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Résumé 
 
Les bases de la bioinformatique 
 

Depuis la mise en évidence de l’ADN comme source première de l’information génétique 
et la détermination, en 1953, de la structure de la double hélice d’ADN, la bioinformatique 
est devenue une discipline à part entière dans la recherche et les développements des sciences 
du vivant. Initialement conçue autour de méthodes informatiques dédiées à l’organisation et à 
l’analyse des données déposées dans les premières bases de données biologiques, la 
bioinformatique s’est structurée, dans le courant des années 80, autour de différents champs 
d’application pour aboutir à une discipline de recherche indépendante. Schématiquement, 
trois branches majeures sont souvent distinguées correspondant aux aspects de stockage et de 
récupération des données, aux aspects de traitements et analyses statistiques et informatiques 
des données et enfin ceux couvrant le développement de nouveaux algorithmes de prédiction 
à même de fournir de nouvelles informations. Classiquement, les analyses bioinformatiques 
étaient réalisées par des experts qui validaient visuellement ou expérimentalement les 
résultats obtenus in silico. Cependant, à l’ère post-génomique, la bioinformatique est 
traversée par une véritable révolution liée à la disponibilité de nombreuses séquences de 
génomes complets coïncidant avec la production d’une vaste quantité de données liées à 
l’émergence des technologies à haut débit et recouvrant des domaines aussi variés que la 
transcriptomique, la protéomique ou l’interactomique. Dès lors, les bases de données 
biologiques sont littéralement inondées par un mélange hétéroclite d’informations validées 
expérimentalement ou prédites in silico avec leur corollaires d'approximation. Dans ce 
contexte, de nouveaux systèmes intégrés sont développés pour la gestion des données 
incluant les aspects de stockage et d’extraction efficaces de données hétérogènes jusqu’aux 
aspects de fouille de l’information et de mise en évidence des connaissances. Ces 
développements permettent d’envisager des études à haut débit de systèmes biologiques 
complexes et offrent comme perspective ultime la compréhension fine des processus et 
relations à l’œuvre dans le passage de l’information génétique vers les niveaux supérieurs de 
complexité tels ceux liés à la fonction moléculaire, aux grandes voies et réseaux biologiques, 
voire à la physiologie d’organisme entier ou aux systèmes écologiques.  
 
Des séquences et structures tertiaires à la fonction 
 

S’il est admis que l’information génétique présente dans le génome contient le schéma 
directeur pour le développement et la vie d’un organisme, il est clair que l’exploitation de 
cette information s’organise autour de différents niveaux de complexité tous fortement liés 
aux fonctions des produits des gènes (acides nucléiques ou protéines). Dès lors, une des 
applications les plus importantes de la bioinformatique a été l’étude des relations existant 
entre séquences d’acides nucléiques ou de protéines, structures tertiaires et fonctions 
biologiques. Si ces travaux ont révélé une relation directe entre similarité de séquences 
protéiques et conservation d’un même repliement structural, la relation entre repliement et 
fonction est apparu pour l’instant plus complexe. Ce résultat est sans doute à rattacher à la 
notion même de fonction d’un gène qui peut être décrite à différents niveaux allant de 
l’activité biochimique stricto sensu jusqu’à son rôle dans l’organe ou l’organisme en passant 
par les processus ou voies biologiques dans lesquels le gène est impliqué. Cependant, par delà 
ces différents plans de complexité, la comparaison des séquences d’acides nucléiques ou de 
protéines a été largement utilisée aussi bien pour révéler des motifs fonctionnels conservés 
que pour identifier des éléments distincts résultant d’événements ou de perturbations 
spécifiques.  
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En particulier, les comparaisons ou alignements multiples de séquences jouent un rôle 

fondamental dans la majorité des approches bioinformatiques mises en œuvre dans l’analyse 
de génome ou de protéome, et ce, depuis l’identification d’un gène jusqu’à la caractérisation 
des fonctions moléculaires et cellulaires du produit d’un gène. Initialement utilisés surtout 
dans des analyses liés à l’évolution et à l’exploration des relations phylogénétiques entre 
organismes, les approches de l’alignement multiple ont été mises à profit par les nouveaux 
algorithmes de recherche dans les banques afin d’améliorer le traitement de séquences de 
plus en plus distantes. Enfin, les alignements multiples ont grandement contribué à 
l’amélioration des prédictions de fonctions ou de structures tertiaires en s’appuyant aussi bien 
sur la mise en évidence d’homologie entre séquences qu’en réalisant des prédictions ab initio 
basées sur un consensus.  
 
Vers une exploitation des données efficace et la découverte de connaissances. 
 

Durant ma thèse, différentes approches complémentaires ont été développées dans la 
continuité de travaux antérieurs concernant la création et l’analyse des alignements multiples 
de séquences complètes (MACS). Trois nouveaux axes de recherche ont été particulièrement 
explorés qui ont abouti à la réalisation : (i) d’un nouveau banc d’essai pour l’évaluation 
objective des algorithmes d’alignement multiple, (ii) d’une ontologie spécifique aux 
alignements multiples de séquences (ADN/ARN/protéines) et de structures, (iii) d’un système 
de gestion d’information dédié à l’intégration et à l’analyse de l’ensemble des données 
attachées à la notion de famille de protéines. 
 

(i) Evaluation objective des algorithmes d’alignement multiple 
 

Actuellement, les méthodes d’alignement multiple évoluent rapidement pour répondre aux 
nombreux défis soulevés par les données du haut débit. Dans ce contexte, par delà les aspects 
purement informatiques qui deviennent prépondérants au grée de la croissance exponentielle 
des banques, l’estimation objective de la fiabilité d’un alignement est probablement le critère 
le plus important dans ces développements. En informatique, la qualité d’un algorithme est 
souvent estimée en comparant les résultats obtenus à un ceux d’un jeu de référence pré-
calculé utilisé comme étalon. Dans le cadre des alignements de séquences, une référence 
objective peut être construite en combinant les informations des structures tridimensionnelles 
à celles des motifs fonctionnels. Cette approche a été utilisée pour la construction de 
BAliBASE, l’un des jeux d’essais les plus utilisés dans le domaine des méthodes 
d’alignement multiple. Dans ce cadre, les premiers travaux ont porté sur le développement 
d’un nouveau protocole semi-automatique et sur l’obtention d’une nouvelle version de la 
banque BAliBASE réunissant de larges séries d’alignements multiple de référence basés sur 
la superposition des structures 3D tout en maintenant un haut niveau de qualité et une 
validation humaine des cas trop complexes. Les alignements sont répartis dans différentes 
classes de référence correspondant aux problèmes les plus fréquemment rencontrés dans le 
domaine de l’analyse automatique des données du haut débit. Cela recouvre des problèmes 
liés à l’identification et à l’alignement de domaines isolés, étape essentielle à la création 
automatisée de banques de domaines jusqu’à l’alignement de séquences multi-domaines 
complètes fréquemment rencontrées dans les recherches dans les banques de séquences.   

 
(ii) Ontologie dédié à l’alignement multiple 
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La seconde partie du travail a concerné le développement de MAO, acronyme de 
« Multiple Alignment Ontology », une ontologie ‘orientée tâche’ dédiée aux alignements 
d’acides nucléiques, de protéines ou de structures. Récemment, de nombreuses ontologies ont 
été développées afin d’obtenir une organisation plus efficiente des connaissances biologiques. 
Classiquement, une ontologie fournit une représentation structurée des connaissances 
courantes d’un domaine particulier sous la forme d’un ‘vocabulaire de termes’ et de 
‘spécification de leur sens’ comprenant des définitions formelles et connectées. Un tel 
formalisme fournit une trame propice aux traitements informatiques et algorithmiques 
aboutissant ainsi à la détection de motifs cachés au sein des données et à l’extraction aisée 
des connaissances. MAO a été développée en collaboration avec des experts provenant des 
deux  communautés (acides nucléiques et protéines), et impliqués dans les domaines de la 
comparaison des séquences et des structures secondaires et tertiaires. Un des éléments les 
plus puissants de MAO est lié au fait qu’elle fournit un lien naturel et intuitif entre de 
nombreuses ontologies distinctes déjà développées dans les domaines de la génomique et de 
la protéomique de telle sorte que les données expérimentales et les informations prédites 
puissent être intégrées et estimées dans le contexte de leur conservation au sein d’une famille 
de séquences alignées. 

 
(iii) système de gestion d’information d’alignement multiple 
 

MAO a été mis à profit dans un nouveau système de gestion d’information, appelé 
MACSIMS (acronyme de « Multiple Alignment of Complete Sequence Information 
Management System »), utilisé pour l’intégration et l’organisation automatiques de différents 
types de données dans le cadre de l’alignement multiple. Une combinaison de méthodes 
exploitant l’analyse des bases de connaissances et la prédiction de séquences ab initio est 
utilisée  pour réaliser des validations croisées s’appuyant sur les informations structurales et 
fonctionnelles issues des banques publiques de séquences. L’information validée des 
séquences connues est alors propagée aux séquences inconnues, les caractérisant ainsi par des 
annotations fiables et détaillées. Les informations collectées ou générées par MACSIMS sont 
disponibles dans un format structuré permettant une exploitation  automatique à haut débit 
par ordinateur et sont aussi accessibles au biologiste  pour l’analyse visuelle à travers une 
interface web simple et conviviale. MACSIMS facilite ainsi la collecte automatique 
d’informations et d’extraction de connaissances et fournit un outil interactif d’interrogation et 
de visualisation des résultats.  

 
La puissance intégrative de MACSIMS a été exploitée dans une variété de projets 

distincts, incluant (i) les validations in silico de séquence de protéines (Bianchetti, 2005), (ii) 
l'annotation fonctionnelle de protéines basée sur 'Gene Ontology’ (Chalmel et al., 2005), (iii) 
la caractérisation de cibles potentielles pour le projet SPINE (Structural Proteomics IN 
Europe) (Thompson et al., 2006; http://www.spineurope.org/) et (iv) la prédiction des effets 
structuraux et fonctionnels de mutations génétiques humaines dans le contexte du projet 
MS2PH (de la Mutation Structurale aux Phénotypes des Pathologies Humaines) (Garnier et 
al., 2006). 

 
Nous avons aussi démontré que MACSIMS, en combinaison avec la base de données 

BAliBASE, peut évoluer vers un véritable ‘banc d’essai’ capable de tester et de valider 
l’adéquation entre une information liée aux séquences et une question biologique spécifique. 
Cette approche a été validée dans le cadre d’une étude portant sur l'efficacité de prédiction 
des sites fonctionnels dans les protéines sur la base de différentes caractéristiques de 
séquence/structure/évolution. Les méthodes actuelles utilisent pour l’essentiel, la 
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conservation évolutive comme l'indicateur primaire de sites potentiels. Cependant, cette 
conservation ne reflète pas seulement la pression de sélection impliquée dans le maintien de 
la fonction de la protéine, mais aussi celle responsable de la stabilité du repliement 
tridimensionnel. Nous avons ainsi démontré qu'en combinant les résidus conservés dans les 
alignements multiples de séquences, avec les renseignements d’hydrophobicité, 
d'accessibilité à la surface et de contacts entres résidus, nous pouvons améliorer l'exactitude 
des prédictions de sites fonctionnels. 
 
Conclusions et perspectives 
 

Les travaux décrits constituent les premières étapes d’une évolution de l’alignement 
multiple traditionnelle permettant de passer d’un simple empilement de lettres à l’obtention 
d’un dispositif interactif intégrant non seulement les séquences, mais également les 
informations structurales et fonctionnelles ainsi que des données prédites. Dans le futur, 
MAO sera amélioré par l’incorporation d’autres informations, telles que celles ayant trait à la 
structure des gènes, aux mutations et leurs phénotypes associés ou aux résidus impliqués dans 
des interactions. Ces informations couplées à des stratégies d’analyses appropriées seront 
intégrées dans les futures versions de MACSIMS et fourniront les bases pour le 
développement de nouveaux algorithmes de création d’alignements multiples incorporant les 
connaissances disponibles ainsi qu’au développement d’une nouvelle fonction objective 
d’évaluation de la qualité des MACS. 

 
Les applications potentielles de MACSIMS sont très nombreuses et touchent aussi bien 

aux aspects d’annotation automatique de protéines hypothétiques, dont le nombre ne cesse de 
grandir suite aux multiples projets de séquençage de génomes complets, qu’à des aspects plus 
structuraux tel que l’étude de motifs ou résidus spécifiques d’un repliement. A l’avenir, on 
peut penser que ces développements auront des implications dans les domaines aussi divers 
que le génie des protéines, la modélisation de voies biologiques, les études génétiques de la 
susceptibilité aux maladies humaines ou les stratégies de développements de médicaments.  

Un autre domaine de recherche en plein croissance concerne l’utilisation des méthodes 
d’alignement multiple pour des données autres que des acides nucléiques ou aminés, et 
notamment, pour des ‘alphabets structuraux’ constitués de lettres correspondant à des 
fragments de structures tertiaires ou pour des ‘alphabets événementiels’ développés dans le 
cadre des sciences sociales afin de caractériser des successions temporelles d’événements ou 
d’activités. Ces axes de recherche sont assez récents et envisagent de tirer profit des stratégies 
et méthodologies d’alignement multiple développées dans le passé dans le contexte de la 
comparaison de séquences moléculaires. Cependant, il est clair que, dans le futur, ces 
nouveaux champs d’investigation auront des retombées particulièrement bénéfiques en 
contribuant à l’émergence de nouveaux concepts et à de nouvelles formulations de la 
problématique de l’alignement multiple en général.  

 
 



 vii

Contents 

CONTENTS ..........................................................................................................................................1 

LIST OF FIGURES ........................................................................................................................... XI 

LIST OF TABLES .......................................................................................................................... XIII 

LIST OF TABLES .......................................................................................................................... XIII 

1 GENERAL INTRODUCTION .....................................................................................................1 

2 CONTEXT: BIOINFORMATICS IN THE POST-GENOMIC ERA .......................................7 

2.1 FROM A DATA-POOR TO A DATA-RICH SCIENCE.........................................................................7 
2.1.1 GENOME SEQUENCING ................................................................................................................7 
2.1.2 STRUCTURAL GENOMICS ............................................................................................................9 
2.1.3 OTHER ‘OMICS’ RESOURCES .....................................................................................................10 
2.2 SYSTEMS BIOLOGY .....................................................................................................................10 
2.2.1 HETEROGENEOUS DATA INTEGRATION.....................................................................................11 
2.2.2 MATHEMATICAL MODELLING...................................................................................................11 
2.2.3 COMBINED APPROACHES ..........................................................................................................12 
2.3 SYSTEMS-LEVEL FUNCTIONAL STUDIES....................................................................................13 
2.3.1 FROM DNA TO RNA AND PROTEINS ........................................................................................14 
2.3.2 RNA SEQUENCE, STRUCTURE AND FUNCTION..........................................................................15 
2.3.3 PROTEIN SEQUENCE, STRUCTURE AND FUNCTION ....................................................................16 
2.3.4 TOWARDS A SYSTEMIC DEFINITION OF GENE FUNCTIONS.........................................................18 

3 ONTOLOGIES .............................................................................................................................20 

3.1 ONTOLOGIES IN COMPUTER SCIENCE.......................................................................................21 
3.1.1 DEFINITION OF CONCEPTS.........................................................................................................22 
3.1.2 DEFINITION OF RELATIONS .......................................................................................................22 
3.2 ONTOLOGY REPRESENTATION ..................................................................................................23 
3.3 BIOLOGICAL ONTOLOGIES ........................................................................................................24 
3.3.1 GENE ONTOLOGY (GO) ............................................................................................................25 
3.3.2 RIBOWEB..................................................................................................................................25 
3.3.3 ECOCYC ....................................................................................................................................26 
3.3.4 TAMBIS ONTOLOGY (TAO) ....................................................................................................26 
3.3.5 MOLECULAR BIOLOGY ONTOLOGY (MBO) .............................................................................26 
3.3.6 OPEN BIOMEDICAL ONTOLOGIES (OBO) .................................................................................27 
3.4 TOOLS FOR ONTOLOGY DEVELOPMENT ...................................................................................28 
3.5 PERSPECTIVES ............................................................................................................................29 

4 INFORMATION MANAGEMENT SYSTEMS........................................................................30 

4.1 DATA STORAGE AND RETRIEVAL...............................................................................................32 
4.1.1 DATA WAREHOUSING: LOCAL STORAGE AND RETRIEVAL ........................................................32 
4.1.2 DISTRIBUTED DATABASES AND REMOTE ACCESS .....................................................................33 



 viii

4.2 DATA VALIDATION .....................................................................................................................33 
4.2.1 APPROACHES TO NOISE HANDLING..........................................................................................34 
4.3 DATA MINING..............................................................................................................................34 
4.4 DATA ANALYSIS AND PRESENTATION........................................................................................35 
4.4.1 VISUALISATION.........................................................................................................................36 
4.5 CONCLUSIONS.............................................................................................................................36 

5 THE CENTRAL ROLE OF SEQUENCE ALIGNMENTS .....................................................38 

5.1 INTRODUCTION...........................................................................................................................38 
5.1.1 MULTIPLE ALIGNMENT DEFINITIONS ........................................................................................38 
5.1.2 MULTIPLE ALIGNMENTS OF COMPLETE SEQUENCES (MACS) ................................................40 
5.2 MULTIPLE ALIGNMENT APPLICATIONS ....................................................................................40 
5.2.1 PHYLOGENETIC STUDIES...........................................................................................................40 
5.2.2 COMPARATIVE GENOMICS ........................................................................................................41 
5.2.3 GENE PREDICTION AND VALIDATION........................................................................................42 
5.2.4 PROTEIN FUNCTION CHARACTERISATION .................................................................................44 
5.2.5 PROTEIN 2D/3D STRUCTURE PREDICTION ................................................................................45 
5.2.6 RNA STRUCTURE AND FUNCTION.............................................................................................46 
5.2.7 INTERACTION NETWORKS .........................................................................................................47 
5.2.8 GENETICS..................................................................................................................................48 
5.2.9 DRUG DISCOVERY, DESIGN .......................................................................................................48 
5.3 CONCLUSIONS.............................................................................................................................49 

6 EVOLUTION OF SEQUENCE ALIGNMENT ALGORITHMS ...........................................50 

6.1 PAIRWISE ALIGNMENT SCORING AND STATISTICS ......................................................................50 
6.1.1 SCORING MATRICES ..................................................................................................................50 
6.1.2 GAP SCHEMES ...........................................................................................................................51 
6.1.3 ALIGNMENT STATISTICS ...........................................................................................................52 
6.2 PAIRWISE ALIGNMENTS .............................................................................................................52 
6.2.1 OPTIMAL ALIGNMENT...............................................................................................................52 
6.2.2 DOT PLOTS ................................................................................................................................54 
6.2.3 HEURISTIC METHODS ................................................................................................................55 
6.3 MULTIPLE SEQUENCE ALIGNMENT ...........................................................................................55 
6.3.1 PROGRESSIVE MULTIPLE ALIGNMENT.......................................................................................55 
6.3.2 ITERATIVE STRATEGIES ............................................................................................................58 
6.3.3 CO-OPERATIVE STRATEGIES .....................................................................................................58 
6.4 USER ACCESS AND VISUALISATION ...........................................................................................59 

7 MULTIPLE ALIGNMENT QUALITY .....................................................................................60 

7.1 MULTIPLE ALIGNMENT OBJECTIVE SCORING FUNCTIONS ......................................................60 
7.2 DETERMINATION OF RELIABLE REGIONS .................................................................................62 
7.3 ESTIMATION OF HOMOLOGY.....................................................................................................64 
7.4 MULTIPLE ALIGNMENT BENCHMARKS .....................................................................................65 
7.4.1 BALIBASE ...............................................................................................................................65 
7.4.2 OXBENCH .................................................................................................................................67 
7.4.3 PREFAB ...................................................................................................................................68 
7.4.4 SABMARK.................................................................................................................................68 
7.4.5 HOMSTRAD ...............................................................................................................................69 
7.4.6 BRALIBASE.............................................................................................................................69 



 ix

7.4.7 COMPARISON OF MULTIPLE ALIGNMENT BENCHMARKS...........................................................69 
7.5 MULTIPLE ALIGNMENT REVOLUTION.......................................................................................70 

8 MATERIAL AND METHODS ...................................................................................................72 

8.1 COMPUTING RESOURCES ...........................................................................................................72 
8.1.1 SERVERS ...................................................................................................................................72 
8.1.2 DATABASES ..............................................................................................................................72 
8.1.3 GCG PACKAGE .........................................................................................................................73 
8.1.4 SEQUENCE RETRIEVAL SOFTWARE (SRS)................................................................................73 
8.2 THE GSCOPE PLATFORM ...........................................................................................................73 
8.2.1 SEQUENCE AND STRUCTURE DATABASE SEARCHING ...............................................................74 
8.2.2 MULTIPLE ALIGNMENT CONSTRUCTION ...................................................................................75 
8.3 PIPEALIGN PROTEIN FAMILY ANALYSIS TOOLKIT...................................................................75 
8.3.1 BALLAST: POST-PROCESSING OF BLASTP RESULTS ..................................................................76 
8.3.2 DBCLUSTAL: CONSTRUCTION OF THE MACS...........................................................................76 
8.3.3 RASCAL: RAPID SCANNING AND CORRECTION OF ALIGNMENT ERRORS.................................76 
8.3.4 LEON: MULTIPLE ALIGNMENT-BASED HOMOLOGY EVALUATION ...........................................78 
8.3.5 NORMD: MACS QUALITY EVALUATION..................................................................................78 
8.3.6 SECATOR: SEQUENCE CLUSTERING...........................................................................................79 
8.4 OTHER SOFTWARE .....................................................................................................................80 
8.4.1 DATA RETRIEVAL......................................................................................................................80 
8.4.2 ANNOTATED MULTIPLE ALIGNMENT DISPLAY..........................................................................81 
8.4.3 3D STRUCTURE SUPERPOSITION AND DISPLAY .........................................................................82 

9 DEVELOPMENT OF A NEW MULTIPLE ALIGNMENT BENCHMARK........................84 

9.1 INTRODUCTION...........................................................................................................................84 
9.1.1 CRITERIA FOR BENCHMARK DEVELOPMENT.............................................................................85 
9.2 BALIBASE MULTIPLE ALIGNMENT BENCHMARK ...................................................................86 
9.2.1 DEFINITION OF THE CORRECT ALIGNMENT...............................................................................86 
9.2.2 SELECTION OF ALIGNMENT TEST CASES ...................................................................................87 
9.3 COMPARISON OF THE LATEST ALIGNMENT METHODS WITH BALIBASE 3.0 ........................88 
9.4 CONCLUSIONS.............................................................................................................................91 

10 MAO: MULTIPLE ALIGNMENT ONTOLOGY ..................................................................93 

10.1 INTRODUCTION.........................................................................................................................93 
10.2 DESIGN OF THE MULTIPLE ALIGNMENT ONTOLOGY............................................................94 
10.2.1 ONTOLOGY REPRESENTATION ................................................................................................95 
10.2.2 ONTOLOGY CONSTRUCTION ...................................................................................................96 
10.3 CONCLUSIONS...........................................................................................................................96 

11 MACS-BASED INFORMATION MANAGEMENT SYSTEM.............................................98 

11.1 INTRODUCTION.........................................................................................................................98 
11.2 DESIGN OF MACSIMS.............................................................................................................98 
11.2.1 DATA STORAGE AND RETRIEVAL............................................................................................98 
11.2.2 DATA MODEL ..........................................................................................................................99 
11.2.3 DATA VISUALISATION.............................................................................................................99 
11.2.4 AB INITIO PREDICTIONS .........................................................................................................100 



 x

11.3 MACSIMS APPLICATIONS ....................................................................................................100 
11.3.1 VALIDATION OF PREDICTED PROTEIN SEQUENCES ...............................................................100 
11.3.2 PROTEIN FUNCTION ANNOTATION USING THE GENE ONTOLOGY.........................................102 
11.3.3 TARGET CHARACTERISATION FOR STRUCTURAL PROTEOMICS ............................................102 
11.3.4 PREDICTION OF STRUCTURAL/FUNCTIONAL EFFECTS OF MUTATIONS..................................103 
11.4 CONCLUSIONS.........................................................................................................................104 

12 MACSIMS : SYSTEMATIC TESTING OF RESEARCH HYPOTHESES.......................106 

12.1 INTRODUCTION.......................................................................................................................106 
12.2 MATERIAL AND METHODS ....................................................................................................108 
12.3 RESULTS AND DISCUSSION .....................................................................................................110 
12.3.1 RESIDUE CONSERVATION......................................................................................................111 
12.3.2 RESIDUE TYPE.......................................................................................................................113 
12.3.3 SOLVENT ACCESSIBLITY .......................................................................................................115 
12.3.4 INTERRESIDUE CONTACTS ....................................................................................................116 
12.4 CONCLUSIONS AND PERSPECTIVES.......................................................................................118 

13 CONCLUSIONS AND PERSPECTIVES ..............................................................................120 

FUTURE PERSPECTIVES .....................................................................................................................122 

REFERENCES..................................................................................................................................123 

ANNEX 1 .......................................................................................ERREUR ! SIGNET NON DEFINI. 

 



 xi

List of Figures 

 
Figure 2.1 Exponential growth of TrEMBL and Swissprot sections of the Uniprot database ..8 
Figure 2.2 The number of solved structures in the PDB database.............................................9 
Figure 2.3 Overview of the new integrated approach to systems biology...............................12 
Figure 2.4 The Central Dogma of Molecular Biology.............................................................14 
Figure 2.5 Different levels of RNA structure ..........................................................................15 
Figure 2.6 Different levels of protein structure .......................................................................17 
Figure 3.1 Example ontology...................................................................................................21 
Figure 3.2 Interplay between ontologies, biology, computer science and linguistics .............24 
Figure 3.3 The top level of the OBO hierarchy .......................................................................27 
Figure 4.1 Transition of data into wisdom...............................................................................30 
Figure 4.2 The knowledge discovery process..........................................................................31 
Figure 5.1 Example alignment of a set of 7 hemoglobin domain sequences...........................39 
Figure 5.2 Four different types of multiple sequence alignment .............................................39 
Figure 5.3 Alternative hypotheses for the rooting of the tree of life .......................................40 
Figure 5.4 UCSC genome browser display..............................................................................42 
Figure 5.5 vALId display of a multiple alignment of plant alcohol dehydrogenases..............43 
Figure 5.6 Multiple alignment of the BBS10 protein and homologs found in in-depth database 
searches ....................................................................................................................................44 
Figure 5.7 Multiple sequence alignment of NR ligand binding domains and class-specific 
features.....................................................................................................................................46 
Figure 5.8 S2S display of a multiple alignment of the RNA element conserved in the SARS 
virus genome............................................................................................................................47 
Figure 6.1 PAM-250 matrix.....................................................................................................51 
Figure 6.2 Dynamic programming matrices for global and local alignments of two DNA 
sequences. ................................................................................................................................53 
Figure 6.3  Dot plot of a tyrosine-protein kinase protein compared to a SH2-SH3 adaptor 
protein ......................................................................................................................................54 
Figure 6.4 The basic progressive alignment procedure ...........................................................56 
Figure 6.5 Overview of different progressive alignment algorithms.......................................57 
Figure 7.1 Comparison of three objective functions: sum-of-pairs, relative entropy and 
norMD......................................................................................................................................62 
Figure 7.2 An example sequence logo for displaying patterns in aligned sequences..............63 
Figure 7.3 Version 1 of the BAliBASE benchmark alignment database.................................66 
Figure 7.4 Comparison of multiple alignment programs using the alignments in the 
BAliBASE benchmark.............................................................................................................67 
Figure 7.5 The simultaneous development of multiple alignment algorithms and alignment 
benchmarks ..............................................................................................................................70 
Figure 8.1 Schematic overview of the Gscope high throughput platform processing pipeline
..................................................................................................................................................74 
Figure 8.2 Overview of PipeAlign multiple alignment construction pipeline.........................75 
Figure 8.3 Overview of the RASCAL algorithm.....................................................................77 
Figure 8.4 Overview of the LEON algorithm..........................................................................78 
Figure 8.5 Calculation of the norMD score for a multiple sequence alignment......................79 
Figure 8.6 Example of Secator sequence clustering by collapsing branches of a tree ............80 
Figure 8.7 Incorporation of the Daedalus_DB temporary database in SRS ............................81 
Figure 8.8 3D structure display and superposition with PyMol ..............................................83 



 xii

Figure 9.1 Mean column scores for the programs in Reference 1, V1 and V2 .......................89 
Figure 9.2 Comparison of alignment scores for full-length sequences versus homologous 
regions only..............................................................................................................................90 
Figure 11.1 vALId determination of reliable sequence segments and detection of potential 
errors ......................................................................................................................................101 
Figure 11.2 MAGOS web server display...............................................................................103 
Figure 12.1Integration of 3D structural information in MAO...............................................109 
Figure 12.2 Frequency distribution of conservation scores for functional versus non-
functional residues .................................................................................................................112 
Figure 12.3 Part of BAliBASE alignment BB11004. Black boxes above the alignment 
indicate core blocks................................................................................................................113 
Figure 12.4 Functional propensities of the 20 amino acid types ...........................................114 
Figure 12.5 Frequency distribution of hydrophilicity scores for functional versus non-
functional residues .................................................................................................................115 
Figure 12.6 Frequency distribution of accessibility scores for functional versus non-
functional residues .................................................................................................................115 
Figure 12.7 Frequency distribution of interresidue contacts for functional versus non-
functional residues .................................................................................................................117 
Figure 12.8 Frequency distribution of interresidue contacts with conserved residues for 
functional versus non-functional residues .............................................................................117 



 xiii

List of Tables 
 
Table 2.1 Some examples of the use of generic ‘-ome’ terminology ......................................10 
Table 3.1 Some of the relations described in  the OBO Relation Ontology............................23 
Table 7.1 Current state of the art for multiple sequence alignment methods ..........................71 
Table 9.1 SCOP classification statistics...................................................................................87 
Table 9.2 Number of test cases in version 3 of the BAliBASE alignment benchmark ...........88 
Table 9.3 Multiple alignment programs compared using BAliBASE 3.0 ...............................88 
Table 9.4 Scores for BAliBASE reference sets containing alignments of homologous regions 
only ..........................................................................................................................................89 
Table 9.5 Scores for BAliBASE reference sets containing alignments of full length sequences
..................................................................................................................................................90 
Table 12.1 Amino acid groups based on physico-chemical properties .................................108 
Table 12.2 Known functional sites in BAliBASE alignments...............................................110 
Table 12.3 Correlation coefficients between potential descriptors for prediction of functional 
residues ..................................................................................................................................111 
Table 12.4 Prediction of functional residues based on column conservation only................112 
Table 12.5 Prediction of functional residues based on residue conservation and mean 
accessibility............................................................................................................................116 
Table 12.6 Prediction of functional residues, based on conservation, mean accessibility and 
mean conserved contacts........................................................................................................118 
 
 



Chapter 1: General introduction 

 1

 
 “To those who would know the biochemical 

structure, function and origin of man  
and would strive to improve his lot.” 

MO Dayhoff, 1965 

1 General introduction 
 

The work described in this thesis concerns the study of biological sequences and the role 
of the encoded gene products at the molecular, cellular and organism levels. We will use 
multiple sequence alignments of complete sequences (MACS) to place the gene sequence in 
the context of its overall family, where patterns of conservation and divergence can be used 
to identify evolutionarily conserved features and important genetic events. The MACS will 
also be used as a tool for the integration of all the information related to a gene family, 
providing an ideal workbench for the study of the relationships between gene sequence, 
structure, function and evolution. 
 
The foundations of bioinformatics 
 

Since the discovery of DNA as the source of genetic information and the elucidation of 
the double-helical nature of the DNA molecule (Watson and Crick, 1953), bioinformatics 
has become an integral part of research and development in the biological sciences. 
Originally introduced for the analysis of biological sequences (e.g. Fitch 1966; Needleman 
and Wunsch 1970; Sankoff 1975; Smith and Waterman 1981), new computational methods 
were soon needed to organise and analyse the data stored in the first biological databases 
(e.g. Dayhoff, 1965; Bernstein et al., 1977; Bairoch and Boeckmann, 1991) and, in the 80’s, 
the field of bioinformatics took shape as an independent research discipline. For the first 
time, efficient algorithms were developed to cope with an increasing volume of information, 
and their computer implementations were made available for the wider scientific 
community. Three major problems were addressed at this time: the storage and retrieval of 
the data, computational and statistical data analyses and algorithms for prediction. In 
general, bioinformatics studies were performed by experts who manually verified the results 
obtained.  

 
Bioinformatics in the post-genomic era 

 
Bioinformatics has now been transformed by the availability of numerous complete 

genome sequences, as well as the new information resources that are being created from the 
raw data produced by different high throughput technologies in fields such as 
transcriptomics, proteomics, or interactomics. As a consequence, the biological databases 
are now being inundated with a mixture of experimentally validated data and computational 
predictions with their inherent unreliability. In this context, information management 
systems are now being introduced to collect, store and curate all this heterogeneous 
information in ways that will allow its efficient retrieval and exploitation. These 
developments are opening up the possibility of new large scale studies, whose goal is to 
understand how genetic information is translated to molecular function, networks and 
pathways, all the way to physiology and even ecological systems. The success of these 
studies will depend on our ability to organise and validate the raw data, to extract previously 
unknown information, to infer new hypotheses and to present the results in a user-friendly 
way to the biologist.  
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From sequences and 3D structures to function and evolution 
 

The genetic information encoded in the genome sequence contains the blueprint for the 
potential development and activity of an organism, but the implementation of this 
information depends on the functions of the gene products (nucleic acids and proteins). For 
example, RNA plays a key role in all steps of gene expression, as an intermediate carrier of 
genetic information and as a functional intermediate of the expression cascade which 
amplifies single genes into many copies of the encoded proteins. Many non-coding RNA 
(tRNA, snRNA, miRNA, etc.) are also involved in direct regulation of transcription and 
translation. Proteins perform a wide variety of biological functions in organisms, from 
catalysis of biochemical reactions, transport of nutrients or recognition and transmission of 
signals to structural and mechanical roles within the cell. As a consequence, one of the most 
important applications of bioinformatics has been the study of the relationships between the 
sequence of a gene and its 3D structure, biological function and evolution. The function of 
an RNA molecule depends mostly on its tertiary structure and this structure is generally 
more conserved than the primary sequence (Woese and Pace, 1993). In the case of proteins, 
a direct relationship between sequence similarity and conservation of 3D structure has been 
clearly established (Koehl and Levitt, 2002a). However, the relation between fold and 
function is much more complex (Watson et al., 2005). Gene function can be described at 
many levels, ranging from biochemical function, via macromolecular complexes to cellular 
processes and pathways, up to the organ or organism level. Furthermore, as proteins and 
RNA evolve, they can acquire new roles and sequences with a common evolutionary origin 
do not necessarily share the same precise function. This complexity calls for a more rigorous 
description of molecular and cellular functions and several projects have been initiated 
recently to formally characterise functional information, such as the RNA Ontology (Leontis 
et al., 2006), the Gene Ontology (Ashburner et al., 2000) or the EC (Bairoch 2000) and 
Kegg (Kanehisa, 2002) databases.  
 
The central role of multiple alignments 
 

The comparison of protein or nucleic acid sequences has had a major impact on our 
understanding of sequence/structure/function/evolution relationships (Lecompte et al., 
2001). Multiple sequence comparisons or alignments were originally used in evolutionary 
analyses to explore the phylogenetic relationships between organisms (reviewed in Phylips 
et al., 2000). More recently, new sequence database search methods have exploited multiple 
alignments to detect more and more distant homologues (e.g. Altschul et al., 1997). Multiple 
sequence alignments of protein or nucleic acid sequences are also used to highlight 
conserved functional features and to identify major evolutionary events, such as 
duplications, recombinations or mutations. They have led to a significant improvement in 
predictions of both 3D fold (Moult 2005) and function (Watson et al., 2005). Of course, in 
the current era of complete genome sequences, it is now possible to perform comparative 
multiple sequence analysis at the genome level (Margulies et al., 2006).  

 
Such studies have important implications in numerous fields in biology. Nucleic acid 

divergence is used as a molecular clock to study organism divergence under the evolutionary 
forces of natural selection, genetic drift, mutation and migration, with applications from the 
scientific classification or taxonomy of species to genetic fingerprinting. Conserved 
sequence features or markers are used to characterise groups of individuals in population 
genetics (Kidd et al., 2004). Genotype/phenotype correlations can reveal candidate genes 
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associated with a particular trait (e.g. plant height) or inherited disease, such as 
schizophrenia (Owen et al., 2005). In drug discovery, a protein family perspective can 
identify specific structural or functional features that facilitate protein-ligand interaction 
studies for high-throughput virtual compound screening methods (Lenz et al., 2000). Thus, 
multiple alignments now play a fundamental role in most of the computational methods used 
in genomic or proteomic projects, ranging from gene identification and the functional 
characterisation of the gene products to genetics, human health and therapeutics. However, 
new bioinformatics approaches are now needed in order to manage and extract the important 
information from the mass of data generated by the new high-throughput technologies. 
 
Objectives: towards efficient data exploitation and knowledge discovery 
 

In this work I have built on past experience in the group concerning the construction and 
evaluation of high-quality, reliable Multiple Alignments of Complete Sequences (MACS) 
(Thompson et al., 1997; Plewniak et al., 2000; Thompson et al., 2001; Thompson et al., 
2003; Plewniak et al., 2003; Thompson et al., 2004). The MACS provides an ideal 
environment for the reliable integration of information from a complete genome to a gene and 
its related products. In order to fully understand the functions and molecular interactions of a 
particular protein, such diverse information as cellular location, degradation and 
modification, 2D/3D structures, mutations and their associated illnesses, the evolutionary 
context and literature references must be assembled, classified and made available to the 
biologist. By placing the sequence in the framework of the overall family, multiple 
alignments can identify important structural or functional motifs that have been conserved 
through evolution, but can also highlight particular non-conserved features resulting from 
specific events or perturbations. Multiple alignments thus allow reliable data validation, 
consensus predictions and rational propagation of information from known to unknown 
sequences, and provide a valuable workbench for integrated systems analysis, hypothesis 
generation and experiment-planning advice.  

 
The three major new developments described here are (i) a new benchmark for the 

objective evaluation of multiple alignment algorithms, (ii) an ontology for multiple 
alignments of DNA/RNA/protein sequences and structures, (iii) an information management 
system that exploits the MACS and the organisation provided by the ontology. 
 
(i) Objective evaluation of multiple alignment algorithms 
 

Multiple alignment methods are now evolving in response to the challenges posed by the 
new large-scale applications (reviewed in Thompson and Poch, 2006a). Alignment reliability 
is probably the most important criteria in these developments, though computational aspects 
will become more and more important as the databases increase in size.  In computer science, 
the quality of an algorithm is often estimated by comparing the results obtained by a new 
method with a pre-defined benchmark or ‘gold standard’. In the case of multiple alignments, 
an objective reference can be constructed by incorporating 3D structure information and 
functional motifs. This approach was used in the construction of BAliBASE (Thompson et 
al., 1999a; Bahr et al., 2001), one of the most widely used benchmarks for multiple sequence 
alignment methods. A comparison of different multiple alignment methods based on 
BAliBASE (Thompson et al., 1999b) highlighted the fact that no single algorithm was 
capable of constructing high quality alignments for all test cases. Subsequently, the first 
alignment methods were introduced that combined both global and local information in a 



Chapter 1: General introduction 

 4

single alignment program, resulting in more reliable alignments for a wide range of alignment 
problems.  

 
Here, a new semi-automatic protocol has been developed in order to construct a new 

version of the BAliBASE database (Thompson et al., 2005a), which provides high quality, 
manually refined, reference alignments based on 3D structural superpositions. The 
alignments are organised into different reference sets, containing test cases that cover most 
of the current multiple alignment problems, from alignment of single domains e.g. in the 
construction of protein domain databases to the alignment of full-length, complex 
sequences, such as those detected by the database searches routinely performed in automatic, 
high throughput genome analysis projects. A comparison of the most recent alignment 
programs using BAliBASE version 3 has shown that significant improvements have been 
achieved since the last comprehensive evaluation was performed (Thompson et al., 1999b). 
This is most probably due to the recent development of co-operative, knowledge-based 
methods that exploit the new structural and functional information available. 
 
(ii) Multiple alignment ontology 
 

The second part of this work concerned the development of the Multiple Alignment 
Ontology (MAO), a task-oriented ontology for nucleic acid and protein sequence and 
structure alignments (Thompson et al., 2005b). In recent years, ontologies have been 
introduced in a number of areas for the management of biological knowledge. In computer 
science, an ontology is defined as a formal, structured representation of the knowledge in a 
particular domain (Gruber, 1993). It includes a "vocabulary of terms" and a "specification of 
their meaning" including definitions and inter-relations, which impose a structure on the 
domain and constrain the possible interpretations of terms. Such a formalism provides a 
framework for computational methods dedicated to the detection of hidden motifs and to 
knowledge discovery. MAO was designed to improve interoperation and data sharing 
between different alignment protocols for the construction of a high quality, reliable 
multiple alignment in order to facilitate knowledge extraction and the presentation of the 
most pertinent information to the biologist. The ontology has been developed in 
collaboration with domain experts from both the DNA/RNA and protein communities, 
including experts in the fields of both primary sequence and 2D/3D structure comparisons. 
One of the most powerful features of the MAO ontology is that it provides a natural, 
intuitive link between a number of different ontologies in the domains of genomics and 
proteomics, so that diverse experimental data and predicted information can be integrated in 
the context of the overall family alignment. 

 
(iii) Information management system 
 

MAO was then used in a new MACS-based Information Management System called 
MACSIMS (Thompson et al., 2006b), for the integration of different types of data in the 
framework of the multiple alignment. MACSIMS was designed to combine knowledge-
based methods with complementary ab initio sequence-based predictions for protein family 
analysis. A data collection system has been incorporated to automatically retrieve a wide 
range of information, from taxonomic data and functional descriptions to individual 
sequence features, such as structural domains and active site residues. A number of new 
algorithms have been developed for reliable data cross-validation, consensus predictions and 
rational propagation of information from the known to the unknown sequences. In this way, 
structural and functional data can be combined with information about the conservation of 
the family and the variability observed at different residue sites. All the information 
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collected or generated by MACSIMS is stored in XML format files that provide a structured 
format for automatic, high-throughput data parsing by computers. In addition, all the 
information is also easily accessible for manual analysis by biologists, via a simple-to-use, 
graphical interface implemented via the JalView alignment editor (Clamp et al., 2004). 
MACSIMS thus facilitates automatic information retrieval and knowledge discovery, with 
functionalities for interactive queries and visual exploration of search results.  

 
Example applications 

 
The integrative power of MACSIMS has been used in a variety of different projects, 

including (i) the in silico validation of protein sequences (Bianchetti et al., 2005), (ii) 
reliable protein function annotation based on the Gene Ontology (Chalmel et al., 2005), (iii) 
the characterisation of potential targets for the SPINE (Structural Proteomics in Europe) 
project (Albeck et al., 2006; http://www.spineurope.org/) and (iv) the prediction of structural 
and functional effects of mutations in the context of the MS2PH (Structural Mutation to 
Human Pathologies Phenotype) project (Garnier et al., 2006). 

 
We have also shown that MACSIMS, combined with the BAliBASE benchmark 

database, represents an effective workbench for the testing of hypotheses related to the most 
pertinent information for a specific research question. The rationale is demonstrated by a 
study of the effectiveness of a number of sequence/structure characteristics for the prediction 
of functional sites in proteins. Most current methods use evolutionary conservation as the 
primary indicator of potential sites. However, sequence conservation reflects not only 
evolutionary selection to maintain protein function, but also to maintain the stability of the 
folded protein. We have demonstrated that by combining the conserved residues in multiple 
sequence alignments, with other information such as residue hydrophobicity, solvent 
accessibility and inter-residue contacts, we can improve the accuracy of such predictions.  

 
Conclusion and perspectives 
 

Genomics and proteomics technologies, together with the new systems biology strategies 
have led to a paradigm shift in bioinformatics. The traditional reductionist approach has been 
replaced by a more global, integrated view. Multiple sequence alignment is one example 
where a shift of thinking or focus is now leading to the development of new methods. The 
work presented here represents the first steps in the evolution of the traditional multiple 
sequence alignment from a simple stacking of letters to become an interactive tool, 
incorporating not only the sequence itself, but also structural/functional information in the 
context of the complete protein family. The MAO ontology has been developed in order to 
provide a data standard for the exchange of information and to facilitate collaborations 
between the different resources. The formalism and organisation established in MAO is 
exploited in a new information management system. In MACSIMS, knowledge-based 
techniques have been developed that include data mining components for finding subtle 
correlations and relationships and data management and analysis techniques have been 
applied to ensure that the pertinent information can be extracted and presented to the biologist 
in a clear, user-friendly format. In this context, version 3 of the BAliBASE benchmark 
represents a comprehensive reference for the evaluation and comparison of the new 
alignment methods that are now being introduced. 
 

In the future, MAO will be extended to incorporate other information resources, such as 
gene structure, mutation and phenotype information and residue interaction data. This will 
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require more formal links between MAO and the other biological ontologies. The information 
retrieved from the numerous biological databases, together with complementary sequence 
analysis strategies will provide the basis for a new knowledge-based multiple alignment 
construction method, as well as a new objective function for the evaluation of the quality of 
the MACS.  

 
The potential applications of MACSIMS are numerous, but will include such fields as 

the automatic annotation of the ever-increasing number of hypothetical proteins being 
produced by the high-throughput genome sequencing projects or the definition of 
characteristic motifs for specific protein folds. Hopefully, this will also have significant 
consequences for more wide-reaching areas, such as protein engineering, metabolic 
modelling, genetic studies of human disease susceptibility, and the development of new drug 
development strategies.  

 
Another growing area of research is the application of multiple alignment methods for 

the comparison of other kinds of data, such as 3D structure fragment libraries or structural 
alphabets (e.g. Kolodny et al., 2002; Camproux et al., 2004), molecular networks (Sharan 
and Ideker, 2006), or even time use data and activity patterns in the social sciences 
(Thompson et al., 1999c; Wilson, 2006). Here, data that is fundamentally a sequence of 
events is represented by an alphabet defined by experts in the field, who also define the 
similarity scores between the different events. These emerging fields are exploiting the 
power of the multiple alignment methodologies developed over the years for the comparison 
of molecular sequences, but will also contribute new concepts and formulations that will 
undoubtedly prove beneficial in the future.  

 



Chapter 1: General introduction 

 7

 “Is there a danger, in molecular biology, that the 
accumulation of data will get so far ahead of its 
assimilation into a conceptual framework that the 
data will eventually prove an encumbrance?”  

John Maddox, Nature, 1988 

2 Context: bioinformatics in the post-genomic era 
 

Biology has been transformed by the availability of numerous complete genome sequences 
for a wide variety of organisms, ranging from bacteria and viruses to model plants and animals 
to humans. However, the completion of the genome sequence is just a milestone marking the 
beginning of efforts to decipher the meaning of the genetic “instruction book”. The major 
challenge today is to understand how the genetic information encoded in the genome sequence 
is translated into the complex processes involved in the organism and the effects of 
environmental factors on these processes. Bioinformatics will play a crucial role in the 
systematic interpretation of genome information, associated with data from other high-
throughput experimental techniques, such as structural genomics, proteomics or 
transcriptomics. The results of such large-scale analyses will have widespread implications for 
fundamental research, but will also have practical biotechnology applications in fields such as 
genetic fingerprinting and engineering, human health, diagnostics and therapeutics. 

 
Section 2.1 describes the current data explosion in the field of molecular biology, brought 

about by the recent developments in high-throughput genomic, transcriptomic and proteomic 
technologies. The implications of this changing data landscape for systems-level studies are 
then discussed in section 2.2. Finally section 2.3 focuses in more detail on the study of the 
relationships between sequence and structure, function and evolution and the critical role such 
studies play in the new systems-level biology. 

2.1 From a data-poor to a data-rich science 

2.1.1 Genome sequencing 
 

In the past ten years, high throughput genome sequencing and assembly techniques have 
lead to a rapid increase in the amount of sequence data available in the public databases. The 
first free-living organism to be sequenced was that of Haemophilus influenzae (1.8Mb) in 
1995, and since then genomes have been sequenced at an ever-increasing pace. The human 
genome was completed by the Human Genome Project in 2004, and high-quality draft genome 
sequences are now available for many higher organisms, including the mouse, the domestic 
dog and the chimpanzee. At the time of writing, the Genomes OnLine Database (GOLD:   
http://www.genomesonline.org/) contained 364 complete genomes or chromosomes, and a 
further 607 eukaryotic genomes, 950 bacterial genomes and 58 archaeal genomes were being 
sequenced. Many of these model organisms occupy strategic positions in the tree of life and 
provide important information for evolutionary studies (Delsuc et al., 2005). Other genomes 
have been sequenced because they have important industrial implications, such as the design of 
novel drugs (Regnstrom and Burgess, 2005), the development of therapies for the treatment of 
complex diseases (e.g. Cooke, 2006), or the design and production of new fuels, food 
ingredients or thermostable chemicals (e.g. Niehaus et al., 1999). 
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The various genome sequencing projects have lead to a rapid increase in the number of 
sequences available in the nucleotide and protein databases. For example, figure 2.1 shows the 
exponential growth of the UniProt protein database (Wu et al., 2006) since 1996 
(http://www.expasy.org/). The UniProt database consists of two sections: (i) the TrEMBL 
section contains translations of all coding regions from the major nucleotide databases and 
includes over 2.5 million sequences (ii) Swiss-Prot is a smaller section with manually-
annotated records with information extracted from literature and curator-evaluated 
computational analyses.  
 

 
 
Figure 2.1 Exponential growth of TrEMBL and Swissprot sections of the Uniprot database 
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2.1.2 Structural genomics 
 

This avalanche of protein sequences resulting from the determination of the complete 
genome sequences of diverse organisms, is now awaiting further structural and functional 
interpretation. Only a small fraction of the proteins encoded in the genomes has been 
experimentally studied, and uncharacterised proteins often represent more than half of the 
potential protein-coding regions of a genome (Roberts, 2004). To address this problem, large-
scale experimental studies are now underway to gain a better understanding of the role and 
origins of the tens of thousands of these ‘hypothetical’ or uncharacterised proteins. For 
example, the goal of many of the structural genomics (SG) projects is to provide experimental 
3D structures that cover the majority of the protein folding space. The structures of over 3000 
proteins (see figure 2.2) have already been determined by such initiatives and deposited in the 
PDB database (Kouranov et al., 2006)  
 

 
 
Figure 2.2 The number of solved structures in the PDB database 
(http://www.rcsb.org/pdb/) The blue columns represent the yearly totals and the red columns represent the 
accumulated totals. 
  

These experimental structures will have an even greater impact on our knowledge of the 
protein fold space because they can serve as representative templates for in silico structure 
homology modelling methods, providing valuable information for the large fraction of 
sequences whose structures have not been determined experimentally. Such comparative 
protein structure models are available in the MODBASE (Pieper et al., 2006) database for all 
available protein sequences that can be matched to at least one known protein structure. 
Reliable structural models are available for domains in approximately 60% of the sequences in 
the Swiss-Prot and TrEMBL databases.  
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2.1.3 Other ‘omics’ resources 
 

Other large-scale data resources are also emerging from high-throughput experimental 
technologies such as microarrays for systematically analysing gene expression profiles or yeast 
two-hybrid systems and mass spectroscopy for detecting protein-protein interactions. The 
impact of the genome projects of the past 10 years is thus not simply an increased amount of 
sequence data, but the diversification of molecular biology data. Table 2.1 lists some examples 
of these data resources, which have been denoted with the suffix ‘-ome’ (from the Greek for 
‘all’, ‘every’ or ‘complete’) to indicate studies undertaken on a large or genome-wide scale. 
 

Transcriptome the mRNA complement of an entire organism, tissue type, or cell 
Proteome the entire complement of proteins in a given biological organism or 

system at a given time 
Metabolome the population of metabolites in an organism 
Secretome the population of gene products that are secreted from the cell 
Lipidome the totality of lipids in an organism 
Interactome the complete list of interactions between all macromlecules in a cell 
Spliceosome the totality of the alternative splicing protein isoforms 
Kinome The totality of protein kinases in a cell 
Neurome The complete neural makeup of an organism 
ORFeome the totality of protein-encoding open reading frames (ORFs) 
Unknome The totality of genes of unknown function 
Textome The body of scientific literature which text mining can analyse 
Resourceome The full set of bioinformatics resources 

 
Table 2.1 Some examples of the use of generic ‘-ome’ terminology 
 

The availability of comprehensive ‘omics’ datasets is changing the way we approach 
biological research. The emphasis in biology and bioinformatics is shifting from studying 
individual components, such as genes, RNA or proteins in isolation, to the study of the vast 
networks that biological molecules create, which regulate and control life.  

 

2.2 Systems biology 
 

System-level studies are aimed at the elucidation, design or modification of complex 
structures, such as macromolecular complexes, regulatory pathways, cells, tissues or even 
complete organisms. Systems biology aims to explain such complex biological systems by 
using a combination of experimental, theoretical and computational approaches. The goal is 
not simply to produce a catalogue of the individual components or even interactions, but to 
understand how the system components fit together, the effect of each individual part on its 
neighbours, and how various parameters such as concentrations, interactions, and mechanics 
change over time (Ideker et al., 2001a; Kitano, 2002: Ge et al., 2003). The new outlook is 
characterised by the basic idea of “emergent” properties, i.e. it considers global behaviour not 
explicable in terms of the individual, single components of the system (Chong and Ray, 2002).  

 
Historically, there have been two main approaches to systems biology. One has its roots in 

biology, the other in mathematics. The former sees it as a way to integrate the different levels 
of information, from system-level experiments in developmental biology, cancer studies etc. to 
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lower level data pertaining to genes, mRNAs, proteins, and pathways (Hood et al., 2001). For 
the latter, the main idea is that complex biological systems might be modelled successfully 
using the tools developed in systems theory and engineering. 

2.2.1 Heterogeneous data integration 
 

Initial studies in this field have begun to provide insights into how cellular networks may 
be organised (Uetz and Finley, 2005). For example, new biological pathways have been 
elucidated from analysis of protein-protein interaction networks derived from experimental 
methods such as the yeast two-hybrid approach, mass spectrometry or TAP-tag technology, in 
conjunction with other types of data, including protein function, subcellular location and gene 
expression profiles (Cho et al., 2004). In addition to the definition of the system structure, 
system behaviour and response to external stimuli, such as mutations, environmental 
conditions, chemical injection or drug absorption are also being studied. For example, protein–
protein interaction maps for the budding yeast Saccharomyces cerevisiae were combined with a 
genomic-scale data set describing the phenotypic role of all nonessential yeast proteins to study 
the recovery of the yeast from exposure to DNA-damaging agents (Said et al., 2004). A 
systematic integration of technologies is also being applied in the pharmaceutical industry to 
identify molecular functions and pathways associated with a disease and to improve the drug 
discovery pipeline (e.g. Davidov et al., 2003; Apic et al., 2005).  

2.2.2 Mathematical modelling 
 
Most biological systems are sufficiently complex (with nonlinearities, emergent properties, 

loosely coupled modules, etc. that are the hallmarks of complexity) that 'systems biology' and 
'complex systems' might be considered to be practically synonymous. Tools found useful in 
analysing the latter should prove of value to the study of the former. Mathematical modelling 
was traditionally used in biology to study population genetics. More recently, thanks to the 
recent development of mathematical tools such as chaos theory to help understand complex, 
nonlinear mechanisms in biology and an increase in computing power which enables 
calculations and simulations to be performed that were not previously possible, modelling of 
various pathways and networks in cellular and molecular biology has become an area of 
growing interest. Dynamic simulations of metabolic networks were performed in the 1970s 
(Garfinkel et al., 1970; Wright, 1970; Loomis and Thomas, 1976). These pathway-centered 
kinetic models were followed by cell-scale models of metabolic networks (Heinrich and 
Rapoport, 1977), and by the 1990s, multi-level models were formulated of dynamic, large-
scale systems, e.g. mitosis (Novak and Tyson, 1995) or control of MAPK signalling in 
oncogenesis (Schoeberl et al., 2002) and even of complete organisms, such as Haemophilus 
influenzae (Edwards and Palsson, 1999). These models describe reconstructed networks and 
their possible functional states (phenotypes) and are now available at the genome-scale for a 
growing number of organisms.  

 
Biological systems are inherently complex, i.e. they are systems consisting of interacting 

parts, in which the state of one part affects the state of one or more others. Common 
interactions include feedback loops, in which information from the output of a system 
transformation is sent back as input to the system. Negative feedback loops, in which the new 
data produce an output in the opposite direction to previous outputs, are typically responsible 
for regulation and are generally considered to provide stability. Positive feedback loops, in 
which the new input facilitates and accelerates the transformation in the same direction as the 



Chapter 1: General introduction 

 12

preceding output, are often equated with undesired instability in a system. Nevertheless, they 
are an important factor in the dynamics of many complex systems. 

 
In order to understand a system, a so-called "structural model" (this terminology is nothing 

to do with 'structural biology' in the sense of the 3D coordinates of atoms in a molecule) is 
needed, which shows all the components and, qualitatively, how they interact with each other. 
In order to understand in quantitative terms how these links behave, the model is based on 
equations and an associated set of parameters. Some of the mathematical formalisms that have 
been employed with some success in biology and bioinformatics to describe such complex 
systems, are directed graphs, Bayesian networks, Boolean networks and their generalizations, 
ordinary and partial differential equations, qualitative differential equations, stochastic 
equations, and rule-based formalisms (reviewed in de Jong, 2002). Using formal methods, the 
structure of systems can be described unambiguously, while predictions of their behaviour can 
be made in a systematic way. Modelling and simulation studies have predominantly used 
deterministic, coarse- to average-grained models, such as logical models and simple 
differential equation models. The few modelling and simulation studies using fine-grained, 
quantitative, and stochastic models have been restricted to regulatory networks of relatively 
small size and modest complexity that have been well-characterized already by experimental 
means. 

2.2.3 Combined approaches 
 
The two approaches described above are complementary and recently they have been used 

together in an iterative way (see figure 2.3).  

 
 
Figure 2.3 Overview of the new integrated approach to systems biology 

 
An integrated systems approach to understanding biology can be described as an iterative 

process that includes (1) data collection and integration of all available information (ideally all 
components and their relationships in the organism), (2) mathematical modelling of the system, 
(3) generation of new hypotheses and (4) experimentation at a global level. In this new 
approach, global sets of biological data are integrated from as many hierarchical levels of 
information as possible. This is the initiation point for the formulation of detailed graphical or 
mathematical models, which are then refined by hypothesis-driven, iterative systems 
perturbations and new data integration. Cycles of iteration will result in a formal working 
model of how the systems function dynamically in the growth, development and maintenance 
of the organism in the context of its environment. Ultimately, these models will explain the 
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systems or emergent properties of the biological system of interest. Once the model is 
sufficiently accurate and detailed, it will allow biologists to accomplish two tasks not possible 
before: (i) to predict the behaviour of the system given any perturbation and (ii) redesign or 
perturb the gene regulatory networks to create completely new emergent systems properties.  

 
Quantitative experimental data has been combined with mathematical modelling to predict 

the ability of certain bacteria to orient themselves to specific chemicals (Barkai and Leibler, 
1997). In another data-intensive study (Ideker et al., 2001b), the effect of perturbations of the 
sugar metabolism pathway in yeast on gene expression and protein activity was studied, using 
an integrated approach to build, test, and refine a model based on experimental data from DNA 
microarrays, quantitative proteomics, and databases of known physical interactions. The 
combined approach has also been used to model complete cells, for example, in the Virtual 
Cell or Vcell project (Schaff and Loew, 1999) or the e-cell project (Tomita, 2001). Both Vcell 
and e-cell use differential equations to model the basic chemical pathways in a cell and to 
predict what would happen if a pathway were to be interfered with or changed in some way. 
However, modelling a single cell gives little insight into multi-cellular processes and diseases, 
and single cell simulations are now being complemented by in silico multi-cellular systems. 

 
Examples of multi-cellular models include genome-wide strategies to understand the 

control systems of specific components of development that are highly conserved, for example 
segment polarity genes of fruitfly (von Dassow et al., 2000) and endomesoderm specification in 
the sea urchin embryo (Davidson et al., 2002). More recently, an important international 
collaborative effort has been made in the context of the IUPS Physiome Project (Hunter, 2004), 
in order to provide a framework for linking models of biological structure and function in 
human and other eukaryotic physiology across multiple levels of spatial organization (from 
nano-scale molecular events to metre-scale intact organ systems) and multiple time scales 
(from microseconds to a human lifetime). The levels of biological organization, from genes to 
the whole organism are: gene regulatory networks, protein–protein and protein–ligand 
interactions, protein pathways, integrative cell function, tissue and whole organ 
structure/function relations, and finally the integrative function of the whole organism. Models 
of heart, lungs, musculo-skeletal system and the digestive system have already been 
constructed within the IUPS project, with applications ranging from educational software to 
virtual surgery and surgical training, medical diagnostics and drug discovery.  

 
Although systems biology is still a young field, the pioneering studies described above 

have clearly established systems biology as a firm scientific discipline. Nevertheless, the field 
still faces significant experimental, technical and computational challenges that will need to be 
addressed in the future. Once these have been resolved, a detailed understanding of the 
interplay between different hierarchies of biological information within their environmental 
contexts will hopefully lead to new conceptual insights, as well as more practical innovations, 
such as predictive; preventive and personalised medicine or alternative sources of food and 
energy 

 

2.3 Systems-level functional studies 
 

The study of the relationships between sequence and structure, function and evolution will 
play a critical role in the new systems level studies. Although physiologists and ecologists have 
been using a systems approach for many years, it is only in the post-genomic era that it has 
become feasible to extend these studies to the level of molecular details. For the first time, it 
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will be possible to integrate knowledge across different levels of biological organization and to 
anchor this at the molecular level. For these applications to be realistic, though, apart from 
vastly increased computing power, it will be absolutely necessary to come to a fundamental 
understanding of the processes in cells at the smallest level. The basis for macro-level insights 
is still micro-level knowledge. Unfortunately, although genome sequence information has 
become available in unprecedented amounts, the absence of a direct functional correlation 
between genes and the corresponding nucleic acid or protein products represents a significant 
roadblock for improving the efficiency of biological discoveries (Bienkowska, 2005).  

2.3.1 From DNA to RNA and proteins 
 

The Central Dogma of Molecular Biology (Crick, 1958) states that the genetic information 
encoded in DNA is transcribed to generate RNA and that these RNA are then translated to form 
proteins which perform cellular functions (see figure 2.4). The RNA intermediary between 
DNA and protein is a messenger type of RNA, or mRNA. The Central Dogma stipulates that 
no genetic information is transferred from protein to protein, protein to RNA or protein to 
DNA. 
 

 
Figure 2.4 The Central Dogma of Molecular Biology

Over the last 50 years, many discoveries have challenged the Central Dogma and the fixed, 
deterministic view of DNA. They have revealed that, whilst the essential elements of the 
Central Dogma still hold, it is a rather over-simplistic model. Some examples of alternative 
information pathways that have been observed recently include: 
 
• Reverse transcription. After the central dogma was expounded, retroviruses were 

discovered. These transcribe RNA into DNA through the use of a special enzyme called 
reverse transcriptase (reviewed in de Parseval and Heidmann, 2005). This confirmed that 
the flow from RNA to DNA does occur. Initially, this was thought to occur only in viruses, 
but, more recently, RNA to DNA flow has also been shown in higher animals, including 
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humans. For example, retrotransposons can copy themselves to RNA and then, via reverse 
transcriptase, paste multiple copies back to DNA (Mourier, 2005).  

• Viruses with RNA-only genomes. Some virus species have their entire genome encoded in 
the form of RNA (Ahlquist, 2006). Thus, their information flow consists only of RNA to 
Protein. 

• Non-coding RNAs. Many RNAs in an organism achieve a functional state capable of 
affecting the phenotype of the organism without ever being translated into a protein (Costa, 
2005). Thus, their information flow consists only of DNA to RNA. 

• Prions. Prions are proteins that propagate themselves by making conformational changes in 
other molecules of the same type (Bussard, 2005). This change affects the behaviour of the 
protein. In fungi, this change can be passed from one generation to the next, i.e. Protein to 
Protein.  

 
Thus, the Central Dogma of Molecular Biology inspired by classical work in prokaryotic 

organisms accounts for only part of the genetic agenda of complex eukaryotes. In fact, gene 
expression is subject to a regulatory network of a complexity that it only just being realised 
(Lee et al., 2002a). But, translation of the DNA genes to RNA or protein sequences is only the 
first step in the synthesis of functionally active molecules and further processing is required to 
obtain the final 3D structure and biochemical function of the gene product.  

2.3.2 RNA sequence, structure and function 
 

RNAs are single stranded polynucleotide molecules that often fold on themselves by base 
pairing to form structures called hairpin loops. Thus, most RNA molecules adopt specific 
tertiary structures. An example is shown in figure 2.5.  

 
 
Figure 2.5 Different levels of RNA structure 
The example shown is a tRNA molecule, which is a polynucleotide of about 60-95 nucleotides. tRNA  exhibit a 
cloverleaf-like structure consisting of a stem and three main loops. The tertiary L-shaped structure interacts with 
ribosomes, aaRS, EFTU, etc. 
.  

Structural studies and comparative sequence analyses have suggested that biological RNAs 
are largely modular in nature, composed primarily of conserved structural building blocks or 
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motifs (Leontis and Westhof, 2003) of secondary (helices, and internal, external or junction 
loops) and tertiary (coaxial stacks, kissing hairpin loops, ribose zippers, etc.) structure. The 
secondary structure elements are significantly more stable and form faster than the tertiary 
interactions. Tertiary structure in RNA occurs via interactions involving two helices, two 
unpaired regions, or one unpaired region and a double-stranded helix. At the same time, 
detailed analysis of water, metal, ligand and protein binding to RNA has revealed the effect of 
these moieties on folding and structure formation (Holbrook, 2005). It is this 3D structure that 
largely determines the functional activity of the RNA. 

 
RNA plays numerous key roles in biological processes, including protein synthesis, mRNA 

splicing, transcriptional regulation and retroviral replication. Messenger RNA (mRNA) is a 
single stranded molecule used as the template for protein translation. Other non-coding RNA 
(ncRNA) have been discovered more recently, that have functional or catalytic roles in many 
cell processes including the regulation of transcription, DNA replication and RNA processing 
and modification (reviewed in Costa, 2005). Currently, there are six main classes of ncRNA, 
namely transfer RNA (tRNA) and ribosomal RNA (rRNA), both of which are involved in the 
process of translation and gene expression, small nuclear RNA (snRNA), which are mostly 
components of the spliceosome, small nucleolar RNA (snoRNA), that are mostly involved in 
rRNA modifications, micro RNAs (miRNA), and small interfering RNAs (siRNA), which are 
both thought to regulate the expression of genes. One of the newest discoveries of ncRNA is 
RNA interference (RNAi). RNA interference (RNAi) is the process where the introduction of 
double stranded RNA into a cell inhibits gene expression in a sequence dependent fashion. 
RNAi is seen in a number of organisms such as Drosophila, nematodes, fungi and plants, and is 
believed to be involved in anti-viral defence, modulation of transposon activity, and regulation 
of gene expression (Henikoff, 2002).  

 
The fact that RNA molecules can be both informational and diverse in structure has led to 

suggestions that RNA catalysis may have played a key role during the early evolution of life on 
this planet (Woese, 1967; Crick, 1968) and that the cell used RNA as both the genetic material 
and the structural and catalytic molecule, rather than dividing these functions between DNA 
and protein as they are today. This hypothesis became known as the "RNA world hypothesis" 
of the origin of life (Gilbert, 1986). In 2001, the RNA world hypothesis was given a major 
boost with the deciphering of the 3D structure of the ribosome (Yusupov et al., 2001). Many 
long-standing questions were resolved by the crystal structure. A critical issue was whether the 
rRNA serves as a structural scaffold, or whether it is directly involved in ribosomal function. 
The structures showed that rRNA in fact does both of these things, creating the structural 
framework for the ribosome and at the same time, playing important roles in its functional sites 
(Noller, 2005). 

2.3.3 Protein sequence, structure and function 
 
Classified by biological function, proteins include the enzymes, which are responsible for 

catalyzing the thousands of chemical reactions of the living cell; structural proteins, such as 
tubulin, keratin or collagen; transport proteins, such as hemoglobin; regulatory proteins, such 
as transcription factors or cyclins that regulate the cell cycle; signalling molecules such as 
some hormones and their receptors; defensive proteins, such as antibodies which are part of the 
immune system; and proteins that perform mechanical work, such as actin and myosin, the 
contractile muscle proteins.    
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Every protein molecule has a characteristic three-dimensional shape or conformation, 
known as its native state. Fibrous proteins, such as collagen and keratin, consist of polypeptide 
chains arranged in roughly parallel fashion along a single linear axis, thus forming tough, 
usually water-insoluble, fibres or sheets. Globular proteins, e.g., many of the known enzymes, 
show a tightly folded structural geometry approximating the shape of an ellipsoid or sphere. 
The precise 3D structure of a protein molecule is generally required for proper biological 
function, since the specific conformation is needed that cell factors can recognise and interact 
with. If the tertiary structure is altered, e.g., by such physical factors as extremes of 
temperature, changes in pH, or variations in salt concentration, the molecule is said to be 
denatured; it usually exhibits reduction or loss of biological activity. The process by which a 
protein sequence assumes its functional shape or conformation is known as folding. Protein 
folding can be considered as a hierarchical process, in which sequence defines secondary 
structure, which in turn defines the tertiary structure (see figure 2.6). Other molecules, such as 
chaperones, may also direct the folding of large newly synthesized proteins into their native 3D 
structure. 
 

 
 
Figure 2.6 Different levels of protein structure 
 (from Principles of biochemistry, Horton, Moran, Ochs, Rawn, Scrimgeour). The ribbons represent examples of 
the four levels of protein structure. (a) The linear sequence of amino acid residues defines the primary structure. 
(b) Secondary structure consists of regions of regularly repeating conformations of the peptide chain, such as 
alpha helices and beta sheets. (c) Tertiary structure describes the shape of the fully folded polypeptide chain. The 
example shown has two domains. (d) Quaternary structure refers to the arrangement of two or more polypeptide 
chains into a multi-subunit molecule.  
 

Although most protein sequences have a unique 3D confirmation, the inverse is not true. A 
3D structure does not have a unique sequence, i.e. the size of the structure space is much 
smaller than the size of the sequence space. It is commonly assumed that there are around 1000 
different protein folds, covering 10,000 different protein sequence families (Wang, 1998). A 
direct relationship has been clearly established between protein sequence similarity and 
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conservation of 3D structure (Chothia and Lesk, 1986; Yang and Honig, 2000; Koehl and 
Levitt, 2002a). Although exceptions exist, it is generally believed that when two proteins share 
50% or higher sequence identity, they will generally share the same structural fold. However, 
in the so-called "twilight zone" of 20–30% sequence identity, it is no longer possible to reliably 
infer structural similarity (Chung and Subbiah, 1996). High sequence identity, but low 
structural similarity can occur due to conformational plasticity, solvent effects or ligand 
binding. Conversely, proteins in the ‘twilight zone’ of sequence similarity (<25% identity) can 
share surprisingly similar 3D folds (Gan et al., 2002).  
 

The relation between 3D fold and function is much more complex (Thornton et al., 2000; 
Watson et al., 2005) and the same fold is often seen to have different functions. After 
translation, the posttranslational modification (PTM) of amino acids can extend the range of 
functions of the protein by attaching to it other biochemical functional groups such as acetate, 
phosphate, various lipids and carbohydrates, by changing the chemical nature of an amino acid 
(e.g. citrullination) or by making structural changes, such as the formation of disulfide bridges 
(reviewed in Eichler and Adams, 2005). With respect to enzymes, local active-site mutations, 
variations in surface loops and recruitment of additional domains accommodate the diverse 
substrate specificities and catalytic activities observed within several superfamilies. 
Conversely, different folds can perform the same function, sometimes with the same catalytic 
cluster and mechanism (for example, trypsin and subtilisin proteinases). General rules seem to 
be that for pairs of domains that share the same fold, precise function appears to be conserved 
down to 40 % sequence identity, whereas broad functional class is conserved to 25 % 
(Wilson et al., 2000). These results highlight the need to look beyond simple evolutionary 
relationships, at the details of a molecule's active site, to assign a specific function. 

2.3.4 Towards a systemic definition of gene functions 
 

Genes and gene products work together in complex, dynamic pathways to make a 
functional cell, tissue, and an organism as a whole. There is a lot of cross-talk between 
different proteins, DNA, and RNA to establish pathways, networks, and molecular systems. 
For example, a metabolic pathway is a representation of a set of frequently co-localized 
proteins, with various concentrations, interaction partners and 3D structures, that behave a 
certain way in the presence of particular metabolites. Other examples include RNA-mediated 
gene regulation, which is widespread in higher eukaryotes, and complex genetic phenomena 
like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and 
possibly position-effect variegation and transvection, all involve intersecting pathways based 
on or connected to RNA signalling (Mattick, 2001). Clearly, understanding the biological role 
of genes requires an understanding of the spatial organization of the gene products into 
functional units such as complexes and organelles and the dynamic or temporal interactions 
between these units to control and carry out their various and complex biological functions 
(Aebersold, 2005). To add further complexity, during evolution, mutations in the gene can lead 
to different structure and function or can cause misfunctions, resulting in genetic disease 
phenotypes. 

 
In the light of this growing complexity, the traditional definition of gene function, 

consisting of simple phrases of free text, is no longer sufficient. Traditionally, function has 
been defined in various terms, including molecular interaction, cellular process, or even 
phenotype of mutations, depending on the experimental perspective. These definitions now 
need to be standardised to allow automatic processing in high-throughout systems. Some 
progress has been made recently and the definition of function is moving toward a more 
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systematic representation. For example, ontologies are being developed that provide 
standardised function definitions for both RNA (ROC, Leontis et al., 2006) and proteins (GO, 
Ashburner et al., 2000). Other efforts have been directed towards organising functional data in 
databases, such as the ENZYME (Bairoch 2000) and KEGG (Kanehisa, 2002) databases. 
 

To achieve a more global definition of gene function, ranging from its biochemical function 
to its role in the pathways, networks, cell and organism, such diverse information as 3D 
structures, cellular localisation, protein interactions and modifications, or mutations and their 
associated phenotypes must be assembled and classified. As a consequence, computational 
tools are needed for representing, integrating and modelling heterogeneous data as well as 
deciphering complex patterns and systems. The next two chapters will discuss the role of 
standardised vocabularies, known as ontologies, and information management systems in 
molecular biology. 
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“For speech is the means of association  
 among men and in consequence, a wrong  

and inappropriate application of words  
obstructs the mind to a remarkable extent.” 

Francis Bacon, 1620 

3 Ontologies 
 

A more integrated approach to biology requires an interdisciplinary approach, with input 
from genetics and molecular biology, chemistry, pharmacology, computer science and 
mathematics amongst others. These diverse fields historically started rather independently 
and have grown quite distinguished terminologies. Standardised nomenclatures are now 
needed to facilitate the communication between experts from these different fields and to 
organise and merge the heterogeneous information produced by the different domains.  

 
Data integration is currently hindered by syntactic differences in the file formats used by 

different applications and by semantic differences, such as naming conventions and 
terminology. The syntactic issue is now being addressed with the widespread adoption of 
standard file formats, such as the XML (eXtensible Markup Language) data exchange format. 
However, if data is to be truly understandable by multiple applications, semantic 
interoperability will also be necessary. Semantic ambiguities are ubiquitous, for example the 
same sequence may have different names in different sequence databases such as Genbank 
(Benson et al., 2006) or EMBL (Cochrane et al., 2006). Data integration is impeded by 
different meaning of identically named categories, overlapping meaning of different 
categories and conflicting meaning of different categories. Even the meaning of important 
high level concepts that are fundamental to molecular biology is ambiguous. For example, the 
term "gene" is shared by many disciplines, including genetics, molecular biology and 
population genetics. Historically, the term gene referred to an abstract concept to explain the 
hereditary basis of traits. A gene is now often defined in molecular terms as a complete 
chromosomal segment responsible for making a functional protein or RNA product, including 
both coding and regulatory regions (Snyder and Gerstein, 2003). The problem becomes more 
complex when natural language is used, for example for protein function definitions in the 
sequence databases, where the same function could be described as glycyl-tRNA synthetase, 
glycine-tRNA synthetase, glycine--tRNA ligase or simply glyQ. To resolve such semantic 
discrepencies, formal, structured vocabularies are now required, that constrain the use and 
interpretation of the terminology employed.  

 
In the early nineties, ontologies were introduced in the context of ‘knowledge modelling’, 

rather than simple ‘knowledge acquisition’. These structured depictions or models of known 
and accepted facts are being built today to make a number of applications more capable of 
handling complex and disparate information. Ontologies are used for example in artificial 
intelligence, the semantic web, and software engineering as a form of knowledge 
representation about the world or some part of it. They are used for communication between 
people and organisations by providing a common terminology over a domain. But perhaps 
the most important aspect of an ontology is that it creates a shared understanding of a domain 
in a format that can also be used by computers. They thus provide the basis for 
interoperability between different computational systems. They can be used for content 
explicitation for information resources and serve as an index to a repository of information. 
They can also be used as a basis for integration of information resources and as a query 



Chapter 1: General introduction 

 21

model for information management systems that include automated inference and reasoning. 
Information management systems will be described in detail in chapter 4. 

 
Section 3.1 introduces some basic concepts concerning the ontologies used in computer 

science. The formal representation of such ontologies is discussed in section 3.2. Some 
examples of successful biological ontologies are presented in section 3.3 and finally, section 
3.4 introduces some of the main tools used to create and maintain bio-ontologies. 

 

3.1 Ontologies in computer science 
 
First, one should be aware of the distinction between ontology, the study of being as a 

branch of philosophy and individual (domain) ontologies, which are the result of the analysis 
of a particular domain of interest, possibly as broad as the universe. In philosophy, ontology 
is the most fundamental branch of metaphysics. It studies being or existence and their basic 
categories and relationships, to determine what entities and what types of entities exist. 
Ontology thus has strong implications for conceptions of reality. In computer science, an 
ontology is a data model that represents a domain and is used to reason about the objects in 
that domain and the relations between them. Ontologies can be of varying scope and content 
(Schulze-Kremer, 2002):  

• upper-level ontologies are primarily concerned with general high level concepts that 
are the basis or our understanding of a particular domain;  

• domain (also known as reference) ontologies are centred around a specific domain 
• task (also known as application) ontologies are conceived for a specific problem 

solving task.  

Gruber defines an ontology as “a formal, structured representation of the knowledge in a 
particular domain” (Gruber et al., 1993). Ontologies generally consist of controlled concepts 
that represent classes or sets of instances in the world and the relationships that may exist 
between the concepts. For example, in the domain ontology shown in figure 3.1, some of the 
concepts associated with human development are represented, together with the fundamental 
relationships, is_a and part_of.  Some ontologies also contain axioms that are used to 
constrain values for particular concepts or classes. 

 

 
 
 

 
 
 
 
 
Figure 3.1 Example ontology 
An extract from an ontology describing concepts 
associated with human development (Hunter et al., 
2003). The concepts (blue boxes) are organised in 
a taxonomy with two different types of hierarchical 
relationships between concepts, is_a and part_of. 
. 



Chapter 1: General introduction 

 22

Instances are the `things' represented by a concept; for example, a human cytochrome C 
would be an instance of the concept Protein in a molecular biology ontology. Strictly 
speaking, an ontology should not contain any instances, because it is supposed to be a 
conceptualisation of the domain. The combination of an ontology with associated instances is 
what is known as a knowledge base.  

3.1.1 Definition of concepts  
 
A concept represents a set or class of entities or `things' within a domain. For example, 

protein is a concept within the domain of molecular biology. Concepts fall into two kinds:  

• primitive concepts are those which only have necessary conditions (in terms of their 
properties) for membership of the class. For example, a globular protein is a kind of 
protein with a hydrophobic core, so all globular proteins must have a hydrophobic 
core, but there could be other things that have a hydrophobic core that are not globular 
proteins.  

• defined concepts are those whose description is both necessary and sufficient for a 
thing to be a member of the class. For example, eukaryotic cells are kinds of cells that 
have a nucleus. Not only does every eukaryotic cell have a nucleus, every nucleus-
containing cell is eukaryotic.  

3.1.2 Definition of relations  

Relations describe the interactions between concepts or the properties associated with 
concepts. Relations also fall into two broad kinds:  

• Taxonomies that organise concepts into sub- or super-concept tree structures. The 
most common forms of these are : 

o The specialisation relationship commonly known as the is_a relationship. For 
example, an Enzyme is_a Protein, which in turn is_a Macromolecule.  

o The partitive relationship describes concepts that are part of other concepts, 
e.g. ModificationSite is part_of Protein.  

• Associative relationships that relate concepts across tree structures. Commonly found 
examples include the following:  

o Nominative relationships describe the names of concepts, e.g. Protein 
hasAccessionNumber AccessionNumber (in the context of bioinformatics) and 
Gene hasName GeneName.  

o Locative relationships describe the location of one concept with respect to 
another, e.g. Chromosome hasSubcellularLocation Nucleus.  

o Associative relationships that represent, for example, the functions, processes 
a concept has or is involved in, and other properties of the concept, e.g. 
Protein hasFunction Receptor, Protein isAssociatedWithProcess Transcription 
and Protein hasOrganismClassification Species.  

The relations, like concepts, can be organised into taxonomies. For example, hasName 
can be subdivided into hasGeneName, hasProteinName and hasDiseaseName. Relations also 
have properties that capture further knowledge about the relationships between concepts. 
These include, but are not restricted to:  
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• whether it is universally necessary that a relationship must hold on a concept. For 
example, when describing a protein database, we might want to say that Protein 
hasAccessionNumber AccessionNumber holds universally, i.e., for all proteins.  

• whether a relationship can optionally hold on a concept, for example, we might want 
to describe that Enzyme hasCofactor Cofactor only describes the possibility that 
enzymes have a cofactor, as not all enzymes do have a cofactor.  

• the cardinality of the relationship. For example, a particular AccessionNumber is the 
accession number of only one Protein, but one Chromosome may have many Genes.  

• whether the relationship is transitive, for example if Protein isAssociatedWithProcess 
Transcription and Transcription isAssociatedWithProcess GeneExpression, then 
Protein isAssociatedWithProcess GeneExpression. The taxonomy relations is_a and 
part_of always have this property. 

The OBO Relation Ontology provides consistent and unambiguous formal definitions of 
some widely used relational expressions used in bio-ontologies, in a way designed to assist 
developers and users in avoiding errors in coding and annotation. The aim of the Relation 
Ontology is to promote interoperability of ontologies and to support new types of automated 
reasoning about the spatial and temporal dimensions of biological and medical phenomena. 
Table 3.1 shows some examples of the different types of relationships defined in the Relation 
Ontology. 

Foundational relations Spatial relations Temporal relations Participation relations 

is_a 
part_of 

instance_of 

located_in 
contained_in 
adjacent_to 

transformation_of 
derives_from 
preceded_by 

has_participant 
has_agent 

 
Table 3.1 Some of the relations described in  the OBO Relation Ontology 
 

3.2 Ontology representation 
 

For ontologies to be used within an application, the ontology must be specified, that is, 
delivered using some concrete representation. The specification in the definition of ontologies 
by Gruber (see section 3.1) is the representation of this conceptualisation in a concrete form. 
The goal is to create a collaborative vocabulary and semantic structure for exchanging 
information about that domain. There are a variety of representations which can be used for 
ontologies, from lists of words, taxonomies, object-based knowledge representation 
languages such as Frames, and languages based on predicates expressed in logic such as 
Description Logics. These representations have varying characteristics in terms of their 
expressiveness, ease of use and computational complexity. Major considerations in the choice 
of representation are the expressivity and complexity of the encoding language, the rigour of 
the encoding and the semantics of a language. The three most widely used representations 
are: 

• Taxonomies support the creation of simple tree-like inheritance structures. 
Although this provides great flexibility, the lack of structure in the representation 
can lead to difficulties with maintenance or preserving consistency, and there are 
usually no formally defined semantics. The single inheritance provided by a tree 
structure (each concept has only one parent in the is_a hierarchy) can also prove 
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limiting. Maintaining multiple inheritance hierarchies, however, is an arduous 
task.  

• Frame-based systems provide more flexible structure. They are based around the 
notion of frames or classes which represent collections of instances (the concepts 
of the ontology). Each frame has associated attributes which can be filled by 
values or other frames. In particular, frames can have an is_a attribute which 
allows the assertion of a frame taxonomy. Frames are popular because frame-
based modelling is similar to object-based modelling and is intuitive for many 
users. They have been used extensively for natural language processing, e.g. 
Ontolingua (Farquhar et al., 1997). 

• Description Logics (DLs) (Borgida, 1995) provides an alternative to frames. DLs 
describe knowledge in terms of concepts and relations that are used to 
automatically derive classification taxonomies. A major characteristic of a DL is 
that concepts are defined in terms of descriptions using other relations and 
concepts. In this way, the model is built up from small pieces in a descriptive way, 
rather than through the assertion of hierarchies. The DL supplies a number of 
reasoning services which allow the construction of classification hierarchies and 
the checking of consistency of these descriptions. These reasoning services can 
then be made available to applications that wish to make use of the knowledge 
represented in the ontology.  

Description Logics and frames are similar, in that DLs are a logical reformulation of 
frames. An example is the OWL (Web Ontology Language), a markup language for 
publishing and sharing data using ontologies on the Internet. OWL is a vocabulary extension 
of the Resource Description Framework (RDF) and is derived from the DAML+OIL Web 
Ontology Language. Together with RDF and other components, these tools make up the 
Semantic Web project (Berners-Lee et al., 2001). 

3.3 Biological ontologies 
 

In recent years, the utility of ontologies has been clearly demonstrated in several 
biological domains for the organisation and management of biological knowledge (Bard and 
Rhee, 2004). Ontologies are used for automatic annotation of data, for the sharing of 
information from different resources and for the presentation of domain knowledge to 
researchers, in particular to non-experts in the specific field. Clearly, the creation of an 
ontology demands a close collaboration between different disciplines, as shown in figure 3.2.  

 

 
 
 
 
Figure 3.2 Interplay between ontologies, biology, 
computer science and linguistics 
Molecular biologists discover facts that need to be 
organised and stored in databases. Computer 
scientists provide techniques for data 
representation and manipulation. Philosophers and 
linguists help organise the meaning behind 
database labels (adapted from Schulze-Kremer, 
2002). 
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Since molecular biology and bioinformatics are in many aspects of enormous complexity, 
it is important to well understand beforehand the intended use for a newly to be developed 
ontology. Otherwise there is a great risk of losing focus and being overwhelmed by the 
multitude of facets leading to a failure of finishing a sufficiently complete, useful ontology. 
There is a tradeoff to be made between the flexibility and powerful reasoning capabilities of 
large, formal ontologies and the feasibility and pragmatism of more lightweight 
representations. To date, successful ontologies in computational biology have generally been 
of an intermediate level of technical complexity. By avoiding the more formal inference 
engines, and instead existing as large collections of hierarchical, taxonomic, categorisations 
of biological objects such as genes and proteins, they come closer to being specially 
structured databases. i.e. large relational objects. 

3.3.1 Gene Ontology (GO) 
 

The Gene Ontology (GO) (Ashburner et al., 2000) is one of the most widely used 
biological ontologies. GO is an example of a task ontology, whose main use is as a controlled 
vocabulary for conceptual annotation of gene products in databases. It is essentially 
composed of three taxonomic hierarchies, representing the molecular function of a gene 
product; the process in which it takes place and the cellular location. Each set of categories is 
then equipped with one partial order representing is_a inheritance, and another representing 
part_of composition, so that more general categories are towards the top, and more specific 
categories are towards the bottom. It currently has over 10000 concepts within the ontology. 
The GO project began as a collaboration between three model organism databases: FlyBase 
(Drosophila), the Saccharomyces Genome Database (SGD) and the Mouse Genome 
Informatics (MGI) projects. Since then, the GO Consortium has grown to include many 
databases, including several of the world’s major repositories for plant, animal and microbial 
genomes. 

3.3.2 RiboWeb  
 

RiboWeb (Altman et al., 1999) is a frame-based domain ontology whose primary aim is 
to facilitate the construction of three-dimensional models of ribosomal components and 
compare the results to existing studies. The knowledge that RiboWeb uses to perform these 
tasks is captured in four ontologies: The physical-thing ontology; the data ontology; the 
publication ontology and the methods ontology. The physical-thing ontology describes 
ribosomal components and associated `physical things'. It has three principle 
conceptualisations: Molecules, Molecule-Ensembles and Molecule-Parts. The first describes 
covalently bonded molecules and includes the main biological macromolecules. Molecule-
Ensembles captures non-covalently bonded collections of molecules, such as enzyme 
complexes. The Molecule-Part ontology holds knowledge about regions of molecules that do 
not exist independently, but need to be referred to by biologists. These would include amino 
acid side chains and the 3' and 5' ends of nucleic acid molecules. The data ontology captures 
knowledge about experimental detail as well as data on the structure of physical-things. The 
methods ontology contains information about techniques for analysing data. It holds 
knowledge of which techniques can be applied to which data, as well as the input and outputs 
of each method. 
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3.3.3 EcoCyc  

Another example of a frame-based domain ontology is EcoCyc (Karp et al., 1999a). The 
ontology covers E. coli. genes, metabolism, regulation and signal transduction and is used to 
specify a database schema. Scientists can visualise the layout of genes within the E. coli. 
chromosome, or of an individual biochemical reaction, or of a complete biochemical pathway 
with compound structures displayed. EcoCyc's use of an ontology to define a database 
schema has the advantages of its expressivity and ability to evolve quickly to account for the 
rapid schema changes needed for biological information. The user is not aware of this use of 
an ontology, except that the constraints expressed in the knowledge captured mean that the 
complexity of the data held is captured precisely. In EcoCyc, for example, the concept of 
Gene is represented by a class with various attributes, that link to other concepts: Polypeptide 
product, Gene name, Synonyms and Identifiers used in other databases etc. The representation 
system can be used to impose constraints on those concepts and instances which may appear 
in the places described within the system.  

3.3.4 TAMBIS Ontology (TaO) 

TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) (Baker et 
al., 1998) uses an ontology represented by a DL to enable biologists to ask questions over 
multiple external databases using a common query interface. The TAMBIS ontology 
(TaO) (Baker et al., 1999) describes a wide range of bioinformatics tasks and resources, and 
has a central role within the TAMBIS system. A user can form a complex, multi-source 
query, using the relationships defined in TaO. For example, starting with the concept Protein, 
the TaO is consulted as to which relationships can be used to join Protein to other concepts. 
Amongst many, the following two are offered: isHomologous to Protein and 
hasAccessionNumber AccessionNumber. Initially, the original Protein is extended to give a 
new concept Protein isHomologous to Protein. Then the second `protein' is extended with 
hasAccessionNumber AccessionNumber. The resulting concept (Protein homologue of 
Protein with Accession Number) describes proteins which are homologous to protein with a 
particular accession number. This concept can be used as a source independent query 
containing no information on how to answer such a query. The rest of the TAMBIS system 
takes this conceptual query and processes it to an executable program against the external 
sources. The TaO is available in two forms. The small TaO describes Proteins and Enzymes, 
as well as their motifs, secondary and tertiary structure, functions and processes. Important 
relationships include is_component_of, has_name, has_function and is_homologous_to.  

3.3.5 Molecular Biology Ontology (MBO) 

The Ontology for Molecular Biology (MBO) (Schulze-Kramer, 1997) is a general upper-
level ontology, containing concepts and relationships that are required to describe biological 
objects, experimental procedures and computational aspects of molecular biology. In the 
conceptual part of the MBO, the primary relationship used is the is_a relationship. The root 
concept Being divides into object and event. Object, for example, is subdivided into physical- 
and abstract- object. This helps give a precise classification for lower level concepts - so, 
physics is an abstract object and DNA a physical-object. The actual biological content of the 
MBO is currently relatively small, ending at quite large grained concepts such as Protein, 
Gene, and Chromosome. The framework, however, exists for extending the MBO much 
further into the biological domain.  
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3.3.6 Open Biomedical Ontologies (OBO) 

The feasibility and desirability of one comprehensive ontology for molecular biology 
versus several smaller task oriented ontologies has been extensively debated in the 
community (Schulze-Kremer, 2002). On the one hand, a comprehensive domain ontology 
would certainly be very helpful if it could be achieved and maintained. On the other hand, it 
seemed much more efficient and effective to have several smaller task or subdomain 
ontologies which take less time and expertise to grow and maintain and therefore are in the 
position to be put to use much sooner.  

In principle, the approach of smaller subdomain ontologies is the more practical one. One 
of the major goals of the Open Biomedical Ontologies (OBO) consortium is to provide a set 
of compatible ontologies, which can be used in combination in order to integrate individual 
data resources into a coherent whole.  

OBO (http://obo.sourceforge.net) is an ontology library for well-structured, controlled 
vocabularies for shared use across different biological domains. To date, over 50 ontologies 
have been registered at the site. Some examples are shown in figure 3.3. Acceptance on the 
OBO site implies that the ontology has been accepted as authoritative by the OBO group and 
that the ontology meets a number of specific criteria defined by the community. In particular, 
only a single ontology should be specified for each domain or task, and new ontologies 
should be orthogonal to the other ontologies already hosted within OBO. 

 
 
Figure 3.3 The top level of the OBO hierarchy 
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The ontologies grouped together at the OBO web site cover a wide range of biomedical 
fields, such as specific organism anatomies, taxonomic classifications or transcriptomic and 
proteomic experimental protocols and data. Various ontologies have also been developed for 
particular aspects of single sequences, such as gene structure (SO) (Eilbeck et al., 2005), 
protein function (GO) or protein–protein interactions (MI) (Hermjakob et al., 2004). Some 
work has also begun to develop standard data formats to represent RNA sequences and 
structures and the RNA Ontology Consortium (ROC) (Leontis et al., 2006) has been 
established to build a formal ontology.  

The OBO ontologies can be accessed from a single location with a unified output format, 
using the Ontology Lookup Service (OLS) at http://www.ebi.ac.uk/ontology-lookup/. There 
are currently 43 ontologies available for querying and the new OBO ontologies will be 
automatically included. 

3.4 Tools for ontology development  

Tools are essential to aid the ontologist in constructing an ontology, and merging multiple 
ontologies. Such conceptual models are often complex, multi-dimensional graphs that are 
difficult to manage. For example, the DL GRAIL has associated tools to shield the ontologist 
from the logical formalism. An intermediate ‘template’ form is used to represent the 
conceptualisation, from which the encoding can be generated (Rogers et al., 1997). Ontology 
development tools also usually contain mechanisms for visualising and checking the resulting 
model. The MBO has an editor for creating and visualising the object based encoding used in 
that ontology (Schulze-Kremer, 1997). The frame based system used by EcoCyc also has the 
GKB editor (http://www.ai.sri.com/~gkb) for handling the conceptualisation and encoding in 
Frame Based Representations (Karp et al., 1999). Such tools are essential for maintaining 
complex ontologies that are necessary for capturing knowledge within the biology domain. 
Many other tools for displaying and editing biological ontologies and some of the most 
widely used are listed here.  

• OntoLingua from the Stanford Knowledge Systems Laboratory 
(http://www.ksl.stanford.edu/software/ontolingua/) provides a distributed 
collaborative environment to browse, create, edit, modify, and use ontologies. Later, 
the Chimaera tool was added (http://www.ksl.stanford.edu/software/chimaera/) in 
order to facilitate the merging of knowledge bases produced by different users for 
different purposes with different assumptions and different vocabularies. Later the 
goals of supporting testing and diagnosing ontologies arose as well. OntoLingua’s and 
Chimaera’s knowledge model is frame based. 

• Protégé 2000 is an ontology editing software from Stanford Medical Informatics 
(http://smi.stanford.edu/projects/protege). Protégé is a free, open source ontology 
editor and knowledge-base framework. The Protégé platform supports two main ways 
of modelling ontologies via the Protégé-Frames and Protégé-OWL editors. Protégé 
ontologies can be exported into a variety of formats including RDF(S), OWL, and 
XML Schema. 

• OilEd (http://www.ontoknowledge.org/oil/tool.shtml) is a graphical tool for creating 
and editing OIL (Ontology Inference Layer) ontologies developed at the University of 
Manchester. The knowledge model for OilEd is based on description logics. 
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• DAG-Edit (http://www.geneontology.org/doc/dagedituserguide/dagedit.html) was 
originally developed to maintain the Gene Ontology. The tool offers a graphical user 
interface to browse, search and edit GO files or other ontologies based on the directed 
acyclic graph (DAG) data structure. Ontologies can be output in the OBO file format. 

 
These four editors were compared recently (Lambrix et al., 2003) in terms of availability, 

functionality, visualisation and input and output formats, among other criteria. All the 
systems tested had particular strengths and weaknesses and no tool was superior in all 
aspects. The main strengths of Protégé 2000 compared to the other systems are its user 
interface, the extendibility and functionality of the plug-ins, as well as the different formats 
that can be imported and exported. Chimaera’s main strengths concern its functionality, 
including ontology merging and diagnosis, the different formats that can be imported and 
exported, its help functionality, the shortcuts for expert users and the fact that multiple users 
can work with the same ontology. Howere, its user interface was its main weakness. The 
main advantage of OilEd is the fact that its model is description logic-based and that the 
underlying system can perform reasoning tasks such as classification and consistency 
checking. DAG-Edit was specifically built for GO ontologies and has an interface that is easy 
to use and learn. 

3.5 Perspectives 

The potential value of properly built ontologies for representing knowledge in the 
biological domain is immense. Ontologies will play a key role in the reconstruction of 
biological processes because they provide semantics of biological knowledge in a human- as 
well as in a computer-readable form. There has been some debate as to the most suitable 
representation for bio-ontologies. Tree-based ontologies are easier to build, and have been 
used in practical applications such as automatic database annotation. However, more rigorous 
formalisms provide a logical framework that, in the future, will allow automated reasoning 
and hypothesis generation.  

Bio-ontologies for the obvious knowledge domains are now in place and are under active 
curation. A difficult problem is the interoperability between the different ontologies, because 
ontology development in biology is a relatively new field, and currently bio-ontologies 
contain many redundant or overlapping concepts. Therefore, the exchangeability and 
interoperability among ontologies and databases has to be addressed.  

The majority of bio-ontologies were built to provide a common vocabulary and for a 
standard annotation; however, ontologies have far greater potential and could open up whole 
new possibilities for biological research. The formation of a set of integrated ontologies at 
different levels of representations will significantly increase interoperability between domain 
data and knowledge, and enable new intelligent bioinformatics applications. Unfortunately, 
most of the current search and analysis tools for mining these data do not exploit the full 
power of the ontologies and their associations with data objects. 
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“As a general rule the most  
successful man in life is the man 
 who has the best information.”  

Benjamin Disraeli (1804 - 1881) 

4 Information management systems 
 

The new integrative, systems-level studies need to exploit the multitude of heterogeneous 
and autonomous data resources that include genomic sequences, 3D structures, cellular, 
phenotype and other types of biologically relevant information. As more and more biological 
data are generated, the problem of efficient retrieval and analysis of this data will become an 
important scientific bottleneck. The principal difficulties are due to:  

 
• Volume: impact of terabyte scale experimentation  
• Inaccessibility: navigation of diverse, distributed datasets  
• Integrity: data that are of poor quality  
• Intractability: good data, not useful for computational purposes (e.g. literature)  

 
A major challenge for bioinformaticians is therefore the efficient processing of this mass 

of experimental and predicted data, in order to produce useful information and to render the 
information accessible to the biologist (Roos, 2001).  

 
In the context of Knowledge Management (KM), the distinction between data, 

information and knowledge has been described explicitly (see figure 4.1) (Zeleny, 1987). In 
KM, data is defined as a list of simple facts or observations without any context or meaning. 
The context and the associations or relations between data are needed before the data can be 
transformed into useful information. Thus, information can be considered as being organised 
data that has been given meaning by way of the relationships between pieces of data. For 
example, single entries in a database are data, whereas reports created from intelligent 
database queries result in information. 
 

 
 

Figure 4.1 Transition of data into wisdom
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While combining data and meaning to create information is extremely useful, the detection 
of patterns, trends and exceptions extends the value of the information. The next level of 
elevated understanding is knowledge. Knowledge is different from data or information in that 
it can be created by accumulating enough information or using logical inferences. Wisdom is 
the utilisation of accumulated knowledge to predict how the patterns or trends will change 
under certain conditions and to construct logical decision rules.  

 
Traditionally, the information produced by bioinformatics studies has been interpreted by 

a human expert who had the experience necessary to understand the patterns revealed by the 
computational analyses. In the post-genomic era, the volume of data available requires 
automatic processing by ‘intelligent’ computer systems that are capable of understanding the 
relations and patterns hidden in the data. To achieve this, the basic knowledge in the domain 
of interest needs to be represented in a format that can be understood by the computer. As we 
saw in chapter 3, ontologies provide an ideal means of representing the fundamental concepts 
in a domain. Ontologies can thus provide the context and the explicit knowledge required for 
automatic information management and knowledge extraction systems. 

 
The goal of ontology-based information management systems (IMS) is thus to combine 

information from different data resources into a unified system, such that the cumulative 
information provides greater biological insight than is possible if the individual information 
sources are considered separately. IMS are designed to help biologists systematically gather 
and exploit all the data crucial for their research, by automating many aspects, from data 
acquisition to knowledge discovery (see figure 4.2). The development of effective IMS 
requires a multidisciplinary domain drawing on research from such fields as databases and 
knowledge acquisition for expert systems, high performance computing, machine learning, 
reasoning with uncertainties and data visualization.  
 

 
 
Figure 4.2 The knowledge discovery process 
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Four basic steps or processes in the knowledge discovery process can be identified (figure 

4.2) : (i) database theories and tools provide the necessary infrastructure to store, access and 
manipulate data, discussed in section 4.1 (ii) data validation to filter or correct the errors and 
uncertainties from the large datasets, discussed in section 4.2 (iii) data mining to discover 
mainly hidden patterns, associations, structure and/or anomalies (section 4.3) and (iv) 
information analysis, interpretation and presentation (section 4.4).  

4.1 Data storage and retrieval 
 

In a dynamic heterogeneous environment such as bioinformatics, many different 
databases and software systems are used. Existing biological databases are typically highly 
focused, containing raw data of a specific type. However, entries stored in different databases 
can be strongly related and mutually dependent on each other. For example, the function of a 
gene depends on its biological context: its interactions with other genes, the pathways they 
are involved in, their expression under certain conditions, etc. Similarly, the function of an 
interaction depends on the function of the interacting partners. To retrieve the broader view 
of an entity, a biologist usually has to search multiple databases. This poses a number of 
problems. Most public databases have their own format and querying system. Links between 
databases are not always available and are not always coordinated between the different 
resources, giving rise to problems of consistency, redundancy, connectivity and 
synchronisation. Even on a small scale, for example for a single protein or complex, data 
integration becomes a daunting task.  

 
To overcome these problems, new data integration systems are needed, that read data 

from multiple sources, perform simple transformations of data into a unified format and 
provide access to the data (Wong, 2002). Data sources might be simple text files, XML 
formatted documents or might be stored in relational database management systems (DBMS), 
such as Oracle or MySQL. To counter the increasing dispersion and heterogeneity of data, 
different approaches to integrating these data sources are appearing throughout the 
bioinformatics community. Two main approaches have been taken: the data warehousing 
approach and the distributed database approach (Davidson et al., 1995).  

4.1.1 Data warehousing: local storage and retrieval 
 

The traditional approach to this problem has been data warehousing, where all the 
relevant databases are stored locally in a unified format and mined through a uniform 
interface. SRS (Etzold and Argos, 1993) and Entrez (Schuler et al., 1996) are probably the 
most widely used database query and navigation systems for the life science community. 
They provide graphical user interfaces to access a broad range of scientific databases, 
including genome and protein sequences, metabolic pathways and literature abstracts. Entities 
are stored in a table and specific fields are extracted for indexing and cross-referencing. 
EnsMart (Kasprzyk et al., 2004) is another warehouse-based system that is distinguished by 
its user-friendly query front end that allows users to compose complex queries interactively. 
EnsMart runs on Oracle and MySQL. Data types currently supported by EnsMart are genes, 
SNP data, and controlled vocabularies. More recently, the Atlas system (Shah et al., 2005) 
provides a data warehouse based on relational data models, that locally stores and integrates 
biological sequences, molecular interactions, homology information and functional 
annotations of genes. First, Atlas stores data of similar types using common data models and 
second, integration is achieved through a combination of APIs, ontology and tools to perform 
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common sequence and feature retrieval tasks. Because the databases are installed locally, data 
retrieval is direct, efficient and relatively simple. Warehousing guarantees that the data 
needed are always available. Also users have control over the databases installed, which 
versions are used and when they are updated. The disadvantage of this approach is that the 
overhead costs can be very heavy in terms of the hardware required for database installation 
and maintenance.  

4.1.2 Distributed databases and remote access 
 

Distributed systems implement software to access heterogeneous databases that are 
dispersed over the internet and provide a query facility to access the data. Many examples 
have been developed. OPM (Object Protocol Model) (Topaloglou et al., 1999) uses an entity 
model and generic servers that retrofit the data and unify data sources, and provides a query 
language OPM-MQL to query the distributed data. The integrated data can be output in XML 
format. IBM’s DiscoveryLink (Hass et al., 2001) uses a relational model and the SQL 
language for modelling and accessing distributed data. TAMBIS (Baker et al., 1998) is a 
semantic-based system utilising ontologies and a services model to support user queries. 
BioMOBY (Wilkinson et al., 2003) like TAMBIS, is also ontology-based and service-model 
driven. SEMEDA (Kohler and Schulze-Kremer, 2002) is an ontology based semantic 
metadatabase and is implemented as a 3 tiered architecture consisting of a relational database 
(backend) and jsp 1.1 (java server pages) as the middle tier, which dynamically generates the 
html frontend. Using this architecture has several advantages: data (ontologies and database 
metainformation) can be consistently stored independently from the application and can also 
be retrieved or imported by using the various built in interfaces and tools of the DBMS. 
These implementations do not house the data locally, but instead query the original data 
resource for available services before sending queries. These systems are powerful for 
interrogating disparate data sources. However, a disadvantage is that large queries may take a 
long time to return or may not be returned at all. Thus, remote access requires complex 
systems to manage communication between the server and the client, particularly when errors 
occur because remote systems are not available.  

4.2 Data validation 
 

Many of the large scale experimentally- or computationally-derived datasets used by 
systems biologists are error prone, including both false positives and false negatives. Some of 
the experimental errors are due to technical irreproducibility and some to biological features, 
such as the heterogeneity of gene expression levels in different cell populations, even under 
well-controlled conditions. Computational analyses based on faulty assumptions, improper 
statistical validation, or incomplete datasets, can also be misleading. The pre-existing 
biological literature is not perfect. For example, the level of error in genome functional 
annotations as been estimated to be about 5-8% for more general enzymatic functions to more 
than 30% for specific functions, such as substrate specificity (Devos and Valencia, 2001). At 
any given time, biological conclusions are drawn within a context from which key features 
might well be missing because they have not yet been discovered or conceptualized. A major 
technical challenge for integrative systems is developing procedures for handling error so that 
legitimate interpretations can be made from the available data. The reasons for wanting to 
minimize errors are straightforward. Errors can be propagated from one dataset to another 
and in hierarchical systems, cascading can occur where errors are allowed to propagate 
unchecked from layer to layer repeatedly, until a flood of incorrect information has been 
generated. Error detection and correction must therefore be integral parts of building and 
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maintaining databases. 

4.2.1 Approaches to Noise Handling  
 

Imperfections in a data set can be dealt with in three broad ways. We may leave the noise 
in, filter it out, or correct it (Teng, 2003). In the first approach, the data set is taken as is, with 
the noisy instances left in place. Algorithms that make use of the data are designed to be 
robust; that is, they can tolerate a certain amount of noise in the data. Robustness is typically 
accomplished by avoiding overfitting, so that the resulting classifier is not overly specialized 
to account for the noise. In the second approach, the data is filtered before being used. 
Instances that are suspected of being noisy according to certain evaluation criteria are 
discarded. A classifier is then built using only the retained instances in the smaller but cleaner 
data set. In the third approach, the noisy instances are identified, but instead of discarding 
these instances, they are repaired by replacing the corrupted values with more appropriate 
ones. These corrected instances are then reintroduced into the data set.  
 

There are pros and cons to adopting each of these three approaches to noise handling. 
Robust algorithms do not require pre-processing of the data, but each algorithm has to 
institute its own noise handling routine, duplicating the effort required even if the same data 
set is used in each case. In addition, the noise in the data may interfere with the mechanism, 
affecting the performance of the resulting classifier. By filtering out the noisy instances from 
the data, there is a tradeoff between the amount of information available for building the 
classifier and the amount of noise retained in the data set. Filtering is not information-
efficient; the more noisy instances we discard, the less data remains. Noise correction, when 
carried out correctly, preserves the maximal information available in the data set. A classifier 
built from this corrected data should have a higher predictive power and a more compact 
representation. Thus, the most efficient and practical solution will probably be to combine the 
advantages of the three different approaches. 
 

4.3 Data mining  
 

Sensitive data mining systems are now required to manage and extract the knowledge that 
is potentially buried in the hundreds of terabytes of data distributed over the various Internet-
based resources. The goal of data mining, also known as Knowledge Discovery in Databases 
(KDD) is to detect patterns or relationships in the data that might lead to hidden information 
thereby enabling intelligent, knowledge-driven decision-making. New data mining techniques 
are being developed, in fields such as statistics, artificial intelligence and rule-based 
approaches, as well as in clustering and classification methods. For example, decision trees 
are being used to identify possible targets in high-throughput structural proteomics (Bertone 
et al., 2001). Association rule discovery is used for finding and describing relationships 
between different items in a large data set (Oyama et al., 2002; Creighton and Hanash, 2003). 
Correlation analysis and clustering is used to determine local structural information such as 
the catalytic triad, metal binding sites and the N-linked glycosylation site (Oldfield, 2002). 
Clustering of gene expression profiles is another area of research attracting much effort (e.g. 
Shannon et al., 2003). These methods of data mining are often used in combination with each 
other, either in parallel or as part of a sequential operation.  

 
Data resources written in human language such as the scientific literature pose particular 

problems for mining techniques. Natural language is ambiguous and the syntax is typically 
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author-specific. Data may be represented in the main body of the text, in a footnote, in a table 
or embedded in a graphical illustration. The simplest approach to text-mining is to identify 
entities that co-occur within abstracts or sentences. As two entities might be mentioned 
together without being in any way related, most systems use a frequency-based scoring 
scheme to rank the extracted relationships. However, complex sentences that contain multiple 
relationships can give rise to erroneous relationships. This approach is also unable to extract 
directional relationships and has difficulty distinguishing between direct and indirect 
relationships. These issues are addressed by natural language processing (NLP) approaches, 
that combine the analysis of syntax and semantics. The text is first 'tokenized' to identify 
sentence and word boundaries, and a part-of-speech tag (for example, a noun or verb) is 
assigned to each word. A syntax tree is then derived for each sentence to delineate noun 
phrases and represent their interrelationships. Simple dictionaries are subsequently used to 
semantically tag the relevant biological entities (for example, genes and proteins) and other 
keywords. Finally, a rule set is used to extract relationships on the basis of the syntax tree and 
the semantic labels. Co-occurrence and NLP methods are reviewed in detail in (Andrade and 
Bork, 2000).  

 
Text mining can be used to uncover overlooked relationships and to make novel 

hypotheses by combining information from multiple papers. However, the full discovery 
potential of such tools will only be realized with the advent of new integrated approaches that 
combine the literature with other large data sets such as genome sequences, protein–protein 
interaction screens or microarray expression studies (Jensen et al., 2006). 
 

4.4 Data analysis and presentation 
 

The goal of IMS is not simply to store existing data for efficient querying. They go 
beyond data integration, to include unique derived data that is computed within the system. 
For example, similarity data between objects, modules that expand existing data types based 
on inference, refinement of existing objects, generation of new data types by processing 
existing data types and other derived data. Close integration of these software protocols into a 
fully automatic ensemble is necessary to enable smooth operation, minimizing the necessity 
for the operator's special knowledge of the underlying methods. Some efforts are now being 
made to develop software protocols and models to facilitate the automatic integration of 
different biological data and applications. The complexity of the systems encourages using 
object-oriented models and implementation technologies. The process is made even more 
complex by the need to exchange data amongst the distributed resources on a real-time basis 
in order to achieve optimal synchronization. Protocols, such as Corba, DAS 
(http://www.biodas.org) or the Systems Biology Workbench (Hucka et al., 2002), are 
therefore required that manage communication among distributed applications. The volumes 
of data now being generated and the amount of computing needed to process them have also 
lead to the application of new computational techniques, such as massively parallel 
supercomputers, or GRID technologies (Foster, 2003) which enable large-scale sharing of 
data and computational resources across geographically distributed groups. For instance, the 
European HealthGRID project (http://www.healthgrid.org) covers a range of biomedical 
information from the molecular level (genetic and proteomic information) over cells and 
tissues, to the individual and finally the population level (social healthcare). 

 
An example of a biological IMS is the BioSPICE (Kumar and Feidler, 2003) program, 

whose goal is to create a framework that provides biologists access to the most current 
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computational tools. Contributions from approximately 20 different laboratories have been 
integrated under the BioSPICE Dashboard and a methodology for continued software 
integration has been implemented. A graphical environment is available that combines Open 
Agent Architecture and NetBeans software technologies in a coherent, biologist-friendly user 
interface. The current Dashboard permits data sources, models, simulation engines, and 
output displays provided by different investigators and running on different machines to work 
together across a distributed, heterogeneous network.  

 
Another example is the Pegasys software system (Shah et al., 2004) that facilitates the 

execution and integration of biological sequence analyses, such as ab initio gene prediction or 
pairwise and multiple alignment. The software allows users to dynamically create analysis 
workflows of sequence analyses by manipulating a graphical interface. Results are stored in a 
relational database management system and can be exported in General Feature Format 
(GFF) or XML format for import to other tools. 
 

Other systems have been developed for more specific applications, such as the Genome 
Information Management System (Cornell et al., 2003). GIMS is an object database used to 
store Saccharomyces cerevisiae data that integrates genomic data with data on the 
transcriptome, protein-protein interactions, metabolic pathways and annotations, such as gene 
ontology terms and identifiers. The resulting system supports the running of analyses over 
this integrated data resource, and provides comprehensive facilities for handling and inter-
relating the results of these analyses. 

4.4.1 Visualisation 
 

An important aspect of these integrated systems will be the accessibility of the results for 
the biologist. The size and complexity of the data are prohibitive to textual views, whereas a 
graphical representation allows an intuitive view of complex data. It allows a view of the 
overall organisation and structural properties and to highlight patterns within the data. 
Support for interactive data exploration or navigation is also needed for browsing and 
searching and for manipulation of data structures in order to facilitate analysis from multiple 
perspectives (Robinson and Flores, 1996).  

 
In bioinformatics, visualisation tools are widely used for displaying specific objects such 

as phylogenetic trees, protein structures, multiple sequence alignments or protein-protein 
interaction networks. Recently, more flexible systems have been developed that allow the 
visualisation of diverse objects in the same interface. For example, Space Explorer (Gilbert et 
al., 2000) is a system that allows different biological data, such as protein clusters and 
phylogenetic trees, protein 3D toplogies or gene expression data to be visualized and 
explored interactively. With this system, objects are directly mapped onto a 1D, 2D or 3D 
Euclidean space and coordinates are calculated for an optimal rendering of distances between 
objects. Space Explorer combines 3D visualisation with hierarchical clustering to provide an 
interactive web-enabled virtual reality environment.  

 

4.5 Conclusions 
 

IMS integrate data from diverse sources, including both experimentally validated and 
predicted data. To provide reliable information to the biologist, it will be crucial to be able to 
trace the source of the data and to determine the reliability of the information at all stages of 
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the knowledge discovery process. Accessibility and ease-of-use for the biologist also need to 
be taken into account during the IMS design process. Such systems will soon become 
essential tools for the systematic exploitation of all the data related to a particular research 
project and will have widespread implications for automatic knowledge discovery and 
research hypothesis testing. 
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"Nothing in biology makes sense 
 except in the light of evolution." 

- Theodosius Dobzhansky (1900-1975) 

5 The central role of sequence alignments 

5.1 Introduction 
 
During evolution, random mutagenesis events take place, which change the gene 

sequences that encode RNA and proteins. There are several different types of mutation that 
can occur. Point mutations substitute a single nucleic or amino acid residue for another one. 
Residue insertions and deletions also occur, involving a single residue up to several hundred 
residues. Other evolutionary mechanisms at work in nature include genetic recombination, 
where DNA strands are broken and rejoined to form new combinations of genes. Some of 
these evolutionary changes will make a protein non-functional, e.g. most mutations of active 
site residues in an enzyme, or mutations that prevent the protein from folding correctly. If this 
happens to a protein that carries out an essential process, the cell (or organism) containing the 
mutation will die. As a result, residues that are essential for a protein's function, or that are 
needed for the protein to fold correctly, are conserved over time. Occasionally, mutations 
occur that give rise to new functions. This is one of the ways that new traits and eventually 
species may come about during evolution. By comparing related sequences and looking for 
those residues that remain the same in all of the members in the family, we can learn a lot 
about which residues are essential for function (Lesk 1994). Thus, multiple sequence 
comparison or alignment has become a fundamental tool in many different domains in 
modern molecular biology, from evolutionary studies to prediction of 2D/3D structure, 
molecular function and inter-molecular interactions etc. By placing the sequence in the 
framework of the overall family, multiple alignments not only identify important structural or 
functional motifs that have been conserved through evolution, but can also highlight 
particular non-conserved features resulting from specific events or perturbations (Woese and 
Pace, 1993; Lecompte et al., 2001). 

5.1.1 Multiple alignment definitions 
 
In the most general terms, an alignment represents a set of sequences using a single-letter 

code for each amino acid or nucleotide (figure 5.1). Each horizontal row in the alignment 
represents a single sequence and structurally, functionally or evolutionarily equivalent 
residues are aligned vertically. When the sequences are of different lengths, insertion-deletion 
events are postulated to explain the variation and gap characters are introduced into the 
alignment. 
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Figure 5.1 Example alignment of a set of 7 hemoglobin domain sequences 
The alignment shows the 7 helical structure (PDB:1a00) and the conserved residues forming the heme pocket of 
the beta subunit (green triangles). The symbols below the alignment indicate conserved positions: * = fully 
conserved identical residue, : = fully conserved ‘similar’ residue, . = partially conserved ‘similar’ residue.   
 

Alignments are produced by a wide variety of programs, sometimes as a side-product of 
the main function of the program. However, at least four different varieties of multiple 
alignment exist, as illustrated in figure 5.2 (from Lecompte et al., 2001).  

 

 
 
Figure 5.2 Four different types of multiple sequence alignment 
 

The block alignment (figure 5.2A) represents only the conserved motifs and does not 
contain any gaps. It is used by the Probe program (Neuwald et al., 1997) and in the Blocks 
database (Henikoff et al., 2000). The segment alignment (figure 5.2B) is used by a number of 
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database search programs such as Blast (Altschul et al., 1990) and PSI-Blast (Altschul et al., 
1997), and in pattern / domain databases such as Pfam (Bateman et al., 2004) or ProDom 
(Bru et al., 2005). It contains the most similar regions of the sequences and may contain short 
gaps representing indels. The local and global alignments (figure 5.2C,D) both contain the 
complete protein sequences and are typically produced by multiple alignment programs such 
as Dialign (Morgenstein et al., 1996) or ClustalW (Thompson et al., 1994). In local 
alignments, the conserved motifs are identified and the rest of the sequences are included for 
information only. Thus, only a subset of the residues is actually aligned. In global alignments, 
all the residues in both sequences participate in the alignment. 

5.1.2 Multiple Alignments of Complete Sequences (MACS) 
 

In order to allow the maximum integration of biological information in the context of the 
complete protein family, a multiple alignment of the full length of the sequences is essential. 
Global Multiple Alignments of Complete Sequences (MACS) provide an ideal basis for more 
in-depth analyses of protein family relationships. By placing the sequence in the context of 
the overall family, the MACS permits not only a horizontal analysis of the sequence over its 
entire length, but also a vertical view of the evolution of the protein. The MACS thus 
represents a powerful integrative tool that addresses a variety of biological problems, ranging 
from key functional residue detection to the evolution of a protein family. The MACS now 
plays a fundamental role in most areas of modern molecular biology, from shaping our basic 
conceptions of life and its evolutionary processes, to providing the foundation for the new 
biotechnology industry.  

 

5.2 Multiple alignment applications 

5.2.1 Phylogenetic studies 
 

One of the earliest applications of multiple sequence alignments was in phylogenetic 
studies. Phylogenetics is the science of estimating the evolutionary past, in the case of 
molecular phylogeny, based on the comparison of DNA or protein sequences. For example, 
the accepted universal tree of life, in which the living world is divided into three domains 
(bacteria, archaea, and eucarya), was constructed from comparative analyses of ribosomal 
RNA sequences (figure 5.3).  

 
Figure 5.3 Alternative hypotheses for the rooting of the tree of life 
In b), i indicates informational proteins and o indicates operational proteins. 
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According to this rRNA-based tree, billions of years ago a universal common prokaryotic-
like ancestor gave rise to the two microbial branches, the archaea and bacteria (collectively 
called prokarya) and later, the archaea gave rise to the eukarya (Iwabe et al., 1989) (figure 
5.3a). More recently, analyses based on whole-genome comparisons have suggested that the 
eukaryotic lineage arose from metabolic symbiosis between eubacteria and methanogenic 
archaea (Lopez-Garcia and Moreira, 1999) (figure 5.3b). In this case, early eukaryotes would 
be a chimera of eubacterial and archaeal genes, in which the operational genes were primarily 
from the eubacteria, and the informational genes from the archaea. But some important 
eukaryotic genes have no obvious predecessors in either the archaeal or the bacterial lines, 
and an alternative has been suggested where prokaryotes would have evolved by 
simplification of an ancestral eukaryotic-like genome (Forterre and Philippe, 1999; Poole et 
al., 1999) (figure 5.3c). In a comprehensive study of ribosomal genes in complete genomes 
from 66 different species, the archaeal ribosome appeared to be a small-scale model of the 
eukaryotic one in terms of protein composition (Lecompte et al., 2002), which would support 
the eukaryotic-rooting tree.  

 
The methods for calculating phylogenetic trees fall into two general categories (Page and 

Holmes, 1998). These are distance-matrix methods, also known as clustering or algorithmic 
methods (e.g. UPGMA or neighbour-joining), and discrete data methods, also known as tree 
searching methods (e.g. parsimony, maximum likelihood, Bayesian methods). All of these 
methods use distance measures based on the multiple sequence alignment and the strategy 
used to construct the alignment can have a large influence on the resulting phylogeny 
(Morrison and Ellis, 1997).  

5.2.2 Comparative genomics 
 

Of course, in the current era of complete genome sequences, it is now possible to perform 
comparative multiple sequence analysis at the genome level (Hardison, 2003). As genomes 
evolve, large-scale evolutionary processes, such as recombination, deletion or horizontal 
transfer, cause frequent genome rearrangements (Shapiro, 2005). Comparative analyses of 
complete genomes present a comprehensive view of the level of conservation of gene order, 
or synteny, between different genomes, and thus provide a measure of organism relatedness 
at the genome scale (Darling et al., 2004; Elnitski et al., 2005; Ye and Huang, 2005). 
Examples of such analyses include comparisons among enteric bacteria (McClelland et al., 
2000) and between mouse and human (International Mouse Genome Sequencing Consortium, 
2002). Comparative genomics is thus an attempt to take advantage of the information 
provided by the signatures of selection to understand the function and evolutionary processes 
that act on genomes. 

 
But comparative genomics can also take a medium-resolution view. By identifying all the 

known genes from one genome and finding their matching genes, if they exist, in another 
genome, we can determine which genes have been conserved between species and which are 
unique. The DNA sequences encoding the proteins and RNA responsible for the functions 
shared between distantly related organisms, as well as the DNA sequences for controlling the 
expression of such genes, should be preserved in their genome sequences. Conversely, 
sequences that encode proteins or RNAs responsible for differences between species will 
themselves be divergent. For example, a comparison of the genomes of yeast, worms and 
flies revealed that these eukaryotes encode many of the same proteins, but different gene 
families are expanded in each genome (Rubin et al., 2000). A similar observation was made 
in a comparison of sixteen complete archaeal genomes, where comparative genomics 
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revealed a core of 313 genes that are represented in all sequenced archaeal genomes, plus a 
variable ‘shell’ that is prone to lineage-specific gene loss and horizontal gene exchange 
(Makarova and Koonin, 2003). 

 
A number of software tools have been developed for use in comparative genomics, in 

order to explore the similarities and differences between genomes at different levels. Because 
of the volume and nature of the data involved, almost all the visualization tools in this field 
use a web interface to access large databases of pre-computed sequence comparisons and 
annotations, e.g. Vista (Frazer et al., 2004), Ensembl (Curwen et al., 2004), UCSC (Hsu et 
al., 2005). For example, figure 5.4 shows an 8 Mb region of the human chromosome 12, 
together with homologous regions of other vertebrate genomes, displayed using the UCSC 
genome browser. This particular region was identified by genome-wide SNP-based mapping 
in families with mutations involved in Bardet-Biedl Syndrome (BBS), a genetically 
heterogeneous ciliopathy (Stoetzel et al., 2006).   

 

Figure 5.4 UCSC genome browser display 
The display shows a 12Mb region of homozygosity that segregated with the disease phenotype in different 
sibships in families with Bardet-Biedl Syndrome (BBS) mutations. The region contains 23 known genes, 
including the BBS10 gene, a major locus for BBS. Syntenic regions from chimp, dog, mouse and other 
organisms are shown at the bottom of the display. 

5.2.3 Gene prediction and validation 
 

One important aspect in biotechnology is gene discovery and target validation for drug 
discovery. At the time of writing, over 1000 genomes (from bacteria, archaea and eukaryota, 
as well as many viruses and organelles) are either complete or being determined, but 
biological interpretation, i.e. annotation, is not keeping pace with this avalanche of raw 
sequence data. There is still a real need for accurate and fast tools to analyze these sequences 
and, especially, to find genes and determine their functions. Unfortunately, finding genes in a 
genomic sequence is far from being a trivial problem. It has been estimated that 44% of the 
protein sequences predicted from eukaryotic genomes and 31% of the HTC (High-throughput 
cDNA) sequences contain suspicious regions (Bianchetti et al., 2005). 

 
The most widely used approach consists of employing heterogeneous information from 

different methods, including the detection of a bias in codon usage between coding and non-
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coding regions and ab initio prediction of functional sites in the DNA sequence, such as 
splice sites, promoters, or start and stop codons. Most current methods of detection of a signal 
that may represent the presence of a functional site use position-weight matrices (PWM), 
consensus sequences or HMM's. The reliability and accuracy of these methods depends 
critically on the quality of the underlying multiple alignments (for a review, see Mathe et al., 
2002). For prokaryotic genomes, these combined methods are highly successful, identifying 
over 95% of the genes (e.g. Aggarwal and Ramaswamy, 2002), although the exact 
determination of the start site location remains more problematic because of the absence of 
relatively strong sequence patterns. The process of predicting genes in higher eukaryotic 
genomes is complicated by several factors, including complex gene organization, the 
presence of large numbers of introns and repetitive elements, and the sheer size of the 
genomic sequence (for a review, see Zhang 2002). It has been shown that comparison of the 
ab initio predicted exons with protein, EST or cDNA databases can improve the sensitivity 
and specificity of the overall prediction. For example, in the re-annotation of the Mycoplasma 
pneumoniae genome (Dandekar et al., 2000), sequence alignments were used in the 
prediction of N/C-terminal extensions to the original protein reading frame. This approach 
has also been implemented in a web server, vALId, developed in our group for automatic 
protein quality control (Bianchetti et al., 2005).  

 
Figure 5.5 vALId display of a multiple alignment of plant alcohol dehydrogenases 
a) Multiple alignment display showing reliable sequence segments in green and potential errors in orange. Grey 
shading represents regions that have been validated by vALId. b) Validation of the predicted error in 
Q41767_MAIZE  by comparison of a chimeric sequence with the original genome sequence.  
 

Taking advantage of high quality MACS, vALId first warns about the presence of 
suspicious insertions/deletions (indels) and divergent segments, and second, proposes 
corrections based on transcripts and genome contigs. For example, figure 5.5 shows the 
vALId analysis of a multiple alignment of plant alcohol dehydrogenases, highlighting a very 
divergent region in the N-terminal region of the sequence Q41767_MAIZE. Divergent 
regions are validated by constructing a chimeric sequence, where the suspicious region in the 
predicted sequence is replaced by the corresponding segment from the closest neighbour in 
the MACS. A TBlastN search with the chimeric sequence (figure 5.5b) identified an exon 
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encoding residues that matched the conserved positions in the MACS. The vALId system is 
described in more detail in section 11.3.1. 

5.2.4 Protein function characterisation 
 

In most genome annotation projects, the standard strategy to determine the function of a 
novel protein is to search the sequence databases for homologues and to propagate the 
structural/functional annotation from the known to the unknown protein. Recent 
developments in database search methods have exploited multiple sequence alignments to 
detect more and more distant homologues e.g. (Altschul et al., 1997: Karplus et al., 1998; 
Yona and Levitt, 2002). However, most automatic genome projects only use information 
from the top best hits in the database search, as sequence hits with higher expect values are 
considered unreliable. This has lead to a certain number of errors in genome annotations. 
Two types of error have already been identified: those of under- and over-prediction. Under-
prediction implies that functional information is not transferred because the chain of 
propagation is broken, for example, because the top-scoring hits in the database search are all 
uncharacterised. Over-prediction is perhaps more serious because it introduces incorrect 
annotations into the sequence databases. Subsequent searches against these databases then 
cause the errors to propagate to future functional assignments. 
 

 
 

Figure 5.6 Multiple alignment of the BBS10 protein and homologs found in in-depth database searches 
a) Overview of complete protein, showing global organisation, including 3 insertions specific to BBS10 and the 
N-terminal deletion due to an error in the exon prediction of the gene. The red box indicates the region shown 
in b).Residues are coloured according to the colourrng scheme used in ClustalX (Thompson et al., 1997). b) N-
terminal region of the BBS10 alignment. The black boxes indicate the positions of ATP binding site motifs, as 
defined in the ProSite database. 
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Another approach is to look for similarities to known domains in pre-compiled databases, 

such as Interpro (Mulder et al., 2005). These databases contain representations such as 
profiles or HMM's of individual protein domains based on multiple alignments of known 
sequences. Genome annotation systems such as Magpie (Gaasterland and Sensen, 1996), 
Imagene (Medigue et al., 1999), GeneQuiz (Hoersch et al., 2000), Alfresco (Jareborg 2000) 
now use multiple alignments to reliably incorporate information from more distant 
homologues and provide a more detailed description of protein function. As an illustration, 
figure 5.6 shows a MACS of the BBS10 protein (see section 5.2.2). The BBS10 sequence 
shows some similarity (approx. 11% residue identity) to several chaperonin-like proteins 
which are found only in vertebrates, although the MACS revealed three BBS10-specific 
insertions. A 3D homology model based on the crystal structure of the chaperonin from 
Thermococcus (PDB:1q2vA) showed that the 3 insertions are spatially close, suggesting 
potential interactions and the existence of a new functional domain 

5.2.5 Protein 2D/3D structure prediction 
 

Multiple alignments play an important role in a number of aspects of the characterisation 
of the 3-dimensional structure of a protein. The most accurate in silico method for 
determining the structure of an unknown protein is homology structure modeling. Sequence 
similarity between proteins usually indicates a structural resemblance, and accurate sequence 
alignments provide a practical approach for structure modeling, when a 3D structural 
prototype is available. For models based on distant evolutionary relationships, it has been 
shown that multiple sequence alignments often improve the accuracy of the structural 
prediction (Moult et al., 2005). Multiple sequence alignments are also used to significantly 
increase the accuracy of ab initio prediction methods for both 2D (e.g. Lee et al., 2006) and 
3D (Al-Lazikani et al., 2001) structures, by taking into account the overall consistency of 
putative features. Similarly, multiple alignments are also used to improve the reliability of 
other predictions, such as transmembrane helices (for a review, see Chen et al., 2002). More 
detailed structural analyses also exploit the information in multiple alignments. For example, 
binding surfaces common to protein families were defined on the basis of sequence 
conservation patterns and knowledge of the shared fold (Lichtarge et al., 1996).  

 
More recently, multiple sequence alignments have been used to identify communication 

pathways through protein folds (Brelivet et al., 2004). Figure 5.7 shows part of a multiple 
alignment of nuclear receptor (NR) proteins used in this study. Nuclear receptors (NRs) are 
ligand-dependent transcription factors that control a large number of physiological events 
through the regulation of gene transcription. Two classes of NRs were identified on the basis 
of the distribution of differentially conserved residues in the multiple sequence alignment. 
Differentially conserved residues are defined as those residues that are conserved in one sub-
family and that are strictly absent in all the other sequences in the alignment. The two classes 
of NRs were found to correspond to experimentally verified homodimers and heterodimers. 
Furthermore, site directed mutagenesis revealed that the differentially conserved residues 
contribute class-specific communication pathways of salt bridges, confirming the functional 
importance of these residues for the dimerization process and/or transcriptional activity. 
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Figure 5.7 Multiple sequence alignment of NR ligand binding domains and class-specific features 
a) The differentially conserved residues are highlighted in blue and green for class I and II, respectively. 
Conserved residues are indicated as follows: 100%, white against black; >80%, white against grey; >60%, 
black against grey. NR LBD secondary structure elements are indicated. b) Secondary structure diagram 
showing NR class-specific features. Conserved but not strictly class-specific residues are in black. Arrows 
indicate the salt bridges in the 3D structures. c) Views of the class-specific residues including the salt bridges 
forming the class I (blue) and class II (green) communication pathway (from Brelivet et al., 2004). 

5.2.6 RNA structure and function 
 

While proteins have been the traditional candidates for detailed structural and functional 
analyses, RNA secondary and tertiary structure studies remain crucial to the understanding of 
complex biological systems. Structure and structural transitions are important in many areas, 
such as post-transcriptional regulation of gene expression, intermolecular interaction and 
dimerization, splice site recognition and ribosomal frame-shifting. The function of an RNA 
molecule depends mostly on its tertiary structure and this structure is generally more 
conserved than the primary sequence. The determination of RNA 3D structure is a limiting 
step in the study of RNA structure-function relationships because it is very difficult to 
crystallize and/or get nuclear magnetic resonance spectrum data for large RNA molecules. 
Currently, a reliable prediction of RNA secondary and tertiary structure from its primary 
sequence is mainly derived from multiple alignments, searching among members of a family 
for compensatory base changes that would maintain base-pairedness in equivalent regions. 
For example, the Sequence to Structure (S2S) tool (Jossinet and Westhof, 2005) proposes a 
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framework in which a user can display, manipulate and interconnect RNA multiple sequence 
alignments, secondary and tertiary structures (figure 5.6). 
 

 
 

Figure 5.8 S2S display of a multiple alignment of the RNA element conserved in the SARS virus genome 
Multiple sequence alignment, secondary and tertiary structure. Inside the multiple alignment, the bracket 
notation is such that the regular parentheses ‘(‘and’)’ denote the helical Watson–Crick pairs and the ‘<’ and 
‘>’ characters specify non-Watson–Crick base-pairs typical of RNA motifs. 
 

These methods have been demonstrated by successful predictions of RNA structures for 
tRNAs, 5S and 16S rRNAs, RNase P RNAs, small nuclear RNAs (snRNAs) and other RNAs, 
such as group I introns.  

 
The phylogenetic comparative methods are often supported by complementary, theoretical 

structure calculations. The most widely used methods are derived from dynamic 
programming algorithms, such as MFOLD (Zuker, 1989) which predicts on average about 
70% of known base-pairs. However, the search for the equilibrium structure by optimization 
of the global free energy is often insufficient. The biologically functional state of a given 
molecule may not be the optimal state and moreover, a structured RNA molecule is not a 
static object. A molecule may pass through a variety of active and inactive states due to the 
kinetics of folding, to the simultaneity of folding with transcription, or to interactions with 
extra-molecular factors. To address these problems, integrated systems have been developed 
that combine traditional thermodynamic calculations with experimental data, e.g. 
STRUCTURELAB (Shapiro and Kasprzak, 1996). Such systems permit the use of a broad 
array of approaches for the analysis of the structure of RNA and provide the capability of 
analysing the data set from a number of different perspectives. 

5.2.7 Interaction networks 
 

In the post-genomic view of cellular function, each biological entity is seen in the context 
of a complex network of interactions. New and powerful experimental techniques, such as the 
yeast two-hybrid system or tandem-affinity purification and mass spectrometry, are used to 
determine protein-protein interactions systematically. In parallel with these developments, a 
number of computational techniques have been designed for predicting protein interactions. 
The performance of the Rosetta method, which relies on the observation that some interacting 
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proteins have homologues in another organism fused into a single protein chain, has recently 
been improved using multiple sequence alignment information and global measures of 
hydrophobic core formation (Bonneau et al., 2001). A measure of the similarity between 
phylogenetic trees of protein families has also been used to predict pairs of interacting 
proteins (Pazos and Valencia, 2001). This method was adapted to consider the multi-domain 
nature of proteins by breaking the sequence into a set of segments of predetermined size and 
constructing a separate profile for each segment (Kim and Subramaniam, 2006). Another 
approach involves quantifying the degree of co-variation between residues from pairs of 
interacting proteins (correlated mutations), known as the "in silico two-hybrid" method. For 
certain proteins that are known to interact, correlated mutations have been demonstrated to be 
able to select the correct structural arrangement of two proteins based on the accumulation of 
signals in the proximity of interacting surfaces (Pazos et al., 1997). This relationship between 
correlated residues and interacting surfaces has been extended to the prediction of interacting 
protein pairs based on the differential accumulation of correlated mutations between the 
interacting partners (interprotein correlated mutations) and within the individual proteins 
(intraprotein correlated mutations) (Pazos and Valencia, 2002). 

5.2.8 Genetics 
 

A considerable effort is now underway to relate human phenotypes to variation at the 
DNA level. Most human genetic variation is represented by single nucleotide polymorphisms 
(SNPs) and many of them are believed to cause phenotypic differences between individuals 
(Ramensky et al., 2004). One of the main goals of SNP research is therefore to understand 
the genetics of human phenotype variation and especially the genetic basis of complex 
diseases, thus providing a basis for assessing susceptibility to diseases and designing 
individual therapy. Whereas a large number of SNPs may be functionally neutral, others may 
have deleterious effects on the regulation or the functional activity of specific gene products. 
Non-synonymous single-nucleotide polymorphisms (nsSNPs) that lead to an amino acid 
change in the protein product are of particular interest because they account for nearly half of 
the known genetic variations related to human inherited disease (Stenson et al., 2003). With 
more and more data available, it has become imperative to predict the phenotype of a nsSNP 
in silico. Computational tools are therefore being developed, which use structural information 
or evolutionary information from multiple sequence alignments to predict a nsSNP’s 
phenotypic effect and to identify disease-associated nsSNPs, e.g. (Bao and Cui, 2005). 

5.2.9 Drug discovery, design 
 

The structural and functional analyses described above provide an opportunity to identify 
the proteins associated with a particular disease, that are therefore potential drug targets. 
Rational drug design strategies can then be directed to accelerate and optimize the drug 
discovery process using experimental and virtual (computer-aided drug discovery) methods. 
Recent advances in the computational analyses of enzyme structures and functions have 
improved the strategies used to modify enzyme specificities and mechanisms by site-directed 
mutagenesis, and to engineer biocatalysts through molecular reassembly. 

 
For example, vitamin D analogs have been proposed for the treatment of severe rickets 

caused by mutations in the vitamin D receptor (VDR) gene (Gardezi et al., 2001). The known 
mutations in the coding regions of the human VDR gene can be divided into two classes, 
representing two different phenotypes. Mutations in the VDR DNA-binding domain (DBD) 
prevent the receptor from activating gene transcription, although vitamin D binding is 
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normal. Patients with this DNA binding-defective phenotype do not respond to vitamin D 
treatment. In contrast, some patients with mutations in the ligand binding domain (LBD) that 
cause reduced or complete hormone insensitivity have been partially responsive to high doses 
of calcium and vitamin D, although this often necessitates long term intravenous infusion 
therapy. For these patients, an alternative treatment using vitamin D analogs was proposed. 
Knowledge of the 3D structure of the hormone-occupied VDR LBD (Rochel et al., 2000) and 
the nature of the amino acid residues that contribute to the functional surface of the receptor 
allowed the selection of 3 candidate VDR mutations with the potential to interact with the 
receptor at amino acid contact points that differ from those utilized by the natural ligand, thus 
restoring the function of mutant VDRs (Gardezi et al., 2001). This example clearly illustrates 
the importance of polymorphism data that, combined with structural and evolutionary 
information, can form the basis for biochemical and cellular studies which may eventually 
lead to new drug therapies. 

 

5.3 Conclusions 
 

Multiple alignments now play a fundamental role in most of the computational methods 
used in genomic or proteomic projects, ranging from gene identification and the functional 
characterisation of the gene products to genetics, human health and therapeutics. Since 
multiple alignments are usually employed at the beginning of the data analysis pipelines, it is 
crucial that the alignments are of high-quality. Errors in the alignment will lead to further 
errors in the subsequent analyses and might generate misleading patterns and result in false 
hypotheses.  

 
Given the pivotal role of multiple alignments, the field has received a lot of attention in 

recent years. The next chapter will quickly trace the evolution of multiple alignment 
algorithms from their beginnings in the 1970’s to the recent introduction of new integrative 
and co-operative strategies. 
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“Emergencies have always been necessary to progress. 
 It was darkness which produced the lamp.  

It was fog that produced the compass.  
It was hunger that drove us to exploration.”  

Victor Hugo (1802 - 1885) 

6 Evolution of sequence alignment algorithms 
 

In the face of this growing number of alignment applications, a vast array of diverse 
algorithms has been developed in an attempt to construct reliable, high-quality multiple 
alignments within a reasonable time limit that will allow high-throughput processing of large 
sequence sets. 
 

There exist two main categories of sequence alignment: pairwise alignment (or the 
alignment of two sequences) and multiple alignment. Pairwise alignments are most 
commonly used in database search programs such as Fasta (Pearson and Lipman, 1988) and 
Blast (Altschul et al., 1990) in order to detect homologues of a novel sequence. Multiple 
alignments, containing from three to several hundred sequences, are more computationally 
complex than pairwise alignments and in general, simultaneous alignment of more than a few 
sequences is rarely attempted. Instead a series of pairwise alignments are performed and 
amalgamated into a multiple alignment. The purpose of any sequence alignment, whether 
pairwise or multiple, is to show how a set of sequences may be related, in terms of conserved 
residues, substitutions, insertion and deletion events (described in section 5.1.1).  

This chapter describes the development of sequence alignment methods, from the first 
algorithms for the alignment of two sequences (sections 6.1 and 6.2), via the traditional 
progressive method for the efficient construction of multiple alignments to the recent 
introduction of co-operative strategies that combine complementary algorithms or 
information other than the sequence itself (section 6.3). Finally, section 6.4 contains a brief 
discussion of the issues related to user access and visualisation of multiple sequence 
alignments. 

6.1 Pairwise alignment scoring and statistics 
 

For any two sequences, there are an exponential number of potential alignments with 
gaps. Therefore, it is critical to be able to distinguish 'good' alignments from bad ones. A 
good alignment is one that corresponds to the biologically correct alignment, accurately 
reflecting the evolutionary, structural and functional relationships between the sequences. 
Sequence alignment programs have, until recently, used only the primary sequence 
information to reconstruct these complex relationships. In order to find the best alignment, 
most alignment programs assign a similarity score to all possible alignments and try to 
maximize this score. These alignment scores, also known as objective functions, are 
generally based on scores for aligning single residues with penalties for introducing indels 
into the sequences.  

6.1.1 Scoring matrices 
 
Most alignment programs make comparisons between pairs of bases or amino acids by 
looking up a value in a scoring matrix. The matrix contains a score for the match quality of 
every possible pair of residues (figure 6.1).  
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Figure 6.1 PAM-250 matrix.  
Substitution scores for amino acids. 

 
The simplest way to score an alignment is to count the number of identical residues that 

are aligned. When the sequences to be aligned are closely related, this will usually find 
approximately the correct solution. For more divergent sequences sharing less than 25-30 
percent identity, however, the scores given to non-identical residues becomes critically 
important. More sophisticated scoring schemes exist for both DNA and protein sequences 
and generally take the form of a matrix defining the score for aligning each pair of residues. 
For alignments of nucleotide sequences, the simplest scoring matrix would assign the same 
score to a match of the four classes of bases, ACGT, and 0 for any mismatch. However, 
transitions (substitution of A-G or C-T) happen much more frequently than transversions 
(substitution of A-T or G-C) and it is often desirable to score these substitutions differently. 
More complex matrices also exist in which matches between ambiguous nucleotides are 
given values whenever there is any overlap in the sets of nucleotides represented by the two 
symbols being compared. For protein sequence comparisons, scoring matrices generally take 
into account the biochemical similarities between residues and/or the relative frequencies 
with which each amino acid is substituted by another. The most widely used scoring matrices 
are known as the PAM (point accepted mutation) matrices (Dayhoff et al., 1978). The 
original PAM1 matrix was constructed based on the mutations observed in a large number of 
alignments of closely related sequences. A series of matrices was then extrapolated from the 
PAM1. The matrices range from strict ones, useful for comparing very closely related 
sequences to very 'soft' ones that are used to compare very divergent sequences. For example, 
the PAM250 matrix corresponds to an evolutionary distance of 250%, or approximately 80% 
residue divergence. Other matrices have been derived directly from either sequence-based or 
structure-based alignments. For example, the Blosum matrices are based on the observed 
residue substitutions in aligned sequence segments from the Blocks database. The proteins in 
the database are clustered at different percent identities to produce a series of matrices. For 
example, the Blosum-62 matrix is based on alignment blocks in which all the sequences share 
at least 62% residue identity. Other more specialized matrices have been developed e.g. for 
specific secondary structure elements (e.g. Luthy et al., 1991) or for the comparison of 
particular types of proteins such as transmembrane proteins (e.g. Ng et al., 2000).  

6.1.2 Gap schemes 
 

As well as assigning scores for residue matches and mismatches, most alignment scoring 
schemes in use today calculate a cost for the insertion of gaps in the sequences. One of the 
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first gap scoring schemes for the alignment of two sequences charged a fixed penalty for each 
residue in either sequence aligned with a gap in the other. Under this system, the cost of a gap 
is proportional to its length. Alignment algorithms implementing such length-proportional 
gap penalties are efficient, however the resulting alignments often contain a large number of 
short indels that are not biologically meaningful. To address this problem, linear or ‘affine’ 
gap costs are used that define a gap insertion or ‘gap opening’ penalty in addition to the 
length-dependent or ‘gap extension’ penalty. Thus, a smaller number of long gaps is favoured 
over many short ones. Fortunately, algorithms using affine gap costs are only slightly more 
complex than those using length-proportional gap penalties, requiring only a constant factor 
more space and time. Again, more complex schemes have been developed, such as 'concave' 
gap costs (e.g. Benner et al., 1993) or position-specific gap penalties (e.g. Thompson, 1995). 
Most of these are attempts to mimic the biological processes or constraints that are thought to 
regulate the evolution of DNA or protein sequences. 
 

6.1.3 Alignment statistics 
 

An important aspect of sequence alignment is to establish how meaningful a given 
alignment is. It is always possible to construct an alignment between a set of sequences, even 
if they are unrelated. The problem is to determine the level of similarity required to infer that 
the sequences are homologous, i.e. that they descend from a common ancestor. A simple rule-
of-thumb for protein sequences states that if two sequences share more than 25% identity 
over more than 100 residues, then the two sequences can be assumed to be homologous. 
However, many proteins sharing less than 25% residue identity, said to be in the 'twilight 
zone' (Doolittle, 1986), do still have very similar structures. The measure of the percent 
identity or similarity of the sequences is generally not sensitive enough to distinguish 
between alignments of related and unrelated sequences. Much work has been done on the 
significance of both ungapped and gapped pairwise local alignments (Altschul and Gish, 
1996; Pearson, 1998), although the statistics of global alignments or alignments of more than 
two sequences are far less well understood. The aim of the statistical analysis is to estimate 
the probability of finding by 'chance' at least one alignment that scores as high as or greater 
than the given alignment. For ungapped local alignments, these probabilities or P-values may 
be derived analytically. For alignments with gaps, empirical estimates are used based on the 
scores obtained during a database search, or from randomly generated sequences. For 
database search programs, the significance of an alignment between the query sequence and a 
database sequence is often expressed in terms of Expect- or E-values. The E-value specifies 
the number of matches with a given score that are expected to occur by chance in a search of 
a database. An Expect-value of zero, with a given score, would indicate that no matches with 
this score are expected purely by chance. 

 

6.2 Pairwise alignments 

6.2.1 Optimal alignment 
 

The comparison or alignment of biological sequences began in the early seventies, with 
the first dynamic programming algorithm for the global (or full-length) alignment of two 
sequences (Needleman and Wunsch, 1971). This recursive algorithm for the alignment of two 
sequences X=x1,…,xn and Y=y1,…ym may be summarised as follows:  
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where  Si,j is the score for aligning residues xi and yj,  

Hi,j is the score of the optimal alignment of subsequences x1,...xi and y1,…yj 
g is the penalty for opening a gap 
h is the penalty for extending a gap by one residue 
k,l are the lengths of the gaps in sequences X and Y respectively

 
The optimal local alignment between a pair of sequences, in which only the highest-

scoring sub-segments of the two sequences are aligned, involves a simple modification to the 
Needleman-Wunsch method (Smith and Waterman, 1981). The additional constraint, Hij >= 
0, is included in the recursive algorithm, such that the alignment can start or end at any pair 
of residues. 

 
Dynamic programming is a rigorous mathematical technique that is guaranteed to find the 

maximal scoring alignment for any two sequences. It does this by constructing a two-
dimensional alignment matrix or path graph of partial alignment scores (figure 6.2).  

 

 
Figure 6.2 Dynamic programming matrices for global and local alignments of two DNA sequences. 
Percent identity scores for each alignment are calculated by dividing the number of identical residues aligned 
by the total number of residues aligned. 

 

Each position in the matrix contains the score for the best partial alignment that ends at 
that position. The best scoring partial alignment will be extended to subsequent positions in 
the matrix by either aligning one residue from each sequence or by inserting a gap into one or 
other of the sequences. In this way all possible alignments are considered and the final 
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alignment is thus the best scoring alignment possible. The optimal global alignment score is 
given in the bottom, right-hand corner of the alignment matrix, while the optimal local 
alignment score is defined as the highest scoring position anywhere in the alignment matrix. 

6.2.2 Dot plots 
 

A dot plot is a visual method for comparing two complete sequences that provides a 
global view of all possible regions of similarity between the two sequences. (For a detailed 
review, see States and Boguski 1991). Dot plot programs often provide an interactive 
environment in which the user can select significant sequence segments in order to guide the 
final alignment. In the dot plot in figure 6.3, the X and Y axes of the plot correspond to the 
two sequences to be compared.  

 

 
 

Figure 6.3  Dot plot of a tyrosine-protein kinase protein compared to a SH2-SH3 adaptor protein 
On the x-axis: chicken tyrosine-protein kinase (CSK_CHICK) and on the y-axis: drosophila SH2-SH3 adaptor 
protein (DRK_DROME)  
 
The dots represent all the possible matches of identical residues in the two sequences. Any 
region of similar sequence appears as a diagonal row of dots. Isolated dots not on the 
diagonal represent random matches, which are probably not related to any significant 
alignment. Visualization of matching regions may be improved by filtering out these random 
matches using a sliding window calculation. Instead of comparing single sequence positions 
in the two sequences, the average score in a window of adjacent positions is calculated, and a 
dot is printed only if the score for the window is above a certain average score. Scoring 
matrices such as the PAM or Blosum matrices may be used instead of residue identities. Dot 
plots are particularly valuable for finding repeats or inversions in protein and DNA 
sequences, and for predicting regions in RNA that are self complementary and that, therefore, 
might form a double-stranded region or secondary structure.  
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6.2.3 Heuristic methods 
 

A different approach to the local alignment problem involves the use of heuristics or 
'approximate' methods, which do not guarantee an optimal alignment solution but are less 
time-consuming than the rigorous dynamic programming techniques. These approximate 
alignment algorithms are used in programs such as Fasta (Pearson and Lipman, 1988) and 
Blast (Altschul et al., 1990) to search the nucleic acid and protein sequence databases for 
homologues of a target sequence. The general approach involves comparing the target or 
'query' sequence to all the sequences in a specified database in a pairwise fashion. Each 
comparison is given a score reflecting the degree of similarity between the query and the 
sequence being compared. The higher the score, the greater the degree of similarity. The 
similarity is measured and shown by aligning the two sequences. The heuristics used involve 
finding patches of regional similarity, rather than trying to find the best alignment between 
the entire query and an entire database sequence. Fasta uses a two step pairwise alignment 
algorithm. The first step consists of a search for exactly matching strings or ‘words’ that are 
common to both sequences. This is done in order to identify regions in a two dimensional 
table similar to that shown for the dynamic programming algorithm above that are likely to 
correspond to highly similar segments shared by the two sequences. These regions will 
consist of a diagonal or a few closely spaced diagonals in the table which have a high number 
of word matches between the sequences. The second step involves a Smith-Waterman local 
alignment centered on these regions. The speed up achieved by a Fasta alignment relative to a 
full Smith-Waterman alignment is due to the restriction of the dynamic programming 
algorithm to only the high-scoring regions. The Blast program works by first making a look-
up table of all the short subsequences, known as ‘words’ and neighboring words, i.e., similar 
words in the query sequence. The sequence database is then scanned for these matching 
segments and the high scoring segments found are extended in both forward and backward 
directions to generate an alignment that continues until the sequence ends, or the alignment 
becomes non-significant. In both Fasta and Blast, in addition to the alignment scores, the 
significance of each alignment is computed as a P value or an E value (see section on 
Alignment Statistics), based on the alignment scores expected by chance in the total sequence 
space. 
 

6.3 Multiple sequence alignment 
 
The first formal algorithm for multiple sequence alignment (Sankoff, 1975) was developed as 
a direct extension of the pairwise dynamic programming algorithm. However, the optimal 
multiple alignment of more than a few sequences (more than 10) remains impractical due to 
the intensive computer resources required, despite some space and time improvements (e.g. 
Lipman et al., 1989). Therefore, in order to multiply align larger sets of sequences, most 
programs in use today employ some kind of heuristic approach to reduce the problem to a 
reasonable size.  

6.3.1 Progressive multiple alignment 
 

Traditionally the most popular method has been the progressive alignment procedure 
(Feng and Doolittle, 1987), which exploits the fact that homologous sequences are 
evolutionarily related. A multiple sequence alignment is built up gradually using a series of 
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pairwise alignments, following the branching order in a phylogenetic tree. An example using 
five immunoglobulin-like domains is shown in figure 6.4.  

 

 
 

Figure 6.4 The basic progressive alignment procedure 
The algorithm is  illustrated using a set of five immunoglobulin-like domains. The sequence names are from the 
Swissprot or PDB databases: 1HNF: human cell adhesion (CD2) protein, CD2_HORSE: horse cell adhesion 
protein, CD2_RAT: rat cell adhesion protein, MYPS_HUMAN: human myosin-binding protein, 1WIT: 
nematode twitchin muscle protein. The secondary structure elements of the immunoglobulin-like domains from 
the human CD2 (1HNF) and the nematode twitchin (1WIT) proteins are shown above and below the alignment 
(right arrow = beta sheet, coil = alpha helix). 
 

The first step involves aligning all possible pairs of sequences in order to determine the 
distances between them. A guide tree is then created and is used to determine the order of the 
multiple alignment. The two closest sequences are aligned first and then larger and larger sets 
of sequences are merged, until all the sequences are included in the multiple alignment. In the 
example, the human and horse CD2 sequences are aligned first. These two sequences are then 
aligned with the rat CD2 sequence. Finally, the myosin-binding protein sequence is aligned 
with the twitchin sequence, before being merged with the alignment of the three CD2 
sequences. This procedure works well when the sequences to be aligned are of different 
degrees of divergence. Pairwise alignment of closely related sequences can be performed 
very accurately. By the time the more distantly related sequences are aligned, important 
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information about the variability at each position is available from those sequences already 
aligned. A number of different alignment programs based on this method exist, using either a 
global alignment method to construct an alignment of the complete sequences, or a local 
algorithm to align only the most conserved subsegments of the sequences (figure 6.5). For 
example, Multalign (Barton and Sternberg, 1987), Multal (Taylor 1988), Pileup (Wisconsin 
Package, Genetics Computer Group, Madison, WI), ClustalW/X (Thompson et al., 1994; 
Thompson et al., 1997) are all based on the global Needleman-Wunsch algorithm. The main 
difference between these programs lies in the algorithm used to determine the final order of 
alignment. For example, Multal uses a sequential branching algorithm to identify the two 
closest sequences first and subsequently align the next closest sequence to those already 
aligned. Multalign and Pileup use a simple bottom-up data clustering method, known as the 
Unweighted Pair Grouping Method with Arithmetic means (UPGMA) (Sneath and Sokal, 
1973), to construct a phylogenetic tree that is then used to guide the progressive alignment 
step. ClustalW/X uses another phylogenetic tree construction method, called neighbour-
joining (NJ) (Saitou and Nei, 1987). Although the NJ method is less efficient than the 
UPGMA, it has been extensively tested and usually finds a tree that is quite close to the 
optimal tree. In contrast to the global alignment methods, the Pima program (Smith and 
Smith, 1992) uses the Smith-Waterman algorithm to find a local multiple alignment.  

 
 
Figure 6.5 Overview of different progressive alignment algorithms  
SB=sequential branching, ML=maximum likelihood, NJ=neighbour joining, UPGMA=Unweighted Pair 
Grouping Method with Arithmetic mean. 
 

Since then, the sensitivity of the progressive multiple sequence alignment method has 
been somewhat improved with the introduction of several important enhancements to the 
basic method. For example, Treealign (Hein, 1990) extends the progressive alignment 
process by adding a parsimony step: an initial alignment is constructed and used to build a 
parsimony tree which in turn is used to direct the final alignment algorithm. ClustalX 
(Thompson et al., 1997) reduces the problem of the over-representation of certain sequences 
by incorporating a sequence weighting scheme that downweights near-duplicate sequences 
and upweights the most divergent ones. In addition, position-specific gap penalties encourage 
the alignment of new gaps on existing gaps introduced earlier in the multiple alignment. Most 
of the alignment programs mentioned above use one residue scoring matrix and two gap 
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penalties (one for opening a new gap and one for extending an existing gap). When identities 
dominate an alignment, almost any set of parameters will find approximately the correct 
solution. With very divergent sequences, however, the scores given to non-identical residues 
will become critically important. Also, the exact values of the gap penalties become 
important for success. Thus, the choice of alignment parameters remains a decisive factor 
affecting the quality of the final alignment. 

6.3.2 Iterative strategies 
The next generation of multiple alignment algorithms used iterative strategies to refine 

and improve the initial alignment. The PSI-Blast program builds multiple alignments by 
aligning the homologous segments detected by a Blast database search to the query sequence. 
Hidden Markov Models (HMM’s) have been used in a number of programs HMMT (Eddy 
1998) or SAM (Karplus et al., 1998) to build multiple alignments and have been employed 
notably to create large reference databases of sequence alignments such as Pfam and ProSite. 
The flexibility and efficiency of stochastic techniques such as Gibbs Sampling (Lawrence et 
al., 1993) and Genetic Algorithms (Notredame and Higgins, 1996) have also been exploited 
in the search for more accurate alignments. Iteration techniques have also been used to refine 
an initial multiple alignment built using the traditional progressive alignment algorithm in 
PRRP (Gotoh, 1996). An alternative to the global alignment approach is the ‘segment-to-
segment’ alignment method used in Dialign (Morgenstein et al., 1996). Segments consisting 
of locally conserved residue patterns or motifs, rather than individual residues, are detected 
and then combined to construct a local multiple alignment of only the most conserved regions 
of the sequences. 

6.3.3 Co-operative strategies 
The complexity of the multiple alignment problem has lead to the combination of 

different alignment algorithms and the incorporation of biological information other than the 
sequence itself. A comparison of a number of local and global protein alignment methods 
based on the BAliBASE benchmark (Thompson et al., 1999a) showed that no single 
algorithm was capable of constructing accurate alignments for all test cases. A similar 
observation was made in another study of RNA alignment programs (Gardner et al., 2005), 
where algorithms incorporating structural information outperformed pure sequence-based 

methods for divergent sequences. Therefore, recent developments in multiple alignment 
methods have tended towards an integrated system bringing together knowledge-based or 
text-mining systems and prediction methods with their inherent unreliability. Some of the 
most widely used or more innovative methods are described below: 

• DbClustal (Thompson et al., 2000) exploits information available in the public databases 
to improve the accuracy of global multiple alignments. Conserved motifs are extracted 
from the top sequences detected by a BlastP database search (Altschul et al., 1997) using 
the Ballast program (Plewniak et al., 2000). This local information is incorporated into a 
ClustalW global alignment in the form of a list of anchor points between pairs of 
sequences.  

• T-Coffee (Notredame et al., 2000) uses information from a pre-compiled library of 
different pairwise alignments including local, global or structural alignments. This 
strategy has been extended recently to combine alternative multiple alignments (Wallace 
et al., 2006).  

• MAFFT (Katoh et al., 2002) and MUSCLE (Edgar, 2004) are efficient methods, that 
include fast pairwise alignments, using a fast Fourier transform (for MAFFT) or using k-
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mer counting (for MUSCLE), together with a progressive multiple alignment method and 
iterative refinement. 

• PMComp (Hofacker et al., 2004) aligns RNA sequences by first computing base pairing 
probability matrices and then aligning the common secondary structure in order to deduce 
a multiple sequence alignment. 

• Praline (Simosis and Heringa, 2005) exploits protein secondary structure information 
either from 3D structures or from computational predictions to increase alignment 
sensitivity.  

• POA (Lee et al., 2002b) and RAlign (Sammeth and Heringa, 2006) use local algorithms 
that are suitable for multi-domain proteins, that may contain repeated or shuffled 
elements. 

• Rascal (Thompson et al., 2003) is an alternative, knowledge-based program designed to 
improve an existing multiple alignment constructed using any of the above methods. It 
uses information from clustering algorithms (Wicker et al., 2001; Wicker et al., 2002) 
and residue conservation analysis (Thompson et al., 2001) in a two-step refinement 
process to detect and correct local alignment errors. 

• Probcons (Do et al., 2005) uses HMM-derived posterior probabilities and three-way 
alignment consistency in a global, progressive alignment, together with an iterative 
refinement step. 

6.4 User access and visualisation 
 

Thanks to the recent developments in multiple alignment algorithms, it is now possible to 
build accurate and reliable multiple alignments of large sequence sets, with the throughput 
time required by large scale projects. A crucial factor is the ease-of-use of the new complex 
systems software currently being developed. Some software is difficult to operate for 
biologists with limited computer training. Programs that have non-graphical, command-line 
driven interfaces are not intuitive because they require the use of exact command syntax, 
including all possible options. In contrast, graphical interfaces such as Modview (Ilyin et al., 
2003), Jalview (Clamp et al., 2004) or VISSA (Li and Godzik., 2006) allow visualization of 
multiple protein sequences and structures with highlighting of features such as conserved 
residues, active sites, fragments or domains. In addition, some programs are designed to run 
on specific platforms with specific operating systems (e.g. Unix). Users who are not familiar 
with an operating system may have difficulty in installing and using these programs. One 
solution is to use a Web interface, which allows the user to access data files as well as 
analysis programs in an integrated fashion regardless of client platforms. One example is 
W2H (Senger et al., 1998), a Web-based interface to the popular GCG Sequence Analysis 
Software Package (Wisconsin Package). Some systems running a number of different 
automatic bioinformatics analyses e.g. Pfaat (Johnson et al., 2003) also allow expert 
knowledge to be manually incorporated in the results. 
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“Quality is never an accident; 
 it is always the result of  

intelligent effort.”  
John Ruskin (1819 - 1900) 

7 Multiple alignment quality 
 

Since the introduction of the first sequence comparison methods in the 1970s, a vast 
number of alignment methods have been developed that use very different algorithms, 
ranging from traditional optimal dynamic programming or progressive alignment strategies to 
the application of algorithms such as simulated annealing, Hidden Markov Models or genetic 
algorithms. Since the year 2000, the new challenges posed by the post-genomic era have lead 
to an explosion of new methods. In the search for more accurate alignments, most state of the 
art methods now often use a combination of complementary techniques, such as local/global 
alignments or sequence/structure information. Although much progress has been achieved, 
the latest methods are not perfect and misalignments can still occur. If these misalignments 
are not detected, they will lead to further errors in the subsequent applications that are based 
on the multiple alignment (see Chapter 5). The assessment of the quality and significance of a 
multiple alignment has therefore become a critical task, particularly in high-throughput data 
processing systems, where a manual verification of the results is no longer possible.  

 
A number of quality issues can be distinguished. First, given a set of sequences, how to 

evaluate the quality of a multiple alignment of those sequences. The most reliable is probably 
to compare the alignment to a reference alignment, e.g. 3D structural superposition. In the 
absence of a known reference, a score is calculated, known as an objective function that 
estimates how close the alignment is to the correct or optimal solution. Objective scoring 
functions are discussed in section 7.1. In general though, most multiple alignments contain 
regions that are well aligned and regions that contain errors. Section 7.2 describes methods 
that can distinguish reliable from unreliable regions. Even if the alignment is optimal, this 
does not mean that the sequences are actually homologous. Most multiple alignment methods 
available today will produce an alignment even if the sequences are unrelated. Section 7.3 
discusses methods to detect unrelated sequences. Finally, section 7.4 describes the most 
widely used benchmarks that are used to compare multiple alignment methods and evaluate 
the improvements obtained by the new methods. 

 

7.1 Multiple alignment objective scoring functions 
 

Given a particular set of sequences, an objective score is needed that describes the 
optimal or "biologically correct" multiple alignment. Sub-optimal or incorrect alignments 
would then score less than this maximal score. Such measures, also known as objective 
functions, are currently used to evaluate and compare multiple alignments from different 
sources and to detect low-quality alignments. They are also used in iterative alignment 
methods to improve the alignment by seeking to maximize the objective function.  
 

One of the first scoring systems was the Sum-of-Pairs score (Carrillo and Lipman, 1988). 
For each pair of sequences in the multiple alignment a score is calculated based on the 
percent identity or the similarity between the sequences. (Pairwise alignment scores are 
discussed in detail in Chapter 6). The score for the multiple alignment, S(m), is then taken to 
be the sum of all the pairwise scores:  
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where s(i, j) is the score of the pairwise alignment between sequences i and j 
and N is the total number of sequences in the alignment 

Pairwise scores are also used in the COFFEE objective function (Notredame et al., 
1998), which reflects the level of consistency between a multiple sequence alignment and a 
library containing pairwise alignments of the same sequences. This method was shown to be 
a good estimation of the accuracy of the multiple alignment when high quality pairwise 
alignments, such as 3D structural superpositions, are available as reference. One problem 
with multiple alignment scores based on pairwise sequence comparisons is that they assume 
that substitution probabilities are uniform and time-invariant at all positions in the alignment. 
This is unrealistic as the variability may range from total invariance at some positions to 
complete variability at others, depending on the functional or structural constraints of the 
protein. 

 
For this reason, more recent work has concentrated on column statistics. One approach 

uses an Information Content statistic, assuming that the most interesting alignments are those 
where the frequencies of the residues found in each column are significantly different from a 
predefined set of a priori residue probabilities (Hertz and Stormo, 1999). The Information 
Content of a multiple alignment is defined as: 
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, =  is the frequency that letter i occurs at position j 

 A is the total number of letters in the alphabet 
 L is the total number of positions in the alignment 
 N is the total number of sequences in the alignment 

 pi is the a priori probability of letter i 
    ni,j is the frequency that letter i occurs at position j 

 
 

One disadvantage of this measure is that it considers only the frequencies of identical 
residues in each column and does not take into account similarities between residues. For this 
reason, another column-based measure, norMD, was introduced (Thompson et al., 2001), 
based on the Mean Distance (MD) column scores implemented in ClustalX (Thompson et al., 
1997). The MD scores are summed over the full-length of the alignment and the total score is 
then normalized to take into account the number, length and similarity of the sequences in the 
alignment, and the presence of gaps.  

 
These different objective functions can be evaluated using the multiple alignments in the 

BAliBASE benchmark database (see below for more details), as shown in figure 7.1 The 
Sum-of-Pairs score increases proportionally with the number of the sequences in the 
alignment (figure 7.1A). Thus, an alignment containing many sequences will score higher 
than an alignment of fewer sequences, regardless of the respective quality. The Information 
Content measure solves the problem of the number of sequences, as all columns will score 
between 0 and 1. However, the scores increase proportionally with the length of the 
alignment (figure 7.1B). 
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Figure 7.1 Comparison of three objective functions: sum-of-pairs, relative entropy and norMD 
Comparison based on the BAliBASE multiple alignment benchmark.Red points indicate scores for the optimal 
alignment based on 3D superposition. Black points indicate scores for sub-optimal alignments constructed by 
automatic multiple alignment programs (from Thompson et al., 2001). 
 

The norMD score partially resolves these problems, and can be used to estimate the 
quality of the alignment even when the optimal alignment score is unknown. As shown in 
figure 7.1C, most of the alignments scoring higher than the threshold score of 0.5 are correct, 
while alignments scoring less than 0.3 are generally of poor quality. In addition, the relative 
difference between the scores for the optimal reference alignment and the sub-optimal 
alignments produced by different automatic multiple alignment programs is larger for norMD 
than for either Sum-of-Pairs or Information Content. Nevertheless, a twilight zone still exists 
for norMD scores between 0.3 and 0.5, where no distinction can be made between good and 
bad alignments. 
 

7.2 Determination of reliable regions 
 

The objective functions described above calculate a global score that estimates the overall 
quality of a multiple alignment. However, even when misalignments occur, it is not 
necessarily true that all of the alignment is incorrect. Useful information could still be 
extracted if the reliable regions in the alignment could be distinguished from the unreliable 
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regions. The prediction of the reliability of specific alignment positions has therefore been an 
area of much interest. One of the first automatic methods for the analysis of position 
conservation was the AMAS program (Livingstone and Barton, 1993), which was based on a 
set-based description of amino acid properties. Since then, a large number of different 
methods have been proposed. For example, Al2Co (Pei and Grishin, 2001) calculates a 
conservation index at each position in a multiple sequence alignment using weighted amino 
acid frequencies at each position. The DIVAA method (Rodi et al., 2004) is based on a 
statistical measure of the diversity at a given position. The diversity measures the proportion 
of the 20 possible amino acids that are observed. If the position is completely conserved (i.e. 
only one amino acid is observed in all sequences analyzed), the diversity is 0.05 (1/20); if it is 
populated by equal proportions of all amino acids, the diversity is 1.0 (20/20). Diversity (as 
defined here) is inversely and non-linearly related to the measure of sequence information 
content described above, with a highly conserved position exhibiting relatively low diversity 
and high information content. For nucleic acid sequences, the ConFind program (Smagala et 
al., 2005) identifies regions of conservation in multiple sequence alignments that can serve as 
diagnostic targets and is designed to work with a large number of highly mutable target 
sequences such as viral genomes. 

 
An alternative approach has been implemented recently in the MUMSA program 

(Lassmann and Sonnhammer, 2005), based on the comparison of several alignments of the 
same sequences. The idea is to search for regions which are identically aligned in many 
alignments, assuming that these are more reliable than regions differently aligned in many 
alignments. The method also results in a score for a given alignment. A high quality 
alignment in this case, is one that shares more aligned residues with other alignments. The 
choice of multiple alignment methods used as input is therefore crucial, in order to avoid a 
bias towards one particular algorithm. Ideally, different algorithms should be used, such as 
local and global methods, algorithms designed for transmembrane sequences, repeats, etc. In 
tests on BAliBASE, the MUMSA scores correlate higher with true alignment quality than the 
norMD scores. However, a major drawback of the MUMSA method is that several multiple 
alignments of the same set of sequences have to be constructed for the purpose of 
comparison, which is not always computationally feasible. 

 
An alternative approach to the calculation of position conservation scores is to use a 

graphical representation for displaying the patterns in a set of aligned sequences, known as 
sequence logos, first introduced in 1990 (Schneider and Stephens, 1990). Figure 7.2 shows an 
example display created using the WebLogo server (Crooks et al., 2004). 

 

 
Figure 7.2 An example sequence logo for displaying patterns in aligned sequences 
The logo is of the conserved packing and sliding contacts at the end of the B through the beginning of the D 
helices of the globins (Dickerson and Geis, 1983). 
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The characters representing the sequence are stacked on top of each other for each 
position in the aligned sequences. The height of each letter is made proportional to its 
frequency, and the letters are sorted so the most common one is on top. The height of the 
entire stack is then adjusted to signify the information content of the sequences at that 
position.  
 

7.3 Estimation of homology 
 

As seen in chapter 5, many applications have been developed that predict or propagate 
biological information between the sequences in a multiple alignment based on a presumed 
homology. The hypothesis is that homologous sequences, i.e. sequences that have descended 

from the same ancestor, often share the same structure and function. A fundamental step in 
these so-called ‘homology-based’ methods is the determination of the extent of similarity 
between the aligned sequences. Without this initial crucial step, the subsequent applications 
that rely on an accurate multiple alignment cannot be expected to yield high-quality results. 

 
This particular problem has been addressed by a number of groups. The degree to which 

the sequences in a multiple alignment are related can be estimated by an analysis of positional 
conservation or by measuring the statistical significance of the alignment (Hertz and Stormo, 
1999). Cline et al. in 2002 tested four different predictors of alignment position reliability and 
concluded that near-optimal alignment information was the best predictor, removing 70% of 

the substantially misaligned positions. Thompson et al. (2001) used the NorMD objective 
function to remove unrelated or badly aligned sequences from multiple alignments. Errami et 
al. (2003) analysed the agreement between predicted secondary structures of the aligned 
sequences to detect and discard unrelated sequences. Tress et al. (2003) used sequence 
profiles generated from PSI-BLAST alignments to predict reliable regions between remotely 
related pairs of proteins. These methods work well when the sequences to be compared are 
homologous over their full lengths, but large multi-domain proteins are becoming more and 
more prevalent in the sequence databases, with the arrival of numerous new genome 
sequences, in particular from eukaryotic organisms. In the face of these highly complex 
proteins, the definition of ‘homologous sequences’ needs to be more detailed. Two sequences 
can share one or more homologous domains without being homologous over their full-
lengths. 

 
A more recent method, LEON (Thompson et al., 2004) has been developed to determine 

the extent of homology between proteins based on the MACS. LEON incorporates some of 
the latest developments in multiple alignment analysis, including sequence clustering 
(Wicker et al., 2001) and the identification of locally conserved motifs or 'core blocks' 
(Thompson et al., 2003). In LEON, weak signals from distantly related proteins can be 
considered in the overall context of the family and intermediate sequences and the 
combination of individual weak matches are used to increase the significance of low-scoring 

regions. Residue composition is also taken into account by the incorporation of several 
existing methods for the detection of compositionally biased sequence segments. LEON can 
be used to reliably identify the complex relationships between large multi-domain proteins 
and should be useful for automatic high-throughput genome annotations, 2D/3D structure 
predictions, protein–protein interaction predictions. 
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7.4 Multiple alignment benchmarks 
 

The methods described above are used to determine the quality and reliability of a given 
multiple alignment. In computer science, the quality of an algorithm is often estimated by 
comparing the results obtained with a pre-defined benchmark or ‘gold standard’. Clearly, the 
tests need to be of high-quality. Errors in the benchmark will lead to biased or erroneous 
results. The tests in the benchmark need not be comprehensive, but must be representative of 
ones that the system is reasonably expected to handle in a natural (meaning not artificial) 
setting and the performance measure used must be pertinent to the comparisons being made. 
Enough tests need to be included in order to obtain statistical differences between programs 
tested. It should be possible to complete the task domain sample and to produce a good 
solution. A task that is too difficult for all or most tools yields little data to support 
comparisons. A task that is achievable, but not trivial, provides an opportunity for systems to 
show their capabilities and their shortcomings (Sim et al., 2003).  

 
One of the first studies to compare the quality of different methods was performed in 

1994, when McClure et al. compared several progressive alignment methods, including both 
global and local algorithms. They concluded that global methods generally performed better. 
However, the number of suitable test sets available at that time was somewhat limited and 
this was therefore not a comprehensive test.  

7.4.1 BAliBASE 
 

One of the first large scale benchmarks specifically designed for multiple sequence 
alignment was BAliBASE (Thompson et al., 1999a; Bahr et al., 2001). The alignment test 
cases in BAliBASE are based on 3D structural superpositions that are manually refined to 
ensure the correct alignment of conserved residues. The alignments are organised into 
reference sets that are designed to represent real multiple alignment problems. The first 
version of BAliBASE consisted of 5 reference sets representing many of the problems 
encountered by multiple alignment methods at that time, from a small number of divergent 
sequences, to sequences with large N/C-terminal extensions or internal insertions (see figure 
7.3).  

 
In version 2 (Bahr et al., 2001), three new Reference sets were included, devoted to the 

particular problems posed by sequences with transmembrane regions, repeats and inverted 
domains. In each reference alignment, core blocks are defined that exclude the regions for 
which the 3D structure superpositions are unreliable, for example, the borders of secondary 
structure elements or in loop regions. 
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Figure 7.3 Version 1 of the BAliBASE benchmark alignment database  
a) The number of alignments in each reference set. Reference 1 contains alignments of (<6) equi-distant 
sequences. Reference 2 aligns up to three ‘orphan’ sequences (<25% identical) from reference 1 with at least 
15 closely related sequences. Reference 3 consists of up to four subgroups with <25% residue identity between 
groups. References 4 and 5 contain sequences with N/C-terminal extensions or insertions respectively. b) The 
Web display of an alignment, showing secondary structure elements and the conserved core blocks (adapted 
from Thompson et al., 1999). 
 

In order to assess the accuracy of a multiple alignment program, the alignment produced 
by the program for each BAliBASE test case is compared to the reference alignment. Two 
scores are used to evaluate the alignment :  

• the SP (sum of pairs) score calculates the percentage of pairwise residues aligned the 
same in both alignments 

• the CS (column score) calculates the percentage of complete columns aligned the 
same. These scores are calculated in the core block regions only.  
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A comparison of some of the alignment methods described in chapter 6 (Thompson et al., 
1999b), based on BAliBASE (version 1.0) showed that there was no single algorithm that 
was consistently better than the others.  

 
The study revealed a number of specificities in the different algorithms (see figure 7.2). 

For example, while most of the programs successfully aligned sequences sharing >40% 
residue identity, an important loss of accuracy was observed for more divergent sequences 
with <20% identity. Another important discovery was the fact that global alignment methods 
in general performed better for sets of sequences that were of similar length, although local 
algorithms were more successful at identifying the most conserved motifs in sequences 
containing large extensions and insertions. Of the local methods, Dialign (Morgenstein et al., 
1996) was the most successful. The iterative methods, such as PRRP (Gotoh, 1996) or SAGA 
(Notredame et al., 1996) were generally more accurate than the traditional progressive 
methods, although at the expense of a large time penalty. 

 

 
Figure 7.4 Comparison of multiple alignment programs using the alignments in the BAliBASE 
benchmark 
Stars were assigned to the top ranking programs that were significantly different according to a Friedman rank 
test. 
 

7.4.2 OxBench 
 

The OXBench benchmark suite from the Barton group (Raghava et al., 2003), provides 
multiple alignments of protein domains that are built automatically using structure and 
sequence alignment methods. The automatic construction means that a large number of tests 
can be included, however the benchmark results will be biased towards sequence alignment 
programs using the same methodology as that used to construct the reference. The benchmark 
is divided into three data sets. The master set currently consists of 218 alignments of 
sequences of known 3D structure, with from 2 to 122 sequences in each alignment. The 
extended data set is constructed from the master set by including sequences of unknown 
structure. Finally, the full-length data set includes the full-length sequences for the domains 
in the master data set.  
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A number of different scores are included in the benchmark suite, in order to evaluate the 
accuracy of multiple alignment. The average number of correctly aligned positions is similar 
to the column score used in BAliBASE. This can be calculated over the full alignment or 
over Structurally Conserved Regions (SCR). The Position Shift Error measures the average 
magnitude of error, so that misalignments that cause a small shift between two sequences are 
penalised less than large shifts. Two other measures are also provided that are independent of 
the reference alignment, and are calculated from the structure superposition implied by the 
test alignment. 

 
The OxBench suite was used to compare 8 different alignment programs, including many 

of those in the BAliBASE study, together with the AMPS program (Barton and Sternberg, 
1987). The MSA (Lipman et al., 1989) and T-COFFEE (Notredame et al., 2000) programs 
were also tested, although the tests were restricted to a smaller data set because these methods 
were unable to align the largest test sets due to prohibitive space and time requirements. The 
AMPS program was shown to perform as well or better than the other progressive alignment 
methods in most tests. The T-COFFEE method which incorporates both local and global 
pairwise alignment algorithms was shown to outperform the other methods on the smaller 
data set. Another important result was that the rigorous dynamic programming method used 
in the MSA program did not perform better than the heuristic progressive methods in this 
study, supporting the hypothesis that the optimal sum-of-pairs score does not always 
correspond to the biologically correct alignment (see discussion in section 7.1). 

7.4.3 PREFAB 
 
The PREFAB (Edgar, 2004) benchmark was constructed using a fully automatic protocol 

and currently contains 1932 multiple alignments. Pairs of sequences with known 3D 
structures were selected and aligned using two different 3D structure superposition methods. 
A multiple alignment was constructed for each pair of structures, by including 50 
homologous sequences detected by sequence database searches.  

 
The accuracy of an alignment program is estimated by comparing the alignment of the 

structure pair in the test multiple alignment with the reference superposition in each test case. 
Only positions that are aligned the same by the two different superposition methods are 
considered. The PREFAB benchmark was used to compare the MUSCLE program (Edgar, 
2004) with MAFFT (Katoh et al., 2002), T-COFFEE and ClustalW and showed that the 
MUSCLE program performed significantly better than the other methods. The programs were 
also compared with the BAliBASE benchmark, where a similar ranking of programs was 
obtained although the difference between MUSCLE and T-COFFEE was not significant in 
this case. 

7.4.4 SABmark 
 
SABmark (van Walle et al., 2005) contains reference sets of sequences derived from the 

SCOP protein structure classification, divided into 2 sets, twilight zone (Blast E-value>=1) 
and superfamilies (residue identity<=50%). Pairs of sequences in each reference set are then 
aligned based on 3D structure superpositions. To evaluate the quality of a multiple alignment 
program, multiple alignments of each reference set are constructed. Pairwise alignments are 
then extracted from the multiple alignment and compared to the structure superpositions. 
Although the benchmark covers most of the known protein fold space, the major 
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disadvantage of this benchmark is that only pairwise reference alignments are considered and 
no multiple alignment solution is provided.  

 
In a comparison of 4 different alignment methods using SABmark (van Walle et al., 

2005), two different scores were used. The first, fD is similar to the SP score and is defined as 
the ratio of the number of correctly aligned residues divided by the length of the reference 
alignment, and may be thought of as a measure of sensitivity. The fM score measures the 
specificity and is defined as the ratio of the number of correctly aligned residues divided by 
the length of the test alignment. At the SCOP family level, T-COFFEE and ClustalW were 
shown to perform better, while Align-m (van Walle et al., 2004) was more successful at 
constructing pairwise alignments at the SCOP superfamily level.  

7.4.5 Homstrad 
 
HOMSTRAD (Mizuguchi et al., 1998) is a database of protein families, clustered on the 

basis of sequence and structural similarity. It was not specifically designed as a benchmark 
database, although it has been employed as such by a number of authors 

7.4.6 BRAliBASE  
 

BRAliBASE (Gardner et al., 2005) includes four diverse structural RNA datasets of 
Group II introns, 5S rRNA, tRNA and U5 spliceosomal RNA. The sequences and the 
reference alignments were obtained from the Rfam v5.0 database. Approximately 100 sub-
alignments were also generated for each of the four families. The sub-alignments contained 
five sequences each and encompassed a range of sequence identities. This large dataset was 
divided into high (≥75% sequence identity, 73 alignments), medium (55-75% sequence 
identity, 73 alignments) and low (<55% sequence identity, 242 alignments) sequence 
homology groups. An additional tRNA dataset was also generated with just two sequences to 
each alignment. 

 
The datasets were used to evaluate both sequence and structure alignment methods. It 

was found that sequence alignment alone, using the current algorithms, was generally 
inappropriate for <50–60% sequence identity. Below this limit, algorithms incorporating 
structural information outperformed pure sequence-based methods. However, these algorithms 
are computationally demanding which severely limits their use in practice.  

7.4.7 Comparison of multiple alignment benchmarks 
 
A comparison of a number of benchmarks for protein sequence alignment algorithms, 

including those described above, has been performed recently (Blackshields et al., 2006). 
They concluded that, although SABmark boasts full coverage of the known fold space, there 
are only pairwise references for each group, so multiple alignment assessment becomes 
complicated depending on how the results are treated. The importance of core region 
annotation was also stressed by the authors. HOMSTRAD is often used as a benchmark 
though it lacks this annotation. Finally, they recommended that several benchmarks be used 
for program comparison, although this can become time-consuming and confusing. Oxbench, 
PREFAB and BAliBASE all contain difficult cases containing full-length sequences of low 
sequence identity. The authors noted that BAliBASE has the advantage that several distinct 
problem areas are explicitly addressed. It is smaller than the other test sets, but nevertheless 
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has a large enough range of representative examples from the known fold-space to evaluate 
relative performance. 

 

7.5 Multiple alignment revolution  
 

The objective evaluation of alignment quality and the introduction of large-scale 
alignment benchmarks have clearly had a positive effect on the development of multiple 
alignment methods (see figure 7.3). From their beginnings in 1975, until 1994 when McClure 
first compared different methods systematically, the main innovation was the introduction of 
the heuristic progressive method that allowed the multiple alignment of larger sets of 
sequences within a practical time limit.  
 

 
 
Figure 7.5 The simultaneous development of multiple alignment algorithms and alignment benchmarks  
The development of multiple alignment algorithms (above the dateline) is shown in the context of the analogous 
developments of alignment benchmarks (below the dateline). The dotted arrows represent the introduction of a 
novel approach to the multiple alignment problem. 
 

Soon after this initial comparison, various new methods were introduced that exploited 
novel algorithms, such as Iterative refinement, Hidden Markov Models or Genetic 
algorithms. These new approaches significantly improved alignment quality, as shown in the 
comparison of these methods by Thompson et al., in 1999b. Nevertheless, this study 
highlighted the fact that no single algorithm was capable of constructing high quality 
alignments for all test cases. In particular, global methods (e.g. ClustalW) were shown to 
perform well when the sequences were homologous over their entire lengths, while local 
methods (e.g. DiAlign) were shown to perform better when the sequence set contained large 
insertions or N/C terminal extensions.  

 
As a consequence, the first methods were introduced that combined both global and local 

information in a single alignment program, such as dbClustal, T-Coffee, MAFFT, MUSCLE 
or ProbCons. Table 7.1 shows the scores obtained using most of these new methods for the 
different multiple alignment benchmarks described above.  
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SABmark PREFAB OxBench BAliBASE (version 2)  
25-50% 0-20% 20-40% 20-40% 40-60% Ref1 Ref2 Ref3 Ref4 Ref5 Time 

(hrs:mins)
DiAlign 41.9 34.1 78.1 34.9 66.7 70.9 35.9 34.4 76.2 84.3 2:53 
ClustalW 41.2 41.1 78.3 38.7 66.2 77.3 56.8 46.0 52.2 63.8 1:07 
T-Coffee 44.4 44.8 81.8 38.3 73.3 77.4 56.1 48.7 73.0 90.3 21:31 
MAFFT 45.2 48.6 83.8 38.4 71.5 78.1 50.2 50.4 72.7 85.9 1:18 
MUSCLE 50.6 46.0 83.0 39.9 72.1 80.8 56.3 56.4 60.9 90.2 1:05 
ProbCons 48.4 49.0 85.2 39.7 74.4 82.6 61.3 61.3 72.3 91.9 5:32 
 
Table 7.1 Current state of the art for multiple sequence alignment methods 
All scores shown are column scores. For PREFAB, the score is calculated in the superposable regions. For 
OxBench, the full alignments were used and the scores were calculated in structurally conserved regions only. 
For BAliBASE, the scores are for core block regions only. 
  

The new combined strategies certainly improve alignment quality for a wide range of 
alignment problems. However, using the existing multiple alignment benchmarks it is 
becoming more and more difficult to make clear distinctions between the more recent 
methods. Therefore, the benchmarks must now evolve if they are to keep pace with the 
multiple alignment revolution. Hopefully, new benchmarks with larger, more complex test 
sets will stimulate the development of new alignment algorithms and vice versa. 
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8 Material and Methods 
 

The algorithms and methods for multiple alignment construction, evaluation and analysis 
described in chapters 9-12 of this thesis were developed using the existing infrastructure and 
computer resources of the Laboratoire de Biologie et Genomique Structurales (LBGS) and 
the Plate-forme Bio-informatique de Strasbourg (BIPS). The BIPS is a high-throughput 
platform for comparative and structural genomics, which was identified in 2003 as a national 
inter-organisational technology platform (Plate-forme Nationale RIO). The BIPS is also part 
of the national genomics and biotechnology network (Génopôle Grand-Est - "from gene to 
drug"). 

8.1 Computing resources 

8.1.1 Servers 
 

Three central servers are currently available for program development and computational 
data analyses: 

 
(i) Interactive and web services : Sun Enterprise 450 (Solaris 9). 4 processors with 1 Gb 
shared memory. 
(ii) Computational servers:  

• 6 Compaq ES40 cluster (Tru64 UNIX). 6 x 4 EV67 processors. Of the 6 
machines in this cluster, 5 have 4 Gb memory each, and the sixth has 16 Gb. 

• 6 Sun Enterprise V40z server (2 x Solaris 10 and 4 x RedHat Enterprise Linux 
4). 6 x 4 Opteron processors with 2 x 32 Gb and 4 x 16 Gb memory. 

(iii) Disk server: Sun V480 (Solaris 9) providing 8 Tera-bytes on Raid5 disks shared with 
other servers using NFS. 

8.1.2 Databases 
 

A number of general as well as some more specialist databases are installed and updated 
regularly on the LBGS servers. These databases are available in GCG format (Butler, 1998) 
and can also be queried using the SRS (Sequence Retrieval Software) (Etzold and Argos, 
1993).  
 
Generalist databases: 
 

The main public sequence and structure databases have been installed locally on the 
IGBMC servers. The protein sequence database Uniprot (Wu et al., 2006), consists of both 
SwissProt and SpTrEMBL databases (Boeckmann et al., 2003). The SpTrEMBL sequences 
are produced by automatic translation of the coding sequences from the EMBL nucleotide 
sequence database. After validation and annotation by experts, the sequences in SpTrEMBL 
are incorporated in the SwissProt database. The protein 3D structure database PDB (Protein 
Data Bank) (Kouranov et al., 2006), includes structures determined by X-ray crystallography 
or by NMR. The amino acid sequences of the proteins or domains in PDB are also available. 
 
Specialist databases: 
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In addition to these generalist databases, a number of specialist databases are maintained 
locally. In particular, the InterPro database (Mulder et al., 2005) contains information on 
protein families, protein domains and functional sites. InterPro is a collaboration between a 
number of different protein signature databases, including the protein domain databases: 
Pfam (Bateman et al., 2004), Prodom (Bru et al., 2005), Smart (Letunic et al., 2006) and the 
protein pattern databases: Prints (Attwood, 2002) and Prosite (Hulo et al., 2006). Protein 
signatures are manually integrated into InterPro database entries and are then curated to 
provide reliable biological and functional information. InterPro also provides links to other 
specialised databases, including the Gene Ontology (Ashburner et al., 2000). 

8.1.3 GCG package 
 

The GCG package (Wisconsin Package Version 10.2, Genetics Computer Group Madison, 
Wisc.) is a software suite containing diverse sequence analysis programs. Version 10 allows 
the manipulation, visualization, analysis and comparison of sequences in the GCG format 
databases installed locally. In particular, the SEQLAB multiple alignment editor was used 
here for the visualization and manual correction of the various multiple sequence alignments 
produced during the course of this work. The SEQLAB editor provides an easy-to-use, 
graphical interface with many facilities for editing alignments. 

8.1.4 Sequence Retrieval Software (SRS) 
 
The Sequence Retrieval Software (SRS) (Etzold and Argos, 1993) is an integration system 

that serves as a gateway to many major databases in the field of molecular biology. SRS 
currently allows access to more than 150 biological databases, including nucleic acid and 
protein sequences and structures, protein domains and metabolic pathways. It is designed for 
the extraction of semi-structured data, i.e. textual data with a pre-defined structure that may 
include redundancies or irregularities. The textual data is stored in flat files containing all the 
entries of a database. The flat files are organised into structured fields, which may be 
different depending on the databases. SRS performs a grammatical parsing of the information 
contained in the flat files and then indexes the different fields associated with each entry. This 
indexing allows a rapid access to the entry fields via complex queries, as well as cross-
referenced queries which exploit the links between the different databases. Version 6 of SRS 
is currently installed at the LBGS. Database queries can be performed interactively 
(http://bips.u-strasbg.fr/srs6/) or using UNIX commands. 

 

8.2  The GScope platform 
 
Gscope is an in-house platform, specifically designed for high-throughput data analyses, 
either for complete genomes or for large sets of genes or proteins. The platform is developed 
by Raymond Ripp (manuscript in preparation), using the Tcl/Tk language and outputs the 
results in ASCII flat files. GScope uses both internal and external programs to perform a wide 
range of data analyses, ranging from DNA sequence processing, such as open reading frame 
(ORF) identification and sequence database searches to data clustering, cross-validation and 
predictions at the genome level (figure 8.1). 
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Figure 8.1 Schematic overview of the Gscope high throughput platform processing pipeline 
 
In this work, the GScope platform was used to perform protein sequence and structure 
database searches and to construct the multiple sequence alignments for the large scale test 
sets and applications described in chapters 9-12. 

8.2.1 Sequence and structure database searching 
 

The sequence database searches were performed using the BlastP program (Altschul et al., 
1997). Given a query sequence of interest, BlastP provides an efficient, sensitive means of 
searching the sequence databases to find sequences that resemble the query. Here, BlastP 
searches were performed in the UniProt and PDB databases, using the default parameters. 
The output from BlastP includes a list of the top-scoring database sequences and a local 
pairwise alignment for each database hit of the similar regions identified. 

 
The output of the initial BlastP search was then used to perform a more in-depth search for 

proteins with known 3D structures. Protein structures are often resolved for a given region of 
a particular sequence of interest that may not correspond to the complete protein. The partial 
sequences in the PDB database are penalised by the length correction parameter, which is 
part of the default parameters of the BlastP program. This can cause problems in large 
sequence families because the number of database hits is limited and proteins that are highly 
similar to the query can saturate the results. In this case, the short PDB sequence fragments 
may not be included in the BlastP final output file. We therefore implemented a two step 
approach, similar to that used by Rychlewski et al., 2000 for their profile-profile alignment 
method. A Position Specific Scoring Matrix (PSSM) was constructed from the BlastP search 
of the large UniProt database, and then this PSSM was used to search the PDB database with 
the PsiBlast (Altschul et al., 1997) iterative database search program. The PsiBlast search 
was stopped after 5 iterations in order to avoid the problems of ‘profile drift’ (Muller et al., 
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1999), where the profile moves too far away from the original sequence pattern and increases 
the chance of spurious matches. 
 

8.2.2 Multiple alignment construction 
 

Multiple alignments of complete sequences (MACS) were built of all the top scoring 
sequences detected by the BlastP and PsiBlast searches with an Expect value greater than 
10.0. The Expect value is a parameter that describes the number of hits one can expect to see 
by chance when searching a database of a particular size. It decreases exponentially with the 
score that is assigned to a match between two sequences. For example, an E value of 1 
assigned to a database hit can be interpreted as meaning that in a database of the current size 
one might expect to see 1 match with a similar score by chance. We used an Expect value of 
10 as the significance threshold for inclusion in the MACS, in order to include the maximum 
number of homologous sequences, although this will clearly lead to a number of unrelated 
sequences being included in the initial MACS. However, these unrelated sequences will be 
identified in the context of the MACS and will be removed in the subsequent multiple 
alignment processing.  

 
The multiple alignment processing pipeline implemented in GScope consists of six steps, 

from homology database searches to the construction of a high quality, hierarchical multiple 
alignment of complete sequences. The pipeline, known as PipeAlign (Plewniak et al., 2003) 
is described in detail in section 8.3.  

 

8.3 PipeAlign protein family analysis toolkit 
 

PipeAlign (Plewniak et al., 2003) is a protein family analysis developed in the LBGS.  
 

 
 
Figure 8.2 Overview of PipeAlign multiple alignment construction pipeline 
(adapted from Plewniak et al., 2003) 
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The pipeline integrates a six step process ranging from the search for sequence 

homologues in the protein and 3D structure databases to the definition of the hierarchical 
relationships within and between subfamilies. The complete, automatic pipeline takes a single 
sequence or a set of sequences as input and performs an initial BlastP search in the UniProt 
and PDB databases. The database search is followed by a cascade of six different sequence 
analysis programs, shown in figure 8.2 and described in detail below.  

8.3.1 Ballast: post-processing of BlastP results 
 
Ballast (Plewniak et al., 2000) builds a conservation profile of the database hits detected 

by BlastP. The contribution of each database hit is proportional to its significance, i.e. its E-
value. The conservation profile is smoothed and then peaks are detected using the second 
derivative of the smoothed profile. These peaks define local maximum segments (LMSs) that 
correspond to sequence segments that are more conserved than their flanking regions. The 
positions of the LMSs in the query and database sequences are identified and are stored in a 
file as a list of anchors for input to DbClustal. 

8.3.2 DbClustal: construction of the MACS 
 
DbClustal (Thompson et al., 2000) integrates the local conservation information from the 

Ballast LMS or ‘anchor’ file in the global multiple sequence alignment program, ClustalW 
(Thompson et al., 1994). ClustalW incorporates the global dynamic programming algorithm 
developed by Needleman and Wunsch, 1971 (see section 1.6.2.1). The recursive algorithm 
was modified in DbClustal, such that the score for aligning any pair of residues combines the 
residue comparison matrix score for the two amino acids (see section 1.6.1.1) and the anchor 
scores from the Ballast program. An anchor propagation is also incorporated, as Ballast 
determines anchors for each database sequence relative to the query sequence only. 
Therefore, DbClustal propagates these anchors between all the sequences. The alignment 
weighting scheme implemented in DbClustal means that the global alignment is encouraged 
towards, but not constrained to, the conserved motifs. 

8.3.3 RASCAL: rapid scanning and correction of alignment errors 
 

DbClustal is a heuristic algorithm that can sometimes introduce errors into the multiple 
alignment. The RASCAL program (Thompson et al., 2003) is designed to detect these errors 
and to correct them. The method implemented in RASCAL is shown in figure 8.3. The 
multiple alignment output by DbClustal is first divided horizontally and vertically to form a 
lattice in which well aligned, reliable regions can be differentiated. Potential errors are 
detected by comparing profiles of the reliable regions. RASCAL then performs a single re-
alignment of each badly aligned region using an algorithm similar to that implemented in 
ClustalW (Thompson et al., 1994).Alignment correction is restricted to the less reliable 
regions only, leading to a more reliable and efficient refinement strategy.  
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Figure 8.3 Overview of the RASCAL algorithm 
1. The sequences in the input alignment are divided into sub-families and reliable core block regions are 
identified. 2. For each sub-family, misaligned sequences are realigned. 3. Misaligned core blocks  between sub-
families are corrected. 4. Divergent ‘orphan’ sequences are realigned.5. Finally, the regions between core 
blocks are realigned (shown in gray). 
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8.3.4 LEON: multiple alignment-based homology evaluation  
 
The next step in the pipeline is designed to detect the sequences in the MACS that are 

unrelated to the query sequence.  The LEON program (Thompson et al., 2004) uses the 
reliable regions, or ‘core blocks’ determined by RASCAL. An overview of the method is 
shown in figure 8.4. 

 
 
Figure 8.4 Overview of the LEON algorithm 
 

Taking advantage of the transitive nature of homologous relationships, information from 
intermediate sequences is used to help define the conserved core blocks for the more 
divergent sequences. The conserved core blocks for each subfamily in the MACS are then 
chained together to form contiguous regions that are considered to be homologous to the 
query sequence. The amino acid composition of the sequences is also taken into account by 
the incorporation of a number of different algorithms for the detection of compositionally 
biased segments. Finally, any sequences that do not contain any homologous regions are 
removed from the MACS. The output from LEON is thus a high quality MACS containing 
only those sequences that share at least one homologous region with the query. 

8.3.5 NorMD: MACS quality evaluation 
 
The NorMD objective function (Thompson et al., 2001) is used to evaluate the quality of 

the MACS produced by the four previous steps. NorMD combines the advantages of a 
column-scoring technique with the sensitivity of methods incorporating residue similarity 
scores. NorMD is based on the Mean Distance (MD) scores introduced in ClustalX. A score 
for each column in the alignment is calculated using the concept of continuous sequence 
space (Vingron and Sibbald, 1993) and the column scores are summed over the full length of 
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the alignment. The MD score is then normalized to take into account the number of 
sequences, the length of each sequence and their estimated similarity, as shown in figure 8.5.  

 

 
Figure 8.5 Calculation of the norMD score for a multiple sequence alignment 
The Mean Distance (MD) score for a multiple alignment is defined as the sum of the conservation scores for 
each column in the alignment, as defined in ClustalX. The MD score is then normalised to take into account the 
number of gaps in the alignment (GAPCOST), the maximum score possible  for the same set of sequences if they 
were all identical (MaxMD) and the lower quartile range of the distribution of the pairwise sequence percent 
indentities (LQRID). 
  

The normalised scores allow us to define a cutoff above which the alignment is probably 
of high quality. Here, a multiple alignment with a NorMD score greater than 0.5 is considered 
to be mostly well aligned. The norMD scores were compared with other multiple alignment 
objective functions in Section 1.7.1. 

8.3.6 Secator: sequence clustering 
 
The Secator program (Wicker et al., 2001) clusters the sequences in a multiple alignment 

into potentially functional subgroups. The number of subgroups is determined automatically 
by the program. The first step is to create a phylogenetic tree from a distance matrix based on 
the MACS. Secator then assigns a dissimilarity value to each node in the tree and collapses 
branches by automatically detecting the nodes joining distant subtrees. The remaining 
subtrees represent sequence subfamilies in the alignment.  
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Figure 8.6 Example of Secator sequence clustering by collapsing branches of a tree 
Phylogenetic tree (A) before and (B) after collapsing. Branches are collapsed from the leaves up to the internal 
branches joining distant subtrees (from Wicker et al., 2001). 
 

The final output of the PipeAlign system is a high-quality, validated MACS, in which 
sequences are clustered into potential functional subgroups. PipeAlign has been implemented 
in the GScope platform (see section 2.2) for high-throughput processing and is also available 
for interactive use via the web server at http://bips.u-strasbg.fr/PipeAlign/.   
 

8.4 Other software 

8.4.1 Data retrieval 
 

For large sets of sequences, structural and functional information was retrieved from the 
public databases using the Daedalus system developed in the group by Arnaud Muller. 
Daedalus allows the combination of personal information from applications such as BlastP 
(Altschul et al., 1997) or ClustalW (Thompson et al., 1994) with the public databases indexed 
by SRS (see section 8.1.4). The integration is performed by creating a temporary or ‘on-the-
fly’ database, Daedalus_DB, using the User Owned Databank facility in SRS. This temporary 
database can then be cross-linked to the other databases, using the SRS indexing system (see 
figure 8.3). 

 
The structure of the data in the Daedalus_DB and the cross-links to other databases are 

specified in the SRS programming language, ICARUS (Interpreter of Commands And 
RecUrsive Syntax). The indexation of Daedalus_DB then allows a simple and efficient access 
to the user’s personal information as well as the information in the public databases. Cross-
links can be defined either as direct links between two databases, or as indirect links that take 
advantage of intermediary databases. For example, the GO Gene Ontology database is 
accessible from Daedalus_DB via the Swissprot and Sptrembl database links. 
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Figure 8.7 Incorporation of the Daedalus_DB temporary database in SRS 
Lines with pink dotes indicate SRS cross-links between the different databases. Blue arrows indicate temporary 
links from Daedalus_DB to standard public databases. 

8.4.2 Annotated multiple alignment display 
 

Two complementary programs were used to display multiple alignments with their associated 
structural and functions annotations. 
  
• Jalview (Clamp et al., 1994) is a multiple alignment editor written in Java. The web 

applet version is used widely in a variety of web pages (e.g. the EBI Clustalw server and 
the Pfam protein domain database). Jalview allows viewing of multiple alignments of 
either nucleic acid or protein sequences via a web browser and includes simple editing 
facilities, tree construction and sequence clustering. Jalview can colour parts of a 
sequence based on the presence of sequence features, which may be retrieved from 
database records (such as Uniprot), or may be defined by the user and read from a 
sequence features file.  
 

• OrdAlie (Ordered Alignment Information Explorer) has been developed in the group by 
Luc Moulinier. OrdAlie is written in Tcl/Tk and is designed to allow interactive analysis 
and exploration of protein sequence, structure, function and evolution relationships. The 
multiple sequence alignment is displayed in a graphical window, together with the user-
selected sequence features. Sequences can be clustered automatically into sub-families 
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and a detailed, hierarchical analysis of residue conservation can be performed at the 
family or sub-family level. Conserved residues can also be visualized in the context of 
their 3D structural environment, using the RasMol structure viewer (Sayle and Milner-
White, 1995). 

 

8.4.3 3D structure superposition and display 
 

Protein 3D structures were superposed automatically using the SAP program (Taylor, 
2000). SAP searches for an optimal alignment of two protein structures using dynamic 
programming (DP). The DP algorithm requires a similarity measure for all pairs of residues, 
one from each structure to find the optimal alignment. For SAP, the residue similarity is the 
overlap of the “views” from each of the two residues, where the “view” is the list of distances 
from the particular residue to all other residues in the same structure. SAP also uses dynamic 
programming to optimize the overlap of distances in the two distance lists. The procedure is 
thus dubbed double dynamic programming. Gaps are allowed, but their lengths are limited to 
improve speed. The native score of SAP is a normalized logarithm of a measure which 
combines the similarity of the aligned residues (accounting for the length of the alignment) 
and the number of residues in the smaller protein. In a recent comparison of structure 
superposition methods (Kolodny et al., 2005), SSAP (a predecessor of SAP) was found to 
produce the best alignments when using a scoring scheme that emphasised longer alignment 
length. 
 
Two programs were used for the visualisation of protein 3D structures and the automatic 
structural superpositions produced by SAP : 
 
• RasMol (Sayle and Milner-White, 1995) loads a single structure quickly and directly 

from standard Brookhaven Protein Data Bank (PDB) files and runs on almost all current 
computers, including Unix workstations, personal computers running Windows, and 
Macintoshes. Several different representations are available, including wireframe, 
spacefill, α-carbon backbone, strands and ribbons. Ligands, active sites, multiple 
subunits, hydrogen bonds and various parts of the molecule can also be displayed 
selectively or in a combination of display modes. Once an image has been created, it can 
be printed directly or translated into a variety of formats for display or alteration by other 
graphics programs. 

 
• PyMol (http://pymol.sourceforge.net) is a molecular graphics system with an embedded 

Python interpreter designed for real-time visualization and rapid generation of high-
quality molecular graphics images and animations. It also runs on almost all current 
computers, including Unix workstations, personal computers running Windows, and 
Macintoshes. PyMol can be controlled by commands and can display 3D superpositions 
of two or more structures, as shown in figure 8.4. 
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Figure 8.8 3D structure display and superposition with PyMol  
Structure of Acetyl coa synthetase bound to CoA and adenosine-5�-propylphosphate (PDB:1pg3). The larger 
N-terminal domain is shown in brown and the C-terminal domain is shown in green. The putative AMP-binding 
loop is highlighted in blue. (c) 3D structural superposition of the region containing the AMP-binding signature 
motif in 1pg3A (blue), 1md9A (brown), 1lci (green). All structure cartoons were produced with Pymol 
(http://www.pymol.org).. 
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9 Development of a new multiple alignment benchmark 
 

The first part of this thesis addresses the problem of the assessment of multiple sequence 
alignment algorithms. We have developed a new version of the BAliBASE benchmark for the 
objective evaluation and comparison of multiple alignment algorithms, as described in 
Publication No. 3, included at the end of this chapter. 

9.1 Introduction 
 

Multiple sequence alignment is one of the most fundamental tools in molecular biology. It 
is used not only in evolutionary studies to define the phylogenetic relationships between 
organisms, but also in numerous other tasks ranging from comparative multiple genome 
analysis to detailed structural analyses of gene products and the characterisation of the 
molecular and cellular functions of the protein. The accuracy and reliability of all these 
applications depend critically on the quality of the underlying multiple alignments. 
Consequently, a vast array of multiple alignment programs have been developed based on 
diverse algorithms, from multi-dimensional dynamic programming, via progressive, tree-
based programs to the more recent methods combining several complementary algorithms 
and/or 3D structural information (reviewed in Thompson and Poch, 2006a; see Publication 
No. 8 in Annex). Comparative evaluation of these different methods has become a crucial 
task, in order to select the most suitable method for a particular alignment problem (e.g., 
more efficient, more correct, more scalable); to evaluate the improvements obtained when 
new methods are introduced; and to identify the strong and weak points of the different 
algorithms.  

 
In computer science, benchmarking is widely used to compare the performance 

characteristics of computer systems, compilers, databases and many other technologies. A 
benchmark is generally made up of two components: a task sample used to compare the 
performance of alternative tools or techniques and some kind of performance measure that 
evaluates the fitness for purpose. Within a scientific discipline, a benchmark captures the 
community consensus on which problems are worthy of study, and determines what are 
scientifically acceptable solutions. Control of the task sample is used to reduce variability in 
the results because all tools and techniques are evaluated using the same tasks and 
experimental materials. Another advantage of benchmarking is that replication is built into 
the method. Since the materials are designed to be used by different laboratories, people can 
perform the evaluation on various tools and techniques, repeatedly, if desired. Also, some 
benchmarks can be automated, so the computer does the work of executing the tests, 
gathering the data, and producing the performance measures. The resulting evaluations allow 
developers to determine where they need to improve and to incorporate new features in their 
programs with the aim of increasing specific aspects of performance. During deployment, the 
results from different technologies are compared, which requires researchers to look at each 
other’s contributions. Researchers become more aware of one another's work and ties 
between researchers with similar interests are strengthened. Consequently, the creation and 
widespread use of a benchmark within a research area is frequently accompanied by rapid 
technical progress (Sim et al., 2003). 

 
For multiple sequence alignment algorithms, several benchmarks are now available 

(reviewed in chapter 7.4), whose primary goal is to assess the quality of the different 
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programs. These benchmarks have been used in the past to compare different multiple 
alignment programs and have led to significant progress (see chapter 7.5). For example, the 
comparison study based on BAliBASE (Thompson et al., 1999) showed for the first time, 
that no single algorithm was capable of producing high quality alignments for all the test 
cases studied. In particular, the results obtained for the different reference sets in BAliBASE 
highlighted the complementary of the local and global alignment approaches. As a result, 
new methods were developed that combined the advantages of the two methods. BAliBASE 
was identified recently in an independent study (Blackshields et al., 2006) as one of the most 
useful benchmarks available. The organisation of the alignments into different Reference Sets 
means that several distinct problem areas are explicitly addressed. In addition, reliable ‘core 
blocks’ are defined that exclude the non-superposable regions of the alignment. As a 
consequence, the behaviour of different alignment programs can be accurately determined 
with respect to different alignment conditions. Furthermore, it is inherently difficult to over-
train methods on this benchmark.  

 
In the post-genomic era, the ever-increasing amount of sequence and structure 

information available in the public databases means that the size and complexity of the data 
sets that need to be routinely analyzed are increasing. The alignment benchmarks also need to 
evolve in order to provide new larger test cases, which are representative of the new 
alignment requirements.  

9.1.1 Criteria for benchmark development  
 

The process of constructing a benchmark implies the rigorous definition of both what is to 
be measured (for example, the quality of a solution or the time required to produce it) and 
how it should be measured. A number of requirements for successful benchmarks have been 
identified previously (Sim et al., 2003), which can be used as design goals when creating a 
benchmark or as dimensions for evaluating an existing one: 

 
• Relevance. The task set out in the benchmark should be representative of ones that the 

system is reasonably expected to handle in a natural (i.e. not artificial) setting and the 
performance measure used should be pertinent to the comparisons being made.  

 
• Solvability. It should be possible to complete the task sample and to produce a good 

solution. A task that is too difficult for all or most tools yields little data to support 
comparisons. A task that is achievable, but not trivial, provides an opportunity for 
systems to show their capabilities and their shortcomings.  

 
• Scalability. The benchmark tasks should scale to work with tools or techniques at 

different levels of maturity. This property influences the size of task: it should be 
sufficiently large to showcase the more mature techniques, but not too large to test 
techniques currently being researched. 

 
• Accessibility. The benchmark needs to be easy to obtain and easy to use. The test 

materials and results need to be publicly available, so that anyone can apply the 
benchmark to a tool or techniques and compare their results with others.  

 
• Evolution. Continued evolution of the benchmark is necessary to prevent researchers from 

making changes to optimise the performance of their contributions on a particular set of 
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tests. Too much effort spent on such optimisations indicates stagnation, suggesting that 
the benchmark should be changed or replaced. 

 
Benchmarks that are designed according to these conditions will lead to a number of benefits, 
including a stronger consensus on the community’s research goals, greater collaboration 
between laboratories, more rigorous examination of research results, and faster technical 
progress. 
 

9.2 BAliBASE multiple alignment benchmark 
 

There are two main issues involved in the definition of a multiple alignment benchmark. 
First, what is the ‘correct’ alignment of the sequences included in the tests? Second, which 
alignment problems should be represented in the benchmark, and how many test cases are 
needed? These two problems are discussed in detail below. 

9.2.1 Definition of the correct alignment  
 

The goal of a multiple sequence alignment is to identify equivalent residues in nucleic 
acid or protein molecules that have evolved from a common ancestor. However, the true 
evolutionary history cannot usually be reconstructed. Therefore, reference sequence 
alignments are generally constructed based on comparisons of the corresponding 3D 
structures. For proteins, the 3D structure is generally more conserved than the sequence and a 
reliable structural superposition is normally possible between very divergent proteins sharing 
little sequence identity (Koehl, 2001). Structural superposition is carried out between two 
known structures, and is typically based on the Euclidean distance between corresponding 
residues, instead of the distance between amino acid “types” used in sequence alignment. 
Thus, the structure alignment can provide an objective reference that is built independently of 
the sequences. For the new version of BAliBASE, we chose the SAP structural alignment 
program (Taylor, 2000), based on a number of reliability/functionality criteria. Firstly, SAP is 
a reliable program, derived from the SSAP method, which produced the best alignments with 
a longer match length in a recent study (Kolodny et al., 2005). Secondly, SAP is available for 
local installation and has a command-line interface, facilitating its integration in an automatic 
protocol. Thirdly, the SAP program provides a sequence alignment based on the structural 
superposition, together with a reliability score for each pair of aligned residues. Although 
SAP produces high quality alignments for many cases, errors can still occur when aligning 
very distantly related protein structures. Therefore, the SAP sequence alignment was verified 
manually and corrected to ensure that annotated functional residues were aligned correctly. 

 
Another issue is the most suitable quantitative score to use to compare an alignment 

obtained with a multiple alignment program with the reference alignment. For BAliBASE, 
we have defined two scores, reflecting different properties (defined in Thompson et al., 
1999b). The sum-of-pairs score is the percentage of correctly aligned pairs of residues in the 
alignment produced by the program. It is used to determine the extent to which the programs 
succeed in aligning some, if not all, of the sequences in an alignment. The column score is the 
percentage of correctly aligned columns in the alignment, which tests the ability of the 
programs to align all of the sequences correctly. 
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9.2.2 Selection of alignment test cases 
 

A multiple alignment benchmark does not need to include all possible alignments. It is 
sufficient to provide enough representative tests, in order to be able to differentiate between 
alignment methods. The benchmark should however include as many different types of 
proteins as possible. For BAliBASE version 3, the most complete source of protein 3D 
structures is the PDB database. However, this set contains a certain amount of bias due to 
over-represented structures (Brenner et al., 1997). Therefore, we decided to use the SCOP 
protein classification database as a structure resource in order to include representative 
protein families from as many different structural fold types as possible. Protein domains in 
SCOP are hierarchically classified into families, superfamilies, folds and classes (see Table 
9.1). 

 
Class Number 

of folds 
Number of 

superfamilies
Number of 

families 
All alpha proteins 218 376 608 
All beta proteins 144 290 560 
Alpha and beta proteins (a/b) 136 222 629 
Alpha and beta proteins (a+b) 279 409 717 
Multi-domain proteins 46 46 61 
Membrane and cell surface proteins 47 88 99 
Small proteins 75 108 171 
Total 945 1539 2845 

 
Table 9.1 SCOP classification statistics  
Release 1.6, from http://scop.mrc-lmb.cam.ac.uk/scop/. 

 
Example folds were selected for inclusion in BAliBASE from each of the five main 

classes (excluding membrane and small proteins), provided that at least four different protein 
structures were available. If too few sequences existed with known structures, the reference 
alignment was augmented with sequences from the Uniprot database, whose 3D structure is 
not yet known. In this way, we were able to construct larger alignments, representing 
different alignment problems, such as divergent sequences, orphans, large N/C terminal 
extensions or internal insertions, etc. For each test case, two different reference alignments 
were constructed. The alignment of homologous regions only is widely used in the 
construction of protein domain databases, while the alignment of full-length, complex 
sequences, such as those detected by the database searches, is routinely performed in 
automatic, high throughput genome analysis projects. 

 
In the face of the increased number of protein families and the number of sequences 

included in each family alignment, manual construction of the reference alignments was no 
longer possible. We therefore decided to automate as many steps as possible in the 
development of BAliBASE version 3, including the search for homologous proteins, the 3D 
structure superposition, the definition of the core blocks and the integration of 
structure/functional information for alignment annotation and display. This semi-automatic 
protocol allowed us to increase both the number of alignments and the number of sequences 
in the latest version, compared to previous releases of the database. Table 9.2 shows the size 
of the new benchmark. Reference 1 contains alignments of equidistant sequences and is 
divided into six subsets, according to three different sequence lengths and two levels of 
sequence variability. Reference 2 contains families aligned with one or more highly divergent 
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“orphan” sequences, Reference 3 contains divergent subfamilies, Reference 4 contains 
sequences with large N/C-terminal extensions, and Reference 5 contains sequences with large 
internal insertions. 

 
Small number of equi-distant sequences  Reference 1 

 short medium long sub-total 
• V1 (<20% identity) 14 12 12 38 
• V2 (20-40% identity 14 16 15 45 

Reference 2 Family with one or more ‘orphan’ sequences 41 
Reference 3 Divergent subfamilies 30 
Reference 4 Large N/C terminal extensions 48 
Reference 5 Large internal insertions 16 
Total  217 

 

 
Table 9.2 Number of test cases in version 3 of the BAliBASE alignment benchmark 
 

Reference Sets 6-8, containing transmembrane sequences, repeats and circular 
permutations, have been maintained in this version, although they have not been updated. 

 

9.3 Comparison of the latest alignment methods with BAliBASE 3.0 
 
We have used the new version of BAliBASE to evaluate and compare some of the most 

recent multiple sequence alignment programs together with a selection of the more traditional 
methods, namely ClustalW (a global algorithm) and Dialign (a local algorithm). The goal of 
the comparison was not to determine which program is the ‘best’ for all alignments, but to 
measure the improvement in quality obtained by the more recently developed programs and 
to identify their strong and weak points. The programs included in this study are shown in 
Table 9.2.  
 

 
 

Program Reference Version Features 
ClustalW Thompson et al., 

1994 
1.83 Global, progressive alignment 

Dialign Morgenstein et al., 
1996 

2.2.1 Local alignment of sequence segments 

MAFFT Local anchors and global, progressive alignment
MAFFTi 

Katoh et al., 2002 5.32 
 MAFFT with iterative refinement 

MUSCLE Edgar, 2004 3.51 k-mer counting and global, progressive 
alignment with iterative refinement 

TCoffee Notredame et al., 
2000 

2.66 Local and global pairwise alignment 
consistency scores in global progressive 
alignment 

PROBCONS Do et al., 2005 1.1 Global, iterative alignment with HMM-derived 
posterior probabilities and local alignment 
consistency information 

 
Table 9.3 Multiple alignment programs compared using BAliBASE 3.0 
All programs were run with default parameters. 
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Table 9.3 shows the scores obtained by the different methods for the alignments 

containing only the homologous regions.  
 

Reference 1: 
Equidistant sequences 

 

V1:<20% V2:20-40% 

Reference 2: 
Family with 

orphans 

Reference 3: 
Divergent 

subfamilies 

Reference 4:  
Large 

extensions 

Reference 5: 
Large 

insertions 

Time 
(sec) 

ClustalW  0.63/0.42 0.90/0.78 0.91/0.42 0.76/0.52 0.75/0.41 0.75/0.38 902 
Dialign  0.50/0.31 0.86/0.71 0.89/0.37 0.70/0.39 0.79/0.45 0.78/0.43 6043 
Mafft  0.64/0.44 0.89/0.78 0.93/0.49 0.79/0.53 0.83/0.47 0.83/0.48 96 
Maffti 0.71/0.54 0.91/0.83 0.94/0.55 0.84/0.60 0.85/0.49 0.87/0.57 327 
Muscle 0.71/0.52 0.91/0.82 0.94/0.50 0.85/0.58 0.84/0.46 0.86/0.54 523 
TCoffee 0.67/0.47 0.93/0.84 0.94/0.50 0.84/0.64 0.87/0.54 0.88/0.58 46335 
Probcons  0.79/0.63 0.94/0.89 0.95/0.60 0.87/0.65 0.86/0.54 0.90/0.63 19035 

 
Table 9.4 Scores for BAliBASE reference sets containing alignments of homologous regions only 
The scores shown in each column are sum of pairs/column scores. For each reference set, the highest scores 
obtained by the different programs is shown in bold. 
 

In all the reference tests, there is a significant difference between the traditional methods 
(ClustalW and Dialign) and the most recent developments. Nevertheless, in Reference 1, for 
all the programs tested, a decrease in accuracy of the alignments with decreasing residue 
identity is clearly demonstrated, with a significant difference between V2 (20-40% identity) 
and V1 (<20% identity), which corresponds to the ‘twilight zone’ of evolutionary relatedness.  
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Figure 9.1 Mean column scores for the programs in Reference 1, V1 and V2 
 

Of the two traditional methods, the global alignment program, ClustalW, performs better 
for the tests involving sequences of similar length in Reference Sets 1-3, while the local 
alignment program, Dialign, is more successful in Reference Sets 4-5, containing large N/C 
terminal extensions or internal insertions. This result confirms the observations made 
previously (e.g. Thompson et al., 1999b; Blackshields et al., 2005). By combining different 
complementary approaches, the more recent programs, TCoffee, Mafft, Muscle and Probcons 
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are more reliable in all the tests. The best alignments in all the reference tests were achieved 
by PROBCONS, although a significant time penalty was incurred.  
 

Reference 1: 
Equidistant sequences 

 

V1:<20% V2:20-40% 

Reference 2: 
Family with 

orphans 

Reference 3:  
Divergent 

subfamilies 

Reference 5: 
Large 

insertions 

Time 
(sec) 

ClustalW  0.46/0.24 0.85/0.72 0.86/0.20 0.62/0.27 0.61/0.34 2227 
Dialign  0.47/0.26 0.85/0.70 0.85/0.29 0.64/0.31 0.77/0.42 12595 
Mafft  0.45/0.25 0.88/0.75 0.88/0.35 0.74/0.38 0.79/0.43 312 
Maffti 0.57/0.35 0.90/0.80 0.88/0.40 0.78/0.50 0.84/0.53 1409 
Muscle 0.56/0.34 0.90/0.79 0.88/0.36 0.76/0.39 0.83/0.46 3608 
TCoffee 0.59/0.35 0.92/0.82 0.91/0.40 0.75/0.49 0.87/0.57 156373 
Probcons  0.65/0.43 0.93/0.86 0.90/0.41 0.79/0.54 0.88/0.57 58488 

 
Table 9.5 Scores for BAliBASE reference sets containing alignments of full length sequences 
The scores shown in each column are sum of pairs/column scores.  For each reference set, the highest scores 
obtained by the different programs is shown in bold. Reference 4 is not included in this test, because of the 
nature of the alignments. 
 
 

Table 9.4 shows the scores obtained by the different programs when the full length 
sequences are aligned, instead of just the homologous regions. Reference 4 (large N/C 
terminal extensions), is excluded from this test because the full length alignment is the same 
as in the previous test. By comparing the scores obtained here with the scores in Table 9.3, it 
is clear that the inclusion of ‘noise’, in the form of non-homologous regions, represents a 
serious problem for all the programs tested, although the difference is less for the more 
related sequences in Reference 1, V2. Figure 9.2 shows the results for each reference set 
obtained by the best scoring program, PROBCONS, for the full length alignments compared 
to the homologous regions only. 
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Figure 9.2 Comparison of alignment scores for full-length sequences versus homologous regions only 
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Mean column scores for PROBCONS alignments of full-length sequences (shown in red) compared to the scores 
obtained for the same alignments when only the homologous regions are included (shown in blue). 
 
 

Again, PROBCONS produces the most accurate alignments, but requires significantly 
more CPU time than most of the other methods. 
 

9.4 Conclusions 
 

The latest version of BAliBASE includes a number of important developments that should 
significantly increase the utility of the benchmark:  

 
• Increased size. The tests in the benchmark are designed to represent the tasks that 

multiple alignment tools or techniques are now expected to solve in the postgenomic 
era. The semi-automatic update protocol allows the construction of larger test cases, 
although manual refinement is still essential to maintain the high-quality of the 
reference alignments. The comparison of alignment programs has shown that the 
difference between the scores obtained by the different methods is statistically 
significant. We thus conclude that BAliBASE version 3 currently contains a 
sufficiently large number of tests, although further updates will undoubtedly be 
required in the future.  

 
• Increased complexity. The field of multiple sequence alignment is evolving rapidly, 

with the development of new, more sophisticated algorithms designed to cope with 
the large amounts of complex information now available in the protein sequence and 
3D structure databases. New multiple alignment benchmarks are now required to keep 
up with these developments and to avoid optimization of the tools on a particular set 
of tasks. Therefore, the complexity of the alignments in version 3 has been 
significantly increased with the addition of alignments containing full-length 
sequences for all the Reference Sets. These full-length alignments provide a large 
number of difficult tests for both global and local alignment algorithms.  

 
• Increased accessibility. The benchmark needs to be easy to obtain and to use, 

otherwise few people will be likely to use it. Therefore, all BAliBASE alignments and 
associated annotations are freely available on the WWW or by ftp. Furthermore, the 
alignments and their associated annotations are now available in a standard data 
exchange XML format that should facilitate the development of automatic procedures 
for the evaluation and comparison of new multiple alignment methods. 

 
The BAliBASE benchmark is designed to evaluate alignment quality and efficiency, but 

the criteria for selection of a program are numerous, including ease-of-use, stability, 
robustness, etc. Nevertheless, objective evaluation of new algorithms should lead to more 
robust multiple alignments, which in turn will lead to more reliable results for the many 
applications that rely on multiple alignments. 
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10 MAO: Multiple Alignment Ontology 
 

This chapter concerns the creation of a new ontology for multiple alignments of nucleic 
acid and protein sequence/structure alignments. The design and development of MAO are 
described in Publication No. 2, included at the end of this chapter. 

10.1  Introduction 
 

High-throughput genome sequencing and assembly techniques, together with new 
information resources, such as structural proteomics, interactomics, transcriptome data from 
microarray analyses, or light microscopy images of living cells have lead to a rapid increase 
in the amount of data available. As a result, there now exists a vast array of heterogeneous 
data resources distributed over different Internet sites that cover genomic, cellular, structure, 
phenotype and other types of biologically relevant information. The complexity of the 
molecular biology domain makes the modelling, handling and exchange of data very difficult. 
This complexity is reflected in some of its common characteristics (Rojas et al., 2003): 

 
• Ambiguous terms. There are no strict definitions of the terms used to describe objects 

and their properties. Examples are the differences in the definitions of an operon or, 
most commonly cited, of a gene (Schulze-Kremer, 2002).  

 
• Multiple types of classifications. It is common to find the same object being classified in 

multiple ways, e.g. sequence and structure protein domain classifications do not always 
have the same boundaries. The classification criteria, however, are not always explicitly 
presented or defined.  

 
• Multiple relationships. Biological objects are frequently connected in various ways with 

each other, forming a highly interconnected graph of relationships. Consider the case of 
a biochemical reaction and the compounds that act as substrates in the reaction. This is 
clearly a many-to-many relationship between the reaction and the compound entity (a 
compound can act as a substrate for more than one reaction, and a reaction often has 
more than one substrate).  

 
• Missing information.  The improvement of experimental techniques is dramatically 

accelerating the accumulation of data in molecular biology. Nevertheless, there are 
many concepts which are important to the domain where little data is currently 
available. One example is the connection between the concepts of genome, 
chromosome, operon and gene. Genes could be identified within an organism, even 
though the genome has not been completely sequenced. Even if the corresponding 
genome is known, it might still be unknown whether this gene belongs to an operon.  

 
• Evolution of concepts and classifications. As the amount of data in the domains of 

biochemistry and molecular biology is constantly growing, the concepts and 
classifications modelling the biological ‘reality’ has to be adapted. An example could be 
the concept of ‘bird’, which at a first glance could be defined as an ‘animal that can fly’. 
But after a while one will notice that there are birds that cannot fly (like penguins) and 
animals that can fly but are no birds (like some insects). So one could redefine the 
concept of ‘bird’ as an ‘animal that has wings, has feathers and lays eggs’.  
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• Artificial relationships. It is often the case that relationships between concepts are 

defined although they do not exist in reality. For example, there are relationships 
between DNA and RNA defined by the transcription process and between RNA and 
protein defined by the translation process, but there is no direct relationship between 
DNA and protein. However, direct relationships are needed between DNA and protein 
in computational experiments that predict protein sequences from DNA sequences. 

 
• Different levels of granularity. Processes and their elements can commonly be 

described on different levels. An example is the description of a signal transduction 
pathway, which can refer to a general, organism-independent level, mentioning the 
protein families which participate; it may also describe this pathway at the level of 
certain members of a family; or at the level of particular proteins in particular 
organisms.  

 
In the light of this complexity, controlled vocabularies and ontologies have become 

essential tools in modern molecular biology. They ensure compatibility between different 
data resources and software applications and increase the efficiency and accuracy of data 
queries by standardising the wide variations in terminology that exists in the biological 
sciences. Such a common framework can also facilitate the exchange, integration and 
validation of information. Also, the formalisation of a given sub-domain by means of an 
ontology allows knowledge to be expressed in a computer readable way. Furthermore, the 
fact that most of the formalisms used to describe ontologies have associated induction 
engines, will allow the induction of knowledge from the concepts, relationships and rules 
included in the ontology. The concepts and relationships of an ontology can be used as 
building blocks for the formulation of hypotheses that can be verified or rejected, either by 
experimentation or by using data integrated from different/multiple sources, including text 
based ones. 
 

10.2 Design of the Multiple Alignment Ontology 
 

The information included into an ontology strongly depends on the uses that are given to 
it. Although in principle an ontology should reflect facts of a given domain or sub-domain, 
pragmatically speaking the construction of the ontology is mainly guided by the intended 
need, meaning that the detail at which certain properties or relationships are specified are 
strongly influenced by the intended use or research interests. The MAO multiple alignment 
ontology is designed to improve interoperation and data sharing between different alignment 
protocols for the construction of a high quality, reliable multiple alignment and to facilitate 
the integration of structural and functional information in the context of the nucleic acid or 
protein family. The top-level concept is called the multiple_sequence_alignment, which may 
represent either nucleotide or protein sequences. Most of the basic features associated with 
multiple alignments are defined as MAO concepts, ranging from a single residue to sub-
families of sequences. Attributes associated with the basic concepts allow the definition of 
more complex information, such as column conservation, residue or motif function, or 3D 
structural information. 

 
An ontology should also contain agreed definitions, reflecting knowledge in the 

community. MAO was developed in collaboration with experts in RNA, protein alignment of 
sequences and structures. The multiple alignment ontology was established in close 
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collaboration with domain experts from both the DNA/RNA and protein communities, 
including specialists in the fields of both primary sequence and 2D/3D structure comparisons. 

10.2.1 Ontology representation 
 

There are three common approaches to representing heterogeneous biological data 
(reviewed in chapter 3). The first relies on hierarchical models, the second uses frames and 
the third description logic (DL). The most prominent example of a hierarchical model in the 
bio-sciences is undoubtedly the GeneOntology (GO). GO's controlled vocabulary has become 
a standard reference for databases and biological systems and is used both to extend the 
information about the related object as well as to order the related object under the GO 
ontology. Frames and DL describe more complex relationships and concepts in a formal 
framework, allowing automatic reasoning and inference. However, the development of such 
ontologies is a complex and time-consuming work and the associated reasoning and 
knowledge inference systems are not yet well established.  

 
For MAO, a hierarchical model was considered sufficient for the intended purpose of the 

ontology. Specifically, MAO is organized as a complex hierarchy, known as a directed 
acyclic graph (DAG), where the nodes in the graph represent concepts and the branches 
joining the nodes represent relationships. DAGs can be considered to be a generalization of 
trees in which child nodes (more specialized terms) may have multiple parents (less 
specialized terms) and multiple relationships to their parents.  

 
Another crucial factor in the design of MAO was the ability to integrate different 

information from a wide variety of different sources. Much as this information is now 
represented by ontologies that are available on the Open Biomedical Ontology (OBO) web 
site (http://obo.sourceforge.net/). OBO is a collaborative project for structured vocabularies 
and ontologies for use within the genomics and proteomics communities. For an ontology to 
be accepted as part of the OBO project, it must meet a number of requirements. The 
requirements for acceptance on the OBO site include: 

 
• The ontology should be open and available to be used by all without constraint 
• The ontology should be in a common formal language, either the OBO format or OWL 
• The ontology should possess a unique identifier within OBO 
• The ontologies should be orthogonal to other ontologies already lodged within OBO 
• The ontology should include textual definitions for all terms 

 
These acceptance criteria ensure coherence and facilitate the interoperation of the 

different ontologies using the same software tools. For example, the Ontology Lookup 
Service (Côté et al., 2006) has been developed that integrates the OBO ontologies into a 
single database and provides a web service interface to obtain information about multiple 
ontologies. For the MAO ontology, we therefore decided to use the OBO ontology language, 
thus ensuring compatibility with a wide range of biomedical ontologies, including the Gene 
Ontology (GO), the Sequence Ontology (SO), protein-protein interaction data (PSI), and 
taxonomic information via the NCBI organismal classification. 
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10.2.2 Ontology construction 
 

Numerous tools have been developed to aid the ontologist in the construction and 
maintenance of ontologies. These ontology editors have been compared previously in terms 
of availability, functionality, visualisation and input and output formats, among other criteria 
(Denny, 2002; Lambrix et al., 2003). All the systems tested had particular strengths and 
weaknesses and no tool was found to be superior in all aspects.  

 
The OBO-Edit tool (previously known as DAG-Edit) is the only editor capable of reading 

and writing ontologies in the OBO format, and. was therefore the clear choice for the 
construction of MAO. OBO-Edit is an open source, platform-independent application for 
viewing and editing OBO ontologies (http://sourceforge.net/projects/geneontology). Its 
emphasis on the overall graph structure of an ontology provides a friendly interface for 
biologists and makes OBO-Edit excellent for the rapid generation of large ontologies 
focusing on relationships between relatively simple classes. 

 

10.3 Conclusions 
 

The use of ontologies in all its forms; controlled vocabularies, taxonomies or more formal 
conceptual models, is contributing to the formal description of different aspects of 
biochemistry and molecular biology. Each ontology tends to focus on a certain aspect or sub-
domain, thus the combination of ontologies can provide a more extended domain description. 
The knowledge representation encoded in MAO, together with the other OBO ontologies, can 
be used to facilitate data sharing between different programs. For example, the PipeAlign 
toolkit (Plewniak et al., 2003) uses an XML format based on MAO to transfer information 
between the different steps in the alignment process. MAO also allows the annotation of 
multiple sequence alignments with structural and functional information, for example in 
BAliBASE version 3. It provides the basis for data integration, validation and analysis in a 
MACS-based information management system, that will be introduced in the next chapter. 
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11 MACS-based information management system 
 
This chapter describes the development of a new system for the retrieval, organisation 

and analysis of all the information associated with gene families, based on Multiple 
Alignments of Complete Sequences (MACS). The MACS Information Management System 
(MACSIMS) is described in Publication No. 3, included at the end of the chapter. 

 

11.1  Introduction 
 
Recent experimental developments have made available new genome-wide sequence and 

functional datasets. The size and complexity of these sets have created substantial data 
management and analysis challenges. The datasets being produced are much larger than 
biologists have traditionally dealt with, and so the data must be stored in a manner that makes 
them amenable to computational analysis. Information management systems are now needed 
to successfully exploit this wealth of data. This data is heterogeneous, can be stored in 
various flat file formats, relational databases etc., and is geographically distributed. The data 
is complex and error-prone. For example, in the case of large-scale protein interaction 
screens, using yeast-two hybrid or affinity purification of complexes, a significant percentage 
of reported interactions may be false positives (von Mering et al., 2002). Much of the data 
available are in fact computer predictions, with their inherent reliability. For example, most 
protein sequences are predicted from complete genome sequences by programs such as 
Glimmer etc. Many of the sequences contain errors (Bianchetti et al., 2005). Intelligent 
systems are needed to store, validate and transform the data into useful information (see 
chapter 4). 

 
In this context, multiple alignments of molecular sequences represent an ideal basis for 

the reliable integration of information, ranging from complete genomes to a gene and its 
related products (Woese et al., 1993; Lecompte et al., 2001). By placing the sequence in the 
framework of the overall family, multiple alignments can be used to identify important 
structural or functional motifs that have been conserved through evolution, and also to 
highlight particular non-conserved features resulting from specific events or perturbations. 
The goal of MACSIMS is to collect data and to generate information and knowledge about 
sequence/structure/function/evolution relationships. 
 

11.2 Design of MACSIMS 

11.2.1 Data storage and retrieval 
 

There are two main approaches used in bioinformatics for the storage of heterogeneous 
data. The different databases can be installed locally on the user’s own computer system, 
using a unified format. The advantage of this so-called ‘data warehousing’ approach is that 
the subsequent data retrieval is a relatively simple process. The disadvantage is that the 
operating costs can be very heavy in terms of the hardware required for database installation 
and maintenance. The alternative to local installation of the databases required for a particular 
application is to access the original data source remotely over the Internet. This approach 
reduces considerably the overheads required for local storage of the databases. However, 
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remote access requires complex systems to manage communication between the server and 
the client, particularly when errors occur because the remote systems are not available.  

 
 
 

In the Laboratoire de Biologie et Genomique Structurales (LBGS), we have local access 
to many generalist sequence and structure databases, maintained by the Plate-forme Bio-
informatique de Strasbourg (BIPS). In MACSIMS, we have used the Sequence Retrieval 
System (SRS) (Etzold and Argos, 1993) as a unified front end to independently access these 
databases. SRS is arguably the most widely used database query and navigation system for 
the life science community. It provides a single interface for most general biological 
databases, and allows a fast access via the creation of on-the-fly databases for large sets of 
sequences. Nevertheless, with the growing number of specialist databases, an alternative data 
retrieval system will be required to access new data resources that are not incorporated in 
SRS. For example, mutation data, protein-protein interactions and network/pathway 
information will be accessed remotely in future versions of MACSIMS. Another abundant 
data source that could be exploited is the scientific literature, thanks to the development of 
new methods and tools for literature-mining (Jensen et al., 2006). 

11.2.2 Data model 
 

The efficient integration and exploitation of complex heterogeneous data requires a 
formal data model that describes the data types used and the relationships that exist between 
different data types, in a format that can be understood by the computer. MACSIMS is based 
on the data model embodied in the MAO ontology, described in chapter 10. MAO facilitates 
the integration of sequence, structure and function information by providing a unified 
representation of the concepts defined in the different domains. In the context of the multiple 
alignment, the data retrieved from different resources can be compared, validated and 
propagated from the known to unknown sequences. The MAO ontology also provides 
facilities for supplementing the verified information with the results of computer predictions. 
In this case, attributes are assigned to the predicted data concepts that describe the algorithm 
used to produce the prediction. This is important for automatic annotation and analysis 
systems, where the theoretical evidence for a given prediction provides an indication of its 
reliability.  

11.2.3 Data visualisation 
 

An important aspect of information management systems is the possibility for browsing 
and searching of the stored data and for interactive exploration and manipulation to facilitate 
analysis from multiple perspectives. In MACSIMS, the retrieved data and the results of the 
subsequent analyses are output in an XML format file that is used for high-throughput or 
automatic processing. In addition, a graphical, web-based user interface is provided via the 
JalView multiple alignment editor (Clamp et al., 1994). JalView is a well-established, robust 
system that includes many features, such as a global multiple alignment overview, sequence 
annotation features, phylogenetic trees, etc. 
 

In addition, the XML format file created by MACSIMS can be input to the OrdAlie, 
Ordered Alignment Information Explorer (L. Moulinier, manuscript in preparation) for more 
in-depth analyses of residue conservation. OrdAlie highlights residues that are conserved at 
the family or the sub-family levels, that are generally important for the structure or the 
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function of the protein. In addition, differentially conserved positions in the alignment are 
identified, i.e. positions that are conserved in more than 90% of one functional group and 
strictly absent in the other. The differentially conserved residues are often involved in sub-
family specific functionalities. For example, OrdAlie was used to perform a sequence 
analysis of the ligand-binding domain of nuclear receptors (see section 5.2.5), revealing two 
sets of differentially conserved residues, which partitioned the entire nuclear receptor 
superfamily into two classes related to their oligomeric behaviour (Brelivet et al., 2004).  

11.2.4 Ab initio predictions 
 

For sequences with known homologues, information can be propagated reliably. 
Annotation of orphan sequences by structure, prediction of transmembrane etc., core block 
regions. 
 

11.3 MACSIMS applications 
 

The potential applications of MACSIMS are numerous, but will include such fields as 
the automatic annotation of the ever-increasing number of hypothetical proteins being 
produced by the high-throughput genome sequencing projects or the definition of 
characteristic motifs for specific protein folds. In the LBGI, the integrative power of 
MACSIMS has been used in a number of projects where the detailed analysis of protein 
families represents a crucial component.  

11.3.1 Validation of predicted protein sequences 
 

Although high-throughput sequencing of genomes and HTC are producing an avalanche 
of data, the quality of the sequences in the public databases depends on the technique used to 
produce them. RNA sequences consist of high quality individually cloned cDNA, expressed 
sequence tags (EST) containing a 1% base error rate, or high-throughput cDNA (HTC) or 
more variable quality (Benson et al., 2006). Protein sequences are either translated from 
functionally cloned cDNA or HTC sequences, or are the result of computational predictions. 
Proteins derived from the conceptual translation (using the genetic code) of functionally 
cloned cDNA are generally of high quality, although some represent fragments of full-length 
proteins. Proteins translated from HTC sequences need to be verified. But the majority of the 
proteins in the public sequence databases are now predicted in silico from 
prokaryotic/eukaryotic genomes and it has become evident that such programs may produce 
invalid data. In prokaryotes, translation start site prediction is reported to be unsatisfactory 
(Hannenhalli et al., 1999) and in eukaryotes, the automatic determination of precise exon-
intron boundaries remains an unsolved problem (Mathe et al., 2002).  

 
We have developed a program, vALId (Bianchetti et al., 2005), that exploits the 

information content of MACSIMS to verify the quality of the sequences in a multiple 
alignment. The vALId method is described in detail in Publication No. 4 in Annex 1. The 
first step in the validation process is to determine the coding origin of the sequences, defined 
as either ‘complete cDNA’, HTC or ‘predicted’. In the next step, predicted proteins and 
translated HTC are analyzed according to their phylogenetic context. For each sequence, 
column conservation scores are compared at three different levels, namely the complete 
alignment, the sub-group or ‘sub-alignment’ and the closest neighbour (see figure 11.1). 
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Phylogenetic consistency implies that a given sequence should be increasing divergent when 
compared to its closest neighbour, to its sub-alignment and to the complete alignment. If a 
sequence segment satisfies these criteria it is considered to be reliable; otherwise, it is 
annotated as a suspicious insertion or divergent segment. 

 .  
 

Figure 11.1 vALId determination of reliable sequence segments and detection of potential errors 
a) Comparison of conservation scores for the complete multiple alignment, the sub-alignment and the nearest 
neighbour. b) Integration of the information by MACSIMS, based on the MAO ontology. 

 
In the final “correction” step, vALId exploits the MACSIMS links to the external 

databases, Uniprot and Genbank, to extract transcriptional and genomic data that is then used 
to propose corrections of the delineated inconsistent regions to enhance protein quality. All 
the information generated by vALId can be integrated in a single system using MACSIMS 
(see figure 11.1b) and made available to the user via an interactive web-based interface. An 
example vALId analysis and the web server display are shown in section 5.2.3.  

 
 



Chapter 11: MACS-based Information Management System 

 102

The accuracy of the vALId predictions was evaluated using a large scale test set 
consisting of 100 MACS automatically generated by PipeAlign (Plewniak et al., 2003). Of 
the 6141 proteins in the test set, 65% were computational predictions and 3% were translated 
HTC. Although most predictions contained at least one reliable segment, 44% of the 
eukaryote predicted sequences contained at least one potential error. The evaluation also 
revealed an unexpectedly high number of inconsistent regions in HTC, with 31% of them 
containing suspicious regions. By identifying the reliable and unreliable segments in the 
sequences, vALId can improve the accuracy of subsequent analyses for the detection of 
conserved structural/functional motifs or the identification of non-conserved features 
resulting from specific events or perturbations.  

11.3.2 Protein function annotation using the Gene Ontology 
 
MACSIMS is also used in the GoAnno web server (Chalmel et al., 2005) to reliably 

predict protein function based on the hierarchical and standardized vocabulary provided by 
the Gene Ontology (GO) (Gene Ontology Consortium, 2000). As described in Publication 
No. 5 in Annex 1, GOAnno takes a query protein as input and constructs a MACS using the 
PipeAlign system (Plewniak et al., 2003). MACSIMS is then used to retrieve the GO 
annotations for each sequence in the query subfamily, which are then propagated according to 
a certain number of criteria (defined in detail in the publication in Annex 1). The GOAnno 
system was used to study the mechanisms leading to retinal degeneration, on microarray 
experiments to analyze 1046 proteins (Abou-Sleymane et al., 2006). Given the large number 
of transcripts showing altered level of expression in R7E and R6/2 retina, we used a 
systematic approach to interpret the biological significance of these gene deregulations. First, 
we re-annotated each transcript by analyzing the corresponding Affymetrix probe set 
sequences, based on BLAST homology searches in the public databases. GOAnno was then 
used to predict Gene Ontology annotations for each identified protein. Of the 727 deregulated 
transcripts, 541 were assigned to GO biological process terms. Disease onset in R7E was 
associated with under-expressed genes significantly enriched in signal transduction, cell 
communication and most importantly visual perception. Enrichment of down-regulated genes 
involved in visual perception makes perfect sense with the early and progressive ERG defect 
in R7E retinopathy and by itself validates the method that we used to identify deregulated 
pathways.  

11.3.3 Target characterisation for structural proteomics 
 
MACSIMS has been used to select and characterise potential targets in the Structural 

Proteomics in Europe (SPINE) project (Albeck et al., 2006). SPINE is an integrated research 
project to develop new methods and technologies for high-throughput structural biology. 
Bioinformatics plays an important role in SPINE, for target selection and analysis, in the 
development of laboratory information management systems and in the dissemination of the 
results of SPINE activities. The bioinformatics developments for the SPINE project are 
described in detail in Publication No. 6 in Annex 1.  

 
The SPINE target list included a wide range of proteins from all domains of life, ranging 

from virus and bacteria to eukaryotic targets of potential pharmaceutical interest. In order to 
fully understand the potential biomedical role of a target protein, such diverse data as the type 
of organism, domain organisation, splicing variants, 2D/3D structures and mutations and their 
associated illnesses, must be organised into an information network for presentation to the 
experimentalist. The Gscope platform was therefore used to perform PipeAlign and 
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MACSIMS analyses of all targets in the SPINE target database and an "identity card" was 
created for each potential target. These identity cards include lists of full-length and partial 
protein homologues, similar 3D structures that provide templates for homology modelling, 
and domain boundaries used for defining protein constructs. The identity cards for each target 
are available for all SPINE members, as well as the general public, via the Project web site at 
http://www.spineurope.org/.  

11.3.4 Prediction of structural/functional effects of mutations 
 
The MS2PH (Structural Mutation to Human Pathologies Phenotype) project uses the 

information provided by MACSIMS to facilitate the analysis of proteins involved in human 
genetic disease and the identification of mutations that cause structural or functional 
perturbations. In the context of this project, a web server has been developed (described in 
Publication No. 7 in Annex 1) that combines automated protein modelling with the creation 
of a hierarchical and annotated MACS (Garnier et al., 2006). The MAGOS server is designed 
to allow in-depth structural, functional and evolutionary analyses of protein families. The 
structure-to-function relationship can be directly addressed through three-dimensional (3D) 
structure determination, while the sequence-to-function relationship can be understood 
through the analysis of conserved patterns and evolution of protein organization mainly based 
on amino acid sequence comparisons in the context of the multiple alignments. MAGOS 
accepts a single protein sequence as input and incorporates four main steps: (i) a high quality 
MACS is first computed using the PipeAlign system (Plewniak et al., 2003), (ii) the validated 
MACS is annotated using MACSIMS and at the same time, the aligned proteins are 
characterized according to their homology with proteins implicated in human genetic 
diseases, (iii) the query protein is modelled using Geno3D (Combet et al., 2002), whose main 
advantage is the ability to generate homology 3D structure models at a low rate of identity, 
(iv) the final step is the retrieval of all computed results and their interconnection via a user-
friendly web interface based on the Jmol applet (http://jmol.sourceforge.net).  

 
 

Figure 11.2 MAGOS web server display 
Secondary structure elements are coloured red (helix) and yellow (beta strand) in both the MACS and the 3D 
structure representation. The residue highlighted in orange corresponds to a mutation (D276H) involved in 
non-ketotic hyperglycinemia (NKH).. 
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For example, figure 11.2 shows a MAGOS display of sequences similar to the human T-
protein of the glycine cleavage system (Uniprot:P48728). Defects in this protein are a cause 
of non-ketotic hyperglycinemia (NKH) (OMIM:605899), also known as glycine 
encephalopathy (GCE). The MAGOS web server thus illustrates the data integration potential 
of MACSIMS, by characterizing mutations in terms of their evolutionary conservation, their 
position in the 3D structure and their role in functional sites. 
 

11.4 Conclusions 
 

Providing access to information and simulations to large communities of biologists 
should accelerate the process of biological discovery itself. MACSIMS has been designed to 
facilitate studies concerning the sequence/structure/function/evolution relationships of RNA 
and proteins. MACSIMS has already been expoited in a number of different projects, but the 
potential applications of MACSIMS are much broader, including such fields as the automatic 
annotation of the ever-increasing number of hypothetical proteins being produced by the 
high-throughput genome sequencing projects, or the definition of characteristic motifs for 
specific protein folds.  
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“It is perhaps hard to make firm 
statements on such questions without 
having examined them many times”  

Aristotle, Categories, 8b21 

12 MACSIMS : systematic testing of research hypotheses  

12.1 Introduction 
 

Information management systems (IMS) such as MACSIMS are designed to efficiently 
retrieve and organise the vast amount of biological data that is now available, including 
genomic sequences, 3D structures, cellular, phenotype and other types of biologically 
relevant information. Such systems are helping biologists systematically gather and exploit 
all the data crucial for their research, by automating many aspects, from data acquisition to 
knowledge discovery. But the number and variety of new data resources are increasing at an 
exponential rate, thanks mainly to the new, high-throughput technologies. For example, the 
last update of the NAR Molecular Biology Database Collection included 858 databases, 
which is 139 more than the previous one (Galperin, 2006). It is clearly impossible to include 
all the information now available, and a critical factor for the success of future IMS will be 
their ability to select specific, targeted information that will reduce the time, effort and 
resources required to sift through the Web’s massive data storehouses. For a specific research 
problem, removing irrelevant information also allows one to focus on the key areas. For 
example, in a microarray discriminant analysis, the purpose of filtering out low-density and 
non-differentially-expressed genes is to remove genes that are unlikely to contribute to the 
phenotype difference. For automatic knowledge extraction and inference systems, we need to 
determine the appropiate information that will allow us to accurately model the biological 
data. In a recent editorial (Li, 2006), Wentian Li proposed that the optimal solution would be 
to “keep the appropriate level of model complexity that matches that of the data and at least 
throw away the irrelevant information”. However, the question of what information is 
relevant for a given research question is not always evident. 

 
For example, one area that has been the subject of much study recently is the prediction of 

functional residues, such as those involved in catalytic sites, protein modifications, protein 
interactions or ligand binding. Such predictions have important implications in many areas, 
including protein engineering, metabolic modelling, genetic studies of human disease 
susceptibility, and the development of new drug discovery strategies. Many methods for the 
prediction of functional sites have been developed that use amino acid conservation as the 
primary indicator of potential sites, based on the assumption that functional sites are more 
conserved during evolution (e.g. Lichtarge et al., 1996; Valdar, 2002). Other prediction 
methods have exploited structural information in order to identify functional sites (e.g. 
Laskowski et al., 1996; Ondrechen et al., 2001). More recently, it has become clear that 
neither sequence nor structure alone is sufficient for accurate predictions and efforts are now 
being concentrated on the combined use of both sequence conservation and structural 
information (e.g. Armon et al., 2001; Madabushi et al., 2002; Chelliah et al., 2004; Cheng et 
al., 2005). In the search for an accurate prediction of functional residues, a large number of 
different sequence/structure descriptors have been proposed. For example, the accuracy of 
prediction of functional effects of nsSNPs was investigated, using a 32-descriptor set 
including physiochemical properties of amino acids, protein electrostatics, amino-acid 
residue flexibility, and binding interactions (Karchin et al., 2005). It was shown that two 
descriptors, one describing the solvent accessibility of “wild-type” and “mutant” amino-acid 
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residues and one residue conservation score, achieved similar overall accuracy and produced 
less false positives than the complete 32-descriptor set.  

 
Clearly, identifying the most informative descriptors remains critical to the success of any 

computational prediction method. This chapter introduces the methodology we have 
developed to select the most suitable information for integration in MACSIMS. We make use 
of the integrative power of MACSIMS, together with the high quality, large scale tests in the 
BAliBASE benchmark, to estimate the relevance of different sequence and 3D structure 
descriptors for the accurate prediction of functional residues. We showed in chapter 9 that 
BAliBASE represents a useful benchmark for the objective evaluation and comparison of 
multiple sequence alignment algorithms. Now, thanks to MACSIMS and the MAO ontology, 
it is possible to automatically integrate new structural and functional information in the 
BAliBASE reference alignments. In the resulting annotated alignments, the potential 
sequence and structure based criteria can be easily assessed by comparing the predictions to 
the known functional residues. The increased size of the latest release of the BAliBASE 
benchmark means that the predictive power of the descriptors can be reliably evaluated. 
Furthermore, because BAliBASE provides high quality, manually refined multiple 
alignments, the effect of the noise associated with sequence misalignments is signficantly 
reduced in the tests we performed.  

 
To illustrate the potential of this methodology, we have selected a number of different 

descriptors that have been used recently in functional residue prediction methods. We chose 
two scores that can be calculated based only on the multiple sequence alignment, namely 
residue conservation and residue hydrophobicity scores, and two scores that are determined 
from the 3D structure i.e. surface accessibility, and the number of inter-residue contacts. 
 

Residue conservation: Evolutionary conservation of residues is probably the most widely-
used descriptor for the identification of functionally important residues (e.g. Lichtarge et 
al., 1996; Reddy et al., 2001). However, there has been some debate in the literature as to 
whether certain functional residues are in fact more conserved than other residues at the 
surface of the protein (e.g. Grishin et al., 1994; Caffrey et al., 2004).  
 
Residue type: A previous study of 178 enzymes with 615 catalytic residues (Bartlett et al., 
2002) showed that catalytic residue types are limited, with just six residue types (H, C, E, 
D, R, K) accounting for 70% of all catalytic residues. Residue hydrophobicity has been 
proposed as a feature of protein-protein interaction sites (e.g. Young et al., 1994; Glaser et 
al., 2001), although hydrophobicity at the interfaces of certain, transient complexes is not 
as distinguishable from the remainder of the surface as hydrophobicity at the interfaces of 
obligate complexes (Jones and Thornton, 1996).  
 
Residue accessibility: It is generally assumed that functional residues should be exposed 
on the surface of the protein. Solvent accessibility or accessible surface area has been 
proven to be a useful factor in the prediction of the functional effects of amino acid 
substitutions (Karchin et al., 2005). 
 
Inter-residue contacts: It has been proposed that functional sites might be spatially 
organised, with physically connected networks linking distant functional sites in the 
structure through packing interactions (Socolich et al., 2005). 
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The goal of this study is to determine which of these descriptors are correlated with 
functional residues and can consequently be exploited in future versions of MACSIMS. 

12.2 Material and Methods 
 
Large scale tests 
 

Version 3.0 of the BAliBASE benchmark contains 217 high quality multiple alignments. 
The alignments were constructed based on 3D structural superpositions, followed by manual 
verification and refinement to ensure the correct alignment of functional sites. All the 
reference alignments in BAliBASE contain at least one sequence of a protein whose 3D 
structure is known and available in the PDB database. Information concerning functional 
residues was integrated in the multiple alignments using MACSIMS. Functional sites were 
extracted automatically from two manually verified sources: 

 
(i) Functional sites in the PDB ‘SITE’ entries are annotated by the authors. They include a 

variety of different functional residues, such as catalytic sites, binding sites, or even 
‘residues around catalytic site’.  

(ii) The Catalytic Site Atlas (CSA) contains reliable information about enzyme catalytic 
sites. However, the CSA is manually annotated from publications and not all PDB entries 
are currently included. 

 
Calculation of conserved columns 
 

We use two scores for the estimation of the conservation of a column in the BAliBASE 
multiple alignments: 
 
(i) The Mean Distance (MD) column score is used in the calculation of the norMD objective 

function (Thompson et al., 2001). For each column, a 20 dimensional sequence space is 
defined and the amino acids present in the column are assigned a position in the space, 
depending on a set of residue similarity scores. By default, the scores are based on the 
Gonnet 250 matrix (Benner et al., 1993). The MD score is then defined as the weighted 
pairwise sum of the distances between all amino acids in the column. The MD column 
scores are normalized in the range of 0 to 100, allowing the direct comparison of the 
conservation scores for different alignments containing different numbers of sequences.  

(ii) The PC measure is based on the conservation of physico-chemical residue groups. The 
PC score is calculated using the same algorithm as MD, but the residue comparison 
scores are based amino acids groups of physico-chemical properties (see table 12.1). 

 
Amino acids Physico-chemical property 
KRH Hydrophilic, basic 
DEQN Hydrophilic, non-basic 
ACILMVFYW Hydrophobic 
FYW Aromatic 
PGST Small, neutral 

 
Table 12.1 Amino acid groups based on physico-chemical properties  
Amino acid groups were determined based on selected physico-chemical properties (French and Robson, 1983). 
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Calculation of residue hydrophilicity 
 

Residue hydrophilicity scores are calculated using the method developed by Kyte and. 
Doolittle in 1982. A hydropathy scale was composed where the hydrophilic and hydrophobic 
properties of each of the 20 amino acid side-chains was taken into consideration. The scale 
was based on experimental observations derived from the literature. 
 
Calculation of solvent accessibility 
 

The residue accessibility score is based on the classical definition of residue accessibility 
(Richards, 1977). The accessible surface of a protein is defined as the surface spanned by the 
centre of a spherical solvent probe as it rolls over the molecule.  Here we compute the area of 
the accessible surface using a numerical integration (Koehl and Delarue, 1994). Calculations 
were performed on a single protein chain, in the absence of ligands. The total accessible 
surface area of the protein is broken down into accessible surface area for each of its residues. 
 
Calculation of interresidue contacts 
 

Inter-residue contacts are defined acording to Miyazawa and Jernigan (1993). For each 
residue, the centroid of its sidechain is computed. Two residues are considered to be in 
contact if their centroids are distant by less than 6 angstroms. Two descriptors based on 
interresidue contacts are defined for each residue: 
 

(i) the number of interresidue contacts 
(ii) the number of interresidue contacts with conserved residues  

 
Integration in MACSIMS 
 

The six sequence/structure descriptors described above were calculated by external 
programs and integrated in the context of the BAliBASE alignments using MACSIMS, based 
on the MAO ontology (see figure 12.1). 

 
Figure 12.1Integration of 3D structural information in MAO 
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Descriptor evaluation  

 
For each of the six sequence/structure descriptors, the same protocol was used to evaluate 

the pertinence of the information for the prediction of functional residues. 
 
1. For each column in the alignment, we calculate the mean value of the descriptor for the 

PDB sequences present in the alignment. Using the mean values over sequences has been 
used previously to improve the prediction of 3D structure of a protein from its sequence (e.g. 
Finkelstein, 1998; Cui and Wong, 2000). 

 
2. A histogram of the mean descriptor values allows a manual selection of the most 

appropriate threshold value for prediction of functional residues.  
 
3. The accuracy of the functional residue predictions based on the descriptor is then 

evaluated by calculating the sensitivity and specificity:  
 

Sensitivity=(100*TP)/(TP+FN) 
Specificity=(100*TN)/(TN+FP) 
 

where TP=number of true positives, TN=number of true negatives, FP=number of false 
positives, FN=number of false negatives. 
 

12.3 Results and discussion 
 

We have designed a protocol to study the pertinence and expoitability of different types 
of information in the context of MACSIMS. In particular, we have focused on the prediction 
of residues that are important for the function of the protein, based on six sequence and 
structure based descriptors. The predicted residues are compared to known functional sites in 
a large scale test, using the 217 multiple sequence alignments in the BAliBASE benchmark 
(version 3). The known functional sites were extracte from the CSA and PDB databases and 
integrated in the BAliBASE alignments using MACSIMS. Table 12.2 summarises the 
functional annotation of the BAliBASE alignments. The 217 full-length alignments contained 
a total of 207069 columns, of which 2623 columns were annotated with at least one 
functional site.  
 

Ref1  
V1 V2 

Ref2 Ref3 Ref4 Ref5 Total 

Total columns 19018 28471 32843 25358 81777 19602 207069 
Total columns with >=1 site 564 288 532 390 606 243 2623 
Total core block columns 3581 9071 4314 3051 6123 2250 28390 
Total core block columns with 
>=1 site 

168 164 199 143 226 101 1001 

 
Table 12.2 Known functional sites in BAliBASE alignments 
 

Some of the functional sites are specific to sub-families in BAliBASE and are not 
conserved in the complete alignment at the structural similarity level. Therefore, in the 
subsequent tests, we consider only the functional sites that are located in conserved core 
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block regions. Thus, the test set used here consists of a total of 28390 alignment columns, of 
which 1001 have been identified as being important functional positions.  
 

This test set was used to evaluate the six descriptors identified as being potentially useful 
for prediction of functional residues, namely MD residue conservation, PC residue 
conservation, hydrophilicity, surface accessibility, number of interresidue contacts and 
number of interresidue contacts with conserved residues. These descriptors are clearly not all 
independent. Table 12.3 shows the degree of correlation between the different descriptors. 

 
 MD 

conservation 
PC 

conservation 
hydrophilicity accessibility contacts conserved 

contacts 
MD 1.0 0.84 -0.05 -0.19 0.17 0.28 
PC  1.0 0.22 -0.35 0.35 0.47 

hydrophilicity   1.0 -0.47 0.49 0.47 
accessibility    1.0 -0.87 -0.75 

contacts     1.0 0.87 
conserved contacts      1.0 
 
Table 12.3 Correlation coefficients between potential descriptors for prediction of functional residues 
Correlation scores around 0 indicate non-correlated values. 
 

The high correlation between the sequence-based descriptors, MD and PC, is to be 
expected as these two descriptors both measure the degree of residue conservation observed 
at each position in the alignment. However, the residue hydrophilicity score is clearly 
unrelated to the two conservation scores and may provide additional, complementary 
information for the functional residue information. Some correlation is also to be expected 
between the structure-based descriptors, surface accessibility and the number of residue 
contacts, since buried residues should generally make more interresidue contacts.  

 
The sequence-based hydrophilicity scores and the structure-based surface accessibility 

values are inversely correlated. This result is in agreement with the previous observation of a 
significant correlation between hydrophobicity and surface exposure (Moelbert et al., 2004). 
Nevertheless the correlation in this study was not optimal. A number of factors were 
proposed by the authors to explain this. First, the poor correlation seen at the single sequence 
level may have been due to naturally occurring proteins with significant mutational stability 

or designability. Second, there are amino acids for which hydrophobicity is not the prime 
factor in determining exposure. For example, amino acids such as glycine can appear either 
on the surface or in the core, and charged amino acids can form salt bridges. 
 

12.3.1 Residue conservation 
 

Functional residues are often assumed to be more conserved during evolution. To test this 
hypothesis, we compared the two different residue conservation scores, mean distance (MD) 
and physico-chemical groups (PC), obtained for the functional and non-functional residues in 
BAliBASE (figure 12.2).  
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Figure 12.2 Frequency distribution of conservation scores for functional versus non-functional residues  
A. MD conservations scores, B. PC conservation scores for functional (red) versus non-functional (blue) 
residues. Vertical axis represents proportions of residues for each conservation score. 
 

We then selected various threshold scores for both conservation scores based on the 
histograms in figure 12.2. Alignment positions scoring higher than the threshold value were 
predicted to correspond to functional residues. Table 12.4 shows the results of the predictions 
based on the two conservation scores at different thresholds.. 
  

Ref1 Prediction 
descriptors V1 V2 

Ref2 Ref3 Ref4 Ref5 Total  

MD>20         
TP 69 112 121 73 131 54 560  SE=56% 
FP 487 2505 1083 479 1402 558 6514  SP=76% 
MD>10         
TP 76 122 141 80 150 65 634  SE=63% 
FP 687 3140 1511 715 1892 756 8701  SP=68% 
PC>20         
TP 98 140 170 106 178 77 769  SE=69% 
FP 1356 4594 2461 1431 3103 1202 14147  SP=48% 
PC>10         
TP 132 150 190 136 214 91 913  SE=91% 
FP 2164 6461 3346 2212 4454 1670 20307  SP=26% 

 
Table 12.4 Prediction of functional residues based on column conservation only 
TP=true positive, FP=false positive. SE=sensitivity, SP=specificity. Here, a true positive indicates a position 
defined as conserved that contains at least one known functional site. False positives are conserved positions 
for which no function is currently known 



Chapter 12: MACSIMS applications 

 113

 
A stricter definition of conservation leads to better specificity (less false positives), but 

lower sensitivity (more false negatives). Even a very loose definition of conservation 
(PC>10) results in some false negatives, that correspond to functional residues that are 
specific to sub-families in the BAliBASE alignment. Figure 12.3 shows an example of a false 
negative prediction in the BAliBASE alignment, BB11004. Column 153 in this alignment 
contains a conserved arginine and corresponds to a true positive prediction, regardless of the 
definition of conservation used. However, columns 170,172,174 and 176 contain functional 
residues, but are not conserved according to either the MD or the PC scores. 
 

 
Figure 12.3 Part of BAliBASE alignment BB11004. Black boxes above the alignment indicate core blocks 
The alignment contains 4 PDB sequences: 1qe0A=Histidyl-tRNA synthetase, 1evkA=threonyl-tRNA synthetase, 
1atiA=glycyl-tRNA synthetase, 1nj8=prolyl-tRNA synthetase.  a) Alignment coloured by secondary structure 
(red=helix, green=strand). Black boxes above the alignment indicate reliable core block regions.  Yellow boxes 
indicate residues annotated as functional sites in PDB or CSA databases.  b) Alignment coloured by residue 
type. Black boxes indicate columns containing at least one known functional site. 
 

We conclude from these tests that residue conservation is a pertinent descriptor for the 
prediction of functional sites, but is not sufficient. We therefore need to include other 
information.  

12.3.2 Residue type 
 

In a previous study of 178 enzymes with 615 catalytic residues (Bartlett et al., 2002), it 
was shown that catalytic residue types are limited, with just six residue types (H, C, E, D, R, 
K) accounting for 70% of all catalytic residues. We obtained similar results for the CSA 
catalytic sites in this data set (Figure 12.4A).  
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Figure 12.4 Functional propensities of the 20 amino acid types 
A. Percentage of CSA catalytic residues, divided by the percentage of non-functional residues for each residue 
type. B. Percentage of PDB site residues, divided by the percentage of non-functional residues for each residue 
type. 
 

The ranking of the observed functional propensities was different for the sites extracted 
from the PDB entries, although some similarities were observed. The residues H,C,E,R had 
high functional propensities for both test sets, while the residues I,A,V,L and P had very low 
propensities. Note that the PDB sites include not only catalytic residues, but also a wider 
variety of functional residues, such as those involved in protein-protein interactions, ligand 
binding etc.  
 

Residue hydrophobicity has also been proposed as a feature of certain protein interaction 
sites (e.g. Young et al., 1994; Glaser et al., 2001). Figure 12.5 shows the Kyte-Doolittle 
hydrophilicity scores for functional versus non-functional residues. 
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Figure 12.5 Frequency distribution of hydrophilicity scores for functional versus non-functional residues  
Hydrophibilicity score for functional (red) versus non-functional (blue) residues. Vertical axis represents 
proportion of residues. 
 
The peak at -3.5 to -3.0 is due to the high frequency of histidine residues in the functional 
residue dataset (11% compared to 2% for non-functional residues). In this histogram, there is 
no obvious threshold hydrophilicity score that differentiates functional and non-functional 
residues and the hydrophilicity score was therefore excluded from the prediction tests. 

12.3.3 Solvent accessiblity 
 

In a study of potential descriptors for prediction of functional effects of amino acid 
substitutions (Karchin et al., 2005), it was shown that solvent accessibility was one of the 
most pertinent parameters. One of the most widely used solvent accessibility scores follows 
the definition of residue accessibility defined by Richards in 1997. The score estimates the 
percentage of the residue surface that is accessible to a solvent, i.e. an accesssiblity score of 
zero means that the residue is buried.  

 
Figure 12.6 Frequency distribution of accessibility scores for functional versus non-functional residues  
Accessibility scores for functional (red) versus non-functional (blue) residues. Vertical axis represents 
proportions of residues for each accessiblity score. 
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As shown in figure 12.6, 29% of the known functional residues have an accessibility score 

of less than 5% and 12% have accessibility=0%. This could be considered to be a surprising 
result, as one might expect the majority of functional residues to be on the surface of the 
protein. However, a similar result has been observed previously for catalytic residues 
(Bartlett et al., 2002). The authors showed that 5% of all catalytic residues in the study had 
0% relative solvent accessibility and were totally buried. There are a number of possible 
reasons for this result. First, the definition of solvent accessibility may not distinguish 
residues in restricted regions of the surface, such as pockets or clefts. Second, the 
crystallographic structures in the PDB database represent one conformation of the protein, 
while functional sites may only be exposed under certain conditions, such as in the presence 
of cofactors leading to changes in the structure of the protein (allostery). 
 

For the prediction of functional sites based on the multiple alignment, we calculated the 
mean accessibility score for each column. We chose a relatively low threshold for the 
prediction of functional sites, since a higher threshold would lead a large number of false 
negatives and thus, to less sensitivity. Table 12.5 shows the results of the predictions for 
different mean accessibility thresholds. 
 

Ref1 Prediction 
descriptors V1 V2 

Ref2 Ref3 Ref4 Ref5 Total  

Conserved+ 
accessibility>0% 

        

TP 131 140 190 136 206 90 893  SE=89% 
FP 1956 5450 3145 2081 3728 1494 17854 SP=35% 
Conserved+ 
accessibility>1% 

        

TP 117 116 177 125 189 81 805 SE=80% 
FP 1558 4435 2563 1687 2992 1193 14428 SP=47% 
Conserved+ 
accessibility>2% 

        

TP 112 111 171 114 178 75 761 SE=76% 
FP 1428 4070 2370 1556 2739 1081 13244  SP=52% 
Conserved+ 
accessibility>5% 

        

TP 96 87 143 95 141 64 626 SE=63% 
FP 1153 3453 2031 1316 2291 893 11137  SP=59% 

 
Table 12.5 Prediction of functional residues based on residue conservation and mean accessibility 
Conserved columns were defined ashaving  PC>10. TP=true positive, FP=false positive. SE=sensitivity, 
SP=specificity. 
 

The inclusion of the accessibility factor reduces the number of false positives, compared to 
that obtained when using only residue conservation. The criteria of >0% accessibility leads to 
a high recall of conserved sites (sensitivity= 89%), but has a low specificity (=35%). Using a 
5% threshold for accessibility, decreases the sensitivity to 63%, but increases the specificity 
to 59%. 

12.3.4 Interresidue contacts 
 

It has been proposed that functional sites might be spatially organised, with physically 
connected networks linking distant functional sites in the structure through packing 
interactions (Socolich et al., 2005). Furthermore, it was hypothesised that the amino acid 
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interactions specifying the atomic structure should be conserved throughout the members of a 
protein family. To investigate the possibility that the extent of residue interactions may differ 
between functional and non-functional residues, we calculated the number of interresidue 
contacts for each residue in the BAliBASE alignments. Figure 12.7 shows the number of 
interresidue contacts for functional and non-functional residues, averaged over the PDB 
sequences present in the alignment. 
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Figure 12.7 Frequency distribution of interresidue contacts for functional versus non-functional residues  
Number of interresidue contacts for functional (red) versus non-functional (blue) residues. Vertical axis 
represents proportion of residues. 
 

In general, functional residues have more interresidue contacts, but the difference is not 
sufficient for this score to be useful for distinguishing functional and non-functional residues. 
We also calculated the number of interresidue contacts with conserved residues. On average, 
functional residues have more contacts with conserved residues than non-functional ones 
(figure 12.8).  
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Figure 12.8 Frequency distribution of interresidue contacts with conserved residues for functional versus 
non-functional residues  
Number of interresidue contacts with conserved residues for functional (red) versus non-functional (blue) 
residues. Vertical axis represents proportion of residues. 
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For the prediction of functional sites based on the multiple alignments, we calculated the 
mean number of conserved contacts for each column. Table 12.6 shows the results of the 
predictions for different thresholds of accessibility and number of contacts with conserved 
residues. 
 

Ref1 Prediction descriptors 
V1 V2 

Ref2 Ref3 Ref4 Ref5 total  

Conserved+ 
accessibility>0%+contacts>1 

        

TP 126 139 185 131 202 86 869 SE=87% 
FP 1677 4609 2926 1906 3265 1377 15760 SP=42% 
Conserved+ 
accessibility>0%+contacts>2 

        

TP 102 131 175 118 189 83 798 SE=80% 
FP 1398 3845 2567 1611 2772 1218 13411 SP=51% 
Conserved+ 
accessibility>1%+contacts>1 

        

TP 112 115 172 120 185 77 781 SE=78% 
FP 1281 3601 2344 1513 2531 1077 12347 SP=55% 
Conserved+ 
accessibility>1%+contacts>2 

        

TP 88 107 162 107 172 74 710 SE=71% 
FP 1009 2854 1985 1220 2042 921 10031 SP=63% 

 
Table 12.6 Prediction of functional residues, based on conservation, mean accessibility and mean 
conserved contacts. 
Conserved columns were defined ashaving  PC>10. TP=true positive, FP=false positive. SE=sensitivity, 
SP=specificity. 
 

The inclusion of the structure based descriptors (accessibility and number of interresidue 
contacts with conserved residues) leads to an improvement in the sensitivity of the 
predictions. For example, using the combined sequence and structure descriptors, we 
achieved a sensitivity of 71%, with a specificity of 63%. Using only the residue conservation 
descriptor, for a similar level of sensitivity (=69%), we obtained a specificity of only 48%. 
 

12.4 Conclusions and Perspectives 
 

We have shown that MACSIMS can be used to extend the range of applications for the 
BAliBASE benchmark. When structural/functional information is integrated in the 
BAliBASE alignments, the benchmark can be used as a test environment for the numerous 
bioinformatics applications that exploit evolutionary information. Here, we have developed a 
methodology for testing the pertinence of new information in the context of the MACS. We 
have demonstrated the efficiency of the method for a number of different sequence/structure 
predictors that might represent potential predictors of functional residues.  

 
Another reason for the low specificity observed in these tests, may be that not all the 

functional sites in the alignments are annotated in the PDB and CSA databases. It is therefore 
likely that some of the false negative predictions may actually be functional sites. This 
problem will hopefully be alleviated by the recent efforts towards standardisation of 
bioinformatics data resources and a more systematic annotation of biological sequences and 
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structures, which should lead to more precise definitions of protein function and functional 
sites. 

 
Using two different residue conservation scores, MD and PC, we detected most of the 

known functional sites, but we also obtained a large number of false positives. In the future, 
we will investigate alternative definitions of residue conservation. One problem is the 
threshold used to specify whether the alignment position is conserved or not. Alignments of 
closely related sequences will obviously contain more positions with high column 
conservation scores, which may not necessarily correspond to functionally important sites. 
Other measures have been developed recently that take into account the overall similarity of 
the sequences in the alignment (for a review, see Valdar, 2002). An informative conservation 
measure should also be able to take into account residues that are conserved in only a certain 
number of sub-families in the alignment. 

 
Although, the inclusion of structure-based descriptors increased the specificity of the 

functional residue predictions, some improvement is still needed. It is possible that other 
structure based measures, such as atom depth (Pintar et al., 2003) or designed sequence 
profiles (Koehl and Levitt, 2002b), may provide more pertinent information. In the future, 
these measures will also be integrated in MACSIMS and systematic tests will be performed 
to find an optimal combination of descriptors for functional predictions.  
 

We have focused here on the prediction of residues that are important for the function of a 
protein. In the future, the 3D structure information in MACSIMS will also be exploited for 
other applications. For example, we have identified a large number of conserved residues that 
are not at the surface of the protein, but are buried in the core of the protein. It would be 
interesting to investigate in more detail the nature of these residues and their role in the 
protein. Are these residues important for the structural stability of the protein? Do they 
correspond to the “topohydrophobic” positions identified by Poupon and Mornon (Poupon 
and Mornon, 1998)? Or do they form communication pathways that link distant functional 
sites at the surface of the protein (Socolich et al., 2005)?  

 
The structural and functional genomics projects are now providing the raw data needed in 

order to address these issues. MACSIMS represents an ideal environment for the integration 
and analysis of this data and should hopefully contribute to future studies aimed at providing 
the answers to such fundamental biological questions. 
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13 Conclusions and Perspectives 

The discovery of the DNA structure in 1953 opened a new field of biological research. 
Fifty years later, in 2003, the human genome sequence was completed. During this time, 
huge amounts of biological data have been collected in databases that are now publically 
available on the Internet. However the data is not to be confused with information (which is 
the data that we understand) and with the knowledge (which is a larger structure of the 
different information that make sense for humans). The large-scale accumulation of data is 
only the beginning of the path to the ultimate goal of understanding the basic principles 
underlying the complexity of living cells and organisms. Recently, the field of systems 
biology has emerged with the goal of understanding of existing data, via integration and 
knowledge extraction, combined with mathematical modelling in order to predict behaviour 
the system under different conditions (Kanehisa and Bork, 2003).  

In this context, Multiple Alignments of Complete Sequences (MACS) represent an ideal 
tool for the study of the relationships between sequence and structure, function and evolution. 
The work presented here represents the first steps in the evolution of the traditional multiple 
sequence alignment from a simple stacking of letters to become an interactive tool, 
incorporating not only the sequence itself, but also structural/functional information in the 
context of the complete protein family.  

 
Quality evaluation of multiple alignment programs 
 

The first part of this thesis addressed the problem of the accuracy and reliability of 
multiple alignment algorithms. Multiple sequence alignment has become a fundamental tool 
in many different domains in modern molecular biology, from evolutionary studies to 
prediction of 2D/3D structure, molecular function and inter-molecular interactions etc. The 
quality of the multiple alignment is critical for all these applications because errors 
introduced at the alignment stage will lead to further errors in the subsequent analyses.  

 
We developed a new version of the BAliBASE benchmark database, which has become a 

reference for the evaluation and comparison of alignment programs. BAliBASE provides 
high quality, manually refined, reference alignments based on 3D structural superpositions. A 
semi-automatic protocol has been introduced to allow the creation of larger reference 
alignments that are more representative of the problems that are now encountered in the post-
genomic era. The alignments are organised into different reference sets, containing test cases 
that cover the most common multiple alignment problems, from alignment of single domains 
e.g. in the construction of protein domain databases to the alignment of full-length, complex 
sequences, such as those detected by the database searches routinely performed in automatic, 
high throughput genome analysis projects.  

 
In the search for more accurate alignments, most state-of-the-art methods now use a 

combination of complementary techniques, or integrate information other than the sequence 
itself. A comparison of the most recent alignment programs using BAliBASE version 3 has 
shown that significant improvements have been achieved, in particular by the use of 
information from both local and global alignment algorithms, in programs such as MAFFT, 
MUSCLE or ProbCons. Nevertheless, a number of problems remain and more progress will 
be needed for the reliable alignment of complex, multi-domain proteins.  
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Multiple alignment ontology 
 

The second part of this thesis involved the development of the Multiple Alignment 
Ontology (MAO), a task-oriented ontology for nucleic acid and protein sequence and 
structure alignments. MAO has been designed for two main purposes. Firstly, the ontology 
facilitates the interoperation of different methods for multiple alignment and analysis. 
Secondly, MAO serves as a data model for information management, in order to facilitate 
data integration and knowledge extraction. Most of the basic features associated with 
multiple alignments are defined as MAO concepts, ranging from a single residue to sub-
families of sequences. Attributes associated with the basic concepts allow the definition of 
more complex information, such as column conservation, residue or motif function, or 3D 
structural information. One of the most powerful features of the MAO ontology is that it 
provides a natural, intuitive link between a number of different ontologies in the domains of 
genomics and proteomics. Using the cross-references defined in MAO, diverse functional 
information from external data resources, such as active sites, mutation data and their 
associated phenotypes, etc. can be integrated, either for a single sequence or for a family of 
sequences. 

 
The ontology has been developed in collaboration with domain experts from both the 

DNA/RNA and protein communities, who intend to offer compatible multiple alignment 
tools and analysis results that commit to the MAO ontology.  
 
MACS-based information management system 
 

MACSIMS is a MACS-based information management program that allows the 
integration of diverse structural and functional information in the context of the multiple 
alignment. The goal is not simply to provide convenient links between the different data 
resources, but to provide an interactive workbench for data validation and analysis, and 
presentation of the pertinent information to the biologist. In MACSIMS, the data retrieved 
from the public databases is cross-validated and the reliable information is propagated from 
the known to the unknown sequences. New algorithms have been developed that identify the 
well-aligned regions of the multiple alignment, in order to ensure that information is only 
transferred between sequences that are homologous. In addition to these knowledge-based 
annotations, ab initio sequence analysis methods have been incorporated, such as the 
prediction of transmembrane regions, coiled coil or low complexity sequence segments. 
These methods provide valuable information in the case of ‘orphan’ proteins, for which no 
known homologues detected in the sequence databases.  

 
The informational content of MACSIMS has been exploited in a number of projects in the 

LBGS, such as the validation of predicted protein sequences, the characterisation of targets 
for the Structural Proteomics IN Europe (SPINE) project or the definition of 
genotype/phenotype correlations for the Structural Mutation to Human Pathologies 
Phenotype (MS2PH) project. The integrative power of MACSIMS has also been used as a 
research tool to investigate the importance of different types of information for the prediction 
of protein functional sites. By comparing the conserved residues in multiple sequence 
alignments with 3D structural information, such as solvent accessibility and inter-residue 
contacts, we were able to improve the accuracy of functional residue predictions. However, 
the efficient exploitation of structural information remains a challenging problem that needs 
to be addressed. 
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Future perspectives 
 

The comparison of the most recent multiple alignment programs using BAliBASE version 
3 has shown that, despite significant progress, none of the available methods is capable of 
producing reliable alignments for the complex, divergent proteins that are detected by today’s 
advanced database search algorithms. Therefore, we plan to develop a new multiple 
alignment method that will exploit all the structural/functional information integrated in 
MACSIMS to construct a high quality multiple sequence alignment, even in the difficult case 
of complex, multi-domain proteins. An important aspect of the new method will be the 
definition of a novel knowledge-based objective function to estimate the biological 
significance of the alignment. 

 
In the future, the MAO ontology will be extended to incorporate other data resources, 

such as gene structure, mutation and phenotype information and residue interaction data. This 
will require more formal links between MAO and the other biological ontologies. The 
integration of this information in MACSIMS will increase its potential applications, to 
include such fields as the automatic annotation of the ever-increasing number of hypothetical 
proteins being produced by the high-throughput genome sequencing projects or the definition 
of characteristic motifs for protein folds. To achieve this, we will combine the knowledge 
processing power of MACSIMS with the versatility of empirical learning systems, such as 
artificial neural networks (ANNs). Such Hybrid Learning (HL) systems that exploit 
simultaneously theoretical and empirical data should be more efficient than either of the 
approaches working separately (Towell and Shavlik, 1993). Another critical factor in the 
potential utility of MACSIMS will be the development of a new, more user-friendly interface 
for the presentation of the discovered knowledge to the biologist. Hopefully, these 
developments will also have significant consequences for more wide-reaching areas, such as 
protein engineering, metabolic modelling, genetic studies of human disease susceptibility, 
and the development of new drug discovery strategies.  

 
Another growing area of research is the application of multiple alignment methods for 

the comparison of other kinds of data, such as 3D structure fragment libraries or structural 
alphabets (e.g. Kolodny et al., 2002; Camproux et al., 2004; de Brevern, 2005), molecular 
networks (Sharan and Ideker, 2006), or even time use data and activity patterns in the social 
sciences (Thompson et al., 1999c; Wilson, 2006). Here, data that is fundamentally a 
sequence of events is represented by an alphabet defined by experts in the field, who also 
define the similarity scores between the different events. These emerging fields are 
exploiting the power of the multiple alignment methodologies developed over the years for 
the comparison of molecular sequences, but will also contribute new concepts and 
formulations that will undoubtedly prove beneficial in the future.  
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