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Chapter 1Introdu
tion
1.1 Motivation

Solid state physics involves many subjects of interest like transport phenomena, cooling
of carrier plasma, nanostructures, etc. Research of electron spin has been one of the most
popular fields in solid state physics in the past since it provides a possibility for direct
applications. Scaling down dimensions of devices to the sizes of the order of nanometers,
one might use the electron spin and its coherence as the carrier of either a classical or
a quantum information. Such devices then could be used in new spintronic or quantum
computers, opening the new possibilities in future technologies.
Solid state research is connected with various types of materials. Semiconductors are

one of the most popular groups of the solids because of their band structure. They remain in
the ground state even at nonzero thermodynamic temperatures since thermal fluctuations
are too weak to provide enough energy for any excitation. It is then possible to excite a
defined number of electrons in well defined states in a crystal. These electrons then may
stay excited for long times because of the bottleneck effect what makes them very good
candidates as the carriers of informations.
The recent progress in technology allows preparation of semiconductor devices with

well defined parameters on the size scales of nanometers. Such objects reveal many interes-
ting phenomena connected with the quantum coherence, therefore we call them quantum
objects or nanostructures. Properties of the nanostructures strongly differ from proper-
ties of macroscopic crystals even they were made from a same material. Research in the
nanoscale then opens new areas of interest.
Laser physics provides a very powerful tool for experimental investigation of the

electron spin as well as for investigation of semiconductors and their nanostructures. La-
ser spectroscopy is then very well suitable for the experimental research of the spin in
semiconductor nanodevices. Since many phenomena take effect on a time scale of several
hundreds of femtoseconds (fs), it is necessary to use ultrafast nonlinear spectroscopy besi-
des the usual linear optical spectroscopy. Four–wave mixing (FWM) is one of the methods
suitable for observation of the dynamics of spins inside the investigated crystal due to its
sensitivity to spin of excited carriers.
Semiconductor devices are also widely investigated theoretically. There exist many

models for description of various types of semiconductor structures valid under different
conditions. Theoretical works, however, are mostly developed in order to describe and
simulate selected phenomena with high precision showing the accuracy of the theoreti-
cal approach. One usually describes dynamics of electrons and holes in a crystal under
assumption of some initial conditions (initial populations of the electron states) and the

9



10 CHAPTER 1. INTRODUCTION

optical field, used for excitation and probe of the system’s dynamics, is considered to be
only some source term in equations. No attention is often paid to transmission of optical
field through the crystal boundaries, to strong exciton–photon coupling (resulting in the
polariton effect) and the role of optical fields is underestimated.
Dynamical models formulated on the basis of microscopic electron–hole Hamiltonian

are usually very precise, however derived equations of motion must be solved numerically.
Need of numerical solution might be very inconvenient for experimenters — they often need
a tool simple in use in order to evaluate polarization selection rules for FWM response
from a system under particular experimental setup. In many cases the FWM response
hasn’t a definite polarization and this polarization may evolve in time. In such cases, one
usually wants only an estimate of the polarization dynamics when building an experiment
putting emphasis on fast calculations.
The aim of the theory presented in this thesis is to provide a model usable in nonlinear

ultrafast laser spectroscopy of semiconductors and their nanostructures. Unique properties
of third–order nonlinear optical processes in systems of a given dimensionality are discussed
in order to show which type of model should be chosen for description. The work is focused
on polarization of the outgoing signal since it becomes very important in many types of
experiments. As an application of a model for bulk materials, a method for measurement
of a weak wave vector dependent electron–hole exchange interaction is proposed.

1.2 Subject of the thesis

Four–wave mixing is an experimental technique used for observation of nonlinear coherent
processes in materials. Three photons which come from laser sources excite the sample
and the fourth photon is radiated and detected, see the sketch in Fig. 1.1. Separation of
the photons from the excitation beams transmitted through the sample from the FWM
response is done by spatial filtering: if the wave vectors of the excitation beams areK1,K2
andK3, the FWM response can be detected in the directions−K1+K2+K3,K1−K2+K3
and K1+K2−K3 in transmission. In reflection, the diffraction direction are given by
the reflection of the three aforementioned directions by the plane of the sample surface.
Direction K1+K2−K3 is chosen to be the detection direction throughout this thesis. The
FWM response in other FWM directions can be calculated simply by permutation of the
indices.
The third–order optical response of semiconductors, in particular FWM response, is

under experimental and theoretical investigation for a long time. The aim of the four–
wave mixing experiments is mainly to detect various channels of the coherence decay or
coherent changes in the system. Because of a long history of research in this field, there
already exists a big number of models which describe the dynamics of semiconductors
under various experimental conditions. Models for bulk semiconductors can be divided
into two main groups: on one side, there are phenomenological models based on Optical
Bloch Equations (OBE) [1, 2], on the other side, one finds microscopic theories [3, 4, 5].
A detailed discussion of the two theoretical approaches can be found in chapter 4.
The aforementioned models including phenomenological OBE were successful in expla-

nation and modelling of the basic behaviour of the FWM response without spin. Therefore
most of theories are formulated using two bands, one valence and one conduction band.
Current research on semiconductors and their nanostructures is, however, focused on spin.
It is then interesting to examine which of the models are also able to reproduce polarization
properties of the FWM response.
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Figure 1.1: Sketch of a general four–wave mixing experiment. Excitation fields (pulsed, red arrows)
have wave vectors K1, K2 and K3, the diffracted fields are: transmitted waves (dark blue)
−K1+K2+K3, K1−K2+K3 and K1+K2−K3 and reflected waves (light blue). Transmitted ex-
citation fields are sketched by orange arrows. Wave vectors of (polariton) fields inside the sample
are denoted as k1, k2, k3 and their combinations according to the diffraction directions.

Although microscopic theories give very precise predictions and one may use them
in order to derive results with an arbitrary precision, they are not convenient for use
when preparing experiments: calculations are time–consuming and their implementation
on computer needs also a long time. One therefore looks for a simpler model which is
suitable for the task. In many cases, one applies OBE or their modified form. However, a
detailed examination of polarization selection rules of OBE was not published in literature
until now and it is not clear whether they can be used in order to predict polarization of
the FWM response of semiconductors.

The subject of this thesis is then to examine whether OBE give correct polarization
selection rules for FWM on semiconductors and their nanostructures. I show the most
striking differences between OBE and other theories and I show under which conditions
OBE are applicable. The conclusion is, that OBE may be used in order to describe FWM
response of semiconductor nanocrystals since they are similar to atomic systems (they re-
veal discrete energetical levels of spatially localized states). I examine several level schemes
suitable for description of FWM on semiconductor nanocrystals in chapter 5. For every
scheme, I show to which type of nanocrystals the model may be applied. OBE are shown
to be inappropriate for description of bulk materials or quantum wells, generally systems
with translational symmetry. I illustrate this fact using derived polarization selection rules
for bulk materials using semiconductor Bloch equations [6] and my calculations of FWM
polarization on few level schemes used in literature.

It was stressed before that one needs a model as simple as possible in order to de-
rive polarization of FWM response of an examined system. Microscopic theories are too
complex and OBE give wrong predictions. For this reason, a new model suitable for de-
scription of intrinsic bulk semiconductors and quantum wells is developed in this thesis.
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Using the model, I show that FWM polarization selection rules for a system with an arbit-
rary symmetry may be derived using only algebraic equations without need of evaluation
of system’s dynamics and the polarization selection rules may be therefore derived within
few seconds. Then I show that this model gives correct predictions of polarization and
it also well reproduces other main features of the FWM response (temporal evolution,
beating etc.). In order to show how the model may be applied, I propose a FWM experi-
ment in which wave vector–dependent exchange interaction in bulk semiconductor may be
measured. Such type of experiment was not established yet and I believe that this work
and use of the developed model may help to open new possibilities of FWM spectroscopy
because it is possible to easily include influence of symmetry–breaking effects (external
fields and forces, crystal orientation etc.).
It is also possible to use the model in an inverse direction. Selection of suitable pola-

rizations of incoming fields and of the detection may allow detection of weak interactions
with a given symmetry. The proposal of the measurement of wave vector–dependent ex-
change interaction is an example of the inversion of the model.
In this thesis, I consider semiconductors with dimensionalities 3D (bulk crystals), 2D

(quantum wells) and 0D (quantum dots, nanocrystals). Description of 1D structures (quan-
tum wires) is missing because of a complex interplay of wave vector conservation and lo-
calization of the states. Since quantum wires are not of a special attention in polarization–
resolved FWM spectroscopy, they are omitted in this work.

1.3 Organization

The thesis may be divided into two main parts, each of them subdivided to chapters. The
first part can be labelled as Overview of theory. It consists of chapters 2–4. The second
part then presents original results which were obtained within the main subject of the
thesis — this part includes chapters 5–7. The thesis is introduced by this chapter 1 and
the results are summarized in the last chapter 8.
Theoretical introduction gives an overview of many–body physics, atomic systems and

their third–order optical response, semiconductors and their response to optical excitation.
These subjects are divided to two chapters as follows. In chapter 2, I give an overview of
the theory connected with systems of identical particles. First, particle statistics from the
point of view of quantum–mechanical operators is briefly introduced. Then the density
matrix formalism, which allows description of the system using one–particle states, is
developed. Optical response of a system coupled to electromagnetic field is determined
by the so–called coherences which are described by nondiagonal terms of density matrix.
In order to describe the general features of the optical response, I derive and interpret
several interesting properties of the density matrix elements in section 2.3. Then I apply
the density matrix formalism to atomic systems and I show derivation of optical Bloch
equations. Based on the discussion of the density matrix, I show the limitations of the
applicability of the derived equations.
Chapter 3 introduces semiconductors. It begins with an overview of the terms band

structure, electron spin, hole, exciton etc. Then I define exciton spin and I show how an
effective one–exciton Hamiltonian may be derived using the method of invariants. Then
I define the terms spin precession and spin relaxation, which are of a big importance
in this work. Concerning two–particle Hamiltonian, its structure and consequences are
shown: exciton–exciton scattering, biexciton formation and polariton effect. The last part
of chapter 3 introduces semiconductor nanostructures.



1.3. ORGANIZATION 13

Chapter 4 shows main properties of the optical third–order response of semiconductors
and their nanostructures. I show how the responses of bulk and zero–dimensional structures
differ. Then I show which models may be used for description of FWM on these systems
(including polarization) and what are the advantages and disadvantages of the various
models. Discussion of models for bulk semiconductors is divided according to the two
groups of theories to a section which introduces phenomenological modified optical Bloch
equations and the second section then introduces microscopic theories. The models are
discussed from the point of view of the reproduction of dynamics and polarization of the
FWM response.
The second part of the thesis, composed of my original results, contains three chapters.

This part may be further divided into chapter 5 which concerns FWM on low–dimensional
structures and chapters 6–7 which present the model for bulk semiconductors. In chapter 5,
I show that quantum wells may be described by the model for bulk semiconductors with
some modifications and quantum dots may be described using OBE. Then I develop po-
larization selection rules of the FWM response on four basic level schemes which may be
used in order to describe quantum dots under various conditions. I show also that the
developed polarization selection rules cause fail of OBE in bulk semiconductors [1, 2, 7].
Concerning quantum wells, calculations of spin structure of excitons and biexcitons are
presented. I take into account zinc–blende and wurtzite structure of the crystal and three
different growth directions. For every type of quantum well, I show the consequences of
the biexciton spin structure and exchange interaction on spin conservation and selection
polarization rules in FWM.
Chapters 6 and 7 present the model for bulk semiconductors which is the core of this

thesis. In chapter 6, basic considerations are summarized and the model is developed step–
by–step from microscopic Hamiltonian to the level scheme, Hamiltonian and equations of
motion. The particular parts concern linear and nonlinear dipole interaction, polariton–
polariton scattering, bipolaritons, relaxation rates and equations of motion.
Discussion of the developed model is present in chapter 7. Using the level scheme,

I interpret the wave mixing from the point of view of subsequent particular events which
take place in a crystal. Then equations of motion are integrated for two special cases of
time order of incoming optical fields under assumption of no spin precession. Based on
these equations, one may determine polarization selection rules for nonperturbed semicon-
ductors. Derived polarization selection rules are compared to experimental values. Then
I discuss the main characteristics of the model and how it describes various types of expe-
riments (time–resolved, time–integrated and spectrally–resolved). The model is found to
be suitable for description of the third–order optical response of semiconductors since the
discussed experimentally known phenomena are well reproduced. After this verification of
the validity of the model, I show how it may be extended to systems with lower symmetry
and dimensionality. Then I compare theoretical calculations with experimental results ta-
ken from literature. In the last subsection of chapter 7, I discuss how the spin precession
may be measured in four–wave mixing experiments and I propose an experimental setup.
Chapter 8 presents conclusions of the thesis.
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1.4 Symbol convention

Many different mathematical symbols of various meaning are used in the work so they are
summarized in this section for clarity. In the following table, symbols are listed in the left
column and their meaning in the right column.

a, y(x) c–number and c–number function .
k Vector .
M Matrix .
~Σ Vector of matrices .
1 Identity operator or matrix .
â Scalar quantum–mechanical operator .

L̂ Vector quantum–mechanical operator .

T̂ Matrix quantum–mechanical operator .

[â, b̂] = âb̂− b̂â Commutator .

{â, b̂} = âb̂+ b̂â Anticommutator .
δxy , δ(x) Kronecker delta, delta function .
Θ(x) Heaviside step function .
σ+σ+σ−, XXY Polarizations of the excitation fields with respective wave

vectors k1, k2, k3 .

∂jq ∂j/∂qj .
K1, K2, K3 Directions (wave vectors) of excitation fields .
k1, k2, k3 Wave vectors of polaritons which are the excitation optical

fields coupled to .



Chapter 2Systems of identi
al parti
les
2.1 Introduction

This thesis is focused on semiconductors which are many–body systems. For this purpose,
general properties of such systems are revised in this chapter. A special attention is paid
to the symmetry of states of several identical particles with respect to interchange of
two particles. The reason for the introduction of basic quantum mechanic is to survey an
overview in order to simplify discussions in the following chapters.
The brief introduction of the statistics of the systems of identical particles is given

in the section 2.2. Even though excitons are mostly assumed to be bosons, they have a
fractional Fermi character [8, 9, 10] and therefore both systems of bosons and fermions
are discussed.
Since I deal with the systems of several particles in a mixed state, density matrix

formalism is used. It is briefly introduced in the section 2.3 together with the discussion of
its connection to the correlation functions expressed by operators. The third–order optical
response of semiconductors is driven by the so–called coherences between states of excitons,
i.e. by the correlations between their phases (phases of their wavefunctions). There is
no classical correspondence so the understanding of the coherences might be difficult.
Section 2.3 tries, however, to physically interpret the coherences. Some relations between
various density matrix elements are summarized in that section and several important
mechanisms of the loose of coherence and population are mentioned.
The discussion of the third–order response is divided to semiconductors and atomic

systems in this thesis since these two basic systems describe two different worlds: highly–
correlated and weakly–correlated systems. For the purpose of the following mathematics,
it is necessary to introduce atomic systems in section 2.4. Expressions for calculation of
the third–order optical response of atomic systems, known as optical Bloch equations, are
derived in section 2.5. When polarization of optical field is included to the theory, one gets
various model schemes appropriate for particular situations. They are discussed later in
chapter 5 with polarization selection rules.

2.2 Systems of identical particles

In the classical physics, one can distinguish macroscopic objects one from the other and,
for example, assign a number to each of them. Quantum theory on the contrary deals
with the quantum objects which are indistinguishable one from the other and therefore it
needs a different formalism which is developed below [11, 12]. The reason is, that quantum

15
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objects have a very small number of degrees of freedom. For example, two photons with
equal wave vectors and spins cannot be distinguished one from the other in any type of
experiment since they must couple equally to a detection system.
Let’s assume in the beginning that there is a possibility of numbering of quantum

objects which are of the same nature and their individual states are described by sets
of several quantum numbers. If we interchange two particles in the system, no change of
the state should be observable. This fact implies that observables must be symmetrical
functions of the sets of their variables (i.e. sets of quantum numbers) which describe the
system under investigation. The same holds for Hamiltonian thus the energy is invariant
under interchange of two particles. In order to give mathematical expressions, we introduce
the ket vector of a system of identical particles:

|φ〉 =
∣∣c1S1

〉 ∣∣c2S2
〉
· · ·
∣∣cNSN

〉
, (2.1)

where the c’s represent a kind of particles which are distinguished for our purposes by
the numbers in the superscript. N gives the total number of the particles and variables
Sj represent the sets of quantum numbers appropriate for the particular particles. The
basis of the states of the particles is given by the M different sets of quantum numbers
S(1), S(2), . . . , S(M). We introduce an operator of interchange of two particles:

P̂k,ℓ|ckSk
〉|cℓSℓ

〉 = |cℓSk
〉|ckSℓ

〉 , (2.2)

which is a special type of an operator of permutation. A general permutation operator
P̂α is then defined as a product of the operators P̂k,ℓ defined in (2.2). Depending on the
number of interchanges involved in the particular permutation, we distinguish the even
permutations and odd permutations as well as even and odd permutation operators.
The system of N particles, if described by the sets of quantum numbers S1, . . . , SN , is

generally in a superposition of the states given by permutations of the state (2.1):

|Ψ〉 =
∑

α

FαP̂α
∣∣c1S1

〉 ∣∣c2S2
〉
· · ·
∣∣cNSN

〉
, (2.3)

where Fα is a c-number. The most important types of states described by the above
superposition are the symmetrical and the antisymmetric state. The symmetrical state
|Ψ+〉 is the state which doesn’t change under any permutation: P̂α |Ψ+〉 = |Ψ+〉 , ∀α. Note
that the above equality doesn’t follow from the aforementioned assumption that no change
of the system is observed after permutation of particles since the phase of the wavefunction
is not observable. The antisymmetric state |Ψ−〉 is not, on the contrary, invariant under
permutation of particles: P̂α |Ψ−〉 = ± |Ψ−〉. The sign on the right hand side depends
on whether the permutation is even (+) or odd (−). The types of particles which occur
in nature can be classified in terms of the two aforementioned groups of states: particles
which occur in symmetrical states are called bosons and obey Bose statistics, particles
which can be found only in antisymmetrical states are called fermions and obey Fermi
statistics. The unique properties of fermions and bosons are discussed in the following.
Fermions are the particles determined by the half–integer spin. For example electrons,

protons and neutrons have the total spin 12 and they are thus fermions. Since we assumed
that every interchange of two fermions changes the sign of the wavefunction, we may write
the ket–vector of any state in the form of Slater determinant. Clearly an interchange of
two rows or columns changes the sign of the wavefunction. It is known from linear algebra
that if there are two equal rows or columns in a determinant, the determinant is equal to
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zero. Therefore if two particles in a system of fermions are considered to have the same
sets of quantum numbers, the wavefunction is identically zero and therefore the system
cannot exist in such state. This fact leads to the well known Pauli exclusion principle, i.e.
two fermions cannot occupy the same state. Using an antisymmetrizing operator

Â = N−
1
2

∑

α

(−1)αP̂α , (2.4)

where N is the number of particles and (−1)α is +1 for even permutations and −1 for odd
permutations, one can write the Slater determinant in the form:

|Ψ−〉 = Â
∣∣c1S1

〉 ∣∣c2S2
〉 ∣∣c3S3

〉
· · · . (2.5)

It can be shown algebraically that annihilation of the j-th particle transfers the system
into the state ∣∣Ψ′−

〉
= (−1)(j+1)Â|c1S1〉|c2S2〉 · · · |c

j−1
Sj−1

〉|cj+1Sj+1
〉 · · · . (2.6)

Let’s introduce one–particle annihilation and creation operators in the following way:

ĉSj
|0〉=0 , ĉSj

|Sj〉= |0〉 ,
ĉ+Sj

|0〉= |Sj〉 , ĉ+Sj
|Sj〉=0 ,

(2.7)

where |0〉 stands for the vacuum state with respect to particles. The last equality follows
from the above discussion of the exclusion principle. At this point, I drop the numbering
of the particles since they are unambiguously resolved by their quantum numbers . It is
possible to prove from the above statements that the following anticommutation relations
hold:

{ĉSj
, ĉSℓ

} = 0 , {ĉ+Sj
, ĉ+Sℓ

} = 0 , {ĉSj
, ĉ+Sℓ

} = δSjSℓ
. (2.8)

The anticommutator {â, b̂} = âb̂ + b̂â was used. Putting j = ℓ, Pauli exclusion principle
can be shown:

(ĉSℓ
)2 = 0 , (ĉ+Sℓ

)2 = 0 . (2.9)

The operator n̂Sj
= ĉ+Sj

ĉSj
, called the population operator, applied on an antisymmetric

state, is 0 if the state with quantum numbers given by Sj is not populated, otherwise it is
1. Using the creation operators, the state |Ψ−〉 can be written in the following way:

|Ψ−〉 = Â|cS1〉|cS3〉|cS3〉 · · · = ĉ+S1 ĉ
+
S2
ĉ+S3 · · · |0〉 . (2.10)

The Hamiltonian of the system of particles can be expressed by the creation and annihi-
lation operators. It can be derived following the standard second quantization procedure
[13] and for noninteracting fermions, one finds:

Ĥ =
M∑

j=1

ES(j) ĉ
+
S(j)

ĉ
S(j)

. (2.11)

Particles, which obey the Bose statistics, are those with an integer spin. For example,
photons and phonons are exact bosons. Besides these particles, there are also composite
bosons made up from several fermions which obey the Bose statistics at low density but
reveal more fermion–like character when their density is increased. Since we are interested
in the low–density limit throughout the thesis, such complexes will be treated as bosons and
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the fermionic nature will be described as a perturbation. Some atoms and excitons are the
examples of bosons made up of fermions and thus having the fractional Fermi character.
As mentioned above, systems of bosons occur in nature in the symmetrical states, i.e.
states which are invariant under permutation of particles. On the contrary to fermions,
there is no exclusion principle as will be shown later, i.e. any quantum–mechanical state
can be populated by an arbitrary number of particles. According to (2.4), we introduce a
symmetrizing operator:

Ŝ = N−
1
2

∑

α

P̂α . (2.12)

The symmetrical state, on the contrary to fermions, has a different normalization because
of no restriction to populations of particular states. It can be written in the form (we use
the symbol d for particles in order to discriminate bosons and fermions):

|Ψ+〉 = (nS(1) !nS(2) ! · · · )−
1
2 Ŝ
∣∣d1S1

〉 ∣∣d2S2
〉 ∣∣d3S3

〉
· · · . (2.13)

Here, the symbols nS(j) represent the numbers of particles in the quantum–mechanical
state defined by the set of quantum numbers S(j). It can be verified that 〈Ψ+|Ψ+〉 = 1
and that the state (2.13) is invariant under any permutation of particles. For two particles
in the same state, we get by the symmetrization procedure:

|Ψ+〉 =
1√
2
Ŝ
∣∣d1s
〉 ∣∣d2s

〉
=
1
2

(∣∣d1s
〉 ∣∣d2s

〉
+
∣∣d2s
〉 ∣∣d1s

〉)
= |ds〉 |ds〉 6= 0 . (2.14)

Clearly, the system can exist in such state, i.e. there is no restriction for population of states
which comes from the symmetry properties. If no boson–boson interaction is introduced,
it is clear that the energy of the system containing n bosons is the sum of energies of
contributing particles. This conclusion holds also for the linear harmonic oscillator (LHO),
one then might describe bosons as the excitations of LHO, each oscillator then belongs to
a particular set of quantum numbers. Populations of the boson levels are expressed by the
numbers of excitations of the appropriate oscillators and the multi–particle state |Ψ+〉 can
be represented by these numbers nS(j) . On the contrary to fermions, there is no need for a
special order of the one–particle kets (due to invariance under permutation) and therefore
one can write:

|Ψ+〉 = |nS(1)nS(2) · · ·nS(M)〉 = (nS(1)!nS(2) ! · · ·)−
1
2 ·

·Ŝ
{
|d1
S(1)

〉|d2
S(1)

〉 · · ·
︸ ︷︷ ︸

n
S(1)
×

|dnS(1)
+1

S(2)
〉|dnS(1)

+2

S(2)
〉 · · ·

︸ ︷︷ ︸
n

S(2)
×

· · ·
}
. (2.15)

The basis kets of the system of bosons with the basic sets of spins defined above are:

|0〉 , (2.16)

|1S(1)〉 , |1S(2)〉 , · · · ,
|2S(1)〉 , |2S(2)〉 , |1S(1)1S(2)〉 , · · · ,
...

The state in the first line is the vacuum state (with respect to particles), i.e. all LHOs are
in the ground state — no particles are present. The second line represents one–particle
states, it means that exactly one particle is present. The list continues by two–particle
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states on the third line (two particles of any quantum numbers are present) and generally
m–particle states with m going to infinity. The Hamiltonian in this basis can be generally
written in the form:

Ĥ =
∑

j

|Ψj〉Hj 〈Ψj| , (2.17)

where the summation goes over the basis (2.16) and states |Ψj〉 are eigenstates of the
Hamiltonian. According to the discussion of fermions, let’s introduce the creation and
annihilation operators for bosons. Since the bosons are treated as excitations of LHO, we
use their creation and annihilation operators:

d̂S |0〉=0 , d̂S |nS〉=
√
nS |nS−1〉 ,

d̂+S |nS〉=
√
nS+1 |nS+1〉 .

(2.18)

There is no upper limit for the number of possible excitations. Compared to fermions, the
creation and annihilation operators obey commutation relations which read:

[
d̂Sj

, d̂Sℓ

]
= 0 ,

[
d̂+Sj

, d̂+Sℓ

]
= 0 ,

[
d̂Sj

, d̂+Sℓ

]
= δj,ℓ . (2.19)

The operator n̂S = d̂+S d̂S is the population operator and its mean value gives the mean
number of particles which are in the system in the state S. Using the population operator,
it can be shown that:

|ψ〉 = (d̂+S )
nS |0〉 ⇒

〈
ψ
∣∣n̂S
∣∣ψ
〉
= nS . (2.20)

The above equality then justifies us to write the state |Ψ+〉 in a more convenient way using
the creation operators where no attention must be paid to their order:

|Ψ+〉 = |nS(1)nS(2) · · ·nS(M)〉 =
[
d̂+
S(1)

]n
S(1)
[
d̂+
S(2)

]n
S(2) · · · |0〉 . (2.21)

The Hamiltonian can be expressed more conveniently using operators than in Eq. (2.17).
Clearly this is the Hamiltonian similar to that of a linear harmonic oscillator:

Ĥ =
M∑

j=1

ES(j)
[
d̂+
S(j)

d̂
S(j)
+ 12

]
+ Ĥint , (2.22)

where the first term is the Hamiltonian of noninteracting particles and the term Ĥint

represents a boson–boson interaction Hamiltonian.

2.3 Density matrix

According to classical statistical physics, mathematical formalism which describes the
statistical properties of a system of particles was developed for the purposes of the quantum
mechanics. This formalism of density matrix is summarized in this section since it will be
widely used in the text below.
Let’s assume a system which contains a high number of particles. Although it might be

generally possible to find a wavefunction describing the state of the system, it is more useful
to describe it without the precise knowledge of all (quantum–mechanical) correlations
between the wavefunctions of particles, i.e. statistically. We therefore choose a smaller
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“representative” subsystem and use the density matrix formalism in order to describe
mean values of all correlations which may be found in such representative subsystem
(averaging is performed over all small subsystems within the system).
One may use the density matrix formalism also for systems which contain only one

particle. Although it would seem useless since one–particle subsystem should always stay in
a pure state, it is necessary to realize that the system interacts with its surrounding which
may be a heat bath. Every realization of an experiment with the one–particle system then
has a unique evolution and the density matrix formalism gives us informations about the
mean values of correlations when averaged over all possible realizations of the experiment.
Let Ĝ be an arbitrary operator and assume an orthonormal basis |j〉 , j = 0 . . . N .

The mean value of Ĝ in a definite quantum–mechanical state |ψ〉 can be then expressed as
〈Ĝ〉 = Tr Ĝ |ψ〉〈ψ|, where TrM̂ =

∑N
j=0〈j|M̂ |j〉. Now we can perform the averaging over

realizations of the wavefunction:

〈〈Ĝ〉〉 =
∑

ψ

pψTr Ĝ |ψ〉〈ψ| , (2.23)

where the probability of finding the system in the particular state |ψ〉 was denoted pψ.
The density matrix can be therefore defined as:

ˆ̺ =
∑

ψ

pψ |ψ〉〈ψ| . (2.24)

The above definition is not, however, expressed in a form of a matrix. Inserting the identity
operators 1 =

∑
j |j〉〈j|, we get:

ˆ̺=
∑

ψ

∑

j,ℓ

|j〉 〈j|ψ〉 pψ 〈ψ| ℓ〉 〈ℓ| =
∑

j,ℓ

̺jℓ |j〉〈ℓ| , (2.25)

̺jℓ=
∑

ψ

pψ 〈ψ| ℓ〉 〈j|ψ〉 = 〈j | ˆ̺| ℓ〉 . (2.26)

It follows from the definition of ̺jj =
∑

ψ pψ| 〈ψ| j〉 |2 that the diagonal elements of the
density matrix are the probabilities of finding the system in a particular state, i.e. the
mean populations of these states. The diagonal elements of the density matrix are then
called populations. They have not, however, meaning of the number of particles in the
system, this property is described by the numbers 〈j|n̂|j〉̺jj . The nondiagonal terms of
the density matrix are called coherences, their properties are discussed below. It can be
shown that the density matrix is hermitian [11]. The mean value of an operator is then,
according to (2.23), defined as:

〈〈Ĝ〉〉 = Trˆ̺Ĝ . (2.27)

From the completeness of the expansion to the states |ψ〉 in (2.23) it follows that Trˆ̺ = 1.
We know from linear algebra that for a hermitian matrix Tr̺2 ≤ (Trˆ̺)2 and therefore
Trˆ̺2 ≤ 1. If the system is in a pure state ψ, one finds:

Trˆ̺2 = Trˆ̺ˆ̺ = Tr |ψ〉 〈ψ|ψ〉 〈ψ| = Trˆ̺ = 1 , (2.28)

therefore the equality in Trˆ̺2 ≤ 1 arises only for pure states, i.e. states which can be
expressed using one wavefunction. Other states are mixed and cannot be described by one
wavefunction. The equation of motion for the density matrix in Schrödinger picture is:

i~
∂

∂t
ˆ̺ = [Ĥ, ˆ̺] , (2.29)
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where Ĥ is the Hamiltonian of the problem. Density matrix is a constant in Heisenberg
picture and operators evolve. We will use an interaction picture. The Hamiltonian is sepa-
rated into a nonperturbed part and a perturbation: Ĥ = Ĥ0 + V̂I. The choice of the way
how to separate the Hamiltonian is arbitrary with only one requirement that the evolution
operator appropriate for Ĥ0 can be found analytically. The name interaction picture comes
from the use on systems described by the Hamiltonian Ĥ0 which are under an influence
of a non–stationary perturbation due to e.g. external fields (here optical field). Operators
then evolve like in the Heisenberg picture with a nonperturbed Hamiltonian and the tem-
poral evolution of the density matrix is given in the Schrödinger picture according to a
transformed interaction Hamiltonian:

Û0 =exp
[
− i

~
Ĥ0

]
, V̂I= Û

+
0 V̂ Û0 , (2.30)

ˆ̺ = Û0 ˆ̺IÛ
+
0 , i~ ∂

∂t ÛI = V̂IÛI , (2.31)

−i~ ∂
∂t
ĜI = [V̂I, ĜI] , i~ ∂

∂t ˆ̺I = [V̂I, ˆ̺I] , (2.32)

where Ĝ is an arbitrary operator in the Schrödinger picture and transforms to the inter-
action picture according to (2.30).
It will be shown here how the density matrix elements can be expressed using operators

and ensemble averaging. First the density matrix elements are calculated as mean values
of some operators. Using the definition (2.24), we can write:

〈j | ˆ̺| ℓ〉 =
∑

ψ

pψ 〈j|ψ〉 〈ψ| ℓ〉 =
∑

ψ

pψ 〈ψ| ℓ〉 〈j|ψ〉 = 〈〈|ℓ〉〈j|〉〉 . (2.33)

The last average is averaging over the system states and an ensemble. The last equality
arises because of invariance of trace operator under cyclic permutation of its argument.
The density matrix element ̺jℓ can be therefore calculated as a mean value of an operator
ˆ̺jℓ = |ℓ〉〈j|. One can use also the creation and annihilation operators in order to calculate
density matrix elements. Let’s assume now that the system contains identical bosons
(including their quantum numbers), therefore the eigenstates are characterized by the
number of excited bosons: |j〉 = (d̂+)j |0〉. The point now is to show that for instance
ˆ̺11 6= d̂+d̂, therefore to exclude a possible guess ˆ̺jℓ = (d̂+)ℓ(d̂)j. In the following equation,
the averages are only in the quantum–mechanical sense:

〈 |1〉〈1| 〉= 〈ψ| 1〉 〈1|ψ〉 = 〈ψ|d̂+|0〉〈0|d̂|ψ〉 , (2.34)

〈d̂+d̂〉= 〈ψ|d̂+d̂|ψ〉 = 〈ψ|d̂+|0〉〈0|d̂|ψ〉 +
∞∑

j=1

|〈ψ|d̂+|j〉|2 ≥ 〈 |1〉〈1| 〉 . (2.35)

It is then clear that one must define:

ˆ̺jℓ = |ℓ〉〈j| = (d̂+)ℓ(d̂)j − (d̂+)ℓ+1(d̂)j+1 . (2.36)

Considering operators discriminated by some quantum numbers, we can write (2.36) in a
more general form (the first number in bra and ket vectors specifies number of particles,
the second number stands for other quantum numbers connected with the state):

|ℓλ〉〈jµ| = (d̂+λ )
ℓ(d̂µ)

j −
∑

ν

(d̂+λ )
ℓd̂+ν d̂ν(d̂µ)

j . (2.37)

Considering the fermion operators, the above formulas can be reasonably simplified with
the help of anticommutators (2.8).
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Figure 2.1: Level scheme which represents the states defined in (2.38). For its discussion, see the
text below (2.38).

In the following text, I show the connection between populations and coherences in
a pure state and the upper limit for the size of coherences according to populations for
mixed states. Properties of temporal evolution are outlined at the end of the section.
For an illustration, let’s now assume a system which contains two electrons resolved

in spin, each of them in either ground or excited state. The electron with the spin +12 is
assumed to couple to the σ+–polarized light and the electron with its spin −12 couples to
the σ−–polarized light. The ground state contains both electrons in their ground states
and will be denoted |0〉. The electron creation and annihilation operators will be ĉ+± 1

2

and

ĉ± 1
2

, respectively. Using (2.10), we find the complete basis of the electron states:

|0〉 = Â|0 1
2
〉|0− 1

2
〉 , |+−〉 = ĉ+− 12 ĉ

+
1
2
|0〉 , (2.38)

|−〉 = ĉ+− 12 |0〉 , |+〉 = ĉ+1
2
|0〉 , . (2.39)

This system of states can be schematically drawn using a level scheme, each level repre-
senting one of the quantum–mechanical states, see Fig. 2.1. The vertical axis in the sketch
represents energy, i.e. the ground state has the lowest (zero) energy and the two–electron
state has the highest energy.
The state of the system depicted in Fig. 2.1 can be expressed using the density matrix

formalism presented in the section 2.3. We introduce a 4× 4 density matrix ˆ̺. We assume
that the system is in its ground state at t = 0, i.e. ˆ̺(t=0) = |0〉〈0| and its temporal
evolution is influenced by a resonant and stationary external field, here we assume optical
field in the semiclassical approach. The Hamiltonian has the form (in the rotating wave
approximation) [1]:

Ĥ = ~ω0[ |+〉〈+| + |−〉〈−| + 2 |+−〉〈+−| ] +
+ [d+e−iω0t |+〉〈0| + d−e−iω0t |−〉〈0| + H.c] +

+ [d+e−iω0t |+−〉〈−| + d−e−iω0t |+−〉〈+| + H.c] . (2.40)

The first line stands for the energies of the states and the second and the third line stand
for a dipole interaction with the optical field of the strength d± (for two polarizations)
and with frequency ω0. The symbol H.c. denotes the hermitian conjugate terms. The third
line immediately follows from the second line or from the Hamiltonian when expressed by
operators. Let’s assume for instance d− = 0 and therefore the system is in a superposition:

|ψ(t > 0)〉 = f0(t) |0〉+ f+(t) |+〉 , (2.41)
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where f0(t) and f+(t) are generally complex functions which can be determined from the
Schrödinger equation. With definition ωR = d+/~, the solutions of Schrödinger equation
are:

f0(t) = cos(ωRt) , (2.42)

f+(t) = sin(ωRt)e−iω0t . (2.43)

The variable ωR is called the Rabi frequency and the oscillations of the wavefunction
between the states are the Rabi oscillations. There was no need of the density matrix
approach so far since the state remains in a pure and normalized (|f0|2 + |f+|2 = 1)
state. We get from (2.33) ̺00 = |f0|2 and ̺++ = |f+|2, i.e. the population of an ensemble
of systems undergo the Rabi oscillations which have the same phase in the respective
systems. Coherences can be also calculated by a direct application of (2.33):

̺0+= sin(ωRt) cos(ωRt)e
−iω0t = ̺∗+0 . (2.44)

The above results can be verified using the density matrix formalism with the Schrödinger
equation (2.29). The nondiagonal elements of the density matrix are thus correlations
between the quantum–mechanical states. Since the density matrix formalism performs
averaging over all possible realizations of an experiment, the correct interpretation of the
density matrix elements should be that the diagonal elements are the mean populations
of the appropriate states and the nondiagonal elements are the mean correlations where
the word mean is used in the sense of the averaging over possible realizations.
According to the above example, let’s calculate what are the values of the coherences

if a system is in a pure state. Such state can be expressed using the basis functions:

|ψ〉 =
∑

fj |j〉 , (2.45)

where fj are arbitrary coefficients. Formula (2.33) shows that

̺jℓ = 〈〈|ℓ〉〈j|〉〉 = fjf∗ℓ . (2.46)

We can prove that coherences defined by the above formula imply the pure state. By the
definition, diagonal elements of the density matrix obey the sum rule:

Trˆ̺ = 1 =
∑

j

̺jj =
∑

j

S2j , (2.47)

where we defined numbers Sj =
√
̺jj = |fj|. We can therefore write:

1 =
(∑

j

S2jj

)2
=
∑

j,ℓ

S2jS
2
ℓ . (2.48)

Pure states must fulfil the equality Trˆ̺2 = 1. If we set ̺jℓ = SjSℓujℓ where ujℓ is a complex
unity, we get:

Trˆ̺2 =
∑

j,ℓ

̺jℓ̺
∗
ℓj =

∑

j,ℓ

|Sj |2|Sℓ|2 = 1 , q.e.d. (2.49)

We used the equality (2.48) and Sj = |Sj | in the proof because populations are real and
positive. In a mixed state, coherences cannot exceed the calculated values for a pure state.
This statement doesn’t directly follow from (2.49) but it is easy to prove it: assume now
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particular realizations of an experiment. The system is then described by its wavefunction
(i.e. it is in a pure state). Coherences are then expressed as calculated above: ̺jℓ = SjSℓu

(1)
jℓ

with an appropriate phase described by the function u(1)jℓ , |u
(1)
jℓ | = 1. In a second realization,

the coherence would be ̺jℓ = SjSℓu
(2)
jℓ , i.e. it has the same size but differs in the phase.

The average over all realization then gives:

| 〈̺jℓ〉 | =
SjSℓ
N

∣∣∣∣∣

N∑

m=1

u
(m)
jℓ

∣∣∣∣∣ ≤ SjSℓ =
√
̺jj̺ℓℓ =

√
〈̺jj〉 〈̺ℓℓ〉 . (2.50)

Up to now, a fixed populations in every single realization of the experiment were assumed
and the question is, whether the inequality (2.50) remains valid also if the populations
vary in particular realizations. We can write:

| 〈̺jℓ〉 |2=
1
N

∣∣∣∣∣

N∑

m=1

S
(m)
j S

(m)
ℓ u

(m)
jℓ

∣∣∣∣∣

2

≤ 1
N2

(
N∑

m=1

S
(m)
j S

(m)
ℓ

)2
≤

≤ 1
N2

[
N∑

m=1

(
S
(m)
j

)2
][

N∑

m=1

(
S
(m)
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= 〈̺jj〉 〈̺ℓℓ〉 . (2.51)

The inequality (2.50) is then general. It follows directly that if the system is e.g. in the
pure state |+〉, the population ̺++ = 1 and all other populations are zero. All coherences
are then clearly zero, as shown in (2.50) and thus the state of the system is described by
one real number ̺++. This real number does not, however, contain any information about
the phase of the system and the system’s wavefunction is not described unambiguously.
This fact is quite natural since the phase is a variable which is not defined absolutely
but relatively. Coherences then correlate phases of the states which are superposed in the
wavefunction. Correlations with respect to the system’s neighbourhood are missing until
we include the surrounding to the system.
For the purpose of discussion of interaction of systems with optical fields, the coherences

can be classified to several basic types depending on the nature of states, whose correlations
are expressed by the particular coherences. The nature of the states may be discriminated
by the number of particles which occupy the level and the coherences are then classified
by the difference of these occupation numbers of the correlated states. States |0〉 and |±〉
in our system differ by one absorbed photon, therefore the coherences ̺0± and ̺±0 will be
called one–photon coherences in the following text. The reference to photons is due to the
fact that the correlations described by these coherences obey correlations between photons
if the particles are created by photon absorption. Clearly the coherences ̺±,+− and ̺+−,±
are also one–photon coherences. These one–photon coherences represent the macroscopic
polarization of the system. Mean value 〈P̂ 〉 =

〈
ĉ+
〉
is then the source term in the Maxwell

equations. The coherences ̺0,+− and ̺+−,0 are two–photon coherences since they reflect
coherence properties of two–photon states. Coherences ̺+,− and ̺−,+ are of a big interest
and they are called spin coherences, generally coherences between states with the same
number of particles will be called zero–photon coherences. These coherences reflect the
correlations between two spin states, i.e. what is the correlation between the temporal
evolution of one spin with respect to the second one. I discuss the spin coherences in more
detail here.
The first thing to be mentioned is, that spin coherences do not describe evolution of the

system where both spins are excited and what are the respective correlations of the two
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spins. When the system is in a two–particle state, the wavefunction as a whole has some
quantum–mechanical phase which is not related to the spin coherence. Spin coherence is a
coherence which correlates a one–particle state with respect to another one–particle state,
i.e. what is the correlation between the states |+〉 and |−〉 superposed in the system’s
wavefunction.
Assume a repeated experiment: we excite an atom by polarized light and then test

the correlation between the states |+〉 and |−〉 e.g. by measurement of the polarization of
the re–emitted light. The wavefunction (without interaction with a heat bath) in an m–th
realization of the experiment is then:

|ψ(m)(t)〉 = f (m)0 (t) |0〉+ f (m)+ (t) |+〉+ f (m)− (t) |−〉+ f (m)+− (t) |+−〉 . (2.52)

The spin coherence ̺+− will be then proportional to the correlation between f+(t) and
f−(t), i.e. to the number

〈
f∗+(t)f−(t)

〉
. Since we assumed no interaction which could destroy

the phase of the wavefunction, the state of the system is always described by the above
formula with f (m)j (t) = fj(t) where the functions were the same in all realizations. Now
assume there exists for example a random scattering mechanism which is not spin sensitive
and does not cause any population changes in the system. The wavefunction then changes
and we get:

f0(t)
(m) = f0(t)e

iφ
(m)
0 (t) , (2.53)

f+(t)(m) = f+(t)e
iφ
(m)
± (t) , (2.54)

f−(t)(m) = f−(t)eiφ
(m)
± (t) , (2.55)

f+−(t)
(m) = f+−(t)e

iφ
(m)
+− (t) . (2.56)

The functions f (m)+ (t) and f (m)− (t) have thus the same phases which cancel in the correlation
function

〈
f∗+(t)f−(t)

〉
and thus the spin coherence prevails although all other coherences

decrease in time. Let’s now include a new scattering mechanism which is spin–sensitive
and doesn’t change populations. The random phases of the functions f (m)+ (t) and f

(m)
− (t)

now differ and thus the coherence decreases in time.
The conclusion of the above discussion is, that the spin coherences prevail for a much

longer time than the photon coherences. They can be nonzero as long as the populations
of the spins are nonzero due to inequality (2.50). The difference from the value

√
̺++̺−−

is caused by a spin–sensitive loss of phase, i.e. if an interaction, which is specific for the
particular polarizations, is present. The populations in the density matrix are the special
cases of spin coherences and the above calculations give the correct result for their temporal
evolution since it is always ̺±± = |f±(t)|2.
With the use of (2.50), we can prove one more statement which is important in con-

nection to the optical transitions and correlations between the optical field and the system.
Assume that the interaction between the system and the heat bath causes relaxation of
population, i.e. transitions from a one–particle state to the ground state. Interaction with
a thermalized bath gives the exponential decay of population:

̺++(t) = ̺++(t0)e
−(t−t0)/T1 , (2.57)

̺00(t) = 1− ̺++(t0)e
−(t−t0)/T1 . (2.58)

We then directly apply (2.50) and we get the upper limit of the coherence between the
ground and the excited state:

|̺0+(t)| ≤
√(
1− ̺++(t0)e−(t−t0)/T1

)
̺++(t0)e−(t−t0)/T1 ≈

√
̺++(t0)e−(t−t0)/2T1 . (2.59)
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The last step was an assumption of a weak excitation and thus ̺++(t0) ≪ 1. The lower
limit of the coherence decay is clearly given by the time constant T2 = 2T1.
The decrease of coherences and populations was ad–hoc described by a monoexponen-

tial decay. One usually assumes that the system interacts with a large thermalized heat
bath and thus the dynamics can be in most cases described as monoexponential. The
decay of the coherences is then called dephasing and the decay of populations relaxation.
I use the time constant dephasing time T2 and dephasing rate Γ2 = T

−1
2 for the dephasing

processes and relaxation time T1 and relaxation rate Γ1 = T
−1
1 for the relaxation processes.

2.4 Atomic systems

Atomic systems are those systems composed of a large number of single atoms. More ge-
nerally, we can include also systems of molecules or very small crystals under the name
“atomic systems”. The requirement is, that the particles under consideration do not in-
fluence one the other and they are randomly distributed in space. We require in addition
the Fermi statistics of optical excitations. Since the collective excitations of atoms in mo-
lecules (rotational and vibration modes in molecules, phonons in crystals) obey the Bose
statistics, we take into account only excitations of the system of electrons which are ener-
getically well separated from the vibrational and rotational spectra. The boson excitations
are then treated as the heat bath. Every particle therefore represents a system with dis-
crete energetical levels which is uncorrelated (in space, phase etc.) with respect to other
particles.
I consider a general atomic system in this chapter. In derivation of optical Bloch

equations, one usually considers a single two–level system (i.e. a hydrogen atom), however
I implicitly consider spin here. It is not explicitly included in OBE (section 2.5) but based
on this chapter, polarization selection rules for FWM on atomic systems are derived later
in chapter 4.
Interaction of light and matter is treated semiclassically throughout the thesis, i.e.

matter is described quantum–mechanically and the optical field (and other external fields)
classically. For the optical field, a Slowly Varying Envelope Approximation [14] (SVEA)
will be used. It means that the variations of the optical field (its intensity and frequency)
in time are assumed to be slow with respect to the oscillations of the vectors of electric
and magnetic fields. The vector of the intensity of electric field is then defined using the
slowly varying envelope E(t), central frequency ω0 and polarization vector e as follows:

E(t) =
e

2

[
E(t)e−iω0t + E∗(t)eiω0t

]
= E(−)(t) +E(+)(t) . (2.60)

The last equality defines the negative and the positive energy complex parts, respectively.
Interaction of the optical field with hydrogen atoms is in the dipole approximation defined
by the Hamiltonian:

Ĥint = −er̂ · E(t) = −d̂ · eE(t) , (2.61)

where d̂ is the dipole moment operator. The Hamiltonian in braket notation reads:

Ĥint = −E(t)e ·
[
d+e∗+ (|0〉〈+| + |+〉〈0|) + d−e∗− (|0〉〈−| + |−〉〈0|)

]
, (2.62)

where I defined d+ = 〈0|d̂|+〉 and d− = 〈0|d̂|−〉 and e± are the polarization vectors for
the two respective circular polarizations σ± of the optical field. Frequency of the optical
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field can, however, vary from the point of view of the particular atoms due to the Doppler
effect. The absorption line of the atomic system is thus inhomogeneously broadened.
Before we start development of the theory, let’s first identify which processes are re-

sponsible for the wave mixing, i.e. creation of the third–order response in a direction which
differs from the directions of the incoming fields. We search processes in which interaction
of an atom with one photon influences the interaction with the second and the third
photon.
The first process to be mentioned is Pauli blocking. The explanation of the wave mixing

principle is very simple: assume two optical fields which create an interference pattern in
space1. The standing waves of the electromagnetic field then interact with atoms and create
the population grating. The last photon then feels modulation of refractive index due to
saturation effect (caused by Pauli blocking) and thus it diffracts. Diffraction direction is
then given by the wave vectors of the incoming photons. If the first two photons have wave
vectors K1,K3 or K2,K3, the diffraction direction is K1+K2−K3 [17].
There exists one more process which forms a diffraction grating, similarly to Pauli

blocking. This is the optical Stark effect. The interference pattern created by the first
two (strong) optical fields changes periodically the resonance energy of the particular
atoms. The last, spectrally narrow, field then feels again a modification of the absorption
coefficient. This effect is, however, too weak in comparison to Pauli blocking in atoms.
Inhomogeneous broadening in addition causes vanishing of this effect in gases. But it was
predicted and measured in semiconductors [18].
There is one more possibility how the optical fields influence one the other. An absorbed

photon gives some momentum to the atom. The only effect is, that the absorption spectrum
of the atom changes a little. The variations of the resonance energy with the propagation
direction of the atom (within the range of the changes caused by photon absorption)
are, however, very small and thus this phenomenon is hidden within the spontaneous
fluctuations of the gas.
We can conclude that Pauli blocking is the only one interaction which can effectively

mix the optical fields in the atomic systems. I will therefore omit all other phenomena in
the following.

2.5 Optical Bloch Equations

In an optical experiment, optical field is used for both excitation and detection of the
changes which occur inside the material. It means that the optical field is a source term in
our description and we are interested in the intensity of the optical field which comes from
the medium. This point is important in order to realize which quantity is of our interest
in the following calculation. We start the mathematical description by the wave equation
for the optical field (in SI units):

[
∇2 − n2

c2
∂2

∂t2

]
E(t) = −µ ∂

2

∂t2
P (t) , (2.63)

where ∇2 is the Laplace operator, n the background refractive index, c the vacuum light
velocity and µ is the medium magnetic permeability. E(t) is the magnitude of the intensity

1The concept of the diffraction grating works in the systems where the positions of the atoms are fixed.
In gases, Pauli blocking works as well but the separation of the third–order response is not done by spatial
filtering but by temporal filtering instead. The technique of photon echo [15, 16] is used on gases.
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of electric field (compared to (2.60), the polarization vector is omitted) and P (t) is the
magnitude of the material’s polarization. We are then interested in calculation of the
macroscopic polarization of the matter. Macroscopic polarization is determined by the
mean value of the operator ĉ+ + ĉ, i.e. P = Nat〈〈ĉ+ + ĉ〉〉 = NatTr(ĉ+ + ĉ)ˆ̺, where Nat
stands for the density of atoms and ˆ̺ is a one–atom density matrix.
Let’s assume in this section that light is polarized having for instance the σ+ pola-

rization (which is the eigenstate of the polarization vector in the sample). We therefore
could omit the polarization vector in the wave equation and also we can assume interaction
with only one of the two–level systems within the model of atoms. The calculations below
therefore lead to the well known model of Optical Bloch Equations (OBE). Calculations
which include both spins are in chapter 5.
Hamiltonian of the problem can be extracted from (2.40) assuming now that the energy

of photons does not generally coincide with the energy of the excited electrons:

Ĥ = Ĥ0 + V̂ =
(
0 0
0 EX

)
+ dE(t)

(
0 1
1 0

)
. (2.64)

Symbol EX stands for the energy difference between the ground and the excited state
of the system. Because of the structure of the Hamiltonian, it is convenient to use the
interaction picture. We perform the transformation:

Û0(t− t0) =

(
1 0
0 e−iωXt

)
, (2.65)

V̂I(t− t0) = Û
+
0 (t− t0)V̂ (t)Û0(t− t0) = dE(t)

(
0 e−iωX(t−t0)

eiωX(t−t0) 0

)
, (2.66)

where we defined ωX = EX/~. Using the definition (2.60), we see that the nondiagonal
terms in the matrix V̂I contain two oscillating parts: one oscillates slowly and one rapidly.
We expect the main contribution from the slowly oscillating part and therefore the other
one is neglected. This approximation is called Rotating Wave Approximation (RWA). After
setting t0 = 0, we get the result:

V̂I =
d

2

(
0 E∗(t)e−iδωt

E(t)eiδωt 0

)
, (2.67)

where the definition of the detuning δω = ωX−ω0 was used. Density matrix is obviously a
square 2× 2 matrix. At this stage, we can directly use the equation of motion for density
matrix in the interaction picture (2.32) and we get:

i~
∂

∂t
ˆ̺I =

d

2

(
E∗(t)e−iδωt̺21 − E(t)eiδωt̺12 E∗(t)e−iδωt(̺22 − ̺11)

E(t)eiδωt(̺11 − ̺22) E(t)eiδωt̺12 − E∗(t)e−iδωt̺21

)
. (2.68)

Now we use some identities, namely ̺12 = ̺∗21 and ̺11 + ̺22 = 1. We define a microscopic
polarization p̃ = ˜̺21 and inversion ñ = 1

2 (˜̺22 − ˜̺11 + 1) where we used the tilde in order
to denote variables in interaction picture. The quantities in the Schrödinger picture are:
p = p̃e−iωXt and n = ñ. Using the new quantities, the equations of motion can be written
as follows:

[
∂

∂t
+ Γ1

]
n(t) =

d

~
Im
[
E∗(t)e−iδωtp(t)

]
, (2.69)

[
∂

∂t
+ Γ2

]
p(t) = i

d

2~
E(t)eiδωt[2n(t)− 1] . (2.70)
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The quantities Γ1 and Γ2 represent the population relaxation and dephasing rates, re-
spectively, as discussed in the section 2.3. The equations above are known as Optical Bloch
Equations. There exist many equivalent forms of the equations, see e.g. [13, 16, 19, 20, 21].
Assuming Γ1 = Γ2 = δω = 0 and E(t) = E0, we find the solutions in a form of periodic
oscillations with the Rabi frequency

ωR =
E0d
~
. (2.71)

The whole problem is now described by a system of equations (2.63), (2.69)–(2.70). The
whole closed system of equations is called Maxwell–Bloch Equations. The structure of the
equations is, however, inconvenient for analytic solutions because of the spatial derivatives
(one then cannot solve the equations locally) and because of the nonlinearity of the OBE.
The system of equations is usually simplified in two stages. First, we take the optical field
as a source term and therefore we assume that it obeys the homogeneous wave equation
(2.63) with right hand side equal to zero. The OBE are then solved and we calculate the
system polarization which then plays a role of the source term for the induced field. The
second approximation is, that the functions E(t), p(t) and n(t) are expanded into series
[21]:

E(t) =E(0)(t) + E(1)(t) + E(3)(t) + · · · , (2.72)

p(t) = p(1)(t) + p(3)(t) + · · · , (2.73)

n(t) =n(2)(t) + n(4)(t) + · · · (2.74)

The term E(0)(t) is the source term of the optical field. Solution of equations is simplified
since the function p(3)(t) can be found by direct integration. The wave equation is then
linear and therefore solvable analytically. The appropriate equations are:

p(1) =−i d
2~
e−Γ2t

∫ t

−∞
eΓ2t

′E(0)(t′)eiδωt′ dt′ , (2.75)

n(2) =
d

~
e−Γ1t

∫ t

−∞
eΓ1t

′
Im
[
(E(0)(t′))∗e−iδωt′p(1)(t′)

]
dt′ , (2.76)

p(3) = i
d

2~
e−Γ2t

∫ t

−∞
eΓ2t

′E(0)(t′)eiδωt′ [2n(2)(t′)− 1] dt′ . (2.77)

The perturbative approach can be used only under consideration of weak excitation field
in order to allow the separation of the wave equation and the Bloch equations and to
ensure that the series in expansion (2.72)–(2.74) converge. This requirement allows us to
calculate the response up to any desired order, in the case of FWM to the third order.
In four–wave mixing experiments, one usually uses ultrashort pulses with duration of

picoseconds. If we focus only on the perturbative solution of the Bloch equations and not
on the solution of the whole set of equations, we can approximate the excitation pulses
by delta functions. The pulses arrive on the sample in a certain order, let’s assume for
instance t1 < t3 < t2 (this order is chosen in order to get the response in the correct FWM
direction). The above integrals can be then solved analytically with substitution of the
field E(0) by the respective fields E1, E3 and E2 from the top to the bottom equation. The
diffraction direction is then obviously K1+K2−K3 and −K1+K2+K3 and we learn that
the temporal order determines the diffraction direction.
The dynamics of the third–order polarization and therefore the dynamics of the field

radiated by the two–level system is, according to (2.77), monoexponential after arrival
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of the last pulse. This is quite natural since the population grating created by the first
two optical pulses represents a diffraction grating for the last pulse. The response of the
system is then expected to be instantaneous and to relax monoexponentially according to
dephasing time of the created coherence.
In order to show all main features of the third–order response of atomic systems, one

should discuss also inhomogeneously broadened systems. More details can be found i.e. in
[15, 16, 21]. In such systems, the variable δω is not a constant for all particles but it varies
due to variations of the energy of the excited state in the particular two–level system (these
variations can be caused e.g. by size distribution within an ensemble of nanocrystals) or
due to variations of energy of the excitation field (caused by Doppler effect in gases). The
third–order optical response is then given by a sum over all particles what is effectively
an integral over the distribution of δω. As a result, third–order fields radiated by particles
add to the sum with various phases and the overall field diminishes very rapidly in time.
This decrease may be much faster than the damping described by dephasing constants.
Using a strong third pulse, phases of the two–level systems may be inverted and after some
time delay, the contributions to the overall polarization may add constructively. A strong
pulse is therefore observed in the third–order response and this pulse is called photon echo.
The temporal delay between the third pulse and the peak of photon echo is equal to the
temporal delay between the second and the last pulse. Calculations of such phenomenon
are beyond the scope of this work so they are not present here. It is only to be noted
that the perturbative equations (2.75–2.77) cannot be used and it is necessary to use a
nonperturbative approach.
Clearly OBE may be used only in the weak excitation regime, i.e. n(2) ≪ 1. In addition,

OBE cannot be used in the strong interaction regime with optical fields. The reason is, that
the strong interaction cannot be evaluated perturbatively according to the separation into
Maxwell and Bloch equations. One then needs the full system of Maxwell–Bloch equations.
The last note concerns atom–atom correlations. These correlations are overestimated

in OBE since the description using single two–level systems a priori conserve them. De-
phasing of these correlations then must be phenomenologically included to equations e.g.
by modification of dephasing rate Γ2.



Chapter 3Semi
ondu
tors
3.1 Introduction

The main point of this thesis is the description of the third–order optical response of
semiconductors. After an illustrative discussion of atomic systems in section 2.4, semi-
conductors are introduced. This chapter gives a brief overview of the main properties
of semiconductors and their nanostructures with a special attention paid to the symme-
try of the crystal lattice and optical excitations since they predominantly determine the
polarization of the third–order nonlinear optical response.
The chapter begins in section 3.2 by an introduction of band structure, electrons and

holes and their bound states–excitons. In section 3.3, symmetry of excitons and their
spin are introduced. Coherent precession of the spin and its relaxation are discussed.
Excitons are not independent particles because of their mutual Coulomb interactions and
the consequences are discussed in section 3.4. Exciton–photon coupling is reviewed at the
end of that section. The last section 3.5 then introduces semiconductor nanostructures
and shows how the aforementioned phenomena are described in such systems.

3.2 Band structure and excitons

3.2.1 Electron bands

Semiconductors are solid materials in which the atoms are arranged in a periodic lattice.
The distances between atoms are comparable to atomic radii and therefore electrons are
shared by all atoms within the whole volume of a crystal. The lattice made of positive
charges is then felt by electrons as an effective periodic potential V0. Since the potential is
a superposition of the potential of an attractive Coulomb interaction between an electron
and nuclei and a repulsive interaction between the electron and other electrons, its concrete
profile is generally unknown; however, it is possible to consider some of its basic properties
in order to express the electron wavefunction, the constants which are involved in this
wavefunction are then measured in an experiment.
We will need only an information about the spatial symmetry of the potential, i.e. the

spatial symmetry of the crystal lattice since it determines the symmetry of the whole sys-
tem. We take into account both spatial symmetries: translational and rotational. Strictly
speaking, one should take into account the translational–rotational symmetry since elec-
trons may propagate through the crystal lattice. There is not, however, any theory which
describes the electron states on the basis of this symmetry and one thus has to approxi-
mate calculations by assuming the translational symmetry and subsequent perturbative
inclusion of the rotational symmetry.

31
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The translational symmetry of the lattice leads to a periodical electron wavefunction
in the form of Bloch states |λk〉 [13]: 〈r|λk〉 = eik·ruλ(k, r)/

√
Ω, where λ denotes electron

quantum numbers except wave vector k, Ω is a normalization volume and uλ(k, r) is Bloch
function. Due to existence of crystal boundaries, one must define boundary conditions.
One usually considers periodical boundary conditions in order to conserve translational
symmetry. Crystal surface is accounted for as a perturbation which leads to formation of
surface states. Surface becomes important in nanostructures in which it cannot be taken
into account only perturbatively (see section 3.5). Inserting of the expression for Bloch
state into Schrödinger equation, one gets the basic equation for Kane’s k–p theory [13].
Fermi level lies in the energy gap (band gap) in semiconductors and therefore the

system of electrons stay in the ground state even at high temperatures. The bands above
the Fermi level are called conduction bands and the levels below the Fermi level are called
valence bands. At temperatures up to few hundreds Kelvins and considering interactions
with visible optical fields, one may take into account only the lowest lying conduction band
and few topmost valence bands. Interaction with optical field (if allowed by polarization
selection rules) then causes excitation of an electron from a valence band to the conduction
band creating a conduction electron and a valence hole (this is a state in the valence band
which is not populated by electrons).
Dispersions of electrons in bands may be calculated using numerous methods which

differ in the rate of approximations and precision of results. Usage of these methods for
analytical expression of electron energies within a small region of wave vectors is, however,
inconvenient and therefore approximations are often used. Neglecting possible k–linear
terms, one often uses the effective mass approximation— using the advanced theories, one
calculates positions and energies of band extrema and effective masses in order to express
the dispersion with the highest possible accuracy using proportionality E(k) ∝ |k|2m−1λ,eff ,
where mλ,eff is the effective mass. The band extrema often arise at high–symmetry points
of the reciprocal lattice. Energy near a band extreme is expressed as:

Eλ(k)≈Eλ,k0 +
~
2|k − k0|2
2mλ,eff

, (3.1)

mλ,eff = ~
2

[
∂2Eλ(k)
∂k2

∣∣∣∣
k=k0

]−1
. (3.2)

As well as the translational symmetry causes wave vector to be a good quantum num-
ber, rotational symmetry causes conservation of angular momentum. It is important to
emphasize that this statement is valid only in the case of zero wave vector since nonzero
wave vector causes breaking of the rotational symmetry. Angular momentum of electrons
has two contributions: from the electron spin (spin operator σ̂) and orbital momentum
(operator L̂). The two types of contributions to the angular momentum interact via spin–
orbit coupling expressed by the Hamiltonian in the leading terms:

ĤSO = ASOσ̂ · L̂ , (3.3)

where ASO is a constant which describes the strength of coupling. Commutation relations
yield [ĤSO, L̂] = −[ĤSO, σ̂]. The quantum numbers which express orbital momentum and
spin (and appropriate operators of projection to any axis) are not therefore good quantum
numbers with respect to the spin–orbit Hamiltonian. It can be, however, shown that the
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quantum numbers J andmJ connected with the operator of the overall angular momentum
defined as:

Ĵ = L̂+ σ̂ , (3.4)

are good quantum numbers since the operators Ĵ and Ĵz commute with the Hamiltonian
ĤSO. Note that these operators do not commute with the operator −~

2p̂2/2m0 of the
kinetic energy of an electron (m0 is an electron mass) what simply means that angular
momentum is a good quantum number only for k = 0 (at the Γ point of the reciprocal
lattice). States of electrons are then described by the band index and angular momenta J
and mJ . Such states are not, however, eigenstates of Hamiltonian away from the Γ point
since [Ĵ , p̂2] 6= 0. Also the dispersion is unknown because of spin–orbit interaction which
is not diagonalized for k 6= 0.
In order to calculate the energy dispersion of electrons in bands in the vicinity of the Γ

point, k–p theory is often applied [13]. This theory is, however, valid only if one considers
a large number of bare states |λk0〉 in the expression of the eigenstates:

|ψjk〉 = e−(k−k0)·r
∑

λ

Cλj(k−k0) |λk=k0〉 . (3.5)

The energies and effective masses of the eigenstates are calculated by numerical matrix di-
agonalization procedure. Analytical calculations which involve only few bare states are not
accurate and therefore Luttinger’s theory [22, 23] is often used when calculating effective
masses. Note that k–linear terms are not involved in the Luttinger’s theory.
In order to discriminate between various types of angular momenta of electrons, the

angular momentum of electrons which comes from the lattice symmetry and the spin
number will be simply denoted as spin while the angular momentum which comes from
orbital motion in e.g. confining potential will be called orbital momentum.

3.2.2 Excitons

As noted above, excitation of an electron from the valence to the conduction band cre-
ates a pair particle–antiparticle represented by the electron and the hole. An electron
and a hole have opposite electric charges and therefore they are attracted by Coulomb
interaction. Depending on the electron–hole relative motion, bound and unbound states
exist, the former quasiparticle is called exciton. Performing separation of the wavefunction
ψ(re, rh) = χ(r)φ(ρ), where the subscripts ‘e’ and ‘h’ resolve an electron and a hole, re-
spectively, ρ = re− rh being a relative position, r = (mere+mhrh)/(me +mh) being the
center of mass position and defining the total mass M = me +mh and the reduced mass
m−1r = m

−1
e +m

−1
h , we can write Schrödinger equation in a two–band model:

−
[

~
2∇2r
2M

+
~
2∇2ρ
2mr

+ V (|ρ|)
]
χk(r)φλ(ρ) = EknLLz

χk(r)φλ(ρ) , (3.6)

where k and λ the quantum numbers arising from the equation, k being center of mass
wave vector of the exciton. Function χ(r) is clearly harmonic wave χk(r) = e

−ik·r and the
resulting equation for φλ(ρ) is calledWannier equation. By introducing V (|ρ|) = e2/ǫ0|ρ|,
Wannier equation is equal to the Schrödinger equation for hydrogen atom. The variable
ǫ0 stands here for static dielectric constant.
Since the solution of the hydrogen atom problem is well known, the Wannier equation

is not solved here and only the results are listed. The spatial dependence of the function
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φλ(ρ) will not be used in the latter text so it is not given here explicitly. Quantum num-
bers which follow from the solution of Wannier equation (parameter λ) are: the principal
quantum number n, orbital momentum L and its projection to the quantization axis Lz.
The principal quantum number n has positive integer values, the integer L can be then
0, 1, . . . , n−1 and Lz = −L,−L+1, . . . ,+L. The ground state is nondegenerate since n = 1,
L = Lz = 0. Energy of exciton is determined by the principal quantum number and center
of mass motion:

En(k) = −ER
1
n2
+

~
2|k|2
2M

, (3.7)

where the quantity ER is the exciton Rydberg energy defined as ER = e4mr/2ǫ20~
2. The

energy spectrum is discrete and the Rydberg energy represents the binding energy of the
ground state. It is possible, according to hydrogen atom, to ionize excitons if the relative
motion of the electron and hole has sufficiently high energy. Such pairs of electrons and
holes then form a continuum of states. The energy spectrum of excitons is depicted in
Fig. 3.1. The exciton Bohr radius is defined as aB = ~

2ǫ0/e
2mr. The discussion of the

exciton spin is in the next section.
In this thesis, excitons are treated as pla-

Figure 3.1: Dispersion of electron–hole
pairs. The bottom thick solid line denotes
the ground state of bound exciton, other
solid lines then depict dispersions of ex-
cited exciton states. The filled area then
stands for the continuum of unbound sta-
tes.

ne waves which are given by the motion of
center of mass. No attention is paid to the
relative motion of fermions which is assumed
to be just an internal degree of freedom. Un-
der these assumptions, excitons obey Bose
statistics [8, 9, 10] and the fermionic nature
can be described as a perturbation in the
low density limit. We can then define an an-
nihilation operator for an exciton with wave
vector k in the ground state:

B̂k =
∫ ∫

ψk100(re, rh)ĉ(re)d̂(rh) dre drh ,

(3.8)
where ĉ(r) annihilates an electron at the gi-
ven position and d̂(r) annihilates a hole. Ex-
citons may be coupled to the electromagne-
tic field as already noted. An exciton may be
created by absorption of a photon and de-
cays radiatively, i.e. when the exciton anni-
hilates, a photon is radiated. The interaction

Hamiltonian has the following form in the semiclassical picture in the dipole approxi-
mation:

Ĥint = −id
∑

k

∫
E(r, t)

[
B̂ke

ik·r − B̂+k e
−ik·r

]
dr ≈

≈ −id
∑

k

∫ [
E(+)(r, t)B̂ke

ik·r − E(−)(r, t)B̂+k e
−ik·r

]
dr , (3.9)

where the last equality is valid in the rotating wave approximation. The symbol d is
the dipole matrix element and the oscillating electric field was separated to positive and
negative frequency parts according to (2.60). Note that there are dipole selection rules
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which are discussed in the next section together with the exciton spin. In the full quantum
description, the interaction Hamiltonian has the form:

Ĥint = i~g
∑

k

[âkB̂
+
k − â+k B̂k] . (3.10)

3.2.3 The most frequent crystal structures

I use references to crystal structures in the following text and therefore I give a brief
overview of the two most frequent structures. I introduce the zinc–blende and wurtzite
structure.
The zinc–blende structure belongs to the

Figure 3.2: Unit cell (a) and band structure
(b) of crystals with zinc–blende structure.

cubic space group. The unit cell is a cube, see
Fig. 3.2a. The associated point group is Td [24]
and the typical representants are most I–VII
copper–halides (CuBr, CuCl), most III-V semi-
conductors like GaAs and some of II–VI, e.g.
CdTe, ZnTe, ZnSe. Band structure of a crys-
tal in the vicinity of the band gap is depic-
ted in Fig. 3.2b. The lowest conduction band
has Γ6 symmetry and valence bands have Γ7
and Γ8 symmetries. The Γ7 band is split–off
(Γ8 is the topmost valence band) as a con-
sequence of spin–orbit coupling by a positive
energy ∆SO. However, in some crystals, e.g. in
CuCl, the spin–orbit coupling has a negative
sign and thus the Γ7 band is the topmost. In
crystals with positive spin–orbit coupling, the
Γ7 band is usually neglected since the energy
splitting is much higher than other exchange–
induced splittings. The Γ8 band is then four-
fold spin degenerate at the Γ point. The angu-
lar momentum of the holes is 32 and the par-
ticular bands then refer to projections to the
quantization axis. At nonzero wave vector, the
degeneracy of the valence band is partially re-
moved and two twofold spin degenerate bands
are appropriate for light–hole (lh, mJ = ±12)
and heavy–hole (hh, mJ = ±32) bands.
In the zinc–blende structure, operator of

the angular momentum transforms like Γ4 re-
presentation in space and it is antisymmetric
under time reversal (K−). Operator of momen-
tum has the (Γ5,K−) symmetry properties and electromagnetic field couples to the states
with the symmetry Γ5. As will be shown later, there are three exciton states with Γ5
symmetry in cubic crystals with linear polarizations X, Y and Z. Only the transverse
states are coupled to electromagnetic field and thus there are eight excitons and only two
of them are dipole–active. Heavy–hole and light–hole bands are mixed within these states
and the ratio of excitation of the respective bands is 3 : 1.
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Figure 3.3: Unit cell (a) and band structure
(b) of crystals with wurtzite structure.

The wurtzite crystal structure is hexagonal and the unit cell is depicted in Fig. 3.3a.
The point group appropriate for wurtzite structure is C6v and the typical crystals are II–VI
alloys, e.g. ZnO, CdS, CdSe. The band structure is depicted in Fig. 3.3b — the lowest
conduction band has a Γ7 symmetry and valence bands have Γ7, Γ7 and Γ9 symmetries,
respectively. All valence bands are twofold spin degenerate and they are labeled with
decreasing energy as the A, B and C band. The respective bands are the split–off band
with J = 1

2 and mJ = ±12 , the light–hole band J = 3
2 , mJ = ±12 and the heavy–hole

band J = 3
2 , mJ = ±32 . The splitting of hh and lh bands is nonzero at the Γ point, on

the contrary to zinc–blende crystals. Usually, the topmost band has the Γ9 symmetry (hh
band). In most applications, only this band is considered and therefore, when compared
to crystals with zinc–blende structure, the lh band is omitted.
The operator of angular momentum has the (Γ2 and Γ5, K−) symmetry, the operator

of momentum has the (Γ1 and Γ5, K−) symmetry. Electromagnetic field is coupled to
the Γ1 state (polarization Z) and Γ5 exciton states (σ± polarizations). There are two
dipole–active and two dipole–inactive states in each band. As a consequence, optical fields
are coupled to four exciton states when taking into account both A and B bands, on the
contrary to crystals with zinc–blende structure in which only two states are dipole–active.

3.3 Exciton spin

3.3.1 Exciton spin

Spin of electrons and holes was neglected in the preceding discussion of excitons. The point
was to show the consequence of the Coulomb attraction (which doesn’t depend on particle
spin) between electrons and holes — formation of bound states. In this section, I take into
account spins of electrons and holes and also the exchange interaction will be considered.
I restrict the following discussion to the Γ point of the reciprocal lattice. The reason is
again that I want to exclude a complex discussion of the coupling of the exciton spin and
orbital momentum caused by the exciton motion which results in mixing of states with
different spins. This point is discussed later. Another restriction which is done throughout
the rest of this thesis is, that excitons are assumed to be in their ground states, i.e. the
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orbital momentum of the relative electron–hole motion is assumed to be L = 0 and the
principal quantum number is n = 1.
An electron and a hole confined within the exciton wavefunction have some spins which

are not, however, further good quantum numbers for the exciton. Although Coulomb
interaction has the full rotational symmetry (and cannot break the symmetry), spins of
fermions interact via exchange interaction which has a lower symmetry given by properties
of the crystal lattice. According to the definition of the hole spin (3.4), one can define the
exciton spin and its operator:

Ĵ = Ĵc − Ĵv + L̂e−h = Ĵe + Ĵh + L̂e−h , (3.11)

where we put L̂e−h = 0 for the relative motion of the electron–hole pair since excitons
were assumed to be in the ground (1s) states. The symbols Ĵc = Ĵe denote the spin (total
angular momentum) of an electron in a conduction band, Ĵv then stands for the spin of
an electron in a valence band and one can define Ĵh = −Ĵv as the spin of the hole. It
can be shown that the operators Ĵ and Ĵz of the exciton spin and its projection to the
quantization axis commute with the exchange Hamiltonian Ĥexch = AexchĴe · Ĵh and then
the exciton spin and its projection are good quantum numbers.
Because of the rotational symmetry of the potential for electrons and holes, it is con-

venient to derive symmetrized wavefunctions at the Γ point — these wavefunctions will
become useful in the procedure of construction of Hamiltonians from invariant terms
(which is described below). We consider a crystal with some symmetry of the lattice re-
presented by a symmetry point group — here I choose Td point group for cubic crystals
with zinc–blende structure. The conduction band states are s–like, the orbital part of the
electron angular momentum is represented by the Γ1 representation of the Td point group.
Spin is represented by the Γ6 representation so the conduction band has the symmetry
according to the representation Γ1 ⊗ Γ6 = Γ6 (which is twofold degenerate). The valence
band is p–like, therefore the orbital part of the angular momentum transforms like Γ5 and
thus the valence band wavefunctions transform like Γ5 ⊗ Γ6 = Γ7 ⊕ Γ8. The Γ8 band is
fourfold degenerate and the Γ7 band is twofold degenerate. The basis functions of con-
duction electrons are represented by spinors and the basis functions for valence electrons
may be found in Ref. [25]. The states with J = 3

2 have the symmetry Γ8 and the spit–off
band electrons transform like Γ7 (J = 12 ).
Let’s consider only excitons formed by holes from the light hole (lh) band or the heavy

hole (hh) band. They will have then symmetry Γ6 ⊗ Γ8 = Γ3 ⊕ Γ4 ⊕ Γ5. Wavefunctions
may be determined by calculation of the symmetrized products of electron and hole wave-
functions with help of tables of characters [24]. The results can be found in Refs. [25, 26].
The above definition of the spin (3.11) based on the operator of angular momentum is
not always convenient and the word “exciton spin” will be used in the following text in
sense of the symmetrized basis even though symmetrized states are not always eigenstates
of Hamiltonian. Spin “x” then, for example, means in cubic lattices that the exciton is a
superposition of states with angular momenta ±1. Note that symmetrized wavefunctions
are not generally eigenstates of the Hamiltonian even at the Γ point.
Concerning dipole interaction, it can be shown [27] that the symmetry must be conser-

ved during the interaction. Since photons have spin ±1, they transform like Γ5 and thus
couple only to the states with Γ5 symmetry in the Td point group. These states are three,
polarized in the directions of principal axes. States which couple to photons are called
dipole–active or bright states and those which do not couple are called dipole–inactive or
dark states.
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3.3.2 Exciton Hamiltonian

The exciton Hamiltonian can be written in the form:

Ĥexc = Ĥe ⊗ 1h + Ĥh ⊗ 1e + Ĥe−h , (3.12)

where the first term on the right hand side stands for the electron Hamiltonian, the second
term for the hole Hamiltonian and the last term represents the electron–hole interaction.
The operators 1e and 1h are the identity operators on the subspace of electrons and holes,
respectively. Symmetrized wavefunctions of electrons and holes are usually eigenstates of
their Hamiltonians at the Γ point in bulk crystals and the Hamiltonians are then diagonal
in the basis of symmetrized wavefunctions. The electron–hole interaction contains the
Coulomb interaction: direct Coulomb interaction has Γ1 symmetry and thus doesn’t couple
symmetrized states. The exchange interaction has, however, a lower symmetry and it may
cause mixing of symmetrized states which would result in the fact that the symmetrized
wavefunctions are no longer eigenstates of the whole exciton Hamiltonian. The consequence
of the mixing of symmetrized states is, that populations of symmetrized states change in
time due to their coupling and therefore the overall spin of a system excited by polarized
light may be nonstationary.
The exciton Hamiltonian may be diagonalized by the same procedure as described

above for holes. It is possible to perform precise calculations with the help of k–p theory.
The result of this theory are energies and effective masses calculated on the basis of
material constants. This method is robust and very precise. One may, however, want only
to determine which states are coupled and the coupling strength may be determined from
an experiment. The theory, which was developed in order to provide a tool for these
calculations, is called method of invariants [25, 26, 27]. Using this method, one writes the
Hamiltonian on the basis of symmetry considerations from the terms which are invariant
under the point group symmetry operations. Every term is introduced in the Hamiltonian
with some constant which may be then obtained from an experiment. If the basis of states
is small, this method is powerful since it allows one to construct Hamiltonian taking into
account any arbitrary symmetry breaking effects including external fields or wave vector.
The invariant terms of the Hamiltonian are constructed as follows. First, the symmetry

point group of the particle under influence of all symmetry–breaking effects is determined
from the transformation properties of the system. Then all operators which might contri-
bute to the Hamiltonian are found and matrices in the basis of symmetrized wavefunctions
are calculated. Every matrix is then characterized by its transformation properties within
the point group and it is represented by an appropriate representation. The invariant terms
are then constructed as products of the matrices appropriate for operators — these terms
must transform like Hamiltonian, i.e. they must be invariant under all symmetry operati-
ons of the point group. This requirement implies transformation like Γ1 with respect to
operations of the point group and like K+ with respect to time reversal.
The procedure of the construction of invariant terms for the Td point group is described

in details in Refs. [25, 26] with the resulting Hamiltonians. Since the method of invariants
may be used for excitons as well as for electrons and holes, we can start our discussion by
the invariant terms of electrons. Electron spin operator (vector of matrices ~σ) transforms
like Γ4 and K−, the momentum operator (vector Q) transforms as Γ5 and K+. The
Hamiltonian then cannot contain terms linear in ~σ and Q due to their symmetry. Product∑

j σjσj = 1 is not involved in the Hamiltonian and no other products of the type σjσℓ
satisfy the symmetry requirements. Energy of conduction electrons at the Γ point therefore
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do not depend on their spin. Wave vector dependence of energy has the lowest–order
term Q2 since Γ5 ⊗ Γ5 contains Γ1 and it transforms like K+. There are higher–order
terms (always even due to time reversal symmetry) but they are usually neglected in the
parabolic band approximation. The spin–orbit coupling Hamiltonian is constructed from
matrices σj in the first order and scalars Qℓ in an odd order. The first term with the
correct symmetry is σxQx(Q2y−Q2z)+σyQy(Q2z−Q2x)+σzQz(Q2x−Q2y). This term causes
anisotropic conduction band splitting, the bands for the two spins have their minima at
certain wave vector Q0 6= 0 and −Q0, respectively. The terms of higher order in wave
vector are usually neglected since they have a minimal influence on the electron energy.
The Hamiltonian for an electron in the conduction band has the form:

Ĥe = Ee11
e+γe11

eQ2+γe2
[
σxQx

(
Q2y−Q2z

)
+σyQy

(
Q2z−Q2x

)
+σzQz

(
Q2x−Q2y

)]
. (3.13)

The energy Ee1 = Eg is the band gap energy (energy is measured from the top of the
valence band) and γe1 =

~
2

2me
is the kinetic energy prefactor and contains information

about the effective electron mass. Using the method of invariants, we get a better result
than using the k–p approximation, the constants in the invariant expansion are, however,
unknown and they must be calculated microscopically. This method is, indeed, helpful
when one wants to verify validity of the microscopic calculations: based on the symmetry
considerations, one may design an experiment in which particular constants are measured
and they can be then compared to the calculated values.
Concerning valence band, the Hamiltonian for holes can be constructed in the similar

way as the Hamiltonian for the conduction band. The result is, however, more complex
since one should substitute the 2 × 2 matrix for electron spin operator σe by the 4 × 4
matrix for hole angular momentum operator ~Jh (symmetry Γ4, K−). Without going into
details, the resulting Hamiltonian with terms up to Q2 follows (the terms Q3 are assumed
to be negligible compared to other terms) [26, 28, 29]:

Ĥh= γ
h
1 1
hQ2 + chQ[Qx{Jx,J2y − J2z}+ c.p.] +

+ γh2 [(3Q
2
z −Q2)(3J2z − ~J2) + 3(Q2x −Q2y)(J

2
x − J2y)] +

+ 2γh3 (QyQz{Jy,Jz}+ c.p.) , (3.14)

where c.p. stands for cyclic permutation of indices. Besides the k–linear term, the Hamil-
tonian contains the same terms as the phenomenological Hamiltonian by Luttinger [23]
who has formulated an effective mass theory.
The exciton Hamiltonian is of the form (3.12) where the first two terms on the right

hand side may be defined by (3.13) and (3.14). Motion of electrons and holes has no sense
in the exciton picture and one should use motion of the center of mass instead. All terms
with Q and Qj are subtracted from the Hamiltonian and they are substituted by terms
proportional to wave vector of exciton in Ĥe−h. The resulting Hamiltonian is then:

Ĥ = ∆01e ⊗ 1h + Ĥe−h . (3.15)

The constant ∆0 is defined as ∆0 = Ee1 = Eg. The electron–hole interaction terms (inclu-
ding exciton dispersion) are constructed again by the method of invariants, using matrix
and vector representations ~J , ~σ and Q. Results may be found in Ref. [26], the main fea-
tures are listed here. Concerning terms which do not depend on the exciton wave vector,
one finds the exchange Hamiltonian nonperturbed by any symmetry breaking effects:

Ĥst = ∆01e ⊗ 1h +∆1~σ · ~J +∆2(σxJ3x + c.p.) . (3.16)



40 CHAPTER 3. SEMICONDUCTORS

One usually assumes that the terms of the lowest order in contributing operators give the
main contribution to the particle energy. The anisotropic exchange term (the last term
on right hand side) can usually be neglected and the main contribution to the energies of
excitons is assumed to come from the isotropic exchange term proportional to ∆1. This
term splits the dipole–inactive states with symmetry Γ3⊕Γ4 from the dipole–active states
with symmetry Γ5. The bright states are further split by the nonanalytical part of the
exchange interaction to transverse (Γ5T) and longitudinal states (Γ5L) [25, 26].
Concerning wave vector dependent terms, they determine exciton dispersion and spin–

orbit coupling. The spin–orbit coupling causes mixing of states when the wave vector is
nonzero: the interaction proportional to the first order of wave vector is assumed to be
the most important, its Hamiltonian reads:

ĤSO = CQ[Qx{Jx,J2y − J2z}+ c.p.]⊗ 1e . (3.17)

This term is due to the spin–orbit term for holes with the only exception that the wave
vector of the exciton is considered instead of the wave vector of a hole. For some wave vector
directions, the Hamiltonian including k–linear term may be diagonalized. The wave vector
dependent mixing of states may be also viewed as spin precession in time determined
by periodical spin–flips of the spin of symmetrized states. Discussion of this temporal
evolution is given in the next subsection.

3.3.3 Spin precession and relaxation

In this subsection, I discuss in detail the difference between the spin precession and re-
laxation. This discussion is important in order to realize which property is measured in
FWM experiments and whether it is possible to detect k–dependent exchange interaction
in ultrafast nonlinear spectroscopy. We must therefore strictly resolve coherent and inco-
herent changes of spin.
As discussed above, coupling between symmetrized exciton states may cause changes

of the overall spin in time. It should be stressed here that this spin evolution is coherent
— although spin changes, the system remains in a pure state. There is a big difference
between the coherent precession of the spin and spin relaxation. Spin relaxation means
that the spin is not in a pure state but rather in a mixed state as a consequence of an
interaction with some heat bath, e.g. phonons, impurities etc. Spin relaxation is usually
connected with momentum scattering in bulk crystals. For example electron spin relaxation
by the D’yakonov and Perel’s mechanism [30, 31, 32] is following. Spin of an electron
undergoes precession which is wave vector–dependent. As the electron (randomly) changes
propagation direction due to scattering, memory of the precession is lost. (There exists an
effect of motional narrowing [32] if the particles are often scattered, however the overall
spin still relaxes.)
In a homogeneous system of spins, coherent precession causes periodical changes of

mean spin or magnetization since phases of all spins are correlated. In inhomogeneous
systems, on the contrary, frequency of spin precession depends on a concrete particle and
therefore the mean spin approaches an equilibrium value, similarly to the enhanced decay
of overall polarization in OBE due to system’s inhomogeneity. An effective spin relaxation
due to inhomogeneity of the system is hardly distinguishable from the real relaxation,
however it could be possible using a technique similar to photon echo or using FWM
experiments.
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Figure 3.4: Schematic sketch of a FWM ex-
periment in Voigt geometry. Spin of excited
particles precess in the magnetic field and it
is detected by a delayed third pulse.

Figure 3.5: Sketch of output of FWM experi-
ment according to the situation sketched in
Fig. 3.4.

For an illustration, let’s consider a FWM experiment in which the spin precesses as
a consequence of applied magnetic field in Voigt configuration (see Fig. 3.4). Assume
a bulk cubic crystal in a magnetic field which is oriented in the direction x. Incoming
pulses create a population of spin–oriented electrons in the sample (spins of holes usually
relax on a very short time scale and are not therefore considered). Magnetic field causes
coherent evolution (rotation) of the mean spin in the yz plane and therefore oscillation of
the FWM signal as seen in Fig. 3.5. Due to spin relaxation, these oscillations are damped.
From the curve schematically depicted in Fig. 3.5 one may easily determine the strength of
coupling between the y and z–oriented states (effect of the magnetic field) and also the spin
relaxation time, i.e. influence of incoherent effects. Difficulties arise when the relaxation
time is shorter than the period of oscillations — in this case, one cannot determine the
strength of coherent coupling. This is the case of coherent spin evolution which is caused
by electron–hole exchange interaction. However, there are methods for indirect observation
of exchange mixing, for example in high–k spectroscopy [26]. Spin precession might be also
studied in four–wave mixing experiments as described in chapter 7.

3.4 Particle–particle interactions

Up to now, we considered a situation when only one electron–hole pair is excited in the
whole volume of a crystal. In reality, there are usually more electron-hole pairs (excitons)
within one crystal and then they interact via Coulomb interaction. This section then gives
a review of exciton–exciton interactions with their consequences and, at the end, exciton–
photon interaction is discussed.

3.4.1 Exciton–exciton interactions

Excitons are composed of one electron and one hole with half–integer spins and therefore
the overall spin of all excitons is integer. According to chapter 2 and its section 2.2,
excitons should obey Bose statistics. As shown in theoretical works [8, 9, 10], excitons
may be regarded as bosons but only under assumption of their low density. The reason is
their composite nature — the electron and hole wavefunctions are spread in k–space what
decreases the effect of Pauli blocking. Exclusion does not, however, vanish completely and
its influence is proportional to exciton density.
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In addition to Pauli exclusion, there exist Coulomb exciton–exciton interactions even
though excitons are electrically neutral. One must take into account the exciton composite
character again and calculate the Coulomb exciton–exciton interaction as a consequence
of mutual electron–electron, hole–hole and electron–hole interactions. Since the exciton–
exciton interactions reveal as the core of the wave mixing process, a special attention
should be paid to their correct description.
In this subsection, only the Coulomb interactions are discussed. Pauli blocking reveals

in the FWM experiment only as a modification of dipole interaction between excitons and
photons which is discussed later in this section 3.4 and chapter 6. We can start our mathe-
matical description with Eqs. (3.6) and (3.8). Excitons are assumed to be bosons with
appropriate creation and annihilation operators defined by Eq. (3.8). Excitons interact via
pair interactions and therefore the general Hamiltonian reads:

Ĥ =
∑

λ,µ

hλµB̂
+
λ B̂µ +

1
2

∑

λ,µ,ν,ι

ŴλµνιB̂
+
λ B̂

+
µ B̂νB̂ι , (3.18)

where hλµ describes energies of one–particle states and their spin precession (coherent
evolution) and Wλµνι stands for pair particle–particle interactions (scattering). The first
(one–particle) term is equivalent to the one–particle Hamiltonian (3.6) if the spin is inclu-
ded. The discussion of exciton–exciton interaction is then focused on the second term
in the previous Hamiltonian. It should be stressed here that the one–exciton states are
not influenced by the second term in (3.18) since the equation of motion for one–particle
coherences, taking into account only the scattering term, reads:

i~
∂

∂t
[B̂+λ − (B̂+λ )

2B̂λ] =
[
B̂+λ − (B̂+λ )

2B̂λ ,
∑

λ,µ,ν,ι

ŴλµνιB̂
+
λ B̂

+
µ B̂νB̂ι

]
= 0 . (3.19)

Exciton–exciton interaction, according to 3.18, is evaluated as an interaction of all pairs of
particles except electron–hole interaction within the contributing excitons (this interaction
is already accounted for in one–particle energies). The general Hamiltonian including direct
Coulomb and exchange interactions has the matrix elements [33]:

ĤS1S2←S3S4(K,K′,q) =SXdir(S1, S2, S3, S4)ĤXdir(K,K′,q) +

+SXexch(S1, S2, S3, S4)ĤXexch(K,K′,q) +

+Seexch(S1, S2, S3, S4)Ĥeexch(K,K′,q) +

+Shexch(S1, S2, S3, S4)Ĥhexch(K,K′,q) , (3.20)

where the Hamiltonian was separated to the sum of terms containing a spin part and a
momentum part. Initial states have spins S3, S4 and the final states have spins S1 and S2.
The spin part then fully determines the symmetry of the interaction with respect to the
spin of incoming and outgoing excitons. The four lines in the above Hamiltonian stand for
four scattering processes [10, 33]: direct boson–boson scattering (first line), exchange of
bosons (second line) and exchanges of electrons and holes, respectively (third and fourth
line). Momentum parts of the Hamiltonian may be evaluated by direct integration if
the exciton wavefunction and potential are known [33], the spin parts are then given by
formulas:
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SXdir(S1, S2, S3, S4) = 〈S3|S1〉 〈S4|S2〉 , (3.21)

SXexch(S1, S2, S3, S4) = 〈S3|S2〉 〈S4|S1〉 , (3.22)

Seexch(S1, S2, S3, S4) =
∑

se,s′e

∑

jh,j
′
h

〈S3| sejh〉
〈
S4| s′ej′h

〉 〈
s′ejh

∣∣S1
〉 〈
sej
′
h

∣∣S2
〉
, (3.23)

Shexch(S1, S2, S3, S4) =Seexch(S2, S1, S3, S4) . (3.24)

The summations on the third line are performed over electron and hole spins, respectively.
Concerning direct scattering and exchange of bosons, it can be shown that:

SXexch(S1, S2, S3, S4)ĤXexch(Q,Q′,q) = SXdir(S2, S1, S3, S4)ĤXdir(Q,Q′,Q′−Q−q) . (3.25)

Both processes obviously have very similar symmetries with respect to the spins of in-
coming and outgoing excitons. Symmetries of boson– and fermion–related processes are,
however, considerably different as follows from (3.21)–(3.24). This fact will be the crucial
point in the latter discussion of wave mixing processes.

According to [10], we classify exciton–exciton interactions as direct scattering (boson–
boson interactions) and exchange scattering (exchange of fermions). The scattering Ha-
miltonian may be then rewritten in the following form:

ĤSD=
1
4

∑

k,k′

∑

q

∑

S,S′

Vd(q, 12 (k−k′))B̂+S,k+qB̂
+
S′,k′−qB̂S,kB̂S′,k′ +H.c.+

+
1
4

∑

k,k′

∑

q

∑

jh,se

∑

j′
h
,s′e

Vx(q, 12 (k−k′))B̂+
j′
h
se,k+q

B̂+jhs′e,k′−qB̂jhse,k
B̂
j′
h
s′e,k

′ +H.c. , (3.26)

where H.c. means the Hermitian conjugated terms. Functions Vd and Vx then stand for
effective potentials for the direct scattering and exchange scattering, respectively. As will
be shown later, symmetry of the above Hamiltonian with respect to exciton spins determi-
nes polarization selection rules in FWM. Matrix elements of the spin part of Hamiltonian
ĤSD (which is directly evaluated from the general Hamiltonian (3.20)) may be found in
chapter 6, Tabs. 6.1–6.4 for exchange scattering (spin part of Hamiltonian of direct scatte-
ring is diagonal). Because of the use of brakets of the form 〈S| sejh〉 in (3.23)–(3.24), matrix
elements of the spin part of Hamiltonian ĤSD depend on the choice of an orthonormalized
basis and therefore on the spin structure of dipole–active states.

One of the most striking and also important facts which arise in the tables is the
big difference between Hamiltonians in the basis of dipole–active excitons with linear and
circular spins, respectively. While it is diagonal in the basis of circular spins, there are
off–diagonal terms in the linear basis. It implies that a two–exciton state which consists of
two excitons with circular spins may scatter to another two–exciton state with two dipole–
active excitons preserving the circular polarizations (the final state might be also dipole–
inactive for zinc–blende structure of the lattice). Linear spins are not, on the contrary,
necessarily preserved, i.e. a two–exciton state |XX〉 may be scattered to the state |XX〉
preserving spin but also to the state |Y Y 〉.
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3.4.2 Biexcitons

Bare electron or hole states (plane waves) are eigenstates of the one–particle Hamiltonian
which doesn’t describe particle–particle interactions. The system in the one–particle state
may be then described by the use of such bare state. Excitations of the intrinsic semicon-
ductor, however, involve always at least one electron and one hole. Two–particle states are
perturbed by the mutual interaction and diagonalization of the electron–hole Hamiltonian
leads to eigenstates with renormalized energies. One finds bound and unbound (scatte-
ring) electron–hole states due to the attractive nature of the Coulomb interaction between
electrons and holes.
The same concept of finding of eigenstates of the two–exciton Hamiltonian (3.18)

may be used. Excitons are eigenstates of the one–exciton Hamiltonian but “bare” two–
exciton states of the form B̂+λ B̂

+
µ |0〉 do not diagonalize the two–exciton Hamiltonian.

Exciton–exciton interactions then may lead to formation of bound and/or unbound states,
depending on whether the interactions are attractive or repulsive.
It can be shown [10, 34]1 that the exchange interaction between two excitons with

the same circular spin is repulsive while it is attractive if the respective spins are contra–
circular. Attractive interaction causes binding of two excitons to a complex called bound
biexciton. Repulsive interaction, on the contrary, suppresses the possibility of the creation
of a bound state, the states are then called scattering states or unbound biexcitons.
Dynamics of the system of two–exciton states may be generally described in two

ways depending on the chosen basis. One can use the basis of “bare” two–exciton states
B̂+λ B̂

+
µ |0〉 and the nondiagonal Hamiltonian (3.18) or the basis of eigenstates — bound

and unbound biexcitons. In most phenomenological theories, the quasi–diagonalized basis
is used: one assumes that the repulsive exciton–exciton interaction may be considered as
a perturbation, the attractive interaction is, however, treated analytically. The basis of
the two–exciton states then consists of the bare two–exciton states with the spin configu-
rations which do not allow formation of bound biexciton states, see e.g. Fig. 5.3 below in
the WIBM model. This model is called Giant Oscillator Strength (GOS) model since the
attractive exciton–exciton interaction is assumed to be enhanced with respect to the repul-
sive interaction implying impossibility of the use of perturbative approach and necessity
of the use of the bound biexciton state in the basis of two–exciton states.
Dynamics of the GOS model is simple since the transitions from the one–exciton to the

two–exciton state are simply described within the dipole approximation by dipole tran-
sitions. The bound biexciton state is also assumed to be coupled to one–exciton states
by dipole interaction. Biexciton creation is therefore instantaneous after absorption of a
photon if the system was in a one–exciton state. The GOS model is, however, an approxi-
mation which may be used in order to explain polarization selection rules for two–photon
creation of a biexciton but not for description of the dynamics of this process since it was
shown [35] that the biexciton formation is not instantaneous. In addition to this point,
it is worthy to state that the idea of the instantaneous creation of biexcitons is not phy-
sically correct. Let’s assume absorption of two photons with X polarizations. They are
absorbed and the created state may be the biexciton state e.g. with the symmetry Γ1 in
a bulk cubic crystal [26, 36]. The pairs of excitons within the biexciton are then virtual
states having spins XX, Y Y , etc. The spin–flip from the state XX to the state Y Y requi-
res, however, some exciton–exciton interaction in order to provide an information about
spin of one exciton to the second exciton. Immediate smearing of the mean polarization

1In a four–band model, where twofold degenerate valence and conduction bands are assumed.
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of two–exciton states then means that this interaction has an infinite strength what is
not physical. Assumption of a finite strength of exciton–exciton interaction then reveals a
non–instantaneous formation of biexcitons what is an idea different from the GOS model.
The spin–flip of the pair of exciton within the biexciton wavefunction was used in order
to probe the biexciton formation dynamics in [35].
The last point which is discussed in the connection with biexcitons is their spin

structure. This structure may be easily estimated in the four–band model on the basis
of geometric or other considerations. Calculation of the spin structure of biexcitons in
their ground state (i.e. state antisymmetrical with respect to exchange of two electrons or
holes) can be based on symmetry consideration as well as the calculation of the exciton
spin structure in a more complicated model which takes into account the full symmetry
properties of the crystal lattice [26, 36, 37]. As a result, we find that the biexciton state
with Γ1 symmetry has the usual σ+σ− two–photon selection rule (i.e. it can be created by
absorption of two photons which have circular polarizations with opposite helicities). Due
to consideration of four valence bands for a semiconductor with zinc–blende structure,
there are five more biexciton states: two of them have the Γ3 symmetry and three Γ5
symmetry. The wavefunctions (spin structures) may be found in [26] for a semiconductor
with the Td symmetry point–group appropriate to the lattice. Concerning quantum wells,
biexciton spin structures are listed in chapter 5.

3.4.3 Polaritons

Semiconductors are widely investigated using optical spectroscopy due to strong coupling
between electrons and electromagnetic field (photons) which is discussed in this subsection.
Strong exciton–photon coupling must be obviously taken into account in order to correctly
describe the system dynamics and the spectra of the FWM signal. Although the polariton
effect is well discussed in many textbooks, the main features important for understanding
of the FWM signal dynamics are summarized in the following text.
Let’s denote âSK to be an annihilation operator of a photon with polarization (spin)

S = ±1 and wave vector K. Exciton–photon coupling in the lowest order of perturbation
theory may be described by the following Hamiltonian without use of the rotating wave
approximation [38, 39]:

Ĥ =
∑

S=±1

∑

K

~ωKâ
+
S,KâS,K +

∑

S

∑

k

hS,kB̂
+
S,kB̂S,k +

+ i
∑

S

∑

K

{
~Ωc
2

[
ωX
ωK

]1/2 (
â+S,KB̂S,K + âS,−KB̂S,−K − âS,KB̂

+
S,K − â+S,−KB̂

+
S,−K

)

+
~Ω2c
4ωK

(
â+S,KâS,K + âS,KâS,−KâS,Kâ

+
S,K + â

+
S,−Kâ

+
S,K

)}
, (3.27)

where ωK = c|K|/εb is the photon energy, hS,k is the exciton energy, εb stands for
background dielectric constant and the exciton–photon coupling is determined by the
strength:

Ωc = 2
√
2π

e√
ωX

pcv
M
φ(ρ=0) . (3.28)

I used the symbol e for electron charge, ~ωX for (transverse) exciton resonance energy,
M for exciton mass and pcv is the dipole matrix element pcv = −〈ψK,c |∇|ψK,v〉, where
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Figure 3.6: Dispersion of polaritons in CuCl and appropriate coefficients (a) according to (3.30)
and dependence of group velocity on polariton energy (b).

ψK,c,v denote conduction electron and valence hole wavefunctions, respectively. In the
resonant approximation when one takes ωK = |K|c/√εb ≈ ωX, one gets the Hamiltonian
(3.10) with g = Ωc/2. It is possible to diagonalize the Hamiltonian using transformations
described in Ref. [38]. One then gets a new set of operators which may be assigned to new
quasiparticles — polaritons. In order to illustrate the diagonalization procedure, let’s use
the simplified Hamiltonian (3.10). We consider the Hamiltonian:

Ĥ =
∑

S=±1

∑

K

~ωKâ
+
S,KâS,K +

∑

S

∑

k

hS,kB̂
+
S,kB̂S,k −

−ig
∑

S=±1

∑

K

(
â+S,KB̂S,K −H.c.

)
. (3.29)

This Hamiltonian can be diagonalized using operators for polaritons P̂LPB and P̂UPB:

(
âS,K
B̂S,K

)
=
(
iφS(K) χS(K)
χS(K) iφS(K)

) (
P̂LPB
P̂UPB

)
, (3.30)

where χ(K) and φ(K) are real functions which fulfill normalization condition χ2S(K) +
+ φ2S(K) = 1. After some algebra, one finds frequencies of polaritons:

ωS,K± =
ωK + hS,K/~

2
±
√
1
4 (ωK − hS,K/~)2 + (g/~)2 , (3.31)

where the sign “+” in the subscript denotes the upper polariton branch (UPB) and the
sign “−” denotes the lower polariton branch (LPB). The appropriate coefficients χ and φ
are then:

χ2S(K) =
ωS,K− − ωK

ωS,K− − ωS,K+
, (3.32)

φ2S(K) =
ωS,K+ − ωK

ωS,K+ − ωS,K−
. (3.33)
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The corresponding inverse transformation reads:

(
P̂LPB
P̂UPB

)
=
(
−iφS(K) χS(K)
χS(K) −iφS(K)

) (
âS,K
B̂S,K

)
. (3.34)

The polariton dispersion according to (3.31) and coefficients (3.32)–(3.33) are plotted in
Fig. 3.6 for illustration. In order to express wave vectors of the polaritons from the two
branches as the functions of energy, it is necessary to use the general form of Hamiltonian
(3.27) and the resulting dispersion relation reads:

K± =
M

~ωX
(ω2 − ω2X) +

ω2

c2
εb

2
±

√√√√
(

M
~ωX
(ω2 − ω2X)− ω2

c2
εb

2

)2
+
ω2

c2
M

~ωX
εbΩ2c . (3.35)

Symbol M stands for effective exciton mass and ~ωX is the energy of exciton in ground
state. This equation may be further simplified using the following notation:

q2X=
M

~ωX
(ω2 − ω2X) , (3.36)

q2L=
ω2

c2
εb , (3.37)

Ω̃2c =
ω2

c2
M

~ωX
εbΩ

2
c , (3.38)

where εb stands for background dielectric constant and q2L(ω) is the background photon
dispersion. The simplified equation (3.35) then reads [40]:

q± =
q2X + q

2
L

2
±
√(

q2X − q2L
2

)2
+ Ω̃2c . (3.39)

In the following text, I will assume excitation below exciton resonance or in the resonance.
Taking into account Fig. 3.6a, it is clear that mostly the lower polariton branch is excited
while influence of the UPB may be neglected. Therefore UPB will not be taken into account
and only the LPB is discussed.
As seen in Fig. 3.6a, photons couple to polaritons resonantly in the whole spectral

range from 0 to ~ωX (exciton resonance). At low energies, the dispersion curve is similar
to the dispersion of photons while it obeys parabolic exciton–like dispersion above the
exciton resonance energy. The coefficients χ and φ then clearly show the exciton– and
photon–likeness of polaritons: at low energies, the polariton is photon–like while it reveals
as an exciton in the part with parabolic dispersion, cf. Fig. 3.6a. Variation of exciton– and
photon–likeness over the energy spectrum leads to a strong dependence of group velocity
on energy of the polariton as shown in Fig. 3.6b [26] and therefore it leads also to a strong
dependence of dephasing rate on energy [41].
As seen from the Hamiltonians (3.27) and (3.29), wave vector is explicitly conserved

in the dipole interaction in the strong coupling regime. This conservation is implied by
an assumption of the symmetry with respect to all translations allowed by the lattice
periodicity and therefore by an assumption of an infinite crystal. Presence of the crystal
surface nevertheless breaks the translational symmetry and therefore wave vector needn’t
be conserved during penetration of photons to the crystal. Wave vector(s) of excited po-
lariton(s) is, however, unambiguously determined by the wave vector of incoming photons
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what leads to the light refraction. Problem of refraction is complicated when photons are
significantly coupled to more than one polariton branch because one needs to state what is
the ratio of populations of the polaritons from the particular branches. The problem was
solved by introducing phenomenologically the so–called additionally boundary conditions
(ABC) [42]. There is, on the other hand, an exact solution based only on the Maxwell
boundary conditions (MBC) [40]. The theory is summarized and applied in chapter 6.

3.5 Semiconductor nanostructures

Semiconductor nanostructures are finite se-

Figure 3.7: Considered profile of the QW po-
tential in the z direction (blue line), wave-
functions of bound states (green lines) and
energetical spectrum of the states (black lines
and the shaded area).

miconductor crystals with spatial dimensions
of the order of nanometer, i.e. comparable
to the distances between atoms. Finiteness of
the crystal causes quantization of energies of
the allowed states of electrons. However, real
crystals with dimensions much larger than in-
teratomic distances reveal quasi–continuous
bands of allowed states, i.e. quantization may
be effectively neglected. When going to na-
noscale with crystal dimensions, spacing in
energy between states becomes large enough
to assume that the states have a discrete ene-
rgy spectrum (states are no longer denoted
by wave vector but one introduces symmet-
ric and antisymmetric linear combinations of
states with opposite wave vector).

Electron wavefunctions may be confined in real crystals in 0, 1, 2 or 3 dimensions
producing 3–dimensional systems (bulk crystals), 2–dimensional systems (quantum wells),
1–dimensional systems (quantum wires) and 0–dimensional systems (quantum dots or
nanocrystals), respectively.
One may take a two–dimensional structure for illustration (quantum well). Confining

potential is a constant in the xy plane and its profile in the z direction is depicted in
Fig. 3.7. In the parabolic band approximation and assuming V → ∞, one–particle wave-
functions read:

φ(z) =
N
2πΩ
eik‖·r

{
sin(kzz)
cos(kzz)

, (3.40)

where k‖ stands for the in–plane wave vector and Ω is the area of the xy plane surface.
Boundary and normalization conditions then determine [13] N = 2/Lc and quantization
of energy and wave vector: kz = π

2Lc
(2n − 1) for even and without the last −1 term

for odd states, E = π2

8m
~2

L2c
(2n − 1)2 for even and again without the last −1 term in the

parentheses for the odd states. Symbol n stands for the principal quantum number of the
electron motion in the confining potential. This number is positive integer and quantizes
the electron energies in the direction perpendicular to the quantum well. Concerning the
overall electron wavefunction, it is determined by the following quantum numbers: x and
y component of the wave vector (in–plane wave vector k‖), band index, spin and its
projection, parity and principal quantum number of the motion in the confining potential.
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Similarly to bulk crystals, we define angular momentum of electrons using (3.4) and
angular momentum of excitons by (3.11) thanks to the full rotational symmetry of the
confining potential around the axis z. Lowered symmetry causes mixing of bands and
therefore eigenstates of electron or exciton Hamiltonian needn’t be symmetrized even
when the in–plane wave vector is zero. Symmetrized wavefunctions of electrons, holes
and excitons and invariant Hamiltonians for QWs with various symmetries are derived in
chapter 5.

Performing the same procedure, we may calculate wavefunctions of electrons in other
low–dimensional structures, i.e. quantum wires and quantum dots. Due to different di-
mensionalities, quantum structures reveal different conservation laws and therefore spin
relaxation processes and dipole interaction with optical field are specific for every structure.
We discuss these features in the following paragraphs and we focus on quantum wells and
dots only.

Quantum wells reveal in–plane translational symmetry which is determined only by
the translational symmetry of the bulk crystal lattice in the given directions. As a con-
sequence, in–plane momentum is conserved and wave vector is a good quantum number.
Dipole interaction is then nonlocal and the OBE cannot be used for modeling of the non-
linear optical response of QWs as shown later. Concerning wave vector conservation in
dipole interaction, only the in–plane momentum is conserved. Due to energy conservation,
however, one finds that coherently re–emitted photons have the wave vector equal to the
excitation photons. This fact is important in the four–wave mixing experiment and it will
be used later.

As discussed above, quantum wells may be also invariant under certain point symmetry
operations (reflections, rotations, inversion) what results in conservation of angular mo-
mentum, however presence of the confining potential breaks the symmetry of the original
3D lattice and mixing of states with different angular momenta and splitting of states with
different symmetries may occur at the Γ point. The most important splitting is the light
hole–heavy hole splitting, i.e. splitting of the valence bands (degenerate in zinc–blende
bulk crystals) with angular momenta jz = 1

2 and
3
2 , respectively. This splitting is similar

to splitting caused by stress in the direction of the axis z.

Spin relaxation processes are very similar to those in bulk crystals, they may be,
however, suppressed by usage of certain orientations of the growth axis [43]. The main
reason for the spin relaxation is the momentum scattering and inhomogeneous broadening
(usually even more pronounced when compared to bulk) for the effective spin relaxation.

Discussion of quantum dots (QDs) is even more complicated [44]. Due to confinement in
more than one dimension, the confining potential has nontrivial symmetry with respect to
point group operations. One usually assumes a cube or a sphere as model potentials, more
sophisticated shapes are often used in realistic models. In order to simplify the discussion
here, we consider the potential with the spherical symmetry. Point group symmetry is de-
termined only by the lattice symmetry in spherical QDs and therefore spin (its projection)
is conserved. The confining potential clearly produces an additional orbital momentum of
electrons Lcon and thus one defines the total angular momentum of an electron:

F̂ = L̂con + Ĵ . (3.41)
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Discussion of spin structure is beyond this thesis, it may be found e.g. in Refs. [45,
46, 47, 48]. Quantum dots have no translational symmetry and therefore the electron
states are localized in dots (there may exist some hopping, we omit this possibility here
and we consider homogeneous materials with low concentration of nanocrystals). Dipole
interaction is then local and optical response should be modeled using OBE adapted for
semiconductor dots.
Due to missing wave vector, relaxation cannot be caused by momentum scattering.

Nevertheless the electron–phonon interaction is stronger compared to bulk and QWs and
therefore interaction with phonons is the most important spin relaxation mechanism.



Chapter 4Des
ription of four{wave mixingexperiments
4.1 Introduction

The aim of this chapter is to introduce various models and approaches to theoretical
description of four–wave mixing experiments on semiconductors and their nanostructures.
The dimensionality of the considered system is of a big importance since the process of
wave mixing is strongly influenced by the nature of the excited particles.
The most striking difference may be found between bulk materials and quantum dots.

Energies of excitons form bands in a bulk crystal and the states are delocalized (i.e. charac-
terized by a wave vector) due to translational symmetry. In quantum dots, on the contrary,
states are localized due to the lack of translational symmetry and they reveal discrete ener-
getical spectrum because of the confinement. An ensemble of noninteracting quantum dots
then clearly form an atomic–like system (the main difference is, that excitations do not
obey Fermi statistics).
It is clear from the above discussion that the two mentioned structures (3D and 0D)

need a completely different approach when describing interaction with optical field. While
wave vector conservation is required in bulk, localization is important in dots. This dis-
crepancy may be illustrated on the following example: let’s consider a system of localized
(i) and delocalized (ii) noninteracting bosons and three incoming optical fields denoted
by wave vectors k1, k2 and k3. These three fields interact with three independent sorts
of particles in the system (ii), resolved by appropriate wave vectors. Since bosons do not
influence one the other, there is no way how the waves could mix and therefore no FWM
signal is expected. On the contrary, every localized boson interacts with all three fields
in the system (i) providing a possibility of wave mixing. These facts may be expressed
mathematically. Interaction of a delocalized boson (e.g. exciton) with quantized field is
given by the Hamiltonian [13]:

Ĥdelint = −i~
∑

k

gk

[
b̂+k âk − b̂kâ

+
k

]
, (4.1)

where b̂+ is a creation operator of a particle and â+ is creation operator of the field. The
variable gk stands for the coupling coefficient. We can do a Fourier transform in order to
rewrite the Hamiltonian in real space with assumption that gk = g:

âk=
1√
Ω

∫
e−ik·râ(r) dr , b̂k =

1√
Ω

∫
e−ik·rb̂(r) dr , (4.2)

51
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Figure 4.1: Level scheme appropriate for the system of bosons described by their wave vectors.
Dipole interactions are depicted as arrows with the appropriate wave vectors. Interaction with
fields with wave vectors k1, k2 and k3 only is considered.

Ĥdelint =−i~ g
Ω

∑

k

∫
dr
∫
dr′[eik·(r−r′)b̂+(r)â(r′)−H.c.] =

=−i~ g
Ω

∫ [
b̂+(r)â(r)− b̂(r)â+(r)

]
dr , (4.3)

where Ω is a normalization volume. A localized boson, on the contrary, interacts with the
light field independently of its wave vector:

Ĥ locint=−i~
g

Ω

[
b̂+(r0)â(r0)−b̂(r0)â+(r0)

]
=−i~ g

Ω

∑

k

[
e−ik·r0 b̂+(r0)âk−eik·r0 b̂(r0)â+k

]
. (4.4)

The coordinate r0 is fixed for every single excitation. For a system of bosons, one should
integrate over r0 in order to develop the Hamiltonian appropriate for the whole ensem-
ble. This Hamiltonian then wouldn’t mathematically differ from (4.3). The point is, that
only operators of the type (b̂+(r0))

m contribute to the polarization due to spatial iso-
lation of particular bosons. In dense media, site–to–site hopping is allowed and therefore
also operators b̂+(r)b̂+(r′) · · · , r 6= r′ contribute to the macroscopic polarization. Spa-
tial correlations then prevent creation of the third–order response if the wave vectors of
incident beams are not equal.
In order to rigorously prove that the delocalized states do not produce wave mixing

signal, one can develop a density matrix formalism for delocalized states. The basis of
excitations is composed of states characterized by wave vector and we can, in accordance
to a system of photons, define creation operators b̂+k of particles. Because of wave vector
conservation, we can reduce the basis for the density matrix description only to the states
with wave vectors equal to wave vectors of the components of optical field. Considering
third–order response, we can neglect the states consisting of three and more particles. The
level scheme appropriate for the system is depicted in Fig. 4.1 with all dipole interactions
involved within the selected basis of particles. The path of evolution of the density matrix
towards the coherence in the FWM direction k1+k2−k3 is schematically shown in Fig. 4.2
where e.g. the coherence ̺k1k2,0 represents a two–photon coherence between the state
with particles with wave vectors k1, k2 and the ground state. In the result, the coherence
described by the density matrix element ̺k1k2,k3 is nonzero. Looking at the level scheme
in Fig. 4.1, one concludes that there is no dipole interaction and therefore this coherence is
not coupled to the optical field. Although the coherence is created, it expresses only some



4.2. MODIFIED OPTICAL BLOCH EQUATIONS 53

Figure 4.2: Evolution of the density matrix elements for the system of delocalized bosons from the
ground state in the 0–th order to the coherence denoted by the wave vector k1+k2−k3 in the third
order. The encircled symbols denote wave vectors of incoming light and symbols in boxes stand for
nonzero density matrix elements induced by particular dipole interaction which induce creation of
a coherence in the diffraction direction.

correlation between particles but does not necessarily mean that the field in the given
direction is radiated. In the system of localized states, on the contrary, every one–photon
coherence is coupled to the optical field.
The systems of localized and delocalized states must be obviously discussed separately

and different models must be applied to their description. The following chapters are
therefore separated to the part concerning low–dimensional structures (chapter 5) and
bulk crystals (chapters 6–7). The aim of the rest of this chapter is to overview the existing
models which were applied for description of FWM experiments on semiconductors. I
discuss only the models used for description of 3D and 2D structures since 0D structures
are well modeled using OBE — a detailed discussion may be found in chapter 5.
Discussed models can be in general divided to two groups: microscopic theories and

OBE–like models. The former models are established on microscopical description of
electron potential, electron–hole interactions and exciton–photon interactions. Equations
of motion are derived on the basis of electron and hole Hamiltonian. The models deve-
loped from optical Bloch equations are, on the contrary, rather phenomenological. Their
advantage is in their simple structure since calculations can be done perturbatively and
one can obtain analytical solution of the equations of motion. The precision of OBE–like
models is not, however, high because of their phenomenological nature. The two groups
of theories are introduced and overviewed in the following text. microscopical theories in
section 4.3.

4.2 Modified Optical Bloch Equations

Optical Bloch equations are simple in structure, therefore they were applied for descrip-
tion of FWM response of semiconductors. The basic idea is, that the FWM response of
semiconductors is caused by Pauli blocking as well as in atomic systems and the OBE
were then directly applied. This consideration is further supported by simplification of se-
miconductor Bloch equations [13] under assumption of weak excitation. An electron with
spin +12 or −12 can be excited at any atomic site in the semiconductor, the spin of the
excited electron depends on the polarization of the incoming field. Assuming excitation
from the heavy–hole band, the σ+ photon excites the electron with spin −12 and leaves
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a hole with spin +32 . No more electrons with spin −12 can be thus excited at the same
atomic site providing the Pauli blocking effect. Using a system of levels similar to Fig. 2.1,
one may model a system of two fermions with opposite spins at one site [1].
The mentioned system, however, cannot describe the observed effects connected with

biexcitons, namely exciton–biexciton beating. One therefore performs a correction of the
model by renormalization of the energy of the two–exciton state [1, 49, 50]. There is,
however, another very important discrepancy between theory and experiment: the tem-
poral evolution of the FWM response. It was shown both experimentally [51, 52] and
theoretically [53, 54] (using microscopic theories) that the FWM signal from semiconduc-
tors is not instantaneous after optical excitation but its maximum is delayed with respect
to the time of arrival of the last excitation pulse. Note that this effect is not caused by
inhomogeneous broadening (it is not the photon echo) as proven experimentally [21]. The
problem can be fixed (together with some polarization selection rules) by introduction of
excitation induced dephasing (EID) [55, 56] for a polarization configuration of incoming
pulses e.g. σ+σ−σ+. The problem further remains if one assumes pulses with the same cir-
cular polarizations and time order of arrival t1, t2 < t3 — in such case, the FWM response
is predicted to immediately follow the last pulse while the peak is delayed in experiments.
Consideration of local field effects (LFE) [21, 53, 57] then may correct this problem.
Besides temporal evolution, the usage of modified OBE (mOBE) is inaccurate in or-

der to determine the polarization of the FWM response of semiconductors. Authors use
various types of level schemes [58, 59, 60, 61, 62, 63, 64, 65] which may reasonably dif-
fer from the scheme in Fig. 2.1 considered above. It is not therefore easy to show that
none of the schemes is able to predict polarization selection rules of FWM without any
error. However I present calculations of polarization selection rules for few basic types of
schemes in chapter 5. I include the schemes used in literature and also schemes appropri-
ate for semiconductor quantum dots. The polarization selection rules are summarized in
Tabs. 5.1 and 5.2. The correct polarization selection rules are figured for comparison and
the conclusion is, that the OBE–like models are not sufficient for description of FWM on
bulk semiconductors and quantum wells.
Although mOBE were successfully used for explanation of some basic features of FWM

response of semiconductors, they have many limitations caused by their phenomenological
nature and they cannot thus be used in a general situation. The last note concerning
mOBE is, that the strong exciton–photon coupling is described perturbatively (in the first
order) and one of the most important properties of semiconductors — polariton effect —
is omitted. As a result, FWM response is expected to reveal discrete lines in spectra what
is not in agreement with some experimental observations.

4.3 Microscopic theories

Besides the attempts to use optical Bloch equations for description of semiconductor third–
order nonlinearities, the main theoretical approach was the microscopic description of a
semiconductor using electron–hole Hamiltonian. Construction of such Hamiltonian is easy,
there are only harmonic terms, particle–particle scattering terms and terms responsible for
interaction with electromagnetic field. Derivation of equations of motion is straightforward,
however they form an infinite system of coupled differential equations whose analytical
solution is impossible. Various microscopic models then use some approximations in order
to include all important informations to the dynamical equations on one side and to
simplify the problem on the other.
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The necessity of the development of microscopic theories comes from the fact that
OBE–like models do not sufficiently reproduce the experimental data. The main featu-
res which are unexplained by OBE are the slow initial rise of the FWM signal, signal
for temporal order of pulses t1, t2 < t3 and polarization selection rules. As discussed in
the previous section, there may be introduced several corrections of the OBE in order to
describe the aforementioned phenomena, these corrections are, however, derived microsco-
pically. In addition, corrected OBE still slightly differ from experiments mainly in their
polarization selection rules. Microscopic theories are obviously of a big significance.
The basic classification of the microscopic theories can be done using two criteria: whe-

ther the four–particle correlations are included and whether the model describes electrons
and holes or bound complexes — excitons. Based on the first criterion, we discriminate
between semiconductor Bloch equations (SBE) where the four–particle correlations1 are
approximated by the products of two–particle correlations and more advanced theories
where the four–particles correlations are taken into account. Factorization is then perfor-
med for six–particle correlation functions. The second criterion then allows us to discrimi-
nate between fully fermionic theories where both electrons and holes are considered and
bosonized theories where excitons are the basic excitations in the system.
In the following subsections, theories are divided to three groups and they are briefly

summarized. The groups are: semiconductor Bloch equations, four–particle correlation
theories and bosonized theories.

4.3.1 Semiconductor Bloch equations

Semiconductor Bloch equations derived in Ref. [3, 13] were one the first microscopic the-
ories applied to semiconductors in order to describe their nonlinear response to ultrafast
optical excitation [66, 67, 68]. The structure of the equations is very similar to the opti-
cal Bloch equations. Differences are not, however, negligible and cause big differences in
predictions of the two models. The aforementioned differences are three: in SBE, the eigen-
states are not excitons but rather electrons and holes. In addition, these particles are not
assumed to be independent but they interact via Coulomb interaction. The third difference
is, that SBE are formulated in the reciprocal k–space while OBE are in real space. For-
mulation in k–space causes vanishing of the FWM response for noninteracting particles
(see above) and it is thus clear that the FWM response is due to the particle–particle
interactions. This point was proven also experimentally [54, 69].
Semiconductor Bloch equations are formulated for two bands, i.e. for the case when

the valence and conduction bands are nondegenerate. Based on SBE, one can also derive
equations for degenerate bands [6]. Denoting ĉ+k to be a fermionic operator for creation of
an electron in the conduction band and d̂+−k to be an operator for creation of a hole with
wave vector −k in the valence band (i.e. annihilation of an electron with the wave vector
k in the valence band), the total Hamiltonian reads [3, 13]:

Ĥ =
∑

k

[
εe(k)ĉ

+
k ĉk + εh(k)d̂

+
k d̂k

]
+

+
∑

k,k′

∑

q6=0
V (q)

[
ĉ+k+qĉ

+
k′−qĉk′ ĉk + d̂

+
k+qd̂

+
k′−qd̂k′ d̂k − 2ĉ+k+qd̂

+
k′−qd̂k′ ĉk

]
−

−
∑

k

[dkE(t)ĉ
+
k d̂
+
−k + d

∗
kE
∗(t)d̂−kĉk

]
, (4.5)

1Correlations between four fermions, see Refs. [3, 13]. The four–particle correlation terms have the form
〈ĉ+k+q ĉk d̂+−k′ d̂−k′+q

〉, where ĉ+ and d̂+ stand for creation operators of electrons and holes, respectively.
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where εe(k) is the energy of an electron in the conduction band, εh(k) is the energy
of a hole in the valence band (this energy is positive and equals εh(k) = −εv(k), where
εv(k) is the energy of an electron in the valence band). Function V (q) then determines the
strength of the Coulomb interaction, E(t) is the time–dependent amplitude of electric field
and dk is the dipole matrix element for a transition of an electron from the valence to the
conduction band. The first line in (4.5) determines single–particle energies, the second line
describes particle–particle Coulomb interactions and the third line stands for the dipole
interaction with optical field. The single–particle energies are often approximated within
the effective mass approximation by parabolic bands.
Similarly to OBE, one can define populations and polarizations as the mean values:

ne,k=
〈
ĉ+k ĉk

〉
, (4.6)

nh,k=
〈
d̂+−kd̂−k

〉
, (4.7)

p∗k= 〈ĉ+k d̂+−k〉 . (4.8)

The first two lines are simply the populations of the electron and hole states described by
the wave vector k, the third line is the interband polarization which couples to electro-
magnetic field. Using the following equation of motion, one can simply derive equations
for the above defined variables:

i~
∂

∂t
〈Â〉 = 〈[Â, Ĥ ]〉 . (4.9)

The full equations of motion are given in [3, 13]. Besides populations and polarization, they
contain the so–called four–particle correlations on the right hand side, which are functi-
ons of the form 〈ĉ+k+qd̂

+
k′−qd̂k′ ĉk〉 with various combinations of creation and annihilation

operators for electrons and holes. These four–particle correlations cannot be expressed by
the functions (4.6)–(4.8). Equations of motion for the four–particle correlations involve
six–particle correlation functions and it is clear that the system of dynamical equations
is not closed. One then may perform truncation in order to get rid of the four–particle
correlation functions. They are approximated using a projection technique described in
[3]. As a result, the equations of motion have two contributions on the right hand side —
a coherent and an incoherent one. Incoherent terms are caused by incoherent scattering
events and are important in the high–excitation regime. In the low–density regime, they
can be neglected and the nonlinear response of the system to the optical excitation may
be described by the coherent part only. Using renormalized single–particle energies:

εsh(k) = εh(k) +
∑

q6=0
V (q) , (4.10)

the coherent semiconductor Bloch equations read:

∂

∂t
p∗k = i

[
εe(k) + ε

s
h(k)−

∑

q6=0
V (q)(ne,k+q + nh,k+q)

]
p∗k −

−i
[
d∗kE

∗(t) +
∑

q6=0
V (q)p∗k+q

]
(1− ne,k − nh,k) , (4.11)

∂

∂t
ne,k = −2Im

{[
dkE(t) +

∑

q6=0
V (q)pk+q

]
p∗k

}
, (4.12)

∂

∂t
nh,k =

∂

∂t
ne,k . (4.13)
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The above equations are not solvable analytically due to the Coulomb interaction which
couples states with different wave vectors and thus several types of approximations are
often used. Note that neglect of Coulomb interaction yields optical Bloch equations for an
inhomogeneously broadened system of delocalized states as discussed in chapter 5 and no
wave mixing is expected.

The first approximation is the assumption of weak excitation [3, 13]. One then neglects
nonlinear terms in (4.11)–(4.13), note that the Coulomb coupling on the right hand side
of (4.11) remains. This coupling is responsible for formation of excitons and after trans-
formation to real space, one obtains equations which are of the same structure as OBE
for an inhomogeneously broadened system.

The local field model is a more advanced approximation [21, 57]. The core assumption
of this model is the assumption:

∑

q6=0
V (q)pk+q ≈ V pk . (4.14)

The off–diagonal terms in Hamiltonian then yield:

dkE(t) +
∑

q6=0
V (q)pk+q = dkE(t) + V pk . (4.15)

Dipole interaction is then renormalized by the local field generated by the polarization of
other electron–hole pairs. The solution of equations of motion is then reasonably simplified.

The theory is further simplified in the stochastic theory [4, 53, 57] by dropping electron–
hole pairs and introducing excitons as the bound states. The theory then contains bosons
and saturation is described by a phenomenological saturation parameter ψs. The polari-
zation at one site is given by the function ψ(t) and its dynamical equation (of the form of
nonlinear Schrödinger equation) reads [53]:

∂

∂t
ψ(t) = −i(ΩX − iΓ)ψ(t) + idE(t)

(
1− |ψ(t)|2

ψ2s

)
− iV |ψ′(t)|2ψ(t) , (4.16)

where d is the dipole matrix element, ~ΩX is the exciton energy, Γ = T−12 stands for
exciton dephasing rate and ψ′(t) is the exciton polarization at other sites. Parameter V
describes site–to–site interactions. The first term in the equation describes nonperturbed
evolution and dephasing of the polarization. The second term then stands for saturable
dipole interaction and the last term for Coulomb interaction.

Although the approximations mentioned above simplify reasonably the structure of
equations, they must be solved numerically.

Because of factorization of the four–particle correlation terms, the SBE (4.11)–(4.13)
are not accurate in many cases. It is possible to develop polarization selection rules using
SBE [6], these selection rules do not, however, take into account the symmetry of crys-
tal lattice and also biexcitons are omitted. The more advanced theories which take into
account four–particle correlations were therefore developed.
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4.3.2 Four–particle correlation theories

Since the semiconductor Bloch equations, calculated within the Hartree–Fock approxi-
mation, do not describe many effects and overestimate the coherence of the system [70],
more sophisticated theories were developed without factorization of four–particle corre-
lation functions. These theories include usual equations of motion for electrons and holes
and their core is in truncation of correlation functions. The procedure of truncation is
often called dynamical truncation.

Comparison of the microscopically derived FWM using the model which involves dy-
namical truncation to SBE was firstly published by Axt and Victor [5, 71] and by Lindberg
et al. in Ref. [70]. Bosonized theory which accounts for exciton–exciton correlations can be
found in Ref. [8]. It follows that it is possible to truncate the six– and more–particle corre-
lation functions when the interband polarization is created only by external optical fields
and one is interested in the third–order optical response. Neglect of the four–particle corre-
lations in SBE causes that some scattering and exchange mechanisms vanish in equations
of motion. This neglect then may be crucial in the low–density regime when the density of
carriers is far below the Mott density. The theory in Ref. [70] doesn’t, however, describe
biexcitons as the biexciton binding is neglected and therefore no features of the FWM
connected with biexcitons may be described.

Theories which take into account four–particle correlations including biexcitons may
be found in Refs. [54, 72, 73], the latter theory is applied to pump and probe experiments.
The model presented by Schäfer et al. [54] introduces a nonlinear Schrödinger equation
similar to (4.16) with the new source term which comes from four–particle correlations.
Theory does not, however, include spin. A theory developed on the basis of excitons was
published in Refs. [74, 75]. This theory takes into account exciton spin and thus it can
be well applied to model FWM response of semiconductors but equations of motion are
complex in structure and they require numerical evaluation. The theory clearly shows that
the FWM signal comes from exciton–exciton correlations including both bound biexcitons
and unbound two–exciton pairs.

4.3.3 Weakly interacting boson model

Microscopic theories described above were mostly developed for the two–band situation,
i.e. without taking into account the spin of electrons and holes. It was found that in high–
finesse microcavities, the normal mode splitting in nonlinear response is dependent on the
polarization configuration [76] and therefore a spin–sensitive theory was necessary. In the
weak excitation regime, the theory should describe four–particle correlations and therefore
a simple extension of SBE for degenerate bands is not sufficient. The general theory by
Östreich et al. [74, 75] is rigorous but too complex for special applications.

A theory which is capable of simple description of interacting excitons in semiconductor
was developed in the framework of Weakly Interacting Boson Model (WIBM) [7, 76, 77, 78,
79]. The Hamiltonian of the model is bosonized and phenomenologically takes into account
exciton–exciton Coulomb interactions and phase space filling (Pauli blocking) which comes
from the composite character of excitons. All spins of excitons are not, however, taken into
account, only the dipole–active states contribute. The Hamiltonian in k–space reads [77]:
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Ĥ = ~ωe
∑

k

(
b̂+k+b̂k+ + b̂

+
k−b̂k−

)
+

+
πa2B
S

∑
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+

+
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S

∑

k1,k2,k3

∑

σ=±
~gν

(
b̂k1σ b̂k2σâ
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b̂k1−k2+k3σ
+ b̂+k1σâk2σ

b̂+k3σ b̂k1−k2+k3σ

)
. (4.17)

The operators b̂+kσ create an exciton with wave vector k and spin σ = ± and â+kσ creates
a photon. Variable ~ωe is then the exciton energy, ~ω is the photon energy, aB is the
exciton Bohr radius, g is the exciton–photon coupling coefficient, ν stands for nonlinear
exciton–photon coupling coefficient and S stands for the normalization volume. The first
line in (4.17) stands for exciton harmonic term and the second and the third line then
for exciton–exciton interaction. The two–particle interactions are considered to be of two
types: repulsive for excitons with the same spin and attractive for excitons with opposite
spins. Spin sensitivity of the scattering process is caused by the composite character of
excitons and therefore by the exchange interaction between excitons [10]. As a result, the
energy of two–exciton pairs is renormalized (see Fig. 4.3). The last two lines in (4.17) stand
for exciton–photon coupling — the fourth line is the usual term which describes photon
energy and linear exciton–photon transitions. The last line is the nonlinear correction of
the dipole interaction which describes also phase space filling.
Using Hamiltonian (4.17), it is possible to derive equations of motion. Instead of this

standard procedure, the density matrix approach is used. It means that one defines density
matrix elements:

̺mαnβ = 〈〈|mα〉〈nβ|〉〉 , (4.18)

where |mα〉 denotes an m–exciton state with the spin projection α. Wave vector was
neglected since the optical beams are all assumed to be perpendicular to the quantum
well plane. The model is then similar to optical Bloch equations, and can be sketched in a
level scheme in Fig. 4.3. In the equations of motion, dephasing rates are phenomenologically
introduced and excitation induced dephasing is taken into account.
The equations of motion form a closed set of equations which can be solved by expan-

sion into power series of the external optical field. On the contrary to OBE, the exciton–
photon interaction is not taken into account perturbatively due to strong exciton–photon
coupling in microcavities. The results of the model were used for explanation of various
phenomena which arise in FWM experiments on semiconductor microcavities.
Compared to standard microscopic theories, the model is oversimplified since the wave

vector is neglected and scattering terms are responsible only for renormalization of energy
of two–particle states and EID which is introduced phenomenologically. A rigorous solution
of equations of motion which may be derived from the Hamiltonian (4.17) may be generally
complex and it would need numerical calculations.
The WIBM model, however, introduces several interesting simplifications which may

be used in order to reduce the complexity of exact microscopic equations. Electron–hole
pairs are approximated by excitons which are assumed to interact only weakly (in the
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Figure 4.3: Six–level scheme for the Weakly Interacting Boson Model as introduced in Ref. [77].
Symbols in circles denote the polarizations of absorbed photons, symbols g, γ then stand for dipole
matrix elements and dephasing rates for coherences. The rate γEID denotes additional dephasing
due to excitation induced dephasing effect, νS is the parameter of band filling. Symbols Γ represent
population relaxation rate.

weak excitation regime). Exciton–exciton interactions are then described by constants
which depend on the spins of interacting excitons. The last important simplification is
introduction of nonlinear correction to dipole interaction. Assumption of strong exciton–
photon interaction then allows one to use the model under resonant excitation.

4.4 Conclusion

In this chapter, basic models for description of FWM experiments on semiconductors are
overviewed. I have shown that structures with translational symmetry and structures with
localized particles require different approaches — one uses OBE with success for the latter
and various phenomenological or microscopic models for the former.
Application of OBE to bulk semiconductors is shown to provide considerable errors

in predictions of dynamics and mainly polarization selection rules. For this reason, these
models are not generally applicable, however they may be used under special conditions
when a simplicity of the model is required. Microscopic theories are, on the contrary,
accurate but integration of equations of motion cannot be performed analytically and
numerical evaluation is time–consuming.
There are several points which make differences between atomic systems and bulk

semiconductor and for these reasons, the systems require different descriptions. First,
states are localized in atomic systems and delocalized in bulk crystals and therefore FWM
response is generated in the former case even without particle–particle interactions while
Coulomb interaction is responsible for wave mixing in the latter case. Also the role of Pauli
blocking is quite different in the both cases.
Since the aim of this thesis is to describe influence of spin relaxation in semiconductors

on FWM signal, a model with correct polarization selection rules should be used. One may
use OBE for quantum dots but another model is needed for bulk semiconductors. Since
there was not yet published any model with correct polarization selection rules of FWM on
bulk semiconductors with a simple structure similar to OBE, a model based on description
by delocalized states is developed in chapters 6 and 7.



Chapter 5FWM on low{dimensionalstru
tures
5.1 Introduction

Theory in this section, which presents my original results, is focused on description of
four–wave mixing on low–dimensional semiconductors, namely quantum dots and quan-
tum wells. Quantum dots may be described in the same manner as atomic systems since
they reveal discrete energetical levels of localized states. However, when compared to OBE
developed in chapter 2, calculations must be extended by inclusion of spin and a correct
statistics of excitations — model schemes are overviewed in section 5.2 where I develop
polarization selection rules for FWM experiments and I outline the system’s dynamics.
Quantum wells, on the contrary, reveal in–plane translational symmetry and thus two
components of wave vector are conserved. Energy conservation ensures in addition an ef-
fective conservation of full wave vector. The situation is therefore similar to bulk materials
and one may therefore apply the 3D models also to quantum wells. Therefore I perform
rather an extension of the model described in chapter 6 instead of development of an origi-
nal model for 2D structures (see section 7.8). Excitons in quantum wells reveal, however,
unique properties when compared to bulk, e.g. splitting of hh and lh bands, coupling
of the states as a consequence of the exchange interaction at the Γ point or biexciton
spin structure. For this reason, spin structure and effective Hamiltonians for particles are
derived in section 5.3.
Phenomenological mOBE models used in literature (see section 4.2) involve the level

schemes equivalent to those explored in section 5.2. Since any investigation of the complete
polarization selection rules for mOBE models was not published yet, one should use the
original results of section 5.2 to unambiguously state whether the mOBE models give
the correct polarization selection rules or not. Discussion then results in the conclusion
that mOBE models are not sufficient and this statement justifies development of a more
accurate model for bulk semiconductors and quantum wells in chapter 6.
I consider no changes of spin during temporal evolution of states in nanocrystals in

section 5.2. It is therefore possible to use only dipole–active states for description of nano-
crystals. Extension by considering dipole–inactive states, spin precession and relaxation
etc. is then straightforward.

61



62 CHAPTER 5. FWM ON LOW–DIMENSIONAL STRUCTURES

Figure 5.1: The level schemes appropriate for the four systems under investigation. The horizontal
lines depict the possible states of the system and the arrows denote dipole couplings between the
states. The encircled sign then represents the polarization for which the coupling is allowed.

5.2 Optical Bloch equations on quantum dots

In this section, I investigate four basic level schemes (see Fig. 5.1) which may be used in
order to describe quantum dots under influence of the optical field. One uses the standard
approach of OBE, however a more–level systems must be used instead of a two–level system
due to spin. In addition, one must take the correct statistics of excitons into account.
States of nanocrystals obviously involve the ground state, one–exciton states, two–

exciton states etc. Two and more–exciton states have, however, renormalized energies
due to exciton–exciton interaction. We must therefore discriminate between the following
situations:

• Energy renormalization is bigger than spectral width of the excitation pulse — usu-
ally in the strong confinement regime, one thus may neglect the influence of two–
exciton states. In this case, one may use the “V” system presented in subsection 5.2.1.

• Excitations are considered to obey Fermi statistics — one uses the “O” system
described in subsection 5.2.3.

• Energy renormalization is small — in weak confinement regime, two–exciton states
must be taken into account and one uses the modified “O” system presented in
subsection 5.2.3.

The “E” system is presented in subsection 5.2.2 in order to show the unique properties
of excitations which obey Bose statistics. The “II” system then represents a system of
nanocrystals in which one dipole transition is (randomly) blocked.
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Figure 5.2: Scheme of the perturbative evolution of density matrix elements of a “V” system. At
t = 0, the system is assumed to be in its ground state. The encircled symbols denote the spin of
optical fields and the vectors in every column of circles stand for the field wave vector.

5.2.1 “V” system

The “V” system is used in order to model nanocrystals in the strong confinement regime in
which two–exciton states aren’t accessible by pumping by optical fields. The level scheme,
according to Fig. 5.1, consists of the ground and two one–exciton states which are coupled
to the electromagnetic field with two opposite polarizations. The Hamiltonian written in
the basis of states {|0〉 , |+〉 , |−〉} reads:

Ĥ = Ĥ0 + V̂ =



0 0 0
0 EX 0
0 0 EX


+E(t)



0 d+ d−
d+ 0 0
d− 0 0


 . (5.1)

The interaction term in interaction picture reads:

V̂I =
1
2




0 d+E∗(t)e−iδωt d−E∗(t)e−iδωt
d+E(t)eiδωt 0 0
d−E(t)eiδωt 0 0


 . (5.2)

The equations of motion follow directly from the Hamiltonian so they are not written here
explicitly. However, for determination of the polarization state of the FWM response, one
can draw a scheme of the evolution of the density matrix elements. Let’s assume that the
system is in the ground state before arrival of the pulses. Starting at ̺0,0 = 1, various
coherences are progressively excited. In Fig. 5.2, the paths for the FWM buildup are
drawn when assuming t1 < t3 < t2. There are many other nonzero coherences during the
dynamics, only those which contribute to the FWM signal in the direction k4=k1+k2−k3
are depicted. The FWM polarization is determined if one goes from the left to the right
following the arrows with polarizations appropriate for the optical fields.
It can be shown that the predictions based on Fig. 5.2 are symmetric with respect to

interchange of polarizations of the field “1” and “2”, therefore the same FWM polarization
is predicted if the temporal order t2 < t3 < t1 is assumed. We can also interchange the
temporal order of the fields “1” and “3” but there is one temporal order for which the
FWM signal creation is forbidden. Due to Fermi statistics of the excitations, no FWM in
the selected direction can be created if t1, t2 < t3. Some signal is, however, diffracted to
other two FWM directions.
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Figure 5.3: Scheme of the perturbative evolution of density matrix elements of an “E” system. At
t = 0, the system is assumed to be in its ground state. The vectors in circles denote the wave
vectors of optical fields which interact with the system. Vectors near the rectangles with density
matrix elements denote the wave vector of the appropriate coherence.

One may perform linear transformation of the density matrix and Hamiltonian for
determination of the polarization in the case when the excitation beams are linearly pola-
rized. The structure will not change and for determination of the FWM polarization, one
can draw the same scheme as shown in Fig. 5.2, where the signs “+” are substituted by
X and the signs “−” by “Y ”.
From the above discussion, one may do the following conclusions about the “V” system:

• The FWM signal polarization (if any) does not depend on the temporal order of the
incoming pulses.

• The FWM response is forbidden for t1, t2 < t3.

• The FWM response is not forbidden for the polarizations of the pulses σ+σ−σ+ and
XY X.

An interesting property is, that the two opposite polarizations can influence on the other.
This fact is due to the shared ground level. If a population grating with a definite spin is
created, no additional particle could be created in the antinodes. This is a big difference
when compared to the “O” system which is discussed below and where the spins are fully
independent. As a consequence, we see the importance of inclusion of two–particle states
with a correct symmetry to the level scheme.

5.2.2 “E” system

This system will be discussed only under influence of the optical field with one polarization
in order to show the main differences from OBE. In this system, no Pauli blocking or energy
renormalization of two–exciton states takes place. It will be shown that this system may be
used for description of third–order optical response of bosons. In the interaction picture,
the interaction term of Hamiltonian in the basis {|0〉 , |+〉 , |++〉} is:

V̂I =
1
2




0 d+E∗(t)e−iδωt 0
d+E(t)eiδωt 0 d−E∗(t)e−iδωt

0 d−E(t)eiδωt 0


 . (5.3)

Using this Hamiltonian, one can trace the path of relevant density matrix elements which
are responsible for the FWM creation as depicted in Fig. 5.3. The scheme does not, ne-
vertheless, depict the phase of the final state which may be important. The rule is, that
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the change of the first index of density matrix element changes the phase of the final state
by π/2 and the change of the second index due to dipole coupling causes the change of
the phase by −π/2. It is then clear that for the temporal order of pulses t1, t2 < t3, the
two resulting one–photon coherences have the opposite phases (and the same magnitude)
what causes no third–order signal. Under other temporal orderings of the pulses, the FWM
signal is nonzero since the overall signal is given by a sum of three coherences which are
of the same magnitude.

The link between bosons and the “E” system is following. Bosons form an infinite
number of states involving one–particle, two–particle, etc. states. As can be shown, the
states with three and more particles do not contribute to the third–order FWM response
implying that the level scheme for description of FWM may be truncated at two–particle
states producing exactly the “E” system. Noninteracting bosons might be expected to
provide no wave mixing effect. However, as shown in chapter 4, localization of states
provides a channel for wave mixing and therefore the system mixes the waves even though
it is composed of bosons.

The “E” system can be extended in order to describe the spin. I discuss such system
as an extension of the “O” system below.

5.2.3 “O” system

In this subsection, I discuss three systems: the “O” system and its two extensions. Dis-
cussion starts with description of a hypothetical system of two independent respective
fermions which interact with two respective polarizations of the optical field. I derive po-
larization selection rules of such system in order to check whether the “O” level scheme
used in mOBE theories gives correct polarization selection rules. The basic level scheme
is then extended — first, Bose statistics of the particles is considered and then the con-
sequences of exciton–exciton interactions are taken into account. The last model may be
then applied to describe third–order optical response of semiconductor nanocrystals.

Two independent two–level systems which represent spin–resolved fermions differ con-
siderably from the “V” system discussed above since the two–level systems do not share
any state. The transform from two independent systems to the “O” scheme is natural when
we define the basis using all possible states of the system which contains two fermions, see
also Ref. [1] and section 2.2. The “O” system may be used to model the FWM response
of semiconductor nanocrystals when the excitation beam is spectrally broad and covers
both exciton and biexciton resonances.

I discuss separately three situations of polarizations of excitation beams in the following.
These situations then represent all possible combinations of circular polarizations.

Assuming polarizations σ+σ+σ+, we can conclude very briefly what happens. It is
clear that this situation is equal to the well known two–level system. We thus expect
the response with σ+ polarization except the time order t1, t2 < t3 when diffraction is
forbidden (to the selected direction k4). Now let’s assume the time order t1, t3 < t2 and
polarizations σ+σ−σ+. In the second–order perturbation, nonzero density matrix elements
are ̺(2)0,0 = −̺(2)+,+ as can be shown from equations of motion. The third–order response
is then given by the coherences ̺(3)−,0 = −̺(3)+−,+. The macroscopic polarization is then
zero and FWM is forbidden. For time order t1, t2 < t3 and t3, t2 < t1, the second–order
coherences are the two–photon coherence ̺(2)+−,0 and the spin coherence ̺

(2)
+,−, respectively.
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Figure 5.4: Level scheme for the modified “O” system considering noninteracting bosons (a) and
interacting excitons (b).

The third–order polarization is the sum ̺
(3)
+,0 + ̺

(3)
+−,+ = 0 since:

∂

∂t
̺
(3)
+,0 = − ∂

∂t
̺
(3)
+−,+ =

d+
2
E∗(t)e−iδωt̺(2)+−,0 −

d+
2
E(t)eiδωt̺+,− . (5.4)

Response to polarization σ+σ+σ− is forbidden for any temporal order of pulses. Diffraction
clearly occurs only when the pulses have the same circular polarizations. Assuming other
than circular polarizations of the excitation beams, one can do a transform of the whole
system to a new basis of spins. Special attention must be paid to the two–particle state,
namely to the particle statistics. The transform for instance to linear polarizations consi-
dering fermions gives:

|+−〉= 1√
2
[|+〉 |−〉 − |−〉 |+〉] = 1

2
√
2
[(|X〉+i |Y 〉)(|X〉−i |Y 〉)−

− (|X〉−i |Y 〉)(|X〉+i |Y 〉)] = − i√
2
[|X〉 |Y 〉 − |Y 〉 |X〉] = −i |XY 〉 . (5.5)

The shape of the level scheme for linear polarizations is not obviously changed, only the
spins of the states are modified. The FWM response is allowed if the pulses have the
same polarizations and forbidden if a projection to all directions does not give nonzero
values of all polarizations. The FWM response is therefore forbidden for all combinations
of polarizations XXY , XYX and Y XX.
The dynamics of the response is the same compared to the two–level system and OBE.

The reason is, that only two levels within the whole “O” scheme give contribution to the
FWM signal.
Now I discuss a system of noninteracting bosons. As seen in the discussion of the

“E” system, one may truncate the level scheme above the two–particle states and then
one gets a scheme depicted in Fig. 5.4a. This level scheme is equal to the “O” scheme
with the only difference that the two–exciton states in which excitons have equal spin
are included. In addition, one must pay attention when transforming to another spin
basis due to different transformation properties of two–particle states which obey Bose
statistics. Using perturbative solution of the equations of motion, it can be shown that
the polarization selection rules for the FWM response of this modified “O” system do not
differ from those for the original “O” system, i.e. only if there is any polarization which
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Figure 5.5: Temporal evolution of the re-
sponse of the modified “O” system when
the modification of dephasing rates is as-
sumed (a), energy of the two–particle sta-
tes is renormalized (b), and both modi-
fications are considered (c). The depha-
sing rate Γ2 is fixed to 0.25 ps−1, binding
energy and dephasing rate ΓX are varied.

is common for all fields (i.e. projection to this polarization is nonzero for all fields), the
FWM response is nonzero. Additionally, the response is zero when t1, t2 < t3.
Considering interacting bosons in a realistic nanocrystal, energies and also strengths

of dipole couplings of two–particle states are renormalized due to Coulomb and exchange
interactions and also the dephasing time for the two–particle state may be modified, see
Fig. 5.4b. Energy renormalization and change of dephasing rate influence the system dy-
namics and also the FWM polarization selection rules. Consider for instance time order
of the delta–like pulses t1 < t2 < t3 and polarizations σ+σ−σ+. Let’s denote Γ2 depha-
sing rates for the coherences between the ground state and one–particle states, ΓX for
other one–photon coherences and ΓXX for the two–photon coherences. Assuming weak
excitation in resonance with one–particle excitation energy, dipole matrix elements for
transitions from the ground state d and from the one–particle states d2, and assuming
energy renormalization of the two–particle energy by an amount −∆, we can calculate:

̺
(0)
0,0(t) = 1 , (5.6)

̺
(1)
+,0(t) =−iE(t1)

d

~
e−Γ2(t−t1) , (5.7)

̺
(2)
+−,0(t) =−E(t1)E(t2)

dd2
~2
eΓX(t2−t1)e−ΓXX(t−t2) , (5.8)

̺
(3)
+−,−(t) = iE(t1)E(t2)E∗(t3)

d2d2
~3
e−Γ2(t2−t1)e−ΓXX(t3−t2)e−ΓX(t−t3)ei∆(t3−t2) , (5.9)

̺
(3)
+,0(t) =−iE(t1)E(t2)E∗(t3)

dd22
~3
e−Γ2(t2−t1)e−ΓXX(t3−t2)e−Γ2(t−t3)ei∆(t3−t2) . (5.10)

The above density matrix elements are in the interaction picture and therefore it is ne-
cessary to transform them back to the Schrödinger picture by multiplication by a rapidly
oscillating part. The radiated field is obviously proportional to the dipole matrix element
and therefore we finally get for the FWM intensity:

I(3)(t) =
∣∣∣d2̺(3)+−,+e−i(ω0−∆)t + d̺

(3)
+,0e

−iωt
∣∣∣
2
=

= d2|̺(3)+,0(t3)|2
∣∣∣e−ΓX(t−t3)ei∆(t−t3) − e−Γ2(t−t3)

∣∣∣
2
. (5.11)
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At t = t3, the FWM intensity is obviously zero and it is nonzero for latter times if Γ2 6= ΓX
or ∆ 6= 0. Change of dipole matrix elements has no influence on the dynamics. Difference
of the dephasing rates causes slow initial rise of the signal and subsequent decrease, see
Fig. 5.5a (∆ = 0). The time when the FWM intensity peaks can be derived:

tpeak = t3 +
log ΓX − log Γ2
ΓX − Γ2

≈ 1
Γ2

. (5.12)

The last approximation is valid under assumption ΓX ≈ Γ2. For Γ2 = ΓX and ∆ 6= 0, the
intensity of the FWM response is given by periodic oscillations which are modulated by
exponential decrease as can be shown from (5.11), see Fig. 5.5b. The period of oscillations
is given by the energy renormalization of the two–particle state. If both the energy and
dephasing rates are modified due to the two–particle interactions, the dynamics of the
FWM response is even more complex, cf. Fig. 5.5c. It is, however, important to note that
the signal always starts to rise from I(t = t3) = 0.

Temporal profile of the intensity of the FWM signal can be more complicated than
the prediction (5.11) if other polarizations of the incoming pulses are chosen. It is natural
to assume that the renormalization energy of the state |+−〉 is decreased by an amount
∆ due to biexciton effect in semiconductors and the energy of the states |++〉 and |−−〉
is increased by other amount ∆′ due to mutual repulsion of the two particles. The FWM
dynamics therefore in general involves more complex beating pattern.

It is important for polarization selection rules that, compared to the original “O”
system, the response is allowed assuming e.g. σ+σ−σ+ andXXY polarizations of incoming
photons at any time order of pulses. The FWM response is, however, still forbidden for
the combination σ+σ+σ− (in the k1+k2−k3 direction).

5.2.4 “II” system

The “II” system will be used in order to describe the response of nanocrystals in which one
of the dipole transitions with a random spin is blocked e.g. by another trapped electron–
hole pair, by an influence of imperfections etc. The nanocrystal will be modeled by two
two–level systems (extension to two “E” systems is also possible) — the difference from
the above “O” systems lies in the fact that only one of the two–level systems is allowed in
each of the nanocrystals.

Evaluation of the dynamics of the system under investigation is very simple since
we can calculate the response of the two two–level systems independently using the
formalism developed above. Then we perform averaging over initial states of the sys-
tem. It can be, however, shown that the whole calculation can be done using only one
density matrix without need of subsequent averaging of the results. Let’s define the basis
{|0+〉 , |+〉 , |0−〉 , |−〉} and assume the density matrix 4× 4 appropriate for the considered
basis of states. There is no need to define two–particle states since the system cannot
occupy them and the states involved in the basis are clearly the only possible states which
can be occupied. The initial state of the density matrix is:

ˆ̺(t=t0) =
1
2
[|0+〉〈0+|+ |0−〉〈0−|] . (5.13)
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The interaction Hamiltonian in interaction picture reads:

V̂I =
1
2




0 d+E∗(t)e−iδωt 0 0
d+E(t)eiδωt 0 0 0

0 0 0 d−E∗(t)e−iδωt
0 0 d−E(t)eiδωt 0


 . (5.14)

It is useful to divide the density matrix to subblocks 2 × 2 since it can be shown from
the above Hamiltonian that the off–diagonal subblocks remain zero during the system’s
evolution. The mean value of the creation operator d̂++ is:

〈〈d̂++〉〉 = Trˆ̺d̂+ = 〈〈|+〉〈0+|〉〉 , (5.15)

i.e. it is equal to the mean value within an isolated two–level system. The same thing
can be shown for all creation and annihilation operators and thus the description by one
density matrix is correct.
Assuming circularly polarized optical fields, it is clear that the third–order response

arises only when the three polarizations are equal since one of the dipole transitions is
forbidden in each system and there is no way how the polarizations could mix. One can
show this fact also in the density matrix formalism: each circularly polarized pulse causes
changes only in the appropriate diagonal subblock of the density matrix and therefore
the subsystems do not influence one the other. According to the “O” system, different
polarizations do not mix.
The difference from the “O” system comes if one assumes linearly polarized pulses.

Every single system interacts only with an appropriate circularly polarized component of
the polarization of the fields. One type of particles then interacts with the σ+ component
and the second type with the σ− component providing an effective polarization mixing.
For example for XXX excitation, the response is X–polarized, for XY X excitation, the
response is Y –polarized. The “II” system therefore differs also from the modified “O”
system where the response to the XXY excitation is forbidden while the “II” system
gives the Y –polarized response.
The results obtained in this subsection are equal to the results of Ref. [2, 80] for the

II system. However, there is a difference in the interpretation of the model system. The
reason is, that the model system and equations of motion transform in a different way
than the level scheme in the references.

5.2.5 Summary of polarization selection rules
In the above subsections, polarization selection rules for nanocrystals under different ex-
perimental conditions were developed. These polarization selection rules provide also a
good test of the validity of the mOBE models when compared to experiments. A full list
of polarization selection rules for all model systems described above is given in Tab. 5.1
for the temporal order of pulses t1, t2 < t3. Table 5.2 then lists the polarization selection
rules for all remaining time orders of pulses. All combinations of linear or circular polari-
zations are listed. The ‘modified “O” system’ is used in the meaning of the “O” system
appropriate for bosons with energy renormalization and modification of dephasing rates
described above (Fig. 5.4b). The last column of the tables gives the measured polarization
selection rules in semiconductors according to Ref. [6].
Looking at the tables, we observe that only the modified “O” system reproduces the

correct polarization selection rules except the combination σ+σ−X. Therefore none of the
models discussed in this chapter describes correctly the FMW polarization in experiments
on semiconductors. We may therefore conclude that it is not possible to describe the FWM
response using the discussed OBE–like schemes without doing further corrections.
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Input Output polarization, k4=k1+k2−k3
k1 k2 k3 “V” “O” modified “O” “II” Semiconductor

σ+ σ+ σ+ 0 0 σ+ 0 σ+

σ+ σ+ σ− 0 0 0 0 0
σ+ σ− σ+ σ− 0 σ− 0 σ−

σ− σ+ σ+ σ− 0 σ− 0 σ−

X X X 0 0 X 0 X
X X Y 0 0 Y 0 Y
X Y X Y 0 Y 0 Y
Y X X Y 0 Y 0 Y
σ+ σ− X X 0 X 0 dbd.

Table 5.1: Polarization selection rules for FWM response in various systems. The time order of
arrivals of the excitation pulses is t1, t2 < t3. In the last column, polarization selection rules for
semiconductors are given (according to [6]), “dbd.” means that the polarization is not well defined.

Input Output polarization, k4=k1+k2−k3
k1 k2 k3 “V” “O” modified “O” “II” Semiconductor

σ+ σ+ σ+ σ+ σ+ σ+ σ+ σ+

σ+ σ+ σ− 0 0 0 0 0
σ+ σ− σ+ σ− 0 σ− 0 σ−

σ− σ+ σ+ σ− 0 σ− 0 σ−

X X X X X X X X
X X Y 0 0 Y Y Y
X Y X Y 0 Y Y Y
Y X X Y 0 Y Y Y
σ+ σ− X X 0 X 0 dbd.

Table 5.2: Polarization selection rules for FWM response in various systems. The time order of
arrivals of the excitation pulses is t1 > t3 or t2 > t3. In the last column, polarization selection rules
for semiconductors are given (according to [6]), “dbd.” means that the polarization is not defined.

5.3 Spin structure of excitons in quantum wells

In this section, I present my results of calculation of the spin structure of excitons and biex-
citons in quantum wells. I derive also effective Hamiltonians for excitons and biexcitons
at the Γ point of reciprocal lattice. Investigation of spin structure of excitons in quan-
tum wells was published only for the case of the [001]–grown zinc–blende crystals [81],
nevertheless biexciton spin structure is not investigated. Spin structure of excitons and
biexcitons for other types of quantum wells (structure of the lattice, growth direction)
cannot be found in literature.
Some calculations of biexciton wavefunctions may be found in literature [82], however

the results are not sufficient since observations of mixed biexcitons [83, 84, 85]. Knowledge
of the coupling terms in exciton Hamiltonian and knowledge of the spin structure of biex-
citons may be very important when discussing wave mixing processes [86] as will be shown
later. Materials with two most often used structures of the crystal lattices are considered
— these with the zinc–blende and wurtzite structure (cf. section 3.2). Symmetry proper-
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ties of quantum wells may be considerably influenced by the growth direction with respect
to crystallographic axes: calculations for the zinc–blende structure are performed for the
growth directions [001], [110] and [111]. Concerning wurtzite structure of crystals, I pre-
sent results only for the growth direction [001] since other growth directions refer to the
low–symmetry point group CS. Spin is not then well defined and it is not generally conser-
ved. The effective Hamiltonians lack any symmetry properties and contain many terms.
In addition, QWs from the materials with wurtzite structure are not usually fabricated in
other than [001] direction.

5.3.1 Zinc–blende in [001] direction

In this and the following two subsections, the materials which have the zinc–blende crystal
structure (point group symmetry Td) are considered. The twofold degenerate conduction
band of bulk material has Γ6 symmetry and the fourfold degenerate valence band has Γ8
symmetry (see chapter 3, section 3.2). The split–off band with Γ7 symmetry is neglected
since usually the spin–orbit interaction is strong with respect to exchange interactions
considered here and the valence bands do not mix. The growth axis (axis perpendicular
to the plane of the QW) is in this section assumed to be parallel to the z crystallographic
axis, i.e. the growth direction is [001]. The point group symmetry of such wells is D2d
[81, 24]. Using Ref. [24], we find that the symmetry of the heavy–hole (hh) band is Γ6 and
the symmetry of the light–hole (lh) band Γ7. Symmetrized wavefunctions of holes are:

Γ6 : Φ1= |−1〉 β =
∣∣3
2 − 3

2

〉

Φ2= |1〉α =
∣∣3
2 +

3
2

〉
}
hh

Γ7 : Φ3= 1√
3
[|−1〉α+

√
2 |0〉β] =

∣∣3
2 − 1

2

〉

Φ4= 1√
3
[|1〉 β +

√
2 |0〉α] =

∣∣3
2 +

1
2

〉
}
lh

(5.16)

These wavefunctions are equal to those given in Ref. [25] for bulk material except for a diffe-
rent numbering of the states. The conduction band has Γ6 symmetry and wavefunctions are
denoted as α and β, respectively, depending on spin (projections +12 and −12 , respectively).
One then finds the symmetries of excitons to be Γ6⊗ (Γ6⊕Γ7) = Γ1⊕Γ2⊕Γ3⊕Γ4⊕ 2Γ5.
The symmetrized exciton wavefunctions Ψ derived on the basis of multiplication tables
[24] are listed below:

Γ1 : Ψ1 = 1√
2
[Φ2α− Φ1β]

Γ2 : Ψ(z)2 =− i√
2
[Φ2α+Φ1β]

Γ3 : Ψ3 = 1√
2
[Φ3α− Φ4β]

Γ4 : Ψ(z)4 =− i√
2
[Φ3α+Φ4β]

Γ5 : Ψ(x)5 =
1√
2
[Φ1α+Φ2β]

Ψ(y)6 =
i√
2
[Φ1α− Φ2β]

Ψ(x)7 =
1√
2
[Φ4α+Φ3β]

Ψ(y)8 =− i√
2
[Φ4α− Φ3β]

(5.17)

The symbols in parentheses in superscripts of Ψ denote the spin projection to the coor-
dinate system of the quantum well. Since the QW lattice has the cubic symmetry, it is
natural that the symmetrized states have linear polarizations according to bulk [25, 26].
The heavy–hole excitons have indices 1, 2, 5 and 6, the others are light–hole excitons.
Complexes of two excitons (biexcitons1) are allowed due to the symmetry of exciton–

exciton exchange interaction as discussed above. This exchange interaction may cause
1Despite later statement of the use of the bipolariton model, the bound objects are called here biexcitons

for clarity.
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attraction of excitons if the wavefunction of the two–exciton complex is antisymmetric
with respect to exchange of two electrons or holes (this may be shown using the exchange
Hamiltonian (3.20)). Wavefunctions of biexcitons in the ground states are derived below
according to [26], i.e. the biexciton envelope has the Γ++1 symmetry and the wavefunction
must be antisymmetric with respect to exchange of two electrons or holes. The symmetries
of wavefunctions are given by the formula:

Γ++1 ⊗ [Γ6 ⊗ Γ6]− ⊗ [(Γ6 ⊕ Γ7)⊗ (Γ6 ⊕ Γ7)]− = 2Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5 , (5.18)

where [A1⊗A2]− denotes the antisymmetric part of the direct product of representations
A1 and A2. Binding energies of biexcitons cannot be determined using only symmetry
considerations but one may determine them from an experiment. By the same method as
presented in Ref. [26], we construct two–hole wavefunctions with appropriate symmetry
properties (antisymmetric with respect to exchange of the two holes and symmetric with
respect to the crystallographic axes) and after multiplication by the electron part of the
wavefunction which has the form α(1)β(3) − β(1)α(3), we project the result on a basis of
two–exciton states. The numbers in superscript distinguish here between two different
electrons. The calculated biexciton wavefunctions are:

Γ1 : ΨBX1 =− 1
2
√
2
[ΨA1 Ψ

B
1 +Ψ

A
2 Ψ

B
2 +Ψ

A
5 Ψ

B
5 +Ψ

A
6 Ψ

B
6 + PAB]

ΨBX2 =− 1
2
√
2
[ΨA3 Ψ

B
3 +Ψ

A
4 Ψ

B
4 +Ψ

A
7 Ψ

B
7 +Ψ

A
8 Ψ

B
8 + PAB]

Γ3 : ΨBX3 = 1
2
√
2
[ΨA1 Ψ

B
3 +Ψ

A
2 Ψ

B
4 +Ψ

A
5 Ψ

B
7 −ΨA6 ΨB8 + PAB]

Γ4 : ΨBX4 =− i
2
√
2
[ΨA1 Ψ

B
4 −ΨA2 ΨB3 −ΨA5 ΨB8 −ΨA6 ΨB7 + PAB]

Γ5 : ΨBX5 = 1
2
√
2
[ΨA1 Ψ

B
7 +Ψ

A
2 Ψ

B
8 −ΨA3 ΨB5 +ΨA4 ΨB6 + PAB]

ΨBX6 =− i
2
√
2
[ΨA1 Ψ

B
8 −ΨA2 ΨB7 +ΨA3 ΨB6 +ΨA4 ΨB5 + PAB]

(5.19)

The letters A and B distinguish between the two contributing excitons, PAB means per-
mutation of the excitons. In these wavefunctions, we identify pure lh or hh biexcitons with
the usual symmetry Γ1 which can be excited by σ+σ−–polarized fields (or, equivalently,
by XX or Y Y –polarized fields). All other biexciton states are composed of holes from dif-
ferent bands (lh and hh) and we call these biexcitons mixed. Mixed biexcitons from A and
B bands were observed in bulk hexagonal crystals [84, 85] and also in quantum wells [83].
Symmetries of mixed biexcitons are Γ3 and Γ4 with the wavefunction containing terms
xx− yy = σ+σ+− σ−σ− for the former and xy = σ+σ+−σ−σ− for the latter. There are,
in addition, states having Γ5 symmetry which are not accessible by two–photon absorption
if the optical beam is normal to the QW plane.
Spin structures of biexciton wavefunctions xx+yy and xx−yy mentioned above mean

that the biexcitons may be created by absorption of two X or Y –polarized photons. One
should, however, take care of the phase of the exciton and biexciton wavefunctions since
they become important in FWM as shown below. Let’s assume creation of a molecule
by the XX pair and an induced decay by the Y photon. In both cases of wavefunctions
xx+ yy and xx− yy, a Y –polarized exciton remains in the system, however the phase in
the latter case is shifted by π with respect to the former case. This phenomenon may be
important when attempting to observe mixed biexcitons experimentally: in time–resolved
FWM experiments, the signals coming from biexcitons with different symmetries may
partially cancel each other and the signal may be hardly observable. Beating between
the levels and therefore signal amplitude obviously increases with increasing splitting be-
tween the contributing biexciton levels. One may solve the problem by turning the sample
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around the normal axis. The directions x and y mentioned above are connected with
the crystallographic axes. Usage of the polarizations RR (“R” means right linear polari-
zation, R = (X + Y )/

√
2, “L” is then left linear polarization, L = (X − Y )/

√
2) gives

RR = 1
2(XX + Y Y ) + XY and therefore the former biexciton xx + yy is excited while

the latter one xx− yy is not. Usage of the combination RL, on the other hand, suppresses
excitation of the former and allows excitation of the latter. Appropriate selection of pola-
rizations of the excitation beams then leads to selective excitation of the desired biexciton
states.
Based on the symmetry considerations, one may construct an effective Hamiltonian

appropriate for excitons and biexcitons as described in section 3.3. Here, we classify the
particular terms in an effective Hamiltonian by the order of the involved exciton momen-
tum. The zeroth order determines the spin precession between the symmetrized states
at the Γ point. Diagonalization of the Hamiltonian at the Γ point then determines ener-
gies and spins of the states nonperturbed by the wave vector. Terms of the first order
in wave vector are responsible for the spin precession whose strength is linear in the size
of wave vector and if the terms are nonzero, they describe the strongest contributions to
wave vector–dependent fermion–fermion exchange interaction. Terms of the second order
in wave vector are responsible for dispersion and spin precession which may be, however,
important if the first–order terms vanish. Third–order terms dominate if the nondiago-
nal terms of the first and second order are zero and, for example, they determine the
D’yakonov–Perel’s spin relaxation mechanism [30, 31].
The exciton Hamiltonian may be written in the form of Eq. (3.12), it is, however,

better to perform a further separation:

ĤX = Ĥe + Ĥh + Ĥe−h + ĤQ , (5.20)

where the terms on the right hand side denote Hamiltonians of electrons, holes and
electron–hole interaction, respectively, for zero wave vector. The last term represents the
wave vector–dependent terms including electron, hole and electron–hole exchange terms.
In this thesis, I present only the terms of the zeroth order in wave vector since Hamiltoni-
ans of the higher order terms in wave vector are complex in structure and they will not be
used later in this thesis. Another reason is, that one usually excites the sample with wave
vector perpendicular to the QW plane and therefore the in–plane wave vector is negligible.
The electron Hamiltonian is a constant, the hole Hamiltonian in the [001] zinc–blende

quantum well introduces lh–hh splitting and we thus express it as follows:

Ĥh =
∆lh
2

(
Ĵ2z − 1

4

)
. (5.21)

Energy of the lh excitons is shifted by the amount ∆lh with respect to the lh excitons.
Operator Ĵ = (Ĵx, Ĵy , Ĵz) is the matrix of the hole’s angular momentum. We also define
the electron spin matrix σ̂ = (σ̂x, σ̂y, σ̂z). The electron–hole exchange has the form [81]:

Ĥe−h=∆01e ⊗ 1h +∆11(σ̂xĴx + σ̂yĴy) + ∆12σ̂zĴz +
+∆21(σ̂xĴ3x + σ̂yĴ

3
y ) + ∆22σ̂zĴ

3
z + (5.22)

+∆3[σ̂x{Ĵx, (Ĵ2y − Ĵ2z )}+ σ̂y{Ĵy, (Ĵ2x − Ĵ2z )}] ,

where 1e,h stand for identity matrices on a subspace of electrons and holes, respectively. The
Hamiltonian is not diagonal in the basis of symmetrized wavefunctions (5.17) and therefore
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there exist some couplings between the states even for zero wave vector (these couplings
cause spin precession). The energies of the states which diagonalize the Hamiltonian are:

E5,7(6,8) =∆0+
1
2∆lh−12∆12−138 ∆22±

[(
−12∆lh+∆12+74∆22

)2
+3
(
∆11+74∆21−12∆3

)2]1/2
,

E3,4=∆0 − 1
2∆12 − 1

8∆22 ∓
(
2∆11 + 5∆21 +

3
2
∆3

)
, (5.23)

E1,2=∆0 +∆lh +
3
2
∆12 + 278 ∆22 ∓

3
2
(∆21 −∆3) .

The above list of energies of the eigenstates does not tell anything about the spin structure
of the states. Within the basis of the symmetrized states, the Hamiltonian (5.22) is block–
diagonal. Four subblocks 1 × 1 refer to dipole–inactive states (Ψ1−4) which are therefore
the eigenstates of the Hamiltonian. The rest of the Hamiltonian are two subblocks 2 × 2
characterized by spin, i.e. dipole–active states with the same spin are coupled by the
electron–hole exchange interaction. As a consequence, both (in–plane) linear and circular
spins are good quantum numbers for excitons and they are conserved during coherent
evolution of the system. Heavy–hole and light–hole subbands are not, on the contrary,
good quantum numbers of excitons. Valence bands then become mixed in the exciton
wavefunction.
When compared to bulk material, we may identify several differences in the Hamilto-

nian (5.22) [26]. First, the lh–hh splitting ∆lh is zero in bulk. This splitting of hole bands
is caused by lowering of the crystal symmetry and is general for all quantum wells. Change
of the sample thickness in the z direction causes direction anisotropy and therefore ex-
change terms proportional to in–plane and normal projections of the angular momenta
differ in magnitudes, i.e. ∆11 6= ∆12 and ∆21 6= ∆22. The term proportional to ∆3 has no
correspondence in bulk and may be usually neglected since it is of the third order in the
angular momentum of holes while the leading terms ∆11 and ∆12 are of the first order.
Biexciton Hamiltonian at the Γ point has 16 terms appropriate for the hole–hole ex-

change interaction (other interactions do not contribute). These terms are listed in Ap-
pendix A.1. Biexciton Hamiltonian couples only the terms with Γ1 symmetry, all other
terms are eigenstates of this Hamiltonian.

5.3.2 Zinc–blende in [011] direction

Concerning this growth direction, it is necessary to unambiguously define the coordinate
system connected with the QW. Obviously z = (y′ + z′)/

√
2, where the primed coordi-

nates are connected with crystallographic axes of the bulk material and the nonprimed
coordinates are connected with the quantum well: the z direction is then perpendicular to
the QW plane. Then we can define x = x′ and y = (y′ − z′)/

√
2.

It is clear from the above definition of the coordinate system that there may be a strong
anisotropy in the plane of the quantum well since the directions x and y are not equivalent
from the point of view of the crystallographic axes. Splitting of the states polarized in the
respective directions x, y and z is then expected. As a consequence, circular polarization
of photons is not generally conserved when propagating through the quantum well.
The point group symmetry of such QW is C2v. The conduction band has Γ5 symmetry

as well as both hole subbands. The symmetrized hole wavefunctions are Φ1−4 given in
(5.16), they only have the common symmetry Γ5. The excitons have symmetries 2Γ5⊗Γ5 =
= 2(Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ Γ4) and one obtains with both hole subbands:
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Γ1 : Ψ(z)1 =− 1√
2
[Φ2α− Φ1β]

Ψ(z)2 =− 1√
2
[Φ3α− Φ4β]

Γ2 : Ψ(x)3 =
1√
2
[Φ1α+Φ2β]

Ψ(x)4 =
1√
2
[Φ4α+Φ3β]

Γ3 : Ψ5 =− i√
2
[Φ2α+Φ1β]

Ψ6 =− i√
2
[Φ3α+Φ4β]

Γ4 : Ψ(y)7 =
i√
2
[Φ1α− Φ2β]

Ψ(y)8 =
i√
2
[Φ4α− Φ3β]

(5.24)

Exciton states with odd indexes are hh and those with even indexes are lh excitons. The
wavefunctions are equal to the wavefunctions presented for the case of [001] orientation,
they differ only in symmetry and index. Biexcitons have symmetries 3Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ Γ4:

Γ1 : ΨBX1 =
1
2
√
2
[ΨA1 Ψ

B
1 +Ψ

A
3Ψ

B
3 +Ψ

A
5Ψ

B
5 +Ψ

A
7 Ψ

B
7 + PAB ]

ΨBX2 =
1
2
√
2
[ΨA2 Ψ

B
2 +Ψ

A
4Ψ

B
4 +Ψ

A
6Ψ

B
6 +Ψ

A
8 Ψ

B
8 + PAB ]

ΨBX3 =
1
2
√
2
[ΨA1 Ψ

B
2 +Ψ

A
3Ψ

B
4 +Ψ

A
5Ψ

B
6 +Ψ

A
7 Ψ

B
8 + PAB ]

Γ2 : ΨBX4 =− 1
2
√
2
[ΨA1 Ψ

B
4 −ΨA2ΨB3 +ΨA5ΨB8 −ΨA6 ΨB7 + PAB ]

Γ3 : ΨBX5 =− 1
2
√
2
[ΨA1 Ψ

B
6 −ΨA2ΨB5 −ΨA3ΨB8 +ΨA4 ΨB7 + PAB ]

Γ4 : ΨBX6 =− 1
2
√
2
[ΨA1 Ψ

B
8 −ΨA2ΨB7 +ΨA3ΨB6 −ΨA4 ΨB5 + PAB ]

(5.25)

Again, the first two biexcitons with Γ1 symmetry are pure hh and lh, respectively. All the
other biexcitons are mixed. The Γ1 states have the usual structure σ+σ− = XX + Y Y ,
i.e. they may be excited by two photons with contra–circular polarizations or by two
photons having parallel linear polarizations. The Γ3 biexciton is accessible by two–photon
absorption too, but by photons having polarizations xy = σ+σ+−σ−σ−. Other biexciton
states aren’t accessible by two–photon absorption if the beams are perpendicular to the
QW plane.
When compared to (5.21), the hole part of exciton Hamiltonian has one more term

reflecting the in–plane anisotropy of the QW:

Ĥh = c01h + c1Ĵ
2
x + c2Ĵ

2
z . (5.26)

This Hamiltonian is quite different from that in (5.21) — it splits the light– and heavy–hole
subbands but additionally, it couples hole subbands via the term proportional to Ĵ2x . This
coupling causes also interaction between exciton subbands. The electron–hole exchange
Hamiltonian can be expanded into the form:

Ĥe−h=∆01e ⊗ 1h +∆11σ̂xĴx +∆12σ̂x{Ĵx, Ĵ2y }+∆13σ̂xĴ3x +
+∆21σ̂yĴy +∆22σ̂y{Ĵy , Ĵ2x}+∆23σ̂yĴ3y + (5.27)

+∆31σ̂zĴz +∆32σ̂z{Ĵz , Ĵ2x}+∆33σ̂zĴ3z .

This Hamiltonian is block–diagonal and couples pairs of the states with the same spin from
the two principal exciton bands (light– and heavy–hole). Because of the simple structure
of the Hamiltonian, its diagonalization is very simple but the result has many terms which
are not given here explicitly.
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The electron–hole exchange interaction at the Γ point conserves the spin (linear polari-
zation) of the states. As expected in the initial discussion of the QW symmetry, linear spins
are conserved since the symmetrized states are linearly polarized. Circular polarization is
not, on the contrary, conserved due to the energy mismatch between states polarized in
the x, y and z directions. A detailed calculation then shows that the Hamiltonian (5.27)
causes coherent spin–flip between states with σ+ and σ− spins, each of them being from
another hole band.
Besides the one–exciton contributions, the biexciton Hamiltonian contains only hole–

hole exchange terms because electron–hole and electron–electron exchange terms are zero
matrices. This Hamiltonian has 25 terms and I give them in Appendix A.2. The biexciton
Hamiltonian couples all three states with symmetry Γ1 while the states with symmetries
Γ3−5 are the eigenstates of the Hamiltonian.

5.3.3 Zinc–blende in [111] direction

The point group symmetry of such quantum wells is C3v. Electrons in the lowest conduction
subband have wavefunctions with symmetry Γ4 and the hole subbands have symmetries
Γ4, Γ5 and Γ5. On the contrary to (5.16), symmetrized wavefunctions of hole states have
structure different from the bulk wavefunctions:

Γ5 : χ1= 1√
2

[∣∣ 3
2 − 3

2

〉
− i
∣∣3
2 +

3
2

〉]

Γ6 : χ2= i√
2

[∣∣ 3
2 − 3

2

〉
+ i
∣∣3
2 +

3
2

〉]
}
heavy holes,

Γ4 : χ3=
∣∣ 3
2 − 1

2

〉

χ4=
∣∣ 3
2 +

1
2

〉
}
light holes.

(5.28)

The exciton wavefunctions then have symmetries Γ4 ⊗ (2Γ4 ⊕ Γ5 ⊕ Γ6) = Γ1 ⊕ Γ2 ⊕ 3Γ3.
The symmetrized exciton wavefunctions are:

Γ1 : Ψ(z)1 =
1√
2
[χ3α− χ4β]

Γ2 : Ψ2 =− i√
2
[χ3α+ χ4β]

Γ3 : Ψ(−)3 =χ3β

Ψ(+)4 =χ4α

Ψ5 = 1√
2
[iχ1 − χ2]α

Ψ6 = 1√
2
[χ1 − iχ2]β

Ψ(−)7 =
1√
2
[χ1 − iχ2]α

Ψ(+)8 =
1√
2
[iχ1 − χ2]β

(5.29)

With χ1−4 defined by Eq. (5.28). Wavefunctions with indices 1−4 refer to lh excitons and
indices 5 − 8 to hh excitons, respectively. The biexciton wavefunctions have symmetries
2Γ1 ⊕ 2Γ3:

Γ1 : ΨB1 =
1
2 [Ψ

A
5 Ψ

B
6 −ΨA7 ΨB8 + PAB ]

ΨB2 =− 1
2
√
3
[ΨA1 Ψ

B
1 +Ψ

A
2 Ψ

B
2 + 2Ψ

A
3 Ψ

B
4 + PAB]

Γ3 : ΨB3 =− 1
2
√
2
[ΨA1 Ψ

B
5 + iΨ

A
2 Ψ

B
5 +

√
2ΨA4 Ψ

B
8 + PAB ]

ΨB4 =
1
2
√
2
[−ΨA1 ΨB6 + iΨA2ΨB6 +

√
2ΨA3 Ψ

B
7 + PAB ]

ΨB5 =
1
2
√
2
[ΨA1 Ψ

B
7 + iΨ

A
2 Ψ

B
7 +

√
2ΨA4 Ψ

B
6 + PAB ]

ΨB6 =− 1
2
√
2
[ΨA1 Ψ

B
8 − iΨA2 ΨB8 −

√
2ΨA3 Ψ

B
5 + PAB ]

(5.30)
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The Γ1 biexcitons are again pure lh and hh, respectively. The others are mixed having holes
from both subbands. The Γ1 biexcitons can be reached by usual two–photon transitions
with photons having opposite circular polarizations or by two photons with parallel linear
polarizations. The biexcitons with indices 3 and 4 can be excited by σ+σ+ and σ−σ−

photons, respectively. The last two biexcitons (5 and 6) do not couple to light field via
two–photon transitions.
There is a big discrepancy between mixed biexcitons in quantum wells grown in directi-

ons [001] and [011] when compared to the growth direction [111]. Two-photon absorption
is allowed in all quantum wells for circularly polarized light. The difference which may be
seen in four–wave mixing experiments lies in the mixing of the spin pairs σ+σ+ and σ−σ−

in the biexciton wavefunction in the two former two cases while they are not mixed in
the latter case. In [001] and [011] QWs, one then may induce annihilation of biexcitons
using σ−–polarized light when biexcitons were excited by absorption of two σ+ photons.
This is impossible in [111] wells showing that these wells presumably conserve circular
polarizations due to their symmetry.
The exciton Hamiltonian has again only a constant contribution from an electron and

the contribution from a hole can be expressed by Eq. (5.21). The electron–hole exchange
term reads for this point group symmetry:

Ĥe−h=∆01e ⊗ 1h +∆11(σ̂+Ĵ− + σ̂−Ĵ+) + ∆12σ̂zĴz
+∆21(σ̂+{Ĵ+, Ĵ2−}+ σ̂−{Ĵ−, Ĵ2+}) + ∆22σ̂zĴ3z + (5.31)

+∆3(σ̂−{Ĵ+, {Ĵ+, Ĵ−}}+ σ̂+{Ĵ−, {Ĵ+, Ĵ−}}) .
The new operators were introduced: Ĵ+ = Ĵx + iĴy, Ĵ− = Ĵx − iĴy, σ̂+ = σ̂x + iσ̂y
and σ̂− = σ̂x − iσ̂y. Although it is possible to analytically diagonalize such Hamiltonian,
it has no sense since the results would have a too complex and inconvenient structure.
Hamiltonian conserves the spin and couples the states from the lh and hh bands.
The biexciton Hamiltonian, on the contrary to the [001] and [011] oriented QWs,

has nonzero contributions from the electron–electron and electron–hole exchange terms
(in total 22 terms). This Hamiltonian is diagonal in the basis of symmetrized biexciton
wavefunctions except for coupling of the states 1 and 2 (Γ1 symmetry, pure lh and hh)
and may be found in Appendix A.3.

5.3.4 Wurtzite in [001] direction

This quantum well has the same point group symmetry C6v as bulk material. This point
group is very similar to that C3v of the zinc–blende QW grown in [111] direction. We
then expect similar results in particular for the structure of the Hamiltonian. Electron
wavefunctions have the symmetry Γ7 and the hole wavefunctions Γ7 (lh) and Γ9 (hh),
respectively. The exciton wavefunctions have symmetries Γ7⊗(Γ7⊕Γ9) = Γ1⊕Γ2⊕2Γ5⊕Γ6:

Γ1 : Ψ(z)1 =
1√
2
[Φ3α− Φ4β]

Γ2 : Ψ2 = i√
2
[Φ3α+Φ4β]

Γ5 : Ψ(−)3 = Φ3β

Ψ(+)4 = Φ4α

Ψ(−)5 = Φ1α

Ψ(+)6 = Φ2β
Γ6 : Ψ7 = Φ2α

Ψ8 = Φ1β

(5.32)
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Similarly to the C3v group, wavefunctions with indices 1 − 4 are appropriate for the lh
excitons and wavefunctions with indices 5 − 8 for the hh excitons, respectively. Only the
excitons with Γ5 symmetry are dipole–active and they are coupled to circularly–polarized
light. The symmetrized biexciton wavefunctions have the symmetries 2Γ1 ⊕ Γ5 ⊕ Γ6:

Γ1 : ΨB1 =
1
2 [Ψ

A
5 Ψ

B
6 +Ψ

A
7 Ψ

B
8 + PAB ]

ΨB2 =− 1
2
√
3
[ΨA1 Ψ

B
1 +Ψ

A
2 Ψ

B
2 + 2Ψ

A
3 Ψ

B
4 + PAB ]

Γ5 : ΨB3 =
1
2
√
2
[ΨA1 Ψ

B
5 − iΨA2 ΨB5 +

√
2ΨA4 Ψ

B
8 + PAB ]

ΨB4 =− 1
2
√
2
[ΨA1 Ψ

B
6 + iΨ

A
2 Ψ

B
6 −

√
2ΨA3 Ψ

B
7 + PAB ]

Γ6 : ΨB5 =− 1
2
√
2
[ΨA1 Ψ

B
8 + iΨ

A
2 Ψ

B
8 −

√
2ΨA3 Ψ

B
5 + PAB ]

ΨB6 =
1
2
√
2
[ΨA1 Ψ

B
7 − iΨA2 ΨB7 +

√
2ΨA4 Ψ

B
6 + PAB ]

(5.33)

The first two biexcitons are pure lh and hh with Γ1 symmetry. The Γ5 biexcitons are not
directly accessible by two–photon absorption and the Γ6 biexcitons have σ−σ− and σ+σ+

orientations of dipoles, respectively (cf. the first two Γ3 biexcitons in C3v).
Similarly to C3v, the electron Hamiltonian is a constant and the hole Hamiltonian is

expressed by (5.21). The electron–hole exchange term reads:

Ĥe−h=∆01e ⊗ 1h +∆11(σ̂+Ĵ− + σ̂−Ĵ+) + ∆12σ̂zĴz +
+∆21(σ̂+{Ĵ+, Ĵ2−}+ σ̂−{Ĵ−, Ĵ2+}) +∆22σ̂zĴ3z + (5.34)

+ i∆3(σ̂+{Ĵz , Ĵ−} − σ̂−{Ĵz, Ĵ+}) .

The imaginary unit preceding the constant ∆3 follows directly from tables of coupling
coefficients [24]. It arises due to usage of the unusual anticommutators {Ĵz , Ĵ±}. One can
easily verify that the last term in the above formula is Hermitian and has theK+ symmetry
with respect to the time reversal. This Hamiltonian couples excitons from the hh and lh
bands with the same spin, i.e. it causes further splitting of the bands and conserves the
spin.
The biexciton Hamiltonian has nonzero contributions for the C6v point group from

all fermion–fermion exchange terms. All its terms (22 terms in total) are then given in
Appendix A.4. The biexciton Hamiltonian has two subblocks, one is appropriate for the
Γ1 biexcitons and the other for the Γ5 and Γ6 biexciton states.
When compared to the [111]–grown QW with zinc–blende structure, we find many

similarities as expected. In both structures, circular spins of excitons are conserved even
though there is mixing between the lh and hh bands. This spin conservation holds also for
two–photon creation and annihilation of biexcitons. However, in the wurtzite [001] quan-
tum wells, this circular spin may be partly destroyed due to spin precession of biexcitons.
It is not, nevertheless, possible to flip the spin of the two–exciton state σ+σ+ to σ−σ− on
the contrary to zinc–blende [001] and [011] QWs.



Chapter 6FWM on bulk materials: Themodel
6.1 Introduction

As stated above, there has not been published any model capable of fast derivation of
polarization selection rules for FWM experiments on bulk semiconductors. Although the
selection rules may be derived using microscopic theories, they require time–consuming
numerical calculations. Therefore I present in this section a model which may considerably
simplify calculations of polarization selection rules on bulk intrinsic semiconductors under
assumption of weak excitation below exciton resonance. Using the model, one may also
estimate dynamics of the FWM response and its polarization.
This model includes symmetry properties of the crystal lattice and therefore its pre-

dictions are expected to be correct with respect to polarization selection rules. Validity of
the model is further verified in chapter 7. I start the discussion with basic considerations
about the system under investigation, appropriate level of description etc. Based on these
considerations, Hamiltonians appropriate for description of particular parts of the model
are derived in the following sections 6.2–6.6. After the complete Hamiltonian of the pro-
blem is derived, a method of derivation of equations of motion is presented in section 6.7.
The last section 6.8 briefly concludes the basic properties of the developed model and the
discussion and solution of equations of motion is then presented in the next chapter 7.
Let us first investigate which processes take effect during formation of the FWM signal.

Since the aim of the model is the description of the whole experiment including photons
outside the crystal, we must take into account that the crystal is finite even though it is
bulk. The situation is depicted in Fig. 6.1. The external photons (black arrows) propagate
until they reach the crystal surface. This surface breaks the translational symmetry of the
system air–crystal and therefore we must describe refraction of the electromagnetic field
as a consequence of a difference of dielectric constants of air and crystal (its background
dielectric constant which comes from other than considered resonances). The internal
photons which penetrate below the crystal surface (orange arrows) are then coupled by
dipole interaction to excitons (green arrows). Since the influence of surfaces is neglected
in description of the exciton modes allowed by periodical boundary conditions, the dipole
interaction conserves wave vector and it is described by the Hamiltonian (3.27). Dipole
interaction is strong and therefore it cannot be described using perturbation theory. It is
then more convenient to use polaritons instead of interacting exciton–photon system. Due
to exciton–exciton interactions, it is clear that polariton–polariton scattering must be also
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Figure 6.1: Sketch of particle–particle interactions in a two–beam experiment. Black lines depict
photons outside the crystal, orange lines stand for photons inside the crystal with refractive index
n. Green lines denote excitons and violet lines polaritons. Red circles show the places of interactions
which must be considered in the model.

accounted for. Finally, one needs a description of penetration of electromagnetic field out
of the crystal.
Besides the aforementioned phenomena, there are several effects which are not expli-

citly depicted in Fig. 6.1 and which must be also accounted for. These effects arise due
to a special nature of polaritons: as discussed in section 3.4, exciton–exciton (polariton–
polariton) scattering may cause strong correlations within the system of two–particle states
resulting in formation of a bound state — biexciton (bipolariton). In addition to bound
molecules, it is necessary to take into account special properties of polariton–polariton
scattering as they may scatter due to exciton–exciton Coulomb interaction and also due
to nonlinear dipole interaction [10]. This correction to the dipole interaction is caused by
the composite character of excitons and Pauli exclusion principle and leads to a correction
of the coupling of external photons to internal polaritons.
All features listed above are discussed in the following sections. After discussion of

linear (section 6.2) and nonlinear coupling (section 6.3) of external photons to internal
polaritons, polariton–polariton scattering is analyzed in section 6.4. Section 6.5 then in-
troduces the concept of bipolaritons. Relaxation rates are discussed in section 6.6 and the
last section 6.7 presents the method of derivation of equations of motion.
As stated in section 3.4, polaritons are eigenstates of a Hamiltonian accounting for

electrons, holes and photons in semiconductor crystals. In our case, it is reasonable to
consider them as the basic excitations of the crystal. We may then neglect the influence
of the UPB as discussed above and only particles from the LPB are taken into account.
Hamiltonians of particle–particle interactions are known for exciton–exciton and exciton–

photon interactions, we need, however, Hamiltonians for polaritons. We may do an appro-
ximation by the LPB polaritons with the help of (3.30) and we may use the substitutions:

âS,k= iφS(k)P̂LPB , (6.1)

B̂S,k=χS(k)P̂LPB . (6.2)

Four–wave mixing is an experimental method in which generally three nondegenerate laser
beams excite the sample and the response is detected in one of three FWM directions.
These are −K1+K2+K3, K1−K2+K3 and K1+K2−K3. It is clear from the symmetry
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consideration, that one may choose one of these three diffraction directions and develop
a model which describes the appropriate FWM response. Responses in the other directi-
ons may be calculated using the same model, however the indices of directions must be
changed according to the experimental situation. I choose the direction K1+K2−K3 as
the diffraction direction (this is the same direction with respect to directions of incoming
beams as in chapter 5).
The aforementioned diffraction directions are the diffraction directions in transmission,

however the model may be applied also to the response measured in the reflection geometry.
Diffraction directions are then defined as reflection of the diffraction directions by the plane
of the crystal surface and the model presented below is suitable also for description of a
signal diffracted to these directions.
At the beginning of development of a new model, I summarize the preconditions for

it. I assume an optically thin (this property is justified below) bulk intrinsic semiconduc-
tor crystal with planparallel surfaces. Optical excitation below the exciton resonance is
performed by optical pulses with nearly parallel wave vectors. The angle of incidence of
all beams is then assumed to be zero. FWM signal may be described for the transmission
geometry or reflection geometry (for the latter case, the requirement of an optically thin
sample is not necessary). The crystal is not under influence of any external fields or mecha-
nical stress, however the model may be further extended for these cases (see section 7.8).
All spins of polaritons (excitons) and bipolaritons are taken into account. The temporal
order of excitation pulses with wave vectors K1, K2 and K3, respectively, is arbitrary;
these pulses couple to polaritons with wave vectors k1, k2 and k3, respectively, the FWM
direction is K1+K2−K3 and the diffracted optical field couples to the polariton with
wave vector k4 = k1+k2−k3.

6.2 Linear coupling of photons to crystal

As noted in section 3.4 of chapter 3, breaking of the crystal symmetry by the presence of
the crystal surface causes refraction (and reflection) of photons which propagate towards
the crystal surface. Refraction angles for all polariton branches are unambiguously deter-
mined by the angle of incidence of the incoming photons. Energy transfer to the particular
branches cannot be, however, simply determined using some simple boundary conditions.
Pekar [42] therefore phenomenologically introduced additional boundary conditions (ABC)
additionally to Maxwell boundary conditions (MBC) [87] in order to solve the problem.
Exact solution is possible using MBC [40] or performing microscopic calculations of exciton
wavefunctions near the crystal surface [88, 89, 90].
In this thesis, polaritons are considered as polarization waves and therefore all pheno-

mena connected with the inner structure of polaritons (their excitonic part) are omitted.
This simplification leads to the loss of the effect of dead layer which is not, on the other
hand, of any big significance in the presented model.
The coupling of external photons (from the point of view of the crystal) to internal

polaritons in linear regime is calculated here. This calculation follows Ref. [40] and it is
adapted for the use of Hamiltonian (3.27). Let’s consider an incoming cw plane wave with
frequency ω and wave vector perpendicular to the crystal surface1. I therefore drop the
denotation of wave vectors by their direction and size since they are all parallel and I
use notation q = |q|. One starts with the one–dimensional wave equation valid for the

1Calculation may be performed for a general angle of incidence.
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(complex) negative energy part of the intensity of electric field (for definition see (2.60)):

∂2

∂z2
E(x, ω) +

ω2

c2

∫ +∞

−∞
ǫ(x− x′, ω)E(x′, ω) dx′ =

ω2

c2
P (x, ω) = s(x, ω) , (6.3)

where E(x, ω) is the electric field amplitude, ǫ is the medium dielectric constant and
P (x, ω) is macroscopic polarization of external sources which are not involved in ǫ. Sources
are considered in order to generate the incoming wave (this source is located in x→ −∞)
and the reflected wave (this source is in the transition region between the crystal and its
surrounding). Using Fourier transform, one may solve the previous equation:

E(x, ω) =
∫ +∞

−∞

dq
2π

s(q, ω)eiqx

ω2

c2
ǫ(q, ω)− q2

. (6.4)

If the dielectric constant is known (analytically continued) in the whole complex plane,
one may perform integration using the residuum theorem. We then find for the electric
field inside the crystal:

E(x, ω) =
∑

j

s(qj, ω)Rj(ω)eiqjx , (6.5)

Rj =−i Res 1

q2 − ω2

c2
ǫ(q, ω)

, (6.6)

where the symbol “Res” stands for residuum of the argument and wave vector qj is as-
signed to the j–th residuum Rj. The source term s(q, ω) is assumed to be localized in
space and therefore slowly varying in reciprocal space. Changes over the values of wave
vectors assigned to residue are considered to be negligible and one may therefore use an
approximation s(qj, ω) ≈ s0(ω) ∀q. We may use the expansion:

1

q2 − ω2

c2
ǫ(q, ω)

=
β+(q, ω)
q2 − q2+

+
β−(q, ω)
q2 − q2−

, (6.7)

β±(q, ω) =± q2X − q2

q2+ − q2−
, (6.8)

where we used the definitions (3.36)–(3.39). One then may evaluate the residuum terms:

R±(ω) =
β±(q±, ω)
2q±

. (6.9)

The wave which penetrates to the crystal then has the magnitude of electric field expressed
as [40]:

E(x, ω) = s0(ω)
[
β+(q+(ω), ω)
2q+(ω)

eiq+(ω)x +
β−(q−(ω), ω)
2q−(ω)

eiq−(ω)x
]
. (6.10)

The ratio between fields generated by polaritons from the particular branches is clearly
fixed by the above equation. Using MBE, one then may fix the reflection coefficient and
the value of s0(ω). Refractive indices for the respective polariton branches may be defined
as:

n±(ω) =
q±(ω)
q0(ω)

, (6.11)
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where q0(ω) is the wave vector of the incident field (outside the crystal). An effective
refractive index may be then defined as:

1
neff
=
β+
n+
+
β−
n−

. (6.12)

Using the above definitions, transmission coefficient and the coefficient s0 can be calcula-
ted:

t(ω) =
2neff(ω)

n1 + neff(ω)
, (6.13)

s0(ω) =
2neff(ω)

n1 + neff(ω)

[
β+(q+(ω), ω)
2q+(ω)

+
β−(q−(ω), ω)
2q−(ω)

]−1
E0(ω) . (6.14)

Symbol E0(ω) is the amplitude of the incident (external) electric field and n1 denotes
refractive index of the surrounding medium. It is important for our purposes what are
the one–polariton coherences 〈P̂LPB,UPB(ω)〉 in the system after optical excitation. They
are determined by the coefficient s0(ω) and by the coefficients φ and χ which reflect the
photon–likeness of the polaritons. Taking into account the expression

E(q, t) = 〈ψ(t)|Ê(q, t)|ψ(t)〉 =
√
2π~ωq
Ω

〈
ψ(t)

∣∣âqe−iωqt − â+q e
iωqt
∣∣ψ(t)

〉
, (6.15)

where Ê(q, t) denotes the operator of intensity of electric field in the mode described by
the wave vector q and Ω stands for normalization volume, we may write:

〈P̂LPB(ω)〉= iφ(q+)
s0√
2π~ωq

Ω

β+
2q+

, (6.16)

〈P̂UPB(ω)〉=χ(q−)
s0√
2π~ωq

Ω

β−
2q−

. (6.17)

At this stage, the problem of coupling of external electromagnetic field to internal polariton
modes is fully solved. However, we assumed monochromatic (cw) plane incident waves
while in real experiments, photons localized in space and time are used. Laser fields are
localized in spatially narrow beams and they are pulsed in time, i.e. fields are spread in
reciprocal space and energy. It is generally possible to take these two facts into account
and to include all states with various energies and wave vectors to the model. In order to
simplify the description, we can assume that the spread of beams in reciprocal space is not
large (i.e. paraxial approximation). We may therefore consider that the central wave vector
determines properties of all waves in the beam. Such approximation by a decisive wave
is not, on the contrary, possible in the spectra of pulses. One of the reasons is, that the
spectral width of 100 fs pulses is about 20 meV and properties of polaritons significantly
differ over this spectral range (cf. Refs. [26, 41]). One then may choose one of the two
approaches discussed below: either one calculates in the reciprocal space with respect to
time (energy space), i.e. no dynamics is present during calculations, and the results are
transformed to time space at the end or the spectrum of the pulse is divided to smaller
parts, each of them represented by the central energy, and the same “representative”
method as in the case of beams is used for each of the sub–pulses.
In order to illustrate how the optical pulse, nearly resonant with exciton, propagates

in the crystal, I calculated the energy distribution along the propagation axis using the
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Figure 6.2: Polariton wavepacket (red) distortion and central frequency (green) as a function of the
distance from surface after penetration of photons to a CuCl crystal. Figures depict various time
delays after pulse incidence: 0 ps (a), 0.5 ps (b) and 1 ps (c). Spectral width of pulses is 20 meV
and central energy 3.185 eV.

above formulas. The results are shown in Fig. 6.2 (biexciton resonance is not taken into
account, even though it has a big influence on dispersion and also energy distribution).
This calculation was performed for CuCl for parameters taken from Ref. [26]. Slightly
after penetration of the optical pulse to the crystal, energy is concentrated below the
crystal surface (Fig. 6.2a) and the pulse is not considerably distorted. After some time,
the pulse distortion is more pronounced as seen in Fig. 6.2b. The reason is, that polaritons
with low energy are mostly photon–like and therefore they propagate with high group
velocity (see Fig. 3.6) while exciton–like polaritons have small group velocity and stay
localized near the crystal surface. Distortion of the “polariton pulse” cannot be described
in terms of wave equation in the slowly varying envelope approximation [14] since this
approximation assumes negligible derivative of group velocity dispersion what is not clearly
fulfilled slightly below exciton resonance. Exact calculation of the pulse propagation then
requires description in the energy space.
Concerning calculation in the energy space, it is clear that one solves stationary pro-

blem, i.e. temporal evolution has no sense. One–photon coherences connected with polari-
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Figure 6.3: Decomposition of a Gaussian pulse (green envelope) to spectrally narrow parts. Red
curves are Gaussians, their sum is the black envelope and green bars show decomposition to
rectangular spectra.

ton branches are simply projections of one–photon coherences of the incoming optical fields
as shown in the above formulas. Although calculation in the energy space is necessary for
description of the photon–polariton coupling on the crystal surface, it is very inconvenient
for description of other interactions. Nonlinear interactions are in general local in time
and therefore the third–order response requires calculation of two convolutions over the
energy spectrum. In addition, one is used to describe phenomenologically various depha-
sing processes by time constants and exponential decays in time. These phenomenological
corrections may be included in calculations in energy space, however it is easier to perform
calculations in time space.

The difficulties with complexity of the calculations may be overcome by separation of
the broad spectrum of optical pulses to several narrow parts, each of them being represen-
ted by the central energy. Distortion of the spectrally narrow pulses is then considered to
be determined only by the group velocity dispersion. Decomposition cannot be, however,
done without an error since it is not possible to decompose the spectrum to narrow parts
as sketched in Fig. 6.3 by green bars (the resulting temporal shape of the pulses wouldn’t
fulfill the condition of slow variation of the envelope). We may decompose the spectrum to
Gaussian parts instead. The more parts are involved in the decomposition, the more pre-
cise the decomposition would be. One should, however, find a compromise since narrowing
of spectra means that the pulses lengthen in time and relaxation dynamics looses sense.
In addition, the more parts are involved in calculation, the more terms are involved in
convolutions and the more complex the calculation is.

At this point, I do a crucial approximation in order to simplify the model. The ap-
proximation lies in an assumption of an optically thin sample when describing the FWM
response in transmission or in an assumption of the measurement of the FWM signal in
reflection geometry. These simplifications then allow us to consider only few parts of the
polariton spectra as seen in Fig. 6.2. It is clear from the figure that only the exciton–like
polaritons stay localized near the crystal surface at nonzero delays after excitation while
the photon–like polaritons leave the crystal surface very quickly (propagation of the par-
ticles is determined by the group velocity, see Fig. 3.6). Considering thin samples, these
photon–like polaritons leave the crystal and do not contribute to the FWM response.
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When measuring in reflection geometry in thick samples, the decisive signal comes from
the states localized near the surface as seen in Refs. [91, 92]. Since bipolaritons have also
small group velocity, states resonant with bipolaritons should be also taken into account.

The discussed approximation allows us to neglect propagation effects in the sample: we
consider that particles are excited in some optically thin layer which determines the FWM
response and the propagation effects are simply described by dephasing and relaxation
rates. Note that the approximation by an optically thin sample is not essential for the
model and one may calculate propagation of the pulses through the crystal. The aim here
is to determine polarization selection rules and therefore a thin crystal may be considered.

Now let’s derive the dynamical equations for creation and annihilation of polaritons in
a thin layer below the crystal surface. Dynamics of polaritons cannot be evaluated using
projection described above due to dropping of the spatial coordinate. I use the formalism of
dipole interaction instead, i.e. I consider the Hamiltonian for coupling of external photons
to internal polaritons in the form:

ĤDL = i
∑

S,K

Ee,K(t)e
−iωK t

∑

j

µjS,K 〈S| e〉 P̂+S,qj(ωK )
+H.c. , (6.18)

where µS,K is an effective coupling coefficient, Ee,K(t) is a slowly varying envelope of
electric field with wave vector K and polarization given by the vector e. Symbol ωK is
then frequency of the total intensity of electric field and qj(ωK) is the wave vector of the
j–th polariton band with energy ~ωK. When deriving equations of motion, one introduces
a dephasing rate Γ2:

Γ2 = Γ
∗
2 +
1
2
Γ1 + Γrad , (6.19)

where the respective contributions to dephasing are: Γ∗2 is the pure dephasing, i.e. depha-
sing caused by incoherent interactions, Γ1 is the relaxation rate (relaxation of population)
and Γrad is the radiative decay rate. The last dephasing rate depends on group velocity vg
of polaritons — we may write Γrad ∝ vg. Using the two above equations, we may describe
dynamics of photon–polariton coupling, however the coupling coefficients are unknown.
Let’s consider step–like excitation field E(t) = E0Θ(t) where Θ(t) is the Heaviside step
function. Mean polarization then follows:

〈P̂q〉 =
µ

~

E0
Γ2
e−iωt

[
1− e−Γ2t

]
. (6.20)

Taking into account the contribution for t → +∞ from the LPB (this term expresses the
response to cw excitation under exciton resonance), we may derive from (6.10) and (6.16):

µ = i~
φ(q+)√
2π~ωq

Ω

s0
E0
β+Γ2
2q+

. (6.21)



6.3. NONLINEAR COUPLING OF PHOTONS TO CRYSTAL 87

6.3 Nonlinear coupling of photons to crystal

Linear coupling of photons to polaritons, which is discussed in the previous section 6.2, is
valid for polaritons which obey Bose statistics. Excitons are not, however, exact bosons
and therefore polaritons have also partial Fermi character. The Hamiltonian (6.18) then
must be corrected. This correction is derived in this section.
As derived in Ref. [10], the Fermi character of excitons leads to a nonlinear correction

of the exciton–photon interaction:2

ĤDN= i
∑

k,k′

∑

q

∑

S,S′

Gd(q, 12(k − k′))B̂+S,k+qB̂
+
S′,k′−qB̂S,kâS′,k′ +H.c.+

+ i
∑

k,k′

∑

q

∑

jh,se

∑

j′
h
,s′e

Gx(q, 12(k−k′))B̂+
j′
h
se,k+q

B̂+jhs′e,k′−qB̂jhse,k
â
j′
h
s′e,k

′ +H.c. (6.22)

Using (6.2), we may derive the Hamiltonian using polariton operators:

ĤDN= i
∑

k,k′

∑

q

∑

S,S′

Gd(q, 12(k − k′))χS(k+q)χS(k) ·

·P̂+S,k+qB̂
+
S′,k′−qP̂S,kâS′,k′ +H.c.+

+
i
2

∑

k,k′

∑

q

∑

jh,se

∑

j′
h
,s′e

Gx(q, 12(k−k′))χjhse
(k)
[
χ
j′
h
se
(k+q)P̂+

j′
h
se,k+q

B̂+jhs′e,k′−q +

+χjhs′e(k
′−q)B̂+

j′
h
se,k+q

P̂+jhs′e,k′−q

]
B̂jhse,k

â
j′
h
s′e,k

′ +H.c. , (6.23)

where the operators P̂ denote polariton ope-

Figure 6.4: Schematic sketch of processes of
component nonlinear coupling discussed in the
text, according to [10].

rators from the LPB. This Hamiltonian has
the same symmetry as the Hamiltonian for
exciton–exciton scattering in (3.26) with re-
spect to spins of polaritons. The processes de-
scribed by this Hamiltonian are depicted in
Fig. 6.4: the first line describes a component–
direct nonlinear coupling where the spins of
contributing particles are conserved. When
a polariton is excited in the crystal, an inco-
ming photon may not couple to the polariton
mode given by the law of refraction. Instead,
it couples to another mode and the polari-
ton excited inside the crystal is simultane-
ously scattered. Total wave vector is conser-
ved during this process. The second line in
(6.22) then stands for component exchange
nonlinear coupling what is the process similar
to exchange of fermions in exciton–exciton
scattering. Spins of the contributing particles
may change and the dynamics of the interac-

2When compared to Ref. [10], there is an i prefactor which introduces the sums. This imaginary unit
follows from the Hamiltonian of dipole interaction (3.29) (cf. Eq. (2.4) in [10]).
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tion is equal to the dynamics of the component–direct nonlinear coupling. Component
nonlinear coupling may cause basically two types of scattering processes:

• scattering on the surface due to variations of refractive index,

• scattering of the waves in the volume of the crystal.
Note that only the former process is discussed here since we are interested in the surface
effects in this section. The volume phenomena are fully described by polariton–polariton
scattering in section 6.4.
Component nonlinear couplings may be described using a nonlinear susceptibility

which is related to polariton populations by ǫ2(k,k0,q) ∝ 〈P̂+k0P̂k0
〉 where the wave vector

k0 is the wave vector of the polariton, k is the wave vector of the photon and q is the
exchanged momentum (spin numbers are omitted for clarity). Let’s drop dependence of
the nonlinear susceptibility on k and k0 since we may assume wave vectors are parallel
to the propagation axis and they are therefore fixed. In order to calculate how external
photons couple to internal polaritons according to (6.22), we may attempt to follow the
method of Henneberger [40] which was shown in the previous section. We may rewrite
wave equation (6.3) in reciprocal space:

−q2E(q, ω) + ω2

c2

∫ +∞

−∞
ǫ2(q − q′, ω)E(q′) dq′ = s(q, ω) . (6.24)

Due to the convolution on the left hand side, one cannot extract E(q, ω) and therefore the
derivation of (6.4) cannot be reproduced. One may instead use the wave equation in real
space which contains only local interactions:

∇2E(r, ω) + ω2

c2
ǫ2(r, ω)E(r, ω) = s(r, ω) . (6.25)

The nonlinear susceptibility in the above equation is proportional to (local) population of
polaritons at the given spatial position and reflects creation of a nonlinear polarization as
a consequence of partial Fermi character of polaritons. This phenomenon of local creation
of polarization is well known from optical Bloch equations.
The wave equations (6.24)–(6.25) are only approximations since the nonlinear suscep-

tibility does depend on the wave vectors k and k0. Eq. (6.24) would not thus be a simple
convolution and Eq. (6.25) would not contain strictly local response to nonlinear terms.
The spatial shape of the polariton wavefunction causes, on the contrary, a nonlocal re-
sponse, i.e. mutual interaction of two excitons caused by their partial Fermi character
takes place when the distance between excitons (distance of their centers of mass) is
smaller than approximately four exciton Bohr radii [10]. The nonlocality of the response
may be shown performing a transformation of the Hamiltonian (6.22) to real space using
Fourier transform:

ĤDN = i
∑

S,S′

∫
dr
∫
dr1

∫
dr2 Gd(r1, r2, r)B̂+S,r1+rB̂

+
S′,r2−rB̂S,r1 âS′,r2

+H.c.+

+i
∑

jh,se

∑

j′
h
,s′e

∫
dr
∫
dr1

∫
dr2 Gx(r1, r2, r) ·

·B̂+
j′
h
se,r1+r

B̂+jhs′′e ,r2−rB̂jhse,r1
â
j′
h
s′e,r2

+H.c. , (6.26)

Gd,x(r1, r2, r) =
1
Ω

∑

q,k

Gd,x(q,k)e
2ik·reiq·(r1−r2+2r) . (6.27)
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Clearly for Gj(q,k) ≈ const, j =d,x, one obtains:

Gj(r, r1, r2) ≈ Gj0 δ(r)δ(r1 − r2) , (6.28)

and the Hamiltonian (6.26) becomes local. Wannier excitons do not, however, reveal as
excitations localized at one atomic site and therefore a nonlocal character of the interaction
introduced by Hamiltonian (6.26) may be expected. From the point of view of light field,
interaction described by the above Hamiltonian is local since the exciton Bohr radius is
much smaller than the light wavelength. Approximation (6.28) is then of the same order
as the dipole approximation. The Hamiltonian then reads:

ĤDN= iGd0
∑

S,S′

∫
dr B̂+S,rB̂

+
S′,rB̂S,râS′,r +H.c.+

+ iGx0
∑

jh,se

∑

j′
h
,s′e

∫
dr B̂+

j′
h
se,r

B̂+jhs′e,r
B̂jhse,r

â
j′
h
s′e,r
+H.c. (6.29)

As noted above, it is not possible to use the approach of Ref. [40] presented in section 6.2 in
order to calculate the nonlinear coupling of photons to excitons. However, we may consider
the scattering process as a perturbation and we evaluate the system’s response in the first
order of this perturbation. For the scattered wave, wave equation (6.3) is therefore assumed
to be exact while the correction (6.23) must be considered for the incident wave and its
transition to the reflected and transmitted wave through the crystal surface. Therefore
equation (6.10) may be used for the intensity of electric field of the scattered waves. The
coefficient s0(ω) then should be calculated using the MBC. It is worthy to note that
Eq. (6.10) is valid for any arbitrary propagation direction in an isotropic crystal, the angle
of incidence is important in MBC.
Scattering of electromagnetic waves on the crystal boundary is caused by variations of

the dielectric constant. Linear dielectric constant is constant over the whole crystal surface,
however the nonlinear susceptibility varies with the density of locally excited polaritons as
seen from the coupling Hamiltonian (6.29). Let’s consider that the crystal is excited by two
laser beams and therefore population grating of polaritons is created. The third beam then
feels periodical modulation of the nonlinear refractive index what leads to scattering of the
wave on the sample surface. In order to describe this process quantitatively, let’s calculate
the nonlinear susceptibility. Assuming an optical field with wave vector k and spin S and
assuming the crystal in a one–polariton state (P̂+S′,k0

cosα+sinα) |0〉, calculation of the
susceptibility is straightforward and one gets in resonant approximation (3.29):

ǫ2(k,∆q=0, ω) =
ǫ0
2π~2

∫
G2(k−q′) cos2 α

ω2X +
~q′2

M ωX − ω2
dq′ ≈ ǫ0

2π~2

∫
G2(k−q′) dq′

ω2X +
~k2

M ωX − ω2
cos2 α , (6.30)

G2(q) =G2d(q, 0) +G
2
x(q, 0) + 2Gd(q, 0)Gx(q, 0)δSS′ . (6.31)

Symbol ǫ0 stands for vacuum dielectric constant. I assumed nearly parallel excitation
beams and the last is valid if the variations of energy of excitons are smaller than the
variations of G. One may perform a Fourier transform over k and the result may be
written as:

ǫ2(r, ω) = ǫ0
∑

S′

〈B̂+S,rB̂S,r〉
2π~2

∫
G2(k−q′) dq′

ω2X +
~k2

M ωX − ω2
. (6.32)
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Let’s consider that the population grating on the crystal surface causes a modulation of
the refractive index:

n(x) =
√
ǫ+ ǫ2(x) ≈

√
ǫ

[
1 +

ǫ2(x)
2ǫ

]
= n0 + n2 cosΛx , (6.33)

where n0 =
√
ǫ and n2 = max ǫ2(x)/2

√
ǫ and Λ denotes a period of an induced diffraction

grating. Now let’s consider an incident wave with amplitudeEi and a zero angle of incidence
π/2. The reflected and transmitted waves may be expressed as sums:

Er=
∞∑

j=0

rj cos
j Λx , (6.34)

Et=
∞∑

j=0

tj cos
j Λx . (6.35)

The coefficients rj and tj are then evaluated using MBC. Calculation appropriate for the
field polarized in the y direction (TE) is shown here, calculation for the TM polarization
is then straightforward. Maxwell boundary conditions read:

Ei(x)− Er(x) =Et(x) , (6.36)

Ei(x)n1=
∑

j

[Erj(x)n1 cos ϑrj +Etjn(x) cos ϑtj] , (6.37)

where n1 is refractive index of the medium around crystal. The fields were separated to the
components which propagate in directions determined by the subscript j (diffraction order)
and cos ϑr,tj are cosines of the propagation directions of the reflected and transmitted fields,
respectively:

tan ϑrj =
ωn1Λj
2πc

(6.38)

and similarly for tanϑtj . Restricting to the first diffraction order, we may calculate the
well known Fresnel formula for the variables Ei, r0 and t0:

r0=
n1 − n0
n1 + n0

Ei , (6.39)

t0=
2n1

n1 + n0
Ei . (6.40)

MBC then yield amplitudes of the fields diffracted to the first order:

r1= t1 , (6.41)

t1=− 2n1n2
n1 + n0

[n1 cos ϑr1 + n0 cos ϑt1]
−1Ei . (6.42)

The coefficient s0(ω) for the transmitted field diffracted to the first order may be then
determined according to (6.14):

s0(ω) =− 2n1n2
n1 + n0

[n1 cos ϑr1 + n0 cos ϑt1]
−1 ·

·
[
β+(q+(ω), ω)
2q+(ω)

+
β−(q−(ω), ω)
2q−(ω)

]−1
Ei(ω) . (6.43)
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The coefficient depends on the spin of the excited polariton and optical field through
refractive index n2. Although this spin dependence is not explicitly shown in (6.33), one
may easily supplement formula (6.32) and rewrite (6.33) including spin numbers. I use an
effective Hamiltonian for coupling of the incident wave to the diffracted polariton whose
structure is similar to (6.18) in the model:

ĤDN= i
∑

S,K,q

Ee,K(t)e
−iωK tκSS′,K 〈S|e〉 P̂+S,k(K)+q

P̂+S′,k−qP̂S′,k , (6.44)

κSS′,K = ~
φ(q+)√
2π~ωq

Ω

s0(S, S′)
E0

β+Γ2
2q+

χS′(k)χS′(k−q) , (6.45)

where s0 is given by (6.43) and k(K) expresses the refraction law. We may simply verify
that this Hamiltonian gives the correct polariton polarization wave. Let’s consider the
crystal in a superposition of one–polariton states which form a population grating:

|Ψ〉 = 1√
2

[
P̂+k1 + P̂

+
k2

]
|0〉 . (6.46)

Spin is omitted for clarity. Equation of motion for the diffracted polarization wave reads:

i~∂t〈P̂diff〉 = 〈[P̂diff , ĤDN]〉 . (6.47)

Assuming optical field in direction K3 and that the wave vector of the diffracted field is
k3+q, the equation of motion reads:

i~∂t〈P̂diff〉 = iEK3(t)e
iωK3

tκK3

∑

q

〈P̂+k1−qP̂k1
〉 . (6.48)

The only nonzero contribution to the last mean value comes from correlation 〈P̂+k2P̂k1
〉

and thus q = k1−k2 and the diffraction direction is k1−k2+k3 what is the well known
result.

6.4 Polariton–polariton interaction

Polaritons are composed of an exciton and a photon providing possibility of the Coulomb
exciton–exciton and therefore polariton–polariton interaction. Let’s denote polariton as
p = x+γ, x representing a virtual exciton and γ representing a virtual photon. Polariton–
polariton interaction may be then written as:

p×p = (x+ γ)× (x+ γ) = x×x + 2x×γ + γ×γ . (6.49)

The mutual particle–particle interactions clearly involve also photon–exciton and photon–
photon interactions. Photons do not interact and therefore the polariton–polariton inter-
action consists only of exciton–exciton and photon–exciton scattering events. Exciton–
exciton interaction is described by the standard Hamiltonian (3.26). The exciton–photon
scattering term is zero for excitons which are exact bosons since the exciton–photon inter-
action is fully described by the linear term proportional to B̂+â+H.c.. However, excitons
are not exact bosons and one should take into account the component nonlinear coupling
as discussed in the preceding section. Its Hamiltonian is written in Eq. (6.22). With the
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help of (6.1)–(6.2), we may rewrite the Hamiltonians and we may connect them in one
Hamiltonian:

ĤSD =
1
2

∑

k,k′

∑

q

∑

S,S′

χS(k+q)χS′(k′−q)χS(k) ·

·[−Gd(q, 12(k−k′))φS′(k′)+Vd(q, 12(k−k′))χS′(k′)]P̂+S,k+qP̂
+
S′,k′−qP̂S,kP̂S′,k′+

+
1
2

∑

k,k′

∑

q

∑

jh,se

∑

j′
h
,s′e

χ
j′
h
se
(k+q)χjhs′e(k

′−q)χjhse
(k)[−Gx(q, 12 (k−k′))φ

j′
h
s′e
(k′) +

+Vx(q, 12(k−k′))χ
j′
h
s′e
(k′)]P̂+

j′
h
se,k+q

P̂+jhs′e,k′−qP̂jhse,k
P̂
j′
h
s′e,k

′ . (6.50)

Since we assume nearly parallel excitation beams, we may use the approximation k − k′ ≈ 0
and we may assume that the contribution to the FWM signal comes only from the scatte-
ring events with a small exchanged momentum q. Therefore we may let q ≈ 0 and we may
directly write the matrix elements of the Hamiltonian (with respect to the spin states of
polaritons):

Gd(S1, S2, S3, S4) =Gd(0, 0) 〈S1|S3〉 〈S2|S4〉 , (6.51)

Gx(S1, S2, S3, S4) =Gx(0, 0)
∑

jh,se

∑

j′
h
,s′e

〈jh, se|S3〉
〈
j′hs
′
e

∣∣S4
〉 〈
S1| j′h, se

〉 〈
S2| jh, s′e

〉
, (6.52)

Vd(S1, S2, S3, S4) = Vd(0, 0) 〈S1|S3〉 〈S2|S4〉 , (6.53)

Vx(S1, S2, S3, S4) = Vx(0, 0)
∑

jh,se

∑

j′
h
,s′e

〈jh, se|S3〉
〈
j′hs
′
e

∣∣S4
〉 〈
S1| j′h, se

〉 〈
S2| jh, s′e

〉
. (6.54)

where S1 and S2 are spins of the final states, S3 and S4 are spins of the initial states. The
matrices Vd and Gd are diagonal with respect to the basis composed of pairs (S1S2) and
(S3S4), respectively. Spin is therefore conserved in all direct scattering processes. However,
exchange processes are responsible for the change of the spins of the respective polaritons.
Spin parts (right–hand side of (6.52) without Gx(0, 0)) of the matrices Gx and Vx (these
spin parts are equivalent for both matrices) do not generally depend on the crystal symme-
try, however the spin structure of dipole–active excitons depends on the crystal symmetry
and therefore mutual scattering of optically excited polaritons is symmetry–dependent.
For example in hexagonal crystals with wurtzite structure, dipole–active states with spin
±1 have the simple structure |+〉 = Φ2β and |−〉 = Φ1α, respectively, with the Φj and
α, β defined in chapter 5. Exchange scattering of the |+〉 and |−〉 polaritons then always
leads to dipole–inactive states Φ2α and Φ1β with spins ±2. In cubic crystals, on the
contrary, dipole–active states are superpositions of the states from the lh and hh band:
|+〉 = 1

2 [Φ3α +
√
3Φ1β] and |−〉 = 1

2 [Φ4β +
√
3Φ2α]. Exchange of electrons or holes then

may lead to creation of the dipole–active pair |+−〉. Exchange scattering to dipole–active
states is therefore allowed in crystals with zinc–blende structure what may result in a
strong FWM response when compared with the response to σ+σ+ excitation.
The spin parts of exchange scattering for materials with zinc–blende and wurtzite

structures are summarized in Tabs. 6.1–6.4. Only the parts of the matrices which contain
dipole–active states are shown since this is the most important part. In Tabs. 6.1–6.2, the
matrices for cubic crystals with zinc–blende structure are shown concerning linearly polari-
zed polaritons (Tab. 6.1) and circularly polarized polaritons (Tab. 6.2). The Tabs. 6.3–6.4
depict the same properties considering a crystal with wurtzite structure. Note that the spin
structure of dipole–active polaritons (excitons) in [001] QW with zinc–blende structure is
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〈Sf S′f |Gx/Gx(0, 0)|S S′〉 |X〉 |X〉 |X〉 |Y 〉 |Y 〉 |X〉 |Y 〉 |Y 〉
〈X| 〈X| 1

2 0 0 −18
〈X| 〈Y | 0 1

2
1
8 0

〈Y | 〈X| 0 1
8

1
2 0

〈Y | 〈Y | −18 0 0 1
2

Table 6.1: The spin part of the fermion exchange between two polaritons, from (6.52) for spins in
the direction of the principal axes and crystal with zinc–blende structure. The rows stand for the
initial states and the columns for the final states.

〈Sf S′f |Gx/Gx(0, 0)|S S′〉 |+〉 |+〉 |+〉 |−〉 |−〉 |+〉 |−〉 |−〉
〈+| 〈+| 5

8 0 0 0
〈+| 〈−| 0 3

8 0 0
〈−| 〈+| 0 0 3

8 0
〈−| 〈−| 0 0 0 5

8

Table 6.2: Same as Tab. 6.1 for circular spins of the polaritons.

equivalent to the spin structure of dipole–active polaritons in bulk crystals with wurtzite
structure and therefore Tabs. 6.3–6.4 are valid also to most cubic quantum wells.
The most interesting and important property of the polariton–polariton scattering

is the difference between the tables for linearly and circularly polarized particles. For
circularly polarized particles, the spin of contributing polaritons is conserved or they may
exchange spins one with the other. Linearly polarized particles, on the contrary, may
change the spins to the states different from the initial states: the XX pair may scatter to
the Y Y pair while scattering ++→−− is always forbidden. As shown in chapter 5, level
schemes for excitation of linearly or circularly polarized particles have the same structure,
however considering particle–particle interaction, the analogy is broken. This fact will be
mentioned later since it is crucial for polarization selection rules in FWM.

6.5 Bipolaritons

Biexcitons were already discussed within the giant oscillator strength model in section 3.4.
I have mentioned with reference to Ref. [38, 93, 94] that the GOS model is a rough
approximation because it doesn’t describe the dynamics of the biexciton creation, however
this dynamics may be important in the model of FWM response. One of the reasons of the
fail of the GOS model is, that excitons and biexcitons are treated as independent particles,
however biexciton is rather a linear combination of two–exciton states. The bipolariton
model is further confirmed by experiments on bipolariton luminescence [95, 96, 97].
Exact description of the biexciton dynamics is impossible due to the structure of the

exciton–exciton interaction. One therefore uses a model which is sufficiently accurate. I use
the A.L. Ivanov’s and H. Haug’s bipolariton model [38] in this thesis. Bound molecules are
called bipolaritons instead of biexcitons in order to reflect the fact that the strong dipole
interaction is taken into account and polaritons are responsible for excitation–induced
phenomena.
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〈Sf S′f |Gx/Gx(0, 0)|S S′〉 |X〉 |X〉 |X〉 |Y 〉 |Y 〉 |X〉 |Y 〉 |Y 〉
〈X| 〈X| 1

2 0 0 −12
〈X| 〈Y | 0 1

2
1
2 0

〈Y | 〈X| 0 1
2

1
2 0

〈Y | 〈Y | −12 0 0 1
2

Table 6.3: The spin part of the fermion exchange between two polaritons, from (6.52) for spins
in the direction of the principal axes and crystal with wurtzite structure. The rows stand for the
initial states and the columns for the final states.

〈Sf S′f |Gx/Gx(0, 0)|S S′〉 |++〉 |+−〉 |−+〉 |−−〉
〈++| 1 0 0 0
〈+−| 0 0 0 0
〈−+| 0 0 0 0
〈−−| 0 0 0 1

Table 6.4: Same as Tab. 6.3 for circular spins of the polaritons.

In the bipolariton model, excitons and bipolaritons are not considered as independent
particles and one considers the bipolariton wavefunction in the form:

ÂJ,K =
1√
Ω

∑

q

Ψ(J)m (q)B̂K/2+q
B̂

K/2−q
, (6.55)

where Ω is the normalization volume and Ψ(J)m (q) is the bipolariton wavefunction in reci-
procal space. The superscript J distinguishes between bipolariton internal states, J = 0
denotes the bipolariton ground state. In the following, I consider only the ground states
of bipolaritons since they give the strongest contribution to the optical response, however
excited states may be included in the model. The subscript J is then omitted in the ope-
rators of bipolariton in the ground state. I dropped the spin subscripts for clarity. One
may express the two–exciton operators in the following way [93]:

B̂
K/2+q

B̂
K/2−q

=
1√
Ω

∑

J

Ψ(J)m
∗
(q)ÂJ,K ≈

≈ 1√
Ω
Ψ(0)m

∗
(q)ÂK . (6.56)

This approximation is valid under assumption of resonant excitation with the bipolariton
state J = 0. The bipolariton wavefunction Ψ(J)m (q) is calculated in order to diagonalize
the Hamiltonian of polariton–polariton interaction and therefore the bipolariton state is
the eigenstate of the polariton Hamiltonian including particle–particle interactions. Note
that the bipolariton state defined by (6.55) is assumed to be the bound state. One should
then add all unbound states (eigenstates of the polariton Hamiltonian) in order to have
the full set of two–polariton wavefunctions. It is, indeed, impossible to find all these states
analytically and therefore one may use the following approximation: let’s assume that there
exists a two–exciton state which is excited in an experiment and another two–exciton state
which is probed. We approximate the basis of two–exciton states by the full set of bound
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and unbound two–exciton states from which the aforementioned two–exciton states are
subtracted and these bare two–exciton states are added to the basis. Let’s denote the initial
and the final two–exciton states by the wave vectors of the contributing particles using
the notation |k′1,k′2〉 for the initial state and |k′3,k′4〉 for the final state (k′1+k′2 = k′3+k′4).
The reduced bipolariton wavefunction then has the form:

ÃK = ÂK−δ(K−k′1 − k′2)√
Ω

[
Ψ(0)K

(
1
2(k
′
1−k′2)

)
B̂

k′
1
B̂

k′
2
+Ψ(0)K

(
1
2(k
′
3−k′4)

)
B̂

k′
3
B̂

k′
4

]
. (6.57)

At this stage, we may use (6.56) in order to express the exciton–exciton interaction in the
resonant approximation. The exciton–photon coupling is not included here, however the
resonant approximation means that the two–polariton states are resonant with a bipolari-
ton. Denoting the harmonic term of the Hamiltonian of two–particle states ĤE2, we may
write:

ĤE2 +
1
2Ω

∑

kk′q

W (q,k−k′)B̂+k+qB̂
+
k′−qB̂kB̂k′ ≈

≈
∑

K

εmKÃ
+
KÃK + (Ek′

1
+Ek′

2
)B̂+

k′
1
B̂+

k′
2
B̂

k′
1
B̂

k′
2
+

+(Ek′
3
+Ek′

4
)B̂+

k′
3
B̂+

k′
4
B̂

k′
3
B̂

k′
4
+

+
W (0, 0)
Ω

[
B̂+

k′
1
B̂+

k′
2
B̂

k′
1
B̂

k′
2
+ B̂+

k′
3
B̂+

k′
4
B̂

k′
3
B̂

k′
4

]
+

+
[M2(k′1−k′2)√

Ω
Ã+

k′
1+k′

2
B̂

k′
1
B̂

k′
2
+
M2(k

′
3−k′4)√
Ω

Ã+
k′
3+k′

4
B̂

k′
3
B̂

k′
4
+H.c.

]
+

+
1
2Ω

{
[W (k′1−k′3,k

′
3−k′4) +W (k

′
1−k′4,k

′
3−k′4)] ·

·δ(k′1+k′2−k′3−k′4)B̂
+
k′
1
B̂+

k′
2
B̂

k′
3
B̂

k′
4
+H.c.

}
, (6.58)

where εmK denotes the energy of a bipolariton and Ek the energy of an exciton. The
scattering strength W (q,k) is defined as W (q,k) = Vx(q,k) + Vd(q,k) and we do not
approximate q,k ≈ 0 at this point since the exchanged momentum can be arbitrary
in this Hamiltonian. M2 is the coupling strength between a two–exciton state and the
bipolariton given by [93]:

M2(k) =
∑

q

W (q)Ψ(0)m (k/2− q) . (6.59)

The first term on right-hand side of (6.58) stands for the energy of bipolaritons and the
second and the third term for the energies of the remaining two–exciton states. The first
three terms then give the energy of the two–exciton states which are dominant in the opti-
cal response when the sample is excited resonantly with the bipolariton state. The fourth
term describes the energy change of two–exciton states caused by the self–interaction —
we do not consider this energy renormalization in the following since its influence on the
FWM signal is negligible. The fifth term stands for the bipolariton creation and the last
term describes direct scattering from the initial to the final state without interplay of the
bipolariton. In the resonance with bipolariton, the last term may be neglected because the
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bipolariton–mediated scattering is usually much stronger than the direct exciton–exciton
scattering. The interaction Hamiltonian may be written in the polariton picture:

ĤSB=
∑

Γm

∑

S,S′

[
χS(k

′
1)χS′(k′2)M2(Γm, S, S

′)Ã+
Γm,k′

1+k′
2
P̂
S,k′

1
P̂
S,k′

2
+

+χS(k
′
3)χS′(k′4)M2(Γm, S, S

′)Ã+
Γm,k′

3+k′
4
P̂
S,k′

3
P̂
S,k′

4

]
+H.c. , (6.60)

where the spin was taken explicitly into account and I defined, assuming nearly parallel
excitation beams:

M2(Γm, S1, S2) =
M2(0)√
Ω

〈Γm|S1, S2〉 . (6.61)

The subscript of the bipolariton operators distinguishes between bipolaritons in their
ground states having various symmetries. The Hamiltonian (6.60) clearly shows the dy-
namics of the bipolariton creation [38]. First, bare two–polariton states are created e.g.
by optical pumping. Coulomb interaction between the two polaritons causes their mutual
scattering and creation of the bipolariton wavefunction as a consequence of the attractive
nature of the polariton–polariton interaction. There exists an inverse process to the bi-
polariton creation: spontaneous annihilation. This process is responsible for bipolariton
luminescence as verified experimentally [95, 96, 97]. The creation and annihilation of bi-
polariton may be seen as the following process:

γ(k′1)+γ(k
′
2)→ p(k′1)+p(k

′
2)→ m(k′1+k′2=k′3+k′4)→ p(k′3)+p(k

′
4)→ γ(k′3)+γ(k

′
4) .

The letter m stands for the bipolariton. It is clear that the bipolariton wavefunction is not
created immediately after optical pumping but its creation is a progressive process which
continues until the population of the initial two–polariton states is completely relaxed.
Bipolariton population therefore increases in time after optical pumping as shown expe-
rimentally [35]. This dynamics of bipolaritons has a big influence on the dynamics of the
FWM response: since the biexciton creation is immediate in the GOS model, the biexci-
ton response is instantaneous in OBE–like models [2]. Considering the bipolariton model,
the response is not instantaneous since the bipolariton creation is not an instantaneous
process.

6.6 Relaxation and dephasing rates

In the preceding sections of this chapter, all interactions, which must be taken into ac-
count when describing four–wave mixing experiments on semiconductors, were discussed
and the appropriate Hamiltonians were derived. One may therefore easily derive equations
of motion for the coherences which then lead to the FWM response. However, incoherent
processes cause dephasing and relaxation of particles in realistic systems and these pro-
cesses are not included in the Hamiltonian. Dephasing and relaxation terms then may be
included phenomenologically. In this section, I discuss all dephasing and relaxation rates
which will be subsequently added to the equations of motion in the next section.
Relaxation is an incoherent loss of population of a quantum–mechanical state accom-

panied by an increase of population of another state. The underlying mechanism is a
spontaneous transition (from the point of view of the considered interactions) of a particle
from one state to another. Dephasing is, on the contrary, a process which causes loss of
a coherence of the type ̺jℓ even if the populations ̺jj and ̺ℓℓ are constant. Dephasing is
driven by the loss of the aforementioned populations as shown in Eq. (2.59) and also by
the loss of the correlations between the phases of the states |j〉 and |ℓ〉 as shown in (2.50).
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The rates will be demonstrated on an OBE–

Figure 6.5: Sketch of all possible dephasing ra-
tes. Rates denoted by gray lines do not act in
the model.

like scheme in order to illustratively show
which types of rates contribute to the dy-
namics. Let’s consider a scheme similar to
the “O” scheme discussed in section 5.2 with
an additional bipolariton level and two–polariton
levels (see Fig. 6.5). The level scheme in Fig. 6.5
is similar to the scheme of the model which
will be discussed in detail in the next section.
Levels represent polariton and bipolariton sta-
tes (wavepackets) denoted by spin and cent-
ral wave vector (see section 6.2 for details).
Since polaritons form a continuum in energy,
all levels with energies from 0 to EX should
be essentially included in the scheme. As shown
in section 6.2, the decisive part of the FWM
signal may be described using states resonant
with excitons and bipolaritons. Therefore I
consider the ground state |0〉, the exciton–
like one–polariton states |±〉, the exciton–like
two–polariton state |+−〉3, a two–polariton
state resonant with bipolariton |+−′〉 and the bipolariton state |m〉.
All relaxation and dephasing rates may be found in Fig, 6.5 by connecting all pairs

of levels by lines and assigning a dephasing and a relaxation rate to every line. The lines
which connect the levels |j〉 and |ℓ〉 then shows dephasing of the coherences ̺jℓ and ̺ℓj
and relaxation from the state |j〉 to the state |ℓ〉 or vice versa. In the model, relaxation and
dephasing rates are considered to not depend on the exciton spin, i.e. the rates connected
with the ‘+’ exciton are equal to the rates connected with the ‘−’ exciton. We may
therefore assign only one relaxation rate to both processes of relaxation from e.g. |+〉 to
|0〉 and from |−〉 to |0〉. Further reduction of the number of considered rates is described in
the following. Concerning relaxation processes, equations of motion involve many terms.
Equation of motion for the population of the state |+〉 reads:

∂t̺+,+=−γ1,1̺+,+−γ1,2(̺+,+−̺−,−)+γ1,3̺m,m+γ1,4̺+−,+−+γ1,5̺+−′,+−′ . (6.62)

The constants γ1,1−5 are the phenomenological relaxation rates. The population of the
ground state does not decay but, on the contrary, it increases in time since it is the state
with the lowest energy and therefore it is the final state for relaxation from other (excited)
states. Due to Tr̺ = 1, the equation of motion reads:

∂t̺0,0 = γ1,1(̺+,+ + ̺−,−) + . . . , (6.63)

where the terms which would follow the equation come from two–particle states.
In the following text, the rates with subscript ‘1’ will be used for relaxation rates and

rates with subscript ‘2’ refer to dephasing rates. Decay of coherences are expressed simply
by the equations of type:

∂t̺+−,+ = −γX2 ̺+−,+ . (6.64)

The dephasing and relaxation rates determine unambiguously the dynamics of the loss
of populations and coherences, however it is sometimes convenient to define associated

3There should be also states |±±〉 in the scheme due to Bose statistics of polaritons. However, these
states are not important for the discussion of dephasing and relaxation rates and therefore they are omitted
here.
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constants to the rates — time constants. The definition of relaxation and dephasing times
is T = γ−1 with appropriate indices. Relaxation time is then the time after which the
coherence or population decays to the 1/e of the initial value.

Looking at Fig. 6.5, we find that there may be in principle defined many dephasing
and relaxation rates which describe the incoherent dynamics of the considered system.
The aim of the following discussion is then to select only the rates which contribute to
the dynamics of the third–order response. I show the relations between several rates and
at the end, I give an estimate of the magnitudes of the rates.

Recalling the principle of the perturbative solution of OBE (2.72)–(2.74) and (2.75)–
(2.77) which is common for all level schemes, clearly only the zero–order and second–order
populations contribute to the third–order response. The only zero–order term is the initial
population of the ground state which is stationary and therefore only dynamics of the
second–order populations must be described. Eq. (6.62) then reduces to:

∂t̺
(2)
+,+ = −γ1,1̺(2)+,+ + γ1,2̺

(2)
−,− . (6.65)

The two–particle populations are of the fourth and higher order and clearly do not con-
tribute. The dynamics of the ground state is then described by (6.63) without the terms
denoted by the dots. The aforementioned relaxation rates γ1,1−2 will not be present in the
equations of motion for the FWM response due to a special structure of the model. They
contribute, on the other hand, in description of e.g. pump and probe experiments which
is this model applicable to as noted above.

Concerning dephasing rates, we choose only the rates which may be assigned to cohe-
rences which contribute to the FWM response. Clearly coherences between two–particle
states do not contribute to the third–order response since these coherences are at least
of the fourth order in amplitude of optical field. All other coherences play a role in the
dynamics of the FWM response as denoted in Fig. 6.5 by color lines. Considering the
symmetry with respect to spin, we resolve eight types of coherences and therefore eight
different dephasing times.

There are four zero–photon coherences in the model, i.e. coherences between the states
with the same number of polaritons. Indeed, only the spin coherence ̺+,− contributes to
the third–order signal and therefore we do not take other coherences into account. Decay
of the spin coherence is then described by the decay rate γC2 . There are four types of
one–photon coherences to which we assign the following dephasing rates: γ2 to ̺±,0, γX2
to ̺+−,±, γB2 to ̺m,± and γ

R
2 to ̺+−′,±. There are three two–photon coherences, each of

them associated with a dephasing rate: ̺+−,0 is associated with the rate γ2X2 , ̺+−′,0 with
γ2R2 and ̺m,0 with γ

2B
2 .

One may estimate the values of the relaxation and dephasing times. Concerning re-
laxation times, they are usually of the order of 100 ps–10 ns. Dephasing times are, ne-
vertheless, much shorter since coherences are sensitive to phases of the relevant states
while populations do not reflect them as shown in section 2.3. The spin coherence of the
type ̺+,− is an exception — it is sensitive to the phases of the respective particle states,
however these phases are highly correlated and therefore the dephasing time of the spin
coherence γC2 is of the order comparable to the population relaxation time. We can do an
upper estimate for the dephasing time using (2.50) and we get TC2 ≤ TX1 . Using (2.50) and
(2.59), the upper limit for dephasing time of one–photon coherences is T2 ≤ 2TX1 . For a
better estimate, one writes:
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1
T2
=
1
T ∗2
+
1
2TX1

+
1

T inh2
, (6.66)

where T ∗2 is the pure dephasing which comes from the processes which destroy the phase
correlations between the states without population relaxation and T inh2 is an effective
dephasing caused by inhomogeneity of the system — the process is similar to the fast
decay of the overall polarization in optical Bloch equations. Pure dephasing processes are
usually much faster than population relaxation and therefore TX1 ≫ T2 ≈ 100 fs–1 ps.
Dephasing time of one–photon coherences connected with two–polariton states may differ
considerably from the dephasing time T2. This property may be illustrated in (6.66): due
to scattering of two–polariton states, relaxation rate of their population is increased and
therefore TX2 < T2. There is no other dephasing process of the coherences ̺+−,± and under
assumption of weak polariton–polariton interaction, we may put TX2 ≈ T2. Bipolaritons
are relatively stable particles and therefore we may consider also TB2 & T2. Population of
the two–polariton state, which is not exciton–like (|+−′〉), relaxes rapidly due to radiative
decay. Using (6.66), we find TR2 < T2 and the difference may be in orders of magnitude.
However, we cannot do a better estimate since the ratio of the dephasing times is sample–
dependent. Decay of the two–photon coherences may be estimated by the inequality:

T 2B2 ≫ TX2 > 2T 2X2 > 2T 2R2 , (6.67)

where the first inequality arises due to the stability of the bipolariton state. This dephasing
time may be of the order of 10 ps. The decay time T 2R2 is again sample–dependent and
may vary between tens of fs and units of picoseconds.
The aforementioned set of relaxation and dephasing rates may be arbitrarily modified

and more rates may be introduced as an extension of the particular model presented in
this chapter. One may e.g. consider that relaxation and dephasing rates depend on exciton
spin.

6.7 Derivation of simplified equations of motion

I derived the effective Hamiltonian of the problem in the preceding sections. The total
Hamiltonian then reads:

Ĥtot =
∑

k

∑

S,S′

hSS′,kP̂
+
S,kP̂S′,k + ĤDL + ĤDN + ĤSD + ĤSB . (6.68)

The particular parts of the Hamiltonian may be found in (6.18), (6.44), (6.50) and (6.60).
The first term is the harmonic term which allows spin–flip processes with the assumption
of wave vector conservation. The other terms describe the photon–polariton coupling and
polariton–polariton interactions. Note that the term ĤSB acts only on two–polariton states
resonant with the bipolariton state.
Derivation of equations of motion for the coherences of the type 4 〈Ô〉 = 〈P̂+k · · · P̂q · · ·〉

is straightforward using the equation:

i~
∂

∂t
〈Ô〉 = 〈[Ô, Ĥ]〉 . (6.69)

4The averaging means here the quantum–mechanical mean value and ensemble averaging over the
system. This averaging was denoted as 〈〈· · ·〉〉, I will use the expression 〈· · ·〉 in the following since every
averaging will be performed over the whole system.
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The derived equations would then form an infinite system, however the goal of the theory is
to derive simple equations which may be visualized by a few–level scheme similarly to OBE.
In order to get a closed set of equations for a limited number of functions (coherences and
populations), one must perform some simplifications. These simplification are described
in the following subsections and they will be:

• Truncation of the scheme.
• Considering of Coulomb interaction as the first–order perturbation.
• Reduction of the number of states resolved by wave vector.

6.7.1 Truncation of the scheme

Equations of motion derived from the Hamiltonian (6.68) may be resolved by the number of
polariton operators which are in the mean value on left hand side. According to microsco-
pic theories, we may speak about one–polariton correlation functions of the form 〈P̂S,k〉,
two–polariton correlation functions 〈P̂S,KP̂S′,k′〉, 〈P̂+S,kP̂S′,k′〉 and 〈ÂΓ ,K〉 etc. These corre-
lation functions refer to two–particle5 and four–particle correlation functions, respectively,
in the microscopic theories (see chapter 4). It may be shown from equations of motion that
correlation functions up to an infinite order in the number of particles contribute to the
FWM signal due to coupling of m–particle correlation functions to (m+2)–particle corre-
lation functions via Coulomb interaction. The aim of truncation is then elimination of the
functions with high number of particles.
In microscopic theories, one uses the standard dynamical truncation scheme for the

purpose of elimination of correlation functions with a high number of particles [5, 70, 71].
According to weakly interacting boson model [77], one may use, on the contrary, the
density matrix formalism instead and this is the way how the scheme will be truncated
in the presented theory. Instead of writing equations of motion for correlation functions
of the type e.g. 〈P̂+S1,k1P̂

+
S2,k2

〉, we use equations of motion for density matrix defined for
m–particle states for m up to 2. Use of these equations of motion is clarified by the use of
(2.37):

̺S1k1,S2k2 =
〈
B̂+S1,k1B̂

+
S2,k2

〉
−
∑

S

∑

k

〈
B̂+S1,k1B̂

+
S2,k2

B̂+S,kB̂S,k

〉
. (6.70)

Using the above definition, it may be shown that m–particle correlation functions are
coupled in the density matrix formalism to m–particle correlation functions and therefore
the set of equations, without considering dipole interaction, is closed for a fixed number
of excited polaritons.
To conclude the above discussion, evolution of the system is described by the density

matrix ̺(t), ̺(t=0) = |0〉〈0|, i.e. only the population ̺0,0 = 1 is nonzero at t = 0, other
density matrix elements are zero. Electromagnetic field creates one–photon coherences of
one–polariton states with respect to the ground state in the first order of perturbation
theory. In the second order, one–polariton populations and two–photon coherences are
created. At most three-photon coherences (i.e. correlations of the three–polariton states
with respect to the ground state) may created after arrival of the last pulse, however
these coherences are not coupled to electromagnetic field in the first order of the field
amplitude, i.e. they do not contribute to the third–order response. We may therefore omit
the influence of three– and higher–polariton states in equations of motion.

5In order to use the correct terminology and distinguish electrons and holes from polaritons, I use the
term particles for fermions and polaritons for (bosonic) polaritons. Two–polariton correlation function is
the four–particle correlation function.
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Figure 6.6: Multi–step (a) and one—step (b) scattering processes which lead from a defined initial
state to another defined final state. Black lines denote wave vectors of excitons (green ellipses).

6.7.2 Coulomb interaction

Coulomb interaction causes difficulties in the model since it acts continually on two–
polariton states and therefore the scattering from the pair |Sk1, S

′k2〉6 involves the first–
order scattering |Sk1, S

′k2〉 → |Σk3,Σ′k4〉, a second–order process |Sk1, S
′k2〉 →

→ |σk, σ′k′〉 → |Σk3,Σ′k4〉 and higher–order processes (see Fig. 6.6). However, we may
consider that the polariton–polariton interaction is sufficiently weak (due to electric ne-
utrality of polaritons) and we may therefore assume that higher–order processes do not
considerably contribute to the scattering. The only case, when the Coulomb interaction
must be taken into account up to higher orders, is the bipolariton effect.
I clarify this consideration by the following idea. Excitons are electrically neutral

particles and therefore their mutual interaction is much weaker at high distances than
monopole–monopole Coulomb interaction [10]. Considering scattering of exciton–like po-
laritons, they have high kinetic energy and they spatially separate immediately after ex-
change of some momentum and the first–order approximation is reasonable (we use the
Hamiltonian ĤSD (6.50)). At bipolariton energy, polaritons spatially separate if the inter-
action is repulsive and they form a bound object if the interaction is attractive. Therefore
we may use the first–order approximation for the former and we use the bipolariton mo-
del for the latter. The repulsive interaction is, however, neglected in the following due to
fast decay of the coherence of the initial two–polariton state. Attractive interaction, on
the contrary, effectively enhances the strength of the effective scattering process which
becomes then important and we use the Hamiltonian ĤSB (6.60) for its description. It is
important to emphasize that the perturbative description of the coupling of two–polariton
states to the bipolariton state doesn’t corrupt subsequent scattering events, it means that
the influence of the initial and final state on the scattering dynamics is negligible. This
statement is true due to high directionality of the incident fields and therefore due to
localization of the initial and final states in reciprocal space.

6.7.3 Reduction of the number of states
Although the number of equations of motion was considerably reduced by assumption of
the third–order response and by truncation of the considered coherences at two–particle
states, the number of states involved in equations of motion is still infinite. Equations of
motion couple states with all possible wave vectors and energies (note that polaritons form
a continuum in energy).

6I use this short notation for the two–polariton state P̂+S,k1
P̂+

S′,k2
|0〉. It may be shortened to |k1, k2〉

when the spin is omitted.
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Figure 6.7: Level scheme which represents the model. Black lines represent considered states, green
lines are linear dipole interactions. Other lines represent wave mixing processes: blue lines represent
the diffraction channel, orange lines the bipolariton channel and red line the direct channel.

I discuss in section 6.2 how to overcome the problem of the polariton continuum: the
spectrum of incoming pulses may be divided into parts and each of them may be then
represented by a polariton state described by some central wave vector and energy. The
more states are used, the more precise the model is, however the more complex calculations
are. The aim of this thesis is to develop a model capable of description of the dynamics of
polarization of the FWM signal. It is therefore not necessary to describe the dynamics of
the states over the whole wide excitation spectrum and one may choose the most important
contributions. As shown in section 6.2, the decisive contribution to the FWM signal comes
from exciton–like polaritons and bipolaritons.

Concerning one–polariton states, I take into

Figure 6.8: Sketch of available one–polariton
(yellow), two–polariton (green) and bipola-
riton (blue) states. The width of the green
field represents number of available states at
the given energy. Black lines then stand for
the states considered in the model.

account only the exciton–like one–polariton sta-
tes with all possible spins. I choose also all
exciton–like two–polariton states which are pro-
ducts of pairs of exciton–like one–polariton sta-
tes. Then I consider bipolariton states with
all possible spins. These bipolaritons are reso-
nantly coupled to two–polariton states which
are not exciton–like and therefore we must take
these two–polariton states into account. There
are, however, many two–polariton states which
fulfill the resonant condition for coupling to a
bipolariton. I approximate the full group of
two–polariton states by one state with an ef-
fective dephasing rate and coupling coefficient.
In order to simplify the calculation of effective
coefficients, I take their values as if the polari-
tons in the two–polariton state had equal wave
vectors. Besides the states coupled to bipola-
ritons, I take into account all states from the
full 8× 8 spin basis of two–polariton states.
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The choice of the states described by the mo-

Figure 6.9: Schematic sketch of dephasing ra-
tes involved in the model and the coherences
which they are related to.

del is sketched in Fig. 6.8, wave vectors and
spins are omitted for clarity. All possible sta-
tes are depicted by yellow color (one–polariton
states), green color (two–polariton states) and
by blue color (bipolariton states). Width of
the green column reflects the number of sta-
tes with the energy depicted on the verti-
cal axis. The chosen states are denoted by
black horizontal lines. From bipolariton sta-
tes, I select only the lowest lying state which
resonantly couples to the optical field since
other states cannot contribute to the FWM
response due to wave vector conservation. The
ensemble of two–polariton states resonant with
bipolariton is approximated by one state with effective dephasing and coupling constants.
Now the last stage of the reduction of the number of states may be undertaken. We are

interested in the FWM response in the direction k1+k2−k3 created by excitation pulses
with wave vectors k1, k2 and k3. Since the initial and final states are well defined, we may
take into account in calculations only the states which are intermediate states of the system
evolution between excitation and diffraction. Clearly the intermediate states are given by
the wave vectors of the incoming fields and all states are sketched in the level scheme in
Fig. 6.7. The states depicted in the Figure represent rather groups of states denoted by
the wave vector: these groups contain polaritons with all possible combinations of spins.
The notation |q,k〉 is then used in order to denote the exciton–like two–polariton state in
which the particular polaritons have wave vectors q and k, respectively, and all possible
combinations of spins. The primed wave vectors |q′,k′〉 have the meaning of the states
which are coupled to the optical fields with wave vectors k and q and which are resonant
with the bipolariton state. Reduction to only the states depicted in Fig. 6.7 is possible
since we consider all interactions described by the Hamiltonian (6.68) in the first–order
perturbation theory. Fig. 6.9 then illustrates dephasing rates involved in the model — the
particular rates are assigned to coherences depicted as lines between appropriate states.
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6.7.4 Equations of motion

The number of states was reduced in the preceding subsections to two– or less–particle
states with wave vectors k1, k2, k3, k4=k1+k2−k3 and k1+k2=k3+k4 which are either
exciton–like or resonant with bipolariton. In Fig. 6.7, we identify 10 groups of states
containing 290 states denoted by wave vector and spin. It is then easy to define the
density matrix and to write the Hamiltonian in the braket formalism:

Ĥ =
∑

S 6=S′

4∑

j=1

hSS′,kj

∣∣S′kj
〉〈
Skj

∣∣+
∑

Γ ,Γ ′

hΓΓ ′,k1+k2

∣∣Γ ′k1+k2
〉〈
Γk1+k2

∣∣+

+
∑

S1,S2

∑

S3,S4

[hS1S2,k1 + hS3S4,k2 ] |S2k1, S4k2〉〈S1k1, S3k2|+

+
∑

S1,S2

∑

S3,S4

[hS1S2,k3 + hS3S4,k4 ] |S2k3, S4k4〉〈S1k3, S3k4|+

+
∑

k′
1,k

′
2

∑

S1,S2

∑

S3,S4

[hS1S2,k′
1
+ hS3S4,k′

2
]
∣∣S2k′1, S4k′2

〉〈
S1k

′
1, S3k

′
2

∣∣+

+
∑

k′
3,k

′
4

∑

S1,S2

∑

S3,S4

[hS1S2,k′
3
+ hS3S4,k′

4
]
∣∣S2k′3, S4k′4

〉〈
S1k

′
3, S3k

′
4

∣∣+

+ i
∑

S

Ee1,K1(t)e
−iωK1

tµS,K1 〈S|e1〉
[
|Sk1〉〈0|+

∑

S′

∣∣Sk1, S
′k2
〉〈
S′k2

∣∣
]
+

+ i
∑

S

Ee2,K2(t)e
−iωK2

tµS,K2 〈S|e2〉
[
|Sk2〉〈0|+

∑

S′

∣∣Sk2, S
′k1
〉〈
S′k1

∣∣
]
−

− i
∑

S

E∗e3,K3
(t)eiωK3

tµS,K3 〈e3|S〉
[
|0〉〈Sk3|+

∑

S′

∣∣S′k4
〉〈
Sk3, S

′k4
∣∣
]
+

+ i
∑

S

Ee1,K1(t)e
−iωK1

tκSS′,K1
〈S| e1〉 [

∣∣Sk3, S
′k4
〉〈
S′k2

∣∣+
∣∣S′k3, Sk4

〉〈
S′k2

∣∣ ] +

+ i
∑

S

Ee2,K2(t)e
−iωK2

tκSS′,K2
〈S| e2〉 [

∣∣Sk3, S
′k4
〉〈
S′k1

∣∣+
∣∣S′k3, Sk4

〉〈
S′k1

∣∣ ] +

+
∑

k′
1,k

′
2

∑

Γ

∑

S,S′

δΓSk′
1,S

′k′
2
χS(k

′
1)χS′(k′2)M2(Γ , S, S

′) |Γk1+k2〉
〈
Sk′1, S

′k′2
∣∣+

+
∑

k′
3,k

′
4

∑

Γ

∑

S,S′

δΓSk′
3,S

′k′
4
χS(k

′
3)χS′(k′4)M

∗
2(Γ , S, S

′)
∣∣Sk′3, S

′k′4
〉
〈Γk1+k2|+

+
1
2

∑

S,S′

χS(k2)[−Gd(0, 0)φS′(k1) + Vd(0, 0)χS′(k1)] ·

·
[
χS(k3)χS′(k4)

∣∣Sk3, S
′,k4

〉〈
S′k1, Sk2

∣∣+

+χS(k3)χS′(k4)
∣∣S′k3, S,k4

〉〈
S′k1, Sk2

∣∣
]
+

+
1
2

∑

jh,se

∑

j′
h
,s′e

χjhse
(k2)[−Gx(0, 0)φj′

h
s′e
(k1) + Vx(0, 0)χj′

h
s′e
(k1)] ·

·
[
χjhse

(k3)χj′
h
s′e
(k4)

∣∣jhsek3, j′hs′ek4
〉〈
j′hs
′
ek1, jhsek2

∣∣+

+χj′
h
s′e
(k3)χjhse

(k4)
∣∣j′hs′ek3, jhsek4

〉〈
j′hs
′
ek1, jhsek2

∣∣
]
. (6.71)
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One has generally more than one bipolariton state and thus more sets of states with
primed wave vectors arise in the sums. They are then evaluated as follows. For every pair
of polariton spins S, S′ and a bipolariton spin Γ , there may exist a pair of effective wave
vectors of polaritons k′1,k

′
2 such that the state |Sk′1, S

′k′2〉 is resonant with the bipolariton.
Summation over pairs k′1,k

′
2 then goes over all two–polariton states which were found on

the basis of the above statement. Function δΓSk′
1,S

′k′
2
is then one if the pair of wave vectors

is assigned to the spins S, S′ and Γ , otherwise it is zero.
Terms hSS′,k in (6.71) are the harmonic terms of polaritons. For S = S′, these terms

determine energies of one–polariton states with spin S and wave vector k. Nondiagonal
terms for S 6= S′ then determine spin precession within the group of states with wave
vector k — the element hSS′,k then defines coupling between the spins S and S′.
The first five lines in (6.71) are the harmonic terms of all states involved in the sys-

tem reduced on the basis of thoughts discussed above. The next three terms stand for
linear dipole coupling and the following two terms describe nonlinear dipole coupling, in
particular the scattering on the crystal surface. The eleventh and twelfth term express
formation and annihilation of bipolaritons and the last two terms stand for direct and
exchange polariton–polariton scattering terms, respectively.
The level scheme appropriate for the reduced system of states with couplings denoted

by arrows is depicted in Fig. 6.7. All coupling terms between the groups of states (denoted
by wave vector) are shown and their strengths are depicted within the circles. According
to the perturbational approach, arrows denote the directions in which the system evolves.
The wavy lines denote radiation of photons in the FWM direction. Intensity of the FWM
signal is then proportional to the appropriate coherences multiplied by assigned dipole
momenta:

E
(−)
k1+k2−k3

(t)∝
∑

S,e

e 〈e|S〉
{
µS,K4

[
̺
(3)
Sk4,0

(t) +
∑

S′

̺
(3)
S′k3Sk4,S′k3

(t)
]
+

+
∑

k′
3,k

′
4

µS,K4

∑

S′

̺
(3)
S′k′

3Sk4,S′k′
3
(t) +

+
∑

S′

κSS′,K4

[
̺
(3)
S′k1Sk2,S′k3

(t) + ̺(3)Sk1S′k2,S′k3
(t)
]}

. (6.72)

The first line describes radiation of photons resonant with exciton states, the second line
stands for radiation of photons which come from the bipolariton annihilation. The last
line then describes diffraction (nonlinear coupling) of photons on the output plane of the
crystal. However, when considering an experiment in the reflection geometry, the last line
should be substituted by the expression for the field reflected during coupling to the crystal
according to (6.34) and (6.41)–(6.42).
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6.8 Conclusions

In conclusion of this chapter, I stress the main point which we found to be essential
for the model and also for a general description of FWM experiments. The existence of
wave mixing in bulk semiconductor crystals is a consequence of the polariton–polariton
interaction. Based on the nature of the interaction, we resolve three different channels
denoted by the arrows which connect the two groups of states with wave vectors k1, k2
and k3, k4, respectively, in Fig. 6.7. Polariton–polariton interaction is, depending on the
energy of their mutual motion, responsible for scattering of exciton–like polaritons and
bipolariton–mediated scattering of polaritons resonant with the bipolariton. The former
scattering channel is called the direct channel and the latter bipolariton channel in the
following. The third wave mixing process occurs on the crystal boundary and it is due to
partial Fermi character of polaritons — this effect is similar to the concept of transient
grating and it will be denoted as diffraction channel. Each of the channels may be clearly
resolved in (6.72) having its specific polarization selection rules.
Equations of motion directly follow from the Hamiltonian (6.71). I use the interaction

picture and therefore the equation of motion (2.32). The density matrix in the interaction
picture is denoted as ˜̺(t) and equations may be found in Appendix B.1.
In the following text, the validity of the used approach is checked and application of

the model is shown.



Chapter 7FWM on bulk materials: Resultsand dis
ussion
7.1 Introduction

The previous chapter describes the method of derivation of equations of motion and the
equations are established in its last section. The equations are derived on the basis of
the scheme in Fig. 6.7 according to the arrows which connect particular levels — the
arrows point from the source terms to the final states which are involved in equations
(B.1)–(B.16). Equations therefore reveal the perturbative approach in which the system’s
evolution proceeds in one direction and interactions in the opposite direction with respect
to the arrows are neglected.
In this section, I present a discussion of the model and some results from numeri-

cal calculations. The main point is a test whether the model is able to reproduce the
phenomena experimentally observed on bulk semiconductors: polarization selection rules,
temporal evolution of the signal, quantum beats and spectral profile of the FWM response.
I show that the equations of motion are able to model all these features and therefore the
presented model is believed to be sufficiently accurate.
Looking at Fig. 6.7 and Eqs. (B.1)–(B.16), one may construct a scenario of the FWM

signal creation. This scenario may help in understanding the mechanism of wave mixing
and FWM buildup and it is introduced in section 7.2. This discussion of wave mixing
processes helps us to determine the FWM polarization selection rules in section 7.3 —
dependence of the FWM polarization on the polarization of incoming pulses. In the next
three sections, I discuss the dynamics of the model and its predictions from the point of
view of time–resolved (TR–FWM, section 7.4), spectrally–resolved (SR–FWM, section 7.5)
and time–integrated four–wave mixing (TI–FWM, section 7.6) experiments. I present si-
mulations concerning various types of experiments and I give brief comments in the afo-
rementioned sections. Concerning the obtained results, I compare the predictions of the
model to experiments in section 7.7. This section is of a cardinal importance since I discuss
whether the model is suitable for description of wave mixing on semiconductors.
The conclusion of the section 7.7 is, that the model is of a sufficient accuracy for

our purposes and therefore I believe it may be used for description of bulk semiconduc-
tor crystals without action of external forces. One may, however, extend the model to
lower–dimensional systems and systems under influence of external fields. The way, how
the model may be extended, is presented in section 7.8. Section 7.9 then presents direct
comparison of the results of the model to experimental data taken from literature. In the
last section 7.10, I apply the model on a system in which the exciton states are coupled by
a wave vector dependent interaction. I propose a method for direct measurement of these
interactions which cause coherent spin–flip of particles and which were not yet measured
using FWM.
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Figure 7.1: Sketch of the perturbative evolution of coherences in the model for t1 < t3 < t2.
Symbols in ellipses denote the types of coupling; the yellow circles stand for linear and blue circles
for nonlinear dipole coupling.

7.2 Principle of wave mixing

7.2.1 Scenario of the wave mixing process

Excitons and polaritons are delocalized bosons and therefore, recalling the section 4.1, they
give no wave mixing signal when they do not interact one with the other. Clearly particle–
particle interactions are responsible for wave mixing [54, 69]. System of noninteracting
bosons may be then drawn in a scheme according to Fig. 6.7 where the levels are connected
only by green lines (dipole interactions). There is obviously no interconnection between
the subsystem formed by states with wave vectors k1 and k2 and the subsystem of states
with levels k3 and k4. The subsystems are interconnected by red, blue and orange lines
which denote interactions which may cause wave mixing in the sample — these are the
direct channel (red), the bipolariton channel (orange) and the diffraction channel (blue).
The direct channel provides wave mixing through direct polariton–polariton scattering
(“direct” means here one–step process without an intermediate state including direct and
exchange Coulomb processes) — a two–polariton state may be scattered to another two–
polariton state which then may belong to the second group of polaritons. The bipolariton
channel mixes waves also by scattering, however multiple–step processes are allowed and
the scattering is considered to be mediated by a bipolariton state. These two channels can
be called scattering channels and the last, diffraction channel, provides wave mixing due
to fractional Fermi character of polaritons.
The mechanism of wave mixing caused by direct or bipolariton–mediated scattering is

identical, the two channels differ only by the dynamics (and polarization selection rules),
however both provide an effective scattering from an initial state |k1,k2〉 or |k′1,k′2〉 to a
final state represented by other wave vectors. For the temporal order of excitation pulses
t1, t2 < t3 (these times denote times of arrival of pulses with wave vectorsK1,K2 andK3,
respectively), the scenario of wave mixing caused by scattering channels is as follows. The
first two excitation pulses excite the crystal to the two–polariton state |k1,k2〉 or |k′1,k′2〉.
Since there are two polaritons in the crystal, they interact via Coulomb interaction and
therefore they may exchange momentum and fermions (what leads to an effective spin
exchange). The scattering process is continuous and leads to linear increase of populations
in the states |k,q〉, k + q = k1 + k2 (the same property holds for the primed wave vec-
tors). According to the wave vector conservation, also the state |k3,k1+k2−k3〉 becomes
populated. After arrival of the last pulse with wave vector K3, light interacts with the
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Figure 7.2: Sketch of the perturbative evolution of coherences in the model for t1 < t2 < t3.
Symbols in ellipses denote the types of coupling; the yellow circles stand for linear and blue circles
for nonlinear dipole coupling.

polariton with wave vector k3 causing creation of a one–photon coherence in the direction
k1+k2−k3 which is coupled to the output FWM field. Discussion of the temporal order
e.g. t1 < t3 < t2 is similar, however the field with wave vector K3 is “stored” in the
coherence of the polariton k3 and when the two–polariton state |k3,k4〉 is created, this
“stored” polariton acts like the outer electromagnetic field.
The mechanism of diffraction–induced wave mixing is quite different and it is rather

similar to the processes in atomic systems. The FWM signal is created when the pulse with
wave vector K3 doesn’t arrive as the last one. Although the dynamics of the model allows
creation of the diffraction–induced FWM signal for temporal order t1, t2 < t3, it vanishes
when γ2 = γX2 since the last pulse creates one–photon coherences which have equal size but
opposite phases and they cancel each other. This point is shown later when the equations
of motion are solved perturbatively. Concerning the sequence of pulses when the pulse
with wave vector K2 arrives as the last one, the first two pulses may create a diffraction
grating (depending on their spins) which the last pulse diffracts on during coupling to
polaritons on the crystal surface.

7.2.2 Perturbative solution of equations of motion: t1 < t3 < t2

In this and the next subsections, equations of motion are solved perturbatively. Just for
clarity, spin is not taken into account in the explicit solutions below, however it is consi-
dered in all later simulations. I use delta–like pulses which arrive in a definite time order.
There are two principal temporal orderings of the pulses which may reveal quite different
dynamics of the FWM signal: either the pulse with wave vector K3 arrives as the last one
or not. All other time orders of arrivals of pulses induce very similar dynamics to one of
the two cases which are mentioned in this and the next subsection. Here we investigate the
case t1 < t3 < t2 known from nanocrystals and atomic systems as the time order which
produces FWM signal due to formation of a diffraction grating (in the interference pattern
of the pulses with wave vectors K1 and K3, see Tab. 5.2). Evolution of coherences in the
density matrix may be illustrated in a scheme known from chapter 5 — see Fig. 7.1. Let’s
denote:
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Figure 7.3: Feynman diagrams appropriate for the processes responsible for linear (a) and nonlinear
(b) susceptibility. Arrows stand for polaritons and wavy lines for photons.

EKj
(t) = Ejδ(t − tj) , ωj = ωKj

, (7.1)

ωXj = hkj
/~ , ωXj′ = hk′

j
/~ , (7.2)

χj = χ(kj) , φj = φ(kj) , (7.3)

µ denote all linear dipole matrix elements and κ all nonlinear dipole matrix elements.
Integrated equations of motion are then listed in Appendix B.2. Amplitude of the diffracted
field yields, according to (6.72):

E
(−)
k1+k2−k3

∝µ ˜̺(3)k3k4,k3
(t)e−iω

X
4 tµ ˜̺(3)

k3k
′
4,k3
(t)e−iω

X
4′
t +

+ κ ˜̺(3)k1k2,k3
(t)e−i(ω

X
1 +ω

X
2 −ωX3 )t . (7.4)

7.2.3 Perturbative solution of equations of motion: t1 < t2 < t3

In this subsection, let’s consider the temporal order of delta–like pulses t1 < t2 < t3. The
scheme of evolution of the system is depicted in Fig. 7.2. Equations of motion then give
the temporal evolution of the system and may be found in Appendix B.3.
Coupling to the FWM field is the given by the formula:

E
(−)
k1+k2−k3

∝µ ˜̺(3)k3k4,k3
(t)e−iω

X
4 tµ ˜̺(3)

k3k
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X
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t + µ ˜̺(3)k4,0

(t)e−iω
X
4 t

+ κ ˜̺(3)k1k2,k3
(t)e−i(ω

X
1 +ω

X
2 −ωX3 )t . (7.5)

7.3 FWM polarization selection rules

I investigate the dependence of the polarization of the FWM signal on polarizations of
incoming fields in this section. The problem is very complex in general since the model,
as described by equations of motion, may reveal very complex dynamics including various
spin–flip mechanisms. It is possible to determine analytically polarization selection rules
only in special cases when the Hamiltonian of spin precession may be diagonalized. In other
cases, one needs numerical simulations, i.e. numerical solution of equations of motion using
optical pulses with a realistic temporal profile.
In this section, I discuss the simplest cases of a bulk semiconductor without influence

of external fields and without considering wave–vector dependent electron–hole exchange
interaction. I consider zinc–blende and wurtzite crystal structures of the lattice. Con-
cerning the wurtzite structure, only one of the exciton bands is taken into account (see
section 3.2). There are therefore two dipole–active states in both cases and all other states
are dipole–forbidden.
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zinc–blende wurtzite
k1 k2 k3 d x d x

σ+ σ+ σ+ σ+ σ+ σ+ σ+

σ+ σ+ σ− 0 0 0 0
σ+ σ− σ+ 0 0 0 0
σ− σ+ σ+ σ− σ− σ− 0

zinc–blende wurtzite
k1 k2 k3 d x d x

X ′ X ′ X ′ X ′ X ′ X ′ X ′

X ′ X ′ Y ′ 0 0 0 0
X ′ Y ′ X ′ 0 0 0 0
Y ′ X ′ X ′ Y ′ Y ′ Y ′ Y ′

Table 7.1: Polarization selection rules of the diffraction channel for linear and circular polarizati-
ons in crystals with zinc–blende and wurtzite structure. The columns denoted as “d” stand for
direct process and columns denoted “x” stand for exchange process. Symbols X ′ and Y ′ denote
linear polarizations perpendicular one to the other, they have no fixed orientation with respect to
crystallographic axes. The time order is t2 < t3 < t1.

zinc–blende wurtzite
k1 k2 k3 d x d x

σ+ σ+ X ′ σ+ σ+ σ+ σ+

σ+ σ− X ′ σ+ σ+ σ+ 0
σ+ X ′ σ+ σ+ σ+ σ+ σ+

σ+ X ′ σ− σ+ σ+ σ+ 0
X ′ σ+ σ+ X ′ X ′ X ′ σ+

X ′ σ+ σ− 0 0 0 0

zinc–blende wurtzite
k1 k2 k3 d x d x

X ′ X ′ σ+ X ′ X ′ X ′ X ′

X ′ Y ′ σ+ X ′ X ′ X ′ X ′

X ′ σ+ X ′ X ′ X ′ X ′ X ′

X ′ σ+ Y ′ X ′ X ′ X ′ X ′

σ+ X ′ X ′ σ+ σ+ σ+ σ+

σ+ X ′ Y ′ 0 0 0 0

Table 7.2: Polarization selection rules of the diffraction channel for linear and circular polarizati-
ons in crystals with zinc–blende and wurtzite structure. The columns denoted as “d” stand for
direct process and columns denoted “x” stand for exchange process. Symbols X ′ and Y ′ denote
linear polarizations perpendicular one to the other, they have no fixed orientation with respect to
crystallographic axes. The time order is t2 < t3 < t1.

As stated above, there are three channels responsible for wave mixing. It is therefore
reasonable to separate the discussion of polarization selection rules for these three channels.
Let’s start discussion with the diffraction channel. The process responsible for the nonlinear
susceptibility is depicted in the diagram in Fig. 7.3b. An incoming photon with spin S
scatters with a polariton with spin S1 to a two-polariton state with spins SA and SB . This
two–polariton state then may scatter back to the direction of the incoming particles with
spins SC and SD. If SC = S, this process contributes to the nonlinear susceptibility and
therefore the diffraction occurs for spins which involve the path:

S+S1 → SA+SB → S+SD . (7.6)

For direct scattering processes (i.e. processes which conserve spins of particles), it is clear
that S1 = SD. Exchange processes contribute to the nonlinear susceptibility when:

0 6=
∑

se,s′e

∑

jh,j
′
h

〈S| sejh〉
〈
SD| s′ej′h

〉 〈
s′ejh

∣∣S
〉 〈
sej
′
h

∣∣S1
〉
. (7.7)

The calculation of the right–hand side of the above inequality may be found in Tabs. 6.1–
6.4. I performed calculations of dipole selection rules for optical beams with circular and
linear polarizations for crystals with zinc–blende and wurtzite structure. Results are sum-
marized in Tabs. 7.1–7.2.
The polarization selection rules for the diffraction path are developed and now I discuss

the scattering paths. Consider that there are two degenerate dipole–inactive states and
no spin–flip processes may occur. Clearly the field with any arbitrary polarization creates
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polaritons with the same polarization — instead of drawing all spin states of polaritons
in a scheme similar to Fig. 6.7, we may use the polarizations of excitation fields for pola-
ritons with wave vectors k1, k2 and k3. For the polariton in the diffraction direction, it
is necessary to use the states with orthogonal polarizations which couple to the electro-
magnetic field. The resulting scheme then consists of 13 levels and although dipole–active
states may be excited by polariton–polariton scattering, they obviously do not contribute
to the FWM signal and one may omit them.
It is clear that the spin mixing comes into play through the spin–dependence of the

scattering processes. Imagine that two polaritons can scatter only if the spins are equal
and the spins of incoming and outgoing polaritons are the same. In such a case, the FWM
signal arises only when the projection of polarizations of all three incoming fields to one
definite polarization is nonzero. Clearly the polarization selection rules come from the
symmetries of the scattering matrices with respect to spins of incoming and outgoing
particles. We may derive the appropriate equations for determination of the spin of the
FWM signal:

∣∣∣ψD(k4)
〉
=Pk4

∑

j

W(αj , ψ3, ψ1, ψ2) |αjk4〉 , (7.8)

∣∣∣ψB(k4)
〉
=Pk4

∑

j

M2(ψ1, ψ2,Γs)M∗2(αj , ψ3,Γs) |αjk4〉 , (7.9)

where Pk4 is an operator of the spin projection on the polarization of optical field and
summation goes over all spin states denoted as αj. Functions ψ1,2,3 denote spins of the
respective incoming fields. The matrixW is defined as follows:

W = (Wd +Wx) = 2χ1χ2(Vd +Vx)− (φ1χ2 + χ1φ2)(Gd +Gx) . (7.10)

Equation (7.8) describes polarization determined by the direct channel and equation (7.9)
then gives the polarization of the bipolariton–mediated response (bipolariton channel).
Polarization selection rules are summarized in Tab. 7.3 for both zinc–blende and wurtzite
crystal structures. Concerning the zinc–blende structure, it is necessary to resolve various
orientations of excitation beams with respect to the crystallographic axes because of bipo-
laritons with other than Γ1 symmetries. I choose the directions [001], [110] and [111]. In the
table, the responses of particular channels are resolved (including separation of responses
of particular bipolaritons in zinc–blende structure) and I put together responses of the
bipolaritons with equal symmetries. The last column then gives the polarization selection
rules from the direct channel according to Ref. [6] for comparison. The term “dbd.” means
“depends on dynamics”. It arises if the exchange and direct interactions give different
polarizations.
Comparison of the columns “Σ” (calculation based on the presented model) and the

column “[6]” (microscopic calculation without considering the bipolariton channel) shows
the accuracy of the model since the values agree in all rows for the zinc–blende structure.
There are unexpected discrepancies between the responses of the direct channel when
compared the two respective crystal symmetries. These discrepancies arise for polarizations
σ+σ−σ+, σ+σ−X ′, σ+X ′σ+, σ+X ′σ− and X ′X ′σ+ as a consequence of the difference
between Tabs. 6.2 and 6.4 — exchange interaction doesn’t couple states σ+σ− → σ+σ− in
the crystals with wurtzite structure. However, the overall signal agrees for both structures
in Tab. 7.3.
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Zinc–blende Wurtzite [6]
Polarizations Direct [001] [110] [111] [001]
k1 k2 k3 d x df. Σ Γ1 Γ3 Γ5 Γ1 Γ3 Γ5 Γ1 Γ3 Γ5 d x df. Σ Γ1

σ+ σ+ σ+ σ+ σ+ σ+ σ+ 0 σ+ σ+ 0 E E 0 σ+ σ+ σ+ σ+ σ+ σ+ 0 σ+

σ+ σ+ σ− 0 0 0 0 0 σ− σ− 0 E E 0 0 0 0 0 0 0 0 0
σ+ σ− σ+ σ− σ− σ− σ− σ− σ− 0 σ− E X σ− 0 σ− σ− 0 σ− σ− σ− σ−

σ+ σ+ X ′ σ+ σ+ σ+ σ+ 0 L L 0 L L 0 σ+ σ+ σ+ σ+ σ+ σ+ 0 σ+

σ+ σ− X ′ dbd.∼X ′ dbd.∼X ′ dbd. dbd. X ′ X ′ 0 X ′ L X X ′ 0 X ′ dbd.∼X ′ 0 dbd. dbd. X ′ dbd.

σ+ X ′ σ+ dbd. dbd. dbd. dbd. σ− E σ+ σ− E E σ− σ+ E dbd. σ+ dbd. dbd. σ− dbd.

σ+ X ′ σ− σ+ σ+ σ+ σ+ σ+ E σ− σ+ E E σ+ 0 σ+ σ+ 0 σ+ σ+ σ+ σ+

X ′ σ+ X ′ dbd. dbd. dbd. dbd. X ′ E L X ′ L E X ′ σ+ E dbd. dbd. dbd. dbd. X ′ dbd.

X ′ σ+ Y ′ dbd. dbd. X ′ dbd. Y ′ E L Y ′ L E Y ′ σ+ E dbd. dbd. X ′ dbd. dbd. dbd.

X ′ X ′ σ+ X ′ dbd. X ′ dbd. σ− E σ+ σ− E E σ− σ+ E X ′ dbd. X ′ dbd. σ− dbd.

X ′ Y ′ σ+ dbd. dbd. dbd. dbd. 0 σ+ σ+ 0 E E 0 σ+ σ+ dbd. dbd. dbd. dbd. dbd. dbd.

X ′ X ′ X ′ X ′ X ′ X ′ X ′ X ′ L L X ′ L L X ′ X ′ X ′ X ′ X ′ X ′ X ′ X ′ X ′

X ′ X ′ Y ′ Y ′ Y ′ Y ′ Y ′ Y ′ L L Y ′ L L Y ′ Y ′ Y ′ Y ′ Y ′ Y ′ Y ′ Y ′ Y ′

X ′ Y ′ X ′ Y ′ Y ′ Y ′ Y ′ 0 L L 0 L L 0 Y ′ Y ′ Y ′ Y ′ Y ′ Y ′ 0 Y ′

Table 7.3: Polarization selection rules for the third–order FWM response of semiconductors with zinc–blende and wurtzite crystal structure. For every
structure, responses from the respective channels are resolved. The direct channel is further divided to its direct “d” and exchange “x” part. The column
“df.” is the response of the diffraction channel according to Tabs. 7.1–7.2 and the column titled “Σ” is the sum of the respective contributions of the
direct and the diffraction channel. Concerning the bipolariton channel, its contributions are divided according to the symmetries of the bipolariton
states, they are labeled “Γj”. The column “[6]” then gives the polarization selection rules taken from the literature [6]. Circular polarizations are denoted
σ± and linear X ′ and Y ′ — these symbols denote arbitrary (but perpendicular) linear polarizations, i.e. the polarization plane is not connected with
crystallographic axes. The symbols X and Y , respectively, then stand for linear polarizations connected with the crystallographic axes x and y,
respectively. The symbol L denotes some linear polarization which is not generally X , X ′, etc. for any orientation of linear polarizations of the
incoming fields. The symbol E then denotes an elliptical polarization, 0 stands for zero signal and dbd. for the polarization “dependent on dynamics”.
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7.4 Time–resolved experiments

In time–resolved experiments, the temporal profile of the FWM response is measured
using the up–conversion technique [14] when the time delays between the incident pulses
are varied. Discussion of the time–resolved experiments therefore involves a discussion of
the temporal profile of the FWM response and a discussion of the dynamics of polarization
of the FWM signal after optical excitation of the sample. This section is focused mainly
on the general FWM signal dynamics, however the latter subject is also discussed at the
end of the section. Solutions of equations of motion from Appendices B.2 and B.3 are used
in this and following sections, i.e. their perturbative solution using delta–like pulses.
Concerning the general dynamics of the FWM response, simplified equations which de-

scribe the FWM response are derived in the beginning. The discussion is then divided into
parts appropriate for particular wave mixing channels: the direct channel, the bipolariton
channel and the diffraction channel. The overall response is discussed afterwards.
I simplify the mathematical expressions by assuming the time order of the incoming

optical pulses t1 < t3 < t2. The FWM dynamics is then determined by Eqs. (B.21) and
(B.23). With the help of (7.10) and putting ωXj = ω

X, we obtain:

˜̺(3)k3k4,k3
(t) =F ˜̺132(t1, t2, t3, t)

[
− iW
2~
χ3χ4(t− t2) +

κ

µ

]
e−γ

X
2 (t−t2) , (7.11)

˜̺(3)
k3k

′
4,k3
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γB2 − γR2
− e
−γR2 (t−t2) − e−γB2 (t−t2)
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}
, (7.12)

F ˜̺132(t1, t2, t3, t) =
µ3

~3
E1E2E∗3eiω

X(t1+t2−t3)e−i(ω1t1+ω2t2−ω3t3) ·

· e−γ2(t3−t1)e−γC(t2−t3)Θ(t3 − t1)Θ(t2 − t3)Θ(t− t2) . (7.13)

For the temporal order of pulses t1 < t2 < t3, we may rewrite the equations (B.32), (B.34)
and (B.35) as follows:

˜̺(3)k4,0
(t) =F ˜̺123(t1, t2, t3, t)

[
i
W

2~
χ3χ4(t3 − t2)− 2

κ

µ

]
e−γ

2X
2 (t3−t2)e−γ2(t−t3) ,(7.14)

˜̺(3)k3k4,k3
(t) =F ˜̺123(t1, t2, t3, t) ·

·
[
− iW
2~
χ3χ4(t− t2) + 2

κ

µ

]
e−γ

2X
2 (t3−t2)e−γ

X
2 (t−t3) , (7.15)

F ˜̺123(t1, t2, t3, t) =
µ3

~3
E1E2E∗3eiω

X(t1+t2−t3)e−i(ω1t1+ω2t2−ω3t3) ·

· e−γ2(t2−t1)Θ(t2 − t1)Θ(t3 − t2)Θ(t− t3) . (7.16)

The formula for the bipolariton channel is complicated and it is not given here, the contri-
bution of the bipolariton channel was omitted in the formula for ˜̺(3)k4,0

. However, as both
the direct and the bipolariton channel are scattering channels, their dynamics is similar
and it is not necessary to write the formulas explicitly. It is sufficient to state that the
response of the bipolariton channel is proportional to F ˜̺123(t1, t2, t3, t) and the expression
which follows is real.
Let’s discuss first the direct channel only. Its response is given by the term ˜̺(3)k3k4,k3

(t)
in Eq. (7.11) for t1 < t3 < t2 without the contribution of κ

µ . The temporal evolution
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Figure 7.4: TR–FWM response of the direct
channel according to equations of motion in
Appendix B.2, t1 = t2 < t3 = t2 + 0.5 ps
(black lines) and comparison to calculation
with 100 fs pulses (red). Dephasing rate γX2
is varied.

Figure 7.5: TR–FWM of the bipolariton chan-
nel according to Appendix B.1, t1 = t3 < t2.
Parameters: γX2 = 0.0623 ps

−1 and γR2 is va-
ried. Blue line is coherent population of the
initial state, red line is the coherent population
of the bipolariton and black lines show the re-
sponse.

is clearly proportional to (t − t2) exp[−γX2 (t − t2)]. For the second temporal ordering of

pulses, t1 < t2 < t3, the FWM response is proportional to the sum ˜̺
(3)
k4,0
(t) + ˜̺(3)k3k4,k3

(t)
from (7.14)–(7.15) without the contribution of κµ again (the diffraction channel). In this
case, is seems that the dynamics of the response would have a complex structure when
compared to the t1 < t3 < t2 case, however the term (7.14) and a part of (7.15) subtract
and the resulting polarization yields:

〈P̂+k4〉(t) =−iW
2~
χ3χ4F ˜̺123(t1, t2, t3, t)e−γ

2X
2 (t3−t2) ·

·
[
(t− t3)e−γ

X
2 (t−t3) + (t3 − t2)(e−γ

X
2 (t−t3) − e−γ2(t−t3))

]
. (7.17)

Obviously the main part of the signal is proportional to (t− t3)e−γ
X
2 (t−t3), the other part

is proportional to (t3 − t2)[e−γ
X
2 (t−t3) − e−γ2(t−t3)] and it is small compared to the leading

term since we consider γ2 ≈ γX2 . Intensity of the FWM signal from the direct channel
then clearly evolves like t′2 exp

[
−2γX2 t′

]
, where t′ is the time delay after arrival of the

last excitation pulse. For t′ = 0, the FWM response is clearly zero and it slowly grows
until it reaches a maximum value and then it decays. The FWM signal peaks at the time
t′ = 1/γX2 . Calculated temporal profiles of the intensity of the FWM signal from the direct
channel are depicted in Fig. 7.4. Several values of dephasing rates are considered and
numerical calculation with 100 fs pulses is included for comparison.
The response of the direct channel may be observed using bulk wurtzite semiconductors

and polarizations of the incoming fields σ+σ+σ+. Under these conditions, the bipolariton
channel is dipole–forbidden and the contribution from the diffraction channel is generally
negligible in bulk when compared to the response of the direct channel. The prediction
of the temporal profile of the FWM response based on the presented model reproduces
well the experimental observations [51, 52, 53, 54, 80]: the signal is zero at the time of
arrival of the last excitation pulse and it starts instantaneously to rise. After some time
delay which is not determined by delays between the respective pulses (on the contrary to
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inhomogeneous atomic systems) the signal starts to decrease monotonously. The increase
of the intensity of the FWM field is caused by continuous polariton–polariton scattering
which is responsible for creation of the four–particle (four–fermion) correlations [21]. The
subsequent decrease is then due to incoherent processes, namely incoherent dephasing.

Figure 7.6: Calculated TR–FWM response
of the bipolariton channel assuming γ2B2 =
= γB

2 = 0.0623 ps
−1 and γ2R2 = γ

R
2 = 5 ps

−1

(a), γ2R2 = γR
2 = 2 ps

−1 (b), γ2R2 = γR
2 =

= 1 ps−1 (c). Responses for time delays
t3 − t1 = 0, 0.5, 1, 4 ps are plotted in all
graphs (solid black lines). Squares of bipo-
lariton coherence (red lines) and coherence
of the initial two–polariton state (blue lines)
are included for comparison.

Figure 7.7: Simulated overall TR–FWM re-
sponse assuming delta pulses, γ2R2 = γR2 =
= 5 ps−1, γ2X2 = γ

X
2 = 0.59 ps

−1, and γ2B2 =
= γB2 = 0.0625 ps

−1, time delays t3 − t1 =
= 0, 2, 4 ps and various ratios ~W/M2

2 = 0.4
(a), 2.5 (b) and 10 (c).
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Temporal profile of the response of the bipolariton channel is more complicated than
the response of the direct channel. It is caused by the fact that the dephasing time of the
intermediate state for scattering (bipolariton state) is notably prolonged with respect to
dephasing rates of the initial and the final photon–like two–polariton states. The dynamics
of the bipolariton channel is plotted in Fig. 7.5 for the time order of excitation pulses
t1 < t3 < t2. In this case, the intensity of the FWM response starts to grow as (t− t3)4 as
can be shown from (7.12). It peaks after a certain time and then it decays with the rate
approximately γB2 . It is not possible to give an analytic expression for the time at which
the FWM signal has its maximum value, however assuming γR2 ≫ γB2 , we may estimate
the peak time from the solution of equation:

t− t2 =
γB2

(γR2 )
2 e

γR2 (t−t2) . (7.18)

Considering temporal order of the excitation pulses t1 < t2 < t3, the dynamics of the FWM
response is driven by one–step as well as two–step processes. Similarly to (7.14)–(7.15), the
bipolariton–mediated response is zero since the appropriate coherences subtract. The sig-
nal then grows from zero and peaks after a nonzero delay, which is given by the dephasing
rates γR2 , γ

X
2 , γ

2B
2 and by the delay t3 − t2 between the last two excitation pulses.

The temporal evolution of the signal for various sets of parameters and time delays are
plotted in Fig. 7.6. The blue line in each figure shows the decay of a coherence connected
with the initial two–polariton state |k′1k′2〉 which is driven by the dephasing rate γ2R2 . The
coherence of the bipolariton state is depicted by the red line. This coherence decays at
long times with the rate γ2B2 . Starting at time t = t2, the bipolariton coherence is zero
and it is increasing as long as the coherence of the initial state is nonzero as seen from
the Fig. 7.6. The overall third–order coherence of the final states are zero at the time
of arrival of the last pulse, as noted above. Consequently, it grows due to bipolariton–
mediated scattering of the initial two–polariton state (two–step process) but also due to
annihilation of bipolaritons built–up during the time delay between arrivals of the second
and the third pulse (one–step process). Since the dephasing rate γR2 is big, one may expect
that the one–step processes follow the temporal profile of the bipolariton coherence with
fast onset near t = t3. The two–step processes then contribute only at short delays t3− t2
since the coherence of the initial state decays rapidly. This two–step process then causes a
narrow peak of the FWM intensity at short times which vanishes for t3 − t2 > 1/γ2R2 (cf.
Fig. 7.6).
It is not possible to derive analytically a formula for determination of the time when

the bipolariton–mediated FWM response peaks, however for t3 − t2 > 1/γ2R2 , one may
calculate it:

t ≈ t3 +
1

γR2
log

γR2
γB2

. (7.19)

Using time–resolved experiments, one may determine the particular dephasing rates in
the following way. Since the signal from the direct channel peaks at time t′ = 1/γX2 , the
dephasing rate γX2 may be easily determined from the time delay between the arrival of
the third pulse and the peak time of the FWM signal. Concerning the bipolariton channel,
the dephasing rate γB2 may be extracted from the decay of the TR–FWM response at long
times. Using (7.19) and (7.18), we may determine γR2 from the peak time and the other
dephasing rates may be determined by fitting predictions of the model to experimental
data where the delay t3 − t2 is varied.
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Dynamics of the diffraction channel is quite different from the dynamics of the direct
channel although both channels are degenerate in energy. Since diffraction on a transient
grating is an instantaneous process, the onset of the TR–FWM response is also expected
to be instantaneous as seen in (7.11). Decay of the signal is then expected with the rate
γX2 . On the contrary to the time order t1 < t3 < t2, the response of the diffraction channel
is forbidden when t1, t2 < t3 since no transient grating for diffraction to the direction
k1+k2−k3 is created before arrival of the last pulse.
Taking into account the whole spectrum, i.e. contributions from all channels, it is clear

that the TR–FWM response reveals beating as a consequence of the energy mismatch
between the particular channels — beating frequency is 2ωX − ωBX. The phase of beats
is given by the time delay between the last two pulses. Looking at Eqs. (7.11)–(7.15), we
observe a very interesting property which may cause a very peculiar polarization dynamics:
the phases of the direct and the bipolariton channel are shifted by π/2 (and reflects the
fact that a direct process may be understood as a virtual bipolariton–mediated process
[98]). This feature affects also the phase of the beats of the FWM signal.
The amplitude of beating (as seen in Fig. 7.7) is determined by the ratio of the particu-

lar contributions of the respective channels (stronger beats in Fig. 7.7a show comparable
effective coupling strengths for the two channels while in Fig. 7.7c, bipolariton response
almost vanishes). The contrast of the beats is strongest when the responses of the direct
plus diffraction and the bipolariton channels are equal. The contrast of beats evolves in
time as the ratio of the two respective contributions vary due to dephasing. As seen from
Fig. 7.7b, responses of the direct and bipolariton channel are not equal in magnitude (the
bipolariton response is weaker) for t3 = t1 and therefore the relative amplitude of the
beats is lower compared to the situation t3 = t1 + 1 ps. With increasing delay t3 − t1, the
magnitudes equalize because of the faster decay of two–exciton states when compared to
the bipolariton. The presented model can be then used in order to numerically decom-
pose the contributions and to find the values of dephasing rates, the rate W/M2

2 and the
bipolariton binding energy.
The model predicts a very interesting property of the TR–FWM signal: when using po-

larizations XXX, the beats are shifted by an amount π with respect to excitation with po-
larizations XXY (see Fig. 7.8) as observed experimentally [99, 100]. The reason is, that the
phases of the bipolariton–mediated response are equal under both excitation conditions.
Phases of the direct channel, however, differ as can be shown in Tabs. 6.1 and 6.3. We find
for the crystals which have e.g. wurtzite structure Gx(X,X,X,X)= 12=−Gx(X,X, Y, Y ).
Taking into account the fact that the polariton–polariton scattering is given predominantly
by the exchange processes [10, 38], we find that the phases of the FWM response of the
direct channel have opposite signs under the two different excitation conditions.
The above discussion was concerned in the FWM signal dynamics without resolving

its polarization. However polarization may evolve in time as shown experimentally in
[2, 101]. The origin of the polarization evolution lies in spin–flip processes and in the
different dynamics of the respective channels. As seen from Tab. 7.3, the responses of all
these channels do not always agree in polarization and therefore evolution of the total
polarization follows the evolution of the channels.
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Figure 7.8: Detail of beats in simulated TR–
FWM for the parameters given in Fig. 7.7 and
~W/M2

2 = 0.4 assuming polarizations of the ex-
citation beams XXX and XXY , respectively,
t1 = t2 = t3.

Figure 7.9: Calculated SR–FWM response of a
semiconductor with the same parameters as in
Fig. 7.8 for various polarizations of the exci-
tation beams.

7.5 Spectrally–resolved experiments

Spectrally–resolved FWM (SR–FWM) is an experimental technique which brings an ad-
ditional information to the TR–FWM measurements. In this type of experiment, spectra
of the FWM response are measured (instead of its temporal profile in TR–FWM) and one
varies the time delays between the incident pulses. Measured spectra show which ener-
getical levels contribute to the signal and we can easily compare particular contributions
from all scattering channels.
Performing SR–FWM experiments with different polarizations of the excitation beams,

one can identify the relative strengths of various spin–dependent processes. I illustrate this
fact in Fig. 7.9 where I depict the simulations of FWM spectra for polarizations XXX,
XXY , σ+σ+σ+ and σ+σ−σ+ for CuCl which has zinc–blende crystal structure. (Experi-
mental data for different polarization setups on GaAs QW may be found in Ref. [102].)
The binding energy of bipolariton is 33 meV what is clearly the difference in the energies
of the peaks. The energy is relative with respect to exciton resonance. At the bipolariton
energy, the response is zero for the configuration σ+σ+σ+ since bipolariton excitation is
forbidden. The spectra of the bipolariton response for other spin setups are equal because
of the spin structure of Γ1 biexciton [26].
The spectra at the exciton resonance reveal the symmetry of matrices Wd and Wx

appropriate for polariton–polariton scattering. There are two processes which contribute
to scattering: direct boson scattering (subscript “d”) and exchange of fermions (subscript
“x”), the exchange is usually stronger [10]. As shown in Tabs. 6.1–6.4 for semiconduc-
tors with zinc–blende structure, the scattering is strongest for the process which scatters
σ+σ+ → σ+σ+ since the scattering matrix element isWx(0, 0)+Wd(0, 0) and therefore the
response on the exciton resonance is strongest for the σ+σ+σ+ configuration. For σ+σ−σ+,
the FWM signal comes both from direct and exchange scattering, however the exchange
scattering is weaker than the scattering XX → XX and it is stronger than XX → Y Y
and therefore the FWM signal has the intensity between the polarization setupsXXX and
XXY . Concerning linear polarizations, scatteringXX → XX is stronger thanXX → Y Y
because direct scattering is forbidden in the latter case and the scattering matrix elements
are 12Wx(0, 0)+Wd(0, 0) for theXXX excitation and −18Wx(0, 0) for theXXY excitation.
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The SR–FWM experiment can be used in order to compare the dynamics of the two
channels by varying the time delays between pulses. In order to determine the relaxation
rates γ2X2 , γ

2B
2 and γ

2R
2 , the SR–FWM measurement is appropriate when varying the time

delay t3 − t1 > 0 and t1 = t2. For long time delays, the decay of SR–FWM signal is given
by γ2X2 for the direct channel and by γ2B2 for the bipolariton channel. For (t3− t1)γ2R2 ≤ 1,
the decay at the bipolariton energy is given by a combination of γ2R2 and γ

2B
2 but it should

be possible to decompose the particular decay rates.

7.6 Time–integrated experiments

In time–integrated measurement (TI–FWM), the delays between pulses may be varied
and the intensity of FWM response is integrated over time with no spectral resolution.
Compared to TR–FWM and SR–FWM, this technique gives less informations but it is,
however, a more simple experimental setup and thus TI–FWM is widely used in practice.
Using TI–FWM, one can accurately measure the dephasing rates of excitons γ2 and

the dephasing time for the spin coherence γC2 . Their measurement is as follows: to measure
γ2, we set t1 = t2, t3 − t1 < 0, i.e. the pulse 3 precedes other two pulses. The coherence
created by the first pulse decays exactly with the rate γ2. Since the TI–FWM signal is
not sensitive to the phase of this coherence, the measured decay is driven by the rate γ2.
When setting t2 = t3 and t3− t1 < 0, the decay rate of the created coherence is γC2 before
arrival of the last pulse and thus one measures the spin coherence decay in such type of
experiment.

7.7 Discussion of the features of the model

In order to check the applicability of the model developed in the previous chapter, I give
in this section a summary of the features of FWM experiments and I compare them to
predictions of the model discussed in the previous sections.
We may start with one of the most important phenomena of FWM on semiconductors

— polarization selection rules. These selection rules, described theoretically in Ref. [6],
are very unusual when compared to nanocrystals and atomic systems, see chapter 5. They
indicate that the wave mixing has a different origin in semiconductors and systems of
localized states. Comparison of polarization selection rules taken from [6] with predictions
of the model is given in Tab. 7.1. We should compare the columns labeled “Σ” (predictions
of the model) with the column “[6]” (microscopic theory and experiment). Other columns,
which are appropriate to bipolariton channels, cannot be compared to experiments due
to the lack of experimental data in publications. However, we may do some comparison
to the experiment used in order to detect mixed biexcitons in quantum wells [83] —
with the help of results of chapter 4, the polarization selection rules valid for quantum
wells may be calculated and we may predict, under which polarizations of the excitation
beams the mixed biexcitons may be seen in SR–FWM. These predictions then agree with
the experimental results and we may therefore conclude that the model gives the correct
predictions for polarization selection rules.
The second point to be discussed is the spectrum of the calculated FWM signal. One

may use experimental data taken from [91, 92] for comparison. Typical spectra predic-
ted by the model are plotted in Fig. 7.9. The main feature, namely that the maxima
of the spectra arise at exciton and biexciton resonances, are well reproduced. However
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the spectral widths of the peaks are determined mainly be dephasing rates in the mo-
del while they are determined by spectral widths of the excitation pulses in experiments.
This discrepancy is a consequence of neglect of the continuum of states. The continuum is
modeled by two “representative” resonances in order to considerably simplify the model
and equations of motion. In conclusion, the main features of the SR–FWM signal are well
reproduced by the model, however there are quantitative differences.
Concerning the temporal evolution of the FWM signal, there are two features to be

discussed — exciton–biexciton beating and noninstantaneous response. Slow initial rise of
the signal after optical excitation [51, 52, 53, 54, 80] is the most striking difference when
compared to atomic systems. As discussed in section 7.4, this property is predicted by
the model for both scattering channels, the FWM intensity starts at zero at the time of
arrival of the third pulse and its peak is considerably delayed with respect to this excitation
pulse. The time delay may be much larger than the pulse duration and does not arise as a
consequence of inhomogeneity of the system (and the peak is not therefore a photon echo
known from atomic systems). The response of the diffraction channel is, on the contrary,
instantaneous but it doesn’t give the main contribution to the FWM signal under weak
excitation. As seen in simulations performed by Weiss et al. [53], the phase–space–filling
signal (denoted here as the diffraction channel) has a faster dynamics and within the
durations of pulses used in the experiment, the response may be viewed as instantaneous.
Beating of the FWM response due to the biexciton binding energy is discussed in detail
in section 7.4 and it is well predicted by the model presented in this thesis. The temporal
evolution of the FWM response is, as shown above, also well reproduced by the model.

7.8 Extension of the model

The model, as presented in section 7.2, has many limitations and may be used only for
bulk crystals which are not under influence of external fields and also some electron–hole
exchange interactions are neglected. However the formulation presented in chapter 6 is
more general and these perturbations may be fully taken into account.
The point is, that external fields, which do not change the wave vector of excitons and

polaritons, may be generally understood as symmetry–breaking effects. Lowering of sym-
metry causes mixing of states and therefore an effective spin precession which may be seen
as periodical changes of the spin of polaritons. One should, nevertheless, resolve between
coherent and incoherent changes of spin: the former preserve the particle’s coherence and
therefore the particle contributes to the FWM signal while the latter processes destroy the
particle’s coherence and therefore the particle may no longer contribute to the diffracted
signal (incoherent processes are described by phenomenological dephasing rates). The co-
herent changes of spin are fully described by generally wave vector dependent nondiagonal
elements of the matrices hSS′,k which arise in the Hamiltonians (6.68) and (6.71) in the
harmonic terms. The influence of magnetic and electric field, homogeneous static stress,
crystal structure, etc., is therefore implicitly included in the model, one should, however,
develop full equations of motion since the direct integration presented in chapter 7 doesn’t
take the nondiagonal terms in hSS′,k into account.
As noted above, the model may be also extended to quantum wells. The model is de-

veloped considering bulk crystals because of the requirement of wave vector conservation
during polariton–polariton scattering processes and exciton–photon coupling. Quantum
wells, on the contrary to bulk crystals, have only in–plane translational symmetry and the-
refore wave vector is well defined only in the plane of the quantum well (see section 3.5). As
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Figure 7.10: Simulation of the experimental data taken from Ref. [104], Fig. 1a (a) and Fig. 1b (b).

a consequence, excitons are coupled to photons with wave vectors in a cone and therefore
wave vector is not necessarily conserved during photon absorption. As a consequence, the
FWM response, which comes from the scattering channels, is not expected to be highly
directional. Although only two components of the wave vectors are conserved, energy con-
servation ensures an effective conservation of all components and one may observe the
response of the scattering channels in experiments with sufficient spatial resolution. Re-
sponse from the diffraction channel remains directional since the diffraction grating is
formed in the same way as on the surface of a bulk crystal.
When adapting the model to quantum wells, one should take into account several facts.

The confining potential causes a change of an effective crystal structure and therefore the
point group symmetry of the crystal. It is therefore necessary to calculate shapes of exciton
and biexciton wavefunctions and to develop the one–particle Hamiltonian according to
chapter 5. The correct crystal symmetry and growth axis must be taken into account in
order to correctly describe the spin–flip processes and the spin structure of dipole–active
excitons. The crystal structure also influences the symmetry of the bipolariton–mediated
scattering. The second point concerning quantum wells is, that the effect of phase–space
filling is more pronounced when compared to bulk. Its influence may be usually neglected in
bulk crystals, however it may give the main contribution in quantum wells [103]. The third
point to be discussed is the radiative lifetime and radiative dephasing of polaritons. Since
the thickness of quantum wells is usually negligible, it is better to speak about excitons
and their virtual excitation. Relaxation and dephasing of excitons is then linked to the
uncertainty relations — the bigger is energy difference between a virtual (photon–like)
level, the bigger are relaxation and dephasing rates.
The model is well applicable to quantum wells since wave vector (all three components)

is effectively conserved as well as in bulk crystals. In structures with lower dimensionality
like quantum wires and quantum dots, the model cannot work because wave vector is not
conserved. One should therefore use another localized model, e.g. optical Bloch equations
(see chapter 5).
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Figure 7.11: Simulation of the experimental
data taken from Ref. [104], Fig. 2.

Figure 7.12: Simulated TR–FWM data taken
from Fig. 4 in [101] using the presented model.

7.9 Simulations of experiments

In this section, I present calculations which were done in order to show whether the model
is able to simulate experimental data. For this purpose, I have chosen experimental data
published in literature and I performed numerical calculations. One type of simulations is
a simulation of the validity of the model with respect to the so–called four–particle corre-
lations, i.e. whether the model takes exciton–exciton correlations correctly into account. I
took experimental data from Ref. [104], measured by a coherent excitation spectroscopy
(CES) method, developed by the authors. This method is based on excitation of a quan-
tum well by a spectrally broad pulse (direction K1 =K2) and subsequent scan of excited
states by a spectrally narrow pulse in the direction K3. The response in the FWM di-
rection K1+K2−K3 is then spectrally resolved and the sum of the detected energy and
energy of the third (K3) field gives the energy of a dipole–active excited state.
I simulated experimental data from Fig. 1 in the cited paper, i.e. scan of SR–FWM

with different energies of the third pulse. I considered the setup described in the paper
and the values: T2 = 5 ps, TX2 = 4 ps, T

B
2 = 10 ps, T

R
2 = 0.8 ps, T

2X
2 = 2 ps, T 2B2 = 5 ps

and T 2R2 = 0.4 ps. The coupling strengths were chosen ad hoc VX = 6 · 10−9 eV, GX =
= 4 · 10−6 eV, M2 = 1 · 10−5 eV and Vd = Vx/4, Gd = Gx/4. The resulting graphs are
plotted in Fig. 7.10a,b.
When changing the time delay τ = t1− t3 (t1 = t2) in calculations, the intensity of the

response at various positions in graphs in Fig. 7.10 change. The maxima are not, however,
localized at τ = 0. As shown in the experiment in Ref. [104], they are displaced from the
origin as seen in simulation in Fig. 7.11. Comparing to the experimental data, we find some
differences, mainly that the simulated temporal displacements are much smaller than the
experimental data. However, the model has many limitations and it is very simple and it
is a success when it predicts some tendencies.
Comparing Figs. 7.10 and 7.11 with the experimental data published in [104], we find

that the model is able to reproduce the experiment. Due to the lack of knowledge of the
sample characteristic times, it is not possible to do a better comparison, nevertheless we
may conclude that the four–particle correlations are described with good success. The
spectral widths of the SR–FWM signals in the simulations do not agree with the experi-
mental data since some relaxation times may be overestimated and also not all bipolariton
states are taken into account in the calculations (bipolaritons with bigger wave vectors).
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In order to show how powerful the model is in predictions of the dynamics of polari-
zation, I simulated a TR-FWM experiments on GaAs multiple quantum wells described
in Ref. [101] in Fig. 7.12. Buccafusca et al. measured the X– and Y –polarized components
of the TR–FWM signal using two linearly polarized beams. The polarization planes were
rotated by 60◦ one to the other. Also the time–resolved relative phase of the two detected
polarizations was measured. The measurement then reveals the whole dynamics of the
polarization of the FWM response. I simulated the experimental data using the presented
model extended to quantum wells. Looking at Fig. 7.12, we may conclude that the basic
characteristics are quite well reproduced by the model. There are still some inaccuracies
which come probably from the fact that there are large uncertainties in the phenome-
nological constants. The peak positions as well as shapes of the curves are, however, in
accordance to the experimental data. Also the temporal evolution of the relative phase
agrees showing that the model is well applicable for a description of such experiments.
Note that the −180◦ phase shift at t = 0 is caused by the opposite sign of the scatte-
ring of two X–polarized polaritons: scattering to a pair of polaritons with X polarizations
(X–polarized FWM response) has a positive sign while the scattering to the Y Y pair
(Y –polarized FWM response) has a negative sign.
In conclusion, simulations presented in this section show the accuracy and limitations

of the model presented in chapter 6.

7.10 Measurements of wave vector dependent interactions

7.10.1 Overview of the method

The model presented in chapter 6, as depicted in Fig. 6.7 gives an illustrative insight into
the processes which are responsible for wave mixing in semiconductors. We clearly resolve
three channels and based on their symmetry with respect to particle spin, polarization
selection rules are determined algebraically in section 7.3. However these algebraic cal-
culations are valid only under several conditions: we consider two dipole–active exciton
states (eigenstates of the one–exciton Hamiltonian) which are degenerate in energy.
As discussed in section 3.3 and chapter 5, spin is not conserved in semiconductors

when polaritons have a nonzero wave vector. The wave vector induced interaction then
causes spin precession similar to precession in magnetic field. This precession cannot be,
however, observed in standard pump and probe experiments or using another nonlinear
time–resolved experimental technique in which the signal (induced change of the probe
pulse intensity) is determined by populations of excitons. The reason is, that the FWM
response comes only from particles with wave vectors k1, k2 and k3, respectively, while
it comes from particles with a variety of wave vectors in pump and probe and other
experiments. The overall response of an inhomogeneously broadened system of exciton
spins is then similar to the enhanced decay of overall polarization known from optical Bloch
equations — we may observe only a monotonous spin relaxation without any oscillations.
There are experimental works in which a spontaneous spin–flip is measured using pump
and probe method [105, 106, 107, 108, 109, 110, 111, 112] but from these experiments, it
is obviously not possible to determine the (coherent) spin–flip rate as a function of wave
vector.
It is, nevertheless, possible to use an indirect method for measurement of dispersion

of polariton states. One may then numerically fit the dispersion curves which refer to
dispersions of eigenenergies of polariton states. The appropriate methods are resonant
Brillouin scattering, attenuated total reflection, hyper–Raman scattering etc. [26].
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The idea of measurement of spin–flip processes using four–wave mixing was already
illustrated in chapter 3. We excite a sample by the polarized light and we detect the spin
of excited particles by a probe pulse. The problem is, however, that that spin precession
takes place generally between all eight spin states of polaritons plus bipolariton effect must
be accounted for. The proposed method for measurement of spin precession is following.
We select a combination of polarizations of incoming beams from polarization selection
rules of a system nonperturbed by wave vector dependent interaction under which the
polarization of the response is stationary and well defined. Then we detect in a polari-
zation perpendicular to the calculated direction. A nonzero signal is then expected to be
a consequence of wave vector dependent interaction. For example, we may excite a crystal
with zinc–blende structure by linearly polarized pulses with polarizations XXX. In the
X polarization, the signal is dipole–allowed while it is forbidden in the Y polarization (see
Tab. 7.3). A nonzero Y –polarized signal then indicates spin–flip processes (polarization
setup of such measurement will be denoted as XXX|Y ). The strength of k–linear inter-
action may be subsequently evaluated from the ratio of the intensity of the response with
X and Y polarization, respectively.
Dynamics of the system of polaritons resolved in spin is too complex for analytical so-

lution of equations of motion since coupling of spins occurs in every group of spin–resolved
polaritons. It is more convenient to solve the equations numerically. I used the Hamiltonian
(6.71) and the simplified level scheme for numerical calculations. I calculated the FWM
response of bulk crystals with zinc–blende structure including k–linear interactions within
the full basis of eight exciton and six biexciton states.
Calculations were performed for a CuBr crystal under several orientations with respect

to the excitation beams. These orientations were [001], [110] and [111], respectively. Ex-
citation was considered 10 meV below exciton resonance with pulses with duration 100 fs
(∼ 20 meV). Hamiltonian constructed by the method of invariants is taken from Refs. [26]
and considering only k–linear terms, it reads:

ĤQ =
1
2
CQ[Qx{Ĵx, Ĵ2y − Ĵ2z }+ c.p.]⊗ 1e + [(∆LT cosα cos β |x〉〈y|+ c.p.) +H.c.] , (7.20)

where ∆LT stands for the LT splitting (nonanalytic exchange interaction), CQ is the
coupling strength, cosα, cos β and cos γ denote direction cosines of the wave vector and
c.p. means cyclic permutation. Sample data are plotted in Fig. 7.13 — polarizations of
incoming pulses are XXX and detection is in X (a,c) and Y polarization (b,d). The stren-
gth of k–dependent interaction CQ is varied from 0 to 7.3 · 10−6 eVµm [26]. Clearly the
Y –polarized signal is caused by the spin precession due to k–linear interaction.
Calculations presented in Figs. 7.13a,c show that the signal in the dipole–forbidden

polarization is by several orders of magnitude weaker than the signal in the dipole–allowed
polarization. It might be therefore very hard to measure any sign of k–dependent inter-
action in TR–FWM experiments. However, looking at Figs. 7.13b,d, we find that the
SR–FWM is better suitable for our purpose since the response in the dipole–forbidden
polarization may be stronger than the response in the dipole–allowed polarization at some
spectral positions.
Concerning the calculations, it is important to note that the spectral width of the

bipolariton response is underestimated. In real experiments, also bipolaritons with higher
wave vectors contribute to the FWM signal and thus spectra of the bipolariton response
are usually significantly broader.
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The reason, why the response on the spectral positions of the Γ3 and Γ5 bipolaritons as
well as the response on the spectral position of excitons arise, needs further examination.
Response in the dipole–forbidden polarization may be due to three processes:

• Spin–flip of polariton spin which results in the FWM response on the spectral posi-
tion of exciton–like polariton states.

• Spin–flip of polariton spin which causes relaxation of dipole selection rules for exci-
tation of bipolaritons.

• Spin–flip of bipolaritons.

We may study which of the mechanisms gives the strongest signal when looking at Fig. 7.14a.
The plotted curves refer to calculations when the spin precession is taken into account for
both polaritons and bipolaritons (black line), considering only spin–flip processes of bi-
polaritons (red) and considering only spin–flip processes of polariton spin (orange). The
red and black curves differ only slightly and the orange curve is many orders of magni-
tude weaker indicating that the major process, which causes the FWM response under
polarization setup XXX|Y at the spectral position of bipolaritons, is the spin precession
between bipolariton states.
It is known from Refs. [26, 113, 114] that the bipolariton spin precesses between all

bipolariton states except for the Γ1 bipolariton. Dipole selection rules imply following
considering [001] propagation direction:

• The Γ1 bipolariton is excited by two X–polarized pulses and the third X–polarized
pulse annihilates it giving X–polarized FWM response.

• The state Γ 13 is excited and gives also the X–polarized response. It is coupled to the
Γ5 bipolaritons and considering the first–order processes, only the Γ 15 state contri-
butes to the Y –polarized response.

• The state Γ 23 is excited, however it doesn’t couple to the state Γ 15 which might give
the Y –polarized response.

• States with Γ5 symmetry are not coupled to the XX excitation field. Only the state
Γ 15 contributes to Y –polarized response due to the spin structure XY and due to
the coupling to the Γ 13 bipolariton (spin structure XX).

Clearly the FWM response with the dipole–forbidden polarization is due to coupling of
bipolaritons as a consequence of wave vector dependent interaction. This statement may
be proven by calculations when all bipolaritons are taken into account and only the state
Γ 13 is omitted in calculations, see Fig. 7.14b.
The coupling energy between the two bipolariton states Γ 13 and Γ

1
5 is [26] Ek−lin =

= 2
√
3CQKk1+k2 ≈ 2

√
3CQnbε

Γ
1
3

k1+k2
/~c, where nb is background refractive index and

ε
Γ
1
3

k1+k2
is the bipolariton energy. Energy of coupling, considering CQ = 7.3 · 10−6 eVµm

and nb = 2.5, is Ek−lin = 1.9 meV what refers to 2.2 ps beating period. This coupling also
causes shift of the resonance energies — their splitting was originally 1.5 meV and the
interaction causes increase to 3.2 meV. Increase of the energy splitting between bipolariton
states is clearly seen in calculation in Fig. 7.13d.
As seen in Fig. 7.14a, there is no response from the direct channel even though k–

linear interaction couples pairs of exciton states. Two pairs of uncoupled dipole–active
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states are created as a consequence of the symmetry breaking caused by the k–linear
interaction [26], coupled excitons within each pair of states have symmetries Γ4 and Γ5.
Using symmetry properties of the scattering matrices, it may be shown that no wave mixing
is allowed. However when rotating the polarization of incoming fields, polarization selection
rules change due to lack of invariance of elements which belong to the Γ4 representation
in the exchange scattering matrix with respect to rotations. Therefore when one selects
other than X and Y polarizations of excitation pulses, he may observe a FWM signal in
dipole–forbidden configuration as will be discussed later (cf. Fig. 7.15). The Y –polarized
response in Fig. 7.14a is rather a numerical error and relaxation of dipole selection rules for
bipolaritons does not induce any FWM signal in the particular case of [001] propagation
axis. In other propagation directions, this effect may be important.
The FWM response is given by bipolaritons which have symmetries different from Γ1

symmetry and therefore the orientation of the plane of polarization of incoming fields
with respect to the crystallographic axes is very important. This property is illustrated in
Fig. 7.15. Compared to the XXX|Y configuration, the FWM response caused by k–linear
interaction is by an order of magnitude weaker in the RRR|L configuration. The respective
R and L polarizations mean polarizations rotated by +45◦ and −45◦, respectively, with
respect to the crystallographic axes x and y.
One may change time delays between excitation pulses in spectrally–resolved FWM

experiments. Results of calculation of a two–beam experiment are plotted in Fig. 7.16a–b.
The first graph shows the X response of a SR–FWM experiment when t1 = t2 and the
time delay is τ = t1 − t3, the second graph (b) then shows the Y –polarized response. It
is interesting, that the graphs reveal quantum beats. These quantum beats then might
be a sign of k–linear interaction. The period of beating in the Y –polarized response is
0.9 ps what is approximately one half of the aforementioned period 2.2 ps due to Γ 13 ↔ Γ 15
coupling. However, the bipolariton states are coupled to other states and therefore the
beating period is slightly modified. Concerning the X–polarized response, the beating
period is much shorter than theoretically estimated 1.1 ps showing a strong interplay of
more than two bipolariton states.

7.10.2 Possible polarization setups

The previous subsection gives an overview of the phenomena connected with the k–linear
interaction. In this subsection, I view the results of numerical calculations when polarizati-
ons of excitation beams and crystal orientations are changed. I selected polarizations from
Tab. 7.3, for which the FWM response (without considering k–linear interaction) has a
definite polarization. Then the influence of the k–linear interaction on the FWM response
in the dipole–forbidden polarization is calculated. I do not give here the full list of the
calculated results, only those which may be important for experiments are presented.
Calculations were done considering propagation directions [001], [110] and [111]. The

direction [110] has low symmetry when compared to the other two cases and therefore
spin is conserved only when polarizations of the excitation beams are X or Y . Numerical
calculations confirmed that measurements in this direction would not give clear results
and therefore propagation direction [110] is not further discussed.
In the following, I discuss a FWM signal which comes from bipolariton spin–flip and

at the end of the subsection, influence of exciton–polariton spin–flip on FWM is shown.
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Figure 7.13: Simulated TR–FWM (a,b) and
SR–FWM (c,d) response to XXX excitation
and X (a,c) and Y (b,d) detection. Strength
of k–linear interaction is varied.

Figure 7.14: (a) Comparison of SR–FWM
responses in XXX |X and XXX |Y setups
including all interactions (black, blue) and
neglecting k–linear interaction for polaritons
(red) and bipolaritons (orange). (b) Same as
(a) without the red line and showing response
with all interactions when the Γ3 bipolariton
is missing (green).

Figure 7.15: Comparison of XXX |X (black),
XXX |Y (blue) and RRR|L (red) responses
in SR–FWM.
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Figure 7.16: Simulated SR–FWM under XXX |X and XXX |Y when t1 = t2 and the delay t3− t2
is varied. Plot is in log scale.
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The XXX|Y configuration was already discussed in the previous subsection for the
[001] propagation direction. Calculations for the [111] direction1 reveal similar properties
with two exceptions: the signal in the dipole–forbidden polarization is much weaker (by one
order of magnitude) and the Γ5 bipolariton is allowed in the dipole–active polarization. One
may verify the hypothesis that the response is due to bipolariton spin–flip by measurement
in the phase conjugation setup. Since the wave vector of bipolaritons is k1−k2 ≈ 0, the
expected signal in the dipole–forbidden polarization is zero (see graph in Fig. 7.14b, green
line).
The response in the setup RRR|L2 is very interesting when compared to XXX|Y

since the calculations show that it is not due to bipolariton spin–flip but due to relaxation
of dipole selection rules for bipolaritons (see Fig. 7.17). However the signal is very weak
(two orders of magnitude weaker than the dipole–allowed signal) and therefore only hardly
measurable — the polariton spin–flip [28, 25, 26] is much less probable than the bipolariton
spin–flip.
Polarization setup XY X|X is similar to the setup XXX|Y . Calculations show that

the response is caused by the same effect — transitions between the states Γ 13 and Γ
1
5 .

Compared to the XXX|Y situation, the transition goes in a reversed direction since the
Γ 15 state is excited and the state Γ

1
3 is probed. This spin–flip process causes a better ratio

between the signal in two respective polarizations — it is 1:23 in theXXX|Y configuration
and 1 : 10 in the XYX|X configuration. When using polarizations RLR|R, the state Γ 13
is excited and Γ 15 is probed and the signal is weaker than in the XY X|X configuration.
Concerning the [111] direction, calculations show that the signal is due to relaxation of
dipole selection rules, therefore it is very weak. The calculated spectra are plotted in
Fig. 7.18.
The configuration σ+σ−σ+|σ+ is very similar to the XXX|Y and XYX|X configu-

rations since the signal is given by the spin–flip between bipolariton states Γ 13 and Γ
1
5 , see

Fig. 7.19. These two states arise in the response even though this polarization configuration
is dipole–forbidden without k–linear interactions. The direction of propagation is very im-
portant since the signal vanishes in the [111] direction. In the σ+σ+σ−|σ+ configuration,
the dominant effect is again bipolariton spin–flip (see Fig. 7.20). The dipole–forbidden sig-
nal then vanishes in the [111] propagation direction because of its high symmetry.
When compared to the above polarization configurations, the responses in the con-

figurations σ+Xσ−|σ+ and σ+Rσ−|σ+ are quite extraordinary. As seen in Fig. 7.21,
the originally dipole–allowed response of the Γ3 bipolariton is forbidden as a consequence
of the k–linear interaction in the σ+Xσ−|σ+ configuration. On the contrary, it is allowed
when the linear polarization is turned by 45◦. Turning of the linear polarization in this
configuration thus may be a good test for the validity of the presented calculations. In the
[111] propagation direction, there is no response in this configuration of polarizations.
Now I discuss possible polarization setups under which the wave vector dependent

interaction may be visualized at the exciton resonance in SR–FWM experiments. I consi-
dered pulses with duration 250 fs resonant with excitons in order to rule out influence of
the bipolaritons (spectral width of the pulses is below 9 meV).

1For the [111] propagation direction, polarization is considered to be parallel with the projection of the
crystallographic axis x on the crystal surface.

2To recall, R means a linear polarization rotated by 45◦ with respect to X, R = (X + Y )/
√
2 and L is

a perpendicular linear polarization.
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In the XXX|Y configuration, there is no response as already noted above while
rotation of the polarization direction by 45◦ causes a nonzero signal in the configuration
RRR|L in the [001] direction as seen in Fig. 7.23. Concerning the [111] propagation
direction, spectra are not plotted in the graph but the response in the dipole–forbidden
configuration arises for bothXXX|Y and RRR|L configurations (not shown in the graph).
We get very similar results also for the polarization setups XY X|X and RLR|R.
Configurations XXY |X and RRL|R are similar to the aforementioned setups with

linear polarizations, however there is a difference that the spectra are considerably assy-
metric and the maxima are shifted from the exciton resonance, see Fig. 7.24. I plotted by
dashed lines also the responses for the configurations XXY |X,Y in the [111] direction for
comparison, the responses for configurations RRL|R,L in the [111] direction are equal.
Clearly the responses for [001] and [111] propagation directions are similar.
For circular polarizations, FWM response in the dipole–forbidden configuration is for-

bidden when considering [111] propagation axis except the σ+σ+σ+|σ+,− configurations.
The results for σ+σ+σ−|σ+,− and σ+σ+σ−|σ+,− for [001] propagation directions are
plotted in Fig. 7.25. In the former configuration, the signal in the dipole–forbidden con-
figuration is much weaker than the signal in the dipole–allowed configuration and it may
be thus hard to detect it. In the latter situation, on the contrary, the difference is only
one order of magnitude and this configuration is better suitable for an experiment.

7.10.3 Proposal of experimental setup

It seems from the calculated data that the polarization configuration XYX|X might be
the best one for experimental measurement of bipolariton spin–flip when the propagation
direction is [001] and the exciton spin–flip might be seen when the propagation direction
is [111].
Concerning bipolaritons, the proposed experimental setup is the following. The sample

is excited by two spectrally narrow pulses (K1, K2) resonantly with the Γ5 bipolaritons
(energy 5.9103 eV, pulse duration 2 ps). The third spectrally narrow pulse then probes
coherence of the Γ 13 bipolariton which is spectrally shifted and thus arise in the dipole–
forbidden polarization at the spectral position of the Γ5 bipolariton, see Fig. 7.22. In the
XYX|X setup, the (strong) signal is due to bipolariton spin–flip and it is almost compara-
ble to the size of the dipole–allowed signal. On the contrary, in the RLR|R configuration,
the signal is very weak. Rotation of the polarizations with respect to the crystallographic
axes clearly visualize the k–linear interaction of bipolaritons. In order to further support
calculations, a similar experiment may be done in the phase conjugation geometry. In such
case, no strong signal is expected since the bipolariton spin–flip is forbidden.
The exciton spin–flip which causes relaxation of the dipole selection rules for bipolari-

tons may be observed in the same configuration as described above, however a crystal cut
and polished to have [111]–oriented surfaces is used. Under these conditions, bipolariton
response is forbidden and one observes a signal in the X ′Y ′X ′|X ′ polarization configu-
ration which does not change when rotating the polarizations around the propagation
axis.
For a measurement of the exciton spin–flip on the exciton resonance, I propose the

following measurement. Using the [001]–oriented sample, the system is excited by XXY
pulses and the polarization X is selected for detection. No signal is expected and the
relaxation of polarization selection rules due to wave vector dependent interaction may
be seen when rotating all polarization by 45◦ — the response in the dipole–forbidden
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Figure 7.17: Simulation of SR–FWM response
under RRR|R and RRR|L setups.

Figure 7.18: Simulation of SR–FWM response
under XYX |Y , XYX |X and RLR|R setups.

polarization becomes nonzero, only by one order of magnitude weaker than the signal in
the dipole–allowed polarization. In the resulting RRL|R configuration, a nonzero signal
should be seen, the rotation of the polarizations of the incoming beams and the detection
with respect to crystallographic axes may be then used in order to verify that the signal
in the dipole–forbidden configuration is not an experimental error. One may perform a
similar measurement using the σ+σ+σ−|σ+,− setup, however there is no possibility of
verification that the nonzero signal is not just an artifact.
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Figure 7.19: Simulation of SR–FWM response
under σ+σ−σ+|σ− and σ+σ−σ+|σ+ setups.

Figure 7.20: Simulation of SR–FWM response
under σ+σ+σ−|σ− and σ+σ+σ−|σ+ setups.

Figure 7.21: Simulation of SR–FWM re-
sponse under σ+Xσ+|σ−, σ+Xσ+|σ+ and
σ+Rσ+|σ+ setups.

Figure 7.22: Simulated data for a proposed ex-
periment for measurement of the wave vector
dependent interaction with spectrally narrow
pulses in setups XYX |X,Y and RLR|R,L.



134 CHAPTER 7. FWM ON BULK MATERIALS: RESULTS AND DISCUSSION

Figure 7.23: Simulation of SR–FWM re-
sponse in [001] direction under RRR|R,L and
XXX |X setups of excitation beams (XXX |Y
gives no response). Only the response of
exciton–like polaritons is detected when using
250 fs pulses.

Figure 7.24: Simulation of SR–FWM response
in [001] and [111] directions under RRL|R,L
and XXY |X,Y setups of excitation beams
(XXX |Y gives no response in the [001] di-
rection). Only the response of exciton–like po-
laritons is detected when using 250 fs pulses.

Figure 7.25: Simulation of SR–FWM response
in [001] direction under σ+σ+σ+|σ+, σ−

setups of excitation beams. Only the response
of exciton–like polaritons is detected when
using 250 fs pulses.



Chapter 8Con
lusions
In this thesis, I show the way how polarization selection rules of FWM experiments on
semiconductors and their nanostructures may be determined. I show that polarization
selection rules strongly depend on the system’s dimensionality and therefore one must use
different approaches for description of bulk semiconductors and quantum dots. This fact
is illustrated in chapter 4 in which I show that delocalized (3D in bulk) noninteracting
bosons cannot provide any wave mixing while localization (0D in quantum dots) opens
a wave mixing channel even if the states do not interact one with the other. It is then
clear that the principle of wave mixing differs in both systems and one may expect that
polarization selection rules differ as well.
In quantum dots, wave mixing comes from the fact that every state interacts with op-

tical fields in all directions. One may apply directly the concept of optical Bloch equations
(OBE) to nanocrystals, however it must be extended in order to describe the spin and also
the correct statistics of particles since excitons are bosons. I discuss various level schemes
appropriate for description of FWM response of nanocrystals under different experimental
conditions in chapter 5 and I derive polarization selection rules for these schemes.
Since the level schemes are equal to the level schemes used in literature for description

of FWM response on bulk semiconductors and quantum wells, I investigate whether the
theoretically derived and experimentally verified polarization selection rules are reprodu-
ced by any of the considered systems or not. The conclusion is, that none of the schemes
is applicable to bulk semiconductors. This statement then justifies development of a new
model for description of FWM on bulk semiconductors.
It is shown above that the wave mixing is caused by some particle–particle interaction

in bulk semiconductors. I find two interactions which may provide wave mixing: Pauli bloc-
king due to fractional Fermi character of excitons and exciton–exciton Coulomb interaction
which causes polariton–polariton interaction. These two interactions then give rise to three
different wave mixing channels well resolved in the developed model, which differ in polari-
zation selection rules and their dynamics: the direct channel (Coulomb polariton–polariton
scattering without any intermediate state), the bipolariton channel (bipolariton–mediated
polariton–polariton scattering) and the diffraction channel (diffraction on a transient di-
ffraction grating created at the sample’s surface).
The wave mixing through the diffraction channel is very similar to the effect of Pauli

blocking in atomic systems: excited polariton modes in the crystal create local minima
and maxima of populations of electrons and holes. These variations form a grating and,
as a consequence, the second–order susceptibility causes scattering of incident waves. This
process is similar to the process of diffraction on a transient grating in atomic systems,
however polarization selection rules reasonably differ in the atomic and the bulk systems.

135
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The direct channel provides scattering of an initial two–polariton state in which po-
laritons have wave vectors k1 and k2 to a variety of states with wave vectors k1+q and
k2−q due to wave vector conservation. But only the states in which one of the wave vec-
tors equals k3 may interact with the field in the direction k3 (due to the aforementioned
selection rule for wave vector for dipole interaction) and therefore this field causes po-
pulation of strongly correlated states with wave vector k1+k2−k3. This population then
radiates coherent FWM signal in the mentioned FWM direction. Polarization selection
rules for the direct channel clearly reflect the symmetry of exciton–exciton interactions.
The bipolariton channel acts in a similar way as the direct channel, but it has different
dynamics and polarization selection rules due to the symmetry of the bipolariton states.
The sum of the particular responses of the three channels then gives the overall FWM

response. Since the dynamics and polarization selection rules of the respective channels
may differ considerably, the overall response reveals interesting phenomena. For example
interference of the responses of the bipolariton and the direct channel cause beating of
the signal because of the nonzero bipolariton binding energy. One may also observe some
temporal evolution of the overall polarization if the polarizations of the responses of the
respective channels differ for some setup of polarizations of the incident beams.
The model is formulated in the framework of polaritons which allows us to describe the

FWM response over the whole spectral range of incident pulses. Considering an optically
thin sample, it is possible to reduce the big number of states which influence the FWM
creation to a few–level scheme with the structure similar to modified OBE known from
literature. It is therefore possible to perform direct integration of equations and also to
derive algebraic expressions for determination of polarization selection rules. Based on the
algebraic calculations of selection rules, I verified that the model gives correct results when
compared to data published in literature.
Since quantum wells reveal translational symmetry, I show how the model may be

extended to describe two–dimensional structures. Then I show calculations in order to
reproduce experimental data on GaAs quantum wells published in literature. I show in
chapter 7 that the experimental data are well fitted using the presented model which may
be therefore used for predictions of polarization dynamics and FWM spectra.
After a general discussion of the developed model, I present a discussion of a possibility

of measurement of weak wave vector dependent interactions which cause spin–flips due
to nonzero wave vector of excitons. The basic idea is following: without the symmetry
breaking due to the interaction, the considered sample would reveal some polarization
selection rules. Taking the interaction into account, these selection rules change slightly.
This small change then may be observed as a relaxation of polarization selection rules
for some dipole–forbidden configuration, i.e. the perturbation causes a nonzero signal
of the FWM response in the polarization which is dipole–forbidden without taking the
perturbation into account. Based on the calculated nonperturbed and perturbed spectra
of the FWM response with the parameters of CuBr, I propose an experiment in which the
strength of the interaction might be measured. I find several setups which I propose for a
measurement of the exciton and biexciton spin precession using FWM spectroscopy.
The models for description of bulk semiconductors, quantum wells and quantum dots,

proposed in this thesis, may be used in order to propose an experiment designed for
detection of a general spin–flip process which takes place during evolution of the excited
system as a consequence of an arbitrary symmetry–breaking effect. One may measure
in this way for example influence of electric fields or homogeneous stress on exchange
interactions. The model for description of bulk semiconductors then opens a possibility of
development of new experimental techniques in ultrafast nonlinear laser spectroscopy.



Appendix ABiex
iton Hamiltonian inquantum wells
The terms of Hamiltonian appropriate for Biexciton Hamiltonian in quantum wells from a
material with zinc–blende and wurtzite structure are listed below. Numbers in superscripts
stand for the number of a particle: holes are numbered as (2) and (4) and electrons (1)

and (3). Symbols P13 and P24 then permute superscripts in the preceding terms.

A.1 Zinc–blende in [001] direction

h−h exchange : Ĵ (2)x Ĵ (4)x + Ĵ
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y − Ĵ (4)
2
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Ĵ (2)z Ĵ (4)

3

z + P24
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x − Ĵ (2)
2
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x − Ĵ (4)
2

z }+ P24

137



138 APPENDIX A. BIEXCITON HAMILTONIAN IN QUANTUM WELLS

A.2 Zinc–blende in [110] direction
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2

x } · {Ĵ (4)y , Ĵ (4)
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A.3 Zinc–blende in [111] direction

e−e exchange : σ̂(1)+ σ̂
(3)
− + P13

σ̂(1)z σ̂(3)z

h−h exchange : Ĵ (2)z Ĵ (4)z
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(2)3

+ ) · (Ĵ (4)
3

− − Ĵ
(4)3

+ ) (A.3)

{Ĵ (2)+ , Ĵ
(2)
− } · {Ĵ (4)+ , Ĵ

(4)
− }

(Ĵ (2)
3

+ + Ĵ (2)
3

− ) · (Ĵ (4)
3

+ + Ĵ (4)
3

− )

Ĵ
(2)
+ {Ĵ (4)− , {Ĵ (4)+ , Ĵ

(4)
− }}+ Ĵ (2)− {Ĵ (4)+ , {Ĵ (4)+ , Ĵ

(4)
− }}+ P24

{Ĵ (2)+ , Ĵ
(2)2

− } · {Ĵ (4)− , {Ĵ (4)+ , Ĵ
(4)
− }}+ {Ĵ (2)− , Ĵ

(2)2

+ } · {Ĵ (4)+ , {Ĵ (4)+ , Ĵ
(4)
− }}+ P24

{Ĵ (2)+ , {Ĵ (2)+ , Ĵ
(2)
− }} · {Ĵ (4)− , {Ĵ (4)+ , Ĵ

(4)
− }}+ P24

e−hexchange : [σ̂(1)z Ĵ (2)z + P13] + P24

[σ̂(1)z Ĵ (2)
3

z + P13] + P24

[σ̂(1)− Ĵ
(2)
+ + σ̂

(1)
+ Ĵ

(2)
− + P13] + P24

[σ̂(1)− {Ĵ (2)− , Ĵ
(2)2

+ }+ σ̂(1)+ {Ĵ (2)+ , Ĵ
(2)2

− }+ P13] + P24
[σ̂(1)+ {Ĵ (2)− , {Ĵ (2)+ , Ĵ

(2)
− }}+ σ̂(1)− {Ĵ (2)+ , {Ĵ (2)+ , Ĵ

(2)
− }}+ P13] + P24
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A.4 Wurtzite in [001] direction

e−e exchange : σ̂(1)+ σ̂
(3)
− + P13

σ̂(1)z σ̂(3)z

h−h exchange : Ĵ (2)z Ĵ (4)z

Ĵ (2)
2

z Ĵ (4)
2

z

Ĵ (2)
3

z Ĵ (4)
3

z

Ĵ (2)z Ĵ (4)
3

z + P24

(Ĵ (2)
3

+ + Ĵ (2)
3

− ) · (Ĵ (4)
3

+ + Ĵ (4)
3

− )

(Ĵ (2)
3

+ − Ĵ
(2)3

− ) · (Ĵ (4)
3

+ − Ĵ
(4)3

− )

Ĵ
(2)
+ Ĵ

(4)
− + P24

{Ĵ (2)+ , {Ĵ (4)+ , Ĵ
(4)2

− }} + {Ĵ (2)− , {Ĵ (4)− , Ĵ
(4)2

+ }}+ P24
i({Ĵ (2)+ , {Ĵ (4)z , Ĵ

(4)
− }} − {Ĵ (2)− , {Ĵ (4)z , Ĵ

(4)
+ }}) + P24

{Ĵ (2)+ , Ĵ
(2)2

− } · {Ĵ (4)− , Ĵ
(4)2

+ }+ P24 (A.4)

i({{Ĵ (2)+ , Ĵ
(2)2

− }, {Ĵ (4)z , Ĵ
(4)
+ }} − {{Ĵ (2)− , Ĵ

(2)2

+ }, {Ĵ (4)z , Ĵ
(4)
− }}) + P24

{Ĵ (2)z , Ĵ
(2)
− } · {Ĵ (4)z , Ĵ

(4)
+ }+ P24

Ĵ
(2)2

+ Ĵ
(4)2

− + P24

{Ĵ (2)z , Ĵ
(2)2

+ } · {Ĵ (4)z , Ĵ
(4)2

− }+ P24
i({Ĵ (2)

2

+ , {Ĵ (4)z , Ĵ
(4)2

− }} − {Ĵ (2)
2

− , {Ĵ (4)z , Ĵ
(4)2

+ }}) + P24
e−h exchange : [σ̂(1)z Ĵ (2)z + P13] + P24

[σ̂(1)z Ĵ (2)
3

z + P13] + P24

[σ̂(1)+ Ĵ
(2)
− + σ̂

(1)
− Ĵ

(2)
+ + P13] + P24

[σ̂(1)+ {Ĵ (2)+ , Ĵ
(2)2

− }+ σ̂(1)− {Ĵ (2)− , Ĵ
(2)2

+ }+ P13] + P24
i[σ̂(1)+ {Ĵ (2)z , Ĵ

(2)
− } − σ̂

(1)
− {Ĵ (2)z , Ĵ

(2)
+ }+ P13] + P24



Appendix BEquations of motion of themodel
B.1 General equations of motion

Equations of motion which arise directly from Hamiltonian (6.71) read:

[i~∂t + γ2] ˜̺
(1)
Sk1,0

(t) = iEe,K1(t)e
−i(ωK1

−hSSk1
/~)tµS,K1 〈S|e〉+

+
∑

S′ 6=S
hS′S,k1e

−i(hS′S′,k1
−hSS,k1

)t/~ ˜̺(1)0,S′k1
(t) , (B.1)

[i~∂t + γ2] ˜̺
(1)
Sk2,0

(t) = iEe,K2(t)e
−i(ωK2

−hSSk2
/~)tµS,K2 〈S|e〉+

+
∑

S′ 6=S
hS′S,k2e

−i(hS′S′,k2
−hSS,k2

)t/~ ˜̺(1)0,S′k2
(t) , (B.2)

[i~∂t + γ2] ˜̺
(1)
0,Sk3

(t) = iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 −

−
∑

S′ 6=S
h∗S′S,k3e

+i(hS′S′,k3
−hSS,k3

)t/~ ˜̺(1)S′k3,0
(t) , (B.3)

[i~∂t + γ
C
2 ] ˜̺
(2)
Sk1,S′k3

(t) = iEe,K1(t)e
−i(ωK1

−hSSk1
/~)tµS,K1 〈S|e〉 ̺

(1)
S′k3,0

(t) +

+iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(1)
0,Sk1

(t) +

+
∑

Σ 6=S
hΣS,k1e

−i(hΣΣ,k1
−hSS,k1

)t/~ ˜̺(2)S′k3,Σk1
(t)−

−
∑

Σ′ 6=S′

h∗Σ′S′,k3e
+i(hΣ′Σ′,k3

−hS′S′,k3
)t/~ ˜̺(2)Σ′k3,Sk1

(t) , (B.4)

[i~∂t + γ
C
2 ] ˜̺
(2)
Sk2,S′k3

(t) = iEe,K2(t)e
−i(ωK2

−hSSk2
/~)tµS,K2 〈S|e〉 ̺

(1)
S′k3,0

(t) +

+iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(1)
0,Sk2

(t) +

+
∑

Σ 6=S
hΣS,k2e

−i(hΣΣ,k2
−hSS,k2

)t/~ ˜̺(2)S′k3,Σk2
(t)−

−
∑

Σ′ 6=S′

h∗Σ′S′,k3e
+i(hΣ′Σ′,k3

−hS′S′,k3
)t/~ ˜̺(2)Σ′k3,Sk2

(t) , (B.5)

[i~∂t + γ2X2 ] ˜̺
(2)
0,Sk1S′k2

(t) = iEe,K1(t)e
−i(ωK1

−hSSk1
/~)tµS,K1 〈S|e〉 ˜̺(1)0,S′k2

(t) +

+iEe,K2(t)e
−i(ωK2

−hSSk2
/~)tµS,K2 〈S|e〉 ˜̺

(1)
0,Sk1

(t) +

141
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+
∑

Σ 6=S
hΣS,k1e

−i(hΣΣ,k1
−hSS,k1

)t/~ ˜̺(2)0,Σk1S′k2
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k2e
−i(hΣ′Σ′,k2−hS′S′,k2

)t/~ ˜̺(2)0,Sk1Σ′k2
, (B.6)

[i~∂t + γ
X
2 ] ˜̺

(3)
Sk1S′k2,S′′k3

(t) = iEe,K1(t)e
−i(ωK1

−hSSk1
/~)tµS,K1 〈S|e〉 ˜̺

(2)
S′′k3,S′k2

(t) +

+iEe,K2(t)e
−i(ωK2

−hSSk2
/~)tµS,K2 〈S|e〉 ˜̺

(2)
S′′k3,Sk1

(t) +

+iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(2)
0,Sk1S′k2

(t) +

+
∑

Σ 6=S
hΣS,k1e

−i(hΣΣ,k1
−hSS,k1

)t/~ ˜̺(3)S′′k3,Σk1S′k2
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k2e
−i(hΣ′Σ′,k2−hS′S′,k2

)t/~ ˜̺(3)S′′k3,Sk1Σ′k2
−

−
∑

Σ′′ 6=S′′

h∗Σ′′S′′,k3e
+i(hΣ′′Σ′′,k3

−hS′′S′′,k3
)t/~ ˜̺(3)Σ′′k3,Sk1S′k2

(t) , (B.7)

[i~∂t + γ2R2 ] ˜̺
(2)
Sk′
1S

′k′
2,0
(t) = iEe,K1(t)e

−i(ωK1
−hSSk1

/~)tµS,K1 〈S|e〉 ˜̺
(1)
0,S′k2

(t) +

+iEe,K2(t)e
−i(ωK2

−hSSk2
/~)tµS,K2 〈S|e〉 ˜̺

(1)
0,Sk1

(t) +

+
∑

Σ 6=S
hΣS,k1e

−i(hΣΣ,k1
−hSS,k1

)t/~ ˜̺(2)
0,Σk′

1S
′k′
2
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k2e
−i(hΣ′Σ′,k2−hS′S′,k2

)t/~ ˜̺(2)0,Σ′k2
, (B.8)

[i~∂t + γR2 ] ˜̺
(3)
Sk′
1S

′k′
2,S

′′k3
(t) = iEe,K1(t)e

−i(ωK1
−hSSk1

/~)tµS,K1 〈S|e〉 ˜̺
(2)
S′′k3,S′k2

(t) +

+iEe,K2(t)e
−i(ωK2

−hSSk2
/~)tµS,K2 〈S|e〉 ˜̺

(2)
S′′k3,Sk1

(t) +

+iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(2)
0,Sk′

1S
′k′
2
(t) +

+
∑

Σ 6=S
hΣS,k1e

−i(hΣΣ,k1
−hSS,k1

)t/~ ˜̺(3)
S′′k3,Σk′

1S
′k′
2
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k2e
−i(hΣ′Σ′,k2−hS′S′,k2

)t/~ ˜̺(3)S′′k3,Sk′
1Σ

′k′
2
−

−
∑

Σ′′ 6=S′′

h∗Σ′′S′′,k3e
+i(hΣ′′Σ′′,k3

−hS′′S′′,k3
)t/~ ˜̺(3)

Σ′′k3,Sk′
1S

′k′
2
(t) , (B.9)

[i~∂t + γ
2B
2 ] ˜̺

(2)
Γk1+k2,0

(t) =
∑

k′
1,k

′
2

∑

S,S′

δΓSk′
1,S

′k′
2
χS(k

′
1)χS′(k′2)M2(Γ , S, S

′)˜̺(2)
0,Sk′

1S
′k′
2
(t) +

+
∑

Γ ′ 6=Γ
hΓ ′Γ ,k1+k2e

−i(h
Γ ′Γ ′,k1+k2

−hΓΓ ,k1+k2
)t/~ ˜̺(3)S′′k3,Γ ′k1+k2

(t) ,(B.10)

[i~∂t + γB2 ] ˜̺
(3)
Γk1+k2,S′′k3

(t) =
∑

k′
1,k

′
2

∑

S,S′

δΓSk′
1,S

′k′
2
χS(k1)χS′(k′2)M2(Γ , S, S

′)˜̺(3)
S′′k3,Sk′

1S
′k′
2
(t) +

+iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(2)
0,Γk1+k2

(t) +

+
∑

Γ ′ 6=Γ
hΓ ′Γ ,k1+k2e

−i(h
Γ ′Γ ′,k1+k2

−hΓΓ ,k1+k2
)t/~ ˜̺(3)S′′k3,Γ ′k1+k2

(t)−
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−
∑

Σ′′ 6=S′′

h∗Σ′′S′′,k3e
+i(hΣ′′Σ′′,k3

−hS′′S′′,k3
)t/~ ˜̺(3)Σ′′k3,Γk1+k2

(t) , (B.11)

[i~∂t + γ
2X
2 ] ˜̺

(2)
S=jhsek3S′=j′

h
s′ek4,0

(t) =
1
2
χS′(k2)[−Gd(0, 0)φS(k1) + Vd(0, 0)χS(k1)] ·

·χS(k3)χS′(k4)˜̺
(2)
0,Sk1S′k2

(t) ·

·e−i(hSS,k1
+hS′S′,k2

−hSS,k3
−hS′S′,k4

)t + Pk1k2 +

+
1
2
χj′

h
se
(k2)[−Gx(0, 0)φjhs′e(k1) + Vx(0, 0)χjhs′e(k1)] ·

·χS(k3)χS′(k4)˜̺
(2)
0,jhs′ek1j′hsek2

(t) ·

·e−i(hjhs′ejhs′e,k1
+hj′

h
sej′

h
se,k2

−hSS,k3
−hS′S′,k4

)t
+ Pk1k2 +

+iEe,K1(t)e
−i(ωK1

−hSS,k1
/~)tκSS′,K1

〈S|e〉 ˜̺(1)0,S′k2
(t) +

+iEe,K2(t)e
−i(ωK2

−hSS,k2
/~)tκS′S,K1

〈
S′
∣∣e
〉
˜̺(1)0,Sk1

(t) +

+
∑

Σ 6=S
hΣS,k3e

−i(hΣΣ,k3
−hSS,k3

)t/~ ˜̺(2)0,Σk3S′k4
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k4e
−i(hΣ′Σ′,k4−hS′S′,k4

)t/~ ˜̺(2)0,Sk3Σ′k4
, (B.12)

[i~∂t + γX2 ] ˜̺
(3)
S=jhsek3S′=j′

h
s′ek4,S′′k3

(t) =
1
2
χS′(k2)[−Gd(0, 0)φS(k1) + Vd(0, 0)χS(k1)] ·

·χS(k3)χS′(k4)˜̺
(3)
S′′k3,Sk1S′k2

(t) ·

·e−i(hSS,k1
+hS′S′,k2

−hSS,k3
−hS′S′,k4

)t + Pk1k2 +

+
1
2
χ
j′
h
se
(k2)[−Gx(0, 0)φjhs′e(k1) + Vx(0, 0)χjhs′e(k1)] ·

·χS(k3)χS′(k4)˜̺
(3)
S′′k3,jhs′ek1j′hsek2

(t) ·

·e−i(hjhs′ejhs′e,k1
+hj′

h
sej′

h
se,k2

−hSS,k3
−hS′S′,k4

)t
+ Pk1k2 +

+iEe,K1(t)e
−i(ωK1

−hSS,k1
/~)tκSS′,K1

〈S|e〉 ˜̺(3)S′′k3,S′k2
(t) +

+iEe,K2(t)e
−i(ωK2

−hSS,k2
/~)tκS′S,K1

〈
S′
∣∣e
〉
˜̺(3)S′′k3,Sk1

(t) +

+iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(2)
0,Sk3S′k4

(t) +

+
∑

Σ 6=S
hΣS,k3e

−i(hΣΣ,k3
−hSS,k3

)t/~ ˜̺(3)S′′k3,Σk3S′k4
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k4e
−i(hΣ′Σ′,k4−hS′S′,k4

)t/~ ˜̺(3)S′′k3,Sk3Σ′k4
−

−
∑

Σ′′ 6=S′′

h∗Σ′′S′′,k3e
+i(hΣ′′Σ′′,k3

−hS′′S′′,k3
)t/~ ˜̺(3)Σ′′k3,Sk3S′k4

(t) , (B.13)

[i~∂t + γ
2R
2 ] ˜̺

(2)
k′
3S

′k′
4,0
(t) =

∑

Γ

δΓSk′
3,S

′k′
4
χS(k

′
3)χS′(k′4)M

∗
2(Γ , S, S

′)˜̺(2)0,Γ (t) +

+
∑

Σ 6=S
hΣS,k′

3
e
−i(hΣΣ,k′

3
−hSS,k′

3
)t/~
˜̺(2)
0,Σk′

3S
′k′
4
(t) +
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+
∑

Σ′ 6=S′

hΣ′S′,k′
4
e
−i(hΣ′Σ′,k′

4
−hS′S′,k′

4
)t/~
˜̺(2)
0,Sk′

3Σ
′k′
4
, (B.14)

[i~∂t + γ
R
2 ] ˜̺

(3)
Sk′
3S

′k′
4,S

′′k3
(t) =

∑

Γ

δΓSk′
3,S

′k′
4
χS(k

′
3)χS′(k′4)M

∗
2(Γ , S, S

′)˜̺(3)S′′k3,Γ
(t) +

+iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(2)
0,Sk′

3S
′k′
4
(t) +

+
∑

Σ 6=S
hΣS,k′

3
e
−i(hΣΣ,k′

3
−hSS,k′

3
)t/~
˜̺(3)
S′′k3,Σk′

3S
′k′
4
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k′
4
e
−i(hΣ′Σ′,k′

4
−hS′S′,k′

4
)t/~
˜̺(3)
S′′k3,Sk′

3Σ
′k′
4
−

−
∑

Σ′′ 6=S′′

h∗Σ′′S′′,k3e
+i(hΣ′′Σ′′,k3

−hS′′S′′,k3
)t/~ ˜̺(3)

Σ′′k3,Sk′
3S

′k′
4
(t) , (B.15)

[i~∂t + γ2] ˜̺
(3)
S′k4,0

= −iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(2)
0,Sk3S′k4

(t)−
−i
∑

k′
3,k

′
4

E∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tµS,K3 〈e|S〉 ˜̺

(2)
0,Sk′

3S
′k′
4
(t)−

−iE∗e,K3
(t)e+i(ωK3

−hSSk3
/~)tκSS′,K3

〈e|S〉 ˜̺(2)0,Sk1S′k2
(t) +

+
∑

Σ′ 6=S′

hΣ′S′,k4e
−i(hΣ′Σ′,k4−hS′S′,k4

)t/~ ˜̺(3)
0,Σ′k′

4
. (B.16)

The operator Pk1k2 means the preceding terms with permuted wave vectors k1 and k2.
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B.2 Solution of equations of motion for t1 < t3 < t2

˜̺(1)k1,0
(t) =

µ

~
E1e−i(ω1−ω

X
1 )t1e−γ2(t−t1)Θ(t− t1) , (B.17)

˜̺(2)k1,k3
(t) =

µ2

~2
E1E∗3 e−i(ω1−ω

X
1 )t1ei(ω3−ω

X
3 )t3 ·

·e−γ2(t3−t1)e−γC2 (t−t3)Θ(t3 − t1)Θ(t− t3) , (B.18)

˜̺(3)k1k2,k3
(t) =

µ3

~3
E1E2E∗3e−i(ω1−ω

X
1 )t1e−i(ω2−ω

X
2 )t2ei(ω3−ω

X
3 )t3e−γ2(t3−t1) ·

·e−γC2 (t2−t3)e−γX2 (t−t2)Θ(t3 − t1)Θ(t2 − t3)Θ(t− t2) , (B.19)

˜̺(3)
k′
1k

′
2,k3
(t) =

µ3

~3
E1E2E∗3e−i(ω1−ω

X
1 )t3e−i(ω2−ω

X
2′
)t2ei(ω3−ω

X
3 )t3e−γ2(t3−t1) ·

·e−γC2 (t2−t3)e−γR2 (t−t2)Θ(t3 − t1)Θ(t2 − t3)Θ(t− t2) , (B.20)

˜̺(3)k3k4,k3
(t) =

µ2

~2
E1E2E∗3e−i(ω1−ω

X
1 )t1ei(ω3−ω

X
3 )t3e−γ2(t3−t1)e−γ

C
2 (t2−t3)e−γ

X
2 (t−t2) ·

·
{
µ

2~
χ3χ4[2χ1χ2(Vd + Vx)− (φ1χ2 + χ1φ2)(Gd +Gx)] ·

·e
−i(ωX1 +ωX2 −ωX3 −ωX4 )(t−t2) − 1
~(ωX1 + ω

X
2 − ωX3 − ωX4 )

+
κ

~

}
e−i(ω

X
1 +ω2−ωX3 −ωX4 )t2 ·

·Θ(t3 − t1)Θ(t2 − t3)Θ(t− t2) , (B.21)

˜̺(3)m,k3(t) =−iµ
3M2
~4

E1E2E∗3 e−i(ω1−ω
X
1 )t3e−i(ω2−ω

X
2′
)t2ei(ω3−ω

X
3 )t3e−γ2(t3−t1) ·

·e
−γR2 (t−t2) − e−γB2 (t−t2)

γB2 − γR2
e−γ

C
2 (t2−t3) ·

·Θ(t3 − t1)Θ(t2 − t3)Θ(t− t2) , (B.22)

˜̺(3)
k′
3k

′
4,k3
(t) =−µ

3|M2|2
~5

E1E2E∗3e−i(ω1−ω
X
1 )t3e−i(ω2−ω

X
2′
)t2ei(ω3−ω

X
3 )t3e−γ2(t3−t1)e−γ

C
2 (t2−t3) ·

·
{
e−γ

R
2 (t−t2)(t− t2)

γB2 − γR2
− e
−γR2 (t−t2) − e−γB2 (t−t2)
(γB2 − γR2 )

2

}
·

·Θ(t3 − t1)Θ(t2 − t3)Θ(t− t2) , (B.23)

where Θ(t) denotes the Heaviside step function.
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B.3 Solution of equations of motion for t1 < t2 < t3

˜̺(1)k1,0
(t) =

µ

~
E1e−i(ω1−ω

X
1 )t1e−γ2(t−t1)Θ(t− t1) , (B.24)

˜̺(2)k1k2,0
(t) =

µ2

~2
E1E2e−i(ω1−ω

X
1 )t1e−i(ω2−ω

X
2 )t2 ·

·e−γ2(t2−t1)e−γ2X2 (t−t2)Θ(t2 − t1)Θ(t− t2) , (B.25)

˜̺(2)
k′
1k

′
2,0
(t) =

µ2

~2
E1E2e−i(ω1−ω

X
1 )t1e−i(ω2−ω

X
2′
)t2 ·

·e−γ2(t2−t1)e−γ2R2 (t−t2)Θ(t2 − t1)Θ(t− t2) , (B.26)

˜̺(2)k3k4,0
(t) =

µ
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E1E2e−i(ω1−ω

X
1 )t1e−γ2(t2−t1)e−γ

2X
2 (t−t2) ·

·
{
µ

2~
χ3χ4[2χ1χ2(Vd + Vx)− (φ1χ2 + χ1φ2)(Gd +Gx)] ·

·e
−i(ωX1 +ωX2 −ωX3 −ωX4 )(t−t2) − 1
~(ωX1 + ω

X
2 − ωX3 − ωX4 )

+
κ

~

}
e−i(ω

X
1 +ω2−ωX3 −ωX4 )t2 ·

·Θ(t2 − t1)Θ(t− t2) , (B.27)

˜̺(2)m,0(t) =−iµ
2M2
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X
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X
2′
)t2e−γ2(t2−t1) ·

· e
−γ2R2 t2
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[e−γ
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2 (t−t2) − e−γ2B2 (t−t2)] ·Θ(t2 − t1)Θ(t− t2) ,(B.28)
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(t) =−µ
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X
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}
·

·Θ(t2 − t1)Θ(t− t2) , (B.29)

˜̺(3)k1k2,k3
(t) =
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X
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X
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X
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~
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·
{
µ
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~
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156 SUMMARY

Model Calculation of Four–Wave Mixing Polarization and Dynamics in
Bulk and Confined Semiconductors

Semiconductor nanostructures and electron spin are two fields which the research on se-
miconductors is recently focused on. Scientists believe that the interconnection of the two
aforementioned fields will provide direct applications mainly in electronics (spintronics) or
computer science (quantum computers).
One of the tasks of recent research is to establish methods which may be used in order

to investigate properties of new materials. From the point of view of theory, it is then
necessary to describe experimental methods, to develop a model which may be used to
simulate the experiments and to interpret the measured data in details.
Changes of the spin states of electrons and nuclei in semiconductors are usually very

fast, of the order of hundreds of femtoseconds. To monitor these changes, one needs ul-
trafast experimental methods which are well suitable for such high temporal resolution.
With the development of ultrafast laser sources, optical spectroscopy with high temporal
resolution was established and used for probing of dynamics of photoexcited carriers in
semiconductors.
Four-wave mixing is one of the nonlinear techniques of ultrafast optical spectroscopy.

This method involves excitation of a sample by three coherent optical fields with well
defined directions of propagation. When restricted to third-order processes, these fields
are mixed in the sample and they produce diffracted fields propagating in three new
directions: if the incoming fields have wave vectors K1, K2 and K3, the new fields have
the wave vectors −K1+K2+K3, K1−K2+K3 and K1+K2−K3. In atomic systems, the
process of wave mixing may be understood in terms of the creation of a diffraction grating
as a consequence of bleaching of absorption in the pattern produced by the interference of
two optical fields and subsequent diffraction of the third field. In semiconductors, however,
this model fails and therefore another model is needed.
In my thesis, I present a theoretical work in the field of ultrafast optical spectroscopy

of semiconductors and their nanostructures. I present a model which was developed in
order to describe and interpret four-wave mixing experiments on intrinsic semiconductors.
This model was designed with a special attention paid to the polarizations of incoming
and outgoing optical fields and therefore it takes care of the spins of electrons and holes
(and excitons) during the whole temporal evolution of the system.
Although there exist many theories capable of description of four-wave interactions

in semiconductors, the presented model is based on an original approach to the problem.
The models, which may be found in the literature, can be divided generally into two
groups: microscopic theories and phenomenological Optical Bloch Equations-like models.
The former theories are based on microscopic Hamiltonian of electrons in semiconductors
taking into account their spin, band index etc. Predictions of these models are in a good
agreement with experiments and were very successful. The disadvantage of microscopic
models is, however, that the dynamical equations have a quite complex structure and
one must therefore solve them numerically. The Optical Bloch Equations (OBE), on the
other hand, provide simple dynamical equations which may be solved analytically using
delta-like excitation pulses. Their nature is, however, phenomenological. Optically inactive
states are not taken into account and particle-particle interactions are not considered to
be sensitive to spin. The aim of the model presented in the thesis is to connect advantages
of the two sorts of known models: to develop a model simple in structure whose dynamical
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equations may be solved analytically (by direct integration) and to describe correctly the
evolution of the spin of carriers in the semiconductor.

The model is believed to be very useful for experimentalists. In standard experiments,
one may measure the decay of coherence or the dynamics of an incoherent spin relaxation.
The applicability of the four-wave mixing experiments may be, however, much wider and
one may use it for measurements of the coherent evolution of the spin orientation of
electrons and excitons (spin precession). Results of the thesis then may be used in order
to design such an experiment and to understand and interpret the experimental data.

The thesis is introduced by a summary of the fundamentals of many-body physics and
semiconductor physics. I discuss afterwards the recent models used for description of the
four-wave mixing experiments including OBE which are applied to atomic systems for
comparison. For various types of level schemes in the OBE section, I derive polarization
selection rules in order to demonstrate that OBEs may fail when applied to semiconductors.
The text then continues with a detailed description of the procedure of development of
the new model starting with a microscopic Hamiltonian and discussing all approximations
used when simplifying the complex microscopic foundations. The last part of the thesis
then presents results and their discussion.

The model was developed to be universal for any arbitrary symmetry of the semicon-
ductor crystal lattice. Basic excitations of the semiconductor crystal are considered to be
described by the full basis (with respect to spin) of bosonized excitons with wavefunctions
symmetrized with respect to the crystal symmetry. Due to the bosonization procedure,
the model is valid only under assumption of weak excitation (low density limit). Effective
exciton Hamiltonians may then be derived using the method of invariants in order to
identify directions of spin precession.

The model takes into account the strong exciton-photon interaction which is responsi-
ble for the polariton effect. The four-wave mixing signal is then considered to be produced
by resonant processes over the whole range of energies up to the exciton resonance since
the electron-hole continuum is not considered.

The core of the model lies in the wave mixing process induced by the polariton-polariton
scattering. I take into account all terms in the scattering Hamiltonian, direct and exchange,
and therefore the symmetry of the scattering processes is correct with respect to the spins
of polaritons. Scattering events, which are not resonant with biexcitons, are described
perturbatively in the first order since they are assumed to be sufficiently weak. Processes
resonant with biexcitons are, on the contrary, described up to an infinite order in scattering
events using the bipolariton model. Usage of this model then provides better predictions
of the dynamics of creation and annihilation of the molecule of two excitons and again the
correct symmetry of the effective scattering processes with respect to the spin of incoming
and outgoing polaritons. The model then involves the sum of both contributions from the
direct (off-resonant) and the bipolariton (resonant part with biexcitons) channels. Besides
these two scattering channels, the response which comes from Pauli blocking is accounted
for.

After development of the model applicable to bulk crystals, I discuss its possible mo-
difications in order to adapt it also for quantum wells and quantum dots. The model may
be easily extended by inclusion of external fields: the way how any arbitrary symmetry-
breaking effect may be included within the model is also discussed in the text. Some
comparison with experimental data is shown in the discussion of the main features of the
model.
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Based on the level scheme appropriate for the presented model, I developed a computer
program that calculates the dynamics of the four-wave mixing response of semiconductors
for arbitrary pulse durations, polarizations, mutual time delays and for arbitrary parame-
ters of the material including the lattice symmetry. Results of the numerical calculations
are then presented and discussed.
Since the main aim of the development of the model was to design an experiment in

which the spin precession may be measured, I discuss possible methods of measurement
of the spin precession in one of the chapters. Proposal of an experimental setup and
simulations of the four-wave mixing spectra are also shown and discussed.
The thesis presents a novel approach to modeling of the four-wave mixing experiments

on semiconductors and their nanostructures. As a result, I present a procedure for deve-
lopment of a set of differential equations appropriate for every particular situation. The
model then may be depicted as an OBE-like scheme and interpreted in terms of level-
to-level transitions. Its applicability to particular experimental situations and possible
extensions are discussed in detail.
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Modelování polarizace a dynamiky čtyřvlnového směšování
v objemových polovodičích a polovodičových nanostrukturách

Polovodičové nanostruktury a spin elektronů jsou v současnosti jedny z nejintenzivněji
zkoumaných oblastí fyziky. Vědci věří, že propojení těchto dvou oblastí povede k přímým
aplikacím především v elektronice (spintronice) nebo informatice (kvantové počítače).
Jeden z výzkumných úkolů na tomto poli je vytvoření a praktické využití experimen-

tálních metod, které umožní podrobné prozkoumání vlastností nových materiálů. Úkolem
teoretického výzkumu je pak popsat experimentální metody, vytvořit model vhodný pro
popis experimentu a přesně interpretovat naměřené hodnoty.
Změny stavů spinu elektronů a atomových jader v polovodičích jsou obvykle velmi

rychlé v řádu stovek femtosekund. Proto jsou k výzkumu těchto změn potřeba experi-
mentální metody ultrarychlé spektroskopie, tedy metody s vysokým časovým rozlišením.
Optická spektroskopie s vysokým časovým rozlišením je od zhotovení prvních zdrojů světla
produkujících ultrakrátké optické pulsy široce využívaná k výzkumu dynamiky opticky ex-
citovaných nosičů v polovodičích.
Čtyřvlnové směšování je jedna z nelineárních metod ultrarychlé optické spektroskopie.

Při použití této metody je vzorek excitován třemi koherentními optickými poli s dobře
definovanými směry šíření. Pokud se omezíme pouze na procesy třetího řádu v amplitudě
pole, optická pole se ve vzorku mísí a vytváří difraktované pole, které se šíří ve třech nových
směrech: označíme–li vlnové vektory vstupních polí K1, K2 a K3, nová pole mají vlnové
vektory −K1+K2+K3, K1−K2+K3 a K1+K2−K3. V atomárních systémech může být
vlnové směšování chápáno jako vytvoření přechodné difrakční mřížky v interferenčním
poli excitačních svazků. Saturace absorpce potom vede k difrakci posledního pole do výše
popsaných difrakčních směrů. Tento model však selhává v polovodičích, a proto je třeba
vytvořit jiný model.
Ve své dizertační práci představuji řešení teoretického úkolu z oboru ultrarychlé optické

spektroskopie polovodičů a jejich nanostruktur. Představuji model, který byl vytvořen
za účelem popisu a interpretace experimentů provedených na nepříměsových materiálech
s využitím čtyřvlnového směšování jako metody. Zvláštní pozornost je věnována zejména
polarizacím dopadajících a difraktovaných optických polí, a tedy spin elektronů a děr (a
excitonů) jsou vzaty v úvahu po celou dobu uvažovaného vývoje excitovaného systému.
Ačkoliv v literatuře je mnoho již klasických teorií, které popisují čtyřvlnové interakce

v polovodičích, představovaný model je založen na ojedinělém přístupu k problematice.
Ostatní teorie mohou být obecně rozděleny na dvě skupiny: mikroskopické teorie a feno-
menologické modely založené na optických Blochových rovnicích. První jmenované teorie
jsou založeny na výpočtech rychlostních rovnic z mikroskopického hamiltoniánu elektronu
v polovodiči, kdy je započítán spin elektronu, vícepásová struktura atd. Předpovědi těchto
modelů se velmi dobře shodují s experimenty. Nevýhodou ovšem je, že dynamické rovnice
mají poměrně složitou strukturu a proto musejí být řešeny numericky. Na druhé straně,
optické Blochovy rovnice mají jednoduchou strukturu a mohou být přímo integrovány
s uvážením excitace pomocí delta–pulsů. Původ těchto rovnic je ovšem fenomenologický.
Stavy, které nejsou opticky aktivní, nejsou v modelech vůbec započítány a spin není zo-
hledněn při popisu interakcí mezi částicemi. Účelem modelu odvozeného v této dizertační
práci je proto spojit výhody dvou výše zmíněných druhů modelů: model by měl mít jed-
noduchou strukturu a dynamické rovnice z ní pocházející by měly být analyticky řešitelné
(přímou integrací) a měl by správně popisovat dynamiku spinu nosičů v polovodiči.
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Věřím, že model bude velice užitečný pro návrh experimentů. Standardní experimenty
umožňují měření tlumení koherence nebo dynamiky nekoherentní relaxace populace no-
sičů. Aplikovatelnost čtyřvlnového směšování jako experimentální metody může být však
mnohem širší a může být použito k měření koherentní dynamiky spinu elektronů a ex-
citonů (precese spinu). Výsledky této práce tak mohou být využity k návrhu takového
experimentu a k pochopení a interpretaci experimentálních dat.

Dizertační práce je uvedena souhrnem základů mnohačásticové fyziky a fyziky polo-
vodičů. Poté následuje přehled v současnosti používaných modelů pro popis čtyřvlnového
směšování v polovodičích včetně optických Blochových rovnic. Ty jsou aplikované na ato-
mární systémy pro porovnání s experimentálními výsledky změřenými na polovodičích.
Ve zvláštní kapitole jsou spočtena výběrová pravidla pro polarizaci difraktovaného svazku
pro různé typy schémat hladin. Ukazuji, že tento model selhává při pokusu o aplikaci na
polovodiče. V dalších kapitolách poté podrobně popisuji odvození nového modelu založe-
ného na mikroskopickém hamiltoniánu. Dynamické rovnice jsou významně zjednodušeny
a příslušné aproximace jsou popsány a diskutovány. V poslední kapitole práce prezentuji
výsledky spočtené s využitím modelu a jejich diskusi.

Model byl vytvořen tak, aby byl univerzální pro libovolnou symetrii krystalové mřížky
polovodiče. Základní excitace krystalu jsou popsány pomocí jejich úplné báze (vzhledem
ke spinu) bozonizovaných excitonů; vlnové funkce jsou symetrizované vzhledem k symetrii
krystalu. Model je použitelný pouze za předpokladu malé hustoty excitace (malé hustoty
generovaných nosičů) kvůli bozonizaci základních excitací. Efektivní hamiltonián excitonů
pak může být vypočten pomocí metody invariantů. Z tohoto hamiltoniánu je pak možné
snadno identifikovat směr precese spinu excitonu.

V modelu beru v úvahu silnou exciton–fotonovou interakci, které způsobuje polarito-
nový jev. Signál ze čtyřvlnového směšování je pak popsán jako plně rezonantní jev v celé
škále energií až po excitonovou rezonanci. Vliv elektron–děrového kontinua není v modelu
zahrnut.

Jádro modelu leží v procesu vlnového směšování způsobeného polariton–polaritonovým
rozptylem. V hamiltoniánu popisujícím rozptyl jsou zahrnuty všechny členy, přímé i vý-
měnné, a proto je symetrie rozptylu vzhledem ke spinům polaritonů popsána správně.
Rozptylové procesy, které nejsou rezonantní s biexcitony, jsou popsány poruchově v prv-
ním řádu, protože jsou uvažovány jako slabé. Naopak procesy rezonantní s biexcitony jsou
popsány přesně pomocí bipolaritonového modelu. Bipolaritonový model umožňuje mno-
hem lepší popis dynamiky kreace a rozpadu molekuly tvořené dvěma excitony a správně
popisuje symetrii efektivního rozptylového procesu vzhledem ke spinům vstupních a vý-
stupních polaritonů. Model pak bere v úvahu oba příspěvky od přímého (mimo rezonanci)
a bipolaritonového kanálu (část rezonantní s biexcitony). Odezva pocházející z Pauliho
blokování je také započítána mimo dvou výše uvedených příspěvků.

Možné modifikace modelu pro aplikaci na kvantové jámy nebo kvantové body jsou dis-
kutované po odvození modelu pro objemové polovodiče. Diskutuji též možnost rozšíření o
interakce s vnějšími poli: diskutuji obecný postup, jak do modelu zahrnout libovolný proces
narušující symetrii systému. V diskusi modelu též prezentuji výpočty demonstrující hlavní
charakteristiky modelu a ukazuji modelový výpočet a jeho porovnání s experimentem.

Na základě schématu hladin, které reprezentuje model, jsem vytvořil počítačový pro-
gram, který počítá dynamiku odezvy čtyřvlnového směšování polovodičů pro libovolný tvar
excitačních pulsů a libovolné materiálové parametry včetně symetrie krystalové mřížky.
Výsledky numerických výpočtů jsou v dizertační práci uvedeny a diskutovány.
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Jedním z důvodů pro vytvoření nového modelu byl požadavek na navržení experi-
mentu, ve kterém by bylo možné změřit precesi spinu. Návrhy možných experimentálních
uspořádání pro tento účel jsou proto diskutovány v závěrečné kapitole spolu se simulacemi
spekter signálu čtyřvlnového směšování.
Dizertační práce představuje nový přístup k modelování čtyřvlnového směšování na

polovodičích a jejich nanostrukturách. Představuji metodu k odvození diferenciálních rov-
nic, které popisují odezvu libovolného systému. Model může být reprezentován schématem
hladin a interakcemi propojujícími tyto hladiny, podobně jako v případě optických Blo-
chových rovnic. Velký prostor je věnován diskusi aplikací a možných rozšíření modelu.
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Calcul modèle de polarisation et dynamique de mélange de quatre
ondes sur des semi–conducteurs massifs et confinés.

Les études des nanostructures semi-conducteurs et de la dynamique de spin des électrons
sont deux domaines sur lesquelles la recherche sest focalisée ces dernières années. On pense
trouver à lintersection de ces deux domaines des applications intéressantes et directes en
électronique de spin (spintronics) et en informatique quantique (quantum computers).
Changer létat de spin dun électron dans un semi-conducteur est un processus très

rapide, de lordre dune centaine de femtosecondes. Afin de visualiser ces changements détat,
on a besoin de méthodes expérimentales autorisant une grande résolution temporelle. Avec
lapparition des sources laser ultra-rapides, une telle spectroscopie optique a pu tre réalisée.
Parmi dautres, le mélange de quatre ondes est une des techniques optiques non liné-

aires ultra-rapides qui permettent de déterminer la dynamique des porteurs photo-excités
ainsi que leurs cohérences. Cette méthode utilise lexcitation dun échantillon par une sé-
quence de trois impulsions cohérentes optiques qui possèdent des directions de propagation
bien définies. Si lon se limite à des processus dordre trois, les champs électromagnétiques
interagissent dans léchantillon et générent des champs diffractés dans trois nouvelles di-
rections: si les champs incident ont les vecteurs dondeK1,K2 etK3, les nouveaux champs
possèdent les vecteurs donde −K1+K2+K3, K1−K2+K3 et K1+K2−K3.
Le processus de mélange dondes peut tre vu dans des systèmes atomiques en termes

de création dun réseau de diffraction. Ceci est le résultat dun blanchiment de labsorption
dans la figure dinterférence produit par deux champs optiques, suivis par la diffraction
du troisième champ par le réseau ainsi induit. Ce modèle nest pas applicable aux semi-
conducteurs et a besoin dtre fortement adapté.
Dans cette thèse, je présente un travail théorique sur la spectroscopie optique ultra-

rapide des semi-conducteurs et de leurs nanostructures. Nous avons développé un modèle
afin de décrire des expériences de mélange dondes menées sur des semi-conducteurs in-
trinsèques. Ce modèle met tout particulièrement laccent sur les effets liès aux polarisations
des champs optiques incidents et émis et tient ainsi compte des spins des électrons et des
trous (ainsi que des excitons) pendant toute lévolution temporelle du système.
Plusieurs théories sont capables de décrire des interactions à quatre ondes dans les

semi-conducteurs. En général, ces théories peuvent tre divisées en deux classes: théories
microscopiques qui considèrent le Hamiltonian des électrons dans les semi-conducteurs
en tenant compte de leur spin, leur structure de bande etc. ainsi que théories phéno-
menologiques qui sinspirent des équations de Bloch Optiques (OBE). Les résultats des
théories microscopiques sont en bon accord avec les expériences et ont eu beaucoup de
succès. Leur désavantage est, par contre, que les équations dynamiques possèdent une
structure complexe et on doit résoudre numériquement un système déquations différen-
tielles couplé. Les OBE correspondent à des équations dynamiques simples, qui peuvent
tre résolus analytiquement quand on utilise des impulsions dexcitation de forme de foncti-
ons delta. Pourtant, de par leur nature phénoménologique, elles ne tient pas compte des
états optiquement inactifs et les interactions entre particules ny dépendent pas du spin.
Le but de notre étude est de rassembler les avantages de ces deux types de schémas dans
un modèle qui possède une structure simple et dont les équations dynamiques peuvent
tre résolues analytiquement par intégration directe. De plus, il doit décrire correctement
lévolution du spin des porteurs dans le semi-conducteur considéré.
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L’introduction de cette thèse donne un résumé des propriétés fondamentales de la
physique à N-corps et des semi-conducteurs. Je discute ensuite des modèles récents, uti-
lisés pour décrire des expériences de mélange à quatre ondes. Pour pouvoir les comparer,
jinclus une descritption des OBE qui sont appliquées aux systèmes atomiques. Les règles
de sélection des polarisations sont déterminées pour différents schémas de niveaux. On
retrouve ainsi que les OBE peuvent se révélées inappropriées quand elles sont appliquées
aux semi-conducteurs.
Je donne ensuite une description détaillée du développement de notre modèle. En

partant dun Hamiltonien microscopique, toutes les approximations introduites afin de
simplifier la structure complexe microscopique des équations sont discutées. La dernière
partie de la thèse présente et discute les résultats obtenus avec ce modèle.
Notre modèle a été développé afin dtre appliqué à des semi-conducteurs qui possèdent

une structure de réseau cristallin de symétrie arbitraire. Les excitations élémentaires
électroniques dun cristal semi-conducteur sont décrites dans une base complète (par rap-
port au spin) des excitons qui sont considérés comme des Bosons. Leurs fonctions donde
sont symétrisés en accord avec la symétrie du cristal. La procédure de Ťbosonisationť
des excitons implique que notre modèle est valable uniquement dans les conditions dune
excitation faible. Dans ce cas on peut établir des Hamiltoniens effectifs pour les excitons
en utilisant la méthode des invariants et déterminer les directions de précession des spin
électroniques.
Notre modèle prend en compte le fort couplage entre excitons et photons qui donne lieu

à leffet polariton. Le signal du mélange de quatre ondes est considéré comme généré par des
processus résonants dans toute la gamme dénergie en dessous de la résonance excitonique,
le continuum électron-trou nétant pas inclus ici. Ce signal est induit par des collisions entre
polaritons. Nous tenons compte des termes directs et déchange dans le Hamiltonian qui
décrit ces collisions. Ainsi, la symétrie des processus de collisions est correctement décrite
pour ce qui concerne les spins des polaritons. Les processus de collisions, qui ne sont pas
résonants avec les biexcitons, sont supposés tre suffisamment faibles pour tre traités en
théorie de perturbation au premier ordre. Les collisions dont les énergies sont résonantes
avec les biexcitons sont, par contre, décrites dans le cadre du modèle de bipolariton qui les
traitent intégralement. Comparé aux OBE, ce modèle donne une meilleure description de la
dynamique de création et dannihilation des molécules à deux excitons. De plus, il possède
la symétrie correcte en ce que concerne le spin des polaritons incidents et émergeant dune
collision. Pour évaluer le signal total, nous additionnons les champs des deux canaux
dans notre modèle et considérons en plus linfluence du blocage de Pauli sur la réponse du
système. Je compare les propriétés de notre modèle avec quelques résultats expérimentaux.
Basé sur un schéma de niveaux approprié, jai développé un programme de calcul numé-

rique qui permet de déterminer la dynamique de la réponse du mélange à quatre ondes
dans des semi-conducteurs. Le signal obtenu dépend de la symétrie du réseau cristallin
ainsi que des durés dimpulsions et de leurs polarisations, de leurs retards mutuels ainsi
que dautres paramètres du matériau. Je présente et discute les résultats de ces calculs
numériques. Notre modèle étant tout dabord développé pour des matériaux massifs, des
modifications sont nécessaires si lon veut ladapter aux puits quantiques ou aux points
quantiques. Il peut également, tre facilement étendu afin dinclure des champs externes et
nous avons étudié comment des champs arbitraires qui brisent la symétrie du cristal peu-
vent tre traités. Je présente diverses méthodes expérimentales qui peuvent tre envisagées
pour mesurer la précession de spin, ainsi que les expériences que nous avons proposées
avec la simulation de leurs spectres de mélange de quatre ondes.
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En résumé, la thèse présentée ici décrit une modélisation des expériences de mélange
de quatre ondes dans des semi-conducteurs et de leur nanostructures. La procédure que
nous avons obtenue permet de développer un jeu déquations différentielles appropriés à
chaque situation expérimentale particulière. Le modèle peut tre considéré comme une
approche similaire aux équations de OBE et les résultats peuvent tre interprété en termes
de transitions état par état. Les applications du modèle à des situations particulières
expérimentales et ses extensions possibles sont discutées en détail.


