Corso di Dottorato di Ricerca in Tecnologie Biomediche, XVIII ciclo

in cotutela tra

UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Medicina Sperimentale Ambientale e Biotecnologie Mediche

UNIVERSITE' LOUIS PASTEUR - STRASBOURG Laboratoire de Spectrométrie de Masse Bio-organique

"Modulazione nutrizionale del proteoma di *Saccharomyces cerevisiae* nel ceppo selvatico e nei mutanti nel gene *FAR1* codificante per un regolatore negativo della transizione da G1 a S."

> Relatore italiano: Chiar.mo Prof. Marzia GALLI KIENLE Relatore francese: Chiar.mo Prof. Alain VAN DORSSELAER

> > Tesi di

Rossella SANVITO

Matr. Nr. R00252

THESE en co-tutelle entre

UNIVERSITE' LOUIS PASTEUR - STRASBOURG Laboratoire de Spectrométrie de Masse Bio-organique

UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Medicina Sperimentale Ambientale e Biotecnologie Mediche

présentée pour l'obtention du grade de

DOCTEUR DE L'UNIVERSITE LOUIS PASTEUR DE STRASBOURG Discipline : chimie

par

Rossella SANVITO

"Modulation nutritionnelle du protéome de *Saccharomyces cerevisiae* dans la souche sauvage et dans les mutants du gène *FAR1* qui code pour un régulateur négatif de la transition de G1 à S."

Soutenue le 28 Mars 2006 devant la commission d'examen :

Dr. Alain VAN DORSSELAER Prof. Claude KEDINGER Prof. Marina PITTO Prof. Fiamma RONCHETTI Prof. Marzia GALLI KIENLE Prof. Marco VANONI Dr. Christine SCHAEFFER

Directeur de thèse Rapporteur interne Rapporteur externe Rapporteur externe Examinateur (Directeur de thèse italien) Examinateur Examinateur

Thesis in Biomedical Technology

In co-tutelage with:

UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Medicina Sperimentale Ambientale e Biotecnologie Mediche

UNIVERSITE' LOUIS PASTEUR - STRASBOURG Laboratoire de Spectrométrie de Masse Bio-organique

"Nutritional modulation of *Saccharomyces cerevisiae* proteome in wild type and mutated strains in the *FAR1* gene, encoding a negative regulator of the G1 to S transition."

Rossella SANVITO

INDICE

"Modulazione nutrizionale del proteoma di Saccharomyces cerevisiae nel ceppo selvatico e nei mutanti nel gene FAR1 codificante per un regolatore negativo della transizione da G1 a S."

INTRODUZIONE GENERALE - PRESENTAZIONE DEL LAVORO DI TESI

INTRODUZIONE GENERALE - <i>PRESENTAZIONE DEL LAVORO DI TESI</i>	pg 1
Capitolo 1 - IL LIEVITO SACCHAROMYCES CEREVISIAE	pg 3
1.1 - Un organismo modello nella biologia molecolare comparata	pg 3
1.2 – La similitudine dei meccanismi del ciclo cellulare in tutte le cellule eucariote	pg 4
1.3 - Il ciclo cellulare del lievito Saccharomyces cerevisiae	pg 5
1.4 - I chekpoints del ciclo cellulare	pg 7
1.5 - Il processo di gemmazione (budding)	pg 8
1.6 - Effetti dell'aggiunta di glucosio sulla crescita della cellula	pg 9
1.7 - Analisi post-genomica in lievito	pg 11
1.8 - Costruzione dei mutanti nel lievito	pg 12
1.9 - L'inibitore FAR1: Factor ARrest	pg 12
1.9.1 - Funzioni di Far1	pg 13
Induzione della polarizzazione	
Inibizione della Cdc28 (Chinasi ciclica-dipendente)	
1.9.2 - Degradazione di Far1	pg 15
1.9.3 - Localizzazione di Far1	pg 15
1.10 - I mutanti del gene FAR1	pg 16
1.11 - La crescita esponenziale	pg 20
1.12 – Lo shif-up nutrizionale	pg 21
Capitolo 2 - LA PROTEOMICA	pg 23
2.1 - La dinamicità del proteoma	pg 23
2.2 – Le tecniche analitiche della proteomica	pg 25
Capitolo 3 - ELETTROFORESI BIDIMENSIONALE	pg 27
3.1 – SDS-PAGE: elettroforesi su gel di poliacrilammide	pg 27
3.2 - Considerazioni sulla tecnica	pg 28
3.2.1 – Preparazione del campione	pg 29

Estrazione delle proteine	
Quantificazione	
Purificazione dell'estratto proteico	
3.2.2 - Prima dimensione - IPG strips	pg 31
Reidratazione e applicazione del campione	
Isoelettrofocalizzazione	
3.2.3 - Seconda dimensione – SDS-PAGE	pg 31
Equilibrazione delle strips	
Elettroforesi	
Presupposti per una corretta analisi comparativa tra gel	
3.2.4 - Visualizzazione dei risultati	pg 33
3.2.5 – Analisi dell'immagine	pg 34
PdQuest	
Scanning	
Individuazione automatica delle spot	
Matching tra gel	
Normalizzazione	
Analisi differenziale	
Captiolo 4 - LA SPETTROMETRIA DI MASSA	pg 39
4.1 – La strumentazione della spettrometria di massa	pg 39
4.2 – MALDI TOF MS	pg 41
4.2.1 - Il principio della tecnica MALDI-TOF	pg 41
4.2.2 - La sorgente MALDI	pg 42
4.2.2.1 - La matrice	pg 42
4.2.2.2 - Il laser	pg 43
4.2.2.3 - Il meccanismo di ionizzazione	pg 44
4.2.2.4 - Il metodo di deposito	pg 45
4.2.3 - L'analizzatore a tempo di volo TOF	pg 46
4.2.4 - La risoluzione	pg 46
4.2.5 - L'estrazione ritardata (Delayed Extraction)	pg 47
4.2.6 - Il reflector	pg 48
4.3 - LA STRATEGIA DEL PEPTIDE MASS FINGERPRINT	pg 49
4.3.1 – Osservazione sulla tecnica	pg 49

Il vantaggio della proteolisi	
Match mancanti	
Mancata identificazione	
4.3.2 - Digestione tramite tripsina	pg 51
Digestione in gel	
4.3.3 – La tecnologia MALDI nel PMF	pg 52
4.3.4 – Caratterizzazione di una proteina	pg 53
4.4 - LA SPETTROMETRIA DI MASSA TANDEM	pg 55
4.4.1 - LC-MS	pg 56
Nano-HPLC-MS	
4.4.2 - Principio di ionizzazione elettrospray	pg 57
4.4.3 - Preparazione del campione per l'elettrospray	pg 58
4.4.4 - L'analizzatore quadrupolo	pg 59
4.4.5 - Accoppiamenti LC-MS/MS	pg 60
ESI-Q-TOF	
4.4.6 - Identificazione proteica tramite LC/MS/MS	pg 61
Capitolo 5 - LA BIOINFORMATICA	pg 63
5.1 - L'identificazione di una proteina	pg 63
5.2 – Database	pg 64
5.2.1 - Swiss-Prot	pg 64
La ricchezza delle annotazioni	
Accurata integrazione con altri database	
Database non ridondante	
5.2.2 - EMBL	pg 66
5.1.2 - TrEMBL	pg 66
5.1.3 - NCBI	pg 66
5.2 – Il software di ricerca Mascot	pg 66
Valutazione del risultato	
5.3 - Informazioni sulle proteine	pg 70
Capitolo 6 - L' AUTOMATIZZAZIONE	pg 73
6.1 - Sistemi integrati 'high throughput'	pg 73
6.2 - Spot picker	pg 74

6.3 - Robot di riduzione e alchilazione	pg 74
6.4 – Acquisizione automatica degli spettri	pg 74
6.5 - Trattamento dello spettro	pg 75
6.6 - Ricerca in automatico	pg 75
Capitolo 7 – SCOPO DELLA TESI	pg 77
7.1 – La comprensione dei meccanismi del ciclo cellulare	pg 77
7.1.1 - Studi sui mutanti del gene FAR1	pg 77
7.1.2 - Studi sullo shift-up nutrizionale etanolo-glucosio di ceppi wild type	pg 88
Capitolo 8 - MATERIALI E METODI	pg 79
8.1 – Preparazione del campione	pg 79
Microrganismi utilizzati	
Conservazione dei ceppi	
Terreni e condizioni di crescita	
8.2 – Estrazione delle proteine e separazione tramite SDS – PAGE	pg 81
8.2.1 - Estrazione delle proteine totali da culture di Saccharomyces cerevisiae	pg 81
8.2.2 - Dosaggio delle proteine estratte (Biorad a un reagente)	pg 82
8.2.3 - Desalificazione dell'estratto totale	pg 82
8.2.4 – Essiccazione dell'estratto	pg 82
8.2.5 - Reidratazione delle strip	pg 83
8.2.6 – Focalizzazione	pg 83
8.2.7 - Preparazione dei gel SDS-PAGE per la seconda dimensione	pg 83
8.2.8 - Equilibrazione delle strip	pg 85
8.2.9 - SDS-PAGE (seconda dimensione)	pg 85
8.2.10 – Colorazione	pg 85
8.2.11 – Conservazione dei gel	pg 86
8.3 - Analisi di immagine tramite PdQuest	pg 86
8.4 - Incisione delle spot manuale e tramite robot	pg 86
8.5 - Procedura di riduzione, alchilazione e digestione manuale e tramite robot:	pg 87
8.6 – Deposito su target	pg 89
8.7 - Acquisizione degli spettri tramite MALDI-TOF	pg 90
8.8 - Trattamento dello spettro	pg 91
8.9 - Ricerca in banca dati	pg 92

8.10 – Microarray	pg 93
Capitolo 9 - LA MESSA A PUNTO DEL METODO	pg 95
9.1 - Crescita esponenziale in glucosio e crescita esponenziale in etanolo di un ceppo wt	
di Saccharomyces cerevisiae	pg 95
Capitolo 10 - RISULTATI DEGLI STUDI SUI MUTANTI DI FAR1	pg 99
10.1 – Studi sui mutanti far 1 Δ e FAR1 tet durante la crescita esponenziale in etanol o e la	
crescita esponenziale in glucosio.	pg 99
10.2 - Confronto tra l'analisi proteomica e quella trascrizionale	pg 100
10.3 - Patways influenzati dalla mutazione di FAR1	pg 105
Capitolo 11 - RISULTATI DEGLI STUDI SULLO SHIFT-UP NUTRIZIONALE	
DEL CEPPO WILD TYPE	pg 111
11.1 – Studio dello shift-up nutrizionale da etanolo a glucosio del ceppo wild type	pg 111
Analisi proteomica	
Analisi trascrizionale	
Spot visualizzate	
Codon Bias come valutazione della sensibilità del sistema	
11.2 – Andamenti di variazione di espressione proteica durante la transizione	pg 115
11.3 - Confronto tra analisi proteomica e trascrizionale	pg 116
11.4 - Classificazione delle proteine aventi una modulazione di espressione durante lo	
shift-up nutrizionale	pg 117
11.5 - Due proteine a funzione sconosciuta aventi un aumento di espressione durante la	
transizione: Gvp36 e Yjr070c	pg 119
11.6 – Studi sulla proteina Gvp36	pg 120
11.6.1 - Modulazione di espressione della proteina Gvp36 durante lo shift-up	
nutrizionale	pg 121
11.6.2 - Analisi MS/MS della proteina Gvp36	pg 122
11.6.3 - Caratterizzazione del deleto in GVP36	pg 124
Crescita del deleto in GVP36 su terreni con diverse fonti di carbonio	
Cinetica di inibizione nella crescita in etanolo 2% del deleto in GVP36	
Sensibilità a shock osmotico e termico del deleto in GVP36	
Quantificazione dei livelli di glicogeno in cellule cresciute a confluenza	

nel deleto in GVP36	
Cinetica di shift-up da glicerolo 3% a glucosio 2% del deleto in GVP36	
La proteina Gvp36 nello shift-up nutrizionale del mutante far1 Δ	
11.6.4 - Riepilogo degli studi sulla proteina Gvp36	pg 130
11.7 - Proteine presenti in più spot aventi diversi andamenti di espressione	pg 131
Considerazioni sulla proteina Kgd1	
Considerazioni sulla proteina Leu4	
Considerazioni sulla proteina Ald6	
Considerazioni sulla proteina Adh2	
11.8 - Multispot: spot contenenti miscele di proteine	pg 134
11.9 – Il doppio biologico	pg 135
Capitolo 12 - DISCUSSIONI	pg 149

Capitolo 12 - DISCUSSIONI

Capitolo 13 - RÉSUMÉ DE THÈSE - "Modulation nutritionnelle du protéome

de Saccharomyces cerevisiae dans la souche sauvage et dans les mutants du

gène FAR1 qui code pour un régulateur négatif de la transition de G1 à S."	pg 155
13.1 - Introduction	pg 155
13.2 - Le cycle cellulaire du Saccharomyces cerevisiae	pg 156
13.3 - L'inhibiteur FAR1 : Factor Arrest	pg 157
Far1 et l'induction à la polarisation :	
Far1 et l'inhibition du complexe Cln1,2/Cdc28	
Les mutations en FAR1 gène	
13.4 - But du travail de thèse	pg 160
13.5 - Etudes sur les mutants du gène FAR1 : résultats et discussion	pg 161
13.6 - Etudes sur la variation nutritionnelle ("shift-up") éthanol-glucose du type	pg 164
sauvage: résultats et discussion	

Capitolo 14 - ENGLISH SUMMARY - "Nutritional modulation of Saccharomyces cerevisiae proteome in wild type and mutated strains in the FAR1 gene, encoding a negative regulator of the G1 to S transition." pg 169 pg 169 14.1 – Introduction 14.2 - Proteomic analyses of FAR1 gene mutants pg 170

14.3 - Proteomic study of nutritional shift-up	pg 171
5 5 5 1	10

BIBLIOGRAFIA

pg 173

INTRODUZIONE GENERALE PRESENTAZIONE DEL LAVORO DI TESI

Per anni la spettrometria di massa (MS) ha visto la sua applicazione confinata all'analisi di molecole di piccola dimensione, sono stati necessari anni di perfezionamento e ricerca per poter applicare la MS anche a molecole di grandi dimensioni come ad esempio le proteine. Il limite di rilevazione risiede nella necessità della tecnica di spettrometria di massa di volatilizzare le molecole, il che la rendeva inaccessibile a macromolecole come proteine o oligonucleotidi: la ionizzazione di tali molecole, infatti, avveniva per bombardamento o riscaldamento che ne causavano una facile distruzione.

Nell'anno 2002 il premio Nobel della chimica è stato attribuito a Tanaka e Fenn per lo sviluppo della ionizzazione MALDI (Matrix-Assisted Laser Desorption Ionization) ed ESI (Electrospray Ionisation) rispettivamente. Tali tecniche, molto differenti tra loro e definite di ionizzazione "soft", sono nate nello stesso anno e hanno rivoluzionato dal 1988 in poi l'analisi in spettrometria di massa delle macromolecole. In seguito a tale scoperta MALDI ed ESI sono diventate i nuovi occhi di chimici e biochimici permettendo l'osservazione delle proteine e delle loro strutture. Sotto la spinta dei quesiti posti dalla biologia le tecniche di MS si sono rapidamente evolute negli ultimi dieci anni fino a permettere oggi lo studio di quantità fentomolari di proteine fornendo informazioni strutturali e in alcuni casi quantitative.

Così all'osservazione dei geni si è potuto affiancare l'osservazione delle proteine che presenta un quadro notevolmente più dinamico sotto l'influenza di condizioni esterne e permette di meglio comprendere i fenomeni che stanno alla base dei processi biologici. Approcci di "mappatura molecolare" o di "immagine molecolare" di un tessuto o di un sistema cellulare, in cui sofisticate metodologie biochimiche e istologiche sono accoppiate con sensibili metodologie spettrometriche, sono oggi in fase di sperimentazione per la comprensione dei meccanismi molecolari che potrebbero essere alla base di certe patologie.

Proprio in tale ambito si situa questo lavoro di tesi.

Il lievito Saccharomyces cerevisiae è spesso utilizzato come modello biologico per la comprensione dei meccanismi cellulari. Lo studio di questi meccanismi in modelli

relativamente semplici può meglio aiutare la comprensione di disturbi di proliferazione in organismi superiori come ad esempio le patologie cancerogene nell'uomo.

In questa tesi, tecniche di proteomica, come la separazione bidimensionale e la spettrometria di massa, sono state applicate allo studio dei meccanismi del ciclo cellulare del lievito *Saccharomyces cerevisiae*. Il lavoro si suddivide in due principali ambiti:

- studio di ceppi cresciuti in diverse condizioni nutrizionali
- studio di ceppi con modificazioni genetiche del gene *FAR1*, il quale risulta essere coinvolto nei meccanismi di controllo del ciclo cellulare

La tesi è presentata secondo questo ordine:

in una prima parte

- ✓ sono introdotte nozioni teoriche riguardo al lievito *Saccharomyces cerevisiae* e al suo utilizzo come organismo modello negli studi di genetica, biochimica e biologia cellulare e molecolare
- ✓ è illustrato il ciclo cellulare del lievito, il ruolo svolto dal gene *FAR1* e il fenotipo dei mutanti utilizzati
- ✓ sono descritte le tecniche di proteomica utilizzate ovvero la tecnica di separazione elettroforetica 2D-PAGE e la spettrometria di massa MALDI ed ESI
- ✓ è presentato lo scopo della tesi

in una seconda parte

✓ sono illustrati gli esperimenti condotti e raggruppati i risultati ottenuti

IL LIEVITO SACCHAROMYCES CEREVISIAE

Il lievito *Saccharomyces cerevisiae* è un fungo unicellulare appartenente alla classe degli ascomiceti ed è probabilmente uno dei microrganismi più utilizzati da parte dell'uomo. Le sue prime tracce risalgono a tempi antichi: scoperte archeologiche attestano l'uso di tale lievito nella Babilonia del 4300 AC, ma solo nel IX secolo Louis Pasteur scopri che il lievito *S. cerevisiae* poteva essere usato per la produzione di alcol e anidride carbonica. Oggi le sue applicazioni spaziano in vari settori, dalle classiche applicazioni nell'industria alimentare alla produzione di proteine e piccole molecole per l'industria farmaceutica, come ad esempio per la cura del diabete in cui il lievito *S. cerevisiae* viene utilizzato per la produzione di ricombinanti di insulina.

1.1 - Un organismo modello nella biologia molecolare comparata

Il lievito Saccharomyces cerevisiae è uno dei modelli biologici più utilizzati nella ricerca della biologia molecolare grazie a numerose sue proprietà. Esso, infatti, cresce rapidamente, non è patogeno, è studiato da molto tempo e il suo genoma è uno dei primi ad essere stato completamente sequenziato; inoltre, risulta facilmente trasformabile con DNA esogeno e permette facilmente la ricombinazione omologa di sequenze di DNA, rendendo possibili e facilmente realizzabili tecniche come il gene-replacement. Dal punto di vista genomico il vantaggio di studiare organismi modello è facilmente comprensibile. Se vogliamo, infatti, capire il programma genetico di un intero organismo, attribuendo un significato funzionale a tutti i suoi geni, allora questo lavoro sarà tanto più difficile (e per ora incompleto) quanto più complesso sarà il genoma di quel organismo. Quindi è opportuno studiare organismi con un genoma semplice, cercare di comprenderli, e verificare se in organismi complessi riscontriamo delle omologie molecolari. Ci sono molte sequenze che sono simili in vari organismi e se una sequenza non cambia molto nel corso dell'evoluzione, vuol dire che svolge un ruolo importante. Dallo studio del genoma di S. cerevisiae appare evidente un'omologia con specie eucarioti superiori: ciò ha portato all'estrapolazione degli studi sui processi biologici del lievito ad altri importanti organismi come l'uomo. Oggi sappiamo che i meccanismi molecolari di base che

regolano il ciclo e la divisione cellulare sono gli stessi nell'uomo e nel lievito, ma il livello di complessità è molto diverso. Quindi, molti aspetti del ciclo cellulare sono stati compresi prima nel lievito e solo successivamente si è scoperto che gli stessi meccanismi sono presenti anche nelle cellule dei mammiferi e dell'uomo, inseriti in un contesto più articolato.

1.2 – La similitudine dei meccanismi del ciclo cellulare in tutte le cellule eucariote

Prima di descrivere il ciclo cellulare in specifico per S. cerevisiae può essere utile una visione degli studi che hanno portato il lievito ad essere riconosciuto come uno degli orgasmi modello più utile per lo studio dei meccanismi cellulari. Sono stati esemplari a questo proposito gli studi di Lee Hartwell (condotti su S. cerevisiae) e Paul Nurse (condotti su *Schizosaccharomyces pompe*) che hanno condiviso il premio Nobel 2001 per la Fisiologia e la Medicina con Tim Hunt. I tre studiosi sono stati premiati per una serie di ricerche svolte tra gli anni '60 e gli anni '80 che hanno portato alla scoperta di alcuni tra i regolatori chiave del ciclo cellulare dimostrando che l'evoluzione biologica non ha eseguito grandi cambiamenti nel campo fondamentale del ciclo cellulare e che la gran parte dei meccanismi di regolazione sono comuni a tutti gli organismi eucarioti. Tali scoperte hanno contribuito enormemente alla comprensione dei circuiti molecolari che la cellula utilizza per decidere di dividersi, dando quindi origine ad altre cellule con lo stesso patrimonio genetico o, al contrario, di non dividersi, per entrare in una fase di quiescenza o per differenziarsi. Questi studi hanno avuto un profondo impatto nel campo della biologia dei tumori per arrivare ad affermare che il cancro rappresenta una vera e propria malattia del ciclo cellulare: una cellula che non riesce a controllare il processo di divisione è destinata a trasformarsi, prima o poi, in una cellula tumorale. Le scoperte dei tre premi Nobel sono state possibili grazie all'utilizzo del lievito come modello di studio che pur essendo un organismo che non sviluppa patogenicità, nella sua semplicità, possiede tutto il corredo molecolare necessario per assemblare il motore del ciclo cellulare. A distanza di anni dalle scoperte condotte da Hartwell, Nurse e Hunt l'attenzione dei ricercatori si sta ora spostando sullo studio dei "checkpoints": i sofisticati meccanismi di controllo del ciclo cellulare deputati alla sorveglianza del genoma. I checkpoint prevengono a livello cellulare l'accumulo di errori genetici gravi e irreversibili. Questi ultimi, nelle cellule sane, assicurano la corretta alternanza delle diverse fasi del ciclo, mentre in caso di emergenza rallentano la progressione del ciclo fino a quando le anomalie non sono state riparate o rimosse. Difetti genetici nei checkpoints determinano instabilità genomica e predisposizione all'insorgenza tumorale. Da un certo punto di vista i checkpoints possono essere considerati veri e propri freni del ciclo cellulare: in seguito all'insorgenza di lesioni cromosomiche la cellula preferisce bloccare il ciclo cellulare per facilitare la riparazione delle lesioni piuttosto che duplicare e segregare cromosomi imperfetti.

Ed ancora una volta il lievito si è rivelato uno strumento fondamentale nel quale è possibile simulare le situazioni di emergenza che si possono verificare nelle varie fasi del ciclo cellulare (Lopes et al., 2001; Tercero et al., 2001).

Perché poi, l'evoluzione biologica abbia operato così pochi cambiamenti nell'ambito dei meccanismi alla base del ciclo cellulare, è comprensibile. La formazione di una cellula e lo sviluppo di un organismo sono il prodotto di meccanismi molto complicati, raffinati e precisi. Una piccola alterazione provoca una reazione a catena disastrosa. Risulta così davvero improbabile che una singola mutazione casuale in una componente del processo possa generare un meccanismo di regolazione più efficace. Per questo motivo negli ultimi due miliardi di anni la natura ha potuto creare miliardi di architetture cellulari diverse come alghe, lievito, piante e animali, ma non ha aggiunto sostanziali modifiche al meccanismo con cui le cellule crescono e si moltiplicano.

1.3 - Il ciclo cellulare del lievito Saccharomyces cerevisiae

Il ciclo cellulare è l'insieme di eventi ordinati che regolano la crescita e la divisione di una cellula in relazione a stimoli esterni. Esso si compone di due fasi durante le quali in assoluta sinergia si svolgono milioni di processi: l'interfase e la divisione (Figura 1.1). L'interfase, a sua volta, è articolata in tre diversi stadi. Nel corso del primo stadio dell'interfase, chiamato G1, la cellula "vive": cresce, si ingrossa e svolge le funzioni per le quali il processo di differenziamento l'ha preposta. In relazione a mutamenti fisiologici o genetici, la cellula in G1 (G1 sta per *gap1*, primo intervallo) "decide" di dividersi ed entrare nel secondo stadio, fase S (sintesi), durante la quale il Dna si replica e copia interamente se stesso. Nel corso del terzo stadio, chiamato G2 (secondo intervallo), la cellula controlla che il processo di copiatura sia stato eseguito completamente e

correttamente. Quindi finisce l'interfase e inizia la mitosi, ovvero il processo di divisione M che porta al concepimento della divisione cellulare, con la formazione di due cellule figlie identiche. A questo punto tutto è pronto perché ciascuna di queste due cellule si ritrovi nello stadio G1 e inizi un nuovo «ciclo cellulare». In realtà le cellule prodotte dalla mitosi non sono obbligate a perpetuare il ciclo, ma possono essere messe, in «Stand by» nella posizione G0, qualora si trovino in condizioni nutrizionali sfavorevoli. La cellula è in grado di superare questa fase di quiescenza quando le condizioni nutrizionali ambientali tornano da essere idonee.

Figura 1.1 : Le fasi del ciclo cellulare.

La progressione attraverso il ciclo cellulare, viene regolata da una serie di fattori genetici e biochimici, per la maggior parte ancora da scoprire.

Si è già discusso del fatto che nella biologia cellulare e molecolare è attualmente in atto un notevole sforzo di ricerca che si prefigge di scoprire gli "interruttori" molecolari (chekpoints) che determinano il passaggio delle cellule dalla fase di accrescimento citoplasmatico a quella di divisione cellulare.

Da questi studi sono state scoperte molte molecole implicate nella regolazione del ciclo cellulare. Tra le più importanti di queste proteine si riscontrano le cicline e le proteinchinasi ciclina dipendenti, che si combinano in complessi di regolazione che forniscono controlli centrali del ciclo cellulare. Anche dalle ricerche sui tumori si sono ottenute informazioni determinanti, che permettono di collegare l'attività dei geni al controllo del ciclo cellulare. Si è potuto stabilire che molti tumori sono causati dall'attività di geni aberranti che inducono le cellule ad entrare in cicli rapidi ed incontrollati di divisione cellulare.

1.4 - I chekpoints del ciclo cellulare

Il coordinamento dei processi del ciclo cellulare è assicurato dal fatto che le cellule devono raggiungere una massa critica per il superamento di due punti chiave del ciclo, la transizione G1/S e la transizione G2/M. Tali transizioni hanno luogo dopo che la cellula ha controllato la corretta esecuzione della fase precedente prima di intraprendere quella successiva: in questo modo, si assicura di essere in condizioni di "salute" tali da poter affrontare con successo la replicazione del proprio DNA, di aver correttamente duplicato il materiale genetico prima di segregarlo e di attuare una sola duplicazione del DNA per ogni ciclo di divisione. Un altro importante checkpoint si trova prima dell'uscita dalla fase M, quando la cellula controlla che i suoi cromosomi siano ben allineati nel fuso mitotico. In particolare, in *Saccharomyces cerevisiae* e in cellule di mammifero il maggiore punto di controllo si realizza in G1 ed è denominato START nel primo e "*restriction point*" nelle seconde (Pringle & Hartwell, 1981): è qui che le cellule integrano i segnali interni ed esterni (condizioni ambientali, disponibilità di nutrienti) e decidono se iniziare la replicazione del proprio DNA, operazione che una volta cominciata deve obbligatoriamente esser conclusa (Figura 1.2).

Figura 1.2 : Fattori che modulano gli eventi del ciclo cellulare.

Le cellule di *Saccharomyces cerevisiae* coordinano la crescita con il ciclo di divisione cellulare, al fine di mantenere un aumento di massa cellulare costante anche in condizioni di crescita molto diverse tra loro. Se così non fosse, un aumento della velocità di crescita in assenza di un ciclo di divisione più breve porterebbe ad avere cellule troppo grandi e, al contrario, una diminuzione della velocità di crescita senza un aumento della durata del ciclo cellulare andrebbe a generare cellule troppo piccole. Le cellule di lievito regolano la

lunghezza del ciclo di divisione cellulare principalmente variando la lunghezza della fase G1. In terreni contenenti glucosio, *S. cerevisiae* cresce rapidamente ed ha una fase G1 breve, mentre in presenza di fonti di carbonio povere, come l'etanolo, prolunga il ciclo cellulare passando più tempo in G1. Torneremo in seguito sul comportamento del lievito in queste due condizioni di crescita, fonte di carbonio ricca e povera, che sarà insieme all'indagine su geni chiave del ciclo cellulare uno degli studi di questo lavoro di tesi.

1.5 - Il processo di gemmazione (budding)

Nel lievito gemmante *S. cerevisiae*, l'organizzazione strutturale della cellula è quella classica degli eucarioti, con organelli ben definiti e un sistema di compartimentazione interna che suddivide il citoplasma in diversi reparti funzionali (reticolo endoplasmatico, apparato del Golgi, comparti lisosomali...). La presenza di una parete cellulare rigida conferisce inoltre al microrganismo la tipica forma ovoidale. Il genoma, estremamente compatto (1.4×10^7 paia di basi) è distribuito in 16 cromosomi lineari, e risulta circa 200 volte più piccolo di quello delle cellule di mammifero. In aggiunta, va registrata la presenza di due sorgenti di DNA extracromosomale, rappresentate dal materiale genetico dei mitocondri e dal plasmide 2µl; questo ultimo è un DNA circolare, capace di replicazione autonoma, che viene mantenuto in maniera abbastanza stabile all'interno della cellula (20/100 copie), senza peraltro risultare essenziale.

Il ciclo vitale di *Saccharomyces cerevisiae* prevede la possibilità di scegliere tra uno stato aploide ed uno diploide: tale microrganismo è capace di vivere bene sia in uno stato che nell'altro e passa dall'uno all'altro solo se si verificano precise condizioni ambientali; in entrambi gli stati, inoltre, si riproduce vegetativamente per gemmazione (ciclo aplodiplonte). Questo tipo di divisione cellulare ha una natura fondamentalmente asimmetrica, in quanto la cellula "figlia", che si origina come una piccola gemma localizzata sulla superficie della "madre", ha sempre dimensioni inferiori rispetto a quelle della cellula d'origine (Figura 1.3). Dopo la separazione, entrambe le cellule vanno incontro ad una fase d'accrescimento, che consente loro di raggiungere la "massa critica" necessaria all'innesco di un nuovo ciclo mitotico. L'intervallo che intercorre tra due generazioni successive, può variare in ampiezza a seconda del *background* genetico del ceppo e del terreno di crescita: in condizioni ottimali, un valore di circa due ore costituisce un'approssimazione più che accettabile per la grande maggioranza dei casi.

Figura 1.3: Lieviti *Saccharomyces cerevisiae* visti al microscopio elettronico. Formazione della gemma.

Le forme diploidi, le più frequenti in natura, si riproducono normalmente in modo vegetativo; tuttavia, all'insorgere delle opportune condizioni ambientali (carenza di azoto e di glucosio) possono intraprendere la via della sporulazione. Il prodotto della meiosi è costituito da 4 spore aploidi (tetrade), strettamente impaccate all'interno di un involucro sacciforme che prende il nome di asco. Al ritorno delle condizioni favorevoli, la parete dell'asco si degrada e le quattro ascospore liberate vanno incontro a germinazione, dando così origine a nuove cellule aploidi. Queste ultime si possono presentare in due tipi sessuali distinti (mating type), indicati come "a" e " α " e definiti dal locus genico *MAT*. Anche gli individui aploidi, possono condurre vita libera e moltiplicarsi per gemmazione; tuttavia, in presenza dei partner con il mating type opposto, le cellule vanno incontro a coniugazione, evento che comporta la fusione cellulare e la formazione dello "zigote" diploide. L'intero processo è orchestrato dagli ormoni dell'accoppiamento (feromoni), piccoli peptidi rilasciati da ciascun partner nell'ambiente extracellulare: la ricezione del segnale innesca all'interno della cellula una cascata di eventi che la preparano all'accoppiamento. I ceppi studiati in questa tesi, provenendo, come verrà illustrato, da processi di ricombinazione omologa, sono costituiti dalla sola forme diploide.

1.6 - Effetti dell'aggiunta di glucosio sulla crescita della cellula

In *Saccharomyces cerevisiae* i sistemi di trasporto e gli enzimi specifici per il metabolismo di zuccheri alternativi sono repressi dal pathway di repressione da glucosio. *Saccharomyces cerevisiae* come molti altri lieviti può crescere in presenza di diverse fonti di carbonio e tra queste il glucosio è una delle preferite. Il metabolismo e il profilo di espressione genica

del lievito è altamente regolato in risposta al tipo di sorgente di carbonio disponibile che può alterare enormemente la fisiologia della cellula. In presenza di glucosio nel terreno, il lievito effettua quasi esclusivamente la fermentazione dello zucchero e la respirazione è quasi assente. In particolare viene indotta la sintesi di geni codificanti per enzimi glicolitici, trasportatori del glucosio, e proteine ribosomiali. Allo stesso tempo incorre un meccanismo di "risparmio energetico" e tutti gli enzimi necessari all'utilizzazione di altre fonti di carbonio vengono sintetizzati solo in piccole quantità o la loro sintesi è addirittura bloccata: sono enzimi della gluconeogenesi, del ciclo degli acidi tricarbossilici, della respirazione e di altre funzioni (Figura 1.4). Questo fenomeno è chiamato repressione da glucosio (Trumbly et al., 1992) e tuttora non tutti i meccanismi in esso coinvolti sono chiari e ancora molte informazioni si stanno accumulando da nuovi studi. Fonti di carbonio non fermentative come invece l'etanolo sono metabolizzate nel ciclo di Krebs, con l'ATP ottenuta dalla respirazione, e gli esoso fosfati (necessari alle cellule per la biosintesi) prodotti dalla gluconeogenesi.

Figura 1.4: Schema semplificato del metabolismo del carbonio nel caso della crescita fermentativa e respirativa (il ciclo del gliossilato non è rappresentato).

1.7 - Analisi post-genomica in lievito

Il genoma di lievito contiene circa 6000 geni codificanti proteine (Goffeau et al., 1996) e il suo genoma è stato ampiamente studiato con tecniche di manipolazione genetica. L'esatto numero di ORFs (Open Reading Frames), ovvero le stringhe di DNA che potrebbero essere potenzialmente tradotte in un polipeptide o RNA, è ancora però fonte di dibattiti. Numerosi studi si stanno ancora focalizzando sull'assegnamento funzionale di tutti gli ORFs di lievito. I primi studi sulla funzione dei prodotti di tali geni, sono partiti dalla creazione di un set parzialmente completo di mutanti deleti: in questa collezione di mutanti ognuno dei geni potenzialmente codificanti per una proteina è stato deleto e il mutante è stato marcato con una specifica sequenza di 20 basi oligomeriche (Winzeler et al., 1999; Giaever et al., 2002). Grazie all'amplificazione dei marcatori tramite PCR e successiva analisi DNA microarray contenente le sequenze complementari, è stato eseguita una simultanea analisi di gruppi di mutanti per stabilire la relativa abbondanza di ogni tag, e quindi di ogni ceppo mutante. Dall'osservazione della sopravvivenza di ogni ceppo si è potuto definire l'importanza dei vari geni nella crescita e nella vitalità della cellula in differenti condizioni di crescita. Gli studi di Winzeler eseguiti su un gruppo di 558 ceppi mutanti in terreni ricchi e poveri a diversi momenti della crescita mostrano che il 17% dei geni deleti era essenziale per la sopravvivenza in terreni ricchi. In seguito altri studi si sono serviti dell'integrazione di diverse tecniche come la spettrometria di massa, la microscopia a fluorescenza, il saggio dei due ibridi ed altre metodologie per integrare l'identificazione funzionale del genoma di lievito. Il lavoro di Hazbun et al. (2003) porta ad esempio all'assegnazione funzionale di altri 100 geni.

Anche la determinazione della localizzazione cellulare ha coinvolto studi su larga scala tramite tecniche di marcatura, immunolocalizzazione e GFP (green flourescent protein) (Kumar et al., 2002; Huh et al., 2003).

Malgrado tutti questi studi atti ad investigare sul genoma di lievito *S. cerevisiae,* ancora molti geni hanno solo una scarsa caratterizzazione e funzione sconosciuta.

1.8 - Costruzione dei mutanti nel lievito

Tecnica del costrutto distruttivo

Come accennato un approccio sperimentale molto utilizzato soprattutto per comprendere la funzione dei geni, è quello che prevede un costrutto distruttivo in grado di inattivare in maniera specifica un certo gene. Questo metodo consiste nel preparare un costrutto avente le estremità con la medesima sequenza del gene che si desidera inattivare, per permettere la ricombinazione omologa, e al centro un gene per la resistenza ad un antibiotico, che servirà a selezionare i lieviti che effettivamente hanno ricombinato. Essendo il lievito molto permissivo, basta aggiungere il nostro costrutto nel mezzo di coltura e questo verrà facilmente inglobato dal lievito, il quale potrà quindi fare avvenire una ricombinazione omologa per riconoscimento delle sequenze esterne al gene studiato. Aggiungendo antibiotico verranno eliminati tutti i lieviti che non hanno ricombinato.

Con questa tecnica si sono selezionati nel corso di questa tesi ceppi deleti dei geni sotto studio.

Per quanto riguarda invece ceppi in cui il gene è sovraespresso, si è partito dallo stesso DNA modificato per produrre ceppi deleti e con la stessa tecnica si è inserito un plasmide dove il gene di interesse è preceduto da un promotore che induce la sovraespressione. Questi promotori vengono attivati o spenti dalla presenza di antibiotici.

1.9 - L'inibitore FAR1: Factor ARrest

Il gene *FAR1* fu clonato per il suo coinvolgimento nell'arresto del ciclo cellulare in fase G1 in presenza di feromone (Chang et al., 1990) e deve il suo nome proprio a tale ruolo ("mating Factor ARrest"). Dati recenti hanno mostrato che *FAR1* è richiesto anche per un'efficiente coniugazione, poiché è coinvolto nei cambiamenti morfologici della cellula che facilitano l'accoppiamento. La proteina Far1 (95 Kda) utilizza due domini distinti per svolgere i suoi due differenti compiti: il dominio N-terminale è deputato all'attività di arresto in G1, la parte C-terminale della proteina è coinvolta nella morfogenesi (Valtz et al., 1995).

1.9.1 - Funzioni di Far1

Induzione della polarizzazione:

Le proteine G (heterotrimeric guanosine triphosphate (GTP)-binding protein) determinano la polarizzazione delle cellule in un ampia varietà di microrganismi. Nelle cellule di *S. cerevisiae* la polarizzazione viene indotta come risposta al segnale di feromoni tramite un meccanismo che coinvolge Far1 e Cdc24p. In presenza di α -factor un recettore a sette domini transmembranari si attiva e libera le subunità β e γ della proteina G a cui è legato; ciò permette il legame con la proteina Far1 che si sposta come conseguenza dal nucleo al citoplasma. Cdc24p è legata al dominio carbossiterminale della Far1 ma finché questa non è legata alla proteina G risulta inibita. In risposta al feromone e grazie al legame con la proteina G, Far1 cambia conformazione e attiva Cdc24p che diventa in grado di attivare l'actina inducendo un riarrangiamento del citoscheletro (Wiget et al., 2004). Ciò permette che il segnale del feromone blocchi il ciclo cellulare (Figura 1.5).

Figura 1.5: Modello illustrante il coinvolgimento di Far1 nella polarizzazione della cellula in risposta al segnale dell'a-factor.

Inibizione della Cdc28 (Chinasi ciclica-dipendente):

Il complesso Cdc28-Cln3 permette, se attivato, di superare START e entrare in fase S, e la sua inibizione dipende da Far1.

Il meccanismo attraverso il quale Far1 controlla l'attività di Cdc28-Cln3 non è stato ancora chiarito.

E' stato recentemente proposto un meccanismo che coinvolge Far1, Cln3 e Sic1 in una serie di due checkpoints atti alla regolazione dell'entrata in fase S (Alberghina et al., 2004). Tale ipotesi prevede che l'attivazione del complesso Cdc28-Cln3 si basi sul rapporto dei livelli di Far1 e Cln3 (Figura 1.6). La ciclica Cln3 e Far1 sono in rapporto tra loro da un equilibrio di attivatore/inibitore: quando il livello di Cln3 supera una certa soglia rispetto a quello di Far1, Far1 viene degradata e la Cdc28 è libera di legarsi a Cln3 portando a due conseguenze:

a) il budding

b) la sintesi del DNA che è controllata però da un altro inibitore chiamato Sic1

Infatti il ruolo di Cln3-Cdc28 è quello di attivare gli attivatori trascrizionali SBF (Swi4-Swi6) e MBF (Mbp1-Swi6) che portano all'espressione di un centinaio di geni tra cui quelli codificanti per Cln1,2 e Clb5,6. Il processo di gemmazione (budding) è innescato dalla formazione del complesso Cln1,2-Cdc28 (via SBF). La sintesi del DNA è invece innescata dalla formazione del complesso Clb5,6-Cdc28. Sic1 è una proteina inibitrice del complesso Clb-Cdc28: l'inibizione di Clb5,6-Cdc28 è rimossa dalla degradazione di Sic1 innescata dalla fosforilazione del complesso Clb1,2-Cdc28 (Nash et al., 2001).

Far1 e Sic1 sono cosi due soglie consecutive di controllo del ciclo cellulare (Figura 1.7). È noto che il livello di Cln3 è regolato dalla presenza dei nutrimenti la cui disponibilità porta così al superamento di Start (Hulber et al., 1993).

Figura 1.6: Schematica rappresentazione di una soglia molecolare: la risposta è innescata dal superamento di un certo livello di un attivatore (ciclica) rispetto al livello di un inibitore (CKi).

Figura 1.7: Modello proposto per l'attivazione della transizione G1–S regolata dai due checkpoints coinvolgenti Far1 e Sic1 (Alberghina et al., 2004).

1.9.2 - Degradazione di Far1

La proteina Far1 è rapidamente proteolizzata in tutte le fasi del ciclo tranne che in G1, fenomeno in cui è coinvolta la chinasi Cdc28. La trascrizione del gene *FAR1* è massima tra la mitosi e la fase G1 precoce ed aumenta di circa cinque volte in presenza di feromone; questo incremento dei livelli di trascrizione è necessario ma non sufficiente per l'arresto del ciclo, infatti l'overespressione del gene non basta per avere arresto in G1. È stato proposto che Far1 possa essere attivata post-trascrizionalmente mediante un'opportuna fosforilazione. Il legame con Cdc28-Cln causa invece la fosforilazione in posizione 87 (serina 87) che viene intercettata dalla ubiquitina e ne porta alla degradazione (Henchoz et al.,1997).

Far1, dunque, è sottoposta ad eventi regolatori post-trascrizionali sia positivi che negativi: da una parte, occorre la sua attivazione per avere un arresto del ciclo con feromone, dall'altra è destabilizzata, forse come misura di sicurezza contro un'inappropriata inibizione di Cdc28 (Gartner et al., 1998).

1.9.3 - Localizzazione di Far1

La localizzazione di Far1 è regolata a seconda delle esigenze della cellula: in assenza di feromone è concentrata nel nucleo, mentre in presenza di feromone si trova in modo predominante nel citoplasma. In generale la localizzazione subcellulare delle proteine è controllata dalle cellule regolandone il trasporto dentro e fuori dal nucleo; questo avviene mediante due tipi di sequenze, il segnale di localizzazione nucleare o NLS ("*Nuclear Localization Signal*"), che promuove il trasporto nel nucleo e consiste generalmente in una sequenza di aminoacidi basici, e il segnale di esportazione dal nucleo o NES ("*Nuclear Export Signal*"), che promuove il trasporto delle proteine dal nucleo al citoplasma. Anche la localizzazione di Far1, in *S. cerevisiae*, è regolata mediante il sistema NLS/NES: infatti, una doppia sequenza NLS all'N-terminale è necessaria per un efficiente trasporto nel nucleo in modo indipendente da feromone e dipendente dal ciclo cellulare, mentre una sequenza NES serve per il trasporto di Far1 nel citoplasma in seguito a trattamento con feromone.

È stato dimostrato recentemente come la localizzazione di Far1 non solo ne regoli le funzioni ma anche la stabilità (Blondel et al., 2000). Sembra, infatti, che la degradazione di

Far1, stimolata dall'ubiquitinazione da parte del complesso SCF^{Cdc4}, avvenga in modo specifico nel nucleo e non nel citoplasma. In presenza di feromone l'emivita di Far1 passa da 20-25 minuti a circa 40 minuti e questa stabilizzazione è correlata al trasporto di Far1 nel citoplasma.

1.10 - I mutanti del gene FAR1

In *Saccharomyces cerevisiae*, come visto, il ciclo cellulare progredisce in base alla coordinazione di più eventi: per entrare nella fase S e innescare la duplicazione del DNA la cellula deve aver raggiunto una massa cellulare critica Ps (Ps: valore del contenuto proteico per cellula al momento dell'inizio della replicazione del DNA). L'intricato meccanismo di regolazione segue questo schema:

A monte di questo meccanismo vi sono le condizioni nutrizionali che permettono o no la divisione cellulare. Il valore di Ps è infatti specifico per la fonte di carbonio in cui stanno crescendo: in culture in crescita esponenziale il contenuto proteico medio è maggiore in condizioni di fonte di carbonio ricca, come glucosio, piuttosto che in condizioni di crescita lento come in fonte di etanolo (Vanoni et al., 1983; Vanoni et al., 2005).

Come detto, la ciclina Cln3, il cui livello è modulato dai nutrienti, complessa con Cdc28 la cui attivazione fa scattare il processo di gemmazione e l'entrata in fase S.

La sovraespressione (o una mutazione che ne accresce la stabilità) del gene *CLN3* mostra una diminuzione della massa cellulare e del valore Ps che viceversa aumentano nel mutante deleto di *CLN3* (*cln3* Δ). Quando invece il livello di Cln3 è regolato da un cambiamento della fonte di carbonio sia la taglia cellulare che Ps sono proporzionali al livello di Cln3. Questi dati potrebbero risultare in contraddizione tra loro, ma possono essere facilmente spiegati se si considera che Cln3 non è il solo elemento determinante nell'entrata in fase S. Come già detto il meccanismo proposto dal gruppo Vanoni prevede un meccanismo di regolazione dato dal rapporto inibitore/attivatore tra Cln3 e Far1. Tale ipotesi prevede una diretta correlazione tra livelli di Far1 e dimensione cellulare. I dati riportati nella figura 1.8 mostrano una lineare correlazione tra la massa cellulare e il log della concentrazione intracellulare di Far1.

Figura 1.8: Correlazione tra contenuto proteico cellulare e livello intracellulare di Far1 (Alberghina et al. 2004).

Per quanto riguarda i mutanti di *FAR1* la figura 1.9 mostra che la sovraespressione del gene *FAR1* (*FAR1^{tet}*) porta a uno spostamento della distribuzione del contenuto proteico che, rispetto al wild type, in etanolo diminuisce notevolmente mentre in glucosio il fenomeno è meno evidente.

Figura 1.9: Distribuzione del volume cellulare rispetto al contenuto proteico del ceppo wild-type confrontato con il ceppo *FAR1*^{tet} durante la crescita esponenziale in etanolo e glucosio in terreno SCE (Alberghina et al., 2005). La sovraespressione di *FAR1* è stata ottenuta dall'utilizzo di un promotore represso da tetraciclina (pTet-*FAR1*).

Quando invece *FAR1* viene disattivato ($far1\Delta$) si osserva una diminuzione del contenuto proteico.

Si spiega così perché l'aumento di Cln3 indotto da cambiamenti fisiologici (condizioni nutritive e non mutazioni genetiche) comporta un aumento del valore di Ps. Le condizioni nutritive più permissive comportano anche un aumento della concentrazione di Far1 portando ad un aumento della soglia Far1/Cln3: durante l'aumento dei livelli di Cln3 prima di superare la soglia che innesca il budding le cellule hanno il tempo di accresce il loro volume e il loro Ps (Figura 1.10). Qualora invece il livello di Cln3 è indotto da una overespressione dovuta a mutazione genetica, il livello di Far1 resta invariato e la

cellula raggiunge subito il rapporto inibitore/attivatore richiesto per entrare in fase S senza avere il tempo di accrescere la sua massa.

Figura 1.10: Effetto della sovraespressione del gene *FAR1* nel tempo di innesco della transizione dalla fase G1 alla fase S durante la crescita esponenziale in etanolo e glucosio (Alberghina et al., 2004).

Se nel deleto $far1\Delta$ le cellule anticipano il processo di gemmazione a una massa cellulare minore rispetto al wild type il tempo di inizio della replicazione del DNA è solo di poco spostato (Figura 1.11). Ciò indica che un secondo step di regolazione controlla e completa il passaggio tra budding e sintesi del DNA. La degradazione di Sic1, che permette l'attivazione dei complessi Cln5,6-Ccd28, è questo secondo checkpoint.

Figura 1.11: Osservazione dell'inizio della replicazione e della gemmazione di cellule di un ceppo wild type e di un ceppo deleto in *FAR1* sincronizzate tramite elutriazione e riprese in terreno SCD (terreno sintetico completo supplementato con 2% di glucosio). I valori di DNA (calcolato tramite

FACS) sono misurati ogni 10 min. La freccia indica il momento in cui le cellule wild type e *far*1 Δ hanno lo stesso volume: le cellule wild type raggiungono lo stesso volume delle cellule *far*1 Δ 40 min dopo. Come si vede nel mutante l'inizio della gemmazione precede di poco quello della replicazione. Sulla sinistra viene indicata la percentuale di cellule gemmate e di cellule aventi un contenuto di DNA maggiore di 1c (nelle fasi S, G2 e M) (Alberghina et al., 2004).

Comportamento durante lo shift-up

In un ceppo wt l'aggiunta di glucosio ad un terreno contenente etanolo comporta un periodo di adattamento nel quale la cellula si prepara a sfruttare le migliori condizioni a cui è sottoposta. Ciò si traduce in un calo di budding ovvero una netta diminuzione della frazione di cellule gemmanti: per un certo periodo di tempo successivo all'aggiunta di glucosio le cellule sospendono la gemmazione (Alberghina et al., 1998). Questa regolazione è persa nei mutanti in *FAR1 (far1* Δ e *FAR1^{tet}*) e nel mutante *cln3* Δ indicando uno scorretto funzionamento qualora sono alterati i geni coinvolti nella prima soglia di controllo (Figura 1.12, grafico sulla sinistra). La delezione del gene *SIC1* invece non è così influente sulla modulazione del volume cellulare e del Ps durante lo shift-up; per osservare la perdita della caduta di frazione di cellule gemmanti ci deve esserci una contemporanea delezione anche dei geni *FAR1* o *CLN3*. Ciò indica che durante uno shitup nutrizionale il ruolo della prima soglia Cln3/Far1 è più rilevante rispetto alla seconda soglia gestita da Sic1 (Figura 1.12, grafico sulla destra).

Figura 1.12: Grafico sulla sinistra: andamento della percentuale di cellule gemmate nei quattro ceppi wild-type, *far*1 Δ , *cln*3 Δ , e overespresso in *FAR1* dopo l'aggiunta del 2% di glucosio durante la crescita esponenziale in etanolo. Grafico sulla destra: andamento della percentuale di cellule gemmate nei ceppi wild-type, *sic*1 Δ , e *sic*1 Δ *cln*3 Δ , dopo l'aggiunta del 2% di glucosio durante la crescita esponenziale in etanolo. (Alberghina et al., 2004).

1.11 - Curva di crescita del lievito

Per osservare le condizioni di crescita di un ceppo di lievito si deve tener conto della curva di crescita che indica l'evoluzione numerica della popolazione cellulare dal momento della sua semina a quello della morte di tutte le cellule. La curva di crescita e' composta da quattro fasi caratteristiche:

fase di latenza: in cui le cellule si adattano al mezzo di coltura e non proliferano *fase esponenziale:* in cui le cellule si riproducono con un tempo di generazione costante determinato sia dalle caratteristiche genetiche del microrganismo che da fattori ambientali quali il pH, la temperatura e la quantità di sostanze nutritive *fase stazionaria*: in tale fase le cellule non sono più in grado di riprodursi per l'esaurimento anche di uno solo dei componenti del terreno colturale e per l'accumulo di prodotti del metabolismo che alterando il pH rendono impossibili le normali reazioni biosintetiche *fase di mortalità*: in cui aumenta il numero delle cellule che perdono la capacità di riprodursi e la morte dei singoli individui procede con andamento esponenziale

Gli esperimenti di questa tesi sono stati eseguiti osservandone i parametri (velocità di crescita, percentuale di cellule gemmate, volume medio, contenuto proteico medio) e prelevando le cellule nella fase di crescita esponenziale bilanciata ovvero quanto tutti i parametri di crescita sono costanti. Generalmente le cellule di lievito raggiungono la fase esponenziale quando si trovano in un intervallo di concentrazione compreso tra 2x106 cells/ml e 1x107 cells/ml.

1.12 - Lo shif-up nutrizionale

Si intende per shift-up nutrizionale l'evento nel quale la cellula in crescita in determinate condizioni nutrizionali viene sottoposta ad una variazione di tale condizioni come ad esempio la variazione della fonte di carbonio. Tale tipo di cambiamento può avvenire in direzione di una condizione più favorevole come il passaggio da una fonte povera (etanolo) ad una ricca (glucosio) o viceversa.

Shift diauxico

Questo tipo di shift-up nutrizionale è quello che è stato finora più studiato e monitorato, e indica il passaggio da una fonte fermentativa (glucosio) ad una non fermentativa (etanolo). Una volta che la fonte ricca di carbonio, ovvero il glucosio, scarseggia, il lievito può riattivare tutti gli enzimi mitocondriali repressi e metabolizzare l'etanolo accumulato.

Shift up nutrizionale etanolo-glusosio

Il passaggio inverso, invece, in cui il metabolismo del lievito coinvolto in processo non fermentativo viene "sconvolto" dall'introduzione di una fonte ricca come il glucosio, è il processo da noi studiato.

In una popolazione di *S. cerevisiae* che cresce in modo asincrono le singole cellule differiscono per la loro posizione nel ciclo cellulare, la loro età e la loro massa e sono queste differenze che determinano la distribuzione della massa cellulare di una data popolazione in crescita. La distribuzione del contenuto proteico di una data popolazione in crescita esponenziale è stabile e caratteristica delle determinate condizioni di crescita in cui si trova la popolazione stessa. Questa omeostasi dipende dalla coordinazione tra la crescita cellulare e la duplicazione del DNA impedendo alle cellule di diventare troppo grandi o troppo piccole.

Cambiando il terreno di crescita si obbliga la popolazione cellulare a adattarsi alle nuove condizioni di crescita modificando il proprio metabolismo e il proprio contenuto proteico. Durante gli esperimenti di shift-up nutrizionale etanolo-glucosio si verificano due ritardi nell'entrata in fase S e nell'uscita dal ciclo cellulare. Subito dopo l'aggiunta di glucosio a cellule in crescita in fase esponenziale su fonte di carbonio povera, sia le cellule che non sono ancora in fase S sia quelle che si trovano in fase S+G2+M subiscono un arresto nella loro crescita. La velocità di uscita dal ciclo è maggiore della velocità di ingresso in fase S e, per questo motivo, le cellule che si trovano in fase M superano più velocemente il loro

blocco, si dividono e incrementano il numero delle cellule non gemmate. Di conseguenza, dopo circa un'ora dall'aggiunta della nuova fonte di carbonio, il numero di cellule non gemmate aumenta e si verifica una diminuzione della percentuale di cellule gemmate; contemporaneamente si verifica anche un aumento della distribuzione del contenuto proteico medio.

Solo dopo circa cinque ore la popolazione cellulare raggiunge la percentuale di cellule gemmate e il contenuto proteico medio tipico della crescita esponenziale in glucosio.
LA PROTEOMICA

La proteomica è una scienza estremamente giovane. Le prime segnalazioni dell'esistenza di questa scienza sono state pubblicate nel 1995 quando viene definita come "l'insieme dei prodotti funzionali espressi da un genoma" (Kahn et al., 1995) ma già in precedenza Norman G. Anderson, aveva intuito l'importanza di un progetto proteoma: aveva già capito che i veri attori biologici, su cui concentrarsi per comprendere i meccanismi molecolari dell'insorgenza delle malattie ed il più intimo meccanismo di azione dei farmaci, sono le proteine.

2.1 - La dinamicità del proteoma

Coniato per analogia con il vocabolo genomica, il termine proteomica è stata definito come l'analisi sistematica di un profilo di proteine in un tessuto, in una cellula o in un comparto subcellulare in un preciso istante (Wilkins et al., 1996).

La proteomica è una scienza più complessa della genomica per una lunga serie di motivi. Due elementi caratterizzano un proteoma: la grande complessità e l'elevato dinamismo.

Il primo è correlato alla molteplicità delle molecole proteiche che possono derivare dall'espressione di un singolo gene. Infatti, una delle scoperte più eclatanti di questa nuova era post-genomica, è che il vecchio paradigma secondo cui ad un gene corrisponde una proteina non è sempre valido. Tra la trascrizione genica ed il "prodotto proteico finito" possono aver luogo una serie di eventi, quali uno splicing differenziato dell'RNA messaggero e tutta una serie di modifiche post-sintetiche, che caratterizzano il prodotto maturo e che incrementano la variabilità di una singola specie proteica (Figura 2.1). Isoforme, varianti o prodotti di modificazione post-sintetica non vengono così evidenziati con la sola informazione genomica.

Parte della ricerca proteomica è volta a fornire una fotografia di uno stato cellulare, cioè una rappresentazione spaziale e temporale del suo contenuto proteico, comprendente anche tutte le varianti molecolari che dai singoli geni hanno origine. Progetti di questo tipo sono definiti più recentemente come "proteomica sistematica" o "profili di espressione proteica".

Figura 2.1: Dal DNA alla proteina. Da un singolo gene può avere origine un etereogeneo gruppo di proteine a causa di processi come splice variant o modificazioni post-traduzionali.

La seconda caratteristica del proteoma rispecchia l'eterogeneo contenuto proteico di una cellula, che cambia a seconda delle condizioni in cui essa si trova (ciclo cellulare, stress, trattamento farmacologico e/o patologico). A causa dell'elevato dinamismo dell'espressione genica, alle indagini molecolari sistematiche si stanno contrapponendo una serie molteplice di progetti rivolti più specificamente alla caratterizzazione delle differenze del contenuto proteico nei diversi compartimenti subcellulari, nei complessi multiproteici e nei sistemi implicati nella trasduzione del segnale. Elemento essenziale in questo tipo di analisi è l'analisi quantitativa del contenuto proteico, soprattutto in relazione a fenotipi cellulari prodotti da agenti diversi.

Caratteristica della proteomica è anche il modo in cui viene improntata la ricerca rispetto alle classiche scienze biologiche. Con le tecniche classiche, un ricercatore deve avanzare un'ipotesi a priori e poi pensare e realizzare un esperimento ad hoc che confermi o smentisca tale ipotesi. Al contrario con la proteomica l'approccio più utilizzato è quello di scegliere il sistema che ci interessa ed analizzarlo in "toto". Il confronto fra un tessuto sano ed uno malato può infatti mostrare un gran numero di proteine alterate. Ma è solamente l'identificazione di tutte queste proteine e della loro funzione che può permetterci a posteriori di comprendere il complesso meccanismo di insorgenza e progressione di una malattia.

Quello proteomico è quindi un approccio, che ci aiuta a comprendere la realtà senza trascurare la complessità, che è parte di tutti i fenomeni biologici che caratterizzano la vita. L'obiettivo non è solo descrivere tutti gli eventi nel dettaglio, ma sforzarsi di comprendere meglio i meccanismi attraverso cui questi eventi si realizzano.

2.2 – Le tecniche analitiche della proteomica

La proteomica, si basa sull' impiego di tecniche molto diverse tra loro: gli approcci sperimentali, informatici, biochimici forniscono informazioni complementari, preziose per identificare e caratterizzare un numero elevato di proteine differenti.

Molte di queste tecniche sono ancora in fase di perfezionamento soprattutto per quanto riguarda semplicità, automatizzazione nonché sensibilità: proteine o peptidi poco rappresentati e sconosciuti, che potrebbero risultare rilevanti, possono rischiare di essere "coperti" da altre proteine abbondantemente rappresentate.

Un approccio classico della proteomica è l'abbinamento tra separazione di una miscela proteica con 2D elettroforesi, digestione triptica e spettrometria di massa seguita da analisi statistica (Figura 2.2).

Figura 2..2: Schema di un classico approccio di proteomica. Alla separazione delle proteine tramite SDS-PAGE segue il trattamento delle spot excise e l'analisi tramite spettrometria di massa.

ELETTROFORESI BIDIMENSIONALE

L'elettroforesi bidimensionale è una delle tecniche basilari della proteomica: attualmente non ci sono altre tecniche capaci di risolvere simultaneamente migliaia di proteine in una sola procedura. In teoria, l'analisi con elettroforesi bidimensionale può portare alla separazione di 15000 proteine in un solo gel, ma nella pratica la separazione e la visualizzazione di 5000 proteine è già un ottimo risultato.

3.1 - SDS-PAGE: elettroforesi su gel di poliacrilammide

La separazione elettroforetica fu introdotta da O' Farrell e J. Klose nel 1975 (O'Farrel et al., 1975; Klose et al., 1975). Tale tecnica permette di separare miscele di proteine in soluzione facendole migrare in risposta ad un campo elettrico. Una miscela di proteine può essere infatti separata in base al punto isoelettrico, rappresentato dal pH al quale la carica elettrica netta della proteina è nulla: le proteine vengono fatte migrare attraverso un gradiente di pH fino a che la somma delle cariche positive e negative si sarà annullata (isolelettrofocusing) e la proteina non sarà più in grado di muoversi, indipendentemente dalla forza del campo elettrico applicato. La focalizzazione isoelettrica può essere combinata con l'elettroforesi su gel di poliacrilammide in SDS per ottenere separazioni ad altissima risoluzione (SDS-PAGE o elettroforesi su gel di poliacrilammide). La prima migrazione, ovvero la focalizzazione isoelettrica, avviene in un cilindro molto ristretto che viene successivamente caricato, in presenza di SDS, in un gel di poliacrilammide. Questa volta, le proteine migreranno ortogonalmente rispetto alla migrazione in isoelettrofocusing e verranno separate in base alla loro massa. Modificando la concentrazione del polimero, è possibile privilegiare la separazione di specifici range di pesi molecolari. Le proteine così separate possono essere ulteriormente analizzate.

Le proteine caratterizzate da identico punto isoelettrico e massa sono le uniche a non poter essere separate con la combinazione di queste due tecniche, ma con l'elettroforesi bidimensionale è possibile separare due proteine che differiscano di un singolo aminoacido, a patto che questa differenza modifichi il PM della molecola stessa. Una molecola identificata in 2D elettroforesi può essere caratterizzata ulteriormente eluendola dal gel e successivamente analizzandola mediante HPLC-MS (high performance liquid cromatography), o MALDI-TOF (matrix assisted laser desorption ionization- time of flight). In questo caso, la proteina può essere analizzata direttamente o dopo digestione con enzimi proteolitici quali tripsina in grado di idrolizzare il legame peptidico. Il prodotto di questa digestione è una miscela di peptidi che sono frammenti rappresentativi della molecola originale e che verranno analizzati, come verrà in seguito illustrato, con la tecnica del PMF (Peptide Mass Fingerprint).

Via internet sono disponibili banche dati di gel 2D di vari organismi e frazioni cellulari (www.expasy.ch/ch2d/cg2d-top.html).

3.2 - Considerazioni sulla tecnica

Sono tuttora in corso studi atti a migliorare la riproducibilità e la gamma di proteine che possono essere separate e visualizzate con tale tecnica.

Rabilloud et al. hanno mostrato con i loro studi che la più parte delle proteine idrofobiche si assorbivano sulle IPG (strip per la prima dimensione) e risultavano di conseguenza sottoespresse in seconda dimensione, rendendo azzardata una valutazione quantitativa relativa della globalità delle proteine visualizzate. Miglioramenti considerevoli sono stati apportati dall'introduzione di agenti di solubilizzazione, surnatanti e detergenti come la tiourea o il CHAPS (Rabilloud et al., 1997). Anche l'introduzione nella metodica della denaturazione della struttura secondaria delle proteine con la riduzione dei ponti solfuri e successiva alchilazione ha portato ad un netto aumento della solubilità.

Nel campo della risoluzione e della riproducibilità un passo fondamentale è stato fatto con l'introduzione di gradienti di pH preparati e immobilizzati (le IPG strip) (Bjellqvist et al., 1982).

I limiti di questa tecnica sono nella separazione di molecole idrofobiche che non si sciolgono bene nel solvente (come le proteine di membrana), piuttosto che proteine con peso molecolare o con una carica molecolare che escono dal range del gel o ancora proteine che sono presenti a basse concentrazioni. Eseguire un analisi comparativa nelle condizioni di separazione elettroforetica che abbiamo applicato nelle nostre sperimentazioni significa infatti tenere sempre in considerazione che ciò che si sta visualizzando è solo una parte del proteoma: quella più affine alla 2D-PAGE. In *Saccharomyces cerevisiae* le LAP (low abundance proteins) sono circa l'80% e il 30% delle ORFs prevede la codificazione di proteine di membrana (Figura 3.1) (Pedersen et al., 2003).

Figura 3.1: (A) Teorica mappa 2D delle ORFs in *Saccharomyces cerevisiae*. (B) Distribuzione del CAI (Sessione 11 - *Risultati – Codon Bias come valutazione della sensibilità del sistema*) in *Saccharomyces cerevisiae*. L'80% dei 6288 geni ha un valore di CAI minore di 0.2 che corrisponde a una bassa espressione proteica.

Attualmente si stanno sviluppando tecniche che permettono di rendere più completa la parte di proteoma visualizzata con la 2D-PAGE; queste tecniche consistono in sistemi di colorazione più sensibili (DIGE), piuttosto che nel prefrazionamento (Righetti et al., 2005) e in particolare di tecniche che cercano di minimizzare le differenze di concentrazioni tra HAP (low abundance proteins) e LAP (low abundance proteins) portando all'arricchimento di queste ultime (Fortis et al., 2005).

Essendo stata l'apprendimento e la messa a punto di gel bidimensionali una parte sostanziale di questa tesi, entreremo in specifico sulle differenti parti della procedura.

3.2.1 – Preparazione del campione

La preparazione del campione è assolutamente essenziale per un buona risoluzione.

Estrazione delle proteine

Per analizzare il proteoma completo intracellulare, la parete cellulare deve essere rotta e tale procedura deve essere condotta a freddo. La scelta può essere fatta tra una rottura delicata e una vigorosa come quella dai noi scelta di abrasione con biglie di vetro. In seguito alla distruzione cellulare numerose proteasi possono liberarsi e le proteine del campione devono quindi essere protette da una proteolisi.

Reagenti di lisi efficienti permettono di separare le proteine dagli altri componenti cellulari e di eliminare i contaminanti non voluti.

Si è notato l'importanza di condurre l'estrazione delle proteine direttamente nel buffer di lisi denaturante e contente un cocktail di inibitori.

Quantificazione

Se il confronto quantitativo e qualitativo tra i gel rappresenta un punto chiave dello studio condotto bisogna garantire un accurata analisi di quantificazione. Nel corso di questa tesi dopo aver testato differenti protocolli, la quantificazione è stata definitivamente condotta con il metodo di taratura attraverso la BSA (protocollo Biorad).

Purificazione dell'estratto proteico

La successiva purificazione dell'estratto proteico si rende necessaria per eliminare sali, detergenti, acidi nucleici o lipidi.

La presenza dei sali è infatti uno dei fattori più comuni che porta a una insufficiente focalizzazione delle spot che si traduce in strisciate orizzontali sul gel.

Gli acidi nucleici portano invece ad un aumento di viscosità, e in caso di alto peso molecolare a rischi di otturazione dei pori del gel.

I lipidi possono formare complessi con certe proteine soprattutto membranari portando oltre a diminuzione di solubiltà a variazioni di pH e pI.

Un classico metodo di purificazione è la precipitazione tramite TCA. Nel nostro caso abbiamo riscontrato difficoltà di risolubilizzazione che potevano porre un dubbio sul fatto che la risolubilizzazione di un certo tipo di proteine potesse essere compromessa. Inoltre un esposizione prolungata al pH acido necessario a tale procedura potrebbe portare alla degradazione o modificazione di certe proteine. La purificazione con gel filtrazione, per esempio con colonnine preconfezionate, risolve questi problemi.

La successiva risolubilizzazione del campione viene condotta direttamente nel buffer di reidratazione delle strip. Si applica un volume di buffer tale da corrispondere secondo la quantificazione fatta alla esatta quantità di proteine che si vogliono caricare sul gel. Tale buffer contiene:

- urea per la solubilizzazione e denaturazione (la tiourea ha la stessa funzione ma provvede ad una migliore solubilizzazione delle proteine più basiche).
- detergenti come CHAPS che solubilizzano le proteine più idrofobiche e minimizzano le aggregazioni.
- DTE che permette di ridurre i ponti solfuro
- anfoliti che migliorano la separazione facilitando la corsa

3.2.2 - Prima dimensione - IPG strip

Esistono vari tipi di IPG strip che si estendono in range di pH più o meno contenuti. Nel nostro caso abbiamo scelto di utilizzare strip della massima lunghezza (17 cm, che permettono una migliore separazione) in un range di pH da 3 a 10 (corrispondente ad un effettivo 4-9) che permette un rappresentazione più totale dell'estratto a scapito però

della risoluzione.

Reidratazione e applicazione del campione

La reidratazione delle strip avviene direttamente con il trasferimento della soluzione del campione.

Una reidratazione condotta con un leggero voltaggio (50 V, per una notte) viene definita "attiva" e permette di ottenere già una leggera focalizzazione del campione.

Isoelettrofocalizzazione

Durante la IEF (isoelectric focusing guidelines) la corrente diminuisce mentre il voltaggio aumenta nel momento in cui proteine e altre cariche migrano alla loro posizione di equilibrio. La scelta del voltaggio da applicare varia a seconda delle strip, della complessità della miscela e da numerosi altri fattori come anche la disponibilità di tempo. In genere un graduale e lento aumento del voltaggio fino al voltaggio di focalizzazione desiderato porta a una migliore separazione e può richiedere anche un totale di 24 ore.

3.2.3 - Seconda dimensione - SDS-PAGE

I gel vengono preparati prima della reidratazione delle strip. SDS-polyacrylamide gel electrophoresis è una tecnica che utilizza per la separazione delle proteine in base al loro peso molecolare, gel di poliacrilammide contente sodio-dodecil-solfato. La carica intrinseca della proteina non diviene un fattore di separazione grazie alla presenza del SDS. L'SDS complessa le proteine circondandole, il risultato è che una grande quantità di SDS è incorporata in questi complessi con un rapporto stimato essere intorno a 1.4 g SDS/g proteine (Ibel et al., 1990). Ciò serve a mascherare la carica delle proteine conferendogli una carica netta negativa per unità di massa. Proteine trattate con SDS e DTE si spostano in seconda dimensione solo in base al loro peso molecolare. Il buffer più comunemente usato in seconda dimensione è il Leammli che conduce la separazione ad alto pH impedendo aggregazioni.

La griglia polimerica si ottiene dal gradiente risultante dalla miscelazione di due soluzioni a diversa concentrazione di acrilammide. La lunghezza dei gel può aumentare la capacità di risoluzione. Esistono gel "precaster" che consentono di garantire una maggiore riproducibilità. Nel nostro caso si è osservato che i gel da noi confezionati (con gradiente da 7.5% a 16%) portavano a una buona riproducibilità come nel caso dei gel precaster.

Per favorire una buona separazione, prima del passaggio nel gel di separazione, si impone alle proteine il passaggio attraverso lo stacking gel che porta le proteine ad impaccarsi su un fronte più compatto.

Equilibrazione delle strip

Una volta avvenuta la focalizzazione sulle strip e prima del passaggio alla seconda dimensione, le strip vanno equilibrate trattandole con DTE per assicurare la denaturazione e in seguito con iodoacetammide per alchilare i gruppi solfuro e impedire la riossidazione durante l'elettroforesi. In tali passaggi si usano buffer contenenti oltre che urea e SDS anche glicerolo (per favorire il passaggio alla seconda dimensione) e Tris-HCl per mantenere le strip a un range appropriato di pH.

Elettroforesi

Le strip vengono direttamente posizionate sui gel e montate nell'apposito apparato di corsa. L'elettroforesi si svolge in due step, un primo basso passaggio di corrente che porta a un adeguata entrata delle proteine nello stacking gel e un secondo step con un amperaggio maggiore che può durare 5-6 ore. Una buona separazione è in genere condotta a 50 mA/gel.

Presupposti per una corretta analisi comparativa tra gel

I nostri risultati sono informazioni nate dall'analisi comparativa tra gel, si rivela quindi essenziale che le differenze tra i gel possano essere ricondotte solo a differenze dovute al campione biologico e non a problemi durante la preparazione dei gel. Per questo i gel che vengono confrontati devono essere sottoposti allo stesso identico iter di preparazione. Essendo durante le fasi di prima e seconda dimensione i voltaggi applicati e il tempo di separazione non sempre riproducibili, i gel destinati a essere confrontati sono sempre stati fatti correre contemporaneamente negli stessi apparati.

3.2.4 - Visualizzazione dei risultati

Se l'elettroforesi bidimensionale è la tecnica principale per la separazione della maggior parte delle proteine, la visualizzazione resta uno step delicato che determina la sensibilità finale.

Le caratteristiche principali per orientarsi nella scelta del tipo di colorazione sono

- la sensibilità
- un range lineare per la quantificazione
- semplicità nell'utilizzo
- compatibilità con la spettrometria di massa

Tra le colorazione più classiche vi sono la colorazione all'argento e la Blu Coomassie. Tra queste la colorazione con nitrato d'argento è la più sensibile ma rispetto a quella con il Blu Coomassie non testimonia l'esatta stechiometria delle proteine presenti e risulta inoltre essere dipendente dalle proprietà intrinseche delle proteine (Giometti et al., 1991). Infatti gli ioni argento sono complessati dagli amminoacidi delle proteine e la forza del complesso dipende dall'affinità tra gli ioni e gli amminoacidi (Rabilloud et al., 1990; Shevchenko et al., 1996) con il risultato che se gli ioni sono troppo complessati la proteina può essere persa per l'analisi in massa. Tale colorazione è infatti incompatibile con la MS e il suo utilizzo richiede speciali protocolli che lascino parte delle proteine non colorate e disponibili all'analisi (Richert et al., 2003). Per quanto riguarda la linearità la colorazione con Silver lo è per concentrazione da 0.004 a 2 ng/mm² mentre per il Blu Coomassie la linearità va da 10 a 200 ng/mm² con l'inconveniente di essere 50 volte meno sensibile rispetto alla colorazione all'argento.

La nostra scelta si è orientata sull'utilizzo della colorazione Blu Colloidale che rappresenta un variante della Blu Coomassie con una migliore sensibilità (al di sotto dei 100 ng/proteina). Tale colorazione permette di avere un ottima riproducibilità, cosa che con la colorazione Silver è possibile solo con una grande esperienza: la visualizzazione è quindi ristretta alle proteine maggioritarie ma si garantisce una buona riproducibilità essenziale per le nostre analisi la cui componente comparativa tra gel è il punto chiave. Citando altre colorazioni in uso, vi è la colorazione a fluorescenza SYPROTM con l'utilizzo di sonde organiche o rutenio (Yan, Harry et al., 2000; Rabilloud et al., 2001), che ha una sensibilità superiore alla Blu Coomassie ed è MS compatibile (Yan, Wait et al., 2000) ma

richiede apparecchiature piuttosto onerose (scanner a fluorescenza).

Un'altra colorazione che ha visto la luce negli ultimi anni è la colorazione DIGE, che presenta prestazioni interessanti non solo in fatto di sensibilità ma soprattutto per quanto riguarda l'analisi comparativa dei gel. Anch'essa richiede apparecchiature specifiche.

3.2.5 – Analisi dell'immagine

La comparativa tra gel consiste in set di gel provenienti da diversi esperimenti che vengono confrontati tra loro per trovare proteine differentemente espresse. Ciò richiede specifici software di valutazione dell'immagine in grado di discernere tra le macchie (spot) e individuare la differenze.

L'individuazione e la caratterizzazione delle spot, il confronto dei dati fra i diversi gel, con rimozione del background e degli artefatti di colorazione richiedono esperienza e tempo.

Il primo step dell'analisi è la "digitalizzazione" del gel ovvero la trasformazione dell'immagine sperimentale in una informazione numerica utilizzabile dai vari software. Ciò è ottenuto tramite l'elaborazione dell'immagine fornita da uno scanner capace di ben riprodurre l'intensità, la posizione e la taglia della spot. I principali software oggi in uso sono PdQuest (Biorad) e Melanine (ImageMaster[™] 2D Platinum, Amersham) che subiscono ogni anno perfezionamenti volti a migliorare l'affidabilità della quantificazione e soprattutto della sovrapposizione tra gel.

Nel corso di questa tesi si è sviluppato una certa manualità nell'utilizzo del software PdQuest.

PdQuest

Una serie di steps sono necessari per una corretta valutazione dei gel e possono essere così schematizzati: scanning, individuazione automatica delle spot e trattamento dell'immagine, matching tra i gel, normalizzazione, analisi differenziale.

Scanning

Ogni zona dell'immagine è costituita da una serie di pixels ai quali corrispondono non solo coordinate X, Y ma anche Z che rappresenta l'intensità del pixel.

Figura 3.2: Rappresentazione delle bande su un gel bidimensionale. Oltre le coordinate X e Y che determinano la posizione nel gel viene calcolata la coordinata Z dall'intensità della banda.

L'intensità di un macchia è quindi la somma delle intensità dei pixels che vengono presi in considerazione per definire quel oggetto: nella valutazione delle intensità diventa quindi importante definire i confini della macchia.

Individuazione automatica delle spot

Le immagini dei gel subiscono un primo processamento, nel quale il software provvede secondo parametri impostati dall'operatore (che sono la chiave di un buon risultato) alla sottrazione del background e delle "righe" verticali e orizzontali, e a creare per ogni spot un valore di gaussiana secondo le sue tre coordinate (Figura 3.2). La creazione di queste riproduzioni tridimensionali delle spot é necessaria perché il programma riesca ad identificare e quantificare precisamente le spot confuse, rigate o in parte sovrapposte e che non potrebbero essere distinte senza questo tipo di processamento. Si creano da ciò tre prodotti: l'immagine originale, l'immagine filtrata e un immagine ricostruita che nasce dalle gaussiane calcolate per ogni spot: è su questa immagine virtuale che il software lavora in seguito. A questo punto l'operatore deve indicare la spot più piccola, il più flebile ed il cluster di spot più grande nel gel.

Purtroppo l'identificazione automatica non è mai del tutto esatta e necessita di un ulteriore intervento da parte dell'operatore per aggiungere o rimuovere le spot identificate in modo scorretto.

Matching tra gel

Per eseguire il matching é necessario, come prima cosa, scegliere un gel di riferimento (in genere il gel migliore, in cui compaiono più spot) con cui il software confronta gli altri gel. Per procedere alla comparativa tra i gel si deve indicare al programma una serie di "landmarkes" ovvero delle spot comuni tra i gel che il software utilizzerà come riferimento per allineare e posizionare i gel (Figura 3.3 A). Durante il match il programma crea un immagine di riferimento che consiste in un gel virtuale risultante dalla somma di tutti le spot provenienti da tutti i gel del match. Questo gel Master potrà essere utilizzato in seguito per il confronto da diversi match (Figura 3.3 B). Il passaggio di matching comunque, insieme a quello della identificazione delle spot, pur essendo automatizzato, richiede un grande intervento da parte dell'operatore ed è il punto critico dell'analisi di immagine.

Figura 3.3: (A) Rappresentazione di come il software collega i landmarkers assegnati nei gels da confrontare. (B) Esempio di matchset con PdQuest. Il primo gel in alto a sinistra è il Master, cioè il gel di riferimento. I sei gel confrontati rappresentano due condizioni diverse in triplicato. Le croci rosse indicano le spot; i triangoli verdi sono invece i landmark posti dall'operatore.

Ci sono versioni più avanzate del programma che permettono una distorsione dei gel con un conseguente miglioramento del match.

Normalizzazione

Quando si confrontano dei gel, ci sono spesso una serie di variazioni che non sono riconducibili ad una vera differenza di espressione proteica ma ad esempio a una leggera differenza nella quantità del materiale caricato tra i diversi gel o differenze nell'intensità della colorazione tra un gel e l'altro. Si rileva quindi necessaria una normalizzazione dei gel che si vogliono confrontare. In questa tesi si è utilizzato il sistema di normalizzazione "total quantity in valid spot", per cui la quantità grezza di ogni singola spot è divisa per la quantità totale di tutte le spot del gel.

Esistono però anche altri metodi di normalizzazione tra cui scegliere a seconda del caso; ad esempio é possibile normalizzare per una fattore scelto dall'operatore, nel caso in cui si confrontino gel in cui sono caricate quantità di proteine differenti e note.

Analisi differenziale

Essendo i gel eseguiti in questa tesi ottenuti in doppio per ogni esperimento, l'analisi differenziale viene prima condotta su un set di gel e in seguito confrontata con i risultati ottenuti dal doppio set. Le spot diversamente espresse vengono individuate aiutandosi con il tool di PdQuest "*Spot Rewiew*". Esso mostra graficamente l'andamento quantitativo di ogni spot in ognuno dei gel, consentendo così di individuare le proteine i cui livelli variano significativamente (Figura 3.4).

In questa tesi vengono considerate differenziali solo le spot con un fold change tra le condizioni considerate maggiore o uguale a 1.5, e che abbiano una deviazione standard ragionevolmente bassa. I risultati del match del primo set di gel vengono confrontati con quelli del secondo set e si prosegue il lavoro di incisione e identificazione in massa sulle differenze confermate nei due doppi sperimentali.

Figura 3.4: Esempio del tool "*Spot Review*". Confronto di sei gel che rappresentano due condizioni diverse in triplicato. Nello *Spot Review* si possono notare, ad esempio, spot che non variano tra le due condizioni (cerchiate in giallo), spot maggiormente espresse nella condizione 1 (in verde), spot presenti solo nella condizione 2 (in rosso).

LA SPETTROMETRIA DI MASSA

Un errore nella misurazione estremamente basso e la possibilità di effettuare analisi a livelli di sensibilità eccezionalmente elevati ha reso la spettrometria di massa uno strumento particolarmente adatto alle quantità proteiche tipiche delle analisi proteomiche. L'identificazione di una proteina può essere oggi effettuata a partire da limitate informazioni strutturali sulla componente proteica, mediante ricerca di similitudini o identità in banche dati di sequenze nucleotidiche sempre più curate e mediante algoritmi di ricerca sempre più sofisticati.

Tra le strategie principali utilizzate in tale ambito vi è la tecnica del "Peptide Mass Fingerprinting" o PMF (Rappsilber et al., 2002) che presenta buona sensibilità e adattabilità ad analisi anche di un numero elevato di campioni.

Una serie di algoritmi disponibili commercialmente o in rete permette di valutare in termini di significatività statistica la soluzione individuata mediante il confronto tra "impronta sperimentale" ed "impronta virtuale" (Henzel et al., 1993; Mann et al. 1993; James et al., 1994; Yates et al. 1993). La spettrometria di massa si è rivelata efficace non solo nell'identificazione delle proteine ma anche nella determinazione di modificazioni post-traduzionali (Mann et al., 2003; Jensen et al., 2004) e più recentemente anche nell'ambito della quantificazione relativa tramite marcatura isotopica o non delle proteine (Romijn et al., 2003; Julka et al., 2004).

4.1 – La strumentazione della spettrometria di massa

In genere uno spettrometro di massa consiste in quattro componenti principali:

- la sorgente, dove avviene la ionizzazione dell'analita e il passaggio allo stato gassoso
- l'interfaccia, che assicura la desolvatazione, il trasporto e la focalizzazione degli ioni verso l'analizzatore
- l'analizzatore, dove gli ioni sono separati in funzione del loro rapporto massa su carica (m/z)
- il rivelatore (detector), che permette di rilevare e registrare gli ioni

Figura 4.1: Rappresentazione schematica delle componenti di uno spettrometro di massa

Nel corso di questa tesi si sono utilizzati due principali spettrometria di massa basati sui meccanismi di ionizzazione MALDI e ESI e accoppiati a analizzatori TOF e quadrupolo.

Verranno illustrati nei prossimi capitoli i principi relativi solo alle tecniche utilizzate.

4.2 - MALDI TOF MS

La spettrometria di massa MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-Of-Flight) è una tecnica analitica che permette l'analisi di macromolecole polari come peptidi, proteine e DNA, ovvero in generale di biopolimeri in una gamma di massa in teoria illimitata ma che nella pratica va da 1 a 500KDa.

E' un metodo molto sensibile, che consente di utilizzare quantità molto ridotte di campione (10^{-3} a 10^{-6} pmoli) con un'accuratezza dello 0.1 - 0.01 % (Low et al., 2002).

Nella tecnica MALDI il campione, co-cristallizzato insieme ad una matrice su un supporto metallico, viene ionizzato grazie ad un impulso laser e inseguito accelerato in un campo elettrico, volando in un "tubo di volo" verso il detector.

Durante il volo le molecole vengono separate in base al loro rapporto massa/carica e raggiungono il detector in tempi diversi. Maggiore sarà la massa della proteina, più lentamente raggiungerà il detector. Il tempo di volo è quindi inversamente proporzionale alla massa.

4.2.1 - Il principio della tecnica MALDI-TOF

Il desorbimento tramite laser venne per la prima volta utilizzato da Posthumus nel 1978 (Posthumus et al., 1978) a partire da campioni solidi per produrre peptidi intatti in fase gassosa. La loro volatilizzazione richiedeva però la stretta conoscenza dei parametri fisici dei peptidi come la loro lunghezza d'onda d'assorbimento e la loro volatilità. Non si riusciva comunque ad osservare peptidi intatti oltre 1000Da. Il desorbimento assistito da matrice ha permesso di oltrepassare questi limiti ed è stato introdotto da Karas e Hillenkamp nel 1988 (Karas et al., 1987) quasi in contemporanea a un altro studioso giapponese Tanaka (Tanaka et al., 1988). Le limitazione date dalla necessità di conoscere le proprietà fisiche dei peptidi vennero aggirate grazie all'idea di incorporare al campione una matrice costituita da piccole molecole in grado di assorbire alla potenza laser utilizzata.

4.2.2 - La sorgente MALDI

Il meccanismo di ionizzazione MALDI, ancora oggi non completamente chiarito, è legato ai molteplici parametri che sono all'origine del fenomeno.

4.2.2.1 - La matrice

La matrice permette la trasmissione dei fotoni emessi dal laser all'analita garantendone il passaggio allo stato gassoso senza danneggiarlo. I ruoli della matrice sono i seguenti:

- \rightarrow co-cristallizza con il campione evitando l'aggregazione di molecole di analita
- → assorbe alla potenza del laser impedendo la distruzione del campione e trasferendo a questo l'energia necessaria al desorbimento
- \rightarrow ionizza il campione tramite trasferimento di protoni

Con tali prestazioni diventa inutile aggiustare la lunghezza d'onda in relazione all'analita e il desorbimento diventa indipendente dalle proprietà intrinseche di questo ultimo. Ciò non significa che un tipo di matrice sia generalmente applicabile a qualsiasi analita. La scelta della matrice è un punto chiave da stabilire sia in funzione del tipo di campione da analizzare sia dal tipo di analisi che verrà condotta (modalità lineare o reflector). I composti aromatici derivati dall'acido benzoico o cinnammico sono generalmente utilizzati per l'analisi di peptidi e proteine nonché oligosaccaridi.

Gli ioni possono subire una frammentazione durante il processo di ionizzazione a causa di un elevata irradiazione laser (processo chiamato "in source decade": Katta et al., 1998) nonché frammentarsi in seguito, prima dell'arrivo all'analizzatore, a causa della decomposizione metastabile della molecola piuttosto che in seguito a una collisione con molecole di gas residue (Spengler et al., 1992). In questi processi di frammentazione la matrice può giocare un ruolo importante ed è stato mostrato che la matrice che più si adatta ad ottenere ioni metastabili è l'acido α -cyano-4-idrossicinnamico (HCCA) (Karas et al., 1995). La scelta della matrice porta quindi a favorire o meno la frammentazione dando origine così a una classificazione delle matrici dalla più hard alla più soft (HCCA>SA>DHB). Questa classificazione è in relazione alla loro temperatura di sublimazione che tanto più è elevata tanto più al momento del desorbimento la temperatura sarà alta e dunque più energia sarà liberata.

Nome	Struttura molecolare	Monoisotopic Mass [M+H] ⁺
2,5-dihydroxybenzoic acid (DHB)	HO OH OH	155.0344
α-cyano-4- hydroxycinnamic acid (HCCA)	HO C N	190.0502
3,5-dimethoxy-4- hydroxycinnamic acid (SA)	H ₃ C O HO HO CH ₃	225.0763

Tabella 4.2: Elenco delle tre matrici più utilizzate in ambito proteomico nella spettrometria di massa MALDI.

4.2.2.2 - Il laser

Generalmente la classica lunghezza d'onda utilizzata è 337 nm prodotta da una sorgente di azoto e con una durata dell' impulso inferiore al nanosecondo. Oltre all'utilizzo di un laser UV sono disponibili anche sorgenti IR che richiedono però più energia e più materiale di partenza (Strupart et al., 1994). L'ottimizzazione dell'intensità degli impulsi laser è un parametro da regolare in funzione anche della matrice scelta. La relazione tra il flusso ionico di campione che si genera e l'intensità del tiro laser non è lineare: gli ioni si generano solo al di sopra di una certa soglia (10 mJ/cm²) continuando ad aumentare fino a saturazione del segnale col rischio di distruzione del campione. E' stato mostrato che la migliore ionizzazione avviene a un valore prossimo alla soglia di comparsa degli ioni (Beavis et al., 1990): questa soglia varia in funzione della matrice richiedendo un intensità maggiore per l'HCCA piuttosto che per SA o DHB.

4.2.2.3 - Il meccanismo di ionizzazione

Le principali tappe della ionizzazione sono:

- Assorbimento da parte della matrice dell'energia fornita dal laser
- Ionizzazione della matrice
- Dissociazione della matrice
- Sublimazione
- Espansione della matrice nella formazione di un plasma
- Inglobamento dell'analita nel plasma
- Trasferimento delle cariche verso le molecole di analista

Figura 4.2.1: Rappresentazione del principio di ionizzazione.

Benché non tutti i meccanismi siano ancora compresi sembra certo che la protonazione, o in alcuni casi la cationazione vengono prodotte in fase gassosa (Gluckmann et al., 1999). Sembrerebbe che vi sia un processo di ionizzazione primario e uno secondario. Il primo avviene a carico dell'eccitazione fotonica della matrice (Zenobi et al., 1998):

$$\mathbf{M} \xrightarrow{hv} \mathbf{M}^* \xrightarrow{\mathbf{m} (hv)} \mathbf{M}^* + \mathbf{e}^-$$

Ioni secondari sono invece prodotti nel plasma, durante la transizione tra fase solida e fase gassosa. Una reazione coinvolge Matrice-Matrice (a), un'altra Matrice-Analita (b).

Nella reazione del trasferimento protonico entra in gioco l'affinità protonica da parte del peptide, da cui deriva una competizione dei peptidi alla ionizzazione a seconda della loro basicità.

4.2.2.4 - Il metodo di deposito

Come per la matrice anche la scelta del tipo di cristallizzazione è da valutare in base alla natura stessa del campione. La qualità della cristallizzazione va a condizionare l'insieme dei risultati, giocando un ruolo nella riproduttività, nella risoluzione, e in generale nella qualità dello spettro.

Ci sono numerosi modi di cristallizzazione, e seguirà un elenco dei due principali essendo questi quelli vagliati nel corso di questa tesi.

Metodica della goccia secca

Una soluzione satura di matrice è direttamente mescolata al campione e depositata sul target, provvedendo alla sua evaporazione sotto vuoto. I cristalli generati da questo metodo sono piuttosto grossi e a rischio di eterogenicità, che può portare ad ottenere dalla somma di più spettri una bassa risoluzione e riproducibilità.

Metodica della preparazione a sandwich

Un primo strato di matrice satura viene depositato sul target utilizzando un solvente molto volatile dalla cui veloce evaporazione si generano cristalli di matrice. Si provvede poi al deposito di una goccia di campione seguita da un altro strato di matrice. I cristalli generati sono piccoli e omogenei portando a una buona riproducibilità da un tiro laser a un altro.

La presenza di contaminati può interferire con la cristallizzazione della matrice nonché competere con la ionizzazione dei peptidi e sopprimerne il segnale. La formazione di addotti tra peptidi e contaminanti può portare nello spettro a misura ambigue. Sali (Na+, K+,..) ma anche molecole organiche cariche (in genere di provenienza dalla separazione elettroforetica, Tris®,...) vanno eliminati dai campioni. In genere è sufficiente, come nel caso da noi adottato, il lavaggio del deposito cristallizzato con una goccia di acqua acidulata.

Partendo da questi classici depositi, si è arrivato nel corso della tesi a ottimizzare un metodo di deposito che risulta essere simile alla goccia secca ma la cui miscelazione matrice e campione viene eseguita direttamente sul target (sessione *8.6 – Deposito su target*).

4.2.3 - L'analizzatore a tempo di volo TOF

La sorgente MALDI è in genere associata a un analizzatore a tempo di volo TOF (Time Of Flight). Il concetto di separazione degli ioni secondo il loro rapporto massa su carica in funzione del loro tempo di volo risale al 1946 (Stephens et al., 1946) ed è stato in seguito perfezionato più volte ma è solo dopo l'invenzione della sorgente MALDI (Karas et al., 1985) che comincia ad essere utilizzato. Dopo l'irradiazione laser gli ioni sono espulsi a pacchetti che vengono accelerati da una differenza di potenziale decrescente (da 20 a 15kV) che conferisce la stessa energia cinetica agli ioni formati. Tali ioni vengono quindi trasferiti nel tubo di volo nel quale viene generato un alto vuoto (10-7 mbar). A questo punto si separano in base alla loro massa e il tempo impiegato per arrivare al detector è proporzionale alla radice quadrata del loro rapporto m/z (Figura 4.2.2; 4.2.3).

Figura 4.2.2: Schema del percorso che subisce un campione all'interno di uno spettrometro di massa MALDI -TOF.

Energia cinetica =
$$\frac{m v}{2} = z V$$
 \longrightarrow $\frac{m}{z} = 2 e V (\frac{t}{l})^2$

Figura 4.2.3: *m*: massa dello ione, *v*: velocità dello ione; *z*: carica dello ione, *V*: differenza di potenziale applicata; *t*: tempo impiegato dallo ione a percorrere il tubo di volo di lunghezza *l*.

4.2.4 - La risoluzione

Le qualità del MALDI-TOF sono nella sua sensibilità (subpicomolare), la tolleranza ai sali e ai tamponi, mentre un punto debole è la risoluzione. La risoluzione R di un analizzatore definisce la sua capacità di separare ioni di rapporto m/z vicino ed è definita dalla formula: R= (m/z) / Δ (m/z) dove Δ è la differenza tra i due picchi (Figura 4.2.4). Per un analizzatore a tempo di volo ciò significa R= t / $2\Delta t$ come scaturisce dell'equazioni viste prima (Coles et Guilhaus 1994).

Figura 4.2.4: La risoluzione è la capacità di separazione di uno spettrometro di massa ed è definita dalla relazione $R = M/\Delta M$

Per un TOF senza particolari accorgimenti la risoluzione è dell'ordine di 1000 (Zhou et al., 1992) e ciò è dovuto all'allargamento dei picchi osservati. Le cause principali sono la distribuzione dell'energia cinetica iniziale che in realtà non è uniforme, piccole differenze del tempo di volo (gli ioni non sono esattamente generati nello stesso momento o luogo e non necessariamente acquisiscono quindi la stessa energia cinetica iniziale) e collisioni verificabili nel processo si desorbimento e ionizzazione che possono aumentare la dispersione in tempo e energia. A fronte di queste imperfezioni del sistema si sono introdotti degli accorgimenti che permettono di aumentare notevolmente la risoluzione e quindi la precisione della misurazione.

4.2.5 - L'estrazione ritardata (Delayed Extraction)

Cotter et al. furono i primi ad osservare che l'intervallo tra il momento della ionizzazione e l'estrazione comporta una dispersione spaziale degli ioni con conseguente perdita di risoluzione. Il principio della DE è basato sulla focalizzazione degli ioni di diversa velocità iniziale grazie all'utilizzo di potenziale di accelerazione appropriati che inducono gli ioni a rifocalizzarsi nello spazio e a ripartire lungo una stessa linea (Bahr at al., 1997). La semplice introduzione di questa lente d'estrazione ritardata porta un passaggio di gamma nella risoluzione da 1000 a 5000 in modo lineare e a 10000 in modalità reflector.

4.2.6 - Il reflector

Oltre ad un accorgimento alla sorgente è stato di notevole miglioramento l'introduzione di un reflector elettrostatico all'estremità del tubo di volo.

Il riflettore elettrostatico è stato ideato da Mamyrin e Katataev nel 1971. Questo riflettore è composto da una serie di anelli o griglie che agiscono come uno specchio elettrostatico facendo penetrare più o meno gli ioni in profondità a seconda della loro energia cinetica fino a conferirgli un energia nulla, per poi rifletterli nella direzione opposta. Ioni con stessa massa ma con più energia risultano essere riflessi e riaccelerati in tempi successivi con il risultato di fare arrivare al detector ioni con ugual m/z nello stesso momento (Figura 4.2.4). Con questo accorgimento la risoluzione può arrivare fino a 20000. L'utilizzo di un tubo di volo più lungo può inoltre migliorare la precisione della misura.

Figura 4.2.4: Schema di un MALDI-TOF con reflector.

4.3 - LA STRATEGIA DEL PEPTIDE MASS FINGERPRINT

Per il sequenziamento di una proteina, ventanni fa, era necessario ricorrere alla degradazione di Edman. Nel 1993 la tecnica del Peptide Mass Fingerprint venne descritta contemporaneamente da più gruppi come alternativa al sequenziamento peptidico di Edman (Henzel et al., 1993; James et al., 1993 and 1994; Mann et al., 1993; Yates et al., 1993).

Lo schema illustrato nella sessione 2.2 (*Le tecniche analitiche della proteomica*) presenta l'approccio proteomico più classico: gel 2D e MS.

Dopo separazione con elettroforesi bidimensionale, le spot sono excise, digerite e inseguito analizzate per spettrometria di massa. Se l'organismo studiato è ben rappresentato nelle banche dati per una sua identificazione è sufficiente la tecnica del Peptide Mass Fingerprint utilizzante le informazioni estratte da uno spettro di massa. Per un ulteriore conferma dell'identificazione o se si rende necessaria la determinazione della struttura della proteina (più comunemente come nel caso dell'individuazione di una modificazione post-traduzionale) si ricorre ad un analisi tramite MSⁿ (sessione 4.4 - La spettrometria di massa tandem).

La tecnica del PMF è basata sul concetto che la massa accurata di un gruppo di peptidi derivati dalla proteolisi nota di una proteina forniscono l'impronta digitale in termini di massa specifica per quella proteina. Le masse dei peptidi ottenuti sperimentalmente vengono confrontate tramite specifici algoritmi con quelle delle banche dati che custodiscono i set di masse predette di ogni proteina. L'identificazione della proteina è riportata in termini di probabilità che dipendono dal percentuale della sequenza identificata della proteina nonché dalla precisione in massa.

4.3.1 – Osservazione sulla tecnica

Il vantaggio della proteolisi

L'identificazione di una proteina potrebbe essere ottenuta anche dal calcolo della massa della proteina intatta, si tratterebbe però di avere una sola informazione a cui accreditare l'identificazione piuttosto che a un numero superiore di informazioni derivanti dalle masse di più peptidi. La proteina potrebbe inoltre riportare modificazioni comportanti variazioni di massa difficili da attribuire e che potrebbero impedire l'identificazione. Inoltre digerendo la proteina in un set di peptidi si lavora in condizioni che trascendono dalle proprietà chimico fisiche della proteina intatta, come la solubilità.

Match mancanti

Dalla peaklist (lista delle masse corrispondenti ai picchi dello spettro) ottenuta da un campione, l'identificazione di una proteina può essere ottenuta anche grazie a poche masse che corrispondono a quelle teoriche. Da un confronto tra la lista sperimentale e teorica si possono riscontrare due tipiche problematiche su cui fare diverse osservazioni. La prima è riguardo ai peptidi teorici che non sono stati identificati. Non necessariamente ciò corrisponde all'assenza del peptide nella soluzione di analisi ma piuttosto può essere ricondotto a una serie di fattori come:

- la scarsa solubilità del peptide
- > la soppressione del segnale da parte di altri peptidi più intensi
- > la competitività nei meccanismi di adsorbimento e ionizzazione tra i peptidi
- > la massa del peptide che esce dal range in cui si è lavorato
- > la presenza di modificazioni non riportate nella lista dei peptidi teorici

La seconda problematica è nella direzione opposta e riguarda le masse che non risultano essere state assegnate. Anche ciò può essere dovuto a diverse cause come:

- inaspettati cambiamenti della massa dovuta a modificazioni non riportate nelle liste disponibili neanche sotto specifiche ricerche.
- tagli sbagliati della proteasi utilizzata (e ciò come certi tipi di modificazioni, se richiesto, può essere anticipato dall'algoritmo)
- masse provenienti da contaminanti
- > la proteina identificata è una splice variant di quella riportata nella banca dati
- si tratta di una miscela di proteine (come spesso è il caso di spot derivanti da gel 2D) e i peptidi non assegnati non sono sufficienti a dare significatività alla proteina da cui derivano

Appare chiaro come l'accuratezza della misura della massa giochi un ruolo chiave. Tale fattore può essere migliorato procedendo a una calibrazione dello spettro. La calibrazione può essere eseguita utilizzando una miscela peptidica nota su cui lo strumento viene calibrato prima della analisi e che può anche essere riutilizzata a spettro eseguito; oppure si può ricorrere ad una calibrazione interna (in genere più precisa) utilizzando un set di peptidi noti introdotti nell'analisi (o semplicemente, se possibile, utilizzando i tipici peptidi risultanti dall'auto digestione della tripsina). In assenza di tutte queste precauzioni si può condurre una prima identificazione e osservare se una calibrazione interna su alcuni peptidi identificati porta ad un aumento della precisione.

Mancata identificazione

La PMF è un approccio ideale per l'identificazione di un proteina lasciando però, come già in parte evidenziato, alcune lacune nell'informazione e portando a volte a una fallita identificazione che può originare da varie cause:

- una percentuale di copertura della sequenza insufficiente
- la soppressione di segnale a causa della presenza di contaminanti o per le caratteristiche in composizione amminoacidica del peptide
- una precisione della misura mediocre
- la presenza di una massiccia presenza di modificazioni post-traduzionali o mutazioni non identificabili
- assenza della proteina dalle banche dati

Se tale strategia non è sufficiente all'identificazione si può ricorrere ad informazioni di sequenza tramite MS/MS (sessione *4.4 - La spettrometria di massa tandem*). Nel corso di questa tesi solo una bassa percentuale di analisi non ha portato a un risultato con la PMF e nella maggior parte dei casi era attribuibile alla qualità dello spettro.

4.3.2 - Digestione tramite tripsina

La tripsina è la protease in genere più utilizzata in quanto presenta caratteristiche competitive rispetto ad altre proteasi:

• genera una limitata quantità di prodotti di autolisi

- produce peptidi in un range di massa che è tipicamente tra 500 e 3000 Da ovvero compatibile con la MS analisi (MALDI e ESI)
- la sua massa molecolare (~24 kDa) ne facilita la penetrazione nel gel (per digestione in gel)
- mantiene l'attività in differenti solventi e agenti denaturanti (esempio in presenza di urea, SDS...)
- ha un'alta specificità di taglio

La tripsina taglia a livello dell'arginina e della lisina. L'attività enzimatica è 10 volte più bassa per la Lys in confronto alla Arg ma 10⁵ maggiore di qualsiasi altro amminoacido. I tagli aspecifici più comuni si possono generare se K o R sono seguite da Pro. Per quanto riguarda i prodotti di autolisi che potrebbero interferire con le analisi MS, sono disponibili commercialmente tripsine modificate dalle quali si ottengono basse percentuali di peptidi nati da autolisi.

Digestione in gel

La digestione in gel è la pratica più correntemente usata: dopo l'excisione della spot, la proteina intrappolata nel gel subisce opportuni lavaggi e trattamenti seguiti dalla digestione. Nel corso di questa tesi si sono utilizzati vari protocolli che risultano distinguersi da una graduale semplificazione della procedura. Tramite digestione da gel la stima dei peptidi estratti è di circa del 70 – 85 % (percentuale indicativa dipendente dalle condizioni utilizzate nonché dalla concentrazione della proteina) (Speicher et al., 2000). Fenomeni come assorbimento dei peptidi sulle superfici plastificate delle eppendorf portano a ulteriore perdita, e una perdita anche del 50% si può verificare nel caso in cui gli estratti per essere concentrati siano parzialmente evaporati in una Speedvac (Speicher et al., 2000)

4.3.3 - La tecnologia MALDI nel PMF

La spettrometria di massa MALDI è in genere la tecnica di scelta che viene affiancata alla PMF per una serie di motivazioni:

• precisione nella misura (Jensen et al., 1996)

- tolleranza ai sali e tamponi (Vorm et al., 1994)
- sensibilità nell'ordine delle fentomoli (anche attomoli)
- possibilità di lavorare con molti campioni grazie all'automatizzazione
- spettri facilmente estrapolabili: solo gli ioni monocarica sono rappresentati dunque non è necessario nessun passaggio attraverso programmi di deconvoluzione come nelle ESI MS

4.3.4 - Caratterizzazione di una proteina

Se la tecnica PMF è sicuramente l'approccio più idoneo per una veloce identificazione, per avere invece l'analisi della completa sequenza proteica e avere informazioni su eventuali modificazioni post-traduzionali (Krishna et al., 1993) nonché variazioni di sequenza generati da splicing alternativi, bisogna ricorrere a un altro tipo di approccio. La carattezzazione di una proteina è ottenuta in spettrometria di massa tramite analisi

MS/MS o meglio MSⁿ nelle quali si induce la frammentazione peptidica (che può essere condotta con varie tecniche) e l'analisi della sequenza viene dedotta dalle differenze tra i peptidi frammento.

L'individuazione di certe modificazioni amminoacidiche (come la fosforilazione per esempio) è spesso vincolata dalla difficoltà di mantenere intatte fino al detector tali modificazioni e molti sforzi si stanno ancora conducendo per mettere a punto metodiche esaurienti che spesso prevedono l'isolamento o la concentrazione dei peptidi in causa. Rimane inoltre da tenere in considerazione il dubbio che certe modificazioni possano essere delle modificazioni post-traduzionali piuttosto che modificazioni chimiche avvenute durante il trattamento del campione.

Nel corso di questa tesi si è ricorso ad analisi MS/MS solo per accertare l'identificazione di certe proteine chiave trascurandone la caratterizzazione. La tecnica della spettrometria di massa tandem verrà quindi esposta limitatamente a tale proposito (sessione 4.4).

4.4 - LA SPETTROMETRIA DI MASSA TANDEM

Lo screening iniziale, ottenuto mediante MALDI TOF, lascia una certa percentuale di ambiguità o di mancate identificazioni.

Un ulteriore identificazione o verifica dello stesso campione può essere eseguita attraverso l'analisi dei frammenti MS/MS o in tandem: si ottengono informazioni di sequenza che sono molto più specifiche per l'identificazione proteica rispetto alla lista di masse peptidiche fornita da un analisi MS.

Nel corso di questa tesi la tecnica di frammentazione MS/MS è stata utilizzata per l'accertamento di identificazioni di proteine che sono risultate avere un ruolo chiave negli studi condotti, quindi esclusivamente come conferma del dato.

Nel caso di separazione elettroforetica l'analisi MS/MS può rivelare la presenza di una miscela di più proteine che non era stata rivelata con l'analisi MS. La spettrometria di massa tandem (MS/MS) è così chiamata perché si basa sull'impiego di due analizzatori in sequenza (MS1 e MS2) e produce la frammentazione dei peptidi per ottenere le informazioni di sequenza (Figura 4.4.1).

Figura 4.4.1: Schema di uno spettrometro di massa tandem: il primo analizzatore isola lo ione destinato alla frammentazione (ione genitore) che viene frammentato nella cella di collisione e il secondo analizzatore rileva lo spettro degli ioni frammento (ioni figlio).

Gli accoppiamenti sorgente-analizzatori per la spettrometria di massa tandem possono essere di vario tipo.

Lo strumento con il quale sono state eseguite in questa tesi le analisi di MS/MS è un ESI Q/TOF. Verrà quindi in seguito discusso l'accoppiamento LC MS/MS.

4.4.1 - LC-MS

Lo sviluppo di questa tecnica è stato frenato per molto tempo, dalla difficoltà di passare da un sistema in pressione (HPLC) ad uno in alto vuoto (la spettrometria di massa). I numerosi disegni di interfaccia proposti prima degli anni 80' (dal "moving belt" al "thermospray" e al "particle beam") portarono solo a una parziale risoluzione del problema. Il grande salto si è avuto con l'introduzione delle tecniche di ionizzazione a pressione atmosferica, in particolare l'elettrospray, nella metà degli anni '80 (Polesello et al., 2000).

La tecnica elettrospray può essere facilmente utilizzata per biomolecole ad alto peso molecolare, termolabili e polari come peptidi, proteine e oligonucleotidi, con pesi molecolari di decine o centinaia di migliaia di amu (unità di massa atomica). La tecnica ESI è infatti in grado di formare, nel caso di biomolecole, ioni a carica multipla: questo permette l'utilizzo di analizzatori standard con un intervallo di massa limitato (4000 amu per i quadrupoli e 20000 amu per il TOF). L'ESI viene definito un sistema di ionizzazione "soft", perché in grado di portare in fase gassosa strutture labili senza distruggerle. L'ESI può perciò essere utilizzato per studiare lo stato di folding delle proteine, i legami non covalenti, la doppia elica del DNA, ecc..

Nano-HPLC-MS

L'elettrospray è un dispositivo sensibile alla concentrazione: la risposta del rivelatore è direttamente proporzionale alla concentrazione dell'analita che entra nella sorgente indipendentemente dal flusso del fluido di trasporto. Questa caratteristica permette la miniaturizzazione della tecnica senza perdita di sensibilità in termini di concentrazione, ma con una riduzione anche di ordini di grandezza nel consumo di analita da analizzare. Ciò ha portato allo sviluppo di sistemi per nano-eletrospray interfacciabili con sistemi di separazione di dimensioni sempre più ridotte, dalla nano-HPLC ai sistemi di separazione su chip sia elettroforetici sia in cromatografia liquida, particolarmente utili all'analisi di quantità minime di proteine o peptidi.

Le sorgenti electrospray miniaturizzate lavorano infatti con flussi di decine di nanolitri al minuto, riducendo così al massimo il consumo di campione. E' inoltre una tecnica molto robusta e flessibile in grado di sostenere una varietà di tamponi e solventi diversi.

I sistemi per nano-HPLC hanno quindi assunto il ruolo di sistema di introduzione preferenziale per la spettrometria ESI-MS, in quanto permettono la connessione diretta del sistema separativo allo spettrometro di massa.

Per quanto riguarda l'identificazione di una particolare proteina separata come spot in un gel 2D, la tecnica NanoSpray/LC/MS/MS permette un analisi a livello di fmol.

4.4.2 - Principio di ionizzazione elettrospray

Il fenomeno della ionizzazione in elettrospray accade mediante la formazione di una concentrazione elevata di cariche sulla superficie della goccioline, formate grazie all'imposizione di un'elevata corrente elettrica che eccede i limiti di Rayleigh del liquido, al flusso in uscita dalla punta conduttrice dell'ESI (Figura 4.4.2). Poiché le goccioline desolvatano fino a circa 10 mm di diametro, gli ioni si liberano dalla superficie se gli analiti sono abbastanza polari o possono essere protonati dalla soluzione.

Se gli analiti sono debolmente polari, non si possono protonare direttamente, ma possono essere soggetti alla ionizzazione chimica a pressione atmosferica (APCI).

Figura 4.4.2 : Schema della generazione dello spray carico in una sorgente ESI: quando il solvente evapora, la concentrazione di carica alla superficie della gocciolina aumenta fino a superare la tensione superficiale \rightarrow esplosione 'coulombiana'. Si formano ioni dell' analita privi di solvente.

Figura 4.4.3 : Schema di una sorgente ESI

Il fattore limitante è principalmente la fase di trasferimento degli ioni generati a pressione atmosferica nella sorgente, al sistema di vuoto dell'analizzatore. Per un singolo ione che entra nella camera in vuoto, si possono perdere da 100 a 5000 molecole della soluzione originale, in funzione del flusso della soluzione originale, come pure dalle proprietà chimiche delle molecole. La dispersione dell'aerosol di goccioline lontane dall'apertura d'ingresso e la desolvatazione incompleta sono le cause principali della perdita di ioni. Inoltre l'utilizzo di eluenti con tamponi molto concentrati o non volatili, comporta il rischio di deposito nell'analizzatore con ovvi problemi di contaminazione.

Ciascuna casa costruttrice propone delle soluzioni per ottimizzare questa fase. Dal punto di vista geometrico l'introduzione di una sorgente nella quale lo spray è ortogonale al foro di ingresso dell'analizzatore, permette di ottimizzare la trasmissione del soluto rispetto al solvente e ai sali del tampone le particelle meno volatili tendono a raccogliersi in fondo alla camera di nebulizzazione dove possono essere eliminate.

4.4.3 - Preparazione del campione per l'elettrospray

Nella sorgente elettrospray gli ioni sono, come visto, formati in soluzione. Dal momento che la misura deve essere fatta in modo di ionizzazione positivo, la soluzione deve essere acidificata per permettere la protonazione dei siti basici della molecola da analizzare. Nel
caso dell'analisi di peptidi e proteine in genere sono le lisine, le arginine nonché le estremità N-terminali che portano le cariche positive.

Certi tipi di tamponi possono perturbare la formazione dello spray e impedire il processo di ionizzazione entrando in competizione con le molecole dell'analita.

Per impedire una mancata desolvatazione degli ioni è sempre necessario uno step di desalificazione. Tale step può anche essere realizzato in linea: in effetti l'elettrospray è di norma associato a una cromatografia liquida HPLC (o nano-HPLC) che permette una separazione a monte. Il vantaggio di tale accoppiamento permette non solo di eliminare i sali ma anche di poter separare miscele complesse di peptidi e proteine eluendole in ordine della loro idrofobicità crescente (qualora si utilizza una colonna in fase inversa).

Nella preparazione dei nostri campioni per l'analisi ESI Q-TOF si sono mantenute le stesse procedure utilizzate per le analisi MALDI con la sola differenza nello step finale che consiste nell'evaporazione del liquido estratto e nel riprendere con acqua acidulata.

4.4.4 - L'analizzatore quadrupolo

L'analizzatore quadrupolare separa gli ioni in base alla traiettoria che essi compiono attraverso un campo elettrico che varia rapidamente. Un potenziale a corrente continua sovrapposto a una radiofrequenza (Rf) crea un campo elettrico tra i quattro poli costituiti da barre metalliche parallele. Giungono al rivelatore, posto all'estremità del quadrupolo, solo gli ioni caratterizzati da una certo rapporto massa/carica in funzione dei valori del campo quadrupolare, valori variabili in modo continuo, cosicché è possibile ottenere una scansione completa dell'intervallo di massa prescelto (Figura 4.4.4).

Figura 4.4.4: Schema di un analizzatore quadrupolo

4.4.5 - Accoppiamenti LC-MS/MS

La distribuzione spaziale e di energia degli ioni prodotti nella sorgente e che entrano nell'analizzatore non è critica per il funzionamento di un quadrupolo e ciò favorisce l'uso di questi analizzatori in sistemi LC-MS le cui interfacce producono ioni con una distribuzione spaziale e di energia relativamente ampia. Questo aspetto, oltre ai costi ridotti, favorisce l'uso di quadrupoli in serie per esperimenti di Tandem-MS. Il difetto principale dei quadrupoli è che sono analizzatori di bassa risoluzione (2000) e hanno un intervallo di massa limitato a 4000 m/z. Quest'ultimo aspetto non è però limitante in analisi di biomolecole, in quanto le interfacce electrospray generano facilmente ioni a carica multipla.

L'analizzatore alternativo ai sistemi quadrupolari, è l'analizzatore di massa a tempo di volo (TOF). Per anni si è pensato che l'interfaccia ESI e il TOF-MS fossero assolutamente incompatibili, in quanto il TOF richiede una immissione pulsata degli ioni, per misurarne il tempo di volo, che non poteva essere fornita da quest'interfaccia. Il problema è stato quello di fornire un flusso stabile all'electrospray, immettendo però singoli pacchetti di ioni nell'analizzatore. La soluzione è stata quella di mantenere il flusso costante nell'electrospray campionando gli ioni ortogonalmente e focalizzando gli ioni mediante una guida ionica in grado di omogeneizzare l'energia cinetica a pochi eV nella direzione dell'asse, riuscendo in questo modo ad ottenere una risoluzione persino più elevata dei sistemi TOF tradizionali.

ESI-Q-TOF

Nella strumentazione utilizzata per le analisi MS/MS nel corso di questa tesi l'analizzatore TOF era accoppiato ad un analizzatore quadrupolo interposto tra la sorgente ESI e la camera di collisione: in questo caso il quadrupolo in serie può operare sia in MS che in modalità MS-MS. In modalità MS il quadrupolo e l'esapolo seguente sono utilizzati solo per trasferire gli ioni al TOF, mentre in Tandem-MS il quadrupolo seleziona gli ioni precursori e l'esapolo funge da cella di collisione per la frammentazione successiva prima dell'analisi TOF, con un elevato guadagno di sensibilità (Figura 4.4.5).

Figura 4.4.5: Schema dello spettrometro di massa tandem ESI-Q-TOF II (Micromass) utilizzato per le nostre analisi

4.4.6 - Identificazione proteica tramite LC/MS/MS

La spettrometria di massa tandem (MS/MS) automatizzata accoppiata alla cromatografia liquida (LC) microcapillare on line sta diventando una tecnica sempre più utilizzata per l'identificazione delle proteine.

Questa tecnica, consiste nella digestione di una proteina seguita dalla separazione LC in microflusso dei frammenti peptidici. Mano a mano che ciascun peptide è eluito, è automaticamente selezionato e frammentato mediante collisione con atomi di un gas inerte (Collision Induced Dissociation, CID).

I tipi di frammentazione che possono essere indotti su un peptide sono dipendenti dalla tecnica utilizzata. Esistono sistemi di frammentazione a bassa energia come la CID e sistemi ad alta energia e post source decay (PSD). I frammenti che si generano da questi sistemi sono differenti e quelli generati da collisioni ad alta energia sono più complessi. Nel caso della CID si generano ioni frammento ottenuti dalla rottura dei legami ammidici: si osservano piccole catene amminoacidiche. Indicando il tipo di frammentazione usato attraverso software di ricostruzione della sequenza, sulla base della massa dei differenti frammenti, può essere ricostruita tutta la sequenza della proteina originale.

Figura 4.4.6: Schema di una frammentazione peptidica con indicata la nomenclatura secondo Roepstoff (Roepstoff et Fohlman 1984) e modificata in seguito da Biemann (1990). Se la carica positiva resta sulla parte amminoterminale il frammento è indicato come ione b; se la carica rimane sulla parte carbossiterminale si ottiene uno ione y. Lo ione è numerato in base a quanti aa sono presenti nel frammento dalla parte carbossiterminale (per y) o amminoterminale (per b). Dagli ioni b e c si possono avere delle perdite di qualche unità di massa e generare gli ioni a, x, c, z (esempio una perdita di monossido di carbonio dallo ione b genera lo ione a).

Questo sistema combinato LC/MS/MS è in grado di assicurare un'alta specificità di ricerca in database, poiché lo spettro di massa tandem che rappresenta tutte le sequenze amminoacidiche presenti è caratterizzato da un pattern assolutamente unico e inconfondibile.

Figura 4.4.7: Esempio d'attribuzione della sequenza peptidica da uno spettro MS/MS generato da un ESI Q-TOF.

LA BIOINFORMATICA

Il problema fondamentale che si trova ad affrontare oggi la ricerca biologica è quello di disporre di una quantità considerevole e crescente di dati sulle sequenze geniche e proteiche accumulata dagli studi di genomica e proteomica. Nel Giugno del 2003 per esempio il database NCBInr conteneva 1.446.218 entry delle quali quasi il 50% accumulate nell'anno precedente. È quindi necessario disporre di un adeguato supporto informatico di programmi in grado non solo di immagazzinare i dati ma anche di analizzarli in tempi ragionevolmente brevi, per comparare sequenze, predire strutture secondarie e terziarie ecc., e costruire modelli molecolari. Importantissima inoltre è una continuo flusso d'informazioni dall'una all'altra. Le piattaforme bioinformatiche sono in genere costituite da un sistema di database interno, banche dati e collegamenti all'esterno (pubblici o privati), una serie di software scelti in base agli obiettivi biologici d'interesse e degli algoritmi per esplorare e correlare le informazioni.

Senza i software specifici per l'interpretazione e il confronto delle spot su gel 2D, nonché per l'analisi delle masse ottenute con le MS, o ancora, come vedremo in questo capitolo, per il confronto con le banche dati, la proteomica non avrebbe avuto il notevole sviluppo degli ultimi anni.

5.1 - L'identificazione di una proteina

Per arrivare all'identificazione di una proteina si deve passare dall'ottenimento dello spettro al trattamento dei dati che da esso se ne ricavano. A questo scopo gli spettri devono subire un certo numero di trattamenti (processi come la sottrazione della linea di base o lo smoothing, la deconvoluzione nel caso dell'ESI, il calcolo della massa monoisotopica..) per arrivare ad ottenere la peak list ovvero la lista delle masse osservate e essere in seguito utilizzati per inoltrare delle ricerche tramite Internet. Queste ricerche si basano sull'uso di certi portali via web o locali se il laboratorio ne è equipaggiato. Vi sono diversi motori di ricerca che possono essere utilizzati come Global Server (Micromass), Profound (http://prowl.rockefeller.edu/profound_bin/WebProFound.exe), Protein

- 63 -

Prospector (http://prospector.ucsf.edu), ma soprattutto Mascot Protein Identification System (http://www.matrixscience.com) che è in grado di integrare le caratteristiche di tutti gli altri.

Nel corso di questa tesi si è utilizzato principalmente Mascot e in alcuni casi Profound o ProteinProspector. Mascot mette a disposizione per le ricerche diverse banche dati di cui elencheranno solo le caratteristiche delle tre principali che sono state da noi utilizzate.

5.1 – Database

5.1.1 - Swiss-Prot

Swiss-Prot (www.expasy.org/sprot/) è un database di proteine note, nato nel 1986 e che dal 1987 è mantenuto in collaborazione tra il Department of Medical Biochemistry of the University of Geneva (Swiss Institute of Bioinformatics) e l' EMBL Data Library (EMBL Outstation - The European Bioinformatics Institute EBI). Il database di Swiss-Prot consiste in una libreria di sequenze molto curata e si distingue da altri database per diverse caratteristiche

La ricchezza delle annotazioni

In Swiss-Prot accanto alla sequenza proteica vi è una serie d'informazioni riguardanti le citazioni (referenze bibliografiche) o la taxonomia (descrizione della sorgente biologica) nonché una serie d'annotazioni che comprendono:

- funzione della proteina
- modificazioni post-traduzionali
- domini e regioni (per esempio calcium binding regions, ATP-binding sites..)
- struttura secondaria
- struttura quaternaria
- similarità con altre proteine
- malattie associate a modificazioni della proteina
- varianti di splicing

Accurata integrazione con altri database

SwissProt permette l'integrazione di tre tipi di database che comprendono non solo le sequenza proteiche ma anche le sequenze nucleotidiche e le strutture terziarie delle proteine. 60 differenti database (Apweiler et al., 2004) sono messi in connessione. Inoltre un ulteriore espansione della banca dati su Mascot è stata fornita dall'introduzione di VARSPLIC un "utility" che genera l'addizione di sequenze rappresentanti le varianti di splice. Molte proteine esistono infatti in diverse isoforme, una causa delle quali è uno splicing alternativo che può creare differenze di sequenza anche del 50%. Mentre immissioni primitive sono rappresentate da una stringa di identificazione come es P43567 le immissioni generate da varsplic si presentano sotto forme di identificazione come P4356700-00-01

Figura 5.1: Esempio di una finestra di Swiss-Prot con le informazioni disponibili di una proteina.

Database non ridondante

SwissProt è un database non ridondante il che significa che tutte le informazioni su una proteina convergono nella stessa entry.

I dati sono implementati da conferme con programmi d'analisi di sequenza: sono distinti dati sperimentali verificati, dati nati da proteine caratterizzate con similarità di sequenza e dati senza evidenza sperimentale.

Il nome del gene e' tratto da Genew, il database di Human GenomeOrganization (HUGO)], FlyBase and the Mouse Genome Database (MGD)

5.2.2 - EMBL

EMBL (European Molecular Biology Laboratori) è un database di sequenze nucleotidiche (Nucl. Acids Res., 2005, Vol. 33: D29-D33). Sequenze di DNA e RNA sono direttamente immesse da vari utenti. Il database è prodotto da una internazionale collaborazione tra GenBank (USA) e DNA Database del Giappone (DDBJ).

5.2.3 - TrEMBL

TrEMBL (Traslation from EMBL) è sviluppato dal gruppo SwissProt e contiene la traduzione delle sequenze nucleotidiche di EMBL che ancora non sono state approvate per l'integrazione nel database proteico di SwissProt. Infatti l'addizione di nuove sequenze in Swiss-Prot richiede parecchi controlli e tempo: TrEMBL prevede a fornire nuove sequenze il più velocemente possibile.

5.2.4 - NCBI

NCBI (National Center of Biotechnology Information) è un altro database che contiene sequenze non identiche derivate dalle sequenze nucleotidiche di DDBJ/EMBL/GenBank database come anche sequenze di Swiss-Prot, dal Protein Information Resource (PIR) (Wu et al., 2003), del RefSeq (Pruitt et al., 2003) e del Protein Data Bank (PDB) (Westbrook et al., 2003).

5.2 – Il software di ricerca Mascot

Il software Mascot cerca nei database sulla base delle informazioni dello spettro di massa generate dalle mappe peptidiche eliminando impensabili calcoli manuali richiesti per far corrispondere precisamente le masse dei frammenti delle digestioni peptidiche a quelle predette dalle condizioni di digestione.

Oltre alla scelta della banca dati vi sono altri parametri che vanno impostati prima di lanciare la ricerca. Questi parametri renderanno la ricerca più o meno restrittiva andando a influire sulla valutazione del risultato.

- Taxonomia : se si conosce la taxonomia del campione, inserire questo parametro imporrà al programma il confronto alle sole proteine appartenenti alla taxonomia indicata.
- Enzima di digestione: il programma confronterà peptidi teorici nati dalle modalità di taglio dell'enzima selezionato
- Missed cleavage: si può prevedere che l'enzima esegua errori nel riconoscimento dei siti di taglio; nel programma si può indicare il numero massimo di siti di taglio mancati.
- Massa della proteina: se si può prevedere quale sarà la massa della nostra proteina (per esempio in base alla zona di provenienza dello spot in un gel bidimensionale) si può limitare la ricerca al valore di massa della proteina intatta. Ciò permetterà di eliminare eventuali falsi positivi con il rischio però di perdere informazioni che potrebbero essere vere (proteine frammento)
- Carica del peptide: se si sta introducendo una peak list proveniente dal uno spettro MALDI bisogna indicare MH+ ovvero indicare che i peptidi hanno carica unitaria e sono addizionati di un protone
- Massa monoisotopica o media: la massa di un peptide può essere data o dalla media di tutti i picchi isotopici appartenenti a quel peptide o dal primo picco (massa monoisotopica), ciò dipende dall'impostazione definite nel corso dell'assegnazione della peak list.
- Modificazioni fisse: sono le modificazioni a cui il peptide (la proteina) è stata sottoposta durante il trattamento, come esempio la riduzione dei ponti solfuro e successiva alchilazione. Il programma confronterà quindi peptidi teorici alla cui massa è applicata tale modificazione. Anche la massa della proteina che sarà indicata nel risultato sarà calcolata con le modificazioni indicate (quindi nel caso della riduzione e alchilazione con iodoacetammide, sarà addizionata una carbammidometilazione per ogni cisteina)

- Modificazioni variabili: si possono indicare le modificazioni a cui si suppone possa essere stata sottoposta la proteina ma di cui non si è certi. Ciò può essere utilizzato nell'indagine di certe modificazioni post-traduzionali come fosforilazioni per esempio. L'ossidazione alla metionina è un fenomeno spesso presente soprattutto a causa di eventuali innalzamento di temperatura a cui la proteina può essere sottoposta nel corso del trattamento (come nella separazione bidimensionale). Indicare eventuali modificazioni variabili può portare all'identificazione di peptidi o proteine che altrimenti potrebbero essere non segnalati ma porta ad un aumento dei peptidi teorici confrontati, aumentando non solo i tempi di ricerca ma facendo diminuire in maniera drastica la significatività delle proteina.
- Tolleranza di massa: se lo spettro è ben calibrato una tolleranza di 30-50 ppm dovrebbe portare a una buona identificazione. Alzare la tolleranza significa aumentare il rischio di falsi match.

Valutazione del risultato

I risultati sono elaborati tramite l'algoritmo Mowse (Pappin et al., 1993). Tale algoritmo non si limita solo al conteggio dei peptidi risultanti dal match ma utilizza fattori ottenuti empiricamente per assegnare un peso statistico ad ogni singolo appaiamento. Da ciò se ne ricava un punteggio totale definito score. Questo è la probabilità assoluta che l'evento osservato sia un evento casuale. Il risultato non viene però riportato direttamente sia perché comprende un intervallo di grandezze molto ampio, sia perché un "alto" punteggio corrisponde a una "bassa" probabilità, e ciò può creare problemi di ambiguità. Il punteggio è quindi riportato come -10*LOG10(P), dove P è la probabilità assoluta. Una soglia minima per definire un risultato significativo è che l'evento sia significativo se è atteso verificarsi casualmente con una frequenza minore del 5% (p<0.05) il che, in termini di score, significa score> 65.

Tale soglia varia però in funzione di tutti i parametri che sono stati scelti per la ricerca. Aumentare i peptidi teorici con cui è eseguito il match porta ad una variazione di tale soglia. L'assegnazione della taxomonia può portare una proteina da non significativa a significativa (per variazione della soglia ma non dello score della proteina). Come però l'introduzione di un numero elevato di modificazioni variabili può far diminuire drasticamente lo score. Nella valutazione del risultato bisogna quindi fare molta attenzione soprattutto nel caso di score al limite della significatività. Fattori da considerare nella valutazione di un risultato:

- Lo score: deve essere maggiore della soglia di significatività. Almeno 4 o 5 peptidi devono risultare appaiati
- La copertura: il programma permette di visualizzare e quantificare la percentuale di copertura della proteina. Una buona copertura supera il 30 %
- Il PM: se la massa del risultato non corrisponde a quella stimata (dalla posizione dello spot per esempio) ciò può essere riconducibile a un falso positivo o si possono fare varie considerazioni. Se la massa risultante è più elevata di quella stimata la proteina può essere stata sottoposta a modificazioni post-traduzionali; in tal caso si deve valutare se l'aumento può essere un valore riconducibile e qualche modificazione e rilanciare la ricerca per sondare eventuali modificazioni (non sempre però evidenziabili in MS). Se la massa della proteina è più bassa, la proteina può essere una proteina frammento; in tal caso si osserva la percentuale di copertura della proteina per vedere se può essere di supporto a tale tesi.
- Range di errore: se è necessario alzare il range di tolleranza dell'errore per avere un identificazione è opportuno controllare che la distribuzione dell'errore dei vari peptidi segua un andamento logico. Il programma permette di visualizzare un grafico in cui si può osservare tale andamento: una non corretta calibrazione dello spettro porta una deviazione in massa piuttosto uniforme. Una variazione random rende il dato incerto.
- Discriminazione tra più risultati: in alcuni casi si può ottenere più proteine significative. La significatività è funzione di vari fattori come, la quantità dei peptidi ionizzati, l'accuratezza della misurazione, la presa in considerazione di certe modificazioni. Se si variano certi parametri della ricerca il risultato può ribaltare la scala di significatività delle proteine trovate. La presenza di più proteine identificate spesso corrisponde a una miscela. Mascot definisce una miscela solo quando tutti i peptidi sperimentali si appaiano o ai peptidi teorici di una proteina o a quelli dell'altra. Se un peptide si appaia a entrambe non è assegnata la definizione di miscela. Non è raro però che un peptide sperimentale abbia un appaiamento per più di un peptide e ciò dipende molto dal range di errore scelto. Si può verificare come spesso abbassando la

tolleranza è preferito solo l'appaiamento migliore e le proteine sono indicate come miscele.

Importante è anche un confronto con altri motori di ricerca. In questa tesi in alternativa a Mascot si è ricorso all'utilizzo di ProteiProspector (e in alcuni casi Profound).

I diversi programmi hanno interfacce differenti, sia in termini di parametri da impostare che nella presentazione del risultato, ma la principale differenza è nell'algoritmo utilizzato per il mach delle masse.

Confrontare risultati ottenuti da algoritmi diversi permette di aggiungere credito all'identificazione.

Nel mondo internazionale della proteomica si sta sempre più sentendo il bisogno di linee guida che stabilizzino i criteri ai quali i ricercatori debbano attenersi per dichiarare attendibili le identificazioni attraverso la spettrometria di massa. Essendo numerosi la strumentazione e gli approcci utilizzati stabilire dei criteri standard non è semplice. Alcune riviste scientifiche (Molecular & Cellular Proteomics: Carr 2004) stanno iniziando a proporre delle linee guida che partono dal presupposto secondo il quale per ogni risultato deve essere rigorosamente indicato ogni dettaglio che riguardi la strumentazione, il software, e i parametri utilizzati.

5.3 - Informazioni sulle proteine

Come già visto (figura 5.1) tramite Expasy è possibile avere una serie di informazioni su una proteina nota. Informazioni più esaurienti possono essere fornite dal sito Biobase (Biological database http://www.proteome.com) dove sono raccolti diversi database tra cui quello del lievito *Saccharomyces cerevisiae* (YPD) con circa 6000 voci di proteine note o predette. Le informazioni sulle proteine identificate nel corso di questa tesi sono state ottenute da questo sito. Altro sito di interesse specifico per *Saccharomyces cerevisiae* è SGD (*Saccharomyces* Genome Database , http://www.yeastgenome.org) dove è possibile avere informazioni su tutto ciò che ruota intorno alla ricerca di questo lievito (informazioni non solo genomiche e biologiche ma anche aggiornamenti su conferenze, gruppi di ricerca, progetti..)

Le proteine identificate sono state analizzate con il programma GenMAPP 2.0 (Gene Map Annotator and Pathway Profiler http://www.genmapp.org) che permette di visualizzare ogni proteina nei pathway in cui è coinvolta: ciò permette anche, inserendo i valori delle variazione di espressione delle proteine, di avere una visualizzazione su come i pathway sono indotto o meno nella varie condizioni analizzate.

L' AUTOMATIZZAZIONE

Nel corso di questa tesi si è avuta la possibilità di testare e mettere a punto diversi strumenti d'automatizzazione.

Nel caso di numerose analisi la possibilità di utilizzare robot e programmi d'automatizzazione rende non solo più veloce (e in alcuni casi possibile...) la ricerca ma permette anche una maggiore riproducibilità e affidabilità. I passaggi di preparazione del campione all'analisi in massa (ovvero incisione, lavaggi, e digestione) comportano infatti numerosi maneggiamenti del campione con continui rischi di contaminazione da cheratina e possibilità d'errore. Affidare queste operazioni ad un robot permette di abbassare i rischi di contaminazione e ottenere liste certe di corrispondenza tra la posizione della spot sul gel e la posizione della spot nella piastra destinata all'analisi in cui le spot excise sono riposte. Il taglio dei gel tramite il robot spot-picker permette inoltre di selezionare le dimensioni della spot da excidere e di poter in alcuni casi ottenere excisioni molto ristrette (si può incidere pezzi di un mm di diametro difficilmente maneggiabili manualmente). Non solo, ma anche la scelta della spot può essere fatta scendendo sotto la soglia di visualizzazione all'occhio. La lista delle spot da excidere viene infatti preparata scegliendo le spot da un immagine scannerrizzata che permette di visualizzare macchie che all'occhio non sarebbero percepibili e che sono però sufficienti per un identificazione in massa.

6.1 - Sistemi integrati 'high throughput'

Vengono definiti sistemi 'high throughput' qualora lo spettrometro di massa sia accoppiato ad una stazione di preparazione del campione e ad un software per la ricerca automatica nei database online.

Per l'esecuzione dei lavori di questa tesi si è utilizzato una soluzione integrata, a livello sia hardware sia software, che ha permesso l'esecuzione in automatico della maggior parte delle fasi tra l'incisione del gel all'analisi dei dati MS.

6.2 - Spot picker: Proteineer SP (Bruker Daltonics)

Fornito di uno scanner il robot acquisisce l'immagine del gel che senza essere rimosso viene sottoposto all'incisione. Dall'immagine del gel si segnalano le spot da excidere e il diametro dei frammenti che verranno incisi. Il tutto è poi trasferito su una piastra a 96 pozzetti la cui lista può essere poi esportata per l'analisi automatica in massa.

Si verifica una perdita di circa due o tre spot per piastra dovuta a mancata estrapolazione della spot che resta attaccata al gel o al braccio del robot. Tale spot sono in alcuni casi recuperabili.

6.3 - Robot di riduzione e alchilazione: MassPrep Robotic Protein Handling System (Micromass)

Tale robot permette di eseguire tutti i parametri impostati di lavaggi, riduzione e alchilazione. Anche qui si può verificare la perdita d'uno o due spot per piastra perse durante i passaggi di trasferimento del braccio del robot.

Digestione manuale: si è preferito nel corso di questa tesi eseguire il passaggio di riduzione manualmente. La quantità di liquido di digestione è infatti dipendente dalle dimensioni del frammento di gel ed è preferibile una valutazione all'occhio.

Deposito manuale: anche il deposito è stato eseguito manualmente per mancanza di strumentazione idonea.

6.4 - Acquisizione automatica degli spettri: AutoXecute (Bruker Daltonics)

Quando si acquisisce uno spettro l'operatore si basa su diverse valutazioni per decidere l'idoneità dell'analisi e in base a questo sceglie quali parametri modificare per arrivare alla qualità voluta. Nel software AutoXecute (Suckau 1998) i parametri di acquisizione sono definiti a priori e durante l'acquisizione in automatico l'algoritmo fuzzy control, implementato con un sistema di controllo a feedback, adopera la correzione di parametri come l'intensità del laser e la posizione nel deposito, per arrivare alla risoluzione desiderata. Con una corretta impostazione dei parametri in base al tipo di analisi, il programma permette l'acquisizione di spettri con ottime caratteristiche in termini di riproducibilità e risoluzione. L'analisi in automatico richiede la preparazione di un file nel quale ad ogni deposito è associata la metodica da utilizzare in automatico.

6.5 - Trattamento dello spettro

Dal programma AutoXecute si può inoltre impostare il diretto trasferimento degli spettri in software di deconvoluzione come FlexAnalysis. Tale software permette di assegnare un peso molecolare ad ogni picco di massa e di eseguire la calibrazione in automatico (sessione *8.8 - Trattamento dello spettro*). A questo punto la peak list può essere estrapolata mediante programmi di interfaccia (Biotools) ed essere direttamente utilizzata per l'identificazione con software di ricerca in automatico o manuale. Il programma Biotools consente inoltre una veloce visualizzazione dei risultati e permettere di valutare un eventuale riacquisizione del deposito.

6.6 - Ricerca in automatico

Come screening iniziale dei risultati si è provveduto a una ricerca automatica, poi in ogni caso ripresa ed eseguita in modo più scrupoloso manualmente.

La ricerca automatica può oggi essere effettuata con vari programmi; alcuni di essi permettono in caso di risultato nullo una serie di rilanci della ricerca con parametri differenti.

Nel nostro caso si è utilizzato il programma Mascot Daemon che utilizza il software di ricerca Mascot (sessione 5.2 – *Ricerca con Mascot*).

SCOPO DELLA TESI

7.1 - La comprensione dei meccanismi del ciclo cellulare

Gli esperimenti condotti in questa tesi hanno come scopo di approfondire la comprensione dei meccanismi alla base del ciclo cellulare di *Saccharomyces cerevisiae* e in particolare riguardo al controllo della transizione G1/S.

A tale proposito si sono condotti due gruppi di esperimenti: il primo consiste nel confronto del proteoma di ceppi che differiscono per il locus corrispondente alla codifica della proteina Far1, un inibitore delle cicline di fase G1, e il secondo nell'osservazione della graduale variazione del proteoma di un ceppo wild type durante il passaggio da condizioni nutritive non fermentative a fermentative (shift-up nutrizionale da etanolo a glucosio). Il profilo proteico di tali ceppi è stato analizzato tramite separazione elettroforetica bidimensionale conducendo uno studio quantitativo comparativo basato sull'analisi di immagine. L'identificazione proteica è stata condotta tramite spettrometria di massa. I risultati dell'analisi proteomica sono stati confrontati con quelli ottenuti dall'analisi del trascrittoma mediante GeneChip® effettuata su cellule nelle medesime condizioni di crescita.

7.1.1 - Studi sui mutanti del gene FAR1

Studi fisiologici e biochimici sui ceppi mutanti nel gene FAR1 indicano che la proteina Far1 è coinvolta nella regolazione della massa cellulare in risposta ai nutrienti disponibili. Il raggiungimento di una massa cellulare critica (Ps) è uno dei principali eventi richiesti per il superamento di START ovvero per iniziare la replicazione del DNA ed un nuovo ciclo di gemmazione. La proteina Far1 insieme alla ciclina Cln3 (Alberghina et al., 2004) costituiscono i componenti della soglia che sta alla base del superamento di START. Quando i livelli di Cln3 superano quelli di Far1 si ha l'attivazione del complesso Ciclina-Cdc28, che porta poi alla degradazione dell'inibitore Sic1 e all'ingresso di fase S. Di conseguenza, la sovraespressione del gene FAR1 è in grado di alzare la soglia, mentre cellule prive di FAR1 gemmano ed iniziano la replicazione del proprio DNA ad una massa minore rispetto al wild type. > Il mutante deleto del gene FAR1 (far1∆) e il mutante overesprimente FAR1 (FAR1^{tet}) sono stati confrontati con il wild type: Il lavoro è stato eseguito sia in crescita esponenziale su fonte di carbonio povera (2% etanolo) che in crescita esponenziale su fonte di carbonio fermentativa (2% glucosio).

7.1.2 - Studi sullo shift-up nutrizionale etanolo-glucosio di ceppi wild type

La distribuzione del contenuto proteico di una data popolazione in crescita esponenziale è stabile e caratteristica delle determinate condizioni di crescita in cui si trova la popolazione stessa: in particolare, cellule cresciute su fonte di carbonio ricca, come il glucosio, hanno un Ps e un contenuto proteico maggiore rispetto a cellule cresciute su fonte di carbonio povera come l'etanolo. Durante una variazione del terreno di crescita la popolazione cellulare deve modificare il proprio metabolismo e il proprio contenuto proteico. In questa fase transiente si verifica, nel caso del passaggio da etanolo a glucosio, un calo della percentuale di cellule gemmate (calo di budding) nel quale le cellule si preparano all'attivazione dei cicli metabolici più opportuni per la fonte di glucosio (Alberghina et al, 1998).

Un esperimento di shift-up nutrizionale da etanolo a glucosio permette quindi si osservare e studiare la coordinazione tra crescita e divisione cellulare e di cercare nuove proteine coinvolte nel controllo del ciclo cellulare da parte dei nutrienti.

- Ad un ceppo wild type in crescita esponenziale in un terreno sintetico contenente il 2% di etanolo si è aggiunto il 2% di glucosio e si è raccolto campioni di cellule a tempi diversi per seguire la fase d'adattamento alla nuova fonte di carbonio.
- L'esperimento shfit-up è stato condotto anche su ceppi mutanti deleti nel gene FAR1 (far1∆).

In questo ultimo caso si sono solo cercate informazioni nei riguardi di una specifica proteina, Gvp36, che durante lo shift-up nutrizionale del ceppo wild type è risultata essere implicata nell'adattamento alla nuova fonte di carbonio. Il resto dei risultati riguardante la variazione del proteoma durante lo shift-up nutrizionale del ceppo mutante *far1* Δ sono in corso di studio e non sono riportati nel corso di questa tesi.

MATERIALI E METODI

Le procedure utilizzate sono state eseguite nel laboratorio DIMESAB dell'Università di Milano Bicocca, nel laboratorio LSMBO del CNRS di Strasburgo e nel laboratorio di proteomica del Dipartimento di Biotecnologie e Bioscienze dell'Università di Milano Bicocca.

Il lavoro è stato impostato secondo lo schema raffigurato:

8.1 – Preparazione del campione

Microrganismi utilizzati

I ceppi di *Saccharomyces cerevisiae* utilizzati derivano tutti dal ceppo wild type W303-1*a* e sono elencati in tabella 8.1. Il suo genotipo è *MATa, leu2-3 112, ura3-1, trp1-1, his3-11,15, ade2-1, can1-100, GAL SUC2*.

Nel ceppo wild type *W303-1a* le proteine Cln3 e Far1 sono marcate con 15 Myc. Questo TAG permette, in esperimenti che lo richiedano, di riconoscere le proteine con anticorpi specifici. Questo ceppo è quello che nei nostri esperimenti è stato considerato come ceppo

wild type utilizzato nello shift-up nutrizionale o utilizzato come confronto verso i mutanti nel gene *FAR1* o al ceppo $gvp36\Delta$.

Esperimenti per la caratterizzazione del gene GVP36:

Il ceppo $gvp36\Delta$ è stato ottenuto deletando nel ceppo W303-1a il gene GVP36 per ricombinazione omologa con il gene LEU2. Le cellule trasformate sono state selezionate per la capacità di crescere in assenza di leucina e la correttezza della delezione è stata valutata mediante PCR.

Esperimenti sui mutanti del gene FAR1:

Per modulare l'espressione di FAR1 si è introdotto nel ceppo W303-1a il vettore pTET-

FAR1-15Myc che permette di regolare *FAR1* tramite Tet (Tetraciclina).

La delezione di *FAR1* è stata invece ottenuta con trasformazione e ricombinazione omologa con il gene *HIS3*.

Серро	Genotipo	
W303-CF	cln3::KAN1, pCLN3-15Myc, FAR1-15Myc-URA	
far1 ∆	cln3::KAN1, pCLN3-15Myc, far1::HIS3	
FAR1 ^{tet}	cln3::KAN, pCLN3-15Myc, far1::HIS3, pTet-FAR1-15Myc	
gvp36∆	gvp36::LEU2	

Tabella 8.1 : Ceppi utilizzati negli esperimenti

Conservazione dei ceppi

I ceppi di S. cerevisiae possono invece essere conservati in glicerolo 15-30% a -80° C.

Terreni e condizioni di crescita

Gli esperimenti sono stati eseguiti osservandone i parametri (velocità di crescita, percentuale di cellule gemmate, volume medio, contenuto proteico medio) e prelevando le cellule nella fase di crescita esponenziale bilanciata ovvero quanto tutti i parametri di crescita sono costanti. Generalmente le cellule di lievito raggiungono la fase esponenziale quando si trovano in un intervallo di concentrazione compreso tra 2x10⁶ cells/ml e 1x10⁷ cells/ml. In ogni cinetica le cellule vengono seguite per 2 tempi di divisione (td), effettuando almeno un paio di prelievi per td. La crescita esponenziale è stata condotta a 30°C in terreno sintetico completo CSM (Compleate Synthetic Medium) (Bio101) con YNB (Yeast nitrogen base, Difco) come fonte d'azoto e con aggiunta, a seconda dei vari esperimenti, del 2% d'etanolo (SCE) o il 2% di glucosio (SCD). Per gli esperimenti di

caratterizzazione dei ceppi $gvp36\Delta$, visto che il mutante cresce con molta difficoltà in terreno CSM, 5µl di cellule diluite sono state trasferite su terreno YP (2% peptone, 1% yeast extract) supplementato con del 3% di glicerolo o 2% d'etanolo o il 2% di glucosio.

8.2 - Estrazione delle proteine e separazione tramite SDS - PAGE

Tali procedure sono state messe a punto nel laboratorio di proteomica del dipartimento di Biotecnologie e Bioscienze nel corso della prima parte del periodo di tesi.

<u>Strumentazione</u>:

apparato di corsa per la prima dimensione: PROTEAN IEF Cell (BioRad) apparato di corsa per la seconda dimensione: Ettan DALTsix electrophoresis unit (Amersham Bioscences) preparazione gel : Ettan DALTsix gradient marker, Ettan DALTsix gel caster (Amersham Bioscences)

Taratura: spettrofotometro Ultrospec 1000 (Amersham)

8.2.1 - Estrazione delle proteine totali da culture di Saccharomyces cerevisiae

Le cellule vengono tolte dal filtro aggiungendo 1ml di H₂O sterile pre-raffreddata e vortexate.

Centrifugazione 1 minuto a 10000 rpm, 4°C.

Eliminazione del surnatante e lavaggio con 300 µl di buffer di lisi (10000 rpm 1 minuto).

Eliminazione del surnatante e risospensione del pellet in 300-400 µl di buffer di lisi.

Aggiunta di un eguale volume di palline di vetro per la rottura delle cellule.

In camera a 4°C, rottura delle cellule facendo 10 cicli da 1 minuto su vortex, intervallando tra un ciclo e l'altro con 1 minuto in ghiaccio.

Centrifugazione per 8 minuti a 13000 rpm, 4°C e trasferimento del surnatante.

Centrifugazione dell'estratto per 8 minuti a 13000 rpm (chiarificazione dell'estratto).

Trasferimento del surnatante in una nuova eppendorf (estratto totale).

Buffer di lisi:

0.1M Tris-HCl pH 7.5, 1mM EDTA, 1mM PMSF, Cocktail di inibitori (16X, Inibitor Cocktail Protease Complete Roche), dH_2O

Preparazione delle palline di vetro

Le palline di vetro (Sigma) vengono lasciate in agitazione per almeno tre ore con HCl 0.1 N. Poi si neutralizza l'HCl con NaOH e si sciacqua con acqua. Infine le palline vengono asciugate per una notte in stufa prima di essere utilizzate.

8.2.2 - Dosaggio delle proteine estratte (Biorad a un reagente)

La retta di taratura viene tracciata con il metodo Bradford (Bradford et al., 1976) che si basa sul diverso cambiamento di colore del reagente in funzione del legame con differenti concentrazioni di proteine. Il reagente utilizzato, BioRad Protein Assay, deve essere diluito 5 volte in acqua prima di essere utilizzato; esso permette un dosaggio sensibile, riproducibile e stabile fino ad un'ora. Al reagente viene aggiunto, in una cuvetta di plastica, il campione proteico da dosare e dopo 5 minuti è possibile leggere l'assorbanza a 595 nm allo spettrofotometro. La lettura viene azzerata contro un "bianco", cioè una cuvetta in cui viene messo solo il reagente BIO-RAD senza campione, con il *buffer* di lisi usato per l'estrazione. L'estratto totale viene diluito 1:10 e dosato in 2 o 3 volumi differenti (3 ml, 5 ml,...) su cui condurre una media delle misurazioni. Per la legge di Lambert-Beer, il valore di assorbanza letto è proporzionale alla concentrazione della sostanza assorbente (le proteine, in questo caso). Le retta di taratura viene allestita usando concentrazioni note di BSA.

8.2.3 - Desalificazione dell'estratto totale

Il desalificazione è stato condotto con colonnine Micro Bio-Spin Chromatography Columns Bio-Gel P-6 (Biorad) impaccate con matrice di poliacrilammide che permette una separazione in base alle dimensioni delle particelle, secondo il principio della cromatografia ad esclusione. L'estratto proteico viene prima diluito in 10mM Tris-HCl pH 7.4, 0.02% sodio azide, si procede quindi alla separazione di un volume pari alla quantità di proteine totali che si vuole sottoporre a IEF (per la maggior parte dei nostri gel si è caricato 250 g di proteine totali per strip da 17 cm pH 3-10). L'estratto è caricato nella colonna e separato mediante centrifugazione (4 minuti a 1000 g).

8.2.4 - Essiccazione dell'estratto

Gli estratti ottenuti dopo desalificazione vengono congelati a -80°C per almeno 1 ora, quindi vengono fatti essiccare in Savant.

IEF- Isoelettrofocalizzazione – prima dimensione

8.2.5 - Reidratazione delle strip

Il campione essiccato viene risospeso in 300 μ l di buffer di reidratazione e caricato su strip da 17 cm (ReadyStrip IPG Strip 3-10 NL, BioRad)

Contenuto del Buffer di reidratazione:

7M Urea, 2M Thiourea, 65mM DTE, 4% CHAPS, 0.5% Anfoliti trasportatori (Biorad per pH 3-10), H_2O milliQ fino a 2.5 ml, tracce di BBF

Il campione viene caricato lungo una *lane* nelle vaschette per l'elettrofocalizzazione facendo attenzione ad espanderlo nel modo più uniforme possibile. Quindi viene disposta la strip e il tutto ricoperto con 2 ml d'olio minerale essenziale per evitare l'evaporazione

Reidratazione attiva: 50V over-night o per 10-12 ore.

8.2.6 – Focalizzazione

Terminata la reidratazione la strip viene rimossa per permettere l'eliminazione dell'olio minerale.

Quindi si ridispone la strip nella lane e anodo e catodo vengono coperti con due piccoli pezzi di carta da filtro imbevuti di H₂O milliQ.

Programma di focalizzazione per strip da 17 cm pH 3-10 non lineare (Amersham)

250V per 15´	slope veloce
fino a 1000 V in 1 ora	slope lento
da 1000V a 4000V in 4 ore slope	lento
4000V per 13 ore	slope lento
da 4000V a 5000V	slope veloce
5000V per 1 ora	
Le strip, se non utilizzate in	nmediatamente per la seconda dimensione, vengono

8.2.7 - Preparazione dei gel SDS-PAGE per la seconda dimensione

Gradiente di acrilammide da 7.5% a 16%: Volumi per 6 gel:

conservate a -80°C.

7.5% (V _f = 245	5 ml)	$16\% (V_f = 245 ml)$
61.25 ml	Acrilammide + Bis (29:1) T30C3.3	130.7 ml
61.5 ml	Tris pH 8.8	61.5 ml
2.45 ml	10%SDS	2.45 ml
-	Glicerolo	17 ml
118.7 ml	H ₂ O milliQ	32.25 ml
100 µl	TEMED	100 µl
1 ml	10% APS	1 ml

I gel vengono preparati mediante la tecnica dei vasi comunicanti tramite l'apparato Ettan DALTsix gradient marker (Biorad): la soluzione più concentrata subisce una progressiva diluizione da parte della soluzione a minor concentrazione di acrilammide.

Una volta versati i gel, si aggiungono 4 ml di isobutanolo.

La polimerizzazione è condotta in genere per 5 ore (come controllo parte della soluzione viene tenuta sotto osservazione in un becker).

Preparazione del Running buffer 10X (pH 8.6):

Tris	60.75 g
Glicina	290 g
SDS	20 g
dH ₂ O	a 2 l

dopo aver sciolto Tris e glicina, il pH della soluzione viene aggiustato a 8.6. viene quindi aggiunto SDS e filtrato.

Conservazione a 4°C.

Stacking gel

I gel sono preceduto da un stacking gel di 2.5 cm

Per 80 ml di stacking gel di 4% acrilammide (sufficiente per 6 gel):

Acrilammide + Bis (29:1) T30C3.	3 10.7 ml
0.5M Tris-HCl pH 6.8	20 ml
SDS10%	0.8 ml
H2O	47.7 ml

APS10%	600 µl
TEMED	200 µl

8.2.8 - Equilibrazione delle strip

Le strip sono immerse 15 minuti prima in una soluzione riducente e poi altri 15 minuti in una soluzione alchilante. Alla fine di questi due lavaggi vengono lavate nel running buffer prima di essere caricate sul gel.

Riducente (1° lavaggio)

ente (1° lavaggio)		Alchilante (2º lavaggio)
10 ml	Tris-HCl pH 6.8	10 ml
36 g	6MUrea	36 g
30 ml	Glicerolo	30 ml
20 ml	SDS 10%	20 ml
2 g	DTE	
	Iodoacetammide	2.5 g
a100 ml	H ₂ O milliQ	a 100 ml

8.2.9 - SDS-PAGE (seconda dimensione)

Dopo i lavaggi delle strip nelle soluzioni di equilibrazione, le strip vengono caricate sul gel di seconda dimensione:

La strip viene caricata sul gel utilizzando una soluzione bollente di agarosio all'1% in running buffer il cui raffreddamento causa l'adesione della strip al gel.

Quindi i gel vengono caricati nell'apparato di seconda dimensione riempito con running buffer 1X.

Amperaggio applicato:

nello stacking gel: 25-30 mA per gel

nel running gel: 50 mA per gel (valori massimi permessi :600V e 100W)

8.2.10 - Colorazione

Finita la corsa i gel vengono lavati brevemente con H₂0 e poi le proteine vengono fissate in 50% EtOH + 10% Acido acetico. I gel vengono quindi colorati con GelCode® (BIO-RAD) o.n. in agitazione, ed infine decolorati con 10% EtOH per eliminare il fondo.

GelCode[®] é un Blu Coomassie in dispersione colloidale ed ha il vantaggio di una miglior sensibilità rispetto al più classico Coomassie Brilliant Blue.

8.2.11 - Conservazione dei gel

I gel vengono conservati in 10% EtOH a 4° C, in buste di plastica sigillate ermeticamente.

8.3 - Analisi di immagine tramite PdQuest

<u>Strumentazione:</u>

scanner: GS 800 Calibrated Densitometer (BioRad) software d'analisi: PdQuest 7.1.1

L'acquisizione delle immagini dei gel è stata eseguita tramite uno scanner e quindi sottoposte all'analisi tramite PdQuest.

A seconda della qualità dell'immagine del gel (dipendente dalla riuscita del gel e dalla sua colorazione) sono scelti ogni volta i migliori parametri per permettere al software un adeguato trattamento dell'immagine e procedere alla sua analisi (vedi sessione 3.2.5 – Analisi dell'immagine).

Nelle analisi comparative le spot definite come "differenze" sono sempre sottoposti ad un controllo visivo da parte dell'operatore.

Trasporto dei gel

Per il trasporto dei gel ai laboratori di spettrometria di massa di Monza e di Strasburgo si è provveduto ad imbustarli in un film di plastica sigillata su tutti i lati. I gel sono stati imbustati con un quantitativo d'acqua milliQ sufficiente a tenerli idratati. Le buste sono state sigillate su supporti rigidi. Con tale sistema i gel sono stati trasportati senza pericolo di rotture.

8.4 - Incisione delle spot manuale e tramite robot

L'incisione è stata eseguita in alcuni casi manualmente tramite l'utilizzo di puntali per eppendorff da 200 o 1000 µl; oppure tramite l'utilizzo del robot PROTEINEER SP (Bruker Daltonics) (vedi sessione 6 – L'automatizazione)

Le spot sono direttamente posizionate in piastre da 96 pozzetti idonee all'utilizzo del robot per la riduzione e alchilazione. Si conservano in acqua a 4°C (per periodi superiori

alla settimana è opportuno aggiungere acido acetico (10%) all'acqua per evitare l'insorgenza di muffe.

8.5 - Procedura di riduzione, alchilazione e digestione manuale e tramite robot: Riduzione e alchilazione

Materiali:

• Preparazione tampone:

NH4HCO3 98,75mg in 50ml di H2O

- Preparazione soluzione di riduzione:
 - DTT 15,4 mg in 10 ml di tampone
- Preparazione soluzione di alchilante: Iodoacetamide 102 mg in 10 ml di tampone

Procedura:

lavaggio*:

100 µl di ACN + 100 µl di tampone NH4HCO3 agitare per 15 minuti e aspirare il liquido (il robot esegue il lavaggio altre due volte) Riduzione: aggiungere 100 µl di soluzione di DDT lasciare 30min DIMESAB a 57°C aspirare il liquido (col il robot il tempo di riduzione è esteso a 1h) Alchilazione : aggiungere 100 µl di soluzione di Iodoacetamide lasciare 30min a temperatura ambiente e al buio aspirare (col il robot il tempo di alchilazione è esteso a 1h) Lavaggio: ripetere l'operazione * altre 2 volte(o almeno fino a decolorazione del gel) (il robot esegue il lavaggio 3 volte) Deidratazione :

aggiungere 100 μl di CH3CN agitare 10 min aspirare il liquido

Procedura di riduzione e alchilazione alternativa

Le proteine sono sottoposte ad alchilazione e riduzione durante i trattamenti precedenti la separazione elettroforetica bidimensionale, e tali modificazioni dovrebbero essere mantenute anche a separazione avvenuta. Test eseguiti nel laboratorio DIMESAB e LSMBO dimostrano che tale passaggi possono essere saltati.

Le ultime analisi sono quindi state eseguite con una procedura più ridotta che prevede prima della digestione questi soli passaggi:

Si esegue due volte il seguente lavaggio: - aggiungere al gel 100 μL di NH4HCO3 25mM + 100 μL di CH3CN - agitare per 15 min -eliminare il surnatante Disidratazione: - Aggiungere 100 μL di CH3CN - agitare per 10 min -eliminare il surnatante

Procedura di digestione

La procedura di digestione è sempre eseguita manualmente.

Materiali:

Tripsina: Sequencing Grade Modified Trypsin (Promega) Miscela di calibrazione (PepMix): Protein Calibration Standard (Bruker)

Procedura:

DIMESAB: aliquote di tripsina (preparate in acido acetico 50 mM) sono conservate a – 20° C e al momento dell'uso diluite con la soluzione tampone fino ad ottenere una concentrazione di 12.5 ng/µl

LSMBO: si aggiunge la soluzione tampone direttamente alla soluzione liofilizzata fino ad ottenere una concentrazione di $12.5 \text{ ng}/\mu$ l

Il quantitativo di Try aggiunto al gel dipende dalle dimensioni del frammento di gel e deve essere sufficiente per ricoprire il gel (4-6µl). Dopo 10 min dall'aggiunta se il gel ha riassorbito tutto il surnatante si aggiunge altro liquido.

Tempo e metodologia di azione

In genere la digestione è eseguita incubando in stufa by night a 37°C. Le piastre sono accuratamente sigillate con l'apposita copertura per evitare l'evaporazione del liquido.

Procedura di digestione alternativa:

Una digestione alternativa a 37°C per solo 1h porta ugualmente ad ottimi risultati.

Le piastre vengono conservate a -20 °C fino all'estrazione

Estrazione dei peptidi :

Si aggiunge una miscela di 60%CH3CN 5% HCOOH in H2O (dai 4µl ai 7µl a seconda delle dimensioni del gel). Lasciare 1h a temperatura ambiente.

8.6 – Deposito su target

Il target viene sempre lavato prima dell'uso con solventi appositi sotto sonicazione.

Materiali:

Target plate : MTP 384 Ground Steel (Bruker) Matrice: α-cyano-4-idrossicinnamico (HCCA) PepMix: si preparano delle aliquote conservate a – 20°C.

Deposito del campione:

0,5μl di miscela di estrazione vengono depositati sul target Si aggiungono 0,5 μl di matrice HCCA (una soluzione satura in ACN/H2O (50/50) viene poi diluita 1:2) Si lascia evaporare all'aria o sotto vuoto Si lava con 1μl d'acqua acidulata (0.1% TFA)

Deposito della miscela di calibrazione

La procedura di deposito per la PepMix è identica a quella del campione. Il lavaggio con acqua non è necessario.

Prima di eseguire le analisi ogni volta che il target viene reinserito nello strumento si procede a una preliminare calibrazione dello strumento. Dopo l'acquisizione, come sarà illustro in seguito, ogni spettro viene calibrato sui picchi di autolisi della tripsina. Può però verificarsi che alcuni dei picchi di riferimento per la calibrazione interna siano non utilizzabili (scarsa risoluzione, sovrapposti ad altri, poco intensi), in tal caso si ricorre alla calibrazione esterna sullo spettro della PepMix. Se i campioni si trovano in una zona estesa del target un solo deposito per la miscela di calibrazione non è sufficiente. Lo spettro della PepMix deve essere acquisito in una zona prossima al campione.

I depositi della PepMix sono disposti in modo che ogni campione sia confinante o prossimo a un deposito di PepMix

8.7 - Acquisizione degli spettri tramite MALDI-TOF

<u>Strumentazione:</u>

Le misure di massa eseguite tramite MALDI-TOF sono state realizzate su strumenti della gamma Bruker DaltonicsTM: l'Ultraflex e il Reflex IV . Software di acquisizione degli spettri: Flexcontrol 1.1 (2.4 per le analisi su Reflex IV); Flexcontrol 1.2 (per le analisi su Ultraflex) (Bruker)

Software di esportazione dei dati: XMASS 5.0 (Bruker)

Software di trattamento degli spettri: FlexAnalysis 2.4 (2.2 per le analisi su Ultraflex) (Bruker)

Parametri strumentali:

Gli strumenti sono equipaggiati di una sorgente SCOUT.

Il laser è ad Azoto di lunghezza d'onda 337 nm e frequenza 20 Hz (l'energia può varare da 150 a 200 μ J).

Voltaggi applicati: ISI: 20kV, IS2: 17,5kV; lenti: 5kV per l'Ultraflex ISI: 20kV, IS2: 17,5kV; lenti: 5kV per Reflex.

Delayed extraction: PIE 200-400ns.

(delle variazioni possono essere state effettuate nel corso degli esperimenti a seconda delle condizioni della strumentazione)

Le analisi sono state eseguite in modalità reflectron.

Intervallo di massa: 750 - 3500 Da

Gli spettri vengono generati a ogni tiro laser (shot); sono stati acquisiti spettri totali costituiti da gruppi di 100 shots accumulati su cristalli diversi fino a un totale di 300-400 shots. La somma di spettri provenienti da vari posizioni del deposito permette di ovviare alla non uniformità della cristallizzazione.

La calibrazione dello strumento viene eseguita sulla PepMix: una miscela di calibrazione per peptidi e proteine a basso peso molecolare costituta dalle sostanze elencate in tabella 8.2. La calibrazione è eseguita in un range tra 700 e 3000 m/z.

Nome	Massa Monoisotopica [M+H] ⁺	Massa Chimica [M+H] ⁺
Bradykinin 1-7	757.3991	757.85
Angiotensina II	1,046.5420	1,047.20
Angiotensina I	1,296.6853	1,297.51
Substance P	1,347.7361	1,348.66
Bombesin	1,619.8230	1,620.88
ACTH clip 1-17	2,093.0868	2,094.46
ACTH clip 18-39	2,465.1990	2,466.73
Somatostatin 28	3,147.4714	3,149.61

Tabella 8.2 : Peptidi contenuti nella miscela di calibrazione (PepMix).

Acquisizione automatica

L'acquisizione automatica è eseguita con il programma Autoexecut di Flexcontrol.

Si prepara una lista attraverso cui per ogni spot è possibile elencare i parametri per l'acquisizione e definire eventualmente la metodica di FlexAnalysis per il trattamento automatico dello spettro.

8.8 - Trattamento dello spettro

La lista dei peptidi è ottenuta senza sottrazione della linea di base o smoothing (a meno che la scarsa qualità dello spettro li renda necessari) I parametri impostati nel programma FlexAnalysis per l'attribuzione della peak list sono: Algoritmo per l'assegnazione dei picchi: SNAP; soglia rapporto segnale rumore: variabile (in genere 2); soglia quality factor: variabile (in genere 30); fragment peak with 1.75 m/z. Viene eseguita una calibratone interna sui seguenti picchi di autolisi della tripsina: 842.509, 1045.564, 2211.104 m/z.

Queste operazioni sono state in alcuni casi condotte in automatico subito dopo l'acquisizione automatica.

8.9 - Ricerca in banca dati

La peak list viene esportata in MASCOT grazie all'interfaccia con Biotools 2.0 (Bruker). La ricerca viene eseguita usufruendo delle banche dati intranet disponibili nel laboratorio. I parametri impostati sono rappresentati nella pagina Mascot riportata:

ide Mass Fing	gerprint		?×
URL:	http://server/mascot/cgi/nph-mas	cot.exe?1 Setu	ир
	Matrix Science home page		
User Name:	Rossella	Email:	Mascot Intranet
Search Title:	Saccharomyces cerevisiae deleto f	AR1 - spot 14	
Taxonomy:	All entries		
Database:	Sprot	Enzyme: Trypsin	💽 🦵 Modificazioni variabili indagat
Global Modifications:	Biotin (K) Biotin (N. term)	Variable Acetyl (K) Acetyl (N Acety	• Oxidation (M)
mounications.	Carbamidomethyl (C) Carbamyl (K) Carbamyl (N-term)	Amide (C-term) Biotin (K) Biotin (K)	Phospho (S,T,Y)
Protein MW >=:	kDa	Missed Cleavages <=: 1	•
Mass Tol. MS:	30 ppm	•	
	•		
Mass values:	Смн См _г	Monoisotopic C Av	rerage
Data file:			
Query Data:	776.293663 3893.228269		
	794.462672 917.094920		
	804.324797 10344.888285 808.460868 1130.960047		
	804.324797 10344.888285 808.460868 1130.960047		_
	804.324797 10344.888285 808.460868 1130.960047		
nstrument. E	804.324797 10344.888285 808.460868 1130.960047	Results: Coverview Report top 5	▼ Fiits
nstrument: E	804.32479710344.888285 808.4608681130.960047	Results: Overview Report top 5	T hits

Se con questi parametri non viene ottenuta un identificazione si procede nei seguenti modi:

• Si prova ad alzare la tolleranza in massa

- Si restringe la taxonomia a Saccharomyces cerevisiae
- Si indaga nelle banche dati NCBI e TrEmbl
- Si lancia una ricerca anche con Profound o ProteinProspector
- Si riprende manualmente l'attribuzione dei picchi sullo spettro eliminando, se presenti, picchi di cheratina o picchi troppi intensi di autolisi della tripsina

Gli spettri che non hanno portato a identificazioni sono nella maggior parte dei casi spettri contenenti quasi esclusivamente tripsina o con contaminazione da cheratina che hanno reso impossibile l'identificazione. Se possibile le spot sono state reincise nei doppi gel e rianalizzati.

Ricerca automatica tramite il programma MASCOT DAEMON 2.0.5 (Bruker)

La ricerca automatica è stata eseguita come primo screening di identificazione. Ciò a permesso di visualizzare già ad analisi terminata spettri con identificazione insufficiente dando la possibilità di riprendere il deposito per un eventuale acquisizione o la soluzione di digestione per eseguire un nuova ricristallizzazione.

8.10 – Microarray

1*10° cellule per campione sono state raccolte per filtrazione, lavate due volte con acqua calda e conservate a -80°C. l'estrazione dell'RNA è stata condotta risospendendo le cellule nel buffer LETS 2X (0.2M LiCl, 0.02M EDTA, 0.4% SDS, 0.02M Tris-HCl, pH=7.4) e phenol/chloroform/isoamylalcohol (PCI) (25:24:1, v/v). Le cellule sono state rotte vortexandole con sferette di vetro (Sigma). La sospensione è stata centrifugata (30', 13000 rpm) e il surnatante è stato estratto due volte con PCI, quindi precipitato con LiCl (0.5M concentrazione finale) e etanolo a -80°C. l'RNA totale è stato purificato con (Quiagen) e conservato in RNase-free acqua. Il cRNA è stato generato utilizzando Affymetrix One-Cycle Target Labeling e il Control Reagent kit (Affymetrix Inc., Santa Clara, California, USA). Quindi si è ibridazzato il cRNA con YG_S98 Affymetrix DNA chips. Le chips sono state lavate e analizzate con Affymetrix Complete GeneChip® Instrument System, che ha portato all'ottenimento dell'immagine digitalizzata. Ogni esperimento è stato condotto in triplicato. I dati sono stati analizzati con MAS 5.0 (Affymetrix Inc.) e GeneSpring 7.1 (Silicon Genetics, Redwood City, California, USA) filtrando i dati con un fold change>1.5.

l'analisi statistica è stat eseguita con Two-Way ANOVA. La classificazione dei geni è stata condotta tramite Gene Ontology for Biological Process and Molecular function.
LA MESSA A PUNTO DEL METODO

La prima parte di questa tesi è consistita nella messa a punto dei metodi utilizzati sia per quanto riguarda le analisi di massa ma soprattutto per quanto riguarda la separazione elettroforetica bidimensionale.

Nostro obiettivo era l'ottenimento di gel che oltre ad eseguire una buona separazione fossero riproducibili, al fine di soddisfare i presupposti base di una analisi comparativa.

Definite le procedure e ottenuti i primi gel riproducibili, si è passato a testare l'intera metodica, dalla preparazione delle colture all'analisi di massa.

Come esperimento su cui testare la metodica si è scelto il confronto tra la crescita esponenziale in etanolo e glucosio, dati che non solo sono disponibili in letteratura ma che ci sarebbero serviti anche come controllo per gli esperimenti successivi.

Tali esperimenti di messa a punto verranno qui descritti molto brevemente.

9.1 - Crescita esponenziale in glucosio e crescita esponenziale in etanolo di un ceppo wt di Saccharomyces cerevisiae

Ceppi wild type di *Saccharomyces cerevisiae* sono stati fatti crescere in condizioni di crescita esponenziale in un terreno contenete 2% di etanolo.

Lo stesso è stato fatto in un terreno contenente 2% di glucosio.

La crescita dei ceppi e la raccolta delle cellule sono state condotte secondo i protocolli riportati in materiale e metodi (sessione *8.1 – Preparazione del campione*).

Quindi si è applicata la procedura di estrazione e separazione elettroforetica messa precedentemente a punto (sessione 8.2 – *Estrazione delle proteine e separazione tramite SDS* –

PAGE). Ogni campione è stato caricato in doppio sulle strip di focalizzazione e tutti gli steps di elettroforesi bidimensionale sono stati condotti in parallelo.

Si sono quindi ottenuti due gel per la crescita in etanolo e due per la crescita in glucosio. I gel hanno presentato una buona riproducibilità e si sono testati i parametri per una

corretta analisi comparativa con il programma PdQuest.

Le macchie risultanti essere differenti nei due set di gel sono state excise e analizzate.

Si è provveduto alla messa a punto delle condizioni di analisi in massa e al test delle metodiche di automatizzazione.

L'analisi ha portato a risultati confermati in letteratura: principalmente le proteine overespresse in etanolo corrispondevano come atteso a i tre pathway principali:

- *ciclo di Krebs (ciclo degli acidi tricarbossilici)*
- ciclo del gliossilato
- ciclo della gluconeogenesi

Figura 9.1: nello schema metabolico sono indicati i livelli proteici di alcune proteine chiave ottenuti negli esperimenti di crescita esponenziale in etanolo e crescita esponenziale in glucosio. Leggenda: proteine evidenziate in rosso: overespresse in etanolo; proteine evidenziate in verde: sottoregolate in etanolo; proteine evidenziate in giallo: non mostrano cambiamento di espressione tra crescita in etanolo o glucosio; proteine evidenziate in bianco: non trovate nella nostra analisi; proteine contrassegnate da un asterisco: trovate solo in etanolo.

Come noto in letteratura questi pathway sono repressi nella crescita in glucosio. I dati dei livelli proteici trovati sono stati confrontati con i dati sui livelli proteici di Futcher e Gygi in cui la quantificazione è stata eseguita tramite marcatura con ³⁵S alla metionina (Futcher et al., 1999; Gygi et al., 1998). I nostri dati hanno presentato una buona correlazione con i dati di letteratura.

Da questi presupposti e con qualche ulteriore accorgimento apportato alle metodiche si è potuto procedere con gli esperimenti programmati.

RISULTATI DEGLI STUDI SUI MUTANTI DI FAR1

10.1 – Studi sui mutanti far 1Δ e FAR 1^{tet} durante la crescita esponenziale in etanolo e la crescita esponenziale in glucosio.

Si è confrontato il proteoma dei ceppi wild type, $far1\Delta$ e $FAR1^{tet}$ in crescita esponenziale al 2% di etanolo e in crescita esponenziale al 2% di glucosio.

Dalle cellule raccolte si è provveduto all'estrazione delle proteine e alla loro separazione su 2D-PAGE mediante i protocolli descritti nella sessione 8.2 (gradiente non lineare di pH 3-10, gradiente di poliacrilammide di 7,5%-16%, colorazione con GelCode[®]).

Ogni estratto è stato utilizzato per preparare un doppio gel ottenendo così sei gel per la crescita esponenziale in etanolo e sei per la crescita esponenziale in glucosio. Ogni set dei sei gel è stato fatto correre contemporaneamente. Su ogni gel sono stati caricati 250 mg di proteine totali.

Si è provveduto quindi all'analisi di immagine tramite PdQuest[®] considerando come differenze le macchie aventi un fold change maggiore o uguale a 1.5 (*3.2.5 – Analisi dell'immagine*) (Figura 10.1).

L'exicisione è stata eseguita per tutte le proteine visualizzate nei gel del ceppo wild type in crescita esponenziale in etanolo e in crescita esponenziale in glucosio e alle sole differenze nei ceppi dei mutanti. Le spot sono state sottoposte ad analisi MS come specificato in Materiali e Metodi.

L'analisi proteica dei ceppi mutanti nel gene *FAR1* è stato confrontata anche con l'analisi trascizionale tramite GeneChip[®] ottenuta da ceppi sottoposti alle stesse condizioni sperimentali. Anche in questo caso si è considerato un fold change maggiore o uguale a 1.5.

Figura 10.1: Gel ottenuti dagli estratti proteici dei ceppi wild type e dei mutanti in *FAR1* in crescita esponenziale in etanolo e glucosio. Le spot aventi una variazione di intensità nei mutanti rispetto al wild type sono indicate con cerchi rossi per *FAR1^{tet}* e cerchi blu per *far1* Δ o con cerchi neri se sono diversamente espresse in entrambe i mutanti.

10.2 - Confronto tra l'analisi proteomica e quella trascrizionale

Dal confronto tra l'analisi proteomica e quella trascrizionale non si osserva una completa correlazione: i livelli di mRNA non sono sempre predittivi della corrispondente

espressione proteica. Questi risultati sono in accordo con altri studi presenti in letteratura (Hartwell et al., 1974). Bisogna evidenziare che l'analisi proteomica è stata condotta su un numero di proteine limitato rispetto a quello dei geni analizzati con GeneChip[®] : mentre le proteine visualizzate tramite le tecniche utilizzate sono circa 400, i geni sono 4500.

In crescita esponenziale in etanolo la modulazione dei livelli di mRNA ha un andamento più correlabile alla modulazione dei livelli proteici mentre in glucosio ci sono un maggior numero di geni che sono modulati solo a livello post-trascrizionale .

La percentuale di proteine con una variazione di espressione tra i diversi ceppi rispetto al totale delle proteine visualizzate, è però paragonabile alla percentuale di variazione dei livelli di mRNA.

Nella tabella 10.1 sono riportati il totale delle proteine e degli mRNA che variano nei vari casi e la loro percentuale rispetto al totale. Nelle tabelle 10.2.1 e 10.2.2 si riporta l'elenco di tutte le proteine trovate avere una variazione di intensità nei gel 2D dei vari ceppi.

		glucosio	etanolo			
		far1∆	vs wt			
mRNA	cresce	56 (1.2%)	20 (0.4%)			
IIIXIVA	decresce	94 (2.1%)	42 (0.9%)			
Drotoino	cresce	2 (0.5%)	7 (1.8%)			
Proteine	decresce	12 (3%)	6 (1.5%)			
		FAR1 ^{tet} vs wt				
mRNA	cresce	82 (1.8%)	51 (1.1%)			
IIIKINA	decresce	121 (2.7%)	62 (1.4%)			
Drotoino	cresce	17 (4.3%)	5 (1.3%)			
Proteine	decresce	12 (3%)	15 (3.8%)			
		FAR1 ^{tet}	vs far 1∆			
m D N A	cresce	54 (1.2%)	30 (0.7%)			
IIIKINA	decresce	82 (1.8%)	31 (0.7%)			
Drotoiro	cresce	18 (4.5%)	8 (2%)			
Proteine	decresce	3 (0.8%)	19 (4.8%)			

Tabella 10.1: Quadro delle variazioni di espressione proteica nei vari ceppi e delle variazione dei livelli di mRNA nelle due condizioni di crescita esponenziale etanolo e glucosio. Tra parentesi sono indicate le percentuali relative al totale di proteine visualizzate o di geni analizzati.

	Ra esp	apporto to pressione	ra i livelli e mutante	di e/wt				
aene	mR	NA	proteina		Funzione molecolare	Processo biologico		
90110	far1A	FAR1 ^{tet}	far1A	FAR1 ^{tet}				
ARG1	2,4	2,3	2,0	1	Argininosuccinate synthetase	Arginine biosynthesis		
ARO1	1	1	2,3	1	Arom pentafunctional enzyme	Aromatic amino acid biosynthesis		
BAT1	1	1	1,7	1	Mitochondrial branched-chain amino acid transaminase	Branched chain amino acid catabolism		
HIS4	2,5	2,5	1,8	1	Phosphoribosyl-AMP cyclohydrolase	Histidine biosynthesis		
LEU1	1	-1,5	1	-1,9	3-Isopropylmalate dehydratase	Leucine biosynthesis		
LEU4	1	1	1	0,5	2-Isopropylmalate synthase	Leucine biosynthesis		
URA1	-2,0	1	-3,2	1	Dihydroorotate dehydrogenase	de novo' pyrimidine base biosynthesis		
RIB3	1	1	1,6	1	DBP synthase (3,4-dihydroxy-2- butanone 4-phosphate synthase)	Riboflavin biosynthesis		
INO1	1	-1,7	1	-2,4	Inositol-1-phosphate synthase	Phosphatidylinositol biosynthesis		
RPS16	1	1	1		Ribosomal protein S16	Protein biosynthesis		
RPS7A	1	1	1	10	Ribosomal protein S7	Protein biosynthesis; Polar budding		
SNZ1	1	1	1		Putative pyridoxine (vitamin B6) biosynthetic enzyme	Cellular response to starvation		
TUP1	1	1	1,8	1	General repressor of RNA polymerase II transcription	Meiosis		
TPM1	1	1	-3,2	1	Tropomyosin	Actin polymerization and/or depolymerization		
GDH3	1	3,0	1	2,3	Glutamate dehydrogenase (NADP+)	Cell wall organization and biogenesis		
TEF2	1	1	-2,5	1	Translation elongation factor EF- lalpha, identical to Tef1p	Cellular morphogenesis; Protein biosynthesis		
ENO2	1	-3,5	1	-2,5	2-phosphoglycerate dehydratase	Glycolysis		
FBA1	1	-1,6	1	-1,6	Fructose-bisphosphate aldolase II	Glycolysis		
PGK1	1	-1,7	1	-1,7	Phosphoglycerate kinase	Glycolysis		
MLS1	1	1			Malate synthase 1	Glyoxylate cycle		
RKI1	1	1	1	-1,7	Ribose 5-phosphate ketol- isomerase	Pentose-phosphate shunt		
TKL1	1	1		-25,0	Transketolase 1	Pentose-phosphate shunt		

Crescita esponenziale in glucosio

gene	Ra esp mR	apporto ti ressione <i>NA</i>	ra i livelli di e mutante/wt proteina				
	far1Δ FAR1 ^{tet}		far1A FAR1 ^{tet}		Funzione molecolare	Processo biologico	
HSP26	2,8	1,8	-1,7	-7,1	Heat shock protein (required for resistance to ethanol)	Response to stress	
HSP82	1	1	1 1,7		Chaperonin homologous to mammalian HSP90	Response to stress	
DDR48	1	2,1	1	3,7	Stress protein induced by heat shock or osmotic stress	Response to stress; Cell wall organization and biogenesis	
SEC14	1	1	2,3	1	Phosphatidylinositol/phosphatidylc holine (PI/PC)-transfer protein	Golgi to vacuole and to secretory vesicle transport	
PEP4	1	1	1	3,1	Proteinase A	Vacuolar protein processing or maturation	
YNL134C	1	1	1	-1,8	Member of the zinc-binding dehydrogenase family	Biological process unknown	

Crescita esponenziale in glucosio

Tabella 10.2.1: Elenco delle proteine aventi una variazione di espressione proteica (*fold change* >1.5) nei mutanti *far1* Δ e *FAR1^{tet}* in crescita esponenziale in glucosio. Si riporta il valore del rapporto tra i livelli di espressione nei mutanti rispetto al wild type. Insieme al valore di espressione proteica si riporta anche il valore dei corrispondenti livelli di mRNA. Leggenda: in rosso le proteine aventi valori di espressione crescenti rispetto ai quelli del trascrittoma, in verde i valori decrescenti, in giallo qualora non vi siano differenze tra l'andamento dei livelli di proteoma e del trascrittoma, in blu proteine non visualizzate sui gel 2D.

gene	Ra esp mR	apporto t pressione NA	ra i livelli e mutante prote	i di e/wt e <i>ina</i>	Funzione molecolare	Processo biologico			
gene	far1∆	FAR1 ^{tet}	far1∆	FAR1 ^{tet}					
TDH3	1	1	-1,8	-1,6	Glyceraldehyde-3-phosphate dehydrogenase 3	Glycolysis			
DLD3	1	-2,9	-4	-3,1	D-lactate dehydrogenase	Lactate metabolism			
KRS1	1	1	1	-10	Lysyl-tRNA synthetase	Lysyl-tRNA aminoacylation			
MET6	1	1			Homocysteine methyltransferase	Methionine biosynthesis			

Crescita esponenziale in etanolo

	Rapporto tra i livelli o espressione mutante/ mRNA protei		di e/wt e <i>ina</i>					
gene	far1	ARItet	far1	AR1 ^{tet}	Funzione molecolare	Processo biologico		
RIB4	1	1	-2,2	1	6,7-dimethyl-8-ribityllumazine synthase	Polar budding; Bud site selection		
EFT1	1	1			Translation elongation factor EF2	Protein biosynthesis		
RPL2 ²	1	1	1	6,7	60S Ribosomal protein L2	Protein biosynthesis		
RPL8 ²	1	1	1	6,7	Ribosomal protein L8	Protein biosynthesis		
RPS1A ³	1	1	1	6,2	Ribosomal protein S1	Protein biosynthesis		
RPS4 ²	1	1	1	6,7	40S Ribosomal protein S4	Protein biosynthesis		
RPL26	1	1	1	2,4	Ribosomal protein L26	Protein biosynthesis		
RPS12	1	1	1	1,8	40S Ribosomal protein S12	Protein biosynthesis		
RPS18 ¹	1	1	1	2,8	40S Ribosomal protein S18	Protein biosynthesis		
RPS24 ¹	1	1	1	2,8	40S Ribosomal protein S24	Protein biosynthesis; Cell growth and/or maintenance		
RPS7A	1	1	1	7,9	40S Ribosomal protein S7	Protein biosynthesis; Polar budding		
RPS17 ¹	1	1	1	2,8	40S Ribosomal protein S17	Protein biosynthesis; Polar budding;		
RPS2 ³	1	1	1	6,2	40S Ribosomal protein S2	Protein biosynthesis; RNA splicing		
NPL3	1	-1,9	1	1,5	DNA and RNA binding protein	Protein-nucleus import rRNA- nucleus export		
FUR1	1,8	1	2,2	1	Uracil phosphoribosyltransferase	Pyrimidine salvage		
EGD2	1	1	-2	1	subunit of the nascent polypeptide associated complex	Regulation of transcription; Protein folding		
STM1	1	1	1	6,9	Ribosome-associated protein	Telomere maintenance; Mitosis		
HOM2	1	1			Aspartate-semialdehyde dehydrogenase	Threonine and Methionine biosynthesis		
HOM6	1	1			Homoserine dehydrogenase	Threonine and Methionine biosynthesis		
GUA1	1	1	1	-2,8	GMP synthetase	Xanthine catabolism; GMP biosynthesis		

Crescita esponenziale in etanolo

Tabella 10.2.2: Elenco delle proteine aventi una variazione di espressione proteica (*fold change* >1.5) nei mutanti *far1* Δ e *FAR1^{tet}* in crescita esponenziale in etanolo. Si riporta il valore del rapporto tra i livelli di espressione nei mutanti rispetto al wild type. Insieme al valore di espressione proteica si riporta anche il valore dei corrispondenti livelli di mRNA. Leggenda: in

rosso le proteine aventi valori di espressione crescenti rispetto ai quelli del trascrittoma, in verde i valori decrescenti, in giallo qualora non vi siano differenze tra l'andamento dei livelli di proteoma e del trascrittoma, in blu proteine non visualizzate sui gel 2D.

10.3 - Pathways influenzati dalla mutazione di FAR1

Le principali variazioni si sono notate nel ceppo overesprimente il gene FAR1.

Per quanto riguarda invece il mutante deleto in *FAR1* sia le analisi con GeneChip® che con elettroforesi bidimensionale non hanno portato a dati evidenti o facilmente interpretabili. Bisogna tener conto che il mutante *far1* Δ non mostra un fenotipo macroscopico nella fase di crescita esponenziale e che l'adattamento a livello trascrizionale e proteomico alla mancanza del gene *FAR1* può essere così moderata da non essere rilevabile con le nostre tecniche.

In generale durante la crescita esponenziale in etanolo, il ceppo $FAR1^{tet}$ sia per quanto riguarda il confronto con il ceppo wild type che con il ceppo $far1\Delta$ ha mostrato una variazione di espressione dei geni implicati nella glicolisi/gluconeogenesi i quali risultavano sottoregolati sia a livello trascrizionale che proteico (Figura 10.2).

Figura 10.2: Rappresentazione dei pathway della glicolisi/gluconeogenesi e variazione di espressione dei geni nel mutante *FAR1^{tet}* rispetto al wild type durante la crescita esponenziale in

etanolo. Nei casi in cui la proteina non è stata rilevata tramite 2D-page si è riportata la corrispondente variazione dei valori di mRNA. I casi in cui la modulazione a livello trascrizionale corrisponde a quella traduzionale sono contrassegnati da una stella.

Durante la crescita esponenziale in glucosio si è osservata invece una sottoregolazione a livello dei geni (sempre sia come espressione proteica che come livelli di mRNA) implicanti nel ciclo degli acidi tricarbossilici (TCA) e nel pathway che converte il fosfoenol piruvato ad acetyl-CoA (Figura 10.3).

Figura 10.3: Rappresentazione dei pathway della glicolisi/gluconeogenesi e del TCA e variazione di espressione dei geni nel mutante *FAR1^{tet}* rispetto al wild type durante la crescita esponenziale

in glucosio. Nei casi in cui la proteina non è stata rilevata tramite 2D-page si è riportata la corrispondente variazione dei valori di mRNA.

Sempre in crescita esponenziale in glucosio, inoltre, nel ceppo *FAR1^{tet}* molte proteine ribosomali (11 sulle 24 totali proteine ribosomali identificate nel ceppo wild type) sono risultate indotte senza che sia verificata una variazione dei livelli di mRNA. Questa evidente induzione delle proteine ribosomali è invece assente nella crescita in etanolo dove si è comunque identificato un numero comparabile di proteine ribosomali. Si può in generale parlare di un inaspettato legame tra l'overespressione del gene *FAR1* e i pathway coinvolti nell'utilizzazione del carbonio e nella sintesi delle proteine.

Nel lievito Saccharomyces cerevisiae il pathway di TOR (Target of Rapamycin) e di cAMP-PKA (cyclic AMP-protein kinase A) sono i principali pathway che regolano la biogenesi dei ribosomi: essi rispondono alla cascata di segnali indotta dai nutrienti e regolano l'espressione dei geni richiesti per la crescita delle cellule tra i quali i geni codificanti per proteine ribosomali. In base a questa considerazione si è quindi cercato se il ceppo FAR1^{tet} presentava una variazione di espressione dei geni coinvolti in questi due pathway. Si è trovato che i livelli di mRNA del solo gene TPK1, codificante per una delle tre subunità catalitiche del PKA, risultavano indotti di due volte nel ceppo FAR1tet in crescita esponenziale in glucosio. Non risultavano però modulazioni di espressione nei riguardi dei principali componenti del pathway di TOR (ovvero per quanto riguarda i geni TAP42, MKS1, URE2, GLN3, GAT1, indicati nello studio sul pathway di TOR condotto da Shamji et al., 2000) e in generale neanche nei confronti di geni che potevano essere implicate nella regolazione di TOR. Da questa osservazione sembrerebbe quindi che nel mutante FAR1^{tet} il pathway di TOR non sia implicato nel fenomeno di induzione delle proteine ribosomali. Si è osservato però nel mutante FAR1tet in crescita esponenziale in glucosio, un induzione dei livelli di mRNA in molti geni (il 33%) del pathway della fosforilazione ossidativa e nel pathway della discriminazione d'azoto (NDP) (21%) (Tabella 10.3). Questi due pathway sono normalmente indotti da rapamicina, e repressi dal pathway di TOR.

			FAR1 ^{te}	^t vs WT
Gene	Pathway	Funzione	Etanolo	Glucosio
DAL80	nitrogen catabolism	transcription factor	2,64	1,86
MEP2	transport	ammonia permease	4,70	1
PUT1	proline utilization	proline oxydase	1	1,56
CPS1	protein degradation	vacuolar carboxypeptidase	1	2,24
DAL5	allantoin utilization	allantoato permease	2,67	2,18
PRB1	protein degradation	vacuolar protease B	1	2,62
CAN1	transport	basic amino acid permease	2,63	1
DUR1	nitrogen metabolism	urea amidolyase	2,60	1
COX9	oxidative phosphorylation	cytochrome c oxydase assembly	1	2,56
CYC1	oxidative phosphorylation	cytochrome c isoform 1	1	1,54
COX8	oxidative phosphorylation	cytochrome c oxidase chain VIII	1	1,92
COX4	oxidative phosphorylation	cytochrome c oxidase subunit IV	1	2,05
COX5A	oxidative phosphorylation	cytochrome c oxidase subunit V a	1	1,77
COX5B	oxidative phosphorylation	cytochrome c oxidase subunit V b	1	1,77
COX6	oxidative phosphorylation	cytochrome c oxidase subunit VI	1	1,97
QCR9	oxidative phosphorylation	ubiquinol cytochrome reductase subunit 9	1	1,93
PET117	oxidative phosphorylation	cytochrome c oxidase assembly factor	-1,66	1
COX15	respiration	cytochrome c oxidase assembly factor	1	1,77
COX10	respiration	cytochrome c oxidase assembly	1	1,68
COX14	respiration	cytochrome c oxidase assembly protein	1	1,95

Tabella 10.3: Livelli degli mRNA dei geni aventi variazione di espressione nei pathway della discriminazione di azoto (NPD) e della fosforilazione ossidativa (wild type e mutante *FAR1^{tet}* sia in crescita esponenziale in etanolo che in glucosio. In accordo con le indicazioni fornite dallo studio di Shamji et al. per quanto riguarda la classificazione dei geni implicate in questi pathway si sono ricercati 24 geni per l'NDP e 34 per la fosforilazione ossidativa.

Recentemente è stato trovato che le proteine ribosomali sono coinvolte nella regolazione della sintesi dell'rRNA tramite un meccanismo di autoregolazione e agiscono qualora la biosintesi dei ribosomi è sbilanciata (Zhao *et al., 2003*). Nel ceppo *FAR1^{tet}* metà delle proteine ribosomali identificate è risultata indotta nella crescita esponenziale in glucosio. Si è quindi indagato se l'induzione delle proteine ribosomali nel mutante overesprimente *FAR1* fosse associata a un aumento del contenuto di rRNA. Il contenuto di rRNA è stato

osservato indirettamente osservando il contenuto di RNA: circa il 90 % del contenuto di RNA in una cellula è infatti costituito da rRNA. Il dosaggio dell'RNA è stato eseguito con il metodo che utilizza l'orcinolo come standard ed è stato applicato a tutti i ceppi (wild type, *far1* Δ e *FAR1^{tet}*) durante la crescita esponenziale in glucosio ed etanolo. I risultati sono stati considerati statisticamente rilevanti qualora, secondo "ANOVA e Tuke multiple-comparison test", P fosse inferiore a 0.01.

Figura 10.4: Dosaggio col metodo dell'orcinolo standard: il contenuto di RNA per cellula in picogrammi del ceppo wild type in crescita esponenziale in glucosio è stato impostato uguale a 1. L'analisi delle medie dei risultati è stata eseguita tramite il test multicomparativo "ANOVA e Tukey" con l'utilizzo del Minitab Statistical Software (Systat 5,2, Macintosh). In tabella sono espresse le medie \pm le deviazioni standard. Le differenze tra il wild type e il mutante (nelle stesse condizioni di crescita) risultate statisticamente significative (*P*<0.01) sono indicate con due asterischi (**).

Si è osservato che il contenuto di RNA per cellula nel wild type e nei ceppi mutanti è più basso nella crescita esponenziale in etanolo che in quella esponenziale in glucosio.

Mentre il mutante *far1* Δ , in entrambe le condizioni nutrizionali, non mostra una significativa differenza del contenuto di RNA rispetto al wild type, il mutante *FAR1^{tet}* mostra un netto incremento del contenuto di RNA per cellula rispetto al wild type corrispondente al 45% nella crescita esponenziale in glucosio e al 30% nella crescita esponenziale in etanolo (Figura 10.4). Questo suggerisce un'autoregolazione nel processo di biosintesi ribosomale.

RISULTATI DEGLI STUDI SULLO SHIFT-UP NUTRIZIONALE DEL CEPPO WILD TYPE

Durante una crescita sottoposta ad uno shift-up nutrizionale da etanolo a glucosio si verifica, nella fase transiente, una evidente diminuzione delle cellule gemmate che viene definito "calo di budding" (sessione *1.11 – Lo Shif-up nutrizionale*). L'aggiunta di glucosio a cellule in crescita esponenziale su fonte di carbonio povera causa infatti due ritardi nel ciclo cellulare: le cellule che non sono ancora entrate in fase S ritardano il loro ingresso in tale fase e si fermano in G1 per raggiungere il loro nuovo Ps mentre le cellule che si trovano già in fase S+G2+M ritardano la loro uscita dal ciclo cellulare.

Dal momento che la velocità di uscita dal ciclo è maggiore della velocità di ingresso in fase S, si osserva un veloce calo di *budding* subito dopo l'aggiunta della nuova fonte di carbonio. Tale calo è visibile nella prima ora dopo l'aggiunta di glucosio. Le cellule richiedono un totale di 5 ore prima di adattarsi completamente alla nuova fonte di carbonio e presentare le normali caratteristiche di una popolazione in crescita esponenziale al 2% di glucosio.

Sulla base di queste tempistiche si è condotto l'esperimento e si sono raccolti campioni di cellule nei tempi estremi dello shift-up (fase esponenziale in etanolo e raggiungimento delle condizioni tipiche della crescita esponenziale in glucosio) e nei tempi intermedi che corrispondono alle fasi precedenti e consecutive al calo di budding.

11.1 - Studio dello shift-up nutrizionale da etanolo a glucosio del ceppo wild type

Una popolazione di lievito *Saccharomyces cerevisiae* è stata fatta crescere in fase esponenziale su un terreno completo sintetico con l'aggiunta di 2% di etanolo (SCE medium). La coltura è stata quindi divisa in due parti: mentre una metà è stata utilizzata come controllo all'altra metà è stato aggiunto glucosio alla concentrazione finale del 2%. Si sono eseguiti prelievi ogni 20 minuti per controllare l'andamento della percentuale di cellule gemmate e dei volumi cellulari. Le cellule utilizzate per effettuare la separazione elettroforetica sono state raccolte per filtrazione a differenti tempi in corrispondenza dei sei punti più significativi dello shift-up: t0 = 0 minuti rappresenta il tempo in cui le cellule sono ancora in crescita esponenziale in terreno con fonte di carbonio povera; t1 = 40 minuti e t2 = 60 minuti sono i tempi corrispondenti all'inizio e al minimo del calo di budding; t3 = 120 minuti rappresenta il tempo che coincide con l'incremento del numero di cellule gemmate; t4 = 500 minuti è il tempo che corrisponde approssimativamente alla fine del transitorio di crescita; infine, a 600 minuti è stato raccolto un controllo corrisponde al tempo in cui le cellule si trovano in crescita in fase esponenziale in glucosio 2% (SSG =Steady State in Glucose) (Figura 11.1).

time (min)

Figura 11.1: Rappresentazione schematica dell'andamento della percentuale di cellule gemmate durante lo shift-up nutrizionale da etanolo a glucosio. Le cellule sono state raccolte ai tempi t0, t1, t2, t3, t4 e al momento SSG.

Analisi proteomica

Dalle cellule raccolte si è provveduto all'estrazione delle proteine e alla loro separazione su 2D-PAGE mediante i protocolli descritti nella sessione 8.2.

L'estratto proteico corrispondente a ciascuno dei 6 momenti di raccolta è stato suddiviso in due aliquote. Una delle aliquote di ogni estratto è stato caricato su una strip, le quali sono state equilibrate e sottoposte a focalizzazione in parallelo. I sei gel necessari alla separazione bidimensionale sono stati preparati in parallelo e infine la stessa separazione bidimensionale è stata condotta in parallelo nello stesso apparato. A questo punto la seconda aliquota di ogni estratto è stata sottoposta al medesimo trattamento. Si sono quindi ottenuti due set di 6 gel.

Su ogni gel sono stati caricati 250 mg di proteine totali.

I due set sottoposti all'analisi di immagine tramite PdQuest[®] sono risultati avere un ottima riproducibilità e sono quindi stati considerati idonei al seguito dell'esperimento (Figura 11.2).

Figura 11.2: Gel ottenuti dagli estratti proteici dei diversi tempi di raccolta durante lo shift-up da etanolo a glucosio.

Tramite PdQuest si sono ricercate le differenze del proteoma ai sei tempi di raccolta.

Si sono considerate come differenze le macchie aventi un fold change tra le condizioni considerate maggiore o uguale a 1.5 (*3.2.5 – Analisi dell'immagine*). Le differenze sono state confrontate tra i due set di gel. I due set di gel hanno mostrato un ottima riproducibilità che ha portato allo stesso risultato tra i due confronti.

Uno dei set dei 6 gel (Figura 11.2) è stato scelto per l'excisione delle spot.

Tramite robot si sono excise tutte le spot visualizzabili sul gel ottenuto del tempo to corrispondente alla crescita esponenziale in etanolo. Sugli altri gel sono stati excise solo le

spot che presentavano una differenza. Le spot excise sono state quindi sottoposte ad analisi MS come specificato in Materiali e Metodi.

Analisi trascrizionale

Nei punti estremi dell'esperimento ovvero nelle condizioni di crescita esponenziale in etanolo e glucosio (tempo t0 e SSG) si sono anche analizzati i livelli di Rna tramite la tecnica Microarray (sessione 8.10).

Spot visualizzate

Nel gel corrispondente al tempo t0 ovvero alla crescita in esponenziale sono stati visualizzati ed excise 561 spot. Il proteoma in etanolo si presenta più ricco (almeno per quanto riguarda le tecniche di separazione e visualizzazione da noi utilizzate) di quello corrispondente alla crescita esponenziale in glucosio (gel al tempo SSG) dove sono state visualizzate meno di 500 macchie.

Delle 561 spot analizzate in spettrometria di massa 27 spot non hanno dato identificazioni significative, 10 sono state perse durante gli steps dell'esperimento e il restante ha portato all'identificazione di 361 diverse proteine.

I risultati trovati dal confronto tra il gel in crescita esponenziale in etanolo (t0) e quello in crescita esponenziale in glucosio (SSG) concordano con quelli ottenuti nei primi esperimenti per la messa a punto del metodo e con i dati di letteratura.

Codon Bias come valutazione della sensibilità del sistema

Il Codon Bias di un gene indica la sua predisposizione a utilizzare lo stesso codone di codificazione per un amminoacido tra altri codoni che darebbero lo stesso risultato. Futcher et al. (1999) avevano dimostrato una lineare correlazione tra CAI e abbondanza proteica: proteine altamente espresse hanno un valore di CBI alto, ovvero intorno a 1, e viceversa per le meno espresse (Bennetzen et al., 1982; Gygi et al., 2000; Washburn et al., 2001). Un valore di CAI intorno a 0.2 corrisponde a una bassa abbondanza equivalente a 10000 copie per cellula. La distribuzione dei valori di CBI delle proteine identificate può essere quindi indicativa della sensibilità del sistema.

In figura 11.3 è rappresentata la distribuzione dei CBI delle proteine trovate in etanolo, dove si può notare che nessuna proteina con CBI minore di 0.1 è stata rilevata nel nostro gel.

Figura 11.3 : Distribuzione del CBI delle proteine trovate nel gel a t0 ovvero corrispondente alla crescita esponenziale in etanolo.

11.2 - Andamenti di variazione di espressione proteica durante la transizione

Sono stati trovate 140 spot aventi una variazione durante lo shift-up. Tali spot si suddividevano in sette principali comportamenti: crescita lineare (Figura 11.4, I), decrescita lineare (Figura 11.4, II), picco di intensità nel periodo di calo di budding senza variazione tra gli estremi t0 e SSG (Figura 11.4, III), picco di intensità nel periodo di calo di calo di budding con valore in t0 superiore a t5 (Figura 11.4, IV), o t0 inferiore a SSG (Figura 11.4, V), un minimo di intensità nel periodo di calo di budding senza variazione tra gli estremi t0 e SSG (Figura 11.4, VI), un minimo di intensità nel periodo di calo di budding senza variazione tra gli estremi t0 e SSG (Figura 11.4, VI), un minimo di intensità nel periodo di calo di budding con valore in t0 superiore a SSG (Figura 11.4, VII). Tra i 140 spot, circa il 64% segue il primo comportamento, il 6% il II, la stessa percentuale il III, il 3% il IV, il 13% il V, il 2% il VI, il 3% il VII.

Tra i vari andamenti delle proteine identificate, sicuramente il più interessante è quello avente un picco nel calo di budding. Tale andamento ha una certa rilevanza per quanto riguarda gli studi sul ciclo cellulare: queste proteine potrebbero infatti essere coinvolte nella regolazione del ciclo cellulare per l'adattamento al nuovo terreno di crescita.

Tutti le spot tra questi 140 che non hanno dato identificazione (7%) sono stati reincisi nel secondo set di gel e alla fine solo due spot sono rimaste non identificate.

In totale si sono identificate 115 differenti proteine che variano durante lo shift-up. In tabella 11.1 sono elencate le 115 proteine identificate con i risultati dell'analisi in massa.

Figura 11.4: Principali andamenti di variazione proteica durante lo shif-up nutrizionale. La percentuale è riferita al totale delle 115 proteine aventi una variazione di espressione. La percentuale delle proteine che non variano nel gel al tempo t0 riferita al totale delle 361 proteine identificate è indicata con un asterisco.

11.3 - Confronto tra analisi proteomica e trascrizionale

I valori di mRna sono stati raccolti solo nelle situazioni estreme del nostro esperimento (crescita esponenziale in etanolo e glucosio) quindi sono stati possibili solo i confronti con i gel al tempo t0 e al tempo t6.

I livelli di Rna e livello proteico sono sottoposti a confronto nella maggior parte dei lavori implicanti analisi del proteoma. Molti dati in letteratura indicano una solo parziale correlazione tra questi valori mostrando che i valori di mRna non possono essere predittivi dell'abbondanza proteica e non sono quindi sufficienti a una valutazione quantitativa e biologica del sistema. Infatti numerosi meccanismi di controllo posttraduzionali intervengono a regolare l'espressione proteica. Le differenze tra i due dati possono però anche nascere a causa delle limitazioni tecniche (visualizzazione solo parziale del proteoma).

Confrontando le proteine che variano nella crescita in etanolo in rapporto alla crescita in glucosio con le differenze risultanti dall'analisi dei microarray si nota come atteso una parziale sovrapposizione (Figura 11.5).

Figura 11.5: Correlazione tra l'andamento dei livelli di mRNA e l'andamento dell'espressione proteica durante lo shift-up nutrizionale etanolo-glucosio del ceppo wild type.

11.4 - Classificazione delle proteine aventi una modulazione di espressione durante lo shift-up nutrizionale

Per quanto riguarda la sub-localizzazione delle 115 proteine che variano, la maggior parte sono citoplasmatiche o mitocondriali, il 29% sono sia citoplasmatiche che nucleari e solo 5% sono solo nucleari (Figura 11.6). nella considerazione di questi risultati si deve sempre tenere in considerazione che le tecniche utilizzate per condurre l'esperimento hanno portato alla rilevazione principalmente delle proteine citoplasmatiche che risultano più altamente espresse e che quindi le nostre analisi risultano limitate a un certo gruppo di proteine.

Figura 11.6 : Suddivisione delle localizzazioni subcellulari delle 115 proteine identificate.

La classificazione funzionale delle proteine è stata ottenuta in accordo al Beat Protome Database. Un ampio gruppo di proteine che sono differentemente espresse durante lo shift-up comprende enzimi coinvolti nel metabolismo degli intermedi come il ciclo degli acidi tricarbossilici (TCA), dei carboidrati, degli cammino acidi e il metabolismo dei lipidi. Questo suggerisce che, come ci aspettava, uno dei maggiore effetti di uno shift-up nutrizionale sia la modulazione dei pathways principali del metabolismo dei carboidrati. Un secondo gruppo coinvolge invece proteine implicate nella sintesi, nel catabolismo e nel folding delle proteine. Il ruolo cellulare delle altre proteine include, infine, la morfogenesi cellulare, la risposta agli stress (comprendenti soprattutto stress ossidativo) e altre funzioni biologiche (Figura 11.7). Resta non attribuito il ruolo di due proteine (Gvp36 e Yjr070c) di cui non si conosce ancora la funzione biologica e di cui si parlerà più in specifico nel seguito di questo capitolo.

Figura 11.7: Distribuzione delle funzioni delle 115 proteine identificate. La funzione è stata definita in accordo al Yeast Proteome Database (YPD).

Se si osserva la distribuzione delle classi funzionali tra i diversi gruppi di andamento delle spot che variano si nota che le popolazioni non hanno la stessa distribuzione di funzioni. In particolare nelle spot che hanno un picco di intensità durante la fase di transizione le proteine del metabolismo restano le più abbondanti ma sono meno predominanti mentre le proteine del catabolismo e di risposta a stress assumono un importanza maggiore (Figura 11.8).

	Behaviour:						
Function:	Ι	II	III	IV	V	VI	VII
Intermediary Metabolism	47	6	6	4	10	1	1
Response to Oxidative Stress	5		2		3		
Response to Stress				1	2		
Cellular Morphogenesis	4				2		
Protein Syntesis	6	3			1	1	1
Protein Folding	4		1		1		
Protein Catabolism	3		1		1		
Other Biological Functions	6	1	1		3		1
Unknown Function			1				1
Total proteins number	75	10	12	5	23	2	4

Figura 11.8: Analisi funzionale delle proteine a seconda del loro andamento durante lo shift-up nutrizionale.

In generale la maggior parte delle proteine aventi una variazione di intensità durante lo shift-up sono coinvolte nell'utilizzazione del glucosio. Questo potrebbe suggerire che, come ci si aspettava, uno dei maggiori effetti di uno shift-up nutrizionale è la modulazione dei principali pathway del metabolismo dei carboidrati.

11.5 - Due proteine a funzione sconosciuta aventi un aumento di espressione durante la transizione: Gvp36 e Yjr070c

Come già detto tra tutti gli andamenti il più interessante è quello in cui le proteine hanno un aumento di espressione proprio nel momento di calo di budding.

Tra queste proteine due non sono ancora ben note in letteratura e la loro funzione è sconosciuta. Sono le proteine Gvp36 e Yjr070c.

Il comportamento di queste proteine durante lo shift-up potrebbe dunque suggerire un implicazione nel controllo del ciclo cellulare.

Identificazione della proteina Yjr070c

La spot che identifica per Yjr070c è maggiore in glucosio piuttosto che in etanolo e durante la variazione ha un picco di intensità. Pochi dati sono presenti in letteratura su questa proteina. La similarità con la proteina Yjr070c del lievito *Schizosaccharomyces Pompe* suggerisce che potrebbe avere una funzione analoga ovvero potrebbe essere essenziale per il mantenimento della morfologia e della distribuzione mitocondriale (Weir et al., 2004). Per confermare l'identificazione della proteina sono state eseguite analisi di MS/MS (dato non mostrato). Eventuali studi di approfondimento sono rimandati ad un altro contesto.

Per quanto riguarda la proteina Gvp36 si sono eseguiti invece oltre ad analisi di conferma MS/MS anche studi atti ad investigare sul ruolo della proteina.

11.6 - Studi sulla proteina Gvp36

Gvp36 è una proteina dalla funzione molecolare non conosciuta, che deve il suo nome ("*Golgi Vescicle Protein of 36 kDa*") al fatto di essere stata isolata mediante analisi proteomica di sottocompartimenti dell'apparato del Golgi. Pur essendo stata isolata da membrane, non contiene, secondo i programmi di predizione, domini transmembrana; presenta, però, un dominio BAR (BinAmphysinRvs), tipico delle proteine coinvolte nei primi passaggi dell'endocitosi. Gvp36 ha proteine omologhe in *S. pombe, C. albicans* e altri funghi, ma non presenta omologia con proteine di eucarioti superiori. La proteina Ypr148c di cerevisiae, che ha il 24% di identità con Gvp36, ha anch'essa funzione molecolare ignota ed è probabilmente coinvolta nella meiosi, poichè il mutante privo del gene presenta difetti nella corretta esecuzione della meiosi.

Secondo il lavoro di localizzazione sistematica del proteoma di lievito di Kumar et al. (2002), Gvp36 è localizzata nel citoplasma e, se sovraespressa, dà origine ad una colorazione granulare sia in cellule gemmate che non gemmate.

11.6.1 - Modulazione di espressione della proteina Gvp36 durante lo shift-up nutrizionale

La proteina Gvp36 è stata identificata in una spot che appare solo dopo aggiunta di glucosio (è assente in etanolo o non sufficientemente intenso per essere visualizzato). Durante il calo di budding aumenta di intensità per poi tornare a livelli molto bassi nella condizione finale al tempo t6 (crescita esponenziale in glucosio) (Figura 11.9).

Figura 11.9: Immagini delle spot identificanti per Gvp36 durante lo shift-up nutrizionale da etanolo a glucosio.

Anche i livelli di mRna della proteina tra le condizioni estreme sono piuttosto bassi.

La proteina Gvp36 viene identificata in un lavoro presente in letteratura in cui si osservano i livelli di mRna e abbondanza proteica nelle condizioni di crescita esponenziale in etanolo e quella in galattosio (che potremmo approssimativamente paragonare alla condizione in glucosio) (Griffin et al., 2002). Tale lavoro non mostra variazioni di intensità della proteina questo perché vengono analizzate solo le condizioni estreme perdendo quindi le fasi intermedie da noi rilevate.

Altri dati di letteratura che descrivono esperimenti su larga scala suggeriscono un possibile ruolo della proteina nella regolazione del ciclo cellulare: in Stevenson *et al.* (2001) si mostra che la sovraespressione di *GVP36* causa l'accumulo di più del 10% di cellule gemmate con due nuclei separati, e influenzerebbe pertanto l'uscita dalla fase M. Due altri articoli aggiungono informazioni sul comportamento di mutanti del gene *GVP36* e: in Deutschbauer *et al.* (2002) si afferma che il mutante $gvp36\Delta$ ha difetti di crescita post-germinativa, dal momento che le spore del diploide $gvp36\Delta$ / $gvp36\Delta$ crescono su terreno ricco più lentamente del diploide stesso. In Xie *et al.* (2005) si dimostra che il mutante $gvp36\Delta$ è sensibile alla rapamicina, inibitore del pathway di TOR, il quale controlla la crescita della cellula in risposta ai nutrienti.

Il comportamento della proteina durante il nostro esperimento, il cui andamento è riproducibile in entrambe i due set dei gel, confermerebbe l'ipotesi di un coinvolgimento nel ciclo cellulare.

11.6.2 - Analisi MS/MS della proteina Gvp36

Per confermare l'identificazione della proteina si è eseguito un'analisi di spettrometria di massa tandem sulle spot della proteina in tutti e sei i gel dello shift-up.

La proteina Gvp36 risulta essere in miscela con la proteina Adenosina Kinase (Ado1) nei gel al tempo t2, SSG e in tracce (qui non riportate) anche nei gel al tempo t3, t4. L'andamento dell'intensità della spot può quindi essere influenzato dalla Ado1 ma non nel gel al tempo t1 dove, come risulta da entrambe le analisi MS/MS eseguite sui doppi gel, la proteina Gvp36 non è in miscela. Inoltre le spot al tempo t4, e t5 pur contenendo entrambe le proteine sono ad intensità minore rispetto alla spot al tempo t1.

Si può quindi affermare che la proteina Gvp36 aumenta dopo l'aggiunta di glucosio per diminuire alla fine dello shift-up.

Figura 11.10: Risultati della ricerca tramite Mascot delle analisi MS/MS delle spot identificate come proteina Gvp36: t1) t2) t3) t4) SSG) spot incise nei gel ai tempi rispettivamente t1, t2, t3, t4, SSG. La spot proveniente dal gel al tempo t2 destinata all'analisi MS/MS è stata persa durante le fasi di trattamento del campione, è però disponibile l'analisi MS eseguita sulla spot proveniente dal doppio gel.

11.6.3 - Caratterizzazione del deleto in GVP36

Al fine di approfondire le nostre conoscenze sul ruolo di Gvp36, si sono eseguiti una serie di esperimenti aggiuntivi per caratterizzarne il fenotipo. Si è proceduto quindi alla delezione del gene Gvp36 in un ceppo *W303-1a* wild type e sono state eseguite sia cinetiche di crescita in fase esponenziale in diverse condizioni nutrizionali sia esperimenti di shift-up da glicerolo a glucosio. Lo scopo di una cinetica di crescita è di valutare a tempi diversi una serie di parametri, quali il numero di cellule (usando un contatore elettrico di particelle: Coulter Counter ZBI), la percentuale di cellule gemmate (determinata al microscopio ottico, contando le cellule gemmate e non gemmate, dopo averle soniate), il volume cellulare (tramite un elutriatrice), il contenuto cellulare di DNA e di proteine (analisi al FACS: Fluorescent Activated Cell Sorter). Per far questo, a tempi definiti, si prelevano dalla coltura campioni per le conte, per la determinazione dell'indice di gemmazione, e per l'analisi al FACS.

Gli esperimenti di caratterizzazione del fenotipo riportati nei prossimi paragrafi sono stati eseguiti con la collaborazione del Dott. Lorenzo Querin e dalla Dott.ssa Alessia Chiorazzi.

Crescita del deleto in GVP36 su terreni con diverse fonti di carbonio

Figura 11.11: Spot su piastra dei ceppi W303-1a e $gvp36\Delta$ in crescita esponenziale con diverse fonti di carbonio.

In tutte queste condizioni di crescita (Figura 11.11) il mutante ha mostrato una capacità di crescita inferiore rispetto al ceppo wild type: in particolare, mentre in glucosio e in glicerolo si è osservata solo una crescita più lenta, in etanolo non si osserva proprio alcuna crescita. Sembra, dunque, che Gvp36 svolga una funzione di una certa importanza anche in crescita esponenziale.

Accanto a queste cinetiche su piastra sono state anche condotte delle cinetiche in terreno liquido per poter calcolare con precisione i parametri di crescita del mutante $gvp36\Delta$. Per poter calcolare con precisione i parametri di crescita del mutante $gvp36\Delta$, dopo gli esperimenti su piastra si sono effettuate anche cinetiche di crescita in terreno liquido. Visto, però, che il mutante cresceva con molta difficoltà in terreno CSM, lo studio della sua crescita è stato limitato al solo terreno ricco (YP) addizionato con glucosio 2% o glicerolo 3%, raccogliendo campioni per seguire l'andamento del numero di cellule, del volume, del budding e del contenuto proteico medio.

I risultati (dati non mostrati) rivelano che, sia in terreno con glucosio sia in terreno con glicerolo, il tempo di divisione del mutante, rispetto a quello del ceppo wild type, è molto maggiore, a conferma dei dati ottenuti su piastra. Il fatto che la percentuale di cellule gemmate sia molto simile nei due ceppi, in entrambe le condizioni, fa supporre che il ritardo della crescita del mutante sia distribuito lungo tutto il ciclo cellulare. In crescita esponenziale al 2% di glucosio, inoltre, il mutante ha volume e contenuto proteico medio inferiori a quelli del ceppo wild type: caratteristica che potrebbe indicare un coinvolgimento di Gvp36 nel controllo della crescita da parte dei nutrienti.

Dato che il mutante non mostrava alcuna capacità di crescita su terreni contenenti etanolo, si è cercato di capire se ciò fosse dovuto alla sua incapacità di utilizzarlo come fonte di carbonio oppure ad una aumentata sensibilità all'etanolo stesso. Le cellule sono perciò state piastrate, a diluizioni crescenti, su terreno ricco contenente sia glucosio 2%, utilizzato come fonte di carbonio preferenziale, sia etanolo a diverse concentrazioni. L'esperimento ha fornito i seguenti risultati:

Figura 11.12: Spot di crescita su piastre contenenti glucosio addizionate con diverse concentrazioni di etanolo dei ceppi W303-1a e $gvp36\Delta$; le immagini sono state acquisite sia dopo 2 giorni che dopo 3 giorni di crescita a 30°C

Dal momento che l'esperimento è stato condotto in terreno contenente come fonte di carbonio preferenziale il glucosio non si sarebbe dovuta osservare una perturbazione nella crescita del mutante almeno alle concentrazioni di etanolo 2%, normalmente utilizzate nella preparazione dei terreni. Al contrario, invece, dalle immagini si vede che

l'etanolo è tossico per il mutante in maniera dose-dipendente già alla concentrazione del 2%, mentre non disturba la crescita del ceppo wild type neanche alla concentrazione del 4%. L'incapacità del mutante $gvp36\Delta$ di crescere in etanolo sembra dunque essere causata da una particolare sensibilità all'etanolo e non dall'incapacità di utilizzarlo come fonte di carbonio.

Cinetica di inibizione nella crescita in etanolo 2% del deleto in GVP36

Avendo evidenziato una particolare sensibilità del mutante $gvp36\Delta$ all'etanolo si è deciso di studiare la cinetica d'inibizione della crescita da parte dell'etanolo 2%. Le cellule in crescita esponenziale al 2% di glucosio sono state divise in due e a metà coltura è stato aggiunto etanolo 2% mentre l'altra metà è stata utilizzata come controllo non trattato. Sono stati quindi confrontati i risultati dei non trattati con i dati dei ceppi trattati con etanolo (Figura 11.13)

Figura 11.13: Andamento del numero di cellule e della percentuale di cellule gemmate nel tempo durante la cinetica d'inibizione della crescita con etanolo 2%.

Questi risultati hanno evidenziato come l'etanolo provochi, nell'immediato, un rallentamento della crescita del ceppo $gvp36\Delta$ parallelamente ad un calo permanente del budding confermando la elevata tossicità dell'etanolo per il mutante, in quanto gli effetti osservati non sono dovuti all'utilizzo dell'etanolo come fonte di carbonio, in quanto, nel terreno, è presente glucosio che viene utilizzato come fonte di carbonio preferenziale.

Sensibilità a shock osmotico e termico del deleto in GVP36

Sebbene l'etanolo sia il prodotto finale fisiologico della fermentazione anaerobica degli zuccheri in lievito, è in una certa misura tossico per le cellule e attiva una risposta allo *stress*.

L'aumentata sensibilità del mutante $gvp36\Delta$ all'etanolo potrebbe, pertanto, essere dovuta ad un difetto nella risposta agli stress. Per questo motivo ci si è chiesti se il mutante fosse sensibile ad altre condizioni di stress, in particolare lo shock osmotico e lo shock termico. *Shock osmotico:*

E' stata testata la crescita del mutante $gvp36\Delta$ su terreni contenenti una diversa concentrazione di sorbitolo. Per effettuare questo esperimento sono state utilizzate cellule in crescita esponenziale in 2% di glucosio.

Shock termico:

Le cellule cresciute a confluenza (circa 2x108 cells/ml) in crescita espoenenziale in 2% di glucosio sono state lasciate a 51 °C per 10 minuti; le cellule trattate al calore e i controlli non trattati sono stati piastrati su piastre al 2% di glucosio.

In entrambi gli shock saggiati (dati non mostrati) il mutante non è risultato particolarmente sensibile in quanto le differenze che si riscontrano rispetto al wild type sono proporzionali alle differenze che si hanno nelle normali condizioni di crescita. Sembra, pertanto, che il ceppo $gvp36\Delta$ non sia difettoso nella risposta generale agli *stress* e che la sensibilità all'etanolo dipenda da altri fattori.

Quantificazione dei livelli di glicogeno in cellule cresciute a confluenza nel deleto in GVP36

Per verificare se il mutante manifestasse difetti nell'entrata in fase stazionaria, oltre che in crescita esponenziale, si è deciso di saggiare la sua capacità di accumulare glicogeno dopo essere cresciuto a confluenza. Le cellule sono state piastrate e colorate con il Lugol (soluzione di Ioduro di potassio che viene utilizzata per evidenziare la presenza di cristalli di glicogeno all'interno della cellula). Le cellule sono state fatte crescere per cinque giorni al 2% in glucosio. Dall'osservazione della piastra si è visto che le cellule del mutante $gvp36\Delta$ presentano un livello di colorazione del tutto simile a quella del ceppo wild type: per quanto riguarda, dunque, l'accumulo di glicogeno, non sembrano presentare difetti nell'entrata in stazionaria.

Cinetica di shift-up da glicerolo 3% a glucosio 2% del deleto in GVP36

Dal momento che durante lo shift-up nutrizionale da etanolo a glucosio di un ceppo wild type si verifica, in corrispondenza della diminuzione della percentuale di cellule gemmate, un aumento dei livelli di Gvp36, ci si è chiesti cosa accadesse nelle stesse condizioni al mutante $gvp36\Delta$, in cui la proteina non può svolgere la sua funzione durante il transitorio di crescita.

Non potendo, però, far crescere il mutante in terreno con etanolo, è stato eseguito lo shiftup nutrizionale da terreno ricco (YP) con glicerolo 3% a terreno ricco (YP) con glucosio 2%. La cinetica è stata effettuata sia sul ceppo deleto che sul ceppo wild type; alla concentrazione di 3x105 cells/ml entrambi i ceppi sono stati aliquotati in due parti d'uguale volume: metà è stata utilizzata come controllo mentre all'altra metà è stato aggiunto glucosio 2% per osservare le variazioni di crescita durante la transizione da fonte di carbonio "povera" a fonte di carbonio "ricca".

E' stato seguito l'andamento della percentuale di cellule gemmate, ottenendo i seguenti risultati:

Figura 11.14: Andamento della percentuale di cellule gemmate nel tempo durante la cinetica di *shift-up* nutrizionale da glicerolo 3% a glucosio 2%

Dall'osservazione dei dati ottenuti in seguito alla cinetica si è osservato come nel ceppo wild type si verifica il caratteristico calo della percentuale di cellule gemmate che invece non viene osservato nel ceppo mutante $gvp36\Delta$.

La proteina Gvp36 nello shift-up nutrizionale del mutante far 1Δ

Si è ricercata la proteina nelle analisi condotte durante lo shift-up nutrizionale del mutante $far1\Delta$. Tale deleto è privo di uno degli elementi di controllo del ciclo cellulare e risulta incapace di adattarsi correttamente alla nuova fonte di carbonio mostrandosi privo della diminuzione della percentuale di cellule gemmate tipico delle cellule wild type. In queste condizioni, durante il transitorio di crescita, non si osserva alcun aumento

di Gvp36. In questo modo si è cercato di capire se Gvp36 sia in qualche modo controllata dal network di controllo della massa cellulare critica richiesta per l'entrata in fase S.

Si è osservato che la proteina non aumenta durante tutto il transitorio di crescita nel mutante *far1* Δ (Figura 11.15).

Figura 11.15: Ingrandimento dei gel dello shift-up del ceppo wild type (in alto) e del mutante *far1* Δ (in basso) in corrispondenza della spot corrispondente a Gvp36.

11.6.4 - Riepilogo degli studi sulla proteina Gvp36

Sia in terreno con glucosio sia in terreno con glicerolo, il tempo di divisione del mutante, rispetto a quello del ceppo wild type, è molto maggiore: il fatto che la percentuale di cellule gemmate sia molto simile nei due ceppi, in entrambe le condizioni, fa supporre, comunque, che il ritardo della crescita del mutante sia distribuito lungo tutto il ciclo cellulare. In crescita esponenziale al 2% di glucosio, inoltre, il ceppo $gvp36\Delta$ ha volume e contenuto proteico medio inferiore a quello del ceppo wild type, caratteristica che potrebbe indicare un coinvolgimento di Gvp36 nel controllo della crescita da parte dei nutrienti.

Il mutante $gvp36\Delta$, non è in grado di crescere in terreni con etanolo: tale difetto di crescita sembra essere causato da una aumentata sensibilità all'etanolo stesso e non dall'incapacità di utilizzarlo come fonte di carbonio. Considerando, poi, che l'etanolo è in una certa misura tossico per le cellule ed è in grado di attivare una risposta allo stress, ci si è chiesti se l'aumentata sensibilità del mutante $gvp36\Delta$ all'etanolo fosse dovuta ad un difetto nella risposta agli stress. Verificando se il mutante fosse sensibile ad altre condizioni di stress, in particolare lo shock osmotico e lo shock termico, si è visto che in entrambe le condizioni, però, il ceppo $gvp36\Delta$ non mostra difetti di crescita particolari, facendo supporre che non sia difettoso nella risposta generale agli stress e che la
sensibilità all'etanolo dipenda da altri fattori. In questo senso, è interessante notare che l'unica proteina che si conosce interagire con Gvp36, Hsp82, una chaperonina omologa a HSP90 di mammifero, sembra essere coinvolta nella resistenza ad etanolo ed acetaldeide, dal momento che un incremento della sua trascrizione conferisce maggiore resistenza alle due sostanze e che i suoi livelli di messaggero sono indotti in caso di breve esposizioni ad etanolo (Millson et al., 2005). Hsp82, inoltre, è richiesta per il funzionamento del pathway attivato da feromoni e non sembra essere coinvolta nella termotolleranza di lievito.

Dal momento che durante lo shift-up nutrizionale da etanolo a glucosio di un ceppo wild type si verifica, in corrispondenza della diminuzione della percentuale di cellule gemmate, un aumento dei livelli di Gvp36, ci si è chiesti cosa accadesse nelle stesse condizioni al mutante $gvp36\Delta$, in cui la proteina non può svolgere la sua funzione durante il transitorio di crescita. Non potendo, però, far crescere il mutante in terreno con etanolo, è stato eseguito lo shift-up nutrizionale da terreno ricco (YP) con glicerolo 3% a terreno ricco (YP) con glucosio 2%. Da questo esperimento si è visto che nel mutante, diversamente dal wild type, non si verifica il caratteristico calo della percentuale di cellule gemmate dopo l'aggiunta della nuova fonte di carbonio.

L'osservazione del comportamento dei livelli proteici di Gvp36 durante lo shift-up del ceppo $far1\Delta$ (che normalmente non presenta il caratteristico calo di budding) mostra che la proteina non varia durante tutto il transitorio di crescita del mutante $far1\Delta$.

La proteina Gvp36 ha quindi un aumento transitorio nella fase corrispondente alla diminuzione della percentuale di cellule gemmate ma quando questa diminuzione non si verifica, come nel mutante *far1* Δ , non si registra un incremento di Gvp36 nello shift-up. Inoltre, l'assenza di Gvp36 risulta in una alterazione del profilo di adattamento al glucosio simile a quello osservato nei ceppi *far1* Δ .

11.7 - Proteine presenti in più spot aventi diversi andamenti di espressione

Molte proteine (27 tra le 115 proteine aventi una modulazione di espressione durante lo shift-up nutrizionale) sono state identificate in più di una spot tra quelli analizzati. Ciò indica che la proteina è presente in più isoforme che ne causano una variazione di PM o pI. Nella tabella 11.1 le proteine trovate in più di uno spot sono evidenziate in azzurro. Di particolare interesse sono 10 di queste in quanto sono state trovate in spot che variano diversamente. Ciò potrebbe indicare un diverso comportamento e quindi ruolo delle

diverse isoforme che le appartengono. Alcune di esse si trovavano in miscela con altre proteine, risultato che impedisce di attribuire ad una o ad entrambe la variazione di intensità riscontrata nella spot.

Solo 4 proteine si trovano in più isoforme aventi diverso comportamento durante lo shiftup e che non sono in miscela con nessun altra proteina.

Tali proteine sono: Kgd1, Adh2, Leu4, e Ald6 (Figura 11.16).

Figura 11.16: Andamento delle spot identificate come Kgd1, Adh2, Leu4, e Ald6.

Queste proteine si troverebbero quindi in diverse isoforme che potrebbero avere dei ruoli differenti nella regolazione durante la transizione nutrizionale. Per poter ipotizzare la natura di queste isoforme si è fatta un indagine sui dati esistenti in letteratura di tali proteine. Si è inoltre ricercato più in dettaglio negli spettri di massa la presenza di qualche modificazione post-traduzionale.

Considerazioni sulla proteina Kgd1

La proteina alpha-ketoglutarate dehydrogenase Kgd1 è una delle tre parti costituenti il complesso α -ketoglutarate dehydrogenase (KGDC) che catalizza la decarbossilazione ossidativa dell' α -ketoglutarate al succinyl-coenzyme A e carbon dioxide. Questa è una reazione chiave del ciclo degli acidi carbossilici (TCA) (Reed et al., 1974). Kgd1 è stata trovata in cinque diverse spot allo stesso PM ma a pI leggermente differenti. Tutte queste spot hanno una complessiva diminuzione d'intensità nel passaggio da etanolo a glucosio e questo dato è confermato con dati di letteratura che mostrano che la trascrizione di *KGD1* è regolata da glucosio (Hahn et al., 1988; Camarasa et al., 2003). In particolare però due spot hanno un evidente picco d'intensità nel periodo di calo di budding (spot B e E

figura 11.16). Da un preliminare screening delle possibili isoforme visualizzabili tramite analisi MS, nessuna differenza evidente è risultata dagli spettri delle due spot impedendo un ipotesi su quali isoforme potessero rappresentare.

Anche un controllo dei dati in letteratura non ha mostrato riferimenti a modificazioni note della proteina ma nei gel di Perrot-Boucherie la proteina è identificata in due spot vicine.

Considerazioni sulla proteina Leu4

La proteina 2-isopropylmalate synthase è il primo step nel patway della sintesi della leucina. La proteina è stata trovata in due spot a due diverse posizioni sia di massa che di pI (tra i 60-70 KDa e con uno shift di pI che va da circa 5.3 a 6). La spot a massa e pI maggiore diminuisce linearmente da etanolo a glucosio mentre l'altra spot risulta assente nelle situazioni estreme (crescita esponenziale in etanolo e crescita esponenziale in glucosio) ma presente nella fase di calo di budding soprattutto subito dopo l'aggiunta di glucosio. Sembrerebbe quindi che quest'isoforma sia altamente espressa nella fase di transizione. In letteratura sono citate due forme delle proteina Leu4: la forma "corta" (di circa 63KDa) e la forma "lunga" (di circa 68KDa). Tale forme si distinguono esclusivamente per 30 amminoacidi nella regione N-terminale e solo la forma lunga può essere trasportata nei mitocondri; la forma corta è invece situata nella zona citoplasmatica. Essa è operativa nella sintesi della leucina ed inibita da leucina stessa.

Le analisi in MS mostrano, nello spettro derivante dalla spot a massa più alta, una metil esterificazioni alla parte C-terminale di molti peptidi che è invece assente nella isoforma a peso molecolare più basso.

Considerazioni sulla proteina Ald6

Il gene *ALD6* codifica per la proteina Mg2+-activated acetaldehyde dehydrogenase localizzata nel citosol.

Tale proteina produce acetato da acetaldeide prodotta dalla piruvato decarbossilasi per portare poi alla produzione di Acetil-CoA citosolico (Meaden et al., 1997). In letteratura diversi gel 2D-PAGE mostrano presenze di due isoforme della proteina tra i 54 e i 62 Kda di cui non è approfondita la natura e il ruolo (Garrels et al., 1997; Gygi et al., 1999). Nei nostri gel la proteina e' stata trovata in quattro isoforme: due spot più intense in etanolo (spot C e B figura 11-16) di una con un picco di diminuzione nella fase di transizione (spot C) e le altre due spot poco intense di cui una non sembra avere variazione durante lo shift-up e l'altra un debole picco durante il calo di budding (spot D).

Considerazioni sulla proteina Adh2

L'Alcol dehydrogenase 2 enzyme (Adh2p) è una proteina che media il primo step del pathways della respirazione convertendo l'etanolo in acetaldeide. I livelli di tale proteina crescono come atteso dalla letteratura nelle condizioni di crescita esponenziale in glucosio (Futcher at al., 1999) e in accordo con i nostri valori di GeneChip®.

Una delle cinque spot in cui la proteina è stata trovata ha però un minimo di intensità dopo 5 ore dall'aggiunta di glucosio (spot B figura XXX). Predizioni calcolate in base alla sequenza indicano una possibile acetilazione N-terminale. Dagli spettri MS risulta un'acetilazione N-terminale nella spot in questione ma anche in una altra spot (spot A) che ha una semplice crescita di intensità. Non sembra essere quindi questa la modificazione comportante una variazione di comportamento.

Per tutte queste quattro proteine si rendono necessarie analisi MS/MS per chiarire la natura delle modificazioni in gioco. Tali indagini non sono state condotte nel corso di questa tesi.

11.8 - Multispot: spot contenenti miscele di proteine

Molte spot analizzate sono risultate contenere più di una proteina. Tra 28 multispot trovati 1 contiene quattro proteine diverse, 4 sono costituiti da tre proteine e gli altri contengono due proteine.

Nella maggior parte dei casi le proteine identificate presentavano un valore di PM e pI molto prossimo che rende comprensibile la sovrapposizione. In alcuni casi però le proteine hanno un PM e pI piuttosto diversi tra loro. Ciò potrebbe indicare una scarsa separazione dovuta al metodo di separazione. Queste spot sono però più o meno distribuite lungo tutto il gel e spesso in zone in cui la maggioranza delle spot sono costituite da una solo proteina: ciò indicherebbe che i gel utilizzati portano a una buona separazione. Nel caso quindi di una netta differenza tra i valori di PM e pI teorici è più opportuno pensare a una differenza tra il valore teorico calcolato e quello sperimentale. Le proteine possono infatti essere state sottoposte a modificazioni post-traduzionali che

ne innalzano a volte anche di molto la massa o essere state sottoposte a tagli proteolici, o rotture e trovarci quindi di fronte a proteine frammento.

Nei nostri risultati il delta più alto in termini di massa è di circa 12500 Da. Tale valore risulta da una spot in cui la proteina Hsp60 (PM:60999Da) e la proteina Wtm1 (PM: 48467Da) si sovrappongono. Se il range di massa del gel è in accordo con quello della proteina Hsp60, è invece discordante con quello della Wtm1. E' da escludere l'ipotesi che la presenza di tale proteina nella spot sia dovuta a una contaminazione: la Wtm1 si trova anche in spot adiacenti.

Anche negli spettri MS non sono state rilevate modificazioni giustificanti un aumento di massa di 10 KDa. In altri gel presenti in letteratura, però, la proteina è stata trovata nella zona di massa da noi identificata, ma non vi sono commenti a riguardo (Shevchenko et al., 1996; Gygi et al., 1999).

Alla proteina Wtm1 è stato attribuito un ruolo di modulatore trascrizionale coinvolto nella regolazione meiotica e del silencing. Il controllo della trascrizione è il primo livello attraverso il quale si procede alle regolazioni di molti processi cellulari e in molti sistemi in lievito la repressione trascrizionale rappresenta una risposta ambientale a sorgenti di carbonio fermentative (Pemberton et al., 1997).

11.9 – Il doppio biologico

Come già precisato, in questa tesi ogni separazione tramite 2D-PAGE è stata condotta in doppio e questo doppio sperimentale ha sempre presentato una buona riproducibilità.

Nel caso dello shift-up nutrizionale si è deciso di condurre anche un doppio biologico, ripetendo l'intero esperimento dalla preparazione delle colture cellulari.

Benché si siano mantenute le stesse condizioni lavorative si è presentato qualche problema di riproducibilità. Ovviamente molte variazioni potrebbero provenire da una non riproducibilità del proteoma, ma certe differenze sembrano più attribuibili e diversità nella separazione ovvero a non riproducibilità tecniche.

I gel ottenuti benché riproducibili tra loro, se sono confrontati con i gel del primo biologico non sono perfettamente sovrapponibili: alcune zone del gel presentano delle distorsioni che impediscono una sovrapposizione certa delle spot. Mentre il doppio sperimentale è stato condotto a una distanza di qualche giorno, il doppio biologico, è stato eseguito a distanza di qualche mese, implicando l'utilizzo di buffer di corsa e di altre soluzioni provenienti da nuove preparazioni. La variabilità che ciò può comportare potrebbe essere sufficiente ad influire su lievi variazioni nella focalizzazione in prima dimensione e distorsioni della maglia dei gel.

Nei gel del doppio biologico si è cercato le spot che nel primo esperimento mostravano una variazione di intensità: la ricerca è stata condotta confrontando le immagini dei gel provenienti dalle due preparazioni. Qualora le immagini dei gel erano sovrapponibili è stato possibile rintracciare le spot in modo non ambiguo. La maggior parte delle spot sono state rintracciate (circa il 75% considerando solo le spot che variano) e hanno presentato nella gran maggioranza dei casi un andamento riproducibile con quello del primo biologico (circa 90%). Nelle zone in cui i gel risultavano non riproducibili da un esperimento all'altro l'attribuzione delle spot non è stata possibile. Per rintracciare in modo non ambiguo queste spot si renderebbe necessaria l'incisione delle stesse dal doppio biologico e l'identificazione in massa.

Anche nei riguardi di Gvp36, la proteina è stata ritrovata in una spot che risulta rispetto al primo biologico poco risolta ovvero sovrapposta con la spot adiacente impedendo un'analisi quantitativa. La zona del gel in discussione è una zona difficilmente riproducibile come è stato possibile osservare in molti gel ottenuti in questa tesi. Visto che l'andamento della proteina Gvp36 riscontrato nel primo biologico ha dato spunto per la caratterizzazione del fenotipo $gvp36\Delta$ si è condotto un terzo esperimento focalizzato a risolvere meglio la zona del gel contente la proteina. Si è eseguito una separazione elettroforetica con pH ristretto 4-6 partendo da un triplo biologico. L'applicazione di un range di pH più ristretto ha permesso di separare meglio le spot. La proteina Gvp36 è stata identificata in una spot non in miscela con altre proteine e il cui andamento confermava quello riscontrato nell'esperimento condotto sul primo biologico. Tabella 11.1: l'ID riportato è quello definito da Swiss Prot o eventualmente da TrEMBL e NCBI qualora la proteina non sia identificata in Swiss Prot. I primi valori del PM e del pI sono quelli riportati da Mascot ovvero con le carbammidometilazioni alle cisterne, i secondi valori PM e pI sono quelli corrispondenti alla proteina intera senza modificazioni e in italico sono riportate eventuali modificazioni dei valori nella proteina matura. Il nome del gene, i valori di CAI e CBI, la localizzazione, sono riportate in accordo con il sito Biological database http://www.proteome.com. La ricerca è stata condotta con il software Mascot impostando i seguenti parametri: *database* Swiss Prot, TrEMBL e NCBI (viene riportato il risultato ottenuto su Swiss Prot, le proteine che hanno avuto identificazione solo su TrEMBL e NCBI sono contrassegnate con un asterisco), *tassonomia* non definita, *tolleranza di errore* 30 ppm (se maggiore viene indicato), *modificazione fissa* carbammidometilazione alla cisteina, *enzima di digestione* tripsina, *tagli mancati* 1,

Legenda degli andamenti (ci si riferisce agli andamenti riportati nella figura 11.4): A: andamento di tipo I (84 spot che identificano 104 proteine); B: andamento di tipo II (9 spot che identificano 10 proteine); C: andamento di tipo III (9 spot che identificano 12 proteine); D: andamento di tipo IV (4 spot che identificano 5 proteine); E: andamento di tipo V (20 spot che identificano 25 proteine); F: andamento di tipo VI (3 spot che identificano 3 proteine); G: andamento di tipo VII (5 spot che identificano 5 proteine).

Le proteine trovate in più di uno spot (27 proteine) sono evidenziate in azzurro.

Le spot che contengono più di una proteina (28 spot) sono evidenziate in verde.

Gene	Spot	ID	Score	% di copertura	ppm (se diversi da 30)	pi	PM	Localizzazione	Andamento	Se assente in	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
	1	Non identificato												
	2	Non												
GVP36	3	P40531	98	43		4.91	36818	с	с		0.361	0.239	Cytoplasmic protein with unknown function: possible role in cell-cycle regulation	Regulation of cell cycle
						pl: 4.7	5 MW:3	36654						
						pi: 4.7		30002						
ADO1		P47143	52	29		4.99	36521	C,N	с		0.522	0.37	Adenosine kinase	AMP biosynthesis [E]; Nucleoside metabolism [E]; Nucleotide phosphorylation [E]; Purine base metabolism
						pl: 5.05	5 MW:3	36358						
						pr. 5.0		50227						
FBP1	4	P09201	112	54		5.65	38393	Varie	в		0.259	0.18	Fructose-1,6-bisphosphatase, gluconogenic enzyme, activity is inhibited by protein kinase A- mediated phosphory lation	Phosphorylated carbohydrate dephosphorylation [E]; Fructose 1,6- bisphosphate metabolism [E]; Gluconeogenesis ;may be required for proper meiosis, since null mutants display meiotic defects, as determined by systematic mutant analysis; transported from cytosol to vacuole for degradation when cells are grown in the presence of glucose
						nl: 5.8	3 MW:	38123						
						<i>p</i>								
RPC40		P07703	98	50		5.34	37948	C,N	В		0.247	0.232	Shared subunit of RNA polymerases I and III	Transcription from RNA polymerase III promoter [E,P]; Transcription from RNA polymerase I promoter ;DNA-directed RNA polymerase activity
						pl: 5.39	9 MW:3	37678						
						pi. 3.3	5 IVI VV.	5/54/						
FBP1	5		160	61					E					
FBP1	6		152	60				varie	A					
LEU4	7	P06208	82	22	70	5.7	68880	M,C	С	etanolo e glucosio	0.407	0.292	2-Isopropylmalate synthase, first step in leucine biosynthesis pathway	Leucine biosynthesis (major 2-isopropylmalate synthase isozyme, accounting for 60-100% of total activity; 2-isopropylmalate synthase II is encoded by a separate gene; involved in production of isoamyl alcohol during fermentation
						pl: 5.82	2 MW:t	8397						
LEU4	8		164	57					A					
ACO1	9	P19414	317	47		8.17	85714	М	A		0.582	0.462	Aconitate hydratase (aconitase), converts citrate to cis-aconitate	Carbohydrate metabolism [E]; Glutamate biosynthesis [E]; Tricarboxylic acid cycle ;required for oxidative metabolism
						pl: 8.28	B MW:8	82771						
	-					pi. 7.0		02171				-		
ACO1	10		355	44					A					
THS1		P04801	136	41		6.59	85151	М	A		0.51	0.408	required for an early step of mRNA decay, but this may be an indirect effect of the involvement of Ths 1p in translation	Threonyl-tRNA synthetase, cytop lasmic, member of the class II family of aminoacyl- tRNA synthetases
						pl: 6.82	2 MW:8	84516						
L						pl: 6.8	≤ MW:	0430 5						

Gene	Spot	ID	Score	% di copertura	ppm (se diversi de 30)	рі	РМ	Localizzazione	Andamento	Se assente	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
ACO1	11		149	46	50				A					
THS1			98	43					A					
1001			100	40										
AC01	12		129	42					. A					
TDH3		P00359	67	41		6.49	35707	C,N	A		0.988	0.924	Gly ceraldehy de-3-phosphate dehy drogenase (phosphory lating) activity	Response to oxidative stress [E]; Cell growth [P]; Glycolysis ;may be involved in cell growth, but but does not appear to be involved in metabolic oscillation
						pl: 6.72	2 MW:3	35743						
						pi. 0.7								
TDH3	13		228	67					С					
ACO1	14		137	39					A					
ACO1	15		95	56					A					
AR09	16	P38840	240	56		5.34	58618	C,N	E		0.159	0.173	Aromatic amino acid aminotransferase II	Aromatic amino acid family metabolism [E]; Tyrosine metabolism [E]; Tyrosine biosynthesis;responsible for all the kynurenine aminotransferase activity
						pl: 5.41	1 MW:5	58385						
						p 0 <i>i</i>								
ABP1	17	P15891	97	32		4.59	65593	actin cytoskeleton e altre	A		0.295	0.238	Actin binding protein, may help to stabilize actin filaments at the bud site, has an SH3 domain	Structural molecule activity;Pseudohyphal growth [E]; Actin filament-based process [E]; Cellular morphogenesis [E]; Vesicle-mediated transport
						pl: 4.50	0 MW:0 0 MW:	65398						
BMH2	18	P34730	116	54	50	4.82	30968	C,N	A		0.474	0.385	Component, with Bmh1p, of Cruciform DNA-Binding Protein (CBP), homolog of mammalian 14-3-3 protein, has strong similarity to Bmh1p	Protein-nucleus export [P]; Ras protein signal transduction [E,P]; Development [E]
						pl: 4.68	3 MW: 3	31044						
						pl: 4.6	3 MW:	30942						
PIL1	19	P53252	74	43		4.54	38326	М	E		0.493	0.353	Protein that negatively regulates 3-phosphoinositide-dependent protein kinase (Pkh1p) and downstream effector kinases, expression is induced by high salt and low pH	may be involved in metabolism, as suggested by network-based statistical analysis ; negatively regulates heat stress resistance by downregulating Pkh1p activity and its downstream effector kinases Pkh1p and Ypk1p; Response to stress [P]; Response to heat
						pl: 4.44	4 MW:3	8318						
PRE9	20	P23638	151	62		5.06	28697	Varie	E		0.217	0.182	Proteasome subunit alpha3_sc; Structural molecule activity [E]; Endopeptidase activity	Protein catabolism [E]; Ubiquitin-dependent protein catabolism [E]; Protein complex assembly [E]
						pl: 5.12	2 MW:2	28705						
PRT1	21	P06103	163	37		5.71	88416	localized to eIF3 translation initiation complex ; C	в		0.378	0.304	Translation initiation factor activity [E,P]; RNA binding [P]; mRNA binding	Regulation of translational initiation [E]; Translational initiation [E]; Cellular physiological process
						pl: 5.82	2 MW:8	38114						
HSP31	22	Q04432	122	70	50	5.26	25711	C,N	E		0.235	0.236	Possible homolog of E. coli Hsp31 (YedU), member of the DJ-1 or Pfp1 family, has high similarity to S. cerevisiae Yp1280p	appears to play a role in respiratory growth, as determined by systematic high-throughput deletion study:Mol Biol Cell. 2002 Mar;13(3):847-53:;Possible homolog of E. coli Hsp31 (YedU), member of the DJ-l or PfpI family, has high similarity to S. cerevisiae Yp1280p; Phospholipid binding
						pl: 5.43	MW:2	25662						
						µi: 5.4	5 W/W:	23330						
RPL10		P41805	56	43	50	10.03	25573	с	E		0.909	0.827	Ribosomal protein L10	may indirectly participate in the control of cell growth and proliferation ;RNA binding [P]; Structural constituent of ribosome;Ribosomal large submit assembly and maintenance [E]; Ribosome assembly [E]; Protein biosynthesis
						pl: 10.1	17 MW:	25382						
						pl: 10.	17 MW	: 25251						
TSA1	23	P34760	121	62		5.03	21559	C, present in mitochondrial fractions from cells grown in galactose and glycerol/ethanol media	E		0.845	0.714	Thioredoxin peroxidase, abundant antioxidant protein that protects cells from free- radical damage and acts as a molecular chaperone following oxidative-stress	Peroxidase activity [P]: Thioredoxin peroxidase activity [E]: Unfolded protein binding [E]
						pl: 4.98	8 MW:2	21583 21452						
TC A4	24		105	EO					F			1		
ISAI	24		105	50					E			-		

Gene	Spot	ID	Score	% di copertura	ppm (se diversi da 30)	pi	РМ	Localizzazione	Andamento	Se assente In	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
MGE1	25	P38523	125	65		7.85	26050	C,M	с		0.293	0.246	Protein that participates with SecIp and MdjIp in folding of proteins during mitochondrial (m1 import, involved in protection of mt DNA synthesis activity (MtjIp) during heat shock, member of mt Hsp70-Hsp78 bi-chaperone system, boolog of E. coli GrpE	Chaperone binding
						pl: 8.15	5 MW:2	26066						
TSA1			68	48					с					
DPS1	26	P04802	224	56		6.16	63516	C	E		0.495	0.35	Aspartyl-tRNA synthetase, cytoplasmic, specifically binds its own mRNA	
						pl: 6.3	4 MW	: 63378						
KGD1	27	P20967	307	46		6.75	1E+05	М	E		0.288	0.233	alpha-Ketoglutarate dehy drogenase (2-oxoglutarate dehy drogenase) comp lex El comp onent	oxoglutarate dehy drogenase production of succinate is dependent on nitrogen source and increases in media containing high concentrations of glutamate; DNA binding [E]; Oxoglutarate dehy drogenase (succiny)- transferring) activity 2-oxoglutarate metabolism [E]; Organic acid catabolism [E]; Carbohy drate metabolis
						pl: 7.00 pl: 6.5	9 MW: 9 MW	114408 : 111044						
KGD1	28		82	24					Α					
KGD1	20		336	48					F					
KOD4	23		330	40										
KGD1	30		91	25					A					
KGD1	31		223	46					E					
KGD1	32		239	51					presente solo in etanolo	glucosio				
HSP82	33	P02829	230	48		4.84	81356	membrane	E		0.658	0.512	Heat-inducible chaperonin homologous to E. coli HtpG and mammalian HSP90, involved in control of Iy sine biosynthesis by modulation of Lys14p activity	ATPase activity
						pl: 4.70	0 MW:8	81366 : 81235						
RNR4	34	P49723	171	67		5.11	40143	C,N	G		0.621	0.497	Component of ribonucleotide reductase (ribonucleoside- diphosphate reductase) small subunit, which consists of an Rnr2p-Rnr4p heterodimer	Structural molecule activity [P]; Protein binding [E]; Ribonucleoside-diphosphate reductase activity : Protein complex assembly [E]; Regulation of cell cycle [E]; Ribonucleotide metabolism
DND4	25		80	56		pl: 4.9	9 MW	: 40070	C	otanolo				
ATP2	36	P00830	83	33		5.71	54947	м	E		0.571	0.425	Beta subunit of the F1 subunit of ATP synthas-mitochondrial respiratory complex V, three molecules are present in each F1 complex, ATP synthase is involved in ATP generation during cellular respiration and is required for mitochondrial cristae formation	Primary active transporter activity [P]; Hydrogen-exporting ATPase activity, phosphorylative mechanism
						pl: 5.53	3 MW:	54783 : 51109						
CCP1	37	P00431	122	45		5.95 pl: 6.16	40385 6 MW :4	M 40347	С		0.259	0.178	Cytochrome-c peroxidase activity	Response to oxidative stress [E]; Response to stress [E]; Response to reactive oxygen species
						pl: 5.0	9 MW.	: 33418						
ACS2	38	P52910	232	46		6.21	75787	N	С		0.469	0.371	Acetyl-CoA synthetase (acetate CoA ligase)	essential for growth on glucose ; Acetate-CoA ligase activity
						pl: 6.45	5 MW:	75481						
ACS1	39	Q01574	209	56		6.23	79519	M e altre	A		0.358	0.255	Acetyl-CoA synthetase	important for growth on acetate but not on ethanol
						pl: 6.39 pl: 6.3	9 MW:	79129 : 78998						
ACS2			77	37					А	-				
													Iconitrate dobu decomo	
IDH2	40	P28241	85	44		8.83	39886 2 MW +	M 39741	E		0.33	0.245	(NAD+) subunit 2, mitochondrial, required for oxidative function of the tricarboxylic acid cycle	
						pl: 7.3	6 MW	: 37796						

Gene	Spot	ID	Score	% di copertura	ppm (se diversi da 30)	рі	РМ	Localizzazione	Andamento	Se assente In	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
TUB1	41	P09733	92	40		4.96	50396	varie	E		0.39	0.277	Tubulin alpha-1 chain, required for mitosis and kary ogamy	Nuclear organization and biogenesis [E]; Cellular morphogenesis [E]; Regulation of cell cycle
						pl: 4.92	2 MW:4	19777						-,
VMA2		P16140	89	40		4.95	57771	vacuolar membrane	E		0.547	0.39	Vacuolar H(+)-ATPase (V- ATPase) regulatory subunit (subunit B) involved in nucleotide binding, 58 kDa subunit of VI ATP-hydrolysis domain	
						pl: 4.92	2 MW:8 2 MW:	57595						
													Alexal ADNA construction	
ALA1	42	P40825	344	51		5.36	1E+05	M,C	D		0.469	0.378	cytoplasmic	Cell cycle; Protein biosynthesis
						pl: 5.39	9 MW:1 9 MW:	107250						
ATP1	43	P07251	97	34		9.06	58629	М	A		0.638	0.471	Alpha subunit of the F1 subunit of ATP synthase-mitochondrial respiratory complex V, three molecules are present in each F1 complex, ATP synthase is involved in ATP synthase is involved in ATP generation during cellular respiration and is required for mitochondrial cristae formation	
						pl: 9.18	3 MW:5	58623						
						<i>p</i> 7.0								
IMD3		P50095	58	32		7.04	56948	с	A		0.599	0.464	Protein highly similar to Imd2p and inosine-5'-monophosphate dehydrogenase of human and E. coli	IMP dehydrogenase activity
						pl: 7.31	1 MW:5	56583 56452						
						pi. 7.5		00402						
ATP1	44		156	53					A					
SGT2 *	45	Q12118	110	50		4.68	37252	С	с		0.226	0.192	Hypothetical protein UNF346 ; Glutamine-rich cytoplasmic protein of unknown function, contains tetratricopeptide (TPR) repeats	Protein binding: may be involved in ubiquitin- dependent protein degradation, as predicted by computational analyses
						pl: 4.63	3 MW:3	37201						
CDC33	46	P07260	94	59		5.29	24239	C,N	в	E	0.455	0.387	I ranslation initiation factor eIF4E, mRNA cap-binding protein found in association with Caf20p	Regulation of translation [E]; G1 phase of mitotic cell cycle [E]; Regulation of cell cycle [E]; RNA catabolism
						pl: 5.30	5 MW:4 5 MW:	24113						
YJR070C	47	P47120	111	53		4.78	36313	C,N	G		0.589	0.4	has high similarity to S. pombe Mmd1p, which is a protein involved in maintaining normal mitochondrial morphology and distribution	
						pl: 4.69	9 MW:3 9 <i>MW:</i>	36142 36011						
												1		
PYC1	48	P11154	65	17		5.84	1E+05	C	A		0.361	0.261	Pyruvate carboxylase 1, catalyzes conversion of pyruvate to oxaloacetate in the gluconeogenesis pathway	plays an anaplerotic role in production of oxaloacetate from pyruvate
						pi: 6.02	2 MW:1	129945						
PVC1	49		107	30					A					
F (G)	+9		191	39										
41.50		DEALE	4=0			E 0 1	F 40.15	0.11.1			0.001	0.50	Cytosolic acetaldehyde	
ALD6	50	P54115	152	56		5.31	54648	C,N, e altre	F		0.664	0.52	dehy drogenase	
						pl: 5.2	9 MW:	54272						
ALD6	51		187	61					A					
										etanolo e				
ALD6	52		159	53					С	glucosio				
WTM1		Q12363	62	29		5.18 pl: 5.25	48467 5 MW :4	N	С		0.366	0.276	Transcriptional modulator involved in meiotic regulation and silencing	Transcriptional repressor activity

Gene	Spot	ID	Score	% di copertura	ppm (se diversi	pi	РМ	Localizzazione	Andamento	Se assente	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
WTM1	53		78	41	da 30)				A	In				
HSP60	54	P19882	67	31	50	5.23	60999	М	E		0.554	0.382	Mitochondrial chaperonin that cooperates with Hsp10p, homolog of F, coli GroEI	Single-stranded DNA binding [E]; Protein binding [E]; ATPase activity, coupledResponse
						pl: 5.15	5 MW:0	50739					nonolog of E. con Globel	
						pl: 4.8	9 MW :	58249						
WTM1			62	36	50				E					
HSP60	55		213	58					A					
FBA1	56	P14540	123	51		5.51	39750	С	presente solo in glucosio	etanolo	0.936	0.869	Fructose-bisphosphate adolase II, catalyzes cleavage or condensation of fructose-1,6- bisphosphate into dihy droxy acetonep hosphate and gly ceraldehy de-3- phosphate at the sixth step in gly colysis	Zinc ion binding [E]; Fructose-bisphosphate aldolase activity [E]; Aldehyde-ly ase activity [E]; Lyase activity [E] [details;Gluconeogenesis; Fructose metabolism [E]; Glycoly sis
						pl: 5.58	3 MW:3	39608						
									presente solo					
FBA1	57		99	51					in glucosio	etanolo				
MET6	58	P05694	273	52		6.07	85847	C	С		0.773	0.657	Homocysteine methyltransferase (5- methyltetrahydropteroyl triglutamate-homocysteine methyltransferase), methionine synthase, cobalamin- independent	Methionine biosynthesis
						pl: 6.23	5 MW:8 5 MW:	85720						
ENO2	59	P00925	203	60		5.67	46811	с	В		0.96	0.892	Enolase 2 (2-phosphoglycerate dehydratase), converts 2- phospho-D-glycerate to phosphoenolpyruvate in glycolysis	Carbohy drate metabolism
						pl: 5.82	2 MW:4 2 MW:	46904 46773						
TIF1 O TIF2	60	P10081	162	63		5.02 pl: 4.99	44709 9 MW :4	C 44682	G		0.834	0.753	Translation initiation factor 4A (eIF4A), member of the DEAD- box family of ATP-dependent RNA helicases	ATP-dependent RNA helicase activity [E,P]; Translation initiation factor activity
						TIF1pl: TE2pl:	4.93 A	MW: 44580						
						11 201.	4.33 1							
													5' aboorbosiboou formul	
ADE6	61	P38972	317	38		5.15	2E+05	с	В		0.389	0.277	gly cinamidine synthetase, has glutamine amidotransferase domain and aminator domain	
						pl: 5.13	3 MW:1 3 MW:	148860 : 148729						
													Pyrnyate decarboxylase	
PDC1	62	P06169	217	54	50	5.8	61554	C,N	В		0.963	0.904	isozyme 1	
						pi. 0.07								
PDC1	63		89	36					А					
PUT2		P07275	60	26		6.54	64680	М	A		0.171	0.178	Delta-1-py rroline-5-carboxy late dehy drogenase (P5C dehy drogenase), carries out the second step in proline degradation, allows proline to be used as a nitrogen source	
						pl: 6.79	MW:6	64432						
						pi: 5.0	9 101 00.	01157						
TPI1	64	P00942	101	68		5.75	26762	C,N	G		0.901	0.817	Triosephosphate isomerase, interconverts glyceraldehyde-3- phosphate and dihydroxyacetone phosphate in the glycolytic pathway	Generation of precursor metabolites and energy [P]; Glycoly sis
						pl: 5.84	4 MW:2	26792						
						, . 5.5							DL aly and sheet in	
RHR2	65	P41277	182	77		5.35	27969	C,N	в	etanolo	0.704	0.604	phosphatase (sn-glycerol-3-	Intracellular accumulation of glycerol [E]; Anaerobic respiration [E]; Glycerol metabolism
						pl: 6.34	4 MW:3	30435					pnosphatase	
						pl: 6.3	4 MW:	30304						
ADH1	66	P00330	129	58		6.26	37125	С	В		0.913	0.811	Alcohol dehydrogenase I, cytoplasmic isozyme reducing acetaldehy de to ethanol, regenerating NAD+	responsible for production of most of the ethanol during fermentation ; production of alcohol during the first 48 hours of grape must fermentation is directly related to the specific activity of Adh1p
			-			pi: 0.45	0 MW:	36743						

Gene	Spot	ID	Score	% di copertura	ppm (se diversi da 30)	pi	РМ	Localizzazione	Andamento	Se assente In	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
TIF3	67	P34167	122	41		5.17	48493	с	В		0.519	0.351	Translation initiation factor eIF4B, contains one RRM (RNA recognition motif) RNA- binding domain	
						pl: 5.1	7 MW:	48511						
						pi. 0.1								
GPM1	68	P00950	82	59	50	8.86	27461	с	A		0.903	0.811	Phosphoglycerate mutase that converts 2-phosphoglycerate to 3-phosphoglycerate in glycolysis	RNA splicing [E]; Glycolysis
						pi: 8.9	5 MW:	27611						
CIT2	69	P08679	127	62		5.94	51381	Varie	A		0.163	0.186	Citrate synthase, peroxisomal (nonmitochondrial), converts acetyl-CoA and oxaloacetate into citrate plus CoA	Camitine metabolism [E]; Oxaloacetate metabolism [E]; Response to pH [P]; Citrate metabolism [E]; Gly oxylate cycle ; functions in gly oxylate cycle; gly oxylate cycle may be important during stationary phase, as suggested by microarray analysis
						pl: 6.1	5 MW:	51405 : 51274						
CIT2	70		160	64	50	Ĺ			Δ					
0112	10		100	04	30				Â					
SAH1		P39954	75	36	50	5.83	49721 2 MW :4	C 49114	A		0.762	0.641	Adenosylhomocysteinae (S- adenosylhomocysteine hydrolase	
						pl: 6.0	2 MW	: 48983						
RPS5	71	P26783	71	45		8.62	24949	?	A		0.899	0.838	Ribosomal protein Rps5p (rp14; YS8; S2; mammalian S5) of the small subunit	RNA splicing [E]; Protein biosynthesis
						pl: 8.7	6 MW:: 3 <i>MW</i> :	25039 : 24937						
CIT1	72	P00890	101	45		8.23	53384	М	A		0.307	0.254	Citrate synthase, mitochondrial, converts acety1-CoA and oxaloacetate into citrate plus CoA	may be required for proper meiosis, since null mutants display meiotic defects, as determined by systematic mutant analysis
						pl: 8.3	7 MW:	53361 • 49212			-			
						pi. 0.7								
ERG13	73	P54839	93	51	30	8.36	55435 3 MW:	N 55016	A		0.516	0.401	3-Hydroxy-3-methylglutaryl coenzyme A synthase, functions in mevalonate synthesis	
CIT1			51	31	50				Δ.					
			0.	0.										
FUM1	74	P08417	125	43	100	8.48	53574	C,M	D		0.359	0.253	Mitochondrial and cytoplasmic fumarase (fumarate hydratase), converts L-malate to fumarate as part of the TCA cycle	
						pl: 8.5	6 MW:	53155 : 50239						
CIT1			02	20	100	-								
CIT			03	30	100				U	_				
ENO1	75	P00924	197	58		6.17	46699	с	E		0.93	0.871	Enolase 1 (2-phosphoglycerate dehydratase), converts 2- phospho-D-glycerate to phosphoenolpyruvate in glycolysis	
						pl: 6.3	9 MW:4	46810 : 46679	-					
CIT1			59	27					E					
CIT1	76		00	40	FO									
YHC1	76	P23180	64	48	50	7.21	53501	N	A		0.032	0.127	U1 snRNP-specific C protein, component of the U1 snRNP	
						pl: 10.3	25 MW:	27071					that is needed for spliceosome assembly	
			-			pl: 10.	25 MW	: 26940			-			
ENO1	-		66	47	50				A					
LSC2	77	P53312	151	65		7.09	47156	М	A		0.241	0.189	Succinyl-CoA ligase, beta subunit of succinyl-CoA synthetase complex which has succinyl-CoA ligase and succinate thiokinase activities	Carbohydrate metabolism [E]; Tricarboxylic acid cycle
						pi: /.3		+0500						
LEU1	78	P07264	94	34		5.61	86368	C,N	A		0.437	0.336	3-Isopropy Imalate dehydratase, catalyzes the conversion of 2- isopropy Imalate to 3- isopropy Imalate, the second step in leucine biosynthesis pathway	Leucine metabolism: involved in production of isoamyl alcohol during fermentation
						pl: 5.7	2 MW:	85775						
L						pí: 5.7	2 MW.	55644						

Gene	Spot	ID	Score	% di copertura	ppm (se diversi da 30)	рі	РМ	Localizzazione	Andamento	Se assente In	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
QCR2	79	P07257	147	65		7.67	40510	М	A		0.326	0.227	Ubiquinol cy tochrome c reductase core protein 2, component of ubiquinol cytochrome c reductase complex (cytochrome bcl complex)	Aerobic respiration
						pl: 7.9 ⁴ pl: 6.2	1 MW:4 4 MW:	10478 38702						
ICL1	80	P28240	115	52	50	5.97	62711	20207	A		0.327	0.251	Isocitrate lyase, carries out part of the glyoxylate cycle, required for gluconeogenesis	Gluconeogenesis [E]; Gly oxy late cy cle
						pl: 6.1	9 MW:	62266						
ICL1	81		136	53					A					
ICL1	82		135	50					A					
ICL1	83		124	52	50				A					
PCK1		P10963	76	41		5.93	61515	с	A		0.424	0.311	Phosphoenolp yruvate carboxy kinase (ATP), rate limiting gluconeogenic enzy me	Phosphorylation [E]; Pyruvate biosynthesis from acetate [E]; Gluconeogenesis
						pl: 6.12 pl: 6.1	2 MW:6 2 MW:	60840						
ICL1	84		184	54	50				A					
PCK1			87	39	50				А					
PCK1	85		204	69					A	glucosio				
PCK1	86		163	48					A					
PCK1	87		126	41					A					
MLS1	88		167	58					E	glucosio				
PCK1			67	36					E					
MLS1	89	P30952	154	62		6.72 pl: 6.98	63093 3 MW :6	C	A		0.297	0.222	Malate synthase 1, functions in glyoxylate cycle, has near identity to Dal7p	Fatty acid catabolism [E]; Glyoxylate cycle
MLS1	90		142	59		pl: 6.9	8 MW:	62656	A					
PCK1	91		97	50					A					
SDH1		Q00711	90	47		7.14	70812	ӍĊ	A		0.361	0.245	Succinate dehy drogenase (ubiquinone) flavoprotein (Fp) subunit, converts succinate plus ubiquinone to fumarate plus ubiquinol in the TCA cycle	succinate dehydrogenase complex does not appear to be active during glucose fermentation
						pl: 7.39	9 MW:1	70226 : 67101						
SDH1	02		110	44					Δ					
ODITI	52		110						~				Pihosa 5. nhosnhata katol.	Pantose nhosnhata shunt non ovidative branch
RKI1	93	Q12189	127	71		5.63	28355 6 MW:2	C,N 28253	A		0.287	0.248	isomerase, functions in pyridoxine synthesis	[E]; Pyridoxine biosynthesis [E]; Glucose metabolism
						pi. 0.7							Mitochondrial aldehude	Acataldahuda mataholiem [E]: Ethanol
ALD4	94	P46367	199	54		6.31 pl: 6.52	56973 2 MW:	M 56719	A		0.422	0.284	dehy drogenase	catabolism
						pl: 5.8	8 MW:	53967						
GLK1		P17709	124	42		5.8	55741	с	A		0.238	0.158	Glucokinase, specific for aldohexoses	Glycolytic fermentation [E]; Carbohydrate metabolism [E]; Carbohydrate phosphorylation [E]; Pentose-phosphate shunt
						pl: 5.98 pl: 5.9	B MW:8 8 <i>MW</i> :	55364 55233						
ALD4	95		205	73					A					
PGI1		P12709	67	43		5.99	61130	Cytosol	А		0.793	0.681	Glucose-6-phosphate isomerase, converts glucose 6- phosphate to fructose 6- phosphate	
						pl: 6.2 pl: 6.1	1 MW:6 3 MW:	61185					Glycolysis	
URA6	96	P15700	59	43	100	6.19	23147	C,N	A		0.23	0.211	Uridine-monophosphate kinase (uridy late kinase), cataly zes the conversion of ATP and UMP to ADP and UDP	one of 855 class I genes that are induced by addition of glucose, by Ras2p overproduction, by Gpa2p overproduction, or in a strain unable to respond to cAMP levels (byc) 1 pk1 tpk3 triple null tpk2-[V218G] quadruple mutant), as determined by microarray analysis (15138498)
						pl: 6.39	9 MW:2	22932						
						pl: 6.3	9 MW :	22800						

Gene	Spot	ID	Score	% di copertura	ppm (se diversi de 30)	pl	РМ	Localizzazione	Andamento	Se assente	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
MDH1	97	P17505	141	70	uu 30)	8.46	35685	м	A		0.455	0.313	M alate dehy drogenase, mitochondrial	responsible for 90% of total malate dehydrogenase activity in cells grown on glucose ;M alate metabolism [E]; Aerobic respiration [E]; Carbobydrate metabolism [E]; Tricarboxylic acid cycle
			_			pl: 8.6	2 MW:3	35651						
RPL5		P26321	119	77		6.36	33779	c	A		0.9	0.83	Ribosomal protein L5 (yeast L1; YL3; rat L5), the sole 5S rRNA-associated ribosomal protein, involved in the binding of peptidyl-tRNA to the ribosome	
						pl: 6.5	B MW::	33711						
ACH1	98	P32316	168	60		6.3	58903 4 MW :	M 58704	A		0.327	0.217	Acetyl-CoA hydrolase, catalyzes the hydrolysis of acetyl-CoA and longer acyl CoA chains slowly, involved in acetate utilization and sporulation	
						pl: 6.5	4 MW:	: 58573						
ADH2	99	P00331	91	62		6.26	37034	C 36728	A		0.711	0.505	Alcohol dehydrogenase II, oxidizes ethanol to acetaldehyde, expression is repressed by glucose	Carbohydrate metabolism [E]; NADH oxidation [P]; Energy derivation by oxidation of organic compounds [E] [details
						pl: 6.5	1 MW:	: 36596						
ADH2	100		93	57					D					
ADH2	101		111	63					A					
ADH2	102		110	58					A					
4042	400		110	EA										
ADH2	103		110	54					~					
ARO10	104	Q06408	95	20		6.1	72023	с	A		0.113	0.16	Primary phenylpy ruvate decarboxylase, minor alpha- ketoisocaproate carboxylase, and putative indole-3-py ruvate decarboxylase	
						pl: 6.3	2 MW:1 2 <i>MW</i> :	71376 : 71245						
													4-A minobutyrate	
UGA1	105	P17649	160	63		6.34	53369	с	A		0.378	0.287	aminotransferase (GABA transaminase), involved in utilization of GABA	
						pl: 6.5	8 MW:8	52942 : 52811						
RFC2	106	P40348	50	44	90	8.61	40002	?vd	A		0.164	0.176	DNA binding [E]; ATPase activity [E]; DNA clamp loader activity	
						pl: 8.7	о м w::	39744						
PRE2	107	P30656	74	30	100	5.82	31902	C,N	A		0.262	0.21	Proteasome subunit beta5_sc (protease y scE subunit Pre2/Prg1), involved in chymotryp sin-like activity of the proteasome	Cell cy cle [E]: Protein catabolism [E]: Ubiquitir dependent protein catabolism [E]: Postrep lication repair
						pl: 6.1	6 MW	23296						
LPD1	108	P09624	184	70		8.07	54261	М	A		0.351	0.253	Dihy drolip oamide dehy drogenase, (E3) component of py ruvate dehy drogenase complex, 2-oxoglutarate dehy drogenase complex (alpha- ketoglutarate dehy drogenase complex), branched chain 2- oxoacid dehy drogenase complex and gly cine carboxy lase complex	Glycine catabolism [E]; Glycine decarboxylation via glycine cleavage system; pyruvate dehydrogenase complex is not required for growth on ethanol
						pl: 8.2	1 MW:	54011 : <i>5154</i> 7						
						pr. 0.0								
PST2	109	Q12335	76	55	75	5.46	21010	M,C e altre	A		0.567	0.367	Protein with similarity to Ycp4p and S. pombe OBR1 brefeldin A resistance protein	
						pl: 5.5	3 MW:2 3 <i>MW</i> :	20958						
PDB1	110	P32473	71	49		5.23	40086	м	A		0.489	0.343	Pyruvate dehydrogenase complex, E1-beta subunit (pyruvate:lipoamide 2-	Generation of precursor metabolites and energy [P]; Oxaloacetate metabolism; Leucine
						pl: 5.1	3 MW:4 3 MW:4	40043 : 36465					oxidoreductase)	meradolism

Gene	spot	ID	SCOR E	% di copertura	ppm (se diversi da 30)	pi	РМ	localizzazione	andamento	se assente In	СВІ	CAI	nome proteina	descrizione attivita' e commenti
GRE3	111	P38715	200	84		6.6	37437	C,N	A		0.26	0.226	Aldo/keto reductase with NADPH specificity, induced by osmotic stress, plays roles in methylgly oxal and arabinose catabolism and may play a general role in reducing pentose sugars	
						pl: 6.8 pl: 6.8	7 MW:3 7 MW:	37116 36985						
CPR1	112	P14832	66	57		6.88	17363	C,N	D		0.77	0.614	Cyclophilin (peptidylprolyl cis- trans isomerase or PPIase) of the nucleus and cytoplasm that promotes meiotic gene expression, plays a role in the stress response, component of Set3p complex	Protein-nucleus export [E]; Response to stress [P]; Meiosis [E]; Protein transport
						pl: 7.23	3 MW: 5 <i>MW</i> :	17390 : 17288						
													Cyclophilin (peptidylprolyl cis-	
CPR3	113	P25719	97	41	100	8.81	20020	М	A		0.365	0.308	trans isomerase or PPIase) of mitochondria	Protein folding
						pl: 8.93	3 MW:	19921 17565						
SSC1	114	P12398	161	59		5.48	70585	M e altre	A		0.684	0.521	M itochondrial protein that acts as an import motor with Tim44p and as a chaperonin in receiving and folding protein chains during import, protects mitochondrial DNA synthesis activity (Mip1p) during heat shock, heat shock protein of HSP70 family	Protein-mitochondrial targeting [E]; Development [E]; Protein folding [E]; Protein targeting: Protein refolding
						pl: 5.48	5 MW:	70617 58081						
CTA1	115	P15202	85	41		7 pl: 7.2	58804 7 MW:	varie 58553	A		0.114	0.159	Catalase A, peroxisomal and mitochondrial	not required for wild-type life span during growth on glucose as the carbon source ; Response to oxidative stress [E]; Cell aging [E]; Response to heat
						pl: 7.2	7 MW:	58422						
UGP1		P32861	60	39		6.98 pl: 7.26	56181	C 55986	A		0.463	0.33	UDP-glucose pyrophosphorylase (UTP- glucose-1-P uridylyltransferase) (UGPase)	Cell wall organization and biogenesis [E]; Carbohydrate metabolism [E]; Galactose metabolismprovides UDP-glucose for various pathways, including N-glycosylation of proteins, glycoyl tic metabolism of galactose, and synthesis of glycogen, trehalose, and cell wall beta-glucan
						pl: 7.2	6 MW:	55854						
TKL1		P23254	53	30		6.5 pl: 6.7	73743 7 MW: 7	C,N 73800	A		0.661	0.489	Transketolase 1	is required for biosynthesis of erythrose-4- phosphate, which is needed for biosynthesis of aromatic amino acids
TKI 1	116		173	42		Ĺ			Δ					
	110		110											
YER067W	117	P40043	75	46	50	5.74	19091	C,N	A		0.118	0.208	Protein with unknown function, as high similarity	
						pl: 5.9	5 MW:	18847						
SOD1	118	P00445	103	77		5.63	15828	C,N	A		0.555	0.377	Copper-zinc superoxide dismutase	Response to oxidative stress [E]; Cell aging [E]; Hyperosmotic response [E]; Response to radiation
						pl: 5.7	9 MW:	15718						
MCR1	119	P36060	134	75	50	8.65	34174	M 34140	A		0.283	0.26	NADH-cytochrome b5 reductase, mitochondrial protein that may be involved in the response to oxidative damage	Response to oxidative stress [E]; Generation of precursor metabolites and energy
Dec 4Dec -													Riboomal protein 64 (
Rps4Bp o Rps4Ap		P05753	77	60		10.09 pl: 10.2	29318 23 MW:	C 29431	A		0.79 0.804	0.695	Kuosomai protein S4 (yeast S7; YS6; rp5; rat and human S4),	RNA splicing [E]; Protein biosynthesis
						pl: 10.	23 MW	: 29300						
FOL2		P51601	54	46		6.72	27922	C,N	A		0.272	0.208	GTP cyclohy drolase I, catalyzes synthesis of D- erythro-7,8- dihy droneop terintrip hosp hate from GTP in biosynthesis of tetrahydrobiop terin	
						pi. 0.8	- miVV:-							
MRP8	120	P35719	131	69		4.66	25082	C	A		0.242	0.202	Mitochondrial ribosomal protein of the small subunit	Protein biosynthesis
	1		1		1	pi. 4.0	UN 197	27343	1	1		1		1

Gene	Spot	ID	Score	% di copertura	ppm (se diversi da 30)	pi	РМ	Localizzazione	Andamento	Se assente In	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
ARA1	121	P38115	106	60		5.65	39030	C,N	A		0.265	0.204	Subunit of NADP+-dependent D-arabinose dehydrogenase	Response to oxidative stress [E]; D-arabinose catabolism
						pl: 5.76	6 MW:3 6 <i>MW</i> :	38873 38311						
EGD1	122	Q02642	60	61	100	6.1	17010	C	A		0.788	0.615	Beta subunit of the nascent poly peptide-associated complex	Protein-mitochondrial targeting [E]; Protein folding
						pl: 6.3	1 MW:	16887						
ILV5	123	P06168	97	57		9.1	44512	М	A		0.892	0.802	Ketol-acid reductoisomerase (acetohydroxy-acid reductoisomerase, apha-keto- beta-hydroxylacil reductoisomerase), second step in valine and isoleucine synthesis, required for maintenance of functional mitochondria DNA and its organization into nucleoids	
						pl: 9.20	9 MW:4	14375 39174			-			
		gil1279705												
FSH3	124	Q99369 ORF YOR280c	63	43		6	30513	N	A		0.123	0.164	Protein with similarity to N- terminal region of S. pombe dihydrofolate reductase	
						pl: 6.22 pl: 6.2	2 MW:3 2 <i>MW</i> :	30414 30283						
													Cutosolic branched chain amino	
BAT2	125	P47176	75	42		6.91	41940	C,N	A		0.251	0.195	acid transaminase	
						pi: 7.18	8 MW:4 8 MW:	41491						
SRV2	126	P17555	67	29		5.48	57714	actin cytoskeleton	A		0.26	0.219	Adenylate cyclase-associated protein (CAP) that may provide a link between growth signals and the cytoskeleton	
						pl: 5.50	0 MW:8	57512 57381						
														CTD
TUB2	127	P02557	111	37		4.64	51233	varie	A		0.404	0.271	Tubulin beta chain, required for mitosis and kary ogamy	G I Pase activity [p]; Drug miding [P]; Structural constituent of cytoskeleton; Nuclear organization and biogenesis [E]; Cellular morphogenesis [E]; Mitosis [E]; Response to drug nuclear endoplasmic reticulum (ER) tubules colocalize with astral microtubules (Tub1p,Tub2p,Tub3p) at G2M phase of the cell cycle
						pl: 4.59	9 MW:6	50891						
MEF1	128	P25039	153	41		6.42	85090	M	A		0.223	0.2	M Hochondrial translation elongation factor G, promotes GTP-dependent translocation of nascent chain from A-site to P- site of ribosome	
						pl: 6.6	4 MW	84436						
CDC48	129	P25694	215	53		4.82	92167	C,N	A		0.407	0.307	Member of the AAA family of ATPases required for cell division and homoty pic membrane fusion, component of the ubiquitin/proteasomal- dependent ER-associated degradation (ERAD) system, contains two AAA domains	Hydrolase activity [E]; ATPase activity: Cell cycle [E]; Ubiquitin-dependent protein catabolism [E]; Lipid metabolism [E]; Golgi organization and biogenesis
						pl: 4.82 pl: 4.8	2 MW:9 2 <i>MW</i> :	91953 91821						
HOM6	130	P31116	152	59		6.86	38478	C,N	A		0.613	0.467	Homoserine dehy drogenase (L- homoserine:NAD(P) oxidoreductase), catalyzes the third step in common pathway for methionine and threonine biosynthesis	Threonine biosynthesis [E]; Methionine biosynthesis [E]; Aerobic respiration [E]; Mitochondrial genome maintenance
						pl: 7.18	8 MW:3	38500						
						μι. 1.1								
HYP2	131	P23301	90	56		4.81	17086	Varie	F		0.908	0.814	Translation initiation factor eIF5A, contains an essential hypusine modification	Cell wall organization and biogenesis [E]; Regulation of translational initiation [E]; mRNA catabolism
						pi: 4.8 pl: 4.7	7 MW:1	17000						
HYP2	132		65	38					F					
HSP78	133	P33416	226	57		8.17 pl: 8.28	91679 3 MW :9	М 11337	A		0.221	0.207	Mitochondrial heat shock protein of the ClpB family of ATP-dependent proteases, member of mitochondrial Hsp70 Hsp78bi-theprone system, involved in protection of mitochondrial DNA synthesis activity (Mip Ip) during heat shock	Protein-mitochondrial targeting [E]; Protein fokling [E]; Protein refokling [E]; Proteolysis and peptidolysis
						pl: 6.1	3 MW:	85111						

					ppm (se	1				Se	1	1		
Gene	Spot	ID	Score	% di copertura	diversi da 30)	pi	РМ	Localizzazione	Andamento	assente in	СВІ	CAI	Nome proteina	Descrizione attivita' e commenti
AAT2	134	P23542	129	60		8.45	46126	Localized to the cytosol in glucose- grown cells	A		0.345	0.232	Aspartate aminotransferase (2- oxoglutarate aminotransferase), cytosolic and peroxisomal	Glutamate metabolism [E]; Aspartate metabolism
						pl: 8.55	5 MW:4	46059						
						pl: 8.5	3 MW:	45957						
YHB1	135	P39676	88	45		5.78	44847	с	A		0.318	0.267	Flavohemoglobin involved in protection from nitrosative stress, distantly related to animal hemoglobins	Response to oxidative stress [E]; Response to stress [E]; Nitrogen compound metabolism [E]; Response to toxin
						pl: 6.04	4 MW:4	44635						
PRE5	136	P40302	130	88		6.9	25759	C,N	A		0.147	0.159	Proteasome subunit alpha6_sc	Protein catabolism [E]; Ubiquitin-dependent protein catabolism [E]; Proteoly sis and peptidoly sis [
						pl: 7.2	1 MW:2	25603						
PHO13	137	P19881	121	52		6	34888	C,N	assente in glucosio	glucosio	0.254	0.196	4-Nitrophenylphosphatase	Phosphate metabolism [E]; Protein amino acid dephosphorylation
						pi: 6.20		24021						
YDL086W		Q07505	72	60		5.91	31217	С,М	assente in glucosio	glucosio	0.239	0.179	Protein containing a dienelactone hydrolase family domain, has strong similarity to uncharacterized C. glabrata Cagl0106974gp	
						pl: 6.13	3 MW:3	30831						
GDH3	138	P39708	92	48		5.35	49938	C,M	E		0.189	0.156	Glutamate dehydrogenase (NADP+), combines ammonia and alpha-ketoglutarate to form glutamate	Regulation of cell shape [E]; Cell wall organization and biogenesis [E]; Regulation of nitrogen utilization
						pl: 5.30	0 MW :4	49618						
						pl: 5.3	10 MW:	49487						
NCE103	139	P53615	58	52	50	6.54	25357	C,N	E	glucosio	0.276	0.214	Protein involved in protection against oxidative damage	Response to oxidative stress
						pl: 6.81	1 MW:2	24856						
						pl: 6.8	1 MW:	24725						
KGD2	140	P19262	81	46	50	8.88	50456	M	A		0.334	0.24	2-oxoglutarate dehy drogenase (alpha-ketoglutarate dehy drogenase) complex KE2 component dihy drolipoamide S- succiny Itransferase	2-oxoglutarate metabolism [E]; Organic acid catabolism [E]; Generation of precursor metabolites and energy
			1	1		Ini 9.03	3 MW • 4	50433			1	1		

DISCUSSIONI

I meccanismi che stanno alla base della proliferazione cellulare richiedono la coordinazione di differenti processi come l'accumulazione di un certa massa, la replicazione del DNA e la divisione cellulare in relazione anche a stimoli esterni. In Saccharomyces cerevisiae il ciclo cellulare si compone di quattro fasi durante le quali in assoluta sinergia si svolgono milioni di processi e il maggiore punto di controllo è denominato START ed è situato tra la fase G1 e la fase S. È qui che le cellule integrano i segnali interni ed esterni (condizioni ambientali, disponibilità di nutrienti) e decidono se iniziare la replicazione del proprio DNA e un nuovo ciclo di gemmazione. È noto che in S. cerevisiae per superare questo punto di controllo le cellule devo raggiungere una massa critica modulata dai nutrienti, chiamata Ps, e vi sono indicazioni che lo stesso si verifichi anche per cellule di mammifero (Well, 2002). Il valore di Ps come anche il contenuto proteico medio sono caratteristici del tipo di condizione di crescita a cui le cellule sono sottoposte: in particolare, cellule cresciute su fonte di carbonio ricca, come il glucosio, hanno un Ps e un contenuto proteico medio maggiore rispetto a cellule cresciute su fonte di carbonio povera come l'etanolo. Quando si ha una variazione della sorgente di carbonio la popolazione di lievito deve modulare questi parametri per riadattarli alla nuova condizione di crescita. Durante una transizione (shit-up nutrizionale) da una sorgente di carbonio povera come etanolo ad una ricca come glucosio, si verifica un ritardo della transizione G1/S indicato da una diminuzione della frazione delle cellule gemmanti (calo di budding): in tale periodo le cellule accrescono la loro massa fino al valore tipico della crescita in glucosio (Alberghina et al., 1998).

Recenti studi hanno messo in evidenza che la proteina Far1, un inibitore delle cicline di fase G1, e la ciclina Cln3 sono alla base del meccanismo molecolare impegnato nel controllo della transizione G1/S e in particolare ne costituiscono la prima soglia. Quando i livelli di Cln3 superano quelli di Far1 si ha l'attivazione del complesso Cln3-Cdc28, che porta poi alla degradazione dell'inibitore Sic1 (che con il complesso Clb5,6-Cdc28 costituisce la seconda soglia) e all'ingresso di fase S. Si verifica infatti che la sovraespressione del gene *FAR1* (*FAR1^{tet}*) è in grado di alzare la soglia, mentre cellule prive di *FAR1 (far1* Δ) gemmano ed iniziano la replicazione del proprio DNA ad una massa minore rispetto al wt. Durante uno shift-up nutrizionale da etanolo a glucosio i

ceppi $far1\Delta$ e $cln3\Delta$, che presentano un'alterazione dell'equilibrio tra i due componenti della soglia, non presentano il caratteristico calo di budding.

Lo scopo di questa tesi è stato quello di approfondire, mediante tecniche di proteomica, la comprensione dei meccanismi alla base del ciclo cellulare di *S. cerevisiae* e in particolare sul controllo della transizione G1/S. A tale proposito si è confrontato il proteoma di ceppi mutanti in *FAR1* (*FAR1tet* e *far1* Δ) con il proteoma del ceppo wild type, sia in crescita esponenziale su fonte di carbonio povera (2% etanolo) che in crescita esponenziale su fonte di carbonio fermentativa (2% glucosio). Si è osservata anche la graduale variazione del proteoma di un ceppo wild type durante il passaggio da condizioni nutritive non fermentative a fermentative (shift-up nutrizionale da etanolo a glucosio).

Il profilo proteico di tali ceppi è stato analizzato tramite separazione elettroforetica bidimensionale conducendo uno studio quantitativo comparativo basato sull'analisi di immagine. L'identificazione proteica è stata condotta tramite spettrometria di massa.

I risultati dell'analisi proteomica sono stati confrontati con quelli ottenuti dall'analisi del trascrittoma mediante GeneChip® effettuata su cellule nelle medesime condizioni di crescita.

Risultati degli studi sui mutanti del gene FAR1

Gli studi sul proteoma dei mutanti nel gene *FAR1* (*FAR1^{tet}* e *far1* Δ) si sono focalizzati soprattutto su un confronto tra l'analisi del trascrittoma e del proteoma. Si è osservato che la differenza dei livelli di mRNA tra i ceppi studiati non è sempre correlata con una differenza dei livelli di espressione delle proteine indicando che molti geni sono solo post-traduzionalmente modulati. Soprattutto nella crescita esponenziale in glucosio la maggior parte dei geni risulta avere una variazione solo a livello del proteoma. Le informazioni sulla variazione del profilo proteico portano quindi ad informazioni aggiuntive rispetto alle variazioni dei livelli di mRNA; si deve comunque tenere in considerazione che gli studi da noi effettuati hanno permesso la visualizzazione solo di una parte del proteoma ristretta alle tecniche da noi utilizzate.

Le informazioni più consistenti si sono ottenute nei riguardi del mutante sovraesprimente *FAR1*. Le analisi con GeneChip® che con elettroforesi bidimensionale del mutante deleto in *FAR1* non hanno invece portato a dati evidenti o facilmente interpretabili. Bisogna tener conto che il mutante *far1* Δ non mostra un fenotipo

macroscopico nella fase di crescita esponenziale e che l'adattamento del ciclo cellulare, a livello trascrizionale e proteomico, alla mancanza del gene *FAR1* può essere così moderata da non essere rilevabile con le nostre tecniche.

Il mutante *FAR1^{tet}* mostra nella crescita esponenziale in glucosio l'induzione di molte proteine ribosomali (11 proteine ribosomali risultano indotte sulle 24 proteine ribosomali visualizzate sul gel) dato che potrebbe spiegare l'aumento della massa Ps e far supporre un controllo della biosintesi ribosomale da parte della prima soglia. Sembra da uno precedente studio presente in letteratura (Jorgensen et al., 2004) che il controllo della raggiungimento della massa critica da parte dei nutrienti sia comunicato dalla produzione di ribosomi. La biogenesi ribosomale è infatti un processo energeticamente molto dispendioso e affinché vi sia un accoppiamento tra sintesi proteica e richiesta energetica e metabolica della cellula, l'abbondanza dei ribosomi deve essere finemente regolata in accordo con la crescita della cellula e la quantità di nutrienti disponibile. I nostri dati suggeriscono la presenza di un altro step di controllo nel quale la soglia Far1/Cln3 regola la biosintesi dei ribosomi con un meccanismo a feedback.

La loro regolazione sembra essere però solo post-trascrizionale, dato che i corrispondenti mRNA non risultano variare. A conferma del risultato, vi è il fatto che il contenuto di RNA per cellula di questo mutante in glucosio, misurato con il metodo dell'orcinolo, è maggiore di quello del ceppo wild type (induzione di circa il 45%), ed è noto in letteratura che i livelli di proteina ribosomale possono influenzare la trascrizione del rRNA con un meccanismo di autoregolazione qualora la biosintesi dei ribosomi è sbilanciata (Zhao et al., 2003). Un aumento del contenuto di RNA per cellula si osserva però nel mutante *FAR1^{tet}* non solo in crescita esponenziale in glucosio ma in parte anche in etanolo (induzione di circa il 30%) dove però non si è osservata l'induzione di proteine ribosomali. Questa discordanza tra RNA e proteine ribosomali può essere dovuta alla differenza di sensibilità dei metodi utilizzati per determinare i livelli di RNA e i livelli proteici. Scegliendo un fold-change del livello proteico superiore a 1.5 (cioè a più del 50%) per definire come rilevante una variazione tutto ciò che era al di sotto di questo limite non è stato preso in considerazione e potremmo così aver perso variazioni più attenuate ma comunque presenti in crescita esponenziale in etanolo.

Altra considerazione è nei riguardi del contenuto proteico che nel mutante *FAR1^{tet}* in etanolo è molto più grande che nel wild type e tale aumento è proporzionalmente più evidente che nel confronto tra wild type e glucosio (crescita del 50% rispetto al 15%). Si

potrebbe avere che in etanolo l'incremento di massa del mutante *FAR1^{tet}* sia legato ad altri meccanismi non implicanti un induzione delle proteine ribosomali come ad esempio una sintesi proteica più efficiente. Si cita a tale proposito un altro caso presente in letteratura di divergenza tra biosintesi ribosomale e massa cellulare: il mutante *fhl1* Δ , deleto di un elemento chiave nella trascrizione di geni ribosomali, ha una massa cellulare normale ma una netta riduzione della sintesi ribosomale e una lenta crescita.

Se il mutante *FAR1^{tet}* presenta nella crescita esponenziale in glucosio un induzione delle proteine ribosomali nessun'induzione significativa si verifica per geni implicati nei due principali pathway che regolano la biogenesi dei ribosomi ovvero il pathway di TOR e quello del cAMP/PKA. Al contrario sono indotti alcuni geni di due pathway repressi quando il pathway di TOR è attivo, ovvero la fosforilazione ossidativa e la discriminazione d'azoto.

Il ceppo overesprimente FAR1, inoltre, mostra una modulazione dei pathway del metabolismo dei carboidrati: il ceppo è caratterizzato, in crescita esponenziale in etanolo da una repressione a livello trascrizionale e/o traduzionale di molti enzimi della glicolisi/gluconeogenesi e in crescita esponenziale in glucosio da una sovraespressione di geni implicati nel ciclo del TCA e nel pathway che converte il fosfoenol piruvato ad acetyl-CoA. Dai dati di letteratura è noto che in alcuni casi il flusso di carbonio nel ciclo del TCA può aumentare sotto condizioni fermentative e in più precisamente geni implicati nel ciclo del TCA e della fosforilazione ossidativa possono essere sovraespressi quando le attività della glicolisi sono basse questo per ottimizzare l'utilizzo del glucosio. In effetti la resa di ATP per mole di glucosio e l'efficienza della produzione di biomassa sono nettamente maggiori quando il glucosio è ossidato piuttosto che quando è fermentato (Sasaki et al., 2005). Mentre però una diminuzione del flusso glicolitico causa una diminuzione della velocità di crescita tutti i parametri di crescita del mutante FAR1^{tet} sono regolari. Potrebbe verificarsi in tale mutante che il flusso di carbonio venga parzialmente riconvogliato nel ciclo del TCA in modo da giustificare l'aumento della produzione di biomassa.

I nostri dati, dunque, suggeriscono il legame di *FAR1*, componente della prima soglia, con la regolazione della sintesi proteica, da una parte, e la macchina metabolica, dall'altra.

Risultati degli studi sullo shift-up nutrizionale etanolo-glucosio del ceppo wild type

Durante lo shift-up nutrizionale da etanolo a glucosio di un ceppo wild type si sono raccolti campioni di cellule nei momenti più significativi della transizione: nel punto di partenza ovvero la crescita esponenziale in etanolo, nell'inizio, nel punto di minimo e nella parte finale del calo di budding e all'avvenuto raggiungimento delle condizioni tipiche della crescita esponenziale in glucosio. Si sono rilevati circa 600 spot per gel e 140 spot, identificanti per 115 proteine diverse, sono risultati avere una sostanziale variazione di intensità durante la transizione. La maggior parte delle proteine identificate (dai 600 spot incisi nel gel ottenuto dagli estratti della crescita esponenziale in etanolo) erano mitocondriali e citoplasmatiche, dato che riflette i limiti delle tecniche di analisi utilizzate e ci obbliga a tener conto che i nostri risultati sono ristretti a un limitato gruppo di proteine. Le proteine aventi una modulazione di espressione comprendono enzimi coinvolti nel ciclo del TCA e nel metabolismo dei carboidrati, degli amminoacidi e dei lipidi. Si sono osservati sette andamenti di variazione tra cui i più interessanti sono quelli aventi un picco di minimo o di massimo proprio durante il calo di budding in quanto potrebbero indicare proteine coinvolte nei meccanismi di adattamento alla nuova fonte di carbonio. Alcune proteine come Kgd1, Adh2, Leu4, e Ald6 sono state trovate in più di una spot aventi variazioni di intensità diverse durante lo shift-up nutrizionale. Ciò potrebbe indicare isoforme delle proteine aventi un diversa modulazione e quindi ruolo durante la transizione. Nel gruppo di proteine aventi un picco di espressione durante lo shift-up si sono identificate le proteine, Idh2, Tdh3 e Tpi1 che fanno parte del metabolismo degli intermedi. Sempre tra questo gruppo di proteine si sono identificate due proteine con funzione ancora sconosciuta: Gvp36 e Yjr070c. La proteina Yjr070c è similare alla proteina Mmd1p del lievito S. pompe il cui ruolo è il mantenimento della morfologia e della distribuzione mitocondriale. Ci siamo focalizzati sulla proteina Gvp36 dal momento che sia il suo comportamento durante lo shift-up nutrizionale sia alcuni dati di letteratura suggerivano un suo possibile coinvolgimento nel controllo della transizione G1/S. La proteina risulta non rilevabile in etanolo e compare dopo l'aggiunta di glucosio con un picco di espressione durante il calo di budding per poi decrescere fino ad essere lievemente rilevabile dopo il raggiungimento dell'equilibrio in glucosio. Allo scopo di comprendere il ruolo di questa proteina si sono condotti una serie di esperimenti mirati alla caratterizzazione del fenotipo del mutante deleto in GVP36 $(gvp36\Delta)$. Si è osservato che il mutante non è in grado di crescere in terreni con etanolo: tale difetto di crescita sembra essere causato da una aumentata sensibilità all'etanolo stesso e non dall'incapacità di utilizzarlo come fonte di carbonio o da difetti particolari nella risposta agli stress. Questo dato è in accordo con il coinvolgimento di Gvp36 con Hsp82, l'unica proteina con cui si conosce interagire (Millson et al., 2005): Hsp82 sembra essere coinvolta nella resistenza ad etanolo ed acetaldeide dal momento che un incremento della sua trascrizione conferisce maggiore resistenza alle due sostanze e che i suoi livelli di messaggero sono indotti in caso di breve esposizioni ad etanolo. L'interazione di Gvp36 con Hsp82 potrebbe spiegare la sensibilità all'etanolo senza che siano compromesse le risposte ad altri stress. Sia in terreno con glucosio sia in terreno con glicerolo, il tempo di divisione del mutante, rispetto a quello del ceppo wild type, è molto maggiore: il fatto che la percentuale di cellule gemmate sia molto simile nei due ceppi, in entrambe le condizioni, fa supporre, comunque, che il ritardo della crescita del mutante sia distribuito lungo tutto il ciclo cellulare. In crescita esponenziale al 2% di glucosio, inoltre, il ceppo $gvp36\Delta$ ha volume e contenuto proteico medio inferiore a quello del ceppo wild type, caratteristica che potrebbe indicare un coinvolgimento di Gvp36 nel controllo della crescita da parte dei nutrienti. Sottoponendo il mutante allo shift-up nutrizionale da glicerolo (3%) a glucosio (2%) si è notato che il ceppo non presenta il caratteristico calo di budding presente nel wild type. Osservando inoltre l'andamento della proteina nello shift-up nutrizionale da etanolo a glucosio del mutante deleto del gene FAR1, che non presenta anch'esso il calo di budding, si è visto che la proteina non ha modulazioni di espressione. Si può quindi dire che Gvp36 ha un aumento di espressione corrispondente alla diminuzione della percentuale di cellule gemmate che non si verifica quando questa diminuzione viene persa, come nel mutante far1 Δ . Inoltre, l'assenza di GVP36 risulta in un'alterazione del profilo di adattamento al glucosio simile a quello osservato nei ceppi far 1Δ . Questi dati suggeriscono che Gvp36 possa far parte di un pathway che collega la soglia di massa critica richiesta per l'ingresso in fase S ai meccanismi che controllano l'insorgenza della gemma.

RÉSUMÉ DE THÈSE

"Modulation nutritionnelle du protéome de *Saccharomyces cerevisiae* dans la souche sauvage et dans les mutants du gène *FAR1* qui code pour un régulateur négatif de la transition de G1 à S"

Ce travail de thèse a été conduit en cotutelle entre le Laboratoire de Spectrométrie de Masse de l'Université Louis Pasteur de Strasbourg et le Dipartimento di Medicina Sperimentale Ambientale e Biotecnologie Mediche de l'Università di Milano Bicocca.

13.1 - Introduction

Les études protéomiques ont pour objectif de déterminer, au niveau quantitatif et qualitatif, l'expression de protéines des organismes et ceci éventuellement dans différentes conditions (différentes conditions de croissance, stress cellulaire, présence de pathologies). Ces études protéomiques sont souvent basées sur le fractionnement du mélange des protéines par électrophorèse bidimensionnel (2D-PAGE) et sur l'identification des protéines dont le niveau d'expression à changé par spectrométrie de masse (MS).

C'est dans ce contexte que se situe ce travail de thèse.

La levure *Saccharomyces cerevisiae* est souvent utilisée comme modèle biologique pour la compréhension des mécanismes cellulaires. On considère souvent que les études des mécanismes dans des modèles relativement simples permettront de comprendre plus facilement les mécanismes de proliférations dans les organisme supérieurs (c'est le cas par exemple des pathologies du cancer chez l'homme).

Dans cette thèse, les techniques de protéomique comme la 2D-PAGE et la MS ont été appliquées à l'étude des mécanismes impliqués dans la régulation du cycle cellulaire du *S. cerevisiae*. Pour cela, nous avons observé les variations du protéome de cellules mises en culture dans différentes sources de carbone et les variations du protéome après modifications au niveau génétique du gène *FAR1* qui est impliqué dans le contrôle du cycle cellulaire.

13.2 - Le cycle cellulaire du Saccharomyces cerevisiae

Le cycle cellulaire de S. cerevisiae comprend quatre phases. Pendant deux de ces phases, phase S et phase M, les cellules exécutent les deux événements fondamentaux du cycle: réplication de l'ADN (phase S, pour synthèse) et partage rigoureusement égal des chromosomes entre les 2 cellules filles (phase M, pour mitose). Les deux autres phases du cycle, G1 et G2, correspondent à des intervalles (Gap). Au cours de la phase G1, la cellule effectue sa croissance, et se prépare à effectuer correctement la phases S. Au cours de la phase G2, la cellule se prépare pour la phase M. Dans un cycle, les quatre phases se succèdent dans un ordre immuable: G1, S, G2 et M. Les cellules en phase G1 ne poursuivent pas toujours le cycle cellulaire. Elles peuvent quitter le cycle cellulaire et entrer en phase d'attente (phase G_0). Pour assurer, d'une part, l'ordre immuable de la succession des quatre phases du cycle (régulation du cycle), et d'autre part, l'obtention de deux cellules filles rigoureusement identiques (surveillance de l'ADN), la cellule dispose de systèmes de régulation (checkpoints) hautement perfectionnés qui sont également sous la dépendance de facteurs externes et qui permettent une prolifération cellulaire correcte. Les événements et les différentes phases du cycle cellulaire sont connus depuis longtemps mais les mécanismes précis qui sont à la base de la régulation du cycle restent encore à élucider. Les dérèglements du cycle cellulaire conduisent à des proliférations anarchiques. L'intérêt majeur de l'étude de la régulation du cycle cellulaire et de ses points de surveillance réside dans le fait que ces processus sont souvent déréglés dans les cancers. La connaissance de la régulation du cycle cellulaire est donc fondamentale pour la cancérologie et peut servir à mettre au point de nouvelles approches thérapeutiques.

Parmi les études génétiques sur *Saccharomyces cerevisiae*, les différents travaux de Leland Hartwell de Paule Nurse et de Tim Hunt ont porté sur l'identification de divers gènes impliqués spécifiquement dans le contrôle du cycle cellulaire. La succession normale des différentes phases ne peut avoir lieu que si les différentes CDK intervenant au cours des différentes phases sont présentes et actives aux moments opportuns ce qui est régulé par l'intervention des cyclines. Les cyclines sont des protéines formées et dégradées au cours du cycle cellulaire, elles se fixent sur les molécules de CDK, régulant l'activité des CDK en les phosphorylant. La dégradation périodique de ces protéines est un mécanisme important du contrôle du cycle cellulaire. Un de ces gènes, appelé *CDC28*, contrôle la première étape de progression vers la phase G_1 où se trouve le principal point de contrôle appelé "Start". Pour dépasser ce point du contrôle les cellules doivent être capables d'intégrer de nombreuses informations provenant de leur environnement (le type de sources de carbone disponible et leur quantité, la présence ou non des sources d'azote, la présence de phéromones, les stress: thermiques, hypo-ou hyper osmotiques..). Chez la levure *S. cerevisiae* pour dépasser "Start" la population cellulaire doit avoir une certaine masse critique, appelée Ps, qui est modulée par les nutriments.

La valeur du Ps ainsi que le contenu protéique moyen changent selon les conditions de croissance : les cellules qui poussent dans une source riche en carbone, telle que le glucose, ont un Ps et un contenu protéique moyen plus grand par rapport aux cellules qui poussent dans une source pauvre de carbone comme l'éthanol.

Quand survient une variation de la source de carbone, la population de la levure doit moduler ces paramètres pour les réadapter à la nouvelle condition de croissance. Pendant une variation (shift-up) nutritionnelle entre une source pauvre en carbone comme l'éthanol pour une source riche comme le glucose, on observe un retard de la transition G1/S souligné par une diminution de la fraction des cellules bourgeonnantes (c'est à dire le % de cellules qui produisent des bougeons): durant cette période, les cellules accroissent leur masse jusqu'à atteindre une valeur précise pour la croissance en glucose (Alberghina et al., 1998).

Des études récentes ont montré que la protéine Far1 et la cycline Cln3 fait partie du mécanisme moléculaire impliqué dans la surveillance de la transition G1/S.

13.3 - L'inhibiteur FAR1 : Factor Arrest

La protéine Far1, ("mating Factor Arrest"), a été clonée pour permettre d'étudier son implication dans l'arrêt du cycle in G1 en présence des phéromones.

Far1 joue un rôle dans deux situations: induction à la polarisation et inhibition du complexe Cln3/Cdc28.

Far1 et l'induction à la polarisation :

Les levures bourgeonnantes sont des organismes chez lesquels une étroite coordination entre le cycle cellulaire et les événements morphogénétiques a été mise en évidence. Lors de la conjugaison, l'arrêt du cycle cellulaire est rendu possible par l'activation transcriptionnelle de Far1, qui est directement enclenchée par la voie des MAP kinases en réponse aux phéromones. L'orientation du cytosquelette d'actine soit vers le site de bourgeonnement, soit vers un partenaire sécrétant des phéromones lors de la conjugaison afin de s'orienter correctement par rapport au gradient morphogénétique, est sous le contrôle de l'activation de la GTPase Cdc42 par son facteur d'échange Cdc24. Pendant la phase G1 du cycle cellulaire, Cdc24 est séquestré dans le noyau par la protéine Far1. Lorsque les cellules atteignent une taille critique, le complexe cycline/Cdk Cdc28p-Cln est activé et conduit à la phosphorylation de Far1 qui est alors ubiquitinylée puis dégradée par le protéasome. Cdc24 alors libéré est exporté vers le cytoplasme où il est recruté spécifiquement vers le site de bourgeonnement par la GTPase Bud1. En revanche, en présence d'un gradient de phéromones, le complexe Cdc28-Cln est inhibé et Far1 stabilisé. Le complexe Far1-Cdc24 est alors transporté vers le cytoplasme grâce au NES ("Nuclear Export Signal" séquences des acides aminés qui active le transport des protéines au dehors du noyau), de Far1 reconnue par l'exportine Msn5, et Cdc24 est ciblé par Far1 non pas vers le site de bourgeonnement mais vers les récepteurs des phéromones activés. Les différents partenaires d'export nucléaire de Cdc24 contrôlent donc sa localisation subcellulaire et permettent ainsi la polymérisation localisée et polarisée du cytosquelette d'actine (figure 1.5: chapitre 1 – *Saccharomyces cerevisiae*).

Far1 et l'inhibition du complexe Cln1,2/Cdc28 :

Le complexe Cln3/Cdc28 permet, une fois activé, de dépasser Start et entrer dans la phase S. Le mécanisme par le quel Far1 inhibe le complexe n'est pas vraiment encore compris. Des études récentes ont permis de proposer un mécanisme qui implique Far1 et la protéine Sic1 : le deux inhibiteurs constitueront deux consécutifs checkpoints qui gouvernent l'entrée en phase S (Alberghina et al., 2004) (figure 1.7 : chapitre 1 – *Saccharomyces cerevisiae*).

Le premier "checkpoint", c'est-à-dire l'activation du complexe Cln3/Cdc28, est régulé par le rapport entre le niveau d'expression de la cycline Cln3 et Far1 (figure 1.6 : chapitre 1 *– Saccharomyces cerevisiae*). La qualité du milieu nutritif intervient sur le niveau d'expression de la cycline Cln3, tandis que la croissance cellulaire contrôle le niveau de traduction des ARNm de Cln3. Dès que le niveau du Cln3 dépasse d'une certaine valeur celle de Far1, Far1 est dégradée et Cdc28 libre de se lier à Cln3. Cela a deux conséquences :

a) le "budding" ou bourgeonnement proprement dit

b) la synthèse de l'ADN qui est aussi contrôlée par le deuxième inhibiteur Sic1 (deuxième checkpoint)

Les mutations du gène FAR1 :

Si le gène *CLN3* est délété on observe une augmentation de la masse cellulaire et du Ps par rapport au type sauvage et on observe le contraire quand le gène est surexprimé. Mais dans la souche sauvage (wild type) lorsque le niveau de la protéine Cln3 est régulé par un changement de la source de carbone, on observe que soit la masse, soit le Ps sont proportionnels au niveau du Cln3. Ces deux comportements peuvent être perçus comme contradictoires si on considère Cln3 comme la seule protéine qui contrôle l'entrée en phase S. Par contre le mécanisme qui voit impliqué Cln3 avec Far1 dans un contrôle réglé par le rapport entre les deux protéines peut expliquer ces comportements. Ce mécanisme prévoit une corrélation entre Far1 et la dimension cellulaire (figure 1.8: chapitre 1 – *Saccharomyces cerevisiae*).

On observe que la surexpression du gène *FAR1* (*FAR1^{tet}*) cause une augmentation de la taille cellulaire et du contenu protéique et que par contre, la délétion du gène (*far1* Δ) pousse les cellules à bourgeonner plus tôt (taille plus petite) par rapport à la souche sauvage (wild type). L'augmentation du contenu protéique en *FAR1^{tet}* a plus d'impact dans un milieu pauvre comme l'éthanol que dans un milieu riche en carbone comme le glucose (figure 1.9-1.10: chapitre 1 – *Saccharomyces cerevisiae*).

Si la délétion du gène *FAR1* entraîne une anticipation au niveau du bourgeonnement, on n'observe pas une différence au niveau de la synthèse de l'ADN (figure 1.11: chapitre 1 – *Saccharomyces cerevisiae*). Celui-ci indique qu'une deuxième étape de régulation déclenche et achève le passage entre le bourgeonnement et la synthèse de l'ADN: le "checkpoint" contrôlé par Sic1.

Lors du passage d'un milieu pauvre à un milieu riche (transition éthanol-glucose) chez les mutants $cln3\Delta$ et $far1\Delta$ on n'observe pas le retard de la transition G1/S qui entraîne une diminution caractéristique en pourcentage des cellules qui produisent des bourgeons. Ceci indique une mauvais contrôle dans le mécanisme d'adaptation à la nouvelle source de carbone en absence des components du premier "checkpoint" qui gouverne l'entrée en phase S (figure 1.12: chapitre 1 – *Saccharomyces cerevisiae*).

13.4 - But du travail de thèse

Les études conduites dans ce travail de thèse ont pour but d'approfondir la compréhension des mécanismes du cycle cellulaire de *Saccharomyces cerevisiae* en particulier ceux qui concernent la surveillance de la transition G1/S.

Deux expériences ont été principalement conduites :

- La première expérience a consisté à comparer les protéomes des souches qui différent par les 'locui' qui codent pour la protéine Far1 : le mutant dont le gène FAR1 est délété (far1Δ) et le mutant dont le gène est surexprimé (FAR1^{tet}) ont été comparés au type sauvage . Nous avons étudié la variation du protéome, soit dans la condition de croissance exponentielle en source pauvre (2% éthanol), soit en croissance exponentielle en source riche (2% glucose).
- le deuxième expérience consistée à observer le changement graduel du protéome pendant la transition nutritionnelle d'une source de carbone non fermentable comme l'éthanol à une source fermentable comme le glucose. A une souche sauvage en croissance exponentielle dans 2% d'éthanol nous avons ajouté 2% de glucose. Nous avons alors prélevé des échantillons de cellules à des temps différents pour suivre les modifications du protéome dans toute la phase d'adaptation à la nouvelle source de carbone. L'expérience a été conduite également sur la souche far1Δ, mais dans ce cas nous avons seulement obtenu des informations concernant la protéine Gvp36, laquelle pendant la variation nutritionnelle ("shift-up nutritionnel") appliquée à souche sauvage a été trouvée impliquée dans l'adaptation au glucose.

Un profil protéomique de ces souches a été obtenu par électrophorèse bidimensionnelle (2D-PAGE) conduisant à une étude comparative fondée sur la comparaison des images des gels par le programme d'analyse d'image PdQuest. Dans les gels obtenus d'une part à partir de la souche sauvage en croissance avec l'éthanol et d'autre part à partir de la souche sauvage en croissance avec le glucose, nous avons excisé et analysé toutes tous les taches de protéines (spots) visualisées. Par contre sur les gels des mutants nous avons excisé seulement les taches présentant des différences d'intensités. Les protéines correspondant aux taches ont été identifiés par spectrométrie de masse MS (MALDI-TOF) et dans certain cas par nanoLC-MS/MS (ESI-Q-TOF). Les résultats ainsi obtenus au niveau protéomique ont été comparés avec les résultats des analyses du transcriptome

(conduit par GeneChip®) effectués sur les cellules dans les mêmes conditions de croissance.

13.5 - Etudes sur les mutants du gène FAR1 : résultats et discussion

Les souches sauvages, far1 Δ et FAR1^{tet} de S. cerevisiae ont été mise en culture dans le milieu appelé CSM (Compleate Synthetic Medium) supplémenté avec YNB (Yeast Nitrogen Base) comme source d'azote. Les expériences ont été conduites en utilisant deux types de source de carbone. Soit en ajoutant 2% d'éthanol, soit en ajoutant 2% de glucose. 250 mg d'extrait protéique ont été déposés sur chaque gel 2D-PAGE (électrophorèse bidimensionnelle; strip 17 cm pH 3-10 non linear, grandient 7,5%-16%, GelCode[®]). Grâce au programme de comparaison des gels 2D-PAGE (PdQuest), nous avons pu mettre en évidence des variations d'intensités de certaines tâches (spots) avec des variations \geq 1.5, entre les trois souches avec les deux différentes sources de carbone (figure 10.1- tableau 10.2.1- 10.2.2- : chapitre 10 – Risultati – Studi sui mutanti nel gene FAR1). L'identification des protéines a été réalisée en appliquant la stratégie "Peptide Mass Fingerprint". Cette stratégie consiste à comparer les masses moléculaires expérimentales des peptides de digestion trypsique des protéines avec les masses moléculaires des peptides trypsiques prédites pour toutes les protéines présentent dans les banques de séquences protéiques de S. cerevisiae. Les spots excisés ont été analysés après réduction, alkylation et digestion avec la trypsine par un spectromètre de masse Ultraflex MALDI TOF-TOF et l'identification a été réalisée en utilisant la moteur de recherche Mascot avec les banque de données SwissProt, TrEMBL et NCBI. Les résultats de cette étude protéomique ont été comparés avec ceux des analyses du transcriptome avec GeneChip[®].

Dans ces études, nous avons observé que la variation au niveau protéomique n'était pas toujours en corrélation avec celle au niveau transcriptique. Cette observation a déjà été décrite dans la littérature.

En effet, nous avons observé, surtout lors de la phase de croissance exponentielle en milieu glucose, que l'expression de la plupart des gènes n'était détectable qu'au niveau du protéome. Les informations apportées par les études protéomiques complètent donc utilement celles qui ont été obtenues lors des études transcriptomiques. Lors des discussions sur les résultats obtenus dans ce travail de cette thèse, nous garderont toujours présent à l'esprit que la stratégie analytique que nous avons utilisée (gels 2D) ne permet la visualisation que seulement d'une partie du protéome. Il s'agit là d'une faiblesse bien connue de l'approche par gel 2D-PAGE. En effet, si les protéines identifiées ont été environ 400, les gènes analysés ont été 4500. Les tableaux 10.2.2-10.2.2 (chapitre 10 – Risultati – Studi sui mutanti nel gene *FAR1*) présentent la liste de toutes les protéines trouvées ayant une variation d'intensité dans les gels 2D des mutants par rapport au type sauvage en croissance dans l' éthanol et dans le glucose. Le tableau 10.1 présente le nombre total des protéines (spots) qui présentent un changement d'intensité sur les gels 2D et le pourcentage par rapport au total et de même pour la valeur au niveau du mARN.

Des informations claires et importantes ont été obtenues dans le cas du mutant surexprimant *FAR1*. En revanche, pour le mutant délété du gène *FAR1*, les analyses menées soit avec GeneChip (transcriptomique) soit par gel 2D-PAGE (protéomique), n'ont pas généré de données facilement interprétables. Il faut noter que le mutant *far1* Δ ne présente pas de phénotype macroscopique en phase de croissance exponentielle et donc que l'adaptation à la délétion du gène *FAR1* peut donner des variations très modérées et difficilement détectable avec les techniques utilisées.

Le mutant *FAR1^{tet}* présente, en croissance exponentielle en glucose, une induction de beaucoup de protéines ribosomales (11 protéines ribosomales surexprimées sur 24 protéines ribosomales visualisées en total sur le gel). Ceci pourrait expliquer l'augmentation de la masse Ps et suggérer un contrôle de la biosynthèse ribosomale par le premier "checkpoint" Far1/Cln3. Jorgensen et al. (2004) montrent que le contrôle par les nutriments de la réalisation de la masse critique peut être obtenu par la production des ribosomes. La biogenèse des ribosomes est en effet un processus très coûteux au niveau énergétique. On peut comprendre que pour bien synchroniser la synthèse protéique et les besoins énergétiques et métaboliques de la cellule il faut que la quantité de ribosomes soit bien compatible avec la croissance de la cellule et la quantité des nutriments disponibles. Nos données suggèrent la présence d'un "step" dans lequel le "checkpoint Far1/Cln3" régulerait grâce à un mécanisme de "feed back" la biosynthèse des ribosomes.

La régulation de ces protéines semblerait donc être faite seulement au niveau posttranscriptionnel du moins tant que les équivalents au niveau mARN ne varient pas. Pour avoir une confirmation des résultats obtenus nous avons mesuré le contenu de rARN par cellule. Il est en effet décrit dans la littérature que les niveaux d'expressions des protéines ribosomales peuvent influencer la transcription des rARN avec un mécanisme d'autorégulation dans le cas où la biosynthèse des ribosomes serait déséquilibrée (Zhao et al., 2003). On a donc vérifié le contenu en rARN par cellule en l'observant indirectement (par la méthode de l'orcinol) avec la mesure du RNA (dont le 90% est fait du rRNA). On a observé que pour le mutant *FAR1^{tet}* cultivé en glucose, le contenu en RNA par cellule est plus grand (induction de 45%) que celui de la souche sauvage (figure 10.4 : chapitre 10 – Risultati – Studi sui mutanti nel gene *FAR1*).

Une augmentation du contenu en ARN par cellule est observée dans le mutant *FAR1^{tet}*, en ceci non seulement en croissance exponentielle en glucose mais aussi en éthanol (induction de 30%), même si nous n'observons pas l'induction des protéines ribosomales. Cette discordance entre les valeurs des niveaux des protéines et rARN peut être la conséquence de la différence de sensibilité entre les techniques utilisées dans les deux cas. En choisissant un facteur de variation d'expression ("fold change") du niveau protéique majeur de 1.5 (au lieu de 50%) toutes les variations d'intensité faibles n'ont pas été prises en compte et il est possible que nous n'ayons ainsi par détecté des variations faibles mais néanmoins présentes en milieu éthanol.

Le mutant *FAR1^{tet}* en croissance exponentielle dans éthanol ne montre pas une induction des protéines ribosomales mais montre une augmentation du contenu protéique moyen qui est, par rapport au souche sauvage, proportionnellement plus important en milieu éthanol qu'en milieu glucose (50% au lieu de 15%). L'augmentation de la masse pourrait être liée à d'autres mécanismes n'impliquant pas forcément une induction des protéines ribosomales, comme pourrait l'être une synthèse protéique plus efficace. Dans la littérature on note un autre cas de divergence entre la biosynthèse ribosomale et la masse cellulaire. Il s'agit du cas mutant *fhl*1 Δ , délété d'un gène qui est très important pour la transcription des gènes ribosomaux, et qui présente une masse cellulaire normale associée à une très forte diminution de la synthèse ribosomale ainsi qu'à une croissance très lente.

Si le mutant *FAR1^{tet}* cultivé en milieu glucose montre une induction des protéines ribosomales, aucune induction significative n'est observée pour les gènes impliqués dans les deux principaux voies qui régulent la biogènese des ribosomes : la voie TOR (Target of Rapamycin) et celle du cAMP-PKA (cyclic AMP-protein kinase A). Au contraire, nous

observons l'induction de deux gènes qui font parti de deux voies normalement réprimées quand la voie TOR est active : la phosphorylation oxydative et la discrimination d'azote (tableau 10.3: chapitre 10 – Risultati – Studi sui mutanti nel gene *FAR1*).

Par ailleurs la souche FAR1^{tet} montre une modulation des voies du métabolisme des carbohydrates : en croissance exponentielle en milieu éthanol on observe une répression au niveau transcriptionnel et/au niveau traductionnel de beaucoup d'enzymes de la glycolyse et de la glycogenèse. En croissance exponentielle en milieu glucose on observe une surexpression des gènes impliqués dans le cycle du TCA et dans la voie qui convertit le phosphoénolpyruvate à acetyl-CoA (figure 10.2-10.3 : chapitre 10 – Risultati – Studi sui mutanti nel gene FAR1). Dans la littérature, il est rapporté que dans certains cas le flux du carbone dans le cycle du TCA peut augmenter lorsqu'il y a fermentation et que, plus précisément, les gènes impliqués dans le cycle du TCA et dans la phosphorylation oxydative peuvent être surexprimés quand l'activité de la glycolyse est basse, tout cela dans le but d'optimiser l'utilisation du glucose. En effet le rendement de l'ATP par mole de glucose et l'efficacité de la production de biomasse sont élevés quand le glucose est oxydé plutôt que fermenté (Sasaki et al., 2005). Il y par contre, une diminution de flux glycolytique ce qui cause une diminution de la vitesse de croissance Ceci n'a pas été observé dans le mutant où tous les paramètres de croissance sont réguliers. Il est possible que dans le mutant le flux du carbone soit partiellement dirigé dans le cycle du TCA ce qui permettrait de comprendre l'augmentation de la production de biomasse.

Nos données suggèrent donc une liaison entre *FAR1* avec le contrôle de la synthèse protéique, d'une part, et de la machinerie métabolique d'autre part .

13.6 - Etudes sur la variation nutritionnelle("shift-up") éthanol-glucose du type sauvage: résultats et discussion

Les cellules soumises à une variation nutritionnelle ("shift-up") d'une source pauvre en carbone, comme l'éthanol, à une source riche en carbone, comme le glucose, présentent un retard dans la transition de la phase G1 à la phase S. Ce retard est souligné par la diminution de la fraction des cellules bourgeonnantes et l'augmentation de la taille cellulaire pour arriver à la condition finale de la valeur Ps typique de la nouvelle condition nutritionnelle. Les conditions expérimentales sont les mêmes que pour les mutants du gène *FAR1*. A une souche sauvage en croissance exponentielle dans un

milieu à 2% d'éthanol nous avons ajouté 2% de glucose et nous avons prélevé les cellules lors des étapes de transition les plus importantes : phase de croissance exponentielle en éthanol (t0 = 0min), point de début de la diminution de la fraction des cellules bourgeonnantes (t1 = 40min), point plus bas de la diminution (t2 = 60min), point final de la diminution (t3 = 120min), approximative état final de la transition (t4 = 500min). Nous avons également prélevé des cellules pour un contrôle à l'équilibre en croissance exponentielle en glucose (Steady State in Glucose = 600min) (figure 11.1 : chapitre 11 -Risultati – Studi sullo shift-up nutrizionale del ceppo wild type). Sur l'ensemble des gels 2D-PAGE réalisés, environ 600 spots ont été visualisés lors de l'analyse protéomique par gel 2D-PAGE (figure 11.2 : chapitre 11 – Risultati – Studi sullo shift-up nutrizionale del ceppo wild type). Tous les spots du gel 2D-PAGE au temps t0 ont été systématiquement analysés par spectrométrie de masse pour identification des protéines présentes. Pour les autres gels 2D-PAGE nous avons d'abord réalisé une analyse d'image pour détecter les taches présentant des changement d'intensité.. Nous avons ainsi détectés 141 spots, présentant une variation d'intensité et 115 protéines différentes ont pu être identifiées pour cette transition. La plupart des protéines identifiées pour l'ensemble des spots détectés (600 spots, pour t0) se sont révélées être d'origine mitochondriale ou cytoplasmique. Ceci reflète les limites des techniques utilisées et rappelle que la stratégie analytique utilisée favorise l'identification d'un groupe limité de protéines et en particulier les protéines solubles. Il est en effet bien connu que l'analyse par gel 2D-PAGE est bien adaptées aux protéines solubles qui ne nécessitent par l'utilisation de détergents ioniques. Ceux-ci sont proscrits, puisqu'ils ne sont pas compatibles avec la première dimension de l'analyse 2D (électrofocalisation). Les protéines hydrophobes, et en particuliers, les protéines membranaires échappent donc à nos analyses protéomiques. Mais il est important de noter que notre étude porte surtout sur des protéines dont on pense qu'elles sont solubles de part leur fonction. L'approche par gel 2D-PAGE que nous avons adoptée peut donc être considérée comme relativement bien adaptée au problème.

Les protéines qui présentent une variation d'intensité comprennent les enzymes impliqués dans le cycle du TCA et du métabolisme des hydrates de carbone, des acides aminés et des lipides (figure 11.7 : chapitre 11 – Risultati – Studi sullo shift-up nutrizionale del ceppo wild type).

Nous avons observé sept modulations d'intensité bien différentiées (figure 11.4 : chapitre 11 – Risultati – Studi sullo shift-up nutrizionale del ceppo wild type). Les plus intéressantes correspondent aux protéines qui présentent une augmentation ou une diminution du niveau d'expression en corrélation avec la diminution de la fraction des cellules bourgeonnantes. Ces variations peuvent indiquer une implication des ces protéines dans les mécanismes d'adaptation aux nouvelles conditions. Certaines protéines comme Kgd1, Adh2, Leu4, et Ald6 ont été identifiées dans plus d'une tâche (spot) avec différents comportements au niveau de variation d'intensité (figure 11.16 : chapitre 11 - Risultati - Studi sullo shift-up nutrizionale del ceppo wild type). Ceci pourrait correspondre à différentes formes de la protéine (maturation, modifications post-traductionnelles) qui sont modulées différemment et donc qui ont différents rôles pendant la transition. Dans les protéines qui présentent un pic d'expression pendant la variation nutritionnelle ("shift-up"), nous avons identifié les protéines Idh2, Tdh3 et Tpi1 qui font partie du métabolisme des intermédiaires. Notre attention a été attirée surtout par deux protéines qui ont un pic d'expression et qui n'ont pas encore un rôle connu dans la littérature: Gvp36 e Yjr070c. La protéine Yjr070c est similaire à la protéine Mmd1p de la levure *S. pompe* qui est destinée à qui joue un rôle dans l'entretien de la morphologie et de la distribution mitochondriale (Weir et al., 2004). Nos études se sont focalisées sur Gvp36 ("Golgi Vescicle Protein of 36 kDa") puisque les seules informations présentes dans la littérature suggèrent une implication dans le contrôle de la transition G1/S (Stevenson et al., 2001; Deutschbauer et al., 2002; Xie et al., 2005). Cette protéine n'est pas détectée ans l'éthanol et elle apparaît seulement après l'ajout de glucose avec un pic d'expression lors de la diminution de la fraction des bourgeonnantes pour redevenir très faiblement détectée dans le glucose (figure 11.9: chapitre 11 - Risultati - Studi sullo shift-up nutrizionale del ceppo wild type). Pour mieux comprendre le rôle de cette protéine nous avons réalisé une série d'expériences pour la caractérisation du phénotype du mutant délété du gène GVP36 (figure 11.11-11.12-11.13 : chapitre 11 – Risultati – Studi sullo shiftup nutrizionale del ceppo wild type). Le mutant n'est pas capable de croître en présence d'éthanol et ce défaut parait provenir d'une augmentation de sensibilité à l'éthanol et non pas à la capacité de l'utiliser comme source de carbone ou à un défaut particulier aux réponses aux stress. Ce résultat parait en accord avec la liaison entre Gvp36 et la protéine Hsp82 qui est la seule protéine connue pour interagir avec Gvp36 (Millson et al., 2005). En effet, l'augmentation de la transcription du Hsp82 induit une résistance à l'éthanol et à l'acétaldéhyde et ses niveaux de mARN présentent une augmentation après exposition
à l'éthanol. L'interaction avec Hsp82 pourrait expliquer la sensibilité à l'éthanol sans que d'autres défauts dans d'autres réponses aux stress soient observés.

En croissance aussi bien en milieu glucose comme source de carbone qu'en milieu glycérol, nous observons un temps de division de la souche $gvp36\Delta$ important par comparaison au type sauvage. Puisque la fraction des cellules bourgeonnantes est voisine de celles des deux souches dans les deux conditions, ceci suggère que le retard de la croissance est le même dans tout le cycle cellulaire. En autre, la souche $gvp36\Delta$ a un volume et un contenu protéique moyen faible ar rapport à ceux du type sauvage ce qui pourrait indiquer une implication de la Gvp36 dans le control de la croissance par les nutriments. En exposant le mutant $gvp36\Delta$ à la variation nutritionnelle ("shift-up") de glycérol (3%) à glucose (2%), nous observons que la diminution en fraction des cellules bourgeonnantes n'est pas présente (figure 11.14 : chapitre 11 – Risultati – Studi sullo shift-up nutrizionale del ceppo wild type). Nous avons aussi étudié la modulation de la protéine pendant la variation nutritionnelle de l'éthanol au glucose dans le mutant far 1Δ et nous avons montré que lui aussi ne présentait pas de diminution de la fraction des cellules bourgeonnantes. Dans ce cas la protéine Gvp36 ne présente aucune variation d'intensité. Donc, nous pouvons dire que Gvp36 présente une augmentation d'intensité pendant la diminution de la fraction des cellules bourgeonnantes et quand cette diminution n'est pas observée, comme dans le cas du mutant far1 Δ , la protéine ne présente plus aucune modulation. En outre, la délétion du GVP36 conduit à une altération d'adaptation au glucose qui ressemble à celle qu'on observe pour la souche far1 Δ .

L'ensemble de ces données suggèrent donc que Gvp36 fait parti d'une voie qui associe le contrôle de la masse critique pour l'entrée en phase S avec le mécanisme qui contrôle l'apparition du bourgeon.

Conclusion générale:

Les études protéomiques conduites dans ce travail de thèse ont permis d'ajouter des données qui pourraient aider la compréhension des mécanismes du cycle cellulaire de *Saccharomyces cerevisiae*.

Une partie de ces études a apporté des informations sur les variations du protéome après modifications au niveau génétique du gène *FAR1*. Nous avons ainsi montré que ce gène

participait au mécanisme moléculaire impliqué dans la surveillance de la transition G1/S. Ces données permettent de proposer l'existence d'une interaction entre *FAR1* et le contrôle de la synthèse protéique, d'une part, et de la machinerie métabolique d'autre part.

L'autre partie de ce travail a mené, grâce à l'analyse du protéome de la souche sauvage pendant une modulation nutritionnelle, à la mise en évidence d'une protéine ayant un rôle encore inconnu, Gvp36. Cette protéine est probablement implique dans le mécanisme d'adaptation à glucose. L'ensemble des données obtenues dans les différentes études sur cette protéine suggère que Gvp36 fait partie d'une voie qui associe le contrôle de la masse critique pour l'entrée en phase S avec le mécanisme qui contrôle l'apparition du bourgeon.

ENGLISH SUMMARY

"Nutritional modulation of *Saccharomyces cerevisiae* proteome in wild type and mutated strains in the *FAR1* gene, encoding a negative regulator of the G1 to S transition"

14.1 - Introduction

In eukaryotic cells *Saccharomyces cerevisiae* molecular mechanisms of cell proliferation require a precise coordination between cell growth and cell division, but the events of this coordination are not completely understood. The aim of this project was to study the effects of specific perturbation (alterations in gene expression involved in regulatory networks that control the cell cycle as well as its modulation by environmental factors, notably the carbon source) on the coordination between cell growth and division in the eukaryotic model *Saccharomyces cerevisiae*. The approach required integration of physiological studies with proteomic techniques, such as 2D-PAGE separation coupled to mass spectrometry analysis. Measurements of physiological parameters allowed ascertaining global parameters of cell growth and division, while proteomic analysis, that is the main subject of this thesis, allowed molecular comparison among the different studied situations.

In *Saccharomyces cerevisiae* the main event regulating the "Start" of new cycle is the reaching of a nutritionally modulated critical cell size (Ps) which is required to start the budding process and DNA replication. The cell size and the average protein content are characteristic of each growth condition. When there is a change of carbon source the yeast population modifies these parameters resetting them after a transitory period to reach Ps and protein content typical of the new growth condition.

Recent studies on the molecular basis of the mechanisms controlling the setting of cell size showed evidence that Far1, a cyclin kinase-dependent inhibitor (Cki), cooperates with Cln3, originating a first threshold controlling start execution [Chang et al., 1990]. Increased level of Far1 increased cell size and Ps, whereas cells lacking *FAR1* (*far1* Δ strain) started bud emergence and DNA replication at smaller size than wild type. A

second threshold follows the first one and involves the Clb5,6-specific cyclin-dependent inhibitor Sic1 and controls the onset of DNA replication [Alberghina et al., 2004].

In this study we compared the proteomic profile of cells growing exponentially in media supplemented with ethanol or glucose in the wild type, $far1\Delta$ and FAR1 overexpressed (FAR1^{tet}) strains. The proteomic comparative analysis results were integrated with genome wide transcriptional profiling to obtain more information about genes and protein regulations. We conduced also a nutritional shift-up from ethanol to glucose medium in wild type strain. During a nutritional ethanol-glucose shift-up there is a drop in the fraction of budding cells while at the same time Ps increases [Vanoni et al., 1983; Alberghina et al., 1998]. When the components of the first threshold are missing, such as in $cln3\Delta$ and $far1\Delta$ strains, the characteristic drop in the fraction of budding cells is not observed. The exponential growth condition in these media have been largely studied in literature: we focused on intermediate conditions during the transition observing changes in protein expression to look for possible new information on the controls of growth and cell cycle progression by nutrients. All comparative analysis of proteomic expression levels between the different situations was performed to take particularly care to maintain the same experimental conditions. The spots were visualized with GelCode®, compared with PdQuest software and analyzed with Ultraflex MALDI TOF-TOF and ESI-Q-TOF.

14.2 - Proteomic analyses of FAR1 gene mutants

We compared the proteome of wild type, $far1\Delta$ and $FAR1^{tet}$ strains exponentially grown in ethanol and glucose medium and afterward we observed the correlation between the mRNA data obtain in the same conditions.

We found that mRNA response is often not predictive of protein response especially for cells grown in glucose medium. Major results concerned *FAR1^{tet}*. This strain showed, in exponential growth in glucose medium, post-transcriptionally induction of many ribosomal proteins without a change in the pattern of expression in the encoding mRNAs: these data could explain the increase of cell size and Ps in this mutant and could indicate a control on ribosomal biosynthesis by the first threshold. *FAR1^{tet}* strain also showed an increase in total RNA per cell compared to wild type in exponential growth in glucose (induction of about 45%). These data are in agreement with the existence of an

autoregulation mechanism of ribosome biosynthesis in *FAR1^{tet}* mutant; before, Zhao *et al.*, 2003 found that ribosomal proteins can regulate rRNA synthesis, with an autoregulation mechanism, if ribosome biosynthesis is unbalanced. Moreover, *FAR1^{tet}* strain showed, during exponential growth in ethanol, a down-regulation of many glycolysis/gluconeogenesis genes both at transcriptional and translational level. Our data then suggest a link of *FAR1*, involved in the first threshold, between the protein synthesis regulation on one hand and the metabolic machinery on the other.

14.3 - Proteomic study of nutritional shift-up

During a nutritional shift-up from ethanol to glucose medium in wild type strain we analysed and compared the proteome of the most relevant steps of transitory phase: the exponential growth in ethanol, the start time, minimum and limit of budding drop, and the reaching of Ps and protein content typical of exponential growth in glucose condition. Among the about 600 spots visualized for gels, 141 spots, corresponding to 115 different proteins, showed different expression level during nutritional shift-up. We observed eight patterns of time-dependent expression during the transition and particular interesting were the proteins that have a peak or minimum of expression corresponding to the midway of adaptation (the minimum of budding drop). This behaviour could suggest that the proteins detected in these spots are involved in the control of adaptation to the new carbon source. Some of the detected proteins were found in more than one spot with different patterns of time-dependent expression, suggesting the presence of posttranslational modifications or splicing variants with different role. Our experimental method allowed us to detect mainly high expressed cytoplasmic and mitochondrial proteins, certainly limiting our analysis to particular groups of proteins: the largest group of proteins that was differentially expressed during nutritional shift-up comprises enzymes involved in TCA cycle and in carbohydrate, amino acids and lipid metabolism. Whereas the major part of intermediary metabolism proteins had a linear decrease or increase after glucose addition, Idh2, Tdh3 and Tpi1 (encoding respectively for isocitrate dehydrogenase 2, glyceraldehyde-3-phosphate dehydrogenase 3 and triosephosphate isomerase 1) had a peak of expression corresponding to the minimum in the fraction of budded cells, suggesting that they may have a high coefficient in regulating metabolic flux [Thomas et al., 1998]. Among the proteins that showed a peak of expression corresponding to the midway of adaptation, we found two proteins of unknown function: Yjr070c and Gvp36. The first protein has a similarity of S. pombe Mmd1p and this suggested that it might play a role in maintaining normal mitochondrial morphology and distribution. The spot detected as Gvp36, was not visualized in ethanol medium and appeared only transiently after glucose addition with a peak of expression corresponding with the minimum of budding index. Since our data suggested a possible involvement of Gvp36 in cell cycle regulation in accordance with low-resolution data obtained from a genetic screening [Stevenson et al., 2001; Xie et al., 2005; Deutschbauer et al., 2002], we decided to better understand Gvp36 role. $gvp36\Delta$ strain was generated by standard gene disruption technique and the phenotype of the deletion mutant was studied under different steady states and transient growth conditions (nutritional shift up growth condition). We found that the deletion mutant could not grow in ethanol medium: this defect was due to a particular sensitivity to ethanol and it doesn't concern heat shock and osmotic stress response. In glucose supplemented medium $gvp36\Delta$ mutant had lower average protein content, while no size difference was shown in glycerol medium: these data could indicate a Gvp36 involvement in cell size control in response to nutrients. We analyzed also $gvp36\Delta$ behaviour in nutritional shift-up from glycerol to glucose medium: it didn't delay S phase entrance during the transition, showing a defect in the adaptation to the new carbon source. Moreover, in the $far1\Delta$ mutant subjects to nutritional shift-up from ethanol to glucose medium, that is unable to modulate budding during the transitory phase, we didn't find a modulation of Gvp36 like we found in wild type strain. These and other data obtained suggest that Gvp36 may be involved in nutritional modulation of the G1 to S transition, taking part in a pathway which links Far1 to budding.

BIBLIOGRAFIA

Alberghina L, Smeraldi C, Ranzi BM, Porro D. Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry. Journal of Bacteriology 1998, 180(15):3864-3872

Alberghina L, Rossi RL, Querin L, Wanke V, Vanoni M. A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. The Journal of Cell Biology 2004, 167(3): 433–443

Apweiler R, Bairoch A, Wu CH. Protein sequence databases. Curr Opin Chem Biol 2004 Feb, 8(1):76-80

B-----Bahr U, Zeng J, Gleitsmann E, Karas M. Delayed extraction time-of-flight MALDI mass spectrometry of proteins above 25,000 Da. J Mass Spectrom 1997, 32:1111-1116

Barnett JA. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850-1880. Yeast 2000, 16(8):755-771.

Barr MM. Super models. Physiol Genomics 2003, 13:15-24

Barrientos A. Yeast models of human mitochondrial disaeses. IUBMB Life 2003, 55:83-95

Beavis RC, Chait BT. High-accuracy molecular mass determination of proteins using matrix-assisted laser desorption mass spectrometry . Anal Chem 1990, 62(17):1836-1840.

Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem 1982, 257(6):3026-3031

Biemann K. Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 1990,193:886-7 Blondel M, Galan JM, Chi Y, Lafourcade C, Longaretti C, Deshaies R.J, Peter M. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4.

EMBO J 2000, 19:6085-97

Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications.

J Biochem Biophys Methods 1982, 6(4):317-339

Bradford MM.

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254

<u>C-----</u>

Camarasa C, Grivet JP, Dequin S. Investigation by (13)C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology 2003, 149:2669-2678

Chang F, Herskowitz I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 1990, 63:999-1011.

Castrillo JI, Oliver SG. Yeast as a touchstone in post-genomics research: strategies for integrative analysis in functional genomics. J Biochem Mol Biol 2004, 37:93-106

Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A. The Need for Guidelines in Publication of Peptide and Protein Identification Data. Molecular & Cellular Proteomics 2004, 3(6):531

Coles JN, Guilhaus M. Resolution Limitations from Detector Pulse-Width and Jitter in a Linear Orthogonal-Acceleration Time-of-flight Mass Spectrometer. J Am Soc Mass Spectrom 1994, 5:772-778

<u>D-----</u>

Deutschbauer AM, Williams RM, Chu AM, Davis RW.

Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae.

PNAS 2002, 99(24): 15530-15535

<u>F-----</u>

Fortis F, Girot P, Brieau O, Castagna A, Righetti PG, Boschetti E. Isoelectric beads for proteome pre-fractionation. II: experimental evaluation in a multicompartment electrolyzer. Proteomics 2005, 5(3):629-638

Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. A sampling of the yeast proteome. Molecular and Cellular Biology 1999, 19(11) 7357-7368

<u>G</u>------Garrels JI, McLaughlin CS, Warner JR, Futcher B, Latter GI, Kobayashi R, Schwender B, Volpe T, Anderson DS, Mesquita-Fuentes R, Payne WE. Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins. Electrophoresis 1997, 18(8):1347-60

Giaver G, Chu AM, Ni L, Connelly C, Riles L. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002, 418:387-391

Giometti CS, Gemmell MA, Tollaksen SL, Taylor J. Quantitation of human leukocyte proteins after silver staining: a study with twodimensional electrophoresis. Electrophoresis 1991, 12(7-8):536-43

Gluckmann M, Karas M. The initial ion velocity and its dependence on matrix, analyte, and preparation method in ultraviolet matrix-assisted laser desorption/ionization. J Mass Spectrom 1999, 34:467–477

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG. Life with 6000 genes. Science 1996 25, 274(5287):546, 563-567

Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R. Complementary Profiling of Gene Expression at the Transcriptome and Proteome Levels in Saccharomyces cerevisiae. Mol Cell Proteomics 2002, 1:323-333

Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19(3):1720-1730

Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional electrophoresis-based proteome analysis. Proc Natl Acad Sci U.S.A. 2000, 97:9390-9395 *H*-----

Hahn S, Guarente L. Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science 1988, 240:317-321

Hartwell LH, Culotti J, Pringle JR, Reid BJ. Genetic control of the cell division cycle in yeast. Science 1974, 183(120): 46-51

Hazbun TR, Malmstrom L, Anderson S, Graczyk BJ, Fox B, Riffle M, Sundin BA, Aranda JD, McDonald WH, Chiu CH, Snydsman BE, Bradley P, Muller EG, Fields S, Baker D, Yates JR, Davis TN. Assigning function to yeast proteins by integration of technologies. Mol Cell 2003, 12:1343-1365

Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev 1997, 11(22):3046-3060.

Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A. 1993, 90(11):5011-5015

Huh WK, Falvo JV, Gerke LC, Carrol AS, Howson RW, Weissman JS and O'Shea EK. Global analysis of proteins localisation in budding yeast. Nature 2003, 425: 686-691

Hubler L, Bradshaw-Rouse J, Heideman W. Connections between the Ras-cyclic AMP pathway and G1 cyclin expression in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 1993, 13:6274-82

*I-----*Ibel K, May RP, Kirschner K, Szadkowski H, Mascher E, Lundahl P. Protein-decorated micelle structure of sodium-dodecyl-sulfate--protein complexes as determined by neutron scattering. Eur J Biochem 1990, 190(2):311-318

J-----James P, Quadroni M, Carafoli E, Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993, 195(1):58-64

James P, Quadroni M, Carafoli E, Gonnet G. Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci 1994, 3(8):1347-1350 Jensen ON, Vorm O, Mann M. Sequence patterns produced by incomplete enzymatic digestion or one-step Edman degradation of peptide mixtures as probes for protein database searches. Electrophoresis 1996, 17(5):938-944

Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 2004, 8(1):33-41

Jorgensen P, Tyers M. How Cells Coordinate Growth and division. Curr Biol 2004, 14(23): R1014-1027

Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a review. J Proteome Res 2004, 3(3):350-63

<u>K-----</u>

Kahn P. From genome to proteome: looking at a cell's proteins. Science 1995, 270(5235):369-370

Katta V, Chow DT, Rohde MF. Applications of In-Source Fragmentation of Protein Ions for Direct Sequence Analysis by Delayed Extraction MALDI-TOF Mass Spectrometry Anal Chem 1998, 70(20):4410-4416.

Karas, M., Bachmann, D., Hillenkamp, F., Influence of the Wavelength in High-Irradiance Ultraviolet-Laser Desorption Mass-Spectrometry of Organic Molecules. Anal Chem 1985, 57: 2935

Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 1987, 53-68

Karas M, Bahr U, Strupat K, Hillenkamp F, Tsarbopoulos A, Pramanik BN. Matrix Dependence of Metastable Fragmentation of Glycoproteins in MALDI TOF Mass Spectrometry. Anal Chem 1995, 67(3):675-679

Kjeldesen T. Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 2000, 54(3):277-286. Klose J.

Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975, 26(3):231-243

Krishna RG, Wold F. Post-translational modification of proteins. Adv Enzymol Relat Areas Mol Biol 1993, 67:265-298

Kumar A, Snyder M. Emerging technologies in yeast genomics. Nat Rev Genet 2001, 2:302-312

Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M. Subcellular localisation of the yeast proteome. Gene Dev. 2002, 16:707-719

<u>L</u>-----

Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M. The DNA replication checkpoint response stabilizes stalled replication forks.

Nature 2001, 412(6846):557-561

Low TY, Seow TK, Chung MC. Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2002, 2(9):1229-1239

<u>M------</u>

Mann M, Hojrup P, Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases.

Biol Mass Spectrom 1993, 22(6):338-345

Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol 2003, 21(3):255-261

Meaden PG, Dickinson FM, Mifsud A, Tessier W, Westwater J, Bussey H, Midgley M. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Yeast 1997, 13(14):1319-27

Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eucaryotic Cell 2005, 4(5):849-60 N-----

Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, Sicheri F, Pawson T, Tyers M.

Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication.

Nature 2001, 414(6863):514-21

0-----

O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250(10):4007-4021

P-----

Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 1993, 3(6):327-332

Pedersen SK, Harry JL, Sebastian L, Baker J, Traini MD, McCarthy JT, Manoharan A, Wilkins MR, Gooley AA, Righetti PG, Packer NH, Williams KL, Herbert BR. Unseen proteome: mining below the tip of the iceberg to find low abundance and membrane proteins.

J Proteome Res 2003, 2(3):303-311

Pemberton LF, Blobel G. Characterization of the Wtm Proteins, a Novel Family of Saccharomyces cerevisiae Transcriptional Modulators with Roles in Meiotic Regulation and Silencing. Mol Cell Biol 1997, 17(8):4830-41

Polesello S. I sistemi GC/MS e LC/MS: recenti sviluppi. Laboratorio 2000

Posthumus MA, Kistemaker PG, Meu-. zelaar HLC, Ten Noever de Brauw. MC. "Laser Desorption-Mass Spectrometry of Polar Nonvolatile Bio-Organic Molecules," Anal. Chem., vol. 50, No. 7, pp. 985-991, 1978

Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence Project: update and current status. Nucleic Acids Res 2003, 31:34-37

<u>*R-----*</u> Rabilloud T.

Mechanisms of protein silver staining in polyacrylamide gels: a 10-year synthesis. Electrophoresis 1990,11(10):785-94

Rabilloud T, Adessi C, Giraudel A, Lunardi J. Improvement of the solubilization of proteins in two-dimensional. Electrophoresis. 1997, 18(3-4):307-316

Rabilloud T, Strub JM, Luche S, van Dorsselaer A, Lunardi J. A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 2001, 1(5):699-704

Rappsilber J, Mann M. Is mass spectrometry ready for proteome-wide protein expression analysis? Genome Biol 2002, 3(8)

Reed LJ. Multienzyme complexes. Acc Chem Res 1974, 7:40-46

Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 1984, 11(11):601

Romijn EP, Krijgsveld J, Heck AJ. Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics. J Chromatogr A. 2003, 1000(1-2):589-608

Richert S, Luche S, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T. About the mechanism of interference of silver staining with peptide mass spectrometry. Proteomics 2004, 4(4):909-16

Righetti PG, Castagna A, Antonioli P, Boschetti E. Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis 2005, 26(2):297-319

S------

Shamji AF, Kuruvilla FG, Schreiber SL. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. *Curr Biol* 2000, 10: 1574-1581

Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci. USA 1993, 93: 14440–14445

Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68(5):850-8 Speicher KF, Kolbas O, Harper S, Speicher SW. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech 2000, 11:74-86

Spengler B, Kirsch D, Kaufmann R, Jaeger E. Peptide sequencing by matrix assisted laser desorption mass spectrometry. Rapid Commun Mass Spectrom 1992, 6:105-108

Stephens W. William Stephens presents concept of linear time-of-flight mass spectrometer (TOFMS) at American Physical Society meeting in Cambridge,MA. Phys Rev 1946, 69:691 and Bull Am Phys Soc 1946, 21(2):22

Stevenson LF, Kennedy BK, Harlow E. A large-scale overexpression screen in Saccharomyces cerevisiae identifies previously uncharacterized cell cycle genes. Proc Natl Acad Sci U S A2001, 98(7):3946-51

Strupat K, Karas M, Hillenkamp F, Eckerskorn C, Lottspeich F Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis . Anal Chem 1994, 66(4):464-470

Suckau D, Cornett L, Krauter KO. Automatic acquisition of MALDI-TOF mass spectra. Analusis Magazine 1998, 24(10)

<u>T</u>-----Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom 1988, 2:151

Tercero JA, Diffley JF. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 2001, 412(6846):553-557

Thomas S, Fell DA. The role of multiple enzyme activation in metabolic flux control. Adv Enzyme Regul 1998, 38:65-85

Trumbly RJ. Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 1992, 6:5–21 V_____

Valtz N, Peter M, Herskowitz I. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J Cell Biol 1995, 131:863-73

Vanoni M, Vai M, Popolo L, Alberghina L. Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. J Bacteriol 1983, 156(3):1282-1291

Vanoni M, Rossi RL, Querin L, Zinzalla V, Alberghina L.. Glucose modulation of cell size in yeast. Biochem Soc Trans 2005, 33: 294-296

Vorm O, Mann M. Improved Mass Accuracy in Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Peptides. J Am Soc Mass Spectrom 1994, 5:955-958

W-----

Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001, 19:242-247

Weir BA, Yaffe MP. Mmd1p, a novel, conserved protein essential for normal mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 2004, 15(4):1656-65

Well WA. Does size matter? J Cell Biol 2002, 158:1156-1159

Westbrook J, Feng Z, Chen L, Yang H, Berman HM. The Protein Data Bank and structural genomics. Nucleic Acids Res 2003, 31:489-491

Wiget P, Shimada Y, Butty A, Bi E, Peter M. Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating. EMBO J 2004, 23(5):1063-1074

Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 1996, 14(1):61-65 Winzeler EA, Shoemarker DD, Astromff A, Liang H, Anderson K. Functional characterization of the S.cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285: 901-906

Wu CH, Yeh LS, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu Z, Kourtesis P, Ledley RS, Suzek BE The Protein Information Resource. Nucleic Acids Res 2003, 31:345-347

X-----Xie MW, Jin F, Hwang H, Hwang S, Anand V, Duncan MC, Huang J. Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. PNAS 2005, 102(20):7215-20

<u>Y</u>-----Yan JX, Harry RA, Spibey C, Dunn MJ. Postelectrophoretic staining of proteins separated by two-dimensional gel electrophoresis using SYPRO dyes. Electrophoresis 2000, 21(17):3657-3665

Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ. A modified silver staining protocol for visualization of proteins compatible with matrixassisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000, 21(17):3666-3672

Yates JR 3rd, Speicher S, Griffin PR, Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 1993, 214(2):397-408

Z-----Zhang N, Osborn M, Gitsham P,Yen K, Miller JR, Oliver SG. Using yeast to place human genes in functional categories. Gene 2003, 303:121-129

Zhao Y, Sohn J, Warner JR. Autoregulation in the biosynthesis of ribosomes. MCB 2003, 23(2): 699–707

Zeng Q, Morales AJ, Cottarle G. Fungi and humans:closet than you think. Trends Genet 2001, 17:682-684

Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry (p 337-366) Mass Spectrom Rev 1998, 17(5):337-366 Zhou J, Ens W, Standing KG, Verentchikov A. Kinetic energy measurements of molecular ions ejected into an electric field by matrixassisted laser desorption. Rapid Commun Mass Spectrom 1992, 6(11):671-678

GRAZIE!

Ringrazio la Prof.ssa Marzia Galli Kienle d'avermi dato l'opportunità di svolgere questa tesi di dottorato e di avermi guidato durante questi anni di tesi.

Ringrazio il Prof. Marco Vanoni per avermi accolto nel suo laboratorio e seguito nella parte più biologica di questa tesi.

Ringrazio il Prof. Fulvio Magni per il suo aiuto nella parte di spettrometria di massa. Ringrazio tutto il laboratorio di spettrometria di massa del DIMESAB: Carmen, Lucia, Noemi, Sonia, Teresa, Chiara, Clizia, Federica, Giao, Niccoló, Andrea, Davide e Marco per i momenti intra e extra laboratorio.

Ringrazio il "nuovo" laboratorio di proteomica del Dipartimento di Biotecnologie e Bioscienze: Lorenzo e Valeria per la collaborazione e per la paziente condivisione di tutti i problemi!

Ringrazio la Prof.ssa Marina Pitto e la Prof.ssa Fiamma Ronchetti per aver accettato di esaminare il mio lavoro di tesi.

Je veux remercier vivement le Prof. Alain Van Dorsselaer de m'avoir toujours bien accueillie et dirigé dans tout le période français. Tout le période passé au laboratoire LSMBO a été pour moi une expérience précieuse et accroissante dans le côté pas seulement professionnel mais aussi humain. Pour cela je remercie toutes les personnes qui travaillent dans le LSMBO:

Raimond pour les premières leçons de masse, Christelle pour la premier collaboration en protéomique, les copines du labo Florence, Stéphanie L., Stéphanie B., Hélène, Elsa, Sarah, Sophie, Christine C., Karine, Nükhet et tous les copains Guillaume, Laurent, Haiko, François, Fabrice, Dimitri pour tous les moments amusants et pour leur enthousiasme, Jean-Marc pour tout son aide et ses calissons, Danièlle pour son apprentissage d' électrophorèse bidimensionnelle, Emmanuelle pour ses conseils, Véronique pour tout son aide dans le monde de la burocratie française : je vous remercie pour tout votre apprentissage en langage de masse et en langage français!!

Merci au Prof. Claude Kedinger et à Christine Schaeffer, pour avoir accepté d'évaluer mon travail.

Grazie infine e soprattutto ai miei genitori che sono stati il mio supporto fisico e psicologico in ogni momento e in ogni trasferta.....