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Résumé

Introduction

De très nombreux objets que nous utilisons dans la vie de tous les
jours sont constitués de matières plastiques ; selon les propriétés (méca-
niques en particulier) que l’on souhaite conférer à ces objets, il est pos-
sible de choisir un matériau dont la structure à température ambiante
sera plus à même de reproduire le comportement désiré. Les matières
plastiques constituant de tels objets se composent de polymères qui
sont de longues molécules en forme de châınes dont la structure chi-
mique peut varier dans une large mesure. Un fondu de polymères est
un mélange pur de ces châınes (on peut également considérer des po-
lymères en solution), qui est un liquide visqueux à haute température
et peut prendre plusieurs formes solides de caractéristiques bien dis-
tinctes à basse température [62, 100]. Un système de polymères peut
devenir soit vitreux soit cristallin au cours d’un refroidissement ; nous
nous sommes intéressés au comportement de ce dernier type de poly-
mères à l’aide de simulations numériques ; la structure de ces systèmes
est cependant plus complexes que celle des cristaux de particules plus
simples car les châınes ont tendance à se replier sur elles-mêmes pour
former des structures ordonnées à des échelles de longueur très variées
(fig. r.1), et sont séparées par des régions dans lesquelles les polymères
restent amorphes [120]. On parle alors de systèmes semi-cristallins.

Fig. r.1: Illustration des différentes

structures composant un cristal de po-

lymères , depuis l’échelle atomique jus-

qu’aux sphérolites.

L’étude de ces cristaux de polymères donne lieu à quelques contro-
verses du fait du manque d’un modèle permettant de décrire de façon
satisfaisante la formation et le développement des structures ordon-
nées ; récemment la proposition d’un nouveau modèle par Strobl [121]
est venue remettre en question les apports de la théorie de Lauritzen et
Hoffman [5, 45] qui était bien acceptée et permet de décrire une bonne
part des résultats expérimentaux mais ne parvient pas à rendre compte
de l’observation de certains phénomènes [87].

Afin de tenter d’apporter un nouvel éclairage sur le phénomène de la
cristallisation des polymères qui s’avère suffisamment complexe pour ne
pas être — à ce jour — descriptible par un seul modèle simple, plusieurs
groupes ont essayé de reproduire des structures semi-cristallines de po-
lymères par simulations numériques afin de pouvoir les étudier plus
en détail [73–75, 87, 131, 138, 139]. La cristallisation en solution à été
étudiée par Muthukumar, ainsi que le développement d’une structure
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semi-cristalline avec des repliements à partir d’un germe [87] ; certains
auteurs se sont intéressés à la cristallisation favorisée par la présence
de murs [131, 138].

(a) Modèle tout-atome

(b) Modèle atome unifié

(c) Modèle coarse-grained

Fig. r.2: Représentation schématique

de différents modèles de simulation nu-

mériques des polymères, à différents ni-

veaux de précision.

La plupart des études numériques portant sur la cristallisation des
polymères est fondée sur des modèles de type « atome unifié » [84] ; il est
en effet important de choisir un type de simulation adapté au problème
considéré, de manière à retenir suffisamment de détails pour fournir
une description précise mais également à ne pas s’encombrer d’infor-
mations inutiles. La figure r.2 montre des modèles prenant en compte
plus ou moins des détails des molécules, depuis le modèle tout-atome
traitant explicitement tous les atomes des polymères jusqu’à un modèle
coarse-grained qui permet de représenter un monomère (élément se ré-
pétant au sein d’une châıne de polymère) par une seule particule. Le
modèle atome unifié est une étape intermédiaire et consiste à regrouper
un carbone et les atomes d’hydrogène y étant rattachés en une seule
particule [9].

En utilisant un modèle coarse-grained comme celui présenté sur la
figure r.2(c), Hendrik Meyer a pu reproduire des structures semi-cri-
stallines à partir du fondu sans introduction explicite de murs ou d’un
germe [73–75, 97] ; dans cette thèse, nous avons approfondi cette étude
en nous intéressant plus particulièrement au paramètre le plus impor-
tant de ce modèle qui est le potentiel angulaire permettant aux châınes
coarse-grained de reproduire de façon réaliste la flexibilité du poly-
mère décrit (voir chap. 3). Nous avons aussi utilisé des simulations
tout-atome de châınes courtes d’alcanes de manière à étudier de façon
très réaliste des systèmes-modèles pour la cristallisation et la fusion
des molécules allongées (chap. 2). Enfin, partant de l’observation d’une
corrélation entre les propriétés à haute et basse températures pour les
modèles coarse-grained, nous avons procédé à une étude approfondie
de la structure à haute température des fondus de polymères (chap. 4).
Ce résumé présente brièvement les principales informations développées
plus en détails dans la version anglaise de cette thèse.

Méthodes de simulation

Nous avons utilisé des méthodes de simulation classique, faisant ap-
pel à des algorithmes de dynamique moléculaire [2, 11, 34]. Que ce soit
pour les simulations de modèles tout-atome ou pour les modèles coarse-
grained, le principe de la simulation consiste en une résolution numé-
rique des équations du mouvement de Newton [éq. (r.1)], pour toutes

Equations de Newton :

mir̈i = fi (r.1)

(particules de masses mi aux positions

ri sur lesquelles s’exercent les forces fi)

Algorithme leap-frog :

ri(t + δt) = ri(t) + δtvi(t +
δt

2
)

vi(t +
δt

2
) = vi(t−

δt

2
) + δt

fi(t)

mi

(r.2)

(vi(t) est la vitesse de la particule i à

l’instant t)

Equations de Newton modifiées (ther-

mostat de Berendsen) :

mir̈i = fi + miγ

(
T0

T
− 1

)
vi (r.3)

(γ : coefficient de friction)

les particules du système afin de reproduire son évolution temporelle.
Des algorithmes spécifiques permettent de modifier l’ensemble dans le-
quel la dynamique moléculaire permet de créer des configurations (l’en-
semble microcanonique, puisque les équations de Newton conservent
l’énergie du système) : un thermostat et un barostat sont utilisés afin
de travailler dans l’ensemble isotherme–isobare, à température et pres-
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sion constantes.
Les simulations tout-atome ont été effectuées à l’aide du logiciel

YASP [82], qui repose sur un algorithme d’intégration des équations
de Newton de type leap-frog (éq. (r.2), [44]) ; les thermostat et baro-
stat appliqués fonctionnent selon la méthode développée par Berendsen
(voir éq. (r.3) ; [10]).

Algorithme velocity-Verlet :

ri(t + δt) = ri(t) + δtvi(t) +
1

2mi
fi(t)δt

2

vi(t + δt) = vi(t) (r.4)

+
1

2mi
δt

(
fi(t) + fi(t + δt)

)

Equations de Newton modifiées (ther-

mostat de Langevin) :

mir̈i = fi −miγivi + Wi (r.5)

(Wi : force aléatoire)

Pour les simulations coarse-grained, le programme utilisé a été dé-
veloppé par H. Meyer spécifiquement pour la simulation des châınes
polymères. Il utilise un intégrateur de type velocity-Verlet (éq. (r.4),
[122]), un thermostat de Langevin (voir éq. (r.5) ; [39, 107]) et un ba-
rostat de Berendsen [10].

L’utilisation de ces deux programmes permet d’obtenir des données
regroupant les valeurs des positions et vitesses des particules au cours
du temps (trajectoires) qui permettent le calcul de toutes les propriétés
physiques auxquelles on souhaite accéder.

Potentiels décrivant les interactions pour

une simulation tout-atome :

Ubond(b) =
1

2
kbond(b− b0)

2 (r.6)

Uang(θ) =
1

2
kang(θ − θ0)

2 (r.7)

Utors(φ) = (r.8)

3∑
n=1

1

2
ktors

n

(
1− cos(nφ− φ0

n)
)

Umol(r) = 4ε

((σ

r

)12

−
(σ

r

)6
)
(r.9)

Uel(r) =
qiqj

4πεrij
(r.10)

Les interactions prises en compte pour ces simulations permettent de
décrire le comportement des polymères en fondu et, que ce soit dans
le cas des simulations détaillées (tout-atome) ou de la méthode coarse-
grained plus « grossière », ces interactions consistent en une partie liée
[connectivité (éq. (r.6) : liaisons entre particules consécutives le long
de la châıne), flexibilité (éqs. (r.7) et (r.8) : angles entre liens et angles
de torsions)] et une partie non-liée [volume exclu (éq. (r.9) : répulsion
entre particules), interaction électrostatique : éq. (r.10)].

Les simulations que nous avons effectuées en utilisant les différents
modèles qui nous intéressent ici consistent en une partie d’équilibra-
tion de la phase liquide à haute température, puis un refroidissement
continu ou une trempe à une température plus basse suivie d’une re-
laxation isotherme ; ces deux méthodes permettent de reproduire les
conditions dans lesquelles des cristaux de polymères sont formés. Nous
avons également créé des configurations parfaitement cristallines de po-
lymères dont nous avons étudié la fusion.

Simulations tout-atome

Le polymère cristallisable ayant la structure la plus simple est le
polyéthylène (PE) ; il a été supposé pendant très longtemps que les
phénomènes de cristallisation des polymères pouvaient se résumer à
ce qui est observé dans le cas de ce système en particulier [46]. Si la
formation de structures semi-cristallines apparâıt maintenant plus com-
plexe et nécessite une description plus détaillée, il n’en reste pas moins
que le PE est un système-modèle très intéressant. En particulier, les
châınes courtes de polyéthylène (n-alcanes) présentent un comporte-
ment très riche qui mérite une étude approfondie : en effet, selon le
nombre d’atomes de carbone dans la châıne, la phase cristalline varie ;
elle peut être orthorhombique [24, 78–81, 114] (comme c’est le cas pour
le PE, qui constitue la limite des châınes longues de n-alcanes) ou tri-
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(a) Orthorhombique (b) Triclinique (c) Rotator

Fig. r.3: Structure des principales phases cristallines observées dans le cas des n-alcanes (les châınes sont allongées selon leur axe

principal perpendiculairement au plan de la figure).

clinique pour un nombre de carbones pair [24, 41, 91] (voir fig. r.3 ;
il existe de très nombreux autres cas observés expérimentalement que
nous ne mentionnerons pas ici [24]). Il a aussi été découvert par l’expé-
rience l’existence de phases transitoires apparaissant lors du passage du
cristal au liquide. Ces phases dites « rotator »(cf. fig. 3(c)) se caracté-
risent par une symétrie différente de celle du cristal, et un degré d’ordre
moindre puisque, dans ce cas, les châınes sont libres de tourner autour
de leur axe principal [20, 25, 26, 43, 56, 67, 112, 113, 115, 116, 127].

Nous avons voulu soumettre à l’expérience numérique ce type de
systèmes en utilisant un algorithme détaillé permettant de prendre en
compte la structure spécifique des châınes d’alcanes : en effet, un mo-
dèle coarse-grained ne permet pas de reproduire un empilement or-
thorhombique ou triclinique de molécules. Le modèle atome unifié très
couramment employé n’autorise que la formation de structures à sy-
métrie hexagonale. Comme les n-alcanes sont des châınes relativement
courtes, il nous a paru intéressant d’essayer de simuler leur compor-
tement en utilisant un modèle tout-atome très détaillé, même s’il est
évident que ce type de simulation ne permet pas d’obtenir des configu-
rations cristallines par refroidissement (à cause du temps de calcul très
important nécessaire pour reproduire un protocole suffisamment lent).
Nous nous sommes tout d’abord intéressés à la fusion de configurations
cristallines parfaites de ces n-alcanes.

Nous avons testé le champ de force OPLS-AA [51] et il nous est
apparu nécessaire de modifier les paramètres du potentiel de torsion
qui a une influence considérable sur les conformations créées par la
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gation des châınes ; 〈C(t)C(0)〉 indique
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simulation : de cette manière, nous avons pu retrouver la distribution
des angles obtenues par un autre groupe qui a développé un modèle
reproduisant les propriétés du PE avec une bonne précision [140]. A
l’aide de ce modèle, il nous a été possible de simuler la fusion et la
cristallisation des n-alcanes.
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Fusion de cristaux parfaits

Des configurations orthorhombiques et tricliniques de n-alcanes (ty-
piquement C14H30, C15H32,. . .) ont été créées artificiellement à partir
des données cristallographiques [68, 114], puis simulées à très basse
température avant d’être réchauffées jusqu’à T = 500 K. Le modèle
que nous avons optimisé à haute température dans la phase liquide
nous a permis de reproduire l’apparition transitoire d’une phase ro-
tator lors de la fusion du cristal (fig. r.4). Même si nos simulations
ne montrent pas toute la variété des différentes phases rotator isolées
expérimentalement, la transition nette vers une phase à symétrie hexa-
gonale est déjà un résultat très intéressant puisque le modèle utilisé
n’est pas suffisamment complexe a priori pour reproduire aussi pré-
cisément les différentes structures à basse température. On aurait pu
s’attendre à ce que les interactions déterminant le comportement du
modèle, qui ont été calibrées pour décrire un liquide, ne soient pas suf-
fisamment précises pour autoriser la simulation d’un cristal, et encore
moins l’apparition de la phase rotator.

Les caractéristiques indiquant le passage à une phase rotator lors de
la fusion des cristaux comprennent la décroissance de plusieurs para-
mètres d’ordre différents, et le changement de symétrie dans le plan
perpendiculaire à l’axe principal des châınes. Plus particulièrement, on
peut observer une décorrélation de l’orientation des plans dans lesquels
se situent les châınes avant la disparition d’une direction privilégiée té-
moignant de l’allongement des molécules (fig. r.5). Le changement de
symétrie est visible sur l’évolution du rapport des paramètres de maille
a et b : ce rapport passe de 3/2 à

√
3 lors de la transition, valeurs

qui sont caractéristiques de symétries orthorhombique et hexagonale
(fig. r.6).
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La transition cristal–rotator a pu être observée également lors de si-
mulations de relaxations isothermes à différentes températures, à partir
de configurations obtenues lors du réchauffement continu. De cette ma-
nière, la transition a pu être mise en évidence plus clairement, et la
phase rotator a pu être isolée pendant 1 ns (fig. r.7), ce qui en per-
met une caractérisation plus aisée. Cependant, le fait que cette phase
reste transitoire et ne puisse être stabilisée comme c’est le cas pour les
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systèmes étudiés expérimentalement indique les limitations de notre
modèle qui ne tient pas compte des particularités de l’état cristallin.
Le champ de force optimisé pour des simulations de l’état liquide ne
permet pas de reproduire complètement le comportement du système
simulé. De plus, les températures de transition obtenues sont bien trop
élevées par rapport aux valeurs expérimentales, ce qui est compréhen-
sible puisque les systèmes de départ sont parfaits, c’est-à-dire sans dé-
fauts favorisant la cristallisation, et infinis à cause des conditions aux
limites périodiques appliquées. Ces deux différences par rapport aux
systèmes expérimentaux combinées aux limites du champ de force uti-
lisé conduisent aux désaccords quantitatifs constatés, cependant que
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l’accord qualitatif avec les expériences est très bon.

Simulation de la cristallisation

A partir de configurations liquides de n-alcanes équilibrées à haute
température, nous avons soumis le modèle à un refroidissement continu.
Pour les différentes longueurs de châıne étudiées et les taux de re-
froidissements accessibles pour ce type de simulations (typiquement
10−3 K ps−1), nous n’avons pas pu reproduire de configurations cris-
tallines : la fig. r.8 montre que la densité ne présente pas de saut lors de
l’abaissement de la température, mais s’incurve plutôt comme dans le

 500

 600

 700

 800

 900

 100  200  300  400  500

ρ 
(g

 c
m

-3
)

T  (K)

n=44
n=16
n=8
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pérature pour des n-alcanes de longueurs

différentes.
cas d’une transition vitreuse. Cela signifie que l’apparition d’un germe
à partir duquel un cristal pourrait crôıtre nécessiterait des temps nette-
ment plus longs, de manière à laisser les châınes s’organiser en lamelles.

Il est possible également que les paramètres du modèle ne soient pas
suffisamment bien ajustés pour conduire les châınes à s’associer dans
des structures semi-cristallines. Il est cependant tout-à-fait possible de
reproduire une configuration semi-cristalline à partir d’un modèle tout-
atome semblable à celui que nous avons utilisé : nous avons créé un
modèle (appelé ST) avec un potentiel de torsion non réaliste qui rend
les châınes très (trop) rigides, et ce modèle soumis à un refroidissement
continu dans les mêmes conditions que notre modèle OPLS modifié
conduit à la formation d’un cristal (fig. r.9). Le modèle ST ne peut pas
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type transition vitreuse.

être considéré comme un modèle satisfaisant permettant de former des
configurations cristallines de n-alcanes ou de PE, car les conformations
des châınes obtenues ne sont pas réalistes, et de plus la température de
cristallisation observée dans ce cas est supérieure à la température de
fusion mesurée expérimentalement pour les n-alcanes considérés.

Il semble que le modèle OPLS modifié soit un bon modèle pour les
n-alcanes car il permet un bonne description du comportement des
cristaux et des propriétés du liquide. On peut aussi montrer que la
cristallisation n’est pas observable avec un tel modèle principalement
pour des raisons ayant trait au temps de calcul disponible condition-
nant les taux de refroidissements accessibles, car des signes précurseurs
de la cristallisation ont pu être observés lors de simulations de relaxa-
tions isothermes du modèle OPLS modifié à différentes températures :
la fig. r.10 présente l’évolution du paramètre d’ordre P2 (deuxième po-
lynôme de Legendre du produit scalaire des vecteurs représentants les
liens entre particules le long des châınes) au cours du temps à plu-
sieurs températures, et l’on peut distinctement observer le développe-
ment d’ordre au cours de la simulation à T = 250 K.
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Simulations coarse-grained

Le modèle CG-PVA développé par Hendrik Meyer permet de simuler
efficacement le comportement de l’alcool polyvinylique à basse tempé-
rature, et la structure semi-cristalline attendue est bien observée sur
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les configurations générées après un refroidissement [74, 75, 97]. La
formation des lamelles est obtenue grâce à la forme particulière du po-
tentiel gouvernant les états angulaires des châınes : ce potentiel est
déterminé (de même que les paramètres caractérisant les autres inter-
actions) à partir de données mesurées sur des simulations tout-atome ;
de cette manière, le modèle coarse-grained peut reproduire les confor-
mations des polymères modélisés de façon précise, sans avoir à prendre
en compte tous les détails moins pertinents avec lesquels il faut comp-
ter dans une simulation à l’échelle atomique. Le potentiel angulaire
ainsi déterminé est représenté sur la fig. r.11 : on peut distinguer trois
états favorables pour les états angulaires à l’échelle coarse-grained, qui
correspondent aux états trans–trans (tt), trans–gauche (tg) et gauche–
gauche (gg) de deux angles de torsion consécutifs sur le squelette de la
châıne originale, à l’échelle atomique.
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Ce paramètre du modèle est particulièrement important puisqu’il
permet aux châınes de reproduire des conformations « réalistes », et
ainsi de conduire à la formation de structures lamellaires en favorisant
l’apparition de plis, tout en permettant leurs déplacements qui auto-
risent la formation puis la croissance de structures semi-cristallines.
Un modèle comportant exactement les mêmes ingrédients mais un po-
tentiel angulaire nul reste complètement amorphe et ne permet pas la
formation de cristallites (fig. r.12).
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Caractérisation de différents modèles

L’importance de ce potentiel pour la simulation du phénomène de
cristallisation nous a conduits à créer de nouveaux modèles dérivés de
CG-PVA en modifiant le potentiel angulaire U(θ) ; ces modèles peuvent
être considérés comme représentant d’autres espèces de polymères de
structure chimique différente mais relativement proche de celle de l’al-
cool polyvinylique et dont les spécificités à l’échelle atomique sont reflé-
tées dans des proportions particulières des occupations des états coarse-
grained tt, tg et gg.

Pour chacun des modèles créés ainsi, nous avons étudié les caractéri-
stiques physiques de façon à déterminer l’influence du potentiel angu-
laire sur le comportement du modèle et en particulier sur la cristallisa-
tion. Cette étude nous a permis de mettre en évidence une corrélation
entre les propriétés du fondu à haute température et son comporte-
ment à basse température : la proportion d’état tt à T = 1 est liée à la
température de cristallisation Tcryst (de même qu’à la température de
fusion Tmelt ; voir fig. r.13). Nous avons pu également montrer l’exis-
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tence d’une corrélation entre la probabilité des états gg et la longueur
de persistance lP, qui est donc fortement influencée par la propension
des châınes à se replier sur elles-mêmes.

La corrélation entre Ptrans (probabilité des états tt) et Tmelt peut être
étudiée à l’aide d’un modèle simple développé par Volkenstein [130] ;
nous avons pu montrer que cette théorie décrit de façon appropriée
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la fusion des cristaux de polymères dans le cas où est vérifiée l’hypo-
thèse selon laquelle l’état cristallin est dominé par l’état trans. C’est le
cas pour des châınes parfaitement étendues dans des cristaux parfaits,
ainsi que pour des cristaux de châınes très courtes qui parviennent à
s’étendre complètement et à s’ordonner en cristaux (ce qui n’est plus
vérifié pour des châınes plus longues, dans le cas desquelles le système
devient frustré ; cf. fig r.14).
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châınes plus longues diminue avec l’aug-

mentation de la rigidité du modèle.

Caractérisation des cristaux

La structure des systèmes semi-cristallins a été caractérisée par dif-
férents paramètres d’ordre, et il est possible d’unifier les résultats ob-
tenus pour les modèles étudiés afin de déterminer les caractéristiques
principales des phénomènes de cristallisation et fusion des polymères.
Le paramètre d’ordre P2 peut être utilisé pour décrire le développe-
ment d’ordre dans le fondu au cours d’une simulation de refroidissement
continu. Une fois les valeurs obtenues normalisées par la température
de cristallisation et la valeur du paramètre d’ordre à basse température,
on peut constater que les courbes correspondant aux différents modèles
se superposent relativement bien ; il en est de même pour les courbes
correspondantes obtenues pour la fusion (fig. r.15). Cela suggère que la
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cristallisation des modèles coarse-grained se produit selon des mécani-
smes identiques, même si les configurations finales sont très différentes
d’un modèle à l’autre.

Une description plus précise de la formation de la structure cristalline
des modèles coarse-grained peut être obtenue à l’aide d’un autre para-
mètre d’ordre qui permet, sur la base d’un critère local de proximité et
de corrélation d’orientation de deux liens, de déterminer des ensembles
de particules appartenant à une même structure (cristallite). Couplée
à une analyse d’Avrami [135] pour la croissance d’un objet dans un
milieu par analogie avec la propagation d’une vague à la surface d’un
bassin, la détermination d’un tel paramètre d’ordre — correspondant
à une mesure de la cristallinité — permet de décrire de façon unifiée la
croissance d’un cristal au sein d’un fondu de polymère à l’aide de deux
nouveaux paramètres correspondants à la cristallinité finale extrapolée
du matériau et un temps caractéristique associé au développement des
cristallites (fig. r.16).
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Les modèles coarse-grained que nous avons utilisés permettent de
reproduire des résultats observés expérimentalement, comme les lignes
de cristallisation et fusion indiquant que les températures Tcryst et Tmelt

sont reliées linéairement à l’inverse de l’épaisseur des lamelles dans les
cristaux [54, 55, 121] ; à l’aide de simulations de relaxation isotherme
suivant une trempe à une température située au dessous de la tem-
pérature de fusion, on observe la formation de lamelles d’épaisseur d
au sein des zones cristallines du système de polymères. Au cours du
réchauffement continu qui suit cette étape, la fusion intervient à une
température proportionnelle à 1/d (fig. r.17).
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Nous avons comparé la structure des configurations semi-cristallines
obtenues à la suite d’un refroidissement continu à celles de cristaux
« parfaits », c’est-à-dire d’assemblages créés artificiellement de châınes
soit complètement étendues soit régulièrement repliées. Les pics repré-
sentatifs d’un réseau cristallin à symétrie hexagonale sont présents,

 0.4

 0.6

 0.8

 1

 1.2

 0  0.05  0.1  0.15

T

1/d (1/σ)

CG-PVA
x4
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ainsi que d’autres pics dans le cas des configurations créées artificielle-
ment puis équilibrées à basse température : ceux-ci proviennent d’effets
de taille finie comme nous pouvons le constater à l’aide de comparai-
sons avec des facteurs de structures calculés pour des configurations
légèrement modifiées afin de mettre en évidence l’effet de la frustration
et de la taille finie des châınes sur la structure d’un cristal de châınes
complètement allongées (fig. r.18).
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On peut établir un lien entre le modèle tout-atome pour le poly-
éthylène présenté plus haut et les simulations coarse-grained en pro-
posant un modèle coarse-grained grossier pour le PE qui consiste à
utiliser les paramètres de CG-PVA pour toutes les interactions excepté
le potentiel angulaire que l’on peut dériver de la distribution angu-
laire mesurée à partir des simulations tout-atome de n-alcanes. Il est a
priori nécessaire de procéder à une détermination complète des para-
mètres des différentes interactions que réclame le coarse-graining, mais
on peut justifier cette hypothèse par le fait que les volumes caractéris-
tiques des châınes de PE et de PVA sont suffisamment proches (faibles
différences de structure des deux molécules). On peut considérer en
première approximation que les distinctions entre les deux polymères
seront prises en compte entièrement au niveau du potentiel angulaire
dont nous avons pu constater l’incidence sur le comportement du mo-
dèle. Le modèle CG-PE ainsi défini permet de simuler la cristallisation
d’un fondu de châınes courtes de PE, comme on peut le voir sur la
fig. r.19 : contrairement à ce que nous avions pu observer dans le cas
du modèle tout-atome qui aboutit à une structure amorphe après re-
froidissement, le modèle CG-PE cristallise de la même manière que le
modèle CG-PVA et certaines de ses variantes.
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Facteurs de structure

La corrélation observée entre la probabilité de trouver un état angu-
laire trans–trans à haute température et les températures de cristallisa-
tion/fusion nous a conduits à calculer des facteurs de structure [40]
détaillés correspondants à différent modèles coarse-grained, à haute
température ; cela nous a permis de comparer la structure du fondu
de polymères avec les résultats attendus pour des liquides simples, et
également de tester certaines approximations souvent utilisées pour la
description des systèmes de polymères.

Afin d’obtenir des renseignements concernant la structure du fondu
plus précis que ce que l’on peut extraire de la quantité globale S(q)
(fig. r.20), nous avons distingué les facteurs de structure inter- et intra-
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châıne et calculé des quantités résolues en monomères, c’est-à-dire des
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fonctions de corrélation de densité dépendant de la position des sites
considérés le long des châınes. La définition de telles quantités se place
dans le cadre de la description de Ornstein-Zernike pour un système
fluide [40], et nous utilisons plus particulièrement l’extension de ce for-
malisme aux molécules RISM [13, 14, 16] et son application aux sys-
tèmes de polymères, PRISM [108, 109].

Facteurs de structure moyens

La structure observée en comparant ces différents facteurs de struc-
ture peut être décrite à l’aide d’approximations permettant de prendre
en compte les cas limites. La structure intra-châıne donnée par w(q)
(facteur de forme [22]) est bien reproduite par l’approximation gaus-
sienne à petits vecteurs d’onde q, et par une approximation prenant
en compte les effets dus aux plus proches voisins seulement à grands q
(fig. r.21). La structure inter-châıne (fonction h(q)) détermine le pre-
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Fig. r.21: Facteur de structure intra-
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mier pic du facteur de structure global puisque l’empilement dans le
fondu est contrôlé par les interactions châıne–châıne, mais n’influence
que très peu la structure global pour les vecteurs d’onde plus grands
(fig. r.22).
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Facteurs de structure résolus en monomères

La structure plus détaillée des fondus de polymères simulés peut être
étudiée par le calcul des quantités résolues en sites le long des châınes :
facteurs de structure détaillés global Sab(q), intra-châıne wab(q) et inter-
châıne hab(q). Ces quantités correspondent à des corrélations de den-
sité calculées aux positions des monomères a et b (a, b = 1, . . . , N).
L’introduction des fonctions de corrélation directe cab(q) issues du for-
malisme de Ornstein-Zernike généralisé aux molécules à partir des li-
quides simples fournit un moyen commode de rendre compte de ces cor-
rélations ; l’approximation Polymer-RISM suggère que pour des châı-
nes longues la corrélation directe entre monomères a et b ne dépend
pas de leur position le long de la châıne et par conséquent cab(q) =
c(q) [1, 13, 14, 16, 108, 109]. Nous avons pu montrer que ceci est bien
vérifié dans le cas des modèles utilisés dans nos simulations, même pour
des châınes relativement courtes (N ≤ 100), sauf en ce qui concerne
les bouts de châınes dans le pour lesquels il y a une déviation nette
de cab(q) par rapport à la fonction c(q). Ces différences ne dépendent
pas de la longueur de la châıne et les fonctions cab(q) convergent très
rapidement vers c(q) quand a et b augmentent lorsque l’on se rapproche
du milieu des châınes (fig. r.23).
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Encore une fois les contributions inter et intra-châınes peuvent être
isolées et étudiées séparément ; nous avons pu montrer que, dans le cas
de nos modèles coarse-grained comprenant un potentiel déterminant ex-
plicitement la flexibilité des châınes, l’approximation de Koyama [57,
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66] qui prend en compte les aspects non-gaussiens fournit une très
bonne description de la structure intra-châıne résolue en monomères
(fig. r.24). La structure inter-châıne peut être prédite avec une bonne
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précision (à l’exception des éléments de matrice correspondant aux
bouts de châınes, comme on peut s’y attendre) par une approxima-
tion de type PRISM (fig. r.25).
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Facteurs de structure impliquant les centres de masse

On peut calculer à partir des données de simulation des facteurs de
structure faisant intervenir les centres de masse des châınes, ainsi que
des fonctions de corrélation de densité entre un monomère situé à la
position a au sein d’un châıne et le centre de masse (CM) de cette
même châıne, ou d’une autre. L’approximation calculée dans le cadre
de la théorie PRISM est en bon accord avec les mesures effectuées pour
le facteur de structure CM–CM (fig. r.26) [59]. Pour les facteurs de
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structure monomère–CM, nous avons montré que l’approximation gaus-
sienne permet de reproduire les données de simulation de façon d’autant
plus satisfaisante que les châınes considérées sont longues (fig. r.27).
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Conclusion

Au cours de nos études des fondus de polymères, nous avons dé-
veloppé plusieurs approches distinctes permettant de caractériser et
mieux comprendre l’apparition de structures cristallines à basse tem-
pérature. Deux méthodes de simulation à des échelles différentes ont
été mises en œuvre de manière à mener ces études à bien.

Nous avons cherché à reproduire de façon précise la structure cris-
talline d’un système de châınes courtes de polymères, correspondant
à du PE de très faible masse moléculaire (n-alcanes), pour lesquelles
l’arrangement en un cristal parfait est accessible par des simulations
réalistes (méthode tout-atome). Cette approche nous a permis de re-
trouver les résultats expérimentaux concernant le passage à une phase
solide transitoire avant l’apparition du liquide lors d’un réchauffement.
Ceci justifie l’emploi d’une technique de simulation détaillée afin de
décrire un système réaliste avec précision. Par ailleurs, cette méthode
ne nous a pas permis d’accéder à la formation de structures cristallines
à partir du fondu au cours d’un refroidissement, et nous avons utilisé
une méthode différente, plus appropriée, dans ce cas.

Le modèle CG-PVA a été développé afin de simplifier la description
des châınes de polymères et permet ainsi de concentrer les efforts de
simulation sur des échelles de longueur et de temps plus adaptées à
l’étude de la cristallisation. Nous avons utilisé ce modèle comme point
de départ de notre étude et nous avons développé d’autres modèles
en faisant varier le potentiel angulaire qui contraint la flexibilité des
châınes. Nous avons pu de cette manière décrire l’influence de ce para-
mètre dont les effets sur l’arrangement des molécules à basse tempéra-
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ture sont très importants. Cela nous a permis notamment de caractéri-
ser la croissance de structures cristallines dans le fondu par l’utilisation
de divers paramètres d’ordre, et de mettre en évidence une relation
entre les propriétés du fondu à haute température et la facilité qu’a
le système à cristalliser (ou à fondre). Une approche théorique nous a
permis de mieux comprendre cette relation, et nous avons cherché à
approfondir l’étude des liens existants entre les propriétés structurales
du fondu à haute et basse températures.

A cette fin, nous avons procédé au calcul détaillé de la structure du
fondu de polymère à haute température, de manière à comparer avec
précision le comportement de modèles ayant une tendance à cristalli-
ser plus ou moins forte. Nous avons utilisé les fonctions de corrélation
de densité définies dans le cadre du formalisme de Ornstein-Zernike,
adapté au cas des molécules plus complexes et particulièrement aux
châınes de polymères. Cette étude ne permet pas de déterminer des
différences qualitatives importantes entre les modèles que nous avons
comparés, et les comparaisons avec les différentes approximations et cas
limites que nous avons considérés afin de mieux comprendre la structure
de fondu s’appliquent indépendamment de la flexibilité des châınes.

Ces études différentes apportent des éléments utiles à une meilleure
compréhension du phénomène de cristallisation des polymères qui n’est
encore qu’imparfaitement compris, et suggèrent également des pistes
pour des recherches plus approfondies dans certaines directions. Les
modèles dérivés de CG-PVA ont permis de décrire la cristallisation des
châınes linéaires avec succès, et de nombreuses caractéristiques de tels
systèmes ont pu être reproduites à l’aide de ces modèles à symétrie
cylindrique. A présent, il serait intéressant de modéliser des polymères
ayant une structure géométrique plus complexe, à l’aide d’un modèle de
type coarse-grained plus raffiné construit sur les mêmes bases : il serait
possible de définir un modèle permettant de décrire la chiralité d’un
polymère comme le polypropylène (PP) en introduisant des groupes
latéraux le long de la châıne de manière à reproduire la structure en
hélice caractéristique (cette idée a été étudiée dans la réf. 139). La
construction d’un tel modèle devrait s’appuyer sur des simulations tout-
atome de PP comme nous en avons étudiées à partir de l’expérience
acquise grâce aux simulations de n-alcanes (cf. partie 2.5). Il deviendrait
alors possible de procéder à un test de l’hypothèse selon laquelle la
croissance du cristal de PP ne peut se faire selon le scénario impliquant
la formation d’une structure à grande échelle, à cause de la nécessaire
sélection des châınes par leur chiralité [63].

L’importance de l’existence des différentes échelles de longueur pour
le processus de cristallisation suggère de tirer davantage parti des mé-
thodes de simulations disponibles à des niveaux de détails variables,
en combinant les deux techniques de manière à pouvoir bénéficier de
l’efficacité de la méthode coarse-grained ainsi que de la précision per-
mise par la méthode tout-atome. Pour ce faire, il est possible de réin-
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troduire les détails atomiques dans une configuration obtenue à l’aide
d’une simulation simplifiée [125, 126] ; ainsi, la méthode coarse-grained
peut être employée afin de reproduire la structure des cristaux à grande
échelle, et combinée ensuite à une méthode tout-atome dont nous avons
pu vérifier qu’elle permet de simuler la structure plus précise du cristal
(reproduction de la maille orthorhombique du PE ou des alcanes, alors
qu’un modèle coarse-grained n’autorise que la formation de cristaux à
symétrie hexagonale de par sa construction). Cette réintroduction des
détails atomiques n’est pas une entreprise facile, notamment parce que
la correspondance des configurations aux deux échelles différentes n’est
plus unique lors du retour à un degré de précision supérieur. Mais les
renseignements que l’on pourrait tirer de ce type d’étude sont nom-
breux, et il serait tout particulièrement intéressant de déterminer si
l’introduction des détails dans une configuration semi-cristalline de PE
coarse-grained permet de retrouver par la suite la structure orthorhom-
bique caractérisée à l’aide du modèle tout-atome (la transition cristal–
rotator que nous avons simulée n’est pas réversible pour nos systèmes).

Afin de compléter et d’approfondir nos travaux, d’autres études com-
plémentaires seraient souhaitables ; en particulier les lignes de cristalli-
sation et de fusion observées expérimentalement [54, 55, 121] et qui ont
pu être reproduites par la simulation réclament d’être analysées plus en
détail pour pouvoir en extraire les propriétés des transitions de phase
et des mécanismes sous-jacents. Une comparaison plus poussée avec les
résultats théoriques est nécessaire, mais demande la détermination de
la tension de surface caractérisant l’interface entre le liquide et le cristal
de polymères, ce qui constitue une étude à part entière.

Les résultats obtenus à l’aide des calculs de paramètres d’ordre au
cours de la formation du cristal peuvent être affinés de façon à donner
de plus amples informations concernant la croissance des cristallites, et
en particulier pour des systèmes plus grands. Il est possible également
de s’intéresser à l’évolution de la forme de ces cristallites depuis leur
apparition en tant que germes jusqu’à leur stabilisation au sein du sys-
tème semi-cristallin où elles sont contraintes par les régions amorphes
environnantes.

Les premières étapes de la formation des cristaux constituent pro-
bablement le domaine dans lequel la simulation numérique a les plus
grandes chances d’apporter des réponses décisives et pourra peut-être
éclairer le débat sur les mécanismes à l’œuvre lors de la création des
structures semi-cristallines, grâce à la grande précision dont cette mé-
thode est capable. Des calculs détaillés de structure comme ceux que
nous avons utilisé dans notre caractérisation du fondu à haute tem-
pérature seraient sans doute très utiles pour l’étude de l’évolution des
systèmes de polymères au cours du refroidissement alors que le cristal
se forme.

Enfin, des modèles présentant le niveau de détail approprié pour
l’étude de la cristallisation pourraient être utilisés dans des simulations
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de systèmes de grandes tailles sur des temps longs afin de reproduire
la formation d’un cristal avec un faible taux de surfusion ; de cette
manière, les conditions optimales seraient réunies pour l’étude d’une
éventuelle phase mésomorphe se développant en tant que précurseur
du cristal [121].



Introduction

Many objects of everyday life are now plastics. These objects are con-
stituted of polymer molecules in a particular state, in which they are
solid and have mechanical properties that make them suitable for a
wide range of uses. Depending on the need, different kinds of poly-
mers are used, forming materials with varying properties; however,
at high enough temperature, all polymeric systems are found in the
state of a viscous liquid (we are considering the case of pure polymer
melts only, as opposed to polymer solutions). Polymers are molecules
with a chain-like structure, formed by an assembly of a (possibly very)
large number of units called monomers. This nature of the polymer
molecules gives rise to their physical properties at high temperature
(viscosity arises from the difficulty encountered by the monomers to
diffuse, because they are bound to other parts of the chain), and at low
temperature [62].

(a) Polyethylene (PE)

(b) Polypropylene (PP)

(c) Poly(vinyl alcohol) (PVA)

Figure i.1: Chemical formulae of three

polymers with simple structure.

At low temperature, polymeric systems may have distinct behaviors
depending on the nature of the interactions between the particles and
on the thermal history. All polymers undergo a glass transition after
which the system ends up in a glassy state, i.e. its structure remains
amorphous as it is in the high temperature melt, but the dynamics of
the chains in the glass is considerably slowed down [23]. As a result, the
system becomes rigid (and possibly brittle) below the glass transition
temperature, whereas it flows above it.

Polymers that are sufficiently regular (little branching, stereo-regu-
larity) can also form crystals at low temperature. This requires that
upon freezing the mobility of the monomers is still high enough so that
ordering is possible before a glassy state occurs. This mobility strongly
depends on temperature, and therefore even crystallizable polymers
might end up in a glassy state as a result of fast cooling; the glass tran-
sition also occurs below the crystallization temperature, implying that
part of the system has evolved to an ordered state. However, crystal-
lization of polymers is still somewhat remote from what is observed in
the case of non-polymeric systems, therefore yielding polymer crystals
some very specific properties.

We are interested in crystalline polymeric systems, which will be
studied using computer simulations. The canonical example of a crys-
tallizable polymer is polyethylene, which has the simplest possible struc-
ture (long alkane chain, see fig. i.1(a)); our study addresses polymers

1
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with such a simple structure, as well as slightly more complex molecules
like poly(vinyl alcohol) and polypropylene (also presented in fig. i.1).

Figure i.2: Sketch of a chain folded to

form a lamella. The lamellar thickness

is indicated as the length d of one stem

composing the lamella.

The polymeric systems that are able to form crystals still do not yield
perfectly ordered materials, consisting of fully stretched chains; even
if the monomers’ mobility is higher than for glass-forming polymers,
the connectivity of the chains always hinders the development of order
while crystallizing. Thus, the resulting structures are only partially
crystalline, and contain a non-negligible amount of amorphous material
surrounding the crystalline regions. Hence crystal-forming polymers
are referred to as semi-crystalline [5, 87, 134]. As perfectly stretched
configurations are not accessible for very long chains because of kinetic
or entropic effects, the ordered parts of semi-crystalline polymer sys-
tems have a typical length which is orders of magnitude smaller than the
chain length, as was recognized from scattering experiments which led
to the conclusion that polymer chains must be folded back onto them-
selves [32, 53]; chains thus form lamellae (pictured in fig. i.2), which
are stacked and finally form large-scale structures called spherulites.

Polymer crystallization is thus a phenomenon which involves a multi-
tude of different length scales, ranging from the nanoscopic level (atoms
constituting the molecule), to intermediate-sized structures (elongated
parts of the chains forming stems and the lamellae they enter), to the
microscopic spherulites. A schematic representation of these different
size objects is given in fig. i.3.

Figure i.3: Illustration of the different

length scales relevant to the description

of polymer crystals, from the atomistic

level to spherulitic structures.

Models of polymer crystallization

The properties of semi-crystalline polymers have been thoroughly stud-
ied for several decades, and many morphologies and growth mechanisms
have been reported and analyzed [119, 134–136]. A general picture that
has been widely used to describe the crystallization process is based on
the understanding one has of the formation of crystals of simple par-
ticles: There is a nucleation step during which nuclei are formed, and
from them the crystal develops in the second, growth step [5, 45, 87].
Actually, one distinguishes two nucleation steps: The first step of the
process corresponding to the creation of a suitable nucleus (“primary
nucleation”) is not addressed in the classical framework of the the-
ory by Hoffman and Lauritzen; their model is based on a description
of the “secondary nucleation” process (stems are deposited onto the
growth front) which is assumed to be responsible for the formation
of large-scale crystals. The theory assumes that some crystal growth
front exists. It then describes a path for the development of the crys-
talline structures according to the classical nucleation-growth theory
and predicts values for the growth rate as well as the thickness of the
resulting lamellae which can be compared to experimental results. Al-
though initially developed for crystallization from solution, it has been
refined and applied to the crystallization in melts [46]. In particular,



Models of polymer crystallization 3

the Hoffman-Lauritzen theory allows one to recover the characteristic
relation linking the inverse lamellar thickness to the supercooling: As
can be determined from simple thermodynamical considerations also
(Gibbs-Thomson equation, see eq. (3.56) in section 3.3.4), the melt-
ing temperature Tmelt of a semi-crystalline system is expected to vary
linearly with the inverse lamellar thickness 1/d [87]. This behavior is
observed in many experiments, and together with predictions of growth
rates, this made the Hoffman-Lauritzen picture a widely accepted de-
scription of semi-crystalline polymers.

However, this understanding of the crystallization process has been
challenged several times for its lack of accuracy and its failures at re-
producing some experimental results [5]. For example, the lamellar

Figure i.4: Sketch of the formation of

a lamella from the amorphous melt.

thickness predicted by the model is supposed to be equal to an equi-
librium value d, plus a small correction; but the large difference in
the crystallization and melting temperatures reported in experiments
proves that this correction cannot be small. Other models with dif-
ferent basic hypotheses have been proposed. The Sadler-Gilmer model
takes entropic effects into account to describe the roughness of the
growth front [105]. Recently Strobl has developed a new qualitative
model for crystal growth that substantially differs from the classical
description [121]. In this new model, the crystalline structures are not
formed via adsorption of material locally on a growth front but rather
emerge from an intermediate assembly of chains that preorders in the
amorphous melt: It is conjectured that a so-called“mesomorphic phase”
develops in the disordered medium before there is an ordering of the
monomers when the mesomorphic phase turns into a lamella (see a
sketch in fig. i.4). The proposition of such a model was also supported
by the experimental observation of a signal at low wave vectors q before
the occurrence of the characteristic peaks at higher q in X-ray scatter-
ing [49, 70], which is in favor of a description based on the spinodal
decomposition [93]. This suggestion of a completely new route to the
formation of polymer crystals has stimulated a lot of new discussions
on the polymer crystallization process, and arguments were presented
in favor of or against the two competing descriptions [17, 63, 86, 121].
For instance, the analysis of the arrangement of the two chiral species
of isotactic polypropylene in the crystalline phase is seen by Lotz as an
example where Strobl’s conjecture cannot apply, since the molecules
of different kinds need to “probe” the existing growing crystal in or-
der to deposit in the specific location they are found to occupy in the
resulting crystal [63]. This is found not to be compatible with the pre-
vious arrangement of the chains into a mesomorphic phase that would
afterwards evolve toward the final crystalline structure.

In this context, as many experimental facts have been produced and
provide arguments in favor of completely different processes, the use
of another approach may be useful to shed light on some aspects of
the considered phenomenon that are not necessarily accessible to tra-
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Figure i.5: Schematic representation of the different numerical methods that can be used to model and simulate molecular

systems on various scales.

ditional methods: Experiments provide global views, an individual
molecules can be visualized only at surfaces or by seriously disturb-
ing the system. Computer simulation is a powerful tool that can be
used to investigate a subject in a different manner, and provides insight
into the intimate structure of semi-crystalline polymer melts; several
contributions have focused on polymer crystallization using different
simulation methods, addressing various aspects of the problem.

Computer simulation techniques

The different methods suitable for a study of polymer crystallization
are intimately connected to the probed length scale. Figure i.5 shows an
overview of the simulation methods and the corresponding resolutions
that are accessible to them. As can be expected, the more “accurate”
methods require a huge amount of computer time. Ab-initio calcula-
tions can predict the structure of elementary crystal cells, but they
cannot be used to study the process of crystallization, as it is currently
possible to simulate a few molecules only. Therefore, one has to forego
a realistic description of the monomer–monomer interaction in favor of
simpler models. On the other end of scales, finite-element simulations
are very effective and useful to understand the macroscopic properties
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of a material, but they do not permit a resolution of the positions of the
different polymer chains since the relevant length scale is too large in
this case. Thus, only intermediate solutions between these two schemes
are appropriate for the study of polymer crystallization; i.e. the relevant
simulation methods are situated on the atomic (all-atom simulations)
or molecular level (coarse-grained simulations) [9, 84]. The models
simulated using molecular dynamics can retain a varying amount of
atomistic details; a widely used scheme is the united-atom model in
which the fast motion of hydrogen atoms has already been averaged
out. It is possible to achieve greater efficiency by averaging over more
degrees of freedom, which is needed in order to be able to simulate
large enough time and length scales.

Molecular simulations of polymer crystallization

Computer simulations have been used to address various aspects of
polymer crystallization: Monte-Carlo simulations on a lattice were ap-
plied to model the selection of lamellar thickness in the crystal [4, 27–
29, 105], which requires the hypothesis that a growth front preexists
between the crystalline and amorphous regions. The Sadler-Gilmer
model introduces roughness of this surface and makes the description
of crystal growth more realistic [105], but this remains a restricted pic-
ture of the general phenomenon since the effects of neighboring lamellae
and rearrangement of the chains in the already crystalline material are
disregarded. Direct molecular dynamics simulations—that mostly use
united-atom models of PE—have been applied to short chains in the
melt [123], clusters in vacuum [35, 36] or thin films [111].

Muthukumar et al. have investigated several aspects of the crystal-
lization of model polyethylene-like polymer chains [87]. These united-
atom simulations introduce single chains that exhibit the typical folds

(a) All-atom model

(b) United-atom model

(c) Coarse-grained model

Figure i.6: Schematic representation of

different coarse-graining steps in model-

ing a short alkane chain: The all-atom

model explicitly takes into account all

the atoms that comprise the molecule

individually, whereas the united-atom

scheme incorporates the hydrogen atoms

together with the corresponding carbon

into one single bead. An example of

a model coarser such as the one pre-

sented in ref. 97 goes one step further

and substitutes one particle for two car-

bons and the relative hydrogens. (Note

that the size of the different particles

in the representation does not corre-

spond to the parameters used to define

the interactions in the simulation code:

The excluded-volume potential makes

the particles larger than what they seem

on the pictures.)

upon cooling; this corresponds to the case of crystallization in solu-
tion [61, 88]. A theoretical model is presented to account for the finite
size of the lamellae formed in the simulation [85, 87]. Muthukumar
et al. also study the kinetics of crystal growth by adding chains in the
vicinity of a crystal, and letting them relax [132]. The absorption of the
chains into the preexisting crystal is described, showing a deposition of
the added monomers onto the folded structure and their rearrangement.

A similar united-atom model was used by Rutledge et al. in order
to investigate the crystallization of short alkane chains [131]. The in-
troduction of walls bounding the simulation box allows for a higher
probability of crystallization than in the bulk (heterogeneous nucle-
ation), and the simulations are used to study the growth rate of the
constrained crystal. An empirical model is used to account for the
temperature dependence of this rate, based on an extended Avrami
approach (the Avrami description of crystal growth is presented briefly
in sec. 3.3.2.3).
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Crystallization from the melt of a constrained system has also been
studied by Yamamoto, but with a coarser model than the united-atom
scheme used in the abovementioned works [138]. Such a coarse-grained
model allows for a higher efficiency, making it possible to simulate
larger systems over longer times; the structure and evolution of the
growing crystal are monitored, and the fold statistics is investigated.
Yamamoto et al. have also recently made first attempts with a coarse-
grained model of a more complex structure which allows to describe
chiral polymers such as isotactic polypropylene [139].

Another coarse-grained approach that does not require the intro-
duction of walls or explicit nucleus to yield crystallized systems has
been developed by Hendrik Meyer [73–75]. A coarse-grained model
for poly(vinyl alcohol) is derived on the basis of all-atom calculation
(CG-PVA) [97]; effective potentials are determined and provide a re-
alistic description of the melt, in that details from the chemistry of
the considered polymer are still accounted for while the unneeded de-
grees of freedom have been averaged out to yield an efficient simulation
scheme. The efficiency of this coarse-grained model allows one to sim-
ulate the crystallization of polymer melts in the bulk, since larger time
and length scales are accessible compared to simulation schemes with
all-atom or united-atom models; it is possible in particular to reproduce
crystallization after homogeneous nucleation. Characteristic features of
the crystallization of polymers from the melt could be obtained with
this model. It was shown that the chain length dependence of ho-
mogeneous nucleation of short chains compares very well with droplet
experiments on alkanes [58, 73]. In isothermal relaxation experiments,
chain-folded lamellar structures were obtained, and the dependence of
their thickness on the crystallization temperature as well as the sub-
sequent melting gave well-defined crystallization and melting lines as
observed in experiments [74]. Interestingly, the model contains no at-
tractive inter-particle interaction. This means that the conformational
statistics and an Onsager-like ordering mechanism which is in compe-
tition with the long-chain connectivity are probably dominating the
structure formation at large scales. The results have been confirmed
with larger systems and longer chains [73].

Motivation of this work

One main conclusion of the latter work was that one needs a better
understanding of the influence of the angular potential. This angular
potential allows us to keep track of the flexibility of the chain (as deter-
mined by the atomistic structure), and therefore contains the relevant
information about the polymer. The study of this angular potential in
simplified models constitutes an important part of this thesis. However,
it appears that these simplified models cannot represent all features of
polymer crystallization. We thus undertook a characterization of all-
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atom models, and in particular we attempted to determine whether
classical force fields can reproduce the complicated phase behavior of
n-alkanes. This work was started in the longterm perspective of a multi-
scale modeling (which will be discussed briefly in the final outlook), but
also with the idea to get reference data to construct improved coarse-
grained models. Looking for precursors of the crystallization process,
we probed the structure of polymer melts with detailed correlation
functions, so as to track the reason for high or low propensity to form
crystals in the intrinsic properties of several models.

Organization of this work

We start with a brief description of the technical aspects of com-
puter simulations. A short presentation of the molecular dynamics
method is given, and the basic components of molecular models are
described. Last, definitions of the quantities of interest in this study
are presented.

The second chapter is dedicated to a study of n-alkanes, using
an all-atom simulation method. For a long time this system has been
considered a model-system for the study of polyethylene crystalliza-
tion, since under certain conditions n-alkanes form crystals with an or-
thorhombic structure that resembles the polyethylene crystals [24, 46].
Although the much longer chain length of polyethylene confers it very
specific features that are not present in the case of alkanes, and due
to the great wealth of phases accessible to these systems, they are still
interesting to study; this was also an occasion to set up the parameters
of a realistic force field that could afterwards be used to simulate longer
polymer chains and to derive a realistic coarse-grained model for PE,
as has been done before for PVA (fig. i.1).

The third chapter deals with the study of CG-PVA and its vari-
ants, and presents a systematic study of the influence of the angular
potential on the properties of the models, in particular the characteris-
tics of crystallization. A correlation is found between the“flexibility”of
the chains (fraction of stretched states of the bond angles measured in
equilibrium at high temperature) and the propensity of the melt to crys-
tallize (crystallization temperature). The evolution of the crystalline
phase during continuous cooling and after a quench is investigated for
different models; order parameters are computed in order to character-
ize the degree of crystallinity obtained with the different models, and
it is shown that using a simple Avrami analysis for the growth of the
crystalline regions, crystallization of different models during continuous
cooling can be described in a unified manner.

The last chapter is concerned with an extensive high-temperature
study of the structure of the melts for our different models: Mo-
tivation for this analysis is the relation between the high- and the low-
temperature states that the study of the influence of angular potential
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revealed. We calculated structure factors of the melts and studied the
inter- and intra-chain contributions to these quantities, and applied a
more detailed Ornstein-Zernike-like approach to models with different
low-temperature behaviors.

Finally, a summary of the most important results and a discussion
of perspectives for future simulations conclude this thesis.
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There are several methods to simulate the behavior of a system [2,
34, 84, 124]. A choice has to be made according to the length scale
to be probed, to capture the relevant phenomenon. In case we are
interested in physical properties which involve several polymer chains—
which amounts to thousands of atoms at least—, the method of choice
would definitely not involve explicit electrons, nor should it consider
the system as a continuous medium. In the former case one would
have to cope with a lot of unnecessary information, while in the latter
the relevant degrees of freedom would already be averaged out and
therefore not accessible anymore.

Since we are interested in polymer melts and the structures that can
form inside, we need to adopt a method that allows to keep track of the
behavior of the chains themselves, and therefore retain enough details
in the way they are modeled. The possibilities now are still numerous,
depending on the degree of accuracy we require in the description of
the chains. The more detailed scheme we can use consists in simulating
the molecules taking into account all the atoms they contain. It has
the advantage that, doing so, we can hope to reproduce precisely the
structures that form at low temperatures in the melt: For such phases,
the accurate geometry of the molecules (dictated by the interactions)
becomes predominant as one heads toward regimes for the description
of which a quantum treatment is necessary. It is also possible to run
simulations with less details in the structure of the chains, but one has
to be careful not to lose too much information to study the considered
phenomenon.

Once the adequate model has been chosen, one needs a procedure to
actually simulate its behavior, that is to infer from the bare interactions
between the different constituents in the system the variation in time of
their positions and velocities, from which all other physical quantities
can be derived. In the case of molecular dynamics simulations, this is
achieved by solving the equations of motion for all the particles in the
system.

9
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1.1 Simulation models on different scales

1.1.1 Molecular dynamics simulations

Classical molecular dynamics (MD) simulations [2, 34] consist in solving
Newton’s equations of motion for a set of particles interacting via effec-
tive forces determined either by quantum computation or phenomeno-
logically, i.e. set up so as to reproduce experimental measurements. For
systems at relatively high temperature, the replacement of atoms by
classical particles is harmless, since quantum specific effects are neg-
ligible. Once the different interactions between the MD particles are
defined (this is described in sec. 1.1.2), the equations of motion have
to be solved:

mir̈i = fi (1.1)

where mi, ri and fi are respectively the mass, position of particle i
and the force exerted on it.1 This equation has to be solved for all
N particles in our system. The force fi derives from the potentials
describing the interactions:

fi = −∂Upot(r1, . . . , rN )
∂ri

; (1.2)

and in the case of pairwise additive interactions,

Upot =
N∑

i=1

N∑
j=i+1

U(rij), where rij = ri − rj . (1.3)

Using the MD simulation scheme, the positions and velocities of the
N particles in the system are calculated at all times, allowing to com-
pute from there all the physical properties. These quantities are time-
averaged in the course of the simulation, which corresponds to an en-
semble average, if the ergodic principle is to be trusted in that case. An
MD simulation originally creates configurations in the microcanonical
ensemble since the number of particles N remains unchanged, the vol-
ume V of the simulation box does not vary in time, and the equations
of motion are known to conserve the energy E. It is possible to add
some other degrees of freedom to the system so as to run a simulation
in other ensembles than NV E [2, 34]. This is briefly described later.

1.1.1.1 Integration of the equations of motion

The method used to simulate the time evolution of the system consists
in solving numerically the equations of motion, and there are several
algorithms to do so. All of them rely on the Taylor expansion of the

1The principles of the simulation method given here apply to any kind of system,

and it is not necessary to introduce notations that are specific to polymers yet.

Particles are grouped into chains because of the binding interactions described in

sec. 1.1.2, and we shall use another convention to distinguish the particles belonging

to different chains when introducing the quantities relevant to the system’s analysis

(sec. 1.3).
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expression of the positions at time t+ δt, δt being a short time interval
(called “time-step” in the following):

ri(t+ δt) = ri(t) + δtvi(t) + . . . (1.4)

Combining this to the equivalent expression for ri(t − δt), one arrives
at the Verlet formulation for the resolution of eq. (1.1), which gives an
estimate for ri(t+δt) and vi(t) as a function of ri(t), ri(t−δt), δt and the
forces fi(t) [129]. This result achieves accuracy up to δt2 for velocities
and δt4 for positions; though, this particular algorithm suffers from
several inconveniences (ri(t + δt) and vi(t + δt) are not known at the
same time, and other problems mentioned, for instance, in [2]). There
exist other forms of the algorithm that tackle those problems, such as
the so-called velocity-Verlet algorithm (this algorithm is implemented
in the md_spherical program that we used for coarse-grained models).
From

ri(t+ δt) = ri(t) + δtvi(t) +
1

2mi
fi(t)δt2 (1.5)

and ri(t) = ri(t+ δt)− δtvi(t+ δt) +
1

2mi
fi(t+ δt)δt2 (1.6)

one obtains the following expression for the velocities:

vi(t+ δt) = vi(t) +
1

2mi
δt
(
fi(t) + fi(t+ δt)

)
(1.7)

and eq. (1.5) is used to advance the positions [122]. Another variant of
the original Verlet algorithm is known as leap-frog, and uses half time-
steps [44]. This algorithm is used by the cycle routine of the YASP
package we used to simulate all-atom models [82]. It is written:

ri(t+ δt) = ri(t) + δtvi(t+
δt

2
) (1.8)

vi(t+
δt

2
) = vi(t−

δt

2
) + δt

fi(t)
mi

. (1.9)

The velocities at time t can be recovered using:

vi(t) =
1
2

(
vi

(
t+

δt

2

)
+ vi

(
t− δt

2

))
. (1.10)

It is also possible to use higher order approximation methods, known
as predictor-corrector codes. With these schemes, one predicts the value
of ri at time t+ δt using a series expansion for positions

rP
i (t+ δt) = ri(t) + δtvi(t) +

1
2
δt2

fi(t)
mi

+
1
6
δt3

bi(t)
+

. . . (1.11)

and similar expressions for velocities, accelerations and higher order
time derivatives. These predictions are then corrected using the equa-
tions of motion, allowing to calculate fC

i (t + δt). The final expression
reads

rP
i (t+ δt) = rP

i (t+ δt) + α1
1
mi

∆fC
i (t+ δt) (1.12)
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with

∆fC
i (t+ δt) = fC

i (t+ δt)− fP
i (t+ δt) . (1.13)

The coefficients αk for the positions and their time derivatives need to
be optimized for the problem under consideration, and depends on the
order of the algorithm [37, 38].

Higher order methods than the Verlet algorithms usually give only
little improvement, since they often require several correction iterations
which involve costly force evaluation. Moreover, these methods might
ensure a better energy conservation at short times, but this is not
necessarily the case for long time series. The Verlet algorithms indeed
appear to satisfy properties such as time reversibility and phase space
volume conservation which lead to a good stability of the method.

1.1.1.2 Different ensembles: NV E, NV T , NPT

As mentioned above, the original MD algorithm allows to perform simu-
lations in the NV E ensemble, but it is often desired to switch to canon-
ical (NV T ) or isothermal-isobaric (NPT ) ensembles in order to repro-
duce as closely as possible the conditions of a “real” experiment [11].
The polymer melts we intend to study are obviously experimentally ob-
served under constant pressure, and, whether they are first quenched
and left to relax afterwards or continuously cooled down, we need an
algorithm capable of imposing a constant temperature, or a variation
of temperature in time. These particular conditions can be achieved by
the application of specific modifications to the basic, microcanonical,
MD algorithms.

Constant temperature. The canonical ensemble is realized by cou-
pling the system to a large heat bath the effect of which is to actually
thermostat the particles. This results in maintaining the temperature
T constant in the system, T being related to the kinetic energy via the
equipartition theorem (we are considering instantaneous values of the
different quantities here):

Ek =
N∑

i=1

1
2
mivi

2 (1.14)

=
3
2
NkBT . (1.15)

One way to achieve the coupling is to allow random collisions with
(imaginary) particles of the heat bath, which in practice is done by
attributing to a particle chosen at random in the system a new velocity
taken from the Boltzmann distribution corresponding to the prescribed
temperature [3]. The strength of such a coupling is adjusted by chang-
ing the frequency of the collisions: In the limit of an infinite time
between two collisions, the microcanonical ensemble is recovered, while
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for collisions happening with probability one to any particle at all time-
steps, the simulation eventually becomes a Monte-Carlo simulation (see
also [34, 117]).

Langevin thermostat. Another way of thermostatting a simulated
system is to switch from the Newtonian to the Langevin formulation of
the equations of motion, which is often called stochastic dynamics [39,
107]. This is achieved by adding two terms to the original equations,
one friction term that damps the dynamics, and a noise term that
allows to pump energy to the system. The equations of motion thus
become

mir̈i = fi −miγivi + Wi . (1.16)

Wi is a fluctuating force that acts stochastically on the particles and
can transfer some thermal energy to them; it has zero mean (〈Wα

i 〉 = 0
for i = 1, . . . , N and α = {x, y, z}) and satisfies the following fluctuation-
dissipation theorem that links thermal energy and friction so as to keep
the temperature at the value T0:

〈Wα
i (t)W β

i (t′)〉 = 2miγikBT0δijδαβδ(t− t′) . (1.17)

The second term on the RHS of eq. (1.16) corresponds to the damping
force that takes away energy from the parts of the system that are “too
hot”. The friction coefficient γi is usually taken with the same value γ
for all particles, and is an adjustable parameter to specify whether the
thermostat couples strongly or weakly to the particles (this algorithm
is implemented in md_spherical).

Berendsen thermostat. Following Berendsen [10], one can calcu-
late the rate of change of the temperature when using the Langevin
thermostat described above. Using eq. (1.16) integrated over time, we
obtain an expression for the velocity

vi(t+∆t) = vi(t)+
1
mi

∫ t+∆t

t
dt′
(
fi(t′)−miγivi(t′) + Wi(t′)

)
(1.18)

that is used to express the change in kinetic energy:

dEk

dt
= lim

∆t→0

(
Ek(t+ ∆t)− Ek(t)

∆t

)
. (1.19)

Using ∆vα
i = vα

i (t+ ∆t)− vα
i (t), the previous equation can be written

as

dEk

dt
= lim

∆t→0

[
1
2

∑
α

Ntot∑
i=1

mi

(
∆vα

i
2 + 2vα

i (t)∆vα
i

)/
∆t

]
, (1.20)

which yields, after use of eq. (1.17) (and assuming that γi = γ),

dEk

dt
=
∑
α

Ntot∑
i=1

vα
i f

α
i + 2γ

(
3Ntot

2
kBT0 − Ek

)
. (1.21)
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The second term on the right-hand side would be zero in the case of
a microcanonical simulation (conservation of energy), and corresponds
to the rate at which energy is transferred from/to the heat bath. Us-
ing the equipartition theorem, one arrives at the following relation for
temperature change in time (second term in eq. (1.21) RHS):

dT
dt

∣∣∣∣
therm

= 2γ(T0 − T ) . (1.22)

T is the actual temperature of the system, while T0 is imposed by the
thermostat. The coupling between the two is made with a time con-
stant τT = 1

2γ . One can then propose a modified version of eq. (1.16),
accomplishing the same kind of coupling to an external bath without
any random force:

mir̈i = fi +miγ

(
T0

T
− 1
)

vi . (1.23)

This corresponds, after resolution of the first-order differential equation
for vi = ṙi, to an overall change in the scale of velocities, by a factor
λ. Treating the coupling to the heat bath separately, one has [putting
aside the influence of interactions that is explicitly taken into account
in eq. (1.7)]:

vα
i
′(t+ δt) ∼ vα

i (t)eγ
(

T0
T
−1

)
δt (1.24)

∼ vα
i (t)

(
1 + γ

(
T0

T
− 1
)
δt+ . . .

)
(1.25)

Thus the mapping vα
i (t+ δt) 7→ vα

i
′(t+ δt) = λvα

i (t) results in applying
the coupling, with

λ ' 1 + γ

(
T0

T
− 1
)
δt (1.26)

to first order in δt. The latter expression is also equivalent (still to first
order in δt) to

λ =

√
1 +

δt

τT

(
T0

T
− 1
)
, (1.27)

which has the advantage to lead to the simple temperature change of
(T0 − T )δt/τT per time-step. It is possible to obtain a more precise
expression for the time constant τT , considering the energy variation
associated to the scaling of the velocities [83]:

∆E =
∑
α

N∑
i=1

(
1
2
miv

α
i
′2 − 1

2
miv

α
i

2

)
(1.28)

=
∑
α

N∑
i=1

(λ2 − 1)Ek =
3
2
NkBT (λ2 − 1) . (1.29)

Recalling the definition of the heat capacity

CV =
(
∂E

∂T

)
V

' ∆E
∆T

, (1.30)
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one arrives at

λ =
√

1 +
2CV

3NkB

T0 − T

T
, (1.31)

which corresponds to τT = 3NkB
2CV

δt; however, the value of τT does not
need to be adjusted with a high accuracy.2

Nosé-Hoover thermostat. Another way of thermostatting the sys-
tem is to use the Nosé-Hoover scheme, which derives from a modified
Lagrangian formalism that introduces a new degree of freedom gov-
erned by its own equation of motion. The equations of motion are
then

ṙi =
ṗi

mi
(1.32)

ṗi = fi − ξpi (1.33)

ξ̇ =
1
Q

[
Ntot∑
i=1

(pi)2

mi
− 3NtotkBT0

]
. (1.34)

Q is a parameter defining thermal inertia in the system. The difference
between this thermostat and the previous one lies in the way the tem-
perature difference T0 − T is related to the effective friction ξ: In the
case of the Berendsen thermostat, the two quantities are simply pro-
portional, while the Nosé-Hoover approach involves a first-order differ-
ential equation, meaning that the time-derivative of ξ is determined by
the temperature mismatch. Thus the Nosé-Hoover thermostat drives
the system temperature more softly than the Berendsen method: If
the parameter Q is not chosen carefully, unwanted oscillations may
occur [128].

Discussion. The different techniques mentioned above have all been
applied successfully to MD simulations in order to prescribe the tem-
perature, and sample configurations at constant NV T . Nevertheless,
it has been shown [34, 48] that only the Nosé-Hoover thermostat truly
reproduces this particular ensemble in a rigorous manner using one sin-
gle friction parameter. The other techniques are still useful and even if
they are in fact sampling ensembles other than the canonical one, the
static properties of fluids simulated this way are not expected to vary.
Small changes may occur in the dynamics though, even if a comprehen-
sive study of such effects is still missing. The Nosé-Hoover thermostat
also has its specific drawbacks when compared to the other possibilities:
The coupling constant between system particles and heat bath has to
be chosen arbitrarily but carefully, and does not have a generic value for
any system; furthermore, it has been reported that anomalous temper-
ature fluctuations can be observed while at low temperature [47]. The
Nosé-Hoover and Berendsen thermostat are applying global tempera-
ture scaling as a function of the average kinetic energy in the system,

2This method is used in YASP.



16 1 – Simulation methods

while the Langevin approach is strictly local and allows to relax large
heat variations on a local scale very efficiently. The Langevin thermo-
stat ensures great stability since the possible instabilities cannot prop-
agate. This allows to choose a larger time-step, which makes its use
more efficient in terms of computational time. On the other hand, the
method destroys heat transfer. The Berendsen scheme also allows to
get rid of instabilities quite rapidly since the coupling to the heat bath is
effective in a relatively strong manner. These two particular techniques
have another inconvenience since they violate Galilean invariance [117]
which leads to the non-conservation of the overall momentum in the
system. In order to circumvent this problem, the momentum has to be
reset to zero periodically (round off errors in the numerical integration
of the equations of motion could also create such troubles anyway). For
more detailed discussion about this topic, see for instance [124].

Constant pressure. Using the same techniques as for the thermo-
stat, one can prescribe the pressure in order to simulate in NPT -
constant conditions. In this case, the volume has to fluctuate, allowing
the pressure to remain constant. In most molecular simulations, the
volume has a particular definition since it cannot approach the dimen-
sions of any real system and is in fact restricted to a small box (typically
of the order of 5–20 nanometers in our polymer simulations). In order
to limit the influence of finite-size effects, periodic-boundary conditions
are applied, meaning that a particle exiting the box on one side will
immediately re-enter on the opposite side. This mimics an infinite sys-
tem to some extent. In the case of constant-NV T simulations, this box
size is kept constant, while for constant NPT it varies in time.

In a simulation, pressure can be defined as

P =
2

3V
(Ek − Ξ) with Ξ = −1

2

N∑
i=1

N∑
j=1
j<i

rij · fij ; (1.35)

rij = ri − rj , and fij is the force exerted by particle j on i. With the
Berendsen method, one defines a time constant τP which couples the
system to an external piston through

dP
dt

∣∣∣∣
bar

=
P0 − P

τP
, (1.36)

where P0 is the target pressure; to satisfy such a requirement, it is then
necessary to impose a new form for the equations of motion, and to
modify the volume accordingly:

ṙα
i = vα

i + ηrα
i (1.37)

V̇ = 3ηV . (1.38)

The isothermal compressibility is defined by

βT = − 1
V

(
dV
dP

)
T

(1.39)
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and can be used to link η to the coupling constant τP [using eqs. (1.36)
and (1.38)]:

dP
dt

= − 1
βTV

dV
dt

' ∆P
δt

(1.40)

P0 − P

τP
= − 1

βTV
3ηV (1.41)

⇒ η = − βT

3τP
(P0 − P ) . (1.42)

The solution to the differential equation (1.37) for rα
i can be solved by

scaling the positions by a factor

µ = 1− βT δt

3τP
(P0 − P ) (1.43)

to first order in δt, which is equivalent to

µ =
(

1− βT δt

τP
(P0 − P )

)1/3

(1.44)

at the same order. Again, the exact value of βT needs not be known
within great accuracy since it only appears divided by τP , and this ra-
tio controls the strength of the coupling to the external piston, which is
not critical. This method as it is presented here is valid for an isotropic
system; it is possible to extend it to the general case of anisotropic
couplings in which the simulation box sizes are allowed to vary inde-
pendently in each direction. In this case, the pressure tensor is defined
by

P =
1
V

∑
i

mivi
tvi +

∑
i,j

rij
tf ij

 , (1.45)

tr being the transpose form of vector r and r tr the tensorial product
of the two. The same procedure yields now a scaling tensor

µ = 1− βT δt

3τP
(P0 −P) (1.46)

which is used to change the particles coordinates via

ri 7→ r′i = µri , (1.47)

as well as the volume:

V 7→ V ′ = (det µ)V . (1.48)

A procedure similar to what led to the Nosé-Hoover implementation
of the thermostat can be used to prescribe the pressure, by adding an-
other degree of freedom to the system, and have its evolution governed
by a specific equation of motion. Configurations generated this way are
known to sample the isothermal-isobaric ensemble satisfactorily, even
though in some cases unphysical results have been found [128].
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In the simulations we have been using to probe semi-crystalline poly-
mers at different temperatures, either the Berendsen (All-Atom simu-
lations, see sec. 2) or the Langevin thermostat (coarse-grained models,
sec. 3) were utilized to control T or impose a steady variation of tem-
perature. In all cases, P was set to the atmospheric pressure and kept
constant by means of the Berendsen barostat.

1.1.2 Interaction potentials

The fundamental techniques described above are common to any MD
simulation that probes the characteristics of matter at time and length
scales comparable to those we address with our polymer melts stud-
ies. Perhaps the most important part of the job resides in the way
the objects we simulate are actually modeled, i.e. how we define the
interactions between the different particles. We will now review the
relevant interactions in the case of polymers, and describe how one can
translate them into an analytical form.

1.1.2.1 Non-bonded potentials
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Figure 1.1: Lennard-Jones potential.

Intermolecular interaction. An important component of any molec-
ular simulation, this interaction originally describes the interaction be-
tween two atoms (Argon for instance, which has been the system of
choice to study the behavior of liquids in the early days of numeri-
cal simulations): Two such particles are impenetrable, which implies
a strong repulsive force between them (as a result of quantum state
superposition for electrons), and they also attract each other while at
larger distances (van der Waals interaction). This results in an overall
interaction potential often described in the Lennard-Jones form

Umol(r) = 4εlj
((

σlj

r

)12

−
(
σlj

r

)6
)

(1.49)

where the r−6 is characteristic of the van der Waals attraction, and the
r−12 part corresponds to a strong repulsion, but has no solid theoreti-
cal justification. The parameter σlj (van der Waals diameter) and εlj

(attraction energy) are to be adjusted either from experimental data
or quantum chemistry calculations, and allows a phenomenological de-
scription of the properties of a particular atomic species. Although
initially designed to account for interactions between two atoms, such
a potential can also be used to model the interaction between groups of
atoms, as we shall see later in chapter 3. In this case, softer interaction
can be modeled by a lower exponent power law,

(
σlj

r

)n
with n < 12.

Another form of the repulsive part of the intermolecular potential is
also used (Buckingham potential):

Umol(r) = εb

(
e−αr/σb −

(
σb

r

)6
)
. (1.50)
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For polymers, it becomes possible that two distinct parts of the same
molecules interact as if they actually belonged to different chains. In
this case we will describe the interaction as an intermolecular one. The
only particularity one has to bear in mind is that one has to define
where to suppress the effects of these interactions, since for neighboring
particles it does not make sense to consider the attractive and repulsive
contributions mentioned above anymore.

The specific interactions (bonds, bond angles, torsions; see below)
between particles sitting close to each other inside a molecule are de-
scribed below. It is thus customary to suppress the intermolecular
interactions between particles whose interactions are already explicitly
modeled so as to prevent interference.

Electrostatic interaction. For charged or partially charged species
in the system, an additional term has to be added to non-bonded in-
teractions; a long-range coulombic potential that is expressed as

Uel(r) =
qiqj

4πεrij
. (1.51)

This potential is apparently of the same kind as the previous one, but
its long-range character makes it more difficult to implement in a sim-
ulation, and requires a specific method (interpolated cutoff, continuum
approximation, Ewald summation. . . ). Remark: In dense systems, the
electrostatic interaction is effectively screened, which justifies the use
of a cutoff distance when calculating the forces in the YASP simulation
code.

1.1.2.2 Bonded interactions

When dealing with molecules, one needs an appropriate description of
the relevant potentials that are keeping the constituent atoms together,
and constraining the conformations.
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Figure 1.2: Binding potential.

Binding interaction. The covalent bonds in molecules can be mod-
eled by a simple harmonic potential of the form

Ubond(b) =
1
2
kbond(b− b0)2 (1.52)

constraining the distance b between two bonded particles to fluctuate
around the average value b0. This potential is rather stiff, so as to
prevent the two neighboring particles to drift apart from each other,
and for this reason is associated with the smallest relaxation time in
the system (corresponding to a high vibration frequency). This relax-
ation time, together with the type of algorithm chosen to integrate the
equations of motion condition the choice for the time-step in the simu-
lation main loop (the choice of the integrator is less important though).
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Moreover, this vibrational degree of freedom associated with bonds is
mostly irrelevant when attempting to describe the overall chain behav-
ior: The binding potential is so stiff that the bond length distribution is
only influenced by this potential (and the temperature), and does not
provide any interesting information on the system. That is the reason
why several schemes allow to treat the bond vibrations in a different
fashion, so as not to spend too much computer time on the evalua-
tion of all the other interactions that do not significantly change on
such small time scales. Among these, a constraint algorithm permits
to adjust constrained bond lengths at each time-step, thus avoiding
the explicit treatment of the bonds with the other interactions. The
SHAKE algorithm achieves to constrain bond lengths3 with the fol-
lowing scheme: After each time-step without any binding interaction
taken into account, an iterative method allows to progressively satisfy
the different constraints in the molecules. The two particles involved
in a constrained bond are moved by a certain amount (proportional to
their respective masses) in a direction (given by the vector that links
the two particles after the last completed time-step) in order to have
them separated by the adequate distance. As one atom might be in-
volved in two or more constraints, one needs to apply the procedure
iteratively until all the constraints are satisfied within a given toler-
ance [82, 83, 102].
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Figure 1.3: Angular potential.

Bond angle interaction. The angle formed by two consecutive bonds
along the backbone of a chain molecule have to be restricted to fluc-
tuate around an average value (given by the arrangement in space of
covalent bonds as predicted by quantum chemistry); this can again be
modeled by a harmonic potential as in the case of bonds or by a more
sophisticated form if the bond angle considered is not a simple C-C-C
bond angle and possesses more than one stable or metastable state (see
chapter 3 treating of coarse-grained models having a specific angular
structure).

Uang(θ) =
1
2
kang(θ − θ0)2 (1.53)

Torsional interaction. The torsion angle defined between two con-
secutive dihedrals is constrained by a four-particle interaction; it is
energetically more favorable for two parts of the same molecule to stay
as far as possible from each other. The trans conformation is preferred
(φ = π) over the cis one (φ = 0) in which the two parts (part 1 and part
2 in fig. 1.4(a)) overlap. In between these two states, there is usually
(depending on the geometry/the chemical structure of the molecule) a

3It is also possible, though less justified and/or interesting, to constrain other

degrees of freedom as bond angles and torsion angles.



1.2 – Simulation methodology 21

metastable state named the gauche state (φ ' ±π
3 ). This particular

degree of freedom is particularly important to describe the behavior
of polymers since, for instance, the torsional potential is responsible
for the flexibility of the chains (which strongly affects their propensity
to crystallize). In order to reproduce the three-state structure of the
torsional potential described above, one can use the following form:

Utors(φ) =
3∑

n=1

(
1
2
ktors

n

(
1− cos(nφ− φ0

n)
))

. (1.54)

The parameters ktors
n and φ0

n prescribe the heights and positions of
the barriers between the favorable states; n = 1, 2, 3 allows to repro-
duce the symmetry of the potential described above (i.e. with three
stable/metastable states).
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Figure 1.4: Torsional potential.

It should be mentioned that even in the case of many-body interac-
tions such as bond angle (involving three particles) and torsional angle
(four particles), it is possible to decompose the effects of an interac-
tion so that forces between pairs of particles only are considered, which
allows to describe the system as presented in eq. (1.3).

1.2 Simulation methodology

We described so far the core of MD simulations; we shall now describe
some more technical aspects of running simulations.

1.2.1 Setup of initial configurations

The MD scheme takes care of the time evolution of the model used
to study a particular system. Still, the first configuration (meaning
positions and velocities for all particles) has to be defined.

If one is interested in the crystal structure of a system, the construc-
tion of the initial configuration has to take into account the specificity
of the experimentally observed crystal parameters, or to be inspired by
features determined via a theoretical approach. This has been done for
crystals of n-alkanes, starting from crystallographic data (sec. 2.3).

If one is interested in the high-temperature liquid state, there are
mainly two possibilities to create start configurations. Either the start-
ing point is a regular crystal-like arrangement of the molecules, simply
generated by hand, or it already mimics an equilibrium configuration
as one expects to observe it later in the course of the simulation. The
ordered starting configuration does not have to reproduce accurately
any existing crystalline structure, and one only has to prepare an artifi-
cial configuration with particles sitting on the knots of a perfect lattice,
and to let the MD algorithm “melt” the system till it actually is in a
realistic liquid state at high temperature. This procedure is the easi-
est way to start a simulation involving small molecules, as they would
rapidly relax to an equilibrium state. This is not true for long poly-
mer chains; in this case, it is much more appropriate to try to provide a
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starting configuration that closely resembles an equilibrated, disordered
system. This can be achieved using a Monte-Carlo algorithm that will
efficiently decorrelate an artificial configuration so as to let it acquire
equilibrium properties. For instance in our coarse-grained simulation
program, an algorithm prepares a random-walk-like configuration for
each chain, with bond lengths and bond angles distributed according
to distributions determined by the potentials constraining them. Then
the chains’ centers of mass are moved using a Monte-Carlo method to
optimize the monomer density [7]. Up to this point, the chains are
treated as perfect, meaning that no excluded volume is taken into ac-
count. The simulation is then started with an intermolecular potential
that is multiplied by a factor increasing steadily in time, from 0 to
1, in order to allow the overlaps of different particles to relax. The
initial velocities are picked up at random from a Maxwell-Boltzmann
distribution, in order to reproduce the temperature average value and
fluctuations as expected in the NV T ensemble.

1.2.2 Equilibration run

Once the initial configuration is created, the system has to relax so that
it really is in equilibrium. Our simulations were started under constant
temperature and constant volume conditions, and then equilibrated un-
der constant pressure at the same high temperature. When the system
has reached equilibrium, the static quantities that one can measure
(such as the overall energy, the volume. . . ) fluctuate around their av-
erage values. For short chains, this equilibrium situation is obtained
after few simulated time-steps. For long polymer chains however, the
energy being constant does not necessarily mean that the system is at
equilibrium: In this case, one also has to check that the chain’s con-
formation is equilibrated. This is achieved when the end-to-end vector
(the vector joining the two ends of a chain, see sec. 1.3) orientation
is decorrelated. This can take a very long time when the molar mass
increases, and therefore makes it important to use a specific method to
generate already-equilibrated configurations.

1.2.3 Production run

The equilibrated polymer melt can be simulated over a longer time at
constant temperature and pressure in order to determine its properties
with appropriate statistics. This allows to characterize a particular
model, and to compare different models. In chap. 2 we compare an
all-atom model for n-alkanes to results obtained experimentally, and
chap. 3 a study of different coarse-grained models is presented.

The simulation reproduces the time evolution of a system, meaning
that the actual positions and velocities of all particles are computed
and therefore known at each time-step. However, it is neither conve-
nient nor necessary to store all these data: In practice configurations
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are stored in a file at regular time intervals, corresponding to 50 τ

for coarse-grained simulations, and 2 ps for atomistic simulations. For
both kinds of simulation the same file structure was used: a “trajec-
tory” file contains for each saved time-step the list of coordinates and
velocity components for all particles. In order to save disk space, these
quantities are stored as single-precision real numbers (since a greater
accuracy is not needed) and in an unformatted manner, i.e. as a se-
quence of numbers in their binary representation. A particular format-
ting operation has to be applied to the data in order to recover the
information contained in these files, which has to be done anytime a
physical quantity is to be computed. The procedure used to store these
trajectory files was defined in the YASP package [82], and is also used
in the framework of the md_spherical program.
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Figure 1.5: Time–temperature protocol

for continuous cooling and heating.

1.2.4 Cooling

Using the algorithms described above to run a simulation with pre-
scribed temperature and pressure, it also becomes possible to simulate
the evolution of a system under varying conditions to reproduce the ex-
perimental conditions. In this work, we are mainly interested in crystal
formation in the melt, induced by a temperature change. This situation
is investigated by changing the temperature gradually, or by a rapid
quench.

One way of studying the growth of a crystal is to force the temper-
ature to drop continuously at a slow rate and observe the formation
of the semi-crystalline structure, using thus an out of equilibrium sim-
ulation method (a protocol is sketched in fig. 1.5). The cooling rate
used in that case can be taken very low but is still huge compared to
what could be imposed for a real experiment, due to computer time
limitation. This cooling rate might strongly affect the simulation, if
taken too large (see fig. 3.20 in section 3.3.1 for an example).

T

t

Quench

Production run

Isothermal relaxation

Figure 1.6: Time–temperature protocol

for a quench.

Another possibility to reproduce a crystalline behavior is to quench
the system to a low temperature. This can be done in a simulation
by changing discontinuously the value of the target temperature as
it is prescribed by the thermostat; the system will then relax to its
new equilibrium state at lower temperature. Still it is safer not to use
this method which could induce unexpected behavior as a result of the
abrupt change in the thermostatting algorithm; it is better to apply
a very rapid continuous cooling instead (fig. 1.6). The procedure is
followed by an isothermal relaxation simulation during which a crystal
can grow under constant NPT conditions.

1.2.5 Melting

A melting run is nothing but the inverse process of a cooling simulation.
However, melting is often not simply the reverse of the crystallization
phenomenon, as pointed out by the existence of a hysteresis of the
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transition between the crystallization and the fusion phenomena that
does not vanish when decreasing the cooling/heating rates (fig. 3.20).
Nevertheless, the melting temperature Tmelt depends on the heating
rate and one wishes to know the limit of slow heating. Once a crystal
is formed in the melt, it is also an interesting experiment to reverse
the process and increase the temperature again. One can then observe
the melting of the low-temperature phase, leading in some cases to the
occurrence of transitory phases, as in the case of alkane chains (sec. 2.3).

The procedure used for cooling and heating simulations mimics DSC
(Differential Scanning Calorimetry) experiments in which a sample’s
thermal properties are compared to a reference. This provides a mea-
surement of the specific heat of a particular system, which when plotted
against temperature exhibits peaks corresponding to phase transitions.
We used a definition for crystallization and melting temperatures a def-
inition in analogy with the experimental data (see fig. 1.7 in sec. 1.3).

1.3 Definition of observables

In order to study polymer melts quantitatively, we have to define the
relevant quantities we need to monitor the simulations and to extract
the information we are interested in. Some of those quantities are
generic thermodynamic variables, and others are polymer-specific. In
order to account for these specificities, it is necessary to make a distinc-
tion between the different chains and the position of a given particle
on one of these chains. We therefore introduce the following notations
at this point, that apply directly to the coarse-grained simulations dis-
cussed in chapters 3 and 4, where chains consist of identical particles
or monomers; they can be generalized to the analysis of the more de-
tailed simulations of alkanes presented in chapter 2, in the case of which
the carbon atoms of the backbone are taken as the centers of effective
monomers whose conformations are analyzed accordingly. We thus con-
sider a set of n chains of N particles each, whose positions are denoted
by

ra
i , (a = 1, . . . , N ; i = 1, . . . , n) (1.55)

meaning that the different chains are indexed by i, j, . . . and the
particles by a, b, . . . The velocity of particle a of chain i is then

va
i = ṙa

i , (1.56)

and its mass is ma
i . The total number of particles in the system is

Ntot = n×N . (1.57)

It is also useful to define the bond vector that connect two consecutive
particles along the chain (or along the backbone of the chain in case
we are dealing with detailed models):

ba
i = ra+1

i − ra
i . (1.58)
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The definitions of general quantities given here will be completed
later by more specialized order parameters that are introduced where
they are discussed.

Energy. Among the first things one has to measure in a simulation,
the energy has to be defined. The total energy E, as any other property,
is computed from the positions and velocities of the particles at a given
time. This global energy can be split up into several parts: The kinetic
energy is given by

Ek =
1
2

n∑
i=1

N∑
a=1

ma
i (v

a
i )

2 . (1.59)

As already mentioned, T = 2Ek/(3NtotkB). The potential energy is
calculated from the coordinates of the particles in the current configu-
ration, using the expressions given for the different interaction poten-
tials of the model. This energy is usually divided into an intra and
an inter-chain contribution. Einter only consists in the intermolecular
energy depending on the potential Umol(r),

Einter =
1
2

n∑
i,j=1
i6=j

N∑
a,b=1

Umol(|ra
i − rb

j |) (1.60)

where i and j can be any two different of the n chains, all of them
containing N particles. A molecular contribution also exists in Eintra,
taking into account the occasional overlap between particles of the same
chain. The other contributions result from the other potentials that are
applied, i.e. Ebond

intra , Eang
intra and Etors

intra. For example, Ebond
intra is computed

as

Ebond
intra =

n∑
i=1

∑
〈a,b〉

Ubond(|ra
i − rb

i |) (1.61)

where 〈a, b〉means all pairs of nearest neighbor particles in one molecule.

Temperature of transition. Crystallization is a first-order phase
transition, which gives rise to discontinuities in first order derivatives
of the relevant thermodynamic potentials, such as the volume in this
case. This allows to measure a crystallization temperature that will be
used to compare several models simulated under the exact same condi-
tions. Still, this temperature is strongly rate-dependent, and does not
correspond to the thermodynamic equilibrium Tcryst. From a phase
diagram as shown on fig. 1.7 there are several ways of defining a crys-
tallization temperature: One could, for instance, use the abrupt slope
change that occurs when the volume starts to drop. We found it more
accurate to define the crystallization temperature as the point at which
the derivative of the volume ∂V

∂T is maximum. This definition yields an
easily reproducible means of computing Tcryst as well as the melting
temperature Tmelt.
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Figure 1.7: Determination of the crystallization temperature (CG-PVA model, chain length N = 10).

This definition is convenient in the case of our simulations and cor-
responds to the determination of transition temperatures as measured
by DSC experiments. However, this might not be the most appropri-
ate method the characterize a crystallization/fusion process; in sec. 2.3
for instance, as the melting of n-alkanes was found to be a more com-
plicated process than the “simple” fusion observed with coarse-grained
models (sec. 3.3.6), other definitions will be introduced.

Latent heat. At some places we are interested in the jump in vol-
ume or any other discontinuous quantity during the transition. We
adopted a method which relies on linear fits for the two branches that
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Figure 1.8: Enthalpy variation during

melting (x4 model, chain length N =

100).
precede and follow the phase transition, and computed the difference
between these linearly extrapolated behaviors at the transition, as de-
fined above. Figure 1.8 shows an example of determination of the
variation of the total enthalpy per monomer hinter + hintra during the
melting transition, for a model of polymers with chain length N = 100.

Persistence length. Some other quantities we often need to refer to
are more polymer-specific: The persistence length lp is defined by

lp =
1
b0

∞∑
k=0

〈
ba · ba+k

〉
a

(1.62)

for an infinite chain [100]; b0 is the average length of one bond, and
this quantity is averaged over all sites a on the chain. The persistence
length contains information about the “memory” of orientation along
the chain. In the simulations, the persistence length is usually measured
by using an exponential fit of the bond orientation correlation function
(note that this analysis is only justified in the melt for not too large
k [133]):

P1(k) =
1
b20

〈
ba · ba+k

〉
a
' e−kb0/lp . (1.63)
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Note that this exponential approximation is only valid at high T . In
the crystal, P1(k) may develop oscillations which can be used to deter-
mine the stem length: Once the chains fold, anticorrelations occur that
correspond to two bonds lying antiparallel to each other in hairpins.
The measurement of the first minimum of P1(k) gives an average value
for the distance between such hairpins, hence yielding an estimate of
the length of the lamellar stems (see secs. 3.3.4 and 3.3.1).

End-to-end distance. In order to characterize the size of one chain,
one can use the end-to-end vector Re that is defined by

R2
e = 〈R2

e〉 =

〈(
N−1∑
a=1

ba
i

)2〉
i

=
N−1∑
a,b=1

〈
ba

i · bb
i

〉
i
, (1.64)

where 〈. . .〉i denotes an average over all chains i (= 1, . . . , n) [22, 100].

Radius of gyration. The radius of gyration Rg is also frequently
used:

R2
g =

1
N

N∑
a=1

〈
(ra

i −Ri)
2
〉

i
=

1
2N2

N∑
a,b=1

〈(
ra
i − rb

i

)2
〉

i

. (1.65)

Ri = 1
N

∑N
a=1 ra

i refers to the position of the center of mass of chain i.
For an ideal chain, one expects the following property:

R2
g =

1
6
R2

e =
1
6
N`2 (1.66)

which defines the statistical segment `.

Orientational order parameter. The crystalline system can be
characterized by using the P2 order parameter for bond vectors. This
quantity corresponds to the second Legendre polynomial of a variable,
here the scalar product of two vectors.4 Taking the sum over all pairs of
bond vectors, we get a measure of the degree of orientation correlation
in the system:

P2 =
1
2

n∑
i,j=1

N∑
a,b=1

(
3
2
〈ba

i · bb
j〉 −

1
2

)
, (1.67)

where ba
i corresponds to the ath bond of chain i. This quantity can

also be divided into intra- and inter-chain contributions.

Relaxation time. The time correlation of the end-to-end vector in-
dicates how long it takes to decorrelate the conformation of one chain.

4Note that this order parameter is not equivalent to the one defined for liquid

crystalline materials which involves a director.
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This is measured practically as the time tocfee needed for the correlation
function

OCFee(t) =
〈

Re(t) ·Re(0)
Re(t)Re(0)

〉
(1.68)

to reach a given value, for instance 1/e:

OCFee(tocfee) =
1
e
. (1.69)

Mean-square displacements. The dynamics of particles in a con-
densed system can be characterized by the square distance over which
one of these particles has traveled after time t. This quantity aver-
aged over all monomers of a polymer melt shows several characteristic
regimes and allows, at large times, to measure the diffusion coefficient
D. g0 corresponds to the mean-square displacement of one monomer
a:

g0(t) =
1
N

N∑
a=1

〈
(ra

i (t)− ra
i (0))2

〉
i
, (1.70)

and g3 refers to the center of mass of the chains:

g3(t) =
〈
(Ri(t)−Ri(0))2

〉
i

; (1.71)

Ri(t) is the position of the center of mass of chain i at time t.

Structural characteristics. The structure of a liquid or crystal
is usually characterized by means of radial distribution functions or
structure factors. The radial distribution (or pair distribution) func-
tion measures the probability to find a particle at a distance r of an-
other [40]:

g(r) =
V

Ntot(Ntot − 1)

〈
Ntot∑
a=1

Ntot∑
b6=a

δ(r− rab
ij )

〉
i,j

(1.72)

Ntot�1=
1

ρNtot

〈
Ntot∑
a=1

Ntot∑
b6=a

δ(r− rab
ij )

〉
i,j

, (1.73)

with rab
ij = rb

j − ra
i , ρ = Ntot/V , and Ntot = nN .

The structure factor S is defined by the following density-fluctuation
correlation:

S(q) =
1

Ntot
〈ρtot(q)∗ρtot(q)〉 , (1.74)

where the density fluctuations are expressed as

ρtot(q) =
∑

i = 1n
Ntot∑
a=1

exp(iq · ra
i ) . (1.75)

For an isotropic and spatially homogeneous system, S(q) reduces to
S(q) [40]. There is a relation between the structure factor S(q) and the
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radial distribution function g(r) defined above:

S(q) =
1

Ntot

〈
Ntot∑
a=1

Ntot∑
b=1

exp
[
−iq · (ra

i − rb
j)
]〉

i,j

(1.76)

= 1 +
1

Ntot

〈
Ntot∑
a=1

Ntot∑
b6=a

exp
[
−iq · rab

ij

]〉
i,j

(1.77)

= 1 + ρ

∫
dr exp [−iq · r] 1

ρNtot

〈
Ntot∑
a=1

Ntot∑
b6=a

δ(r− rab
ij )

〉
i,j

(1.78)

= 1 + ρ

∫
dr exp [−iq · r] g(r) , (1.79)

where the last expression includes the Fourier transform of g(r) (def-
inition from eq. (1.73) has been used). It is also possible, and more
common, to relate S(q) to h(r) instead of g(r); h(r) is defined by

h(r) = g(r)− 1 , (1.80)

and introducing its Fourier transform h(q) into eq. (1.79), one obtains

S(q) = 1 + ρh(q) + (2π)3ρδ(q) . (1.81)

The last term is usually dropped as it corresponds to the peak cor-
responding to forward scattering in experiments, and therefore is not
relevant.

Chapter 4 deals with the structure of polymer melts at high temper-
ature, and more detailed quantities are defined and discussed then.
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2.1 Introduction

Polyethylene is the polymer with the simplest structure, and it exists in
a crystalline state at low temperature. This makes it a system of choice
to investigate crystallization phenomena experimentally as well as nu-
merically (but not a model for any polymer. . . ). Numerous models
have been developed to reproduce the behavior of polyethylene in the
bulk at high temperature by computer simulations [94, 140]; therefore
it is tempting to use these models to address the question of polymer
crystallization from the melt, and of whether they yield the charac-
teristic orthorhombic structure experimentally observed. Nevertheless,
the study of low-temperature phases of polymers requires huge amount
of computer time, and is not tractable for realistic chain lengths with
realistic models. To overcome this limitation of detailed numerical
simulations, it is possible to consider n-alkanes instead of polyethylene
chains: shorter chains can be expected to behave in the same way as
high molecular weight polyethylene, insofar as their packing in a crystal
structure must also be determined to a large extent by an optimization
of the interactions between the different atomic species, which are of
the same kind in both cases.

2.1.1 Experimental facts about n-alkanes

n-alkanes are also called “paraffins”; n stands for normal, meaning fully
linear chains without branches, and the associated chemical formula is
CnH2n+2. As short n-alkane chains (with n . 40) are still accessible
to detailed simulations, it is possible to get insight into the properties
of polyethylene crystals through their study; moreover they constitute
a very interesting system per se, since experiments have shown a great
wealth of behaviors for the different n-alkanes. Several crystal mor-
phologies exist, depending on the value of n:

• For n odd, the crystals are found to be orthorhombic [81] and in
this respect n-alkanes admit polyethylene as a limit for n→∞.

• For n even, the situation is slightly more complicated as the pri-
mary crystalline structure is not orthorhombic for short chains,
and depends on n. For n ≤ 26, even-n alkanes crystallize in the

31
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triclinic form [41, 91]; for 28 ≤ n . 40 they form monoclinic
phases, and for larger n an orthorhombic crystal is observed. It
should also be noted that several variants of the crystalline forms
have been characterized, according to n and/or the experimental
conditions [24].

This odd-even effect comes from the symmetry of the chains that differ
in the case of even- or odd-n; there is an influence of this symmetry at
the interlayer region and this is reflected in the overall crystal structure.
The orthorhombic phase was discovered in 1925 by Müller [81], and
well characterized later [78–80, 114]. The change in structure for even-
n alkanes at n = 26 has been explained by the competition between
intra- and interlayer energy minimization: At large n the intra-layer
energy is dominant, which favors the monoclinic phase [76]. At n =
26, the two energies are comparable, and both the triclinic and the
monoclinic crystals are found, while for shorter chains the triclinic form
prevails. A transient phase between the crystal and the liquid was
also discovered by Müller, and observed for all the different crystalline
structures; this phase is characterized by hexagonal symmetry, and
has been called “rotator” because of the rotational degree of freedom
recovered by the chains over the lower temperature phases (chains are
free to rotate around their main axis). This description of the different
phases accessible to n-alkanes could be greatly extended by considering
all the possible sub-phases that have also been discovered [20, 25, 26,
56, 67, 115, 116, 127]. The importance of the rotator phase on the
formation of the crystal has been investigated by Sirota et al. [43, 112,
113]. For reviews, see refs. 89 and 24.

2.1.2 Review of simulation studies for n-alkanes

Many numerical studies have been focusing on n-alkanes either to inves-
tigate the properties of the liquid [77] or of the crystalline solid: Several
groups have studied nucleation in the melt, always with united-atom
models and very short chains (n ≤ 20). Esselink et al. [31] simulated
the crystallization process of short chains (5 ≤ n ≤ 12) by continuous
(rapid) cooling and found crystalline structures with hexagonal symme-
try. They calculated growth rates, which is questionable for such small
systems; moreover the conditions under which the crystals are formed
are not completely clear because of the very weak coupling to the heat
bath that was used. Rigby and Roe [98, 99] observed a glass-transition-
like behavior of n-alkanes with n ≤ 50; then they measured orienta-
tional correlations and radial distribution functions in their C10H22 and
C20H42 systems to predict a crystallization temperature by extrapola-
tion, and subsequently found an ordered phase after quenching to this
temperature. Fujiwara and Sato also simulated C20H42 which crystal-
lizes after a quench to T = 400 K (which is rather high, probably due
to an exaggerated stiffness of the torsional potential); they monitored
the size of the forming cluster and show evidence for a step-by-step
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growth of the crystal [35]. Crystallization of C16H34 induced by walls
has been investigated by Rutledge et al.; they measured the growth
rate and interpreted the results by comparing to an empirical equation
derived from Avrami’s analysis [131]. All these simulations only can
reproduce hexagonally symmetric structures, which is not experimen-
tally relevant for n-alkanes with such a small chain length; however,
the united-atom models cannot give rise to other kinds of structures,
since they lack the appropriate symmetry-breaking elements.

The crystalline phases of n-alkanes have also been studied by different
groups using all-atom models. A pioneering work by Ryckaert et al.
addresses the comparison of the orthorhombic and rotator phases of
C23H48 [104]. The solid was simulated at constant volume, below and
above the transition temperature which separates the two solid phases.
The transition itself is not investigated; the conclusion points out the
importance of the interactions between hydrogen atoms and thus on
the choice of an all-atom model so that the interfaces between the
layers remain stable [104]. The same group had previously focused
on the dynamics of the chains when leaving the orthorhombic phase;
simulating infinite chains at constant pressure, they could study the
diffusion of the chains along the c-axis (the direction of elongation of
the chains) and the rotational behavior in the a–b plane (perpendicular
to the c-direction). However, a clear transition to the hexagonal rotator
phase could not be reported [103]. Mavrantza et al. studied C23H48

and infinite polyethylene chains in the orthorhombic phase below the
transition temperature, and described the appearance of gauche defects
in the crystal [71]. The infrared vibrational spectrum of PE is compared
with exs. Frenkel and coworkers have studied the melting transition of
n-octane [96] and PE [18]. Complete phase diagrams are calculated
via thermodynamic integration for C8H18 and C198H398: Free energies
are computed for both the liquid and solid systems, and extrapolated
to deduce the melting points; but this method does not provide any
information on the kinetics of the transition which we are interested in.

The properties of crystalline polyethylene have been extensively stud-
ied by Martoňák et al., either by Monte-Carlo and Path Integral Monte-
Carlo simulations. Using detailed interactions to precisely account for
the crystalline arrangement of the chains, properties like the lattice pa-
rameters, thermal expansion and elastic coefficients were determined
[68, 69]. The different simulation techniques are compared in [101].

Differences in mechanical properties between even-n and odd-n alkane
crystals are discussed in [72, 90], where the effect of external stress on
perfect crystalline structures (infinite PE and n-alkanes) is investigated.
These works are based on a more complex force field which takes into
account cross-terms (bond-angle and angle-angle terms), developed for
the computation of the properties of polyethylene crystals [52].

We were interested in using a detailed MD simulation technique to
investigate the transition between the liquid and crystalline state of



34 2 – Atomistic simulations

n-alkanes, inasmuch as these systems correspond to an approximation
of polyethylene chains and therefore are easier to simulate. The objec-
tive was not to develop the most accurate force field for this kind of
molecules, as this deserves an entire study—and has already been ad-
dressed often—but rather to check whether a reasonable model could
account for at least part of the experimentally determined (and very
rich) behavior of such systems.

2.2 All-atom simulation model

2.2.1 Force field

2.2.1.1 OPLS-AA

We used the OPLS-AA force field [51] as a starting point for our atom-
istic simulations. This force field was developed on the basis of preex-
isting force fields in order to simulate organic compounds accurately.
The set of parameters for OPLS (Optimized Potentials for Liquid Sim-
ulations) was obtained partly from AMBER (Assisted Model Building
with Energy Refinement [95]) and CHARMM/22 (Chemistry at Har-
vard Macromolecular Mechanics [12]) parameters for bond stretching
and angle bending interactions, and developed using ab initio molecu-
lar orbital calculations for torsions and Monte Carlo simulations giving
thermodynamic and structural properties for non-bonded interactions.

We give now a summary of the parameters of OPLS-AA for carbon
and hydrogen atoms only as we are interested in alkyl chains. The
model used for each interaction is recalled, and the corresponding pa-
rameters are tabulated.

a− b bab
0 kab

bond

C− C 0.109 22404.8

C−H 0.153 28424

Binding interaction (bab
0 in nm, kbond in kJ/nm2):

Ubond(bab) =
1
2
kab

bond(bab − bab
0 )2 . (2.1)

Bond angle interaction (θabc
0 in deg, kabc

ang in kJ/deg2):a− b− c θabc
0 kabc

ang

C− C− C 112 334.4

H− C− C 109.5 292.6

H− C−H 107 292.6

Uang(θabc) =
1
2
kabc

ang(θabc − θabc
0 )2 . (2.2)

Torsional angle interaction (abcdφ0
n in deg, abcdk

tors
n in kJ; in our con-

vention, φ = 180o corresponds to the trans state):

Utors(φabcd) =
3∑

n=1

(
1
2

abcdk
tors
n

(
1− cos(nφabcd − abcdφ0

n)
))

. (2.3)

a− b− c− d abcdφ0
1

abcdφ0
2

abcdφ0
3

abcdk
tors
1

abcdk
tors
2

abcdk
tors
3

C− C− C− C 180 0 180 7.273 6.617 1.166

H− C− C− C 180 0 180 0 0 1.530

H− C− C−H 180 0 180 0 0 1.329
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Molecular interaction (σab in nm and εab in kJ):

Umol(rab) = 4εab

((
σab

rab

)12

−
(
σab

rab

)6
)
. (2.4)

a− a σaa εaa

C− C (CH3−) 0.35 0.276

C− C (−CH2−) 0.35 0.276

C− C (−CH−) 0.35 0.276

H−H 0.25 0.125

The Lennard-Jones parameters σlj = σab and εlj = εab are the same
for all carbon atoms, whether they belong to a CH3, CH2 or CH group.
For an interaction between particles a and b of different kinds, the
arithmetic average is used to find the appropriate value of σlj, whereas
a geometric average is used for εlj, according to the Lorentz-Berthelot
rules

σab =
σaa + σbb

2
; εab =

√
εaaεbb . (2.5)

Electrostatic interaction (qa indicates the partial charge carried by
particle a, as a fraction of the fundamental charge of an electron, |e|):1 a− a qa

C (CH3−) −0.18

C (−CH2−) −0.12

C (−CH−) −0.06

H 0.06

Uel(rab) =
qaqb

4πεrab
. (2.6)

2.2.1.2 YASP simulation package

This model for n-alkanes has been simulated using the YASP simu-
lation package [82], that allows to take all the previously presented
interactions into account. This simulation program uses a Berendsen
thermostat and barostat (see sec. 1.1.1.2), which permits to run simu-
lations at constant NPT . This program also allows to use the SHAKE
algorithm to impose constraints (sec. 1.1.2.2): We have used such con-
straints to prescribe the distances bab

0 between any two particles a and
b linked by a covalent bond instead of a harmonic interaction potential.
This makes it possible to enlarge the time-step used in the integration
of the equations of motion (here with a Leap-Frog algorithm). The
time-step used here was 2 fs.

The YASP simulation program uses “topology” files to describe the
geometrical properties of the considered molecules, and to set up the
different interactions between all particles in the system. The interac-
tions presented above are summarized in such a file, with the values
corresponding to the material that is actually simulated. Moreover,
one supplementary part in this file allows us to modify some of the in-
teractions already defined by the preceding general rules. This is par-
ticularly important as it enables us to specify which interactions have
to be excluded. The non-bonded interactions have to be suppressed for
nearest neighbors, as it would not make sense to superimpose the har-
monic spring describing a C−C covalent bond with the Lennard-Jones

1ε is the permittivity of the medium.
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potential that is only relevant for two particles separated along the
chain. Thus, one has to list explicitly all the interactions that should
not be taken into account. The OPLS-AA force field definitions pre-
scribe to switch off the non-bonded interactions for couples of particles
that are separated by less than three bonds, and to apply half of the
forces when exactly three bonds are involved. In our simulations this
procedure would not work since we are using constraints to enforce the
distance between two bonded particles. Imposing non-bonded forces
between particles that are too close to one another results in preventing
the SHAKE algorithm to converge and find a satisfactory conformation
with respect to bond lengths. For this reason we had to find the appro-
priate cutoff distances for the non-bonded interactions. The tests led
to the following set up, which correspond to the less restrictive choice:

• C−C interaction: Excluded if the two carbon atoms are separated
by less than four bonds

• H−H interaction: Excluded if the two hydrogen atoms are sepa-
rated by less than six bonds

• C−H interaction: Excluded if the two atoms are separated by
less than five bonds.

Using a detailed simulation method one has the great advantage
with respect to coarser methods that the physical input and output
quantities of the simulation code can be expressed in “real” units and
can therefore be directly compared with experimental values. The use
of phenomenological force fields allows such a correspondence between

Table 2.1: List of the relevant units for

the quantities input and output of the

simulation using the YASP package.

Quantity Unit

length nm

angle rad or degree

time ps

energy kJ/mol

force

constants

kJ/(mol nm2),

kJ/(mol rad2)

charge e

temperature K

pressure kPa

mass density kg/m3

the positions and velocities of the particles simulated using a model
and physical properties (density, radius of gyration,. . . ). It is thus
possible to use SI units for all the physical quantities manipulated by
the program, but this might not be the most sensible choice as a result
of the particular length and time scales we are to probe with molecular
dynamics. Using the YASP package, the relevant units are defined as
presented in table 2.1.

2.2.1.3 Special optimization for the torsional potential

One parameter that has paramount importance in the case of polymer
chains in general is the torsional potential. This potential determines
the conformations of the chains in an outstanding fashion since the
torsional angles inside the chains constitute the most flexible degrees
of freedom: The bond angles are constrained by a rather stiff harmonic
potential that does not allow large modifications of the conformations.
On the other hand, a change in the torsional angles relaxes the struc-
ture of the chain. This particular degree of freedom has an influence on
both the static and the dynamic properties of the chains in the melt:
The statistical mixture of trans and gauche states (see fig. 2.1) deter-
mines quantities such as the radius of gyration of the chains, while the
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rate of change between these states has an impact on the mobility of
one molecule. In order to study the crystallization of polymers, the tor-
sional degrees of freedom are also very important parameters, since the
flexibility of the chains is mostly determined by the torsional potential,
and the flexibility is the quantity which has the greatest influence on
crystallization. Therefore, special attention has to be paid to torsional
angles for our simulations.

The first test for our simulations was a variation of the torsional
potential in order to investigate which influence it really has on the
probability distribution of the torsional angles.

This distribution is more relevant than the torsional potential itself,
since the latter might not be the only parameter acting on the angular
states. The behavior of the chains in the melt is strongly influenced by
the population of these states, and therefore the probability distribution
is the quantity of interest to characterize the conformations. In case
the other degrees of freedom do not act significantly upon the torsion
angles, the distribution is completely determined by the potential and
both of them provide the same information. However, the chains’ pack-
ing as well as the (intra-chain) non-bonded interactions may contribute
to distort the probability distribution prescribed by Utors. To check this
out, one has to compare the probability distribution measured in the
simulations to the“theoretical”distribution that is expected in case the
torsional degree of freedom is independent of any other parameter in
the system, which is given by the Boltzmann relation:

P (φ) =
1
Z

exp
(
−Utors(φ)

kBT

)
, (2.7)

where the partition function

Z =
∫ 2π

0
dφ exp

(
−Utors(φ)

kBT

)
(2.8)

has to be inserted to ensure that the probability is normalized.
Figure 2.1(a) presents the OPLS-AA torsional angle potential, while

fig. 2.1(b) compares the corresponding probability distribution to what
is actually measured in the simulations. The probability distributions
measured in the simulations show a significant mismatch with the ex-
pected form obtained by Boltzmann inversion [eq. (2.7)]. This can be
quantified by looking at the probability to find a trans state, Ptrans:

Ptrans = P (120o < φ < 240o) =
∫ 240o

120o

dφP (φ) . (2.9)

For a system of one hundred chains of C44H100 simulated at T = 500 K
at atmospheric pressure, this value has been found to be 0.65,2 whereas
the Boltzmann inversion predicts 0.60. This is a strong evidence that

2This probability of a trans state does not depend on the chain length in our

simulations of n-alkanes.
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Figure 2.1: Comparison of the measured torsional angular distributions with the prediction from eqs. (2.7) and (2.8) for the

OPLS-AA potential. Measurements are taken from a simulation of 100 chains of C44H100 at 500 K.

the other degrees of freedom do influence the torsional angles in an ap-
preciable manner. In particular, the role of the non-bonded or molec-
ular interactions is not clear, and it is reasonable to assume that inter-
molecular interactions could influence the torsional angle distribution,
as well as the intra-chain non-bonded interactions which probably have
the most significant direct impact on the conformations that the chains
can actually take in the melt.

Having noticed this effect of the other interactions on the torsional
states, it is interesting to study the effects of a variation of the form of
the potential on the probability distribution for torsional angles. First,
one should notice that in the case of linear alkyl chains, simplifica-
tions are possible for the expression of the torsional potential given
in sec. 2.2.1.1. The general expression used by the OPLS-AA descrip-
tion represents the energy associated to torsional states by three terms,

φCCCC

C

H
Hφ

φHCCH

φCCCH

Figure 2.2: Illustration of the three dif-

ferent contributions to the torsional en-

ergy.

corresponding to C−C−C−C, C−C−C−H and H−C−C−H couples of
dihedrals (cf. fig. 2.2). As the angles φCCCC(= φ), φCCCH and φHCCH

are linearly dependent (there is no influence of the bond angle fluctua-
tion), the three distinct parts of the torsional potential can be merged
into one single expression that reads:

U tot
tors(φ) =

1
2

CCCCk
tors
1

(
1 + cos(φ)

)
+

1
2

CCCCk
tors
2

(
1− cos(2φ)

)
+

1
2

(
CCCCk

tors
3 + 4CCCHk

tors
3 + 4HCCHk

tors
3

) (
1 + cos(3φ)

)
, (2.10)

as there are four C−C−C−H and four H−C−C−H torsional contri-
butions associated with one C−C−C−C angle. This is equivalent to
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U tot
tors(φ) =

1
2
K1

(
1 + cos(φ)

)
+

1
2
K2

(
1− cos(2φ)

)
+

1
2
K3

(
1 + cos(3φ)

)
.

(2.11)
The three effective force constants K1, K2 and K3 take the following
values:

K1 K2 K3

7.27 −0.66 11.72

In order to study the influence of these parameters on the struc-
ture of the simulated melts, we have created several different models
with specific torsional potentials derived from the above expression for
OPLS (see tables 2.2 and 2.3). The systems created this way were
equilibrated at two temperatures (T = 300 and T = 450 K), and then
compared. The relevant parameter here is the probability Ptrans; ref-
erence values were extracted from simulation results obtained with a
different model simulated by Yoon, Smith and Matsuda that has been
shown to reproduce quantitatively many features of short polyethylene
chains [140]. This model is defined in a different manner and its param-
eters should not be directly compared to the Ki of OPLS, for instance,
as the influence of the non-bonded interaction is responsible for the
structure of the effective torsional potential. We were only interested
in the effective interaction, reflected in the probability distribution of
angle φ; this distribution was measured by Yoon et al. and one variant
of the OPLS model reproduces it closely, as indicated by the charac-
teristic integral Ptrans [eq. (2.9)]. This model is called “OPLS-mod”,
and has been used for our simulations of n-alkanes, as it is expected to
reproduce the static properties in a more accurate fashion.

K1 K2 K3 Ptrans(T = 300) Ptrans(T = 450) Model

- - - 0.649 0.599 YSM

8 -1 12 0.795 0.681

7 -1 12 0.756 0.656 OPLS

6 -1 12 0.705 0.619

5 -1 12 0.659 0.592 OPLS-mod

7 0 12 0.825 0.682

7 -1 12 0.756 0.656

7 -2 12 0.706 0.622

7 -1 13 0.745 0.655

7 -1 12 0.756 0.656

7 -1 11 0.767 0.651

Table 2.2: Variation of the parameters

Ki defining the torsional interaction,

and the resulting proportions of trans

states at T = 300 and T = 450 K

(84 chains of C16H50). The target val-

ues from Yoon, Smith and Matsuda

(YSM) are indicated and compared to

the results from the OPLS model and

its variants. The model reproducing

best the target values is named OPLS-

mod, and has been used in the subse-

quent studies. The parameters corre-

sponding to the YSM model are not in-

dicated since the form of the torsional

potential used in this case is different

and could not be compared directly to

our potentials.

Table 2.2 presents a comparison of the different models and the pro-
portion of trans states they yield. It can be observed from the results
presented in table 2.2 that the parameter K1 has a greater influence
than the other two; a decrease in K1 and K2 produces less favored
trans states, while Ptrans increases with a decrease in K3, this parame-
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Table 2.3: Other variants of the

OPLS-model torsional potential, show-

ing the chosen potential compared to

other forms. (?): The last column

presents the proportion of trans states

measured on a system of 100 chains

of C44H90 and not C16H50 as for other

data. It can be seen that a few mod-

els with parameters close to those of

OPLS-mod yield similar results, and

would probably give very similar sim-

ulation results.

K1 K2 K3 Ptrans(T = 300) Ptrans(T = 450) Ptrans(T = 500)?

3 -1 12 - - 0.536

4 -1 12 - - 0.560

5 -1 12 0.659 0.592 0.586

6 -1 12 0.705 0.619 0.610

7 -1 12 0.756 0.656 0.636

8 -1 12 0.795 0.681 -

5 -2 12 0.609 0.568 0.557

5 -1 12 0.659 0.592 0.586

5 0 12 0.705 0.621 0.613

5 -1 11 0.658 0.590 0.585

5 -1 12 0.659 0.592 0.586

5 -1 13 0.662 0.595 0.586

ter having the smallest influence on the system. Other variations of the
parameters Ki have been tested, for C16H50 at T = 300 and T = 450 K
as before, as well as with C44H90 at T = 500 K (table 2.3). The same
trends are observed for the variations of K1 and K2, but the tendency
for Ptrans with K3 has changed, even though the effect is very small. K3

is associated with a cos(3φ) function, thus a change of K3 is reflected
by both the barriers and minima of Utors, making it difficult to predict
its influence on the probability distribution.

2.2.2 Model characterization

2.2.2.1 General observations

Table 2.4 summarizes the different systems we have simulated, showing
the duration of the simulation runs for each chain length, and the
corresponding characteristic lengths lp, R2

g and R2
e .

Table 2.4: Summary of

equilibrium simulations

of n-alkane at T =

500 K.

System Chains Atoms Length (ps) lp/b0 lp (nm) R2
e (nm2) R2

g (nm2) R2
e/R2

g

C8H18 256 6656 2000 2.17 0.332 0.550 0.0707 7.78

C10H22 100 3200 2000 2.26 0.346 0.797 0.100 7.96

C13H28 243 9963 2000 2.30 0.352 1.20 0.150 8.01

C14H30 72 3168 20000 2.33 0.356 1.35 0.168 7.99

C15H32 72 3384 20000 2.32 0.354 1.49 0.187 7.97

C16H34 84 4200 20000 2.33 0.357 1.63 0.205 7.93

C30H62 144 13248 2000 2.29 0.351 3.65 0.498 7.33

C44H90 100 13400 4000 2.35 0.359 5.80 0.831 6.98

Figure 2.4 gives an overview of the structure of the system at different
temperatures. Peaks can be seen to develop as the glassy state is
approached at low temperature.

2.2.2.2 Influence of the thermostat

As indicated above, the thermostat used to carry out this study was
the Berendsen thermostat. This thermostat has been widely used to
prescribe the temperature in molecular dynamics simulations, owing to
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42 2 – Atomistic simulations

its simplicity and great efficiency. Nevertheless, this particular algo-
rithm is known not to sample the canonical ensemble in a satisfactory
manner. In order to investigate the influence of such a scheme on our
simulation model, we ran tests with another thermostatting algorithm
(Langevin thermostat), and compared the results obtained in each case
with the same system, under the same conditions. For that study, we
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Figure 2.5: Bond length distribu-

tions. The narrow gaussians represent

the probability distributions for the bond

length as prescribed by the OPLS-AA

model, centered on the value b0 that is

maintained by the SHAKE constraint al-

gorithm used in our simulations. Curves

are plotted for temperatures between

200 and 500 K.

modified the YASP simulation package so that a Langevin thermostat-
ting algorithm is also available. This has been achieved by removing the
Berendsen velocity rescaling, and adding two contributions to the force
(noise and friction, see sec. 1.1.1.2). The system we used to compare the
influence of the thermostat consisted of 84 chains of C16H34, simulated
at different temperatures (T = 500, . . . , 200 K, every 50 K) and at con-
stant, atmospheric pressure. A cooling was performed from T = 500 K
to T = 200 K (cooling rate −10−3 K ps−1) in order to generate suitable
initial configurations at each temperature for the equilibrium runs. We
will now compare the average values, and the corresponding standard
deviations, for several quantities that characterize the system under
consideration. Thus we should be able to stress some differences in the
way the two algorithms act upon the system.

The average temperature, enthalpy, volume and radius of gyration
are plotted for the two systems and each temperature in figures 2.7
and 2.8. Each point on the plots presents the average value of one quan-
tity at a particular temperature. The error bars are used to indicate
the corresponding fluctuations, more precisely the standard deviation

∆X =
√
〈X2〉 − 〈X〉2 (2.12)

of the quantity X. ∆X is measured from the distribution of X as
a fluctuating quantity. It can be observed that the average values
are the same when measured from simulation using the two different
thermostats, or at least very close, within the error bars. The tem-
perature itself, presented on fig. 2.7(a), is a fluctuating quantity in an
constant-NPT simulation, and only equals the prescribed temperature
on average. The fluctuations of the temperature are supposed to be
connected with the system size, as one expects the fluctuations to van-
ish in the thermodynamic limit of an infinite system; this is verified by
our models as indicated in fig. 2.6 which shows a plot of the standard
deviation ∆T as a function of the total number of particles Ntot (car-
bon and hydrogen atoms). The scaling as a power law with exponent
−1/2 predicted by statistical mechanics is observed.
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Figure 2.6: Evolution of tempera-

ture fluctuations as a function of the
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(Berendsen thermostat). The fluctua-

tions decrease as N
−1/2
tot , as expected.

The fluctuations of the different observables that have been mea-
sured for this study are also predicted by thermodynamics which pro-
vides relations between the standard deviations of various quantities
and physical properties. An example of this consists in the relation
that links the specific heat with the fluctuations of the enthalpy in an
isothermal-isobaric ensemble (see ref. 21 for instance):

∆H = ∆(E + PV ) =
√
kBT 2CP . (2.13)
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fluctuations of each quantity, characterized by the standard deviation of the probability distributions. The average values coincide

for both thermostats, while the fluctuations are larger in the case of the Langevin thermostat.

In our case, it has been observed that the two thermostats yield dif-
ferent results for the fluctuations of the physical quantities, but this
does not imply that we are actually simulating different systems when
using one thermostat or the other. As a matter of fact, the variation of
enthalpy with temperature is exactly the same (either from equilibrium
values as in fig. 2.7(b) or when looking at the instantaneous values com-
puted during the continuous cooling), which confirms that CP is the
same in both simulations. The conclusion is that the fluctuations gen-
erated by a simulation program do depend on the thermostat used, and
they are not in agreement with what is expected in the case of a canon-
ical ensemble for constant-NV T simulations (or isothermal-isobaric for
constant-NPT ). These fluctuations have been proven correct when
using a Nosé-Hoover thermostatting scheme with the adequate param-
eters, but this is not the case for the thermostats we used. This makes
eq. (2.13) not applicable here.

Another known side-effect of thermostats is an influence on the dy-
namics. This might be the reason for the differences that can be ob-
served between the two simulations for the average value of R2

g: For
high and low temperatures, the results are very similar for averages
and fluctuations obtained with the two thermostats, but there is a dif-
ference around T = 250 K. At this intermediate temperature (at lower
T , the system is frozen), a peak develops for 〈R2

g〉 and it is much more
pronounced for the results obtained with the Langevin thermostat. As
we shall see later (sec. 2.2.3), this peak corresponds to the development
of order in the system, as a precursor of crystallization. We shall come
back to the differences observed for the two thermostats when crys-
talline order occurs; the fact that R2

g is larger and has more important
fluctuations in the simulation involving the Langevin thermostat might
indicate that the latter accelerates the dynamics.
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g exhibits very similar values in both cases, showing that the choice of the thermostat does not influence the statics

in a significant manner (the deviation for the lowest temperatures is discussed in the text).

2.2.3 Discussion

All-atom simulations have been used in many contexts as a replace-
ment for experiments, and have proven that numerical studies are able
to quantitatively reproduce the physical properties observed in many
systems. However, there are always discrepancies between computer
models and the “real world”, either caused by limitations of the simu-
lation method or by a lack of precision in the parameters of the model.
In the case of the model we have been using to simulate n-alkane melts,
it is possible to identify problems belonging to these two categories.

One possible source of inaccuracy in our simulations is connected
to the algorithms that are employed for prescribing temperature and
pressure. The Berendsen method chosen for both the thermostat and
barostat does not allow to sample the isothermal-isobaric ensemble as it
should, and this may lead to contradiction when looking at fluctuations
of the physical quantities of interest. For this reason it would have been
worthwhile testing a Nosé-Hoover approach that is supposed to give
more satisfactory results. However, a comparison with the Langevin
thermostat showed that thermostats influence the simulation results
probably in an unimportant manner only; the mean values of physical
quantities remain unchanged to a good precision under the switch of
thermostat. Moreover, as it has already been pointed out in sec. 1.1.1.2,
even the Nosé-Hoover thermostat can lead to unphysical results.

Apart from this technical issue, problems arise from the model it-
self that is used for the study. All-atom simulations are mostly based
on empirical results, since the parameters of a force field are usually
derived from several experimental sources, and possibly adjusted so as
to reproduce accurately some target quantities. The method already
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bears limitations in itself, and details of the implementation can make
the situation worse. We decided to use constraints instead of the har-
monic bonds prescribed in the original OPLS-AA force field, in order to
save some computer time by averaging over the unimportant degrees of
freedom of the bond fluctuations; in doing so we altered to some extent
the consistency of the original model, since the force field parameters
had been optimized for the specific design of this form of the potential.
It is not clear whether this modification of the simulation model can
have noticeable consequences on the observable properties or not, and
this would have deserved a specific study. Nevertheless, we do not ex-
pect much effect, since bond vibrations are much faster than the other
degrees of freedom and thus not likely to be coupled (strongly) to them.

For the same reason it is questionable whether it was justified or not
to modify one of the potentials of the OPLS force field. We have argued
that this was necessary since we could check that the torsion angles sup-
posedly governed by an explicit potential parametrized in the force field
do not necessarily only depend on this potential, and is also influenced
by the other degrees of freedom. As the torsional potential is an in-
gredient of the force field with predominant importance, we decided to
adjust it so as to constrain the observable quantity, the torsional distri-
bution, to a reference value taken from simulation results that showed
a good agreement with experimental data. This tuning of the effective
torsional interaction allowed us to enforce a sensible prescription for the
statics of the chains, but only as an ad-hoc modification of the force
field. Instead of that, an optimization of all the different parameters
would have been desirable. Furthermore, as we are interested in the
crystallization and therefore need a reasonable description of both the
liquid and the crystalline states, it is legitimate to ask whether such a
simple force field as OPLS-AA is suitable to simulate the solid phase;
much more complex functional forms exist for crystal simulations. In
the end, one has to compromise and find a tractable model that is at
the same time efficient and accurate enough.

We shall present the results obtained with our model in the next
section, and see whether it can be used to reproduce the behavior of
short n-alkane chains at low temperatures.

2.3 Melting of n-alkane crystals

One way of studying alkane crystals consists in creating these structures
by hand. It is not obvious a priori that the crystalline structure should
be stable when simulated with our all-atom model: The force field
parameters are determined at high temperature, and there is a large
uncertainty on their validity anyway, as we discussed above. Therefore,
it is not clear that a model based on such a force field is able to repro-
duce the correct behavior of n-alkanes at low temperatures, and yields
a sensible description of the crystalline phase. The first point to be
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checked is whether a crystal created by hand is stable in the simulation
or not.

Depending on n being odd or even, the crystalline lattice can be dif-
ferent (sec. 2.1). Odd carbon-number chains are supposed to crystallize
in the orthorhombic phase, while for even n a triclinic phase is observed
experimentally. A monoclinic phase also exists. The crystalline phase
we were mostly interested in is the orthorhombic one, as it is also the
structure which polyethylene crystallizes in. Another question of inter-
est is whether there is actually a preference for the triclinic phase in
the case of even-n alkanes. We therefore created perfect orthorhombic
and triclinic structures and simulated them, using the modified OPLS
model.

2.3.1 Creation of perfect structures

2.3.1.1 Orthorhombic phase

(a) Orthorhombic

(b) Triclinic

(c) Rotator

Figure 2.9: Sketches of the pack-

ing of the chains in the different crystal

structures, viewed along the c-axis. The

chains’ main axes are parallel to this c-

axis, the schematic representation of a

chain corresponds to the projection of

C−C and C−H bonds in the c direction.

In the case of the orthorhombic crystal,

the elementary pattern consists of two

layers, the second of which is represented

in gray. When the system shifts to the

rotator phase, the two layers sit exactly

on top of each other, as it is also the

case for the triclinic crystal (for the tri-

clinic arrangement, a and b correspond

to the projection of the actual cell con-

stants into the plane orthogonal to the

c-axis).

Odd numbered n-alkanes are mainly found in the orthorhombic phase,
which has a structure indicated schematically in fig. 2.9(a); the or-
thorhombic unit cell contains two chains elongated along the c-axis.
The first chain’s plane (the first chain is represented at the intersection
of cell vectors a and b in fig. 2.9(a); a chain plane contains all C−C
bonds of an all trans molecule) makes an angle ψ = 43o with the a-
direction, and the second chain (in the middle of the figure) lies in a
plane perpendicular to the first one’s. Chains are packed this way into
layers, which are stacked to form the actual crystal. The arrangement
of chains in a layer is deduced from the positions of the chains of the
previous layer, by a reflection through the a–b plane, and a translation
in the a-direction [114]. This two-layer structure allows to minimize
the overlap of hydrogen atoms at the interface.

In order to test the quality of the force field, we calculated the co-
ordinates of all atoms of a perfect crystal from the geometrical char-
acteristics described above, and used them as a starting configuration
for a simulation at atmospheric pressure and very low temperature
(T = 10 K). The lattice parameters a, b and c were taken from an
extrapolation of their values toward T = 0 for polyethylene crystal,
calculated by path-integral Monte-Carlo simulations [68] rather than
from experimental measurements at room temperature, because using
such values might cause the orientation of the chains to be lost as a
result of a quick readjustment of the box size due to pressure and the
small thermal energy. The cell parameters are summarized in the fol-
lowing table :

a b c

0.72 nm 0.49 nm 0.253 nm

The c-axis length actually corresponds to the distance between every
second carbon atom, and therefore has to be scaled accordingly to
yield the appropriate box size along the z axis, according to the chain
length under consideration. Once the configuration created, it is used
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(a) View along the c-axis (b) View along the a-axis

Figure 2.10: Orthorhombic C15H32. The two layers are represented, and the second one has been gray-shaded for clarity.

as input for the simulation code and the system is left to relax at 10 K
and atmospheric pressure for 400 ps. A representation of the simulated
system after this short relaxation simulation is given in fig. 2.10. It is
possible to distinguish the two different layers.

2.3.1.2 Triclinic phase

For even n values, n-alkanes are found in the triclinic phase (this
changes for n > 26, see sec. 2.1). The triclinic phase is character-
ized by the three cell lengths a, b and c, and the three angles α, β

b

c

a

α
β

x

z

y

γ

Figure 2.11: Schematic drawing show-

ing the base vectors for the triclinic lat-

tice.

and γ which are no longer equal to 90o (See the sketch in fig. 2.11 and
the schematic representation of fig. 2.9(b)). Contrary to the case of
the orthorhombic crystal, all the chains are placed in parallel planes;
furthermore, there is no differences between layers along the c-axis for
the triclinic crystal. Nevertheless, in order to allow a direct compari-
son of the orthorhombic and triclinic crystals, simulations of the latter
were run using two stacks of chains. The parameters used for perfect
triclinic crystal are summarized below [89, 110]:

a b c α β γ

0.43 nm 0.48 nm 0.253 nm 98o 72o 107o

Snapshots from the simulations (after a short equilibration at 10 K)
are shown in figure 2.12; the pictures allow to visualize the γ and α

angles that strongly deviate from 90o. It is also noticeable that, even
after relaxation at very low temperature, defects are present in the
structure of the crystal, indicating that there has been a readjustment
of the chains right after the beginning of the simulation. Figure 2.13
shows the evolution of lattice parameters during the first part of the
equilibration run at T = 10 K; in the case of triclinic C14H30, it can
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(a) View along the c-axis (b) View along the b-axis

Figure 2.12: Triclinic crystal (C20H42). The two pictures present projections onto the a–b and a–c planes, respectively on the

left and on the right, emphasizing the γ and α angles. Only one of the two layers is shown.

be seen in fig. 2.13(a) that the lattice constants a and b are relaxing to
their equilibrium values very rapidly, causing the chains to rearrange
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and creating defects. For the orthorhombic crystal, a and b change only
slightly to reach equilibrium. Figure 2.13(b) gives an overview of the
evolution of angles during initialization; β is larger than the value used
to construct the crystal, and γ is slightly larger than expected. All
angles fluctuate before reaching a stable value. For the orthorhombic
crystal, all angles have the regular value 90o and do not significantly
vary.

The values of a, b and c can be obtained by a simple measurement
of the box size in the case of the orthorhombic lattice since the lattice
vectors are collinear to the sides of the simulation box. This is no longer
the case for triclinic crystals, and the values of the angles α, β and γ

that differ from 90o also need to be computed in a specific manner. To
this end, we used an algorithm that averages the values of the vectors a,
b and c over all their realizations in the crystalline system. Of course,
this method is only valid for a perfect crystal in which one knows how
the chains and atoms are organized.

The equilibrated crystals are found to be very close to the initial
perfect structures. Only small changes in the values of the lattice pa-
rameters are observed. This means that the force field we are using
is not inconsistent with the experimentally observed crystalline struc-
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Figure 2.14: Lattice parameters measured for orthorhombic and triclinic crystals as a function of temperature. The different

cell lengths increase as a result of thermal dilatation until the crystals eventually melt (Heating rate: 10−4 K ps−1). The lattice

constant along the z-axis is presented in the graphs divided by n
2

so that it has a value comparable with a and b. This corresponds

roughly to the distance between every second carbon along one chain.

tures; at least the non-bonded interactions are compatible with dense
orthorhombic and triclinic packings, and the other interactions do not
forbid the stretched conformation of alkane chains—but this is not sur-
prising.

2.3.2 Melting experiment

In order to check whether the force field parameters allow for an ac-
curate enough description of n-alkane crystals, we should now have a
look at the evolution of these structures at higher temperature. This is
achieved via continuous heating—the opposite of the procedure through
which we attempt to produce crystals from the liquid melt in sec. 2.4,
and in chapter 3 using coarse-grained models. It is necessary to make
sure that our model does not melt at an unrealistic temperature, whether
too low or too high, as a result of an incapacity of the force field to re-
produce the behavior of the experimental system or of other limitations
in the simulation method.

Upon heating, the values of the lattice parameters steadily increase
as thermal energy becomes more important. This evolution is dis-
played in fig. 2.14, for both kinds of crystals. Thermal dilatation is
mostly reflected on the values of a and b, while c does not vary much;
this indicates that thermal energy is mostly dissipated via vibrations
of the chains in the a–b plane. Another test of the stability of the
crystals consists in studying the orientation of the chains in time. The
orthorhombic and triclinic crystals are too dense to allow chains to mi-
grate from one layer to the next, in the z-direction (unless several chains
in a row move cooperatively, which is unlikely because of non-bonded
interactions causing repulsion at low temperature), but it is interesting
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to check whether a chain is allowed to change its plane orientation,
meaning the orientation of the plane which contains the carbon-carbon
bonds, and which is supposed to be fixed for all molecules in the crys-
tals.

Defining the vector C(t) as representative of the orientation of the
plane of a chain at time t (see fig. 2.15), one can evaluate the correlation
function 〈C(t) ·C(0)〉 which indicates whether the chains (or at least

Figure 2.15: Definition of the B and

C vectors for one n-alkane chain (the

subscript i is omitted). Ba = ba+ba+1;

Ca = ba+1 − ba. Alternating direction

of Ca with a odd or even is taken into

account in the average C = 〈Ca〉a.

part of them) have modified their orientation after a period of time.
This quantity can be evaluated during continuous heating, the function
of time becoming then also a function of temperature as there is a linear
relation between T and t during this kind of simulation. This is what is
plotted on fig. 2.17(a). It can be observed that, either for orthorhombic
or triclinic crystals, this orientational order parameter only decorrelates
at high temperature, at the moment the system actually melts. This is
an evidence of the stability of the crystals until melting sets in. It can
be checked that another order parameter like P2 also exhibit a good
stability in the crystalline phase before melting; this order parameter
is computed as explained in sec. 1.3, except that in the case of an
atomistic model one has to use the B vectors instead of the regular
bond vectors b. This is illustrated in fig. 2.16.

Figure 2.16: Schematic representation

showing how the order parameter P2 is

computed: P2 = 〈Ba
i · Bb

j〉 (B vectors

are represented for chain i only here).

As a comparison, fig. 2.17(b) shows the same quantity measured in
a simulation of C20H42 at constant low temperature (T = 250 K), for
a system equilibrated in a conformation that does not correspond to a
crystalline structure. This simulation was started putting the chains
on a square lattice with a much lower density than in the case of the
crystals described above, and letting the system relax at T = 250 K.
After a very short time (less than 200 ps), the system is equilibrated
with a denser packing (due to the pressure), and it becomes possible
to characterize it. In this case, even under constant temperature con-
ditions, 〈C(t) ·C(0)〉 is found to decrease with time, even though the
thermodynamic quantities are constant: This is typical of the rotator
phase, in which the chains are constrained in a layer but still free to
“rotate” along their individual axes. Because of this permanent change
of orientation, the correlation function 〈C(t) ·C(0)〉 decays. An illus-
tration of this rotator phase is shown on fig. 2.18.

The evolution of the volume of a crystalline sample reveals phase
transitions; we used the volume as an order parameter to monitor the
state of the system of n-alkane chains during heating. Melting of a crys-
tal is signaled by a jump in the volume indicating the occurrence of the
less dense liquid phase. This phase transition is strongly dependent on
the heating rate, as illustrated in fig. 2.19: For a system consisting of
72 chains of C15H32, melting is observed almost 50 degrees lower for a
heating rate of 10−4 K ps−1 than in case we are heating one hundred
times faster. At the lowest heating rate, on can notice the slope of
the volume is very large, corresponding to an abrupt phase transition;
contrary to that, for faster heating, a much smaller slope indicates a
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Figure 2.17: Orientation correlation of vectors perpendicular to the elongated chains’ planes. In the case of dense crystalline

packings, these vectors decorrelate only at the moment of melting. In the case of a“perfect” rotator phase well below the melting

point (C20H42 at T = 250 K here), the correlations decay in time even without a phase change in the system, indicating there is

no stable orientation of the chains in this rotator phase.

more gradual transition. Another qualitative effect of the heating rate
on the system’s configuration is seen from the small jump in the volume
that occurs above 150 K for the lowest heating rate, around 200 K for
10−3 K ps−1, and does not appear for the fastest rate. This small jump

Figure 2.18: Snapshot of the rotator

phase for C20H42 at T = 250 K. Note

the hexagonal symmetry and the random

orientation of the chains.

takes place when the thermal fluctuations enable the two layers to sep-
arate in order to lower the overlap of hydrogen atoms at the interface;
this arises from finite-size effects in the simulation, since this change
would not be possible anymore in the case of a larger or less sym-
metric system (several crystalline domains surrounded by amorphous
material). The main transition that occurs above 350 K in this case
(with the slowest rate) is in fact decomposed into two steps, which is
indicated by a slight slowing down halfway between the crystal and the
liquid, which is characterized by a higher thermal dilatation coefficient.
This break in the volume increase corresponds to a transient rotator
phase that forms before the system melts completely. The same obser-
vation can be made for systems with different chain lengths for which
the same temperature protocol was applied; for triclinic crystals as well
as for orthorhombic systems, a rotator phase occurs prior to complete
melting, which is in agreement with experiments. Figure 2.20 compares
the phase diagrams for the orthorhombic and triclinic structures of odd
and even numbered n-alkanes, C36H74 and C37H76.

Some more insight into the solid-solid orthorhombic-rotator phase
transition is provided by fig. 2.21 which presents different order param-
eters measured throughout the melting simulation of an orthorhombic
crystal of C15H32. As explained above, the quantity 〈C(t) ·C(0)〉 ac-
counts for orientation correlations in time—or equivalently presented
as a function of temperature here—and exhibits a quick decay as the



52 2 – Atomistic simulations

Figure 2.19: Comparison of phase

diagrams (volume as a function of the

prescribed temperature) for different

heating rates (orthorhombic C15H32).

For the lowest rate, the system clearly

exhibits a first jump above 150 K when

the thermal energy is high enough

to overcome the pressure and sepa-

rate the layers, and during melting

a “pause” halfway between the or-

thorhombic crystal and the liquid state

that corresponds to the occurrence of

the rotator phase.
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Figure 2.20: Comparison of phase diagrams for orthorhombic and triclinic crystals of C36H74 and C37H76. In each case, the

orthorhombic form seems to be more stable, as it melts at higher temperature. The bump one can notice prior to melting for

triclinic crystals corresponds to an inversion of the a and b lattice parameters.
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Figure 2.21: Different order parame-

ters indicating the transition from the

orthorhombic crystal to the melt, for

C15H32. The first quantity that decor-

relates is the orientation of chains’

planes, as the system undergoes first

an orthorhombic-rotator phase transi-

tion; then the overall order decays (P2)

and the general symmetry is restored

(loss of a favored direction) while the

probability of gauche states tends to

its melt-characteristic non-zero value.

The different temperatures associated

with the transitions are indicated (cf.

fig. 2.23).

orthorhombic phase is left. The degree of ordering in the system mea-
sured by P2 decreases rapidly immediately afterwards and then slows
down since the rotator phase is still ordered, with one strongly favored
direction for the chains’ overall elongation. The decrease in this or-
der parameter is caused by the occurrence with the rotator phase of
gauche defects, as shown by the drop of Ptrans to a value different from
1, which was not possible as long as the chains were trapped in the
all-trans conformations imposed in the crystal. The last degree of or-
der that remains after the chains have relaxed to the amorphous liquid
state is the orientational order measured by 〈B〉, which takes longer to
relax. After the rotator phase disappears in favor of the liquid state,
P2 quickly falls to zero, while Ptrans takes its average value and 〈B〉
slowly tends to zero, meaning that there is a signature of the previous
existence of an ordered phase for a longer time.
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Figure 2.22: Evolution of Pgauche with

temperature close to the transition, for

C15H32. The number of gauche de-

fects increases exponentially (logarith-

mic scale) before the transition to the

rotator phase, indicated by a jump. The

transition temperatures are defined in

fig. 2.23

The transient phase that appears while the system turns into a liquid
is characterized by a change in the overall symmetry of the system: In
the orthorhombic phase, the ratio of the cell lengths a and b is approx-
imately 1.5, and jumps to

√
3 at the transition (fig. 2.24). This is the

signature of a hexagonal phase and corroborates the fact that the rota-
tional symmetry of the chains is recovered, which was already implied
by the decay of 〈C(t) · C(0)〉. It should be noted that the all-trans
conformation of the chains in the crystal is progressively perturbed by
the occurrence of gauche defects whose number increases exponentially
as the rotator phase is approached; figure 2.22 shows the evolution of
the probability for gauche states (both gauche+ and gauche−) in the

V

T

TC→R

TR

TR→L

Figure 2.23: Definition of the tem-

peratures associated with the observed

phase transitions (for C15H32: Magni-

fication of the third curve in fig. 2.19;

symbols 4, corresponding to heating

rate 10−4 K ps−1).

vicinity of the transition.

The phase diagram of n-alkanes (fig. 2.20) exhibits a large jump that
can be decomposed into two parts, a crystal-rotator transition first and
then a rotator-liquid transition. It is thus possible to identify several
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Figure 2.24: Ratio of the cell param-

eters a and b for orthorhombic C15H32

during continuous heating. This ra-

tio is measured with two methods, us-

ing either the box size or a more lo-

cal calculation taking into account the

positions of the atoms in the original

perfect lattice. The value at low tem-

peratures characterizes the orthorhom-

bic packing and does not significantly

change below 350 K, indicating that

the crystal thermally expands identi-

cally in both the x and y directions. At

the transition, a/b shifts to
√

3 ≈ 1.73,

which is typical of hexagonal packing,

and therefore the sign of the rotator

phase. The measurement based on the

second method fails earlier as it is not

valid anymore when crystalline order is

lost. Temperatures from fig. 2.23 are

indicated.
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transition temperatures (fig. 2.23 gives an illustration): The first melt-
ing temperature TC→R corresponds to the point at which the system
leaves the regular crystalline (orthorhombic or triclinic) state and enters
a transient phase. The system completely loses its long-range order and
enters the liquid state after the second transition, at TR→L. In between
these two temperatures, a hexagonal rotator phase appears, which is
only a transient phase since at the high heating rates used for our
studies, it cannot become stable. It is still possible to associate a tem-
perature TR with the occurrence of this phase, considering the change
in symmetry it implies. The solid-solid phase transition involved here
is characterized by a change in the ratio of the lattice parameters a and
b as indicated in fig. 2.24. This can be used as a criterion to spot the
rotator phase, and the third temperature characterizing the crystal-
liquid transition of n-alkanes is defined as the point at which the ratio
a/b exceeds a particular value:

√
3 in the case of orthorhombic crystal

and 1 for triclinic structures (the difference in this ratio’s value in the
case of orthorhombic and triclinic crystals come from the preexisting
lattice vectors a and b that are different and that evolve differently in
each case).

The transition temperatures are presented in figs. 2.25(a) and 2.25(b);
for odd-n systems, it can be seen that the experimental tendency for
Tm is found qualitatively, with a sublinear increase of the melting point
with chain length. It is also observed that the three measured temper-
atures follow the expected order, i.e. TC→R < TR < TR→L. The rotator
phase with hexagonal symmetry is found to appear shortly after the
system has left its first crystalline order, and persists for a longer time
before complete melting.

The situation is different in the case of even-n chains: The melting
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Figure 2.25: Melting temperature as a function of n for even- and odd-n chains. Three points are indicated for each chain

length, corresponding to the temperatures at which the crystal is left (4), the symmetry change associated with the rotator phase

in the case of orthorhombic odd-n systems (2), and the beginning of the liquid phase (#). In the case of even-n systems, the

geometrical change occurs before the first melting point, which is inconsistent and in fact related to the instability of the crystal.
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Figure 2.26: The instability of the triclinic crystal is illustrated by a change of the arrangement of the chains at around 310 K

for short C14H30 chains (left); for such short chains, the tilted structure is already unstable at low temperature, since the angles

α and β relax to 90o below 80 K. For longer chains (C36H74) the structure is stable (right). (α: 2; β: #; γ: 4. Open symbols:

C14H30, closed symbols: C36H74)
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temperatures TC→R and TR→L again agree with the experimental trend,
but the rotator temperature lies outside of the interval [TC→R, TR→L],
which is inconsistent. This can be explained by looking at the evolution
of the box size on approaching the transition: Figure 2.26 shows the
lattice parameters as functions of temperature for triclinic crystals,
exhibiting an inversion of the two lengths a and bmore than 50 K before
the transition. This change occurs because the system finds a more
favorable packing by tilting the chains in another direction: The chains’
planes are effectively rotated by an angle π/2, allowing to optimize the
packing. This fact shows clearly that the triclinic structure is not a
stable configuration for our n-alkane model; another evidence of that
is given in fig. 2.26(b), which compares the angles α, β and γ for two
triclinic crystals of different chain lengths. One can notice that for short
chains (n = 14), the triclinic structure is not stable since even at low
temperature α and β relax to 90o, whereas for longer n-alkanes (n = 36
here), the initial values of the three angles are conserved until melting
occurs. The short-chain triclinic crystal has α and β angles that depart
from the (experimentally found) prescribed values even at the very
beginning of the simulation, as a result of a first relaxation right after
startup; at T ≈ 75 K, the system eventually turns into a monoclinic
crystal—which is supposed to be less stable than the triclinic form for
such short chains.

Figure 2.28 shows the relation between the inversion of a and b and
the signal in the different quantities that usually indicates the occur-
rence of a hexagonal phase, in the case of C36H74: It can be seen that
the ratio a/b exceeds 1 at the moment of the inversion, and then re-
mains constant before increasing again to signal either a rotator phase
or regular melting. The re-arranging of the chains prior to melting ob-
served in the case of the triclinic crystals also accounts for the two-step
relaxation of the chains’ plane orientation correlation function shown
in fig. 2.17.

Another possibility to study the crystal-rotator transition is to al-
low the system to relax at different temperatures during heating, as
indicated in fig. 2.27. This way it becomes possible to observe the ro-
tator phase that arises from the crystal configuration under constant
temperature conditions. Figure 2.29(a) shows a first series of calcula-
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Figure 2.27: Schematic drawing of

the temperature protocol used for simu-

lations of n-alkanes: Isothermal runs are

started at several points during a contin-

uous heating.

tions at T = 350, 360, 370, 380 K: At T = 350 K, the system remains
crystalline, and for T = 380 K it is already molten. At T = 350 K, one
observes the transition to the rotator phase after 500 ps, and in this
case the system remains in that state for approximately 1 ns before it
melts completely. Another series of isothermal relaxations is presented
in fig. 2.29(b), between T = 350 and T = 360 K, with steps of one de-
gree. This does not permit to establish a transition temperature with
such an accuracy however, since the 2 ns runs are too short to make
sure that a system will not melt at a particular temperature. As a
result of thermal fluctuations which may or may not help overcome the
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Figure 2.28: Evolution of the lat-

tice parameters a and b with tempera-

ture during continuous heating: Above

360 K, a and b clearly switch, as a re-

sult of a recombination of the chains

in the crystal. This phenomenon is re-

flected by an increase of the ratio a/b,

which is plotted in the inset: The sud-

den change in the overall conformation

of the crystal causes a/b to become

greater than 1, which is supposed to

indicate the transition to the rotator

phase (symmetry change). This signal

is present at T ≈ 450 K, where the

ratio increases quickly before the crys-

talline order is lost (making the mea-

surements meaningless above Tm =

455 K).
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Figure 2.29: Evolution of the volume of the sample as a function of time for isothermal relaxations at various temperatures

(C15H32). The crystal melts above T = 350 K; it becomes difficult to determine whether the systems melt for runs at T =

351, 352, . . . K, since melting might occur after a much longer time than 2 ns. The system is observed to melt at T ≥ 352 K,

except for T = 354 K.

energy barrier, the system melts erratically at temperature T1 and not
at T2 > T1.

For isothermal relaxation as well as for the continuous heating above,
an analysis of the different order parameters is possible during the phase
transitions. This is the object of figure 2.30. As observed before, the
orientation correlation for the chains’ planes vanishes quickly as the
rotator phase appears; there is even a precursor sign of this phase that
shows up in 〈C(t) · C(0)〉 since the beginning of the isothermal run,
which means that defects (single “rotating” chains in the otherwise
unperturbed crystal structure) can form as the transition temperature
is approached. While in the rotator phase, the other order parameters
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Figure 2.30: Order parameters in-

dicating the transition from the or-

thorhombic crystal to the melt dur-

ing an isothermal simulation at T =

360 K, for C15H32, as presented in

fig. 2.29(a) (curve with # symbols).

As was observed for the same quanti-

ties in a continuous heating, the orien-

tation correlation in the plane perpen-

dicular to the c-axis decays first, as the

rotator phase sets in. The transition is

less abrupt for the other order param-

eters, and the rotator phase is more

stable under such conditions. It can be

observed that in this case, the occur-

rence of gauche states precedes the loss

of overall orientation that characterizes

the complete melting of the solid sys-

tem.
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exhibit correlated fluctuations and finally decay.

2.4 Simulation of crystallization

2.4.1 Cooling experiment

A crystalline structure is obtained from a liquid either by cooling below
its melting point, or by quenching it to a low temperature and let
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Figure 2.31: Inverse of the density at

T = 500 K as a function of 1/n. This

shows that the volume can be expressed

as v = v∞ + ∆ve/n.

it relax so that a new equilibrium crystalline state is reached. We
performed both kinds of experiments with systems consisting of several
chains of alkanes with different chain lengths.

A summary of the simulations that were run as an attempt to re-
produce homogeneous crystallization is presented in table 2.5. The
number of chains and the total number of particles for each studied
chain length are shown, as well as the range of temperatures for the
cooling and the associated rate. Systems of n-alkanes with n ranging
between 8 and 44 were studied, with total number of particles between
3000 and 13000 (many systems were created to study the melting of
perfect structures in the first place, as discussed in sec. 2.3. Bigger
systems with longer chains were especially designed for crystallization
experiments upon continuous cooling). The cooling rates applied vary
between −10−4 and −10−3 K ps−1.3

For all experiments, the systems were prepared at high temperature
(fully elongated chains ordered on an artificial lattice, allowed to relax
(and thus to melt immediately) at T = 500 K), before starting the cool-
ing. Figure 2.33 shows the evolution of R2

e(t) during this equilibration
phase, showing that chains longer than C16H34 do not relax instanta-
neously. An equilibrium run has been performed at T = 500 K so as to

3Cooling rate −10−4 K ps−1 corresponds to −108 K s−1.
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System Chains Nb. of atoms Ti Tf rate

C8H18 256 6656 500 100 −10−4

C10H22 100 3200 500 200 −10−4

C13H28 243 9963 500 300 −10−4

C14H30 72 3168 500 0 −10−3

72 3168 500 0 −2× 10−4

C15H32 72 3384 500 0 −10−3

72 3384 500 0 −2× 10−4

C16H34 84 4200 500 0 −10−3

C30H62 144 13248 500 300 −10−4

C44H90 100 13400 500 200 −10−4

Table 2.5: Summary of the cooling

experiments carried out for different

chain lengths. For each value of n, the

initial and final temperatures Ti and

Tf are indicated, as well as the cool-

ing rates used (respectively in K and

K ps−1, see table 2.1).

 500

 600

 700

 800

 900

 100  200  300  400  500

ρ 
(g

 c
m

-3
)

T  (K)

n=44
n=30
n=16
n=15
n=14
n=13
n=10

n=8

Figure 2.32: Evolution of the density

as a function of temperature while cool-

ing down the systems. All curves exhibit

the same trend, showing no abrupt tran-

sition as one would expect in the case

of crystallization. However, there is a

noticeable reduction of the slope as the

systems freeze at low temperature.

make sure that the initial “crystalline” configuration does not influence
the simulation. As is observed in fig. 2.32, the evolution of the density
of the samples is qualitatively the same for all chain lengths, and there
is no apparent phase transition. The influence of the cooling rate
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Figure 2.33: Relaxation of the end-to-

end vector during the initialization part

of the simulation. Very short chains do

not display a particular change, indicat-

ing that they instantly melt. Longer

chains take more time to relax.

on these experiments is shown in fig. 2.34(a), which presents volume
vs. temperature for a system consisting of 72 chains of C14H30, cooled
down at −10−3 and −2× 10−4 K ps−1. There is no significant change
for a cooling rate five times smaller, and one would probably have to
use cooling rates orders of magnitude smaller in order to observe crys-
tallization using such a model.

Looking at the configurations created while cooling down the alkane
melts, it is still possible to find precursors of a growing ordered phase
in a particular range of temperatures. For some systems in our studies
(C16H34 and C44H90), the observation of a quantity such as the mean-
square radius of gyration R2

g that accounts for the extension of chains
reveals a (slight) tendency of the chains to organize as the temperature
is lowered. This is related to an ordering of the chains that try to
stretch and form a crystal. However, this trend quickly disappears as
the temperature is lowered further; the cooling is too quick to let the
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Figure 2.34: Volume and order parameter as a function of temperature while cooling down a system consisting of 72 chains of

C14H30. The two curves correspond to two different cooling rates, −10−3 and −2 × 10−4 K ps−1. The behavior of the volume

does not significantly vary under the decrease of the cooling rate by a factor 5, still leading to a frozen state at low temperature;

the order parameter either does not exhibit a big difference for the two rates. (Smoothed lines are drawn to guide the eye in the

second plot.)

Figure 2.35: Variation of the mean-

square radius of gyration with tempera-

ture, for two chain lengths (n = 10 and

n = 44). In the case of short chains

(this is also observed for n = 8), there

is a steady increase of the radius of gy-

ration during the cooling. For n = 44,

on the other hand, a more complex be-

havior of R2
g shows that there is a slight

tendency for the chains to stretch as the

temperature is lowered, which is later

hindered as the lowest temperatures are

reached. The same fact is observed for

other (smaller) chain lengths, but not

for n = 30 (i.e. this is not related to

larger chain lengths). The mean-square

radii are divided by their average value

at temperature T = 500 K, to allow for

an easier comparison.
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chains relax and organize; they rather start to freeze. Then R2
g drops

and takes values comparable with those measured in cases for which
no particular signal is observed during cooling—the chains simply get
stiffer and stiffer until they eventually freeze (n = 8, n = 10, n = 30).
This effect is probably not connected to chain length but rather to
configurations that are favorable or not to the appearance of a seed for
the growth of ordered structure. This emphasizes the small probability
for a melt to crystallize under such high cooling rates.

For our model OPLS-mod with an optimized torsional potential that
yields a reasonable proportion of trans and gauche states in the liquid
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Figure 2.36: Comparison of the original and modified OPLS-AA torsional potential (sec. 2.2.1.3) with the ST potential. This

last potential is much stiffer that the other two, as indicated by the corresponding Ptrans at T = 500 K: Ptrans(OPLS) = 0.65,

Ptrans(OPLS-mod) = 0.58, Ptrans(ST) = 0.75.

state, it is actually difficult to reproduce a crystalline structure, since
the trans state is favorable enough at very low temperatures only. A
high proportion of trans states is necessary to form elongated chain con-
formations, but still a high enough thermal energy is needed so that
the different rigid chains can assemble into an ordered structure. In
order to get a comparison and check whether our cooling simulations
can actually produce crystalline structures or not, we used a variation
of the force field with a very unrealistic torsional potential that fa-
vors strongly the trans state. This model, which we will call “ST” in
the following, has a probability Ptrans of 0.75 at T = 500 K, whereas

Figure 2.37: Snapshot of the final

structure obtained by cooling of the ST

model with very rigid torsional poten-

tial. The crystal exhibits two stacks of

elongated chains, and additional ordered

parts.

OPLS-mod yields Ptrans = 0.58 under the same conditions. This arises
from unrealistically high barriers between trans and gauche states. The
point here is to compare our model to an extreme case in which the
probability to form the stable all-trans conformations is very high. The
different torsional potentials are shown of fig. 2.36, together with the
corresponding distributions taken from equilibrium simulations.

The phase diagram obtained for this ST model is compared to the
volume vs. temperature plot for C16H34 in fig. 2.38(a). It can be seen
that a phase transition occurs around T = 350 K for that very stiff
model, which contrasts with the behavior of OPLS-mod that does not
exhibit any jump in the volume. There is a noticeable change in the
slope at the transition, but there is still a big difference with the ideal,
sharp phase transition for which an infinite slope is expected; this is a
sign that the cooling rate we used here is much too large. The cooling
rate in the case of this simulation of ST was −10−4 K ps−1, which is
smaller than the rate used in the simulation for the modified OPLS
model to which it is compared in fig. 2.38; but we expect this differ-
ence not to be relevant, since fig. 2.34(a) shows there is no appreciable
change in this range of cooling rates for OPLS-mod.
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g as functions of temperature for C16H34 simulated with the usual OPLS-mod model as well as with

the ST torsional potential. In this case, a phase transition does appear, leading to the formation of a crystalline phase at around

350 K. This however is not consistent with experimental measurements that locate the melting point just below 300 K for this

chain length (from ref. 118, see fig. 2.39).

The final crystalline structure obtained with ST is represented in
fig. 2.37. One can observe the arrangement of almost perfectly elon-
gated chains in two consecutive layers plus some other perpendicular,
smaller structures. This crystal thus has features of a realistic alkane
crystal and proves that our molecular dynamics simulations are capa-
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Figure 2.39: Experimental melting

temperature for n-alkanes as a function

of n.

ble of producing crystalline configurations via homogeneous nucleation
from the melt; however, the ST torsional potential is much too stiff
and its use leads to the unrealistic formation of a crystal, moreover at
a very high cooling rate, at a temperature Tcryst ≈ 350 K that is very
large compared to the experimental melting temperature for C16H34,
Tmelt ≈ 300 K.

2.4.2 Isothermal relaxation

As the cooling rates we could afford for all-atom n-alkanes models are
too high to allow the crystalline structures to grow during continuous
cooling, we completed this study by isothermal relaxations starting
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Figure 2.40: Schematic drawing of

the temperature protocol used for simu-

lations of n-alkanes: Isothermal runs are

started at several points during a contin-

uous cooling.

from the configurations saved during cooling to several temperatures.
This way the simulation mimics the experimental situation correspond-
ing to a quench to a temperature below the melting point, at which
the crystal can then develop. The time-temperature protocol is de-
picted on fig. 2.40. This procedure was applied to a system of very
short chains, C8H18, at temperatures ranging from 230 to 180 K, in
steps of 10 degrees. The experimental melting point is about 220 K;
so one expects the crystal to form when the system is supercooled at
temperatures below Tmelt. Figure 2.41 presents several properties mea-
sured from these simulations, showing that there is no sign of ordering
at temperatures lower than the experimental Tmelt: The volume never
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Figure 2.41: Characteristics of the C8H18 liquid at different temperatures around and below the experimental melting point

(Tmelt ≈ 220 K): T = 230, . . . , 180 K, every 10 degrees. The volume exhibits no abrupt change during these runs at constant

temperature and pressure, and even though the system is not yet in equilibrium after 2 ns, as the volume decreases and the radius

of gyration still increases, there is no sign of ordering in the order parameter P2, only somewhat larger fluctuations in the case of

the lowest temperatures. Gliding averages (over 50 points) have been applied to the data for R2
g and P2, in order to reduce the

noise. The indicated times are in ps, as indicated in table 2.1

exhibits a characteristic jump, nor does the radius of gyration of the
chains increase in a significant manner. There is a somewhat larger
increase in R2

g at the lowest temperature, but the P2 order parameter
tells us that this is not connected with an appreciable change of the
structure of the melt.

It is possible that for such small chains the mobility does not decrease
quickly enough for an ordered structure to develop; combined with the
small stiffness of our model, this could explain that no crystalline phase
arises. It may be necessary to probe the system at an exaggeratedly
large supercooling in order to observe crystal formation, contrary to
what one would expect for the small chains studied here.

The same procedure (cooling and isothermal relaxation) has been
applied to the longer C16H34 chains, as part of the more systematic
study of this particular chain length. In this case, isothermal runs were
produced between 200 and 500 K, with steps of 50 K. The volume and
mean-square radius of gyration are shown on fig. 2.42(a) and 2.42(b),
and while there is no noticeable trend in the volume for any tempera-
ture, the radius of gyration displays an unusual increase at T = 250 K.
For other temperatures, this quantity gradually increases on average
with decreasing temperature, as expected; only its fluctuations become
larger for smaller temperatures, except for the last two we probed,
T = 200 and 250 K. At the lowest temperature, the fluctuations are
much smaller, indicating that the system is starting to freeze. On the
other hand, at T = 250 K, there is an interesting continuous increase
in R2

g which shows that equilibrium is not reached during the 20 ns
of this isothermal run. The fact that this tendency is not observed
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not show any jump characteristic of a phase transition. However, a significant increase of the mean-square radius of gyration can

be observed at T = 250 K, and not at higher or lower temperatures. This is the sign for a change in the structure of the melt,

even though there is no crystallization yet. A gliding average has been applied to the data for R2
g.

for higher or lower temperatures is an indication that there might be
a phase transition occurring in the vicinity of this temperature. The
increasingly large fluctuations of R2

g at temperatures higher than 250 K
which then settle at 200 K also support this hypothesis, as fluctuations
diverge at the critical point.

In order to investigate further what happens at T = 250 K, we
calculated the P2 order parameter for all temperatures, and the results
are plotted in figs. 2.43(a) and 2.43(b). For the sake of clarity, only
the three lowest temperatures are presented in the graphs, as there is
no particularity for higher T : As observed for R2

g, the amplitude of
the fluctuations of the order parameter increase as the temperature is
lowered, except for T = 200 K where they are much smaller, and for
T = 250 K where something different happens. It can be seen clearly
that order is developing in the system at this particular temperature,
after a latency time.

The two graphs of fig. 2.43 display the same quantity for two simula-
tions with identical parameters except for the thermostatting method,
using Berendsen’s algorithm (2.43(a)) in one case and the Langevin
thermostat in the other (2.43(b)); see also sec. 2.2.2.2. In the simula-
tion realized with the Langevin thermostat, order develops earlier and
to a larger extent than with the other thermostatting method. This
could be due to a higher responsiveness of the Langevin thermostat
that accelerates the dynamics. On the other hand, this is not clear
since the two simulations at T = 250 K were started from different
start configurations, which makes the comparison of the effect of ther-
mostat difficult in this case.



2.4 – Simulation of crystallization 65

 0

 0.01

 0.02

 0.03

 0  5000  10000  15000  20000

P
2

t  (ps)

T=200 K
T=250 K
T=300 K

(a) Berendsen thermostat

 0

 0.05

 0.1

 0  5000  10000  15000  20000

P
2

t  (ps)

T=200 K
T=250 K
T=300 K

(b) Langevin thermostat

Figure 2.43: Order parameter P2 vs. time for C16H34 at temperatures T = 200, 250, 300 K. Both graphs show the same quantity

under the same conditions, except that in the first case the Berendsen thermostatting method was used, whereas the Langevin

thermostat was applied in the second. Qualitatively the results are identical in each simulation: P2 fluctuates more and more as

the temperature is lowered, until T reaches 300 K, where the fluctuations are much smaller (The results for T > 300 K are not

shown for clarity). At T = 250 K, an increase is noticeable in the average value of P2, suggesting that a phase transition may

occur at a temperature between 200 and 300 K; if the Langevin thermostat is used, the increase in the value of P2 is larger, and

develops faster (note the difference in vertical scales). Gliding averages were applied to the data to reduce the noise.

2.4.3 Discussion

The study of crystallization of short n-alkane chains with an all-atom
model is a time-consuming task, even for small systems. This is the
reason why we could not access the crystal via homogeneous nucleation
with continuous cooling experiments, since the affordable cooling rates
are still orders of magnitude too large.

It is still possible to force the system to crystallize under these con-
ditions using an unrealistically stiff torsional interaction which causes
the chains to stretch very early during the cooling. This allows for
the formation of a crystalline structure whose features are consistent
with what is expected for such small chains. Nevertheless, the phase
transition for this model takes place at a much too high temperature,
even above the experimental melting point; this is a strong drawback
of this model, and it is to be expected that the use of such a force field
for crystallization experiments with much longer chains (as PE can be
considered as the limit of alkanes for large n) would not yield sensible
results. In particular, the too low proportion of gauche states would
prevent the chains to fold and form lamellae, which is an important
feature of polymer crystals.

The modified OPLS model we have been using for this study has a
more reasonable proportion of gauche states at high temperatures as it
was shown in sec. 2.2.1.3, but this also makes it less stiff and thus does
not favor the fully stretched conformation of the chains that would enter
the crystal. For this reason, crystallization could not be observed while
cooling down at a high rate, and precursors of a phase transition could
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only be observed after several nanoseconds of an isothermal run at T =
250 K (little less than 50 degrees of undercooling with respect to the
experimental melting point). Fluctuations in the mean-square radius
of gyration and the P2 order parameter indicate that a phase transition
should be observable between T = 300 and 200 K, but other isothermal
runs and continuous cooling would be necessary to characterize the
transition more precisely.

2.5 Simulations of polypropylene

2.5.1 Introduction

Motivation for studying polypropylene. Another polymer of key
importance for industrial purposes is polypropylene (PP). In addition
to being a component of many everyday-life objects, this material also
has many interesting physical properties. Some of these arise directly
from its crystalline structure at ambient temperature, making it widely
used for plastic products. This polymer shows a very good resistance
to chemical solvents, bases and acids. Its main industrial applica-
tion comes from its ability to be injection-molded, yielding a semi-
crystalline material whose mechanical properties permit many different
uses. The structure of the polymer itself influences the arrangement
of the molecules in the solid phase. The difference in structure of PP
and PE, although small in chemistry terms, may have a great influence
on the crystallization of the polymers due to a change in chirality (the
monomers of PP are chiral, contrary to those of PE).

Some background from chemistry. Polypropylene is produced
from propylene (fig. 2.44) through different methods, yielding chains
with variable mass distributions, purity and stereoregularity. Poly-
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Figure 2.44: Propylene.

propylene chains consist of a polyethylene-like backbone, with a methyl
group substituting a hydrogen atom on every second carbon atom of
this backbone. The overall chemical formula of the pure polymeric
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Figure 2.45: Polypropylene.

material is CnH2n+2, as for polyethylene. This hides the important dif-
ference between PE and PP: The change arises from the methyl groups,
giving the polymer stereospecific properties. There are three possible
stereoregularities which also correspond to different physical properties:

• Isotactic polypropylene has all methyl groups on the same side of
the chain (fig. 2.46(a)).

• syndiotactic polypropylene presents an alternate configuration of
methyl groups along the chain (fig. 2.46(b)).

• Atactic polypropylene consists in a random arrangement of both
tacticities.

The tacticity of the polypropylene chains is determined by the pro-
cess through which polymerization of propylene units is achieved. As
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Figure 2.46: Chemical formulae of isotactic and syndiotactic polypropylene. Note that

the methyl groups are always on the same side of the chain in the isotactic PP, but

alternating in the syndiotactic form.

there are several ways of polymerizing propylene, some methods do not
impose any stereoregularity and therefore yield the atactic stereoiso-
mers of polypropylene. By contrast, the Ziegler-Natta polymeriza-
tion method allows to select a certain stereo-specificity of the resulting
macromolecules. The use of a TiCl3 crystal and AlEt2Cl as Ziegler-
Natta initiators forces the generated polymer to grow with methyl
groups all on the same side of the chain, corresponding to the isotac-
tic form of the molecule. The use of other catalysts allows to produce
the syndiotactic species by enforcing an alternating orientation of the
methyl groups.

Isotactic and syndiotactic polypropylenes (iPP and sPP) have a stere-
oregular structure that makes the organization of the chains in a crystal
easier. In particular, steric effects greatly favor the formation of a heli-
cal structure in the case of iPP, which results in a crystalline structure
composed of both left- and right-handed helices [92].

Crystalline phases of PP. Stereoregular polypropylene chains ex-
hibit a wealth of different crystalline phases that have been extensively
studied [64].

The iPP chains are composed of a mixture of trans (t) and gauche (g)
torsion angles of the carbon backbone, as is the case for polyethylene.
As the temperature is lowered, energy minimization favors the sequence
tgtgtg. . . , which leads to the formation of 31 helices. The isotactic
polypropylene crystals are found in three specific forms, which are:

• The α phase, consisting of left- and right-handed chains in a
monoclinic cell (angle β ≈ 100o). The chain axes are parallel, and
alternate layers of left- and right-handed chains were identified.

• The β phase, which is a frustrated arrangement of left-handed
(or right-handed) chains only, and has a trigonal unit-cell.

• The γ phase, which is similar to the α phase and usually mixed
with it in the same crystallites; the difference consists in a tilt of
about 80o between the axes of left- and right-handed chains.
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Syndiotactic polypropylene has a structure that does not require the
formation of helices for energetic reasons, because the all-trans config-
uration does not imply steric overlaps as in the case of iPP. This could
therefore be expected to be the ground state for sPP, which would then
tend to crystallize as PE chains. However, it has been observed that
another structure is actually privileged at low temperatures, as the
crystals are formed of helical chains: The helices are not of the 31 type
as in the case of iPP, but rather consist in a sequence of g+g+ttg−g−tt. . .
states. Two crystalline structures are observed experimentally:

• An isochiral phase, composed of left-(or right-)handed helices
only, obtained either under shear or at high pressures;

• an antichiral phase with alternating left- and right-handed helices,
which is more stable at atmospheric pressure and high tempera-
tures.

2.5.2 Definition of the model

As a first attempt to simulate PP melts, we used the parameters of the
force field described above for n-alkanes. This certainly represents an
over-simplification of the structure of PP, but might already give an
idea of the behavior of such a polymer at high temperature and under
cooling. This corresponds to a simplification of the model prescribed
by the OPLS force-field, but we expect the rotation about the C−C
bond that links a methyl group to the backbone to be unimportant for
the description of polypropylene melts. The excluded volume due to
this side-group on the other hand has high importance for the chains’
packing. The parameters are exactly the same as described in sec. 2.2.1,
without any specific features taken into account for the methyl groups.
This means that the rotation of the methyl group around the C−C bond
that links a backbone carbon to a methyl carbon is not constrained by
an explicit torsional potential, and that the torsional interaction be-
tween consecutive backbone carbons is not explicitly modified to take
into account the specificity of PP. This would certainly deserve im-
provement. Here we take the stance that most of the characteristics
of polypropylene chains result from steric effects associated with the
presence of the methyl groups.

2.5.3 Simulation details

We simulated both isotactic and syndiotactic PP chains, in systems
containing 84 C22H46 molecules. The constituent chains consist of 6
repeat units (−CH2−CH(CH3)−), plus a “head” (one methyl group
CH3−) and a “tail” (one propyl group −C3H7). Figure 2.50 shows a
representation of an iPP chain with its “head”and“tail”. The structure
of the head and tail parts was given by looking at the initial and final
conditions of the Ziegler-Natta reaction. Figures 2.47 and 2.48 show
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snapshots of one chain of iPP and sPP extracted from the simulations
at high temperature.

The systems were created at high temperature (T = 500 K) and at-
mospheric pressure as a set of elongated chains positioned at the sites of
a perfect (arbitrary) lattice, and then equilibrated after the immediate
melting process occurring under these conditions. The all-trans config-
uration is a stable state for sPP, but not for iPP; in this case the steric
interactions would yield a much too large energy, and the simulation
would break down. Thus for iPP another initial configuration has to

Figure 2.47: Short chain of isotactic

polypropylene.

Figure 2.48: Short chain of syndiotac-

tic polypropylene.

be used as input for the simulation program. One possibility would be
to create the helical structure by hand, computing the positions of all
the atoms in the molecule so that they conform to the ground state of
iPP. However, this configuration is much more complicated than the all
trans conformation that has been used for PE (and sPP with a slight
modification to add the extra methyl groups). Therefore we used a trick
to create the equilibrium iPP configuration from the simpler sPP-like
all trans conformation: A method often used in simulation to anneal a
system and provide a suitable initial configuration was adopted: The
molecular interactions were turned off and gradually switched on dur-
ing a short one-chain simulation, providing an equilibrated structure
that could be duplicated to create an appropriate initial configuration
to be simulated as explained above.

The melt equilibrated at high temperature has been cooled down to
T = 200 K, at two different cooling rates (−10−4 and −10−5 K ps−1).

2.5.4 Preliminary results and outlook

The very small chains used in this preliminary study obviously do not
allow to form folded helical structures as observed experimentally. The
main goal here was to extrapolate our PE model to a more complex, but
still very simple polymer, and to attempt to form crystal precursors via
continuous cooling. Crystallization was however not observed, perhaps
due to a too crude model and the lack of enough time to let the system
relax at low temperatures (it would have been interesting to carry out
isothermal relaxations as we did for n-alkanes). Still, the few results
we obtained present some interest as they provide an insight into the
internal structure of polypropylene chains in the melt.

Torsions. As is the case for n-alkanes and PE—as well as for any kind
of polymer—the torsional degree of freedom is the most important for
the relaxation of polypropylene conformations. It is interesting to look
at the probability distribution of torsion angles, and compare it for the
two stereoregular polypropylene species and for the alkane reference.
This is done in fig. 2.49, which shows such a probability distribution at
T = 450 K, for iPP, sPP and PE. This comparison demonstrates that
the simple assumption about the torsional potential we made for this
very simple model yields results in agreement with what is expected
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Figure 2.49: Probability distributions of torsion angles for iPP and sPP chains at T = 450 K. Full lines correspond to average

distributions, taking into account all torsion angles inside the chains; the two other curves present partial distributions for either
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Figure 2.50: Schematic representa-
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torsions; one monomer as we defined

them is stressed with brackets. “Head”

and“tail”of the iPP short chain are also
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for polypropylene: It can be seen from fig. 2.49(b) that the presence of
methyl groups does not qualitatively change the torsion angle distribu-
tion, but strongly favors the trans state as this configuration allows to
minimize overlaps of the different parts of the molecule. The fact that
this distribution still exhibits the same features in the case of iPP is
more surprising, as one would expect the chiral structure of the whole
molecule to break the symmetry of the distribution. This appears not
to be the case however (fig. 2.49(a)), and this is explained by decompos-
ing the torsion angle distribution into two contributions, named intra-
and inter-monomer. Figure 2.50 illustrates the different positions of
the so-called intra- and inter-monomers; note that this distinction is
arbitrary and completely connected to our conventions for labeling the
different atoms. Figure 2.49(a) points out the fact that the distribu-
tion of intra and inter angles are completely different and compensate
to yield the average P (φ). For each torsion angle, one gauche state is
unfavorable because of the overlap of −CH3 groups; this is reflected in
the population of the other two states. The chain is thus composed of
a sequence of trans and gauche± states, with alternate preference for
gauche+ or gauche− along the backbone. This result seems reasonable,
but still at this point a more rigorous modeling of the torsional in-
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teractions would be needed to reproduce the correct helical structures
accurately.

Another aspect of the evolution of polypropylene melts toward lower
temperatures is presented in fig. 2.51: The probability of trans and
gauche± states is plotted as a function of temperature during the cool-
ing. In the case of sPP, there is a slight increase in Ptrans and therefore
a small decrease in Pgauche± . This result is similar to what has been
observed in the case of n-alkanes, to a smaller extent though. What is
observed in the case of iPP is different: The probability of the trans
state does not vary much, but the probabilities of gauche states split,
showing a larger population of gauche+ at low temperature. Although
very small, this effect might be interpreted as the first sign of the for-
mation of stable helical structures in the melt, with one favored gauche
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(a) Orthorhombic (b) Triclinic (c) Rotator

Figure 2.53: Different crystal structures of n-alkanes (fig. 2.9).

state (gauche+ for inter-monomer torsions) and one favored trans tor-
sion angle (intra-monomer).

Density. Continuous cooling has been applied to the melts of iPP
and sPP short chains, in the same manner as it was introduced in
sec. 2.2.2; the resulting density as a function of temperature is plotted
in figure 2.52. Two different cooling rates were employed, −10−4 and
−10−5 K ps−1. There is no significant change associated with stere-
oregularity, i.e. the density appears to be identical for both iPP and
sPP, as one can expect. There is no noticeable variation of the den-
sity with cooling rate either, except a slight change in the slope for
the fastest rate which does not appear for slower cooling; this indicates
a glass transition that occurs at higher temperature for larger cooling
rate and is consistent with experiments—but the effect is very small.

2.6 Summary
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Figure 2.54: Phase diagram showing

the different phase transitions (fig. 2.23)
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We have been using an all-atom model to simulate short chains of n-
alkanes in the melt; these systems are accessible to such detailed sim-
ulation scheme and may be considered as a first step in the study of
polymer systems. The wealth of structures that are observed experi-
mentally make n-alkanes very interesting systems for numerical studies.
We tested the OPLS force field and modified the torsional potential in
order to reproduce more closely the torsional angle distribution mea-
sured in another detailed study of polyethylene chains; using this new
model we could attempt to simulate the melting and crystallization of
n-alkanes.

The most common crystalline states for n-alkanes are orthorhombic
and triclinic; experiments also revealed the existence of a solid-solid
phase transition that led to the formation of an intermediate phase be-
tween the solid and the liquid, called the rotator phase (fig. 2.53). Our
model was shown to successfully reproduce this phase transition and
the occurrence of the rotator phase during continuous heating sim-
ulations starting from perfect crystalline configurations generated by
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hand (fig. 2.54). Experimentally several rotator phases have been iso-
lated and have slightly different features; our simulations only yield a
generic rotator phase with hexagonal symmetry, but this is already an
interesting finding since the simple model used is aimed at reproduc-
ing liquid state properties and could not be expected to give such an
accurate description of solid phases a priori.

Evidence for the occurrence of the rotator phase include the decay of
several order parameters that show more specifically the decorrelation
of the orientation of the chains’ planes before the loss of a privileged
direction for the molecules (fig. 2.55); and the change from orthorhom-
bic (or triclinic) to hexagonal symmetry before the transition to the
molten state, as indicated by the characteristic jump in the ratio of the
lattice parameters a and b (fig. 2.56).
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The transition is also observed during isothermal relaxation, and
in this case the rotator phase could be stabilized for at most 1 ns
(fig. 2.57); this is still far from the behavior of n-alkane systems ob-
served experimentally, as the rotator phase is found to be stable over a
large range of temperature. This fact points out the limitations of the
model: The force field used is not optimized for solid-state simulations,
and the perfect, infinite crystalline configurations are not realistic; this
leads to a much too high melting temperature observed in the simula-
tions compared to experimental values.

Another study of the n-alkane crystals consists in trying to reproduce
crystalline configurations from the melt via a cooling procedure. This
approach did not prove very successful as a result of both the probable
limitations of the model and the too large CPU time needed for such
a detailed simulation scheme; cooling simulations only led to frozen
configurations (fig. 2.58). However, it could be shown that a model with
an unrealistic, stiffer torsional potential yields a crystallized structure
upon cooling (fig. 2.59), and that using the OPLS-mod model a signal
is observable in the order parameter characterizing the development
of order in a supercooled n-alkane melt at intermediate temperatures
between the frozen and the liquid states (fig. 2.60).
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3.1 Definition of models

Studying polymer crystallization with computer simulations is a dif-
ficult task, since one needs for that purpose huge computational re-
sources: It is necessary to use a large simulation box so as to avoid
artifacts of chains interacting with themselves and in order to increase
the probability of a nucleation event; also a long simulation time is
needed to monitor the crystal growth process. It is a formidable task
to simulate that process with a detailed model such as the all-atom
model as is presented in chapter 2. Thus the study of polymer crys-
tallization with computer simulation is restricted to a small amount of
matter over a rather short period of time (i.e. using a large cooling rate
for instance), and is still impossible with a detailed model. That is the
reason why we are forced to use a simplified approach: One possible
choice to increase the efficiency of the simulation is to use a so-called
united-atom model. This scheme assumes that the structure of the
molecules on the scale of the hydrogen-carbon bond in unimportant
to describe the general behavior of the chains. Thus, several hydro-
gen atoms are absorbed with the corresponding carbon into one single
spherical bead, which size, position and interaction characteristics are
calculated accordingly. This procedure allows to restrict the number
of degrees of freedom that one would have had to take into account
when looking at the original atomistic model. This simplification al-
lows to reduce the amount of time needed for the simulation since the
number of particles has decreased (roughly by a factor of three, in the
case of hydrocarbons); but that is not the only reason why a simula-
tion with united-atom chains would be faster: Losing details on the
length scale of the bonds (and considering heavier particles), one can
safely increase the time-step used for the integration of the equations
of motion. Since the smallest relaxation time is associated with the
vibration of the atoms around their equilibrium position, and that it
is this relaxation time that provides an upper limit for the integration
time-step, the latter can be increased while averaging over the fastest
degrees of freedom as one does when going from an all-atom simulation
to a united-atom scheme.

Coarse graining the particles involved in the simulation thus makes

75
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the code more efficient, at the cost of a lower resolution of the result-
ing configurations, since information about the atomistic structure is
lost. We therefore have to adjust the simulation scheme to the desired
precision that is needed for a particular study. Choices for different
schemes range from the most detailed quantum mechanical ab-initio
calculations to the completely macroscopic finite-element methods. For
our purpose, an access to information about the conformations of the
different molecules interacting in a polymer melt is needed. The rele-
vant molecular simulation methods consist of the all-atom scheme we
already presented, and mesoscopic approaches such as molecule-based
Monte-Carlo methods. We have to compromise and choose a tractable
simulation method that would allow us to simulate big enough systems
over long times while keeping enough accuracy on the molecule config-
urations to get a clear description of the resulting crystalline structure.
One scheme that matches both requirements consists in using a model
slightly coarser than the united-atom picture. This kind of model has
been successfully applied to several polymers, and offers a high effi-
ciency. We now briefly review the characteristics of such a scheme
applied to poly(vinyl alcohol), showing how the needed parameters for
such a model can be derived; then we introduce new models designed
to understand the influence of the most important parameter of these
coarse-grained models, and use them to study crystallization.

3.1.1 The CG-PVA model

The CG-PVA model [97] is a coarse-grained simulation model [84] with
parameters similar to these of the abovementioned all-atom scheme. It
consists of a set of particles characterized by the way they interact with
each other; the different interactions are accounting for connectivity,
excluded volume and flexibility of the coarse-grained chains. Connec-
tivity is ensured by a harmonic interaction between two consecutive
particles along the chain; excluded volume results from a repulsive po-
tential applied between any two beads, provided they are not close
neighbors along the chain, and flexibility arises from the angular inter-
action that restricts angles between consecutive bonds. The simulation
is based on exactly the same ingredients as the atomistic method; only
the physical scales are modified. We need to define the interactions be-
tween the coarse-grained beads; there is a standard procedure to map
the original potentials onto the coarse-grained ones, i.e. to define how
two coarse-grained particles interact as a result of the underlying inter-
actions between all the constituents of those beads. One way to do so
is to go back to the quantum physics level and derive the form of the
interaction taking into account the fine structure of the molecules [125];
it is also possible to use another method that avoids these heavy calcu-
lations to rely on the already “quantum-averaged” atomistic force field
instead. Using this method, one has first to run simulations for the rel-
evant polymer with an all-atom force-field. The information extracted
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from such a simulation is then used in an iterative optimization proce-
dure that adjusts the form of the different coarse-grained interactions.

The first part of the coarse-graining procedure consists in defining a
scaling factor and where to put the center of the coarse-grained particle
with respect to the original atoms. In the case of the CG-PVA model
we use, one monomer was chosen to be replaced by one single parti-
cle which sits on the carbon next to the hydroxyl group; one particle
replaces then seven atoms in the original molecule. Once this choice
is made, one has to define the interactions between the new particles.
To achieve this, probability distributions are measured on the atom-
istic simulations. One probability distribution is related to a potential
that governs the behavior of the corresponding variable through the
Boltzmann relation:

P (x) ∼ exp
[
−U(x)
kBT

]
. (3.1)

In the case of a polymer in a melt, the situation is rather complicated
as there are several interactions binding the particles together; there
might be a non-negligible influence of one parameter on another. We
can still make the assumption that these probability distributions we
are interested in (probability for bond length, angle between bonds,
distance between two particles) are almost independent of each other,
and then use the simple relation (3.1) to derive the potential corre-
sponding to the considered variable. An a posteriori verification is then
required to check that the coarse-grained potentials used still yield the
correct distributions, as they were measured on the original model.
Another commonly used approximation consists in assuming that the
many-body interactions in the dense system can be reduced to pairwise
contributions. The use of pair potentials only reduces the complexity of
the simulation algorithm; the interactions taken into account introduce
more complex correlations between the different particles.

The interactions taken into account on the atomistic scale can be
split into two parts : the bonded interactions, and the non-bonded ones.
The first kind consists in the bonding potential (Ubond) which connects
two consecutive particles, the angular potential (Uang) which governs
the angle between two consecutive bonds, and the torsional potential
(Utors) which describes the relative orientation of two consecutive di-
hedrals. The second sort of interactions regroups the intermolecular
potential (Umol) and the electrostatic contribution (Uel). Umol is in
turn composed of two distinct parts, a repulsive hard-core potential
which prevents overlapping of two different beads,1 and an attractive
van der Waals interaction. Finally, the electrostatic part Uel accounts
for the interaction between two partially charged particles.

1The excluded volume potential is switched off between two particles that are

close neighbors along the chain and thus necessarily or occasionally overlap. For

our coarse-grained simulations, the excluded volume interaction is off for particles

that are separated by less than three bonds, so that the bonded and non-bonded

interactions do not have combined effects on some particles.
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The interactions described above are used to reproduce the behav-
ior of molecules when simulated with an atomistic resolution. The very
same types of interactions are assumed to be suitable for a description of
the interactions between two coarse-grained beads, and an automated
procedure is applied to adjust the parameters of such interaction po-
tentials. A functional form is defined for the different potentials, and
an optimization scheme modifies the values it may involve until a satis-
factory agreement is found with an atomistic measurement for a given
distribution. One starts the optimization procedure by giving guessed
values to the different potential parameters; a series of simulations of
the so-defined coarse-grained model is run for each potential, varying
the corresponding parameters. The first potential to be adjusted corre-
sponds to the strongest interaction; all potential are then treated until
the weakest contribution is determined. Potentials are thus considered
in the following order:

• Binding potential,

• Angular potential,

• Excluded-volume potential,

• Torsional potential.

The electrostatic potential should also be taken into account, but de-
pending on the kind of systems under consideration, it might have a
very weak or strong influence. In the case of poly(vinyl alcohol) the
system is neutral, and the (weak) effects of partial charges born by
the different groups are taken into account in the determination of the
other interactions (no specific coarse-grained electrostatic interaction
needs to be determined explicitly).

In the case of the CG-PVA model [97], for both the binding and
the angular potentials, the measured distributions could be inverted
according to

Ubond(r) = −kBT ln [P (r)] (3.2)

and

Uang(θ) = −kBT ln
[
P (θ)
sin(θ)

]
(3.3)

and used directly in the coarse-grained simulation. The resulting distri-
butions compared well enough with the original ones, so that no further
optimization was needed. This is the sign that the associated degrees
of freedom are (almost) completely uncorrelated from other parameters
in the system.

The situation is more complicated in the case of the excluded volume
interaction, since the non-bonded interaction between two particles is
necessarily influenced by the structure of the polymer chain as dictated
by the strong bonded interactions. For this reason, careful choice of
the form of the interaction and an optimization of the involved param-
eters were needed. The coarse-grained beads are spheres that represent



3.1 – Definition of models 79

one whole monomer comprising seven atoms in a relatively large vol-
ume; one therefore expects those beads to interact more softly than two
atoms as they are described in the original all-atom model. In the lat-
ter, the potential used has the usual 6–12 Lennard-Jones form [eq. 2.4];
for CG-PVA, a softer 6–9 form was found to yield a satisfactory agree-
ment while comparing radial distribution functions computed for every
second carbon along the atomistic backbone and for the coarse-grained
beads:

Umol(r) = ε0

((σ0

r

)9
−
(σ0

r

)6
)
. (3.4)

The potential was optimized by running several simulations with dif-
ferent values for the two Lennard-Jones parameters εLJ = ε0 and
σLJ = σ0, and minimizing the difference between the two distributions
using a simplex algorithm.

No torsional potential was used on the coarse-grained level, since
the corresponding distribution in the atomistic simulation does not
show any structure. The electrostatic part of the interaction was also
disregarded because the beads are electrically neutral. Any influence of
partial charges taken into account in the atomistic model is contained
in the angular and non-bonded potentials.

We give now a summary of the different parameters obtained for this
CG-PVA model through the procedure described above [97]:

• Connectivity:

Ubond(b) =
1
2
kbond(b− b0)2 , (3.5)

with an equilibrium distance between the beads b0 = 0.26nm =
σ/2, and a spring constant kbond = 2704kBT/σ

2 (fig. 3.1). The
equilibrium value of the bond length thus sets up the unit distance
σ used in the program.
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Figure 3.1: Bonded interaction poten-
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• Intermolecular interaction:

U0
mol(r) = ε0

((σ0

r

)9
−
(σ0

r

)6
)
, (3.6)

with bead diameter σ0 = 0.46nm = 0.89σ and energy well ε0 =
1.511kBT (fig. 3.2). The latter Lennard-Jones potential has been
truncated and shifted so that

Umol(r) = U0
mol(r) + U cut

mol

= ε

((σ0

r

)9
−
(σ0

r

)6
)

+ U cut
mol , (3.7)

where U cut
mol = U0

mol(rcutoff) for r ≤ rcutoff , and U cut
mol = −U0

mol(r)
for r > rcutoff . Thus results for r larger than the cutoff distance
rcutoff, Umol(r) = 0. In our simulations, rcutoff = 1.02σ. We
expect that this shift in the potential will not influence the statics
or dynamics of the simulation.
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• Angles: The shape of the angular potential is shown in fig. 3.3,
and will be described in more details later. The measured distri-
bution is Boltzmann inverted and used as a tabulated potential
in the simulation program.
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Figure 3.3: Angular potential. When creating a coarse-grained model like the one we just presented,
one has to bear in mind that there are multiple possibilities for the
coarse-graining procedure. Apart from the different possibilities that
arise from the many choices one has for the position of the coarse-
grained beads, there are also a lot of possible ways to adjust the po-
tential: It is possible to tune the interactions so as to reproduce the
behavior of a polymer as it can be described with the use of atomistic
simulations. The most general procedure would involve a systematic
minimization of a function with dimensionality corresponding to the
number of parameters needed, and could even be much more compli-
cated if more general tabulated potentials are used (i.e. the interac-
tion does not have to be described by a simple analytical form); this
method is normally not tractable, and so one has to decompose the
parameter optimization into several parts, assuming some interactions
are independent from each other. It is also possible to take some other
parameters into account in the minimization scheme, such as pressure.
This ensures the pressure does not have unreasonable values in the
simulation using the optimized interaction parameters.

Unlike in the case of detailed simulations on the atomic level, it is
not possible to define all physical scales properly: The characteristic
quantities phenomenologically established on the atomic scale that are
used to yield the all-atom simulation parameters are not available for
other arbitrary scales like these relative to a particular coarse-grained
scheme. In the case of the CG-PVA simulation scheme, there is a
definite mapping for length scales, since the coarse-graining method
explicitly specified the length scale σ that corresponds to 0.52 nm (the
average distance between monomers). On the other hand, there exists
no such mapping for time scales, and it is not easy to determine. Ta-
ble 3.1 presents a list of the reduced units used in the coarse-grained
simulation.

Table 3.1: List of units for the quan-

tities input and output of the coarse-

grained simulations.

Quantity Unit

length σ

angle rad or degree

time τ

energy kBT

force

constants

kBT/σ2,

kBT/rad2

temperature kBT

pressure kBT/σ3

The model presented above has been found to describe the properties
of poly(vinyl alcohol) well, and in particular to allow one to simulate
its crystallization with high efficiency compared to atomistic or united
atom models. We have been using this coarse-grained model as a basis
for our studies and varied one of its most important parameter, the
angular potential. We therefore created several derived models and
tried to describe the influence of that particular parameter upon the
general behavior of the system.
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3.1.2 Definition of new models by variation of the angu-

lar potential

The angular potential is a very important parameter of our simulation
model; its presence allows to keep track of underlying physical prop-
erties that could have been “lost” in the course of the coarse-graining
process2. From the original interactions one has to consider when simu-
lating a polymer with an atomistic scheme, we have seen that two were
neglected in the definition of our coarse-grained model: The torsional
potential turned out to be almost zero in the case of PVA, and there-
fore was disregarded; and the electrostatic interactions were among the
completely averaged degrees of freedom we do not need to describe
anymore. Going one step further, we would have used a coarser “bead-
spring” model consisting only in beads representing a bigger number of
atoms (up to several monomers). In such a case, the interactions could
be limited to connectivity and excluded volume, without any parame-
ter determining explicitly the chain stiffness. This stiffness arising from
the bare atomic interactions is indeed predominant when attempting to
describe crystallization, since without such a parameter, no component
of the model would drive the phase transition:3 Upon cooling down,
the angular potential provides a driving force that leads the chains to
stretch and thus create nuclei from which the crystalline phase can
grow. As an illustration of the importance of this particular parameter
of our model, one can consider the curves presented in fig. 3.5: This
represents the phase diagram obtained for CG-PVA during a contin-
uous cooling simulation (that we shall describe in more details later),
and slightly different models which use the very same parameters as
CG-PVA, except for the angular potential which is then zero. It is
easy to see that, while the first model exhibits a clear first-order like
phase transition which is the signature of crystallization, the latter just
evolve toward low temperatures without any such transition, until they
eventually freeze (for the w0 model, the glass transition occurs around
T ' 0.1; see fig. 3.4). This is a clear evidence that in the case of our
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Figure 3.4: Phase diagram for the w0

model, extended to very low tempera-

tures. No abrupt jump in the volume

is witnessed, but a clear change in the

slope is the sign of the glass transition.

Linear fitting of the different branches

allows one to determine the glass transi-

tion temperature, Tg ' 0.11.

model, the angular potential is responsible for ordering the polymers
and driving them to a crystalline phase.

The angular potential appears to be an important parameter since
it allows to reproduce the phase transition to the crystal in our sim-
ulations, and it is a very interesting element of the model: This po-
tential constitutes a simple and general enough means of taking into
account several physical properties of the considered polymer. It is
then conceivable to simulate different kinds of polymers with chemi-

2as would be the case of a coarser model that could account for the large-scale

properties of polymers (gaussian model) but would be too crude to reproduce the

detailed behavior on a more local scale.
3Apart from the attractive part in the intermolecular potential; however this

contribution is not sufficient to account for the tendency of the chains to stretch

and crystallize. The CG-PVA model that succeeds at reproducing semi-crystalline

configurations does not include any attractive interaction.
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Figure 3.5: Comparison of the phase

diagrams for CG-PVA and two other

models without angular potential:

Volume per monomer as a function of

temperature (measured during contin-

uous cooling). The w0 model has ex-

actly the same parameters as CG-PVA,

except for the angular potential; x0 has

another difference which lies in the set-

tings of the Lennard-Jones potential.

For CG-PVA and w0, this interaction

is turned off for nearest-neighbors and

next-nearest-neighbor beads along one

chain; whereas for x0, the interaction

is on for next-nearest-neighbors. The

resulting overall intra-chain interaction

(combination of angular and Lennard-

Jones potentials) makes the w0 chains

more flexible than for the CG-PVA

model, and the chains are stiffer in the

case of x0. For these reasons, w0 has a

higher density and x0 a smaller density

than CG-PVA.
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cally different structures, that would be mainly reflected in the shape
of that potential. Indeed, the other parameters are completely general,
and their form does not need to be varied to describe other chemi-
cal species: The harmonic potential ensuring connectivity and the soft
Lennard-Jones repulsive potential preventing overlaps of the particles
could be used for many different kinds of polymers. One could then
imagine to reproduce several polymers’ characteristics with changing
only the angular potential in the coarse-grained model defined above;
the energy scales could then be renormalized to account for a smaller
or greater influence of excluded volume for instance. This procedure
would allow to describe qualitatively many different polymers with lit-
tle change from the original model; still, it would not be appropriate to
use such a scheme to simulate polymers with very different geometries
(bigger side-groups, several chemically different groups, . . . ), neither
would it be suitable for polymers with very specific or strong interac-
tions.

In order to investigate more precisely the influence of this angular
potential on the behavior of our coarse-grained model, we decided to
create several new models inspired from CG-PVA and differing only
in this parameter. This is a reverse procedure: Instead of modeling
different polymeric systems from the atomic scale, we start with the
opposite point of view and create arbitrarily new models that could
describe a whole set of somewhat different polymers with varying flex-
ibility. The angular potential derived for poly(vinyl alcohol) is a good
starting point for such an undertaking, since it exhibits very clearly
the general structure one could expect from a linear polymer: Looking
at the shape of the angular potential in fig. 3.3, one can notice three
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minima that correspond to the three states we expect from the general
properties of polymer chains. The angle θ we are considering here in
the coarse-grained model is defined as the angle between two consecu-
tive coarse-grained bonds. This corresponds, in terms of the underlying
atomistic geometry, to bonds linking every second carbon; thus one of
these angles θ results from the configuration adopted by five consecu-

=180oθ

(a) trans–trans

=122oθ

(b) trans–gauche

θ = 91o

(c) gauche–gauche

Figure 3.6: Schematic representation

of the favorable torsional states on the

atomistic level, and the corresponding

coarse-grained bond angles. The angular

potential corresponding to these states

is presented in fig. 3.7. (Original back-

bone: light color; coarse-grained model

bonds: dark color.)

tive carbon atoms, which is directly related to the torsional states of the
backbone. One coarse-grained angle is then defined by two consecutive
torsional angles of the backbone (neglecting the variations around the
carbon atoms’ equilibrium states, arising from bond length and bond
angle fluctuations on the atomistic level). The possible states of the
backbone result from a statistical mixture of the torsional states, which
are, for one quadruplet of carbon atoms: trans (torsion angle φ = 180o,
all bonds lying in the same plane), gauche± (φ ' 60o or 300o) and cis
(φ = 0o or 360o), from the most to the least favorable (in the case
of simple polymers like polyethylene or PVA, see chapter 2 for more
discussion on the torsional states in the case of alkane model; fig. 2.1
presents a typical torsional potential for simple polymer chains). In
the case of two consecutive trans states, on the coarse-grained scale
the angle would be equal to 180o. A quick calculation of the θ values
corresponding to other torsion angles combinations gives the following
estimate, using polyethylene geometry:

• For trans–trans± states, θ ≈ 180o.

• For trans–gauche± states, θ ≈ 122.1o. This corresponds roughly
to the second minimum exhibited in fig. 3.3.

• For gauche∓–gauche± states, θ ≈ 91.9o. This is close to the value
reported for the last minimum of the CG-PVA angular potential.

These estimates are computed using the equilibrium positions of car-
bon atoms of the backbone with respect to the bond length and bond
angle fluctuations. Values observed for the minima in fig. 3.3 are closer
to 130o and 95o approximately; this can be understood by considering
that bonds can be stretched, and (this is more probable however) that
bond angles are slightly above their equilibrium value (which is actu-
ally an equilibrium value only in case the other degrees of freedom do
not interfere) because of packing and thermal excitation. Moreover,
these estimates were obtained using the polyethylene force field spec-
ifications, just to get an order of magnitude of the angles we should
expect. This could give slightly different results in the case of PVA.

The new models created in order to study which influence the an-
gular potential has on the general behavior of the model were defined
this way: The original CG-PVA angular potential has been cut into
pieces which are interpolated by cosine functions. The last, repulsive
part of the potential that ensures the chain cannot fold onto itself,
was extrapolated by a parabola (cf. fig. 3.7). This combination of func-
tions provides a continuously differentiable expression for the potential,
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which is necessary since the simulation code computes from there the
force exerted by one bead on another. This scheme also has the ad-
vantage that it makes it easy to adjust the depth of the minima and
the height of the different barriers in between. This parametrizable
potential has been used to generate several potentials which we will
use as different models in our study; these models could account for
differences in the chemical structure of various polymers, having still in
common the positions of the minima that are rather general for simple
enough polymers (in one case though, we varied slightly the position
of the last minimum from 90o to 95o).

3.1.3 Simulation parameters

The simulations we used to investigate the influence of the angular
potential involved the different models described above; they have sev-
eral parameters in common that we shall review now. These simula-
tions where run in the isothermal-isobaric ensemble, through the use
of a thermostat and a barostat. The thermostat used is the Langevin
thermostat presented earlier (cf. sec. 1.1.1.2), with friction coefficient
γ = 0.5 τ−1. The simulation always started with a setup followed by
an equilibration at high temperature, T = 1.0. What we refer to as
a temperature is actually a thermal energy, setting the energy scale of
the simulation - it could actually be expressed in units of kBT . This
“high temperature” corresponds to T = 550 K, as it was the temper-
ature at which the atomistic simulations where run to determine the
coarse-grained potentials’ parameters. This temperature is referred to
as “high”, since, in the case of PVA, it is above the melting point.

The pressure is kept constant during all simulations, at a value of
8 kBT/σ

3. This is achieved using the Berendsen barostat with coupling
constant βT /τP = 10−5 τ−1. The actual value of the pressure does not
matter much here; it has been set to reproduce the conditions of the
original atomistic PVA simulations, which were run at atmospheric
pressure P = 101.3 kPa.

3.2 Characterization of different models

We have used many combinations of the parameters h1–h4 (fig. 3.7)
with different chain lengths; from these simulations many different
quantities were measured, allowing a comparative summary. Since the
influence of a general functional form is far more complicated to de-
scribe than a single scalar parameter, we were led to group several
models together in series in order to attempt a clearer description of
separate components of the angular potential. For each series, we have
emphasized the differences in the angular potential shapes, and the ef-
fects on the corresponding angular distribution which, although giving
an almost equivalent information, is usually found to be more telling.
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Characteristic quantities measured on the simulation data are used
to compare the different models: The persistence length lp, the squared
radius of gyration R2

g, the crystallization temperature Tcryst, properties
of the angular state (probability of the trans–trans state, average cosine
of the bond angle θ. . . ), or the energy 〈E〉.4 These quantities are
defined in sec. 1.3.

3.2.1 Comparison of different angular potentials

The first group of models consists of four different models for which
the angular potential only differs by the depth of the second minimum,
h2; fig. 3.8 presents these potentials and the corresponding angular
distributions. As can be seen on the latter, a decrease in the minimum’s
depth is directly related to a decrease in the population of trans–gauche
states. The trans–trans state becomes increasingly more populated, as
it is more favorable than the folded gauche–gauche states; this can
also be observed through the small increase in the average cosine of
the angle between bonds. This quantity is usually correlated with the
persistence length which, though, does not seem to follow the same
trend in this particular case, showing how small the effect is. A more
important effect that we will generally observe in this comparison is the
trend of the crystallization temperature measured during continuous
cooling, Tcryst with the probability of finding an angle θ in a stretched
conformation (i.e. greater than 150o, corresponding to the tt state).
Looking at the different models of this group, one notices that the
shallower the second well is, the higher the crystallization temperature.
This, as we will see later, is more generally linked to the probability of

4The values indicated for the energy are computed for the simulated system as

a whole, and thus cannot be directly compared for different chain lengths since the

total number of particles is not the same for simulations with different N .
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Figure 3.8: First group: Effect of the variation of the depth of the second well, tg.

trans states. The more flexible the chains, the more difficult it appears
to have them crystallize.

Table 3.2: Group 1, N = 10. Potential h2 lp Tcryst P (gg) P (tg) P (tt) 〈cos θ〉
CG-PVA 2.3 1.32 0.64 0.15 0.47 0.38 −0.68

x1 2 0.94 0.49 0.28 0.50 0.22 −0.55

x3 3 0.93 0.60 0.36 0.33 0.31 −0.53

x5 4 0.88 0.63 0.42 0.21 0.38 −0.52

x5f 5 0.94 0.64 0.45 0.13 0.42 −0.51

Table 3.3: Group 1, N = 50. Potential h2 lp Tcryst P (gg) P (tg) P (tt) 〈cos θ〉
CG-PVA 2.3 1.40 0.73 0.15 0.47 0.38 −0.68

x1 2 0.97 0.54 0.27 0.51 0.22 −0.56

x3 3 0.95 0.62 0.35 0.33 0.31 −0.54

x5 4 0.96 0.70 0.41 0.21 0.38 −0.53

x5f 5 0.93 0.71 0.44 0.13 0.47 −0.52

The second group contains again a variation of the second min-
imum. With respect to the models in the first group, the energy of
the gg state is higher. In addition, two subgroups characterized by
a different height of the tt–tg barrier are summarized here. The first
subgroup contains three different models (x9, x8, x6), while the second
has two (x64, x4). The height of the barrier between the trans–trans
and trans–gauche states is higher in the case of this second subgroup
(see fig. 3.9).

As already stated before, the decrease in the depth of the potential
well causes the probability of finding an angle in the tg state to de-
crease. This is again connected to an increase in the population of tt
states, which results in higher crystallization temperatures. It should
also be noted that the third peak in the angular distribution varies
much less than the two others, indicating that the modifications of the
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Figure 3.9: Group 2: Another study of the effect of the depth of the second well, tg.

second energy level mostly affects the population of tt and tg states.
The gg state is much less populated, and lp in this group is much higher
than in the first one.

Potential h1 h2 lp Tcryst P (gg) P (tg) P (tt) 〈E〉 〈cos θ〉
CG-PVA 6 2.3 1.32 0.64 0.15 0.47 0.38 1280.8 −0.68

x9 4 1 1.22 - 0.089 0.73 0.18 1285.4 −0.66

x8 4 2 1.29 0.60 0.14 0.56 0.30 1281.0 −0.67

x6 4 3 1.37 0.70 0.19 0.39 0.42 1280.0 −0.68

x64 5 3 1.19 0.67 0.22 0.41 0.37 1283.3 −0.64

x4 5 4 1.27 0.74 0.27 0.26 0.47 1276.6 −0.65

Table 3.4: Group 2, N = 10.

Potential h1 h2 lp Tcryst P (gg) P (tg) P (tt) 〈E〉 〈cos θ〉
CG-PVA 6 2.3 1.40 0.73 0.15 0.47 0.38 1412.9 −0.68

x9 4 1 1.21 0.47 0.089 0.73 0.18 1421.3 −0.66

x8 4 2 1.30 0.63 0.14 0.56 0.30 1421.0 −0.67

x6 4 3 1.37 0.76 0.19 0.38 0.43 1410.6 −0.69

x64 5 3 1.20 0.73 0.22 0.41 0.38 1425.2 −0.64

x4 5 4 1.34 0.82 0.26 0.26 0.48 1412.5 −0.65

Table 3.5: Group 2, N = 50.

In the third group we take the potential x1 from the first group
and study the influence of the height of the barrier between the tt

and tg states. It is observed from the angular distributions showed in
fig. 3.10 that this modification does not lead to a change in the height
of the tt state peak, but rather to a decreasing amount of transitory
states between tt and tg. In our convention, this is still accounted
for as a decrease of P (tt), since the latter probability is defined as∫ θ=180o

θ=150o P (θ)dθ. The states that disappear between tt and tg are moved
so as to increase the population of the two less favorable states, tg and
gg. As the height of the barrier is increased, the average value of cos θ
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Figure 3.10: Group 3: Effect of the height of the first barrier, tt-gg.

increases, corresponding to less stretched angular conformations, on
average. The lower P (tt) values correspond to lower crystallization
temperatures; the more folded the chains are, the less easily they could
stretch at low temperature and form a crystalline phase.

Table 3.6: Group 3, N = 10. Potential h1 lp Tcryst P (gg) P (tg) P (tt) 〈E〉 〈cos θ〉
CG-PVA 6 1.32 0.64 0.15 0.47 0.38 1280.8 −0.68

x81 4 1.03 0.53 0.25 0.49 0.26 1298.0 −0.59

x1 5 0.94 0.50 0.28 0.50 0.22 1303.7 −0.55

x2 6 0.89 0.46 0.30 0.51 0.19 1312.6 −0.53

Table 3.7: Group 3, N = 50. Potential h1 lp Tcryst P (gg) P (tg) P (tt) 〈E〉 〈cos θ〉
CG-PVA 6 1.40 0.73 0.15 0.47 0.38 1412.9 −0.68

x81 4 1.09 0.56 0.25 0.49 0.27 1444.3 −0.59

x1 5 0.97 0.54 0.27 0.51 0.22 1460.3 −0.56

x2 6 0.91 0.51 0.29 0.52 0.19 1472.0 −0.53

In the fourth group we regroup some models from groups 1 and 2
in two subgroups characterized by a different height of the gg state’s
energy level. The first three potentials (x8, x64, x4) have increas-
ing second minimum, while the first barrier is also higher for x64 and
x4; the second subgroup shows an increasing second minimum as well.
The third minimum for the first subgroup is higher than for the sec-
ond one. Comparison of data for the different models is useful as the
trends we have already stressed can be observed in each subset and
the relative values can be confronted to rationalize the effect of the gg
states’ energy. From the angular distributions one notices that the last
peak [corresponding to P (gg)] continuously increases as we go from one
model to the next in the group. However, there does not seem to be
any quantity following exactly the same behavior (i.e. there is always
a breakpoint at the crossover from one subgroup to the next), which
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Figure 3.11: Group 4: Effect of the depth of the gg well.

is related to the trends for the other two angular states’ populations.
This indicates that the proportion of folded configurations in the sys-
tem does not dictate the behavior of the physical quantities as strongly
as P (tt) does. One can still observe that, as usual, the crystallization
temperature follows the tendency indicated by P (tt).

Potential h1 h2 h4 lp Tcryst P (gg) P (tg) P (tt) 〈cos θ〉
CG-PVA 6 2.3 3.9 1.32 0.64 0.15 0.47 0.38 −0.68

x8 4 2 4 1.29 0.57 0.14 0.56 0.30 −0.67

x64 5 3 4 1.19 0.67 0.22 0.41 0.38 −0.64

x4 5 4 4 1.27 0.74 0.27 0.26 0.47 −0.65

x3 5 3 3 0.93 0.61 0.36 0.33 0.31 −0.53

x5 5 4 3 0.88 0.63 0.42 0.21 0.38 −0.52

Table 3.8: Group 4, N = 10.

Potential h1 h2 h4 lp Tcryst P (gg) P (tg) P (tt) 〈cos θ〉
CG-PVA 6 2.3 3.9 1.40 0.73 0.15 0.47 0.38 −0.68

x8 4 2 4 1.30 0.63 0.14 0.56 0.30 −0.67

x64 5 3 4 1.20 0.73 0.22 0.41 0.38 −0.64

x4 5 4 4 1.34 0.82 0.26 0.26 0.48 −0.65

x3 5 3 3 0.95 0.62 0.35 0.33 0.31 −0.54

x5 5 4 3 0.96 0.70 0.41 0.21 0.38 −0.53

Table 3.9: Group 4, N = 50.

The fifth group attempts to focus on the influence of the second
barrier of the potential. The different models considered here all have
in common the first barrier in the angular potential, and they differ
when it comes to the parts describing the tg and gg states. Two of the
four potentials are flat, meaning they have no barrier in between tg and
gg. In these cases, the angular distributions show a common population
for the two states that are not separated anymore. Cycling through the
different models, one can notice a decrease in the overall tg–gg popu-
lation, which results in an increase in the number of stretched states;
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Figure 3.12: Group 5: Effect of the second barrier, tg–gg.

this also leads to a more elongated angular configuration on average, as
shown by the decrease in 〈cos θ〉. The persistence length, which does
not usually exhibit a correlation with P (tt), increases steadily when
decreasing the population of both the tg and gg states, and the crys-
tallization temperature presents the usual tendency following the value
of P (tt). The conclusion about the influence of the gg–tg barrier is not
straightforward with this group of potentials, since other parameters
than those directly constraining h3 are varying as well here.

Table 3.10:

Group 5, N = 10.

Potential h2 h3 h4 lp Tcryst P (gg) P (tg) P (tt) 〈E〉 〈cos θ〉
CG-PVA 2.3 5.1 3.9 1.32 0.64 0.15 0.47 0.38 1280.79 −0.68

x3f 3 3 3 0.83 0.51 0.39 0.40 0.21 1319.29 −0.48

x3 3 5 3 0.93 0.60 0.36 0.33 0.31 1299.52 −0.53

x4f 4 4 4 1.06 0.69 0.30 0.30 0.40 1290.59 −0.60

x4 4 5 4 1.27 0.74 0.27 0.26 0.47 1276.61 −0.65

Table 3.11:

Group 5, N = 50.

Potential h2 h3 h4 lp Tcryst P (gg) P (tg) P (tt) 〈E〉 〈cos θ〉
CG-PVA 2.3 5.1 3.9 1.40 0.73 0.15 0.47 0.38 1412.88 −0.68

x3f 3 3 3 0.86 0.55 0.38 0.40 0.22 1484.94 −0.49

x3 3 5 3 0.95 0.62 0.35 0.33 0.31 1451.38 −0.54

x4f 4 4 4 1.09 0.76 0.29 0.31 0.40 1432.57 −0.61

x4 4 5 4 1.34 0.82 0.26 0.26 0.48 1412.53 −0.65

Another comparison of the different parameters for our angular
potentials is obtained by considering several models that were created
to approach the original CG-PVA model as close as possible using the
interpolation form for Uang(θ). The x7 model is a crude approxi-
mation for the original CG-PVA angular potential. The hi parameters
(well depths and barrier heights) roughly have the same values while
the θi which correspond to the angular positions of the extrema, are
slightly shifted, as a result of the generic values taken for the x models
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Figure 3.13: Group 6: Effect of the parameterization on models close to CG-PVA.

Potential θ0 θ1 θ2 θ3 θ4 h1 h2 h3 h4

CG-PVA 180 149 127 112 97 6 2.3 5.1 3.9

x7 180 150 130 110 95 6 2 5 4

x7s 180 149 127 110 95 6 2 5 4

x7w 180 150 130 110 95 6 2.3 5 4

x7sw 180 149 127 110 95 6 2.3 5 4

x7swm 177 149 127 110 95 6 2.3 5 4

Table 3.12: Group 6 — Parameters.

being rounded off. These—relatively small—differences lead to rather
large changes in the physical properties, for instance the crystalliza-
tion temperature is much lower for x7. Indeed, it is observed that for
CG-PVA P (tt) is higher, while in the case of the other, “approximate”
model, the probability of trans–gauche states is high. The x7 and x7s
only differ by a small shift in the values of θi; there is no significant
difference between the results obtained for these two models, meaning
that a small change in the position of the minima and barriers is not
essential. On the other hand, the x7w model which was designed to fit
more accurately the depth of the second well, exhibits a higher P (tt)
which is reflected in a higher propensity for the system to crystallize.
The x7sw shows no significant change when compared to x7w (the same
modification leads to the definition of x7s from x7 and of x7sw from
x7w). Last, the x7swm model is the one that mimics CG-PVA the
more accurately. Their properties are quite similar, which arises from
a better match of the two values of P (tt): In order to reproduce more
precisely the shape of the last part of the potential corresponding to
the trans–trans state, and which appears to be steeper in the case of
CG-PVA than for a cosine interpolation, the minimum for x7swm has
been shifted toward smaller θ angles. This change results in a greater
difficulty for a system in the tt state to escape, which is observable in
the population of that particular state. This observation is another
evidence of the prominence of P (tt) on the physical properties of the
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Table 3.13: Group 6, N = 10. Potential lp Tcryst P (gg) P (tg) P (tt) 〈E〉 R2
g 〈cos θ〉

CG-PVA 2.6 0.64 0.15 0.47 0.38 1280.8 1.2 −0.68

x7 2.2 0.50 0.15 0.63 0.22 1286.4 1.1 −0.64

x7s 2.2 0.50 0.15 0.62 0.23 1285.6 1.1 −0.63

x7w 2.3 0.56 0.17 0.58 0.25 1286.7 1.1 −0.64

x7sw 2.3 0.56 0.16 0.57 0.27 1288.0 1.1 −0.63

x7swm 2.6 0.64 0.14 0.50 0.35 1281.3 1.1 −0.67

Table 3.14: Group 6, N = 50. Potential lp Tcryst P (gg) P (tg) P (tt) 〈E〉 R2
g 〈cos θ〉

CG-PVA 2.8 0.73 0.15 0.47 0.38 1412.9 9.7 −0.68

x7 2.2 0.58 0.15 0.63 0.22 1421.9 8.3 −0.64

x7swm 2.6 0.70 0.14 0.50 0.35 1414.3 9.2 −0.67

system, in particular on the formation of the crystalline phase. The
data for N = 50 support the conclusions drawn from the behavior of
the models at N = 10; for the longer chain lengths, only two of the
models discussed above were actually simulated.

The gg well. In order to obtain an insight into the influence of the
last parameter in our angular potential, the depth of the gg well, we
can again try an indirect observation: We proceed by comparing groups
1 and 2, as well as the two subgroups of group 4. Group 1 (x1, x3, x5,
x5f) and group 2 (x9, x8, x6, x64, x4) are constituted of models with
varying second minimum. The two series are distinguished by a differ-
ent value of the third minimum: The third potential well is deeper in
the case of group 1. Equivalently, subgroups (x3, x5) and (x64, x4) of
group 4 have exactly the same structure except for the last minimum,
which is deeper in the case of the first subgroup. Looking at the mea-
sured quantities for these series, some correlations appear between the
depth of the last minimum and the persistence length for instance: The
deeper the minimum, the lower the persistence length. This means that
the persistence length is strongly affected by the probability of forming
folds along the chains, more clearly than by P (tt). A higher P (gg) is
observed from the compared distributions in the case of a deep third
minimum. This is also correlated with a much smaller average angle.
The number of self-contacts corresponds to the probability of finding
two particles of the same chain closer than a cutoff distance. This
quantity can be seen to raise with the increase of P (gg), which is in-
terpreted as the propensity of the chains to fold back onto themselves
as the small-bond-angle states are favored.
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Figure 3.14: Group 1–2: Another study of the effect of the depth of the gg well.
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Figure 3.15: Group 4–2: Another study of the effect of the depth of the gg well.
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Table 3.15: Group 1–2, N = 10. Potential lp Tcryst P (tt) Self-contacts 〈E〉 〈cos θ〉
CG-PVA 1.32 0.641 0.378 27.10 1280.79 −0.679

x1 0.94 0.495 0.220 29.81 1303.73 −0.554

x3 0.93 0.602 0.309 29.86 1299.52 −0.534

x5 0.88 0.629 0.375 29.91 1290.94 −0.520

x5f 0.94 0.638 0.418 29.60 1285.94 −0.514

x9 1.22 - 0.180 27.56 1285.39 −0.661

x8 1.29 0.569 0.300 27.38 1280.94 −0.669

x6 1.37 0.699 0.425 27.03 1279.96 −0.681

x64 1.19 0.667 0.372 28.13 1283.26 −0.640

x4 1.27 0.737 0.470 27.62 1276.61 −0.646

Table 3.16: Group 4–2, N = 10. Potential lp Tcryst P (tt) Self-contacts 〈E〉 〈cos θ〉
CG-PVA 1.32 0.641 0.378 27.10 1280.79 −0.679

x5 0.88 0.629 0.375 29.91 1290.94 −0.520

x3 0.93 0.602 0.309 29.86 1299.52 −0.534

x64 1.19 0.667 0.372 28.13 1283.26 −0.640

x4 1.27 0.737 0.470 27.62 1276.61 −0.646

Table 3.17: Group 1–2, N = 50. Potential lp Tcryst P (tt) Self-contacts 〈E〉 〈cos θ〉
CG-PVA 1.40 0.727 0.380 191.54 1412.88 −0.681

x1 0.97 0.543 0.223 223.12 1460.29 −0.559

x3 0.95 0.625 0.313 221.67 1451.38 −0.540

x5 0.96 0.699 0.382 220.06 1438.91 −0.528

x5f 0.93 0.715 0.426 221.89 1428.81 −0.523

x9 1.21 0.472 0.181 195.74 1421.32 −0.661

x8 1.30 0.630 0.303 195.53 1420.95 −0.671

x6 1.37 0.756 0.430 188.03 1410.64 −0.686

x64 1.20 0.727 0.375 199.97 1425.20 −0.644

x4 1.34 0.819 0.477 195.13 1412.53 −0.652

Table 3.18: Group 4–2, N = 50. Potential lp Tcryst P (tt) Self-contacts 〈E〉 〈cos θ〉
CG-PVA 1.40 0.727 0.380 191.54 1412.88 −0.681

x5 0.96 0.699 0.382 220.06 1438.91 −0.528

x3 0.95 0.625 0.313 221.67 1451.38 −0.540

x64 1.20 0.727 0.375 199.97 1425.20 −0.644

x4 1.34 0.819 0.477 195.13 1412.53 −0.652
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Concluding remarks. This study of the influence of the angular
potential on the properties of different models allows to stress a few
characteristic features of polymers in the melt. The CG-PVA model
has as a very important ingredient an angular potential that reproduces
the generic angular states trans–trans, trans–gauche and gauche–gauche
(on the coarse-grained level one bond angle corresponds to two consec-
utive torsional angles of the atomistic backbone); starting from there
the energy levels of these states have been varied as well as the energy
barriers between them. It was pointed out that the tg state influences
the propensity of the model to crystallize: The deeper the minimum
associated to it, the lower the crystallization temperature Tcryst. This
is related to the more general observation that Tcryst (as well as Tmelt)
is proportional to the probability of tt states (see fig. 3.16(d)). The
gg state energy level was shown to influence the persistence length; the
probability of the folded state is also noticeable on the average cosine of
angle θ as it has a more drastic effect on the chain’s conformation than
the tg state that is just intermediate between stretched and folded (see
fig. 3.16(a)). The effect of the level of the gg state is also observable on
other characteristic lengths like Rg and Re. The heights of the barriers
between the different states have effects on both the persistence length
and the crystallization temperature since they determine the probabil-
ity of intermediate states and their modification causes a redistribution
of the angular states into tt, tg and gg states. An increase in the tg–tt
energy barrier leads to a decrease in both lp and Tcryst, whereas an
increase in the gg–tg barrier has the opposite effects. The change in
Tcryst is always related to a variation of P (tt).

Figure 3.16 summarizes the correlations found with this study of the
influence of the parameters of the angular potential on the properties of
the model; it is shown that the crystallization (or melting) temperature
is strongly influenced by the probability of trans–trans states P (tt),
and that the persistence length is related to the probability of gauche–
gauche states P (gg). Figures 3.16(b) and 3.16(c) also show that there is
no cross correlation between these quantities. Section 3.3.3 is devoted
to the analysis of the correlation between P (tt) and Tmelt, and presents
a theoretical explanation for this finding.
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Figure 3.16: Correlations between the persistence length/the melting temperature and the probabilities of trans–trans/gauche–

gauche states. All points are for different models and different chain lengths; it can be observed that there is a correlation between

lp and P (gg), and that P (tt) = Ptrans influences the melting temperature strongly. On the other hand, lp seems independent

of the probability of trans-states, as well as P (gg) does not influence the crystallization/melting significantly. The results for

crystallization temperature are similar to what is observed for the melting process.
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3.2.2 Reference values for chain length N = 100

A list of values measured for the models simulated with chain length
N = 100 follows (192 chains):

Potential lp Tcryst Tmelt tocfee P (gg) P (tg) P (tt) 〈E〉 〈R2
g〉 〈cos θ〉

CG-PVA 1.30 0.721 0.860 9062.09 0.150 0.469 0.381 7408.85 19.59 −0.680

x2 0.90 0.518 0.576 4645.58 0.292 0.519 0.189 7728.21 14.98 −0.532

x3 0.94 0.650 0.772 5011.19 0.352 0.334 0.314 7623.31 15.89 −0.541

x4 1.26 0.825 0.967 7095.90 0.262 0.261 0.476 7406.64 19.64 −0.652

x5 0.97 0.701 0.837 5235.17 0.409 0.207 0.384 7554.14 15.55 −0.530

x64 1.22 0.746 0.879 5373.31 0.217 0.406 0.377 7463.04 19.16 −0.645

x8 1.30 0.626 0.749 6237.33 0.139 0.558 0.304 7449.56 20.60 −0.672

Table 3.19: Values

for N = 100.

Potential h1 h2 h3 h4

CG-PVA 6 2.3 5.1 3.9

x2 6 2 5 3

x3 5 3 5 3

x4 5 4 5 4

x5 5 4 5 3

x64 5 3 5 4

x8 4 2 5 4

Table 3.20: N = 100 — Parameters.

3.2.3 Further observations

The results gathered for the different polymer models presented above
can be used as a means of testing general polymer physics properties.

Dynamic properties. One can check that the mean-square displace-
ments of the monomers reproduce the expected behavior, i.e. that the
subdiffusive regime predicted by the Rouse model can be observed for
intermediate times. The quantity

g0(t) =

〈
1
nN

N∑
a=1

n∑
i=1

(ra
i (t)− ra

i (0))2
〉

(3.8)

describes the mean-square displacement of the monomers (the average
is to be taken over all monomers a of the different chains i = 1, . . . , n).
At very short times, the behavior g0(t) ∼ t2 corresponds to the ballistic
regime in which the motion of the particles is free since no interaction
has been exerted yet; in this case the displacement is just proportional
to time. g0(t) is expected to vary like t for long times (normal diffusion),
and to undergo a slowing down with a t1/2-like variation at intermediate
times. This is due to the connectivity of the chains: One monomer
can then be viewed as a moving particle whose mass increases with
distance, since it has to “pull” the other parts of the chain [22, 100].
Figure 3.17(a) presents the evolution of g0(t) for two chain lengths,
and the different regimes can be observed. For the longest chains we
used in the high-temperature equilibrium simulations (N = 100), it is
also possible to observe a tendency to the t1/4 regime as predicted by
the reptation theory, but the chains are still not long enough to show
a completely clear evidence of the influence of entanglements on the
dynamics [22, 100].

Another simple quantity that allows to measure the dynamics of
the polymer melt is the orientation correlation function of the end-to-
end vector, as defined in eq. (1.68); it is shown in fig. 3.17(b) that
this correlation function decays very rapidly for short chains (N =
10), and much slower as the chain length increases. This function can
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Figure 3.17: Dynamical quantities for the coarse-grained models: Mean-square displacements g0(t) and orientation correlation

function of the end-to-end vector OCFee(t). The difference in behavior for short (N = 10) and longer (N = 100) chains is shown

for the CG-PVA model, and OCFee(t) is also compared for three different models.

also be used to compare the dynamical behavior of different models:
OCFee(t) is presented here for CG-PVA and two other models (x4 and
x2) that are opposed in the following because of their high and low
propensity to crystallize. It is observed that the decay of the orientation
correlation function is faster for x2 than for CG-PVA, but the results
are qualitatively similar and vary only slightly from one model to the
next, as is the case for dynamical quantities in general with our models.

Static properties. For the static properties of the chains, it is sen-
sible to compare our simulation results with a simple model such as
the freely rotating chain model (FRCM): This model describes a poly-
mer as a collection of N bonds of fixed length, joined at fixed bond
angles [33]. One bond is free to rotate about the axis of the previous
bond, meaning that there is no preferred rotational state. This model
is a refinement of the simplistic freely jointed chain model, in which
there is no correlation between two consecutive bonds. The freely ro-
tating chain model is appropriate to account for the properties of our
coarse-grained models for the following reasons:

• The bonds in the CG-PVA model are constrained by a very stiff
harmonic potential, such that the probability of finding a bond
length 10% above or below its average value b0 at T = 1.0 is less
than 1.5%. They could thus be considered to have a constant
length in a (good) first approximation.

• The angles between consecutive bonds are not constrained to one
single value, but can vary according to the angular potential gov-
erning the corresponding interactions. One thus has to use the



3.2 – Characterization of different models 99

average value of the bond angle to compare with the freely rotat-
ing chain model.

• There is no torsional potential in our models that could force the
chains to prefer one torsional state over any other; the torsional
angle distribution is then flat [or almost, cf. fig. 3.19(a)], and the
bonds are therefore free to rotate about the axes defined by the
neighboring bonds.

It is obvious from the simulation data obtained for the different mod-
els and varying chain lengths that there is a correlation between the
persistence length lp and 〈cos θ〉, the average value of the cosine of the
bond angle.5 This can be understood by looking at the relations one
can derive in the framework of the freely rotating chain model. The
angle between two consecutive bonds is θ, so the projection of one bond
ba on the next is

ba · ba+1 = b20 cos θ . (3.9)

This can be generalized as:

〈ba · ba+k〉 = b20cθ
k , (3.10)

where cθ = 〈cos θ〉 is the averaged value of cos θ which is related to
the angular potential. One can then calculate the squared end-to-end
distance for one such chain (eq. 1.64):

R2
e = 〈R2

e〉 =
n∑

a=1

ba , (3.11)

with n = N − 1 being the number of bonds in a chain. Evaluation of
this quantity gives:

R2
e = nb20

(
1− cθ
1 + cθ

+
2
n
cθ

1− (−cθ)n

(1 + cθ)2

)
(3.12)

= nb20Cn . (3.13)

The latter expression is often used in the form of its limit as the chain
length tends to infinity, C∞ (in this limit, the number of repeat units
N and the number of bonds n become equivalent):

R2
e −→

N→∞
Nb20C∞ = Nb20

(
1− cθ
1 + cθ

)
(3.14)

The radius of gyration is computed according to eq. (1.65) and has the
following expression within the FRCM:

R2
g = nb20

(
(2 + n)(1− cθ)
6(1 + n)(1 + cθ)

+
cθ

(1 + n)(1 + cθ)2
+

2 cos2 θ
(1 + n)2(1 + cθ)3

+
2 cos3 θ(1− (−cθ)n)
n(1 + n)2(1 + cθ)4

)
, (3.15)

5It should be emphasized that the angle θ used throughout this work is related

to the angle θF defined by Flory by the following: θ = π− θF. This introduces some

changes in the expressions we refer to, as cos θ = − cos θF.
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which has again a simplified form in the limit N →∞:

R2
g −→

N→∞
Nb20

(1− cθ)
6(1 + cθ)

=
1
6
R2

e(N →∞) . (3.16)

The end-to-end distance is related to the persistence length [eq. (1.62)],

lp =
1
b0

∞∑
k=0

〈ba · ba+k〉 , (3.17)

by the following relation [100]:

R2
e =

〈(
n∑

a=1

ba

)2〉
=

n∑
a,b=1

〈ba · bb〉

= 2
n∑

a=1

n∑
b=a

〈ba · bb〉 − nb20

= 2
n∑

a=1

n−a∑
k=0

〈ba · ba+k〉 − nb20

' 2Nb0lp −Nb20 (N � 1) , (3.18)

where the last line is valid if the correlation between the bonds ba and
ba+k decays so rapidly that the upper bound of the sum (N − a) may
be replaced by ∞.
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Figure 3.18: Characteristic lengths Re,

Rg and lp as functions of the average

cosine of the bond angle θ. Theoreti-

cal expectations for the FRC model are

compared to the simulation data.

Figure 3.18 shows a comparison of these theoretical estimates from
the FRCM and the corresponding quantities as measured in the simu-
lation. The ratio of the mean-square end-to-end distance and radius of
gyration [eqs. (3.12) and (3.15)] is well reproduced, and it can be seen
that its value tends to 6 as the chain length increases, as expected. The
data for end-to-end distance show a good agreement with the theoret-
ical expression from eq. (3.12), which improves for longer chains and
higher average angle (the higher the average value of the angle θ, the
more its cosine approaches −1 and in this case the data are observed
to be fitted more accurately by the FRCM). The FRCM estimate for
the persistence length is not very successful; for our models lp is ob-
served not to vary significantly with the chain length, and this is not in
agreement with the theoretical expectation. The approximation used
for the sum in eq. (3.18) is probably not valid in this case.

The torsional angle distribution can be measured as well as the bond
angle probability distribution. If the physical meaning of the latter is
still clear as one bond angle of the coarse grained models is related to
torsional angles of the original backbone, it is far less simple to establish
a connection between the atomistic degrees of freedom and the coarse
grained torsional angle. As stated above, there is no explicit torsional
potential in the model (i.e. the applied potential is zero), and therefore
one expects a flat distribution of those torsional angles,∫ 2π

0
dφP (φ) = P

∫ 2π

0
dφ = 1 (3.19)

P =
1
2π

. (3.20)
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Figure 3.19: Torsional angle and corresponding bond angle distributions for several coarse-grained models, N = 100. The deviation

from the uniform distribution is worse for x5 than for CG-PVA.

What we observe from the simulations is nevertheless slightly different,
as the distributions show minor deviations from the constant value
computed for the case of a completely free variable, as is shown in
fig. 3.19(a). The reason for such differences between the models be-
comes clear when one looks at the corresponding bond angle distri-
butions: It can be seen that the model for which the torsional angle
distribution differs the most from the flat distribution is x5, which ex-
hibits the largest probability for the gauche–gauche state (fig. 3.19(b)).
This relation between P (cis) and P (gg) [cis denotes the cis-state for
torsional angles (i.e. φ = 0 in our convention)] holds for the other ex-
amples shown here, so that the higher P (gg), the worse the agreement
between the flat torsional angle distribution and the actual measure-
ment. The more probable the gg state is, the most folded the chains
are. In such folded configurations, other torsional states than the trans
configuration would lead to some overlap between neighboring parts of
the chains. Thus, the cis state is more unlikely.
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Figure 3.20: Comparison of phase

diagrams (volume per monomer as

a function of the prescribed tem-

perature) for different cooling/heating

rates. For high rates (> 10−4τ−1),

the system freezes before crystalliza-

tion is complete, whereas for low rates

(< 10−5τ−1) the transition resembles

more a first order phase transition. In

this study, the cooling and heating

rates were taken identical for the dif-

ferent curves. The system consists in

288 chains, N = 10. Note the steps

in the melting curves indicating the

progressive fusion of distinct crystal-

lites. (According to the rate, running

averages with different window lengths

have been applied to the data.)
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3.3 Characterization of the crystal

3.3.1 Continuous cooling

3.3.1.1 Influence of the cooling rate

The simulation protocol we used to reproduce cooling experiments con-
sists in a continuous cooling of the polymer melts at a definite rate.
The cooling rate should be taken as small as possible in order to address
the phase transition at equilibrium; here we are approaching that ideal
phenomenon with non-equilibrium simulations. The applied cooling
rate has a significant influence on the phase transition we are address-
ing, insofar as a too fast cooling would lead to a glassy or at least poorly
crystalline configuration even in the case of a crystallizable model. The
cooling process thus needs to be as slow as possible, but is severely lim-
ited by the amount of computer time available. We therefore investi-
gated the dependence of the cooling rate with a system consisting of 288
chains of N = 10 monomers, which is small enough so that low rates
can be probed. Once the final crystalline configuration is formed at
low temperature, melting is provoked by increasing the temperature in
an inverse protocol, which is also expected to be rate-dependent. Nev-
ertheless, in the case of melting there is no need for the chains to order
and thus apart from some overheating we do not expect a strong effect
of a change in the heating rate. Four different phase diagrams corre-
sponding to decreasing cooling and heating rates are shown in fig. 3.20,
pointing out that a very fast cooling (10−3 τ−1) leads to a completely
flat diagram exhibiting no jump characteristic of a first-order phase
transition. This jump develops as the rate decreases, and finally is re-
ally abrupt as is expected (for rate 5× 10−3τ−7). This is only possible
for very short chains as otherwise kinetic effects arise as we shall see
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later on. Even though crystallization sets in very rapidly, in the case of
the slowest cooling, it is very clear that a hysteresis still exists as melt-
ing only occurs at a significantly higher temperature (here cooling and
heating rates are equal for each crystallization-melting cycle); this in-
dicates that this feature is characteristic of polymer crystallization and
would not disappear even for infinitely slow rates. The different heating
curves show evidence for a step-wise melting process: The crystalline
material starts melting partially and a higher temperature is needed to
provide enough energy for the rest of the system to return to the liquid
state. This suggests a multi-structure nature of the crystalline system.

For continuous cooling and heating simulations described in the fol-
lowing, we used the cooling rate 5 × 10−6 τ−1 and heating rate 2 ×
10−5 τ−1.

3.3.1.2 Influence of the chain length

The crystallization of polymers produces folded structures of interme-
diate size, which is not observable with simulations of too short chains
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Figure 3.21: Evolution of Ptrans dur-

ing continuous cooling for various chain

lengths.

like in the case of the small systems mentioned above. Simulations
of the CG-PVA model for longer chain lengths allow to reproduce the
characteristic folded structures, which is indicated by the simple ob-
servation of the evolution of the volume during a continuous cooling.
Figure 3.22 presents the results for chain lengths N = 10, 50, 100 and
1000, allowing to compare the drop in volume associated with the tran-
sition; all curves are normalized by the value at T = 1. The volume
of the sample at high temperature varies like 1/N , which can be un-
derstood if the following form is assumed to take chain-end effects into
account:

v = v∞ +
1
N

∆v , (3.21)

where v is the volume per monomer that tends to v∞ in case of in-
finitely long chains, and ∆v is the correction for chain ends. As can
be seen on the figure, the drop in volume is more pronounced for the
shortest chains in the case of which fully stretched configurations are
still possible and lead to an almost perfect crystal: Several lamellae
consisting of aligned chains. At a larger chain length like N = 50,
the chains cannot reach such an energetically favorable state anymore,
and frustration arises. The chains then fold and the semi-crystalline
states at low temperature show well-ordered lamellae surrounded by
amorphous zones. There is no qualitative difference between the phase
diagrams for N = 50 and N = 100; this has to do with the two chain
length not being really different, but still shows that the crystalliza-
tion process has the same features for intermediately long polymers,
which differ from what is observed in the case of oligomers (N = 10).
There is again a noticeable difference between the phase diagrams for
N = 50 and N = 100 and the longest chain length we investigated,
N = 1000. In this case, it is to be expected that entanglements have
a much stronger impact on crystallization than for shorter chains, and
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Figure 3.22: Phase diagrams (volume

per monomer v as a function of temper-

ature) obtained for the CG-PVA model,

for different chain lengths; v has been

rescaled by its value at T = 1. The lin-

ear variation of the volume at high tem-

perature with the inverse chain length

1/N is shown in the inset.
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Figure 3.23: Evolution of the crys-

tallization temperature as a function of

the chain length, for CG-PVA (# and

 ) and x4 (2). Tcryst rapidly satu-

rates, showing only a small difference

for chain length N = 50, 100 and 1000.

The crossover to polymer-like behavior

for our models thus appears to be lo-

cated in between N = 10, for which

crystallization occurs much later, and

N = 50. For small chains, the melt

remains in a metastable liquid state for

a longer time, because of the higher mo-

bility of oligomers; for longer molecules

the supercooling leads to structure for-

mation surrounded by material trapped

in a frustrated configuration. (Points  
are data from H. Meyer.)

 0.5

 0.6

 0.7

 0.8

 0  0.05  0.1  0.15

T c
ry

st

1/N

CG-PVA
x4

the process is hindered because of the smaller overall mobility of the
monomers. The amount of amorphous material in the final configura-
tions for each chain length can be related (in a first approximation) to
the fraction of trans states in the crystal. Figure 3.21 shows the evolu-
tion with temperature of this quantity for the different chain lengths,
and it can be seen that in the case of very short chains this fraction
ends up being 1, which corresponds to all-trans configurations of the
chains. This is not the case for longer chains, and there is a slightly
lower fraction of trans states in the case of N = 1000.

The crystallization temperatures for the different chain lengths are
indicated in fig. 3.23 for CG-PVA and the x4 model. It can be seen that
there is a large difference between Tcryst(N = 10) and Tcryst(N = 50),
but only small variations for the longer chain lengths. This is related as
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Figure 3.24: Evolution of the P2 order parameter during continuous cooling, for short and long chains. The x4 model always

crystallizes earlier, and in the case of short chains this leads to a poisoning of the crystalline configuration (worse order parameter

than in the CG-PVA model which crystallizes later and has lower crystallinity for N = 100; see also figs. 3.27 and 3.29). Note the

difference in vertical scales for the two plots (much higher crystallinity in the case of short chains).

stated above to the difference in mechanism for oligomers and polymers;
for long polymer chains crystallization occurs at a supercooling that is
representative of the nature of the chains rather than their length.

3.3.2 Order parameters during the crystallization and

melting process

3.3.2.1 Global order parameter

P2 order parameter. In order to characterize the crystalline state
and the crystal formation in the polymer melts we have simulated, it is
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Figure 3.25: Intra-chain P intra
2 order

parameter as a function of temperature

during cooling, for N = 10 and N =

100.

necessary to introduce order parameters. One simple measurement of
the order in the system is provided by the computation of the P2 order
parameter as defined in 1.3 which quantifies the global correlation of
orientation of the bonds in the system. When averaged over individual
chains, this parameter gives an information on the degree of orienta-
tional order at the level of one chain, and allows to determine whether
the chains are stretched or not. These parameters can be used to de-
scribe the crystallization of our polymer melts, and become especially
useful to compare the different models and chain lengths. The evolution
of the global order parameter is represented on fig. 3.24: The formation
of crystalline structures for the CG-PVA model is compared with crys-
tal growth for two other models, x2 and x4. The x2 model crystallizes
rather poorly, at a very low temperature (below T = 0.6), while x4
crystallizes at high temperature. In the case of long polymer chains
(N = 100), this model which shows a larger tendency to crystallize
also forms a better ordered structure, as indicated by a higher value of
P2 than for CG-PVA. This is however different from what happens for
shorter chains: In this case, the low flexibility of the model favors the
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Figure 3.26: P2 order parameter evolution during continuous cooling. Curves for the different models superimpose, indicating a

common crystallization mechanism.

occurrence of all-trans conformations of the chains too fast, which hin-
ders the inter-chain ordering. This self-poisoning of the crystallization
process is reflected in the low P2 value observed for x4 (fig. 3.24(a)).

Decomposition of the order parameter into inter- and intra-chain
contributions allows to verify that there is no difference in the final state
for the CG-PVA and x4 models at the level of the chain for N = 10:
Both models yield all-trans conformations at low-T (fig. 3.25(a)). Thus
the difference observed in fig. 3.24(a) arises from the packing of the
rigid chains into many small structures instead of one large lamella (or
several parallel lamellae).

The evolution of the order parameter during a cooling experiment in-
dicates that the different models crystallize at different temperatures,
and yield semi-crystalline structures with varying degrees of ordering.
This triggers the question of whether crystallization occurs as a result
of the same mechanism for each model, or if there are significant model-
specific features for this process. Figure 3.26 shows that it is possible
to superimpose the variation of P2 for the different models using an ap-

(a) T = 1

(b) T = 0.4

Figure 3.27: Snapshots of a contin-

uous cooling simulation: Initial and fi-

nal configurations, CG-PVA model for

N = 10 chains. One can observe that

the lower rigidity of the model led to the

formation of less stable nuclei than in

the case of x4 (fig. 3.29).

propriate normalization: The order parameters have been normalized
to their values at low temperature (T = 0.4) for every model, and the
horizontal axis corresponds to the ratio T/Tcryst. It would have been
more satisfactory to use P2(T = 0) (or an extrapolation to that point)
to normalize the vertical axis, but it can be seen that the order param-
eter has already saturated at this temperature, so we do not expect a
significant change due to that. It is observed that all curves superim-
pose nicely for N = 10, indicating that the process of crystallization
is identical for each model and does not depend on the crystallization
temperature (fig. 3.26(a)). The curves corresponding to models that
do not crystallize easily (i.e. at low temperature and not yielding a
strongly ordered crystal), like x2 and x8, exhibit more noise after nor-
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axes to the melting simulation results.

malizing, and even show a signal prior to the transition. In the case
of x2, there is a peak above Tcryst corresponding to a first attempt to
form an ordered structure that does not become stable and vanishes.
One can also notice oscillations right after the transition, when the
crystalline structure has to relax to its final form.

For systems with longer chains (N = 50) the crystallization curves
do not superimpose as nicely as for N = 10, but all of them show
the same features (fig. 3.26(b)). The specificity of long polymer chains
shows up in that the transition is less abrupt than for short chains. The
x2 model shows a very high level of noise as for N = 50 already the
final crystalline state is poorly ordered (and the corresponding value of
P2 very small).

Figure 3.28 presents the equivalent information for longer chains,
N = 100. As crystallinity decreases with increasing chain length, in
this case the data are more strongly affected by noise and averaging over
decorrelated configurations would be useful (though time-consuming).
Nevertheless it appears that again all models follow the same trends
and seem to crystallize according to the same process. Pre-ordering
signals are again noticeable in the case of the x2 model, as well as the

(a) T = 1

(b) T = 0.4

Figure 3.29: Snapshots of a contin-

uous cooling simulation: Initial and fi-

nal configurations, x4 model for N =

10 chains. The lamellae impinge and

give rise to a multi-domain configura-

tion, which explains the relatively small

value of the order parameter P2 (cf.

fig. 3.24(a)).

oscillations after the transition. The crystallization process seems a
bit slower in the case of the CG-PVA model, when compared to the
other models. The same plot also shows the corresponding data for
the heating simulations that followed the crystallization experiments.
Also in this case it appears that all models behave in a similar fashion,
with minor distinctions though. The melting and crystallization curves
do not exactly match, but the comparison is not obvious because rates
were not the same for cooling and melting.

It is possible to establish a correlation between the crystallization
temperature and the order in the low-temperature phase, at least for
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Figure 3.30: Correlation between the

order parameter of the final crystalline

structure [P2(T = 0.4)] and the tem-

perature of crystallization. The order

parameter has been multiplied by the

chain length so that the scale fits for

all points. A fit line for N = 100

is shown, to point out that the lower

Tcryst, the worse the order in the final

semi-crystalline structure. For N = 10

the evolution of P2(T = 0.4) does not

show a monotonic behavior as a result

of the self-poisoning effect mentioned

above; for N = 50 the data do not

match these for other chain lengths,

probably due to the simulation boxes

being too small in that case.
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long enough chains. Figure 3.30 shows that the value of P2 increases
when the system crystallizes at higher temperature.

This indicates that the more mobile the monomers are, the better the
crystalline structure. In case the temperature has to be greatly lowered
in order to allow for rigid enough conformations that could favor the
occurrence of crystallization, the system approaches its frozen state
and thermal energy is not high enough to help the chains organize
on a large scale. There is thus a competition between the two effects
(mobility/flexibility). However, this is not true for short chains as we
pointed out in the preceding, since models that crystallize too rapidly
prevent themselves to find an optimized inter-chain structure. This can
be observed here again, as the point corresponding to the x4 model
has lower crystallinity than other models for N = 10, even though
its crystallization temperature is higher. It should also be noted
that the evolution of P inter

2 and P intra
2 with N is monotonic for all

models, whereas for x4 and two other models, the overall P2 parameter
is smaller for N = 10 than for N = 50. This indicates that the relation
between intra- and inter-chain effects is not simple, and that the P2

order parameter cannot precisely account for the packing of chains in
the crystals.

The simple order parameter P2 provides an efficient way of character-
izing the order in a polymer melt during continuous cooling or heating
simulations. However, such a global parameter does not yield precise in-
formation about the local structure of the semi-crystalline systems and
thus it is difficult to define a crystallinity accurately. The decomposi-
tion into inter- and intra-chain contributions does not allow to access
information about the intimate organization of the chains inside the
partially crystalline system since there is still no distinction between
particles belonging to the crystal and the amorphous medium. It is
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necessary to define another order parameter using more local criteria
in order to distinguish the crystallites.

Tensor order parameter. Another order parameter is also indi-
cated in order to study the development of the crystalline phase from
the melt: The tensorial order parameter defined for liquid crystals can
be applied to crystalline polymers as well [50]. This order parameter is
based on the definition of the orientational tensor Q, given by:

Qαβ =
∑

i

(
b̃αi b̃

β
i −

1
3
δαβ

)
. (3.22)

Here b̃αi denotes the α-coordinate of the unit vector along the direction
of bond i which joins the monomers i and i+1. The sum is to be taken
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Figure 3.31: Comparison of two or-

der parameters: P2 and S. The results

are qualitatively similar, even though the

absolute values are different: The result

given by S is closer to 1 for all models.

Still, the relative measurement of order-

ing in the system is the same for both

parameters, as illustrated here (for clar-

ity, the results for three models only are

shown).

over all bonds in the system. One scalar order parameter that can be
defined using eq. (3.22) is the following:

S =

√
3
2
Tr Q2 . (3.23)

This order parameter S has been computed from the simulation data
for the different coarse-grained models with N = 100, yielding results
qualitatively similar to those obtained with P2. As can be seen in
fig. 3.31, the absolute value of the order parameter S is significantly
higher than the result of P2. The order parameter S built on the
orientational tensor S is better suited to distinguish the contributions
of the ordered and amorphous regions, whereas P2 tends to couple
them, which results in a loss of signal. However, the most relevant
information being the relative value of the parameters for the different
models we intend to compare, both order parameters can be considered
as equivalent in our case.

3.3.2.2 Definition of crystallinity

To provide an effective definition of crystallinity for our semi-crystalline
samples, we used an order parameter that takes into account orienta-

Figure 3.32: Schematic representa-

tion of the definition of the local or-

der parameter: Two bonds are tagged

“neighbors” if they are separated by a

distance d smaller than rcut and if the

angle between b1 and b2 is such that

|b1 · b2| > ccut.

tional order of the bond vectors like P2 but that is restricted in space,
so that correlations between different regions of the simulation box are
left aside. For a given configuration, a set of “neighbors” are defined for
each bond. Two bonds are tagged neighbors if their centers of mass are
closer to each other than the distance rcut, and if the cosine of the an-
gle between them is greater than another parameter ccut (see fig. 3.32).
Once this list of neighbors is created, the information is sorted and
sets of neighboring bonds are determined. The so-defined crystallites
are then analyzed as this procedure allows to monitor their evolution
during the simulation, showing the growth of structures during cooling.
Crystallites that are smaller than a given size Nmin

b are not taken into
account as they might only arise accidentally; a distinction is made be-
tween regular crystallites larger than Nmin

b and larger structures with
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more than Nbig
b bonds. These large crystallites have been analyzed

in more details. Crystallinity is defined as the ratio of the number of
bonds that belong to crystallites to the total number of bonds in the
system. This is equivalent to the volume fraction vc of the crystalline
material.

We applied this analysis method mostly to the systems of chains with
chain length N = 100; in this case, the values used as parameters were
the following:

• rcut = σ,

• ccut = 0.99 (i.e. the maximum angle between two neighboring
bonds is approx. 8o),

• Nmin
b = N/10 = 10,

• Nbig
b = N = 100.

These values necessarily affect the resulting quantities such as the crys-
tallinity; we studied the effects of the variation of these parameters and
made sure that around the chosen values this would not lead to an im-
portant qualitative change. What we are mostly interested in anyway
is the evolution of crystallinity as a function of time or temperature,
and a comparison between our different models rather than an absolute
measurement.

(a) CG-PVA

(b) x4

Figure 3.33: Snapshots of semi-

crystalline configurations (T = 0.4); the

crystallites detected using our analysis

program are represented using larger di-

ameter bonds, so that they are more eas-

ily distinguishable from the amorphous

zones (plotted here as simple lines). It

can be seen that crystallinity is higher in

the case of the x4 model.

The different models with different angular potentials we have been
studying become semi-crystalline upon cooling and as we have already
seen using the order parameter P2, the degree of order and thus the
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obtained this way is an approximation to
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crystallinity varies from one model to another. For instance it has been
observed that the x4 model has a high crystallization temperature and
is well-ordered in the low-temperature phase while the x2 model seems
to crystallize poorly at a low temperature (fig. 3.33). A comparison of
the crystallinities for these models and CG-PVA is presented in fig. 3.35,
showing that the crystallinity is indeed much higher for x4 and very
low in the case of x2.

Figure 3.36 shows an attempt to plot the crystallinity as a function of
temperature for several models on a master curve, in order to isolate the
relevant characteristics of the processes. However, the different curves
do not completely superimpose, which indicates that the parameters
used to normalize the data may not contain the relevant information
that describes the crystallization process accurately.

One reason why the curves do not superimpose well is that the value
of the crystal fraction at T = 0.4 taken as a reference is not relevant for
this order parameter as it was for P2: If P2 had already almost saturated
for all models at T = 0.4, this is no longer the case for vc. One way
of getting a more satisfactory normalization would be to use vc(T =
0) instead. An approximation of this quantity is obtained by linear
extrapolation of vc(1/t) as t → ∞, since time and temperature are
connected in a continuous cooling simulation. The values determined
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Figure 3.36: Evolution of the crys-

tal volume fraction during crystalliza-

tion and melting, for different models.

Temperature has been normalized either

by the crystallization temperature or the

melting temperature. The relative crys-

tal fraction corresponds to the crystal

fraction measured during the simulation

which has been divided by the value at

T = 0.4. The curves superimpose but

there are deviations, particularly for the

x2 model that crystallizes badly.

this way (see fig. 3.34) are slightly overestimated because the variation
of vc with 1/t is not necessarily linear. But this already provides a
better-defined quantity to compare the different models, as it does not
depend anymore on the crystallinity at T = 0.4, which is arbitrary.

3.3.2.3 Avrami analysis

In order to describe the growth of the crystallites, it is useful to adapt
a simple analysis that has been applied a long time ago by Avrami to
the growth of crystalline structure [135]. This analysis in the case of
polymer crystals has been used to interpret the growth of spherulites,
which are orders of magnitude larger than the crystallites we are to
observe in our simulations; yet, it seems reasonable to model the growth



112 3 – Coarse-grained models

of these crystalline regions in the same way, since we are also dealing
with growing objects in an amorphous medium. Avrami’s description
of crystal growth can be presented by analogy with the problem of
expanding waves created by the fall of raindrops on the surface of a

Figure 3.37: Expanding waves on a

pond surface. The wave fronts are mov-

ing away from the centers with velocity

v; the interesting quantity is the proba-

bility that no wave has passed a partic-

ular point M at time t.

pond; each drop is the starting point of a wave that grows circularly,
and after several waves have been initiated and expanded, they finally
impinge. A similar model allows to account for the growth of three-
dimensional objects in a polymer melt, which has to be fast in the
first steps when the different crystallites cannot see each other, and
should slow down as they come into contact. As shown schematically
in fig. 3.37, waves are expanding and possibly meet each other; the
probability that k waves have passed at point M during time t can be
expressed as a Poisson law, since the different events can be considered
independent:

Pk(t) =
Ek

k!
e−E . (3.24)

E is the expected number of waves at time t, and contains the infor-
mation about the propagation of the waves. In the case of circular
waves on a water surface, E can be estimated in the following way:
The number of waves having reached point M from a distance r after
time t is

dE = I
(
t− r

v

)
2πr dr , (3.25)

if there the rate of droplets is I per unit time and area. In order to
account for all possible waves, eq. (3.25) has to be integrated over all
values of r, i.e. between 0 and rmax = vt:

E = 2πI
∫ vt

0
dr
(
t− r

v

)
r = πIv2 t

3

3
. (3.26)

The same reasoning can be applied to the growing crystal situation,
using an appropriate expression for E and changing the dimensionality
(we are considering three-dimensional objects). Then, this simple the-
ory provides an expression for the crystallinity of the semi-crystalline
system: The probability that no structure has passed point M at time
t represents the fraction of amorphous material still existing in the
sample, and this is simply P0(t); thus the crystal fraction is

vc = 1− P0(t) (3.27)

= 1− e−E . (3.28)

In three dimensions, the growth of a crystallite can be described using
a similar expression for E as for the propagating waves on a pond: For
crystallites that are created through thermally activated nucleation,
the result is just the same as in eq. (3.26):

E = 4πI
∫ vt

0
dr
(
t− r

v

)
r2 = πIv3 t

4

3
. (3.29)



3.3 – Characterization of the crystal 113

In case the crystallites are only created at t = 0 (athermal nucleation),
E becomes:

E = 4πI
∫ vt

0
drr2 = 4πIv3 t

3

3
. (3.30)

Using other models to predict E, several expressions can be found for
vc, having the general form

vc = 1− exp (− (t/τ)n) . (3.31)

Experimental results have been found to match this simple rule, and
many interpretations have been given to account for the different values
of n that allowed to fit eq. (3.31). It has been proposed that according
to the shape of the growing objects, crystal growth could be modeled
using Avrami equations with different n. There were also many dis-
cussions on whether this method is relevant, since this interpretation
might be misleading. We will not try to use Avrami equations to de-
scribe the spatial characteristics of the growing structures; we are only
interested in the convenient way this simple model provides to compare
the results for our different models.
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Figure 3.38: Avrami plots for the

CG-PVA and x4 models: The relative

crystal fraction vc/vmax
c behaves as 1−

exp
(
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)
during the early stages of

crystallization. Later on, another regime

shows a slowing down in the crystalliza-

tion process. Fits allowing to define the

characteristic time τ are indicated for

the n = 3 regime (as well as for the

slow second phase).

We have presented in fig. 3.38 the evolution of the measured crys-
tallinity for two models, in such a way that a direct comparison with
Avrami equation is possible. It can be seen that if the first points are
left aside, both models show a behavior that can be described using
an Avrami equation with n = 3. In order to allow for the comparison
with eq.( 3.31), the measured vc has been divided by the extrapolated
vmax
c (since the Avrami equation considers the final configuration as

perfectly crystalline). Time also has to be modified so that the com-
parison of the different models becomes possible: Therefore the time
scale has been shifted by an amount t0 corresponding to the time at
which the system starts to crystallize (occurrence of non-zero values
in the crystallinity). A comparison of the original data for vc and the
Avrami estimation is plotted in fig. 3.39; it can be observed that the
Avrami function reproduces well the behavior shown by the simulation
data, for the early stages of crystallization. It is possible to propose
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Figure 3.39: Comparison of the simu-

lation data for the crystallinity and the

fitted Avrami expression. There is a

good agreement for short times; the

characteristic times τ are indicated for

the two models.

such a description of the development of crystallinity for all the differ-
ent models, which allows to define a characteristic time τ in each case;
this makes it possible to draw the crystallinity as a function of time on a
new master curve, which shows a better superposition than in fig. 3.36;
the relative crystal fraction for CG-PVA and x4 in particular superim-
pose quite well, indicating that in both cases the crystallization process
has the same features during the first stages of crystallization, which
was not obvious from the shape of the original curves as presented in
fig. 3.35.

The physical signification of the characteristic time τ is not obvious;
still we could find that it corresponds to the time that is needed for
several quantities characterizing the evolution of the crystallites to de-
cay. Figure 3.41 shows the evolution of the crystalline domains during
the cooling. The total number of crystallites (structures containing at
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Figure 3.40: Master curve presenting

the increase in crystallinity as a function

of the reduced time t/τ . vc has been

normalized using the values vmax
c deter-

mined as shown in fig. 3.34 and τ was

obtained through a fit using the expres-

sion given in eq. (3.31) (with n = 3).
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least Nmin
b = 10 bonds) first increases in a linear fashion with time (and

thus with the supercooling since temperature is proportional to time
in a continuous cooling), then drops down as the formation of larger
crystallites occurs: Small ordered domains are absorbed into the larger
crystallites, and these growing objects leave less and less material that
can in turn give rise to new seeds (fig. 3.41(a)). After t = τ there is a
slowing down in the decrease of crystallite number, but this value does
not saturate yet. The evolution of the larger crystallites (Nbig

b > 100)
is also interesting (fig. 3.41(b)): For all models there is a clear satura-
tion that occurs at t = τ (or slightly later in the case of models that
formed a larger number of these big structures). This is the sign that
after t = τ , the development of new large ordered domains has become
impossible. The fact that the total number of crystallites does not
reach a limit immediately after τ suggests that reordering still occurs
in the small crystallites embedded in the amorphous zones surrounding
the major crystallites. More detailed information is available for the
larger crystalline domains (fig. 3.42): The number of bonds involved in
the largest crystallites is displayed in fig. 3.42(a), and shows that these
numbers increase much more slowly or saturate after the characteristic
time τ . The size of these crystallites is presented in fig. 3.42(b); this
“size” is computed as a radius of gyration from the distance of all bonds
belonging to a crystallite and its center of mass:

S2 =
1

Ncryst

Ncryst∑
i=1

(ri − rcm
i )2 . (3.32)

This size reaches a plateau after t = τ , giving another indication that
the system’s crystallinity does not evolve significantly after the char-
acteristic time determined from the Avrami analysis. An exception
though to this observation is the behavior of the second largest crys-
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Figure 3.41: Evolution of the number of crystallites (“big” crystallites contain at least Nbig
b = 100 bonds). The total number of

crystalline domains does not completely saturate after τ ; on the other hand, the number of bonds in the larger crystalline structures

reaches a plateau after time τ . This indicates that the major part of the crystallites have formed after τ , but there is still some

recombination of the smallest crystallites occurring in the amorphous regions.
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Figure 3.42: Evolution in time of the number of bonds and sizes of the three biggest crystalline domains for two models. It

clearly appears that there is a saturation that takes place after t = τ (indicated for the two models by vertical lines). The second

biggest crystallite continues to grow slowly in the case of the CG-PVA model, indicating that the structure of the system is not

totally frozen and can still evolve after crystallization.
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Figure 3.43: Comparison of the radii of gyration for three models; R2
g increases as the transition is approached, and then saturates.

The final value is slightly larger for CG-PVA than for x4, which is unexpected as x4 has a higher crystallinity and forms bigger

crystallites with larger stem length. The distribution of R2
g in the final semi-crystalline state exhibits several peaks for large values

that explain the larger mean value of R2
g for CG-PVA.

tallite in the case of the CG-PVA model, whose size still increases after
t = τ . This results from the fact that the system is less crystallized than
in the case of the x4 model, and thus it is still possible for a crystallite
to grow, even if slowly, once the major structures are formed.

The characteristic time τ corresponds to the period during which the
most important part of the crystalline regions arises. After this time,
as shown in fig. 3.39, the fitting function stops reproducing the behav-
ior shown by our simulation data. This could be explained by taking
into account that the Avrami analysis considers several crystallites that
grow until they impinge and cover the whole system. This is far from
being possible either in the case of experimental systems (melts of high
molecular mass polymers have been shown to follow an Avrami law un-
til a certain crystallinity at which growth becomes much slower [135])
or for the growing crystallites in our simulation. We had to take into
account the fact that only a partial crystallinity is attained by normal-
izing vc with vmax

c (as is also done for experiments); still, the simple
Avrami equation makes no qualitative difference between growth of in-
dependent crystallites (in the early stages) and crystal growth of objects
that are in contact with each other. This necessarily impeded growth
should be taken into account, and that is the reason why the simple
model fails at reproducing the behavior observed in our simulations at
longer times.

It is interesting to note that even if crystallization appears similar
for the models CG-PVA and x4 after having renormalized the evolu-
tion of crystallinity, there is still one difference so as how the system
behaves after its most important part has crystallized. The evolu-
tion during cooling of the mean-square radius of gyration presented
in fig. 3.43(a) shows that R2

g increases as the temperature is lowered,
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which is expected since the chains tend to stretch while forming lamel-
lae. However, while this increase is relatively small for the x2 model
which is only weakly crystallized at low temperature, it is comparable
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Figure 3.44: Increase of the stem

length during the formation of the crys-

talline structure, measured from the

minimum of the orientation correlation

function (see sec. 1.3).

for CG-PVA and x4. Furthermore, the final value of R2
g turns out to

be larger in the case of CG-PVA, which seems to contradict the ob-
servation that the x4 model crystallizes more rapidly, forming longer
stems (see fig. 3.44). Figure 3.43(b) brings an explanation by showing
that there are peaks which developed at high R2

g in the distribution of
the radius of gyration. These peaks are absent in the distribution mea-
sured for x4 (at least less peaks are observable, and at lower R2

g), and
the overall structure of the distributions for the two models are other-
wise very similar (as is the case for the high temperature distribution,
even though the values of Ptrans are quite different). This is consistent
with the observation that the x4 model is capable of a fast growth and
achieves high crystallinity, but then ends up in a semi-crystalline state
that cannot evolve anymore. This has been observed for very short
chains which cannot organize in a satisfactory manner because they
become rigid too early, and this hinders the inter-chain ordering (see
fig. 3.24).

3.3.3 Volkenstein analysis of the influence of the angular

potential

Changing the angular potential as described earlier allows to simulate
different models that crystallize at different temperatures. Figure 3.45

 0.42

 0.44

 0.46

 0.4  0.6  0.8  1

v

T

x2
CG-PVA

x4

Figure 3.45: Phase diagrams for N =

100. Comparison of models with varying

angular potential (CG-PVA, x2, x4).

recalls the phase diagrams obtained for three distinct models (N =
100): CG-PVA serves as a reference and the two “extreme” cases of
models x2 and x4 are confronted. In the case of the x4 model, crystal-
lization takes place at high temperature and leads to a better-ordered
crystal (meaning that the final configuration is closer to a “perfect”
crystal, as indicated by a measurement of crystallinity that yielded lit-
tle less than 75%; see fig. 3.35). For x2 the transition occurs rather
late, and gives rise to a frozen configuration with few ordered zones
surrounded by lots of amorphous material (with crystallinity less than
5% as shown in fig. 3.35) which is characterized by a small drop in the
volume per monomer.

The features of the three models can be compared by looking at the
corresponding angular potentials, or equivalently at the angle proba-
bility distribution (fig. 3.46): It can be noticed that the trans–trans
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Figure 3.46: Comparison of the prob-

ability distributions of bond angle θ for

CG-PVA and the x2 and x4 models.

Points correspond to the distributions

measured from the simulations at T =

1.0, while lines were obtained from di-

rect inversion of the angular potential

according to eq. (3.1).

state is more favorable in the case of x4, and less in the case of x2.
Conversely, the trans–gauche state is more populated for x2 than for
x4. We have found a strong correlation between the probability Ptrans

of finding an angle θ > 150o (trans–trans state) and the temperature of
crystallization (or melting). This result is presented on fig. 3.47, where
the temperature of melting for all the different models (18 models for
N = 10 and N = 50, reduced to 7 for N = 100 because of higher
computational-time requirements for longer chains) we used and for
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Figure 3.47: Influence of the angular

potential on the melting temperature:

Melting temperature Tmelt as a func-

tion of −1/ ln(Ptrans). Each point rep-

resents a different model, with a par-

ticular angular potential.
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three different chain lengths are plotted as a function of −1/ ln(Ptrans).
A plot of Tmelt vs. Ptrans would show exactly the same trend, but this
particular representation was preferred in order to allow for an easier
comparison with the theoretical argument that follows. The solid lines
show the results of a linear fit for these data; there is a shift in the slope
when comparing N = 10 and N = 50, but for the two longest chain
lengths, the fitting lines superimpose (the perfect superposition is only
an accident here as there is not enough points nor statistical averages.
Still, the tendency that results for short chains (N = 10) differ from
findings for longer polymers seems natural).

It is possible to find a theoretical explanation for this relation be-
tween Tmelt and Ptrans in Volkenstein’s work [130]; he describes crys-
tallization as a first order phase transition,

∆G = 0 (3.33)

∆H − Tmelt∆S = 0 (3.34)

and thus obtains this expression for the temperature of melting:

Tmelt =
∆H
∆S

=
∆Einter + ∆Eintra + p∆V

∆Sinter + ∆Sintra
, (3.35)

having decomposed the energies and entropies of melting into inter-
and intra-chain contributions. Volkenstein then neglects ∆Sinter, since
most of the degrees of freedom in the system lie in the chain’s internal
conformations, for long chains. It is questionable whether this assump-
tion is justified in the case of our simulation, for the chain lengths we
were to probe are still rather small in comparison to the experimental
standards; we will come back to this point later.

The following intra-chain entropy variation is obtained by model-
ing one chain as an ensemble of rotational isomers, possibly trans or
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gauche± for a simple linear chain in the melt, and being all trans in
the crystal. Volkenstein assumes the following partition function for a
mixture of N uncorrelated units having the free energy Fi:

Q = N !
N∏

i=1

(
e−βFi

)Ni

Ni!
. (3.36)

Ni is the number of units in the state i, and β = 1/T . This partition
function allows to calculate the free energy and entropy of one chain,

Fintra = −T lnQ (3.37)

= NT
N∑

i=1

xi ln
(
xi

wi

)
(3.38)

for large N and Ni; xi = Ni/N and wi = exp(−βFi);

Sintra = −
(
∂Fintra

∂T

)
Ni

(3.39)

= −N
N∑

i=1

xi ln
(
xi

wi

)
−NT

N∑
i=1

xi
∂

∂T
ln
(
xi

wi

)
. (3.40)

In equilibrium conditions, one has the following expression for the frac-
tion of i states xi:

xi =
exp(−βFi)∑
k exp(−βFk)

=
wi∑
k wk

. (3.41)

It is then possible to write the final expression for Fintra and Sintra:

Fintra = −NT ln
N∑

k=1

wk (3.42)

and

Sintra = N ln
N∑

k=1

wk +NT
∂

∂T
ln

(
N∑

k=1

wk

)
(3.43)

= N ln
N∑

k=1

wk +
1
T
Eintra . (3.44)

Considering in a first approximation that in the crystalline state the
chains’ isomers are exclusively trans, the change in free energy at the
transition is

∆Fintra = Fmelt
intra − F cryst

intra (3.45)

with F cryst
intra = NF1. Accordingly, the variation of intra-chain entropy

becomes (at constant temperature Tmelt, as we are considering a first-
order phase transition)

Sintra = Smelt
intra − Scryst

intra (3.46)

= N ln
N∑

k=1

wk

w1
+

1
Tmelt

∆Eintra . (3.47)



120 3 – Coarse-grained models

The term
∑

k wk/w1 is just the inverse of the probability of finding a
trans state in the melt, Ptrans:

Ptrans =
exp(−βFtrans)

Z
=

exp(−βF1)∑
k exp(−βFk)

. (3.48)

Thus, Volkenstein arrives at the following expression for ∆Sintra:

∆Sintra = N ln
1

Ptrans
+

∆Eintra

Tmelt
. (3.49)

This leads to the next equation relating Tmelt and the probability of
finding an isomer in a trans state Ptrans to the variations of volume and
inter-chain energy:

Tmelt ln
1

Ptrans
= ∆einter + p∆v , (3.50)

where e and v are the energy and volume per monomer. Originally
Volkenstein also neglected the last term over ∆einter, but this turned
out not to be justified in the case of our simulations.

This simple theoretical model suggests that the melting temperature
is closely related to the probability of trans states, as we found out from
our simulation data for several models with varying Ptrans. We indeed
found a linear variation of Tmelt as a function of − ln 1

Ptrans
, as would

be predicted by Volkenstein for the case of constant ∆einter + p∆v, in
eq. (3.50). However, the correlation we have determined involves the
probability Ptrans(T = 1) measured at high temperature, and not at the
equilibrium melting point. It is thus necessary to compare the melt-
ing temperature Tmelt and Ptrans(Tmelt) in order to test Volkenstein’s
theory. This is what is presented in fig. 3.48(a); it is noticeable that
for N = 50 the data seem too noisy to allow for a reliable fit, whereas
this is possible for the other two chain lengths as there is an observable
tendency. Still the resulting correlation between Tmelt and Ptrans(Tmelt)
does not appear as clearly as in fig. 3.47. A more demanding test of
Volkenstein’s equations consists in computing for every model the lhs
of eq. (3.50) in order to check whether there is a good agreement be-
tween the different measured quantities. The result are presented in
fig. 3.48(b), and it can be seen that for N = 10 the data agree quite
well with eq. (3.50), as the ratio

R =
Tmelt ln (1/Ptrans(Tmelt))

∆einter + p∆v
(3.51)

is close to unity. For longer chains, this is not the case anymore. The
reason is that the assumption of an all-trans configuration in the crys-
talline state of polymer systems is obviously not valid, especially in the
case of our simulations since the high cooling rates and small boxes do
not permit the formation of such elongated structures with N = 50 or
N = 100 chains. For N = 10 however, the mobility of the monomers
is high enough so that fully stretched conformations occur. At both
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−1/ ln(Ptrans(Tmelt)). Each point represents a dif-

ferent model, with a particular angular potential.
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Figure 3.48: Influence of the angular potential on melting temperature: Comparison of simulation data with Volkenstein analysis.

high and low Ptrans, the agreement with Volkenstein’s prediction is
less satisfactory: For low Ptrans, the x2 model has been observed to
produce poorly crystalline configurations, which results in violating
Volkenstein’s hypothesis about stretched chains in the crystal. For high
Ptrans, crystallization of the x4 model for instance was shown to be hin-
dered because the chains stretch too early, not leaving the monomers
enough mobility to organize in a well-ordered crystal. In these respects
deviations from the predicted behavior can be understood, and this
also explains why longer chains failed to be quantitatively described by
the simple model.

3.3.4 Isothermal relaxation

A very common way of studying the behavior of a crystallizing polymer
melt consists in quenching it quickly under its melting temperature and
let the crystal grow at constant temperature. The final state can then
be characterized, and the consecutive melting occurs at a temperature
that is related to that particular crystal morphology. We reproduced
this experimental protocol with our simulations, again comparing our
different models. The results are shown in fig. 3.49, and it can be
seen that there is a linear relation between both the crystallization and
melting temperatures and the corresponding lamellar thickness; this
has been observed experimentally [42, 54, 55, 121]. More precisely, the
smaller the supercooling, the thicker the lamellae; thus a system that is
left to relax at a temperature close to its melting temperature will have
enough thermal energy to allow the chains to arrange in long stems,
whereas if the supercooling is too important, the chains’ mobility will
be low, so that only thin lamellae can form.

The relation between supercooling and lamellar thickness can be ob-
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Figure 3.49: Crystallization and melt-

ing lines, comparison between x4 and

CG-PVA (data for CG-PVA from Hen-

drik Meyer).
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tained by calculating the free enthalpy of formation of a crystallite,
taken as a volume of thickness l and surface A (this calculation is pre-
sented in refs. 5 and 87, for instance): This object is formed by stacked
lamellae of folded chains with the folds lying in the surface of area A,
separated by elongated stems of length l. In this case:

∆G = 2Aσ −Al∆gbulk (3.52)

if one neglects the lateral surface effects; σ is the surface tension and
∆gbulk is the free energy variation of formation of a perfect crystal
without boundaries, per unit volume. This leads to a restriction on the
possible values of l, as a crystallite will only be stable if

 0.4

 0.6

 0.8

 1

 1.2

 0  0.05  0.1  0.15

T

1/d (1/σ)

CG-PVA
x3

x64

 0.4

 0.6

 0.8

 1

 1.2

 0  0.05  0.1  0.15

T

1/d (1/σ)

CG-PVA
x8
x5

Figure 3.50: Crystallization and melt-

ing lines for other models. CG-PVA lines

are shown for reference.

l ≥ 2σ
∆gbulk

. (3.53)

Under equilibrium conditions, the enthalpy variation associated with
the melting of an infinitely large crystal is

∆gbulk(T∞melt) = ∆h(T∞melt)− T∞melt∆s(T
∞
melt) = 0 . (3.54)

Assuming that the enthalpy and entropy do not vary too much for a
temperature close to T∞melt, one could use the approximation

∆gbulk(T ) = ∆h(T∞melt)− T∆s(T∞melt)

= ∆h(T∞melt)− T
∆h(T∞melt)
T∞melt

= ∆h(T∞melt)
∆T
T∞melt

. (3.55)

∆T = T∞melt − T is the supercooling. This allows one then to write,
with eq. (3.53):

l ≥
2σT∞melt

∆h(T∞melt)∆T
or: T ≤ T∞melt −

2σT∞melt

∆h(T∞melt)l
. (3.56)
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This last expression is the Gibbs-Thomson equation that can be used
to account for the linear behavior observed in fig. 3.49 for the melting of
crystals with different lamellar thickness. The temperature of melting
for a completely elongated crystal T∞melt can be deduced from the figure
by extrapolating the lines for 1/l→ 0.

In the simulations, the lamella thickness is measured by determining
the minimum of the orientation correlation function inside a chain; this
provides the average distance between two consecutive folds along one
chain that defines the stem length (see sec. 1.3).

3.3.5 Structure factors

The occurrence of a crystalline structure in a system can be conve-
niently displayed with structure factors [defined in eq. (1.74)], as there
is a big qualitative difference between the smoothly-oscillating behavior
of this quantity in the liquid and the Bragg peaks expected in the case
of a solid. However, as polymer melts are supposed to become semi-
crystalline only, the structure factor measured for our systems at low
temperature still exhibit characteristics of both liquid and crystalline
states.

a
b (2,0)

(1,1)

Figure 3.51: Schematic representation

of the (two-dimensional) hexagonal lat-

tice vectors. The length of the vectors

is given by d =
√
|αã + βb̃|2 , and the

values for the first (α, β)-couples are:

α β d

1 0 1
1 1

√
3

2 0 2
2 1

√
7

...
...

...

For our coarse-grained models, we expect to find crystals with a
hexagonal symmetry since the (elongated) chains have a cylindrical
symmetry. The Bragg peaks should therefore correspond to the pos-
sible values of the length of vectors of the reciprocal lattice, which is
also a hexagonal lattice [6]: If the original lattice has the following
parameters,

a = aux

b =
1
2
aux +

√
3

2
auy (3.57)

c = cuz ,

it can be shown that the reciprocal lattice is hexagonal with parameters

ã =
4π
a
√

3
(3.58)

c̃ =
2π
c
. (3.59)

The possible vectors of the reciprocal lattice are linear combinations of
ã, b̃ and c̃, of length

d =
√
|αã + βb̃ + γc̃|2 ; (3.60)

in the case of polymer chains, the c-length is much larger than a, and
the vectors with γ 6= 0 are not expected to contribute for small q
vectors. Figure 3.51 sketches the hexagonal (reciprocal) lattice and the
first few vectors v = αã + βb̃, with (α, β) equal (1, 0), (1, 1), (2, 0). It
can be seen in fig. 3.52 that the position of the first peaks appearing
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Figure 3.52: Structure factors for

several models at low temperature

(T = 0.4). CG-PVA and x4 have

a semi-crystalline structure, as can

be inferred from the presence of

sharp peaks; x2 and w0 poorly or do

not crystallize, and therefore have a

structure that resembles the liquid

structure at high temperature. For an

easier comparison of the structure for

one model, see fig. 3.54.
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in the low-temperature structure factors for semi-crystalline are given
by dqmax, where qmax corresponds to the position of the first peak. In
the case of the x4 model, qmax ≈ 7.55, and the next peaks are about
q = 13.08 and q = 15.10.

The dependence on the chain length is an interesting point about
structure factors: At high temperature, it is observed that there is no
important influence of the size of the chains on the structure of the
melt (fig. 3.53(a)); we shall come back to high temperature structure
factors in chapter 4.

The structure factors for several models at low temperature are pre-
sented in fig. 3.52. According to the likeliness of the model to crys-
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Figure 3.53: Structure factors for CG-

PVA at T = 1 and T = 0.4, for dif-

ferent chain lengths. At high tempera-

ture there is a small difference between

the results for N = 10 and N = 50,

but the distinction between N = 50 and

N = 100 is difficult to make (see chap-

ter 4 for more details). At low tempera-

ture the data for short chains show much

sharper peaks due to the fact that the

system is almost perfectly ordered at this

chain length; for longer chains the struc-

ture factors are almost identical and the

peaks much attenuated because of the

presence of amorphous media around the

crystalline domains.

tallize, different structure are observed: The w0 model that has no
explicit angular potential (fig. 3.5) cannot crystallize and therefore has
the same features at T = 0.4 than in the melt. The x2 model gives
rise to a poorly crystalline configuration after continuous cooling and
its structure factor also shows almost no characteristics of an ordered
system. Contrary to that, the models CG-PVA and x4 that have been
shown to produce partially crystalline configurations upon cooling do
exhibit crystal-specific features. These features are more pronounced in
the case of x4, since this model has less amorphous regions in its low-
temperature state than CG-PVA (fig. 3.35); this causes the average
structure factor to display sharper peaks.
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Figure 3.54: Comparison of the structure factors at high and low temperatures, for different models.
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Figure 3.55: Phase diagrams for the melting of perfect crystals (N = 100), either fully

stretched chains or folded into 2 or 4 stems. Results for four different models are pre-

sented, the symbols correspond to the model without angular potential w0 (cf. fig. 3.5)

for which no crystalline state is stable. The other models melt at lower temperatures

when the number of stem is increased, indicating that the longer the stem, the more

stable the crystal. Curves for the different stem lengths have been shifted by an amount

of 0.1 for clarity.

3.3.6 Melting of perfect crystals

(a) 1 stem

(b) 2 stems

(c) 4 stems

Figure 3.56: Simulation snapshots of

the initial configuration used to study

the melting of perfect crystals consisted

of chains fully stretched or folded into 2

or 4 stems. One chain is colored in black

in order to emphasize the folds.

In order to compare our results from the preceding sections, we have
also run simulations for some models starting with a “perfect crystal”
configuration, that is a packing of fully stretched or regularly folded
N = 100 chains (one system with two stacks of once-folded chains,
and another with four layers of chains folded into four stems). The
initial conditions are presented using simulation snapshots in fig. 3.56.
The simulations were started at low temperature (T = 0.4) with a
configuration generated by hand, and equilibrated at that temperature
before heating up to T = 2 (at rate 2× 10−5 τ−1).

Figure 3.55 shows the resulting phase diagrams for CG-PVA, x2 and
x4, and also for a model without any angular potential that starts
“melting” immediately at low temperature, since there is no rigidity to
keep the chains in an elongated conformation; in this case, the arti-
ficial crystalline state is not stable at T = 0.4 and there is a smooth
transition from low- to high-temperature melt. The other models ex-
hibit a sharp phase transition, defining a melting temperature T∞melt

much higher than the Tmelt temperatures measured while heating up
a crystalline configuration obtained via a continuous cooling, and also
well above the temperature extrapolated from the melting lines from
fig. 3.49. The melting temperature for the different models decrease
with the number of folds, which is consistent with the observation made
when considering the crystallization and melting lines in sec. 3.3.4. It
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Figure 3.57: Melting and crystalliza-

tion lines as shown in fig. 3.49, with

added points corresponding to the melt-

ing temperature of perfect crystals with

stem lengths d = 12.5, 25 and 50 σ (1,

2 or 4 stems). As expected, the melt-

ing point is higher in the case of the

perfect structures, since the occurrence

of a phase transition is made easier at

impurities or heterogeneities. Points for

perfect crystals do not show the same

tendency as the data obtained for the

melting of crystals created during an

isothermal relaxation below Tcryst.

can also be noticed that for x4 which has the more stable crystalline
structure, the introduction of folds leads to a larger decrease in the
melting temperature than for x2. This is presented in fig. 3.58.

For two different models the melting temperatures of perfect crys-
tals for fully stretched chains and folded chains have been included
(3 symbols) to the melting and crystallization lines plot for compar-
ison (fig. 3.57). It can be seen on those examples that there is no
linear relation anymore between the inverse stem length and the melt-
ing temperature. The reason why these new points do not fall on the
lines which were found to extrapolate the melting temperatures to infi-
nite stem lengths is that the crystalline structures cannot be compared
directly. With artificial, perfectly crystalline configurations, one of the
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Figure 3.58: Melting temperature as a

function of the stem length d for perfect

crystals. Tmelt increases faster with d for

x4 than for x2.

most important features of semi-crystalline polymers is lost, in that
there are no amorphous regions anymore. The crystals obtained via
isothermal relaxation after a quench discussed in sec. 3.3.4 contain a
significant part of disordered material which plays a role during melt-
ing. The absence of such zones on the one hand makes the systems
more stable, since the configurations are much more regular and in this
respect resemble more a perfect crystal of simpler bodies (metal. . . ).
On the other hand, amorphous regions can play the role of large “de-
fects” in the crystalline structure, and hence facilitate the transition
to the liquid phase. This explains why the melting points determined
for perfect crystals lie above the lines established for the melting of
semi-crystalline system with the same models.

It is possible to compare the crystalline structures obtained through
the different kinds of experiments using the measurement of the or-
der parameter during melting: Figure 3.59 shows the renormalized
P2 for three different crystals during continuous heating (heating rate
2× 10−5τ−1, except for the configuration obtained after isothermal re-



128 3 – Coarse-grained models

Figure 3.59: Comparison of the evo-

lution of the P2 order parameter dur-

ing melting of crystalline structure ob-

tained with different methods (model

x4, N = 100): Perfect crystal (hand-

generated configuration) and crystals

grown during continuous cooling (cool-

ing rate 5× 10−6τ−1) or isothermal re-

laxation (at T = 0.86). The perfect

crystal exhibit a much more abrupt tran-

sition. The values used to normalize the

data are the melting temperature Tmelt

and the value of the order parameter in

the crystalline phase (at T = 0.4 for the

perfect crystal; at T = 0.4 after con-

tinuous cooling; or at T = 0.86 after

isothermal relaxation).
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laxation, heated at rate 10−5τ−1). The perfect crystal configuration
melt very rapidly compared to the other two systems, which exhibit
a more progressive transition. This is consistent with the expecta-
tion that a perfect crystal should undergo a first-order phase transi-
tion, while for more realistic semi-crystalline configurations, the large
amount of amorphous material makes the transition less abrupt. The
configuration obtained via continuous cooling is the least crystalline
of the three, and appears to melt slightly more progressively than the
crystal created during isothermal relaxation whose growth was not hin-
dered by continuously decreasing thermal energy (the difference in heat-
ing rate probably has a small influence on the melting), because of its
lower crystallinity.

The melting of perfect crystals can be described by looking at the
distribution of angles in the system as a function of temperature. Fig-
ure 3.60 presents the variation of Ptrans(b) as a function of time dur-
ing the continuous heating, for systems of perfect crystals, folded or
not. Ptrans(b) corresponds to the probability of finding a trans–trans
states at position b along the chain; this probability is uniformly 1 in
the case of the perfectly stretched chain crystal at low temperature,
and remains at a high value until the melting temperature is reached,
and then the crystal melts. Ptrans(b) then decreases uniformly to its
equilibrium value at high temperature, and for such a system one has
Ptrans(b) = Ptrans since there is no particular length scale b0 appearing
in the probability distribution in equilibrium. The situation is different
for systems constituted of chains folded into 2 and 4 stems: In these
cases, Ptrans(b) drops for b corresponding to the positions of the folds.
At low temperatures there are sharp minima in the distribution for
these values of b. As the temperature is increased, these minima tend
to widen, and it can be inferred from the rounded shape of the distri-
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Figure 3.61: Test of Volkenstein’s the-

ory for the relation between the tem-

perature of fusion Tmelt and the prob-

ability of trans–trans states at Tmelt,

Ptrans(Tmelt) (three different models,

N = 100). Besides the data already

presented in fig. 3.48(b), the results ob-

tained in the case of perfectly ordered

structures have been added. It can be

seen that these points match Volken-

stein’s prediction better than the data

obtained from continuous cooling simu-

lations. This indicates that the approx-

imation of the crystalline state by an

all-trans state is important. For per-

fect crystals, the data show that the

quantity R of eq. (3.61) is very close

to 1, meaning that Volkenstein’s theory

provides a good description of what is

observed in the simulations. Points for

folded configurations are slightly further

away from 1 than for perfectly stretched

configurations.

butions that “defects” (meaning non-trans–trans states) form preferen-
tially around the original folds. At the transition, the site-dependent
angular distribution becomes uniform as there is no correlation between
angular states and the position along the chain in the molten state.

The simulations of the melting of perfectly ordered crystals provide
another means of testing the theory by Volkenstein that was presented
in sec. 3.3.3 in order to link the probability of trans–trans states and the
temperature of melting. The theory establishes the following relation
between Tmelt, Ptrans(Tmelt), ∆einter, p and ∆v [eq. (3.51)]:

R =
Tmelt ln (1/Ptrans(Tmelt))

∆einter + p∆v
= 1 . (3.61)

This relation has been tested in fig. 3.48(b), and it was argued that
the theory applies better to short than to long chains, since for small
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enough chain lengths the low-temperature state is close to an all-trans
state, which is used as an hypothesis in the theory. Figure 3.61 confirms
this interpretation since for N = 100 it is shown that the data repro-
duce Volkenstein’s prediction very well in the case of fully stretched
chains. For perfect crystals consisting of stretched chains, the ratio R
is very close to unity (R . 1), and this is also the case for crystalline
configurations in which the chains are folded into 2 or 4 stems. For the
latter two cases, R is found to have a slightly lower value. This shows
that the hypothesis of an all-trans crystal is predominant in Volken-
stein’s theory, and this explains why the agreement with the theory is
not better in the case of a crystalline configuration obtained via con-
tinuous cooling, in which the proportion of trans–trans states is by far
smaller than in the crystals thus created by hand.

Simulations of fully stretched chain crystals allow us to study the
structure of such “perfect” polymer crystals and provide a reference
state to which the structure of the semi-crystalline configurations ob-
tained via continuous cooling may be compared. Figure 3.62(a) shows
the structure factor for a perfect crystal of fully stretched chains: Ver-
tical lines indicate the position of the peaks corresponding to vectors
of the two-dimensional reciprocal hexagonal lattice. The lattice pa-
rameter ã is taken from the position of the first peak in the measured
data, and corresponds to the characteristic length d ' 0.95σ imposed
by the packing of the chains. Most peaks are determined by the length
of vectors of the 2-d lattice, and the peaks corresponding to vectors
out of the ã-b̃ plane (not shown) do not seem to have large contribu-
tions in the total structure factors. Extra peaks are found that do not
correspond to vectors of the 2-d lattice. We will come back to that
later. Figure 3.62(b) shows a comparison of structure factors for differ-
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been modified in order to find the origin of the extra peaks observed in the structure factor of perfectly stretched chain or regularly

folded chain crystals (see text for details).

ent semi-crystalline configurations at T = 0.4. The structure factor for
a semi-crystalline configuration obtained via continuous cooling of the
melt contrasts with those measured for perfect crystal configurations
generated by hand and simulated in equilibrium at low-T , which are
closer to the Dirac-delta peak-like structure expected for a crystal of
simpler particles. A greater number of folds is associated with higher
noise and a more pronounced structure in the small-q region. One can
also notice a fourth peak around q = 17 which does not correspond to
a vector of the reciprocal lattice (see fig. 3.63).

In order to find the origin of the supplementary peaks, “artificial”
configurations have been created with perfectly stretched chains on a
regular hexagonal lattice. The translational order of chains in the lay-
ers and the inter-layer distance have been modified so that the influence
of the different parameters on the overall structure can be determined.
For the “Infinite” configuration, particles are set up on a perfectly reg-
ular lattice and the size of the periodic box is adjusted so that the
distance between any two particles in the direction of elongation of the
chains is always a multiple of the bond length. This is not the case
for the “Finite” configuration, whose box size takes into account the
inter-layer distance in the direction of the chains (the distance between
two particles along the chain is σ/2, whereas the inter-layer distance
is determined by the excluded volume interaction and is close to 0.95σ
at T = 0.4). It can be seen in fig. 3.63(a) that the introduction of a
new characteristic length (the chain length) causes the apparition of
infinitely many peaks in between the Bragg peaks observable in the
case of a perfect crystal. In fig. 3.63(b) the crystalline structure is
compared to slightly distorted configurations: Adding “noise” to the
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configuration (by displacing the chains by a small amount (uniform
distribution between ±0.2σ/2) along the z-direction, their direction of
elongation) is reflected in the occurrence of a signal closer to unity be-
tween the peaks after the second one, which is observed on the structure
factor measured at T = 0.4. A periodic “shift” (chains in consecutive
x-z planes are shifted along the z-axis by an amount of σ/4 so that
their packing is more favorable) results in the occurrence in the struc-
ture factor of new peaks between those predicted by vectors of the
two-dimensional hexagonal lattice, since this periodic displacement of
the chains introduces a new characteristic length scale. This explains
the presence of extra peaks in the structure factor measured for the
“perfect” crystal of fully stretched chains at T = 0.4: This temperature
is high enough to allow the chains to move in the z-direction and mini-
mize their excluded-volume interaction by adopting new positions. The
situation still cannot be exactly described by the structure factor for
regularly displaced chains, since the hexagonal arrangement introduces
frustration and does not induce regular displacements of the chains.
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3.4 Summary
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We used coarse-grained models derived from the CG-PVA model in or-
der to study polymer crystallization with computer simulations. Such
kind of models is suited to address this phenomenon, as it becomes
possible to make the simulation algorithm very efficient in not taking
into account the irrelevant degrees of freedom in the system. We have
been focusing on the most important parameter in the CG-PVA model,
the angular potential. The structure of this potential is reminiscent of
details of the molecule on the atomistic level: Taking into account these
specificities makes it possible to reproduce spontaneous crystallization
from the melt, whereas a more generic model without an explicit angu-
lar potential yields an amorphous system at low temperature (fig. 3.65).

We created several models with the same parameters as the CG-
PVA model, except for this angular potential, which has been varied
(fig. 3.66); simulations of these different models allowed to test the influ-
ence of the angular potential on the properties of the models, especially
on the transition to the semi-crystalline state at low temperature.

These new models are artificially designed and do not correspond to
existing polymers; however, a very crude mapping shows that the set
of created models covers to a large extent the range of crystallizable
polymers: Figure 3.64 presents a comparison of the melting tempera-
ture and latent heat of fusion found experimentally for various poly-
mers (from ref. 65) and data from our simulations. The experimental
and simulation data should not be directly compared, since the exper-
imental values are in fact extrapolations for infinitely thick crystalline
lamellae; still, the graph provides an overview of the temperature scale
over which real polymeric materials in a crystalline state are found and
to what extent our coarse-grained models cover the range of existing
crystalline polymers.

In particular, a correlation between the probability of finding trans–
trans states in the melt at high temperature and the crystallization or
melting temperature has been found (fig. 3.67); this means that the
structure of the chains in the melt at high temperature is connected to
the propensity of the system to crystallize.

This correlation can be described using a theory by Volkenstein which
relates the probability of trans states to the melting point of the crys-
talline structures (see fig. 3.68); we could show that this theory for
crystalline polymers accounts for the correlation we found between the
angular states and the temperature of melting, provided that Volken-
stein’s hypothesis about the crystalline state is justified, i.e. that the
chains are perfectly stretched. This is the case for small enough chains
that can form nearly perfect crystals, and for longer chains arranged
on perfect lattices whose simulated melting point also agrees with the
theoretical predictions.

The structure of the semi-crystalline systems has been characterized
by different order parameters and it was possible to provide a unified
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description of the crystallization and melting processes: The order pa-
rameter P2 can be used to account for the development of order in the
melt during continuous cooling (fig. 3.69). The definition of another or-
der parameter with a local criterion allows to distinguish the crystallites
from the amorphous regions; together with a generic approach for the
description of growing structures in a medium (Avrami analysis), it is
possible to find the relevant parameters which yield a common picture
for the development of crystallinity for the different models (fig. 3.70).
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The coarse-grained models used reproduce the experimentally ob-
served crystallization and fusion lines, relating the crystallization and
melting temperatures to the thickness of the lamellae in the crystal
(fig. 3.71). The structure of the semi-crystalline systems has been char-
acterized and compared to perfect crystals of either stretched or folded
chains simulated at low temperature (fig. 3.72).

The connection between simulations using an atomistic model pre-
sented in chapter 2 and the coarse-grained simulations can be estab-
lished in deriving parameter for a coarse-grained model from the all-
atom study: Taking in a first approximation the parameters for the
excluded-volume and binding interactions from the CG-PVA model, it
is possible to obtain a coarse-grained model for polyethylene using the
data from alkane chains simulations . The angular potential is the pre-
dominant parameter of the coarse-grained models, and it contains most
of the features corresponding to the specificity of one particular poly-
mer. Moreover the distribution of angles has been found not to vary
significantly with the chain length; thus our short n-alkane simulations
may be used to determine an angular potential. Figure 3.73 shows
the phase diagram obtained for this CG-PE model, and it can be seen
that this model reproduces the crystallization and melting transitions
whereas they were not observed using the original all-atom model.
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The analysis of crystallizable models presented in the previous chap-
ter suggests that it is relevant to make a distinction between inter- and
intra-chain properties. Here, we want to complement this analysis by a
detailed study of various static structure factors which provide insight
into the spatial correlation of the monomers (or chains) on different
length scales. As an extension to the structure factors we have already
discussed (cf. sec. 3.3.5), inter- and intra-chain structure functions were
calculated, as well as more detailed site-dependent quantities. Since
these objects require to be averaged over a large amount of indepen-
dent configurations in order to reduce statistical noise to an acceptable
level, we focus here on four different models [CG-PVA and three of its
variants: x2, x4 and w0 (see fig. 3.5 and sec. 3.2 for definitions)] simu-
lated at high temperature (T = 1). At T = 1, no significant qualitative
differences could be identified between the models most of the time, so
the results presented in the following correspond mostly to CG-PVA,
unless otherwise noted.

The temperature dependence of the quantities under consideration
would certainly provide an interesting insight into the mechanisms re-
sponsible for the crystallization process. We did not pursue such a
study here, mainly due to two reasons; a computational one and a
physical one. An analysis at lower T would have been too demanding
in computer time within the scope of this thesis. On the other hand, the
results presented above for the variation of the melting or crystalliza-
tion temperature with the probability of trans states suggested that
crystallization is greatly influenced by the high temperature features
(fig. 3.47).

The method employed consists in calculating various static struc-
ture functions as an extension of simple liquid theory [40], and con-
fronting the findings to theoretical results originating e.g. from PRISM
theory [108, 109]. Our presentation follows closely the discussion of
Aichele et al. [1].

4.1 Definitions

We are considering polymer melts that consist of n chains containing
N monomers each. For a system of total volume V , it is possible to
define two different kinds of densities, either the monomer density ρm

137
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or the chain density ρch:

ρm =
N

V
, (4.1)

ρch =
n

V
. (4.2)

4.1.1 Density fluctuations

The structure factor as defined in eq. (1.74) corresponds to a density
fluctuation correlation function; thus we need to define the density fluc-
tuations, which can be made dependent on the position of a particular
monomer along the chain, so as to distinguish between chain ends and
centers. With ra

i denoting the position of monomer a of chain i, the
density fluctuations of monomer a for the wave vector q in reciprocal
space can be expressed as

ρa(q) =
n∑

i=1

exp(iq · ra
i ) (a = 1, . . . , N) . (4.3)

The density fluctuations created by all monomers of the melt are thus

ρtot(q) =
n∑

i=1

N∑
a=1

exp(iq · ra
i ) , (4.4)

and it is also useful to define the fluctuations associated with the centers
of mass of the different polymer chains:

ρc(q) =
n∑

i=1

exp(iq ·Ri) , (4.5)

with Ri being the position of the center of mass of chain i, i.e.:

Ri =
1
N

N∑
a=1

ra
i . (4.6)

4.1.2 Static structure factors

A density-density correlation function that can be expressed using the
preceding definitions depends on the position of two monomers a and
b along the chain:

Sab(q) =
1
n
〈ρa(q)∗ρb(q)〉 ; (4.7)

this quantity is called the site-site structure factor, and is the function
we will compute from our simulation data in order to characterize the
models we intend to study. The average here is to be taken over all
configurations of the simulated melt. Since the polymer melts under
consideration are spatially homogeneous and isotropic, the structure
factors only depend on q = |q|, and we have Sab(q) = Sab(q) in eq. (4.7).
As we did for other quantities like the enthalpy of melting in sec. 3.3.1
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for instance, it is possible to split the structure factor into intra- and
inter-chain contributions:

Sab(q) = wab(q)︸ ︷︷ ︸
intra

+ρch hab(q)︸ ︷︷ ︸
inter

. (4.8)

The intra-chain contribution is thus written

wab(q) =
1
n

〈
n∑

i=1

exp
(
−iq · (ra

i − rb
i)
)〉

, (4.9)

and the corresponding inter-chain contribution reads

ρchhab(q) =
1
n

〈
n∑

i6=j

exp
(
−iq · (ra

i − rb
j)
)〉

. (4.10)

Figure 4.1 presents a schematic illustration of the different inter- and
intra-chain structure factors.
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Figure 4.1: Definition of the inter- and

intra-chain contributions to Scd(q), re-

spectively hcd(q) and wcd(q). Ri de-

notes the center of mass of chain i [de-

fined in eq. (4.6)]. Other structure func-

tions involving the centers of mass of the

chains are presented in figs. 4.2 and 4.3.

The static structure factor related to what is measured in scattering
experiments is recovered by averaging over all pairs of monomers a and
b:

S(q) =
1
N

N∑
a,b=1

Sab(q) (4.11)

=
1
nN

〈ρtot(q)∗ρtot(q)〉 , (4.12)

which can also be decomposed into inter- and intra-chain contributions
as follows:

S(q) = w(q) + ρmh(q) (4.13)

[Notice that the monomer density now appears as a prefactor, instead
of the chain density ρch in the related expression of eq. (4.8)]. The
function w(q) is also called the form factor of one chain [22]. The
definitions for these two functions are:

w(q) =
1
N

N∑
a,b=1

wab(q) (4.14)

and

h(q) =
1
N2

N∑
a,b=1

hab(q) . (4.15)

4.1.3 Center-of-mass related structure factors

Another kind of structure factor that can be measured and analyzed
in the simulation focuses on the centers of mass (CMs) of two distinct
chains. Correlations between these can be studied as in the case of
simple particles in a liquid; for that purpose one can define the CM–
CM structure factor (see fig. 4.2)
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Figure 4.2: Definition of the center-of-

mass structure factor.
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Sc(q) =
1
n
〈ρc(q)∗ρc(q)〉 (4.16)

=
1
n

〈
n∑

i,j=1

exp
(
− iq · (Ri −Rj)

)〉
. (4.17)

This is again split into inter- and intra-chain contributions this way:

Sc(q) = 1 + ρchhc(q) , (4.18)

the intra-chain contribution being simply unity since a simple particle
has no “internal structure”.

It is also possible to calculate correlation functions describing the
coupling between one monomer and the CM of a chain. Such monomer-
polymer structure factors read (fig. 4.3):
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Figure 4.3: Definition of monomer-

polymer structure factors.

Sa,c(q) =
1
n
〈ρa(q)∗ρc(q)〉 (4.19)

=
1
n

〈
n∑

i,j=1

exp
(
− iq · (ra

i −Rj)
)〉

. (4.20)

Another decomposition into inter-/intra-chain contributions yields:

wa,c(q) =
1
n

〈
n∑

i=1

exp
(
− iq · (ra

i −Ri)
)〉

, (4.21)

and

ρchha,c(q) =
1
n

〈
n∑

i6=j

exp
(
− iq · (ra

i −Rj)
)〉

. (4.22)

The average packing of monomers around the CM of the chain they
belong to or of other chains is described respectively by the following
functions

wm,c(q) =
N∑

a=1

wa,c(q) (4.23)

hm,c(q) =
1
N

N∑
a=1

ha,c(q) . (4.24)

These equations allow us to define the average monomer-polymer struc-
ture factor:

Sm,c(q) =
N∑

a=1

Sa,c(q) (4.25)

= wm,c(q) + ρmhm,c(q) . (4.26)

4.1.4 Technical details

The computation of structure factors from simulation data requires to
average the considered functions over a great number of (independent)
configurations, so that the statistical errors are minimal. This is par-
ticularly important in the case of site-resolved quantities [1], since for
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quantities like wab(q) and hab(q) there are no averages over the posi-
tions of the monomers along the chain. In the case of our simulations,
structure factors for N = 10 have been averaged over 360 consecu-
tive configurations for CG-PVA (160 configurations for other models);
400 (200) configurations for N = 50 and 1000 (200) configurations for
N = 100. The configurations used are consecutive, meaning that they
belong to one equilibrium-run trajectory, and are separated by 50 τ .
This is not enough to ensure statistical independence of the configura-
tions for the longer chains; it may be desirable to average over more
remote configurations, but this would require much longer simulation
runs. Table 4.1 shows a summary of the relevant quantities for the cal-
culation of structure factors in the case of our coarse-grained models:

Table 4.1: Summary of parameters for

the calculation of structure factors for

the coarse-grained models.

N 10 50 100

chains 288 72 192

Nb. of confs.

(CG-PVA)

360 400 1000

Nb. of confs.

(other models)

160 200 200

〈L〉 (CG-PVA) 11.31 11.98 20.89

qmin (CG-PVA) 0.56 0.53 0.30

The number of chains for each chain length is indicated, as well as the
abovementioned number of configurations over which the structure fac-
tors are averaged; in the case of the CG-PVA model, the average box
size 〈L〉 is given (in σ), and the corresponding minimum wave vector
qmin = 2π/〈L〉 is indicated.

4.2 Site-averaged structure factors

A comparison of the total and intra-chain structure factors shows that
the behavior of S(q) at large q is entirely determined by the intra-chain
contributions. Figure 4.4 presents S(q) and w(q) for different chain
lengths, and points out the similarity between these two functions af-
ter the second peak. This effect does not appear to depend on the chain
length. According to the model used, the intra-chain function may or
may not reproduce the total structure factor S(q): For a simple bead-
spring model it is not the case [8, 60], whereas for an atomistic model of
1, 4−polybutadiene, it has been shown that S(q) and w(q) also super-
impose [1, 8]; it seems that realistic models like atomistic models and
CG-PVA, by introducing explicit stiffness imply strong intra-molecular
correlations, which tend to determine almost completely the structure
factor at large q vectors.

On the other hand, the first and second peaks of S(q) show that
inter-chain contributions are important. The comparison of fig. 4.4
suggests to analyze w(q) and h(q) in more detail.

4.2.1 Intra-chain structure factors

The structure of the intra-chain function w(q) can be interpreted by
looking at different length scales separately.

Debye function. For the small q regime, it is very common to con-
sider a polymer as an ensemble of segments, the distance between which
is given by a gaussian distribution [22]; this approach is relevant if the
excluded volume interactions between the monomers have been suffi-
ciently “averaged out” so that one chain can be considered as a random



142 4 – Structure factors

Figure 4.4: Comparison of the to-

tal structure factor S(q) and the intra-

chain only contribution, w(q). For two

chain lengths (N = 10 and N = 50),

S(q) is completely determined by the

value of w(q) from the third peak on-

ward. For q → 0, the intra-chain

structure factors tend to the number

of monomers per chain, N . Data for

N = 50 have been shifted for clar-

ity. The data obtained for longer chains

(N = 100) superimpose almost per-

fectly with the data presented here for

N = 50.
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walk. This comes from the “ideality” of the polymer chains in the
melt [33]: Whereas in dilute solutions the chains can be either swollen
or collapsed depending on the solvent and temperature (with only one
particular temperature Tθ at which the chains are “ideal”), it can be
shown that in a melt the intra-chain interactions are screened by the
presence of the surrounding polymers [19, 22, 30]. This leads to chains
behaving ideally, i.e. in a random-walk-like manner on large length
scales; in particular, this implies Rg ∼ N1/2. On large scales, the gaus-
sian model which reproduces the random-walk structure of the chains
implies the following probability distribution for the distance between
monomer a and b (for a 3-dimensional melt):

G(ra, rb) = G(r) =
(

3
2π〈r2〉

)3/2

exp
(
− 3r2

2〈r2〉

)
; (4.27)

the mean square distance between two monomers a and b being given
by 〈

(ra − rb)2
〉

= 〈r2〉 = |a− b| `2 , (4.28)

where ` is the statistical segment length, which is defined by

` =

√
6R2

g

N
. (4.29)

[Rg is the radius of gyration defined in eq. (1.65)]. The expression of
the static structure factor can be derived analytically: Equation (4.14)
can be written

w(q) =
1
N

N∑
a,b=1

〈
exp(iq · [ra − rb])

〉
, (4.30)
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and the factor in brackets becomes, using the gaussian probability dis-
tribution from eq. (4.27) [22]:〈

exp(iq · [ra − rb])
〉

=
∫

d3r G(r)eiq·r (4.31)

= exp

[
−

q2R2
g

N
|a− b|

]
. (4.32)

Inserting this last expression into eq. (4.30) gives the following result
after taking the continuum limit for the sums [22]:

wd(q) = Nfd(q2R2
g) , (4.33)

where fd(x) is the Debye function, defined as

fd(x) =
2
x2

(ex − 1 + x) . (4.34)

Figure 4.5(a) shows that the measured intra-chain structure factors are
in good agreement with the behavior predicted by the Debye approxi-
mation for q < 1/Rg.1

Nearest-neighbor approximation. For large q-vectors, w(q) is dom-
inated by very local variations of the monomer distances; therefore we
expect that the influence of nearest neighbors along the chain will con-
stitute the most important contribution. As defined in eq. (4.14), w(q)
is the sum of all elements in the site-site intra-chain structure factor
wab(q): If the nearest-neighbor interactions are dominant, we could ne-
glect all terms with b > a+1 in the sum; since waa(q) is just unity, the
approximated wab(q) reads

wab ≈



1 w12

w21 1 w23

w32 1
0

. . .

0
1 wN−1 N

wN N−1 1


(4.35)

at large q. We can also assume that the remaining elements wa a+1(q)
do not depend on the position of monomer a, as will be verified explic-
itly later (see fig. 4.19), and thus we arrive at the following expression
for w(q):

w(q) ≈ 1
N

N∑
a=1

∑
|b−a|≤1

wab(q) (4.36)

≈ 1 +
2
N

(N − 1)wa a+1(q) . (4.37)

1We compare wavevectors q to inverse distances like 1/Rg instead of quantities

that might seem more appropriate like 2π/Rg (since the position of the first peak

corresponds roughly to 2π/d, where d is the distance between nearest neighbors)

because the product qRg appears naturally e.g. in the calculations of the Debye

limit.
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Figure 4.5: Intra-chain structure factor compared to approximations in different regimes: The Debye function at small q [eq. (4.33)

and (4.34)] and nearest neighbors for large q [eq. (4.40)]. In fig. 4.5(a), inverse characteristic lengths 1/Rg and 1/b0 have been

indicated by vertical lines (see footnote 1 on page 143); it can be observed that the small-q approximation reproduces faithfully the

behavior of w(q) for q < 1/Rg but fails as 1/b0 is approached. The large-q expression retaining only nearest-neighbor contribution

is a good approximation to w(q) and reproduces qualitatively the observed oscillating structure (fig. 4.5(b)).

We used the symmetry of the site-site structure factors that arises
from the fact that the two ends of one chain are indistinguishable, i.e.
wab(q) = wba(q). In eq. (4.9) the average over all orientations of the
vector ra

i − rb
i can be carried out, so that we obtain

wa a+1(q) =
〈

sin(q|ra
i − ra+1

i |)
q|ra

i − ra+1
i |

〉
, (4.38)

where the average is to be taken over the length of vector ra
i −ra+1

i . To
do so, we can argue that the bond potential used in our simulation as
defined in eq. (3.5) is very stiff, and therefore yields a sharp distribution
of the bond length around the mean value b0. This results in |ra

i −
ra+1
i | ≈ b0, and thus

wa a+1(q) ≈
sin(qb0)
qb0

. (4.39)

Inserting this into eq. (4.37) finally gives

wnn(q) ≈ 1 +
2
N

(N − 1)
sin(qb0)
qb0

(4.40)

for large q.
Figure 4.5 presents a comparison of the data from the simulations

and the approximations given above; it can be seen that the large-
q approximation based on the nearest-neighbor contributions given by
eq. (4.40) yields the correct qualitative structure, reproducing the char-
acteristic oscillations of w(q). For small q vectors, the Debye function
provides a good description of the behavior of the intra-chain struc-
ture, as the chains exhibit a random-walk-like behavior for q � 1/b0
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Figure 4.6: Inter-chain structure factor compared to the total structure factor and the Debye function, for CG-PVA and for several

chain lengths. The inter-chain structure strongly determines the first peak of the collective structure factor S(q). The small-q

regime is well described by the negative of the form factor of an ideal chain, −wd(q).

(b0 corresponds to the length of one bond; see eq. (3.5). See footnote 1
on page 143).

4.2.2 Inter-chain structure factors

The inter-chain structure of the polymer melts we have simulated can
be understood by considering the case of a simple liquid: Simple liquids
do not have internal structure, and thus w(q) = 1. Therefore, the inter-
particle structure factor is just ρmh(q) = S(q)− 1.

Figure 4.6(a) compares ρmh(q) to S(q)−1 and stresses the similarity
between these two functions around the first peak: The first peak of
S(q) characterizes the packing of monomers in the melt, and hence is
dominated by the inter-chain contribution, with a small contribution
arising from the intra-chain structure (cf. fig. 4.4). This agreement
between ρmh(q) and S(q) − 1 appears to improve as the chain length
increases.

For large q vectors, the inter-chain structure factor tends to 0 with
small oscillations. Here the structure factor becomes mostly determined
by intra-chain effects (see fig. 4.4) and so the simple-liquid approxima-
tion ρmh(q) = S(q)− 1 must considerably deviate from the simulation
data.

For small q, there are also deviations between ρmh(q) and S(q) − 1
which may be explained by the polymer-specific “correlation hole” ef-
fect: The probability of finding a monomer from another chain is low-
ered in the typical volume occupied by a particular chain. Thus the
correlation between particles of distinct chains drops with increasing
distance, and this compensates the increase in intra-chain correlations.
Figure 4.6(b) shows that ρmh(q) indeed varies like −wd(q), which ex-
plains why the sum of the inter- and intra-chain structure factors yields
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Figure 4.7: Comparison of the structure factors for four different models (N = 100). There are slight differences in the intra-chain

structure factors that tend to disappear as q increases (fig. 4.9(a)); for smaller q, the differences arise from the flexibility of the chain

that is specific to every model. This requires a description taking into account the intra-chain properties (Koyama distributions,

see fig. 4.18(b)). For small q vectors, an inset shows w(qRq) as a function of qRq. For inter-chain functions, a mismatch in the

values of q∗ for which h(q) is maximal can be noticed. This corresponds to different specific lengths for the packing of monomers

of distinct chains (fig. 4.9(b)).

a finite value for S(q) as q → 0, corresponding to the melt’s (weak)
compressibility.

4.2.3 Comparison of different models

Figure 4.7 presents a comparison of different models for the inter- and
intra-chain structure factors; the total structure factor S(q) that was
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Figure 4.8: Structure factors at high

temperature (T = 1) for four different

models: CG-PVA, x2, x4, w0. These

structure factors were already presented

in fig. 3.54, together with data for lower

temperatures.

already presented in fig. 3.54 for the different models at T = 1 is shown
in fig. 4.8. The difference in the models with which the influence of the
flexibility of the chains on crystallization was studied. The models x2
and x4 have respectively very low and very high crystallization/melting
temperatures (fig. 3.45), whereas w0 has no explicit angular potential
and does not crystallize (fig. 3.5).

The intra-chain structure of the different models exhibits slight vari-
ations of the positions of the peaks and minima. Nevertheless it can
be observed that these differences seem to be washed out as the wave
vector increases (cf. fig 4.9(a)). For small q, the flexibility of the model
also influences the intra-chain structure, as can be seen on the inset
of fig. 4.7(a): When rescaled by the radius of gyration, all functions
w(qRg) for the different models superimpose as qRg → 0. The nearest-
neighbor approximation presented in eq. (4.37) can be tested against
the data obtained for the different models at several chain lengths;
it appears that the description is only qualitative at large q vectors,
as can be seen on fig. 4.10. The agreement is good around the third
peak but does not hold for smaller or larger wave vectors. Still the
oscillations are well reproduced; the different models exhibit the same
deviations from the behavior predicted by the nearest-neighbor approx-
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vectors, showing that the differences between the structures of the different models seem to vanish as q → ∞. Figure 4.9(b)

presents a rescaled plot of the inter-chain structure factors for the different models.

imation. One would then need to take into account the contributions
arising from next neighbors, which are determined by the interactions
between monomers inside the chains; this would imply more compli-
cated calculations in which the flexibility of the chains plays a role.

These observations suggest that a more accurate description of the
intra-chain structure factors is needed, which would account for the
flexibility of the different models; this can be done through the use of
Koyama distributions as we shall see in sec. 4.3.2.

Figure 4.9(b) shows the inter-chain structure factors for the different
models already presented in fig. 4.7(b), but rescaled using the wave
vector q∗ corresponding to the maximum hmax of h(q); it can be seen
that the data do not superimpose for other q vectors, indicating that
there is no general behavior for h(q). One can try to relate the position
of the main peak to a typical length in the system, so as to give a
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Figure 4.10: Comparison of the intra-

chain structure factors measured for CG-

PVA, with chain length N = 10 and

N = 100, and the nearest-neighbor

approximation [eq. (4.37)]: This is a

magnification of the large-q region of

fig. 4.5(b). Data and approximation for

N = 50 match closely the results ob-

tained for N = 100. It is seen that

the nearest-neighbor approximation only

yields a qualitative description of the

simulation data, since the contribution

of other neighbors become important as

well.

physical meaning to q∗; it could be naively expected that there is a
relation between q∗ and the density of the system, as q∗ corresponds to
the inverse distance between two monomers of two distinct chains, and
one could assume that the larger this distance, the lower the density.
Figure 4.11 shows that this assumption is wrong in the case of our
simulation data, since the inverse density decreases with the distance
1/q∗. Hence the shift in the main peak’s position observed in fig. 4.7(b)
cannot be explained by the change in density at high temperature for
our models. It is also presented on fig. 4.11 that the radius of gyration
decreases with increasing distance 1/q∗, and thus Rg neither is the
relevant length scale that could allow to superimpose the structure
factors for the different models.

The change in the first peak’s position is most important in the
case of the w0 model which has no angular potential; in this case, the
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chains are more flexible, and stiffness is only introduced by the non-
bonded potential. This makes it possible for parts of the chains to fold
back on themselves, leading to a greater distance on average between
monomers of distinct chains. This can explain why the inter-chain
structure factors exhibit a peak at lower q for a more flexible model
that leads to a denser melt.
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Figure 4.11: Characteristic lengths

for the melts (four different models):

v1/3 (v is the volume per monomer) and

the radius of gyration Rg (N = 100).

Both lengths decrease with 1/q∗, show-

ing that they are not suited to describe

the shift of the inter-chain structure fac-

tor toward the small wave vectors.

4.3 Site-resolved structure factors

In liquid-state theories the structure of fluids is commonly discussed in
terms of different correlation functions; in the case of simple liquids, the
Ornstein-Zernike equation provides an insight into the behavior of the
particles through the introduction of the direct correlation function [40].
The direct correlation function is an important concept and may be
interpreted as the effective potential by which two particles interact in
the presence of all other particles. It is natural to attempt to extend
this approach to more complex molecules; in this case the molecules
can be seen as an ensemble of sites, and this leads to the introduction
of site-site correlations.

4.3.1 Direct correlation functions

Introductory example: Simple liquids. In order to accurately
describe the structure of a liquid of density ρ, the Ornstein-Zernike
approach introduces a self-consistent relation between the function h

and the direct correlation function c. In direct space, h(r) is simply
related to the pair-distribution function g(r) via

h(r) = g(r)− 1 , (4.41)

and the static structure factor S(q) is related to the Fourier transform
of h(r):

S(q) = 1 + ρh(q) . (4.42)

The Ornstein-Zernike equation states that

h(r) = c(r) + ρc ∗ h(r) (4.43)

= c(r) + ρ

∫
dr′ c(|r− r′|)h(r′) , (4.44)

which simplifies in Fourier space, as the convolution becomes a simple
product:

Figure 4.12: Schematic representa-

tion of the Ornstein-Zernike approach

that implies a decomposition into di-

rect correlations between particles 1 and

2 [c(r12)] and indirect correlations me-

diated by all other particles (particle 3

[c(r13) and c(r32)], particle 4 and 5. . . ).
h(q) = c(q) + ρc(q)h(q) . (4.45)

Equation (4.44) means that the correlation between two particles sep-
arated by a distance r can be decomposed into a direct correlation c

involving the two particles under consideration only, and the correla-
tions mediated by all the other particles (see fig. 4.12). Equation (4.45)
allows one to determine h(q), while eq. (4.44) does not; still it may be
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used to provide a more intuitive presentation of the decomposition into
direct and indirect correlations, when put into its iterative form:

h(r) = c(r) + ρc ∗ c(r) + ρ2c ∗ c ∗ c(r) + . . . , (4.46)

where the first term corresponds to direct correlations by definition, and
all other terms describe indirect correlations mediated by 1,2,3. . . other
particles. The reciprocal-space form of the Ornstein-Zernike equation
allows us to give a simple definition of the direct correlation function
c: Using eqs. (4.45) and (4.42), we obtain

ρc(q) = 1− 1
S(q)

. (4.47)

Taking a crude approximation allows to give c(q) a more intuitive phys-
ical meaning: In the limit of a very dilute system, one can neglect the
indirect correlations in the Ornstein-Zernike picture [eq. (4.44)]. Then

h(r) = g(r)− 1 ' c(r) . (4.48)

The pair distribution function g(r) can be expanded in powers of ρ
(this assumes that the density is a small parameter):

g(r) =
∞∑

n=0

ρng(n)(r) , (4.49)

and the g(n)(r) enter the fluid’s equation of state which can be expressed
as [40]:

P = ρkBT −
∞∑

n=0

ρn+2

(
2π
3

∫ ∞

0
dr r3

dU(r)
dr

g(n)(r)
)

(4.50)

= ρkBT +
∞∑

n=0

ρn+2kBTBn+2 . (4.51)

U(r) is the inter-particle potential and the first term corresponds to
the ideal gas limit; the virial coefficients are defined as

Bn = − 2π
3kBT

∫ ∞

0
dr r3

dU(r)
dr

g(n−2)(r) (n ≥ 2) . (4.52)

In the ρ → 0 limit, the first coefficient B2 is the predominant term in
the series, and is written as [15]:

B2 = −2π
∫ ∞

0
dr r2

(
e−βU(r) − 1

)
; (4.53)

this can be identified with the definition eq. (4.52) to yield

g(r) ' exp
(
− βU(r)

)
' 1− βU(r) , (4.54)

which approximates g(r) to first order, in the case of weak interactions
in a dilute system. Hence we can identify c(r) with a pair potential in
combining eqs. (4.48) and (4.54):

c(r) ∼ −βU(r) . (4.55)
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Extension to polymers: PRISM theory. For the description of
polymers, as pointed out in sec. 4.1, the basic constituents of the system
are more complex and one has to consider a generalization of eq. (4.42)

Figure 4.13: Schematic representation

of a few examples of direct and indirect

correlation functions entering the devel-

opment of eq. (4.58). The direct correla-

tion function cab(q) relates sites a and b

of two distinct chains i and j, as waxcxb

also does via another site of the first

chain. ρchcax′wx′y′cy′b corresponds to

the indirect correlation function linking

a and b of chain i and j via two sites x′

and y′ of a third chain k.

Figure 4.14: Schematic representa-

tion of the direct correlation functions in

the case of ring polymers, showing that

the different sites are equivalent, thus

making the PRISM approximation exact:

caa′ = cbb′ = c.

which becomes eq. (4.7):

Sab(q) = wab(q) + ρchhab(q) : . (4.56)

It is still possible to introduce direct correlation functions in this for-
malism, which will then take a tensorial character. These functions will
be denoted by the matrix c(q), and their elements cab(q). The general-
ized Ornstein-Zernike equation [40] introducing c(q) has been derived in
the framework of Reference Interaction Site Model (RISM) [13, 14, 16],
and reads:

h(q) = w(q)c(q)w(q) + ρchw(q)c(q)h(q) . (4.57)

This equation can be understood by an iterative development as in
eq. (4.46):

h(q) = wcw(q) + ρchwcwcw(q) + ρ2
chwcwcwcw(q) . . . (4.58)

(wcw(q) is simply a short-hand notation for w(q)c(q)w(q)). An expan-
sion of the first term yields

wcw(q) =
N∑

x,y=1

wax(q)cxy(q)wyb(q) (4.59)

= cab(q) +
N∑

x=1
x 6=a

waxcxb +
N∑

y=1
y 6=b

caywyb (4.60)

+
N∑

x=1
x 6=a

N∑
y=1
y 6=b

wax(q)cxy(q)wyb(q) . (4.61)

The first term of the last expression corresponds to the direct correla-
tion between site a of a chain i and site b of a chain j 6= i (waa(q) = 1
has been used). The second and third terms account for correlation
between the same sites but mediated respectively via all possible sites
x on the first chain or sites y on the second. The last term takes into
account all other correlations mediated by both the sites x and y of the
two chains. The other terms in the development of eq. (4.58) can be
analyzed on the same basis, the factor ρn

ch corresponding to the num-
ber n of chains through which the a-b correlation is relayed. This is
illustrated on fig. 4.13.

Combining this equation to the definition of eq. (4.56) gives an ex-
pression for c(q):

ρchcab(q) = [w−1
ab (q)− S−1

ab (q)] . (4.62)

In order to simplify this general expression that implies to solve a sys-
tem of N2 equations, the adaptation of RISM to polymers (PRISM)
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Figure 4.15: Comparison of the

site-resolved direct correlation functions

cab(q) and the equivalent-site approx-

imation c(q) for CG-PVA (N = 10

and N = 100). End-end correlation

functions [c11(q)] show a large devia-

tion from c(q), whereas correlations for

monomers lying at the center of chains

are very well described by the PRISM

approximation. The agreement with

this approximation ameliorates with in-

creasing chain length.

postulates that all sites of a polymer chain are equivalent—which is true
for ring-polymers (see fig. 4.14) and a good approximation for very long
chains in the case of which end effects tend to be negligible [108, 109].
This equivalent-site approximation can be formulated as

cab(q) = c(q) . (4.63)

Using this approximation, eq. (4.57) becomes

h(q) = w(q)c(q)[w(q) + ρmh(q)] , (4.64)

and the expression for the direct correlation functions reduces to [see
eq. (4.47)]

ρmc(q) =
1

w(q)
− 1
S(q)

. (4.65)

Comparison with the simulation. The direct correlation func-
tions were calculated from the simulation data, both in the frame-
work of the PRISM approximation and with site-resolved details. Fig-
ures 4.15 and 4.16 show a comparison of the results which reveals a
mismatch between cab(q) and c(q) when the chain ends are involved.
Correlation functions for inner monomers on the contrary appear to
have a behavior very close to what is predicted using the PRISM ap-
proximation of eq. (4.63). It is observed from the graphs that the agree-
ment between cN/2 N/2(q) and c(q) is better for longer chains, since the
chain-end effects are much weaker.

Another interesting point is that the end-end correlation does not
seem to be strongly influenced by the chain length; this indicates that
the behavior of chain ends is independent of N .

This very crude estimate of eq. (4.55) is certainly not valid in the case
of our dense melts, but it still provides an interpretation for the direct
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Figure 4.16: Same comparison as pre-

sented in fig. 4.15, with a focus on the

small-q regime. Results for N = 50

and N = 100 have been shifted for

clarity; data for N = 50 are more af-

fected by noise because of a too small

box size which restricts the statistics.

The deviation from the PRISM predic-

tion c(q) is seen clearly, and it is notice-

able that there is no increase for longer

chains. Center-center correlation func-

tions [c55(q), c25 25(q) and c50 50(q)]

show a very good agreement with c(q),

which improves with increasing N since

in a longer chain the center segments

are not influenced by the chain ends

anymore.
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correlation function, whether for the simple-liquid or site-averaged c(q)
or for the site-dependent functions; in particular cab(r) corresponds to
an effective interaction potential between two monomers a and b. From
our measurements of the Fourier transforms of cab(r), we can observe
that the extrapolated values of cab(q) as q → 0 are different for chain
ends and centers:

cN/2 N/2(0) > c11(0) . (4.66)

Considering that the limit of cab(q) for q → 0 corresponds to the average
value of the effective potential cab(r) in direct space

lim
q→0

1
V
cab(q) =

1
V

∫
dr cab(r) = cab , (4.67)

we arrive at the conclusion that

UN/2 N/2 < U11 (4.68)

i.e. the average (repulsive) potential describing the effective interaction
between two particles is stronger for chain ends.

Another interpretation of the direct correlation function can be pro-
posed from eq. (4.65), taking the q → 0 limit:

ρmc(q)−→
q→0

1
N
− 1
kBTρmκT

, (4.69)

since the form factor w(q) approaches N at small wave vectors, and
the limit value of the structure factor is related to the isothermal com-
pressibility κT :

S(q → 0) =
〈N2〉 − 〈N〉2

〈N〉
= kBTρmκT . (4.70)

In the limit of long chains, the second term in eq. (4.69) becomes dom-
inant over the first one, and therefore c(q) ≈ −1/(kBTρ

2
mκT ). As an
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Figure 4.17: Comparison of the first

caa(q) elements of the direct correlation

function tensor with the PRISM approx-

imation c(q). For both short and longer

chains (N = 10 and N = 100, in the

case of which data have been shifted by

an amount of −15 for clarity), it is ob-

served that end-end correlation strongly

differ from c(q). While c11(q) is lower

than c(q), c22(q) appears to have large

values. For c33(q) already the asymp-

totic behavior is reached and caa(q) is

very close to c(q), at least until the

statistics is not sufficient (for q . 2).

For longer chains, the collapse of the

data on c(q) is better since the end-

effects are weaker.

extension of this approximation, the site-site direct correlation function
can be expressed as:

cab(q) ∼ − 1
κab

T

, (4.71)

as q → 0, where κab
T can be interpreted as a “site-dependent compress-

ibility”. This yields the following expression for the direct correlation
functions:

cN/2 N/2(0) ∼ − 1

κ
N/2 N/2
T

> c11(0) ∼ − 1
κ11

T

, (4.72)

which gives
κ

N/2 N/2
T > κ11

T . (4.73)

This corresponds to a larger “compressibility” of the monomers buried
in the middle of the chains than those sitting at the ends, which is un-
derstandable since the end segments are less constrained by the binding
potential than those in the center of the chains.

The validity of the PRISM approximation can be tested for the dif-
ferent elements cab(q) of the direct correlation function tensor. It can
be observed more precisely that all elements involving a chain end do
not reproduce the PRISM prediction, whereas the convergence to c(q)
is quite fast for other elements; fig. 4.17 shows that caa(q) ≈ c(q) for
a & 3, and this effect appears to be independent of the chain length.
The graph shows the small-q regime only, in which the variations of
the functions appear more clearly. It could also be shown that the ele-
ments c1a(q) that involve one chain end do not converge to c(q); even
for c1 N/2(q), there is a large deviation between these two functions.

4.3.2 Intra-chain structure

The site-resolved intra-chain structure can be calculated for several
models. We have already encountered a simple estimate of wab(q),
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Figure 4.18: Comparison of the site-resolved structure factors to different approximations (N = 100). The gaussian approximation

given in eq. (4.74) gives a description of the q → 0 limit but breaks down very close to q = 1/Rg. The first element wa a+1(q)

is very well reproduced by the approximation of eq. (4.39). The Koyama distributions are used to describe the data for wab(q)

(fig. 4.18(b)); it appears that eq. (4.75) yields a very good approximation for all a and b.

provided by the gaussian approximation. It consists in assuming the
distribution given by eq. (4.27) for the distance between two monomers
a and b along the chain; the use of this distribution in eq. (4.9) yields
the following expression:

wg
ab(q) = exp

(
−q2|a− b|`2/6

)
, (4.74)

As we mentioned it before, the squared statistical segment length `2

corresponds to 6R2
g/N . As suggested by fig. 4.5(a), this description

of wab(q) can only be valid for small q values, and thus only provides
insight into the asymptotic behavior of the site-resolved structure fac-
tor. On the other hand our simulation data do not allow to accurately
check the q → 0 limit since the simulation box size defines a lower
limit qmin which is too high, as shown on fig. 4.18(a): The measured
wab(q) appear to depart from the gaussian approximation at very low
q. However, the intra-chain structure factors wab(q) appear to depend
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Figure 4.19: Independence of the

site-resolved intra-chain structure fac-

tors wa a+n(q) on a (CG-PVA, N =

100). The graph shows three different

examples for n = 1 and n = 10, for pairs

of monomers (a, a + n) located in the

chain end, chain center and in between.

In both cases the data superimpose very

well.

only on the difference |a− b|, as suggested by the gaussian expression;
the data show only negligible differences for two functions wab(q) and
wa′b′(q) with |a − b| = |a′ − b′| (see fig. 4.19). The nearest-neighbor
approximation of eq. (4.39) gives another expression that can be used
to compare to the data obtained for wa a+1(q): Fig. 4.18(a) also shows
this approximation which describes the simulation data very well.

Another description of the detailed intra-chain structure can be ob-
tained by using the Koyama distribution that was proposed as an
approximation for the end-to-end distance distribution of a wormlike
chain [57, 66]; this approach takes into account the deviations from
the gaussian behavior by a non-gaussian parameter C2

ab (This coeffi-
cient is defined in ref. 40, for dynamical quantities). This parameter in
turn determines A2

ab and B2
ab that enter the definition of wab(q) in the
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Koyama theory:

wk
ab(q) =

sinBabq

Babq
exp

(
−A2

abq
2
)
, (4.75)

the coefficients are expressed as

C2
ab =

1
2

(
5− 3

〈[ra − rb]4〉
〈[ra − rb]2〉2

)
(4.76)

A2
ab =

1− Cab

6

〈
[ra − rb]2

〉
(4.77)

B2
ab = Cab

〈
[ra − rb]2

〉
. (4.78)

This approximation seems reasonable since it allows one to recover
the two limit behaviors that can be derived for wab(q): In the small-q
regime, the gaussian approximation is reproduced, as for q → 0 the
sine prefactor tends to unity and wk

ab(q) reduces to the exponential:

wk
ab(q)−→

q→0
exp

(
−A2

abq
2
)
. (4.79)

Equation (4.74) is recovered in this limit because the chains are gaus-
sian on large length scales; Cab = 0, A2

ab = |a− b|`2/6 [cf. eq. (4.28)].
In the large-q limit, we already used the hypothesis according to

which the nearest-neighbor contribution is predominant [eq. (4.37)];
for the Koyama approximation this implies that

〈
[ra − rb]2

〉
≈ b20, and

thus the Cab coefficient reduces to unity. In this case Aab is zero, and
the behavior of wk

ab(q) is dominated by the oscillations imposed by the
sinusoidal part of eq. (4.75):

wk
ab(q) ∼

q→∞

sinBabq

Babq
. (4.80)

These coefficients were computed from the simulations at T = 1 and
characterize the static conformation of the chains. A comparison of
wab(q) and wk

ab(q) is presented in fig. 4.18(b); it can be observed that
the intra-chain structure is very well reproduced by eq. (4.75), for all
a and b pairs. Small deviations are observed for the shortest chains, in
the case of the most remote monomers, i.e. as |a − b| → N − 1. This
means that the intra-chain structure of the polymers in the melt can
be very accurately predicted using only the two moments

〈
[ra − rb]2

〉
and

〈
[ra − rb]4

〉
.
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Figure 4.20: Large q limit of the

comparison of w(q) and wk(q); using

the Koyama approximation, the gaus-

sian description is recovered for q → 0

[eq. (4.79)] and thus wk(q) yields a good

approximation of the intra-chain struc-

ture factor in the small q regime. The

curves for the different models have been

shifted for clarity (the respective factors

used are displayed next to the model

names).

As the Koyama approximation works fine to describe the site-resolved
structure factors, it is expected that it also yields a satisfactory descrip-
tion of the site-averaged quantity w(q), since the latter is only the sum
of all the site-resolved wab(q):

wk(q) =
N∑

a,b=1

wk
ab(q) . (4.81)

Figures 4.81 and 4.21 show that this expectation is well borne out for
the small- and large-q limits.
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Figure 4.21: Comparison of the

intra-chain structure factors for differ-

ent models and the corresponding site-

averaged Koyama approximations. For

the models other than CG-PVA, the

w(q) and wk(q) have been offset by

an amount indicated in parenthesis nest

to the model name. For intermediate

q vectors there are deviations from the

behavior predicted by the Koyama ap-

proximation [eq. (4.81)], but for small

(see fig. 4.20) and large wave vectors

(cf. inset where data are presented for

0 < q < 50 in the case of CG-PVA), the

agreement is good.
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Figure 4.22: Averaged and site-resolved inter-chain structure factors for CG-PVA; two different chain lengths are considered. The
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N = 10 and c50 50(q) for N = 100), one can observe a good agreement with c(q). This agreement is better for longer chains

though.
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4.3.3 Inter-chain structure

The site-resolved inter-chain structure factors have features similar to
what is obtained for the site-averaged h(q), with a few differences show-
ing up around the first peaks (cf. fig. 4.22). Again the chain-end
effects are responsible for these deviations, and for two monomers a
and b that are far enough from the chain ends they are negligible, i.e.
hab(q) ≈ h(q). For a and b close to the chain ends, the peaks are slightly
shifted horizontally. Figure 4.22 presents a comparison of haa(q) and
h(q); it is observed that for end-end correlations [h11(q)], the main peak
is shifted to higher q-values and a prominent shoulder is visible before
the correlation hole as q → 0; this corresponds to a stronger repulsive
interaction between end monomers. For h22(q), the peak is shifted in
the opposite direction and the shoulder vanishes; these opposite trends
for h11(q) and h22(q) correspond to what was already pointed out from
the study of direct correlation functions in fig. 4.17.

We may attempt to interpret these observations more quantitatively
within the framework of the PRISM theory. An expression for hab(q)
involving only intra-chain correlations and site-average quantities can
be found from the Ornstein-Zernike equation (4.57), using the PRISM
approximation of eq. (4.63):

hab(q) =
N∑

x,y=1

wax(q)cxy(q) [wyb(q) + ρchhyb(q)] (4.82)

= c(q)

(
N∑

x=1

wax(q)

) N∑
y=1

wyb(q) + ρch

N∑
y=1

hyb(q)

 . (4.83)

Using the fact that hab(q) = hba(q) (all the tensors used here are sym-
metric), it is possible to express the last term [eq. (4.57) is used again]:

N∑
y=1

hyb(q) =
N∑

b=1

hyb(q) (4.84)

=
N∑

b=1


N∑

u,v=1

wyu(q)cuv(q) [wvb(q) + ρchhvb(q)]

 (4.85)

= c(q)

(
N∑

u=1

wyu(q)

)
N∑

b,v=1

[wvb(q) + ρchhvb(q)]

 (4.86)

= c(q)

(
N∑

u=1

wyu(q)

)
NS(q) (4.87)

= Nc(q)S(q)

 N∑
y=1

wyb(q)

 . (4.88)
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Figure 4.23: Comparison of the site-site inter-molecular pair-correlation functions hab(q) determined from the simulation data

(CG-PVA, N = 100) and from the PRISM theory. Some curves are shifted vertically for clarity. It can be seen that the behavior

of hab(q) is only approximately reproduced by the prism estimate hprism
ab (q), but this rapidly improves as a and b increase: For

a = b = 3, the approximation is already accurate.

From eq. (4.64) one has c(q)S(q) = h(q)/w(q); then, with ρm = Nρch:

hab(q) = c(q)

(
N∑

x=1

wax(q)

) N∑
y=1

wyb(q)

 [1 +NρchS(q)c(q)] (4.89)

= c(q)

(
N∑

x=1

wax(q)

) N∑
y=1

wyb(q)

[1 + ρm
h(q)
w(q)

]
, (4.90)

which leads to the final results

hab(q) =
h(q)
w(q)2

[ N∑
x=1

wax(q)
][ N∑

y=1

wyb(q)
]
. (4.91)

Figure 4.23(a) presents a comparison of this approximation and the
measured hab(q), showing a good agreement, with still some deviations
for chain ends. As was observed in the case of the direct correlation
functions (fig. 4.17), the functions hab(q) which involve a chain end (a
and/or b equals 1) always deviate from the PRISM behavior, whereas
other correlation functions are well described; here again the structure
factors haa(q) converge quickly to the PRISM approximation hprism

aa (q)
(from a = 3 on, see fig. 4.23(b)).

Since the Koyama distribution [eq. (4.75)] used in fig. 4.18(b) proved
to be a very good approximation for wab(q), it is interesting to try and
compute the inter-chain structure factor by inserting wk

ab(q) into the
PRISM expression for hab(q); the function hprism,k

ab (q) thus obtained
is shown in fig. 4.23(a) and exhibits only very small deviations from
hprism

ab (q). This indicates that the site-resolved information about a
polymer melt can be approximated with good accuracy using both the
PRISM approximation and the Koyama distribution; doing so, it is pos-
sible to reproduce from the site-averaged quantities w(q) and h(q) the
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more detailed wk
ab(q) using eq. (4.75) and hprism,k

ab (q) using eq. (4.91).
The complete site-resolved data are then obtained from the inter- and
intra-chain decomposition of the site-averaged structure factor S(q)
and the first two moments of the distributions of distances between
monomers, |ra−rb|. These quantities are much easier to compute than
the site-resolved structure factors that require to be averaged over many
uncorrelated configurations.

Using either the Koyama distribution approximation from eq. (4.75)
or the simulation data for site-resolved intra-chain structure factors, it
is then possible to predict the site-resolved inter-chain structure using
the PRISM theory [eq. (4.91)]; this works well except for the correla-
tions between monomers including the chain ends, and improves rapidly
as the considered monomers are taken deeper inside the chain.

4.4 Structure factors involving the center of mass

It is interesting to consider the correlations between the centers of mass
of the different chains, since the interactions between the monomers
could mediate an effective force that would influence the overall rel-
ative motion of the polymers coils. In order to probe these effective
interactions in the melt, we computed the structure factor of the cen-
ters of mass (CM) as defined in eq. (4.17); the results can be analyzed
in comparison with a theoretical estimate using the PRISM approx-
imation. Here, we will first briefly sketch the theory developed by
Krakoviak and then compare to the simulation results [59].

PRISM theory for the CM. The PRISM approximation is ob-
tained by considering the center of mass of one chain as a new site
whose interactions with the monomers and itself are described by a
generalization of the quantities we used to account for the structure
of the melt: The structure factor and related functions are now 2 × 2
matrices whose elements correspond to monomer-monomer, CM-CM
and monomer-CM correlations. They are defined as follows:

S̃ =

(
S̃m,m

1√
N
S̃m,cm

1√
N
S̃m,cm S̃cm,cm

)
, w̃ =

(
w̃m,m

1√
N
w̃m,cm

1√
N
w̃m,cm w̃cm,cm

)
,

(4.92)

h̃ =

(
Nh̃m,m

√
Nh̃m,cm√

Nh̃m,cm h̃cm,cm

)
, c̃ =

(
Nc̃m,m

√
Nc̃m,cm√

Nc̃m,cm c̃cm,cm

)
.

(4.93)

The correspondence between the above matrix elements and the pre-
viously defined structure functions is given by the following relations
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(see sec. 4.1):

S̃m,m = S , w̃m,m = w , h̃m,m = h ,

S̃m,cm = Sm,c , w̃m,cm = wm,c , h̃m,cm = hm,c , (4.94)

S̃cm,cm = Sc , w̃cm,cm = 1 , h̃cm,cm = hc .

The correlation function matrices obey the two relations generalized
from eqs. (4.45) and (4.57):

ρchc̃(q) = w̃−1(q)− S̃−1(q) , and (4.95)

h̃(q) = w̃(q)c̃(q)
[
w̃(q) + ρchh̃(q)

]
. (4.96)

Using the definitions of eq. (4.92) to compute eq. (4.95), the elements
of the direct correlation function read

ρchc̃m,m =
1

w − w2
m,c

N

− 1

S − S2
m,c

NSc

; (4.97)

ρchc̃m,cm = − 1√
N

wm,c

w − w2
m,c

N

+
1√
N

Sm,c

SSc −
S2

m,c

N

; (4.98)

ρchc̃cm,cm =
1

1− w2
m,c

Nw

− 1

Sc −
S2

m,c

NS

. (4.99)

It can be assumed that the centers of mass of the chains neither in-
teract with each other nor with the monomers, meaning that the only
non-zero element of c̃(q) is c̃m,m. This simplification allows to find a
simple relation between the center-of-mass related quantities: The lhs
of eqs. (4.98) and (4.99) are zero, which leads to:

Sm,c =
S

w
wm,c ; (4.100)

this relation inserted into eq. (4.97) in turn yield an expression for the
center-of-mass structure factor:

Sc(q) = 1 +
1
N

w2
m,c

w2
ρmh(q) , (4.101)

where eq. (4.13) has been used.

Comparison with the simulation. Figure 4.24 shows the CM struc-
ture factor Sc(q) for different chain lengths; is can be seen that the
approximation of eq. (4.101) reproduces the simulation data quite well;
there seems to be a small deviation for the shortest chains N = 10 for
2 . q . 3, but on the other hand the data for longer chains exhibit
more noise; so, it is hard to decide whether the shoulder vanishes for
large N . The data show a smooth increase of the structure factor, from
a low value that corresponds to the isothermal compressibility (since
limq→0 Sc(q) = 〈n2〉−〈n〉2

〈n〉 ∼ κT /N)) to 1 which is the ideal gas value.
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Figure 4.24: Sc as a function of qRg

for N = 10, N = 50 and N = 100 (CG-

PVA). Data for the longer chains have

been shifted vertically. Lines correspond

to Sprism
c , the approximation given in

eq. (4.101); except for a small deviation

at intermediate q for N = 10 and noise

in the case of N = 50 and N = 100, the

simulation data show a good agreement

with this estimate.

The factor wm,c

w that appears in eq. (4.101) depends on intra-chain
correlations only, and can be compared to a gaussian approximation; to
do so we use the following expression for the monomer a-CM structure
factor [106, 137]:

wg
a,c(q) = exp

(
−
q2R2

g

3

[
1− 3

a

N
+ 3

( a
N

)2
])

(4.102)

This approximation allows to calculate the average monomer density
about the center of mass:

wg
m,c(q) =

N∑
a=1

wg
a,c(q) (4.103)

= N

∫ 1

0
dx wg

c(x, q) (4.104)

=
N
√
π

qRg
e−q2R2

g/12erf (qRg/2) , (4.105)

with

wg
c(x, q) = exp

(
−
q2R2

g

3
[
1− 3x+ 3x2

])
(4.106)

and erf(x) denoting the error function (2/
√
π)
∫ x
0 dt exp(−t2). The

gaussian estimate for the ratio wm,c(q)/w(q) is obtained by dividing
eq. (4.106) by the Debye function wd(q) from eq. (4.33).

Figure 4.25 presents the simulation results for the ratio wm,c(q)/w(q)
along with the gaussian approximation wg

m,c(q)/wd(q). The latter re-
produces qualitatively the features of the data measured from the sim-
ulations, the agreement becoming better as the chain length increases.

The expression given in eq. (4.102) can also be tested directly with
measurements of wg

a,c(q); this is what is shown in fig. 4.26 for chains
consisting of 100 monomers; the two extreme cases (a = 1 and a = 50)
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Figure 4.25: Comparison of measured

value and gaussian estimate for the ra-

tio (wm,c(q)/w(q))2, for different chain

lengths. It can be seen that the agree-

ment gets better as N increases from 10

to 100: As expected, the gaussian de-

scription becomes valid in the limit of

long chains.
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are well reproduced by the gaussian approximation, as well as the in-
termediate a = 25. Figure 4.26 also presents the total correlation
function Sa,c(q) and the inter-chain contribution ha,c(q); the latter has
a low value at q → 0, so as to compensate wa,c(q) and yield an al-
most zero value of Sa,c(q). This is expected since Sa,c(q) corresponds
to the probability of finding a monomer of one chain at a distance of
its center of mass, which must tend to 0 as the distance increases (or
q → 0). Accordingly, the correlation between a monomer of chain i

and the center of mass of the same chain is high (wa,c(q)−→q→0 1),
while the correlation with the center of mass of chain j 6= i is small
(ρchha,c(q)−→q→0 0). This explains the tendency exhibited by Sa,c(q)
for low q values, but this function shows a more complicated behavior
for intermediate q values (for q & 2, all monomer-CM correlation func-
tions tend to 0): There is a dependence on the position of monomer
a inside the chain. If a is an end monomer, Sa,c(q) exhibits a mini-
mum at q ≈ 0.6 whereas for middle segments a maximum is observed.
This means that there is an intermediate distance at which the intra-
molecular correlations are either overcompensated by the inter-chain
correlations in the case of middle monomers, or undercompensated for
chain ends.

It is possible to find an expression which approximates the monomer-
CM inter-chain correlation function ha,c(q) in the framework of the
PRISM theory and the decomposition into monomer and CM elements
of the structure factors that was used to find an estimate of Sc(q)
[eq. (4.101)]. This is done by taking a = c in eq. (4.91) and applying
the PRISM approximation cab(q) = c(q):

hab(q) =
N∑

x,y=1

wax(q)cxy(q) [wyb(q) + ρchhyb(q)] (4.107)
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Figure 4.26: Monomer-CM corre-

lation functions measured for the CG-

PVA model, chain length N = 100.

Results are presented for three differ-

ent positions along the backbone of the

chain, a = 1 (chain end), a = 50

(middle segment) and a = 25 (inter-

mediate). The gaussian approximation

given in eq. (4.102) provides a good

estimate for the intra-chain function

wa,c(q), for all values of a. The total

structure factors Sa,c(q) exhibit much

different behaviors according to the po-

sition of the monomer: In both the

small- and large-q limits the function

tends to zero, meaning there is no cor-

relation between monomers and centers

of mass; on the other hand for chain

ends there is a minimum at intermedi-

ate q vectors (q ≈ 0.6) and a maximum

in the case of middle segments. For in-

termediate monomers (a = 25), there

is no significant structure.

becomes

ha,c(q) = c(q)

(
N∑

x=1

wax(q)

)[
N∑

y=1

wy,c(q)︸ ︷︷ ︸
wm,c(q)

+ρch

N∑
y=1

hy,c(q)︸ ︷︷ ︸
Nhm,c(q)

]
(4.108)

=
h(q)

w(q)S(q)

(
N∑

x=1

wax(q)

)
[wm,c(q) + ρmhm,c(q)] (4.109)

=
h(q)Sm,c(q)
w(q)S(q)

(
N∑

x=1

wax(q)

)
, (4.110)

where eq. (4.64) has been used to express c(q). Using eq. (4.100) for
Sm,c, we obtain

ha,c(q) =
wm,c(q)
w(q)2

(
N∑

x=1

wax(q)

)
h(q) . (4.111)

It can be checked in fig. 4.27 that this estimate yields a very good
approximation to the measured ha,c(q); the agreement does not appear
to depend strongly on the chain length, nor on the position along the
chain, a. This shows again that the inter-chain correlations are well
described by site-independent approximations.
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Figure 4.27: Monomer-CM inter-

chain structure factor, for several sites

and two chain lengths (CG-PVA). Lines

correspond to the estimate of PRISM

theory presented in eq. (4.111); a very

good agreement is found with the sim-

ulation data independently of the posi-

tion along the chain (a = 1: chain end;

a = N/2: middle segment; and an in-

termediate value: a = 3 for N = 10,

a = 25 for N = 100). There is still a

slight deviation of the simulation data

from the predicted behavior in the case

of short chains, that seems to vanish for

N = 100.
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Figure 4.28: Structure factors at high

temperature (T = 1) for four different

models (fig. 4.8)
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Figure 4.29: Intra-chain struc-

ture and nearest-neighbor approximation

(fig. 4.5(b)).
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structure factors (fig. 4.6(a)).

Detailed structure factors for different models have been computed at
high temperature (fig. 4.28). It would have been also very interesting
to investigate low-temperature structure factors with this detailed ap-
proach, but this is more difficult as a result of the great number of
configurations needed to yield satisfactory statistics. And still, this
study of the detailed structure of the melts at high temperature was
triggered by the observation that high-T properties seem to influence
the low-T phase (fig. 3.47).

As was suggested by the analysis of the crystallization observed for
the different models, a distinction was made between intra- and inter-
chain quantities, which were calculated in addition to the total struc-
ture factors. However, no clear evidence for a high propensity to crys-
tallize could be isolated from the data computed at high temperature;
all models showed qualitatively identical features.

The observed structure can be rationalized by comparing the sim-
ulation data with limiting behaviors: The intra-chain structure w(q)
is well-described by the gaussian approximation at small q, and by a
nearest-neighbor approximation at large q (fig. 4.29). The inter-chain
structure h(q) determines the first peak in the total structure factor
S(q) as the packing in the melt is controlled by chain-chain interac-
tions, and only slightly influences the global structure at higher wave
vectors (fig. 4.30).

The more detailed structure of the simulated polymer melts can be
accessed by the computation of site-resolved quantities Sab(q), wab(q)
and hab(q) depending on the positions of monomers a and b. The
correlations between these monomers are conveniently studied by the
introduction of direct correlation function cab(q) from the Ornstein-
Zernike formalism; the Polymer-RISM approximation suggests that for
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long chains the correlations between monomers a and b do not depend
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Figure 4.31: Comparison of the first

caa(q) elements with the PRISM approx-

imation c(q) (fig. 4.17).

on their position, and thus cab(q) = c(q). This is verified in the case
of our simulations, even though the investigated systems only involve
relatively short chains (N ≤ 100), except in the case of chain ends for
which there is a clear difference. These differences do not depend on
the chain length (fig. 4.31).

Again the intra- and inter-chain structures can be studied separately;
it is shown that for our CG models with an explicit angular potential
constraining the flexibility of the chains, the Koyama approximation
taking into account the chains’ non-gaussianity provides a very good
description of the site-resolved intra-chain structure (fig. 4.32). The
inter-chain structure can be predicted in a good approximation (except
for chain ends as expected) in the framework of the PRISM theory
(fig. 4.33).

Quantities involving the center of mass (CM) of the chains have also
been calculated, showing a good agreement with the PRISM theory for
the CM-CM structure factors (fig. 4.34) and the inter-chain monomer-
CM structure, whereas the gaussian approximation is shown to yield
a good description of the intra-chain monomer-CM structure which
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Figure 4.32: Comparison of the site-

resolved structure to the Koyama ap-

proximation (fig. 4.18(b)).
improves with longer chain lengths (fig. 4.35).
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the PRISM approximation (fig. 4.23(b)).

Figure 4.34: Center-of-mass struc-

ture factor for different chain lengths

(fig. 4.24)

Figure 4.35: Comparison of the

monomer-CM structure factor with the

gaussian approximation (fig. 4.25).
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Conclusion

Summary

In this thesis, we examined the crystallization and melting of a variety
of polymer models. We summarize here the most important results
obtained, and finally give ideas about how to benefit from this insight
to address open questions in future studies.

Simulation methods

We want to get insight into the crystallization process in polymer melts
and thus used molecular dynamics simulations to follow the time evo-
lution during heating of crystalline states, during cooling of the melt,
or during isothermal relaxation after a quench of the melt.

n-alkanes

(a) Orthorhombic

(b) Triclinic

(c) Rotator

Figure c.1: Snapshots from simula-

tions of the different crystal structures

of n-alkanes.

Atomisticly detailed models are needed to reproduce realistic chain
packing in crystalline structures with computer simulations as they
can be observed in experiments. The use of a simulation model that
describes all the atoms of the considered molecules explicitly seems nec-
essary to yield the precise characteristics of polymer crystals. In order
to test this kind of method, we created configurations that mimic the
structure of short n-alkane chains and simulated their melting pro-
cess from the low temperatures up to the occurrence of the liquid
state. These simulations allowed us to probe the validity of the all-
atom model, showing that even a “simple”model aimed at reproducing
the features of a liquid may be suited to describe the solid state of a
polymeric system to a reasonable extent.

We used this model to simulate several phases that have been ob-
served experimentally in the case of n-alkanes (CnH2n+2), since these
systems are known to produce a great wealth of different structures
at low temperature; we were particularly interested in a transitory
phase that exists between the (low-temperature) solid and liquid states,
which has been extensively studied experimentally and that was repro-
duced in our simulations (fig. c.1). This “rotator” phase occurs after a
solid–solid phase transition in the course of melting, in the case both
the orthorhombic and the triclinic crystals that we have been study-
ing (fig. c.2); it is observed that continuous heating and isothermal

167
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relaxation above the melting temperature of the perfect crystals we
simulated gave rise to a change in the symmetry of the system. The
orthorhombic or triclinic packing turn into a hexagonal arrangement
of the chains which remain stretched along their main axis but whose
orientations in the perpendicular plane are not constrained anymore.
These features could be attested by calculation of several order param-
eters that help characterizing the decay to the liquid state through this
transitory phase.

Another approach of the n-alkane crystals consisted in simulating
the cooling process leading to the formation of the crystal via homo-
geneous nucleation in the melt, starting from the liquid state at high
temperature. As expected, in this case the detailed model proves too
time-consuming for a realistic cooling rate to be applied, and the con-
figurations we could obtain showed a glassy structure rather than crys-
talline order (fig. c.3). Still, it was possible to observe signs of the
ordering of the molecules after annealing at low temperature: An order
parameter calculated during isothermal relaxations of the system at
different temperatures showed no particular features in the cases of the
liquid or glassy systems but could be observed to increase at interme-
diate temperature, indicating the occurrence of a change in the system.
Whether this is the sign of a true phase transition would require longer
simulations to be checked.
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Figure c.2: Phase diagram (vol-

ume as a function of temperature) for
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Figure c.3: Density as a function of

temperature for n-alkanes with different

chainlength. No jump characteristic of

the crystallization is observed, as sys-

tems rather freeze.

This study of short polymer chains demonstrates that it is possible
to accurately describe the behavior of the melt at the interface between
the liquid and solid states, at least when starting from the crystalline
configuration, since even for such small chains as n-alkanes, simulations
of the cooling process is already prohibitive as far as computational time
is concerned. Thus a more appropriate method is needed to address
the problem of crystallization via homogeneous nucleation in the melt,
and that is the reason why we used coarse-grained models to complete
this task.

Coarse-grained models

As it is important to consider large enough length and time scales to
address polymer crystallization (since this phenomenon involves various
structures of different sizes which develop over a long time), the use
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of a model taking into account the details of the polymers in a more
appropriate manner is needed. The CG-PVA model we used as the basis
of this study of polymer crystallization represents the monomers of the
polymer chains as single particles, and thus allows us not to consider the
fast motion of all the atoms constituting the molecules as we did with
all-atom models; this way we can focus on larger scales on which the
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semi-crystalline structures form. This coarse-grained model simplifies
the all-atom description and makes the simulation more efficient since
larger systems are accessible over longer times, but it remains a low-
level model in which the underlying chemistry of the chain is still visible
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via the structure of the angular potential. This parameter of the model
is determined by the interactions between the particles of the original
model on the atomistic scale, and constrains the flexibility so as to
reproduce realistic conformations of the chains.

We created several models derived from CG-PVA in order to un-
derstand the influence of the angular potential, since this parameter
is responsible for the crystallization of the CG-PVA model (a similar
model without angular potential cannot crystallize); indeed, a compar-
ison of the properties calculated for the different models showed that
the probability of finding trans–trans states at high temperature (which
is directly related to the shape of the angular potential) conditions the
propensity of the chains to crystallize (fig. c.4). We could also show
that the persistence length is not the most appropriate quantity to
account for the flexibility of the chain in the case of our models, as
it is largely influenced by the probability of folded states rather than
stretched states, which is not as clearly correlated to the temperature
of crystallization/melting measured during continuous cooling/heating
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rial.

The correlation between the probability of trans–trans states and
the melting temperature can be rationalized by means of a theoreti-
cal description by Volkenstein. The importance of the amount of fully
stretched states in the crystalline configuration has been shown since
the theory provides an accurate description in the case of short chains
and perfect structures generated by hand; such systems were used to
characterize the different models we simulated, yielding a reference
state.

Simulations were performed to study the development of crystalline
structures during isothermal relaxation after a quench, and this led to
the evidence of a linear relation between the inverse lamellar thickness
of the crystals and the supercooling under which they formed, as is
observed experimentally.

The different models we have been simulating exhibited different be-
haviors at low temperature, depending on the probability of stretched
states: Semi-crystalline structure with either a large or small amount of
amorphous material can form as a result of cooling, leading to final con-
figurations that resemble more a perfect crystal or a glass. Studying the
evolution of a global order parameter during the cooling experiments,
we could however establish that the development of the semi-crystalline
structure is similar for the different models, even though the systems’
properties are different. This observation is confirmed when using a
different order parameter that allows one to distinguish the different
crystallites forming in the melt and to follow their evolutions; the anal-
ysis of these domains makes it possible to identify parameters allowing
for a unified description of the crystallization process for the different
models (fig. c.5) having otherwise very different crystallinities (fig. c.7).
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Structure factors

The existence of a correlation between the melting temperature and the
probability of trans–trans states at high temperature also prompted us
to study the structure of the polymer melts corresponding to our models
in more details, using concepts from simple-liquid theory extended to
more complex molecules.

In order to probe the intimate structure of polymer melts and get a
precise comparison of different models, the theory of simple liquids sug-
gests the computation of structure factors. In the spirit of the Ornstein-
Zernike description of such systems, an extension to the case of more
complex molecules has been proposed and allows one to characterize
more accurately the behavior of the different parts of the constituents
of a fluid. We have used this RISM approach and tested the associated
PRISM approximation that is aimed at describing long polymer chains.

We calculated the detailed structure factors for the CG-PVA model
and three of its variants, showing that the PRISM approximation which
states the equivalence of the different monomers of a chain is justi-
fied in the case of our models, even for relatively short chains, except
for the chain ends for which significant differences are noticed as ex-
pected (PRISM is exact for ring polymers, and we could show that the
deviations to this limit behavior are only important for the last few
monomers at the chain ends, independently of the chain length).

The correlation functions defined in the framework of the RISM the-
ory are well suited to study the structure of polymer melts, and offer a
convenient approach to their characterization; nevertheless, no signif-
icant qualitative difference between the different models we analyzed
with such methods could be isolated, and we were unable to determine
from the detailed structure of the polymer melts at high temperature
what causes them to crystallize or not (fig. c.8). The correlation ob-
served between a high temperature property (probability of finding
stretched states) and the stability of the crystalline structure (temper-
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ature of crystallization/melting) cannot be rationalized by the analysis
of the detailed structure of the melt with density correlation functions
at high temperature.

The study of these correlation functions still provides many inter-
esting results which allow for a better understanding of the structure
of the melts, through the comparison with several approximations and
limiting behaviors: Gaussian approximations and expressions derived
from the PRISM theory could be used to account for the characteris-
tics of the measured quantities including inter- and intra-chain detailed
structure factors as well as center-of-mass related correlation functions.

Outlook

Our studies of polymer melts and the crystalline structures they form
at low temperature give some insight into the phenomenon of crystal-
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lization that is still not well understood. In this context, our work
and the results obtained suggest directions for further studies. The
coarse-grained models we used have been shown to successfully repro-
duce the experimentally observed behavior of linear polymer chains;
polymers like PE and PVA with a simple chemical structure are well
described by these models with cylindric symmetry. It would be neces-
sary to address polymers with a more complex geometry using a refined
coarse-grained model that could be built on the basis of CG-PVA: One
could, for instance, think of a model for PP which would take into
account the chirality of the monomers. To this end, side-groups may
be introduced along the coarse-grained backbone (fig. c.9), and the
use of explicit torsional potentials on the coarse-grained level would
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Figure c.9: Illustration of the coarse-

graining procedure allowing to take the

side-groups into account for polypropy-

lene. A second bead per monomer is

introduced, in order to keep track of the

chirality of the molecule; this way, the

typical helical structure of the stereo-

regular isomers of PP may be recovered.

allow one to reproduce the characteristic helices of such a chiral poly-
mer (a similar approach has been presented in ref. 139). This could
be used in order to probe the behavior of chiral semi-crystalline poly-
mers and check whether in this case the crystallization scenario requires
the “test phase” during which one chain probes the preexisting growth
front: This selection mechanism has been put forward as a contradict-
ing evidence that rules out the description of crystallization involving
the occurrence of a large-scale mesomorphic phase [63].

The development of such a simulation study would involve the use
of an all-atom model of polypropylene, similarly to what we have been
attempting to do from our experience with alkanes (cf. sec. 2.5); us-
ing an appropriate model to simulate polypropylene chains with full
details, one could measure the relevant probability distributions and
infer from them the effective coarse-grained potentials that are needed
to reproduce the overall structure of the melt and be able to simulate
the crystallization process [97, 125].

The interplay between the different length and time scales and the
availability of simulation schemes on both the atomistic and the meso-
scopic levels suggest that these two techniques could be combined so
as to take advantage of both the efficiency and the accuracy accessible
to the different methods: Once the all-atom simulation has been used
to parametrize its coarse-grained counterpart, one could imagine to
benefit from the coarse-grained method to simulate the long-time pro-
cess of crystallization and then reintroduce the atomistic details into
the so-generated configuration in order to access the precise structure
of polymer crystals in the end [125, 126]. We could verify that the
coarse-grained model is very efficient and fully succeeds at reproduc-
ing the characteristic features of polymer crystals at intermediate and
large scale, but cannot yield anything else than a hexagonal packing of
the chains, due to its intrinsic symmetry. This model is therefore not
accurate enough to provide a precise description of the arrangement of
PE chains in the crystal, whereas we showed with all-atom simulations
of n-alkanes that the orthorhombic phase—that is a common feature
of odd-n alkanes and PE—is stable in an atomistic simulation. How-
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ever, the reintroduction of atomistic details into the output of a coarse-
grained method is far from being straight-forward, and there are many
unsolved questions so as how to map the atomistic conformations onto
the structure of the simplified molecules (since this inverse mapping is
no longer unique as the simplification procedure of the coarse-graining
was). Still, this study appears a very stimulating opportunity to im-
prove the comprehension of the processes that lead to the formation of
semi-crystalline systems; it would be especially attractive to investigate
the influence of the moment at which the details are reintroduced dur-
ing the formation of the lamellae, so that a characteristic time scale can
be identified; moreover, it is not clear that simply inputting all-atom
chains into a hexagonally symmetric configuration would be sufficient

Figure c.10: Reintroduction of the

atomistic details into a coarse-grained

configuration.

to recover the expected orthorhombic pattern when simulating PE, as
our simulations of alkanes showed that it is not possible—at least with
a simple force-field, and in a restricted amount of time—to obtain the
orthorhombic order from the hexagonal phase via cooling (the crystal–
rotator phase transition discussed in chapter 2 could not be reversed).

Parts of our work would deserve some complementary studies in order
to improve the understanding of the observed phenomena; the crystal-
lization and melting lines that could be reproduced in the simulation
as they are observed experimentally need a more precise treatment in
order to give an insight into the properties of the crystallization (and
fusion) mechanisms [54, 55, 121]. In particular, it is desirable to com-
pare more closely the simulation results to the existing theories; this
requires the determination of the surface tension of the crystalline do-
mains, which needs a complete study on its own, as different simulation
techniques are necessary to determine free energies. It would be partic-
ularly interesting to address the question of the significance of the cross-
ing of crystallization and melting lines: Unlike in the case of CG-PVA,
the other coarse-grained models exhibit intersecting crystallization and
melting lines in the Tmelt/cryst–1/d diagram; the existence of an inter-
section of the two lines (which is also found in experiments [42, 121])
would imply an upper limit for the lamellar thickness above which
the crystals become unstable [55]. Observation of the results obtained
with perfect crystal simulations show that the crystallization and melt-
ing lines might actually be bent in the limit of large thickness d; this
should be investigated in more details.

The characterization of the crystalline domains using an order pa-
rameter taking into account the distance between two bonds and their
relative orientation allowed us to give a definition of a crystallite, and
we could then measure the crystallinity in the samples in order to de-
scribe crystal growth during continuous cooling or isothermal relax-
ation of the coarse-grained models; it would be interesting to refine
this approach and in particular to monitor the dynamic evolution of
these crystallites during the development of the crystalline phase; one
could then use this more precise characterization of the shape of the
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crystalline domains to compare the different models and different con-
ditions for the growth of the crystals.

Along with these perspectives for the more detailed study of crystal
growth in the polymer melt, it appears very important to focus on the
early stages of the crystallization process: This is probably the regime
in which computer simulation is more likely to provide decisive results,
owing to the detailed information available from the possibility to lo-
cate the particles at all times, which is not accessible to experiments,
and to the restrictions on the simulation length and box size. In order
to take advantage of the simulations being appropriate to study in de-
tail the beginning of the crystallization process, it appears crucial to
extend our studies of the structure of polymer melts to the lower tem-
perature where the detailed correlation functions we have been using
to characterize the melt at high temperature might be suited to grasp
the precursors of the phase transition; the site-resolved quantities in
particular provide an accurate description of the structure of the melt
and may offer the opportunity to detect signals associated with the
formation of ordered patterns during the very first steps.

Another approach of the crystallization phenomenon could consist in
using the simulation to test the development of the hypothetical meso-
morphic phase [121]; this requires massive computer time resources that
could be used to simulate the polymer melt at very weak supercooling
in order not to perturb the formation of the semi-crystalline phase.
Under these conditions, and provided long times and large simulation
boxes are accessible, the process of homogeneous nucleation could be
precisely investigated and the numerical experiment could yield very in-
teresting results on the possibly large-scale process responsible for the
development of realistic crystals unaffected by the interactions between
simultaneously growing crystallites and the too large supercooling that
hinders crystal growth as is the case in our current simulations.

The results of the present thesis which clarified the influence of many
simulation parameters on atomic and mesoscopic scales lay the basis
to address the outlined perspectives in the future.
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