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Abstract

The aim of this thesis is to explore the moduli of pointed real curves of genus zero.
We investigate the actions of a set of natural real structures

cσ : (Σ; ps1 , · · · , psn
) 7→ (Σ; pσ(s1), · · · , pσ(sn)),

on the moduli space MS of stable S-pointed complex curves of genus zero where σ is
an involution acting on the labeling set S = {s1, · · · , sn}.

First, we determine the moduli functor of σ-equivariant families represented by the
real variety (MS, cσ). We introduce the fixed point set RM

σ

S of the real structure cσ

as the moduli space of σ-invariant real curves.

We introduce a natural combinatorial stratification of the real moduli space RM
σ

S

through the stratification of MS. Each stratum gives the equisingular deformations of
σ-invariant real curves. We identify the strata of RM

σ

S with the products of spaces of
Z2-equivariant point configurations in the projective line CP1 and the moduli spaces
MS′ . The degeneration types of σ-invariant real curves are encoded by trees with
corresponding decorations. We calculate the first Stiefel-Whitney class of RM

σ

S in
terms of its strata. We construct the orientation double cover RM̃σ

S of RM
σ

S, and
show that the moduli space RM

σ

S is not orientable for |S| ≥ 5 and Fix(σ) 6= ∅. The
double covering which is constructed in this work significantly differs from the ‘double
covering’ in the recent literature on open Gromov-Witten invariants and moduli spaces
of pseudoholomorphic discs: Our double covering has no boundary which is better
suited for the application of intersection theory.

We then explore the further topological properties of RM
σ

S. We construct a graph
complex G• generated by the fundamental classes of the strata of RM

σ

S. We show that
the homology of RM

σ

S is isomorphic to the homology of the graph complex G•.

Finally, we give presentations of the fundamental groups of the real moduli space RM
σ

S

and its orientation double cover RM̃σ
S .
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Chapter 1

Introduction

I mean ..., you know ...

Sur l’espace de modules des courbes rationnelles

réelles pointées

Le but de cette thèse est d’explorer les propriétés topologiques des espaces de modules

des courbes rationnelles réelles pointées.

Modules de variétés réelles: Stratégie générale. Les problèmes de modules

en géométrie réelle se posent naturellement comme des versions équivariantes des

problèmes de modules analogues de la géométrie complexe. Ainsi, une variété réelleX

peut être définie comme une variété complexe munie d’une involution antiholomorphe

cX : X → X et une famille réelle de variétés comme une famille complexe π : UB → B

munie d’une paire de structures réelles cU : UB → UB et cB : B → B de sorte que le

diagramme suivant commute

UB
cU−−−→ UB

π

y yπ

B
cB−−−→ B,

(1.1)

(notons que seules les fibres au-dessus des points réels de B portent une structure

réelle qui est donnée par cU). Dès que l’espace de modules M du problème complexe

associé est fin, le problème de modules réel se réduit à l’étude des structures réelles

sur M , les espaces de points fixes des structures réelles sur M servant comme les

véritables espaces de modules réels.

L’espace de modules des courbes rationnelles complexes pointées. Ap-

pelons courbe S-pointée stable toute courbe rationnelle complexe Σ avec des points
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distincts et lisses p = (ps1 , · · · , psn) ⊂ Σ marqués par des éléments d’un ensemble fini

S = {s1, . . . , sn} telle que les conditions suivantes sont vérifiées :

• Σ a seulement des singularités nodales;

• le groupe d’automorphismes holomorphes Aut(Σ;p) est trivial.

L’espace de modules MS des courbes rationnelles pointées stables a été inten-

sivement étudié comme l’un des modèles fondamentaux des problèmes de modules

en géométrie algébrique (voir [22, 26, 27, 28, 29, 32]). Pendant les deux dernières

décennies, l’espace de modules MS, aussi bien que sa strate ouverte MS (formée

par des courbes non singulières), ont joué des rôles centraux dans diverses branches

des mathématiques. La représentation du groupe fondamental de MS en termes

d’intégrales réitérées de l’équation de KZ a mené à la théorie de Drinfeld des groupes

quantiques (voir, par exemple [10]). Des intégrales réitérées semblables sont naturelle-

ment apparues dans la description de Kontsevich des invariants de noeuds de Vasiliev

([25]). L’espace de modules MS et la théorie d’intersection sur MS sont devenues les

pierres angulaires dans la théorie des invariants de Gromov-Witten, la cohomologie

quantique et la symétrie miroir (voir, par exemple [26, 27, 28, 32]).

L’espace de modules des courbes rationnelles réelles pointées. L’espace de

modules MS porte un ensemble d’involutions antiholomorphes :

cσ : (Σ; ps1 , · · · , psn) 7→ (Σ; pσ(s1), · · · , pσ(sn)), (1.2)

où σ ∈ Sn est une involution sur S. Puisque l’espace de modules MS des courbes

S-pointées stables est fin, nous pouvons appliquer la méthode ci-dessus pour étudier

l’espace de modules des courbes rationnelles réelles pointées.

Les ensembles RMσ

S des points fixes des cσ paramétrisent les courbes σ-invariantes

qui sont des courbes S-pointées stables (Σ;p) avec les structures réelles cΣ : Σ → Σ

telles que cΣ(ps) = pσ(s).

Les espaces de modules des courbes rationnelles réelles pointées stables ont récem-

ment attiré l’attention dans divers contextes tels que les ζ-motifs multiples [14], les

représentations des groupes quantiques [9, 18, 21, 36], et les invariants de Welschinger

[37, 38].

Dans cette thèse, nous explorons les propriétés topologiques des espaces de mod-

ules RMσ

S (que nous visons à appliquer à certains des problèmes ci-dessus).

Théorème. (a) La famille universelle de courbes π : US → MS est une famille

σ-équivariante.
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(b) Toute famille σ-équivariante de courbes rationelle S-pointées stables πB :

UB → B est induite par une paire unique de morphismes réels

UB
κ̂−−−→ US

πB

y yπ

B
κ−−−→ MS.

(c) Soit Mσ le foncteur contravariant qui envoie une variété réelle (B, cB) sur la

famille σ-équivariante des courbes au-dessus de B. Le foncteur de modules Mσ est

représenté par la variété réelle (MS, cσ).

(d) Pour tous |S| ≥ 3, l’espace de modules RMσ

S de courbes σ-invariantes est une

variété lisse de dimension réelle |S| − 3.

Les variétés quasi-projectivesDτ ⊂MS, qui donnent des déformations équisinguli-

ères de courbes rationnelles S-pointées stables , sont classées par les S-arbres τ .

L’espace de modules MS est stratifié par Dτ . D’autre part, la structure réelle d’une

courbe σ-invariante engendre des structures additionnelles: un ordre cyclique sur

les points marqués se situant dans RΣ, et une partition des points marqués dans

Σ \RΣ. Ces données additionnelles sont codées de façon combinatoire par les arbres

u-planaires (τ, u). Nous obtenons une stratification de RMσ

S semblable à celle de MS

en employant les arbres u-planaires.

Théorème. (a) L’espace de module RMσ

S est stratifié par les sous-ensembles semi-

algébriques C(γ,u) deux à deux disjoints.

(b) L’adhérence de n’importe quelle strate C(γ,u) est stratifiée par C(γ′,u′) où (γ, u)

est obtenu en contractant un ensemble invariant d’arêtes dans (γ′, u′).

En employant cette stratification, nous calculons la première classe de Stiefel-

Whitney de RMσ

S. Notons Fix(σ) = {s ∈ S | s = σ(s)} et Perm(σ) = {s ∈ S |
σ(s) 6= s}. Si |Fix(σ)| > 0, nous supposons que sn = σ(sn) et pour tout arbre γ à

deux sommets notés {ve, v
e}, nous choisissons comme ve tel que ∂γ(sn) = ve.

Théorème. (a) Pour |Fix(σ)| > 0, le dual de Poincaré de la première classe de

Stiefel-Whitney de RMσ

S est donné par

[w1] =
∑
(γ,u)

[C(γ,u)] =
∑

γ

[RDγ] mod 2, (1.3)

où les deux sommes portent sur tous les arbres γ à deux sommets tels que

• |Fγ(v
e)
⋂

F| ≤ 1 et |ve| = 0 mod 2, ou

• |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| 6= 3 et |ve|(|ve| − 1) = 0 mod 2, ou

• |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| = 3 et |FR

γ (ve)| = 1
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et sur toutes les structures u-planaires sur γ (pour la première somme).

(b) Pour |Fix(σ)| = 0, le dual de Poincaré de la première classe de Stiefel-Whitney

de RMσ

S s’annule.

Ce théorème montre que l’espace de modules RMσ

S est orientable quand |S| = 4

ou |Fix(σ)| = 0. Nous donnons une construction combinatoire du revêtement double

d’orientation pour le reste des cas i.e., |S| > 4 et |Fix(σ)| > 0. En remarquant la

non-trivialité du revêtement double d’orientation dans ces cas là, nous montrons que

RMσ

S n’est pas orientable.

Le revêtement double d’orientation dans cette thèse diffère de manière significative

du revêtement double d’orientation dans la littérature récente sur les invariants de

Gromov-Witten ouverts et les espaces de modules des disques pseudoholomorphes

(voir, par exemple [11, 31]). Notre revêtement double n’a pas de bord ce qui convient

mieux pour les applications à la théorie d’intersection.

Toutes les applications de RMσ

S mentionnées ci-dessus exigent des informations

sur l’homologie ou le groupe fondamental de RMσ

S. Dans cette thèse, nous présentons

un ‘complexe de graphes’ G• où

Gd :=

 ⊕
(τ,o):|Eτ |=|S|−d−3

Z [C(τ,o)]

/ ∼

sont les groupes abélien produit par des arbres décorés (τ, o) avec |S| − d− 3 arêtes,

modulo des relations naturelles additionnelles. La différentielle ∂ : Gd → Gd−1 est

donnée par

∂ [C(τ,o)] =
∑

(γ,δ(o))/e=(τ,o)

± [C(γ,δ(o))],

où (γ, δ(o)) sont les types de dégénération des courbes σ-invariantes qui représentent

les faces de codimension un de C(τ,o).

Bien que les strates C(τ,o) de RMσ

S soient topologiquement non triviales, la suite

spectrale d’une filtration de RMσ

S donnée par la stratification se comporte bien et

nous permet de montrer le résultat suivant.

Théorème. H∗(RM
σ

S) est isomorphe à H∗(G•).
Ceci nous donne une description combinatoire de l’homologie des espaces RMσ

S

en termes de leur stratification.

C’est un fait bien connu que RMσ

S est un espace K(π1, 1) pour σ = id ([7, 5]).

Nous considérons le groupöıde des chemins qui sont transversaux aux strates de

codimension un de RMσ

S (et un groupöıde semblable pour RM̃σ
S ). Nous donnons des

présentations de groupes fondamentaux de RMσ

S (et RM̃σ
S ) en termes des générateurs

et relations en employant leur stratification.
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On moduli of pointed real curves of genus zero

The aim of this thesis is to explore the topological properties of the moduli spaces of

pointed real curves of genus zero.

Moduli problem for real varieties: General strategy. The moduli problems in

real geometry naturally appear as equivariant moduli problems in complex geometry.

A real variety X is a complex variety with an antiholomorphic involution cX : X → X

called a real structure, and a real family of variety X is a complex family πB : UB → B

with a pair of real structures cU : UB → UB and cB : B → B which makes the following

diagram commute

UB
cU−−−→ UB

π

y yπ

B
cB−−−→ B.

(1.4)

Note that the fibers over a real point of B admit real structures which are determined

by cU . If the moduli space M of the complex variety X is fine, then the moduli

problem of the real variety (X, cX) reduces to the study of real structures on M , and

the fixed point sets of real structures of M give the moduli spaces of the real variety

(X, cX).

Moduli space of pointed complex curves of genus zero An S-pointed sta-

ble curve (Σ;p) is a connected complex algebraic curve Σ of arithmetic genus zero

with distinct, smooth, labeled points p = (ps1 , · · · , psn) ⊂ Σ, satisfying the following

conditions:

• Σ has only nodal singularities;

• the group of holomorphic automorphisms of Σ is trivial.

The moduli space MS of S-pointed stable curves has been extensively studied

as one of the fundamental models of moduli problems in algebraic geometry (see

[15, 22, 29, 27, 28, 32]). During the last two decades, the moduli space MS as well as

its open stratum MS have played central roles in various branches of mathematics:

The representation of the fundamental group of MS in terms of iterated integrals

of the KZ equation led to Drinfeld’s theory of quantum groups (see, for example

[10]). Similar iterated integrals have naturally appeared in Kontsevich’s description

of Vasiliev knot invariants (see [25]). The moduli spaceMS and its intersection theory

have become the corner stone in the theory of Gromov-Witten invariants, quantum

cohomology and mirror symmetry (see, for example [32]).
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Moduli space of pointed real curves of genus zero The moduli space MS

carries a set of anti-holomorphic involutions. For each involution σ ∈ Sn acting on

the labeling set S = {s1, · · · , sn}, there is a real structure

cσ : (Σ; ps1 , · · · , psn) 7→ (Σ; pσ(s1), · · · , pσ(sn)). (1.5)

Since MS is a fine moduli space, we can apply the prescription given above for moduli

problem of pointed real curves of genus zero.

The fixed point set of the real structure cσ is the moduli space RMσ

S of σ-invariant

curves that are S-pointed stable curves (Σ;p) with a real structure cΣ : Σ → Σ

satisfying cΣ(ps) = pσ(s).

The moduli space of σ-invariant curves has recently attracted attention in various

contexts such as multiple ζ-motives [14], representation theory and quantum groups

[9, 18, 21, 36], and Welschinger invariants [37, 38].

In this thesis, our aim is to explore the topological properties of the moduli space

of σ-invariant curves.

Theorem. (a) The universal family of curves π : US → MS is a σ-equivariant

family.

(b) Any σ-equivariant family of S-pointed stable curves over πB : UB → B is

induced by a unique pair of real morphisms

UB
κ̂−−−→ US

πB

y yπ

B
κ−−−→ MS.

(c) Let Mσ be the contravariant functor that sends real varieties (B, cB) to the set

of all σ-equivariant family of curves over B. The moduli functor Mσ is represented

by the real variety (MS, cσ).

(d) For |S| ≥ 3, the moduli space RMσ

S of σ-invariant curves is a smooth projective

real manifold of dimension |S| − 3.

The equisingular deformations of S-pointed stable curves are given by quasi-

projective varieties Dτ ⊂MS indexed by trees τ . The moduli space MS is stratified

by these subspaces Dτ . On the other hand, the real structure of a σ-invariant curve

determines additional structures: A cyclic ordering of special points lying in RΣ, a

partition of special points lying in Σ \ RΣ. These additional structures are encoded

by u-planar trees (τ, u). We obtain a stratification of RMσ

S similar to MS by using

u-planar trees.

Theorem. (a) The moduli space RMσ

S is stratified by pairwise disjoint semi-algebraic

subsets C(γ,u).

(b) The closure of any stratum C(γ,u) is stratified by {C(γ′,u′) | (γ′, u′) < (γ, u)}.
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By using this stratification, we calculate the first Stiefel-Whitney class of RMσ

S.

Let Fix(σ) = {s ∈ S | s = σ(s)} and Perm(σ) = {s ∈ S | s 6= σ(s)}. If |Fix(σ)| > 0,

we assume that sn = σ(sn) and for all trees γ have two-vertices {ve, v
e} such that

∂γ(sn) = ve.

Theorem. (a) For |Fix(σ)| > 0, the Poincare dual of the first Stiefel-Whitney class

of RMσ

S is

[w1] =
∑
(γ,u)

[C(γ,u)] =
∑

γ

[RDγ] mod 2,

where the both sums are taken over all two-vertex trees such that

• |Fγ(v
e)
⋂

F| ≤ 1 and |ve| = 0 mod 2, or

• |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| 6= 3 and |ve|(|ve| − 1) = 0 mod 2, or

• |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| = 3 and |FR

γ (ve)| = 1,

and, in the first sum, in addition over all u-planar structures on γ.

(b) For |Fix(σ)| = 0, the Poincare dual of the first Stiefel-Whitney class of RMσ

S

vanishes.

This theorem shows that the moduli space RMσ

S is orientable when |S| = 4 or

|Fix(σ)| = 0. We give a combinatorial construction of the orientation double cover

of RMσ

S for the rest of the cases i.e., |S| > 4 and |Fix(σ)| > 0. By showing the

non-triviality of the orientation double covers in these cases, we prove that RMσ

S is

not orientable for |S| > 4 and |Fix(σ)| > 0.

The orientation double covering in this work significantly differs from the ‘dou-

ble covering’ in the recent literature on open Gromov-Witten invariants and moduli

spaces of pseudoholomorphic discs (see [11, 31]): Our double covering has no bound-

ary which suits better for the use of intersection theory.

All of the applications mentioned above require a description of the homology or

the fundamental group of RMσ

S. In this thesis, we introduce a combinatorial graph

complex G• where

Gd :=

 ⊕
(τ,o):|Eτ |=|S|−d−3

Z [C(τ,o)]

/ ∼

are the Abelian groups generated by the relative fundamental classes of the strata

C(τ,o) modulo the relations induced by the gluing of codimension one faces of top-

dimensional strata and some additional natural relations. The differential ∂ : Gd →
Gd−1 is given by

∂ [C(τ,o)] =
∑

(γ,δ(o))=(τ,o)

± [C(γ,δ(o))],

12



where (γ, δ(o)) are the degeneration types of the pointed real curves lying in the

codimension one faces of C(τ,o).

Although the strata C(τ,o) of RMσ

S are topologically non-trivial, the spectral se-

quence of a filtration of RMσ

S given by the stratification behaves nicely and allows us

to prove the following theorem.

Theorem. H∗(RM
σ

S) is isomorphic to H∗(G•).
This gives us a combinatorial description of the homology of the real moduli space

in terms of its stratification.

It is quite well-known fact that RMσ

S is a K(π1, 1)-space for σ = id (see, for exam-

ple [5]). We consider the groupoid of paths that are transversal to the codimension

one strata of RMσ

S (and a similar groupoid for RM̃σ
S ). We give presentations of the

fundamental groups of RMσ

S and RM̃σ
S in terms of generators and relations by using

their stratifications.

Notation/Convention

We denote the finite set {s1, · · · , sn} by S, and the symmetric group consisting of

all permutations of S by Sn. For an involution σ ∈ Sn, we denote the subsets

{s ∈ S | s̄ = σ(s)} and {s, s̄ ∈ S | s̄ 6= σ(s)} respectively by Fix(σ) and Perm(σ).

Through this paper, we only consider the involution

σ =

(
s1 · · · sk sk+1 · · · s2k s2k+1 · · · s2k+l

sk+1 · · · s2k s1 · · · sk s2k+1 · · · s2k+l

)
, (1.6)

where 2k + l = n. We fix Perm(σ) = {sα | α = 1, · · · 2k}, and Fix(σ) = {s2k+i | i =

1, · · · , l}.
In this paper, the genus of the curves is zero except when the contrary is stated

explicitly. Therefore, we omit mentioning the genus of the curves.
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Chapter 2

Pointed complex curves of genus

zero and their moduli

This chapter reviews the basic facts on pointed complex curves of genus zero and their

moduli space. The moduli space of S-pointed stable curves of genus zero is stratified

according to degeneration types of these curves. The degeneration types of pointed

curves are encoded by trees. The combinatorial structure of the stratification and the

intersection ring of the moduli space MS are discussed. The group of holomorphic

automorphisms Aut](MS) respecting the stratification is introduced and shown that

it is isomorphic to permutation group Sn.

2.1 Pointed curves and their trees

Definition 2.1.1. An S-pointed complex curve (Σ;p) is a connected complex alge-

braic curve Σ with distinct, smooth, labeled points p = (ps1 , · · · , psn) ⊂ Σ, satisfying

the following conditions:

• Σ has only nodal singularities.

• The arithmetic genus of Σ is equal to zero.

The nodal points and labeled points are called special points.

A family of S-pointed complex curves over a complex manifold B is a proper,

holomorphic map πB : UB → B with n sections ps1 , · · · , psn such that each geometric

fiber (Σ(b);p(b)) is an S-pointed curve.

Two such curves (Σ;p) and (Σ′;p′) are isomorphic if there exists a bi-holomorphic

equivalence Φ : Σ → Σ′ mapping ps to p′s for all s ∈ S.

An S-pointed curve is stable if its group of automorphisms is trivial (i.e., on each

irreducible component, the number of special points is at least three).

14



2.1.1 Graphs

Definition 2.1.2. A graph Γ is a collection of finite sets of vertices VΓ and flags (or

half edges) FΓ with a boundary map ∂Γ : FΓ → VΓ and an involution jΓ : FΓ → FΓ

(j2Γ = id). We call EΓ = {(f1, f2) ∈ F2
Γ | f1 = jΓ(f2) & f1 6= f2} the set of edges, and

TΓ = {f ∈ FΓ | f = jΓ(f)} the set of tails. For a vertex v ∈ VΓ, let FΓ(v) = ∂−1
Γ (v)

and |v| = |FΓ(v)| be the valency of v.

We think of a graph Γ in terms of its following geometric realization ||Γ||: Consider

the disjoint union of closed intervals
⊔

fi∈FΓ
[0, 1]× fi, and identify (0, fi) with (0, fj)

if ∂Γ(fi) = ∂Γ(fj), and identify (t, fi) with (1 − t, jΓ(fi)) for t ∈]0, 1[ and fi 6= fj.

The geometric realization of Γ has a piecewise linear structure.

Definition 2.1.3. A tree γ is a graph whose geometric realization is connected and

simply-connected. If |v| > 2 for all vertices, then such a tree is called stable.

We associate a subtree γv for each vertex v ∈ Vγ which is given by Vγv =

{v},Fγv = Fγ(v), jγv = id, and ∂γv = ∂γ.

Definition 2.1.4. Let γ and τ be trees with n tails. A morphism between these

trees φ : γ → τ is a pair of maps φF : Fτ → Fγ and φV : Vγ → Vτ satisfying the

following conditions:

• φF is injective and φV is surjective.

• The following diagram commutes

Fγ
∂τ−−−→ Vγ

φF

x yφV

Fτ
∂γ−−−→ Vτ .

• φF ◦ jτ = jγ ◦ φF.

• φT := φF|T is a bijection.

An isomorphism φ : γ → τ is a morphism where φF and φV are bijections. We denote

the isomorphic trees by γ ≈ τ .

Each morphism φ : γ → τ induces a piecewise linear map between the geometric

realizations of γ and τ .

Lemma 2.1.5. Let γ and τ be stable trees with n tails. Any isomorphism φ : γ → τ

is uniquely defined by its restriction on tails φT : Tτ → Tγ.
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Proof. Let φ,ϕ : γ → τ be two isomorphisms such that their restrictions on tails are

the same. Consider the path f1Pf2 in ||γ|| that connects a pair of tails f1, f2. The

automorphism ϕ−1 ◦φ of γ maps f1Pf2 to itself; otherwise, the union of the f1Pf2 and

its image ϕ−1 ◦φ(f1Pf2) gives a loop in ||γ||, which contradicts simply-connectedness.

Moreover, the restriction of ϕ−1 ◦ φ to the path f1Pf2 is the identity map since it

preserves distances of vertices to tails f1, f2. This follows from the compatibility of

the automorphism ϕ−1 ◦ φ with ∂γ and jγ.

The geometric realization ||γ|| of γ can be covered by paths that connects pairs

of tails of γ. We conclude that the automorphism ϕ−1 ◦ φ is the identity since it is

the identity on every such path.

There are only finitely many isomorphisms classes of stable trees whose set of tails

are S. We call the isomorphism classes of such trees S-trees. We denote the set of all

S-trees by T ree.

2.1.2 Dual trees of pointed curves

Let (Σ;p) be an S-pointed stable curve and η : Σ̂ → Σ be its normalization. Let

(Σ̂v; p̂v) be the following pointed stable curve: Σ̂v is a component of Σ̂, and p̂v is the

set of points consisting of the preimages of special points on Σv := η(Σ̂v). The points

p̂v = (p̂f1 , · · · , p̂f|v|) on Σ̂v are ordered by the elements f∗ of a set Fγ(v).

Definition 2.1.6. The dual tree γ of an S-pointed curve (Σ;p) is the S-tree consisting

of the following data:

• Vγ is the set of components of Σ̂.

• Fγ(v) is the set consisting of the preimages of special points in Σ̂v.

• ∂γ : f 7→ v if and only if p̂f ∈ Σ̂v.

• jγ : f 7→ f if and only if p̂f is a labeled point, and jγ : f1 7→ f2 if and only if

p̂f1 ∈ Σ̂v1 and p̂f2 ∈ Σ̂v2 are the preimages of the nodal point Σv1 ∩ Σv2 .

Lemma 2.1.7. Let Φ be an isomorphism between the S-pointed stable curves (Σ;p)

and (Σ′;p′).

(a) Φ induces an isomorphism φ between their dual trees γ, γ′.

(b) Φ is uniquely defined by its restriction on labeled points.

Proof. (a) The result follows from the decomposition of Φ into its restriction to each

irreducible component and the Definition 2.1.4.

(b) Due to Lemma 2.1.5, the isomorphism φ : γ → γ′ is determined by the restric-

tion of Φ to the labeled points. The isomorphism φ determines which component of
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Figure 2.1: Dual tree of an S-pointed curve for |S| = 5.

Σ is mapped to which component of Σ′ as well as the restriction of Φ to the special

points. Each component of Σ is rational and has at least three special points. There-

fore, the restriction of Φ to a component is uniquely determined by the images of the

three special points.

2.2 Deformations of pointed curves

Let γ be the dual tree of an S-pointed curve (Σ;p), and Σ̂ → Σ be its normaliza-

tion. Let (Σ̂v; p̂v) be the following Fγ(v)-pointed stable curve corresponding to the

irreducible component Σv of (Σ;p). Let Ω1
Σ be the sheaf of Kähler differentials.

The infinitesimal deformations of a nodal curve Σ with divisor Dp = ps1 +· · ·+psn

is canonically identified with the complex vector space

Ext1OΣ
(Ω1

Σ(Dp),OΣ), (2.1)

and the obstructions lie in

Ext2OΣ
(Ω1

Σ(Dp),OΣ).

In this case, it is known that there is no obstruction (see, for example [31] or [17]).

The space of infinitesimal deformations is the tangent space of the space of defor-

mations at (Σ;p). It can be written explicitly in the following form:⊕
v∈Vγ

H1(Σ̂v, TΣ̂v
(−Dp̂v))⊕

⊕
(fe,fe)∈Eγ

Tp̂fe
Σ̂⊗ Tp̂fe Σ̂. (2.2)

The first part corresponds to the equisingular deformations of Σ with the divisor

Dpv =
∑

fi∈Tγ
pfi

, and the second part corresponds to the smoothing of nodal points

pe of the edges e = (fe, f
e) (see [17]).
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2.2.1 Combinatorics of degenerations

Let γ be the dual tree of an S-pointed curve (Σ;p). Consider the deformation of

a nodal point of (Σ;p). Such a deformation of (Σ;p) gives a contraction of an

edge of γ: Let e = (fe, f
e) ∈ Eγ be the edge corresponding to the nodal point

and ∂γ(e) = {ve, v
e}, and consider the equivalence relation ∼ on the set of vertices,

defined by: v ∼ v for all v ∈ Vγ \ {ve, v
e}, and ve ∼ ve. Then, there is an S-tree γ/e

whose vertices are Vγ/ ∼ and whose flags are Fγ \ {fe, f
e}. The boundary map and

involution of γ/e are the restrictions of ∂γ and jγ.

We use the notation γ < τ to indicate that τ is obtained by contracting some

edges of γ.

2.3 Stratification of the moduli space MS

The moduli space MS is the space of isomorphism classes of S-pointed stable curves.

This space is stratified according to degeneration types of S-pointed stable curves

which are given by S-trees. The principal stratum MS corresponds to the one-

vertex S-tree and is the quotient of the product (CP1)n minus the diagonals ∆ =⋃
k<l{(ps1 , · · · , psn)|psk

= psl
} by Aut(CP1) = PSL2(C).

Theorem(Knudsen & Keel, [29, 22]). (a) For any |S| ≥ 3, MS is a smooth projective

algebraic variety of (real) dimension 2|S| − 6.

(b) Any family of S-pointed stable curves over B is induced by a unique morphism

κ : B →MS. The universal family of curves US of MS is isomorphic to MS
S
{sn+1}.

(c) For any S-tree γ, there exists a quasi-projective subvariety Dγ ⊂MS parame-

terizing the curves whose dual tree is given by γ. Dγ is isomorphic to
∏

v∈Vγ
MFγ(v).

The (real) codimension of Dγ in MS is 2|Eγ|.
(d) MS is stratified by pairwise disjoint subvarieties Dγ. The closure of any

stratum Dγ is stratified by {Dγ′ | γ′ ≤ γ}.

Example 2.3.1. (i) For |S| < 3, MS is empty due to the definition of S-pointed

stable curves. For |S| = 3, the moduli space MS is simply a point, and its universal

curve US is CP1 endowed with three labeled points.

(ii) For |S| = 4, the moduli space MS is CP1 with three points. These points

Dγ1 , Dγ2 and Dγ3 correspond to the curves with two irreducible components, and

the open stratum MS is the complement of these three points (see Fig. 2.2). The

universal family US is a del Pezzo surface of degree five which is obtained by blowing

up three points of CP1 × CP1.

(iii) For |S| = 5, the moduli space MS is isomorphic to US\{s5} i.e., it is a del

Pezzo surface of degree five. It has ten divisors and each of these divisors contains

three codimension two strata. The corresponding S-trees are shown in Figure 2.2.

18



Figure 2.2: All strata of MS for |S| = 3, 4, and 5.

2.4 Forgetful morphism

We say that (Σ; ps1 , · · · , psn−1) is obtained by forgetting the labeled point psn of the

S-pointed curve (Σ; ps1 , · · · , psn). However, the resulting pointed curve may well be

unstable. This happens when the component Σv of Σ supporting psn has only two

additional special points. In this case, we contract this component to its intersection

point(s) with the components adjacent to Σv. With this stabilization we extend this

map to whole space, and obtain π{sn} : MS →MS′ where S′ = S \ {sn}. There exists

a canonical isomorphism MS → US′ commuting with the projections to MS′ . In

other words, π{sn} : MS → MS′ can be identified with the universal family of curves

US′ →MS′ .

2.5 Automorphisms of MS

The open stratum MS of the moduli space MS can be identified with the orbit space

((CP1)n \ ∆)/PSL2(C). The latter orbit space may be viewed as the configuration

space of (n− 3) ordered distinct points of CP1 \ {0, 1,∞}:

MS
∼= {p = (zs1 , · · · , zsn) ∈ Cn−3 | zsi

6= zsj
∀si 6= sj, (2.3)

and zsn−2 = 0, zsn−1 = 1, zsn = ∞},

where zsi
:= [zsi

: 1] are the coordinates of labeled points psi
in an affine chart of

CP1.

Let ψ = (ψs1 , . . . , ψsn−3) : MS → MS be a non-constant holomorphic map. In

[19], Kaliman discovered the following fact:

Theorem (Kaliman, [19]). For |S| ≥ 4, every non-constant holomorphic endomor-

phism ψ = (ψs1 , . . . , ψsn−3) of MS is an automorphism and its components ψs are of

the form

ψs(p) =
z%(s) − z%(sn−2)

z%(s) − z%(sn)

/ z%(sn−2) − z%(sn−1)

z%(sn) − z%(sn−1)

, s ∈ {s1, · · · sn−3}

where % ∈ Sn is a permutation not depending on s.
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Kaliman’s theorem implies the following corollary.

Theorem (Kaliman & Lin, [19, 30]). Every holomorphic automorphism of MS is

produced by a certain permutation % ∈ Sn. Hence, Aut(MS) ∼= Sn.

On the other hand, the permutation group Sn acts on the compactification MS

of MS via relabeling: For each % ∈ Sn, there is a map ψ% which is given by

ψ% : (Σ;p) 7→ (Σ; %(p)) := (Σ; p%(s1), · · · , p%(sn)). (2.4)

Lemma 2.5.1. The map ψ% is holomorphic.

Proof. The differentiability of ψ% follows from the Kodaira-Spencer construction of

infinitesimal deformations given in Section 2.2. We need to show that the differential

dψ% is linear at each (Σ;p) ∈ MS. It is sufficient to show that without taking the

quotient with respect to PSL2(C).

The differential of the permutation maps

dψ% : Ext1OΣ
(Ω1

Σ(Dp),OΣ) → Ext1OΣ
(Ω1

Σ(D%(p)),OΣ).

By using the explicit form of the tangent space given in (2.2), dψ% can be written

explicitly as follows.⊕
v∈Vτ

H1(Σ̂v, TΣ̂v
(−Dp̂v)) →

⊕
v∈Vτ

H1(Σ̂v, TΣ̂v
(−D%(p̂v))), u 7→ u,⊕

(fe,fe)∈Eτ

Tp̂fe
Σ̂⊗ Tp̂fe Σ̂ →

⊕
(fe,fe)∈Eτ

Tp̂fe
Σ̂⊗ Tp̂fe Σ̂, v 7→ v.

Hence the differential dψ% is linear.

Therefore, the permutation group Sn is a subgroup of holomorphic automorphisms

Aut(MS).

Let Aut](MS) be the group of holomorphic automorphisms of MS that respect the

stratification: ψ ∈ Aut](MS) maps Dτ onto Dγ where dimDτ = dimDγ. Kaliman’s

theorem leads us to the following immediate corollary.

Theorem 1. The group Aut](MS) is Sn.

Proof. Let ψ ∈ Aut](MS). The restriction of ψ to the open stratum gives the permu-

tation action on MS since the automorphism group of the open stratum MS contains

only permutations ψ%. The unicity theorem of holomorphic maps implies that ψ = ψ%

since they coincide on the open stratum ψ|MS
= ψ%|MS

.

Remark 2.5.2. Note that the group of holomorphic automorphisms Aut(MS) is not

necessarily isomorphic to Sn. For example, the group of automorphisms Aut(MS) is

PSL2(C) when |S| = 4. It is a well-known fact that Aut(MS) = S5 for |S| = 5 (see,

for example [8]). According to our knowledge, there is no systematic exposition of

Aut(MS) for |S| > 5.
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2.6 Intersection ring of MS

In [22], Keel gave a construction of the moduli space MS via a sequence of blowups

of MS\{sn} × CP1 along the certain codimension two subvarieties. This inductive

construction of MS allowed him to calculate the intersection ring in terms of the

Poincare duals Dγ of the divisor classes [Dγ]. Note that the divisors Dγ parameterize

curves whose dual trees have only one edge.

For |S| ≥ 4, choose i, j, k, l ∈ S, and let γ, τ ∈ T ree such that τ 6≈ γ and

|Eτ | = |Eγ| = 1. We write ijγkl if tails labeled by i, j and k, l belongs to different

vertices of γ. We call γ and τ compatible if there is no {i, j, k, l} ⊂ S such that

simultaneously ijγkl and ikτjl.

Theorem(Keel, [22]). For |S| ≥ 3,

H∗(MS,Z) = Z[Dγ | γ ∈ T ree, |Eγ| = 1]/IS

is a graded polynomial ring, deg Dγ = 1. The ideal IS is generated by the following

relations:

1. For any distinct four elements i, j, k, l ∈ S:∑
ijγkl

Dγ −
∑
ikτjl

Dτ = 0.

2. DγDτ = 0 unless γ and τ are compatible.

2.6.1 Additive and multiplicative structures of H∗(MS)

The precise description of homogeneous elements inH∗(MS,Z) is given by Kontsevich

and Manin in [28]. The monomial Dγ1 . . . Dγd is called good, if |Eγi
| = 1 for all i,

and γi’s are pairwise compatible. Consider any S-tree γ. Any edge e ∈ Eγ defines

an S-tree γ(e) which is obtained by contracting all edges of γ but e. Then, we can

associate a good monomial Dγ := Πe∈EγD
γ(e) of degree |Eγ| to γ. The map γ 7→ Dγ

establishes a bijection between the good monomials of degree d in H∗(MS,Z), and

S-trees γ with |Eγ| = d (see [28]). Since boundary divisors intersect transversally,

the Poincare duality maps a good monomials to the homology classes represented by

the corresponding closed stratum

PD : Dγ 7→ [Dγ]. (2.5)

Theorem (Kontsevich and Manin, [28]). The classes of good monomials linearly

generate H∗(MS,Z).
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Multiplication on H∗(MS)

Let τ, γ ∈ T ree and |Eτ | = 1. In [28], a product formula of DτDγ is given in three

distinguished cases:

1. Suppose that there exists an e ∈ Eγ such that γ(e) and τ are not compatible

(i.e., Dτ ∩Dγ(e) = ∅). Then DτDγ = 0.

2. Suppose that DτDγ is a good monomial i.e., τ, γ(e)’s are pairwise compatible

for all e ∈ Eγ. Then there exists a unique S-tree τ ′ with e′ ∈ Eτ ′ such that

τ ′/e′ = γ, τ ′(e) = τ , and DτDγ = Dτ ′ .

3. Suppose now that there exists an e ∈ Eγ such that γ(e) = τ i.e., Dτ divides

Dγ. For a given quadruple {i, j, k, l} such that ijτkl, we have∑
ijτ1kl

Dτ1 Dγ −
∑
ikτ2jl

Dτ2 Dγ = 0.

since the elements of the second sum are not compatible with Dγ. Therefore,

DτDγ = −
∑
τ1 6=τ
ijτ1kl

Dτ1Dγ.

Here, Dτ1Dτ are good monomials, so they can be computed as in case (2).

Additive relations of H∗(MS)

It remains to give the linear relations between degree d monomials. In [28], these

relations are given in the following way. Consider an S-tree γ with |Eγ| = d − 1,

and a vertex v ∈ Vγ with |v| ≥ 4. Let f1, f2, f3, f4 ∈ Fγ(v) be pairwise distinct

flags. Put F = Fγ(v) \ {f1, f2, f3, f4} and let F1,F2 be two disjoint subsets of F

such that F = F1

⋃
F2. We define two S-trees γ1, γ2. The S-tree γ1 is obtained by

inserting a new edge e = (fe, f
e) to γ at v with boundary ∂γ1(e) = {ve, v

e} and

flags Fγ1(ve) = F1

⋃
{f1, f2, fe} and Fγ1(v

e) = F2

⋃
{f3, f4, f

e}. The S-tree γ2 is

also obtained by inserting an edge e to γ at the same vertex v, but the flags are

distributed differently on vertices ∂γ2(e) = {ve, v
e}: Fγ2(ve) = F1

⋃
{f1, f3, fe} and

Fγ2(v
e) = F2

⋃
{f2, f4, f

e}. Put

R(γ, v; f1, f2, f3, f4) :=
∑
γ1

Dγ1 −
∑
γ2

Dγ2 (2.6)

where summation is taken over all possible γ1 and γ2 given above.

Theorem(Kontsevich and Manin, [28]). All linear relations between good monomials

of degree d are spanned by R(γ, v; f1, f2, f3, f4) with |Eγ| = d− 1.

For proofs and details, see [22, 29] and Chapter 3 in [32].

22



Chapter 3

Moduli of σ-invariant curves

In this chapter, we introduce σ-invariant curves and their families. We give the

moduli spaces of σ-invariant curves as the fixed point sets of real structures cσ of

MS.

3.1 Real structures on MS

The moduli space MS comes equipped with an involution

cid : (Σ;p) 7→ (Σ;p). (3.1)

Here, a complex curve Σ is regarded as a pair Σ = (C, J), where C is the underlying

two-dimensional manifold and J is a complex structure on it, and Σ = (C,−J) is its

complex conjugated pair.1

Lemma 3.1.1. The map cid is a real structure on MS.

Proof. The differentiability of cid follows form the Kodaira-Spencer construction of

infinitesimal deformations. We need to show that the differential of cid is anti-linear

at each (Σ;p) ∈MS. It is sufficient to show that it is anti-linear without taking the

quotient with respect to PSL2(C).

The infinitesimal deformations of a nodal curve Σ with divisor Dp is canonically

identified with the complex vector space Ext1OΣ
(Ω1

Σ(Dp),OΣ), (see Section 2.2). By

reversing the complex structure on Σ, we reverse the complex structure on the tangent

space Ext1OΣ
(ΩΣ(Dp),OΣ) at (Σ;p). The differential of the map (Σ;p) 7→ (Σ;p)

Ext1OΣ
(ΩΣ(Dp),OΣ) → Ext1OΣ

(ΩΣ(Dp),OΣ), v 7→ v

1There is some notational ambiguity here. The bar over MS and that over Σ refer to two
different structures on underlying manifolds: The first one refers to the compactification of MS and
the second refer to the manifold with reverse complex structure. Both of these notations are widely
used, and we use the bar for both cases. The context should make it clear which structure is referred
to.
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is clearly anti-linear.

The permutation group Sn acts on MS via relabeling: For each % ∈ Sn, there

is a holomorphic map ψ% defined in (2.4). For each involution σ ∈ Sn, we have an

additional real structure

cσ := cid ◦ ψσ : (Σ;p) 7→ (Σ;σ(p)) (3.2)

on MS. We denote the fixed point set of cσ : MS →MS by RMσ

S.

Lemma 3.1.2. Each real structure preserving the stratification of MS is given by a

certain involution σ ∈ Sn and is of the form (3.2).

Proof. Theorem 1 implies that the set of anti-holomorphic automorphisms that re-

spect the stratification is obtained by composing the principal real structure cid with a

permutation ψ% of % ∈ Sn. Therefore, the real structures preserving the stratification

of MS are cid ◦ ψσ for σ2 = id.

3.2 σ-invariant curves and their families

An S-pointed stable curve (Σ;p) is called σ-invariant if it admits a real structure

cΣ : Σ → Σ such that cΣ(ps) = pσ(s) for all s ∈ S.

A family of S-pointed stable curves πB : UB → B is called σ-equivariant if there

exist a pair of real structures

cB : b 7→ cB(b),

cU : b× (Σ(b);p(b)) 7→ cB(b)× (Σ(b);σ(p(b)))

of B and UB which make the following diagram commute

UB
cU−−−→ UB

πB

y yπB

B
cB−−−→ B.

Lemma 3.2.1. If (Σ;p) is isomorphic to (Σ
′
;p′), then there exist anti-holomorphic

maps c : Σ → Σ′ and c′ : Σ′ → Σ such that c(ps) = p′σ(s) and c′(p′s) = pσ(s). The maps

c, c′ are unique and reverse to each other.

Proof. It direclty follows from Lemma 2.1.7.

Remark 3.2.2. If (Σ;p) is σ-invariant, then the real structure cΣ : Σ → Σ is uniquely

determined by the permutation σ due to Lemma 2.1.7.

Let R be a real analytic manifold, and let B be a complexification of R. A family

of σ-invariant curves over R is the restriction of a σ-equivariant family over B to its

real part R.
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Figure 3.1: A family of σ-invariant curves for |S| = 5 and |Fix(σ)| = 1.

3.3 The moduli space of σ-invariant curves

The real part of (MS, cσ) gives us the moduli space of σ-invariant curves.

Theorem 2. (a) For any |S| ≥ 3, RMσ

S is a smooth projective real manifold of

dimension |S| − 3.

(b) The universal family of curves π : US →MS is a σ-equivariant family.

(c) Any σ-equivariant family of S-pointed stable curves over πB : UB → B is

induced by a unique pair of real morphisms

UB
κ̂−−−→ US

πB

y yπ

B
κ−−−→ MS.

(d) Let Mσ be the contravariant functor that sends real varieties (B, cB) to the

set of isomorphism classes of σ-equivariant families over B. The moduli functor Mσ

is represented by the real variety (MS, cσ).

(e) Let RMσ be the contravariant functor that sends real analytic manifolds R to

the set of isomorphism classes of families of σ-invariant curves over R. The moduli

functor RMσ is represented by the real part RMσ

S of (MS, cσ).

Proof. (a) The smoothness of the real part of cσ is a consequence of the implicit

function theorem, and dimR RMσ

S = dimC MS = |S| − 3 since the real part RMσ

S is

not empty.

(b) The fiber over (Σ;p) ∈ MS is π−1((Σ;p)) = Σ. We define real structures on

MS and US as follows:

cσ : (Σ;p) 7→ (Σ;σ(p)),

ĉσ : z ∈ π−1((Σ;p)) 7→ z ∈ π−1((Σ;σ(p))).
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Due to Lemma 3.2.1, the maps cσ and ĉσ are well-defined. They clearly satisfy the

conditions of σ-equivariant families in given Section 3.2.

(c) Due to Knudsen’s theorem (see Section 2.3), each of the morphisms κ : B →
MS and κ̂ : UB → US are unique. Therefore, they are the same as cσ◦κ◦cB : B →MS

and ĉσ ◦ κ̂ ◦ cU : UB → US. Hence, the morphisms κ, κ̂ are real.

(d) Directly follows from the definition of Mσ and (c).

(e) This statement is a direct corollary of (d).

Remark 3.3.1. Let % ∈ Sn, and ψ% be the corresponding automorphism of MS. The

conjugation of real structure cσ with ψ% provides a conjugate real structure cσ′ = ψ% ◦
cσ ◦ψ%−1 . The conjugacy classes of real structures are determined by the cardinalities

|Fix(σ)| = l and |Perm(σ)| = 2k. For this reason, we only consider cσ where σ as

in (1.6) i.e.,

σ =

(
s1 · · · sk sk+1 · · · s2k s2k+1 · · · s2k+l

sk+1 · · · s2k s1 · · · sk s2k+1 · · · s2k+l

)
.

For such an involution, σ-invariant curves are called (2k, l)-pointed real curves. The

fixed point set Fix(cσ) = RMσ

S is called the moduli space of (2k, l)-pointed real curves

and denoted by RMσ

(2k,l).
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Chapter 4

Combinatorial types of σ-invariant

curves

This chapter contains some preliminary observations on σ-invariant real curves and

their degeneration types. The degeneration types of σ-invariant curves are encoded

by the S-trees with additional decorations. The dual trees of σ-invariant curves and

their morphisms are introduced.

4.1 Topological types of σ-invariant curves

Definition 4.1.1. A σ-invariant curve (Σ;p) is called

• of type 1, if RΣ is not empty set or a point,

• of type 2, if RΣ = ∅,

• of type 3, if RΣ a solitary point.

Lemma 4.1.2. (a) Each irreducible real component of a σ-invariant curve is iso-

morphic to CP1 with a real structure which is either [z1 : z2] 7→ [z̄1 : z̄2] or [z1 : z2] 7→
[−z̄2 : z̄1].

(b) Each σ-invariant curve is either of type 1, type 2 or type 3.

Proof. (a) Due to its definition, each component of a σ-invariant curve is isomorphic

to CP1. Let conj be an anti-holomorphic involution on CP1. Choose a point p which

is not invariant under conj, and set conj(p) = ∞. We then consider a meromorphic

function f which has a simple zero at p and a simple pole at ∞. Let f̄ = f ◦ conj,
then f̄ = af−1. Since ¯̄f = f , we have a = ā. Replacing f by bf changes a to |b2|a.
By choosing b, we can normalize a = 1 or a = −1. These two cases give the two real

structures given in the statement.
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(b)Let (Σ;p) be a σ-invariant curve. The real structure cΣ maps the components

Σv 7→ Σv̄, and special points pf 7→ pf̄ . Then, we need to consider two possibilities:

(i) there exists (at least) one real component cΣ : Σv → Σv, (ii) there isn’t any real

component.

In the case (i), the real structures in (a) give the (possible) real parts of type 1

and 2 respectively.

In the case (ii), the fixed point set RΣ is finite. The induced homomorphism

(cΣ)∗ maps the fundamental classes of conjugate components Σv,Σv̄ to each other i.e,

[Σv] 7→ −[Σv̄] and [Σv̄] 7→ −[Σv]. Hence, the trace of the linear map (cΣ)∗ : H2(Σ) →
H2(Σ) is zero. Moreover, the trace of (cΣ)∗ : H1(Σ) → H1(Σ) is zero, since H1(Σ)

is trivial. Due to Lefschetz fixed point theorem, the Euler characteristic of the fixed

point set is one. Therefore, the real part is a solitary point.

Remark 4.1.3. If |Fix(σ)| > 0, then all σ-invariant curves are of type 1. This follows

from the facts that real parts such σ-invariant curves can not be empty set and the

labeled points are different than the nodal points. By contrast, σ-invariant curves

can be of type 1, type 2 or type 3 when |Fix(σ)| = 0.

4.2 Combinatorial types of σ-invariant curves.

The real structure of a σ-invariant curve determines additional structures. We intro-

duce these structures for different topological types of σ-invariant curves separately.

4.2.1 Oriented combinatorial types

σ-invariant curves of type 1. Let (Σ̂, p̂) be the normalization of a σ-invariant

curve (Σ;p) of type 1. By identifying Σ̂v with Σv ⊂ Σ, we obtain a real structure on

Σ̂ for each real component Σv. The real part RΣ̂v of this real structure divides Σ̂v into

two halves: two 2-discs Σ+
v and Σ−

v having RΣ̂v as their common boundary. Then,

the set of the preimages of the special points p̂v admits the following structures:

• An oriented cyclic ordering on the set of points lying in RΣ̂v: For any point p̂fr ∈
p̂v

⋂
RΣ̂v, there is unique p̂fr′

∈ p̂v

⋂
RΣ̂v which follows the point p̂fr in the

positive direction of RΣ̂v (the direction which is determined by the orientation

induced from the complex orientation of Σ+
v ).

• An ordered two-partition of the set of points lying in Σ̂v \ RΣ̂v. The subset

p̂v

⋂
(Σ̂v \ RΣ̂v) of p̂v admits a partition into two disjoint subsets {p̂fs ∈ Σ±

v }.

The preimages of special points p̂v are labelled by Fγ(v). Therefore, if we pick an

element p̂fn ∈ RΣ̂v, the cyclic ordering can be seen as a linear ordering on (p̂v

⋂
RΣ̂v)\
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{pfn}. This linear ordering gives an oriented cyclic ordering on FR
γ (v) which we denote

by {fr1} < · · · < {frl−1
} < {frl

} where frl
= fn. Moreover, the partition {p̂fs ∈ Σ±

v }
gives an ordered two-partition F±

γ (v) := {fs | p̂fs ∈ Σ±
v } of Fγ(v) \ FR

γ (v).

The oriented combinatorial type of the real component Σv of (Σ;p) is a set of data

ov := {type 1; two partition F±
γ (v); an oriented cyclic ordering on FR

γ (v)}.

σ-invariant curves of type 2. Let (Σ;p) be a σ-invariant curve of type 2. In this

case, (Σ;p) has a unique real component Σv since the real components must intersect

at real points, and Σ has none. Moreover, Fix(σ) = ∅ since RΣ = ∅.
In this case, the oriented combinatorial type of the real component Σv of (Σ;p) is

a set of data

ov := {type 2;VR
γ = {v}}.

σ-invariant curves of type 3. Let (Σ;p) be a σ-invariant curve of type 3. In this

case, the real part RΣ of (Σ;p) divides Σ into two connected pointed complex curves

(Σ±,p±) having RΣ as their intersection point. We denote the set of components of

(Σ±,p±) by V±
γ , and

⋃
v∈V±

γ
∂−1

γ (v) by F±
γ . Note that, VR

γ = ∅ since there is no real

component in this case.

The oriented combinatorial type of (Σ;p) is a set of data

o := {type 3;V±
γ ;F±

γ }.

4.2.2 Unoriented combinatorial types

The definition of oriented combinatorial types requires additional data on σ-invariant

curves. By identifying the oriented combinatorial types for different choices, we obtain

un-oriented combinatorial types of σ-invariant curves.

σ-invariant curves of type 1. For each real component Σv of a σ-invariant curve

(Σ;p) of type 1, there are two possible ways of choosing Σ+
v in Σv. These two different

choices give the opposite oriented combinatorial types ov and ov. Namely, the oriented

combinatorial type ov is obtained from ov by reversing the cyclic ordering on FR
γ (v)

and swapping F+
γ (v) and F−

γ (v).

An un-oriented combinatorial type of Σv is a pair of opposite oriented combinato-

rial types uv := {ov, ōv}.

σ-invariant curves of type 2. For a σ-invariant curve (Σ;p) of type 2, the un-

oriented combinatorial type is the same set of data with the oriented combinatorial

type i.e., uv := ov = {type 2;VR
γ = {v}}
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σ-invariant curves of type 3. For a σ-invariant curve (Σ;p) of type 3, there are

two possible ways of choosing (Σ+,p+) in (Σ;p). These two different choices give the

opposite oriented combinatorial types o and ō. Namely, the oriented combinatorial

type o is obtained from o by swapping V+
γ and V−

γ , and swapping F+
γ and F−

γ .

An un-oriented combinatorial type of (Σ;p) is a pair of opposite oriented combi-

natorial types u := {o, ō}.

4.3 Dual trees of σ-invariant curves

The combinatorial types of σ-invariant curves can be encoded on their dual trees.

4.3.1 O-planar trees

Let γ be the dual tree of a σ-invariant curve (Σ;p).

Definition 4.3.1. An oriented locally planar structure (o-planar for short) on γ is the

set of data which encodes oriented combinatorial type of a σ-invariant curve (Σ;p).

The o-planar structures of different types are explicitly given as follows:

• O-planar structure of type 1.

– The real structure cΣ is of type 1 (i.e., RΣ is not empty set or a point).

– VR
γ ⊂ Vγ is the set of real components of Σ (i.e., the set of real vertices).

– FR
γ (v) ⊂ Fγ(v) is the set of the preimages of special points in RΣv (i.e.,

the set of real flags adjacent to real vertices v ∈ VR
γ ).

– An oriented cyclic ordering on FR
γ (v) for every v ∈ VR

γ .

– A two-partition F±
γ (v) of Fγ(v) \ FR

γ (v) for every v ∈ VR
γ .

• O-planar structure of type 2.

– The real structure cΣ is of type 2 (i.e., RΣ is empty set).

– VR
γ = {vr} ⊂ Vγ is set of the real components of Σ (i.e., the set of real

vertex); it contains only one element.

• O-planar structure of type 3.

– The real structure cΣ is of type 3 (i.e., RΣ is a point).

– The special real edge e = (fe, f
e) is the edge corresponding to the solitary

nodal point of Σ.

– Two partitions F±
γ and V±

γ of Fγ and Vγ respectively.
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An o-planar tree is an S-tree γ with an o-planar structure. We denote o-planar trees

by (γ, o).

Notations. For each vertex v ∈ VR
γ of (γ, o) (of type 1 or type 2), we associate a

subtree (γv, ov) which is given by the one-vertex tree γv and the o-planar structure

ov of (γ, o) assigned to vertex v.

A pair of vertices v, v̄ ∈ Vγ\VR
γ are said to be conjugate if cΣ(Σv) = Σv̄. Similarly,

we call the flags f, f̄ ∈ Fγ \FR
γ conjugate if cΣ swaps the corresponding special points

η(p̂f ) and η(p̂f̄ ). Here η : Σ̂ → Σ is the normalization.

We associate the subsets of vertices V±
γ and flags F±

γ to every o-planar tree (γ, o)

of type 1 as follows. Let v1 ∈ Vγ \VR
γ and let v2 ∈ VR

γ be the closest invariant vertex

to v1 in ||γ||. Let f ∈ Fγ(v2) be in the shortest path connecting the vertices v1 and

v2. The set V±
γ is the subset of vertices v1 ∈ Vγ \VR

γ such that the flag f (defined

as above) is in F±
γ (v2). The subsets of flags F±

γ are defined as ∂−1
γ (V±

γ ).

4.3.2 U-planar trees

A u-planar structure on the dual tree of (Σ;p) is the set of data encoding the un-

oriented combinatorial type of (Σ;p). It is given by

u :=


{(γv, ov), (γv, ōv) | v ∈ VR

γ } if (Σ;p) is of type 1,

{(γv, ov) | v ∈ VR
γ } if (Σ;p) is of type 2,

{special real edge e = (fe, f
e)} if (Σ;p) is of type 3.

4.4 Contraction morphism of o-planar trees

Let (Σ;p) be a σ-invariant curve with oriented combinatorial types at each real

components. Consider the deformation of real or conjugate pairs of nodal points.

Such deformations give contraction morphisms of o-planar trees.

Let (γ, ô) be an o-planar tree, and φ : γ → τ be a morphism of S-trees contracting

an invariant set of edges Econ = Eγ \ φE(Eτ ). In such a situation, we associate a

particular o-planar structure o on τ , as described below in separate cases (a) and

(b), and speak of a contraction morphism ϕ : (γ, ô) → (τ, o). In all the cases, except

(a-2), the o-planar structure o is uniquely defined by ô.

(a) Let Econ = {e = (fe, f
e)} ⊂ ER

γ .

1. If ∂γ(e) = {ve, v
e} ⊂ VR

γ , then we convert the o-planar structures

ôve = {type 1;F±
γ (ve);F

R
γ (ve) = {{fr1} < · · · < {frm} < {fe}}}

ôve = {type 1;F±
γ (ve);FR

γ (ve) = {{f ′r′1} < · · · < {f ′r′m} < {f e}}}.
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at ve and ve to an o-planar structure at vertex v = φV({ve, v
e}) of (τ, o)

defining it by

ov = {type 1;F±
τ (v) = F±

γ (ve)
⋃

F±
γ (ve);

FR
τ (v) = {{f ′r′1} < · · · < {f ′r′m} < {fr1} < · · · < {frm}}.

The o-planar structures are kept unchanged at all other invariant vertices.

2. If e is a special real edge and ∂γ(e) = {ve, v
e}, then we convert the o-

planar structure ô = {type 3;F±
γ ;V±

γ } of γ into an o-planar structure at

the vertex vr = φV({ve, v
e}) of τ defining it by

ovr = {type 1;F+
τ (v) = F+

γ (ve) \ {fe},F−
τ (v) = F−

γ (ve) \ {f e};FR
τ (v) = ∅}.

or by

ovr = {type 2}.

(b) Let Econ = {ei = (fei
, f ei) | i = 1, 2} where fei

, i = 1, 2 and f ei , i = 1, 2 are

conjugate pairs of flags.

1. If ∂γ(ei) = {v̂, vei}, and v̂ ∈ VR
γ , vei 6∈ VR

γ , then we convert the o-planar

structure

ov̂ = {type 1;F±
γ (v̂);FR

γ (v̂) = {{fr1} < · · · < {frm}}.

at v̂ to an o-planar structure at v = φV({v̂, ve1 , ve2}) of τ defining it by

ov = {type 1;F+
τ (v) = F+

γ (v̂)
⋃

F+
γ (ve1) \ {fe1 , f

e1},
F−

τ (v) = F−
γ (v̂)

⋃
F−

γ (ve2) \ {fe2 , f
e2};

FR
τ (v) = {{fr1} < · · · < {frm}}.

2. If Econ = {ei = (fei
, f ei) | i = 1, 2} and ∂γ(ei)

⋂
VR

γ = ∅, then we define

the o-planar structure at each real vertex v of τ to be the same as the

o-planar structure at v of (γ, ô).

4.4.1 Contraction morphism of u-planar trees

Let πB : UB → B be a σ-equivariant family which is a deformation of a nodal point of

the central fiber (Σ(b0),p(b0)). Let (τ, u) and (γ, û) be the u-planar trees associated

respectively to generic fibers (Σ(b),p(b)) and the central fiber (Σ(b0),p(b0)) of B.

Let e be the edge corresponding to the nodal point that is deformed. We say that

(τ, u) is obtained by contracting the edge e of (γ, û), and to indicate that we use the

notation (γ, û) < (τ, u).
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It is important to note that the contraction of an edge of a u-planar tree is not

a well-defined operation: For example, we can think about a deformation of a real

nodal point as the family {x ·y = t | t ∈ R}. According to the sign of the deformation

parameter t, we obtain σ-invariant curves with two different u-planar structures, see

Figure 4.1. Different u-planar trees (τ, ui) obtained by contraction of edges (γ, û)

correspond to different signs of deformation parameters.

Figure 4.1: Two possible deformation of a real nodal point.

4.5 Forgetful morphism of o-planar trees

Let S′ ⊂ S such that σ(S′) = S′. Denote the restriction σ on S′ by σ′. The morphism

πS\S′ : MS → MS′ forgetting the points labelled by S \ S′ is a real morphism i.e.,

πS\S′ ◦ cσ = cσ′ ◦ πS\S′ . Therefore, πS\S′ maps the real part of (MS, cσ) onto the real

part of (MS′ , cσ′).

Let (γ∗, o∗) be an o-planar representative of dual tree (γ∗, u∗) of (Σ;p) ∈ RMσ

S.

Set C(γ∗,o∗) = C(γ∗,u∗). Then, we say that the o-planar (γ, o) of πS\S′((Σ;p)) is

obtained by forgeting the tails S \ S′ of (γ∗, o∗).

We denote the set of o-planar trees {(γ∗, o∗)} that give (γ, o) after forgetting the

tails S \ S′ by G(γ,o)(S,S
′).
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Chapter 5

Stratification of RMσ
S

A stratification for RMσ

S can be obtained by using the stratification of MS given in

Section 2.3.

Lemma 5.0.1. Let γ and γ be the dual trees of (Σ;p) and (Σ;σ(p)) respectively.

(a) If γ and γ are not isomorphic, then the restriction of cσ on the union of

complex strata Dγ

⋃
Dγ gives a real structure with empty real part.

(b) If γ and γ are isomorphic, then the restriction of cσ on Dγ gives a real structure

whose corresponding real part RDγ is the intersection of RMσ

S with Dγ.

Proof. (a) Since γ and γ are not isomorphic, Dγ and Dγ are disjoint complex strata.

The restriction of cσ on Dγ

⋃
Dγ swaps the strata. Therefore, the real part of this

real structure is empty.

(b) Since γ and γ are isomorphic, S-pointed curves (Σ;p) and (Σ;σ(p)) are in

Dγ. Therefore, Dγ = Dγ and the restriction of cσ on Dγ is a real structure. The real

part RDγ of the σ-equivariant family Dγ is RMσ

S

⋂
Dγ since RMσ

S = Fix(cσ).

Definition 5.0.2. An S-tree γ is called σ-invariant if it is isomorphic to γ̄, and the

set of σ-invariant S-trees is denoted by T ree(σ).

Theorem 3. The real moduli space RMσ

S is stratified by real analytic subsets RDτ

where τ ∈ T ree(σ).

Proof. Due to Lemma 5.0.1, the restrictions of cσ act as real structures on Dτ for

τ ≈ τ , and Dτ

⋃
Dτ for τ 6≈ τ . Since the real part of (Dτ

⋃
Dτ , cσ) is emptyset, the

real moduli space RMσ

S is the union of real parts RDτ of the pairwise disjoint strata

(Dτ , cσ) for τ ≈ τ .

Although the notion of σ-invariant trees leads us to a combinatorial stratification

of RMσ

S as given in Theorem 3, it does not give a stratification in terms of connected

strata. For a σ-invariant tree γ, the real part of the stratum RDγ has many connected

subspaces. In this chapter, we refine this stratification by using the spaces of Z2-

equivariant point configurations in the projective line CP1 and u-planar trees.
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5.1 Spaces of Z2-equivariant point configurations

in CP1

Let z := [z : 1] be the affine coordinate on CP1. Consider the upper half-plane

H+ = {z ∈ CP1 | =(z) > 0} (resp. lower half plane H− = {z ∈ CP1 | =(z) < 0})
as a half of the CP1 with respect to z 7→ z̄, and the real part RP1 as its boundary.

Denote by H the compactified disc H+ ∪ RP1.

5.1.1 Configuration spaces

Let F = {f1, · · · , fm} be a finite set. Let Sm be the group of permutations of F,

and ρ ∈ Sm be an involution. We denote the subsets {fr ∈ F | f̄r = ρ(fr)} and

{fs, fs̄ ∈ F | f̄s 6= ρ(fs)} respectively by FR(ρ) and FC(ρ). Without loss of generality,

we choose the involution

ρ =

(
f1 · · · fi fi+1 · · · f2i f2i+1 · · · f2i+j

fi+1 · · · f2i f1 · · · fi f2i+1 · · · f2i+j

)
,

where 2i+ j = m.

Let conj : CP1 → CP1 be an anti-holomorphic involution.

Definition 5.1.1. A ρ-invariant point configuration on CP1 is a finite set of points

p = (pf1 , · · · , pfm) ⊂ CP1 labelled by F such that conj(pf ) = pρ(f).

The permutations % ∈ Sm of F relabel ρ-invariant point configurations:

ψ% : (pf1 , · · · , pfm) 7→ (p%(f1), · · · , p%(fm)).

If the image ψ%(p) is also ρ-invariant, we call ψ% a ρ-invariant relabelling.

We will consider the spaces of configurations for the real structures with non-

empty and empty real parts as separate cases (i.e., conj : z 7→ z̄ and conj : z 7→
−1/z̄).

Case I. Configurations on CP1 with non-empty real part. Each ρ-invariant

point configuration p in CP1 with z 7→ z̄ inherits an o-planar structure.

(a) An oriented cyclic ordering {fr1} < · · · < {frl−1
} < {frl

:= fm} on FR(ρ).

(b) An ordered two-partition F±(ρ) := {fs | pfs ∈ H±} of FC(ρ).

The set of data given in (a) and (b) is called the oriented combinatorial type a ρ-

invariant point configuration p on (CP1, z 7→ z̄). We denote an oriented combinatorial

type by o.
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The oriented combinatorial types of ρ-invariant point configurations on a real

variety (CP1, z 7→ z̄) enumerate the connected components of the space C̃onf (F,ρ) of

|F+(ρ)| distinct pairs of conjugate points in H+
⋃

H− and |FR(ρ)| distinct points in

RP1:

C̃onf (F,ρ) := {(pf1 , · · · , pf2i
; qf2i+1

, · · · , qf2i+j
) | pf ∈ H+

⋃
H−,

for f ∈ FC(ρ), & pf = pf ′ ⇔ f = f ′, pf = p̄f ′ ⇔ f = ρ(f ′),

and qf ∈ RP1, qf = qf ′ ⇔ f = f ′}.

The number of connected components is 2i(j− 1)!.1 They are all pairwise diffeomor-

phic; natural diffeomorphisms are ρ-invariant relabelings ψ%.

Let z := [z : 1] be the affine coordinate on CP1, and x := [x : 1] be affine

coordinate on RP1. The action of SL2(R) on H is given by

SL2(R)×H → H, (Λ, z) 7→ Λ(z) =
az + b

cz + d
, Λ =

(
a b

c d

)
∈ SL2(R)

in affine coordinates. It induces an isomorphism SL2(R)/ ± I → Aut(H). The

automorphism group Aut(H) acts on C̃onf (F,ρ)

(z1, · · · , z2i;x2i+1, · · · , x2i+j) 7→
(Λ(z1), · · · ,Λ(z2i); Λ(x2i+1), · · · ,Λ(x2i+j)).

It preserves each connected component of C̃onf (F,ρ). This action is free when |F| ≥ 3,

and it commutes with ρ-invariant relabelings. Therefore, the quotient space

C̃(F,ρ) := C̃onf (F,ρ)/Aut(H)

is a manifold of dimension |F| − 3 whose connected components are pairwise diffeo-

morphic.

In addition to the automorphisms considered above, there is a diffeomorphism −I
of C̃onf (F,ρ) which is given in affine coordinates as follows.

−I : (z1, · · · , z2i;x2i+1, · · · , x2i+j) 7→ (−z1, · · · ,−z2i;−x2j+1, · · · ,−x2i+j). (5.1)

Consider the quotient space Conf(F,ρ) = C̃onf (F,ρ)/(−I). Note that, −I swaps the

components of C̃onf (F,ρ) that have opposite oriented combinatorial types. Namely,

the combinatorial type o of−I(p) is obtained from the combinatorial type o of p by re-

versing the cyclic ordering on FR(ρ) and swapping F+(ρ) and F−(ρ). The equivalence

classes of oriented combinatorial types with respect to the action of −I are called un-

oriented combinatorial types of ρ-invariant point configurations on (CP1, z 7→ z). The

un-oriented combinatorial types enumerate the connected components of Conf(F,ρ).

1Here we use the convention n! = 1 whenever n ≤ 0.
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The diffeomorphism −I commutes with each ρ-invariant relabeling and normaliz-

ing action of Aut(H). Therefore, the quotient space

C(F,ρ) := Conf(F,ρ)/Aut(H)

is a manifold of dimension |F|−3, its connected components are diffeomorphic to the

components of C̃(F,ρ). Moreover, the quotient map C̃(F,ρ) → C(F,ρ) is a trivial double

covering.

Case II. Configurations on CP1 with empty real part. Let p be ρ-invariant

point configurations in CP1 with conj : z 7→ −1/z̄.

The group of automorphisms of CP1 which commutes with conj is

Aut(CP1, conj) ∼= SU2 :=

{(
a b

−b̄ ā

)
∈ SL2(C)

}
.

Thus, Aut(CP1, conj) acts naturally on the space

Conf∅(F,ρ) := {(pf1 , · · · , pf2i
) | conj(pfk

) = pρ(fk)}

of ρ-invariant point configurations on (CP1, z 7→ −1/z̄). For |F| ≥ 4, the action is

free and the quotient B(F,ρ) := Conf∅(F,ρ)/Aut(CP1, conj) is a |F| − 3 dimensional

connected manifold.

The combinatorial type of ρ-invariant point configurations on CP1 with z 7→ −1/z̄

is unique and given by the topological type of the real structure z 7→ −1/z̄.

5.1.2 A normal position of ρ-invariant point configurations

in CP1

By using the automorphisms we can choose representatives of the points in C̃(F,ρ) and

B(F,ρ).

Case I. Configurations on CP1 with non-empty real part. Every element in

C̃(F,ρ) is represented by p ∈ C̃onf (F,ρ). In order to calibrate the choice, we consider an

isomorphism CP1 7→ CP1 which is mapping p 7→ p′, puts the points in the following

normal position p′ ∈ CP1.

(A) If |FR(ρ)| ≥ 3, then the three consecutive points (p′fj−1
, p′fm

, p′f1
) in RP1 are put

in the position x′fj−1
= 1, x′fm

= ∞, x′f1
= 0. We then obtain

p′ = (z1, · · · , zi, z1, · · · , zi, x2i+1, · · · , x2i+j−1,∞).
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(B) If |FR(ρ)| = j = 1, 2, then the three points {pfi
, pf2i

, pfm} are put in the position

{±
√
−1, ∞}. Then,

p′ =

{
(z1, · · · , zi−1, ε

√
−1, z1, · · · , zi−1,−ε

√
−1, x2i+1,∞) if j = 2,

(z1, · · · , zi−1, ε
√
−1, z1, · · · , zi−1,−ε

√
−1,∞) if j = 1

where ε = ±.

(C) If |FR(ρ)| = 0, then the points {pfi
, pf2i

} are fixed at {±
√
−1} and pfk

where

{fk} = {fi−1, f2i−1}
⋂

F+(ρ) is placed on the interval ]0,
√
−1[⊂ H+. Then,

p′ = (z1, · · · , zi−2, ε1λ
√
−1, ε2

√
−1, z1, · · · , zi−2,−ε1λ

√
−1,−ε2

√
−1).

where λ ∈]0, 1[ and εi = ±, i = 1, 2.

Case II. Configurations on CP1 with empty real part. Every element of

B(F,ρ), |FC(ρ)| ≥ 4, is represented by p ∈ Conf∅(F,ρ). In order to calibrate the choice

by using Aut(CP1, conj), we consider an isomorphism CP1 7→ CP1 which is mapping

p 7→ p′, puts the points of p in the following normal position p′ ∈ CP1.

(D)

p = (z1, · · · , zi−2, λ
√
−1,

√
−1,

−1

z1

, · · · , −1

zi−2

,−
√
−1

λ
,−
√
−1),

where λ ∈]− 1, 1[.

5.2 The open moduli space RMσ
S

In this section, we choose F to be the labeling set S, and ρ to be the involution σ.

Every σ-invariant point configuration gives a σ-invariant irreducible real curve.

Hence, we define

Ξ :

{
C(S,σ) → RMσ

S when |Fix(σ)| > 0,

C(S,σ) tB(S,σ) → RMσ
S when |Fix(σ)| = 0,

(5.2)

which maps each σ-invariant point configurations to the corresponding isomorphism

classes of irreducible σ-invariant curves.

Lemma 5.2.1. The map Ξ is a diffeomorphism.

Proof. The map Ξ is clearly smooth. It is surjective since any σ-invariant irreducible

curve is isomorphic either to (CP1, z 7→ z̄) or (CP1, z 7→ −1/z̄) with a σ-invariant

point configuration p on it. It is injective since the group of holomorphic automor-

phisms commuting with the real structure z 7→ z̄ is generated by Aut(H) and −I,
and the group of holomorphic automorphisms commuting with the real structure

z 7→ −1/z̄ is Aut(CP1, conj). These automorphism are taken into account during

construction of the configuration spaces.
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5.2.1 Connected components of RMσ
S

As shown in Section 5.1.1, each connected component of C(S,σ) for |Fix(σ)| > 0

(resp. C(S,σ) t B(S,σ) for |Fix(σ)| = 0) is associated to a unique un-oriented combi-

natorial type u of σ-invariant point configurations. Note that, combinatorial types

of σ-invariant point configurations and u-planar trees (τ, u) of irreducible σ-invariant

curves are encoded by same set of data since τ is one-vertex S-tree. We denote the

connected components of C(S,σ) (resp. C(S,σ) tB(S,σ)) by C(τ,u).

Similarly, each connected component of C̃(F,ρ) is associated to a unique oriented

combinatorial type o. We denote the connected components of C̃(F,ρ) by C(τ,o) where

τ is the one-vertex S-tree.

Lemma 5.2.2. The connected component C(τ,u) of C(S,σ) (resp. C(S,σ) t B(S,σ)) is

diffeomorphic to

• ((H+)|Perm+| \∆)×�|Fix(σ)|−3 if |Fix(σ)| > 2,

• ((H+ \ {
√
−1})|Perm+|−1 \∆)×�|Fix(σ)|−1 if |Fix(σ)| = 1, 2,

• ((H+ \ {
√
−1,

√
−1/2})|Perm+|−2 \ ∆) × �1 if |Fix(σ)| = 0 and the u-planar

structure is of type 1,

• ((CP1\{−
√
−1,−

√
−1/2, 2

√
−1,

√
−1})|Perm+|−2\(∆∪∆c))×�1 if |Fix(σ)| = 0

and the u-planar structure is of type 2.

Here, ∆ is the union of all diagonals zi 6= zj(i 6= j), ∆c is the union of all cross-

diagonals zi 6= − 1
z̄j

(i 6= j), and �d is the d-dimensional open simplex.

Proof. As it is shown in Section 5.1.1, C(τ,u) is the quotient C(τ,o)

⊔
C(τ,ō)/(−I) where

C(τ,o) and C(τ,ō) have opposite oriented combinatorial types, and −I swaps C(τ,o) and

C(τ,ō). The spaces C(τ,o) and C(τ,ō) are clearly diffeomorphic. To replace C(τ,u) by

C(τ,o), we choose an oriented representative for each un-oriented combinatorial type

as follows:

• if |Fix(σ)| ≥ 3, we choose the oriented combinatorial type for which {2k+1} <
{n− 1} < {n} with respect to the cyclic ordering on Fix(σ).

• if |Fix(σ)| = 0, 1, 2, we choose the oriented combinatorial type such that k ∈
Perm+.

We put the σ-invariant point configurations into a normal position as in 5.1.2.

For |Fix(σ)| > 0, the parameterizations stated above follow from (A) and (B) in

Section 5.1.2. In the case of |Fix(σ)| = 0 and the u-planar structure is of type

1, according to (C) the configuration space C(τ,u) is a locally trivial fibration over

�1 =]0, 1[ whose fibers over λ ∈ �1 are (H+ \{
√
−1, λ

√
−1})|Perm+|−2 \∆. Similarly,

39



in the case of |Fix(σ)| = 0 and the u-planar structure is of type 2, according to (D)

the configuration space C(τ,u) is a locally trivial fibration over �1 =] − 1, 1[ whose

fibers over λ ∈ �1 are (CP1 \ {λ
√
−1,

√
−1,−

√
−1/λ,−

√
−1})|Perm+|−2 \ ∆. Since

the bases of these locally trivial fibrations are contractible, they are trivial fibrations,

and the result follows.

5.3 Stratification of RMσ
S

We associate a product of configuration spaces of ρv-invariant point configurations

C(τv ,ov), and moduli space of pointed complex curves MFτ (v) to each o-planar tree

(τ, o):

C(τ,o) :=


∏

v∈VR
τ
C(τv ,ov) ×

∏
v∈V+

τ
MFτ (v) if o is of type 1,

C(τvr ,ovr ) ×
∏

{v,v̄}⊂Vτ\VR
τ
MFτ (v) if o is of type 2,∏

v∈V+
τ
MFτ (v) if o is of type 3, .

(5.3)

In the case of type 2, the product runs over the un-ordered pairs of conjugate vertices

belonging to Vτ \VR
τ i.e., {v, v̄} = {v̄, v}, and vr is the vertex corresponding to the

unique real component of σ-invariant curves.

For each u-planar (τ, u), we first choose an o-planar representative (τ, o), and

then put C(τ,u) = C(τ,o). Note that the so defined space C(τ,u) does not depend on the

o-planar representatives.

Lemma 5.3.1. Let γ ∈ T ree(σ). The real part RDγ is diffeomorphic to
⊔

(γ,u)C(γ,u)

where the disjoint union is taken over all possible u-planar structures of γ.

Proof. The complex strata Dγ is diffeomorphic to the product
∏

v∈Vγ
MFγ(v). The

real structure cσ : Dγ → Dγ maps the factor MFγ(v) onto MFγ(v̄) for conjugate pair

of vertices v and v̄, and maps the factor MFγ(v) onto itself when v ∈ VR
γ . Therefore,

the real part RDγ of cσ is given by∏
v∈VR

γ

C(Fγ(v),ρv) ×
∏

{v,v̄}⊂Vγ\VR
γ

MFγ(v) when |VR
γ | > 1,

(C(Fγ(v),ρv)

⊔
B(Fγ(v),ρv))×

∏
{v,v̄}⊂Vγ\VR

γ

MFγ(v) when |VR
γ | = 1,

∏
{v,v̄}⊂Vγ\VR

γ

MFγ(v) when |VR
γ | = 0,

where ρv is the involution whose action on Fγ(v) for v ∈ VR
γ is given by the restriction

of cΣ : Σ → Σ to special points on Σv. The decompositions of the spaces C(Fγ(v),ρv) and

C(Fγ(v),ρv)

⊔
B(Fγ(v),ρv) into their connected components are given in Lemma 5.2.1.
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Intermezzo: Coordinates around the codimension one strata Let γ be a

two-vertex S-tree given by Vγ = {ve, v
e}, Fγ(v

e) = {s1, · · · , sm, f
e} and Fγ(ve) =

{fe, sm+1, · · · , sn−1, sn}. Let (z, w) := [z : 1] × [w : 1] be affine coordinates on

CP1 × CP1. Here we introduce coordinates around Dγ.

Consider a neighborhood V ⊂ Dγ of a nodal S-pointed curve (Σo,po) ∈ Dγ.

Any (Σ;p) ∈ V can be identified with a nodal curve {(z − zfe) · (w − wfe) = 0} in

CP1×CP1 with special points pve = (afe , asm+1 , · · · , asn−1 , asn) ⊂ {w−wfe = 0} and

pve = (bfe , bs1 , · · · , bsm) ⊂ {z − zfe = 0}. In order to determine a nodal curve in

CP1×CP1 and the position of its special points uniquely defined by (Σ;p), we make

the following choice. Firstly, we fix three labelled points asm+1 , asn−1 , asn on the line

{w − wfe = 0} whenever |ve| > 3, and three special points afe , asn−1 , asn whenever

|ve| = 3. Secondly, we fix three special points bfe , bs1 , bsm on {z − zfe = 0}. Finally,

we choose

asm+1 = (0, 0), asn−1 = (1, 0), asn = (∞, 0) for |ve| > 3,

afe = (0, 0), asn−1 = (1, 0), asn = (∞, 0) for |ve| = 3;

and

bs1 = (zfe , 1), bsm = (zfe ,∞), bfe = (zfe , 0).

Then, the components z and w of the special points provide a coordinate system in

V ; in particular, for |ve| > 3 such a coordinate system is formed by zfe , zi∗ with

i∗ = sm+2, · · · , sn−2, and wj∗ with j∗ = s2, · · · , sm−1.

We now consider a family of S-pointed curves over V times the ε-ball Bε = {|t| <
ε}. It is given by a family curves {(z − zfe) · w + t = 0 | t ∈ Bε} in CP1 × CP1.

The labelled points (zs, ws), s ∈ S on these curves are chosen in the following way. If

|ve| > 3, we put

(zs1 , ws1) = (zfe − t, 1), (zsm , wsm) = (zfe ,∞), (zsm+1,wsm+1
) = (0, t/zfe),

(zsn−1 , wsn−1) = (1,−t/(1− zfe)) and (zsn , wsn) = (∞, 0).

Similarly, for |ve| = 3, (zs1 , ws1) = (−t, 1), (zsn−2 , wsn−2) = (0,∞), (zsn−1 , wsn−1) =

(1,−t) and (zsn , wsn) = (∞, 0). The other labelled points are taken in an arbitrary

position. The component z of the special points and the parameter t provide a

coordinate system in V ×Bε.

Due to Knudsen’s theorem there exists a unique κ : V × Bε → MS which gives

the family of S-pointed curves given above.

Lemma 5.3.2. det(dκ) 6= 0 at (Σo,po) ∈ Dγ. Hence, κ gives a local isomorphism.

Proof. The parameter t gives a regular function on κ(V ×Bε) which is vanishing along

Dγ

⋂
κ(V × Bε). The differential dκ(~v) = ~v for ~v ∈ T(Σo,po)V since the restriction
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of κ on V × {0} is the identity map. We need to prove that dκ(∂t) 6= 0. In other

words, the curves are non-isomorphic for different values of the parameter t. Let

(Σ(ti),p(ti)) ∈ V × Bε be two S-pointed curves for t1 6= t2. A biholomorphic map

Φ : Σ(t1) → Σ(t2) is determined by the images of psm+1 , psn−1 , psn when |ve| > 3, and

by the images of psn−2 , psn−1 , psn when |ve| = 3. However, the biholomorphic map Φ

mapping (psm+1 , psn−1 , psn)(t1) 7→ (psm+1 , psn−1 , psn)(t2) (resp. (psn−2 , psn−1 , psn)(t1) 7→
(psn−2 , psn−1 , psn)(t2)) maps ps1(t1) = (zfe − t1, 1) to (zfe − t1, t2/t1) 6= ps1(t2) (resp.

ps1(t1) = (−t1, 1) to (−t1, t2/t1) 6= ps1(t2)), i.e., Φ can not be an isomorphism.

Remark 5.3.3. Due to Lemma 5.3.2, the coordinates on V ×Bε provide a coordinate

system at (Σo;po) ∈ Dγ. There is a natural coordinate projection ρ : V ×Bε → V .

For a σ-invariant γ and cσ-invariant V , the above coordinates and the local iso-

morphism κ are equivariant with respect to a suitable real structure ((z, w) 7→ (z̄, w̄)

when RΣ 6= ∅, and (z, w) 7→ (w̄, z̄) when RΣ = ∅) on CP1 ×CP1. Therefore, the real

part RV×]− ε, ε[ of V ×Bε provides a neighborhood for a (Σo;po) in RDγ with a set

of coordinates on it.

Boundary of strata

Proposition 5.3.4. A stratum C(γ,û) is contained in the boundary of C(τ,u) if and

only if the u-planar structures u, û can be lifted to o-planar structures o, ô in such a

way that (τ, o) is obtained by contracting an invariant set of edges of (γ, ô).

Proof. We need to consider the statement only for the strata of codimension one and

two. These cases correspond to the contraction morphisms from two/three-vertex

o-planar (sub)trees to one-vertex o-planar (sub)trees given in (a) and (b) of Section

4.4. For a stratum of higher codimension, the statement can be proved by applying

the elementary contractions (a) and (b) inductively. Here, we consider only the case

(a-1). The proof for other cases is the same.

We first assume that (τ, o) is obtained by contracting the edge e of (γ, ô), where

(γ, ô) is an o-planar two-vertex tree with Vγ = V R
γ = {ve, v

e}. An element (Σ;p) ∈
C(γ,ô) can be represented by the nodal curve {(z − zfe) · w = 0} in CP1 × CP1 with

special points af = (zf , 0) and bf = (zfe , wf ) such that

af ∈ {w = 0 & =(z) > 0} for f ∈ F+
γ (ve)

af̄ ∈ {w = 0 & =(z) < 0} for f̄ ∈ F−
γ (ve)

{afr1
< · · · < afrm

} ⊂ {w = 0 & =(z) = 0} for f∗ ∈ FR
γ (ve)

and
bf ∈ {z = 0 & =(w) > 0} for f ∈ F+

γ (ve)

bf̄ ∈ {z = 0 & =(w) < 0} for f̄ ∈ F−
γ (ve)

{bf ′
r′1
< · · · < bf ′

r′m
} ⊂ {z = 0 & =(w) = 0} for f ′∗ ∈ FR

γ (ve).

42



When we include the curve {(z−zfe)·w = 0} into the family {(z−zfe)·w+t = 0}, the

complex orientation defined on the irreducible components w = 0 and z− zfe = 0 by

the halves =(z) > 0 and, respectively, =(w) > 0 extends continuously to a complex

orientation of {(z − zfe) · w + t = 0} with t ∈ [0, ε[ defined by, say, =(z) > 0. As a

result, the curves {(z − zfe) · w + t = 0} with t ∈ [0, ε[ acquire an o-planar structure

given by

(zf , wf ) ∈ {z · w + t = 0 & =(z) > 0} for f ∈ F+
γ (ve)

⋃
F+

γ (ve)

(zf , wf ) ∈ {z · w + t = 0 & =(z) < 0} for f̄ ∈ F−
γ (ve)

⋃
∈ F−

γ (ve)

(zf , wf ) ∈ {z · w + t = 0 & =(z) = 0} for f ∈ FR
γ (ve)

⋃
FR

γ (ve)

where the points on the real part of the curves {z ·w+ t = 0} are cyclicly ordered by

zf ′
r′1
< · · · < zf ′

r′m
< zfr1

< · · · < zfrm
.

This is exactly the o-planar structure (τ, o) defined in (a-1) of Section 4.4.

Now assume that C(γ,û), where (γ, û) is an u-planar tree with Vγ = V R
γ = {ve, v

e},
is contained in the boundary of C(τ,u). There are four different o-planar representa-

tives of (γ, û), and any pair of o-planar representatives ô1, ô2 which are not opposite to

each other, provide two different o-planar structures (τ, oi), i = 1, 2 after contraction.

By the already proved part of the statement, C(γ,û) is contained in the boundary of

C(τ,oi) for each i = 1, 2. It remains to notice that any codimension one stratum is

adjacent to at most two main strata.

Remark 5.3.5. Let (γ, ô) be an o-planar tree type 1, and let ϕe : (γ, ô) → (τ, o) be

the contraction of an edge e ∈ Eγ. If the o-planar tree (τ, o) and the u-planar tree

(γ, û) underlying (γ, ô) are given, then the o-planar structure ô can be reconstructed.

For this reason, we denote the corresponding o-planar structure ô by δ(o).

Stratification of RMσ

S

Theorem 4. (a) RMσ

S is stratified by C(γ,u).

(b) The closure of any stratum C(γ,u) is stratified by {C(γ′,u′) | (γ′, u′) < (γ, u)}.

Proof. (a) The moduli space RMσ

S can be stratified by RDγ due to Theorem 3. The

claim directly follows from the decomposition of open strata RDγ into its connected

components given in Lemma 5.3.1.

(b) The claim direcly follows from the part (a) and Proposition 5.3.4.

Example 5.3.6. (i) The first nontrivial example is MS with |S| = 4. There are three

conjugancy classes of real structures: cσ1 , cσ2 , cσ3 , where

σ1 = id, σ2 =

(
s1 s2 s3 s4

s2 s1 s3 s4

)
and σ3 =

(
s1 s2 s3 s4

s3 s4 s1 s2

)
.
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These real structures give RMσ

(2k,l), where (2k, l) = (0, 4), (2, 2), and (4, 0) respec-

tively.

In the case of σ = σ1, RMσ
(0,4) is the configuration space of four distinct points

on RP1 up to the action of PSL2(R). Each S-pointed curve (Σ;p) ∈ RMσ
(0,4) can

be identified with (0, x2, 1,∞) where x2 ∈ RP1 \ {0, 1,∞}. Hence, RMσ
(0,4) = RP1 \

{0, 1,∞}, and its compactification is RMσ

(0,4) = RP1. The three intervals of RMσ
(0,4)

are the three configuration spaces C(τ,ui) and the three points are the configuration

spaces C(γi,ûi). The u-planar trees (τ, ui) and (γ, ûi) are given in Figure 5.1.

Figure 5.1: All strata of RMσ

(0,4).

In the case of σ = σ2, RMσ
(2,2) is the space of distinct configurations of two points in

RP1 and a pair of complex conjugate points in CP1\RP1. (Σ;p) ∈ RMσ
(2,2) is identified

with (
√
−1,−

√
−1, x3,∞) ∈ C(τ,u),−∞ < x3 < ∞. Hence, RMσ

(2,2) = RP1 \ {∞},
and its compactification is RMσ

(2,2) = RP1. The interval RMσ
(2,2) is C(τ,u) and the

point at its closure is C(γ,û).

In the case of σ = σ3, the moduli space RMσ
(4,0) has different pieces parameterizing

real curves with non-empty and empty real parts: The subspace of RMσ
(4,0) parame-

terizing the σ-invariant curves with RΣ 6= ∅ is (λ
√
−1,

√
−1,−λ

√
−1,−

√
−1) where

λ ∈]−1, 1[\{0}. The subspace of RMσ
(4,0) parameterizing the real curves with RΣ = ∅

is (λ, 1,−λ,−1), where λ ∈] − 1, 1[. Note that, the pieces parameterizing RΣ 6= ∅
and RΣ = ∅ are joined through the boundary points corresponding to curves with

isolated real singular points. The compactification RMσ

(4,0) is RP1.

(ii) For |S| = 5, the moduli space MS has three different real structures cσ1 , cσ2

and cσ3 where

σ1 = id, σ2 =

(
s1 s2 s3 s4 s5

s2 s1 s3 s4 s5

)
and σ3 =

(
s1 s2 s3 s4 s5

s3 s4 s1 s2 s5

)
. (5.4)

For σ = σ1, the space RMσ
S is identified with the configuration space of five distinct

points on RP1 modulo PSL2(R). It is (RP1 \ {0, 1,∞})2 \∆, where ∆ is union of all

diagonals. Each connected component of RMσ
(0,5) is isomorphic to a two dimensional

simplex. The closure of each cell can be obtained by adding the boundaries described

in Proposition 5.3.4; for an example see Figure 5.2a. It gives the compactification of

RMσ

S which is a torus with three points blown up: the cells corresponding to u-planar
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trees (τ, u1) and (τ, u2) are glued along the face corresponding to (γ, û) which gives

(τ, ui), i = 1, 2 by contracting some edges, see Fig. 5.2b.

Figure 5.2: (a) Stratification of C(τ,u). (b) The stratification of RMσ

S for |S| = 5.

For σ = σ2, the space RMσ
S is configuration space of conjugate pairs of points on

CP1 minus three points. The automorphisms allows us to identify such configurations

with (z, z̄, 0, 1,∞) where z ∈ C\R. Hence, it can be given as CP1 \RP1. The moduli

space RMσ

S is obtained as a sphere with three points blown up according to the

stratification given in Proposition 5.3.4.

Finally, for σ = σ3, the elements of RMσ
S can be identified with the point con-

figurations (z,
√
−1, z̄,−

√
−1,∞). Hence it can be identified with CP1 \ (RP1 ∪

{
√
−1,−

√
−1}). Therefore, connected components are isomorphic to H+ \ {

√
−1}.

The moduli space RMσ

S is a sphere with a point blown up.

In fact, for |S| = 5, the moduli space MS is a del Pezzo surface of degree five, and

these are all the possible real parts of this del Pezzo surface (see [6]).
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Chapter 6

First Stiefel-Whitney class of RMσ
S

In this chapter, we calculate the first Stiefel-Whitney class of RMσ

S by using its

stratification.

6.1 Orientations of top-dimensional strata

Let (τ, o) be a one-vertex o-planar tree. The coordinates of configuration spaces given

in Section 5.1.2 determine an orientation of C(τ,o). For instance, let |Fix(σ)| ≥ 3 and

let the o-planar structure on (τ, o) be given by Perm± and by a linear ordering

xr1 = 0 < xr2 < · · · < xrl−1
= 1 < xrl

:= xn = ∞ on Fix(σ). The coordinates in (A)

of 5.1.2 generate the following top-dimensional differential form on C(τ,o):

ω(τ,o) :=

(√
−1

2

)|Perm+| ∧
α∗∈Perm+

dzα∗ ∧ dzα∗

∧
dxr2 ∧ · · · ∧ dxrl−2

. (6.1)

The multiplication of top-dimensional forms with a positive valued function Θ :

C(τ,o) → R>0 defines an equivalence relation on sections of det(TC(τ,o)). An ori-

entation is an equivalence class of nowhere zero top-dimensional forms with respect

to this equivalence relation. We denote the equivalence class of ω(τ,o) by [ω(τ,o)].

Similarly, we determine differential forms ω(τ,o) and orientations [ω(τ,o)] of C(τ,o)

for all (τ, o) with |Vτ | = 1 by using the coordinates given in (B), (C) and (D) in

Section 5.1.2 and their ordering.

6.2 Orientations of codimension one strata

Let (γ, o) be a two-vertex o-planar tree. Let Vγ = {ve, v
e} and e = (fe, f

e) be the

edge where ∂γ(sn) = ∂γ(fe) = ve and ∂γ(f
e) = ve.
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By choosing three flags in Fγ(ve) and Fγ(v
e), and using the calibrations as in

Section 5.1.2, we obtain a coordinate system in C(γv ,ov) for each v ∈ {ve, v
e}. More

precisely, we use the following choice.

I. Let ov be an o-planar structure of type 1, and let Fix(σ) 6= ∅. If |FR
γ (ve)| ≥ 3

(resp. |FR
γ (ve)| ≥ 3), then we specify an isomorphism Φve : Σve → CP1 (resp.

Φve : Σve → CP1) by mapping three consecutive special points as follows:

If |FR
γ (ve)| > 3 and the special points pfe and psn are not consecutive, then

Φve : (prl−1
, psn , pr1) 7→ (1,∞, 0). If |FR

γ (ve)| ≥ 3 and the special points pfe and

psn are consecutive and

{fe} < {sn} < {r1}, =⇒
{rl−1} < {sn} < {fe}, =⇒

Φve : (pfe , psn , pr1) 7→ (1,∞, 0),

Φve : (prl−1
, psn , pfe) 7→ (1,∞, 0).

For |FR
γ (ve)| ≥ 3, Φve : (pri+1

, pri+j
, pfe) 7→ (1,∞, 0).

If |FR
γ (ve)| < 3 (resp. |FR

γ (ve)| < 3), then psn 7→ ∞ (resp. pfe 7→ 0). We

pick the maximal element α = si ∈ F+
γ (ve) such that i > j for all sj ∈ F+

γ (ve)

(resp. in F+
γ (ve)), and map the pair of conjugate labelled points (pα, pα) to

(
√
−1,−

√
−1).

II. Let ov be an o-planar structure of type 1, and let Fix(σ) = ∅. We specify an

isomorphism Φv : Σv → CP1 by mapping the pair of conjugate labelled points

(pα, pα) to (
√
−1,−

√
−1) for the maximal element α in F+

γ (v), and pfe 7→ 0

(resp. pfe 7→ 0).

III. Let o be an o-planar structure of type 3. We pick a maximal element αk−1

in F+
γ (ve) \ {n} and specify isomorphisms Φve : Σve → CP1 and Φve : Σve →

CP1 by mapping the special points (pfe , pαk−1
, psn) to (0,

√
−1/2,

√
−1) and,

(pfe , pαk−1
, psn) to (0,−

√
−1/2,−

√
−1).

For each v ∈ {ve, v
e}, we arrange the coordinates of the special points in the

following order

(zα1 , · · · , zαkv
, xr1 , · · · , xrlv

),

by using the o-planar structure

ov =

{
{type 1;F±

γ (v);FR
γ (v) = {{fr1} < · · · < {frlv

}}} for case I,

{type 1;F±
γ (v);FR

γ (v) = ∅} for case II,

of γv, where α∗ ∈ F+
γ (v). We fix special points as in (I) and (II), and apply (6.1) to

introduce top-dimensional differential forms Ω(γve ,ove ) and Ω(γve ,ove ) on C(γve ,ove ) and

C(γve ,ove ) (note that the resulting forms do not depend on the order of z-coordinates).
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In case (III), there are no real special points, so we may get a top-dimensional differ-

ential form Ω(γ,o) on C(γ,o) via choosing the vertex v ∈ V+
γ with ordering arbitrarily

the z-coordinates

(zα1 , · · · , zαkv
)

where F+
γ = {α1, · · · , αkv}.

In such a way, we obtain well-defined orientations [Ω(γve ,ove )] and [Ω(γve ,ove )] of,

respectively, C(γve ,ove ) and C(γve ,ove ), and finally get an orientation on C(γ,o) given by

[Ω(γve ,ove )] ∧ [Ω(γve ,ove )] when Vγ = VR
γ

[Ω(γ,o)] when VR
γ = ∅, and v ∈ V+

γ .

6.2.1 Induced orientations on codimension one strata

Let C(τ,u) be a top-dimensional stratum and C(γ,û) be a codimension one stratum

contained in the boundary of C(τ,u). We lift the u-planar structures u, û to o-planar

representatives o, ô = δ(o) such that (τ, o) is obtained by contracting the edge of

(γ, δ(o)) (see Proposition 5.3.4). Then, we pick a point (Σo,po) ∈ C(γ,δ(o)) and con-

sider a tubular neighborhood RV × [0, ε[ of (Σo,po) in C(τ,o) as in Section 5.3.

The orientation [ω(τ,o)], introduced in Section 6.1, induces some orientation on

C(γ,δ(o)): The outward normal direction of C(τ,o) on RV ×{0} ⊂ C(γ,δ(o)) is −∂t, where

t is the standard coordinate on [0, ε[⊂ R. Therefore a differential form ω(γ,δ(o)) defines

the induced orientation, if and only if

−dt ∧ ω(γ,δ(o)) = Θω(τ,o) (6.2)

with Θ > 0 at each point of RV×]0, ε[.

In what follows we compare the induced orientation [ω(γ,δ(o))] with [Ω(γve ,ove )] ∧
[Ω(γve ,ove )].

Case I: |Fix(σ)| = l ≥ 1.

Lemma 6.2.1. Let (γ, δ(o)) be an o-planar tree as above in Section 6.2, where

FR
γ (ve) = {{ri+1} < · · · {ri+j} < {f e}}. Then,

[ω(γ,δ(o))] = (−1)ℵ [Ω(γve ,ove )] ∧ [Ω(γve ,ove )]

where the values of ℵ for separate cases are given in the following table.
ℵ l − j ≥ 3 l − j = 2 l − j = 1

{r1} < {fe} < {sn} {fe} < {rl−1} < {sn}
j ≥ 2 (i+ 1)(j + 1) 0 l + 1 l + 1

j = 1 1 1 1 1

j = 0 i+ 1 0 0 0
Here, the third and fourth columns correspond to two possible cyclic orderings of

FR
γ (ve) for |FR

γ (ve)| = 3 in Case I of Section 6.2.
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Figure 6.1: Codimension 1 boundaries of C(τ,δ(o)) where l − j ≥ 3 & j ≥ 2.

Proof. We will prove the statement only for the special case of l− j ≥ 3, j ≥ 2. The

calculations for other cases are almost identical.

Let (Σo,po) ∈ C(γ,δ(o)). We set Σo
ve

to be {w = 0} and Σo
ve to be {z−xfe = 0}. Ac-

cording to the convention in Section 6.2, the consecutive special points (prl−1
, psn , pr1)

(resp. (pri+1
, pri+j

, pfe)) on the component Σve (resp. Σve) are fixed at (1,∞, 0). As

shown in the proof of Proposition 5.3.4, a tubular neighborhood RV ×[0, ε[ of (Σo,po)

in C(τ,o) can be given by the family {(z − xfe) · w + t = 0 | t ∈ [0, ε[} with labelled

points pr1 = (0, t/xfe), pri+1
= (xfe − t, 1), pri+j

= (xfe ,∞), prl−1
= (1,−t/(1− xfe)),

psn = (∞, 0), pr∗ = (xr∗ ,−t/(xr∗ − xfe)) for r∗ ∈ FR
γ \ {r1, ri+1, ri+j, rl−1, sn} and

pα = (zα,−t/(zα − xfe)) for α ∈ F+
γ .

We first consider the following subcase: the special points pfe and psn are not con-

secutive. According to the convention of Section 6.2, the differential forms Ω(γve ,ove )

and Ω(γve ,ove ) of this case are as follows:

Ω(γve ,ove ) =
(√

−1
2

)|F+
γ (ve)|∧

α∈F+
γ (ve)

dzα ∧ dzα∧
dxr2 ∧ · · · ∧ dxri

∧ dxfe ∧ d̂xri+1
∧ ·̂ · · ∧ d̂xri+j

∧ dxri+j+1
∧ · · · ∧ dxrl−2

,

Ω(γve ,ove ) =
(√

−1
2

)|F+
γ (ve)|∧

β∈F+
γ (ve) dwβ ∧ dwβ

∧
dyri+2

∧ · · · ∧ dyri+j−1

By using the identities wβ = −t/(zβ −xfe) for β ∈ F+
γ (ve) and yr = −t/(xr−xfe)

for r ∈ FR
γ (ve), we obtain the following equalities:

dt = −dxri+1
+ dxfe , dxfe = dxri+j

,

dwβ = − dt
zβ−xfe

+
tdzβ

(zβ−xfe )2
− tdxfe

(zβ−xfe )2
for β ∈ F±

γ (ve),

dyr = − dt
xr−xfe

+ tdxr

(xr−xfe )2
− tdxfe

(xr−xfe )2
for r = ri+2, · · · , ri+j−1.

These identities imply that −dt ∧ Ω(γve ,ove ) ∧ Ω(γve ,ove ) is equal to

(−1)(i−1)(j−1)

(√
−1

2

)|F+
γ |

Θ
∧

α∈F+
γ

dzα ∧ dzα

∧
dxr2 ∧ · · · ∧ dxrl−2

where Θ =
∏

β∈F+
γ (ve) t(zβ − xfe)

−2
∏

r=ri+2,··· ,ri+j−1
t(xr − xfe)

−2. Since Θ > 0, the

orientation defined by −dt ∧ Ω(γve ,ove ) ∧ Ω(γve ,ove ) is equal to (−1)ℵ[ω(τ,o)].
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We now consider the cases {fe} < {sn} < {r1} (i.e, i + j = l − 1) and {rl−1} <
{sn} < {fe} (i.e, i = 0). According to convention in Section 6.2, the differential forms

Ω(γve ,ove ) ∧ Ω(γve ,ove ) are equal to(√
−1
2

)|F+
γ | (∧

β∈F+
γ (ve) dzβ ∧ dzβ

∧
dyri+2

∧ · · · ∧ dyrl−2

)
∧
(∧

α∈F+
γ (ve)

dzα ∧ dzα

∧
dxr2 ∧ · · · ∧ dxri

) when i+ j = l − 1,

(√
−1
2

)|F+
γ | (∧

β∈F+
γ (ve) dzβ ∧ dzβ

∧
dyr2 ∧ · · · ∧ dyri−1

)
∧
(∧

α∈F+
γ (ve)

dzα ∧ dzα

∧
dxri+1

∧ · · · ∧ dxrl−2

) when i = 0.

The equation (z − xfe) · w + t = 0 implies the following equalities:

dt = −dxri+1
, dxfe = dxrl−1

when i+ j = l − 1

dt = dxri
, dxfe = dxri+j

when q = 0,

and

dwβ = − dt
zβ−xfe

+
tdzβ

(zβ−xfe )2
− tdxfe

(zβ−xfe )2
for β ∈ F±

γ (ve),

dyr = − dt
xr−xfe

+ tdxr

(xr−xfe )2
− tdxfe

(xr−xfe )2
for r = ri+2, · · · , ri+j−1.

By using these identities we obtain that −dt ∧ Ω(γve ,ove ) ∧ Ω(γve ,ove ) is equal to

(−1)(i−1)(l−i−2)

(√
−1

2

)|F+
γ |

Θ
∧

α∈F+
γ

dzα ∧ dzα

∧
dxr2 ∧ · · · ∧ dxrl−2

when i+ j = l − 1, and

(−1)(j−1)

(√
−1

2

)|F+
γ |

Θ
∧

α∈F+
γ

dzα ∧ dzα

∧
dxr2 ∧ · · · ∧ dxrl−2

when i = 0. Since Θ =
∏

β∈F+
γ (ve) t(zβ − xfe)

−2
∏

r=ri+2,··· ,ri+j−1
t(xr − xfe)

−2 > 0, the

orientation [ω(γ,δ(o))] induced by [ω(τ,o)] is equal to

(−1)(i+1)(j−1)
[
Ω(γve ,ove ) ∧ Ω(γve ,ove )

]
when i+ j = l − 1,

(−1)(j−1)
[
Ω(γve ,ove ) ∧ Ω(γve ,ove )

]
when i = 0.

Case II. |Fix(σ)| = 0.

The different cases for boundaries of C(τ,o) are treated separately.
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Subcase: σ-invariant curves of type 1. Let (τ, o) be a one-vertex o-planar tree

of type 1, and let [ω(τ,o)] be the orientation of C(τ,o) defined by the differential form

ω(τ,o) := (

√
−1

2
)k−2

∧
α∗∈Perm+\(Perm+ T

{sk−1,sk,s2k−1,s2k})

dzα∗ ∧ dzα∗

∧
dλ (6.3)

(which is given by the coordinates in (C) of 5.1.2). Here λ = =(zα′) and α′ ∈
{sk−1, s2k−1}

⋂
Perm+.

Lemma 6.2.2. Let (γ, δ(o)) be a two-vertex o-planar tree, and let the corresponding

strata C(γ,δ(o)) be contained in the boundary of C(τ,o).

(a) If VR
γ = Vγ, then the orientation [ω(γ,δ(o))] induced by the orientation [ω(τ,o)]

is equal to −[Ω(γve ,ove )] ∧ [Ω(γve ,ove )].

(b) If VR
γ = ∅, then the orientation [ω(γ,δ(o))] induced by the orientation [ω(τ,o)] is

equal to [Ω(γ,δ(o))].

Proof. (a) The proof of this case is the same with the proof of Lemma 6.2.1. We will

not repeat it here.

(b) Let (Σo,po) ∈ C(γ,δ(o)). We set Σo
ve

to be {w = 0} and Σo
ve to be {z = 0}.

Let αk−1 in F+
γ (ve) \ {sn} be the maximal element. According to the convention in

Section 6.2, we specify the isomorphisms Φve : Σve → CP1 and Φve : Σve → CP1 by

mapping the special points

(pfe , pαk−1
, psn) 7→ (0,

√
−1/2,

√
−1),

(pfe , pαk−1
, psn) 7→ (0,−

√
−1/2,−

√
−1).

Due to Proposition 5.3.4, a tubular neighborhood RV × [0, ε[ of (Σo,po) in C(τ,o) can

be given by the family {z · w = t | t ∈ [0, ε[} with labelled points

pαk−1
= (

√
−1/2,−2t

√
−1), psn = (

√
−1,−t

√
−1),

pαk−1
= (2t

√
−1,−

√
−1/2), psn = (t

√
−1,−

√
−1),

pα = (zα, t/zα), pα = (t/wα, wα).

for α ∈ F+
γ (resp. α ∈ F−

γ ). We use the z components of position of labelled points

as coordinates on C(τ,o).

The orientation of C(γ,δ(o)) is

Ω(γ,δ(o)) = A
∧

α∈F+
γ \{fe,αk−1,sn}

d zα ∧ d zα. (6.4)

where A = (
√
−1/2)|F

+
γ |−3 due to Section 6.2. We put the labelled points into a

normal position by using the following transformation

Λ : zα 7→ qα =
√
−1

(
zα −

√
−t

zα +
√
−t

)
/

(
1−

√
t

1 +
√
t

)
.
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Hence, we have

dqα =

(
2t(1− t)√

t(−1 +
√
t)2(

√
t− zα

√
−1)2

)
dzα

+

(
(t− zα

√
−1)(−

√
−1 + zα)√

t(−1 +
√
t)2(

√
t− zα

√
−1)2

)
dt,

d(Im(qαk−1
)) = − 1 + 2t√

t(1 +
√
t− 2t)2

dt,

and

−dt ∧ Ω(γ,δ(o)) = A Θ
∧

α∈F+\{fe,αk−1,sn}

d qα ∧ d qα

∧
d(Im(qαk−1

))

where Θ = Φ×Ψ and

Φ =
∏

α∈F+
γ \{fe,αk−1,sn}

(
2t(1− t)√
t(−1 +

√
t)2

)2(
1

(t+
√
t · Im(zα) + |zα|2)

)2

> 0,

Ψ =

(√
t(1 +

√
t− 2t)2

1 + 2t

)
> 0

for t ∈]0, ε[. Note that, Θ > 0.

Since the labelled points are in normal positions in coordinates q, the form

ω(τ,o) = A
∧

α∈F+\{fe,αk−1,sn}

d qα ∧ d qα

∧
d(Im(qαk−1

))

gives the orientation of the stratum for a one-vertex (τ, o). The orientation [ω(γ,δ(o))]

induced by ω(τ,o) is [Ω(γ,δ(o))] since Θ > 0.

Subcase: σ-invariant curves of type 2. Let (τ, o) be a one-vertex o-planar tree

of type 2, and let [ω(τ,o)] be the orientation of C(τ,o) defined by

ω(τ,o) := −(

√
−1

2
)k−2

∧
α∗∈{s1,··· ,sk−2}

dzα∗ ∧ dzα∗

∧
dλ (6.5)

(which is given by the coordinates in (D) of 5.1.2). Here λ = =(zsk−1
).

Lemma 6.2.3. Let (γ, ô) be a two-vertex o-planar tree where VR
γ = ∅, and let C(γ,ô) be

contained in the boundary of strata C(τ,o) given above. Then, the orientation [ω(γ,ô)]

induced by the orientation [ω(τ,o)] is equal to (−1)ℵ[Ω(γ,ô)] where ℵ = |{1, · · · , k −
1}
⋂

F−
γ |+ 1.
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Proof. Let (Σo,po) ∈ C(γ,ô). We set Σo to be {z · w = 0} and the labelled points po

to be a set points in {z · w = 0} as in proof Lemma 6.2.2. Due to Proposition 5.3.4,

a tubular neighborhood RV × [0, ε[ of (Σo,po) in C(τ,o) can be given by the family

{z · w = −t | t ∈ [0, ε[} with labelled points

pαk−1
= (

√
−1/2, 2t

√
−1), psn = (

√
−1, t

√
−1),

pαk−1
= (2t

√
−1,

√
−1/2), psn = (t

√
−1,

√
−1),

pα = (zα,−t/zα), pα = (−t/wα, wα).

for α ∈ F+
γ (resp. α ∈ F−

γ ). We use the z components of position of labelled points

as coordinates on C(τ,o).

Due to convention in Section 6.2, the orientation of C(γ,ô) is given in (6.4).

We put the labelled points into a normal position by using the following transfor-

mation

Λ : zα 7→ qα :=

(
Azα +B

√
t

Bzα + A
√
t

)
where A = −(1 +

√
t) and B =

√
−1(1−

√
t).

Therefore, we have

dqα =

(
2t(1 + t)√

t(t+
√
t(1 + zα

√
−1)− zα

√
−1)2

)
dzα

+

(
−(t+ zα

√
−1)(−

√
−1 + zα)√

t(t+
√
t(1 + zα

√
−1)− zα

√
−1)2

)
dt,

d(Im(qαk−1
)) =

−1 + 2t√
t(1 +

√
t+ 2t)2

dt,

and

−dt ∧ Ω(γ,o) = A Θ
∧

α∈F+\{fe,αk−1,sn}

d qα ∧ d qα

∧
d(Im(qαk−1

)),

= A Θ (−1)|F
−γ

T
{s1,··· ,sk−2}|

∧
α∈{s1,··· ,sk−2}

d qα ∧ d qα

∧
d(Im(qαk−1

))

where Θ = Φ×Ψ > 0 since

Φ =
∏

F+
γ \{fe,αk−1,sn}

( √
t

2t(1 + t)

)2

(|(t+
√
t)− zα

√
−1(1−

√
t)|2)2 > 0, and

Ψ =

(√
t(1 +

√
t+ 2t)2

1− 2t

)
> 0

for t ∈]0, ε[.
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If αk−1 ∈ F+
γ , then |F−

γ

⋂
{s1, · · · , sk−1}| = |F−

γ

⋂
{s1, · · · , sk−2}| If αk−1 ∈ F−

γ ,

then |F−
γ

⋂
{s1, · · · , sk−1}| = |F−

γ

⋂
{s1, · · · , sk−2}|+ 1.

Therefore, the orientation Ω(γ,ô) is induced by

(−1)|F
−
γ

T
{1,··· ,k−1}|A

∧
α∈{s1,··· ,sk−2}

d qα ∧ d qα

∧
d(Im(qk−1)) = (−1)ℵ[ω(τ,o)].

6.3 Conventions

Let (τ, o?) be the one-vertex o-planar tree where the o-planar structure o? is given by{
type 1; F+

τ = {s1, s2, · · · , sk}; F−
τ = {sk+1, · · · , s2k};

FR
τ = {{s2k+1} < {s2k+2} < · · · < {s2k+l := sn}}

}
All the other o-planar structures of type 1 on τ are obtained as follows.

Let % ∈ Sn be a permutation which commutes with σ and, if l > 0, preserves sn.

It determines an o-planar structure given by

%(o?) =

{
type 1; F+

τ = {%(s1), · · · , %(sk)}; F−
τ = {%(sk+1), · · · , %(s2k)};

FR
τ = {{%(s2k+1)} < · · · < {%(sn) = sn}}

}
The parity of % depends only on o = %(o?) and we call it parity |o| of o = %(o?).

Convention of orientations

We fix an orientation for each top-dimensional stratum as follows.

a. Case type 1. First, we select o-planar representatives for each one-vertex

u-planar tree of type 1 as follows:

1. If |Fix(σ)| ≥ 3, we choose the representative (τ, o) of (τ, u) in which

{s2k+1} < {sn−1} < {sn};
2. If |Fix(σ)| < 3, we choose the representative (τ, o) of (τ, u) such that

sk ∈ Perm+.

We denote the set of o-planar representatives of u-planar trees by UTree(σ).

We select the orientation for C(τ,u) = C(τ,o) to be

(−1)|o|[ω(τ,o)], (6.6)

where (τ, o) ∈ UTree(σ) and ω(τ,o) is the form defined according to Section 6.1

and |o| is the parity introduced in Section 6.3.

b. Case type 2. Here, we choose the orientation defined by the form (6.5).

In what follows, we denote the set of flags {s2k+1, sn−1, sn} (for |Fix(σ)| ≥ 3 case)

and {sk, s2k, sn} (for |Fix(σ)| < 3 case) by F.
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6.4 Adjacent top-dimensional strata of type 1

Let C(τ,ui), i = 1, 2, be a pair of adjacent top-dimensional strata of (τ, ui) of type 1,

and C(γ,u) be their common codimension one stratum. Let (τ, oi) be the o-planar

representatives of (τ, ui) given in Section 6.3. Consider the pair of o-planar rep-

resentatives (γ, δ(oi)) of (γ, u) which respectively give (τ, oi) after contracting their

edges.

Lemma 6.4.1. The o-planar tree (γ, δ(o1)) is obtained by reversing the o-planar

structure δ(o2)v of (γ, δ(o1)) at vertex v where |Fγ(v)
⋂

F| ≤ 1.

Proof. Obviously, (γ, δ(o1)) can be obtained from (γ, δ(o2)) by reversing the o-planar

structures at one or both its vertices ve, v
e. If we reverse the o-planar structure of

(γ, δ(o2)) at the vertex v such that |Fγ(v)
⋂

F| > 1, or at both of its vertices ve and ve,

then the resulting o-planar tree will not be an element of UTree(σ) after contracting

its edge: reversing the o-planar structure at the vertex v with |Fγ(v)
⋂

F| > 1, or at

both of the vertices reverses cyclic order of the elements {s2k+1, sn−1, sn} when l ≥ 3,

and moves sk from Perm+(σ) to Perm−(σ) when l < 3.

For a pair of two-vertex o-planar trees (γ, δ(oi)) as above, we calculate the differ-

ences of parities as follows.

Lemma 6.4.2. Let (γ, δ(oi)), i = 1, 2 be a pair of o-planar trees as above. Let Vγ =

VR
γ = {ve, v

e}, and let o-planar structures at the vertices ve and ve be

δ(o1)ve =

{
type 1;F±

γ (ve);F
R
γ (ve) = {{r1} < · · · < {ri} < {fe} <

< {ii+j+1} < · · · < {rl−1} < {n}}

}
δ(o2)ve = {type 1;F±

γ (ve);FR
γ (ve) = {{ri+1} < · · · < {ri+j} < {f e}}}.

Let v be the vertex such that |Fγ(v)
⋂

F| ≤ 1. Then, the parity |o1| − |o2| is equal to

|F+
γ (ve)|+ j(j−1)

2
when v = ve,

|F+
γ (ve)|+ ij + jm+ im+ m(m−1)

2
+ i(i−1)

2
when v = ve and |FR

γ (ve)| > 3,

|F+
γ (ve)|+ |FR

γ (ve)| − 1 when v = ve and |FR
γ (ve)| = 3,

|F+
γ (ve)| when v = ve and |FR

γ (ve)| = 2.

Here, j = |FR
γ (ve)| − 1 and m = |FR

γ (ve)| − i− 2.

In Section 6.2, we have introduced differential forms Ω(γv ,δ(oi)v) for each v ∈
Vγ. When we reverse the o-planar structure at the vertex v, the differential forms

Ω(γv ,δ(o2)v), Ω(γv ,δ(o1)v) become related as follows.

Lemma 6.4.3. Let (γ, δ(oi)), i = 1, 2 be two-vertex o-planar trees as above. Then,

Ω(γv ,δ(o1)v) = (−1)µ(v) Ω(γv ,δ(o2)v),

where

µ(v) = |F+
γ (v)|+

(|FR
γ (v)| − 2)(|FR

γ (v)| − 3)

2
.

Lemmata 6.4.2 and 6.4.3 follow from straightforward calculations.
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6.5 The First Stiefel-Whitney class

This section is devoted to the proof of the following theorem.

Theorem 5. (a) For |Fix(σ)| > 0, the Poincare dual of the first Stiefel-Whitney

class of RMσ

S is

[w1] =
∑
(γ,u)

[C(γ,u)] =
∑

γ

[RDγ] mod 2,

where the both sums are taken over all two-vertex trees such that

• |Fγ(v
e)
⋂

F| ≤ 1 and |ve| = 0 mod 2, or

• |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| 6= 3 and |ve|(|ve| − 1) = 0 mod 2, or

• |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| = 3 and |FR

γ (ve)| = 1,

and, in the first sum, in addition over all u-planar structures on γ.

(b) For |Fix(σ)| = 0, the Poincare dual of the first Stiefel-Whitney class of RMσ

S

vanishes.

Proof. Fix an orientation for each top-dimensional stratum as in 6.3. The orientation

(−1)|o|[ω(τ,o)] of a top-dimensional stratum C(τ,o) induces some orientation of each

codimension one stratum C(γ,δ(o)) (and C(γ,ô)) contained in the boundary of C(τ,o). The

induced orientations (−1)|o|[ω(γ,δ(o))] and (−1)|o|[ω(γ,ô)] are determined in Lemmata

6.2.1, 6.2.2 and 6.2.3, and they give (relative) fundamental cycles [C(γ,δ(o))] and [C(γ,ô)]

of the codimension one strata C(γ,δ(o)) and C(γ,ô) respectively.

The Poincare dual of the first Stiefel-Whitney class of RMσ

S is given by

[w1] =


1
2

∑
(τ,u)

(∑
(γ,δ(o))[C(γ,δ(o))]

)
mod 2, when |Fix(σ)| > 0,

1
2

∑
(τ,u)

(∑
(γ,ô)[C(γ,ô)]

)
mod 2, when |Fix(σ)| = 0,

(6.7)

where the external summation runs over all one-vertex u-planar trees (τ, u) and the

internal one over all codimension one strata of C(τ,o) for the one-vertex o-planar tree

(τ, o) which represents (τ, u) in accordance with 6.3. Indeed, the sum (6.7) detects

where the orientation on RMσ
S can not be extended to RMσ

S.

We prove the theorem by evaluating (6.7).

Case |Fix(σ)| > 0. Let C(τ,oi), i = 1, 2 be a pair of adjacent top-dimensional

strata, and C(γ,δ(oi)) ⊂ C(τ,oi) be their common codimension one boundary stra-

tum. We calculate
[
C(γ,δ(o1))

]
+
[
C(γ,δ(o2))

]
as follows. According to 6.3, the strata

C(τ,oi) are oriented by (−1)|oi|[ω(τ,oi)], and these orientations induce the orientations

(−1)|oi|[ω(γ,δ(oi))] on C(γ,δ(oi)). The induced orientations (−1)|oi|[ω(γ,δ(oi))] are given
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by (−1)|oi|+ℵi [Ω(γve ,δ(oi)ve ) ∧ Ω(γve ,δ(oi)ve )] in Lemmata 6.2.1 and 6.2.2 according to

the convention introduced in Section 6.2. We denote by v be the vertex such that

|Fγ(v)
⋂

F| ≤ 1 as in Section 6.4, and compare the induced orientations by calculating

Π(o1, o2) = (|o1|+ ℵ1)− (|o2|+ ℵ2)− µ(v)

for each of the following three subcases.

First, assume that |Fγ(v
e)
⋂

F| ≤ 1. In this subcase, the o-planar structure is

reversed at the vertex v = ve. Therefore, ℵ1 = ℵ2 according to Lemma 6.2.1. Finally,

by applying Lemmata 6.4.2 and 6.4.3 and using relation j = |FR
γ (ve)| − 1 we obtain

Π(o1, o2) = |o1| − |o2| − µ(ve) =
j(j − 1)

2
−

(|FR
γ (ve)| − 2)(|FR

γ (ve)| − 3)

2
= |FR

γ (ve)| − 2

= |ve| mod 2.

The latter equality follows from the fact that |FR
γ (v)| = |v| mod 2.

Second, assume that |Fγ(ve)
⋂

F| ≤ 1 and |FR
γ (ve)| 6= 3. In this subcase, the

o-planar structure is reversed at the vertex v = ve. Since |FR
γ (ve)| 6= 3, once more

ℵ1 = ℵ2 according to the Lemma 6.2.1. Finally, by applying Lemmata 6.4.2 and 6.4.3

and using relation |FR
γ (ve)| = i+m+ 2, we obtain

Π(o1, o2) = ij + jm+ im+
m(m− 1)

2
+
i(i− 1)

2
− (i+m)(i+m− 1)

2
= j(i+m),

= (|FR
γ (ve)| − 1)(|FR

γ (ve)| − 2),

= |ve|(|ve| − 1) mod 2

when |FR
γ (ve)| > 3, and

Π(o1, o2) = 2|F+
γ (ve)| = 0 mod 2

= |ve|(|ve| − 1) mod 2

when |FR
γ (ve)| = 2.

Third, we consider |Fγ(ve)
⋂

F| ≤ 1 and |FR
γ (ve)| = 3 case. In this subcase, the o-

planar structure is reversed at the vertex ve. Hence, ℵ1 = ℵ2 whenever |FR
γ (ve)| = 1, 2,

and ℵ1−ℵ2 is ±(l+1) = ±(|FR
γ (ve)|+2) whenever |FR

γ (ve)| ≥ 3. Finally, by applying

Lemmata 6.4.2 and 6.4.3, we obtain

Π(o1, o2) =


|FR

γ (ve)| − 1± (|FR
γ (ve)|+ 2) = 1 mod 2, when |FR

γ (ve)| ≥ 3,

|FR
γ (ve)| − 1 = 1 mod 2, when |FR

γ (ve)| = 2,

|FR
γ (ve)| − 1 = 0 mod 2, when |FR

γ (ve)| = 1,
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The induced orientations (−1)|oi|[ω(γ,δ(oi))] are the same if and only if Π(o1, o2) = 0

mod 2. Hence, we have[
C(γ,δ(o1))

]
+
[
C(γ,δ(o2))

]
=

1 + (−1)Π(o1,o2)

2

[
C(γ,δ(o1))

]
.

The sum ([C(γ,δ(o1))]+[C(γ,δ(o2))])/2 gives us the fundamental cycle [C(γ,δ(o1))] when

(−1)|o1|[ω(γ,δ(o1))] = (−1)|o2|[ω(γ,δ(o2))], and it turns to zero otherwise. Finally, as is

follows from the above case-by-case calculations of Π(o1, o2), the fundamental class

of a codimension one strata C(γ,δ(o1)) is involved in [w1] if and only if one of the three

conditions given in Theorem are verified. It gives the first expression for [w1] given in

Theorem. Since in this first expression the sum is taken over all u-planar structures

on γ, it can be shorten to the sum of the fundamental classes of RDγ.

Case |Fix(σ)| = 0. Let C(τ,ui), i = 1, 2, be a pair of adjacent top-dimensional strata

and C(γ,u) be their common codimension one stratum. Let (τ, oi) be the o-planar

representatives of (τ, ui) given in 6.3. Here, we have to consider two subcases: (i)

C(γ,u) is a stratum of real curves with two real components (i.e, |Vγ| = |VR
γ | = 2),

and (ii) C(γ,u) is a stratum of real curves with two complex conjugated components

(i.e, |Vγ| = 2 and |VR
γ | = 0).

(i) Consider the pair of o-planar representatives (γ, δ(oi)) of (γ, u) which respec-

tively give (τ, oi) after contracting the edges and compare their o-planar structure.

Since the both tails n and σ(n) are in Fγ(ve), the o-planar structure is reversed at

the vertex ve. Therefore, ℵ1 = ℵ2 according to the Lemma 6.2.1. Finally, by applying

Lemmata 6.4.2 and 6.4.3, we obtain

Π(o1, o2) = 2|F+
γ (ve)|+ 1 = 1 mod 2.

In other words,
[
C(γ,δ(o1))

]
+
[
C(γ,δ(o2))

]
= 0 for this case.

(ii) Let C(τ,o2) be a stratum of of real curves with empty real part, and let (γ, ô)

be an o-planar representative of (γ, u).

The orientations of C(γ,u) induced by the orientations (−1)|o1|[ω(τ,o1)] and [ω(τ,o2)] of

C(τ,o1) and C(τ,o2) are given in Lemmata 6.2.2 and 6.2.3. Namely, they are respectively

given by the following differential forms

(−1)|o1|
∧

α∗∈F+
γ \(F+

γ
T
{k−1,k,2k−1,2k})

dzα∗ ∧ dz̄α∗ ,

(−1)ℵ
∧

α∗∈F+
γ \(F+

γ
T
{k−1,k,2k−1,2k})

dzα∗ ∧ dz̄α∗ ,

where |o1| = |{1, · · · , k− 1}
⋂

F−
γ | and ℵ = |{1, · · · , k− 1}

⋂
F−

γ |+ 1. Therefore, the

orientations induced from different sides are opposite and the sum (−1)ℵ−1
[
C(γ,u)

]
+

(−1)ℵ
[
C(γ,u)

]
vanishes for all such (γ, ô).
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Example 6.5.1. Due to Theorem 5, the Poincare dual of the first Stiefel-Whitney

class [w1] of RMσ

(0,5) can be represented by
∑

γ[RDγ] =
∑

(γ,u)[C(γ,u)] where γ are

S-trees with a vertex v satisfying |v| = 4 and |Fγ(v)
⋂
{s1, s4, s5}| = 1. These S-

trees are given in Figure 6.2a, and the union corresponding strata
⋃

τ RDγ is given

the three exceptional divisors obtained by blowing up the three highlighted points in

Figure 6.2b.

Figure 6.2: (a) σ-invariant trees contributing the Stiefel-Whitney class of RMσ

(0,5)

due to Theorem 5, (b) The blown-up locus in RMσ

(0,5)
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Chapter 7

The orientation covering of RMσ
S

In Chapter 6, the first Stiefel-Whitney class of RMσ

S is determined in terms of its

strata. We have also proved that the moduli space RMσ

S is orientable when |S| = 4

or |Fix(σ)| = 0. In this chapter, we give a combinatorial construction of orientation

double covering for the rest of the cases i.e, |S| > 4 and |Fix(σ)| > 0. By observing

the non-triviality of the orientation double cover in these cases, we prove that RMσ

S

is not orientable. Some other double covers of RMσ

S which appeared in the recent

literature is discussed at the end of the chapter.

7.1 Construction of orientation double covering

Let |S| > 4 and |Fix(σ)| > 0. In Section 5.1.1, we have shown that the map

C̃(S,σ) → RMσ
S , which is identifying the opposite o-planar structures, is a trivial

double covering. The disjoint union of closed strata C(S,σ) =
⊔

(τ,o)C(τ,o), where

|Vτ | = 1 and (τ, o) runs over all possible o-planar structures on τ , is a natural

compactification of C̃(2k,l).

To obtain the orientation double covering of RMσ

S, we need to get rid of the

codimension one strata by pairwise gluing them. We use the following simple recipe:

for each pair (τ, oi),= 1, 2, of one-vertex o-planar trees obtained by contracting the

edge in a pair (τ, δ(oi)), i = 1, 2, of two-vertex o-planar trees with the same underlying

tree such that Vγ = VR
γ = {ve, v

e}, ve = ∂γ(sn), we glue C(τ,oi) along C(γ,δ(oi)), i =

1, 2, if

A. (γ, δ(o1)) produces (γ, δ(o2)) by reversing the o-planar structure at the vertex

ve, |Fγ(v
e)
⋂

F| ≤ 1, and |ve| = 1 mod 2,

B. (γ, δ(o1)) produces (γ, δ(o2)) by reversing the o-planar structure at the vertex

ve, |Fγ(v
e)
⋂

F| ≤ 1, and |ve| = 0 mod 2,
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C. (γ, δ(o1)) produces (γ, δ(o2)) by reversing the o-planar structure at the vertex

ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| 6= 3 and |ve|(|ve − 1|) = 1 mod 2,

D. (γ, δ(o1)) produces (γ, δ(o2)) by reversing the o-planar structure at the vertex

ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| 6= 3 and |ve|(|ve − 1|) = 0 mod 2,

E . (γ, δ(o1)) produces (γ, δ(o2)) by reversing the o-planar structure at the vertex

ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| = 3 and |FR

γ (ve)| 6= 1,

F . (γ, δ(o1)) produces (γ, δ(o2)) by reversing the o-planar structure at the vertex

ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| = 3 and |FR

γ (ve)| = 1.

We denote by RM̃σ
S the resulting factor space.

Theorem 6. RM̃σ
S is the orientation double cover of RMσ

S.

Proof. Let M̃ be the orientation double covering of RMσ

S. The points of M̃ can

be considered as points in RMσ

S with local orientation. On the other hand, by us-

ing opposite o-planar structures of a one-vertex τ , we can determine orientations

(−1)|o|[ω(τ,o)] and (−1)|ō|+|Fix(σ)|−1[ω(τ,ō)] on C(τ,o) and C(τ,ō) where (τ, o) ∈ UTree(σ).

These orientations are opposite with respect to the identification of C(τ,o) and C(τ,ō)

by the canonical diffeomorphism −I introduced in Subsection 5.1.1. Hence, there

is a natural continuous embedding C̃(S,σ) =
⊔

(τ,o)∈UTree(σ)(C(τ,o) t C(τ,ō)) → M̃ . It

extends to a surjective continuous map C(S,σ) =
⊔

(τ,o)∈UTree(σ)(C(τ,o) t C(τ,ō)) → M̃.

Since C(S,σ) is compact and M̃ is Hausdorff, the orientation double covering M̃ is

a quotient space C(S,σ)/R of C(S,σ) under the equivalence relation R defined by the

map C(S,σ) → M̃ .

This equivalence relation is uniquely determined by its restriction to the codi-

mension one faces of C(S,σ), which cover the codimension one strata of RMσ

S under

the composed map C(S,σ) → M̃ → RMσ

S. On the other hand, the equivalence rela-

tion on the codimension one faces is determined by the first Stiefel-Whitney class: A

partial section of the induced map C(S,σ)/R → RMσ

S given by distinguished strata⊔
(τ,o)∈UTree(σ)C(τ,o). Over a neighborhood of a codimension one stratum of RMσ

S, a

partial section extends to a section if this codimension one strata is not involved in

the expression for the first Stiefel-Whitney class given in Theorem 5, and it should

not extend, otherwise. Notice that the faces C(τ,δ(oi)) considered in relations A, C
and E are mapped onto the strata C(τ,δ(u)) which do not contribute to the expression

[w1] given in Theorem 5, and the faces C(τ,δ(oi)) in relations B, D and F are mapped

onto the strata C(τ,δ(u)) which contribute to the expression [w1]. There four different

faces C(τ,δ(o)i), i = 1, · · · , 4 over each codimension one stratum C(τ,δ(u)). Lemma 6.4.1

determines the pairs C(τ,δ(o)i), C(τ,δ(o)j) to be glued to each other.
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Corollary 7. The moduli space RMσ

S is not orientable when |S| > 4 and |Fix(σ)| >
0.

Proof. Let |Fix(σ)| ≥ 3, and (τ, o) be an o-planar structure with {s2k+1} < {sn−1} <
{sn}. It is clear that, we can produce any o-planar structure on τ with {s2k+1} <
{sn−1} < {sn} by applying following operations consecutively:

• interchanging the order of two consecutive tails {ri, ri+1} for |{ri, ri+1}
⋂

F| ≤ 1

and sn 6∈ {ri, ri+1},

• swapping sj ∈ Perm+(σ) with sj̄ ∈ Perm−(σ) for sj 6= sk, s2k.

The one-vertex o-planar trees with {sn−1} < {s2k+1} < {sn} can be produced from

the o-planar tree (τ, ō) via same procedure.

Let |Fix(σ)| = 1, 2. Similarly, if we start with o-planar tree (τ, o) with k ∈
Perm+(σ) (k ∈ Perm−(σ)), then we can produce any o-planar structure on τ with

k ∈ Perm+(σ) (k ∈ Perm−(σ)) by swapping s ∈ Perm+(σ) with s̄ ∈ Perm−(σ)

for s 6= sk, s2k.

Note that, these operations correspond to passing from one top-dimensional stra-

tum to another in RM̃σ
S through the certain faces. These faces correspond to the

one-edge o-planar trees (γ, δ(o)i) with |ve| = 3, and |Fγ(v
e) ∩ F| ≤ 1 i.e, these are

faces glued according to the relations of type A. Any two top-dimensional strata in

RM̃σ
S with same cyclic ordering of F (resp. with sk is in same set Perm±(σ)) can

be connected through a path passing through these codimension faces C(γ,δ(o)i). The

quotient space C(S,σ)/A has two connected components since there are two possible

cyclic orderings of {s2k+1, sn−1, sn} when |Fix(σ)| ≥ 3 (resp. two possibilities for

|Fix(σ)| = 1, 2 case: k ∈ Perm+(σ) and k ∈ Perm−(σ)).

The set of relations of type B is not empty when |S| > 4 and |Fix(σ)| > 0.

Moreover, the relation of type B reverses the cyclic ordering on F (resp. moves sk

from Perm± to Perm∓). Hence, the faces glued according to the relations of type

B connect the connected components of C(S,σ)/A. Therefore, the orientation double

cover RMσ

S is nontrivial when |S| > 4 and |Fix(σ)| > 0 which simply means that the

moduli space RMσ

S is not orientable in this case.

Example 7.1.1. In Example 5.3.6, we obtained that RMσ

S are respectively a torus

with three points blown up, a sphere with three points blown up, and a sphere with

one point blown up for the involutions σ given in (5.4). The double covering RM̃σ
S is

obtained by taking the two copies of the corresponding moduli space of real curves

and replacing the blown up loci by annuli. Therefore, RM̃σ
S are surfaces of genus 4,

genus 2 and genus 0, respectively (see Figure 7.1 which illustrates the case σ = id).

62



Figure 7.1: Stratification of RM̃σ
S for σ = id

7.2 Combinatorial types of strata of RM̃σ
S

While constructing RM̃σ
S , the closure of the each codimension one strata are glued

in a consistent way. This identification of codimension strata gives an equivalence

relation among the o-planar trees when |Fix(σ)| 6= 0.

We define the notion of R-equivalence on the set of such o-planar trees by treating

different cases separately. Let (γ1, o1), (γ2, o2) be o-planar trees.

1. If |VR
γi
| = 1, then we say that they are R-equivalent whenever γ1, γ2 are isomor-

phic (i.e, γ1 ≈ γ2) and the o-planar structures are the same.

2. If γi have an edge corresponding to real node (i.e. ER
γi

= {e} and VR
γi

= ∂γ(e) =

{ve, ve}), we first obtain (γi(e), oi(e)) by contracting conjugate pairs of edges

until there will be none. We say that (γ1, o1) and (γ2, o2) are R-equivalent

whenever γ1 ≈ γ2 and

• (γ1(e), o1(e)) produces (γ1(e), o2(e)) by reversing the o-planar structure at

the vertex ve, |Fγ(v
e)
⋂

F| ≤ 1, and |ve| = 1 mod 2,

• (γ1(e), o1(e)) produces (γ1(e), o2(e)) by reversing the o-planar structure at

the vertex ve, |Fγ(v
e)
⋂

F| ≤ 1, and |ve| = 0 mod 2,

• (γ1(e), o1(e)) produces (γ1(e), o2(e)) by reversing the o-planar structure at

the vertex ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| 6= 3 and |ve|(|ve− 1|) = 1 mod 2,

• (γ1(e), o1(e)) produces (γ1(e), o2(e)) by reversing the o-planar structure at

the vertex ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| 6= 3 and |ve|(|ve−1|) = 0 mod 2,

• (γ1(e), o1(e)) produces (γ1(e), o2(e)) by reversing the o-planar structure at

the vertex ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| = 3 and |FR

γ (ve)| 6= 1,

• (γ1(e), o1(e)) produces (γ1(e), o2(e)) by reversing the o-planar structure at

the vertex ve, |Fγ(ve)
⋂

F| ≤ 1, |FR
γ (ve)| = 3 and |FR

γ (ve)| = 1,
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3. Otherwise, if γi have more than one invariant edge (i.e. |Eγi
|R > 1), we say

that (γ1, o1), (γ2, o2) are R-equivalent whenever γ1 ≈ γ2 and there exists an

edge e ∈ ER
γi

such that the o-planar trees (γi(e), oi(e)), which are obtained by

contracting all edges but e, are R-equivalent in the sense of the Case (2).

We call the maximal set of pairwise R-equivalent o-planar trees by R-equivalence

classes of o-planar trees.

Theorem 8. A stratification of the orientation double cover RM̃σ
S is given by

RM̃σ
S =

⊔
R−equivalance classes

of o−planar (γ,o)

C(γ,o).

7.3 Some other double coverings of RMσ
S

In [21], Kapranov constructed a different double covering R̂MS of RMσ

S having no

boundary for σ = id. He has applied the following recipe to obtain the double

covering: Let C(S,σ) be the disjoint union of closed strata
⊔

(τ,o)C(τ,o) for σ = id.

Let (γ, δ(oi)), i = 1, 2 be two-vertex o-planar trees representing the same u-planar

tree (γ, u), and let (τ, oi) be the one-vertex trees obtained by contracting the edges

of (γ, δ(oi)). The strata C(γ,δ(oi)), i = 1, 2 are glued if (γ, δ(o1)) produces (γ, δ(o2))

by reversing the o-planar structure at vertex ve 6= ∂γ(sn). We obtain first Stiefel-

Whitney class of R̂MS by using the same arguments in Theorem 5.

Proposition 7.3.1. The Poincare dual of the first Stiefel-Whitney class of R̂MS is

[ŵ1] =
1

2

∑
(τ,o)

∑
(γ,δ(o)):|ve|=0 mod 2

[
C(γ,δ(o))

]
mod 2.

It is well-known that these spaces are not orientable when l ≥ 5, see for example [7].

7.3.1 A double covering from open-closed string theory

In [11, 31], a different ‘orientation double covering’ is considered. It can be given as

the disjoint union
⊔

(τ,o)C(τ,o) where F+
τ = {s1, · · · , sk}, and FR

τ carries all possible

oriented cyclic ordering. It is a disjoint union of manifolds with corners. The covering

map
⊔

(τ,o)C(τ,o) → RMσ

S is two-to-one only over a subset of the open space RMσ
S .

It only covers the subset
⊔

(τ,u)C(τ,u) of RMσ

S where u-planar trees (τ, u) have the

partition {{s1, · · · , sk}, {sk+1, · · · , s2k}} of Fτ \ FR
τ . Moreover, the covering map is

not two-to-one over the strata with codimension higher than zero.
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Chapter 8

Homology of the strata of RMσ
S

In this chapter, we calculate the homology of the strata of RMσ

S relative to the union

their substrata of codimension one and higher.

8.1 Forgetful morphism revisited

In this section, we discuss some properties of the restriction of the forgetful map to

the strata of RMσ

S.

8.1.1 Forgetting a conjugate pair of labelled points

Let S = {s1, · · · , sn} and σ 6= id. Let {s, s̄ := σ(s)} be a conjugate pair in Perm(σ)

which is different than {sn, sn̄} when Fix(σ) = ∅. Let S′ = S \ {s, s̄}. Denote the

restriction of σ on S′ by σ′. From now on, we denote the map π{s,s̄} : RMσ

S → RMσ′

S′

forgetting the labeled point ps, ps̄ by simply π.

Let π : C(γ∗,o∗) → C(γ,o) be the restriction of the forgetful map to the stratum

C(γ∗,o∗) ⊂ RMσ

S. Let vs := ∂γ∗(s). Whenever vs ∈ VR
γ∗ and |vs| = 3, there is

unique vertex in VR
γ∗ next to vs since vs supports both s, s̄ and a flag of an real edge

connecting vs to the rest of γ∗. We denote this closest vertex to vs by vc.

We will denote the fibers π−1(Σ;p) of the forgetful map π simply by Fs.

Lemma 8.1.1. (a) Let (Σ;p) ∈ C(γ,o) be a σ-invariant curve of type 1, and s ∈ F+
γ∗

(resp. s ∈ F−
γ∗), then the fiber Fs is

1. a two-dimensional open disc Σ+
vs

(resp. Σ−
vs

) minus the special points pf where

f ∈ F+
γ∗(vs) \ {s} (resp. f ∈ F−

γ∗(vs) \ {s}) if vs ∈ VR
γ∗ and |vs| ≥ 5;

2. a two-dimensional sphere Σvs minus the special points pf ∈ Σvs where f ∈
Fγ∗(vs) \ {s} if vs /∈ VR

γ∗ and |vs| ≥ 4;
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3. an open interval if vs ∈ VR
γ∗ and |vs| = 4;

4. an open interval if vs ∈ VR
γ∗, |vs| = 3, |vc| ≥ 4 and |FR

γ∗(vc)| > 1;

5. a circle if vs ∈ VR
γ∗, |vs| = 3, and |FR

γ∗(vc)| = 1;

6. a point if vs ∈ VR
γ∗ and |vs| = |vc| = 3;

7. a point if vs 6∈ VR
γ∗ and |vs| = 3.

(b) Let (Σ;p) ∈ C(γ,o) be a σ-invariant curve of type 2, then the fiber Fs is

1. a two-dimensional sphere Σvs minus the special points pf ∈ Σvs where f ∈
Fγ∗(vs) \ {s, s̄} if vs ∈ VR

γ∗ and |vs| ≥ 6;

2. a two-dimensional sphere Σvs minus the special points pf ∈ Σvs where f ∈
Fγ∗(vs) \ {s} if vs 6∈ VR

γ∗ and |vs| ≥ 4;

3. a point if |vs| = 3.

(c) Let (Σ;p) ∈ C(γ,o) be a σ-invariant curve of type 3, then the fiber Fs is

1. a two-dimensional sphere Σvs minus the special points pf ∈ Σvs where f ∈
Fγ∗(vs) \ {s} if |vs| ≥ 4;

2. a point if |vs| = 3.

Proof. Here, we will prove only (a). The proofs of the other cases are essentially the

same.

Let (γ, o) be an o-planar tree of type 1. Pick a σ′-invariant curve (Σ;p) ∈ C(γ,o).

Let (Σ∗,p∗) be points in the fiber Fs. If (Σ∗,p∗) ∈ Fs is a σ-invariant curve which

does not require the contraction of its component Σ∗
vs

after forgetting the labeled

points ps, ps̄, then there are two possible subcases:

(1) Σ∗
vs

is a real component and supporting five or more special points, or

(2) Σ∗
vs

is not a real component and supporting four or more special points.

If (Σ∗,p∗) ∈ Fs is a σ-invariant curve which requires the contraction of Σ∗
vs

after

forgetting the labeled points ps, ps̄, then the component Σ∗
vs

supports only three or

four special points including ps and ps̄. In this case, there are three possible subcases:

(3) Σ∗
vs

is a real component and supporting four special points,

(4-5-6) Σ∗
vs

is a real component and supporting three special points, or

66



(7) Σ∗
vs

is not a real component and supporting three special points.

Since we consider the fiber over a fixed (Σ;p), the positions of special points of

(Σ∗,p∗) ∈ Fs are fixed except the labeled points ps, ps̄.

(1) If vs ∈ VR
γ∗ and |vs| ≥ 5, then (Σ∗,p∗) does not require the contraction of Σ∗

vs

after forgetting the labelled points ps, ps̄. For all such (Σ∗,p∗), Σ∗ = Σ so Σ∗
vs

= Σvs .

Assume that s ∈ F+
γ∗(vs). For f ∈ F+

γ∗(vs) \ {s}, the special points pf are distinct

in Σ+
vs

. Therefore, the elements (Σ∗,p∗) of Fs are determined by the positions of

the labelled point ps in Σ+
vs

. Since all special points are distinct, ps is in Σ+
vs
\ {pf}.

Hence, the fiber is Σ+
vs
\ {pf} where f ∈ F+

γ∗(vs) \ {s}.
(2) If vs 6∈ VR

γ∗ and |vs| ≥ 4, then (Σ∗,p∗) does not require the contraction of Σ∗
vs

after forgetting ps, ps̄. Similar to the above case, Σ∗
vs

= Σvs . The elements (Σ∗,p∗) in

the fiber are given by the position of the point ps in Σvs . Hence, the fiber is Σvs \{pf}
where f ∈ Fγ∗(vs) \ {s}.

(3) Since all special points but ps, ps̄ are fixed, a fiber of π is a family of σ-invariant

curves which, in this case, is the deformations of the irreducible real component

(Σ∗
vs

;p∗vs
) with two real special points and the conjugate pair ps, ps̄. It clearly gives

an open interval (see Example 5.3.6).

(4-5-6) In this case, (Σ∗
vs

;p∗vs
) can not be deformed since |vs| = 3. Here, the family

along fiber gives the deformation of (Σ∗
vc

;p∗vc
) (instead of (Σ∗

vs
;p∗vs

)). The fiber Fs

parameterizes the nodal point Σvs ∩ Σvc which disappears after forgetting ps and ps̄.

There three subcases here: (6) The fiber is a point when |vc| = 3 since (Σ∗
vc

;p∗vc
)

can not be deformed. (5) The fiber is a circle when |FR
γ (vc)| = 1. It is given by

the position of the nodal point Σvs ∩ Σvc . (4) The fiber is an open interval when

|FR
γ (vc)| > 1. It is given by the position of the nodal point Σvs ∩ Σvc which can vary

between two other special points in the real part of Σ∗
vc

.

(7) The point (Σ∗,p∗) in the fiber is unique since the contracted component

supports only three points.

The o-planar trees associated to (Σ∗,p∗) are simply obtained by considering the

cases above.

Consider the forgetful map for the closed strata π : C(γ∗,o∗) → C(γ,o). In this case,

we denote the fiber π−1(Σ;p) for (Σ;p) ∈ C(γ,o) by F s since it is the closure of the

fiber Fs of π : C(γ∗,o∗) → C(γ,o). By using the stratification of C(γ∗,o∗), we obtain a

stratification of fibers F s.

Lemma 8.1.2. Let F
i

s be the fibers of πi : C(γ∗i ,o∗i ) → C(γ,o) over (Σ;p) ∈ C(γ,o).

Then, F
1

s ⊂ F
2

s if and only if (γ∗1 , o
∗
1) produces (γ∗2 , o

∗
2) by contracting one of its real

edges or a conjugate pair edges.

Proof. This statement is a direct corollary of Proposition 5.3.4.
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8.1.2 Homology of the fibers of the forgetful morphisms

Let (γ∗, o∗) be a one-vertex o-planar tree, and let π : C(γ∗,o∗) → C(γ,o) be the map

forgetting the special points ps, ps̄ which is discussed in Section 8.1.1. Assume that

the fibers are two-dimensional i.e., a punctured disc or a punctured sphere (see cor-

responding cases in Lemma 8.1.1).

Case type 1. Let (γ∗, o∗) be a one-vertex o-planar tree of type 1. Assume that

s ∈ F+
γ∗ (resp. s ∈ F−

γ∗). Then, each fiber Fs of π is homotopy equivalent to a

bouquet of |F+
γ∗| − 1 circles S1 ∨ · · · ∨ S1. The cohomology of Fs is generated by the

logarithmic differentials;

H0(Fs) = Z
H1(Fs) =

⊕
f

Z ωsf

where

ωsf =
1

2π
√
−1

d log(zs − zf ) (8.1)

for f ∈ F+
γ∗ \ {s} (resp. f ∈ F−

γ∗ \ {s}).
The homology with closed support Hc

1(Fs) is isomorphic to the cohomology group

H1(Fs) and generated by the duals of the logarithmic forms i.e., by the arcs connecting

the punctures zf to a point in boundary of the closure of the fiber F s of π in C(γ∗,o∗)

(see Figure 8.1).

We denote the dual of the generator ωsf by Tsf . The homology group Hc
2(Fs) is

isomorphic to H0(Fs). Hence,

Hc
2(Fs) = Z

Hc
1(Fs) =

⊕
f

Z Tsf

where f ∈ F+
γ∗ \ {s} (resp. f ∈ F−

γ∗ \ {s}).

Case type 2. Let (γ∗, o∗) be a one-vertex o-planar tree of type 2. Then, each fiber

Fs of π is homotopy equivalent to a bouquet of |Fγ∗(vs)| − 3 circles S1 ∨ · · · ∨ S1.

Therefore, the cohomology of Fs is generated by the logarithmic differentials;

H0(Fs) = Z
H1(Fs) =

⊕
f

Z ωsf

where

ωsf =
1

2π
√
−1

d log(zs − zf )
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Figure 8.1: The generators of Hc
1(F ).

for f ∈ Fγ∗ \ {s, s̄, s2k}.
The homology with closed support Hc

1(Fs) is isomorphic to the cohomology group

H1(Fs) and generated by the arcs connecting the pairs of punctures at zf1 , zf2 . These

arcs are the duals of the cohomology classes ωsf1 − ωsf2 . We denote them by Rs,f1f2 .

The homology group Hc
2(Fs) is isomorphic to H0(Fs). Hence,

Hc
2(Fs) = Z

Hc
1(Fs) =

(⊕
f

Z Rs,f1f2

)
/Js

where fi ∈ Fγ∗ \ {s, s̄, s2k}, and the ideal Js is generated by

Rs,f1f2 + Rs,f2f3 + Rs,f3f1 . (8.2)

Homology of the fibers of the forgetful morphism π{s} : MS → MS′. Let

S be a finite set of labeling with |S| ≥ 4, and let s ∈ S be different than sn. Let

S′ = S \ {s}. Then, each fiber Fs of forgetful map π{s} : MS → MS′ is homotopy

equivalent to a bouquet of |S| − 2 circles S1 ∨ · · · ∨S1. Therefore, the cohomology of

a fiber is generated by the logarithmic differentials;

H0(Fs) = Z
H1(Fs) =

⊕
f

Z ωsf

where

ωsf =
1

2π
√
−1

d log(zsn − zf )

for f ∈ S \ {s, sn}.
The homology with closed supportHc

1(Fsn) is isomorphic to the cohomology group

H1(Fsn) and generated by the arcs connecting the pairs of punctures at zf1 , zf2 . These
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arcs are the duals of the cohomology classes ωsf1 −ωsf2 . We denote them by Ps,f1f2 .

The homology group Hc
2(Fs) is isomorphic to H0(Fs). Hence,

Hc
2(Fs) = Z

Hc
1(Fs) =

(⊕
f

Z Ps,f1f2

)
/Js

where fi ∈ S \ {s, sn} and the ideal Js is generated by

Ps,f1f2 + Ps,f2f3 + Ps,f3f1 . (8.3)

8.2 Homology of the strata

In this section, we give the generators of the homology of the strata C(γ,o) relative to

the union of their substrata Q(γ,o) :=
⋃

(τ,ô)<(γ,o)C(τ,ô).

Lemma 8.2.1. Let π : C(γ∗,o∗) → C(γ,o) be the fibration discussed Section 8.1. Then,

Hc
d(C(γ∗,o∗); Z) =

⊕
p+q=d

Hc
p(C(γ,o); Z)⊗Hc

q(Fs; Z)

Proof. We first consider the subcases where dimFs = 2. Assume that (γ∗, o∗) be of

type 1. The strata C(γ∗,o∗) and C(γ,o) are given by the products∏
v∈VR

γ∗

C(γ∗v ,o∗v) ×
∏

v∈V+
γ∗

MFγ∗ (v),

∏
v∈VR

γ

C(γv ,ov) ×
∏

v∈V+
γ

MFγ(v)

(see (5.3) in Section 5.3). The forgetful map π preserves the components (Σ∗
v,p

∗
v) of

(Σ∗,p∗) ∈ C(γ∗,o∗) for v 6= vs. Hence, it is the identity map on the factors

C(γ∗v ,o∗v) → C(γv ,ov),

MFγ∗ (v) → MFγ(v)

for v 6= vs. On the other hand, it gives a fibration

πres : C(γ∗vs ,o∗vs ) → C(γvs ,ovs ), when vs ∈ VR
γ∗ , and

πres : MFγ∗ (vs) → MFγ(vs) when vs 6∈ VR
γ∗

(8.4)

with the same fibers Fs of π : C(γ∗,o∗) → C(γ,o). Therefore, we only need to consider

the fibrations in (8.4) to calculate the (co)homology.
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The strata C(γ∗vs ,o∗vs ) and C(γvs ,ovs ) are diffeomorphic to the products of simplices

with the products of upper half plane minus (usual and cross) diagonals (see Lemma

5.2.2). The map πres forgets the coordinate subspace H+ corresponding to the labelled

point ps. For instance, when |FR
γ∗(vs)| > 2, the map πres : C(γ∗vs ,o∗vs ) → C(γvs ,ovs ) is

((H+)|F
+
γ∗ (vs)| \∆∗)×�|FR

γ∗ (vs)|−3 → ((H+)|F
+
γ (vs)| \∆)×�|FR

γ(vs)|−3,

forgetting the coordinate subspace H+ of the labelled point ps. Similarly, πres :

MFγ∗ (vs) →MFγ(vs) is

C|Fγ∗ (vs)|−3 \∆∗ → C|Fγ(vs)|−3 \∆,

forgetting the coordinate subspace C of the labelled point ps.

The logarithmic differentials d log(zs − zj) for j ∈ F+
γ (vs) (resp. j ∈ Fγ(vs)) give

global cohomology classes on C(γ∗,o∗) (resp. on MFγ∗ (vs)). On the other hand, we

have seen that the restrictions of these logarithmic forms to each fiber freely generate

the cohomology of the fiber (see Section 8.1.2). By using Leray-Hirsch theorem, we

obtain

Hd(C(γ∗,o∗)) =
⊕

p+q=d

Hp(C(γ,o))⊗Hq(Fs).

If dimFs = 1 and the fibers are open intervals, then we directly have

Hp(C(γ∗,o∗)) = Hp(C(γ,o);H
0(Fs)) = Hp(C(γ,o))⊗H0(Fs).

since the fibers are contractible.

If dimFs = 1 and the fibers are S1, then C(γ∗,o∗) is diffeomorphic to (H+ \
{
√
−1})|Fγ∗ (vs)|−2 × �1 × S1. This is obtained by using a slightly different normal-

ization of coordinates than the normalization used in Section 5.1.2 and Lemma 5.2.2

i.e., by mapping (pf1 , pf̄1
) to (

√
−1,−

√
−1), and (pf2 , pf̄2

) to (λ
√
−1,−λ

√
−1) where

f1, f2 ∈ F+
γ∗ . Then, the map πres forget the special point parameterized by S1. Hence,

C(γ∗,o∗) is C(γ,o) × S1, and claim follows form the Künneth formula.

If dimFs = 0, then each fiber is a single point and statement is obvious.

Finally, the duality between cohomology and homology with closed support gives

us the isomorphisms which we need to complete the proof

Hd(C(γ∗,o∗)) = Hc
dim(C(γ∗,o∗))−d(C(γ∗,o∗))

Hp(C(γ,o)) = Hc
dim(C(γ,o))−p(C(γ,o))

Hp(Fs) = Hc
dim(Fs)−p(Fs).

The same statements for type 2 and type 3 cases are proved by using the same

strategy and arguments above.
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Since the strata of RMσ

S are the products given in (5.3), their homology is the

product of homology of their factors. Here, we are going to give the relative homology

for the strata corresponding to one-vertex trees.

Now, let (γ, o) be a one-vertex o-planar tree of type 1, and F+
γ = {s1, · · · , sk}.

Let Q(γ,o) be the union of the codimension one and higher strata of C(γ,o).

Proposition 8.2.2. The relative homology group Hdim(C(γ,o))−d(C(γ,o), Q(γ,o); Z) is

generated by

Tsi1
sj1
⊗ · · · ⊗Tsid

sjd

where j∗ < i∗ and i1 < · · · < id ≤ |F+
γ |. In particular,

Hdim(C(γ,o))
(C(γ,o), Q(γ,o); Z) = Z [C(γ,o)].

Proof. Due its definition, the homology with closed support

Hc
∗(C(γ,o)) = lim

→
H∗(C(γ,o), C(γ,o) \K)

where K ranges over all closed subsets of C(γ,o). The group H∗(C(γ,o), C(γ,o) \ K)

is isomorphic H∗(C(γ,o), C(γ,o) \ K) where K ranges over all closed subsets of C(γ,o)

which does not intersect with Q(γ,o). In the limit, C(γ,o) \K gives Q(γ,o). Hence, the

homology with closed support is indeed isomorphic to the relative homology of C(γ,o).

On the other hand, Lemma 8.2.1 implies that

Hd(C(γ∗,o∗), Q(γ∗,o∗); Z) =
⊕

p+q=d

Hp(C(γ,o), Q(γ,o); Z)⊗Hc
q(Fs; Z).

where Fs is a fiber of the map forgetting s, s̄.

We obtain the result by applying the maps forgetting the conjugate pairs of points

successively and using the generators of Hc
∗(Fsi

) given in Section 8.1.2. We forget the

pairs of points the in following order

(sk, s2k), (sk−1, s2k−1), · · · , (s1, sk+1), when |FR
γ | ≥ 3,

(sk, s2k), (sk−1, s2k−1), · · · , (s2, sk+2), when |FR
γ | = 1, 2,

(sk, s2k), (sk−1, s2k−1), · · · , (s3, sk+3), when |FR
γ | = 0.

We obtain that

Hd(C(γ∗,o∗), Q(γ∗,o∗)) =


Hc
∗(Fs1)⊗ · · · ⊗Hc

∗(Fsk
)⊗Hc

∗(C(τ,o(R))) if |FR
γ | ≥ 3,

Hc
∗(Fs2)⊗ · · · ⊗Hc

∗(Fsk
) if |FR

γ | = 2,

Hc
∗(Fs2)⊗ · · · ⊗Hc

∗(Fsk
) if |FR

γ | = 1,

Hc
∗(Fs3)⊗ · · · ⊗Hc

∗(Fsk
) if |FR

γ | = 0

where (τ, o(R)) is a one-vertex tree which is obtained by forgetting all tails of (γ∗, o∗)

labelled by F±
γ∗ . The space C(τ,o(R)) is an open simplex due to Lemma 5.2.2. This
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directly gives us that the relative homology is generated by the products of the

generators of Hc(Fsi
) as stated above. In order to simplify the notation, we omit the

factors coming from the generators Hc
2(Fsi

) and Hc
dim C(τ,o)

(C(τ,o)).

It is clear that the top dimensional relative homology is generated by the relative

fundamental class [C(γ,o)].

Now, let (γ, o) be a one-vertex o-planar tree of type 2, and Fγ = {s1, · · · , s2k}.
Let Q(γ,o) be the unions of the codimension one and higher strata of C(γ,o).

Proposition 8.2.3. The relative homology group Hdim(C(γ,o))−d(C(γ,o), Q(γ,o); Z) is

generated by

Rsi1
,sj1

sk1
⊗ · · · ⊗Rsid

,sjd
skd

where σ(sj∗), σ(sk∗) 6= si∗, j∗, k∗ < i∗ and 2 < i1 < · · · < id ≤ |Fγ|. In particular,

Hdim(C(γ,o))
(C(γ,o), Q(γ,o); Z) = Z [C(γ,o)].

We also calculate the homology of MS relative its strata for S = {s1, · · · , sn}.
We denote the union of strata of MS of codimension one or higher by WS.

Proposition 8.2.4. The relative homology group Hdim(MS)−d(MS,WS; Z) is gener-

ated by

Psi1
,sj1

sk1
⊗ · · · ⊗Psid

,sjd
skd

where j∗, k∗ < i∗ and i1 < · · · < id ≤ |S|. In particular,

Hdim(MS)(MS,WS; Z) = Z [MS]

where [MS] is the fundamental class of MS.

The proofs of Proposition 8.2.3 and 8.2.4 are essentially the same with Proposition

8.2.2. We will not repeat it.

Remark 8.2.5. The open strata considered in Proposition 8.2.2 and 8.2.4 are topo-

logically same with the braid spaces, and the strata in Proposition 8.2.3 have very

similar topological properties with braid spaces. For that reason, the proof of Lemma

8.2.1 uses essentially the same arguments in [1].
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Chapter 9

Graph homology of RMσ
S

In this chapter, we give a combinatorial graph complex whose homology is the ho-

mology of the moduli space of σ-invariant curves RMσ

S.

9.1 The graph complex of RMσ
S

We define a graded group

Gd :=

 ⊕
(γ,o)∈T ree(σ):|Eγ |=|S|−d−3

Hdim(C(γ,o))
(C(γ,o), Q(γ,o); Z)

 /Id. (9.1)

The homology group Hdim(C(γ,o))
(C(γ,o), Q(γ,o)) is of rank one and generated by the

relative fundamental cycle [C(γ,o)] of the strata C(γ,o) (see Section A for orientations

convention).

The ideal Id (of degree d) is generated by the following elements.

The generators of the ideal of graph complex. Case |Fix(σ)| > 0.

R-1. Degeneration at a real vertex of type 1 o-planar trees. Consider an

o-planar tree (γ, o) such that |Eγ| = d− 2, and one of its vertex v ∈ VR
γ with |v| ≥ 5

and |F+
γ (v)| ≥ 2. Let fi, f̄i ∈ Fγ \ FR

γ be conjugate pairs of flags for i = 1, 2, and let

f3 ∈ FR
γ . Put F = Fγ(v) \ {f1, f2, f̄1, f̄2, f3}.

We define two o-planar trees (γ1, o1), (γ2, o2).

The first one (γ1, o1) is obtained by inserting a pair of conjugate edges e =

(fe, f
e), ē = (fē, f

ē) to (γ, o) at v with boundaries ∂γ1(e) = {ṽ, ve}, ∂γ1(ē) =

{ṽ, vē}. The distribution of flags is given by Fγ1(ṽ) = F1

⋃
{f3, fe, fē}, Fγ1(v

e) =

F2

⋃
{f1, f2, f

e} and Fγ1(v
ē) = F2

⋃
{f̄1, f̄2, f

ē}, where F is the disjoint union of F1,

F2 and F2. The set F2 contains the flags conjugate to the ones in F2.
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The second one (γ2, o2) is obtained by inserting a pair of real edges e1 = (fe1 , f
e1),

e2 = (fe2 , f
e2) to (γ, o) at v with boundaries ∂γ2(e1) = {ṽ, ve1}, ∂γ2(e2) = {ṽ, ve2}.

The sets of flags are given by Fγ2(ṽ) = F1

⋃
{f3, fe1 , fe2}, Fγ2(v

e1) = F2

⋃
{f1, f̄1, f

e1}
and Fγ2(v

e2) = F3

⋃
{f2, f̄2, f

e2} where F is the disjoint union of F1, F2 and F3. Here,

the flags f3, fe1 , fe2 are ordered {f3} < {fe1} < {fe2} according to the cyclic ordering

of Fγ2(ṽ). See Figure 9.1 for |v| = 5.

Then, we define

R(γ, o; v, f1, f2, f3) :=
∑

(γ1,o1)

[C(γ1,o1)]−
∑

(γ2,o2)

[C(γ2,o2)]. (9.2)

Here summation is taken over all possible (γi, oi), i = 1, 2 defined above.

Figure 9.1: The o-planar tree (γ, o) with |v| = 5 and o-planar trees (γi, oi), i = 1, 2

which appear in the sum R(γ, o; v, f1, f2, f3).

R-2. Degeneration at a conjugate pair of vertices. Consider an o-planar

tree (γ, o) of type 1 such that |Eγ| = d − 2, and a pair of its conjugate vertices

{v, v̄} ⊂ Vγ \ VR
γ such that |v| = |v̄| ≥ 4. Let f̄1, f̄2, f̄3, f̄4 ∈ Fγ(v̄) be the flags

conjugate to f1, f2, f3, f4 ∈ Fγ(v). Put F = Fγ(v) \ {f1, f2, f3, f4}. Let F1,F2 be two

disjoint subsets of F such that F = F1

⋃
F2. Let F1,F2 be the sets of flags conjugate

to the flags in F1,F2 respectively.

We define two o-planar trees (γ1, o1), (γ2, o2).

The first one (γ1, o1) is obtained by inserting a pair of conjugate edges e =

(fe, f
e), ē = (fē, f

ē) to (γ, o) respectively at v, v̄ such that ∂γ1(e) = {ve, v
e}, ∂γ1(ē) =

{vē, v
ē}. The set of flags are Fγ1(ve) = F1

⋃
{f1, f2, fe}, Fγ1(v

e) = F2

⋃
{f3, f4, f

e}
and Fγ1(vē) = F1

⋃
{f̄1, f̄2, fē}, Fγ1(v

ē) = F2

⋃
{f̄3, f̄4, f

ē}.
The second one (γ2, o2) is also obtained by inserting a pair of conjugate edges

to (γ, o) at the same vertices v, v̄, but the flags are distributed differently on ver-

tices ∂γ2(e) = {ve, v
e},∂γ2(ē) = {vē, v

ē}: Fγ2(ve) = F1

⋃
{f1, f3, fe}, Fγ2(v

e) =

F2

⋃
{f2, f4, f

e} and Fγ2(vē) = F1

⋃
{f̄1, f̄3, fē}, Fγ2(v

ē) = F2

⋃
{f̄2, f̄4, f

ē}.
Then, we define

R(γ, o; v, f1, f2, f3, f4) :=
∑

(γ1,o1)

[C(γ1,o1)]−
∑

(γ2,o2)

[C(γ2,o2)]. (9.3)

Here summation is taken over all possible (γi, oi), i = 1, 2 defined above.
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R-3. Reversing o-planar structure at a real vertex. Let (γ, o1) be an o-planar

tree of type 1 such that |Eγ| = d, and v ∈ VR
γ . Let Vγ(v) be the set of all vertices in

V+
γ such that the closest real vertex to its elements is v. Let (γ, o2) be the o-planar

tree which produces (γ, o1) by reversing the o-planar structure ov at the vertex v.

Then, we define

R(γ, o1; v) = [C(γ,o1)]− (−1)µ[C(γ,o2)] (9.4)

where

µ = |F+
γ (v)|+

(|FR
γ (v)− 2|)(|FR

γ (v)− 3|)
2

+
∑

vj∈Vγ(v)

(|vj| − 3). (9.5)

Remark 9.1.1. Obviously, (γ, o1), (γ, o2) are o-planar representatives of same u-planar

tree (γ, u). We identify C(γ,oi) with C(γ,u) in RMσ

S, and pick the coordinates defined

in Appendix A by using o-planar structures oi, i = 1, 2. These coordinates can be

transformed to each other by

C(γv ,ov) ×
∏

vj∈Vγ(v)

MFγ(vj) → C(γv ,ōv) ×
∏

vj∈Vγ(v)

MFγ(v̄j)

where the map C(γv ,ov) → C(γv ,ōv) is −I given in (5.1).

Let (zα, xi) and (wα, yi) be coordinates in C(γv ,ov) and C(γv ,ōv) respectively. We

have dzα = −dwα and dxi = −dyi. If |FR
γ (v)| ≥ 3, then we obtain

Ω(γv ,ov) =
∧

α∈F+
γ (v)

dzα ∧ dz̄α

∧
dxfr2

∧ · · · ∧ dxfrl−2
,

= (−1)µ1

∧
ᾱ∈F−

γ (v)

dwᾱ ∧ dw̄ᾱ

∧
dyfrl−2

∧ · · · ∧ dyfr2
,

= (−1)µ1Ω(γv ,ōv)

where µ1 = (−1)|F
+
γ (v)|+(|FR

γ(v)−2|)(|FR
γ(v)−3|)/2. We obtain the special cases of this for-

mula when |FR
γ | = 1, 2 by similar calculations.

The transformation from MFγ(vj) to MFγ(v̄j) gives Ωγvj
= (−1)µ2Ωγv̄j

where µ2 =

|vj| − 3. This follows from a direct calculation similar to above.

Therefore, the difference R(γ, o1; v) = [C(γ,o1)]−(−1)µ[C(γ,o2)] is indeed zero when

µ = µ1 + µ2 as given in (9.5).

The generators of the ideal of graph complex. Case |Fix(σ)| = 0.

S-1. Degeneration at the real vertex of type 1 o-planar trees. Consider an

o-planar tree (γ, o) of type 1 such that |Eγ| = d − 2 and |FR
γ | = 0. Let v be its real
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vertex, and assume that |v| ≥ 6. Let fi ∈ F+
γ , f̄i ∈ F−

γ be conjugate pairs of flags for

i = 1, 2, 3. Put F = Fγ(v) \ {f1, f2, f3, f̄1, f̄2, f̄3}.
We define two o-planar trees (γ1, o1), (γ2, o2).

The first one (γ1, o1) is obtained by inserting a pair of conjugate edges e =

(fe, f
e), ē = (fē, f

ē) to (γ, o) at v with boundaries ∂γ1(e) = {ṽ, ve}, ∂γ1(ē) = {ṽ, vē}.
The set of flags are Fγ1(ṽ) = F1

⋃
{f1, f̄1, fe, fē}, Fγ1(v

e) = F2

⋃
{f2, f3, f

e} and

Fγ1(v
ē) = F2

⋃
{f̄2, f̄3, f

ē}, where F is the disjoint union of F1,F2 and F2. The set

F2 contains the flags that are conjugate to flags in F2 and vice versa.

The second one (γ2, o2) is obtained in a similar way. First, we swap f1 and f̄1

(i.e, put f1 in F−
γ and f̄1 in F+

γ ). Then, we obtain (γ2, o2) by inserting a pair of

conjugate edges at the vertex v same way, but the flags are distributed differently

on vertices Fγ2(ṽ) = F1

⋃
{f3, f̄3, fe, fē}, Fγ2(v

e) = F2

⋃
{f̄1, f2, f

e} and Fγ2(v
ē) =

F2

⋃
{f1, f̄2, f

ē}. See Figure 9.2 for |v| = 6.

Then, we define

R(γ, o; v, f1, f2, f3) :=
∑

(γ1,o1)

[C(γ1,o1)]−
∑

(γ2,o2)

[C(γ2,o2)]. (9.6)

Here summation is taken over all possible (γi, oi), i = 1, 2 defined above.

Figure 9.2: The o-planar tree (γ, o) with |v| = 6 and o-planar trees (γi, oi), i = 1, 2

which appear in R(γ, o; v, f1, f2, f3) given in (9.6).

S-2. Degeneration at the real vertex of type 2 o-planar trees. Consider an

o-planar tree (γ, o) of type 2 such that |Eγ| = d − 2. Let v be its real vertex, and

assume that |v| ≥ 6. Let fif̄i ∈ Fγ(v) be conjugate pairs of flags for i = 1, 2, 3. Put

F = Fγ(v) \ {f1, f2, f3, f̄1, f̄2, f̄3}.
We define two o-planar trees (γ1, o1), (γ2, o2) as follows.

The first one (γ1, o1) is obtained by inserting a pair of conjugate edges e =

(fe, f
e), ē = (fē, f

ē) to (γ, o) at v with boundaries ∂γ1(e) = {ṽ, ve}, ∂γ1(ē) = {ṽ, vē}
The set flags are given by Fγ1(ṽ) = F1

⋃
{f1, f̄1, fe, fē}, Fγ1(v

e) = F2

⋃
{f2, f3, f

e}
and Fγ1(v

ē) = F2

⋃
{f̄2, f̄3, f

ē}, where F is a disjoint union of F1, F2 and F2. The

F2 contains the flags that are conjugated that are conjugate to flags in F2 and vice

versa.
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The second one (γ2, o2) is also obtained by inserting a pair of conjugate edges at

the vertex v same way, but the flags are distributed differently on vertices Fγ2(ṽ) =

F2

⋃
{f3, f̄3, fe, fē}, Fγ2(v

e) = F1

⋃
{f1, f2, f

e} and Fγ2(v
ē) = F2

⋃
{f̄1, f̄2, f

ē}.
Then, we define

R(γ, o; v, f1, f2, f3) :=
∑

(γ1,o1)

[C(γ1,o1)]−
∑

(γ2,o2)

[C(γ2,o2)], (9.7)

Here summation is taken over all possible (γi, oi), i = 1, 2 defined above.

S-3. Degeneration at a conjugate pair of vertices. Consider an o-planar tree

(γ, o) of type 2 or type 3 such that |Eγ| = d− 2, and a pair of its conjugate vertices

{v, v̄} ⊂ Vγ \VR
γ with |v| = |v̄| ≥ 4. Let f̄1, f̄2, f̄3, f̄4 ∈ Fγ(v̄) be the flags conjugate

to f1, f2, f3, f4 ∈ Fγ(v). Put F = Fγ(v) \ {f1, f2, f3, f4}. Let F1,F2 be two disjoint

subsets of F such that F = F1

⋃
F2. Let F1,F2 be the sets of flags conjugate to the

flags in F1,F2 respectively.

We define two o-planar trees (γ1, o1), (γ2, o2).

The first one (γ1, o1) is obtained by inserting a pair of conjugate edges e =

(fe, f
e), ē = (fē, f

ē) to (γ, o) respectively at v, v̄ such that ∂γ1(e) = {ve, v
e}, ∂γ1(ē) =

{vē, v
ē}. The set of flags are Fγ1(ve) = F1

⋃
{f1, f2, fe}, Fγ1(v

e) = F2

⋃
{f3, f4, f

e}
and Fγ1(vē) = F1

⋃
{f̄1, f̄2, fē}, Fγ1(v

ē) = F2

⋃
{f̄3, f̄4, f

ē}.
The second one (γ2, o2) is also obtained by inserting a pair of conjugate edges

to (γ, o) at the same vertices v, v̄, but the flags are distributed differently on ver-

tices ∂γ2(e) = {ve, v
e},∂γ2(ē) = {vē, v

ē}: Fγ2(ve) = F1

⋃
{f1, f3, fe}, Fγ2(v

e) =

F2

⋃
{f2, f4, f

e} and Fγ2(vē) = F1

⋃
{f̄1, f̄3, fē}, Fγ2(v

ē) = F2

⋃
{f̄2, f̄4, f

ē}.
Then, we define

R(γ, o; v, f1, f2, f3, f4) :=
∑

(γ1,o1)

[C(γ1,o1)]−
∑

(γ2,o2)

[C(γ2,o2)]. (9.8)

Here summation is taken over all possible (γi, oi), i = 1, 2 defined above.

S-4. Reversing o-planar structure at a vertex Let (γ, o) be an o-planar tree

of type 3, and (γ, ō) be the o-planar tree with opposite o-planar structure.

Then, we define

R(γ, o; v) = [C(γ,o)]− (−1)µ[C(γ,ō)] (9.9)

where

µ = |F+
γ (v)|+

∑
vj∈V+

γ

(|vj| − 3). (9.10)
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Remark 9.1.2. We identify C(γ,o) and C(γ,ō) with C(γ,u) in RMσ

S, and pick the co-

ordinates defined in Appendix A by using o-planar structures oi, i = 1, 2. These

coordinates can be transformed to each other by∏
vj∈V+

γ

MFγ(vj) →
∏

vj∈V+
γ

MFγ(v̄j).

The transformation from MFγ(vj) to MFγ(v̄j) gives Ωγvj
= (−1)µ2Ωγv̄j

where µ2 =

|vj| − 3. This follows from a direct calculation similar to R-3.

Therefore, the difference R(γ, o1; v) = [C(γ,o1)]−(−1)µ[C(γ,o2)] is indeed zero when

µ = µ1 + µ2 as given in (9.10).

9.1.1 The boundary homomorphism of the graph complex

We define the graph complex G• of the moduli space RMσ

S by introducing the boundary

map ∂ : Gd → Gd−1:

∂ : [C(τ,o)] 7→
∑

(γ,ô)<(τ,o)

± [C(γ,ô)]. (9.11)

Here, summation is taken over all o-planar trees (γ, ô) that give (τ, o) after contracting

one of their real edges. .

9.2 Homology of the graph complex

Theorem 9. The homology of the graph complex G• is isomorphic to the singular

homology of RMσ

S.

Proof. First, we note that the statement directly follows when σ = id. In this case,

each stratum C(γ,u) is a disc and attached to finitely many lower dimensional strata

i.e, the stratification of RMσ

S is a cell decomposition. The codimension of a stratum

C(γ,u) is equal to |Eγ|. Therefore, the dth-skeleton of RMσ

S contains the strata C(γ,u)

where |Eγ| = |S|−d−3. Alternatively, we take the fundamental classes [C(γ,o)] for all

possible o-planar representatives of u-planar trees (γ, u), and identify them according

to the relations given in R-3. The differential of this cell complex is clearly given by

(9.11) since a stratum C(γ,ô) is in the codimension one boundary of another stratum

C(τ,o) if and only if (γ, ô) produces (τ, o) by contracting one its edges (see Proposition

5.3.4). Therefore, the graph complex G• of RMσ

S for σ = id is a cell complex of this

moduli space.

Similarly, the stratifications of the moduli spaces RMσ

S are cell decompositions

for any involution σ when |S| = 4 (see Example 5.3.6). By using the way, we obtain

that the graph complexes are cell complexes for these cases.
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We prove the statement for σ 6= id by induction on the cardinality of Perm(σ).

Let π : RMσ

S → RMσ′

S′ be the map forgeting s, s̄ ∈ Perm(σ). Here, we use the

notations introduced in Section 8.1.

Let Bd denote the union of d-dimensional strata of RMσ′

S′ (i.e,
⋃
C(γ,u) where

|Eγ| = |S′| − d− 3). Let RMσ′

S′ be filtered by

∅ = B−1 ⊂ B0 ⊂ · · · ⊂ B(|S′|−4) ⊂ B(|S′|−3) = RMσ′

S′ .

The forgetful map π induces a filtration of RMσ

S:

∅ = E−1 ⊂ E0 ⊂ · · · ⊂ E(|S′|−4) ⊂ E(|S′|−3) = RMσ

S

where Ed = π−1(Bd). Then, the spectral sequence of double complex gives us

E1
p,q = Hp+q(Ep, Ep−1) =⇒ Hp+q(RM

σ

S; Z). (9.12)

We prove the theorem by writing down this spectral sequence explicitly. As a first

step, we calculate the homology groups Hp+q(Ep, Ep−1).

From now on, we assume that the statement of the theorem holds for RMσ′

S′ .

Step 1. We can write homology of (Ep, Ep−1) as a direct sum of the homology of

its pieces:

Hp+q(Ep, Ep−1) =
⊕

(γ,u):|Eγ |=|S′|−d−3

Hp+q(π
−1(C(γ,u)), π

−1(Q(γ,u))).

Consider the following filtration of π−1(C(γ,u)):

∅ ⊂ Y0 ⊂ Y1 ⊂ Y2 = π−1(C(γ,u))

where Yj’s are the unions of strata

Y0 =
⋃

(γ∗m,u∗m)

C(γ∗m,u∗m), Y1 =
⋃

(ζ∗l ,u∗l )

C(ζ∗l ,u∗l ), Y2 =
⋃

(τ∗k ,u∗k)

C(τ∗k ,u∗k)

such that π maps each stratum onto C(γ,u) and the dimension of the fibers of π is j:

By using this filtration, we obtain the following spectral sequence.

Y1
i,j = Hi+j(Yi, Yi−1

⋃
(Yi ∩ π−1(Q(γ,u)))) =⇒ Hi+j(Ep, Ep−1).

Clearly, Yi contains strata of dimension p + i, and Yi ∩ π−1(Q(γ,u)) contains the

substrata that maps to Bp−1 (i.e, substrata of codimension one or higher in C(γ∗,u∗)).
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Hence, we have

Y1
0,j =

⊕
(γ∗m,u∗m)

Hj(C(γ∗m,u∗m), Q(γ∗m,u∗m)),

Y1
1,j =

⊕
(ζ∗l ,u∗l )

Hj+1(C(ζ∗l ,u∗l ), Q(ζ∗l ,u∗l )),

Y1
2,j =

⊕
(τ∗k ,u∗k)

Hj+2(C(τ∗k ,u∗k), Q(τ∗k ,u∗k)).

By using Lemma 8.2.1 (and isomorphism between relative homology and homology

with closed support), we can have the groups Y1
i,j as products of homology groups of

base and fiber. The dimension of the fibers F s(u
∗
m) of π : C(γ∗m,u∗m) → C(γ,u) is zero,

hence

Y1
0,j =

⊕
(γ∗m,u∗m)

Hj(C(γ,u), Q(γ,u))⊗Hc
0(Fs(u

∗
m)).

The dimension of the fibers F s(u
∗
l ) of π : C(ζ∗l ,u∗l ) → C(γ,u) is one, hence

Y1
1,j =

⊕
(ζ∗l ,u∗l )

Hj(C(γ,u), Q(γ,u))⊗Hc
1(F s(u

∗
l )).

Finally, the dimension of the fibers F s(u
∗
k) of π : C(τ∗0 ,u∗k) → C(γ,u) is zero, hence

Y1
2,j =

⊕
(τ∗k ,u∗k)

Hj(C(γ,u), Q(γ,u))⊗Hc
2(Fs(u

∗
k)),

Y1
2,j−1 =

⊕
(τ∗k ,u∗k)

Hj(C(γ,u), Q(γ,u))⊗Hc
1(Fs(u

∗
k)),

Then, the differential d1 : Y1
2,j → Y1

1,j and d1 : Y1
1,j → Y1

0,j are respectively given by

the differentials

∂∗ : Hc
2(Fs(u

∗
k)) → Hc

1(Fs(u
∗
l )),

∂∗ : Hc
1(Fs(u

∗
1)) → H0(Fs(u

∗
m)).

(9.13)

The differential d1 maps the fundamental class [C(γ∗/e,o∗)] to ±[C(γ∗,δ(o∗))] (see

Lemma 8.1.2).

Finally, the differential d2 : Y1
2,j → Y0,j+1 is given by the differentials

∂∗ : Hc
1(Fs(u

∗
k)) → H0(Fs(u

∗
m)). (9.14)

For each pair of points in F s(u
∗
m), there is a generator in Hc

1(Fs(u
∗
k)) whose image

under ∂∗ gives the difference of these points (see Section 8.1.2). Therefore, each pair
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of strata C(γ∗m1
,u∗m1

) C(γ∗m2
,u∗m2

) that are zero dimensional fibrations over C(γ,u) are

homologous relative to π−1Q(γ,u) i.e.,

[C(γ∗m1
,u∗m1

)]− [C(γ∗m2
,u∗m2

)] = 0. (9.15)

It is important to note that, the kernel of the differential d2 is trivial. This

follows from the fact that same is true for ∂∗ given in (9.14). It is a consequence

of the relations of the homology of the fibers given in (8.2) and (8.3). Therefore,

the homology H∗(Ep, Ep−1) is given by the total homology of the spectral sequence

(Yi,j/I0, d1) where the ideal is generated by the relations (9.15).

Instead of considering u-planar trees, from now on, we pick all o-planar represen-

tatives of u-planar trees and impose the relation R-3 given in (9.4) and S-4 given in

(9.9) arising from reversing o-planar structures.

Step 2. The calculations in Step 1 imply that the E1
∗∗ is generated by the relative

fundamental classes of the strata. Moreover, it admits the relations that are imposed

in the definition of G•:
The chains defined in R-1 and R-2 (resp. S-1, S-2 and S-3) with fi 6= s are

mapped onto the relation between the strata of RMσ′

S′ of same type.

On the other hand, the relations with f1 = s come as consequence of the calcu-

lation of Step 1. For each relation (9.15) in relative homology H∗(Ep, Ep−1), there

is a relation in H∗(RM
σ

S). The sums cycles (9.2), (9.3), (9.6), (9.7) and (9.8) in

H∗(Ep) are mapped onto the difference given by (9.15) in H∗(Ep, Ep−1) since that the

valency of the vertex vs supporting s must be three. If otherwise, forgetting the tail

doesn’t require contraction and the o-planar trees obtained by forgetting s, s̄ have

two additional edges. Therefore, they are codimension one or higher, and lie in Ep−1.

We need to confirm that the sums defined in R-1 and R-2 (resp. S-1, S-2 and

S-3) are indeed homologous to zero. We can show this by using certain forgetful

maps. Here, we are going to show it for R-1 and R-2. The other cases are essentially

the same.

The relations of type R-1. Consider the composition of projection C(γ∗,o∗) →
C(γ∗v ,o∗v) onto the factor corresponding to vertex v, and forgetful maps C(γ∗v ,o∗v) →
C(τ∗v ,o(v∗)) where (τ ∗v , o(v

∗)) is an one-vertex o-planar tree with F+
τ∗ = {f1, f2} and

FR
τ∗ = {f3} which is obtained by forgetting all tails but f1, f̄1, f2, f̄2, f3.

The space C(τ∗v ,o(v∗)) is a two-dimensional disc with a puncture, and it is stratified

as in Figure 9.3.

If a codimension two stratum C(γ∗1 ,o∗1) of C(γ∗,o∗) is in the fiber over a codimension

two stratum lying in boundary of C(τ∗v ,o(v∗)) (see, Figure 9.3), then (γ∗1 , o
∗
1) is obtained

from (γ∗, o∗) by inserting a pair of real edges at vertex v. Similarly, if a codimension

two stratum C(γ∗2 ,o∗2) of C(γ∗,o∗) is in the fiber over a codimension two stratum lying
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Figure 9.3: The strata of C(τ∗v ,o∗v).

inside of C(τ∗v ,o(v∗)) (see, Figure 9.3), then (γ∗2 , o
∗
2) is obtained from (γ∗, o∗) by insert-

ing a pair of conjugate edges at vertex v as above. Since C(τ∗v ,o(v∗)) is a punctured

disc, the fibers of forgetful map over any two points of C(τ∗v ,o(v∗)) are homologous i.e.

R(γ, o; v, f1, f2, f3) is homologous to zero.

The relations of type R-2. The relations in (9.3) are obtain in a similar way

with R-1. Here, we use a projection map C(γ,o) → MFγ(v). The relations in the

complex moduli space MFγ(v) are given by Kontsevich and Manin (see, Section 2.6.1)

give the relations in above.

Step 3. We have a complete description of generators and relations in E1. We need

to calculate the differentials.

The first differential d1 : E1
p,q → E1

p−1,q is given by

d1 : [C(γ∗,ô∗)] 7→
∑

(τ∗,o∗)∈G(τ,o);γ/e=τ for e∈ER
γ

γ∗/e∗=τ∗ for e∗∈ER
γ∗

±[C(τ∗,o∗)]. (9.16)

In order to complete the proof, we only need to show that the higher differentials

d2 and d3 of E∗∗ vanish.

Consider the strata of type 1 o-planar trees. Due dimensional reasons,the differ-

ential d2 is zero except d2 : E1
p,1 → E1

p−2,2 and d2 : E1
p,0 → E1

p−2,1. Due to Lemma

8.1.1,

I if [C(ζ∗l ,o∗l )] ∈ Ep,1, then vs ∈ VR
ζ∗l

and either |vs| = 4, or |vs| = 3 and |vc| ≥ 4;

II if [C(γ∗m,o∗m)] ∈ Ep,0, then either vs ∈ VR
γ∗m

and |vs| = |vc| = 3, or vs 6∈ VR
γ∗m

and

|vs| = 3.
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Assume that

d2([C(ζ∗l ,o∗l )]) =
∑

±[C(τ∗k ,o∗k)]

for [C(ζ∗l ,o∗l )] ∈ E1
p,1. Then, each o-planar trees (τ ∗k , o

∗
k) must produce (ζ∗l , o

∗
l ) by

contracting one of its real edges due to Theorem 4 and Proposition 5.3.4. On the

other hand, the vertex vs ∈ Vτ∗k
must be |vs| ≥ 5 if it is a real vertex, and |vs| ≥ 4 if

it is not a real vertex (see Lemma 8.1.1). The contraction of an real edge of (τ ∗k , o
∗
k)

increases or preserves the valency of the vertex vs. This contradicts with condition I

above. Hence, d2 : E1
p,1 → E1

p−2,2 must be zero.

Assume that

d2([C(γ∗m,o∗m)]) =
∑

±[C(ζ∗l ,o∗l )]

for [C(γ∗m,o∗m)] ∈ E1
p,0. Then, each o-planar tree (ζ∗l , o

∗
l ) must produce (γ∗m, o

∗
m) by

contracting one of its real edges due to Theorem 4 and Proposition 5.3.4. On the

other hand, the vertex vs ∈ Vτ∗k
must be a real vertex and |vs| = 4 or |vs| = 3

and |vc| > 3. The contraction of an real edge of (ζ∗l , o
∗
l ) increases or preserves the

valencies of the vertices vs and vc. This contradicts with condition II above. Hence,

d2 : E1
p,0 → E1

p−2,1 must be zero.

It remains to check the differential d3 : E1
p,0 → E1

p−3,2.

Assume that

d3([C(γ∗m,o∗m)]) =
∑

±[C(τ∗k ,o∗k)]

for [C(γ∗m,o∗m)] ∈ E1
p,0. Then, the o-planar tree (τ ∗k , o

∗
k) must produce (γ∗m, o

∗
m) by

contracting one of its real edges due to Theorem 4 and Proposition 5.3.4. On the

other hand, the vertex vs ∈ Vτ∗k
must be |vs| ≥ 5 if it is a real vertex, and |vs| ≥ 4

if it is not a real vertex. The contraction of an real edge of (τ ∗k , o
∗
k) increases or

preserves the valency of the vertex vs. This contradicts with condition I above.

Hence, d3 : E1
p,0 → E2

p−3,1 must be zero.

The images of the strata of type 2 and type 3 o-planar trees can be check in a

same way. The same arguments show that the differentials d2 and d3 are zero.
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Chapter 10

Fundamental groups of RMσ
S and

RM̃σ
S

In this chapter, we give presentations of the fundamental groups of RMσ

S and RM̃σ
S

by using the groupoid of paths transversal to codimension one strata. This idea has

been used by Kamnitzer and Henriques in [18] to calculate the fundamental group of

RMσ

S for σ = id. This section extends their description to RMσ

S and RM̃σ
S for any σ.

10.1 Fundamental groups of open parts of strata

Here, we consider a particular subset of the set of o-planar trees. Let RTree(σ) be

the set of o-planar trees having no conjugate pair of edges. If (γ, o) ∈ RTree(σ) is

of type 1, then Vγ = VR
γ , if (γ, o) ∈ RTree(σ) is of type 2, then |Vγ| = 1, and if

(γ, o) ∈ RTree(σ) is of type 3, then |Vγ| = 2.

For an o-planar tree (γ, o) ∈ RTree(σ), the open part O(γ,o) of the stratum is the

closed stratum C(γ,o) minus the union of the closure of its codimension one strata.

Proposition 10.1.1. For (γ, o) ∈ RTree(σ), the open part of the stratum C(γ,o) is

simply connected.

Proof. For (γ∗, o∗) ∈ RTree(σ), we have

C(γ∗,o∗) =


∏

v∈Vγ∗
C(γ∗v ,o∗v) if o∗ is of type 1,

C(γ∗vr ,o∗vr ) if o∗ is of type 2,

MFγ(v) if o∗ is of type 3

(see Section 5.3). The open part O(γ∗,o∗) of C(γ∗,o∗) is the product of the open parts

of its factors given above. Hence, we only need to consider the factors that are

corresponding to the one-vertex trees.

85



We prove the statement by induction on the cardinality of Perm(σ). First, we

note that the open part of the strata of RMσ′

S′ are contractible for σ(S′) = S′, |S′| = 3

and |Fix(σ)| = 1, |S′| = 4 and |Fix(σ)| = 2, and |S′| = 4 and |Fix(σ)| = 0. In these

cases, the stratification is a cell decomposition, and the open parts of the strata are

open discs (see [7, 21] and Example 5.3.6).

Let (γ∗, o∗) be a one-vertex o-planar tree of type 1. Let |Perm+| > 0, and

π : C(γ∗,o∗) → C(γ,o) be the map forgetting map the conjugate pairs of points s, s̄. Let

O be a subset of the fiber F s = π−1(Σ;p) such that (Σ∗,p∗) ∈ O does not require any

stabilization forgetting s, s̄. For (Σ∗,p∗) ∈ O, Σ∗ = Σ. Since all special points are

fixed in Σ∗, the different points of O are given by the position of the labelled point

s. The labelled point s is in (Σ \ ({special points}
⋃

RΣ))/cΣ. This follows from the

fact that all special points must be distinct (hence, we need to remove special points

and RΣ where s and s̄ collide and give a real node) and s in either F+
γ∗ or F−

γ∗ (so

that, we need to take the quotient with respect to the real structure cΣ : Σ → Σ).

The degenerations of the curves (Σ∗,p∗) ∈ O, which are obtain from limit s goes

to a special point in Σ \ RΣ, give us points in O(γ∗,o∗) since the limit elements have

an additional conjugate pair of edges. On the other hand, the degeneration of the

curves (Σ∗,p∗) obtain from limit s goes to a point in RΣ gives a curve with a real

node i.e, the limits does not lie in O(γ∗,o∗). Therefore, the restriction of the forgetful

map π : O(γ∗,o∗) → O(γ,o) has a fiber (Σ \ RΣ)/cΣ over (Σ;p) ∈ O(γ,o). It is clearly

that the fiber is simply connected.

If we assume simply connectedness of O(γ,o), then O(γ∗,o∗) is clearly simply con-

nected. We prove the statement by induction on the cardinality of labeling set

Perm(σ).

The proofs for o-planar trees (γ, o) ∈ RTree(σ) of type 2 and type 3 are the same

with type 1 case. The fiber of the forgetful map π : O(γ∗,o∗) → O(γ,o) over (Σ;p) is

Σ when (γ∗, o∗) is of type 2, and Σ/cΣ when (γ∗, o∗) is of type 3. In both cases, the

fibers are simply connected.

Let (γ, o) be an o-planar representative of the u-planar tree (γ, u). We define the

open part of a stratum C(γ,u) to be O(γ,u) := O(γ,o). Note that so defined space O(γ,u)

does not depend on the o-planar representative.

Proposition 10.1.2. The moduli space RMσ

S is stratified by simply connected sub-

spaces O(γ,u).

Proof. We only need to prove that the open parts O(γ,u) of the strata C(γ,u) are

pairwise disjoint.

First, we note that, if an u-planar tree (τ, û) produces (γ, u) be contracting only

conjugate pairs of edges, then C(τ,û) is contained in O(γ,u). This follows from Theorem

4 (b) and the definition of the open part of a stratum.
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Let (γ1, u1), (γ1, u1) ∈ RTree(σ). If two closed strata C(γi,ui) intersect, they

intersect along the union of strata
⋃

(τ,û)C(τ,û) such that two o-planar trees (τ, ô)

gives (γi, oi) by contracting a set of real edges (since by contracting conjugate pairs

of edges we obtain strata contained in the same open part). However, the strata

C(τ,û) are not contained in open part O(γi,oi) since (τ, ô) must have additional real

edges and C(τ,ô) contained in the union of codimension one strata.

10.2 Groupoid of paths in RMσ
S

Let’s consider the following groupoid P of paths in RMσ

S. Choose a point (Σ(u),p(u))

in every connected component C(τ,u) of RMσ
S . The objects Ob(P) are these elements

(Σ(u),p(u)). The morphisms 〈γ, û〉u2
u1

in Hom(P) are the homotopy classes of paths

in RMσ

S that connect the point (Σ(u1),p(u1)), (Σ(u2),p(u2)) through the common

codimension 1 boundary C(γ,û) of the strata C(τ,ui), i = 1, 2. Notice that such paths

connecting (Σ(u1),p(u1)), (Σ(u2),p(u2)) are homotopic to each other since the open

parts of C(τ,ui)’s are simply connected (see Proposition 10.1.1). The homotopy classes

of paths that intersect with only codimension 1 strata are given by concatenations of

paths 〈γ, ûi〉ui+1
ui .

Theorem 10. The fundamental group π1(RM
σ

S) is presented by the loops

〈γ, û1〉u2
u1
〈γ, û2〉u3

u2
· · · 〈γ, ûn−1〉un

un−1
〈γ, ûn〉u1

un
(10.1)

subject to the following relations relations:

• For each (γ, û) with |Eγ| = 1,

〈γ, û〉u2
u1
〈γ, û〉u1

u2
= 1. (10.2)

• For each (γ′, u) with |Eγ′| = 2

〈γ, û1〉u2
u1
〈γ, û2〉u1

u2
= 1

〈γ, û1〉u2
u1
〈γ, û2〉u3

u2
〈γ, û3〉u4

u3
〈γ, û4〉u1

u4
= 1

(10.3)

where (γ, ûi) are the u-planar trees that are obtained by contracting an edge of

(γ′, u),

Proof. Every loop in RMσ

S is homotopic a loop which is transversal to codimension

one faces. Such transversal loops can be obtained by perturbing the original loops.

Hence, we can choose the loops given in (10.1) as representatives of homotopy classes

of loops.
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These loops are subject to the following relations. The concatenation

〈γ, û〉u2
u1
〈γ, û〉u1

u2

of 〈γ, û〉u2
u1

with the reverse path 〈γ, û〉u1
u2

is obviously homotopic to a point (see Fig.

10.1a) and gives the relation (10.2).

If two paths in RMσ

S are homotopic, then they are homotopic by a homotopy of

paths that are transversal to the codimension one strata. Therefore, the homotopy

relations arise from the passing the paths through codimension 2 strata: Let (γ′, u)

be a u-planar tree corresponding to a codimension two stratum of RMσ

S. The stratum

C(γ′,u) is contained in two or four codimension one strata, since we can obtain two

or four u-planar trees by contracting one of the two edges of (γ′, u). Let C(τ,ui), i ∈ I
intersect along codimension two stratum C(γ′,u). Therefore, the loops

〈γ, û1〉u2
u1
〈γ, û2〉u1

u2
if I = {1, 2}

〈γ, û1〉u2
u1
〈γ, û2〉u3

u2
〈γ, û3〉u4

u3
〈γ, û4〉u1

u4
if I = {1, · · · , 4} (10.4)

around C(γ′,u) is contractible (see Fig. 10.1b and 10.1c) and give the relations (10.3).

Figure 10.1: (a) Concatenation of a path with its inverse, (b) and (c) Concatenations

of paths around a codimension two stratum.

10.3 Groupoid of paths in RM̃σ
S

The group π1(RM̃σ
S ) can be given in a similar way to π1(RM

σ

S). Let P̃ be the

groupoid of paths in RM̃σ
S given as follows. Choose a point (Σ(o),p(o)) in every

top dimensional strata C(τ,o) ⊂ RM̃σ
S (i.e, |Vτ | = 1). The set of objects Ob(P̃) is

{(Σ(o),p(o)) ∈ C(τ,o) | |Vτ | = 1}. The morphisms 〈γ, ô〉o2
o1

in Hom(P) are the ho-

motopy classes of paths in RM̃σ
S that connect the point (Σ(o1),p(o1)), (Σ(o2),p(o2))

through the common codimension one boundary C(γ,ô) of the strata C(τ,oi), i = 1, 2.

The concatenations of paths 〈γ, ôi〉oi+1
oi give the homotopy classes of paths that meet

only with codimension one strata.
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Theorem 11. The fundamental group π1(RM̃σ
S ) is presented by the loops

〈γ, ô1〉o2
o1
〈γ, ô2〉o3

o2
· · · 〈γ, ôn−1〉on

on−1
〈γ, ôn〉o1

on
(10.5)

subject to the following relations relations:

• For each (γ, ô) with |Eγ| = 1,

〈γ, ô〉o2
o1
〈γ, ô〉o1

o2
= 1. (10.6)

• For each (γ′, o) with |Eγ′| = 2

〈γ, ô1〉o2
o1
〈γ, ô2〉o1

o2
= 1

〈γ, ô1〉o2
o1
〈γ, ô2〉o3

o2
〈γ, ô3〉o4

o3
〈γ, ô4〉o1

o4
= 1

(10.7)

where (γ, ôi) are the o-planar trees that are obtained by contracting an edge of

the all o-planar trees in R-equivalence class of (γ′, o).

The proof this theorem is exactly the same with the proof of the Theorem 10. We

will not repeat it here.

89



Appendix A

Orientations of the strata

Let (γ, o) be an o-planar tree. By choosing three flags in Fγ(v), and using the

calibrations as in Section 5.1.2, we obtain a coordinate system in C(γv ,ov) for each

v ∈ VR
γ . More precisely, we use the following choice.

• Let v be a real vertex, ov be a o-planar structure of type 1, and Fix(σ) 6= ∅.
In this case, there is a unique real flag fm lying in the shortest path between

vertices v and ∂γ(sn) since real locus RΣ is connected.

– If |FR
γ (v)| ≥ 3, then we specify an isomorphism Φv : Σv → CP1 by mapping

three consecutive special points (pfj−1
, pfm , pf1) to (1,∞, 0).

– If |FR
γ (v)| = 1, 2, then we specify an isomorphism Φv : Σv → CP1 by

mapping three special points (pfm , pfα , pfᾱ) to (∞,
√
−1,−

√
−1) for an

arbitrary fα ∈ F+
γ (v).

• Let v be a real vertex, ov be a o-planar structure of type 1, and Fix(σ) = ∅.

– If |FR
γ (v)| ≥ 3, first we pick an arbitrary real flag fm. Then, we specify an

isomorphism Φv : Σv → CP1 by mapping three consecutive special points

(pfj−1
, pfm , pf1) to (1,∞, 0).

– If |FR
γ (v)| = 1, 2, first we pick an arbitrary real flag fm. Then, we specify an

isomorphism Φv : Σv → CP1 by mapping three special points (pfm , pfα , pfᾱ)

to (∞,
√
−1,−

√
−1) for an arbitrary fα ∈ F+

γ (v).

– If |FR
γ (v)| = 0 and sn ∈ F+

γ (resp. sn ∈ F+
γ ), then there is a unique flag fα ∈

F+
γ (v) lying in the shortest path to vertices v and ∂γ(sn) (resp. ∂γ(sn)).

We specify an isomorphism Φv : Σv → CP1 by mapping four special points

(pfβ
, pfα , pfβ̄

, pf̄β
) to (λ

√
−1,−λ

√
−1,−

√
−1) for an arbitrary fα ∈ F+

γ (v).
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• Let vr be the real vertex, ovr be the o-planar structure of type 2. Then, there

is a unique flag fα ∈ F+
γ (v) lying in the shortest path to vertices v and ∂γ(sn)

We specify an isomorphism Φv : Σv → CP1 by mapping four special points

(pfβ
, pfα , pfβ̄

, pf̄β
) to (λ

√
−1,−λ

√
−1,−

√
−1) for an arbitrary fα ∈ F+

γ (v).

Similarly, by choosing three flags in Fγ(v) for v 6∈ VR
γ , we obtain a coordinate

system in MFγ(v). We use the following choice.

• Let v, v̄ are a pair of conjugate vertices. Then, we specify isomorphisms Φv :

Σv → CP1 and Φv̄ : Σv → CP1 by mapping three special points (pfα1
, pfα2

, pfα2
)

of Σv, and their conjugates (pfα1
, pfα2

, pfα2
) to (0, 1,∞).

Remark A.0.1. It is important to note that the choices above and in Section 6.2 give

different normalized coordinates on codimension one strata. They can be transformed

to each other by rational transformation.

In such a way, we obtain orientations [Ω(γv ,ov)] for v ∈ VR
γ , and [Ωγv ] for v 6∈ VR

γ .

The product

[Ω(γ,o)] =
∧

v∈VR
γ

[Ω(γv ,ov)] ∧
∧

v∈V+
γ

[Ωγv ]

gives an orientation of C(γ,o) i.e, determines the relative fundamental cycles [C(γ,o)].

A.1 Boundary homomorphism

Let e be a real edge of an o-planar tree (γ, ô), and ∂γ(e) = {v1, v2}. Let γ → τ be the

contraction of the edge e and v be image of the vertives v1, v2 under the contraction.

The orientation [Ω(τv ,ov)] induces an orientation

[Ω(γv1 ,ov1 )] ∧ [Ω(γv2 ,ov2 )] when v1, v2 ∈ VR
γ ,[

Ωγv1

]
when v1, v2 6∈ VR

γ ,

on the boundary C(γv1 ,ov1 ) × C(γv2 ,ov2 ): Pick a point (Σ0,p0) ∈ C(γv1 ,ov1 ) × C(γv2 ,ov2 ),

and consider a tubular neighborhood V × [0, ε[ of (Σ0,p0) in C(τv ,ov) as in Section

5.3. The outward normal direction of (Σ0,p0) ∈ C(γv1 ,ov1 )×C(γv2 ,ov2 ) in C(τv ,ov) is −∂t

where t is the standart coordinate on [0, ε[⊂ R. Therefore, we define homomorphism

[Ω(τv ,ov)] 7→
{
±[Ω(γv1 ,ov1 )] ∧ [Ω(γv2 ,ov2 )]

±
[
Ωγv1

]
where the differential forms satisfy

Ω(τvov) = −Θ dt ∧ Ω(γv1ov1 ) ∧ Ω(γv2ov2 ) (A.1)
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for Θ > 0 at all points of V × [0, ε[.

In order to determine the sign of [Ω(τv ,ov)], first we apply rational transformations

to C(γvi ,ovi )
and put the point on Σvi

in a normalization position as in Section 6.2.

Then, by appying the formulas for induced orientations in Section 6.2.1 we compare

the signs of the orientations.

This gives us coboundary homomorphism of cochains of strata

∂ : [C(τ,o)] 7→
∑

(γ,ô)<(τ,o)

± [C(γ,ô)] (A.2)

where the signs are determined by (A.1).
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