however a
custom-made programm developed is used in the present study.

Let a sphere with a refractive index n2 and a conductivity σ2 to be placed in a non-
conductive environment with a refractive index n1. Let a be its radius (figure 3.1(a)).
An electromagnetic plane wave with wavelength λ is to be incident on the sphere.
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The Maxwell equations, in a homogeneous isotropic medium with complex refractive
n and permeability µ = µo, without charge and current, at the temporal pulsation ω,
are written as:

~∇. ~E = 0 (3.2)
~∇. ~H = 0 (3.3)

~∇× ~E = ik ~H (3.4)
~∇× ~H = −in2k ~E (3.5)

where ~E is the electric field, ~H the magnetic field and, if c is the light speed in free
space, k = ω

c
. If ε is the relative permittivity of the medium and σ is conductivity so

n2 = ε− 4πiσ
ω

. Here, the notations used allow to have electric and magnetic fields with
same order of amplitude, which decreases numerical error in computation: ~E = cε0

~ESI

and ~H = ~HSI (appendix A.2).

Solutions of Helmholtz equation in spherical coordinates

∀ ~E ~∇× (~∇×) ~E = −∆ ~E + ~∇(~∇. ~E) (3.6)

By applying the Maxwell equation in the two media, ~∇. ~E = 0 and ~∇×(~∇×) ~E = k2n2 ~E,
we find the vector wave equation for the electric field ~E:

∆ ~E + k2n2 ~E = 0 (3.7)

To find the solutions of this vectorial equation we use the scalar wave equation. It is
able to demonstrate that if Φo and Φe are two independent solutions of the scalar wave
equation (∆Φ + k2n2Φ = 0), the solutions ~E of the vector wave equation, are [3]:

~E1 = ~ψ1e + i~ψ2o (3.8)
~E2 = ~ψ1o + i ~ψ2e (3.9)

with

~ψ1 = (nk)−1~∇× (nk~rΦ) (3.10)
~ψ2 = (nk)−1~∇× (~ψ1) (3.11)

This allows us to consider only the scalar propagation equation, whose expression in
spherical coordinates (r, θ, ϕ) is (see appendix B):

[
1

r2

∂

∂r
(r2∂Φ

∂r
) +

1

r2

(
1

sin θ

∂

∂θ
(sin θ

∂Φ

∂θ
) +

1

sin2 θ

∂2Φ

∂ϕ2

)]
+ k2n2Φ = 0 (3.12)

if we search the solution with the form Φ(r, θ, ϕ) = R(r)T (θ)W (ϕ), by dividing (3.12)
by Φ and multiplying by r2, we obtain the three following equations where α and β are

Micrometric particles light scattering 59/163 PhD, Sylvain Lecler 2002-2005



3.2. SCATTERING BY A SINGLE SPHERE : THE LORENZ-MIE THEORY

integration constants :

∂

∂r
(r2∂R(r)

∂r
) + (k2n2r2 − α)R(r) = 0 (3.13)

1

sin θ

∂

∂θ
(sin θ

∂T (θ)

∂θ
) +

(
α− β(α)

sin2 θ

)
T (θ) = 0 (3.14)

∂2W (ϕ)

∂ϕ2
+ β(α)W (ϕ) = 0 (3.15)

• The solution of (3.15) is W (ϕ) = ae cos(
√

βϕ) + ao sin(
√

βϕ). The variation in ϕ
has to be 2π periodic; therefore, β must be equal to m2 with m an integer. Thus
W (ϕ) = ae cos(

√
βϕ) + ao sin(

√
βϕ)

• The equation (3.14) is the spherical harmonics equation. If α = l(l + 1), we have :

T (θ) = P
(m)
l (cos θ)

where P
(m)
l is the Legendre polynomials of l order and m kind with 0 ≤ m ≤ l (in some

books, W (ϕ) is written eimϕ, in this case −l ≤ m ≤ l).
• The solution of equation (3.13) are the Ricatti-Bessel functions or spherical Bessel
functions R(r) =

√
π

2kr

[
clJl+1/2(kr) + dlNl+1/2(kr)

]
where Jl and Nl are, respectively,

the first order Bessel function of first and second kind. Nl is also called the Neumann
function. The r−1/2 coefficient and the l + 1/2 index, are require to have a 1/r radial
evolution in the far field and to assure energy conservation for a spherical geometry
(the Jl Bessel functions were defined for cylindrical geometry).

To summarize, the solution of (3.12) are :

Φe =
∞∑

l=0

l∑
m=0

(ae)m

√
π

2kr

[
clJl+1/2(kr) + dlNl+1/2(kr)

]
P

(m)
l (cos θ) cos(mϕ) (3.16)

Φo =
∞∑

l=0

l∑
m=0

(ao)m

√
π

2kr

[
clJl+1/2(kr) + dlNl+1/2(kr)

]
P

(m)
l (cos θ) sin(mϕ) (3.17)

Nl+1/2 is divergent when r → 0 (non physical result), that is the reason why we must
have dl = 0 for the waves define in r = 0 (inside the sphere) and use the spherical
Bessel function j

(1)
l (kr) =

√
π

2kr
Jl+1/2 inside the sphere.

For the other waves (outside the sphere), we will use the spherical Hankel functions
h

(1)
l (kr) =

√
π

2kr

[
J

(1)
l+1/2(kr)− iN

(1)
l+1/2(kr)

]
, (e.g. cl = 1 and dl = −i. Other choices

could be done). The constant ae and ao in (3.16) and (3.17) must now be written (ae)lm

and (ao)lm.

Electromagnetic fields
From Φe and Φo we can now calculate ~ψ1e, ~ψ2e, ~ψ1o and ~ψ2o using (3.10)(3.11), with
γ =

√
2(2l+1)(l−m)!
4πl(l+1)(l+m)!

a normalization constant, with f ′ and f ′′ for the first and second

derivative of f , and with z
(1)
l = j

(1)
l or h

(1)
l (respectively, inside and outside the sphere),
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as:

~ψ1e = γ





0

−(a1e)lm/ sin θ
[
P

(m)
l (cos θ)m sin(mΦ)z

(1)
l (kr)

]

(a1e)lm sin θP
(m)′
l (cos θ) cos(mΦ)z

(1)
l (kr)

(3.18)

~ψ1o = γ





0

(a1o)lm/ sin θ
[
P

(m)
l (cos θ)m cos(mϕ)z

(1)
l (kr)

]

(a1o)lm sin θP
(m)′
l (cos θ) sin(mϕ)z

(1)
l (kr)

(3.19)

~ψ2e = γ





(a2e)lm cos(mϕ)/(knr)z
(1)
l (kr)

[
m2

sin2 θ
P

(m)
l (cos θ) + 2 cos θP

(m)′
l (cos θ)− sin2 θP

(m)′′
l

]

−(a2e)lm sin θP
(m)′
l (cos θ) cos(mϕ)

[
z
(1)
l (kr)

knr
+ z

(1)′
l (kr)

]

−(a2e)lm/ sin θP
(m)
l (cos θ)m sin(mϕ)

[
z
(1)
l (kr)

knr
+ z

(1)′
l (kr)

] (3.20)

~ψ2o = γ





(a2o)lm sin(mϕ)/(knr)z
(1)
l (kr)

[
m2

sin2 θ
P

(m)
l (cos θ) + 2 cos(θ)P

(m)′
l (cos θ)− sin2 θP

(m)′′
l

]

−(a2o)lm sin θP
(m)′
l (cos θ) sin(mϕ)

[
z
(1)
l (kr)

knr
+ z

(1)′
l (kr)

]

(a2o)lm/ sin θP
(m)
l (cos θ)m cos(mϕ)

[
z
(1)
l (kr)

knr
+ z

(1)′
l (kr)

] (3.21)

Equation (3.8) gives ~E1 = ~ψ1e + i ~ψ2o

To find the magnetic field ~H we must use equation (3.4) (see calculation appendix D.4):

~H = −ik−1~∇× ~E

with respect to (3.8) :

~H1 = −ik−1~∇× (~ψ1e + i ~ψ2o)

~H1 = −ik−1(~∇× ~ψ1e + i~∇× ~ψ2o)

~H1 = n(i~ψ2e − ~ψ1o) (3.22)

The same can be done with ~E2 and ~H2.
Above, we have found the solutions of the vector wave equation in spherical coordi-
nates. These functions are called the Spherical Vectorial Functions (SVF), or the
vector spherical harmonics, or the spherical multipole fields [76], or the whispering
gallery mode. The SVF can be noted ~Ψτσlm with τ ∈ {1, 2}, σ ∈ {o, e} and 0 ≤ m ≤ l.
We also write ~Ψn with n for τσlm.
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A condensed expression of the SVF is:

~Ψτσmn(~r) = γ1/2(k−1~∇×)τ
[
k~rYσmn(θ, ϕ)h

(1)
l (kr)

]
(3.23)

with Yemn(θ, ϕ) = P
(m)
l (cos θ) cos mϕ and Yomn(θ, ϕ) = P

(m)
l (cos θ) sin mϕ.

The Boundary conditions
Next, we must find the constants (a1e)lm, (a2e)lm, (a1o)lm and (a2o)lm by applying the
boundary conditions.
Let ~Ei be the incident wave in all space, ~Es be the scattered wave outside the sphere
and ~Ew inside the sphere. ~Et = ~Ei + ~Es is the total electric field outside the sphere
(see figure 3.1).

We must assure the continuity of the tangential component of field (Eθ, Eϕ, Hθ, Hϕ)
at the boundary of the sphere (r = a): equations (3.8) and (3.22) are written for r = a
where ((ae)

i
lm, (ao)

i
lm), ((ae)

s
lm, (ao)

s
lm), ((ae)

w
lm, (ao)

w
lm) are respectively the coefficients

in equations (3.16) and (3.17) for the incident wave, the scattered wave and the wave
inside the sphere. The sum of the tangential component of the scattered and incident
fields must be equal to the tangential component of the field inside the particle at r = a.
The only differences between these fields are their expansion coefficients and the kind
of Bessel functions. That is why coupling coefficients do not depend of m.
This yields for the scattered coefficients:

(ae)
s
lm = −(ae)

i
lm

n2
2jl(ρ2)

(
jl(ρ1) + ρ1j

′
l(ρ1)

)− n2
1jl(ρ1)

(
jl(ρ2) + ρ2j

′
l(ρ2)

)

n2
2jl(ρ2)

(
hl(ρ1) + ρ1h

′
l(ρ1)

)− n2
1hl(ρ1)

(
jl(ρ2) + ρ2j

′
l(ρ2)

) (3.24)

(ao)
s
lm = −(ao)

i
lm

jl(ρ1)
(
jl(ρ2) + ρ2j

′
l(ρ2)

)− jl(ρ2)
(
jl(ρ1) + ρ1j

′
l(ρ1)

)

hl(ρ1)
(
jl(ρ2) + ρ2j

′
l(ρ2)

)− jl(ρ2)
(
hl(ρ1) + ρ1h

′
l(ρ1)

) (3.25)

with ρ1 = n1ka and ρ2 = n2ka.

These formulae can be simplified for perfectly conducting spheres (Ew = 0):

(ae)
s
lm = −(ae)

i
lm

jl(ρ1) + ρ1j
′
l(ρ1)

hl(ρ1) + ρ1h
′
l(ρ1)

(3.26)

(ao)
s
lm = −(ao)

i
lm

jl(ρ1)

hl(ρ1)
(3.27)

For dielectric sphere the expansion coefficients of the field inside the dielectric sphere
are:

(ae)
w
lm = −(ae)

i
lm

n2n1hl(ρ1)
(
jl(ρ1) + ρ1j

′
l(ρ1)

)− n1n2jl(ρ1)
(
hl(ρ1) + ρ1h

′
l(ρ1)

)

n2
1hl(ρ1)

(
jl(ρ2) + ρ2j

′
l(ρ2)

)− n2
1jl(ρ2)

(
hl(ρ1) + ρ1h

′
l(ρ1)

) (3.28)

(ao)
w
lm = −(ao)

i
lm

hl(ρ1)
(
jl(ρ1) + ρ1j

′
l(ρ1)

)− jl(ρ1)
(
hl(ρ1) + ρ1h

′
l(ρ1)

)

hl(ρ1)
(
jl(ρ2) + ρ2j

′
l(ρ2)

)− jl(ρ2)
(
hl(ρ1) + ρ1h

′
l(ρ1)

) (3.29)
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Obviously, for perfectly conducting sphere (ae)
w
lm = 0 and (ao)

w
lm = 0. The electromag-

netic field is null inside the particle and the tangential components of the magnetic
field are discontinuous on the boundary. This discontinuity induces surface currents
(3.30) (also called surface plasmon) that behave as secondary source. In figure 3.2 a
perfectly conductive sphere of radius a = 3λ has been studied. The scattered intensity
(a) seems to be in the forward direction, but if we look at the total intensity (b) we
observe a shadow effect and backscattering. In fact, the scattered field observed in the
forward direction (a) is the opposite of the incident field. The tangential component
of the magnetic is represented in figure 3.2(c). The discontinuity at the sphere surface
can be observed.

H in
t −Hout

t = js (3.30)

For finite conductive particle, there is a small depth at the surface of the particle
where the electromagnetic field vanishes (skin depth). That makes possible the propa-
gation of evanescent waves at the surface of the particle (The propagation direction is
orthogonal to the direction of field decrease), this waves are also called surface plasmon.

The incident field
The incident wave is assumed to be plane and monochromatic. This wave must be
expanded on the basis of spherical vectorial functions [20]. This expansion depends of
polarization, see figure 3.3. (The i in mathematical formulae is the complex number
such as i2 = −1, but i as a superscript or subscript indicates that the value is linked
to the incident wave).

(a) if ~Ei(~r) = exp(i~k.~r)~e2 (3.31)

(a1o)
i2
lm = in

[
4π(2l + 1)(l −m)!

l(l + 1)(l + m)!

]1/2 √
2m

sin θi

Pm
l (cos θi) (3.32)

(a2e)
i2
lm = in+1

[
4π(2l + 1)(l −m)!

l(l + 1)(l + m)!

]1/2 √εm

sin θi

× [
(l + 1) cos θiP

m
l (cos θi)− (l −m + 1)Pm

l+1(cos θi)
]

(3.33)
(a1e)

i2
lm = (a2o)

i2
lm = 0 (3.34)

if θi = 0: (a2e)
i2
lm = −i(a1o)

i2
lm = il+1 [2π(2l + 1)]1/2 δm,1. (Please, note that in the

paper by Peterson and Ström [20] there is a mistake (minus sign); see demonstration
appendix D.1)

(b) if ~Ei(~r) = exp(i~k.~r)~e1

(a1e)
i1
lm = −i(a2e)

i2
lm, (a2o)

i1
lm = −i(a1o)

i2
lm, (a1o)

i1
lm = (a2e)

i1
lm = 0

For circular polarization (a1e)
i
lm = (a2e)

i
lm and (a1o)

i
lm = (a2o)

i
lm.

The coefficients ai and as will be discussed further in section 3.5.

Proposed scattering modelling for an aggregate of spheres
In light scattering by only one sphere, the T-matrix can be easily found by applying
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Figure 3.2: Perfectly conductive sphere of radius a = 3λ, Hi = Hy and ki = kz.(a) scat-
tered intensity, (b) total intensity, (c) tangential component of the scattered magnetic
field Hs

ϕ

the boundary conditions, because the basis of functions used to expand the incident
and scattered fields is made of the eigenmodes. The T-matrix is diagonal. When there
are several spheres, we use the same basis of functions and we search the T-matrix
which describes the linear relation between the expanded coefficients. But in this case
the boundary conditions are more difficult to express because the expansion modes are
not adapted to the geometry of the boundaries. That is the reason why an integral
formulation of the electromagnetic solution will be used to express them. The method
described in the next section is called the Extended Boundaries Conditions Method
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Y

Z

X

k e1

e2

qi

Figure 3.3: k, the propagation vector of the incident field is in the (O, x, z) plane. e1
is an unit vector along the y axis. e2 is an unit vector orthogonal to k and e1. ~E and
~H are in the (O, e1, e2) plane.

(EBCM), after Waterman [19].

We will use the basis of spherical vectorial functions because this basis is adapted
to spherical particles, but in the general case, the field can be decomposed on other
basis of functions. These other basis can be interesting for other geometries of particles.
They can also have easier translation matrix. As we will show the T-matrix can be
generalized to aggregates of non-spherical particles.

3.3 The integral formulation of the electromagnetic
solution

The scalar formulation

This section describes the integral formulation of the solution of Maxwell equations
that are used to calculate the T-matrix. We will begin with the scalar formulation and
finally outline the vectorial formulation.

We first begin by considering the electric field as a scalar value E with the tempo-
ral frequency ω. E must be a solution of the wave equation :

∆E(~r′) + k2E(~r′) = 0 (3.35)

A method to find E is to use the Green function g. This function is the electric field
created by a point source in ~r′ = ~r (see appendix A.3):

∆g(~r′, ~r) + k2g(~r′, ~r) = −δ(~r′ − ~r) (3.36)

where δ(~r′− ~r) is the three-dimensional Dirac function (δ = 1 if ~r = ~r′ else δ = 0). We
can verify that g~r,k, given in formula (3.37), verifies the equation 3.35 for ~r′ 6= ~r. The
Green function is not defined in ~r′ = ~r but the normalized constant 1/(4π) is found by
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integrating the equation 3.36 over a infinitely small sphere around ~r [18] (see appendix
A.3).

g~r,k(~r′) =
exp(ik|~r′ − ~r|)

4π|~r′ − ~r| (3.37)

By multiplying the equation (3.35) by g and the equation 3.36 by E and by subtracting
them, we find :

gk(~r′, ~r)∆E(~r′)− E(~r′)∆gk(~r′, ~r) = δ(~r′ − ~r)E(~r′) (3.38)

R

n=1

n2

S1

S2

Figure 3.4: 2D representation of a 3D contour of integration. Case of a half-infinite
medium.

We can now integrate this equation on the volume V defined in figure 3.4 and with
dV ′ = r′2 sin θ′dr′dθdϕ a small volume element:

∫∫∫

V

gk(~r′, ~r)∆E(~r′)− E(~r′)∆gk(~r′, ~r)dV ′ =

∫∫∫

V

δ(~r′ − ~r)E(~r′)dV ′ (3.39)

=

{
E(~r)

0
~r outside V
~r inside V

(3.40)

This formulae can be modified by applying one of the Green theorems [83] that is:
∫∫∫

V

(φ∆ψ − ψ∆φ)dV ′ =
∫∫

S

(φ
∂ψ

∂n
− ψ

∂φ

∂n
)dS ′

Where S is the surface around the volume V , ∂/∂n is the differential along the normal
direction of the surface and dS ′ a small surface element. (∂/∂n) φdS ′ = ~∇φ. ~dS ′). In
our case we obtain:

{
~r ouside S
~r inside S

~E(~r)
0

=

∫∫

S

gk(~r′, ~r)
∂

∂n
E(~r′)− E(~r′)

∂

∂n
gk(~r′, ~r)dS ′ (3.41)
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Because of its linearity, the integral over S can be decomposed as the sum of integral
over S1 and S2 as shown figure 3.4(a).

{
~r ouside S
~r inside S

~E(~r)
0

=

∫∫

S1

(g
∂E

∂n
− E

∂g

∂n
)dS ′ +

∫∫

S2

(g
∂E

∂n
− E

∂g

∂n
)dS ′ (3.42)

When the radius of the contour of integration tends to infinity, the field integrated over
S1 can only be the incident field because of the radiation condition that imposes that
the scattered field would be zero at infinity. We obtain:

{
~r ouside S
~r inside S

~E(~r)
0

= Ei +

∫∫

S2

gk(~r′, ~r)
∂

∂n
E(~r′)− E(~r′)

∂

∂n
gk(~r′, ~r)dS ′ (3.43)

This formulation shows that the total electric field, in a point outside the scattering
object, can be expressed as the sum of the incident field and another term which is
called the scattered field and which can be expressed as an integral of the total electric
field at the surface of the scatterer.

The equation (3.43) inside the scattering object is called the extinction theorem [18]. A
consequence of this theorem is that we can use the field at the surface of the scatterer
to replace the incident field and to calculate the scattered field. The field at the surface
of the scatterers is often described as surface currents [8].

In our case, with an ensemble of spheres, the same reasoning is done but with an
integral over a surface as represented in figure 3.5 and by applying equivalent integral
paths [83].
Equations (3.43) are the integral formulation of the electromagnetic solutions outside
and inside the scatterers. We will now give a similar relation when the electromagnetic
field is considered a vector.

The vectorial formulation

When the electric field is considered a vector, the equivalent of the Green function is
more complex, it is an operator that will be written Gk [18]:

~Gk(~r, ~r′) = ([I] +
1

k2
[∇∇])gk(~r, ~r′) (3.44)

where I =
1 0 0
0 1 0
0 0 1

, [∇∇] =

∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

and g is the Green function (3.37).

When this operator is applied on a vector, the result is a vector. With these operators
it is possible to have the same kind of relations as (3.43) with a vectorial electric field
[18]:

{
~r ouside S
~r inside S

~E(~r)
0

= ~Ei +

∫∫

S

~G(k|~r − ~r′|).
(

~N × (~∇× ~E)(~r′)
)

d~S ′

+

∫∫

S

~∇× ~G(k|~r − ~r′|).( ~N × ~E(~r′))d~S ′ (3.45)
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That could be written [18]:
{

~r ouside S
~r inside S

~E(~r)
0

= ~Ei + ~∇×
(

~∇×
∫∫

S

i

k
~N × ~H(~r′)g(k|~r − ~r′|)dS ′

)

+ ~∇×
∫∫

S

g(k|~r − ~r′|) ~N × ~E(~r′)dS ′ (3.46)

where ~N is the normal to the surface and g the Green function.

This relation is called the Huygens − Poincaré principle [20]. It is used by the T-
matrix algorithm to calculate rigorously light scattering by several scatterers.

3.4 A demonstration of T-matrix algorithm
As we have seen in the previous chapter, there are several numerical algorithms to sim-
ulate light scattering. This section presents the principles of T-matrix algorithm that
we have used for our main studies. In particular the Extended Boundary Condition
Method (EBCM) that has been used to calculate the T-matrix and which is based on
the integral formulation of electromagnetic solutions. The reasons why we have used
it have already been explained at the end of the previous chapter, section 2.7. In the
same section, the limitations of this algorithm and the conditions that must respect the
scattered for being studied with this algorithm have been described. This algorithm

R

n2

(1)

(2)

R

S1
S2

S2�

Figure 3.5: Two equivalent contours of integration for spheres.
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allows us to extend the Lorenz-Mie theory and to compute light scattering by an ag-
gregate of spheres (but also an aggregate of scatterers with arbitrary shape).

Principles
The EBCM is based on the Huygens-Poincaré principle (see equation 3.46) which was
introduced in the previous section. This principle yields two equations. The first equa-
tion expresses the total electric field outside scatterers as the sum of the incident field
and the tangential components of the electromagnetic field integrated over the sur-
face of all scatterers. This second integrated term, where the Green function appears
(g(k|~r− ~r′|) = exp(ik|~r− ~r′|)/(4π|~r− ~r′|)), is the scattered field. The second equation
gives a relation between the incident field and the tangential components of the electro-
magnetic field integrated over the surface of all scatterers. By removing the tangential
components of the electromagnetic field with the two equations, we find the relation
between the incident and the scattered field.

In the Lorenz-Mie theory, that is for one dielectric sphere, the links between inci-
dent and scattered fields are found by applying the boundary conditions. The EBCM
method is an extension of the Lorenz-Mie theory for several particles, that is the reason
why the method is called Extended Boundary Condition Method. An other reason is
that with the EBCM method, for several scatterers, the electromagnetic field at all
point in space is expressed only as a function of the tangential components of the
electric and magnetic fields at the boundaries of scatterers. However the EBCM and
T-matrix method are often assimilated.

T-matrix calculation:
Outside the sphere the scattered field and the Green functions can be expanded on
Spherical Vectorial Functions (SVF):

~Es(~r) =
∑

n

fn
~Ψn(~r) (3.47)

g(k|~r − ~r′|) = k
∑

n

~Ψn(~r).<e[~Ψn(~r′)] (3.48)

For the expansion of the Green function (3.48), some conditions on ~r and ~r′ must be
verified if the particle is not a sphere [20]. We will not study this case.

In the Huygens-Poincaré formula (3.46), outside the sphere, the integral term describes
the scattered field because Et = Es + Ei, thus:

~Es(~r) = ~∇×
(

~∇×
∫∫

S

i

k
~N × ~H(~r′)g(k|~r − ~r′|)dS ′

)

+ ~∇×
∫∫

S

g(k|~r − ~r′|) ~N × ~E(~r′)dS ′ (3.49)
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By using the expansion of the Green function and permuting
∑

,
∫

and ~∇ we obtain:

~Es(~r) = −1
∑

n

∫∫

S

[
~N × ~H(~r′)

]
~∇×

(
~∇×<e[~Ψn(~r′)]

)
dS ′~Ψn(~r)

+ ik
∑

n

∫∫

S

[
~N × ~E(~r′)

]
~∇×<e[~Ψn(~r′)]dS ′~Ψn(~r) (3.50)

But ~∇ ×
(

~∇×<e[~Ψn(~r′)]
)

= k2<e[~Ψn(~r′)], thus by comparing (3.50) and (3.47) we
find:

fn = k2

∫∫

S

[
ik−1 ~N × ~E(~r′)

]
~∇×<e[~Ψn(~r′)]−

[
~N × ~H(~r′)

]
<e[~Ψn(~r′)]dS ′ (3.51)

Inside the sphere the incident field can be expanded on SVF:

~Ei(~r) =
∑

n

an<e[~Ψn(~r)] (3.52)

In the Poincaré-Huygens formula (3.46), inside the sphere by using the expansion of
the Green function and of the incident field, we can similarly find:

an = −k2

∫∫

S

[
ik−1 ~N × ~E(~r′)

]
~∇× ~Ψn(~r′)−

[
~N × ~H(~r′)

]
~Ψn(~r′)dS ′ (3.53)

If now we consider the easier case when the sphere is perfectly conductive: ~N× ~E(~r′) =

0. If we expand ~N × ~H(~r′) on the SVF (3.54) and use the identity (3.55),

~N × ~H(~r) =
∑

n

αnk
−1 ~N ×

(
~∇×<e[~Ψn(~r)]

)
(3.54)

Qnn′ = k

∫∫

S

~∇×<e[~Ψn(~r)]× ~Ψn′(~r)dS ′ (3.55)

we can rewrite (3.51) and (3.53) as:

fn = −
∑

n′
<e[Qt

nn′ ]αn′ (3.56)

an =
∑

n′
Qt

nn′αn′ (3.57)

or

~f = −<e[Qt]~α (3.58)
~a = Qt~α (3.59)

Thus we deduce that T = −<e(Qt)(Qt)−1 .

This formula is also true for a dielectric sphere [20].
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The above formula is true in the general case but must now be adapted for several
spherical scatterers. In this case, the EBCM used the translation addition theo-
rem (see appendix C). This theorem gives the SVF expressed in a first coordinate
system as a linear relation of the same functions expressed in a translated coordinate
system (figure 3.6).

~Ψn(~r + ~d) =
∑

n,n′
σn,n′<e[~Ψn′(~r)] if |~d| > |~r| (3.60)

<e[~Ψn(~r + ~d)] =
∑

n,n′
Rn,n′<e[~Ψn′(~r)] (3.61)

What makes the analytical expression of boundary conditions possible in the Lorenz-

r�

r
d

o

o�

Figure 3.6: Translation of the coordinate frame from O’ to O. ~d + ~r = ~r′.

Mie theory is the fact that the coordinate center can be the center of the sphere. Thus
the value of the eigenmodes at the surface are the SVF expressed for a constant radius.
When there are several spheres, it is no longer possible. The translation addition the-
orem permits to solve this problem. The formulation of the T-matrix for 2 and more
separated scatterers can be expressed in function of the T-matrix of each scatterer and
is given appendix D.

The necessary adaptations of the T-matrix principles for allowing numerical computing
are the cause of some limitations that are described and studied in the next section.

3.5 Convergence and limitations of the algorithm
Convergence
In order to compute the T-matrix, the basis of SVF must be truncated. The order of
truncation Lmax must be chosen to have a good convergence of the algorithm. This
convergence must be verified after each simulation. Usually the number of orders Lmax

that must be taken into account is at least 2πaagg/λ with aagg the radius of the smallest
virtual sphere that would contain the scatters [84, 20] (figure 3.7). This is true only if
the used coordinates are centered on the aggregate.

What we have chosen to call order (Lmax) in this dissertation is the maximum of vari-
ation of the index l and not the total number of used SVF as often. The advantage is
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aagg

Figure 3.7: Example of smallest virtual sphere of radius aagg containing all scatterers.

the physical link between this order and particle size. The relationship between Lmax

and the number of used SVF is given in the next section. This convergence criterium
gives the minimum order that must be used in calculation.

Conditioning
Lmax is the minimum order that must be used in the expansion on SVF to have con-
vergence. However another criterium gives the maximum order that can be used: If
too many orders are used in calculation, the matrix inversion in the algorithm can be
badly conditioned. Therefore the order of convergence must be reached before the ma-
trix becomes badly conditioned, that is the reason why the global size of the aggregate
of spherical particles that can be simulated is limited to several ten wavelengths. For
larger aggregates, when the number of orders in computing increases, the matrix to
inverse becomes badly conditioned before to obtain convergence.

Study of the Lorenz-Mie case
The study of the case of Mie scattering enables us to illustrate the convergence criterium
on a simple case. In the case of the Lorenz-Mie theory, a single sphere of radius a is
considered. Because the SVF (indexed by l and m) are the eigenmodes for one sphere,
the T-matrix is diagonal. The minimum convergence criterium gives 1 ≤ l ≤ Lmax with
Lmax = ka. We will try to justify this criterium. However, it can be first noted that if
the incident angle of the plane wave is θi = 0, so m = 1; whereas if θi 6= 0, 0 ≤ m ≤ l.
In the two cases, the criterium 1 ≤ l ≤ Lmax is the same and the scattered field has
only be rotated, however the number of used SVF is not the same. This justifies why
in this dissertation we call order the value Lmax and not the total number of used SVF.
Only Lmax has a physical interpretation.

We can also note, in figure 3.8(a), that for a perfectly conductive sphere, the diagonal
components of the T-matrix as a function of the particle radius are almost periodic,
with a period λ/2. We also note that the coupling maximum value is equal to 1.
For a given radius of particle, this lth diagonal component of the T-matrix is linked to
the ratio of the incident SVF that will contribute to the scattered field. If a diagonal
component is null, that means that the corresponding SVF does not contribute to light
scattering. The figure 3.8(b) is a zoom of 3.8(a) for 0 < R < 1λ. It can be observed
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that before to be periodic as a function of the sphere radius, the diagonal components
are null. The lth diagonal component is null for sphere radius a such as ka < l. There-
fore, if we consider a sphere with a radius a, all the SVF with an order l > ka will not
significantly contribute to light scattering. That is a justification of the convergence
criterium Lmax = ka. It can be noticed that Lmax is the circumference of the aggregate
in λ unit.
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Figure 3.8: First 6 diagonal components of the T-matrix of a perfectly conductive
sphere as function of its radius R. T11: diagonal component corresponding to l = 1

For dielectric spheres, in figure 3.9(a) we observe that the diagonal components of
the T-matrix are periodic as well for perfectly conductive sphere, but with a more
complicated period. The coupling maximum value are equal to one too and the same
convergence criterium is observed (Lmax = ka). A difference (see table 3.1) is that
the period of variation of the diagonal components of the T-matrix as function of the
radius of the dielectric sphere seems to depend of (n − 1) and is not always equal to
λ/2 as for perfectly conductive sphere. n is the refractive index of the sphere .

Aggregates
The order of convergence for an aggregate of two identical spheres which centers are
separated by a distance of 4 times their radius and with θi = 0 is given in table 3.2.
The convergence order appears to be Lmax ' 2kaagg, where aagg is defined in figure 3.7.
This order is independent of the refractive index of spheres. For example, for N aligned
spheres of radius a, separated by a distance (center to center) d, aagg = (N − 1)d + 2a,
therefore Lmax = 2k[(N − 1)d + 2a].
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Figure 3.9: First 6 diagonal components of the T-matrix of a dielectric sphere with
n = 1.52 as function of its radius.

Table 3.1: In figure 3.9, for a given refractive index of the sphere, all the diagonal
components of the T-matrix Tll(a) have the same period. This table gives the period of
these components as a function of the refractive index n of the sphere. A proportionality
with n− 1 seems to appear.

n n-1 period
2 1 λ/2
1.5 0.5 λ
1.25 0.25 2λ
1.2 0.2 5λ/2

Incident field expansion
The T-matrix approach needs the expansion of the incident field on SVF, that is a sum
of functions. The mathematical convergence of this sum is not obvious as we will see
and must be considered too. If θi = 0, so only the SVF with m = 1 are needed. The
expansion coefficients are given section 3.2 and are represented in figure 3.10(a). We
observed that the absolute values of these coefficients increase when the order grows.
Thus, such a sum does not converge in all space. However this sum converge uniformly
in all finite space areas. The convergence of the incident field intensity in backward
direction as a function of the order Lmax for two different radii is represented in figure
3.10(b) and (c). We can observed that, for having convergence in a spherical area of
radius R around the center, the needed order is approximatively Lmax = kR. This local
convergence is enough in our case, because the decomposition of the incident wave is
used only at the boundaries of scatterers (or in the near field, if we want the total field
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Table 3.2: Order of convergence for an aggregate of two identical spheres which centers
are separated by a distance of 4 times their radius R and with θi = 0 (independent of
the refractive index)

sphere radius R aggregate radius ρ kρ convergence order
0.5λ 1.5λ 9 17
3λ 9λ 54 95
7λ 21λ 120 200

Table 3.3: Number of needed SVF in different cases. For a linear incident wave, this
number is two times ((e1, o2) or (o1, e2)) the number of couples (l, m).

θi l and m variations number of SVF
θi = 0 1 ≤ l ≤ Lmax, m = 1 2Lmax

θi 6= 0 1 ≤ l ≤ Lmax, 0 ≤ m ≤ l 2
(

(Lmax+1)(Lmax+2)
2

− 1
)

Et = Es + Ei and not only the scattered field).

Convergence in the near field
This discussion and these convergence criteria are sufficient for the far field computa-
tion. However in this work, we have also considered the near field. For one sphere,
the Lorenz-Mie theory is the rigorous one, that is the reason why we are also able to
compute the near field.
For non spherical particles or for aggregates of particles, the Green function is used.
This Green function is singular at its origin, that is the reason why there are limitations
in its expansion on SVF [20]. Thus the T-matrix does not allow us to compute
the electromagnetic field inside the aggregate or in the near field. The Point
Matching Method (see section 2.6) and other iterative methods have been proposed to
compute this near field [85].

3.6 Evaluation of computing time
Coupling and number of SVF
When the convergence order Lmax is known, computing time can be estimated in func-
tion of the incident angle θi and of the geometry of the aggregate. This time is linked
to the size of the matrix to compute. This size depends to the total number of SVF
that must be used and to the possible couplings between these SVF. The number of
needed SVF as function of θi is summarized in table 3.3. The possible couplings are
summarized in table 3.4.

Computing time for the T-matrix
We have studied the computing time needed to calculate the T-matrix in function of
the size parameter x = ka:
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Figure 3.10: (a) Expansion coefficients of an incident plane wave on SVF in free space.
θi = 0, Hi = Hy and ki = kz. (b) and (c) Incident intensity in backward direction for
R = 5λ (b) and R = 5λ (c).

• for one sphere with θi = 0 (figure 3.11a) only few seconds are needed,

• for one sphere with θi 6= 0 (figure 3.11b), the computing time is plotted as a
function of the order in figure 3.12(a). The time is in L2

max (o(x2)),
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Table 3.4: Possible couplings between SVF. o1 → e2 means that the (ai
o1) component

of the incident wave has an influence on the component (as
e2) of the scattered wave.

Spheres number Translation Coupling

1 all
{

o1 → o1
e2 → e2

=

{
o2 → o2
e1 → e1

N 6= 1 z-axis





o1 → o1
o1 → e2
e2 → e2
e2 → o1

=





o2 → o2
o2 → e1
e1 → e1
e1 → o2

N 6= 1 others





o1 → o1
→ e2
→ o2
→ e1

e2 → e2
→ o1
→ e1
→ o2

=





o2 → o2
→ e1
→ e2
→ o1

e1 → e1
→ o2
→ e2
→ o1

Z

Z
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Figure 3.11: Geometrical description of sphere positions and possible incident wave
vector Each case corresponds to particular possible couplings.

• for two spheres in the z-axis with θi = 0 (figure 3.11c), computing time is plotted
as a function of the expansion order L in figure 3.12(b). The time is in L3

max

(o(x3)),

• for two spheres in the z-axis but with θi 6= 0 (figure 3.11c), the computing time
is similar to the case θi = 0,

• the case of two spheres out of the z-axis has not been studied but is longer be-
cause of additional couplings.

Computing time for field reconstruction
We have also studied the computing time needed to calculate the field in rectangular
spatial zones (20 × 20 pixels and 40 × 40 pixels). That is to sum the contribution of
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Figure 3.12: Computing time needed to calculate the T-matrix for one and two spheres
according to the angle θi of the incident wave vector. The peaks in (a) are numerical
artifacts. The difference between curves in (b) are only due to an additional constant.

each SVF for a given spatial zone. This time does not take into account the T-matrix
calculation. The figure 3.13(a) shows for one sphere and incident angle θi = 0o (m = 1),
that this time is in L2

max (o(x2)) where x is the size parameter of the aggregate. The
figure 3.13(a) also shows that the computing time is also proportional to the surface
of the considered spatial zone. The figure 3.13(b) shows that for one sphere but with
θi 6= 0 (0 ≤ m ≤ l) the computing time is in L5

max (o(x5)) (this time is also proportional
to the surface of the considered spatial zone). When it will be possible, for carrying
out the post-treatment, we will try to use only the expansion coefficients on SVF and
not the reconstructed field map, in order to reduce the computing time.

The computing time comparison with other algorithms has already been made, see in
table 2.1.

3.7 Scattering phase function and cross sections
The following sections describe the calculations and the results for several useful phys-
ical parameters. The first two are the scattering phase function and the cross section.

Scattering phase function
In the far field, at a distance r of the scatterers, the scattered intensity distribution as
function of phase angle is expressed as:

I(θ, ϕ) =
IoF (θ, ϕ)

k2r2
(3.62)
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Figure 3.13: Computing time needed to calculate the field in a rectangular spatial zone
(20× 20 or 40× 40) in several cases for one sphere and regression laws.

F (θ, ϕ) is the scattering phase function, it can be normalized by dividing by k2Csca,
where Csca is the scattering cross section (see below). In this case

∫
FN(θ, ϕ)dΩ = 1.

The angle between the incident and the scattered light is called the phase angle. The
normalized scattering phase function can be interpreted (in a Monte-Carlo algorithm
for example) as the density of probability describing the probability that a ray of an
incident plane wave would be scattered in a particular direction (solid angle). Note
that the normalization constant Csca is the scattering cross section.

Cross section
The scattering cross section Csca is defined as an area that reduces the power of incom-
ing radiations due to scattering mechanism. If this area is multiplied by the incident
flux, we must obtain the total power that is scattered.

Csca =
1

k2

∫∫
F (θ, φ) sin θdθdφ (3.63)

The absorption cross section Cabs has the same definition but related to the loss due
to absorption. When a beam of light goes through a scattering medium, a part of the
incident flux is not transmitted. This part has been absorbed or scattered (figure 3.14)
and can yield extinction of the beam. Therefore, the extinction cross section Cext is
defined as the sum of the scattering and absorption cross section:

Cext = Csca + Cabs (3.64)

We also define the albedo of a particle or an aggregate as w = Csca

Cext
.
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Scattering cross section is not easy to measure, that is the reason why physicists prefer
to use backscattering cross section Cback:

Cback = limr→∞4πr2|Ẽs|2/|Ẽi|2 (3.65)

with ~Es the scattered field in the backward direction (α = 180o) and with ~r the position
vector.

The cross sections are often normalized dividing by πa2 with a the radius of the scat-
terer.

Energy Balance
Because the part the incident flux, that is not transmitted through a scattering medium,
is described by the extinction cross section, this cross section can be found by measuring
the intensity in the far field, in the forward direction (figure 3.14). Such a measurement
is possible only if there is a high extinction, else the sensor will be saturated by the
incident light.

The incident wave is assumed to be an unpolarized plane wave.

Ei(z, t) = E0ie
ikz−ωt

Far from the aggregate, the scattered field is:

Es(~r, t) = E0iS(θ, ϕ)
eikr−ωt

ikr

In the forward direction (θ = 0, ϕ = 0), the total field is

Et(0) = Ei(0) + Es(0) = E0ie
ikz−ωt(1 + S(0)

eikr−ikz

ikr
)

If the observation point r is far from the scatterer and in the forward direction (x, y ¿
z) so r = z + (x2 + y2)/(2z):

Et(0) = E0i(1 + S(0)
eik(x2+y2)/(2z)

ikz
)

It(0) = |Et(0)|2 = I0i(1 +
2

kz
<e

[
S(0)eik(x2+y2)

]
)

(|1+a+ib|2 = (1+a)2+b2 = 1+2a+a2+b2 ' 1+2a because a2+b2 = |S(0)|2/(kz)2 ' 0)
If the detector is in the z-axis and if light is integrated in the (x, y) plane on a surface
Σ, the measured power P is:

P =

∫

Σ

It(0)dxdy

= I0i

(
Σ− 2

kz
<e[S(0)

∫

Σ

eik(x2+y2)/(2z)dxdy]

)

= I0i(Σ− 4π

k2
<e[S(0)])

Micrometric particles light scattering 80/163 PhD, Sylvain Lecler 2002-2005



3.7. SCATTERING PHASE FUNCTION AND CROSS SECTIONS

But
P = I0i(Σ− Cext)

Thus we find the Van de Hulst formula [3]:

Cext =
4π

k2
<e[S(0)] (3.66)

If we use (3.66) to calculate Cext, the checking of the relation (3.64) is equivalent to

Csca

CabsIo ?

Figure 3.14: Energy conservation: Cext = Csca + Cabs.

the verification of energy conservation.

Discussion of cross section values
To have a better understanding of cross section, we study some simple examples. The
first is the scattering cross section of a perfectly conductive sphere as function of its
radius. In figure 3.15(a) we observed that the normalized scattering cross section is
very small in the Rayleigh case and that for larger sphere is reached the constant value
of 2. This means that, if we are not in the Rayleigh case, the scattering cross section
of a perfectly conductive sphere is approximatively equal 2 times its geometric cross
section.

Now if we consider dielectric spheres, the normalized scattering cross section for dielec-
tric spheres is more complex because of the resonance with the cavity mode inside the
sphere. In figure 3.15(b), which shows the scattering cross section of a dielectric sphere
with a refractive index n2 = 1.2 as function of its radius, this resonance can be ob-
served. Diffraction effects increase when the sphere radius increases. This cross section
also tends to reach 2 for large spheres. In order to explain this limit, which is called the
the extinction paradox [3], we can consider that one part of the plane incident wave
goes through the particle and the other part, outside the particle, is diffracted because
of the obstacle (figure 3.16). This second diffraction is equivalent to the diffraction by a
hole because of the Babinet theorem. Each of these two scattering process corresponds
to a normalized cross section of 1 (one interaction with the geometrical cross section),
the sum makes 2. (figure 3.15).

The incident flux Io may create an radiation pressure Fr on the particles in the direc-
tion of propagation of the incident wave (supposed here to be in the z direction). This
phenomenon has been first described by Debye [86]. The cross sections can be used
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Figure 3.15: Normalized scattering cross section as function of its radius of (a) a
perfectly conductive sphere (b) a dielectric sphere with refractive index n2 = 1.2. For
a large sphere Csca tends to 2.
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Figure 3.16: Schematic explanation of why the normalized cross section approaches to
2 when the sphere is large.

to calculate this radiation pressure [3]. If the extinction cross section is Csca and the
scattering phase function is F (θ, ϕ):

Fr =
IoCpr

c
(3.67)

with Cpr = Cext − 1/k2
∫∫

F (θ, ϕ) cos θdΩ.

3.8 Analysis of the polarization response of an aggre-
gate

The polarization response of an aggregate for polarized or unpolarized incident wave
has a great interest to obtain information concerning its shape and symmetries.

Micrometric particles light scattering 82/163 PhD, Sylvain Lecler 2002-2005



3.8. ANALYSIS OF THE POLARIZATION RESPONSE OF AN AGGREGATE

Stokes parameters
Stokes parameters (S0, S1, S2, S3) can be used to describe polarization state of the
scattered wave, when this wave is transverse, that is in the far field.

S0 =< EφE
∗
φ > + < EθE

∗
θ > (3.68)

S1 =< EφE
∗
φ > − < EθE

∗
θ > (3.69)

S2 =< EφE
∗
θ > + < EθE

∗
φ > (3.70)

S3 = i(< EθE
∗
φ > + < EφE

∗
θ >) (3.71)

<> is for the temporal mean. Stokes parameters are often normalized by divided by
S0.
Stokes parameters do not describe a vectorial space (in mathematics), that is why we
will not speak about Stokes vectors but about Stokes parameters.

The degree of polarization is defined as,
√

S2
1 + S2

2 + S2
3/S0 and is a value between

0 and 1. Degree equal to 1 corresponds to a total polarized field, whereas degree equal
to 0 corresponds to a unpolarized light.

Some examples of Stokes parameters:
(1,1,0,0) corresponds to a linear polarization,
(1,-1,0,0) corresponds to a linear polarization orthogonal to the first,
(1,0,1,0) corresponds to a linear polarization rotated through 45o from the first,
(1,0,0,1) corresponds to a circular left polarization,
(1,0,0,-1) corresponds to a circular right polarization,
(1,0,0,0) corresponds to a non polarized light.
(In some books, Stokes parameters are noted (I,Q,U,V)).

Stokes parameters can be added, because an unpolarized wave can be described as
a succession in time of light considered as polarized during a shorter time than the
integration time. Detectors measure quadratic values but are assumed to be linear in
time. So an unpolarized wave can be modelled as the sum of two polarized fields with
Stokes parameters (1,-1,0,0) and (1,1,0,0).

Mueller matrix and ellipticity
The relation between polarization of the incident and the scattered waves can be de-
scribed by the Mueller Matrix. This 4x4 matrix also depends on the incident direction,
on the scattering directions and on the wavelength. Mueller matrix can also be used for
partially polarized incident wave. In the general case, the 16 components of this Ma-
trix are not independent. If the polarization degree of the scattered wave is 1, Mueller
matrix can be expressed as function of the amplitude matrix, so the Mueller matrix
M can be expressed in function of 4 complex values or 8 real values. If the Mueller
matrix is normalized by its M(1, 1) components, the matrix only depends of 8-1=7 in-
dependent values. Thus, 16-7=9 relations between its 16 components can be expressed.
However if some additional symmetries are considered (aggregate symmetries), others
additional relations can be expressed [3]. If an independent scattering occurs (that is
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without phase effect), the Mueller Matrix can also be added.

The polarization can also be described by its axis and its ellipticity [8, 13]. If Alarge

and Asmall are respectively the large and the small axis of the polarization ellipse:
~E = ~P + i ~Q = ( ~Alarge + i ~Asmall) exp(iκ)

~P = <e[ ~E]
~Q = =m[ ~E]

κ = angle

(
(|~P |2 − | ~Q|2 + 2i ~P . ~Q)/

√
(|~P |2 − | ~Q|2)2 + 4(~P . ~Q)2

)

~Alarge = ~P cos κ + ~Q sin κ
~Asmall = −~P sin κ + ~Q cos κ

Polarization conservation
We often use the linear polarization degree as P = S1/S0 or the contrast of linear
polarization S1−S2√

S12+S22

For a two spheres aggregate and for two particular cases of incident wave directions
(figure 3.17), the linear polarization degree is represented in figure 3.18) as a function
of the observation direction (and for a linearly polarized incident wave). The scattered
light is linearly polarized in the white regions, unpolarized in the black ones and has
an elliptic polarization in the gray regions. We can observe that the polarization of the
scattered light as a function of the observation direction is quite complex in the general
case. However white lines can be observe in figure 3.18): for a linear polarized incident
wave, the scattered field stays linear in the symmetry planes of the aggregate when
(~k, ~Ei) or (~k, ~H i) are also in these planes (example in figure 3.17 and 3.18). There are

ki
Ei

Hi

X

Z

Y

ki

Ei

Hi

X

Z

Y

(a) (b)

Figure 3.17: Example for 2 spheres of planes where the scattered wave polarization is
linear for two incident linear polarized wave.

not a lot of studies of polarization response of the scattered wave when the incident
wave has a circular polarization. In Rayleigh scattering the polarization is conserved in
the main direction (forward and back). In Mie scattering, the polarization is conserved
in the forward direction (α = 0o). A comparison of depolarization between linear and
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Figure 3.18: Linear polarization degree, |S1/S0|, in the far field as a function of the
direction of observation for two different geometries (a) and (b) described in figure
3.17. The scatterer is made of 2 spheres a = λ, n = 1.5, d = 4λ. We observe that the
scattered field stays linear (white regions) in the (~k, ~Ei) and (~k, ~H i) planes, because
these planes are also the symmetric planes of the couple of particles.

circular incident polarization has been made for aggregate of several size in reference
[87].

Chapter conclusion
In this chapter, we have presented the main tools and algorithms that will be used in
our studies of scattering phenomena that occur in the near field. The two algorithms
allow to find rigorous solution of Maxwell equations in the case of light interaction with
spherical particles. The Lorenz-Mie theory will be used in the next chapter to study
the intensity map in the near field around a single dielectric particle. The T-matrix
will be used in chapter 5 to study the consequence in the far field of electromagnetic
couplings between close particles.
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Chapter 4

Application: The Photonic Jet

To have a better physical understanding of multiple scattering, a great interest is in the
study of interactions between particles. Whereas light scattering is generally measured
in the far field, the interactions between particles take place in the near field, that is
within the aggregates. For this reason, we start by studying the intensity profile in
the near field, just around the particle. Moreover, in order to be able to find physical
interpretations, we will begin with the simplest case of only one sphere. Our notations
are reminded in figure 4.1. In this section the refractive index of the medium around
is supposed to be n1 = 1 and no absorption is taken into account (σ2 = 0).

Our interest for this simple case can also be explained by another reason. Chen and
Taflove [22] have recently shown that micrometer-size cylinders were able to concen-
trate visible light in the near field. Our aim was to investigate what will happen with
micrometer-size dielectric spheres in similar cases and what are the influences of sphere
parameters on this concentration of light.

X

Zki=2p/l

Y

a

s2=0
n1=1n2

Figure 4.1: Notations to describe the micro-spherical lens. n1 = 1 and σ2 = 0. ki is
the incident wave vector, a and n2 are respectively the radius and the refractive index
of the sphere.
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4.1. A PHOTONIC JET

4.1 A photonic jet
We will first define what a photonic jet is. Recently simulations have shown that an
infinite dielectric cylinder [22] with a ten wavelength diameter was able to focus light
and to reach the diffraction limit. Depending on its refractive index the focus point
(defined here as the intensity maximum on the optical axis) can be inside or outside
the cylindrical micro-lens, but when the focus point is just on its surface an interesting
phenomenon occurs. Along a distance of propagation of one or two wavelengths in
front of the focus point, the Full-Width-Half-Maximum (FWHM) (defined in figure
4.2) of the beam stays smaller than the wavelength and the beam locally reaches a
very high intensity. The focus point reaches the diffraction limit. This beam has been
called a photonic jet by Taflove [22] because of the analogy between the high speed
gradient which is characteristic of a jet in fluidic mechanic and the observed high light
flux gradient (top of figure 4.5).

R

Intensity

Imax

FWHM

Imax/2

Figure 4.2: Definition of the FWHM of a beam. R is the radial position in a plane
transverse to the propagation axis.

Chen and Taflove [22] have used a FDTD method (see section 2.6) to simulate this
focusing of light by a cylinder. This method has several limitations [16]:

• the required computational memory is large, therefore, calculations are often
limited to 2-dimensional cases,

• the sampling grid makes the boundaries of objects difficult to describe,

• the sampling grid anisotropy introduces numerical dispersion. Because of the
grid, the light velocity is not exactly the same in all directions,

• because FDTD simulates the evolution of field in time, a long computing time is
needed to obtain the stationary state.

Because of these reasons, we prefer to use the Lorenz-Mie theory (see section 3.2) that
makes it possible to rigorously carry out the 3-dimensional calculations.
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Figure 4.3: Focusing of an incident plane wave (Hi = Hy and ki = kz) by a dielectric
sphere of index n2 and radius a = 5λ (Lmax = 40).

As we see in figure 4.3, our simulations show that a ten wavelength diameter sphere is
also able to focus an incident plane wave and to locally concentrate intensity. Accord-
ing to its refractive index the focus point can be outside (a) or inside (b) the sphere.
The figure 4.5 also shows that the FWHM of the focus point can be smaller than the
wavelength. Therefore the photonic jet also exists for spherical dielectric particles [15].

This possibility to concentrate light in the near field with a few wavelength diame-
ter dielectric particle is almost unknown, probably because we usually consider their
ability to scatter light in the far field. Usually, only the scattered field (and not the
total electric field) and only the field outside the sphere is computed. For example in
figure 4.4, the scattered field is represented for a sphere of 5 wavelengths radius and
refractive index n2=2.5, whereas the total electric field (scattered field + incident field)
is represented in figure ??b. The focusing can be observed only in the second one. A
second reason, as we will see, is that the high energy concentration occurs only in
specific cases.

We have observed, as it will be explained in the next sections, that two different
effects must be distinguished:

• the possibility to reach a high intensity concentration outside the sphere,

• the possibility to have a subwavelength focused beam along a large distance of
propagation.

In order to demonstrate and to understand why these two effects cannot be optimized
together and why they happen, we will study the influence of the sphere parameters
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Figure 4.4: Electric field scattered by a dielectric sphere of index n2 = 2.5 and radius
a = 5λ of an unitary plane wave (Hi = Hy and ki = kz). Only the field outside the
particle is represented.

on the photonic jet.

4.2 Focusing with a micro-spherical lens
For large spherical lens, the thick lens formula [88] in geometrical optics gives the focus
position according to the refractive index n2 and the diameter D of the sphere:

f = n2D/(4(n2 − 1)) (4.1)

However, this law does no work for few wavelength diameter spheres. The focus posi-
tion is calculated as a function of the refractive index for several sphere radii and the
results are depicted in figure 4.6. The focus is defined here as the intensity maximum
on the optical axis, its position is measured from the sphere center.

Figure 4.7 represents the difference of position in wavelength unit between the rig-
orously calculated focus and the theoretical geometrical focus (4.1) according to the
refractive index and for several radii. For small refractive indexes, the increase of dif-
ference is due to the fact that the focus point was no more in the studied space area.
The focus point was too far from the spherical lens.

For large refractive indexes (n > 2) the focus point is in the dielectric sphere. Figure
4.8 shows the difference between the calculated focus and the theoretical geometrical
focus for a large refractive index (asymptotic value) according to the radius. The the-
oretical position of the focus point would be a/2 in geometrical optics. This difference
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4.2. FOCUSING WITH A MICRO-SPHERICAL LENS

Figure 4.5: Electric field intensity Hi = Hy and ki = kz (top) and FWHM (down) of
a dielectric sphere of index n2 = 1.3 and radius a = 5λ. The focused beam is smaller
than the wavelength.

seems to be proportional to the radius (proportional to a/4).
Our study confirms that the geometrical laws cannot be applied for such small spheri-
cal lens. We have found how to correct the focus position law for large refractive indexes
and we have given the curves which describe the focus positions for small refractive
indexes according to the radius.
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4.3. HIGH INTENSITY CONCENTRATION

Figure 4.6: Focus position as a function of the refractive index for several sphere radii
a. At the bottom a = 2λ, then a = 4λ, until a = 18λ at the top. The points • show
the case when the focal point is just on the sphere surface.

4.3 High intensity concentration
We have observed that was possible to concentrate energy with dielectric spheres. Next,
we would like to determine where the focus point must be to obtain the highest inten-
sity outside the sphere. For several different radii (a = 2λ, a = 3λ, a = 5λ, a = 15λ),
we calculated the intensity maximum outside the sphere as a function of the refractive
index of the sphere. The highest intensity outside the sphere is reached when the focus
point is just on the surface of the sphere (coherent with paper [22] of Chen and Taflove
which deals with infinite cylinder). If we want to focus on the surface of a spherical lens,
the geometrical law (4.1) gives that the index has to be 2. However our simulations for
spheres with a radius of a few wavelengths, where geometric laws are not valid, show
that the refractive index has to smaller than 2. This index tends to 2 for large sphere
(see • f = a in figure 4.6).

In figure 4.9 the index n2 has been chosen in order to locate the focus point on the
surface of the sphere. In this figure the sphere radius a is 5λ and the refractive index
n2 is 1.63. There is no absorption. We observed that for any given unitary incident
plane wave, the intensity maximum outside the sphere is locally multiplied by more
than 200 as it would be without sphere.
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Figure 4.7: Difference of focus position between electromagnetic computing (fig. 4.6)
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n2. At the bottom a = 2λ, then a = 4λ, until a = 18λ at the top.
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Figure 4.8: Difference between the calculated focus and the theoretical geometrical
focus for a large refractive index (n2>2.5, asymptotic value).

This focused beam outside the sphere, called photonic jet, has a FWHM smaller than
the wavelength along approximatively one wavelength in the direction of propagation.
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Figure 4.9: Intensity of the total electric field for a sphere with a = 5λ and n2 = 1.63.
Calculations have been made with Lmax = 45 and the incident plane wave is Hi = Hy

and ki = kz.

However it is no in this case, when the focus point is on the surface and when the
highest intensity outside the sphere is reached, that the beam stays along the longest
distance of propagation with a width smaller than the wavelength.

4.4 Subwavelength focusing with a dielectric sphere
It is also important to know under what conditions the photonic jet width stays smaller
than the wavelength along the longest distance of propagation. In order to determine
this, calculations were carried out for several sphere radii. The distance along which
the photonic jet stays smaller than the wavelength as a function of the refractive index
is depicted in figure 4.13. The FWHM is not always easy to compute because the in-
tensity maximum in the transverse planes (z = zo planes) is not always on the optical
axis: see for example in figure 4.10, near of the sphere surface.

We observe that if we want a focused beam with a FWHM smaller than the wave-
length along the longest distance of propagation and with an intensity over the half
global maximum, we must not focus on the sphere surface but just in the front of it.
For example, we should focused round one wavelength ahead for a sphere of radius
a = 5λ. The refractive index must be around n2 = 1.3 in this case. As we observe in
figure 4.10 the beam width stays smaller than the wavelength because of the proximity
of the focus point with the sphere surface. However, this phenomenon does not permit
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us to reach an intensity as high as by focusing on the surface.

Figure 4.10: Electric field intensity for a sphere with a = 5λ and n2 = 1.3, a sub-
wavelength FWHM is observed. Calculations have been made with Lmax = 45 orders
and the incident plane wave is Hi = Hy and ki = kz.

The possibility of reaching or of going beyond the diffraction limit is not new, it is used
in various applications [89] as SNOM microscopy [90][91], microscopy using near-field
probes [92], immersion lens microscopy [93][94]. This limit is true in the scalar far field
approximation [8]. In this case, the diffraction half-angle caused by a physical aperture
of diameter D can not be smaller than 1.22λ/D [8]. If we consider the intensity FWHM
at the focus distance f of a lens, it can not be smaller than 1.02λf/D = 1.02λ/NA
with NA = D/f (figure 4.11). If we want the focus point to stay outside the sphere,
NA, the numerical aperture, can not be larger than 2. For a photonic jet, we reach this
diffraction limit.

4.5 Basic properties of the photonic jet
The optical properties of this photonic jet is important to know in order to identify
their differences with geometrical laws and to be able to use it for possible applications.
We have already published the details of this study in [15]. This section will outline
the fundamental results obtained for photonic jets.

Influence of the refractive index
As demonstrate in the previous sections, if the refractive index is too high (n>2, figure
4.3b), the focus point will be inside the sphere, the forward scattering decreases and
several lateral scattering orders appear. If the refractive index is too small, the focus
point is far out of the sphere (figure 4.3a), scalar approximation can be used and the
focus point cannot be smaller than the wavelength. We have already explained what
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Figure 4.11: Abbe’s law for an imaging system of focus f and aperture D. Image by a
lens of a point placed at infinity.

happens in the two interesting cases when the focus point is just on the surface of the
sphere (maximum intensity outside the sphere) and when it is just in the front of the
sphere (longest distance of propagation with a width smaller than the wavelength).

Influence of the radius
There is not photonic jet in the Rayleigh case (ka < 1) because in this case, in the near
field, the intensity maximum is not on the optical axis [23]. There are two maxima at
two sides of the particle as illustrated in figure 4.12.
The photonic jet can be created with small (a ' λ), but also with large spheres
(a > 20λ). When a sphere is larger, the refractive index required to focus on the sur-
face will increase from 1.6 to 2. With such an index the width of the beam will stay
smaller than the wavelength along around 2 wavelengths of propagation.

For sphere radii where ka > 1, it will be possible to have a beam width smaller than the
wavelength along the longest distance of propagation, if the refractive index is around
1.3. This distance of propagation under the wavelength may have to increase when the
radius becomes larger, but the adapted refractive index stays the same. Figure 4.13
shows for several radii and according of the refractive index of the sphere, the distance
of propagation where the beam FWHM stays under the wavelength and has an intensity
over the half global maximum. The figures 4.15 and 4.16 show that this possibility to
have a beam width smaller than the wavelength is also true for larger sphere (a = 15λ).

The properties of the focus point as a function of the refractive index and of the
radius of the sphere are summarized in table 4.1.

Polarization
What is the influence of the incident wave polarization and how the photonic jet is
polarized?
The 3D vectorial calculations make it possible to see that, due to the linear incident
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Figure 4.12: Total electric field around a dielectric sphere of radius a = 0.1λ and optical
index n2 = 1.5, for an incident field: Hi = Hy and ki = kz: In the Rayleigh case there
are two maxima at two sides of the particle.

polarization of the incident wave, the photonic jet has not a cylindrical symmetry as
in geometrical optics (figure 4.14).
However the photonic jet has a cylindrical symmetry when the incident wave has a
circular polarization or if the wave is unpolarized.

The photonic jet corresponds to the total electromagnetic field in the forward direction
z. In all the studied cases (incident wave with a general elliptic polarization), we have
observed that the photonic jet has the same polarization of the incident beam (that
is, in the forward direction). This is a known property far from the sphere[3], but it
is also true for near field distribution in the front of the particle. The value of the Er

component of the electric field is zero in the forward direction z as it can be deduced
from equations (3.20) and (3.21). However that is not necessary the case in other di-
rections (see for example figure 4.18). Therefore in the near field, the scattered wave
is not necessarily transverse and when the wave is not transverse, the usual definition
of polarization (see section 3.8) can not be used.

Next, the influence of the refractive index and of the radius of the sphere on the
photonic jet are studied. We have changed these two parameters and we have observed
the field around the dielectric sphere.
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Figure 4.13: Distance along the z-axis (see geometry in figure 4.1) where the FWHM
stays smaller than the wavelength and the intensity over the half global maximum for
4 radii. The curves are regular only for small indexes because for larger indexes a
near field effect occurs: the global intensity maximum, which is close to the sphere,
jumps from a local maximum of a stationary case to another when the refractive index
changes.

4.6 Near field effect
We would like to understand why a dielectric sphere is able to focus a beam with a
width smaller than the wavelength and to highly concentrate energy.

First, we want to show that these particular properties are not due to the small size
of the particles. We have often studied small particles because the number of needed
orders in computing increases dramatically with the size of the sphere (see section 3.6).
In figure 4.15 the field forward a larger sphere (a = 15λ) is computed for the refractive
index n2 = 1.3 for which the beam width must stay smaller than the wavelength along

Table 4.1: Properties of the focus point as a function of the refractive index n2 and of
the radius a of the sphere. (n1 = 1).
n2 0.5λ < a < 20λ a > 20λ

position property position property
1.2 far from the sphere - far from the sphere -
1.3 behind the sphere longest distance < λ behind the sphere longest distance < λ
1.6 on the surface highest intensity - -
2 inside the sphere - on the surface highest intensity

2.2 inside the sphere - inside the sphere -
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Figure 4.14: Intensity profile of the total electric field for a sphere with a = 5λ and
n2 = 1.63 in two orthogonal planes. Calculations have been made with Lmax = 45 and
the incident plane wave is taken as Hi = Hy and ki = kz.

the longest distance of propagation. We can effectively observe in figure 4.16 that the
FWHM of this beam stays smaller than the wavelength along several wavelengths. In
figure 4.17 the field forward a sphere with the same size (a = 15λ) is computed but for
the refractive index n2 = 1.9 for which the focus must be on the sphere surface and
for which the intensity concentration must be maximum. The predicted high energy
concentration is effectively observed. Therefore the photonic jet can also be created
with large spheres (here a=15λ).

This possibility to have a beam with a width smaller than the wavelength agrees with
the diffraction limit and seems to be a near field effect. First, we must explain what
is called the near field in this discussion. We use near field in opposition to the far
field. An area is in the far field when its distance with the scattered is far compared
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Figure 4.15: Total electric field intensity forward a sphere of radius a = 15λ and index
n2 = 1.3. Hi = Hy and ki = kz. The sphere is centered in z = 0.
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Figure 4.16: FWHM of the beam forward a sphere of radius a = 15λ and index n2 = 1.3.
The discontinuities are only due to the space sampling. The sphere is centered in z = 0.
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Figure 4.17: Total electric field intensity forward a sphere of radius a = 15λ and index
n2 = 1.9. Hi = Hy and ki = kz. The sphere is centered in z = 0.

to the wavelength, compared to the particle sizes and compared to the aggregate sizes.
When these three conditions are verified, it can be demonstrated that the field will be
transverse. Figure 4.18, we have represented the 6 components of the electromagnetic
field for a sphere of radius 5λ and refractive index n2 = 1.63. We know that a photonic
jet is created (see the electric field intensity in figure 4.9). What we observe in figure
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4.18 is that the Er component is not zero everywhere. In the near field, close to the
particle, the electromagnetic field is not transverse. We can also observe, in figure 4.19,
for the sphere of radius 15λ and refractive index 1.3, that several local intensity max-
ima are forward the sphere. There is not a monotone intensity decrease in the near field.

The fact that the Er component is not zero in the near field is not compatible with the
scalar far field approximation used to demonstrate the Abbe limit. That is the reason
why the diffraction limit has no meaning in this case. If we look at the Er expression
in formulae (3.20) and (3.20), its decrease is in 1/r1/2, whereas the other components
decrease as 1/r. The Er component will be zero in the far field. However for a dielectric
sphere without absorption, this component is not an evanescent wave, because the Er

component alone does not obey to the propagation equation and its associated wave
vector is not complex. This particular field is a whispering gallery mode.

We may have evanescent waves for a metallic sphere with finite conductivity. In this
case the complex wave vector would be parallel to the sphere surface and the evanescent
wave would be a stationary state at the surface (plasmon). We have not studied this
case. When the wave vector k is a complex value, the SVF are no more an orthogonal
basis, the study is more difficult. The same difficulties occur if the incident wave is
evanescent [95, 96, 97]. However, we have not studied this case either.

4.7 Applications of the photonic jet
The photonic jet can have several important applications. It can be used for surface
materials laser processing. It may allow a larger precision. For example transparent
submicrospheres have already been used to make holes in silicon or BK7 [23]. Spheres
are put on the surface material to process. Thus, the incident plane wave is concen-
trated by each sphere and allows to make a hole in the substrate. These holes can
then be observed by microscopy. Because in this example, report in [23], experiments
were in the Rayleigh case, two holes were carried out under each sphere (explication in
figure 4.12).

Another interest would be for optical data storage [98]. The higher resolution can
be used to improve storage capacity. Spheres can be used as near field lens able to
concentrate energy in a volume with a size smaller than the wavelength. By this mean,
more data could be stored on a given surface. Philips has begun to work on such
near-field systems for data storage [99].

If a high intensity concentration is reached in the near field and if the medium around
the dielectric sphere can have non-linear responses, these responses may be enhanced.

Another application would be the improvement of optical microscopy. The photonic
jet makes observations of details smaller than the wavelength possible. But in all these
applications, the interaction between the sphere and the object (substrate, storage disc,
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Figure 4.18: Electromagnetic field components around a dielectric sphere of radius
a = 5λ and index n2 = 1.63 (Lmax = 115). Hi = Hy and ki = kz.

etc.) cannot be neglected. The focus point is near of the sphere surface, resonances
can occur. But in particular cases, this electromagnetic interaction between sphere and
object can be directly used. For example, this would make the detection of nanoparti-
cles possible and could have a particular interest in biology [100] (see below). We have
presented such applications for biology in conference [25].

Detection of nano-particles with the photonic jet
How to detect nanoparticles, for example antibodies, by using a sphere of a few microns
diameter, for example silicate beads (see in figure 4.20)? A nanoparticle does not scat-
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Figure 4.19: Total electric field intensity on the optical axis forward a sphere of radius
a = 15λ and index n2 = 1.3. Hi = Hy and ki = kz.

ter enough light to be detectable by actual sensors. If a microsphere is added beside
the nanoparticle, the light scattered by the nanoparticle will be very small compared
with the light scattered by the microsphere. That is the reason why, in general, if a
nano and a micro particle scatter light together, the measured scattered light will be
the one of the microparticle (see in figure 4.20 with ki2). But in the particular case,
when the nanoparticle is just in the photonic jet created by the microparticle (see in
figure 4.20 with ki1), the incident light is concentrated on the nanoparticle and strong
interactions between the two particles will occur. This has been reported in [24]. In this
case, simulations predict a large enhancement of backscattering. Without nanoparticle,
only the light backscattered by the microsphere is detected. When a nanoparticle, an
antibody for example, goes through the photonic jet created by the microsphere, an
enhancement of backscattering may be observed.
We have tried to simulate such cases with the T-matrix algorithm developed during the
thesis. We have observed backscattering changes, however the problem is appeared to
be badly conditioned (too important numerical errors occur during matrix inversion)
probably because the sizes of the two particles are too different. Chen and Taflove do
not speak about such a problem in their paper [24]. Their algorithm may be more
adapted.

Chapter conclusion
In this chapter, photonic jet phenomena has been described in depth. This study
(published in [15]) has allowed us to describe properties and to identify engineering
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ki2

Figure 4.20: If a nano-particle is beside a micro-sphere, according to the incident wave
vector direction, the nano-particle will be detectable (ki1) or not (ki2) (in backscatter-
ing).

interests of near field focusing by dielectric spheres. We have described some possible
engineering applications of sub-wavelength focusing and of the possible high energy
concentration.
This work is also interesting from the point of view of light scattering. Light scattering
is observed in the far field, yet when multiple scattering occurs, the energy couplings
take place in the near field. If we consider an aggregate of spherical particles close
together, this study of the photonic jet lets us imagine what kind of intensity map
(caustics) can appear inside the aggregate. Stationary states with energy maxima may
appear inside the aggregate and may have influence on the light scattered in the far field.

In the next chapter, these electromagnetic couplings will be studied for a simple case of
bi-sphere. The fields in the far field will be considered because the T-matrix algorithm
does not allow us to calculate the fields inside the aggregate.
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Chapter 5

Bi-spheres couplings

As explained in chapter 1, the comprehension of elementary physical phenomena when
electromagnetic couplings between two particles occur, has a great interest when light
scattering is used to find the statistical description of media containing a large amount
of particles [101]. It is particularly true when the particles size can be compared with
the wavelength and for new applications where the studied media can be made out
of very dense non-spherical particles (powders for instance). In these cases, particles
are close together. As explained in the previous chapter, if a single particle is able
to concentrate energy in the near field area, we can image the importance of electro-
magnetic couplings between close particles. The methods based on the Lorenz-Mie
theory (see section 3.2) and which consider that each particle only scatters the incident
light, can not be used for several close particles. Each particle also scatters the light
scattered by the others. In these materials, multiple and dependent scattering occur.
New algorithms were developed to study multiple scattering, but also to take into ac-
count the shape of particles and the statistical behavior of the medium (see section
2.6). Unfortunately, because of the high complexity of interactions between particles,
it is often difficult with these algorithms to identify the elementary physical phenomena.

By studying coupled spherical particles, we want to point out the elementary phys-
ical phenomena that are observed. A review of studies which deal with two or more
particles behavior as a function of their properties can be found in ??. In our case,
calculations are computed with the T-matrix algorithm (see section 3.4). The scatter-
ing response is described by scattering diagram (that is the scattering phase function)
and normalized backscattering cross section (NBSCS). Interferences are observed in
the far field and the differences between single and multiple scattering are discussed.
The main physical phenomena that have been observed are described (they have been
presented in conference PIERS 2005 [14]).

5.1 Transition between single and multiple scattering
We will first study the transition between single and multiple scattering. The geo-
metrical description and the coordinates are represented in figure 5.1. The incident
wave is supposed to be a monochromatic plane wave of wavelength λ in free space and
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with a wave vector orthogonal to the common axis of the two particles (θi = 90o and
ki = kx). Its polarization is linear: for a given ki wave vector in the (O,x,z) plane,
two linear polarizations are distinguished Ei = Ey (Electric field along the y-axis) or
Hi = Hy (magnetic field along the y-axis). The other polarizations can be described as
a composition of these two linear ones. The particles are identical spherical particles
with a radius a such as ka = 2. Particles are small, their size can be compared with
the wavelength but, they are not in the Rayleigh scattering regime. α is the angle of
observation (the phase angle).

z

xki

qi=90° a

y

d

a

s2

s2

n2

n2

Figure 5.1: Geometrical description of the couple of particles considered.

In order to study the transition between single and multiple scattering, the normalized
backscattering cross section (NBSCS) of the couple of spherical particles is computed
as a function of the distance between their centers (figure 5.2 and 5.3). The backscat-
tering cross section (BSCS) is defined as limr→∞4πr2| ~Es|2/| ~Ei|2 with ~Es the scattered
field in the back direction (α = 180o) and with ~r the position vector. This cross-section
is normalized (NBSCS) by dividing by the geometrical section of one sphere πa2. By
analogy the forward scattering cross section (FSCS) has the same definition but with
~Es the scattered field in the forward direction (α = 0o). It can also be normalized to
obtain NFSCS.

We can see in figure 5.2 for perfectly conductive spheres and in figure 5.3 for dielectric
spheres, that when the distance d between the two particles is small, the NBSCS oscil-
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number of spheres kd NBSCS NFSCS 4πBSCS 4πFSCS
1 - 1 5.16 4 20.6

number of spheres kd NBSCS NFSCS πBSCS πFSCS
2 45 4 20.59 4 20.55
2 10 5.2 17.86 5.2 17.84

Table 5.1: NBSCS and NFSCS for one and two spheres with ka = 2 and σ2 = ∞.
θi = 90o (ki = kx) and Hi = Hy.

lates with a period kd = 2π. That is to say that the backscattering is maximum when
the distance which separates the two particles is a fair number of λ.
It can also be noticed that when kd becomes larger, that is to say when particles are re-
mote, the NBSCS reaches a constant value that is four times the NBSCS of one sphere
(see table 5.1 for perfectly conductive spheres and table 5.2 for dielectric spheres).
The results also suggest that the polarization of incident field has no influence on the
convergence value but changes the distances kd for which resonances occur. In fact, the
asymptotical value of the NBSCS corresponds to constructive interferences of the two
particles considered as two circular Young slits. This analogy, as we will see, can be
extended to the scattering diagram, not only in single scattering but also when multiple
scattering occurs.

The convergence value of backscattering for large kd corresponds to single scatter-
ing, whereas the oscillations are due to multiple scattering. We are in single or in
multiple scattering according to the distance d between the particles.
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Figure 5.2: Normalized backscattering cross section of two spheres with ka = 2, σ2 =
∞, θi = 90o (ki = kx) and two incident linear polarizations.
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SPHERES

number of spheres kd NBSCS NFSCS 4πBSCS 4πFSCS
1 - 0.093 2.97 1.17 37.3

number of spheres kd NBSCS NFSCS πBSCS πFSCS
2 45 0.372 11.88 1.17 37.3
2 10 0.34 11.7 1.07 36.7

Table 5.2: NBSCS and NFSCS for one and two spheres with ka = 2 and n2 = 1.5.
θi = 90o (ki = kx) and Ei = Ey.
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Figure 5.3: Normalized backscattering cross section of two spheres with ka = 2, n2 =
1.5, θi = 90o and two incident linear polarizations.

5.2 Circular Young slits for perfectly conducting
spheres

We will first consider the case of perfectly conductive sphere (σ2 = ∞). The Young
slits configuration that we consider for comparison, is two circular holes in an opaque
screen. The holes have the same radius a of the spheres and are separated by the
same distance d as the distance between the two spheres centers, as illustrated in figure
5.4(b). The screen is supposed to be orthogonally illuminated by an incident plane
wave and light is diffracted to the far field. The interferences pattern in the far field is
given by formula (5.1). In this formula the first function corresponds to the diffraction
by one hole (the Airy function) and the second to the interferences between the two
holes [8]. I0 is the incident field intensity:

I(α) = 4I0

(
J1(ka sin α)

ka sin α

)2

cos2(
kd sin α

2
) (5.1)

For circular Young slits, the formula (5.1) shows that in the back direction (α = 180o),
no phase-shift between the two holes has to be considered. The scattered field measures
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Figure 5.4: (a) Geometrical description of the couple of particles. (b) Equivalent
circular Young slits

four times the amplitude of the incident field because of constructive interferences. This
value does not depend of kd. This case corresponds to the curve NBSCS (figure 5.2(a))
when kd > 45. In this case the two particles can be considered as independent coherent
sources. We are in a single scattering regime.

In order to extend this analogy to the other angles of observation α, the scattering
diagram is simulated with the T-matrix algorithm, in this case (kd = 45) and is com-
pared in figure 5.5 with the interferences pattern of circular Young slits in forward and
backward directions for the two linear incident polarizations. The scattering diagram
is defined as f(α) = limr→∞(kr)2| ~Es|2/| ~Ei|2 in the forward −90o < α < 90o and in the
backward 90o < α < 270o directions, for the two linear incident polarizations Ei = Ey

and Hi = Hy. In figure 5.5, the same period of interferences and a similar diffraction
curve are observed. Differences are observed only for large phase angles α. The inten-
sity maximum Io in formula 5.1 is 4π times the scattering cross section of one sphere,
because of the definitions of the used cross section and the scattering phase function,
and because no coupling is assumed.

For kd = 45, it is still in single scattering. The same comparison can be made in
a case where multiple scattering cannot be neglected (kd < 45). The result is pre-
sented in figure 5.6 for kd = 10. The periods of interferences and the diffraction curves
are also similar in curves (a)(b) and (d), but the intensity maximum is no more de-
pendent of the light scattering by one sphere (Io). Thus, when multiple scattering
occurs, the comparison with circular Young slits can still be used but with an intensity
maximum that depends of kd. In figure 5.6, Imax is π times the scattering cross section
of the two spheres (see figure 5.2). This π coefficient is only due to the difference of
definition between the scattering phase function and the used cross section.
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Figure 5.5: Comparison between circular Young (− −) slits and single scattering (–).
ka = 2, σ2 = ∞, θi = 90o (ki = kx), kd = 45, for the two linear incident polarizations.

As seen in figure 5.6 (c), the agreement observed between light scattering and cir-
cular Young slits interferences is not good. These cases are rarely observed and occur
only in multiple scattering regimes. They correspond to the cases when the scattering
global intensity maximum is not for α = 0.
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Figure 5.6: Comparison between circular Young slits and forward scattering. ka = 2,
kd = 10, σ2 = ∞, θi = 90o (ki = kx), for the two incident polarizations.

5.3 Circular Young slits for dielectric spheres
We have also considered the case of dielectric spheres. The geometry of the couple of
spheres and the comparison between circular Young slits is the same as represented in
figure 5.4. However in this case, the refractive index of the spheres is n2 = 1.5 and the
conductivity is σ2 = 0.

In figure 5.7(a), a good agreement is forward in the forward direction when kd = 45,
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which is a single scattering regime. Io in formula (5.1) is equal to 4πNFSCS as in
backward direction. In figure 5.7(b), a similar good agreement is observed in the for-
ward direction for kd = 10; but this case is considered as multiple scattering. As for
perfectly conductive spheres, Io depends of kd and is equal to π times the NFSCS of
the couple of spheres (table 5.2). The results for a couple of dielectric spheres in the
forward direction are similar to the ones of perfectly conductive spheres.

However, in the backward direction, the agreement is not good between light scat-
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Figure 5.7: Comparison between circular Young slits and forward scattering. ka = 2,
kd = 10 or kd = 45, n2 = 1.5, θi = 90o (ki = kx) and Ei = Ey.

tering by the couple of dielectric spheres and the equivalent circular Young slits in
multiple scattering (kd = 10) or also in single scattering (kd = 45) (see figure 5.8). In
this figure, we also observe the disagreement due to the diffraction function (the Airy
function). That is the reason why, a coefficient β has been included in the function
describing the intensity interferences of circular Young slits (see formula 5.2).

I(α) = 4I0

(
J1(kβa sin α)

kβa sin α

)2

cos2(
kd sin α

2
) (5.2)

Different β coefficient should be used to have a good agreement in single scattering
(kd = 45); β = 1.6 yielded acceptable results for this case. Then, additional compar-
isons were made with circular Young slits in multiple scattering (kd = 10) with the
same β coefficient. A good agreement is observed in figure 5.9, where Io is π times the
NBSCS of the two spheres.
For a couple of dielectric spheres, in the backward direction, the equivalent circular
Young slits must have a larger radius than the one of the spheres. However, as for
the other cases, the transition between single and multiple scattering only changes the
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Figure 5.8: Comparison between circular Young slits and backscattering. ka = 2,
kd = 45 or kd = 10, n2 = 1.5, θi = 90o (ki = kx) and Ei = Ey.

intensity maximum I0, that is the ratio of the incident flux that is scattered.
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Figure 5.9: Comparison between circular Young slits and backscattering. ka = 2,
kd = 45 or kd = 10, n2 = 1.5, θi = 90o (ki = kx) and Ei = Ey.
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5.4 Perot-Fabry and shadow effect
We have studied the couple of particles with another orientation of the wave vector ki.
In this section, ki is in the axis of the two spheres (see in figure 5.10). The incident wave
is linearly polarized. Because of the cylindrical symmetry, a change in the direction of
the polarization of the incident field only rotates the result.

zki

d

a

s2s2n2
n2

Figure 5.10: Geometrical description of the couple of spheres. The incident wave vector
is parallel to the axis of the two spheres.

Figure 5.11 represents the backscattering cross section of such a couple of particles
when these particles are perfectly conductive. We observe that when the distance be-
tween particles d is large, the curves become sinusoidal with a constant amplitude and
a period λ/2 of d. On the other hand, if the distance between particles d is small, the
amplitude of the sinusoidal curves change, thus the amplitude decreases when particles
are closer.

When kd is large, we are in single scattering. The backscattering is the interferences of
light scattered by each particle. Each particle scatters the incident light independently
of the other sphere. The phase-shift between the light scattered by each particle is
2π × 2d/λ.
The decrease of the sinusoidal amplitude in multiple scattering (kd small) can be in-
terpreted as a shadow effect. The second sphere may scatter less light because of its
position (see figure 3.2 in section 3.2).

The same simulations have been carried out with two dielectric spheres. The geometry
is the same as in figure 5.10. There is no conductivity σ2 = 0, the refractive index is
n2 = 1.5, the radius is a such as ka = 2. The backscattering cross section as a function
of the distance d between the particles is represented in figure 5.12.

For large kd the same sinusoidal curve with period λ/2 of d is observed. This is
single scattering regime and the explanation is the same as for the case of conduc-
tive spheres. In multiple scattering, when kd is small, no shadow effect are observed,
probably because light goes through the first particle and is not "stopped." Inversely
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Figure 5.11: Backscattering cross section as a function of kd. ka = 2 or ka = 6,
σ2 = ∞, θi = 0o (ki = kz).

to a shadow effect the sinusoidal amplitude increases: The couple of spheres seems to
behave as a Perot-Fabry interferometer. We would like to explain this analogy. In a
Perot-Fabry interferometer, light is reflected by two mirrors which are the limits of a
cavity. High transmissions are observed when the cavity size is equal to a fair number
of half-wavelengths. In the system of two dielectric particles aligned in the propagation
direction, each sphere is like a partial reflector. When the particles are close, a cavity
seems to be created. At the resonances of this cavity, a maximum of transmission in the
backward direction (but also in the forward direction) increases the initial interference.

What we have observed, is that when the incident wave vector is parallel to the axis
of a couple of spherical particles, single and multiple scattering must be distinguished.
In single scattering, the backscattering is the interferences of the light scattered in-
dependently by each particle. This is the same for dielectric or perfectly conductive
spheres. However in multiple scattering, the electromagnetic couplings are not the
same for dielectric or perfectly conductive spheres. For perfectly conductive spheres,
a shadow effect is observed and makes the backscattering intensity decreases, whereas
for dielectric spheres a Perot-Fabry effect is observed and makes the backscattering
intensity increase.

5.5 Summary
We have used the normalized backscattering cross section to distinguish single and
multiple scattering. The particles considered were perfectly conductive spheres and
dielectric spheres and their radii were comparable with the wavelength.
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Figure 5.12: Backscattering cross section as a function of kd. ka = 2, n2 = 1.5, θi = 0o

(ki = kz).

We have first studied the case when the incident wave vector was orthogonal to the
spheres. In this case, we have shown that when only single scattering occurs, the scat-
tering diagram in forward and backward directions of a couple of spherical particles
can be compared with the interferences pattern of two circular holes in a screen. In
this case, the radius of the holes are the same than the one of the spheres if the spheres
are perfectly conductive and the distance between the centers of the holes is the same
as the one between the centers of the spheres. For dielectric spheres the equivalent
radius can be larger. When the spheres are closer, multiple scattering occurs and the
comparison with circular Young slits can also be used but with an intensity maximum
that depends on the distance between the two holes. In these cases, multiple scattering
only changes the energy couplings. That is to say the ratio of the incident flux that is
scattered.

We have also studied the backscattering of a couple of spheres when the incident wave
vector is parallel to the axis of the spheres. In single scattering, light scattered by each
sphere of the couple of dielectric and perfectly conductive spheres interfere. The phase-
shift in backward direction depends on the distance between their centers. However
in multiple scattering, a shadow effect makes the interferences amplitude decrease for
perfectly conductive spheres, whereas for dielectric spheres a Perot-Fabry effect makes
the interferences amplitude increase.

These comparisons with circular Young slits and Perot-Fabry have been used to analyze
the coupling of light by a couple of particles in single but also in multiple scattering.
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This makes it possible to explain physically the interactions between light and such a
couple of particles, that is for example to distinguish interferences pattern, diffraction
effects and multiple scattering phenomena.

For an incident wave vector orthogonal to the couple of spheres, in multiple scattering,
when electromagnetic couplings occur between the two perfectly conductive spheres,
the physical phenomena are similar to the ones described by Ebbesen [102]. In Ebbesen
experiment, the intensity that goes through N close circular holes in a metallic film can
be larger than N times the transmitted intensity of one hole. In our case, the scattering
intensity of two close spheres can be larger than two times the intensity scattered by
one sphere. In the two cases, this non-linearity is due to electromagnetic couplings,
electromagnetic couplings between the particles in our case and electromagnetic cou-
plings between holes in the Ebbesen experiment. For the perfectly conductive spheres,
the coupled waves are the plasmons which are on the surface of each sphere.

Finally, the importance of couplings between close particles, that was suggested in
the previous chapter has been confirmed. Moreover physical interpretations of these
couplings have been proposed.
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Chapter 6

Conclusions and perspectives

The objective of this dissertation has been to study theoretically the interactions be-
tween visible light and micrometer-sized particles, that is to consider diameter that can
be compared with the wavelength. In particular the near field phenomena, that is in-
tensity distribution around dielectric particles and electromagnetic couplings between
close particles, have been pointed. In this chapter, the main contributions of this work
are summarized and possible improvements and recommendations for future research
are outlined.

6.1 The main contributions
First, basic knowledge on light scattering were summarized; the Rayleigh scattering
and the Lorenz-Mie theory were explained. These two models correspond to single
scattering by spherical particles. Their known properties have been simulated. These
scattering cases have allowed us to define the main physical properties and concepts
used later on.

The next step was to describe the T-matrix algorithm that is considered an exten-
sion of the Lorenz-Mie theory. This integral method makes the simulation of several
non-spherical particles possible. We have used this algorithm to simulate small aggre-
gates of two spherical particles. This algorithm has also allowed us to study multiple
scattering, that is, the electromagnetic couplings between close particles.

Our first main result is the rigorous demonstration of the possibility to reach the
diffraction limit and to highly concentrate energy in the near field of a dielectric spher-
ical particles. This demonstration has been carried out by applying the Lorenz-Mie
theory in the near field. The focused beam is called a photonic jet. This innovative
model has been inspired by a paper describing the FDTD simulations of Chen and
Taflove on cylindrical particles [22]. These new possibilities of focusing are valid for
large spheres (geometrical domain) and also for very small spheres when they are not in
the Rayleigh regime. If k is the wave vector and a the sphere radius, ka must be larger
than unity. The basic properties of this photonic jet has been studied and recently
published in Optics Letters [15]. The interaction of light with a single sphere, when
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the sphere has a radius size that can be compared with the wavelength, was considered
as well known. That was true in the far field (light scattering), but not in the near field.

This better understanding of light interactions with one dielectric spherical particle
in the near field can have several applications that have been described. The photonic
jet can be used to detect nano-particles with visible light, to carry out more accurate
laser processing, to improve optical data storage capacities, and so on. The second
interest of this result is to ask us questions about multiple scattering: what is the
intensity map in the near field around an aggregate of particles? What is the intensity
map inside an aggregate? What is the influence of this near field intensity on light
scattering? For example, a photonic jet inside an aggregate could cause radiation pres-
sure or non-linear effects. The T-matrix does not allow us to compute the field inside
the aggregate nor in the near field, that is the reason why the far-field effects of the
electromagnetic coupling between close particles is reported.

Our second main result was the physical description of electromagnetic couplings be-
tween two particles [14]. The comparison between light scattering intensity by two
particles with the interferences pattern of equivalent circular Young slits has allowed
us to describe light scattering intensity as interferences, diffraction and energy cou-
plings. The particle shape induces a diffraction effect. In dependent scattering, the
distance between particles induces phase-shifts and interference effects. When the par-
ticles are far enough from the others, there is single scattering. The total scattered
power is the sum of the power scattered by each particle. When particles are close
together, multiple scattering occurs. If the spherical particles are orthogonal to the
incident wave vector, similar diffraction and interference effects may occur but the in-
teractions between particles will mainly change the total power that will be scattered.
If the spherical particles are parallel to the axis of the incident wave vector, a shadow
effect occurs for perfectly conductive spheres and makes the interferences intensity de-
crease, whereas for dielectric spheres a Perot-Fabry effect makes it increase. In these
analogies, we considered only the intensity distribution in the far field. The general-
ization of this analogy for more particles and for other properties as polarization will
be carried out in future studies.

6.2 Perspectives
Other studies and several improvements after this work could be done in the future
and are described in this section.

Photonic jet
Several investigations could be carried out to understand the photonic jet:

• it would be interesting to measure with a probe by using near field microscopy
the presence of the photonic jet forward a dielectric sphere,

• the possibility to carry out a near field optical system with several micro-particles
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could be studied,

• the various applications of the photonic jet could be developed (we have already
started to study the possibility of non linear-effects enhancement),

• the influence of the dielectric sphere absorption on the photonic jet could be in-
teresting to explore,

• the electromagnetic couplings between one sphere and what is around could be
done (subtract, nano-particles, etc.). These couplings will play an important role
for possible applications (data storage for example),

• the consequence of roughness on the sphere surface may be studied.

Electromagnetic coupling
To have a better understanding of electromagnetic couplings, our work can be extended:

• the comparison between light scattering intensity and circular Young slits can
be extended to linear aggregates, random aggregates and more general particles
(dielectric with absorption),

• the comparison can be made by considering polarization properties and not only
scattering intensity,

If the extension of this analogy can be carried for complex aggregates, it would be useful
to have physical interpretations of multiple scattering phenomena. However probably
that cannot be used as a simplified model. The electromagnetic couplings are complex
and need rigorous electromagnetic algorithms. The interest of this analogy is mainly
to give a physical sense to observations and simulations.

Multiple scattering
In order to have a better understanding of multiple scattering and to be able to predict
light scattered by large complex aggregates, some improvements have to be done:

• in experimental measurements, a better knowledge of the samples may be in-
teresting (optical properties, shapes, size distribution of studied particles). For
example, image processing could be interesting to reconstruct 3-dimensional par-
ticles by using several angles of view of microscopic observations,

• the negative polarization in backscattering is still not well understood (see section
2.4),
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• computations of intensity profiles inside the aggregates could probably be used
to understand some multiple scattering effects. For example, the possibility of
local energy concentration may cause non-linear effects,

• an other interest could be in the transition between regular (periodic) aggregate
of particles to random aggregate, to study the influence of defects in photonic
crystals,

• the identification of proteins in solution by light scattering will be possible to
study in the Photonics Systems Laboratory (LSP) with Novartis. The theoretical
predictions could probably be done with the coded T-matrix algorithm [103].

We will investigate several of these developments in the future.

6.3 Modelling improvements for dense media of par-
ticles

In the previous section, discussions deal with interactions of light with particles or ag-
gregates of particles. However, for rigorous simulations of the interactions of light with
dense media of particles, new algorithms must be developed.

It would be useful to have a rigorous algorithm to simulate larger aggregates of par-
ticles. Current algorithms are not able to simulate aggregates whose parameter size
x would be larger than 100. We have started thinking such an iterative algorithm to
simulate larger aggregates. The medium can be divided into small regions where the
T-matrix could be computed. We can assume that for a given region, interactions
occur only with the regions just around. The iterative process can be used to take into
account these interactions with the near regions. We will try to go on to develop such
a method. Perhaps new field effects will be observed.

Another idea to improve the T-matrix algorithm would be to find a better basis of func-
tions for the expansion of the electromagnetic fields. The spherical vectorial functions
are adapted to the geometry of spherical particles. This choice makes the calculation
of the T-matrix for one sphere easily possible. However the translation theorem for
these functions is not so easy and is one of the causes of the size limitation. With
an other basis of functions, perhaps the T-matrix calculation of one particle will be
more complex, but the translation will be easier. In fact, for non-spherical particles
the T-matrix calculation is already difficult with SVF and must often be numerically
carried out.

However if a such rigorous algorithm was developed and was able to simulate very
large aggregates or dense media of particles, we would still need a realistic description
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of the medium, including positions, sizes and properties of all particles. Such a descrip-
tion can only be made as statistics. That is the reason why, perhaps, new statistical
solutions of Maxwell equations must be found.
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Webography:

[Web1] www.esf.org/jcw/progra2.htm and http://progra2.cnrs-orleans.fr official web
sites of PROGRA 2

[Web2] http://www.scatlab.com/index.html free code for Mie theory computing.

[Web3] www.astro.ufl.edu/ elsnews/ newsletters and mailing-list about light scatter-
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[Web4] http://www.t-matrix.de/ Electromagnetic scattering program by ThomasWriedt:
News about light scattering, links to several algorithm codes.
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and P.J.Flatau (Princeton University Observatory and California Space Institute) :The
Discrete Dipole Approximation for Scattering and Absorption of Light by Irregular Par-
ticles :

[Web6] http://www.giss.nasa.gov/ crmim/t_matrix.html T-matrix code of M.I.Mishchenko
and D.W.Mackowski (Respectively NASA and Auburn University).

[Web7] http://mathworld.wolfram.com/ to find mathematic formulae.

[Web8] http://plasma-gate.weizmann.ac.il/369j.html website where the 3-Symbol of
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Glossary
ABC: Absorbing Boundaries Conditions
BSCS: BackScattering Cross Section
CCA: Cluster-Cluster Aggregation
CPA: Cluster-Particle Aggregation
DDA: Discrete Dipole Approximation
EBCM: Extended Boundary Condition Method
FDTD: Finite Difference Time Domain
FSCS: Forward Scattering Cross Section
FEM: Finite Element Method
FWHM: Full Width Half Maximum
ISS: International Space Station
LDR: Lattice Dispersion Relation
LSP: Photonic System Laboratory
MoM: Method of Moment
NBSCS: Normalized BackScattering Cross Section
NFSCS: Normalized Forward Scattering Cross Section
PML: Perfectly Matched Layer
PPM: Point Matched Method
SVF: Spherical Vectorial Functions
SVM: Separation Variable Method
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Notations
εo = 1/(36π109) the permittivity in farad/meter

µo = 4π10−7 the magnetic permeability in henry/meter

a radius of the smallest volume than contains the scatterer. The radius if the scat-
terer is a sphere.

λ incident wavelength.

k = 2π/λo the wave vector in free space.

x = ka is the size parameter.

c celerity of light in free space.

ω temporal pulsation.

n refractive index of the particle when this particle is in free space.

σ2 conductivity of a medium.

(r, θ, ϕ) spherical coordinates, see figure 2.3(b).

α is the phase angle, that is the angle between the incident wave vector and the scat-
tered one.

Hi = Hy linear polarized incident wave whose magnetic field is along the y direc-
tion. ~k is in the (O, x, z) plan and is described by θi.

Ei = Ey linear polarized incident wave whose electric field is along the y direction.
~k is in the (O, x, z) plan and is described by θi.

θi describes the direction of the incident wave vector in the plan (O, x, z), θi = (~z, O,~k).

Csca, Cext, Cabs are respectively the scattering, extinction and absorbtion cross sections.

~ψn are the SVF (see appendix B).

<e[A] is the real part of a matrix A.

=m[A] is the imaginary part of a matrix A.

At is the transposed matrix of A but transposition without conjugation.
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σnn′ and Rnn′ are the translation matrixes for SVF (see appendix C).

A∗ is the conjugate value of the complex matrix A.

ai, as, aw are the expansion coefficient on SVF of respectively the incident field, the
scattered field and the field inside the particle.

i in mathematical formulae is the complex number such as i2 = −1, but i in expo-
nent indicates that the value is linked to the incident wave. No confusion is possible.
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Appendix A

Electromagnetism

This appendix deals with electromagnetism story, Maxwell equations and special tools
for electromagnetism studies.

A.1 The birth of electromagnetism
The main steps for understanding what is light and the birth of electromagnetism are
summarized. A lot of other dates and physicists’ names could have been added. It is
only a fast overview of a very long and complex evolution on which a great number of
scientists have worked.

XVIIth: is light particle or a wave?
1621 Refractive law and reflexion (Snell) (1637 Descartes).
1675 Light described by rays. Particle theory of light (Newton).
1690 Light described as wave (Huygens).

XVIIIth: charges and magnets
1752 Demonstration with a kite that storm light is made of "electrical fire" (Benjamin
Franklin).
1785 Electrostatic law (Cavendish and Coulomb).
Measure of the electrostatic strength with a distortion balance (figure A.1). Two
charged metallic spheres are used, one is static, the other is on a torsion fiber. The
torsion of the fiber gives the strength.
1791 Magnetostatic law: same experiment with magnet (Coulomb).
1797 Diffraction by a hole (Young and after Fresnel).
1800 First electrical battery (Volta).
Stack of copper and zinc discs separated by cloth impregnated of diluted sulfuric acid.

XIXth: Birth of electromagnetism
1820 Magnetic phenomenon due to an electrical current (Hans Christian Oersted).
Observation of a compass change of orientation a when a current goes through a wire
at proximity.
1820 Jean-Baptiste Biot and Félix Savart found the law describing the strength applied
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A.1. THE BIRTH OF ELECTROMAGNETISM

on a charge by a magnetic field.
1820 A strength appears on a conductive circuit in a magnetic field when a current
goes through this circuit. Concept of current and voltage (Ampere).
1826 The Ohm law. Concept of resistivity (Ohm).
1831 Induction (Faraday).
A magnetic field is able to produce an electric current. He demonstrated this principle
of induction in 1831. Faraday expressed the electric current induced in the wire in
terms of the number of lines of strength that are cut by this wire.
1835 Self-induction (Faraday and Henry).
An intense magnetic field can rotate the plane of polarized light in a medium.
1845 Law for current and voltage at a electrical node of a circuit (Kirchhoff).
1846 Diamagnetism (Faraday).
1850 Foucault currents.
1873 Treatise on Electricity and Magnetism of James Clerk Maxwell.

XXth: quantum optic, holography, photonic techniques.

The most important experiment is probably the one of Oersted in 1820, because it
is the first that shows the link between the electric field and the magnetic field.

Figure A.1: Distortion balance of Coulomb. The forces between charged spheres create
a proportional distortion in the fiber.
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A.2. MAXWELL EQUATIONS

A.2 Maxwell equations
In numerical computing, real numbers have to be truncated and this truncation can
create numerical error. That can cause false results when an operation is made between
two numbers which are very different, a big number and a small number for example.
This problem can occur when Maxwell equations are computed.

Maxwell equations in usual notation (International System notations):
{

curl ~H = −iωε ~E

curl ~E = iωµo
~H

(A.1)

In this case the absolute values of E and H differ in a proportion of 103. Other better
convention can be used.

Notation adapted to numeral computing. In this case the absolute values of E and
H are comparable:

{
curl ~H = −kn2 ~E ′

curl ~E ′ = k ~H
(A.2)

with {
k = iω/c
~E ′ = cεo

~E = 1/(cµo) ~E

A.3 The Green function
The Green function is used to find the solutions of the propagation equation by using
the integral methods (see section 3.3). This section explains how is found the Green
function for the scalar propagation equation.

The Green function g verifies:

∆g(r′) + k2g(r′) = −δ(r′) (A.3)

where δ(r′) is the three-dimensional Dirac function (δ = 1 if r′ = 0 else δ = 0).

We can verify that for ~r′ 6= 0 a solution is:

g~r′,k(~r) = C
exp(ik|~r′|)

|~r′| (A.4)

C is a constant. The Green function is not defined in ~r′ = 0, but to find C we can
integrate the equation A.3 over the small sphere around r′ = 0 when the radius δ of
this sphere tends to zero [18].
We have:

∫ ∫ ∫

V

−δ(r′)dV ′ = −1 (A.5)
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A.3. THE GREEN FUNCTION

∫ ∫ ∫

V

k2g(r′)dV ′ = 4πk2

∫ δ

0

r′2g(r′)dr′

= C4πk2

∫ δ

0

r′eikr′dr′ (A.6)

which vanishes when δ tends to zero because the integral result will be proportional to
δ2. And we have, by applying the Gauss theorem [18]:

∫ ∫ ∫

V

∆g(r′)dV ′ =

∫ ∫

r=δ

∂

∂r
g(r′)dS ′

= −C4π (A.7)

Therefore, in order to verify equation A.3, C must be equal to 1/(4π).

Notations
The definition of the Green function is not the same in all references:
in the Born & Wolf, g = eik|~r−~r′|

|~r−~r′|

in the Kong and in this thesis, g = eik|~r−~r′|

4π|~r−~r′|

In the paper of Peterson and Strom [20], G = eik|~r−~r′|

4πk|~r−~r′|
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Appendix B

Spherical vectorial functions

The spherical vectorial functions (SVF), written Ψn, are the solution of the vectorial
Helmholtz equation in spherical coordinates. These functions are described in section
3.2, they contain Bessel functions and Legendre polynoms. The origin of SVF and some
properties of spherical harmonic functions are presented in this appendix. Formulae
can be found in [106] or in [Web7].

B.1 Electro-Magnetic waves in Spherical coordinates
Change of coordinates:
We will first write some mathematical operators and the scalar Helmholtz equation in
the spherical coordinates.

X

Y

Z

R

q

j

Figure B.1: Change of coordinates.
∣∣∣∣∣∣

x = r cos ϕ cos θ
y = r cos ϕ sin θ
z = r sin ϕ

138



B.1. ELECTRO-MAGNETIC WAVES IN SPHERICAL COORDINATES

If these equations are differentiated and rewritten with matrix, we obtain :
∣∣∣∣∣∣

dx
dy
dz

=




cos ϕ cos θ −r cos ϕ sin θ −r sin ϕ cos θ
cos ϕ sin θ r cos ϕ cos θ −r sin ϕ sin θ

sin ϕ 0 r cos ϕ




∣∣∣∣∣∣

dr
dθ
dϕ

If this matrix is called M, we have M−1 = M t, where M t is the transposition of matrix
M.

To find the main mathematical operators in spherical coordinates, we start with their
expression in cartesian coordinates, then we apply the formula below and replace ∂r/∂x,
∂θ/∂x, ∂ϕ/∂x, etc. by the above found expressions.

∂f

∂x
=

∂f

∂r

∂r

∂x
+

∂f

∂θ

∂θ

∂x
+

∂f

∂ϕ

∂ϕ

∂x

∂f

∂y
=

∂f

∂r

∂r

∂y
+

∂f

∂θ

∂θ

∂y
+

∂f

∂ϕ

∂ϕ

∂y

∂f

∂z
=

∂f

∂r

∂r

∂z
+

∂f

∂θ

∂θ

∂z
+

∂f

∂ϕ

∂ϕ

∂z

Thus, we find these formulae :

Gradient:

~∇P =




∂P
∂r
1
r

∂P
∂θ
1

r sin θ
∂P
∂ϕ

Divergence:

~∇.~u =
1

r2

∂

∂r
(r2ur) +

1

r sin θ

∂

∂θ
(sin θ.uθ) +

1

r sin θ

∂

∂ϕ
(uϕ)

Curl:

~∇× ~u =




(
1

r sin θ
∂
∂θ

(sin θ.uϕ)− 1
r sin θ

∂
∂ϕ

(uθ)
)

(
1

r sin θ
∂

∂ϕ
(ur)− 1

r
∂
∂r

(r.uϕ)
)

(
1
r

∂
∂r

(r.uθ)− 1
r

∂
∂θ

(ur)
)

Laplacien:

∆P =
1

r2

∂

∂r
(r2∂P

∂r
) +

1

r2

(
1

sin θ

∂

∂θ
(sin θ

∂P

∂θ
) +

1

sin2 θ

∂2P

∂ϕ2

)

It is why, the Helmholtz in spherical coordinates is :

[
1

r2

∂

∂r
(r2∂E

∂r
) +

1

r2

(
1

sin θ

∂

∂θ
(sin θ

∂E

∂θ
) +

1

sin2 θ

∂2E

∂ϕ2

)]
+ k2n2E = 0 (B.1)
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B.2. BESSEL FUNCTIONS

if we search the solution with the form E(r, θ, ϕ) = R(r)T (θ)W (ϕ), by dividing the
Helmholtz equation by E and multiplying by r2, we find these three equations where
α and β are integration constants :

∂

∂r
(r2∂R(r)

∂r
) + (k2n2r2 − α)R(r) = 0 (B.2)

1

sin θ

∂

∂θ
(sin θ

∂T (θ)

∂θ
) +

(
α− β(α)

sin2 θ

)
T (θ) = 0 (B.3)

∂2W (ϕ)

∂ϕ2
+ β(α)W (ϕ) = 0 (B.4)

These three equations are solved in the following sections.

B.2 Bessel functions
equation The equation (B.2) with α = l(l + 1) is:

∂

∂r
(r2∂R(r)

∂r
) = −(k2n2r2 − l(l + 1))R(r) (B.5)

We look for the solution as R(r) = r−1/2h(r). r−1/2 is necessary because of the energy
conservation in far field (in far field the intensity decrease must be in 1/r2). Thus, we
find:

r−1/2

[
r2∂2h(r)

∂r2
+ r

∂h

∂r
+ (k2n2r2 − (l + 1/2)2)R(r)

]
(B.6)

R(r) = r−1/2
[
aoJl+1/2(knr) + a1Yl+1/2(knr)

]
(B.7)

with Jl(x) the Bessel function of the first kind and Yl(x) the Bessel function of the
second kind. Now if we define :

jl(x) =

√
π

2x
Jl+1/2(x)

yl(x) =

√
π

2x
Yl+1/2(x)

h
(1)
l (x) = jl(x) + iyl(x)

h
(2)
l (x) = jl(x)− iyl(x)

jl is the spherical Bessel function of the first kind, yl is the spherical Bessel function of
the second kind and hl is the spherical Hankel function, R(r) = jl(r).

Jl(x) '
√

2

πx
cos(x− lπ

2
− π

4
) if x À 1
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B.3. LEGENDRE FUNCTIONS

Bessel functions differentiation

1

r

∂

∂r
(rJν)(mr) = mJν−1(mr) (B.8)

what is equivalent to:

∂

∂r
Jν(mr) = mJν−1(mr)− ν

r
Jν(mr) (B.9)

It is why, if we have:

jl(kr) =

√
π

2kr
Jl+1/2(kr) (B.10)

so,

∂

∂kr
jl(kr) = jl−1(kr)− l + 1

kr
jl(kr) (B.11)

The formula is also true if we replace Jl+1/2 by the Hankel function Hl+1/2

Basics properties

eikoρ cos θ =
∞∑

n=−∞
inJn(koρ)einθ

Jl(z) → δl,0 when z → 0

Jl(x) →
√

2

πx
cos(x− π

4
− l

π

2
) when x →∞

Yl(x) →
√

2

πx
sin(x− π

4
− l

π

2
) when x →∞

hl(x) =

√
π

2x
Hl+1/2(x) =

√
π

2x
(Jl+1/2(x) + iYl+1/2(x)) → ei(x−π

2
−l π

2
)

x
when x →∞

B.3 Legendre functions
In some books (for example in the Abramovitz [106]) the formula are written for com-
plex variables z whereas we use only real variables x. Because of the analytical ex-
pansion, the complex variables can not be simply replaced by the real variable. The
correspondences are (see formulae in [106], [Web7] and analytical expansion theory in
[83]):

z − 1 7−→ (1− x)e±iπ

(z2 − 1) 7−→ (1− x2)e±iπ

(z + 1) 7−→ (x + 1)
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B.3. LEGENDRE FUNCTIONS

For example P
(m)
l (z) = (z2− 1)m/2dmPl(z)/dzm must be written P

(m)
l (x) = (−1)m(1−

x2)m/2dmPl(x)/dxm

If the third equation is written with β = m2:

∂2W (ϕ)

∂ϕ2
= −m2W (ϕ) (B.12)

we have :

Wm(ϕ) = K1e
−imϕ + K2e

imϕ (B.13)

and the second equation can be written :

1

sin θ

∂

∂θ
(sin θ

∂T (θ)

∂θ
) +

(
l(l + 1)− m2

sin2 θ

)
T (θ) = 0 (B.14)

If we use x = cos θ:

(1− x2)
∂2T (x)

∂x2
− 2x

∂T (x)

∂x
+

(
l(l + 1)− m2

1− x2

)
T (x) = 0 (B.15)

The solutions are the Legendre function T (x) = P
(m)
l (x) with l a positive integer and

−l ≤ m ≤ l.
In the following Wm(ϕ) will be describe as a cos mϕ + b sin mϕ with a and b two con-
stants, in this case 0 ≤ m ≤ l.
The general solutions of (B.1) are:

E(~r) =
∞∑

l=1

l∑
m=0

[
Am

l cos(mϕ)P
(m)
l (cos θ)hl(knr) + Bm

l sin(mϕ)P
(m)
l (cos θ)hl(knr)

]

Legendre functions differentiation

P
(m)
l (x) = (−1)m(1− x2)m/2 ∂m

∂xm
Pl(x) (B.16)

so, with (B.16) we can demonstrate that:

∂

∂x
P

(m)
l (x) = −mx(1− x2)−1P

(m)
l (x)− (1− x2)−1/2Pm+1

l (x) (B.17)

∂2

∂x2
P

(m)
l (x) = − [

m(1− x2)−1 + (2m−m2)x2(1− x2)−2
]
P

(m)
l (x)

+2mx(1− x2)−3/2Pm+1
l (x) + (1− x2)−1Pm+2

l (x) (B.18)

Basic properties of Legendre functions

P
(−m)
l (x) = (−1)m (l −m)!

(l + m)!
P

(m)
l (x) (B.19)
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B.4. ELECTROMAGNETIC FIELD IN THE RAYLEIGH CASE

Pl(x) =
1

2nn!

∂l

∂xl
(x2 − 1)l (B.20)

P
(m)
λ (1) = 1 if m = 0

= 0 else (B.21)

P
(m)
λ (−1) = (−1)λ if m = 0

= 0 else (B.22)

B.4 Electromagnetic field in the Rayleigh case
In the Rayleigh case, the scatterer is small compared to the wavelength, only the first
eigenmode of the Lorenz-Mie theory is needed: ~Es(~r) = a1

~Ψl=1,m=1(~r).

P
(1)
1 (cos θ) = − sin θ

P
(1)′
1 (cos θ) =

cos θ

sin θ

P
(1)′′
1 (cos θ) =

1

sin3/2 θ

h1(kr) = −eikr(
1

kr
+

i

(kr)2
)

h
′
1(kr) = −eikr

(
− 2

(kr)2
+ i(

1

kr
− 2

(kr)3
)

)

thus for an incident wave (Ex, Hy, kz)




~ψr11 = − cos ϕeikr( 1
(kr)2

+ i
(kr)3

)( −1
sin θ

+ 2 cos2 θ
sin θ

− sin1/2 θ)

~ψθ11 = cos ϕeikr( 1
kr

+ i
(kr)2

) + cos ϕ cos θeikr
(

−1
(kr)2

+ i( 1
kr
− 1

(kr)3
)
)

~ψϕ11 = − sin ϕeikr
(

−1
(kr)2

+ i( 1
kr
− 1

(kr)3
)
)
− sin ϕ cos θeikr( 1

kr
+ i

(kr)2
)

which becomes when r is large:



~ψr11 = 0
~ψθ11 = cos ϕ 1

kr
(1 + i cos θ)

~ψϕ11 = − sin ϕ 1
kr

(i + cos θ)
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Appendix C

Translation matrix

In the T-matrix principle, the field expanded on the basis of Spherical Vectorial Func-
tions (SVF) must be integrated over the surface particles. For one sphere, this integra-
tion can be made analytically if the spherical coordinates are centered on the sphere.
But when several spheres are considered, these SVF must be translated, that is to
be written in a spherical coordinates frame which has been translated compared with
the initial one. These translations can be described by matrix, these matrix and their
properties are described in this appendix.

C.1 Translation addition theorem
~ψn are the SVF. The translation of the spherical coordinates frame is described in figure
C.1. We write <e[A] the real part of a matrix A and At the transposed matrix of A
but transposition without conjugation. σn,n′ and Rn,n′ are the translation matrix:

~ψn(~r + ~d) =
∑

n,n′
σn,n′<e[~ψn′(~r)] if |~d| > |~r|

<e[~ψn(~r + ~d)] =
∑

n,n′
Rn,n′<e[~ψn′(~r)]

Basics properties:

r�

r
d

o

o�

Figure C.1: Translation of the coordinate frame from O’ to O. ~d + ~r = ~r′.

If ~a is a vector of translation:

R(~a) = <e[σ(~a)]
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C.2. WIGNER 3-J SYMBOL

R(−~a) = R−1(~a) = Rt(~a)

σ(−~a) = σt(~a) 6= σ−1(~a)

R(~0) = 1

R(~a +~b) = R(~a)R(~b)

σ(~a +~b) = σ(~a)σ(~b) ssi ~a >~b

R(~a)σ(~b) = σ(~b)R(~a) if ~a <~b

R(N~a) = R(~a)N

Because of the truncation of the R to have a finite matrix, this last formula is not
accurate if N is too large and must not be used for the σ matrix.

C.2 Wigner 3-J symbol
The Wigner 3-J symbol or Clebsch-Gordan symbol are functions used in the computing
of translation matrix of spherical vectorial functions [109, 110]. Their main properties
can be found in [Web7](http://functions.wolfram.com/HypergeometricFunctions/ThreeSymbol/)
and some of them can be computed in [Web8]. Their definition and properties are
present in this part.

Basics properties:

(
j1 j2 j3

0 0 0

)
6= 0 ssi j1 + j2 + j3 odd (C.1)

if m1 + m2 + m3 6= 0 thus

(
j1 j2 j3

m1 m2 m3

)
= 0 (C.2)

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3

m2 m1 m3

)
(C.3)

Iterative calculation:
Initialisation:

(
j1 j2 j1 − j2

m1 m2 −m1 −m2

)
= (−1)−j1+2j2−m1

√
(j1 + m1)!

√
(j1 −m1)!

√
(2j2)!

√
(2j1 − 2j2)!√

(2j1 + 1)!
√

(j2 + m2)!
√

(j2 −m2)!
√

(j1 − j2 + m1 + m2)!
√

(j1 − j2 −m1 −m2)!(
j1 j2 j1 − j2 + 1
m1 m2 −m1 −m2

)
= (−1)−j1+2j2−m1+12(j1m2 + j2m1 + m2)

√
(j1 + m1)!

√
(j1 −m1)!

√
(2j2 − 1)!

√
(2j1 − 2j2 + 1)!√

(2j1 + 2)!
√

(j2 + m2)!
√

(j2 −m2)!
√

(j1 − j2 + m1 + m2 + 1)!
√

(j1 − j2 −m1 −m2 + 1)!
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C.3. TRANSLATION ALONG THE Z-AXIS

Recurrence:
if

A1 =
(2j3 − 1)(j3(j3 − 1)(m1 −m2) + m3j1(j1 + 1)−m3j2(j2 + 1)

(j3 − 1)
√

j3 −m3

√
j3 + m3

√−j1 + j2 + j3

√
j1 − j2 + j3

√
j1 + j2 − j3 + 1

√
j1 + j2 + j3 + 1

A2 =
(j3 + m3 − 1)(j3 −m3 − 1)(−j1 + j2 + j3 − 1)(j1 − j2 + j3 − 1)(j1 + j2 − j3 + 2)(j1 + j2 + j3)

(j3 −m3)(j3 + m3)(−j1 + j2 + j3)(j1 − j2 + j3)(j1 + j2 − j3 + 1)(j1 + j2 + j3 + 1)

we have,
(

j1 j2 j3

m1 m2 m3

)
= A1

(
j1 j2 j3 − 1
m1 m2 m3

)
− j3

(j3 − 1)

√
A2

(
j1 j2 j3 − 2
m1 m2 m3

)

C.3 Translation along the z-axis
Change of spherical coordinates after a translation along the z-axis (see figure C.2):

X

Y

Z

d

q
r

q2

r2

j=j2

Figure C.2: Change of spherical coordinates after a translation along the z-axis.





r2 =
√

(r sin θ)2 + (r cos θ + d)2

θ2 = arctan(r sin θ/(r cos θ + d)) if d > 0
θ2 = π

2
− arctan(r cos θ + d/(r sin θ)) if d < 0

ϕ2 = ϕ

Others translations in direction (θ, ϕ) = (η, Ψ) and distance r = d:
translation η Ψ d

~ez 0 - d
~ey

π
2

π
2

d
~ex

π
2

0 d
~ex + ~ey

π
2

π
4

d
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C.4. GENERAL TRANSLATION MATRIXES

Translation matrix along the z-axis:

Rml,m′l′(d) = Θτσ,τ ′σ′
ml,m′l′(d, jλ) (C.4)

σml,m′l′(d) = Θτσ,τ ′σ′
ml,m′l′(d, hλ) (C.5)

with

Θ2o,2o
ml,m′l′(d, zλ) =

(−1)m

2
δm,m′(1− δm,0)

l+l′∑

λ=|l−l′|
(−1)1/2(l′−l+λ)

[
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

]1/2

× (2λ + 1)[l(l + 1) + l′(l′ + 1)− λ(λ + 1)]

×
(

l l′ λ
0 0 0

)(
l l′ λ
m −m 0

)
zλ(kd)

Θ2o,2o
ml,m′l′(d, zλ) = Θ1o,1o

ml,m′l′(d, zλ) = (1− δm,o)Θ
1e,1e
ml,m′l′(d, zλ) = (1− δm,o)Θ

2e,2e
ml,m′l′(d, zλ)

Θ1e,2o
ml,m′l′(d, zλ) =

(−1)m

2
δm,m′

l+l′∑

λ=|l−l′|+1

(−1)1/2(l′−l+λ)+1

[
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

]1/2

× (2λ + 1)
[
[λ2 − (l − l′)2][(l + l′ + 1)2 − λ2]

]1/2

×
(

l l′ λ− 1
0 0 0

)(
l l′ λ
m −m 0

)
zλ(kd)

Θ1e,2o
ml,m′l′(d, zλ) = Θ2e,1o

ml,m′l′(d, zλ) = −Θ2o,1e
ml,m′l′(d, zλ) = −Θ1o,2e

ml,m′l′(d, zλ)

Remarks:
-to calculate R(−d) the formulae are the same than for R(d), you must only add (−1)λ

in the sum,
-for an incident plane wave with θi = 0 only m = m′ = 1 are need, (1− δm,0) = 1.

C.4 General translation matrixes
If the translation vector ~d has the general coordinates (r, θ, ϕ) = (d, η, ψ),(d must be
positive for the σ functions) the translation matrixes are more complex [20]:

Rml,m′l′(d) = Θτσ,τ ′σ′
ml,m′l′(d, jλ) (C.6)

σml,m′l′(d) = Θτσ,τ ′σ′
ml,m′l′(d, hλ) (C.7)

with

Θ1σ,1σ
ml,m′l′(d, zλ) =

(−1)m

2
(εm.εm)1/2

[
(−1)m′

Cmlm′l′(~d, zλ) cos(m−m′)ψ

+(−1)σCml−m′l′(~d, zλ) cos(m + m′)ψ
]

(C.8)
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Θ1σ,1σ′
ml,m′l′(d, zλ) =

(−1)m

2
(εm.εm)1/2

[
(−1)m′+σ′Cmlm′l′(~d, zλ) sin(m−m′)ψ

+Cml−m′l′(~d, zλ) sin(m + m′)ψ
]

(C.9)

Θ1σ,2σ
ml,m′l′(d, zλ) = i

(−1)m

2
(εm.εm)1/2

[
(−1)m′+σ′Dmlm′l′(~d, zλ) cos(m−m′)ψ

−Dml−m′l′(~d, zλ) cos(m + m′)ψ
]

(C.10)

Θ1σ′,2σ
ml,m′l′(d, zλ) = i

(−1)m

2
(εm.εm)1/2

[
(−1)m′

Dmlm′l′(~d, zλ) sin(m−m′)ψ

+(−1)σDml−m′l′(~d, zλ) sin(m + m′)ψ
]

(C.11)

where

Cml,m′l′(~d, zλ) =
(−1)m′

2

l+l′∑

λ=|l−l′|
i(l
′−l+λ)

[
(2l + 1)(2l′ + 1)(λ−m + m′)!
l(l + 1)l′(l′ + 1)(λ + m−m′)!

]1/2

× (2λ + 1)[l(l + 1) + l′(l′ + 1)− λ(λ + 1)]

×
(

l l′ λ
0 0 0

)(
l l′ λ
m −m −m + m′

)
zλ(kd)Pm−m′

λ (cos η)

Dml,m′l′(~d, zλ) =
(−1)m′

2

l+l′∑

λ=|l−l′|+1

i(l
′−l+λ)

[
(2l + 1)(2l′ + 1)(λ−m + m′)!
l(l + 1)l′(l′ + 1)(λ + m−m′)!

]1/2

× (2λ + 1)[(λ2 − (l − l′)2)((l + l′ + 1)2 − λ2)]1/2

×
(

l l′ λ− 1
0 0 0

)(
l l′ λ
m −m −m + m′

)
zλ(kd)Pm−m′

λ (cos η)
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Appendix D

T-matrix algorithm

In this appendix, several calculations are carried out to compute the coefficients of the
incident wave expansion and the T-matrix.

D.1 Incident coefficients
The incident coefficients are the expansion coefficients of the incident plane wave on the
basis of spherical vectorial functions. Here we calculate these coefficients in the limit
case when θi = 0 and ~Ei(~r) = exp(i~k.~r)~e2 (see in figure 3.3). The i in mathematical
formulae is the complex number such as i2 = −1, but i in exponent indicates that the
value is linked to the incident wave.
The general formula is:

(a2e)
i
lm = in+1

[
4π(2l + 1)(l −m)!

l(l + 1)(l + m)!

]1/2 √εm

sin θi

×
[
(l + 1) cos θiP

(m)
l (cos θi)− (l −m + 1)P

(m)
l+1 (cos θi)

]
(D.1)

If θi = 0,

P
(m)
l (cos θi) = P

(m)
l (1) = 1 if m = 0

= 0 else (D.2)

Thus, if θi = 0 and m = 0:

(a2e)
i
10 = lim

θi→0
in+1

[
4π(2l + 1)

l(l + 1)

]1/2 √
1

sin θi

[(l + 1)− (l + 1)] = 0

and if θi = 0 and m = 1:

(a2e)
i
l1 = in+1

[
4π(2l + 1)(l − 1)!

l(l + 1)(l + 1)!

]1/2√
2 lim

θi→0

[
(l + 1)

P
(1)
l (cos θi)

sin θi

− l
P

(1)
l+1(cos θi)

sin θi

]
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—————————————-

(a1o)
i
lm = in

[
4π(2l + 1)(l −m)!

l(l + 1)(l + m)!

]1/2 √
2m

sin θi

P
(m)
l (cos θi)

if m = 0 (a1o)
i
lm = 0

if m = 1 and θi = 0:

(a1o)
i
lm = in

[
4π(2l + 1)

l2(l + 1)2

]1/2√
2 lim

θi→0

P
(1)
l (cos θi)

sin θi

—————————————-
We must now calculate limθi→0 P

(1)
l (cos θi/ sin θi

with (B.20) and (B.16) we find:

P
(1)
l (x) =

−(1− x2)1/2

2ll!

dl+1(x2 − 1)l

dxl+1
(D.3)

=
−1

2ll!
(1− x2)1/2dl+1(x2 − 1)l

dxl+1
(D.4)

but
dl+1(x2 − 1)l

dxl+1
=

dl+1 ((x− 1)(x + 1))l

dxl+1

=
l+1∑

k=0

Ck
l+1

dk(x− 1)l

dxk

dl+1−k(x + 1)l

dxl+1−k
(D.5)

therefore

lim
x→1

dl+1(x2 − 1)l

dxl+1
= lim

x→1
C l

l+1l!
d(x + 1)l

dx
(D.6)

because

lim
x→1

dk(x− 1)l

dxk
= 0 if k ≤ l − 1

= n! if k = l

= 0 if k = l + 1

so,

lim
x→1

dl+1(x2 − 1)l

dxl+1
= C l

l+1l! lim
x→1

l(x + 1)l−1

= (l + 1)!l2l−1 (D.7)

with (D.4) and (D.7) we find

lim
θi→0

P
(1)
l (cos θi)

sin θi

= lim
x→1

P
(1)
l (x)

(1− x2)1/2
=
−(l + 1)l

2
(D.8)

so,

(a2e)
i
l1 = il+1[2π(2l + 1)]1/2 (D.9)

(a1o)
i
l1 = −il[2π(2l + 1)]1/2 = −i(a2e)

i
l1 (D.10)

There is a mistake in the article of Perterson and Strom [20]: a bad minus sign.
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D.2 T-matrix for 2 spheres
The T-matrix for several spheres can be expressed in function of the T-matrix of each
sphere. For two spheres, the T-matrix is:

T1+2 = R(~a1)
{
T1 [1− σ(~a2 − ~a1)T2σ(~a1 − ~a2)T1]

−1 [1 + σ(~a2 − ~a1)T2R(~a1 − ~a2)]
}

R(−~a1)

+R(~a2)
{
T2 [1− σ(~a1 − ~a2)T1σ(~a2 − ~a1)T2]

−1 [1 + σ(~a1 − ~a2)T1R(~a2 − ~a1)]
}

R(−~a2)

~a1 is the position of the first sphere and T1 the T-matrix of this sphere expressed in
coordinates centered on the sphere. ~a2 is the position of the second sphere and T2 its
T-matrix.

For more spheres:

T1+2+..+N =
N∑

k=1

R(0, k)Tk

{
1−

N∑

i=1,i 6=k

A(k, i)σ(i, k)Tk

}−1

×
{

1 +
N∑

i=1,i6=k

A(i, k)R(i, k)

}
R−1(0, k) (D.11)

with

A(k, i) =

[
σ(k, i) +

N∑

l 6=i6=k

σ(k, l)Tlσ(l, i)

][
1−

N∑

l 6=i6=k

Tiσ(i, l)Tlσ(l, i)

]−1

Ti

where R(k, i) and σ(k, i) are the translation matrix of SVF from frame k to frame i.
In the general case, the size of the T-matrix is 2N(N + 1)/2 + N).

D.3 Study of an indeterminate case
In the computing of the general expression of translation matrix (appendix C.4), there is
an indeterminate case. This case is explained in this section and a solution is proposed.

A = P
(m−m′)
λ (cos η)

[
(λ−m + m′)!
(λ + m−m′)!

]1/2

(D.12)

if m−m′ > 0:

A = P
(|m−m′|)
λ (cos η)

[
(λ− |m−m′|)!
(λ + |m−m′|)!

]1/2

if m−m′ < 0 by applying (B.19):

A = (−1)−m+m′
P−m+m′

λ (cos η)
(λ + m−m′)!
(λ−m + m′)!

[
(λ−m + m′)!
(λ + m−m′!

]1/2

A = (−1)|m−m′|P (|m−m′|)
λ (cos η)

[
(λ− |m−m′|)!
(λ + |m−m′|!

]1/2

(D.13)
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In these two cases (λ − |m − m′|)! can be divergent when λ < |m − m′|. It can
be simplified by (λ − |m − m′|)! at the numerator of the Wigner symbol (Appendix
C.2) when the recurrence is initiated and in the recurrence formula because at the
denominator of these two formulae we find:

√
(λ−m + m′)!

√
(λ + m−m′)! =

√
(λ− |m−m′|)!

√
(λ + |m−m′|)!

D.4 Calculation of the magnetic field
In section 3, we have explained how the electric field can be computed. The calculation
of the magnetic field is developed in this appendix.

Definition :
~ψ2τ = (k−1~∇)× ~ψ1τ

so,

~∇× ~ψ2τ = k−1~∇× ~∇× ~ψ1τ

= k−1(−∆~ψ1τ + grad(div(~ψ1τ )))

= −k−1∆~ψ1τ

because div(~ψ1τ ) = 0. But ∆~ψ1τ + k2∆~ψ1τ = 0, so we have :

~∇× ~ψ2τ = k ~ψ1τ

If we have :

~E = (a2e)~ψ2e(knr) + (a1o)~ψ1o(knr) + (a1e)~ψ1e(knr) + (a2o)~ψ2o(knr)

thus,

~∇× ~E = (a2e)kn~ψ1e(knr) + (a1o)kn~ψ2o(knr) + (a1e)kn~ψ2e(knr) + (a2o)kn~ψ1o(knr)

but ~∇× ~E = ik ~H, thus

~H = −in
(
(a2e)~ψ1e(knr) + (a1o)~ψ2o(knr) + (a1e)~ψ2e(knr) + (a2o)~ψ1o(knr)

)
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Appendix E

Matlab Programs

To have a better understanding of the T-matrix algorithm, we have code our own pro-
gram by using the paper of Peterson and Ström [20]. Our program has been developed
with Matlab13 6.5 and can be used with a graphic user interface. This appendix briefly
describes our program.

E.1 Notations
All the authors do not use the same notations. In order to help the reader to compare
results, the table E.1 summarizes notations of the main references.

The scalar propagation equation has two different solutions which are not described
with the same notation in all references. The table E.2 summarizes notations of the
main references.

Born & Wolf [8] Van de Hultz [3] Peterson & Strom [20] Thesis
e−iωt e+iωt e−iωt e−iωt

k2 = (2πN/λo)
2 = −k1k2 k = ω/c k = ω/c k = ω/c

k2 = i2π/λo

k1 = i2πN2/λo

N2 = n2 + i4πσ/ω N2 = n2 − i4πσ/ω σ = ∞ n2
2 + i4πσ2/ω

Ψl(kr) =
√

πkr
2

jl(kr) =
√

π
2kr

j
(1)
n (kr) =

√
π

2kr
jl(kr) =

√
π

2kr

×Jl+1/2(kr) ×Jl+1/2(kr) ×J
(1)
n+1/2(kr) ×Jl+1/2(kr)

Table E.1: Comparison of notations between several references.
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Math Thesis Born & Wolf Peterson & Strom
sin ϕ o mΠ σ = o
cos ϕ e eΠ σ = e

Table E.2: Comparison of notations between several references.

E.2 Algorithm structure
The algorithm is adapted to optimize computing time according to the studied case.
The different possible cases are described here. For each case the possible variation of
index l and m but also the possible couplings are described.

1-Wave vector direction
The incident wave vector ~ki is considered to be in the (~ex, ~ey) plane.
• θi = 0 =⇒ m = 1
• θi 6= 0 =⇒ 0 ≤ m ≤ l
(change the size of matrix, see section 3.6)

2-Incident polarization
The output structure P_i contains the expansion coefficients of the incident wave ai

noted (e1,e2,o1,o2) (see section 3.2). For example Pi.e1 is for (ai
e1). In the general case

Pi.e1 is a matrix depending of l and m index.
For a given incident wave vector ~ki in the plane (~ex, ~ey), two possible polarization states
must be distinguished Hi = Hy and Ei = Ey. According to the polarization state, some
of the variables of P_i will be equal to zero:

if Hi = Hy o1 and e2 are not equal to zero.
if Ei = Ey o2 and e1 are not equal to zero.

Value of the variable polarisation in function of the incident field:

Hi=Hy θi = 0 polarisation=1
Hi=Hy θi 6= 0 polarisation=2
Ei=Ey θi = 0 polarisation=3
Ei=Ey θi 6= 0 polarisation=4
Circular - polarisation=5

3-Number and position of spheres
According to the number of spheres and to their positions the possible couplings be-
tween the incident modes and the scattered modes will not be the same. Above o1 → e2
means that the (ai

o1) component of the incident wave has an influence on the compo-
nent (as

e2) of the scattered wave.

• For one sphere: (the sphere is considered to be centered on the coordinate frame)
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there is not coupling:

{
o1 → o1
e2 → e2

=

{
o2 → o2
e1 → e1

(E.1)

• For several spheres on the z-axis:
there are coupling but not between the two polarized case:





o1 → o1
o1 → e2
e2 → e2
e2 → o1

=





o2 → o2
o2 → e1
e1 → e1
e1 → o2

(E.2)

• For several spheres (general case):
there are coupling between the two polarized case:





o1 → o1
→ e2
→ o2
→ e1

e2 → e2
→ o1
→ e1
→ o2

=





o2 → o2
→ e1
→ e2
→ o1

e1 → e1
→ o2
→ e2
→ o1

(E.3)

General structure
The programm is separated in three main parts (figure E.1). The first is the running
of the algorithm and the descriptions of the aggregate and of the incident wave. This
description can be made by a graphic user interface or by using the Matlab command
editor. The description can be made by giving each parameter in the interface or by
using a description file which is called by the programm. All description variables are
grouped in the structure data.

The second part of the programm computed the expansion coefficients of the inci-
dent field (structure Pi), of the scattered field (structure Ps) and of the field inside
the sphere (structure Po, only of one sphere). In order to carry out calculation, the
T-matrix (structure T) must be computed. This part takes into account the user choice
in order to optimize the computing time.

The last part carries out the Post-treatment. The field is reconstructed (incident or
scattered or total field can be studied) and several physical parameters can be com-
puted:

• the Poynting vector (in spherical or cartesian coordinates),

• the electromagnetic field (in spherical or cartesian coordinates),
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• the intensity phase function (scattering diagram) in a plane or in all directions,

• the Stokes parameters in a plane or in all directions,

• the (backscattering, extinction, scattering) cross sections.

The post-treatment choices are described in structure Post and the space description
is in the structure space. The computed field is regrouped in structure champ and
the other physical parameters in structure result.

Start

Coefficients computing

Post-treatment

Graphic User
Interface

Matlab editor
command

P_i

data

Post

(P_o)

P_s

T

Result

Champ

space

or

Description of the aggregate
and of the incident wave

Computing of incident coefficients

Computing of the T-matrix

Computing of scattered coefficients

Post-treatment
choice

Spatial zone definition

Field computing

Computing of Physical parameters

Figure E.1: General structure of the algorithm.

E.3 Input and output of the program
In order to make variables exchange between programs easier, variables have been
grouped in structures. For example, the variable lambda that contains the wavelength
is in the structure data, so to call this variable in program we must write: data.lambda

Structure data
data is a structure that contains variables concerning the description of the incident
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wave and the aggregate.
Name description format
lambda wavelength in free space, in nm number

R Radius of spheres vector
n1 real index of the environment number
n2 real index of spheres vector
N complex index of spheres vector
k 2π/λ number

ConducInf perfectly conductive sphere if 1 vector
sigma conductivity of spheres vector

Nbspheres number of spheres in the aggregate integer
d distance between spheres number

for linear regular spheres on z-axis
position radius position of each spheres vector

eta θ position of each spheres vector
psi ϕ position of each spheres vector

angledincidence incidence angle of the propagation vector number
polarisation (1 → 6) state of polarization integer

Lmin minimum order (1 in general) integer
Lmax expansion order 0 ≤ l ≤ Lmax integer

Structure for the T-matrix:
The T-matrix is described by the structure T. This structure contains 16 variables,
which are the 16 components of the matrix:

∣∣∣∣∣∣∣∣

e1
e2
o1
o2

=




T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44




∣∣∣∣∣∣∣∣

e1
e2
m1
m2

Each coefficient of this matrix can be a scalar or a matrix following the case.

Structures for expansion coefficients
The incident field, the scattered field and the field inside a sphere are expanded on the
basis of SVF. These structures contain their expansion coefficients.
structure description

P_i coefficients of the incident field
P_s coefficients of the scattered field
P_o coefficients of field inside the sphere

The variables of these 3 structures are: o1, o2, e1 and e2 (see section 3.2). Each vari-
able, for example Pi.o1 can be a vector or a matrix according to the studied case. In
the general case they depend on the l and m index.

Structure space
space is a structure that contains variables concerning the space area where the elec-
tromagnetic field will be studied.

Micrometric particles light scattering 157/163 PhD, Sylvain Lecler 2002-2005



E.3. INPUT AND OUTPUT OF THE PROGRAM

Name description
xmin describes the studied windows in pixels integer
xmax describes the studied windows in pixels integer
ymin describes the studied windows in pixels integer
ymax describes the studied windows in pixels integer
unit_x real size of one pixel in horizontal direction number
unit_y real size of one pixel in vertical direction number

X real horizontal coordinates matrix
Y real vertical coordinates matrix
phi ϕ positions of the studied points number or matrix
theta θ positions of the studied points number or matrix
RR radius of the studied points number or matrix

Ntheta number of θ angles integer
Nphi number of ϕ angles integer
alpha angle of point in a selected plane number or matrix

alphamin minimum value of the alpha angle number
alphamax maximum value of the alpha angle number
taille_i horizontal size of the coordinates matrix integer
taille_J vertical size of the coordinates matrix integer
lieu 1 where the field must computed 0 elsewhere matrix
Mx label of the horizontal axis vector
My label of the vertical axis vector
title kind of field: incident, scattered or total string

symetrie 1: the field in the symmetric plane is computed 0/1
sphere choice to plot the sphere around the aggregate 0/1

inclinaison angle used to described the studied plane number

Structure post
post is a structure that contains variables concerning the choice of what post treatment
must be done.

Name values description
composante (0/1) plot the 6 components of electromagnetic field
poynting (0/1) plot the components of the Poynting vector
stokes2d (0/1) plot the Stokes elements in a plane (x, y)
stokes1d 0→4 0/ 1: Stokes elements(α)/ 2:idem (θ, ϕ)

3: Stokes elements(x, y)/ 4:idem in N points
section_eff 0→2 0/ 1: extinction cross section/ 2: backscattering cross section
axespolar (0/1) choice to plot the axis of polarization
diagram 0→2 0/ 1:choice to plot the phase function F(α) 2: idem with F(ϕ, θ)
coord 0→3 0: no view/ 1: view in spherical coordinates/

2: view in cartesian coordinates/ 3:view of the absolute value
onde 1→3 studied field 1: scattered/ 2: incident/ 3: total
espace 1→13 kind of studied space area

choixexploitation (0/1) choice to execute the post treatment
Post.espace=space.espace can have several values:
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space description
1 half-plane containing Oz axis and defined by ϕ
2 angular variation in the half-plan containing Oz axis and defined by ϕ
3 R constant and variation as a function of (θ, ϕ)
4 N points (RN , θN , ϕN)
5 half-plane (X,Y )
6 the studied space is defined out of the programm
7 half-plane containing Oy axis and defined by the angle (Oz, u)
9 angular variation in the plane containing Ox axis and defined by angle (Oz, u)
10 half-plane containing Ox axis and defined by angle (Oz, u)
11 R = Ro and angular variation in the plane containing Oy axis

and defined by angle (Oz, u)
12 study in the backward direction
13 study in the forward direction

Structure champ
champ is a structure that contains variables concerning the electromagnetic field in
space.
Name format description
Er matrix r component of electric field
Et matrix θ component of electric field
Ep matrix ϕ component of electric field
Hr matrix r component of magnetic field
Ht matrix θ component of magnetic field
Hp matrix ϕ component of magnetic field

Structure result
result is a structure that contains variables concerning physical properties of the elec-
tromagnetic field in space.

Name description
poynting_r r component of the Poynting vector
poynting_t θ component of the Poynting vector
poynting_p ϕ component of the Poynting vector
poynting Absolute value of the Poynting vector
phase_fct Phase function

Csca Scattering cross section
S0, S1, S2, S3 The 4 Stokes elements

degreP Polarization degree
Ex, Ey, Ez Component of electric field in cartesian
Hx, Hy, Hz Component of magnetic field in cartesian
NormeE Absolute value of the electric field
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E.4 Graphic user interface
A graphic user interface has been coded to make the used of the T-matrix algorithm
easier. This interface is separated in two parts. The first part allows us to describe
the incident field (figure E.2), and the aggregate, the second makes possible to choose
what kind of post treatment we want (figure E.3).

Figure E.2: Interface to describe the incident field and the aggregate.
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Figure E.3: Interface to choose what kind of post treatment we want.

This interface is made of objects whose description follows:
Button (Push Button): to run an action
Check (Checkbox): to make an independent choice
Radio (Radio Button): to make a choice that is incompatible with others
Edit (Edit Text): area to write number or string
Pop (Popmenu): menu
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Object Value/Name Description TAG
Button simulation to run simulations
Button close to close the interface
Edit 514 wavelength (λ) lamb
Check 1 consider that λ = 1 LambdaUnit
Button 1 choice of an incident plane wave plane
Button 0 choice of another incident wave qcq
Edit name of the file describing the incident wave nom_fichier
Radio 0 circular incident polarization circ
Radio 1 linear incident polarization lin
Pop TE/TM kind of linear polarization choixlin
Edit 0 incident angle angledincidence
Edit 5 Radius in λ RRayon
Edit 1 index of environment indice1
Edit 1.52 index of spheres indice2
Edit 0 absorption of spheres absorption
Check 0 perfectly conducting sphere conducinf
Radio 1 for similar spheres on a line CasP
Edit 4 distance between spheres d
Edit 1 number of spheres Nbspheres
Radio 0 general case of aggregate casG
Edit nom_fichier name of the file describing the aggregate NomAggr

Button 6 advised order
Edit 6 order of expansion ordre
Check choice to run post treatment after coef computing choixexploitation
Button 0 open the post-treatment interface interface2
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Object Value/Name Description TAG
Radio 1 plane containing Oz planphi
Radio 0 plane containing Ox planxy ?
Radio 0 plane containing Oy planincl
Edit -60 space area to study xmin
Edit 60 idem xmax
Edit -50 idem ymin
Edit 50 idem ymax
Edit 4 dicretisation dx = λ/n dx
Edit 3 dicretisation dy = λ/n dy
Check 0 plot the symmetric plane symetrie
Check 0 plot the sphere on the map sphere
Edit 0 minimum angle aphamin
Edit 180 maximum angle alphamax
Edit 10 Angular Ntheta
Edit 10 Angular Nphi
Edit 10000 Radius of observation RRR
Check 1 Observation in far field Rinf
Check 1 if we want to represent the EM field composantes
Check 0 if we want to represent the Poynting vector poynting
Pop scat/inc/total EM Field to represent onde
Pop 1 coordinates choice coord
Radio 0 if we want to calculate a cross section section
Pop scat/back/ext choice of cross section to calculate SectionChoix
Radio 0 if we want to calculate the Stokes elements Stokes
Pop α/(θφ) format of Stokes elements StokesType
Radio 0 if we want to represent the axis of polarization axes
Radio 0 if we want to calculate the phase function diagram
Pop α/(θφ) format of phase function DiagType

Button Coef+champ+expl. run coefficients and fields computing, and plot -
Button Champ+expl. calculate the field and plot -
Button Exploitation Plot post-treatment -
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