On Moduli of Pointed Real Curves of Genus Zero

OZGUR CEYHAN

August 29, 2006






To Basak, with love and gratitude






Abstract

The aim of this thesis is to explore the moduli of pointed real curves of genus zero.
We investigate the actions of a set of natural real structures

Co : (E;psu T 7psn) = (i;pa(sl)v"' apa(sn))v

on the moduli space Mg of stable S-pointed complex curves of genus zero where o is
an involution acting on the labeling set S = {s1,--- , s, }.

First, we determine the moduli functor of o-equivariant families represented by the
real variety (Ms,c,). We introduce the fixed point set RM; of the real structure ¢,
as the moduli space of o-invariant real curves.

We introduce a natural combinatorial stratification of the real moduli space ]RM;
through the stratification of Mg. Each stratum gives the equisingular deformations of
o-invariant real curves. We identify the strata of RM; with the products of spaces of
Zg-equivariant point configurations in the projective line CP' and the moduli spaces
Mg:. The degeneration types of o-invariant real curves are encoded by trees with
corresponding decorations. We calculate the first Stiefel-Whitney class of RM; in
terms of its strata. We construct the orientation double cover RMS“ of RMg, and
show that the moduli space RMg is not orientable for |S| > 5 and Fix(c) # 0. The
double covering which is constructed in this work significantly differs from the ‘double
covering’ in the recent literature on open Gromov-Witten invariants and moduli spaces
of pseudoholomorphic discs: Our double covering has no boundary which is better
suited for the application of intersection theory.

We then explore the further topological properties of RM;. We construct a graph
complex G, generated by the fundamental classes of the strata of RM;. We show that
the homology of Rﬁg is isomorphic to the homology of the graph complex G,.

Finally, we give presentations of the fundamental groups of the real moduli space RM;

and its orientation double cover Rﬁg .
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Chapter 1

Introduction

I mean ..., you know ...

Sur l’espace de modules des courbes rationnelles

réelles pointées

Le but de cette these est d’explorer les propriétés topologiques des espaces de modules
des courbes rationnelles réelles pointées.

Modules de variétés réelles: Stratégie générale. Les problemes de modules
en géométrie réelle se posent naturellement comme des versions équivariantes des
problemes de modules analogues de la géométrie complexe. Ainsi, une variété réelle X
peut étre définie comme une variété complexe munie d’une involution antiholomorphe
cx : X — X et une famille réelle de variétés comme une famille complexe 7 : Ug — B
munie d’une paire de structures réelles ¢y, : g — Up et cg : B — B de sorte que le
diagramme suivant commute

Up C—M>UB

Wl lw (1.1)

B = B,

(notons que seules les fibres au-dessus des points réels de B portent une structure
réelle qui est donnée par ¢;). Des que l'espace de modules M du probleme complexe
associé est fin, le probleme de modules réel se réduit a I’étude des structures réelles
sur M, les espaces de points fixes des structures réelles sur M servant comme les
véritables espaces de modules réels.

L’espace de modules des courbes rationnelles complexes pointées. Ap-
pelons courbe S-pointée stable toute courbe rationnelle complexe ¥ avec des points



distincts et lisses p = (ps,, - -+ , Ps,) C X marqués par des éléments d'un ensemble fini
S ={s1,...,8,} telle que les conditions suivantes sont vérifiées :

e ) a seulement des singularités nodales;
e le groupe d’automorphismes holomorphes Aut(X; p) est trivial.

L’espace de modules Mg des courbes rationnelles pointées stables a été inten-
sivement étudié comme 'un des modeles fondamentaux des problemes de modules
en géométrie algébrique (voir [22, 26, 27, 28, 29, 32]). Pendant les deux dernieres
décennies, I'espace de modules Mg, aussi bien que sa strate ouverte Mg (formée
par des courbes non singulieres), ont joué des roles centraux dans diverses branches
des mathématiques. La représentation du groupe fondamental de Mg en termes
d’intégrales réitérées de I’'équation de KZ a mené a la théorie de Drinfeld des groupes
quantiques (voir, par exemple [10]). Des intégrales réitérées semblables sont naturelle-
ment apparues dans la description de Kontsevich des invariants de noeuds de Vasiliev
([25]). L’espace de modules Mg et la théorie d’intersection sur Mg sont devenues les
pierres angulaires dans la théorie des invariants de Gromov-Witten, la cohomologie
quantique et la symétrie miroir (voir, par exemple [26, 27, 28, 32]).

L’espace de modules des courbes rationnelles réelles pointées. L’espace de
modules Mg porte un ensemble d’involutions antiholomorphes :

Co - (E;psla U 7psn) = (i;pa(sl)a U 7pa(sn))7 (12)

olt 0 € S, est une involution sur S. Puisque I'espace de modules Mg des courbes
S-pointées stables est fin, nous pouvons appliquer la méthode ci-dessus pour étudier
I’espace de modules des courbes rationnelles réelles pointées.

Les ensembles RM; des points fixes des ¢, paramétrisent les courbes o-invariantes
qui sont des courbes S-pointées stables (X; p) avec les structures réelles cg : 3 — X
telles que cx(ps) = Dos)-

Les espaces de modules des courbes rationnelles réelles pointées stables ont récem-
ment attiré 'attention dans divers contextes tels que les (-motifs multiples [14], les
représentations des groupes quantiques [9, 18, 21, 36, et les invariants de Welschinger
(37, 38].

Dans cette these, nous explorons les propriétés topologiques des espaces de mod-
ules RMg (que nous visons & appliquer & certains des problémes ci-dessus).

Théoréme. (a) La famille universelle de courbes ™ : Ug — Mg est une famille
o-équivariante.



(b) Toute famille o-équivariante de courbes rationelle S-pointées stables mp :
Up — B est induite par une paire unique de morphismes réels

UBL> Us

wsl lﬂ

B L>MS

(c) Soit M, le foncteur contravariant qui envoie une variété réelle (B, cp) sur la
famille o-équivariante des courbes au-dessus de B. Le foncteur de modules 9, est
représenté par la variété réelle (Ms, c,).

(d) Pour tous |S| > 3, lespace de modules RMg de courbes o-invariantes est une
variété lisse de dimension réelle |S| — 3.

Les variétés quasi-projectives D, C Mg, qui donnent des déformations équisinguli-
eres de courbes rationnelles S-pointées stables , sont classées par les S-arbres 7.
L’espace de modules Mg est stratifié par D,. D’autre part, la structure réelle d’'une
courbe o-invariante engendre des structures additionnelles: un ordre cyclique sur
les points marqués se situant dans R, et une partition des points marqués dans
Y\ RX. Ces données additionnelles sont codées de fagon combinatoire par les arbres
u-planaires (T,u). Nous obtenons une stratification de RMg semblable & celle de Mg
en employant les arbres u-planaires.

Théoréme. (a) L’espace de module RM; est stratifié par les sous-ensembles semi-
algébriques C ) deuzr a deuz disjoints.

(b) L adhérence de n’importe quelle strate C.,, est stratifiée par Ciy ) 0u (7, u)
est obtenu en contractant un ensemble invariant d’arétes dans (v, u').

En employant cette stratification, nous calculons la premiere classe de Stiefel-
Whitney de RMg. Notons Fix(c) = {s € S | s = o(s)} et Perm(s) = {s € S|
o(s) # s}. Si |Fix(o)| > 0, nous supposons que s, = o(s,) et pour tout arbre v a
deux sommets notés {v.,v°}, nous choisissons comme v, tel que 9,(s,) = .

Théoréme. (a) Pour |Fix(o)| > 0, le dual de Poincaré de la premiére classe de
Stiefel-Whitney de RME est donné par

wl= Y [Cowl = 3 [RD,] mod?2, (1.3)

(75u) vy

ou les deuxr sommes portent sur tous les arbres v a deux sommets tels que
o [F,(v°)T| <1 et|v|=0 mod 2, ou
o IF,(0) N3] < 1, [FRw)] #3 et Jol(|o*] = 1) =0 mod 2, ou

o [Fy(ve) N8I < 1, [Ff(ve)] =3 et [FI(0°)] = 1

8



et sur toutes les structures u-planaires sur ~y (pour la premiére somme).

(b) Pour |Fix(c)| = 0, le dual de Poincaré de la premieére classe de Stiefel- Whitney
de RMg s annule.

Ce théoreme montre que I'espace de modules RMg est orientable quand |S| = 4
ou |Fix(o)| = 0. Nous donnons une construction combinatoire du revétement double
d’orientation pour le reste des cas i.e., [S| > 4 et |Fix(¢)| > 0. En remarquant la
non-trivialité du revetement double d’orientation dans ces cas la, nous montrons que
RMg n’est pas orientable.

Le revéetement double d’orientation dans cette these differe de maniere significative
du revetement double d’orientation dans la littérature récente sur les invariants de
Gromov-Witten ouverts et les espaces de modules des disques pseudoholomorphes
(voir, par exemple [11, 31]). Notre revétement double n’a pas de bord ce qui convient
mieux pour les applications a la théorie d’intersection.

Toutes les applications de RM; mentionnées ci-dessus exigent des informations
sur I’homologie ou le groupe fondamental de RM;. Dans cette these, nous présentons
un ‘complexe de graphes’ G, ou

Gy = @D zCu) / ~

(1,0):[Er|=[S|—d—3

sont les groupes abélien produit par des arbres décorés (7,0) avec |S| — d — 3 arétes,
modulo des relations naturelles additionnelles. La différentielle 0 : G; — G4—1 est
donnée par

9 [Ciro) = Y £ [Chse),
(16(0))/e=(r.0)

ou (,d(0)) sont les types de dégénération des courbes o-invariantes qui représentent
les faces de codimension un de 5(770).

Bien que les strates C, ) de RM; soient topologiquement non triviales, la suite
spectrale d’une filtration de RM; donnée par la stratification se comporte bien et
nous permet de montrer le résultat suivant.

Théoréme. H,(RMg) est isomorphe d H,(G,).

Ceci nous donne une description combinatoire de I’homologie des espaces RM;
en termes de leur stratification.

C’est un fait bien connu que RMyg est un espace K (w1, 1) pour o = id ([7, 5]).
Nous considérons le groupoide des chemins qui sont transversaux aux strates de
codimension un de RH; (et un groupoide semblable pour Rﬂg ). Nous donnons des
présentations de groupes fondamentaux de RMg (et RMg ) en termes des générateurs
et relations en employant leur stratification.



On moduli of pointed real curves of genus zero

The aim of this thesis is to explore the topological properties of the moduli spaces of
pointed real curves of genus zero.

Moduli problem for real varieties: General strategy. The moduli problems in
real geometry naturally appear as equivariant moduli problems in complex geometry.
A real variety X is a complex variety with an antiholomorphic involution cy : X — X
called a real structure, and a real family of variety X is a complex family g : Up — B
with a pair of real structures ¢y : Uy — Up and cg : B — B which makes the following
diagram commute

Up LUB

ﬂl lﬁ (1.4)

B - B.

Note that the fibers over a real point of B admit real structures which are determined
by ¢y. If the moduli space M of the complex variety X is fine, then the moduli
problem of the real variety (X, cx) reduces to the study of real structures on M, and
the fixed point sets of real structures of M give the moduli spaces of the real variety
(X, cx).

Moduli space of pointed complex curves of genus zero An S-pointed sta-
ble curve (X;p) is a connected complex algebraic curve ¥ of arithmetic genus zero
with distinct, smooth, labeled points p = (ps,,- - ,ps,) C %, satisfying the following
conditions:

e > has only nodal singularities;
e the group of holomorphic automorphisms of ¥ is trivial.

The moduli space Mg of S-pointed stable curves has been extensively studied
as one of the fundamental models of moduli problems in algebraic geometry (see
[15, 22, 29, 27, 28, 32]). During the last two decades, the moduli space Mg as well as
its open stratum Mg have played central roles in various branches of mathematics:
The representation of the fundamental group of Mg in terms of iterated integrals
of the KZ equation led to Drinfeld’s theory of quantum groups (see, for example
[10]). Similar iterated integrals have naturally appeared in Kontsevich’s description
of Vasiliev knot invariants (see [25]). The moduli space Mg and its intersection theory
have become the corner stone in the theory of Gromov-Witten invariants, quantum
cohomology and mirror symmetry (see, for example [32]).
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Moduli space of pointed real curves of genus zero The moduli space Mg
carries a set of anti-holomorphic involutions. For each involution o € S, acting on
the labeling set S = {s1, -, s,}, there is a real structure

Co - (E;psw o apsn) = (E;pa(slﬁ toe apa(sn))- (15)

Since Mg is a fine moduli space, we can apply the prescription given above for moduli
problem of pointed real curves of genus zero.

The fixed point set of the real structure ¢, is the moduli space RMg of o-invariant
curves that are S-pointed stable curves (X;p) with a real structure ¢y : ¥ — X
satisfying cs(ps) = Do(s)-

The moduli space of o-invariant curves has recently attracted attention in various
contexts such as multiple (-motives [14], representation theory and quantum groups
9, 18, 21, 36], and Welschinger invariants [37, 38].

In this thesis, our aim is to explore the topological properties of the moduli space
of o-invariant curves.

Theorem. (a) The universal family of curves = : Us — Mg is a o-equivariant
family.

(b) Any o-equivariant family of S-pointed stable curves over wp : Ug — B is
induced by a unique pair of real morphisms

Up —— Us

wBl lw

B L>Ms

(¢c) Let M, be the contravariant functor that sends real varieties (B, cg) to the set
of all o-equivariant family of curves over B. The moduli functor M, is represented
by the real variety (Ms, ¢, ).

(d) For |S| > 3, the moduli space RMg of o-invariant curves is a smooth projective
real manifold of dimension |S| — 3.

The equisingular deformations of S-pointed stable curves are given by quasi-
projective varieties D, C Mg indexed by trees 7. The moduli space Mg is stratified
by these subspaces D,. On the other hand, the real structure of a o-invariant curve
determines additional structures: A cyclic ordering of special points lying in RY, a
partition of special points lying in ¥\ RX. These additional structures are encoded
by wu-planar trees (T,u). We obtain a stratification of RM; similar to Mg by using
u-planar trees.

Theorem. (a) The moduli space RM‘; 15 stratified by pairuise disjoint semi-algebraic
subsets Cy ).
(b) The closure of any stratum C\, ., is stratified by {Ciy . | (7 0') < (v,u)}.

11



By using this stratification, we calculate the first Stiefel-Whitney class of RMZ.
Let Fix(o) = {s €S| s=o0(s)} and Perm(c) = {s € S | s # o(s)}. If |[Fix(c)| > 0,
we assume that s, = o(s,) and for all trees v have two-vertices {v.,v¢} such that

0, (sn) = ve.

Theorem. (a) For |Fix(o)| > 0, the Poincare dual of the first Stiefel-Whitney class
of RMyg is

[wi] = > [Ciw] = > [RD,] mod 2,

(75u) ¥

where the both sums are taken over all two-vertex trees such that
o [F,(v)T] <1 and |v°| =0 mod 2, or
o [F,(ve) NF| <1, [F(ve)| # 3 and |ve|(Jv°] —1) =0 mod 2, or
o [F,(w) N3] < 1, [FR(u)] = 3 and [F%(%)] = 1,

and, in the first sum, in addition over all u-planar structures on .

(b) For |Fix(c)| = 0, the Poincare dual of the first Stiefel-Whitney class of RMg
vanishes.

This theorem shows that the moduli space RMg is orientable when |S| = 4 or
|Fix(c)| = 0. We give a combinatorial construction of the orientation double cover
of RMg for the rest of the cases i.e., |S| > 4 and |Fix(c)| > 0. By showing the
non-triviality of the orientation double covers in these cases, we prove that RM; is
not orientable for [S| > 4 and |Fix(o)| > 0.

The orientation double covering in this work significantly differs from the ‘dou-
ble covering’ in the recent literature on open Gromov-Witten invariants and moduli
spaces of pseudoholomorphic discs (see [11, 31]): Our double covering has no bound-
ary which suits better for the use of intersection theory.

All of the applications mentioned above require a description of the homology or
the fundamental group of ]RM;. In this thesis, we introduce a combinatorial graph
complex G, where

G, = P 2|/~
(1,0):|E+|=|S|—d—3

are the Abelian groups generated by the relative fundamental classes of the strata
6(770) modulo the relations induced by the gluing of codimension one faces of top-
dimensional strata and some additional natural relations. The differential 0 : G; —
G4_1 is given by

0[Curo) = >,  *[Chaw)
(15(0)=(r.0)

12



where (v,d(0)) are the degeneration types of the pointed real curves lying in the
codimension one faces of a(m).

Although the strata U(m) of RM; are topologically non-trivial, the spectral se-
quence of a filtration of RM; given by the stratification behaves nicely and allows us
to prove the following theorem.

Theorem. H*(RM(;) is isomorphic to H.(G,).

This gives us a combinatorial description of the homology of the real moduli space
in terms of its stratification.

It is quite well-known fact that RMg is a K (71, 1)-space for o = id (see, for exam-
ple [5]). We consider the groupoid of paths that are transversal to the codimension
one strata of RM; (and a similar groupoid for Rﬁg ). We give presentations of the
fundamental groups of RM; and Rﬁg in terms of generators and relations by using
their stratifications.

Notation/Convention

We denote the finite set {sq,---,s,} by S, and the symmetric group consisting of
all permutations of S by S,. For an involution ¢ € S,,, we denote the subsets
{s €S |s=o0(s)} and {s,5 € S| 5 # o(s)} respectively by Fix(c) and Perm(o).
Through this paper, we only consider the involution

az( St 0 Sk Sk+1 cc S2k S2k41 32k+l)7 (1.6)
Sk41 Sk St Sk S2k41 ctt S2kH
where 2k + 1 = n. We fix Perm(c) = {s, | a = 1,--- 2k}, and Fix(0) = {sog1i | i =
1,1}

In this paper, the genus of the curves is zero except when the contrary is stated
explicitly. Therefore, we omit mentioning the genus of the curves.
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Chapter 2

Pointed complex curves of genus
zero and their moduli

This chapter reviews the basic facts on pointed complex curves of genus zero and their
moduli space. The moduli space of S-pointed stable curves of genus zero is stratified
according to degeneration types of these curves. The degeneration types of pointed
curves are encoded by trees. The combinatorial structure of the stratification and the
intersection ring of the moduli space Mg are discussed. The group of holomorphic
automorphisms Auty(Msg) respecting the stratification is introduced and shown that
it is isomorphic to permutation group S,,.

2.1 Pointed curves and their trees

Definition 2.1.1. An S-pointed complex curve (¥;p) is a connected complex alge-
braic curve 3 with distinct, smooth, labeled points p = (ps,, -+ ,ps,) C 2, satisfying
the following conditions:

e > has only nodal singularities.
e The arithmetic genus of X is equal to zero.

The nodal points and labeled points are called special points.

A family of S-pointed complex curves over a complex manifold B is a proper,
holomorphic map 7p : Ugp — B with n sections py,,- -, ps, such that each geometric
fiber (X(b); p(b)) is an S-pointed curve.

Two such curves (X; p) and (X'; p’) are isomorphic if there exists a bi-holomorphic
equivalence ® : ¥ — ¥’ mapping p, to p, for all s € S.

An S-pointed curve is stable if its group of automorphisms is trivial (i.e., on each
irreducible component, the number of special points is at least three).

14



2.1.1 Graphs

Definition 2.1.2. A graph I is a collection of finite sets of vertices Vr and flags (or
half edges) Fr with a boundary map 9r : Fr — Vr and an involution jr : Fr — Fr
(j2 =id). We call Er = {(f1, f2) € F2 | f1 = jr(f2) & f1 # fo} the set of edges, and
Tr = {f € Fr | f =jr(f)} the set of tails. For a vertex v € Vr, let Fr(v) = 85" (v)
and |v| = |Fr(v)| be the valency of v.

We think of a graph I in terms of its following geometric realization ||I'||: Consider
the disjoint union of closed intervals | |, g [0,1] x fi, and identify (0, f;) with (0, f;)
if Or(f;) = Or(f;), and identify (¢, f;) with (1 — ¢,jr(f;)) for t €]0,1[ and f; # f;.
The geometric realization of I' has a piecewise linear structure.

Definition 2.1.3. A tree v is a graph whose geometric realization is connected and
simply-connected. If |v| > 2 for all vertices, then such a tree is called stable.

We associate a subtree v, for each vertex v € V, which is given by V. =
{v},F,, =F,(v), j,, = id, and 9,, = 0,.

Definition 2.1.4. Let v and 7 be trees with n tails. A morphism between these
trees ¢ : v — 7 is a pair of maps ¢ : F. — F, and ¢y, : V,, — V_ satisfying the
following conditions:

e ¢ is injective and ¢y, is surjective.
e The following diagram commutes

F’YL) \&

o] |

9y

L4 ¢F OjT :jv © ¢F
® ¢p = ¢plp is a bijection.

An isomorphism ¢ : v — 7 is a morphism where ¢r and ¢y are bijections. We denote
the isomorphic trees by v ~ 7.

Each morphism ¢ : v — 7 induces a piecewise linear map between the geometric
realizations of v and 7.

Lemma 2.1.5. Let v and 7 be stable trees with n tails. Any isomorphism ¢ : v — T
is uniquely defined by its restriction on tails ¢y : T, — T,.
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Proof. Let ¢, : v — 7 be two isomorphisms such that their restrictions on tails are
the same. Consider the path f Py, in ||y|| that connects a pair of tails fi, fo. The
automorphism ¢~ o ¢ of v maps 5, Py, to itself; otherwise, the union of the , Py, and
its image ¢~ o@(y, Py,) gives a loop in ||7||, which contradicts simply-connectedness.
Moreover, the restriction of ¢! o ¢ to the path 4, Py, is the identity map since it
preserves distances of vertices to tails fi, fo. This follows from the compatibility of
the automorphism ¢! o ¢ with 8, and j,.

The geometric realization ||7v|| of v can be covered by paths that connects pairs
of tails of 7. We conclude that the automorphism ¢! o ¢ is the identity since it is
the identity on every such path. Il

There are only finitely many isomorphisms classes of stable trees whose set of tails
are S. We call the isomorphism classes of such trees S-trees. We denote the set of all
S-trees by 7 ree.

2.1.2 Dual trees of pointed curves

Let (X;p) be an S-pointed stable curve and n > — ¥ be its normalization. Let
(Ev, pv) be the following pointed stable curve: 3, is a component of E and p, is the
set of points consisting of the preimages of special points on ¥, := n(Zv). The points
Do = (g, ,Dy,) o0 3, are ordered by the elements f. of a set F.(v).

Definition 2.1.6. The dual tree v of an S-pointed curve (3; p) is the S-tree consisting
of the following data:

e V., is the set of components of 3.

e I (v) is the set consisting of the preimages of special points in 5.

e 8, : f—vifand only if p; € 3,,.

o j, : f - f if and only if p; is a labeled point, and j, : fi +— f5 if and only if

D € Xy, and py, € 3, are the preimages of the nodal point X, N3, .

Lemma 2.1.7. Let ® be an isomorphism between the S-pointed stable curves (3;p)
and (X';p').

(a) ® induces an isomorphism ¢ between their dual trees v, .

(b) @ is uniquely defined by its restriction on labeled points.

Proof. (a) The result follows from the decomposition of ® into its restriction to each
irreducible component and the Definition 2.1.4.

(b) Due to Lemma 2.1.5, the isomorphism ¢ : v — 7 is determined by the restric-
tion of ® to the labeled points. The isomorphism ¢ determines which component of
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Figure 2.1: Dual tree of an S-pointed curve for |S| = 5.

Y is mapped to which component of >’ as well as the restriction of ® to the special
points. Each component of ¥ is rational and has at least three special points. There-
fore, the restriction of ® to a component is uniquely determined by the images of the
three special points. Il

2.2 Deformations of pointed curves

Let v be the dual tree of an S-pointed curve (¥;p), and 3 — ¥ be its normaliza-
tion. Let (i?v; py) be the following F. (v)-pointed stable curve corresponding to the
irreducible component 3, of (3;p). Let O3, be the sheaf of Kahler differentials.

The infinitesimal deformations of a nodal curve ¥ with divisor D, = ps, +- - - +Ds,
is canonically identified with the complex vector space

Ext%?g(QIE(DP>7OE>7 (21)
and the obstructions lie in
Et}, (Q4(Dy), O).

In this case, it is known that there is no obstruction (see, for example [31] or [17]).
The space of infinitesimal deformations is the tangent space of the space of defor-
mations at (X;p). It can be written explicitly in the following form:

P EES. T (-Dp)) e P .05 (2.2)

vEV, (fe,fe)€EE,

The first part corresponds to the equisingular deformations of ¥ with the divisor
Dy, =>" fiet, Pfis and the second part corresponds to the smoothing of nodal points
pe of the edges e = (fe, f¢) (see [17]).
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2.2.1 Combinatorics of degenerations

Let ~ be the dual tree of an S-pointed curve (3;p). Consider the deformation of
a nodal point of (X;p). Such a deformation of (X;p) gives a contraction of an
edge of v: Let e = (f., f¢) € E, be the edge corresponding to the nodal point
and 9,(e) = {v.,v°}, and consider the equivalence relation ~ on the set of vertices,
defined by: v ~ v for all v € V., \ {v.,v°}, and v, ~ v°. Then, there is an S-tree v/e
whose vertices are V,/ ~ and whose flags are F., \ {fe, f¢}. The boundary map and
involution of /e are the restrictions of 8, and j,.

We use the notation v < 7 to indicate that 7 is obtained by contracting some
edges of 7.

2.3 Stratification of the moduli space Mg

The moduli space Mg is the space of isomorphism classes of S-pointed stable curves.
This space is stratified according to degeneration types of S-pointed stable curves
which are given by S-trees. The principal stratum Mg corresponds to the one-
vertex S-tree and is the quotient of the product (CP')" minus the diagonals A =

Uk<l{<p517 o 7p3n>’p5k = psz} by AUt(CPI) = PSL?((C)

Theorem(Knudsen & Keel, [29, 22]). (a) For any |S| > 3, Mg is a smooth projective
algebraic variety of (real) dimension 2|S| — 6.

(b) Any family of S-pointed stable curves over B is induced by a unique morphism
k: B — Mg. The universal family of curves Ug of Mg is isomorphic to Mg Ufsns1}

(¢c) For any S-tree vy, there exists a quasi-projective subvariety D., C Mg parame-
terizing the curves whose dual tree is given by . D, is isomorphic to Hvev7 Mg (v)-
The (real) codimension of D., in Mg is 2|E,|.

(d) Ms is stratified by pairwise disjoint subvarieties D.. The closure of any
stratum D., is stratified by {D | v < v}.

Example 2.3.1. (i) For |S| < 3, Mg is empty due to the definition of S-pointed
stable curves. For |S| = 3, the moduli space Mg is simply a point, and its universal
curve Ug is CP! endowed with three labeled points.

(ii) For |S| = 4, the moduli space Mg is CP! with three points. These points
D,,,D,, and D,, correspond to the curves with two irreducible components, and
the open stratum Mg is the complement of these three points (see Fig. 2.2). The
universal family Usg is a del Pezzo surface of degree five which is obtained by blowing
up three points of CP! x CP!.

(iii) For |S| = 5, the moduli space Mg is isomorphic to Usg (s} 1., it is a del
Pezzo surface of degree five. It has ten divisors and each of these divisors contains
three codimension two strata. The corresponding S-trees are shown in Figure 2.2.
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Figure 2.2: All strata of Mg for |S| = 3,4, and 5.

2.4 Forgetful morphism

We say that (X;ps,, -+ ,Dps,_,) is obtained by forgetting the labeled point ps, of the
S-pointed curve (3;ps,, -+ ,ps,). However, the resulting pointed curve may well be
unstable. This happens when the component ¥, of ¥ supporting p,  has only two
additional special points. In this case, we contract this component to its intersection
point(s) with the components adjacent to 3,. With this stabilization we extend this
map to whole space, and obtain 7} : Ms — Mg where S’ = S\ {s,}. There exists
a canonical isomorphism Mg — Us commuting with the projections to Mg. In
other words, 7} : Mg — Mg can be identified with the universal family of curves
US/ - MS/.

2.5 Automorphisms of Mg

The open stratum Mg of the moduli space Mg can be identified with the orbit space
((CPY)™ \ A)/PSLy(C). The latter orbit space may be viewed as the configuration
space of (n — 3) ordered distinct points of CP! \ {0, 1, c0}:

Mg 2 {p= (25, ,25,) EC"| 2, # zs, Vs; # 55, (2.3)

and Rsp_o — 07 Zop_1 = 1) sy — 00}7

where z;, := [z, : 1] are the coordinates of labeled points ps, in an affine chart of
CP!.

Let ¥ = (s, ...,%s, ) : Mg — Mg be a non-constant holomorphic map. In
[19], Kaliman discovered the following fact:

Theorem (Kaliman, [19]). For |S| > 4, every non-constant holomorphic endomor-
phism 1 = (Us,, ..., s, ) of Mg is an automorphism and its components 1, are of
the form

Zo(s) — “o(sn—2) Ro(sn—2) — Po(sn—1)
Us(p) = =
Zo(s) — “o(sn) Zo(sn) — Ro(sn—1)

, S E€{s1,- - Sn_3}

where o € S,, s a permutation not depending on s.
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Kaliman’s theorem implies the following corollary.

Theorem (Kaliman & Lin, [19, 30]). Every holomorphic automorphism of Ms is
produced by a certain permutation o € S,,. Hence, Aut(Mg) = S,

On the other hand, the permutation group S, acts on the compactification Mg
of Mg via relabeling: For each ¢ € S,,, there is a map 1), which is given by

’QZ)Q : (Zap> — (Ev Q(p)) = (Z;pg(m)v T 7pQ(Sn))' (24)
Lemma 2.5.1. The map 1, is holomorphic.

Proof. The differentiability of 1, follows from the Kodaira-Spencer construction of
infinitesimal deformations given in Section 2.2. We need to show that the differential
di, is linear at each (X;p) € Mg. It is sufficient to show that without taking the
quotient with respect to PSLy(C).

The differential of the permutation maps

di, : Exty (Q5(Dp), Os) — Extp, (Q5(Dypy), Ox).

By using the explicit form of the tangent space given in (2.2), di, can be written
explicitly as follows.

D H'(S Ty, — P H'(Z0 T, (D)) ur u,
VeV, VeV,
@ Tﬁfei Tpfﬁz — @ TpfeE V — V.
(fesf)EES (fe,fe)EE,
Hence the differential di, is linear. O]

Therefore, the permutation group S,, is a subgroup of holomorphic automorphisms

Let Auty (Ms) be the group of holomorphic automorphisms of Mg that respect the
stratification: ¢ € Auty(Ms) maps D, onto D, where dimD, = dimD,,. Kaliman’s
theorem leads us to the following immediate corollary.

Theorem 1. The group Auty(Msg) is S,.

Proof. Let 1 € Autﬁ(ﬂs). The restriction of ¥ to the open stratum gives the permu-
tation action on Mg since the automorphism group of the open stratum Mg contains
only permutations v,. The unicity theorem of holomorphic maps implies that ¢ = v,
since they coincide on the open stratum |y = ¥,|ng- O]

Remark 2.5.2. Note that the group of holomorphic automorphisms Aut(Mg) is not
necessarily isomorphic to S,. For example, the group of automorphisms Aut(Mg) is
PSLy(C) when |S| = 4. Tt is a well-known fact that Aut(Mg) = S5 for [S| =5 (see,
for example [8]). According to our knowledge, there is no systematic exposition of
Aut(Msg) for S| > 5.
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2.6 Intersection ring of Mg

In [22], Keel gave a construction of the moduli space Mg via a sequence of blowups
of Ms\{sn} x CP! along the certain codimension two subvarieties. This inductive
construction of Mg allowed him to calculate the intersection ring in terms of the
Poincare duals D7 of the divisor classes [D,]. Note that the divisors D., parameterize
curves whose dual trees have only one edge.

For |S| > 4, choose i,7,k,l € S, and let v,7 € Tree such that 7 % ~ and
|E.| = |E,| = 1. We write ijvkl if tails labeled by i, j and &, belongs to different
vertices of v. We call v and 7 compatible if there is no {i,7,k,l} C S such that

simultaneously ¢jvkl and tkTjl.

Theorem (Keel, [22]). For [S| > 3,
H*(Ms,7) = Z|D" | v € Tree, |E,| =1]/Is

1s a graded polynomial ring, deg DY = 1. The ideal Is is generated by the following
relations:

1. For any distinct four elements i,j,k,l € S:

Y D"-> D =0.

vkl ikTjl

2. DYDT =0 unless v and T are compatible.

2.6.1 Additive and multiplicative structures of H*(Mg)

The precise description of homogeneous elements in H*(Mg, Z) is given by Kontsevich
and Manin in [28]. The monomial D ... D% is called good, if |E.,| = 1 for all 1,
and 7;’s are pairwise compatible. Consider any S-tree . Any edge e € E, defines
an S-tree y(e) which is obtained by contracting all edges of v but e. Then, we can
associate a good monomial D7 := I.cg, D of degree |E,| to 7. The map v — D7
establishes a bijection between the good monomials of degree d in H*(Mg,Z), and
S-trees v with |E,| = d (see [28]). Since boundary divisors intersect transversally,
the Poincare duality maps a good monomials to the homology classes represented by
the corresponding closed stratum

PD: D"+ [D,]. (2.5)
Theorem (Kontsevich and Manin, [28]). The classes of good monomials linearly

generate H*(Msg, 7).
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Multiplication on H*(Mg)

Let 7,7 € Tree and |E;| = 1. In [28], a product formula of D™D is given in three
distinguished cases:

1. Suppose that there exists an e € E, such that y(e) and 7 are not compatible
(i.e., D; N Do) = 0). Then D™D = 0.

2. Suppose that D™D?" is a good monomial i.e., 7,7(e)’s are pairwise compatible
for all e € E,. Then there exists a unique S-tree 7’ with ¢’ € E. such that
/e’ =, 7'(e) =T,and D"D" = D"

3. Suppose now that there exists an e € E, such that y(e) = 7 i.e., D™ divides
D7. For a given quadruple {4, j, k, [} such that ijTkl, we have

> D" D'- ) D? D" =0.
ijT1kl ikTojl
since the elements of the second sum are not compatible with D7. Therefore,

DD = — Z D™ D7,

T1#T
ijT1 kl

Here, D™ D7 are good monomials, so they can be computed as in case (2).

Additive relations of H*(Mg)

It remains to give the linear relations between degree d monomials. In [28], these
relations are given in the following way. Consider an S-tree v with |E,| = d — 1,
and a vertex v € V, with |v| > 4. Let fi, fo, f3, f1 € F.,(v) be pairwise distinct
flags. Put F = F.(v) \ {f1, f2, f3, f+} and let F{,Fy be two disjoint subsets of F
such that F = F; |JF,. We define two S-trees 71,72. The S-tree 7 is obtained by
inserting a new edge e = (fe, f¢) to v at v with boundary 8.,(e) = {v.,v°} and

flags ., (ve) = F1U{f1, fo, fe} and F., (v¢) = FolU{fs, fa, f¢}. The S-tree 7, is

also obtained by inserting an edge e to v at the same vertex v, but the flags are
distributed differently on vertices 8.,(e) = {ve,v°}: Fo,(ve) = F1U{ f1, fs, fc} and
F'yg (UE) = F2 U{f27 f4> fe}' Put

R(Vav;flvf%f&fﬁl) ::ZD%_ZD’W (26)
7 Y2

where summation is taken over all possible v; and v, given above.

Theorem(Kontsevich and Manin, [28]). All linear relations between good monomials
of degree d are spanned by R(vy,v; fi, f2, f3, fa) with |E,| =d — 1.

For proofs and details, see [22, 29] and Chapter 3 in [32].
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Chapter 3

Moduli of o-invariant curves

In this chapter, we introduce c-invariant curves and their families. We give the
moduli spaces of o-invariant curves as the fixed point sets of real structures ¢, of
Mss.

3.1 Real structures on Mg

The moduli space Mg comes equipped with an involution
Ga: (Z;p) — (Z;p)- (3.1)

Here, a complex curve ¥ is regarded as a pair ¥ = (C, J), where C' is the underlying
two-dimensional manifold and J is a complex structure on it, and ¥ = (C, —.J) is its
complex conjugated pair.t

Lemma 3.1.1. The map ciq is a real structure on Mg.

Proof. The differentiability of ¢;q follows form the Kodaira-Spencer construction of
infinitesimal deformations. We need to show that the differential of ¢;q is anti-linear
at each (X;p) € Mg. It is sufficient to show that it is anti-linear without taking the
quotient with respect to PSLy(C).

The infinitesimal deformations of a nodal curve X with divisor D, is canonically
identified with the complex vector space Exty_(Q5(Dp), Ox), (see Section 2.2). By
reversing the complex structure on Y, we reverse the complex structure on the tangent
space Exty, (Qs(Dp), Ox) at (5;p). The differential of the map (3;p) — (3;p)

Bato, ((Dy), Os) — Eatp_(Q5(Dp), O5), v v

IThere is some notational ambiguity here. The bar over Mg and that over X refer to two
different structures on underlying manifolds: The first one refers to the compactification of Mg and
the second refer to the manifold with reverse complex structure. Both of these notations are widely
used, and we use the bar for both cases. The context should make it clear which structure is referred
to.
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is clearly anti-linear. O

The permutation group S, acts on Mg via relabeling: For each ¢ € S, there
is a holomorphic map 1, defined in (2.4). For each involution ¢ € S,, we have an
additional real structure

Cy 7= Cia © s 1 (5;p) — (3;0(p)) (3.2)
on Mg. We denote the fixed point set of ¢, : Mg — Mg by RM%.

Lemma 3.1.2. Fach real structure preserving the stratification of Mg is given by a
certain involution o € S,, and is of the form (3.2).

Proof. Theorem 1 implies that the set of anti-holomorphic automorphisms that re-
spect the stratification is obtained by composing the principal real structure c;q with a
permutation ¢, of p € S,,. Therefore, the real structures preserving the stratification
of Mg are ciq 0 9, for o2 = id. [l

3.2 o-invariant curves and their families

An S-pointed stable curve (3;p) is called o-invariant if it admits a real structure
cs 1 3 — ¥ such that cx(ps) = po(s) for all s € S.

A family of S-pointed stable curves ng : Ug — B is called o-equivariant if there
exist a pair of real structures

cg: b —  cp(b),
cv: bx (B(b);p(h) = cp(b) x (B(b);o(p(h)))

of B and Up which make the following diagram commute

UBC—U>UB

| |

B . B.

Lemma 3.2.1. If (X;p) is isomorphic to (i,; p’), then there exist anti-holomorphic
maps c: X — X and ¢ : X' — X such that c(ps) = p;(s) and ¢ (p),) = Po(s). The maps
¢, are unique and reverse to each other.

Proof. 1t direclty follows from Lemma 2.1.7. [
Remark 3.2.2. If (3; p) is o-invariant, then the real structure cs : ¥ — ¥ is uniquely
determined by the permutation ¢ due to Lemma 2.1.7.

Let R be a real analytic manifold, and let B be a complexification of R. A family
of o-invariant curves over R is the restriction of a o-equivariant family over B to its
real part R.
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Figure 3.1: A family of o-invariant curves for |S| = 5 and |Fix(c)| = 1.

3.3 The moduli space of g-invariant curves

The real part of (Mg, c,) gives us the moduli space of o-invariant curves.

Theorem 2. (a) For any |S| > 3, RMg is a smooth projective real manifold of
dimension |S| — 3.

(b) The universal family of curves m: Us — Mg is a o-equivariant family.

(c) Any o-equivariant family of S-pointed stable curves over wg : Ug — B is
iduced by a unique pair of real morphisms

Up —— TUs

ﬂBl lw

B L>MS

(d) Let M, be the contravariant functor that sends real varieties (B, cg) to the
set of isomorphism classes of o-equivariant families over B. The moduli functor M,
is represented by the real variety (Mg, cy).

(e) Let RO, be the contravariant functor that sends real analytic manifolds R to
the set of isomorphism classes of families of o-invariant curves over R. The moduli
functor ROM, is represented by the real part RMg of (Mg, ¢,).

Proof. (a) The smoothness of the real part of ¢, is a consequence of the implicit
function theorem, and dimg RMg = dime Mg = |S| — 3 since the real part RMg is
not empty.

(b) The fiber over (X;p) € Mg is 7 }((X;p)) = X. We define real structures on
Mg and Usg as follows:

¢t (Z;p) = (Z;0(p)),

b zeT N (p) — zem (Tio(p)):

25



Due to Lemma 3.2.1, the maps ¢, and ¢, are well-defined. They clearly satisfy the
conditions of o-equivariant families in given Section 3.2.

(¢) Due to Knudsen’s theorem (see Section 2.3), each of the morphisms x : B —
Mg and & : Ug — Ug are unique. Therefore, they are the same as c,oxocg : B — Mg
and é, o ko ¢y : Ug — Us. Hence, the morphisms «, 4 are real.

(d) Directly follows from the definition of 91, and (c).

(e) This statement is a direct corollary of (d). O

Remark 3.3.1. Let p € S,,, and 9, be the corresponding automorphism of Mg. The
conjugation of real structure ¢, with 1, provides a conjugate real structure c,» = 1,0
¢ 01,-1. The conjugacy classes of real structures are determined by the cardinalities

|Fix(o)| = [ and |Perm(c)| = 2k. For this reason, we only consider ¢, where o as
in (1.6) i.e.,
o= < St v Sk Skttt S2k S2k+1 Tt S2k4 )
Sk+1 tcc S2k S1 ccc Sk S2k+1 C 0 S2k+

For such an involution, o-invariant curves are called (2k,[)-pointed real curves. The
fixed point set Fix(c,) = RMg is called the moduli space of (2k, 1)-pointed real curves
and denoted by RM y, .
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Chapter 4

Combinatorial types of o-invariant
curves

This chapter contains some preliminary observations on o-invariant real curves and
their degeneration types. The degeneration types of o-invariant curves are encoded
by the S-trees with additional decorations. The dual trees of o-invariant curves and
their morphisms are introduced.

4.1 Topological types of o-invariant curves

Definition 4.1.1. A o-invariant curve (3; p) is called
e of type 1, if RY is not empty set or a point,
e of type 2, if RY = (),
e of type 3, if RY a solitary point.

Lemma 4.1.2. (a) Fach irreducible real component of a o-invariant curve is iso-
morphic to CP with a real structure which is either [z : z9] & [Z1 : Z2] or [21 @ 22) —
[—22 : 21].

(b) Each o-invariant curve is either of type 1, type 2 or type 3.

Proof. (a) Due to its definition, each component of a o-invariant curve is isomorphic
to CPL. Let conj be an anti-holomorphic involution on CP'. Choose a point p which
is not invariant under conj, and set conj(p) = co. We then consider a meromorphic
function f which has a simple zero at p and a simple pole at co. Let f = f o conj,
then f = af~'. Since f = f, we have a = a. Replacing f by bf changes a to |b?|a.
By choosing b, we can normalize a = 1 or a = —1. These two cases give the two real
structures given in the statement.
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(b)Let (X; p) be a o-invariant curve. The real structure ¢y, maps the components
¥, — X5, and special points py +— pr. Then, we need to consider two possibilities:
(i) there exists (at least) one real component cy, : ¥, — ¥, (ii) there isn’t any real
component.

In the case (i), the real structures in (a) give the (possible) real parts of type 1
and 2 respectively.

In the case (ii), the fixed point set RY is finite. The induced homomorphism
(cs)« maps the fundamental classes of conjugate components ¥, ¥; to each other i.e,
[X,] — —[2s] and [¥;] — —[X,]. Hence, the trace of the linear map (cx). : Ha(X) —
Hy(X) is zero. Moreover, the trace of (cx). : H1(X) — Hi(X) is zero, since H(X)
is trivial. Due to Lefschetz fixed point theorem, the Euler characteristic of the fixed
point set is one. Therefore, the real part is a solitary point. Il

Remark 4.1.3. If |Fix(o)| > 0, then all o-invariant curves are of type 1. This follows
from the facts that real parts such o-invariant curves can not be empty set and the
labeled points are different than the nodal points. By contrast, o-invariant curves
can be of type 1, type 2 or type 3 when |Fix(o)| = 0.

4.2 Combinatorial types of o-invariant curves.

The real structure of a o-invariant curve determines additional structures. We intro-
duce these structures for different topological types of o-invariant curves separately.

4.2.1 Oriented combinatorial types

o-invariant curves of type 1. Let (i),f)) be the normalization of a o-invariant
curve (3; p) of type 1. By identifying 3, with ¥, C ¥, we obtain a real structure on
3 for each real component Y. The real part Rf]v of this real structure divides f]v into
two halves: two 2-discs ¥F and 3, having RY, as their common boundary. Then,
the set of the preimages of the special points p, admits the following structures:

o An oriented cyclic ordering on the set of points lying in RS, : For any point Dy, €
o ﬂRva, there is unique p;, € p, ﬂRfEU which follows the point py, in the
positive direction of RS, (the direction which is determined by the orientation
induced from the complex orientation of X.1).

e An ordered two-partition of the set of points lying in 3, \ R3,. The subset
p.N(Z, \ RY,) of p, admits a partition into two disjoint subsets {p;, € XF}.

The preimages of special points p, are labelled by F.(v). Therefore, if we pick an
element py, € RY,, the cyclic ordering can be seen as a linear ordering on (p, [ RX,)\
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{py,}. This linear ordering gives an oriented cyclic ordering on Ff(v) which we denote
by {fr} < <{fr_,} < {fn} where f,, = f,. Moreover, the partition {p;, € ¥F}
gives an ordered two-partition F5 (v) := {f, | ps, € X7} of F(v) \ F5(v).

The oriented combinatorial type of the real component X, of (X; p) is a set of data

0, := {type 1;two partition FiE (v); an oriented cyclic ordering on Fﬂj(v)}

o-invariant curves of type 2. Let (X;p) be a o-invariant curve of type 2. In this
case, (X; p) has a unique real component 3, since the real components must intersect
at real points, and ¥ has none. Moreover, Fix(c) = () since RY = ().

In this case, the oriented combinatorial type of the real component ¥, of (3; p) is
a set of data

0, = {type 2;V5 = {v}}.

o-invariant curves of type 3. Let (X;p) be a o-invariant curve of type 3. In this
case, the real part RY of (3; p) divides ¥ into two connected pointed complex curves
(X%, p*) having RY as their intersection point. We denote the set of components of
(X%, p*) by V7, and U,ey= 9, '(v) by F¥. Note that, V¥ = 0 since there is no real
component in this case.

The oriented combinatorial type of (3;p) is a set of data

o := {type 3;V$;F$}.

4.2.2 Unoriented combinatorial types

The definition of oriented combinatorial types requires additional data on o-invariant
curves. By identifying the oriented combinatorial types for different choices, we obtain
un-oriented combinatorial types of o-invariant curves.

o-invariant curves of type 1. For each real component ¥, of a o-invariant curve
(33; p) of type 1, there are two possible ways of choosing 3 in 3,. These two different
choices give the opposite oriented combinatorial types o, and 0,. Namely, the oriented
combinatorial type o, is obtained from o, by reversing the cyclic ordering on FE(U)
and swapping F¥(v) and F (v).

An un-oriented combinatorial type of 3, is a pair of opposite oriented combinato-
rial types u, := {0y, 0, }.

o-invariant curves of type 2. For a o-invariant curve (X;p) of type 2, the un-
oriented combinatorial type is the same set of data with the oriented combinatorial

type ie., u, := 0, = {type 2; V5 = {v}}
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o-invariant curves of type 3. For a o-invariant curve (3; p) of type 3, there are
two possible ways of choosing (X1, p™) in (X; p). These two different choices give the
opposite oriented combinatorial types o and 0. Namely, the oriented combinatorial
type 0 is obtained from o by swapping V? and V7, and swapping Fj and F_.

An un-oriented combinatorial type of (¥;p) is a pair of opposite oriented combi-
natorial types u := {o,06}.

4.3 Dual trees of o-invariant curves

The combinatorial types of o-invariant curves can be encoded on their dual trees.

4.3.1 O-planar trees

Let v be the dual tree of a o-invariant curve (3;p).

Definition 4.3.1. An oriented locally planar structure (o-planar for short) on + is the
set of data which encodes oriented combinatorial type of a o-invariant curve (3;p).
The o-planar structures of different types are explicitly given as follows:

o O-planar structure of type 1.

— The real structure cy is of type 1 (i.e., RY is not empty set or a point).
— VX C V, is the set of real components of ¥ (i.e., the set of real vertices).

— F¥(v) C F,(v) is the set of the preimages of special points in RY, (i.e.,
the set of real flags adjacent to real vertices v € VE).

— An oriented cyclic ordering on F%(v) for every v € V.

— A two-partition F3 (v) of F,(v) \ F5(v) for every v € VE.
e O-planar structure of type 2.

— The real structure cyx, is of type 2 (i.e., RX is empty set).

— VI = {v,} C V, is set of the real components of ¥ (i.e., the set of real
vertex); it contains only one element.

e O-planar structure of type 3.

— The real structure cy is of type 3 (i.e., RY is a point).

— The special real edge e = (fe, f¢) is the edge corresponding to the solitary
nodal point of X.

— Two partitions Ff and Vf of F., and V., respectively.
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An o-planar tree is an S-tree v with an o-planar structure. We denote o-planar trees
by (v, 0).

Notations. For each vertex v € V5 of (v,0) (of type 1 or type 2), we associate a
subtree (7,,0,) which is given by the one-vertex tree 7, and the o-planar structure
0, of (v, 0) assigned to vertex v.

A pair of vertices v, € VV\Vﬂlf are said to be conjugate if c5(X,) = X5. Similarly,
we call the flags f, f € F, \A FE conjugate if cx; swaps the corresponding special points
n(py) and n(ps). Here : ¥ — X is the normalization.

We associate the subsets of vertices Vf and flags Fi[ to every o-planar tree (7, 0)
of type 1 as follows. Let v, € VV\VE and let vy € VE be the closest invariant vertex
to vy in ||v||. Let f € F,(vs) be in the shortest path connecting the vertices v; and
vy. The set V7 is the subset of vertices v; € V,, \ V5 such that the flag f (defined
as above) is in F3 (v). The subsets of flags F= are defined as 9;'(V7).

4.3.2 U-planar trees

A wu-planar structure on the dual tree of (3;p) is the set of data encoding the un-
oriented combinatorial type of (X;p). It is given by

{(V0,00); (Y0,00) | v € Vﬂj} if (3;p) is of type 1,
u:=1q {(n,0)|veVE} if (3;p) is of type 2,
{special real edge e = (fe, f¢)} if (X;p) is of type 3.

4.4 Contraction morphism of o-planar trees

Let (3;p) be a o-invariant curve with oriented combinatorial types at each real
components. Consider the deformation of real or conjugate pairs of nodal points.
Such deformations give contraction morphisms of o-planar trees.

Let (v, 0) be an o-planar tree, and ¢ : v — 7 be a morphism of S-trees contracting
an invariant set of edges E.n, = E, \ ¢g(E;). In such a situation, we associate a
particular o-planar structure o on 7, as described below in separate cases (a) and
(b), and speak of a contraction morphism ¢ : (v,6) — (7,0). In all the cases, except
(a-2), the o-planar structure o is uniquely defined by o.

(a) Let B = {e = (fe, f)} CEX.

L. If 9y(e) = {ve,v°} C V7, then we convert the o-planar structures

Os, = {type 1§F$(U6)3F5(U6) ={/fn} < <{fr.} <{fe}}}
ope = {type LFI(v);F5(v°) = {{f,{fl} <-<{f P <{fH}
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at v. and v® to an o-planar structure at vertex v = ¢ ({ve, v°}) of (7,0)
defining it by

o, = {type LiF;(v) =FJ(v.) UF5(v°);
F;R(U) = {{f;i} << {fv{;n} < {fm} << {frm}}‘
The o-planar structures are kept unchanged at all other invariant vertices.

. If e is a special real edge and 0,(e) = {v.,v°}, then we convert the o-
planar structure 6 = {type 3; Fvi; Vﬁ} of v into an o-planar structure at
the vertex v, = ¢ ({ve, v}) of 7 defining it by

0u, = {type L FY(v) = FJ(ve) \ {f}, F7 (v) = 7 (v°) \ {f*}; F7 (v) = 0}.

or by
0s, = {type 2}.

(b) Let Eop, = {e; = (fe,, f) | @ = 1,2} where f.,,i = 1,2 and f%,i = 1,2 are
conjugate pairs of flags.

1. If 9,(e;) = {0,v%}, and © € VE, v ¢ VE, then we convert the o-planar
structure

0 = {type LFF(0); Fy(0) = {{fi,} < - <{fn.}}-
at 0 to an o-planar structure at v = ¢, ({0, v°*,v°2}) of 7 defining it by

o, = {type LF}(v) =F (@) UF](v")\ {fe;, [},
F;(v) = F- (0) UF; (v2) \ {fu, f2};
Fiv) = {{fn} < - <{fu.}}

I Boon = {&; = (fe,, f) | i = 1,2} and 0,(e;) (V5 = 0, then we define
the o-planar structure at each real vertex v of 7 to be the same as the
o-planar structure at v of (v, 0).

4.4.1 Contraction morphism of u-planar trees

Let 7 : Ug — B be a g-equivariant family which is a deformation of a nodal point of
the central fiber (X(bg), p(b)). Let (7,u) and (v, %) be the u-planar trees associated
respectively to generic fibers (X(b), p(b)) and the central fiber (X(by), p(by)) of B.
Let e be the edge corresponding to the nodal point that is deformed. We say that

(7,u) is obtained by contracting the edge e of (v,4), and to indicate that we use the
notation (v, ) < (7, u).
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It is important to note that the contraction of an edge of a u-planar tree is not
a well-defined operation: For example, we can think about a deformation of a real
nodal point as the family {z-y =t |t € R}. According to the sign of the deformation
parameter ¢, we obtain o-invariant curves with two different u-planar structures, see
Figure 4.1. Different u-planar trees (7,u;) obtained by contraction of edges (v, u)
correspond to different signs of deformation parameters.

Figure 4.1: Two possible deformation of a real nodal point.

4.5 Forgetful morphism of o-planar trees

Let S’ C S such that 0(S") = S’. Denote the restriction o on S’ by ¢’. The morphism
Ts\s : Ms — Mg forgetting the points labelled by S\ S’ is a real morphism i.e.,
T§\8 © Cx = Cor © Tg\s/. Lherefore, mg\g/ maps the real part of (Mg, c,) onto the real
part of (Mg, cor).

Let (v*,0%) be an o-planar representative of dual tree (v*,u*) of (¥;p) € RM.
Set C(yo) = C(yeury. Then, we say that the o-planar (7,0) of ms\g((X;p)) is
obtained by forgeting the tails S\ S’ of (v*,0%).

We denote the set of o-planar trees {(7*,0*)} that give (v, 0) after forgetting the
tails S\ 8" by G(,,,)(S,S’).
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Chapter 5

Stratification of RMg

A stratification for RM; can be obtained by using the stratification of Mg given in
Section 2.3.

Lemma 5.0.1. Let v and 7 be the dual trees of (X;p) and (3;0(p)) respectively.
(a) If v and 7 are not isomorphic, then the restriction of ¢, on the union of
complex strata D, |J D5 gives a real structure with empty real part.
(b) If v and 7 are isomorphic, then the restriction of ¢, on D., gives a real structure
whose corresponding real part RD., is the intersection of RM; with D..

Proof. (a) Since v and 7 are not isomorphic, D., and D5 are disjoint complex strata.
The restriction of ¢, on D. |J D5 swaps the strata. Therefore, the real part of this
real structure is empty.

(b) Since v and 7 are isomorphic, S-pointed curves (X;p) and (3;0(p)) are in
D,. Therefore, D, = D= and the restriction of ¢, on D, is a real structure. The real
part RD., of the g-equivariant family D., is RMg (] D since RMg = Fix(c,). O

Definition 5.0.2. An S-tree v is called o-invariant if it is isomorphic to 7, and the
set of o-invariant S-trees is denoted by 7 ree(o).

Theorem 3. The real moduli space RM; is stratified by real analytic subsets RD,
where 7 € Tree(o).

Proof. Due to Lemma 5.0.1, the restrictions of ¢, act as real structures on D, for
T~ T, and D, |J D~ for 7 % 7. Since the real part of (D, |J D+, c¢,) is emptyset, the
real moduli space RM; is the union of real parts RD, of the pairwise disjoint strata
(D;,c,) for T = 7. O

Although the notion of o-invariant trees leads us to a combinatorial stratification
of RM% as given in Theorem 3, it does not give a stratification in terms of connected
strata. For a o-invariant tree v, the real part of the stratum RD, has many connected
subspaces. In this chapter, we refine this stratification by using the spaces of Zo-
equivariant point configurations in the projective line CP! and u-planar trees.
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5.1 Spaces of Z,-equivariant point configurations
in CP!

Let z := [z : 1] be the affine coordinate on CP'. Consider the upper half-plane
HT = {z € CP! | $(2) > 0} (resp. lower half plane H™ = {z € CP! | S(z2) < 0})
as a half of the CP! with respect to z + z, and the real part RP! as its boundary.
Denote by H the compactified disc H* U RP!.

5.1.1 Configuration spaces

Let F = {f1,---, fm} be a finite set. Let S,, be the group of permutations of F,
and p € S,, be an involution. We denote the subsets {f, € F | f. = p(f.)} and
{fs, fs €F | fs # p(fs)} respectively by F®(p) and F€(p). Without loss of generality,
we choose the involution

p_( fl fz fi+1 f2i f2i+1 f2i+j)
fz’+1 f2i fl fz f2i+1 f2i+j 7

where 2i + 7 = m.
Let conj : CP* — CP! be an anti-holomorphic involution.

Definition 5.1.1. A p-invariant point configuration on CP! is a finite set of points
p=(ps, - ,pf,) C CP! labelled by F such that conj(ps) = p)-

The permutations ¢ € S,,, of F relabel p-invariant point configurations:

¢Q : (pf17 T 7pfm) = (pg(ﬁ)v T 7p@(fm))'

If the image 1,(p) is also p-invariant, we call ¥, a p-invariant relabelling.
We will consider the spaces of configurations for the real structures with non-
empty and empty real parts as separate cases (i.e., conj : z — Z and conj : z —

—1/2).

Case 1. Configurations on CP! with non-empty real part. Each p-invariant
point configuration p in CP! with z — Z inherits an o-planar structure.

(a) An oriented cyclic ordering {f,,} < -+ < {fr_.} < {fr, := [} on FX(p).

(b) An ordered two-partition F*(p) := {fs | ps. € H*} of F&(p).

The set of data given in (a) and (b) is called the oriented combinatorial type a p-
invariant point configuration p on (CP!, 2z +— z). We denote an oriented combinatorial

type by o.
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The oriented combinatorial types of p-invariant point configurations on a real
variety (CP!, z — 2) enumerate the connected components of the space Con f (F.,p) Of
|F*(p)| distinct pairs of conjugate points in HT ([ JH~ and [F®(p)| distinct points in
RP!:

Conf(F,p) = {(pfw 5 Do Qf2i+l7 e ?(:Zf2i+j> | Dy € H+ UH_7
for f € F<(p), & pr=pp < f = f.pr=pp < [ =p(f),
and ¢y € RP', ¢y =qp & f = f'}.
The number of connected components is 2¢(j — 1)!.} They are all pairwise diffeomor-
phic; natural diffeomorphisms are p-invariant relabelings 1,.

Let z := [z : 1] be the affine coordinate on CP'!, and x := [z : 1] be affine
coordinate on RP!. The action of SLy(R) on H is given by

SLy(R) x H — H, (A,z)HA(z):Zjiz, A= (i 2) € SLy(R)

in affine coordinates. It induces an isomorphism SLy(R)/ £ 1 — Aut(H). The

automorphism group Aut(H) acts on Conf

(2’17"' y 2215 L2341y """ 7$2i+j) =

(A(z1), - s Alz20); Magig), s AM@airy))

It preserves each connected component of Conf g ,. This action is free when |F| > 3,
and it commutes with p-invariant relabelings. Therefore, the quotient space

é(p,p) = Conf g, /Aut(H)

is a manifold of dimension |F| — 3 whose connected components are pairwise diffeo-
morphic.

_In addition to the automorphisms considered above, there is a diffeomorphism —I
of Conf g , which is given in affine coordinates as follows.

—1I: (217 Tt 5220 L1, 7$2i+j) = (_Zlu T, TR2 T X241, 0, —962z'+j)~ (5.1)

Consider the quotient space Confwr ) = 6’517(1;”0)/(—]1). Note that, —I swaps the

components of Conf g , that have opposite oriented combinatorial types. Namely,
the combinatorial type o of —I(p) is obtained from the combinatorial type o of p by re-
versing the cyclic ordering on F¥(p) and swapping F*(p) and F~(p). The equivalence
classes of oriented combinatorial types with respect to the action of —I are called un-
oriented combinatorial types of p-invariant point configurations on (CP!, z — z). The
un-oriented combinatorial types enumerate the connected components of Con f(g ).

Here we use the convention n! = 1 whenever n < 0.
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The diffeomorphism —I commutes with each p-invariant relabeling and normaliz-
ing action of Aut(H). Therefore, the quotient space

Cr,p) = Confr )/ Aut(H)

is a manifold of dimension |F|— 3, its connected components are diffeomorphic to the
components of Cx ). Moreover, the quotient map C(g ) — C(r ) is a trivial double
covering.

Case II. Configurations on CP' with empty real part. Let p be p-invariant
point configurations in CP* with conj : z — —1/z.
The group of automorphisms of CP* which commutes with conj is

- a

Aut(CP*, conj) =2 SU, = {( ag Z_) ) € SLQ(C)}.
Thus, Aut(CP!, conj) acts naturally on the space

Conf(wp,p) ={(pp, . pp) | conjpg,) = pﬂ(fk)}

of p-invariant point configurations on (CP!, 2z +— —1/z). For |F| > 4, the action is
free and the quotient By, = Con f(@pr) JAut(CP!, conj) is a |F| — 3 dimensional
connected manifold.

The combinatorial type of p-invariant point configurations on CP! with z — —1/z
is unique and given by the topological type of the real structure z — —1/z.

5.1.2 A normal position of p-invariant point configurations
in CP!
By using the automorphisms we can choose representatives of the points in é(F,p) and

B (F.p)-

Case 1. Configurations wl with non-empty real part. FEvery element in
G(E p) is represented by p € Conf g . In order to calibrate the choice, we consider an
isomorphism CP! — CP! which is mapping p — p’, puts the points in the following
normal position p’ € CP!.

(A) If [FR(p)| > 3, then the three consecutive points (p}j_l, P, D) in RP! are put
in the position x}jfl = 1,2/, =00, = 0. We then obtain

/ — —
P =(z1, ", 2,21,y Ziy Taip1, 5 T2iqj—1, 00).

37



(B) If [F®(p)| = j = 1,2, then the three points {py,, py,;, Py, } are put in the position
{£V—1, co}. Then,
p — (21, zim, eV —=1,Z1, -+, Zic1, —eV/—1, 29541, 00) if j =2,
(Zlv"' s Ri—1, € _17217"' 721'—17_6\/_]-’00) lszl

where € = +.

(C) If |[F®(p)| = 0, then the points {p;,, py,, } are fixed at {++/—1} and p;, where
{fx} =A{fi-1, f2im1} N FT(p) is placed on the interval ]0,/—1[C H*. Then,

p/ = (Zb e 721?2561)\\’ _1762 _17317 e 732'727 _61)\\/ _17 —€2V _1)
where A €]0,1[ and ¢; = +,i =1,2.

Case II. Configurations on CP' with empty real part. Every element of
B, [F€(p)| > 4, is represented by p € C’onf(@F ,)- In order to calibrate the choice
by using Aut(CP!, conj), we consider an isomorphism CP! — CP! which is mapping

p — p’, puts the points of p in the following normal position p’ € CP!.

(D)

— -1 1 =1
p f— (217-.- 72’1:72’)\ _1, —172—7... ’E 7_T,_ /_1)’
1 i—2

where X €] — 1, 1].

5.2 The open moduli space RMJ

In this section, we choose F to be the labeling set S, and p to be the involution o.
Every o-invariant point configuration gives a o-invariant irreducible real curve.
Hence, we define

- { Cs,0) — RMZ when |Fix(o)| > 0,
= ¢

5.2
S,0) U B(S,J) — RM¢§ when |F1X(U)| =0, ( )

which maps each o-invariant point configurations to the corresponding isomorphism
classes of irreducible o-invariant curves.

Lemma 5.2.1. The map Z is a diffeomorphism.

Proof. The map = is clearly smooth. It is surjective since any o-invariant irreducible
curve is isomorphic either to (CP!, 2z +— z) or (CP',z — —1/%z) with a o-invariant
point configuration p on it. It is injective since the group of holomorphic automor-
phisms commuting with the real structure z +— z is generated by Aut(H) and —I,
and the group of holomorphic automorphisms commuting with the real structure
z +— —1/z is Aut(CP', conj). These automorphism are taken into account during
construction of the configuration spaces. O
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5.2.1 Connected components of RMJ

As shown in Section 5.1.1, each connected component of C(s,y for |Fix(o)| > 0
(resp. Cs,s) U B(s) for |Fix(o)| = 0) is associated to a unique un-oriented combi-
natorial type u of o-invariant point configurations. Note that, combinatorial types
of o-invariant point configurations and u-planar trees (7, u) of irreducible o-invariant
curves are encoded by same set of data since 7 is one-vertex S-tree. We denote the
connected components of C(g ) (resp. C(so) U B(s,o)) by Ciru)-

Similarly, each connected component of 5(1:”0) is associated to a unique oriented
combinatorial type o. We denote the connected components of @F’p) by Cir ) where
T is the one-vertex S-tree.

Lemma 5.2.2. The connected component Ci.ny of Cis oy (resp. Csoy U Bse)) is
diffeomorphic to

o ((HH)PermI\ A) x OFX@)I=3 if |Fix(0)| > 2,
o ((H"\ {v=IhFerm I\ A) x OFX@ if [Fix(o)| = 1,2,

o (H'\ {v/=1,v/=1/2})Perm¥I=2\ A} x [O' if |Fix(0)| = 0 and the u-planar

structure is of type 1,

o (CP\{—V—T,—v=1/2,2¢/=T, y=1})Perm 12\ (AUA%)) x O if [Fix(0)| = 0

and the u-planar structure is of type 2.

Here, A is the union of all diagonals z; # z;(i # j), A° is the union of all cross-
diagonals z; # —%(2 # 7), and O% is the d-dimensional open simplex.

Proof. As it is shown in Section 5.1.1, C,, is the quotient C(;o) | | C(7,5)/(—1) where
C(r,0) and C(;5) have opposite oriented combinatorial types, and —I swaps C, ) and
Cir0)- The spaces Cr o) and C(; 4 are clearly diffeomorphic. To replace C(;.) by
C'r,0), we choose an oriented representative for each un-oriented combinatorial type
as follows:

e if |Fix(o)| > 3, we choose the oriented combinatorial type for which {2k+1} <
{n — 1} < {n} with respect to the cyclic ordering on Fix(o).

e if |Fix(0)| = 0, 1,2, we choose the oriented combinatorial type such that k €

Perm™.

We put the o-invariant point configurations into a normal position as in 5.1.2.
For |Fix(o)| > 0, the parameterizations stated above follow from (A) and (B) in
Section 5.1.2. In the case of |Fix(c)] = 0 and the u-planar structure is of type
1, according to (C) the configuration space C(;,) is a locally trivial fibration over

' =)0, 1] whose fibers over A € O' are (H*\ {v/—=1, \y/—1})Perm" =2\ A Similarly,
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in the case of |Fix(o)| = 0 and the u-planar structure is of type 2, according to (D)
the configuration space C(,,, is a locally trivial fibration over ' =] — 1, 1] whose
fibers over A € O' are (CP' \ {\W/—1,v/—1, —v/—1/\, —/—1})/Perm®I=2\ A Since
the bases of these locally trivial fibrations are contractible, they are trivial fibrations,
and the result follows. Il

5.3 Stratification of RMg

We associate a product of configuration spaces of p,-invariant point configurations
Clry,00), and moduli space of pointed complex curves MFT(U) to each o-planar tree

(1,0):

H’UQVD.S C(T’U7O’U) X I_IUEVqJ—r MFT(U) if o is of type ]-7
Clro) = Clry, 00,) X H{v,@}CVT\VﬂS Mg, vy if ois of type 2, (5.3)
[Lev: Mr, @) if o is of type 3,.

In the case of type 2, the product runs over the un-ordered pairs of conjugate vertices
belonging to V. \ VEie., {v,9} = {v,v}, and v, is the vertex corresponding to the
unique real component of o-invariant curves.

For each u-planar (7,u), we first choose an o-planar representative (7,0), and
then put C(;,) = C(7,). Note that the so defined space C, ) does not depend on the
o-planar representatives.

Lemma 5.3.1. Let v € Tree(o). The real part RD., is diffeomorphic to | ], ) Ciyu)
where the disjoint union is taken over all possible u-planar structures of .

Proof. The complex strata D, is diffeomorphic to the product HUGVW WFW(U). The
real structure ¢, : D, — D, maps the factor My_(,) onto My_z for conjugate pair
of vertices v and v, and maps the factor MFW (v) onto itself when v € VE. Therefore,
the real part RD, of ¢, is given by

H CEyw).00) X H My () when |VE| >1,

veVE {v,}CV,\VE
(Cwywon | |Bewyon) X [  Mr,w when [VE[ =1,
{v,7}CV,\VE

H My () when [VE[ =0,

{v,5}CV,\VE

where p, is the involution whose action on F.,(v) for v € VE is given by the restriction
of g : ¥ — X to special points on ¥,,. The decompositions of the spaces C(g. (v),0,) and
CF,(v),00) L] B(¥., (v),p,) into their connected components are given in Lemma 5.2.1. [
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Intermezzo: Coordinates around the codimension one strata Let v be a
two-vertex S-tree given by V., = {v., v}, F,(v°) = {s1,--+, sm, f¢} and F.(v.) =
{fesSma1, " »Sn_1,8n} Let (z,w) := [z : 1] x [w : 1] be affine coordinates on
CP! x CP'. Here we introduce coordinates around D.,.

Consider a neighborhood V' C D, of a nodal S-pointed curve (X° p°) € D.,.
Any (X;p) € V can be identified with a nodal curve {(z — zy,) - (w — wye) = 0} in
CP' x CP! with special points p,, = (af,,as,, .1, s, 15 0s,) C {w—wpe =0} and
Poe = (bfe,bs,, -+ ,bs,) C {z — 2z, = 0}. In order to determine a nodal curve in
CP! x CP! and the position of its special points uniquely defined by (3;p), we make
the following choice. Firstly, we fix three labelled points ay,, . ,,as,_,,as, on the line
{w — wyse = 0} whenever |v.| > 3, and three special points ay,,as, ,,as, whenever
|ve| = 3. Secondly, we fix three special points bye, by, , b, on {z — zz, = 0}. Finally,
we choose

s,y = (0,0), a5, , =(1,0), as, = (00,0) for |v.| >3,
ar, = (0,0), as, , = (1,0), as, = (00,0) for |ve| = 3;

n

and

b51 = (Zfe7 1)’ bsm = (Zfe,OO), bfe = (Zfeao)'

Then, the components z and w of the special points provide a coordinate system in
V; in particular, for |ve| > 3 such a coordinate system is formed by ze, z;, with
ls = Sme2," ", Sp—2, and wj, with j, = 59, -, 5p,_1.

We now consider a family of S-pointed curves over V' times the e-ball B, = {|t| <
e} It is given by a family curves {(z — z;.) -w +t =0 | t € B.} in CP* x CP.
The labelled points (zs, ws), s € S on these curves are chosen in the following way. If
|ve| > 3, we put

<Z517 w81) = (zfe —t, 1)’ (25m7 wS'm) = (Zfe7 OO)? (Zsm+17wsm+1) = (07 t/zfe)7
<257L717w3n71) = (17 _t/(l - ch)) and (an,wsn) = (O0,0)

Similarly, for |ve| = 3, (25, ws,) = (=, 1), (25, o, Ws, ) = (0,00), (2, ,,Ws, ,) =
(1, —t) and (zs,,ws,) = (00,0). The other labelled points are taken in an arbitrary
position. The component z of the special points and the parameter ¢ provide a
coordinate system in V' x B..

Due to Knudsen’s theorem there exists a unique « : V x B, — Mg which gives
the family of S-pointed curves given above.

Lemma 5.3.2. det(dk) # 0 at (£°,p°) € D.,. Hence, k gives a local isomorphism.

Proof. The parameter t gives a regular function on x(V x B,) which is vanishing along
D, &(V x B.). The differential dx(v) = ¥ for v € T(so po)V since the restriction
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of Kk on V' x {0} is the identity map. We need to prove that dk(0d;) # 0. In other
words, the curves are non-isomorphic for different values of the parameter ¢t. Let
(3(t;),p(t)) € V x B, be two S-pointed curves for ¢; # t5. A biholomorphic map
® : ¥(t1) — X(t2) is determined by the images of ps,., ., Ps, ., Ps, When |v.| > 3, and
by the images of ps, ,,Ps,_,,Ps, When |v.| = 3. However, the biholomorphic map ®
MapPing (Ps,, 1> Psn1sPsn) (t1) = (Psp i1 Dsnr> Dsn) (F2) (16D (Psy o Py Dy ) (H1)

(Psy 2 Ps1> Dsn) (12)) maps pe (t1) = (27, — 1, 1) to (2, — b1, ta/t) # ps, (t2) (vesp.
ps, (t1) = (—t1,1) to (—t1,t2/t1) # ps, (t2)), i.e., & can not be an isomorphism. O

Remark 5.3.3. Due to Lemma 5.3.2, the coordinates on V' x B, provide a coordinate
system at (X% p°) € D,. There is a natural coordinate projection p: V' x B, — V.

For a o-invariant v and c,-invariant V', the above coordinates and the local iso-
morphism x are equivariant with respect to a suitable real structure ((z,w) — (Z, w)
when RY # ), and (z,w) — (w, z) when RY = ) on CP! x CP!. Therefore, the real
part RV x] —¢, e[ of V' x B, provides a neighborhood for a (£%; p°) in RD., with a set
of coordinates on it.

Boundary of strata

Proposition 5.3.4. A stratum C(, ) is contained in the boundary of é(m) if and
only if the u-planar structures u,u can be lifted to o-planar structures o,0 in such a
way that (7,0) is obtained by contracting an invariant set of edges of (7, 0).

Proof. We need to consider the statement only for the strata of codimension one and
two. These cases correspond to the contraction morphisms from two/three-vertex
o-planar (sub)trees to one-vertex o-planar (sub)trees given in (a) and (b) of Section
4.4. For a stratum of higher codimension, the statement can be proved by applying
the elementary contractions (a) and (b) inductively. Here, we consider only the case
(a-1). The proof for other cases is the same.

We first assume that (7,0) is obtained by contracting the edge e of (v, 6), where
(7,0) is an o-planar two-vertex tree with V,, = V¥ = {v.,v°}. An element (X;p) €
C(y.6) can be represented by the nodal curve {(z — z7,) - w = 0} in CP! x CP'! with
special points ay = (z7,0) and by = (2., wy) such that

ar € {w =0 & (z) > 0} for f € F1(v.)

aj € {w=0& I(z) <0} for f € F (v.)

{ay, <---<ay, }C{w=0& 3(z) =0} for f. € F5(v.)
and

bre{z=0& I(w) >0} for f € F1(v°)

bre{z=0& I(w) <0} for f € F7 (v°)

{bf;,1 << bf;;n} C{z=0& S(w) =0} for fl € F5(v°).

42



When we include the curve {(z—zy,)-w = 0} into the family {(z—z;, )-w+t = 0}, the
complex orientation defined on the irreducible components w = 0 and z — zy, = 0 by
the halves §(2) > 0 and, respectively, I(w) > 0 extends continuously to a complex
orientation of {(z — z7,) - w4+t = 0} with ¢ € [0, ¢[ defined by, say, S(z) > 0. As a
result, the curves {(z — 2z, ) - w+t = 0} with ¢ € [0, €] acquire an o-planar structure
given by

(zr,wr) €{z-w+t=0& 3(z) >0} for f e FZ (ve) UFT (v°)
(zpwyp) €{z-w+t=0& 3(2) <0} for f € F (v.)J € F(v°)
(zp,wp) €{z-w+t=0& S(2) =0} for f e F5(ve) UF5(v°)

where the points on the real part of the curves {z-w+t = 0} are cyclicly ordered by
Zp, <o < 2y, <Zf7-1 <'-'<Zf7,m.
Tl T‘m

This is exactly the o-planar structure (7, 0) defined in (a-1) of Section 4.4.

Now assume that C{, 4, where (v, %) is an u-planar tree with V,, = V,Y]R = {0, v°},
is contained in the boundary of C(;,). There are four different o-planar representa-
tives of (v, 1), and any pair of o-planar representatives 61, 63 which are not opposite to
each other, provide two different o-planar structures (7, 0;),7 = 1, 2 after contraction.
By the already proved part of the statement, C, 4) is contained in the boundary of
Crop) for each i = 1,2. It remains to notice that any codimension one stratum is
adjacent to at most two main strata. O]

Remark 5.3.5. Let (v,06) be an o-planar tree type 1, and let ¢, : (,0) — (7,0) be
the contraction of an edge e € E,. If the o-planar tree (7,0) and the u-planar tree
(7, ) underlying (v, 6) are given, then the o-planar structure 6 can be reconstructed.
For this reason, we denote the corresponding o-planar structure 6 by (o).

Stratification of RMg

Theorem 4. (a) RMy is stratified by C(y ..
(b) The closure of any stratum C ., is stratified by {Ciyw) | (v, 0') < (7, u)}.

Proof. (a) The moduli space RMg can be stratified by RD., due to Theorem 3. The
claim directly follows from the decomposition of open strata RD., into its connected
components given in Lemma 5.3.1.

(b) The claim direcly follows from the part (a) and Proposition 5.3.4. O

Example 5.3.6. (i) The first nontrivial example is Mg with |S| = 4. There are three
conjugancy classes of real structures: c,,, Cy,, Coy, Where

. 81 S2 83 84 51 S2 83 84
O'lzld, 09 = and 03 = .
S2 S1 53 5S4 53 Sa S1 S2

43



These real structures give RM?%J), where (2k,1) = (0,4),(2,2), and (4,0) respec-
tively.

In the case of 0 = o7y, RM(%A) is the configuration space of four distinct points
on RP! up to the action of PSLy(R). Each S-pointed curve (3;p) € RMG, ,y can
be identified with (0, xs,1,00) where x; € RP'\ {0, 1, 00}. Hence, RM ,; = RP" \
{0,1, 00}, and its compactification is RM((TOA) = RP!. The three intervals of RMG 4
are the three configuration spaces C(;,,) and the three points are the configuration
spaces C(y,4,)- The u-planar trees (7,u;) and (v, ;) are given in Figure 5.1.

Figure 5.1: All strata of RM?OA).

In the case of 0 = 09, RM, (22) 18 the space of distinct configurations of two points in
RP! and a pair of complex conjugate points in CP'\RP!. (3;p) € RM (.2) 18 identified
with (v/—1, —v/—1,23,00) € C(ru), —0 < 23 < co. Hence, RMG ) = RP! \ {00},
and its compactification is RM?Z’Q) = RP'. The interval RM¢, 5y is C(ru) and the
point at its closure is C, 4).

In the case of 0 = o3, the moduli space RM, (1,0) has different pieces parameterizing
real curves with non-empty and empty real parts: The subspace of RM (1,0) Parame-
terizing the o-invariant curves with RX # 0 is (A\v/—1,v/—1, =A\v/—1, —v/—1) where
A €]—1,1[\{0}. The subspace of RMF, ; parameterizing the real curves with RY = ()
is (\,1,—X,—1), where A €] — 1,1[. Note that, the pieces parameterizing R # ()
and RY = () are joined through the boundary points corresponding to curves with
isolated real singular points. The compactification ]RM((TMJ) is RP'.

(ii) For |S| = 5, the moduli space Mg has three different real structures c,,, ¢,
and c¢,, where

. S1 S22 S3 S4 Ss S1 S22 S3 S4 Ss
o1 =1id, oy = ( and o3 = . (5.4)

S9 S1 S3 S4 S5 S3 S4 S1 S92 Sj

For 0 = o0y, the space RM{ is identified with the configuration space of five distinct
points on RP! modulo PSLy(R). Tt is (RP*'\ {0,1,00})*\ A, where A is union of all
diagonals. Each connected component of RM, (0[')75) is isomorphic to a two dimensional
simplex. The closure of each cell can be obtained by adding the boundaries described
in Proposition 5.3.4; for an example see Figure 5.2a. It gives the compactification of
RM; which is a torus with three points blown up: the cells corresponding to u-planar
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trees (7,uq) and (7,uy) are glued along the face corresponding to (v, %) which gives
(1,u;),i = 1,2 by contracting some edges, see Fig. 5.2b.

Figure 5.2: (a) Stratification of C(, ). (b) The stratification of RMg for |S| = 5.

For 0 = 09, the space RM¢ is configuration space of conjugate pairs of points on
CP! minus three points. The automorphisms allows us to identify such configurations
with (2, 2,0, 1,00) where z € C\R. Hence, it can be given as CP! \ RP'. The moduli
space RM; is obtained as a sphere with three points blown up according to the
stratification given in Proposition 5.3.4.

Finally, for 0 = o3, the elements of RMg can be identified with the point con-
figurations (z,v/—1,%, —v/—1,00). Hence it can be identified with CP* \ (RP! U
{v/—1,—+/—1}). Therefore, connected components are isomorphic to H* \ {y/—1}.
The moduli space RM% is a sphere with a point blown up.

In fact, for |S| = 5, the moduli space Mg is a del Pezzo surface of degree five, and
these are all the possible real parts of this del Pezzo surface (see [6]).
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Chapter 6

First Stiefel-Whitney class of RMg

In this chapter, we calculate the first Stiefel-Whitney class of Rﬂg by using its
stratification.

6.1 Orientations of top-dimensional strata

Let (7, 0) be a one-vertex o-planar tree. The coordinates of configuration spaces given
in Section 5.1.2 determine an orientation of C(;,). For instance, let |[Fix(o)| > 3 and
let the o-planar structure on (7,0) be given by Perm™ and by a linear ordering
T, =0<uz, < <z, ,=1<ua, =z, =00 on Fix(c). The coordinates in (A)
of 5.1.2 generate the following top-dimensional differential form on Ci, ):

|Perm™|
W(r0) i= (g) /\ Az, NdZ,, /\ dz,, A -+ ANdx,,_,. (6.1)
a.€Perm™
The multiplication of top-dimensional forms with a positive valued function © :
Cro) — Ry defines an equivalence relation on sections of det(7'Ci;,)). An ori-
entation is an equivalence class of nowhere zero top-dimensional forms with respect
to this equivalence relation. We denote the equivalence class of w(;) by [w(r.0))-
Similarly, we determine differential forms w(. o and orientations [w(- )] of Cir,)
for all (7,0) with |V,| = 1 by using the coordinates given in (B), (C) and (D) in
Section 5.1.2 and their ordering.

6.2 Orientations of codimension one strata

Let (7, 0) be a two-vertex o-planar tree. Let V., = {v.,v°} and e = (fe, f¢) be the
edge where 0, (s,) = 0+(fe) = v. and 89, (f°) = v°.
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By choosing three flags in F,(v.) and F.,(v°), and using the calibrations as in
Section 5.1.2, we obtain a coordinate system in Ci,, ,,) for each v € {v.,v°}. More
precisely, we use the following choice.

L. Let o, be an o-planar structure of type 1, and let Fix(o) # 0. If [F5(ve)] > 3
(resp. \Ff(ve)\ > 3), then we specify an isomorphism ®,_ : Y, — CP! (resp.
Py : X,e — CP) by mapping three consecutive special points as follows:
If |[F5(ve)| > 3 and the special points py, and p,, are not consecutive, then
Dy, (Priys Psys Pry) > (1,00,0). If |F5(ve)| > 3 and the special points py, and
ps, are consecutive and

{fe} < {SN} < {7“1}, - (I)ve : (pfevpsnaprl) = (17
{rlfl} < {Sn} < {fe}a — (I)ve : (prl,ppsmpfe) = (17
For |F§(U6)| > 3, Qe : (pri+17pri+jvpfe) = (LOO’O)'

If [F5(ve)] < 3 (vesp. |F5(v°)| < 3), then p,, +— oo (resp. pp — 0). We
pick the mazimal element o = s; € F1(v.) such that ¢ > j for all s; € F¥(v,)

(resp. in F¥(v°)), and map the pair of conjugate labelled points (pa,ps) to

(V=L —V=1).

IT. Let o, be an o-planar structure of type 1, and let Fix(c) = (). We specify an
isomorphism ®, : 3, — CP! by mapping the pair of conjugate labelled points
(Pa>Pa) to (vV/—1,—v/=1) for the maximal element o in F¥(v), and ps, +— 0
(resp. pre — 0).

III. Let o be an o-planar structure of type 3. We pick a maximal element ay_;
in F¥(ve) \ {n} and specify isomorphisms ®,, : ¥,, — CP' and @, : X, —

CP' by mapping the special points (py,,Pa,_,sPs,) to (0,v/=1/2,v/~1) and,
(pfe,Pak,l,pg) to (O, —\/—1/2, — /_1)'

For each v € {w,.,v°}, we arrange the coordinates of the special points in the
following order

(za17 o azakv7x7‘17 e 7mrlv)a
by using the o-planar structure

{ {type LFF(v);FJ(v) = {{fn} <--- <{fi,}}} forcasel,
{type 1;F>(v); F5(v) = 0} for case II,

<

of 7, where o, € F¥(v). We fix special points as in (I) and (II), and apply (6.1) to
introduce top-dimensional differential forms €, . ,..) and Q(,, ., ) on C,. 0.) and
Clyo,.00,) (nOte that the resulting forms do not depend on the order of z-coordinates).
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In case (III), there are no real special points, so we may get a top-dimensional differ-
ential form Q, o on C,,) via choosing the vertex v € Vj{“ with ordering arbitrarily
the z-coordinates
(Zaws "+ » Zo,)
where F¥ = {aq,- -+, ag, }.
In such a way, we obtain well-defined orientations [Q(,,. o,.)] and [€(,. 0..)] of,
respectively, C(y,c 0,e) and C(,,_o,.), and finally get an orientation on Ci,,) given by

Qe 000 A Qi 00)] - when Vo = VI
[Q(y.0)] when VX =0, and v € V1.

6.2.1 Induced orientations on codimension one strata

Let C(.) be a top-dimensional stratum and C, 4 be a codimension one stratum
contained in the boundary of é(m). We lift the u-planar structures u, o to o-planar
representatives 0,6 = §(0) such that (7,0) is obtained by contracting the edge of
(7,9(0)) (see Proposition 5.3.4). Then, we pick a point (X°,p°) € C(y,50)) and con-
sider a tubular neighborhood RV x [0, €[ of (%, p°) in C(,,) as in Section 5.3.

The orientation [w(; )], introduced in Section 6.1, induces some orientation on
Cy,5(0)): The outward normal direction of 6(7,0) on RV x {0} C Cy,50)) is =0, where
t is the standard coordinate on [0, e[C R. Therefore a differential form wy, 50)) defines
the induced orientation, if and only if

—dt N\ W(y,8(0)) = S W(r,0) (62)

with © > 0 at each point of RV x]0, €[.
In what follows we compare the induced orientation [w(ys())] With [Q(y,..0,)] A

[Q('Yve sO0ve )] .
Case I: |Fix(o)| =1> 1.

Lemma 6.2.1. Let (v,0(0)) be an o-planar tree as above in Section 6.2, where
F3(0°) = {{rim} < {rig} <{f}}. Then,

wirsen] = (D™ [Qpe.000)] A Q0,000

where the values of N for separate cases are given in the following table.

N I—j>3 l—j=2 l—j=
{ri} <{fe} <{sa} | {fe} <{m-1} <{sn}

J>2( G+ 1) +1) 0 [+1 I+1

j=1 1 1 1 1

j=0 i+1 0 0 0

Here, the third and fourth columns correspond to two possible cyclic orderings of
FX(ve) for [F5(ve)| = 3 in Case I of Section 6.2.
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Figure 6.1: Codimension 1 boundaries of 6(7,5(0» where | — 7 >3 & j > 2.

Proof. We will prove the statement only for the special case of [ —j > 3, 7 > 2. The
calculations for other cases are almost identical.

Let (39, p°) € C(y,500))- Weset X2 to be {w = 0} and 3. to be {z—x;, = 0}. Ac-
cording to the convention in Section 6.2, the consecutive special points (p,,_,, Ps, s Pry )
(resp. (Priy1> Pris;>Pge)) on the component ¥, (resp. X,.e) are fixed at (1,00,0). As
shown in the proof of Proposition 5.3.4, a tubular neighborhood RV x [0, €] of (X, p°)
in C(;,) can be given by the family {(z —x)-w+t = 0|t € [0,€[} with labelled
points p,, = (O’t/xfe)7 Pri. = (*Tfe —t,1), Priy; = (zf., 00), Py = (L, —t/(1 — xfe))’
Ds, = (0070)7 Dr. = (LET*, _t/(xr* - xfe)) for r, € Fﬂyg \ {T1>Ti+1>7ﬂi+jarl—1vsn} and
Pa = (%0, —t/(2a — 7y,)) for a € F7.

We first consider the following subcase: the special points py, and p;, are not con-
secutive. According to the convention of Section 6.2, the differential forms Q,,_,.,.)
and €y, o,) of this case are as follows:

\/j1> |F¢(v€)|

Q(’Yﬂeaove) = (T

Az, N Ndzp, Ndxg, Ndx,, N7 Ndze Ndze, o N ANday,
- <¢j1>|F’¢(Ue)|

Qe 000) 2 BEFT (ve) dwg N\ dwg /\ AYrips N Ny

By using the identities ws = —t/(25 —xy,) for 3 € F¥(v°) and y, = —t/(z, —xy,)
for 7 € FX(v°), we obtain the following equalities:

dt = —dz,,,, +dxy,, dry =dz,.,,;,

tdz tdx +
dws = ——& s e for € F¥(v°
p 26—Tf, + (25— r.)? (Zt%_xfe)Q 6 v (v),
o dt tde,  _ _ tdwg T
dy, = - - (r—xf,)? (r—xy.)2 for r =iy, Vi —1-

These identities imply that —dt A €y . 0.c) A Q(q,. 00,) 18 €qual to

IF5 |
. ) v —1
(_1)(%1)(371) (T) e /\ dzo N\ dZ, /\ dz,, N - Ndz,,_,

aEFi

where © = [[scpt ey t(25 — 22) 1L oy s, t(@r — 27,) 7% Since © > 0, the
orientation defined by —dt A Q.. 0,0) A Qyyeoe) 18 €qual to (—1)Nw(r )]
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We now consider the cases {f.} < {s,} < {ri} (ie,i+j=101—-1)and {r_1} <
{sn} < A{fe} (ie, i =0). According to convention in Section 6.2, the differential forms
Qeye.00e) Ny, 00.) are equal to

—\ IF7
(Q) (/\BEF+ ve) dZB A dgﬁ /\ dyTi+2 AERA dyTl_2>
A </\a€F+ dzo NdZo Ndxe, N+ A dxn)
L\ [F 3
<g> (/\ﬁeFJr(vE) dzg NdzZg \dyr, N\ A dyri—1>
A (/\OcGF+ dZa A dza /\ dxr i1 - A d$r172>

wheni+j7=101—-1

when 7 = 0.

The equation (z — xy,) - w+t = 0 implies the following equalities:

dt = —dx,,,,, dxry, =dx, , wheni+j=10-1
dt = dz,,, dzj, =dz,,,; when ¢ = 0,

and
o dt tdZ@ tdwfe +
dwg = T + Gome)? (Z% o) for ¢ € F7 (v°),
dyr = = T T T ey 0T T =T Tig
By using these identities we obtain that —dt A Q.. 0,c) A Qe 0,¢) 1 equal to

IF7 ]
) ) v —1
(= 1)l D=2 (T) O A dza ANdZo N\dzg, Ao Ada,,

aeF#

when 1+ j=1—1, and

P
. V=1
(_1)(%1) (T) (S /\ dzo N\ dZ, /\ dz,, N Ndz,,_,

a€F¢

when i = 0. Since © = [[gcpr ey t(25 — 27) 2 Tl o, t@r — 27) 7% > 0, the
orientation [w( ()] induced by [w (ro)] 1 equal to

(_]‘)(Z+1)(]_1) [Q(WUEVOUE) /\ Q(’Y'UE’OUE)} When Z +‘7 = l o 1’
(_]‘)(]_1) [Q(’Yvevove) A Q(V”evove)] When Z - O

Case II. |Fix(o)| = 0.

The different cases for boundaries of C(;,) are treated separately.
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Subcase: o-invariant curves of type 1. Let (7,0) be a one-vertex o-planar tree
of type 1, and let [w(, )] be the orientation of C(;,) defined by the differential form
v—1 )k—2 /\

Wiro) i= (—5—

5 dza, NdZa, \dX  (6.3)

a.€Perm™\(Perm™ N{sk_1,5k,52k—1,52k })

(which is given by the coordinates in (C) of 5.1.2). Here A = $(zy) and o €

{Sk—b Sgk_l} m Perm+.

Lemma 6.2.2. Let (v,d(0)) be a two-vertex o-planar tree, and let the corresponding
strata C4,5(0)) be contained in the boundary of U(w).

(a) If V5 =V, then the orientation [w(, 5.0y induced by the orientation [w(r )]
is equal 10 —[Q(y,c.0,0)] A [, 000)]-

(b) If V5 =0, then the orientation [wi sy induced by the orientation [w(r e is
equal to [Q(y,50)))]-

Proof. (a) The proof of this case is the same with the proof of Lemma 6.2.1. We will
not repeat it here.

(b) Let (£9,p°) € Cy500))- We set X9 to be {w = 0} and X% to be {z = 0}.
Let aj—; in F7(ve) \ {sn} be the maximal element. According to the convention in
Section 6.2, we specify the isomorphisms ®,,_ : ¥, — CP! and @, : ¥, — CP! by
mapping the special points

(PresPay_1sPs,) = (0,V/=1/2,V/~1),
(Pges Py o Ps.) = (0,=V=1/2,—V/~1).
Due to Proposition 5.3.4, a tubular neighborhood RV x [0, €[ of (X°, p°) in C;,) can
be given by the family {z-w =t |t € [0, ¢[} with labelled points
Pay = (V=1/2,=2t/=1), p, = (V—=1,—tvV~1),
Py = (20V=1,-V=1/2), ps, = (tV-1,—V-1),
Po = (20, t/2a), Pa = (t/wg, wg).
for a € Fj (resp. @ € F;) We use the z components of position of labelled points

as coordinates on Cir ).
The orientation of C, 5()) is

Qa0 = A A d zo Nd Z,. (6.4)
aEF:YF\{feaakflysn}

where A = (v/=1/2)F71=3 due to Section 6.2. We put the labelled points into a
normal position by using the following transformation
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Hence, we have

- 2(1 — 1) .
e = (ﬂ<—1+\/i)2<\/%—za¢—_1)2> Az

(e Dy TTes Y,
VI VR(VE— /17 )
1+2¢

Amlaes)) = =gt

and

—dt AN Qys0)) = A0© /\ d go Nd T, /\ d(Im(qa,_,))

OZEF+\{f5,ak,1,sn}

where © = ® x ¥ and

e- (ﬂ?t—(;%v)? ((t+\/¥~lm1(za)+|za\2>>2 0

QEF’T\{fevakflysn}

v (\/E(1+\/E—2t)2> .

142t

for ¢ €]0, ¢[. Note that, © > 0.
Since the labelled points are in normal positions in coordinates ¢, the form

Wirey = A A d ga N T, [\ d(IM(qay_,))

a€F\{f¢,ar_1,5n}
gives the orientation of the stratum for a one-vertex (7,0). The orientation [w(, sy

induced by W(r,0) is [Q(%g(g))] since © > 0. ]

Subcase: o-invariant curves of type 2. Let (7,0) be a one-vertex o-planar tree
of type 2, and let [w(,,)] be the orientation of C(;,) defined by

\/__1>k—2 /\

a*G{Sl,"' ,Sk_g}

dza, N dZa, [\ dA (6.5)

(which is given by the coordinates in (D) of 5.1.2). Here A\ = (2, _,).

Lemma 6.2.3. Let (v, 0) be a two-vertezx o-planar tree where VE =0, and let C(, 4 be
contained in the boundary of strata C ;. given above. Then, the orientation [w(.s))
induced by the orientation |w(;y)] is equal to (—1)%[Q, 5] where X = |{1,--+ |k —
LFOFS|+ 1.
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Proof. Let (£°,p°) € C(y,5. We set X2 to be {z-w = 0} and the labelled points p°
to be a set points in {z - w = 0} as in proof Lemma 6.2.2. Due to Proposition 5.3.4,
a tubular neighborhood RV x [0, €[ of (X°,p°) in 6(770) can be given by the family
{z-w=—t|tel0 e} with labelled points

Poy_, = (V—=1/2,2t/=1), p,, = (V-1,t/-1),
Pae ., = 20V=1,v/=1/2), ps, = (tvV—1,V-1),

Pa = (Zau —t/Za), Pa = (—t/wa, wa)'

for a € Fi (resp. @ € F). We use the z components of position of labelled points
as coordinates on Cir ).

Due to convention in Section 6.2, the orientation of C(, ) is given in (6.4).

We put the labelled points into a normal position by using the following transfor-
mation

Az, —i—Bﬂ)
Bz, + AVt

where A = —(1++/t) and B = /—1(1 — V/1).

Therefore, we have

AN:zor—qo = (

B 2t(1 +t) .
He = (ﬂ<t+ﬂ<l+za¢——1>—za¢——n2) iz

- o DV T + 20) )a
VEt+ VI + 2o/ 1) — 2o/—1)2)
-1+ 2t
dmlan ) = gt
and
—dt N\ Q(%o) = A0©O /\ d Qo N\ d o /\ d(lm(Qak_l))a

Q€F+\{fe,ak,1,sn}

— A0 (_1)|F*’Yﬂ{51,m,sk72}| /\ dg,Nd q, /\d([m(qakfl))

ac{s1,,sp—2}

where © = ® x ¥ > 0 since

o = H (r\ﬁ)) (I(t + V1) = 2oV —1(1 = V1)[*)? > 0, and

+ e 1 + t
F5 \{fe,ak—1,5n}

v o (\/¥(1+\/E+2t)2> .

1-2t

for t €]0, €.
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If a1 € F,—}",_, then ‘F; m{Sl,"' ,Sk,1}| = |F; n{Sl,“' ,Sk,2}| If a4 € F;,
then [F7 ({s1, -, sk—1} = [F {s1,- sk} + 1.

Therefore, the orientation €2, 4 is induced by

(=)l At it 4 A\ d go Nd o [\ d(Im(ge-1)) = (=1)"wir).

06{517“- 781672}

6.3 Conventions

Let (7, 04) be the one-vertex o-planar tree where the o-planar structure o, is given by
{ type 17 Fj—_ = {517827 T 7Sk}; F; = {Sk-i-la o 752]6}; }
FF = {{sors1} < {sams2} <+ < {Sohps 7= sn}}
All the other o-planar structures of type 1 on 7 are obtained as follows.

Let o € S,, be a permutation which commutes with ¢ and, if [ > 0, preserves s,.
It determines an o-planar structure given by

oy = § type L FE=Hols1), - olsi) ;s Fr = {o(se41), - e(s20) }:
olo) { FE — {{o(s001)} < -~ < {0(52) = s }} }

The parity of o depends only on o = p(0,) and we call it parity |o| of 0 = p(o,).

Convention of orientations

We fix an orientation for each top-dimensional stratum as follows.

a. Case type 1. First, we select o-planar representatives for each one-vertex
u-planar tree of type 1 as follows:

1. If |Fix(c)| > 3, we choose the representative (7,0) of (7,u) in which
{sans1} <{sna} <{sn};

2. If |Fix(o)| < 3, we choose the representative (7,0) of (7,u) such that

s; € Perm™.

We denote the set of o-planar representatives of u-planar trees by UTree(o).
We select the orientation for C; ) = C(7,) to be

(=1)1Nwira), (6.6)
where (7,0) € UTree(o) and w(;,,) is the form defined according to Section 6.1
and |o| is the parity introduced in Section 6.3.

b. Case type 2. Here, we choose the orientation defined by the form (6.5).

In what follows, we denote the set of flags {sor+1, Sn—1, sn} (for |Fix(o)| > 3 case)
and {sg, Sok, sp} (for |[Fix(o)| < 3 case) by §.

54



6.4 Adjacent top-dimensional strata of type 1

Let C(ru,),? = 1,2, be a pair of adjacent top-dimensional strata of (7,u;) of type 1,
and C(,.) be their common codimension one stratum. Let (7,0;) be the o-planar
representatives of (7,u;) given in Section 6.3. Consider the pair of o-planar rep-
resentatives (7, d(0;)) of (7, u) which respectively give (7,0;) after contracting their
edges.

Lemma 6.4.1. The o-planar tree (,6(01)) is obtained by reversing the o-planar
structure 6(oq), of (7,0(01)) at vertex v where |F,(v)(§] < 1.

Proof. Obviously, (,d(01)) can be obtained from (v, d(02)) by reversing the o-planar
structures at one or both its vertices v.,v°. If we reverse the o-planar structure of
(7,0(02)) at the vertex v such that |F.(v) (| > 1, or at both of its vertices v, and v°,
then the resulting o-planar tree will not be an element of UT'ree(o) after contracting
its edge: reversing the o-planar structure at the vertex v with |F,(v)(§| > 1, or at
both of the vertices reverses cyclic order of the elements {sox11, Sp_1, S, } when [ > 3,

and moves s;, from Perm™ (o) to Perm™ (o) when [ < 3. O

For a pair of two-vertex o-planar trees (7, 0(0;)) as above, we calculate the differ-
ences of parities as follows.

Lemma 6.4.2. Let (v,0(0;)),i = 1,2 be a pair of o-planar trees as above. Let V., =
V§ = {ve,v°}, and let o-planar structures at the vertices v, and v be

type LFS (ve); Fh (ve) = {{r} < - < {ri} <{fe} <
6(01)% .
< {Zi+j+1} <0 K {Tl—l} < {TL}}
0(02)ve = {type LEF(v*);F3(ve) = {{risa} <+ <{rigg} <{f}}}.
Let v be the vertex such that |[F.(v)(§| < 1. Then, the parity |oi| — |oa| is equal to

[F (09)] + j—(j;l) when v = v°,

[F (ve)| + i + jm +im + mim-l) 4 ) when v = v, and [F5(ve)| > 3,
[F5 (ve)] + [F5(0%)] — 1 when v = v, and [F5(ve)| = 3,
[F¥ (ve)| when v = v, and |F(v.)] = 2

Here, j = [FX(v°)] — 1 and m = |[F3(ve)] — i — 2.

In Section 6.2, we have introduced differential forms €2, 50,),) for each v €
V.. When we reverse the o-planar structure at the vertex v, the differential forms
Q(y,.6000)0)5 Q(y0,5(01),) become related as follows.

Lemma 6.4.3. Let (v,0(0;)),i = 1,2 be two-vertex o-planar trees as above. Then,

Q('Y'u,(s(ol)v) = (_1)u(v) Q(’YU,(S(OQ)U)?

where

) = (1) + LA =1 Z5),

Lemmata 6.4.2 and 6.4.3 follow from straightforward calculations.
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6.5 The First Stiefel-Whitney class

This section is devoted to the proof of the following theorem.

Theorem 5. (a) For |Fix(c)| > 0, the Poincare dual of the first Stiefel-Whitney
class of RMg is

[wi] = > [Ciw] = > [RD,] mod 2,

(y5u) ¥

where the both sums are taken over all two-vertex trees such that
o [F,(v)NT| <1 and |v°] =0 mod 2, or
o [Fy(ve) VT <1, [FF(ve)| # 3 and |ve|(Jv°] —1) =0 mod 2, or
o [F,(0) N3] < L [F¥(0)] = 3 and [F()| = 1,

and, in the first sum, in addition over all u-planar structures on ~y.
(b) For |Fix(c)| = 0, the Poincare dual of the first Stiefel-Whitney class of RMg
vanishes.

Proof. Fix an orientation for each top-dimensional stratum as in 6.3. The orientation
(=1)l°lw(r.)] of a top-dimensional stratum C(,,) induces some orientation of each
codimension one stratum C, 5(0)) (and C(,5)) contained in the boundary of 5(770). The
induced orientations (—1)°w(, s0))] and (—1)1°l[w(, 5] are determined in Lemmata
6.2.1,6.2.2 and 6.2.3, and they give (relative) fundamental cycles [C, 5.0 and [C, 5)]
of the codimension one strata U(%g(o)) and 6(%6) respectively.

The Poincare dual of the first Stiefel-Whitney class of Rﬁg is given by

] = 55 (Snston[Cnsion])  mod 2, when [Fix(a)| > 0, 67
1] — — .
%Z(T,u) Z('y,é) [C(’Y:é)]) mod 27 when ’FIX(U)‘ = 07

where the external summation runs over all one-vertex u-planar trees (7, u) and the
internal one over all codimension one strata of U(T,o) for the one-vertex o-planar tree
(7,0) which represents (7,u) in accordance with 6.3. Indeed, the sum (6.7) detects
where the orientation on RMg can not be extended to RMg.

We prove the theorem by evaluating (6.7).

Case |Fix(o)| > 0. Let Cro,),i = 1,2 be a pair of adjacent top-dimensional
strata, and C(,50,) C Cl(roy be their common codimension one boundary stra-
tum. We calculate [6(%5(01))} + [6(7,5(02))} as follows. According to 6.3, the strata
Clr,0;) are oriented by (—1)|0i|[w(770i)], and these orientations induce the orientations
(=Dl wis00)] o0 Clr 50 The induced orientations (—1)[w(, 50,))] are given
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by (=D - s6000e) A Lo, 5(0i),)) i Lemmata 6.2.1 and 6.2.2 according to
the convention introduced in Section 6.2. We denote by v be the vertex such that
|F.,(v) (3] < 1asin Section 6.4, and compare the induced orientations by calculating

(01, 02) = ([o1] + V1) = (loz] + Vo) — pu(v)

for each of the following three subcases.

First, assume that |F,(v°) (] < 1. In this subcase, the o-planar structure is
reversed at the vertex v = v°. Therefore, Ny = Ny according to Lemma 6.2.1. Finally,
by applying Lemmata 6.4.2 and 6.4.3 and using relation j = [F% (v°)| — 1 we obtain

_ o JG =1 (FF0)] = 2)(JF5(v°)]| - 3)
II(01,09) = |o1] = [0a| — p(v®) = 7 5
= [F5(v)] -2

= [v°] mod 2.

The latter equality follows from the fact that [F% (v)| = [v| mod 2.

Second, assume that |F,(v.)(§| < 1 and |[F5(ve)] # 3. In this subcase, the
o-planar structure is reversed at the vertex v = v. Since |FX(ve)| # 3, once more
N; = Ny according to the Lemma 6.2.1. Finally, by applying Lemmata 6.4.2 and 6.4.3
and using relation [F5(v.)| = i + m + 2, we obtain

(o1, 00) = ij + jm +im + m(m2— b, il - D _ (i+m)(i2+m ~1)
= j(i+m),
= ([F5(v)] = D(|F5 (ve)| - 2),
= |ve|([v°] = 1) mod 2

when [F¥(v.)| > 3, and

l(01,00) = 2|F(ve)] =0 mod 2
= |ve|(Jv°] —1) mod 2

when [F¥(v)| = 2.

Third, we consider |F,(v.) () F| < 1 and [F5(v)| = 3 case. In this subcase, the o-
planar structure is reversed at the vertex v.. Hence, Xy = Ry whenever |[FZ(v°)| = 1,2,
and Ry — Ny is +(141) = £(|F5 (v°)|+2) whenever [F5(v°)| > 3. Finally, by applying
Lemmata 6.4.2 and 6.4.3, we obtain

[FX ()] — 1+ (|[FF(v°)[+2) =1 mod 2, when [F5(v)| >3,
(o1,00) = ¢ |FX(v°)[ —1 =1 mod 2, when [FJ(v°)| =2,
[F5(ve)] - 1 =0 mod 2, when |F5(v°)| =1,
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The induced orientations (—1)1°![w(, 5., are the same if and only if I1(01, 02) = 0
mod 2. Hence, we have

1+ (—1)Meve2)
Coson] + o] = 22 2) [Carsom] -

The sum ([C(y.5(00))]+[C (1.6(00))]) /2 gives us the fundamental cycle [C', 5(0,))] when

(=Dl wiy 5010)] = (=1)1?! w5500, and it turns to zero otherwise. Finally, as is
follows from the above case-by-case calculations of I1(01,05), the fundamental class
of a codimension one strata C(, s(,,)) is involved in [w;] if and only if one of the three
conditions given in Theorem are verified. It gives the first expression for [w;] given in
Theorem. Since in this first expression the sum is taken over all u-planar structures
on 7, it can be shorten to the sum of the fundamental classes of REW.

Case |Fix(0)| = 0. Let C(4,),% = 1,2, be a pair of adjacent top-dimensional strata
and C,,) be their common codimension one stratum. Let (7,0;) be the o-planar
representatives of (7,u;) given in 6.3. Here, we have to consider two subcases: (i)
Cly) s a stratum of real curves with two real components (i.e, |V,| = [VE| = 2),
and (ii) C(y,y is a stratum of real curves with two complex conjugated components
(ie, [V, =2 and [VF| =0).

(i) Consider the pair of o-planar representatives (v, d(0;)) of (v, ) which respec-
tively give (7,0;) after contracting the edges and compare their o-planar structure.
Since the both tails n and o(n) are in F.(v.), the o-planar structure is reversed at
the vertex v¢. Therefore, ; = Ny according to the Lemma 6.2.1. Finally, by applying
Lemmata 6.4.2 and 6.4.3, we obtain

II(01,05) = 2[FF(v°)] +1=1 mod 2.

In other words, [6(7,6(01))} + W(M(%))} = 0 for this case.

(ii) Let C(r,) be a stratum of of real curves with empty real part, and let (v, 0)
be an o-planar representative of (7, u).

The orientations of C(,,,) induced by the orientations (—1)°![w(; o,)] and [w(y,4,)] of
Clr00) and Cir o,) are given in Lemmata 6.2.2 and 6.2.3. Namely, they are respectively
given by the following differential forms

(=1)ln! A dza, N dZ,,,
. €F\(FF N{k—1,k,2k—1,2k})
(=¥ A dza, N dZ,,,

as€FI\(F3 N{k—1,k,2k—1,2k})
where [o| = [{1,--- ,k =1} F | and R = [{1,--- k= 1} (\F7|+ 1. Therefore, the
orientations induced from different sides are opposite and the sum (—1)%~* [6(7#)} +

(=1)% [C(y,w)] vanishes for all such (v, 6). O

58



Example 6.5.1. Due to Theorem 5, the Poincare dual of the first Stiefel-Whitney
class [wy] of RM‘(T%) can be represented by ZW[REW] =2 (v [C(.)] Where v are
S-trees with a vertex v satisfying |v| = 4 and |F.,(v) ({s1,54,85}] = 1. These S-
trees are given in Figure 6.2a, and the union corresponding strata | J_ RD, is given
the three exceptional divisors obtained by blowing up the three highlighted points in
Figure 6.2b.

Figure 6.2: (a) o-invariant trees contributing the Stiefel-Whitney class of RM?%)
due to Theorem 5, (b) The blown-up locus in ]RM?O@
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Chapter 7

The orientation covering of RMg

In Chapter 6, the first Stiefel-Whitney class of RM; is determined in terms of its
strata. We have also proved that the moduli space RMyg is orientable when |S| = 4
or |[Fix(o)| = 0. In this chapter, we give a combinatorial construction of orientation
double covering for the rest of the cases i.e, |S| > 4 and |Fix(c)| > 0. By observing
the non-triviality of the orientation double cover in these cases, we prove that ]RM;
is not orientable. Some other double covers of RM; which appeared in the recent
literature is discussed at the end of the chapter.

7.1 Construction of orientation double covering

Let |S| > 4 and |Fix(o)| > 0. In Section 5.1.1, we have shown that the map
5(5’0) — RAMg, which is identifying the opposite o-planar structures, is a trivial
double covering. The disjoint union of closed strata 6(570) = |_|(T7O) 6(7,0), where
[V,| = 1 and (7,0) runs over all possible o-planar structures on 7, is a natural
compactification of 6'(%71).

To obtain the orientation double covering of RM;, we need to get rid of the
codimension one strata by pairwise gluing them. We use the following simple recipe:
for each pair (7,0;),= 1,2, of one-vertex o-planar trees obtained by contracting the
edge in a pair (7,0(0;)),7 = 1,2, of two-vertex o-planar trees with the same underlying
tree such that V., = VE = {v, 0%}, v = 8,(s,,), we glue 5(7702.) along 6(%5(02.)),i =
1,2, if

A. (7,9(01)) produces (7, d(02)) by reversing the o-planar structure at the vertex
ve, |[Fy(v°)NF| <1, and [v°] =1 mod 2,

B. (v,0(01)) produces (v,6(02)) by reversing the o-planar structure at the vertex
Ve, [F5(v°) S| <1, and |[v¢| =0 mod 2,
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by reversing the o-planar structure at the vertex
| # 3 and |ve|(Jv* — 1]) =1 mod 2,

C. (v,6(01)) produces (7, d(02)
Ve, |Fo(ve) VT < 1, [F5 (v

D. (v,6(01)) produces (7, d(02)
v (B (0e) 8] < 1, [F (e

E. (v,6(01)) produces (7, d(02)
Ve, |Fo(ve) N < 1, [F5(ve

F. (v,6(01)) produces (7, d(02)
v (B (0e) 8] < 1, [F (ve

\_/\/

by reversing the o-planar structure at the vertex
| # 3 and |ve|(Jv® — 1]) =0 mod 2,

~_

by reversing the o-planar structure at the vertex
| =3 and |[F¥(v°)] # 1,

~—

by reversing the o-planar structure at the vertex
| =3 and [F}(v°)] = 1.

~

We denote by Rﬁg the resulting factor space.
Theorem 6. RMg is the orientation double cover of RMg.

Proof. Let M be the orientation double covering of RH;. The points of M can
be considered as points in Rﬂg with local orientation. On the other hand, by us-
ing opposite o-planar structures of a one-vertex 7, we can determine orientations
(—D)llwr )] and (—1)lHFX@I=y 5T on C, ) and C(, 4 where (7,0) € UTree(o).
These orientations are opposite with respect to the identification of C(, ) and C(; 5
by the canonical diffeomorphism —I introduced in Subsection 5.1.1. Hence, there
is a natural continuous embedding C (S,0) = U(T’O)GUTT% C,)(C'(w UCig) — M. Tt
extends to a surjective continuous map C(Sﬁg) = U(T,O)EUTTG@(O) (6(770) LJ é(w)) — ]T/[/ .
Since Gsﬁ) is compact and M is Hausdorff, the orientation double covering M is
a quotient space 6(570) /R of U(S,(,) under the equivalence relation R defined by the
map U(SJ) - M

This equivalence relation is uniquely determined by its restriction to the codi-
mension one faces of C' (S,0) Wthh cover the codimension one strata of RMg« g under
the composed map C (S,0) — M — RMg g- On the other hand, the equivalence rela-
tion on the codimension one faces is determined by the first Stiefel-Whitney class: A
partial section of the induced map 6(3,0) /R — RM; given by distinguished strata
U oyetsrree(o) Cro)- Over a neighborhood of a codimension one stratum of RMg, a
partial section extends to a section if this codimension one strata is not involved in
the expression for the first Stiefel-Whitney class given in Theorem 5, and it should
not extend, otherwise. Notice that the faces 6(775(01.)) considered in relations A, C
and £ are mapped onto the strata 6(775(1‘)) which do not contribute to the expression
[wy] given in Theorem 5, and the faces 5(7,5(01.)) in relations B, D and F are mapped
onto the strata 6(7,5@)) which contribute to the expression [w;]. There four different
faces U(T’(s(o)i),i =1,---,4 over each codimension one stratum 6(775(u)). Lemma 6.4.1
determines the pairs 5(775(0)1.), 6(775(0)3.) to be glued to each other. ]

61



Corollary 7. The moduli space RMg is not orientable when |S| > 4 and |Fix(o)| >
0.

Proof. Let |Fix(c)| > 3, and (7, 0) be an o-planar structure with {sor41} < {s,-1} <
{sn}. It is clear that, we can produce any o-planar structure on 7 with {sox11} <
{sn_1} < {sn} by applying following operations consecutively:

e interchanging the order of two consecutive tails {r;, 741} for [{r;,rix1} S| < 1
and s, & {ri, ris1},

e swapping s; € Perm™ (o) with s; € Perm™ (o) for s; # sy, Sox.

The one-vertex o-planar trees with {s,_1} < {sax+1} < {sn} can be produced from
the o-planar tree (7,0) via same procedure.

Let |Fix(o)| = 1,2. Similarly, if we start with o-planar tree (7,0) with k €
Perm™ (o) (k € Perm™ (o)), then we can produce any o-planar structure on 7 with
k € Perm™ (o) (k € Perm (o)) by swapping s € Perm™ (o) with 5 € Perm™ (o)
for s # sy, Sog-

Note that, these operations correspond to passing from one top-dimensional stra-
tum to another in Rﬁg through the certain faces. These faces correspond to the
one-edge o-planar trees (7, 0(0);) with [v¢| = 3, and |F.,(v®) N F| < 1 i.e, these are
faces glued according to the relations of type A. Any two top-dimensional strata in
RMZ with same cyclic ordering of § (resp. with s, is in same set Perm® (o)) can
be connected through a path passing through these codimension faces 6(%6(0)1-)- The
quotient space 6(57(,) /A has two connected components since there are two possible
cyclic orderings of {sogi1,Sn-1,5,} when |Fix(c)| > 3 (resp. two possibilities for
|Fix(c)| = 1,2 case: k € Perm™(c) and k € Perm™ (0)).

The set of relations of type B is not empty when |S| > 4 and |Fix(o)| > 0.
Moreover, the relation of type B reverses the cyclic ordering on § (resp. moves sy
from Perm™ to Perm™). Hence, the faces glued according to the relations of type
B connect the connected components of 6(370) /A. Therefore, the orientation double
cover RMyg is nontrivial when |S| > 4 and |Fix(o)| > 0 which simply means that the
moduli space RMyg is not orientable in this case. O

Example 7.1.1. In Example 5.3.6, we obtained that RM; are respectively a torus
with three points blown up, a sphere with three points blown up, and a sphere with
one point blown up for the involutions o given in (5.4). The double covering ]R]Tfs" is
obtained by taking the two copies of the corresponding moduli space of real curves
and replacing the blown up loci by annuli. Therefore, R]f\\/[;‘ are surfaces of genus 4,
genus 2 and genus 0, respectively (see Figure 7.1 which illustrates the case o = id).
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Figure 7.1: Stratification of RM‘S’ for o = id

7.2 Combinatorial types of strata of RMS“

While constructing RM‘S’ , the closure of the each codimension one strata are glued
in a consistent way. This identification of codimension strata gives an equivalence
relation among the o-planar trees when |Fix(o)| # 0.

We define the notion of R-equivalence on the set of such o-planar trees by treating
different cases separately. Let (71,01), (72,02) be o-planar trees.

1. If \Vﬂli,| = 1, then we say that they are R-equivalent whenever 7, v, are isomor-
phic (i.e, 71 & 72) and the o-planar structures are the same.

2. If »; have an edge corresponding to real node (i.e. EX = {e} and V2 = 8,(e) =
{v°,v.}), we first obtain (7;(e), 0;(e)) by contracting conjugate pairs of edges
until there will be none. We say that (y1,01) and (72,02) are R-equivalent
whenever v, &~ v, and

e (v1(e),01(e)) produces (y1(e), 02(¢e)) by reversing the o-planar structure at
the vertex v°, |F,(v°)(§| <1, and [v°] =1 mod 2,

(71(e),01(e)) produces (v1(e), 02(e)) by reversing the o-planar structure at
the vertex v, |F,(v*) N §| <1, and [v¢| =0 mod 2,

(71(e),01(e)) produces (v1(e), 02(e)) by reversing the o-planar structure at
the vertex v, [F(ve) S| < 1, [F5(ve)| # 3 and |ve|(Jv® —1]) =1 mod 2,

(71(e),01(e)) produces (v1(e), 02(e)) by reversing the o-planar structure at
the vertex v°, [Fy(ve) | < 1, [F (ve)] # 3 and [ve|(|v° —1]) =0 mod 2,

(71(e),01(€)) produces (y1(e), 02(e)) by reversing the o-planar structure at
the vertex ve, [Fy(ve) 1§ < 1, [F5 (ve)| = 3 and [F5(v°)| # 1,

(71(e),01(€)) produces (y1(e), 02(e)) by reversing the o-planar structure at
the vertex v°, [F+(ve) | < 1, |[F5(ve)| = 3 and [F5(v°)] = 1,
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3. Otherwise, if 7; have more than one invariant edge (i.e. |[E, [ > 1), we say
that (y1,01), (72,092) are R-equivalent whenever 7, ~ 7o and there exists an
edge e € EX such that the o-planar trees (v;(e),0;(e)), which are obtained by
contracting all edges but e, are R-equivalent in the sense of the Case (2).

We call the maximal set of pairwise R-equivalent o-planar trees by R-equivalence
classes of o-planar trees.

Theorem 8. A stratification of the orientation double cover Rﬁg 15 given by

RMS = | | Clry0)-

R—equivalance classes
of o—planar (v,0)

7.3 Some other double coverings of RMg

In [21], Kapranov constructed a different double covering RM g of RW; having no
boundary for ¢ = id. He has applied the following recipe to obtain the double
covering: Let U(SJ) be the disjoint union of closed strata I—l(T,o) U(ﬂo) for o = 1d.
Let (v,d(0;)),i = 1,2 be two-vertex o-planar trees representing the same u-planar
tree (y,u), and let (7,0;) be the one-vertex trees obtained by contracting the edges
of (v,8(0;)). The strata C(,400,)),% = 1,2 are glued if (7,d(01)) produces (v,8(0s))
by reversing the o-planar structure at vertex v¢ # 8,(s,). We obtain first Stiefel-
Whitney class of @]\\45 by using the same arguments in Theorem 5.

Proposition 7.3.1. The Poincare dual of the first Stiefel-Whitney class of ]1@\75 1S

—_

=52 > [Chsep]  mod 2.

(1,0) (7,6(0)):|v¢[=0 mod 2

[\)

It is well-known that these spaces are not orientable when [ > 5, see for example [7].

7.3.1 A double covering from open-closed string theory

In [11, 31], a different ‘orientation double covering’ is considered. It can be given as
the disjoint union |_| (ro) Where FY = {s;,--- ,s;}, and F® carries all possible
oriented cychc ordermg It is a disjoint union of manifolds with corners. The covering
map |_| (0) Clro) — RMq g Is two to-one only over a subset of the open space RMS.
It only covers the subset | | C(ru) of RMg where u-planar trees (7,u) have the
partition {{s1, -, sk}, {sk+1, -, sort+ of Fo\ FX. Moreover, the covering map is
not two-to-one over the strata with codimension higher than zero.
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Chapter 8

Homology of the strata of RMg

In this chapter, we calculate the homology of the strata of RM; relative to the union
their substrata of codimension one and higher.

8.1 Forgetful morphism revisited

In this section, we discuss some properties of the restriction of the forgetful map to
the strata of RMg.

8.1.1 Forgetting a conjugate pair of labelled points

Let S = {s1, -+ ,8,} and 0 # id. Let {s,5:= o(s)} be a conjugate pair in Perm(o)
which is different than {s,,s;} when Fix(c) = (. Let S’ = S\ {s,5}. Denote the
restriction of ¢ on S’ by ¢’. From now on, we denote the map 7,5 : RMg — RM(;
forgetting the labeled point pg, ps by simply 7.

Let 7 : Ciy o)y — C(4,0) be the restriction of the forgetful map to the stratum
Ciyrory C RMg. Let v, := 8,(s). Whenever v, € VE. and |v,| = 3, there is
unique vertex in Vﬂﬁ* next to v, since vy supports both s, § and a flag of an real edge
connecting v, to the rest of v*. We denote this closest vertex to v, by ve.

We will denote the fibers 771(X; p) of the forgetful map 7 simply by Fl.

Lemma 8.1.1. (a) Let (X;p) € Cy,0) be a o-invariant curve of type 1, and s € F.
(resp. s € F_.), then the fiber F is

1. a two-dimensional open disc ¥} (resp. ¥, ) minus the special points py where
feF(vo)\{s} (resp. feF.(vs)\{s})if vs € VL. and |vs| > 5;

2. a two-dimensional sphere ¥, minus the special points py € X, where f €
F.-(vs) \ {s} if vy ¢ VE. and |vs| > 4;
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3. an open interval if vy € V5. and |vs| = 4;

4. an open interval if v, € VE&, lvs| = 3, |ve| > 4 and |F;R (ve)] > 1;
T R _ R 1.

5. a circle if vy € V3., |vs| = 3, and [F3.(ve)| = 1;

6. a point if v, € V3. and |vs| = |ve| = 3;

=

a point if vy & VEYR* and |vgs| = 3.
(b) Let (£;p) € Ciy,0) be a o-invariant curve of type 2, then the fiber Fy is

1. a two-dimensional sphere X, minus the special points py € X, where f €
Fo-(vs) \ {s,5} if vs € Vﬂj* and |vs| > 6;

2. a two-dimensional sphere X, minus the special points py € X, where f €

Fo(vs) \ {s} if vs & V5. and |vs| > 4;
3. a point if |vg| = 3.
(c) Let (3;p) € C(y0) be a o-invariant curve of type 3, then the fiber Fy is

1. a two-dimensional sphere X, minus the special points py € X, where f €

Foe(vs) \ {s} if [vs] = 4;

2. a point if |vg| = 3.

Proof. Here, we will prove only (a). The proofs of the other cases are essentially the
same.

Let (v,0) be an o-planar tree of type 1. Pick a o’-invariant curve (£;p) € Cy,0).
Let (X*,p*) be points in the fiber F,. If (X* p*) € F; is a o-invariant curve which
does not require the contraction of its component Y7 after forgetting the labeled
points pg, ps, then there are two possible subcases:

(1) X, is a real component and supporting five or more special points, or
(2) X% is not a real component and supporting four or more special points.

If (¥*,p*) € Fy is a o-invariant curve which requires the contraction of X7  after
forgetting the labeled points ps, ps, then the component X supports only three or
four special points including ps and ps. In this case, there are three possible subcases:

(3) X is a real component and supporting four special points,

(4-5-6) X is a real component and supporting three special points, or
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(7) X3 is not a real component and supporting three special points.

Since we consider the fiber over a fixed (X;p), the positions of special points of
(3*, p*) € Fj are fixed except the labeled points ps, ps.

(1) If v, € VE and |vs| > 5, then (X*, p*) does not require the contraction of
after forgetting the labelled points p,, ps. For all such (¥, p*), ¥* = X so Xj = %,,.
Assume that s € FJ.(vs). For f € FI.(v,) \ {s}, the special points p; are distinct
in 3. Therefore, the elements (X* p*) of F, are determined by the positions of
the labelled point p, in X . Since all special points are distinct, p, is in X} \ {ps}.
Hence, the fiber is X \ {ps} where f € FZ.(v;) \ {s}.

(2) If v, & VE. and |v| > 4, then (X%, p*) does not require the contraction of
after forgetting ps, ps. Similar to the above case, X5 = ¥,,. The elements (X*, p*) in
the fiber are given by the position of the point p, in 3,,. Hence, the fiber is ¥, \ {ps}
where f € Fo«(vs) \ {s}.

(3) Since all special points but p;, ps are fixed, a fiber of 7 is a family of o-invariant
curves which, in this case, is the deformations of the irreducible real component
(X5,;p;.) with two real special points and the conjugate pair p,, ps. It clearly gives
an open interval (see Example 5.3.6).

(4-5-6) In this case, (X} ; p;,) can not be deformed since |v,| = 3. Here, the family
along fiber gives the deformation of (3} ;p;, ) (instead of (X} ;p} )). The fiber F
parameterizes the nodal point ¥, N ¥, which disappears after forgetting ps and ps.
There three subcases here: (6) The fiber is a point when |v.| = 3 since (X ;pj )
can not be deformed. (5) The fiber is a circle when |[FX(v.)| = 1. It is given by
the position of the nodal point ¥, N %, . (4) The fiber is an open interval when
[FX(ve)| > 1. Tt is given by the position of the nodal point %, N ¥, which can vary
between two other special points in the real part of X7 .

(7) The point (X*,p*) in the fiber is unique since the contracted component
supports only three points.

The o-planar trees associated to (¥*, p*) are simply obtained by considering the
cases above. O]

Consider the forgetful map for the closed strata 7 : Cyx pr) — C(.0)- In this case,
we denote the fiber 771(X;p) for (X;p) € C(y.0) by Fs since it is the closure of the
fiber Fy of m : Cy o) — C(y,0). By using the stratification of 6(7*70*), we obtain a
stratification of fibers F.

Lemma 8.1.2. Let FZ, be the fibers of m' : 6(%0;) — 6(%0) over (3;p) € Cy0)-
Then, Fi C Fi if and only if (7§, 0}) produces (75, 0%) by contracting one of its real
edges or a conjugate pair edges.

Proof. This statement is a direct corollary of Proposition 5.3.4. O]
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8.1.2 Homology of the fibers of the forgetful morphisms

Let (v*,0%) be a one-vertex o-planar tree, and let 7 : C(y+ o+) — C(y,) be the map
forgetting the special points p, ps which is discussed in Section 8.1.1. Assume that
the fibers are two-dimensional i.e., a punctured disc or a punctured sphere (see cor-
responding cases in Lemma 8.1.1).

Case type 1. Let (v*,0%) be a one-vertex o-planar tree of type 1. Assume that
5 € Fj (resp. s € F;) Then, each fiber F, of 7w is homotopy equivalent to a
— 1 circles S*V --- Vv St The cohomology of F} is generated by the

bouquet of [F.
logarithmic differentials;

HYF,) = Z
H'(F,) = @ Zwy
f

where

1
o = ———— dlog(z, — 8.1
Wy = 5= dlog(z, — z) (8.1)

for f € F7. \ {s} (resp. f € F.. \ {s}).

The homology with closed support HS(Fy) is isomorphic to the cohomology group
H'(F,) and generated by the duals of the logarithmic forms i.e., by the arcs connecting
the punctures 2y to a point in boundary of the closure of the fiber F, of min 6(7*,0*)
(see Figure 8.1).

We denote the dual of the generator wsy by 7. The homology group H$(Fj) is
isomorphic to H°(F). Hence,

H{(Fy) = Z
H{(F) = P z 7
f

where f € FI7.\ {s} (resp. f € F. \ {s}).

Case type 2. Let (7%, 0") be a one-vertex o-planar tree of type 2. Then, each fiber
F, of m is homotopy equivalent to a bouquet of |F.«(vs)| — 3 circles S* v --- v SL.
Therefore, the cohomology of Fj is generated by the logarithmic differentials;

HY(F,) = Z
H'(F,) = @ Zwy
f

where

1
sf = ———= dlog(zs —
e 2my/—1 o8(z = %)
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Figure 8.1: The generators of H{(F).

for f € Fu \ {s, 5, s}

The homology with closed support H{(Fy) is isomorphic to the cohomology group
H'(F}) and generated by the arcs connecting the pairs of punctures at zy,, z4,. These
arcs are the duals of the cohomology classes wsy, — wsr,. We denote them by % ¢, 4, .
The homology group HS(F,) is isomorphic to H°(F). Hence,

Hy(F,) = Z
Hi(Fy) = (@ Z%s,ﬁfz) /Ts
;

where f; € F.- \ {s, 5, sa }, and the ideal J; is generated by

Fs.frf, + Fs. fofs + Fs. 11 (8.2)

Homology of the fibers of the forgetful morphism 7y, : Mg — Mg. Let
S be a finite set of labeling with S| > 4, and let s € S be different than s,. Let
S’ = 8\ {s}. Then, each fiber F; of forgetful map m, : Mg — Mg is homotopy
equivalent to a bouquet of [S| — 2 circles S*V .-V S'. Therefore, the cohomology of
a fiber is generated by the logarithmic differentials;

HO(FS> = Z
H'(F,) = @ Zwy
f
where
1
Wsf = m dlog(zs, — zy)

for f € S\ {s,sn}.
The homology with closed support H{(Fj, ) is isomorphic to the cohomology group
H'(F,,) and generated by the arcs connecting the pairs of punctures at zy,, z4,. These
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arcs are the duals of the cohomology classes wsy, —wsyf,. We denote them by &2, , ,.
The homology group HS(F,) is isomorphic to H°(F,). Hence,

Hy(Fy) = Z
Hi(Fs) = (@ Z@s,ﬁfg) /Ts
;

where f; € S\ {s, s, } and the ideal J; is generated by

Pstife T Pspass + Psfapr- (8.3)

8.2 Homology of the strata

In this section, we give the generators of the homology of the strata 6(%0) relative to
the union of their substrata Q(y.0) = U r.5)<(7.0) C(r0)-

Lemma 8.2.1. Let 7 : C(yx ov) — Cy0) be the fibration discussed Section 8.1. Then,
H5(ClyroiZ) = @D HE(Cloo); Z) ® H(Fyi Z)
p+q=d

Proof. We first consider the subcases where dim Fy = 2. Assume that (7*,0*) be of
type 1. The strata Cy« o+ and C(,,,) are given by the products

H Clygop) X H My .. (),

veVR, vevt,

Y ol
Il Covon x 11 Me,w

veEVE veEVE

(see (5.3) in Section 5.3). The forgetful map 7 preserves the components (X, p¥) of
(X%, p*) € Clyx 0%y for v # v,. Hence, it is the identity map on the factors

C(’y,j,of)) - C(”/vﬂv)’
My .y — Mp, @)

for v # v,. On the other hand, it gives a fibration

) R
Tres . C(%’?svois) — Clyp.,00,)s When v, € V., and

8.4
Tres MFV* (vs) MF’Y(US) when v, & Vﬂly{* ( )

with the same fibers Fy of 7 : Cy+ oy — C(,0). Therefore, we only need to consider
the fibrations in (8.4) to calculate the (co)homology.
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The strata C(y;_ o ) and C(y, o,,) are diffeomorphic to the products of simplices
with the products of upper half plane minus (usual and cross) diagonals (see Lemma
5.2.2). The map 7,5 forgets the coordinate subspace H' corresponding to the labelled
point p,. For instance, when |F§ (v5)] > 2, the map Tyes : Clyz o2 ) — C

Vig:0%,) 8

7”370’05) l
((H‘F)IF;L*(US)l \ A*) X DlFE*(vS)‘_s N <<H+)|F'J‘/r(vs)| \ A) X D‘Fﬂs(vs)|—3’

forgetting the coordinate subspace HT of the labelled point p,. Similarly, 7. :

MF vs) 7 MF'y(vs) is

v*(

CFyr(vs)l=3 \A* — ClFy(vs)l=3 \ A,

forgetting the coordinate subspace C of the labelled point p,.

The logarithmic differentials dlog(zs — z;) for j € F¥(v,) (vesp. j € F,(v,)) give
global cohomology classes on Cy« o+ (resp. on Mg .(y,)). On the other hand, we
have seen that the restrictions of these logarithmic forms to each fiber freely generate
the cohomology of the fiber (see Section 8.1.2). By using Leray-Hirsch theorem, we
obtain

HYClye o)) = @ H(Cy0) @ HY(F).

pt+q=d

If dim F, = 1 and the fibers are open intervals, then we directly have
Hp<C(V*aO*)> = Hp(C(vyo); HO(FS)) = HP(C(%o)) ® HO(Fs)-

since the fibers are contractible.

If dimF, = 1 and the fibers are S', then C(,+ .+ is diffeomorphic to (HT \
{/—1})[Fy@s)l=2 5 O x S'. This is obtained by using a slightly different normal-
ization of coordinates than the normalization used in Section 5.1.2 and Lemma 5.2.2
i.e., by mapping (py,, pj,) to (v—1,—v/=1), and (py,,pz,) to (A\W/—1, —Av/—1) where
fi, fa € Fj Then, the map 7,.s forget the special point parameterized by S'. Hence,
Clyr o0y 18 Cy0) X S 1 and claim follows form the Kiinneth formula.

If dim F; = 0, then each fiber is a single point and statement is obvious.

Finally, the duality between cohomology and homology with closed support gives
us the isomorphisms which we need to complete the proof

Hd(o(v*,t)*)) = Hc(ljim(C(ﬂ{*70*))—d(0(’y*,0*))
HP(C(%O)) = Hgim(cmo))—p(C(W,O))
Hp(FS) = Hgim(Fs)—p<FS)'

The same statements for type 2 and type 3 cases are proved by using the same
strategy and arguments above. [
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Since the strata of RMg are the products given in (5.3), their homology is the
product of homology of their factors. Here, we are going to give the relative homology
for the strata corresponding to one-vertex trees.

Now, let (v,0) be a one-vertex o-planar tree of type 1, and FI = {sy,---, s}
Let ((4,0) be the union of the codimension one and higher strata of C', o).

Proposition 8.2.2. The relative homology group Hdlm(C(,y o) (670 Qy0); L) s
generated by

T

S1'1511

- ®

SigSiq

where j, < i, and iy < -+ <ig < |Fj| In particular,

Hdim(é(%o))(a(%o)7 Qv,0)5 Z)=1 [6(%0)]-

Proof. Due its definition, the homology with closed support
H{(Cy0) = hin H.(Cly,0, Cy0) \ K)

where K ranges over all closed subsets of C(,,). The group H.(C(y,0),Cy0) \ K)

is isomorphic H,(C(,.0), C(y,0) \ K) where K ranges over all closed subsets of C', )

which does not intersect with @(,,,). In the limit, 5(%0) \ K gives ((~,0)- Hence, the

homology with closed support is indeed isomorphic to the relative homology of 6(%0).
On the other hand, Lemma 8.2.1 implies that

Hd(a('y*,o*)aQ('y*,o*)a @ H 670 ) ®HC(F57Z)

p+q=d

where Fj is a fiber of the map forgetting s, s.

We obtain the result by applying the maps forgetting the conjugate pairs of points
successively and using the generators of HS(Fj,) given in Section 8.1.2. We forget the
pairs of points the in following order

(Sks Sok)s (Sk—1,82k—1), =+, (81, Sp41), When |Fﬂ$| > 3,
(Sk‘a SQk)7 (Sk’—la SQk—l)a ) (SQa Sk+2)7 when |F§| = 17 27
(Sk» S2k), (Sk—1, S2k—1), -+ » (83, Sp+3), When |F5‘ = 0.

We obtain that

H{(Fy,) @ --- @ HY(Fy, ) © HA(Clromy)) if [F5] > 3,

_ HE(F,) ® - HY(F,,) it [F%| = 2
H C * 0*)y *0* - * 2 * 4§ . 2 ’
Com00: Qero) =4 pre(p o . o HY(F, ) if [F¥| =1,
H:(FS‘s) ® ® H:(FSk) if |F§| =0

where (7,0(R)) is a one-vertex tree which is obtained by forgetting all tails of (v*, 0%)
labelled by Ff The space C(7,(r)) is an open simplex due to Lemma 5.2.2. This
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directly gives us that the relative homology is generated by the products of the
generators of H°(Fy,) as stated above. In order to simplify the notation, we omit the
factors coming from the generators HS(Fy,) and HS; Ciry (Ctr0)-

It is clear that the top dimensional relative homology is generated by the relative

fundamental class [C, 0. O

Now, let (v,0) be a one-vertex o-planar tree of type 2, and F., = {s1,--- , sa;}.
Let Q(,,0) be the unions of the codimension one and higher strata of C, ).

Proposition 8.2.3. The relative homology group Hyim@o,, O))fd(é(%o)»Q(%o)3Z> is
generated by

'@‘%1’5115’61 ®--QF

8ig»SigSky

where 0(s;,),0(Sk,) # Sivs Jar ke <ty and 2 < iy < --- < iqg < |F,|. In particular,

Hdim(é(%o))(a(%o)7 Qy,0)5 Z)=17 [C(%O)]-

We also calculate the homology of Mg relative its strata for S = {s,--- ,s,}.
We denote the union of strata of Mg of codimension one or higher by Ws.

Proposition 8.2.4. The relative homology group Hdim(ﬁs)_d(ﬁs, Ws;Z) is gener-
ated by

Py oo, @ QP

Sigr8jqSky
where ju, ke < i, and iy < -+ <'ig < |S|. In particular,

Hdim(ﬁs)(MSa Ws;Z) = Z [MS]
where [Mg] is the fundamental class of Msg.

The proofs of Proposition 8.2.3 and 8.2.4 are essentially the same with Proposition
8.2.2. We will not repeat it.

Remark 8.2.5. The open strata considered in Proposition 8.2.2 and 8.2.4 are topo-
logically same with the braid spaces, and the strata in Proposition 8.2.3 have very
similar topological properties with braid spaces. For that reason, the proof of Lemma
8.2.1 uses essentially the same arguments in [1].
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Chapter 9

Graph homology of RM%

In this chapter, we give a combinatorial graph complex whose homology is the ho-
mology of the moduli space of o-invariant curves RM;.

9.1 The graph complex of RM%

We define a graded group

Qd = @ Hdim(a(%o)) (U(%O), Q('y,o); Z) /Id (91)

(v,0)€Tree(o):|Ey|=|S|—d—3

The homology group H dim(T, O))(C’(W), Q(+,0)) is of rank one and generated by the

relative fundamental cycle [C(, ] of the strata C,,) (see Section A for orientations
convention).
The ideal I, (of degree d) is generated by the following elements.

The generators of the ideal of graph complex. Case |Fix(o)| > 0.

MR-1. Degeneration at a real vertex of type 1 o-planar trees. Consider an
o-planar tree (v,0) such that |E,| = d — 2, and one of its vertex v € V5 with |v] > 5
and |FX(v)| > 2. Let f;, fie F,\ F];R be conjugate pairs of flags for ¢ = 1,2, and let
fs € F5. Put F =F,(v) \ {f1, fa, 1, fo, f}.

We define two o-planar trees (1, 01), (72, 02).

The first one (71,0;) is obtained by inserting a pair of conjugate edges e =
(fe. f€),€ = (fe, f) to (v,0) at v with boundaries 9,,(e) = {v,v°}, 8,,(e) =
{0,v°}. The distribution of flags is given by F. (0) = Fi|U{fs, fe, fe}, F, (v°) =
FoU{f1, f2, f¢} and F, (v°) = FoU{f1, fo, f¢}, where F is the disjoint union of F,
F5 and Fy. The set Fy contains the flags conjugate to the ones in F,.
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The second one (72, 02) is obtained by inserting a pair of real edges e; = (fe,, f'),
es = (fe,, f?) to (7,0) at v with boundaries 8.,(e1) = {0,v°'}, 0.,(e2) = {0, v*}.
The sets of flags are given by F.,(3) = F1 U{f3, fe1, fen }» Frp (v) = Fo | J{ f1, f1, f'}
and F.,(v*?) = FsJ{ f2, f2, [} where F is the disjoint union of Fy, Fy and F3. Here,
the flags fs, fe,, fe, are ordered {f3} < {fe,} < {fe,} according to the cyclic ordering
of F.,(9). See Figure 9.1 for |v| = 5.

Then, we define

R<770;Uaf17f27f3) = Z [6(71,01)] - Z [6(’72,02)]‘ (92)

(71,01) (72,02)

Here summation is taken over all possible (7;,0;),7 = 1,2 defined above.

Figure 9.1: The o-planar tree (v, 0) with |v| = 5 and o-planar trees (v;,0;),7 = 1,2
which appear in the sum R(7, 0; v, f1, fa, f3)-

MR-2. Degeneration at a conjugate pair of vertices. Consider an o-planar
tree (7,0) of type 1 such that |E,| = d — 2, and a pair of its conjugate vertices
{v,0} € V, \ VE such that |[v] = [0| > 4. Let fi, fu, fs, fs € F,(0) be the flags
conjugate to f1, fa, f3, fr € F,(v). Put F = F,Y(U)_\ {il,fg, f3, f1}. Let F1, Fy be two
disjoint subsets of F such that F = F; [ JF,. Let Fy, Fy be the sets of flags conjugate
to the flags in Fq, Fy respectively.

We define two o-planar trees (71, 01), (V2,02).

The first one (7;,01) is obtained by inserting a pair of conjugate edges e =
(fes £€),€ = (fe, £€) to (7, 0) respectively at v, v such that 8., (e) = {v.,v°}, 94, (€) =
{ve,v®}. The set of flags are F., (v.) = F_1U{f1,f2,fe}, F., (v%) = FolU{fs, fa, ¢}
and F, (ve) = Fr U{f1, fo, fe}, Fry (v°) = Fa U{ fs, fu, £}

The second one (72,02) is also obtained by inserting a pair of conjugate edges
to (v,0) at the same vertices v, v, but the flags are distributed differently on ver-
tices 8%(6) = {veﬂve}78’}’2<é)_: {Ué_7 Ué_}: F'Yz(Ue) = Fl_U{fllf&_fe}? F’Y2(U6) =
FoUlf2, fa, f¢} and Foy (ve) = FrU{f1, f5, fe}, Fop (0°) = Fo U{ f2, fu, 7}

Then, we define

R(’Yvo;vaflaf2>f3af4) = Z [6(71,01)] - Z [6(’)’2,02)]' (93)

(’Yl,01) (72,02)

Here summation is taken over all possible (7;,0;),7 = 1,2 defined above.
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M-3. Reversing o-planar structure at a real vertex. Let (7, 01) be an o-planar

tree of type 1 such that |E,| = d, and v € VZ. Let V,(v) be the set of all vertices in

V> such that the closest real vertex to its elements is v. Let (7, 02) be the o-planar

tree which produces (v, 01) by reversing the o-planar structure o, at the vertex wv.
Then, we define

R(v,01;v) = [0(7701)] - (_1)#[6(%02)] (9.4)

where

(IF7(0) — 2D(E5() =3]) S (ol - 3).

_ +
p=FI ()] + )

(9.5)

V€V (v)

Remark 9.1.1. Obviously, (v, 01), (7, 02) are o-planar representatives of same u-planar
tree (7,u). We identify C(,,,) with C(, ., in RMg, and pick the coordinates defined
in Appendix A by using o-planar structures o;,7 = 1,2. These coordinates can be
transformed to each other by

Comon % I Mrw) = Covon x| Mr,m)

v; €V, (v) v; €V (v)

where the map C(,, 0,) = C(y,.5,) is —I given in (5.1).
Let (za,;) and (wa,¥;) be coordinates in Ci,, ,,) and C,, 5,) respectively. We
have dz, = —dw,, and dx; = —dy;. If \FE(U)] > 3, then we obtain

Voo =\ dza AdZo N\ dap, ANy,
a€F (v)
= (-0 N dws Adws N\dyg, A Adyy,,,
a€cF5 (v)

= (_1)#19(%”51))

[E5 @)+(F5()-2D(F5(0)=3D/2 We obtain the special cases of this for-

mula when |F5| = 1,2 by similar calculations.

where 1y = (—1)

The transformation from My () to Mg (5, gives Q,, = (=1)"€Q,, where pi, =
|vj| — 3. This follows from a direct calculation similar to above.
Therefore, the difference R(v,01;v) = [C(4.0)] — (=1)*[C(4.0,)] is indeed zero when

W= p1 + Ho as given in (9.5).

The generators of the ideal of graph complex. Case |Fix(o)| = 0.

G-1. Degeneration at the real vertex of type 1 o-planar trees. Consider an
o-planar tree (7, 0) of type 1 such that |E,| = d — 2 and [F5| = 0. Let v be its real
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vertex, and assume that |v| > 6. Let f; € Ff{, fi € F_ be conjugate pairs of flags for
i=1,2,3. Put F = F,(0) \ {f1, fo, fs, f1, fa, f}-

We define two o-planar trees (71, 01), (72, 02).

The first one (71,0;) is obtained by inserting a pair of conjugate edges e =
(fe, f€),€ = (fe, f€) to (v, 0) at v with boundaries 9., (e) = {0,v°}, 9., (€) = {v,v°}.
The set of flags fﬂ"e_Fvl(ﬁ) = FLU{f1, fi, for fo}, Fpu(v°) = Fy U{f2,_fg,f6} and
F., (v%) = FolU{fo, f5, f}, where F is the disjoint union of Fy,Fy and Fy. The set
F, contains the flags that are conjugate to flags in F5 and vice versa.

The second one (7s,0,) is obtained in a similar way. First, we swap f; and f;
(i.e, put f1 in F7 and fi in F¥). Then, we obtain (72,02) by inserting a pair of
conjugate edges at the vertex v same way, but the flags are distributed differently
on vertice§ FW’2(7~}) =F U{f37f3’fe7fé}v Fw(ve) = Fy U{flaf%fe} and FW2(Ué) =
Fo U{f1, f2, f¢}. See Figure 9.2 for |v| = 6.

Then, we define

R(%O;Uafbf%fi%) = Z [6(71,01)] - Z [C(‘/Q,Oz)]' (9'6)

(71,01) (72,02)

Here summation is taken over all possible (7;,0;),7 = 1,2 defined above.

Figure 9.2: The o-planar tree (v, 0) with |v| = 6 and o-planar trees (v;,0;),7 = 1,2
which appear in R(7v, 0; v, fi1, fa, f3) given in (9.6).

G-2. Degeneration at the real vertex of type 2 o-planar trees. Consider an
o-planar tree (7, 0) of type 2 such that |E,| = d — 2. Let v be its real vertex, and
assume that [v| > 6. Let f;f; € F.(v) be conjugate pairs of flags for i = 1,2,3. Put
F=F,(0)\ {fi, f2, 3, f1, fo, f3}.

We define two o-planar trees (71, 01), (72, 02) as follows.

The first one (7;,0;1) is obtained by inserting a pair of conjugate edges e =
(fes f€),€ = (fe, f€) to (7,0) at v with boundaries 9., (e) = {v,v°}, 8,,(€) = {0, v°}
The set flags are given by F., () = FiU{f1. /1. fuo Je}, By (0°) = FaU{fo. fi /)
and F., (v°) = Fo|U{fo, f3, f¢}, where F is a disjoint union of F;, Fy and Fy. The
F, contains the flags that are conjugated that are conjugate to flags in Fy and vice
versa.
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The second one (72, 02) is also obtained by inserting a pair of conjugate edges at
the vertex v same way, but the flags are distributed differently on vertices F.,, () =

FoU{fs, f3. fe fe}, Fop(0°) = FLU{f1, fo, f€} and Foy, (0°) = Fo U{ f1, fo, [}

Then, we define

,R’(’yao;vaflvf%fé) = Z [6(’71,01)] - Z [6("/2,02)]7 (97)

(71,01) (72,02)

Here summation is taken over all possible (7;,0;),7 = 1,2 defined above.

G-3. Degeneration at a conjugate pair of vertices. Consider an o-planar tree
(7,0) of type 2 or type 3 such that |E,| = d — 2, and a pair of its conjugate vertices
{v,0} € V,\ VE with |v] = |o| > 4. Let fi, fa, f3, f1 € F(0) be the flags conjugate
to fi, fo, f3, f1 € F(v). Put F = F.(v) \ {f1, fo, f3, f1}. Let F1,F3 be two disjoint
subsets of F such that F = F; | JF,. Let F,, F, be the sets of flags conjugate to the
flags in Fy, Fy respectively.

We define two o-planar trees (71, 01), (Y2, 02).

The first one (7;,01) is obtained by inserting a pair of conjugate edges e =
(fes £€),€ = (fz, f€) to (7, 0) respectively at v, v such that 8., (e) = {v.,v°}, 84, (€) =
{ve,v¢}. The set of flags are F., (ve) = F_1U{f12 f2, fe}, Foy(v) = FolU{fs, fu, £}
and F., (ve) = FLU{f1, fo, fe}, F., (’Ué) =FyU{f3, f4, fé}-

The second one (72,07) is also obtained by inserting a pair of conjugate edges
to (7,0) at the same vertices v, v, but the flags are distributed differently on ver-
tices 872(6) = {Ue,ve},872(é>_: {U@vi}: sz(ve) = Fl_U{fllfSLfe}a sz(ve) =
Fo U{fo, fa, ¢} and F.,(ve) = Fr U{f1, f3, fe}, Frn (v) = Fo U f2, fa, f€}-

Then, we define

Ry, 050, fr for fo, 1) = D [Clavon) = D [Clmon)]- (98)

(71,01) (72,02)
Here summation is taken over all possible (7;,0;),7 = 1,2 defined above.

G-4. Reversing o-planar structure at a vertex Let (7,0) be an o-planar tree

of type 3, and (v, 0) be the o-planar tree with opposite o-planar structure.
Then, we define

R(7,0;0) = [Cpy0] = (=1)"[Cps.)] (9.9)

where

p=F @)+ Y (] =3). (9.10)



Remark 9.1.2. We identify C(,, and C(,, with C(,, in RMg, and pick the co-
ordinates defined in Appendix A by using o-planar structures o;,7 = 1,2. These
coordinates can be transformed to each other by

1T Moo= 11 Mee
vjevi vj EV,Jyr
The transformation from MFW(W) to MFW({)J.) gives Q%j = (—1)“29,@_ where o =
|vj| — 3. This follows from a direct calculation similar to R-3.
Therefore, the difference R(v,01;v) = [C(4.01)] — (—1)*[C(5.0,)] is indeed zero when

= p1 + o as given in (9.10).

9.1.1 The boundary homomorphism of the graph complex

We define the graph complex G, of the moduli space RM; by introducing the boundary
map 0 : Gg — Gg1:

0:Chal = Y, *[Chal (9.11)

(7,0)<(7,0)

Here, summation is taken over all o-planar trees (v, 6) that give (7, o) after contracting
one of their real edges. .

9.2 Homology of the graph complex

Theorem 9. The homology of the graph complex Go is isomorphic to the singular
homology of RH;.

Proof. First, we note that the statement directly follows when ¢ = id. In this case,
each stratum U(%u) is a disc and attached to finitely many lower dimensional strata
i.e, the stratification of RM; is a cell decomposition. The codimension of a stratum
6(%”) is equal to |E,|. Therefore, the d""-skeleton of RMg contains the strata 6(7#)
where |E,| = |S|—d—3. Alternatively, we take the fundamental classes [C/, )] for all
possible o-planar representatives of u-planar trees (v, u), and identify them according
to the relations given in $R-3. The differential of this cell complex is clearly given by
(9.11) since a stratum 5(%5) is in the codimension one boundary of another stratum
Cr0) if and only if (v, 0) produces (7, 0) by contracting one its edges (see Proposition
5.3.4). Therefore, the graph complex G, of RH; for o = id is a cell complex of this
moduli space.

Similarly, the stratifications of the moduli spaces RM; are cell decompositions
for any involution o when |S| = 4 (see Example 5.3.6). By using the way, we obtain

that the graph complexes are cell complexes for these cases.
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We prove the statement for o # id by induction on the cardinality of Perm(o).

Let 7 : RMg — RM‘; be the map forgeting s, s € Perm(c). Here, we use the
notations introduced in Section 8.1. /

Let By denote the union of d-dimensional strata of RMg, (i.e, UU(%u) where

IE,| =|S'| — d — 3). Let RMY, be filtered by
O =B_y CByC - C Bgis) C Bs|—s = RMg,.
The forgetful map 7 induces a filtration of RMg:
0=FE_1CEyC - CEys|-9 C Es|-3 = RMg
where E; = 7 (By). Then, the spectral sequence of double complex gives us
Epy = Hyro(Ep, By-1) = Hyso(RMG Z). (9.12)

We prove the theorem by writing down this spectral sequence explicitly. As a first
step, we calculate the homology groups Hyi,(E,, E,—1).

From now on, we assume that the statement of the theorem holds for RMg,.

Step 1. We can write homology of (E,, E,_1) as a direct sum of the homology of
its pieces:

Hpiq(Ep, Ep1) = @ Hp+q(77_1(6(%u))7 W_I(Q(%U)))‘

(7,0 B |—|8'|—d—3
Consider the following filtration of 7=1(C(,.):
fcYycY1CYy= 7'('71(6(7,“))

where Y}’s are the unions of strata

Yo = U é(v%min)v Y= U U(g,u;), Yy = U U(Tg,u;)

(Vo) (& up) (T3 ur)

such that m maps each stratum onto 6(%1‘) and the dimension of the fibers of 7 is j:
By using this filtration, we obtain the following spectral sequence.

Yzl,j - Hi+j(Yia Yia U(Y; A W_l(Q(%u)») = Hi+j(Ep’ Ep—l)-

Clearly, Y; contains strata of dimension p + i, and Y; N 771(Q(,,)) contains the
substrata that maps to B,_; (i.e, substrata of codimension one or higher in 5(7*#*)).
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Hence, we have

Y(I)J - @ H-] (6(7%’1‘%) ’ Q('Y:n’u:n) ) )
(Vhous)

Vi, = D HulCu Qean):
(G uy)

Y%,j - @ H]+2 C(Tk uk)aQ(TI:,uZ))
(75 ug,)

By using Lemma 8.2.1 (and isomorphism between relative homology and homology
with closed support), we can have the groups Y as products of homology groups of
base and fiber. The dimension of the fibers F ( j;L) of m: C’ (v, k) — C (v,u) 1S ze€ro,

hence

Y(l),j: @ H 'yu) Q’YU)®HC(F( ’Tn))
(Vi suim)

The dimension of the fibers F(u}) of 7 : U(Cz*v“f) — U(V,U) is one, hence

= P Hi(Cpu. Q) ® Hi(Fu(u)).

(& u)

Finally, the dimension of the fibers F(u}) of 7 : 6@5,%) — (4,0 is zero, hence

Vs, = D Hi(Cruy Q) ® H5(Fu(up)),
('r,:,u;;)

Yy, 0 = P Hi(Cpuw Quuw) © Hi(Fu(up)),
(T;‘,uZ)

Then, the differential d; : Y5 ; — Yi; and dy : Y7 ; — Y§; are respectively given by
the differentials

0.+ Hi(Fy(up)) — Hi(Fi(up)),

0. Hi(Fu(u]) — Ho(Fu(us)). (9-13)

The differential d; maps the fundamental class [C(yx/eon] to £[C(ye 500 (see
Lemma 8.1.2).
Finally, the differential dy : Y5 ; — Yo ;41 is given by the differentials

0, HE(F,(ul)) — Ho(Fy(ub)). (9.14)

For each pair of points in F,(u?,), there is a generator in H{(F,(u})) whose image
under 0, gives the difference of these points (see Section 8.1.2). Therefore, each pair
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of strata 6(%1 ur ) 6@:”27%2) that are zero dimensional fibrations over C,,) are

»Ymy

homologous relative to 771Q (., i-¢.,

[Co, )] = [C

)] =0. (9.15)

Vg Wing

It is important to note that, the kernel of the differential dy is trivial. This
follows from the fact that same is true for 0, given in (9.14). It is a consequence
of the relations of the homology of the fibers given in (8.2) and (8.3). Therefore,
the homology H,.(E,, E,_1) is given by the total homology of the spectral sequence
(Y; ; /1o, d1) where the ideal is generated by the relations (9.15).

Instead of considering u-planar trees, from now on, we pick all o-planar represen-
tatives of u-planar trees and impose the relation -3 given in (9.4) and &-4 given in
(9.9) arising from reversing o-planar structures.

Step 2. The calculations in Step 1 imply that the E!_is generated by the relative
fundamental classes of the strata. Moreover, it admits the relations that are imposed
in the definition of G,:

The chains defined in -1 and R-2 (resp. 6&-1, &-2 and &-3) with f; # s are
mapped onto the relation between the strata of ng: of same type.

On the other hand, the relations with f; = s come as consequence of the calcu-
lation of Step 1. For each relation (9.15) in relative homology H.(E,, E,_1), there
is a relation in H,(RMg). The sums cycles (9.2), (9.3), (9.6), (9.7) and (9.8) in
H,.(E,) are mapped onto the difference given by (9.15) in H,(E,, E,_1) since that the
valency of the vertex vy supporting s must be three. If otherwise, forgetting the tail
doesn’t require contraction and the o-planar trees obtained by forgetting s, s have
two additional edges. Therefore, they are codimension one or higher, and lie in £,_;.

We need to confirm that the sums defined in fR-1 and R-2 (resp. &-1, -2 and
G-3) are indeed homologous to zero. We can show this by using certain forgetful
maps. Here, we are going to show it for PR-1 and 9R-2. The other cases are essentially
the same.

The relations of type 2R-1. Consider the composition of projection 6(7*70*) —
g(v::,o:) onto the factor corresponding to vertex v, and forgetful maps U(W;,Oz) —
C(rs 0(w+)) Where (77,0(v*)) is an one-vertex o-planar tree with F_:F = {f1, fo} and
F® = {f3} which is obtained by forgetting all tails but f1, f1, f2, f2, f3.

The space 6(7570(0*)) is a two-dimensional disc with a puncture, and it is stratified
as in Figure 9.3.

If a codimension two stratum 6(%01) of C(,« o+ is in the fiber over a codimension
two stratum lying in boundary of C'(;: o)) (see, Figure 9.3), then (71, o7) is obtained
from (v*, 0*) by inserting a pair of real edges at vertex v. Similarly, if a codimension
two stratum 6(7;705) of 6(%0*) is in the fiber over a codimension two stratum lying
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Figure 9.3: The strata of 6(75,05).

inside of 6(75;,0(1,*)) (see, Figure 9.3), then (v, 0}) is obtained from (v*, 0*) by insert-
ing a pair of conjugate edges at vertex v as above. Since U(T;,O(v*)) is a punctured
disc, the fibers of forgetful map over any two points of U(TU*VO(U*)) are homologous i.e.
R (7, 0;v, fi1, f2, f3) is homologous to zero.

The relations of type fi-2. The relations in (9.3) are obtain in a similar way
with R-1. Here, we use a projection map 6(%0) — MFW(U). The relations in the
complex moduli space MFW@) are given by Kontsevich and Manin (see, Section 2.6.1)
give the relations in above.

Step 3. We have a complete description of generators and relations in E'. We need
to calculate the differentials.
The first differential d; : ]Ell,’q — E!

»—1,4 18 given by

dl . [6(7*,6*)] [d Z i[U(T*7O*)]’ (916)

(‘r*,o*)GG(T’O)W/e:T for eEEJE
y*/e¥=1* for e*GE]E*

In order to complete the proof, we only need to show that the higher differentials
ds and ds of E,, vanish.

Consider the strata of type 1 o-planar trees. Due dimensional reasons,the differ-
ential dy is zero except dy : By} — E} 5, and dy : B}y — E} ,,. Due to Lemma
8.1.1,

L if [Ci¢ror)] € By, then v, € VHS* and either |vs| =4, or |vs| =3 and |v.| > 4;

IT if [6(7%70%)] € E, o, then either vy € VE;} and |vg| = |v.| = 3, or v & Vﬂ%n and
lvs| = 3.
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Assume that

Cl 701 Z + C (7 7%

for [6(47701*)] € E},. Then, each o-planar trees (73, 05) must produce (¢, o)) by
contracting one of its real edges due to Theorem 4 and Proposition 5.3.4. On the
other hand, the vertex vy € V.- must be lvs| > 5 if it is a real vertex, and |vs| > 4 if
it is not a real vertex (see Lemma 8.1.1). The contraction of an real edge of (7}, 0})
increases or preserves the valency of the vertex v,. This contradicts with condition I
above. Hence, dj : E}Ll — E;_M must be zero.

Assume that

d( vm,m 21697

for [Cys 0n)] € ELy. Then, each o-planar tree (¢, o) must produce (v;,,05,) by
contracting one of its real edges due to Theorem 4 and Proposition 5.3.4. On the
other hand, the vertex v, € V.- must be a real vertex and |vy| = 4 or |vs| = 3
and |v.] > 3. The contraction of an real edge of ((/,0}) increases or preserves the
valencies of the vertices v, and v.. This contradicts with condition II above. Hence,
dy: B}y — E} 5, must be zero.

It remains to check the differential ds : B}, — B} _5,.

Assume that

d3([ (V0 m) Ziaﬁwok

for [Cys 0] € ELy. Then, the o-planar tree (77, 0;) must produce (v7,,05,) by
contracting one of its real edges due to Theorem 4 and Proposition 5.3.4. On the
other hand, the vertex v, € V.« must be |vs| > 5 if it is a real vertex, and |v,| > 4
if it is not a real vertex. The contraction of an real edge of (7}, 0}) increases or
preserves the valency of the vertex v,. This contradicts with condition I above.
Hence, ds : ]E — ]E 31 must be zero.

The 1mages of the strata of type 2 and type 3 o-planar trees can be check in a
same way. The same arguments show that the differentials dy and d3 are zero. O]

84



Chapter 10

Fundamental groups of RMg and
RMg

In this chapter, we give presentations of the fundamental groups of RME and Rﬁg
by using the groupoid of paths transversal to codimension one strata. This idea has
been used by Kamnitzer and Henriques in [18] to calculate the fundamental group of
RMg for o = id. This section extends their description to RMg and Rﬁg for any o.

10.1 Fundamental groups of open parts of strata

Here, we consider a particular subset of the set of o-planar trees. Let RTree(o) be
the set of o-planar trees having no conjugate pair of edges. If (v,0) € RTree(o) is
of type 1, then V., = VE, if (7,0) € RTree(o) is of type 2, then |V,| = 1, and if
(7,0) € RTree(o) is of type 3, then |V, | = 2.

For an o-planar tree (v, 0) € RTree(o), the open part O, 0 of the stratum is the
closed stratum U(%o) minus the union of the closure of its codimension one strata.

Proposition 10.1.1. For (v,0) € RTree(c), the open part of the stratum U(%O) is
simply connected.

Proof. For (v*,0%) € RTree(c), we have

Hvevw* 6(’%70;) if o* is of type 1,
6(7*,0*) = gw;;r,o;r) if o* is of type 2,

Mg, (v if o* is of type 3

(see Section 5.3). The open part Oy« o+ of 6(7*70*) is the product of the open parts
of its factors given above. Hence, we only need to consider the factors that are
corresponding to the one-vertex trees.
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We prove the statement by induction on the cardinality of Perm(o). First, we
note that the open part of the strata of RW‘; are contractible for o(S") = 8', |S'| = 3
and |Fix(o)| =1, |S'| = 4 and |Fix(o)| = 2, and |S’| = 4 and |Fix(c)| = 0. In these
cases, the stratification is a cell decomposition, and the open parts of the strata are
open discs (see [7, 21] and Example 5.3.6).

Let (v*,0%) be a one-vertex o-planar tree of type 1. Let [Perm™| > 0, and
T 6(7*,0*) — U(%O) be the map forgetting map the conjugate pairs of points s, 5. Let
O be a subset of the fiber F; = 771(3; p) such that (X*, p*) € O does not require any
stabilization forgetting s,s. For (X* p*) € O, ¥* = X. Since all special points are
fixed in ¥*, the different points of O are given by the position of the labelled point
s. The labelled point s is in (X \ ({special points} | JRY))/es. This follows from the
fact that all special points must be distinct (hence, we need to remove special points
and RY where s and 5 collide and give a real node) and s in either Fj or F_. (so
that, we need to take the quotient with respect to the real structure ¢y, : ¥ — ).

The degenerations of the curves (X%, p*) € O, which are obtain from limit s goes
to a special point in 3 \ R, give us points in Oy« o+ since the limit elements have
an additional conjugate pair of edges. On the other hand, the degeneration of the
curves (3*, p*) obtain from limit s goes to a point in RY gives a curve with a real
node i.e, the limits does not lie in O« +). Therefore, the restriction of the forgetful
map 7 : Oy= o) — Oy,0) has a fiber (¥ \ RE)/cs; over (X;p) € O,). It is clearly
that the fiber is simply connected.

If we assume simply connectedness of O, ), then O ,+) is clearly simply con-
nected. We prove the statement by induction on the cardinality of labeling set
Perm(o).

The proofs for o-planar trees (v, 0) € RTree(o) of type 2 and type 3 are the same
with type 1 case. The fiber of the forgetful map 7 : Oy« o) — O(y,0) Over (X;p) is
Y when (7%, 0%) is of type 2, and ¥/cx, when (7%, 0%) is of type 3. In both cases, the
fibers are simply connected. O

Let (,0) be an o-planar representative of the u-planar tree (v, u). We define the
open part of a stratum 6(%@ to be O,y := O(y,0). Note that so defined space O, )
does not depend on the o-planar representative.

Proposition 10.1.2. The moduli space RM; is stratified by simply connected sub-
spaces Oy ).

Proof. We only need to prove that the open parts O, ,) of the strata U(WL) are
pairwise disjoint.

First, we note that, if an u-planar tree (7, ) produces (v, u) be contracting only
conjugate pairs of edges, then C(; 4 is contained in O(,,,). This follows from Theorem
4 (b) and the definition of the open part of a stratum.
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Let (vi,u1), (y1,u1) € RTree(o). If two closed strata C,, ., intersect, they
intersect along the union of strata {J, , C(4) such that two o-planar trees (7,0)
gives (v;, 0;) by contracting a set of real edges (since by contracting conjugate pairs
of edges we obtain strata contained in the same open part). However, the strata
C(-.4) are not contained in open part O, ,,) since (7,6) must have additional real
edges and 6(7—76) contained in the union of codimension one strata. O

10.2 Groupoid of paths in RMyg

Let’s consider the following groupoid P of paths in RMg. Choose a point (X (u), p(u))
in every connected component Cf. ., of RAMg. The objects Ob(P) are these elements
(X(u), p(u)). The morphisms (v, %);? in Hom(P) are the homotopy classes of paths
in RMyg that connect the point (X(u1), p(u1)), (Z(us), p(uz)) through the common
codimension 1 boundary C, 4 of the strata U(mi),z’ = 1,2. Notice that such paths
connecting (3(uq), p(u1)), (3(uz), p(us)) are homotopic to each other since the open
parts of G(mi)’s are simply connected (see Proposition 10.1.1). The homotopy classes
of paths that intersect with only codimension 1 strata are given by concatenations of

Ui+1

paths (v, U;)u;
Theorem 10. The fundamental group m (RM;) 18 presented by the loops
(Vs ) (0 2)y == (s 1 ), (Y T oy, (10.1)
subject to the following relations relations:
e For each (y,u) with |E,| =1,
(v, @)z (v, @)y = 1. (10.2)
e For each (7', u) with |E,| =2

<77ﬁ1>5$ <")/,”122>Z§ 1

i )iy =1 A 103
(v, i)z (v, @2)us (s Ua)us (7, )yt = )

where (7, U;) are the u-planar trees that are obtained by contracting an edge of
(', ),

Proof. Every loop in RM; is homotopic a loop which is transversal to codimension
one faces. Such transversal loops can be obtained by perturbing the original loops.
Hence, we can choose the loops given in (10.1) as representatives of homotopy classes
of loops.
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These loops are subject to the following relations. The concatenation

(Vs @) (vs W)
of (v, @)y? with the reverse path (v, a);! is obviously homotopic to a point (see Fig.
10.1a) and gives the relation (10.2).

If two paths in RM% are homotopic, then they are homotopic by a homotopy of
paths that are transversal to the codimension one strata. Therefore, the homotopy
relations arise from the passing the paths through codimension 2 strata: Let (7', u)
be a u-planar tree corresponding to a codimension two stratum of RM;. The stratum
C(y ) is contained in two or four codimension one strata, since we can obtain two
or four u-planar trees by contracting one of the two edges of (v/,u). Let C(y )i € I
intersect along codimension two stratum 5(7/“). Therefore, the loops

() (7, G2y it 1={1,2} 10.4)
<’Y, ’LAL1>Zf <’}/, 7:62>Zg <77 ﬁ3>53 <P)/7 ﬁ4>gi if I = {17 o 74}

around C/,,, is contractible (see Fig. 10.1b and 10.1c) and give the relations (10.3).

Figure 10.1: (a) Concatenation of a path with its inverse, (b) and (c) Concatenations
of paths around a codimension two stratum.

10.3 Groupoid of paths in Rﬁg

The group ﬂl(RMé’) can be given in a similar way to m (RMg). Let P be the
groupoid of paths in RMg given as follows. Choose a point (3(0),p(0)) in every
top dimensional strata C(, o C RMZ (i.e, [V,| = 1). The set of objects Ob(P) is
{(2(0),p(0)) € C(r0y | [V+| = 1}. The morphisms (v,06)%> in Hom(P) are the ho-
motopy classes of paths in Rﬁg that connect the point (3(01), p(01)), (X(02), p(02))
through the common codimension one boundary C, s of the strata 6(7701.),2' =1,2.
The concatenations of paths (v, 0;)o:"" give the homotopy classes of paths that meet

only with codimension one strata.
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Theorem 11. The fundamental group m (Rﬂé’) 15 presented by the loops

<77 61>gf <77 62>g§ T <77 6”—1>g:,1 <'}/7 6n>g7ll

subject to the following relations relations:
e For each (v, 0) with |E,| =1,
(7,005 (7, 0)55 =
e For each (7', 0) with |E,| =2

<%01>gf <%52>3§ =1
(7,01)22 {7, 02)02 (7,03)08 (7,04)01 =

(10.5)

(10.6)

(10.7)

where (7, 0;) are the o-planar trees that are obtained by contracting an edge of

the all o-planar trees in R-equivalence class of (7', 0).

The proof this theorem is exactly the same with the proof of the Theorem 10. We

will not repeat it here.
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Appendix A

Orientations of the strata

Let (7,0) be an o-planar tree. By choosing three flags in F,(v), and using the
calibrations as in Section 5.1.2, we obtain a coordinate system in C,, ,,) for each
v E Vﬂlf. More precisely, we use the following choice.

e Let v be a real vertex, o, be a o-planar structure of type 1, and Fix(o) # 0.
In this case, there is a unique real flag f,, lying in the shortest path between
vertices v and 9,(s,) since real locus RY is connected.

— If ]F%(Uﬂ > 3, then we specify an isomorphism ®,, : ¥, — CP! by mapping
three consecutive special points (py,_,, py,.,Ps) to (1,00,0).
— If |FX(v)| = 1,2, then we specify an isomorphism &, : ¥, — CP' by

mapping three special points (py,,,ps.,Pr) to (00,v/—1,—/—1) for an
arbitrary f, € F(v).

e Let v be a real vertex, o, be a o-planar structure of type 1, and Fix(c) = ().

— If [F5(v)| > 3, first we pick an arbitrary real flag f,,. Then, we specify an
isomorphism ®, : 3, — CP! by mapping three consecutive special points
(pfj—17pfm’pf1) to (L 0, O)'

— If |Fﬂ$(v) =1, 2, first we pick an arbitrary real flag f,,,. Then, we specify an
isomorphism ®,, : 3, — CP! by mapping three special points (py,,, Dy, Dfa)
to (00, /=1, —v/—1) for an arbitrary f, € F¥(v).

— If ’FE(U” = 0and s, € F7 (resp. 5, € FY), then there is a unique flag f,, €
F7(v) lying in the shortest path to vertices v and 8,(sy) (resp. 9,(3,)).
We specify an isomorphism ®,, : 3, — CP' by mapping four special points
(pfﬁ,pfa,pfé,pfﬁ) to (A\W/—1, =A\/—1, —/—1) for an arbitrary f,, € F¥(v).
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e Let v, be the real vertex, o,, be the o-planar structure of type 2. Then, there
is a unique flag f, € F1(v) lying in the shortest path to vertices v and 9, (s,)
We specify an isomorphism ®, : 3, — CP! by mapping four special points
(pfﬁ,pfa,pfﬁ,pfﬂ) to (\/—1, —A\v/—1, —/—1) for an arbitrary f, € F¥(v).

R

~» we obtain a coordinate

Similarly, by choosing three flags in F.(v) for v ¢ V
system in MFV(U). We use the following choice.

e Let v,v are a pair of conjugate vertices. Then, we specify isomorphisms ®,, :
¥, — CP" and &3 : X, — CP' by mapping three special points (py, , Pf., s, )
of ¥,, and their conjugates (pyr, , Py, ,Pys,) to (0,1, 00).

Remark A.0.1. It is important to note that the choices above and in Section 6.2 give
different normalized coordinates on codimension one strata. They can be transformed
to each other by rational transformation.

In such a way, we obtain orientations [€(,, o,)] for v € V¥, and [Q,,] for v ¢ V.
The product

Qo) = N Qeuon] A\ (2]

UEVE verY'

gives an orientation of C(, ) i.e, determines the relative fundamental cycles [C, o).

A.1 Boundary homomorphism

Let e be a real edge of an o-planar tree (v, 6), and 0.(e) = {v1,v2}. Let v — 7 be the
contraction of the edge e and v be image of the vertives vy, vy under the contraction.
The orientation [}, ,,y] induces an orientation

[Q(%p )] N [Q(%270U2)] when V1, Vg € VE,
[Q when vy, vy & VE,

Yoq

on the boundary Cy, o,) X Cly,.0n,): Pick a point (X°,p°%) € Cly,, 00) X Clrnyi00)
and consider a tubular neighborhood V x [0, €[ of (3° p°) in U(Tmov) as in Section
5.3. The outward normal direction of (X%, p°) € C(,, o,,) X C ) in Cyy 0,) 18 =0y
where ¢ is the standart coordinate on [0, €[C R. Therefore, we define homomorphism

Q7 00] { El o)) A R0 00
v,0v :t [Q%J

Ovuq Yvg ,0vg

where the differential forms satisfy

Q(T'Uov) = -0 ditA Q(’Yv10v1) A Q(

Yug Ovs )
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for © > 0 at all points of V' x [0, €.

In order to determine the sign of [Q(, ,,)], first we apply rational transformations
to C(y,,.0,,) and put the point on X, in a normalization position as in Section 6.2.
Then, by appying the formulas for induced orientations in Section 6.2.1 we compare
the signs of the orientations.

This gives us coboundary homomorphism of cochains of strata

0:[Cirol = >, *I[Cha) (A.2)

(1,0)<(7,0)

where the signs are determined by (A.1).
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