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I. Introduction 

1. The oxazoline ring 

Hererocycles represent important structural motifs in organic chemistry, serving as latent 

functionalities for the construction, elaboration and functionalisation of organic molecules. They 

are also used as protecting groups for sensitive moieties in synthetic sequences and for directing 

chemical reactions when acting as organocatalysts1 or as chiral ligands in metal-catalysed 

reactions.2 A very well established class of heterocyclic units are the 4,5-dihydro-1,3-oxazole 

rings which are present in many biologically active natural products.3 The rigid and quasi-planar 

4,5-dihydro-1,3-oxazoles, commonly known as 2-oxazolines or simply oxazolines (Figure 1.1.1), 

first appeared in the literature in 1884.4  

 

N

O
R

4

5
R = H, alkyl, aryl

 
Figure 1.1.1: 4,5-dihydro-1,3-oxazole 

 

When the oxazoline ring contains a substituent (other than hydrogen) at the 4- and/or the 

5-carbon positions, the molecule is chiral. Early attempts to obtain enantiomerically pure 

compounds go back to E. Fischer, in 1894. A number of reliable preparative methods developed 

for this heterocycle at that time are still valuable and in use today. Oxazolines are usually 

prepared from α-amino alcohols (easily obtained by reduction of the corresponding α-amino 

acids) and nitriles or carboxylic acid derivatives (chiral pool-based synthesis, see Scheme 1.1.1).5  

One major advantage that oxazolines offer to the synthetic chemist is the fact that they 

can readily be prepared in enantiomerically pure form from optically pure α-amino alcohols. 

This attractive characteristic along with their stability towards hydrolysis and oxidation renders 

the oxazoline unit suitable for the design of chiral ligands for enantioselective catalysis. Indeed, 

upon N-coordination, the stereodirecting substituents are located in close proximity to the metal 

centre and high selectivities may be expected in catalytic reactions.  
                                                 
1 For examples, see: a) G. C. Fu, Acc. Chem. Res. 2004, 37, 542; b) K. N. Houk, B. List, Acc. Chem. Res. 2004, 37, 
487; c) N. Marion, S. Díez-González, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988; Angew. Chem. 2007, 119, 
3046. 
2 I. Ojima, Catalytic Asymmetric Catalysis, Second Edition, Wiley-VCH 2000. 
3 a) B. S. Davidson, Chem. Rev. 1993, 93, 1771; b) J. P. Michael, G. Pattenden, Angew. Chem. Int. Ed. Engl. 1993, 
32, 1; Angew. Chem. 1993, 105, 1 and references therein. 
4 R. Andreasch, Monatsh. Chem. 1884, 5, 33. 
5 T. G. Gant, A. I. Meyers, Tetrahedron 1994, 50, 2297. 
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Scheme 1.1.1: General procedures for the preparation of enantiopure oxazolines 

2. Development of oxazoline-based ligands for asymmetric catalysis 

Metal-catalysed asymmetric synthesis is a powerful tool since large amounts of optically 

active products can be synthesised using a small amount of active catalyst.6 Most of these 

catalysts are metal complexes containing a chiral organic ligand which sterically and/or 

electronically controls a metal-mediated process in such a way that one stereoisomer is 

preferentially formed.7 

It is only since 1986 that oxazoline-based ligands have been used in asymmetric catalysis, 

originally for the monophenylation of diols8,9 and later the hydrosilylation of ketones.10,11,12 This 

initiated considerable research activity in the field and triggered the synthesis of numerous chiral 

ligands containing at least one oxazoline structural unit.13 Oxazoline units are expected to readily 

coordinate a metal centre and they have been shown to bind to a wide range of transition 

metals.14 The diverse range of ligands with one, two or more oxazoline rings incorporating 

                                                 
6 a) H. Brunner, W. Zettlmeier, Handbook of Enantioselective Catalysis with Transition Metal Compounds, Vol. 1 
and Vol. 2, VCH, New-York, 1993; b) I. Ojima, Asymmetric Catalysis in Organic Synthesis, VCH, New-York, 
1993; c) R. Noyori, Asymmetric Catalysis in Organic Synthesis, VCH, New-York, 1994; d) D. J. Berrisford, C. 
Bolm, K. B. Sharpless, Angew. Chem. Int. Ed. Engl. 1995, 34, 1059; Angew. Chem. 1995, 107, 1159; e) C. Girard, 
H. B. Kagan, Angew. Chem. Int. Ed. 1998, 37, 2922; Angew. Chem. 1998, 110, 3088; f) E. N. Jacobsen, A. Pfaltz, H. 
Yamamoto, Comprehensive Asymmetric Catalysis, Vol. 1, Springer, Berlin, 1999; g) J. S. Johnson, D. A. Evans, 
Acc. Chem. Res. 2000, 33, 325.  
7 A. Togni, L. M. Venanzi, Angew. Chem. Int. Ed. Engl. 1994, 33, 497; Angew. Chem. 1994, 106, 517. 
8 H. Brunner, U. Obermann, P. Wimmer, J. Organomet. Chem. 1986, 316, C1. 
9 H. Brunner, U. Obermann, P. Wimmer, Organometallics 1989, 8, 821. 
10 H. Brunner, U. Obermann, P. Wimmer, Chem. Ber. 1989, 122, 499. 
11 H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata, M. Kondo, K. Itoh, Organometallics 1989, 8, 846. 
12 G. Balavoine, J.-C. Clinet, I. Lellouche, Tetrahedron Lett. 1989, 30, 5141. 
13 a) C. Bolm, Angew. Chem. Int. Ed. Engl. 1991, 30, 542; Angew. Chem. 1991, 103, 556; b) C. Bolm, K. 
Weickhardt, M. Zehnder, D. Glasmacher, Helv. Chim. Acta 1991, 74, 717; c) A. Pfaltz, Acta Chem. Scand. 1996, 50, 
189; d) A. K. Ghosh, P. Mathivanan, J. Cappiello, Tetrahedron: Asymmetry 1998, 9, 1. 
14 a) M. Gómez, G. Muller, M. Rocamora, Coord. Chem. Rev 1999, 193, 769; b) P. Braunstein, F. Naud, Angew. 
Chem. Int. Ed. 2001, 40, 680; Angew. Chem. 2001, 113, 702. 
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various heteroatoms, additional chiral elements, and specific structural features have been used 

in a wide range of asymmetric reactions.15  

A selection of chiral P,N-, C,N-, N,N-, O,N-, S,N-oxazoline-based ligands which are 

widely applied as powerful tools in asymmetric catalysis is depicted in Figure 1.1.2.13,16 
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Figure 1.1.2: Selected chiral oxazoline-based ligands for asymmetric catalysis 

 

The successful use of oxazoline-based ligands was paralleled by that of C2-symmetric 

semicorrin ligands (Figure 1.1.3), of which the first examples were also published in 1986.17  

 

CN

NN

R RM

N

NN

R RM

N

NN

R RM  
Figure 1.1.3: Semicorrin derivatives for asymmetric catalysis 

 

The advantage of these ligands lies in the fact that the two stereogenic centres are held in 

close proximity to the metal and thus have a strong and direct influence on the stereochemical 

course of a metal-catalysed process. Semicorrin ligands were successfully applied in asymmetric 

                                                 
15 H. A. McManus, P. J. Guiry, Chem. Rev. 2004, 104, 4151. 
16 a) F. Fache, E. Schulz, M. L. Tommasino, M. Lemaire, Chem. Rev. 2000, 100, 2159; b) G. Helmchen, A. Pfaltz, 
Acc. Chem. Res. 2000, 33, 336; c) O. B. Sutcliffe, M. R. Bryce, Tetrahedron: Asymmetry 2003, 14, 2297; d) A. I. 
Meyers, J. Org. Chem. 2005, 70, 6137; e) L. H. Gade, S. Bellemin-Laponnaz, Coord. Chem. Rev. 2007, 251, 718. 
17 H. Fritschi, U. Leutenegger, A. Pfaltz, Angew. Chem. Int. Ed. Engl. 1986, 25, 1005; Angew. Chem. 1986, 98, 
1028. 
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catalysis.18 The related structure of bisoxazolines and semicorrins prompted several groups to 

investigate the synthesis and the potential of bisoxazoline ligands (BOX) in enantioselective 

catalysis. Chiral C2-symmetric bisoxazoline ligands with a wide structural diversity have been 

introduced since 1989, going from bidentate to tetradentate bisoxazoline ligands. Representative 

structures of these ligands are shown in Figure 1.1.4. 
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Figure 1.1.4: Some examples of chiral bisoxazoline ligands  

 

The development of bisoxazolines added a new dimension in ligand design in terms of 

flexibility, convenient synthesis and availability of ligands in both enantiomeric forms. During 

the past two decades there has been a rapid growth in the applications of these ligands in 

asymmetric catalysis and they have proven their potential to give both high activity and 

selectivity in metal-catalysed enantioselective reactions.4g,11d,13,19  

Given the extensive body of synthetic work carried out for the design of bisoxazoline 

ligands leading to efficient catalysts, the related trisoxazolines have begun to receive increasing 

attention. The next part of this chapter focusses on the development of trisoxazoline ligands for 

asymmetric catalysis.  

 

                                                 
18 A. Pfaltz, Acc. Chem. Res. 1993, 26, 339. 
19 G. Desimoni, G. Faita, K. A. Jørgensen, Chem. Rev. 2006, 106, 3561. 
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II.  Development of chiral trisoxazolines and applications in asymmetric 

catalysis 

1. Introduction 

Bisoxazolines possess a number of attractive advantages: versatility of ligand design, 

straightforward synthesis of the ligands from readily available precursors and variability of the 

chiral centres, which are located near the donor atoms. Based on the straightforward accessibility 

and applicability of bisoxazolines, the development of their tridentate analogues, trisoxazolines 

(trisox), has gained increasing interest. The third oxazoline unit is anticipated to increase the 

stability of a metal complex to give rise to more air- and (possibly) water-stable catalysts. 

Moreover, trisoxazolines are expected to create a more sterically hindered chiral space, 

compared to bisoxazolines allowing the use of less sterically hindered and cheaper chiral sources 

to reach high enantioselectivity.  

Concerning symmetry, it is known that bidentate C2 symmetry may reduce the number of 

possible diastereomers for tetrahedral or square planar catalytic intermediates while C3 symmetry 

may create a favorable situation in an octahedral environment.20 Thus, C3-symmetric 

trisoxazolines can be viewed as versatile ligands in metal-catalysed enantioselective reactions 

involving higher deltahedral intermediates, an aspect which will be developed in the next part of 

the chapter.  

In the early 90s the group of Sorrell initiated a study aimed to extend the family of 

oxazoline ligands to include those possessing threefold symmetry. This led to the first report of 

the synthesis of an achiral trisoxazoline in 1993 (Figure 1.2.1).21  

 

O

N
N

N

O

N O

A  
Figure 1.2.1: The first trisoxazoline reported in the literature 

 

                                                 
20 C. Moberg, Angew. Chem. Int. Ed. 1998, 37, 248; Angew. Chem. 1998, 110, 260. 
21 T. N. Sorrell, F. C. Pigge, P. S. White, Inorg. Chim. Acta 1993, 210, 87. 
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Since Sorrell et al. reported a simple and inexpensive route to obtain trisoxazoline ligands 

new trisoxazolines, including chiral derivatives, have emerged in the literature. The synthetic 

strategies and methods developed for the preparation of trisoxazolines are summarised and some 

interesting applications of these ligands are described in the next part. For further information the 

readers can refer to the recent review from Tang et al.22 

2. Synthesis 

According to the literature on the design of new trisoxazoline ligands, one can clearly 

identify two different synthetic strategies (Scheme 1.2.1). The first one consists in the formation 

of the three oxazoline units in one step by sequential cyclisation (I ) and the second one is a 

modular strategy (II ) based on the reaction between pre-formed oxazoline-based intermediates.  

First, method I is presented and the advantages as well as the limitations of this strategy 

are discussed. This will lead to the investigation of the other synthetic method (II ). In a second 

part, the modular strategy and its implications in ligand design is delineated. 

Ox Ox

Ox

Ox1 Ox2

Ox1

Ox1

Ox1

Direct synthesis   I Modular synthesis   II

oxazoline precursor

backbone

Ox = oxazoline unit

Ox1 = Ox2  or  Ox1    Ox2

Ox2

reactive sites

 
Scheme 1.2.1: The two strategies designed for the synthesis of trisoxazolines 

                                                 
22 J. Zhou, Y. Yang, Chem. Soc. Rev. 2005, 34, 664. 
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a. Direct synthesis 

The first reported trisoxazoline, the achiral C3-symmetric trisoxazoline A (Scheme 1.2.2), 

was prepared using classical procedures for the formation of oxazoline units. This implies that 

the trisox was obtained either by a reaction of a carboxylic acid, or its derivatives, with α-amino 

alcohols followed by cyclisation or by direct condensation of nitriles with α-amino alcohols in 

the presence of a Lewis acid. The synthetic procedure reported by Sorrell for the preparation of 

the tetradentate trisoxazoline A starting from a triester is depicted in Scheme 1.2.2.21 

 

O

N
N

N

O

N ON

O

O

3

N

O

H
N

3

OH

NH2HO

A

cyclisation agents

 
Scheme 1.2.2: Synthetic procedure to obtain trisoxazoline A 

 

They suggested at the time that a variation of the α-amino alcohol could allow facile 

synthesis of chiral analogues using this simple synthetic route. Various optically pure α-amino 

alcohols are commercially available (with iPr, sBu, tBu, Me or Ph as substituents) or can be 

readily prepared by reduction of the corresponding α-amino acids.23 Synthetic methods to obtain 

new chiral α-amino acids have also been developed by organic chemist,24 a non negligible 

advantage for the further synthesis of chiral trisoxazolines, as well as for the synthesis of other 

chiral oxazoline-based ligands. 

The synthesis of chiral analogues of A was achieved by Katsuki et al. in 1995.25 They 

reported the preparation of two chiral C3-symmetric trisoxazolines using the synthetic procedure 

depicted in Scheme 1.2.2 with (S)-valinol and (S)-phenylglycinol as amino alcohols (Figure 

1.2.2).  

 

                                                 
23 a) A. Abiko, S. Masamune, Tetrahedron Lett. 1992, 33, 5617; b) M. McKennon, A. I. Meyers, J. Org. Chem. 
1993, 58, 3568. 
24 J.-A. Ma, Angew. Chem. Int. Ed. 2003, 42, 4290; Angew. Chem. 2003, 115, 4426. 
25 K. Kawasaki, S. Tsumura, T. Katsuki, Synlett 1995, 1245. 
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Figure 1.2.2: The first two chiral C3-symmetric trisoxazolines 

 

Two years later they described the synthesis of another series of C3-symmetric chiral 

trisoxazolines of the same type using, among others, chiral synthetic amino alcohols.26 Yields 

from 24 to 75% were obtained for the last step (cyclisation) which was generally the step with 

the lowest yield observed during the synthesis. 

An alternative synthetic route for the preparation of A-type trisox was developed by Chan 

et al.27 They reported the synthesis of A-1 in three steps starting from a triacid and (S)-valine 

(Scheme 1.2.3).  

 

N

O

OH

3

N

O

H
N

3

O

NH2HO

cyclisation 
agentsiPrO

OH

N

O

H
N

3

OH

iPriPr

A-1
NaBH4

 
Scheme 1.2.3: Alternative route for the synthesis of type A trisoxazolines 

 

The success of the direct synthesis of trisoxazolines based on the method developed by 

Sorrell led to the design of several new chiral C3-symmetric trisoxazolines with various cores via 

the same synthetic strategy. All the trisoxazolines incorporating a new backbone obtained via 

method I  are represented in Figure 1.2.3.  

 

                                                 
26 K. Kawasaki, T. Katsuki, Tetrahedron 1997, 53, 6337. 
27 T. H. Chan, G. Z. Zheng, Can. J. Chem. 1997, 75, 629. 
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Figure 1.2.3: Chiral C3-symmetric trisoxazolines incorporating various backbones  

 

Synthesis of B-type trisox (Figure 1.2.3) with a central carbon atom was accomplished in 

the group of Katsuki in 2000.28 This ligand was designed to investigate the influence of the 

central nitrogen atom on the catalytic species and on the enantioselectivity by comparing both A- 

and B-type trisox. That same year, Bolm et al. reported the preparation of C-type 

trisoxazolines.29 These tripods, incorporating a rigid cyclohexane backbone, were prepared 

starting from Kemp’s triacid. For applications in host-guest complexes, two benzene-based C3-

symmetric trisoxazolines were independently synthesised by Ahn et al. in 200030 (D, Figure 

1.2.3) and the following year in the group of Hong (E, Figure 1.2.3).31 The synthetic methods 

employed to obtain the two benzene containing trisoxazolines are similar. 

Pseudo C3-symmetric trisoxazolines were also prepared using the direct route starting 

from a triester. Tang et al. accomplished the synthesis of a new type of tripods, F, where F-132 

and F-233 differs in the length of the alkyl-chain bridging the apical methyl group and the third 

oxazoline unit (Figure 1.2.4). 

 

                                                 
28 Y. Kohmura, T. Katsuki, Tetrahedron Lett. 2000, 41, 3941. 
29 T.-H. Chuang, J.-M. Fang, C. Bolm, Synth. Commun. 2000, 30, 1627. 
30 S.-G. Kim, K. H. Ahn, Chem. Eur. J. 2000, 6, 3399. 
31 H.-J. Kim, Y.-H. Kim, J.-I. Hong, Tetrahedron Lett. 2001, 42, 5049. 
32 J. Zhou, Y. Tang, J. Am. Chem. Soc. 2002, 124, 9030. 
33 J. Zhou, M.-C. Ye, Y. Tang, J. Comb. Chem. 2004, 6, 301. 
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Figure 1.2.4: Pseudo C3-symmetric trisoxazolines 

 

In summary, method I  has proved to be an inexpensive and simple procedure to obtain 

C3- and pseudo C3-symmetric trisoxazolines. The desired tripods are obtained in two or three 

steps and the diversity of α-amino alcohols provides access to a large variety of ligands. 

However, the direct synthesis usually gives poor yields in the key step (the ring closure). 

Additionally, this method suffers from an important drawback: the possibility to generate only 

C3-symmetric (or pseudo C3-symmetric) trisoxazolines. Even if it is a convenient method to 

afford the desired highly symmetrical ligands, it fails to provide non-symmetric trisoxazolines. 

This significant limitation of the direct synthesis strategy can be overcome by using an 

alternative synthetic procedure for the preparation of trisoxazolines in the form of a modular 

strategy. 

b. A modular strategy in the synthesis of trisoxazolines 

The use of a modular strategy for the synthesis of achiral and chiral trisoxazolines was 

first introduced by our group in 2002.34,35 A new synthetic procedure was developed to give 

access to 1,1,1-tris(oxazolinyl)ethane ligands (Figure 1.2.5), the trisoxazolines which derive 

directly from 1,1-bis(oxazolinyl)ethane species. Indeed the synthesis of these trisoxazolines, 

which provides a geometry of the metal binding site which is in principle most adapted to a 

tripodal coordination mode, proved to be elusive for a long time.20 

 

N

O

N

O
O

N

R
R

R
G

 
Figure 1.2.5: Structure of 1,1,1-tris(oxazolinyl)ethane ligands 

                                                 
34 S. Bellemin-Laponnaz, L. H. Gade, Chem. Commun. 2002, 1286. 
35 S. Bellemin-Laponnaz, L. H. Gade, Angew. Chem. Int. Ed. 2002, 41, 3473, Angew. Chem. 2002, 114, 3623. 
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Attempts to synthesise these tripodal ligands by sequential formation of the three 

oxazoline units failed due to decarboxylation and related decomposition of the precursors during 

the formation of the third oxazoline ring. Direct synthesis is not suited for the preparation of G-

type ligands (Figure 1.2.5). Coupling of a readily accessible bisoxazoline derivative with a 

preformed activated monooxazoline ring affords the desired 1,1,1-tris(oxazolinyl)ethane ligands 

(Scheme 1.2.4). This condensation reaction constitutes the basis of the modular strategy. 

N

O

N

O
O

N

R
R

RG

O

N N

O
BrO

N

R RR

 
Scheme 1.2.4: Modular assembly of the trisoxazolines G by reaction of metalated bisoxazolines with 2-

bromooxazoline derivatives 
 

The strategy, which is formally based on a {1+2} condensation scheme of a lithiated 

bisoxazoline with a 2-bromooxazoline, has proven to be efficient for the synthesis of highly 

symmetric chiral 1,1,1-tris(oxazolinyl)ethane ligands (chiral C3-symmetric trisox with R = iPr 

and R = tBu). 

Our synthetic method allows the high-yield access to symmetric trisoxazolines and 

tripods with mixed substitution patterns. The modular synthesis turned out to be a versatile 

method to combine three oxazoline units to form ligands possessing C3 as well as C1 symmetry.35 

With the aim to expand the library of pseudo C3-symmetric trisoxazoline based ligands F, 

Tang et al. applied the modular synthesis in 2004. Coupling between deprotonated bisoxazolines 

and 2-halogenomethyl oxazolines gives access to the expected trisoxazolines (Scheme 1.2.5). 

This strategy allows the incorporation of a broad variety of substituents at the stereogenic centre, 

such as benzyl, t-butyl and indanyl groups, to form pseudo C3-symmetric trisoxazolines and 

trisoxazolines with mixed oxazoline units.32,36 
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Scheme 1.2.5: Modular assembly of the trisoxazolines F-1 by reaction of metalated bisoxazolines with 2- 

halogenomethyl oxazolines 
 

                                                 
36 M.-C. Ye, B. Li, J. Zhou, X.-L. Sun, Y. Tang, J. Org. Chem. 2005, 70, 6108. 
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Notably, some pseudo C3-symmetric trisoxazolines could not be obtained by the 

previously described direct synthesis, demonstrating the superiority of the modular synthesis. 

c. Conclusion 

Both methods I  and II  for the synthesis of chiral trisoxazolines have proven to be 

efficient. They allow the formation of a broad range of ligands with various backbones and with 

facile variation of the substituents present on the stereogenic centre.  

Inspired by the versatility of bisoxazoline ligands, trisoxazoline ligands have been applied 

in asymmetric catalysis to test their catalytic efficiency and selectivity. Examples of application 

in asymmetric catalysis or in molecular recognition of the different types of trisoxazolines A-F 

described above are presented in the next part.  

3. Applications in asymmetric catalysis and molecular recognition 

Katsuki et al. were the first to report the use of trisoxazoline ligands in asymmetric 

catalysis.25 Optically active trisoxazoline A was synthesised to mimic the active site of non-heme 

oxygenases and its copper(II) complex was found to be an efficient catalyst for enantioselective 

allylic oxidation of cycloalkenes. Since this first description of the successful application of a 

trisoxazoline in asymmetric catalysis, trisox ligands with different backbones have already found 

use in several enantioselective reactions such as Friedel-Crafts, Michael addition, 1,3-dipolar 

cycloaddition, Diels-Alder reaction, addition of diethylzinc to aldehydes and cyclopropanation.22 

Excellent results have been achieved in some of these reactions. Molecular recognition has also 

been the focus of research interest with some chiral trisoxazolines.  

a. Chiral trisoxazolines of type A and B 

As previously said, the use of A in the Kharash-Sosnovsky reaction was the first reported 

application of chiral trisoxazolines in asymmetric catalysis. After carefully examining the effect 

of metal salt, solvent, oxidant, ligand structure and additive, it was found that phenyl-substituted 

ligand A-2 in combination with Cu(OTf)2 could promote the oxidation of cyclopentene with ee 

value up to 93% in acetone. However, other cycloalkenes only afforded low yield and moderate 

enantioselectivity (Scheme 1.2.6). 25,26 
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Scheme 1.2.6: Kharash-Sosnovsky reaction catalysed by A- and B-type chiral trisoxazolines 

 

A-type ligands are potentially tetradentate and one can consider that the nitrogen atom at 

the core of the trisox might coordinate to the copper centre. It was anticipated that the structure 

of the catalytic intermediate would be different when the backbone do not possess a potentially 

coordinating atom. Thus, B-type trisoxazolines were synthesised by Katsuki et al. and applied to 

the same reaction.28 The results are summarised in Scheme 1.2.6 for a direct comparison with the 

corresponding tetradentate ligand.  Notably, one ligand led to the formation of the S enantiomer 

and the other to the formation of the R enantiomer, under the same reaction conditions even if 

both ligands had stereogenic centres with the same chirality. This suggests that the geometry of 

the copper ion coordinated by B is different from the geometry of the copper ion ligated by A-2. 

Generally, the use of B-type trisoxazoline led to higher enantiomeric excesses and yields in the 

oxidation of cycloalkenes a1-a4. 

Regarding the mechanism of allylic oxidation, allylic amination was expected to proceed 

in the same way. Thus, Katsuki et al. also tried ligand A in the asymmetric allylic reaction.37 

After optimisation of the reaction conditions with the achiral version of the trisox, they applied 

ligand A-2 in the asymmetric amination of compound b (Scheme 1.2.7). 

 

                                                 
37 Y. Kohmura, K. Kawasaki, T. Katsuki, Synlett 1997, 1456. 
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Scheme 1.2.7: Allylic amination catalysed by A-2 trisox and tBu-BOX 

 

Even if this application of the C3-symmetric trisoxazoline A-2 was not successful one can 

notice that the trisoxazoline gave higher selectivity than the bisoxazoline under the same reaction 

conditions.  

The same observation was made by Chan et al. when they applied trisoxazoline A-1 in 

the enantioselective addition of diethylzinc to benzaldehyde. They found that their ligand was 

able to catalyse the addition of diethylzinc to benzaldehyde with ee up to 82% (Scheme 1.2.8).27 

 

N
3N

O

Et2Zn

L*

c

O

H

OH

N

N

OO

N

92% yield, 82% ee < 20% ee

L* :

A-1

 
Scheme 1.2.8: Addition of Et2Zn to benzaldehyde catalysed by A-1 and iPr-Pybox 

 

Noticeably, the tridentate bisoxazoline (iPr-Pybox) achieved only less then 20% ee under 

the same reaction conditions. This suggests that the chiral environment created by the 

trisoxazoline was more effective for this reaction than the one from the Pybox. 
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b. Chiral trisoxazolines of type C 

Kemp’s acid derived C-type trisoxazolines were also applied in asymmetric catalysis.29 In 

the allylic oxidation of cyclopentene a1 (Scheme 1.2.6) the phenyl-substituted ligand proved to 

be better than its analogues (methyl- and isopropyl-substituted trisox) but only a moderate ee 

value was obtained: 94% yield, 45% ee (S). In the asymmetric addition of diethylzinc to 

aldehyde the isopropyl-substituted trisox was the most efficient. However, the cyclohexane-

based ligands again only afforded moderate ee values (43% ee, 46% yield). 

c. Chiral trisoxazolines of type D and E 

Benzene-based trisoxazolines were initially applied in molecular recognition and the 

group of Ahn mainly contributed to the use of trisox in host-guest complexes. The first 

successful result reported in the literature was the promising application of D-type trisoxazolines 

as artificial receptors for alkylammonium ions.30 The chiral recognition of α–chiral primary 

ammonium ions was mostly achieved in a C1- or C2-symmetric environment. Ahn et al. 

accomplished for the first time the enantiomeric recognition of α–chiral primary ammonium ions 

using C3-symmetric trisoxazolines D as the acceptor (Figure 1.2.6).38 
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Figure 1.2.6: Enantioselective binding of trisoxazoline D toward racemic ammonium salts and % extraction 

 

With the knowledge that the three nitrogen atoms from the trisoxazolines can act as H-

bonding acceptors and that a central aromatic groups can act as π–donor for CH-π interactions, 

                                                 
38 S.-G. Kim, K.-H. Kim, J. Jung, S. K. Shin, K. H. Ahn, J. Am. Chem. Soc. 2002, 124, 591. 
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Hong et al. focused on the application of their benzene-based trisox E as artificial receptors for 

sugar and alcohols.31 

In the course of their study on the selective molecular recognition of ammonium over 

potassium ions using benzene-based trisoxazolines D as artificial receptors, Ahn et al. found that 

these ligands have significant affinities towards potassium ions.39 This finding led to the 

evaluation of the trisoxazolines as chiral ligands in catalytic enantioselective reactions that 

involve complexes of potassium ions such as potassium enolates. They applied D-type 

trisoxazolines in the Michael addition of methyl phenylacetate to methyl acrylate (Scheme 

1.2.9). 
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Scheme 1.2.9: Enantioselective Michael addition catalysed by L*-KOtBu complexes 

 

It was found that the D-type trisoxazolines in combination with potassium t-butoxide 

afforded the desired product in moderate to high yields with ee values up to 82% using the t-

butyl-substituted trisoxazoline. Ahn et al. proposed that the ligand coordinates to the potassium 

enolate in a tripodal fashion. Two control experiments confirmed this suggestion: i) D in 

combination with sodium t-butoxide proved to be unsuccessful in this reaction; ii) bisoxazoline 

D’  failed to promote this reaction. 

                                                 
39 K. H. Ahn, S.-G. Kim, J. Jung, K.-H. Kim, J. Kim, J. Chin, K. Kim, Chem. Lett. 2000, 170. 
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d. Chiral trisoxazolines of type F 

Pseudo C3-symmetric trisoxazolines have been employed in various enantioselective 

catalytic reactions.40 Tang et al., who were interested in the potential “sidearm effect” chose the 

modular synthesis to prepare pseudo C3-symmetric trisoxazolines, trisoxazolines with mixed 

oxazoline units and bisoxazolines functionalised with a large variety of sidearms. 

With the aim of probing the effect of the structural differences between bisoxazolines and 

pseudo C3-symmetric trisoxazolines, F-1 was first applied in the Friedel-Crafts reaction of indole 

with alkylidene malonates d (Scheme 1.2.10). 
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Scheme 1.2.10: Enantioselective Friedel-Crafts reaction of indole with alkylidene malonates 

 

 The first enantioselective version of this reaction was reported by Jørgensen et al. with 

bisoxazolines as chiral ligands and the catalyst tBu-BOX/Cu(OTf)2 afforded ee values up to 

69%.41 Tang and coworkers found that the chiral catalyst F-1/Cu(ClO4)2 could catalyse this 

reaction with yields and ee values up to 99 and 93% respectively.30 A screening of the reaction 

conditions and the ligands was carried out to improve the enantiomeric excess and to understand 

the differences observed between the ligands.33,36,42,43 All their results support the idea that 

coordination of the side-armed oxazoline in trisox F-1 tuned the electronic and steric properties 

of the catalyst to influence the enantioselectivity and reactivity and to lead to improved catalytic 

properties compared to the bisoxazoline analogues. 

Pseudo C3-symmetric F-type trisoxazolines also proved to be efficient in the copper 

catalysed Diels-Alder reaction of cyclopentadiene with ketoester e (Scheme 1.2.11). 

 

                                                 
40 See for example: a) M.-C. Ye, J. Zhou, Z.-Z. Huang, Y. Tang, Chem. Commun. 2003, 2554; b) Z.-Z. Huang, Y-B. 
Kang, J. Zhou, M.-C. Ye, Y. Tang, Org. Lett. 2004, 6, 1677; c) M.-C. Ye, J. Zhou, Y. Tang, J. Org. Chem. 2006, 71, 
3576. 
41 W. Zhuang, T. Hansen, K. A. Jørgensen, Chem. Commun. 2001, 347. 
42 J. Zhou, M.-C. Ye, Z.-Z. Huang, Y. Tang, J. Org. Chem. 2004, 69, 1309. 
43 J. Zhou, Y. Tang, Chem. Commun. 2004, 432. 
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Scheme 1.2.11: Enantioselective Diels-Alder reaction of cyclopentadiene with ketoester 

 

Here again, the bisoxazolines (H1 and H2) failed to achieve better activity as well as 

selectivity than the trisoxazolines. It should be noted that the tridentate bisoxazoline I  showed 

almost no selectivity as well as much lower catalytic activity and thus higher temperatures were 

required to complete the reaction. 

e. Conclusion 

Despite the development of new synthetic strategies, there are only few trisoxazoline 

ligands known compared to the large number of bisoxazolines reported in the literature. 

Nevertheless, inspired by the versatility of the latter, trisoxazolines have been applied in 

asymmetric catalysis and have proven to afford, in numerous cases, superior catalysts than the 

bisoxazolines-based systems.  

However, one should notice that the trisoxazolines successfully applied in asymmetric 

catalysis are conformationally very flexible and the way they coordinate to the metal centres in 

the active catalysts remains an open, unsolved question. Indeed the facial coordination to 

transition metals has not been firmly established for all these trisoxazolines. 

The development of the class of 1,1,1-tris(oxazolinyl)ethane ligands gives us access to 

highly symmetrical ligands which provide a geometry of the metal binding site that is most 
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adapted to tripodal coordination of the metal centre and would lead to relatively rigid and well-

defined coordination geometry.  

4. 1,1,1-tris(oxazolinyl)ethane: precedent in the group 

The new class of chiral trisoxazolines developed in our group was first applied in the 

copper(I) catalysed cyclopropanation of styrene with t-butyl or ethyl diazoacetate (Scheme 

1.2.12).35 
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Scheme 1.2.12: Copper-catalysed asymmetric cyclopropanation of styrene with t-butyl diazoacetate 

 

The strong preference for the trans diastereomer is similar to results which were 

previously obtained with bisoxazoline derivatives. Variation of the stereoselectivity was 

observed depending on the substituents present on the oxazoline units and was maximised for the 

non-symmetrical ligand G3. Although these results did not surpass those obtained with 

bisoxazolines, they revealed that mixed trisoxazolines might be sometimes more efficient than 

highly symmetric trisox derivatives due to a better compatibility with catalytic intermediates thus 

achieving higher enantiofacial control.  

Knowing that in many of the zinc-based peptidases a tris(histidine) binding site acts as a 

tripodal ligand for the metal ion, a trisoxazoline/zinc complex was applied as a functional 

enzyme model in the kinetic resolution of racemic chiral esters by transesterification (Scheme 
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1.2.13). In this system the trisox ligand acts as a mimic of both the tris(histidine) binding site and 

the chiral environment of a protein skeletal structure.44 
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Scheme 1.2.13: Partial kinetic resolution of activated amino acid esters by streoselective [trisox-Zn]-catalysed 
transesterification  

 

This was the first example of non-enzymatic zinc(II) catalyst for asymmetric 

transesterification of activated esters. The anions of the zinc(II) complex obviously influenced 

the selectivity factors. Upon going from the zinc triflate to the zinc acetate complex and further 

to the trifluoroacetate complex, an increase of the selectivity factor for all the substrates was 

observed (up to s = 5.1). The importance of the chiral tripod-zinc environment for the observed 

stereoselectivity was inferred from the observation that the coordination of a range of 

bisoxazolines to a zinc salt did not induce kinetic resolution. 

More recently it has been shown that the C3-chiral trisox ligands are suitable supporting 

ligands for scandium(III) catalysed olefin polymerisation. The trialkyl complex [Sc(iPr-

trisox)(CH2SiMe3)3] was activated with two equivalents of the trityl salt [Ph3C][B(C6F5)4], thus 

affording a double charged species which was assigned as [Sc(iPr-trisox)(CH2SiMe3)]
2+. This 

dicationic species was found to be highly active for the polymerisation of 1-hexene at low 

temperatures, producing highly isotactic poly(1-hexene) (Scheme 1.2.14).45 

 

                                                 
44 C. Dro, S. Bellemin-Laponnaz, R. Welter, L. H. Gade, Angew. Chem. Int. Ed. 2004, 43, 4479; Angew. Chem. 
2004, 116, 4579. 
45 B. D. Ward, S. Bellemin-Laponnaz, L. H. Gade, Angew. Chem. Int. Ed. 2005, 44, 1668; Angew. Chem. 2005, 117, 
1696. 
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Scheme 1.2.14: Polymerisation of 1-hexene catalysed by the dicationic [Sc(iPr-trisox)(CH2SiMe3)]

2+ species 

 

In light of these results for a group 3 metal, the polymerisation of α-olefins with 

lanthanide catalysts has also been investigated, revealing the first example of isospecific 

polymerisation of α-olefins with a C3-chiral thulium(III) complex.46 It has also been shown that 

the trisox ligand is a suitable supporting environment for a range of lanthanide metals, going 

from lutetium to dysprosium.47 To summarise, the C3-symmetric environment is efficient at 

transmitting the chiral information to the catalytic site in the stereoselective olefin 

polymerisation, with a remarkable degree of tacticity being observed for a range of α-olefins.  

We have seen that 1,1,1-tris(oxazolinyl)ethane ligands are versatile supporting ligands for 

a variety of early and late transition metals as well as lanthanides and that the chiral centre on the 

ligand framework is such that the chiral information is efficiently transferred to the catalytically 

active site. In addition, the facial coordination to transition metals in octahedral complexes has 

been firmly established. 

Nevertheless the formation of this structural motif may be impeded if the transition metal 

centre stereoelectronically strongly favours a non-deltahedral coordination sphere. This is 

generally the case for the heavier d8-transition metal atoms/ions and their preference for square 

planar coordination geometries. In order to assess the coordinating behaviour of the trisox 

ligands towards metal centres which favour or disfavour facial coordination, depending on their 
                                                 
46 L. Lukešová, B. D. Ward, S. Bellemin-Laponnaz, H. Wadepohl, L. H. Gade, Dalton Trans. 2007, 920. 
47 L. Lukešová, B. D. Ward, S. Bellemin-Laponnaz, H. Wadepohl, L. H. Gade, Organometallics, 2007, DOI: 
10.1021/om700504f. 
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oxidation state (and thus d electron count), the coordination chemistry of iPr-trisox with 

rhodium(I) and (III) has been investigated (Scheme 1.2.15).48 
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Scheme 1.2.15: Synthesis of [Rh(iPr-trisox)(cod)]BF4 g and its reaction by way of oxidative addition with CsBr3 
giving the octahedral complex [RhBr3(iPr-trisox)] h 

 

A possible way to get all the three oxazolines of iPr-trisox coordinated to rhodium is the 

oxidation of the rhodium(I) complex to rhodium(III). A clean oxidation of Rh-1 was achieved by 

stoichiometric reaction with CsBr3 which acts both as an oxidant and ligand transfer reagent. The 

resulting RhIII-complex [RhBr3(iPr-trisox)] (Rh-2) could also be directly obtained by heating 

[RhBr3(H2O)3] in the presence of iPr-trisox. 

The crystal structure of Rh-1 indicates that the overall arrangement of the coordinated 

bisoxazoline unit is such that the uncoordinated oxazoline ring points towards the rhodium atom. 

Thus, the unbound oxazoline appears to be ready to exchange with a coordinated heterocycle 

suggesting a potentially fluxional structure with a very low energy barrier for chemical 

exchange. This was demonstrated by variable temperature 1H NMR studies.  

The transformation described has shown that the coordination mode of the trisox ligand 

adapts to the stereoelectronic requirements of the metal centre and may change in the process of 

an elementary transformation such as the oxidative addition of bromine. This may be viewed as a 

model reaction for such reaction steps in a catalytic cycle. If the stereoselectivity determining 

                                                 
48 L. H. Gade, G. Marconi, C. Dro, B. D. Ward, M. Poyatos, S. Bellemin-Laponnaz, H. Wadepohl, L. Sorace, G. 
Poneti, Chem. Eur. J. 2007, 13, 3058. 
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step involves an octahedral species, the facial coordination of the trisox ligand and consequent 

threefold symmetry of the trisox-metal fragment will simplify the “stereoselection” whilst the 

symmetry of the ligand will act “dynamically” in species in which it is bidentate.  

III.  1,1,1-tris(oxazolinyl)ethane and the influence of C3 symmetry in catalysis 

1. C3 symmetry in asymmetric catalysis 

a. Introduction 

Symmetry is a fascinating phenomenon which provides endless stimulation and 

challenges. It gives an impression of harmonious or aesthetically-pleasing proportionality and 

balance and reflects beauty or perfection. An additional appeal of symmetry is that of simplicity, 

implying of safety, security, and familiarity. Symmetry is to be found in many creations of nature 

and in some of the greatest achievements of mankind. In chemistry, higher order symmetry has 

always attracted interest. Given that rotational axes are the only elements of symmetry 

compatible with chirality, C2- and C3-symmetrical molecules have attracted considerable 

attention. In recent years, the aesthetic appeal of C2-symmetrical molecules has been translated 

into many widely used applications in asymmetric synthesis and catalysis, in particular those 

involving phosphines and bisoxazolines.13d,49 In contrast, exploitation of C3 symmetry (Figure 

1.3.1) is still in its infancy, as reflected in the paucity of trisoxazolines in comparison to 

bisoxazolines. 

 

 

 

 

 

Figure 1.3.1: (a) The Borromean rings, (b) Trillium flower, floral emblem of the Province of Ontario (Canada) 

 

Nevertheless the usefulness and potential advantages of C3 symmetry in the design of 

chiral stereodirecting ligands for asymmetric catalysis has already been demonstrated.50,51,52 In 

                                                 
49 a) A. Pfaltz, W. J. Drury, Proc. Natl. Acad. Sci. USA 2004, 101, 5723; b) S. Castillon, C. Claver, Y. Diaz, Chem. 
Soc. Rev. 2005, 34, 702; c) G. Desimoni, G. Faita, K. A. Jørgensen, Chem. Rev. 2006, 106, 3561. 
50 a) S. E. Gibson, M. P. Castaldi, Chem. Commun. 2006, 3045; b) S. E. Gibson, M. P. Castaldi, Angew. Chem. Int. 
Ed. 2006, 45, 4718; Angew. Chem. 2006, 118, 4834; c) C. Moberg, Angew. Chem. Int. Ed. 2006, 45, 4721; Angew. 
Chem. 2006, 118, 4838. 

(a) (b) 
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most of the cases, C3 symmetry is related to facially coordinating tripodal ligands because 

threefold rotational symmetry represents the only possibility adapted to this topology of ligation, 

in the same way that C2 symmetry is related to simple chelation.53  

Transition metal complexes of threefold symmetric ligands are of interest because three 

equivalent open coordination sites can be obtained. Potentially such systems could provide 

highly stereocontrolled catalysis for reactions which proceed via octahedral intermediates. This 

concept is discussed in the following paragraph. 

b. Symmetry in metal complexes 

In the most favourable case symmetry of the ancillary ligand fits symmetry of the 

complex. In that case, a symmetrical stereodirecting ligand may lead to a reduced number of 

transition states and diastereomeric reaction intermediates in transformations occurring in the 

coordination sphere of its complexes. In such favourable cases, this degeneration of alternative 

reaction pathways may lead to high stereoselectivity in catalytic reactions and greatly simplifies 

the analysis of such transformations.  

Let us consider the case of C2- and C3-symmetric ligands to explain the molecular 

equivalence caused by rotational axes in metal complexes.20 C2 symmetry is characterised by the 

fact that upon rotation of the C2-symmetric species by 180° about the rotational axis an identical 

species is obtained. This implies that two complexes which are identical in the case of C2 

symmetry would be diastereomeric in the case of C1 symmetry. Concerning threefold rotational 

symmetry, each rotation of 120° about the rotation axis affords an identical species.  

We can illustrate this by considering a square planar metal complex containing a 

bidentate C2-symmetric ligand. This situation is the most favourable since it renders the two 

remaining coordination sites identical, i.e. homotopic (Scheme 1.3.1. a, A = B). In the case of 

static κ3-facial coordination of a tridentate C3-symmetric ligand the same type of favourable 

                                                                                                                                                             
51 Examples of the use of chiral C3-symmetrical ligands in asymmetric catalysis: a) H. Brunner, A. F. M. M. 
Rahman, Chem. Ber. 1984, 117, 710; b) M. J. Burk, R. L. Harlow, Angew. Chem. Int. Ed. Engl. 1990, 29, 1467; 
Angew. Chem. 1990, 102, 1511; c) M. J. Burk, J. E. Feaster, R. L. Harlow, Tetrahedron: Asymmetry 1991, 2, 569; d) 
H. Adolfsson, K. Wärnmark, C. Moberg, J. Chem. Soc., Chem. Commun. 1992, 1054; e) D. D. LeCloux, W. B. 
Tolman, J. Am. Chem. Soc. 1993, 115, 1153; f) D. D. Lecloux, C. J. Tokar, M. Osawa, R. P. Houser, M. C. Keyes, 
W. B. Tolman, Organometallics 1994, 13, 2855; g) K. Kawasaki, S. Tsumura, T. Katsuki, Synlett 1995, 1245; h) M. 
C. Keyes, V. G. Young Jr.,  W. B. Tolman, Organometallics 1996, 15, 4133; i) W. A. Nugent, J. Am. Chem. Soc. 
1998, 120, 7139; j) T. Fang, D.-M. Du, S.-F. Lu, J. Xu, Org. Lett. 2005, 7, 2081.  
52 Recent advances in the design of C3-chiral podands: a) G. Bringmann, M. Breuning, R.-M. Pfeifer, P. Schreiber, 
Tetrahedron: Asymmetry 2003, 14, 2225; b) G. Bringmann, R.-M. Pfeifer, C. Rummey, K. Hartner, M. Breuning, J. 
Org. Chem. 2003, 68, 6859; c) T. Fang, D.-M Du, S.-F. Lu, J. Xu, Org. Lett. 2005, 7, 2081; d) M. P. Castaldi, S. E. 
Gibson, M. Rudd, A. J. P. White, Angew. Chem. Int. Ed. 2005, 44, 3432; Angew. Chem. 2005, 117, 3498; e) M. P. 
Castaldi, S. E. Gibson, M. Rudd, A. J. P. White, Chem. Eur. J. 2005, 12, 138. 
53 H. B. Kagan, T.-P. Dang, J. Am. Chem. Soc. 1972, 94, 6429. 
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situation is created in octahedral complexes where the three remaining coordination sites are 

homotopic (Scheme 1.3.1 b, A = B = C). 

 

A B C B

A

a b
 

Scheme 1.3.1: Favourable situations in square planar (a) and octahedral (b) complexes with C2- and C3-symmetric 
ligands respectively 

 

An unfavourable situation is obtained by combination of octahedral complexes and C2-

symmetric ligands. Introduction of a bidentate C2-symmetric ligand in an octahedral environment 

results in a complex with two sets of coordination sites which are pairwise homotopic (A/D and 

B/C) but mutually diastereotopic (Scheme 1.3.2 a). Coordination of an additional monodentate 

ligand affords a complex with three diastereotopic coordination sites (Scheme 1.3.2 b, A ≠ B ≠ 

C).  

 

B C
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a b

B C
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Scheme 1.3.2: Unfavourable situation with C2-symmetric ligands in octahedral environment 

 

Thus, we can conclude that C2-symmetric ligands are adapted to square planar geometries 

whereas C3-symmetric ligands act similarly for octahedral environments. To illustrate this, we 

can analyse the case of a prochiral olefin which is coordinated to a complex containing either a 

bidentate ligand with a twofold rotational axis or a tridentate ligand with a threefold rotational 

axis. These situations take place in common catalytic reactions such as hydroformylations or 

hydrogenations. For our illustration, we consider the specific example of a catalytic 

hydrogenation where the coordination of the olefin is assumed to occur before the oxidative 

addition of hydrogen.  

In a square planar complex containing a bidentate C2-symmetric ligand, there are two 

homotopic free coordination sites. In that case, four possibilities exist for the coordination of the 

prochiral olefin (Scheme 1.3.3 a) since coordination to the second site would lead to a set of 
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identical complexes due to the C2 symmetry of the ligand. The oxidative addition of dihydrogen 

affords an octahedral complex and renders the two coordination sites left diastereotopic. In 

consequence, eight diastereomeric complexes are possible (Scheme 1.3.3 b). 
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Scheme 1.3.3: Square planar metal-olefin complexes containing a bidentate C2-symmetric ligand (a); eight 
diastereomeric octahedral species after oxidative addition of H2 (b) 

 

In contrast, in a square planar complex containing a tridentate C3-symmetric ligand there 

are two diastereotopic free coordination sites. In that case, eight possibilities exist for the 

coordination of the prochiral olefin (Scheme 1.3.4 a). But here the oxidative addition of 

dihydrogen affords an octahedral complex where the three coordination sites are homotopic in 

presence of a tridentate C3-symmetric ligand. In consequence, only four diastereomeric 

complexes are possible (Scheme 1.3.4 b). 
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Scheme 1.3.4: Square planar metal-olefin complexes containing a tridentate C3-symmetric ligand (a); four 

diastereomeric octahedral species after oxidative addition of H2 (b) 
 

To summarise C2-symmetric ligands should reduce the number of possible diastereomers 

in catalytic cycles involving square planar intermediates whereas C3-symmetric ligands do so for 

octahedral catalytic intermediates.20 

2. Definition of the research project 

The stereochemical points made above have been illustrated for static coordination of a 

symmetrical chiral tripod. However, threefold symmetrical chiral ligand may generate a 

simplification in the stereochemistry of the key catalytic intermediates when it acts as a bidentate 

ligand in the stereoselectivity determining step, that is to say for metal complexes with a 

stereoelectronic preference for non-octahedral coordination geometries. This will be the case for 

systems in which chemical exchange between the different κ2–coordinated species takes place. 

Such an exchange which induces an equilibrium between identical species for a symmetrical 

tripod is depicted in Scheme 1.3.5. 
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Scheme 1.3.5: Dynamic exchange of κ2–coordinated tridendate ligand coordinated to a complex fragment (M) 

 

We have seen that for the reduction of the number of transition states and diastereomeric 

reaction intermediates, octahedral complexes are associated to threefold rotational symmetry in 

the same way as square planar complexes are associated to C2 symmetry. However, one question 

arises: What it is the effect of tridentate C3-symmetric ligands on catalytic reactions with 

intermediates preferring a bidentate coordination mode?  

To answer this question, trisoxazolines will be used in several model reactions. The 

modularity of the ligand design will help us to quantify this influence by applying C3- as well as 

C1-symmetric ligands in the different catalytic reactions studied. In addition a direct comparison 

with the corresponding 2,2-bis(oxazolinyl)propane, from which the structure of our 

trisoxazolines directly stems, will lighten the role of threefold rotational symmetry as well as the 

role of the third oxazoline arm.  

 

In chapter 2 the synthesis of new C3- and C1-symmetrical trisoxazolines is described 

along with the study of the thermal rearrangement of 2-bromooxazolines. The following chapter 

is devoted to the study of palladium-catalysed asymmetric allylic substitution reactions. Finally, 

chapter 4 focuses on the use of trisoxazolines in copper-catalysed aminations and Mannich 

reactions. 
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I. Synthesis of highly symmetric trisoxazolines 

1. Principles of the synthesic strategy 

Synthesis of 1,1,1-tris(oxazolinyl)ethane ligands has been the focus of research interests 

but attempts to obtain these ligands by sequential cyclisation of the oxazoline rings were 

unsuccessful.1 Starting from tris nitrile or tris acid derivatives, decomposition and 

decarboxylation were observed during the ring closure of the third oxazoline unit (Scheme 

2.1.1). 
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Scheme 2.1.1: Attempts to synthesise the trisoxazoline using the direct synthesis 

 

The structure of these particular trisoxazolines with the three heterocycle units bound to 

the same quaternary carbon centre derives directly from the 1,1-bis(oxazolinyl)ethane ligands. 

The modular strategy developed in our group based on the coupling of two synthons with 

preformed oxazoline rings, a 1,1-bis(oxazolinyl)ethane derivative and an activated 2H-oxazoline, 

enables to overcome the difficulties described above and gives access to the 1,1,1-

tris(oxazolinyl)ethane ligands which will be abbreviated “substituent-trisox”.2 Using this novel 

synthetic approach the preparation of two chiral highly symmetric ligands has first been 

successfully achieved (Scheme 2.1.2).3 Reaction of readily accessible lithiated bisoxazolines 

with the corresponding 2-bromooxazolines affords the iPr-trisox and tBu-trisox in high yields. 

                                                 
1 C. Moberg, Angew. Chem. Int. Ed. 1998, 37, 248; Angew. Chem. 1998, 110, 260. 
2 S. Bellemin-Laponnaz, L. H. Gade, Chem. Commun. 2002, 1286. 
3 S. Bellemin-Laponnaz, L. H. Gade, Angew. Chem. Int. Ed. 2002, 41, 3473, Angew. Chem. 2002, 114, 3623. 
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Scheme 2.1.2: First chiral C3-symmetric trisoxazolines synthesised in our group 

 

In asymmetric catalysis small variations of the ligand structure can dramatically affect the 

the selectivity of the transformation. This effect is well known in enantioselective reactions with 

bisoxazoline ligands4 and thus renders the development of trisoxazolines with new substituents 

of great importance. Starting from various α-amino alcohols, coupling between bisoxazolines 

and 2-bromooxazolines with new substituents can afford novel highly symmetric trisoxazolines. 

(R)-phenylglycinol, (S)-phenylalaninol (obtained by reduction of the corresponding amino acid)5 

and (1R-2S)-cis-1-amino-2-indanol (commercially available) were employed to synthesise new 

chiral C3-symmetric trisoxazolines (Figure 2.1.1). 

 

NH2HO
NH2HO NH2HO

(S)-phenylalaninol(R)-phenylglycinol (1R,2S)-cis-1-amino-2-indanol
 

Figure 2.1.1: The three α-amino alcohols used as starting material for the synthesis of new chiral trisoxazolines 

 

In several different enantioselective catalytic reactions, bisoxazolines possessing phenyl 

substituents have proven to be more efficient than the corresponding ligands with isopropyl or 

                                                 
4 G. Desimoni, G. Faita, K. A. Jørgensen, Chem. Rev. 2006, 106, 3561. 
5 a) A. Abiko, S. Masamune, Terahedron Lett. 1992, 33, 5617; b) M. McKennon, A. I. Meyers, J. Org. Chem. 1993, 
58, 3568. 
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tbutyl groups. In terms of chiral environment, the benzyl substituent increases the flexibility. In 

contrast, one major advantage of the indanyl rest is its rigidity. For the development of 1,1,1-

(trisoxazolinyl)ethane ligands the synthesis of the two precursors had to be done first.  

2. Bisoxazolines: Synthesis of synthons containing identical oxazoline rings 

As introduced in the first chapter the design of oxazoline-based ligands for asymmetric 

catalysis has led to the development of a large variety of bisoxazolines including 2,2-

bis(oxazolinyl)propane ligands (see Figure 1.1.4). Synthetic strategies of the bisoxazoline 

intermediates, 1,1-bis(oxazolinyl)ethanes, are based on those described for the latter. 

a. Bisoxazolines with phenyl and benzyl substituents 

The two target molecules are shown in Figure 2.1.2. The synthesis of 1,1-bis[(4R)-4-

phenyloxazolin-2-yl]ethane (1) has already been reported in the literature6 and 1,1-bis[(4S)-4-

benzyloxazolin-2-yl]ethane (2) was prepared using the same procedure.  
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N N
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N N
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Figure 2.1.2: 1,1-bis[(4R)-4-phenyloxazolin-2-yl]ethane (1) and 1,1-bis[(4S)-4-benzyloxazolin-2-yl]ethane (2) 

 

The classical first step of the synthesis of 1,1-bis(oxazolinyl)ethane ligands is the 

formation of a diamide starting from a diester or a diacid derivative. Reaction between 

diethylmethyl malonate and the desired chiral amino alcohol is depicted in Scheme 2.1.3.  
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Scheme 2.1.3: Synthesis of the chiral diamide from diethylmethyl malonate 

 

                                                 
6 J. Bourguignon, U. Bremberg, G. Dupas, K. Hallman, L. Hagberg, L. Hortala, V. Levacher, S. Lutsenko, E. 
Macedo, C. Moberg, G. Quéguiner, F. Rahm, Tetrahedron 2003, 59, 9583. 
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In the presence of a catalytic amount of sodium hydride the expected dihydroxy diamides 

are obtained after transesterification followed by intramolecular amidation. It has to be noted that 

for the diamide bearing the phenyl substituent the reaction should not be carried out at more than 

110°C due to racemisation of the chiral carbon at the benzylic position. 

Ring closure is the next step of the synthesis of the bisoxazolines. Several mild 

approaches have been developed for the cyclisation of hydroxy amides including activation of 

the alcohol functions with mesylchloride followed by exposure to aqueous methanolic base,7 use 

of molybdenum oxide catalysts8 or of a tetranuclear zinc carboxylate catalyst.9 To prepare 

bisoxazolines 1 and 2 the alcohol functions of the corresponding dihydroxy diamides are 

activated with tosylchloride in the presence of triethylamine and a catalytic amount of 

dimethylaminopyridine (DMAP). The ring closure is carried out at room temperature over 

several days without further addition of a base (Scheme 2.1.4). 
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Scheme 2.1.4: Cyclisation of the dihydroxy diamides to form bisoxazolines 1 and 2 

 

.Cyclisation gives bisoxazoline 1 in 60% yield,in agreement with the results reported by 

Moberg et al.6 Bisoxazoline 2 is obtained with an overall yield of 45%. 

b. Bisoxazoline with indanyl substituents 

1,1-bis[(4R,5S)-4,5-indanediyloxazolin-2-yl]ethane must be prepared starting from the 

strained (1R-2S)-cis-1-amino-2-indanol. However formation of a dihydroxy diamide followed by 

ring closure is not mechanistically possible in this case. Attack of the amide-oxygen onto the 

carbon attached to the activated alcohol would involve an inversion of configuration of the latter 

to give a trans indanyl substituent on the oxazoline ring, and this is not possible. The synthesis 

                                                 
7 a) E. J. Corey, K. Ishihara, Tetrahedron Lett. 1992, 33, 6807; b) S. E. Denmark, N. Nakajima, O. J.-C. Nicaise, A.-
M. Faucher, J. P. Edwards, J. Org. Chem. 1995, 60, 4884; c) A. V. Bedekar, E. B. Koroleva, P. G. Andersson, J. 
Org. Chem. 1997, 62, 2518; d) S. Dagorne, S. Bellemin-Laponnaz, R. Welter, Organometallics 2004, 23, 3053. 
8 A. Sakakura, R. Kondo, K. Ishihara, Org. Lett. 2005, 7, 1971. 
9 T. Ohshima, T. Iwasaki, K. Mashima, Chem. Commun. 2006, 2711. 
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can be successfully achieved using a procedure which involves another mechanistical pathway 

and which proceeds via the bis[oxazoline-2-yl]methane intermediate 3 (Scheme 2.1.5).  
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Scheme 2.1.5: Reaction scheme of the synthesis of 1,1-bis[(4R,5S)-4,5-indanediyloxazolin-2-yl]ethane 4 

 

Following a reported procedure, condensation of the corresponding amino alcohol and 

diethyl malonimidate affords the bis[(4R,5S)-4,5-indanediyloxazolin-2-yl]methane 3 with 60% 

yield.10 Treatment with lithium diisopropylamide (LDA) followed by addition of methyl 

trifluoromethanesulfonate gives the desired monoalkylated bisoxazoline 4 with 59% yield.  

3. Bromooxazolines: From the 2H-oxazolines to the key intermediates 

2-Bromooxazolines, the key intermediates in the ligand synthesis, are activated 

monooxazolines and their synthesis involves the initial formation of 2H-oxazolines.  

a. Synthesis of 2H-oxazolines 

Chiral 2H-oxazolines are part of the interesting class of 2-oxazolines and are 

intermediates for the functionalisation of position 2 of oxazoline units.11 They are prepared by 

condensation of an α-amino alcohol and an activated ester.12 Meyers et al. reported the treatment 

                                                 
10 D. M. Barnes, J. Ji, M. G. Fickes, M. A. Fitzgerald, S. A. King, H. E. Morton, F. A. Plagge, M. Preskill, S. H. 
Wagaw, S. J. Wittenberger, J. Zhang, J. Am. Chem. Soc. 2002, 124, 13097. 
11 T. G. Gant, A. I. Meyers, Tetrahedron 1994, 50, 2297. 
12 a) W. R. Leonard, J. L. Romine, A. I. Meyers, J. Org. Chem. 1991, 56, 1961; b) K. Kamata, I. Agata, J. Org. 
Chem. 1998, 63, 3113. 
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of α-amino alcohols with dimethylformamide dimethylacetal (DMF-DMA) which leads to the 

formation of a formamidine intermediate.12a Acid-catalysed cyclisation produces the 2H-

oxazolines 5 and 6 by concurrent loss of dimethylamine (Scheme 2.1.6). 
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Scheme 2.1.6: Formation of the 2H-oxazolines 5-7 

 

Using the same synthetic strategy the 2H-oxazoline 7 could be obtained in 70-90% yield. 

b. Synthesis of 2-bromooxazolines 

Meyers and Novachek first reported the synthesis of a 2-bromooxazoline in 1996 starting 

from the (4S)-4-tbutyloxazoline.13 They showed that lithiation of the 2H-oxazoline followed by 

addition of 1,2-dibromo-1,1,2,2-tetrafluoroethane, a smooth and non-oxidising Br+ provider, 

affords the activated monooxazoline. 2-Bromo-4,4-dimethyloxazoline (8) and (4S)-2-bromo-4-

isopropyloxazoline (9) have first been synthesised using this method.2,3 Based on the same 

synthetic procedure three novel 2-bromooxazolines (10-12) have been prepared (Scheme 2.1.7). 

 

                                                 
13 A. I. Meyers, K. A. Novachek, Tetrahedron Lett. 1996, 37, 1747. 
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Scheme 2.1.7: Synthesis of the 2-bromooxazolines 10-12 

 

To achieve the synthesis of 2-bromooxazoline 11 the addition of tert-butyl lithium and 

the following reaction with the Br+ provider have to be done very slowly and at low temperature 

(-100°C) due to degradation under the standard conditions. Activated monooxazolines 10 and 11 

are purified by bulb to bulb distillation and are kept in solution in tetrahydrofuran at -78°C to 

avoid decomposition. The 2-bromooxazoline 12 is a white solid which is purified by sublimation 

(cooling at -78°C). It has been observed that yields may vary considerably. 

4. The coupling step: New C3-symmetric trisoxazolines 

The two coupling partners for the synthesis of the trisoxazolines, the bisoxazoline 

derivatives and the 2-bromooxazolines, are accessible through straightforward synthesis; this 

contributes to the efficiency of the overall approach.  

The three novel trisoxazolines were synthesised by coupling of the two precursors using 

the modular strategy (Scheme 2.1.8). Preparation of Ph-trisox and Bn-trisox can be achieved by 

standard reaction conditions used for the synthesis of iPr-trisox and tBu-trisox: after addition of 

the 2-bromooxazoline to the lithiated bisoxazoline at low temperature the reaction mixture is 

stirred at 70°C in tetrahydrofuran for several days. To obtain higher yields the coupling of 1,1-

bis[(4R,5S)-4,5-indanediyloxazolin-2-yl]ethane 4 with (4R,5S)-2-bromo-4,5-indanediyloxazoline 

12 has to be carried out in toluene and at lower temperature (50-60°C). After two days, the 1H 

NMR spectrum of the reaction mixture showed that there were no precursors left and the low 

yields observed were probably due to relative instability of Ind-trisox on the chromatography 

column.  
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Scheme 2.1.8: Synthesis of Ph-trisox, Bn-trisox and Ind-trisox 

 

Both Ph-trisox and Bn-trisox are white solids. Suitable crystals for X-ray diffraction of 

Ph-trisox could be obtained by slow diffusion of pentane into a solution of the trisox in 

dichloromethane. The molecular structure of Ph-trisox in the solid state is shown in Figure 2.1.3 

and selected bond lengths are given in Table 2.1.1. 

 
 

(a) (b) 

Figure 2.1.3: Thermal ellipsoid plot (25%) of Ph-trisox: (a) perspective view; (b) view along the C(29)-C(10) bond  
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Ph-trisox Bn-trisox 

N(1)-C(1) 1.263 N(1)-C(1) 1.261 
N(2)-C(11) 1.257 N(2)-C(11) 1.264 
N(3)-C(20) 1.261 N(3)-C(21) 1.266 

 

Table 2.1.1: Selected bond lengths (Å) for Ph-trisox and Bn-trisox ligands  

 

Similarly, Bn-trisox crystallises by slow diffusion of pentane into a solution of the ligand 

in dichloromethane. The structure of Bn-trisox is depicted in Figure 2.1.4. and selected bond 

lengths are given in Table 2.1.1. 

 

 

 
(a) (b) 

Figure 2.1.4: Thermal ellipsoid plot (25%) of Bn-trisox: (a) perspective view; (b) view along the C(31)-C(32) bond  

 

The molecular structures of Ph-trisox and Bn-trisox indicate that the benzyl substituents 

are more flexible than the phenyl groups. The Ph-trisox ligand should therefore give more rigid 

structures upon complexation to a metal centre.  
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II. Synthesis of mixed tris- and bisoxazolines 

1. C1-symmetric trisoxazolines via the modular approach 

The novel approach, which consists in a modular synthesis, allows the formation of 

highly symmetric trisox as well as trisoxazolines with destroyed rotational symmetry.14 To 

synthesise chiral C1-symmetric trisoxazolines, several approaches are possible. One is to 

introduce three oxazoline units possessing the same configuration but at least one different 

substituent (Figure 2.2.1 I). Another approach is to introduce an oxazoline ring which has the 

opposite stereochemistry relative to the others and with either the same (Figure 2.2.1 II) or a 

different substituent (Figure 2.2.1 III). 

 

R1

R2

R3

R1

R1

R1

R1R1 R2

I II III  
Figure 2.2.1: Different approaches to introduce C1 symmetry in trisoxazolines 

R is the substituent at the 4 position  of the oxazoline unit 
For type I, R1=R2

≠R3 or R1
≠R2
≠R3 

 

The modular approach developed in our group allows the formation of trisox of type I as 

well as of type II and III. For further application in asymmetric catalysis we were interested in 

the preparation of trisox of type I and II. For that purpose bisoxazolines with identical oxazoline 

units were employed as coupling partners. The synthesis of three chiral C1-symmetric tripods 

was achieved in moderate yields. The general reaction scheme along with the structure of the 

different ligands prepared is depicted in Scheme 2.2.1. (R,S,S)-Ph-trisox (type II) was obtained 

by coupling 1,1-bis[(4S)-4-phenyloxazolin-2-yl]ethane with the corresponding activated 

monooxazoline possessing the opposite stereochemistry. 

 

                                                 
14 Recently, Ahn et al. reported the preparation of C1-symmetric D-type trisox through an oxazoline exchange 
reaction with amino alcohols in the presence of zinc(II) chloride with yields between 12 and 34%: S.-G. Kim, H. R. 
Seong, J. Kim, K. H. Ahn, Tetrahedron Lett. 2004, 45, 6835.  
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R1 = (S)-Ph
R2 = R4 = H
R3 = (R)-Ph

(R,S,S)-Ph-trisox Ph-dm2-trisox
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R4 = H

 
Scheme 2.2.1: Application of the modular strategy for the synthesis of C1-symmetric trisoxazolines (dm = dimethyl) 

 

Ph2-dm-trisox and Ph-dm2-trisox are chiral ligands of type I possessing one or two achiral 

oxazoline units respectively (dm = dimethyl). 

2. Synthesis of mixed 2,2-bis(oxazolinyl)propane ligands 

There are two different possibilities to synthesise mixed bisoxazolines. The first one is to 

introduce two oxazoline units bearing different substituents and the second one consists of the 

introduction of one oxazoline ring possessing the same substituent as the other but with inverted 

stereochemistry (Figure 2.2.2).  

inversion of 
a chiral centre

(R,R)-BOX
C2-chiral

(R,S)-BOX
meso

achiral

introduction of 
a new substituent

C2-chiral BOX

C1-chiral BOX

a b  
Figure 2.2.2: Transformation of a C2-chiral bisoxazoline upon introduction of a new substituent (a) or inversion of 

the configuration of an oxazoline unit (b) 
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Introduction of non-identical rests on the oxazoline rings breaks the C2 symmetry of the 

ligand and gives rise to a C1-symmetric molecule (Figure 2.2.2 a). Whereas the inversion of a 

chiral centre in a C3 chiral tripod renders the system chiral and C1-symmetrical, the same process 

carried out for C2-symmetrical chelate ligand generates a meso-structure, i.e. an achiral ligand 

possessing mirror symmetry (Figure 2.2.2 b). For further application in asymmetric catalysis two 

mixed bisoxazolines have been synthesised. The synthetic strategy employed to prepare mixed 

bisoxazolines is depicted in Scheme 2.2.2. It is also possible to use other synthetic pathways to 

get access to bisoxazolines bearing non-identical oxazoline units.15 
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24
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R2
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R2R4 R4

R1=R2=Me     
R1= H R2=(R)-Ph

R1=H, R2=(S)-Ph    
R1=H, R2=(R)-Ph

 
Scheme 2.2.2: Synthesis of mixed bisoxazolines 

 

                                                 
15 See for example: J. I. García, J. A. Mayoral, E. Pires, I. Vallalba, Tetrahedron: Asymmetry 2006, 17, 2270. 
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The first step is the mono-saponification of diethyl dimethylmalonate which gives the 

corresponding mono-acid with 95% yield.16 Peptide coupling between the mono-acid and the 

first α-amino alcohol in the presence of N,N'-dicyclohexylcarbodiimide (DCC) and 1-

hydroxybenzotriazole (HOBT) affords the mono-amide. Introduction of the second group is done 

by reacting the mono-amide with the desired α-amino alcohol in the presence of a catalytic 

amount of sodium hydride as described for the diamide intermediate for the synthesis of 1,1-

bis(oxazolinyl)ethanes. Activation of the alcohol functions with tosylchloride and subsequent 

cyclisation afforded the meso bisoxazoline in high yield but this activation proved not to be 

efficient in the synthesis of the C1-symmetric bisoxazoline. Bisoxazoline 24 has been obtained 

by activation with thionyle chloride followed by cyclisation under basic conditions. 

III. Instability of the 2-bromooxazolines 

1. Ring-opening of the oxazoline unit: General aspects 

The oxazoline unit is widely applied in ligand design for asymmetric catalysis due to their 

numerous advantages: i) they are rigid, quasi-planar; ii) they are normally stable towards 

hydrolysis and oxidation; iii) they can readily be prepared in enantiomerically pure form from 

optically pure α-amino alcohols; iv) the stereodirecting substituents are located in close 

proximity to the metal center upon coordination through the nitrogen atom. However, depending 

on the structure of the oxazolines, they are sometimes not stable towards hydrolysis. This is the 

case for very strained oxazoline rings such as (4R,5S)-4,5-indanediyloxazoline (7). Ring-opening 

through hydrolysis of this 2H-oxazoline has been confirmed by X-ray analysis (Scheme 2.3.1). 

 

H2O
 

 

Scheme 2.3.1: Thermal ellipsoid plot (25%) of (4R,5S)-4,5-indanediyloxazoline and of the ring-opening product 
afforded through hydrolysis 

 
                                                 
16 R. E. Strube, Org. Synth. 1963, 4, 417. 
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Oxazoline units can undergo ring-opening under certain conditions, by way of 

electrophilic attacks17 their acidolysis18 or glycolysis19 and rearrangement in organometallic 

compounds.20 Ring-opening polymerisation of 2-oxazolines is also the focus of current interest.21 

The main driving force of the polymerisations is not the relief of ring strain, as it is for many 

ring-opening polymerisations, but instead is the isomerisation of the oxazoline unit to the amide, 

which is thermodynamically more stable. The ring-opening of oxazolines has also been 

employed as practical entry to interesting organic molecules such as amino esters.22 

2. Thermally induced rearrangement of the 2-bromooxazolines 

A practical limitation has been observed during the synthesis of the trisoxazolines: the 

thermal degradation of the 2-bromooxazolines. This degradation can be easily noticed due to the 

change of colour of the compound from colorless to yellow/brown. It has first been observed for 

the (4R)-2-bromo-4-phenyloxazoline. The compound obtained has been characterised by 

spectroscopic and spectrometric methods. The analyses show the ring-opening of the oxazoline 

unit leading to a new compound, in particular the IR spectrum shows the characteristic stretching 

band of an isocyanate function (νC=N = 2265 cm-1). The 1H NMR spectra of the two compounds 

are represented in Figure 2.3.1, showing the shifts of the signals of the protons from the 

oxazoline rings.  

                                                 
17 J. A. Frump, Chem. Rev. 1971, 71, 483. 
18 a) D. F. Elliott, J. Chem. Soc. 1950, 62; b) E. M. Fry, J. Org. Chem. 1950, 15, 802; c) M. Fritz, H. Köchling, 
Chem. Ber. 1958, 673; d) B. Lindberg, H. Agback, Acta Chem. Scand. 1964, 18, 185. 
19 M. Fritz, E. Drescher, Chem. Ber. 1958, 670. 
20 a) A. B. Kazi, G. D. Jones, D. A Vicic, Organometallics 2005, 24, 6051; b) B. D. Ward, H. Risler, K. 
Weitershaus, S. Bellemin-Laponnaz, H. Wadepohl, L. H. Gade, Inorg. Chem. 2006, 45, 7777; c) A. L. Gott, S. R. 
Coles, A. J. Clarke, G. J. Clarkson, P. Scott, Organometallics, 2007, 26, 136. 
21 See for example: a) J. S. Hrkach, K. Matyjaszewski, Macromolecules 1992, 25, 2070; b) R. Jordan, A. Ulman, J. 
Am. Chem. Soc. 1998, 120, 243 c) F. Wiesbrock, R. Hoogenboom, M. A. M. Leenen, M. A. R. Meier, U. S. 
Schubert, Macromolecules 2005, 38, 5025 d) R. Hoogenboom, F. Wiesbrock, H. Huang, M. A. M. Leenen, H. M. L. 
Thijs, S. F. G. M. van Nispen, M. van der Loop, C.-A. Fustin, A. M.  Jonas, Alain M.J.-F. Gohy, U. S. Schubert, 
Macromolecules 2006, 39, 4719; e) C. Guerrero-Sanchez, R. Hoogenboom, U. S. Schubert, Chem. Commun. 2006, 
3797. 
22 a) A. Laaziri, J. Uziel, S. Jugé, Tetrahedron: Asymmetry 1998, 437; b) S.-H. Lee, J. Yoon, K. Nakamura, Y.-S. 
Lee, Org. Lett. 2000, 2, 1243. 
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Figure 2.3.1: 1H NMR spectra in chloroform-d1 (300 MHz) of the (4R)-2-bromo-4-phenyloxazoline (a) and its 

corresponding rearrangement product (b); * = tetrahydrofuran 
 

The ring-opening leading to the formation of an isocyanate-based product was confirmed 

by X-ray crystallography. Suitable crystals for an X-ray diffraction study of the rearranged 

product of the (4R, 5S)-2-bromo-4,5-indanediyloxazoline were obtained (Figure 2.3.2).  

 

 
Figure 2.3.2: Thermal ellipsoid plot (25%) of (1R, 2R)-2-bromo-1-isocyanato-2,3-dihydro-1H-indene 

 

Ring-opening of the oxazoline unit induces the inversion of the absolute configuration of 

the C(2) carbon atom. It is of interest to note that the crystals employed for the X-ray diffraction 

study of the rearrangement product consisted only of one diastereomeric form. Moreover 1H 

NMR spectrum of the compound indicates a diastereomeric ratio of 95/5. Inversion of 
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configuration was induced in the nucleophilic attack of the bromine atom ending up at the 

opposite side of the position of the leaving group.  

It has been found that the same rearrangement occurs for all the bromooxazolines studied, 

independent of the substituent present on the heterocycle. The four rearrangement products that 

have been characterised are displayed in Figure 2.3.3. 
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Figure 2.3.3: The four isocyanate derivatives characterised 

 

At room temperature, the rate of rearrangement varies, depending on the substituent of 

the monooxazoline derivative. Based on experimental observations during the syntheses, we 

could classify the bromooxazolines from the more to the less stable: iPr >> Me2 >>Ph > Ind. The 

(4R, 5S)-2-bromo-4,5-indanediyloxazoline is the least stable derivative presumably due to the 

presence of three strained rings. It has been observed that higher dilution in tetrahydrofuran 

induce higher stability at room temperature. Notably, the derivative with phenyl substituent 

seems to be more stable than the 4,4’-dimethylated compound when the solution is diluted.  

Knowing the structure of the rearrangement product, we initially proposed two different 

rearrangement pathways (Scheme 2.3.2): a) heterolytic cleavage of the C-Br bond followed by 

nucleophilic attack of the Br- anion on the oxazolinium moiety; b) radical mechanism with 

homolytic cleavage of the Br-C bond or, possibly a radical chain mechanism.  
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Scheme 2.3.2: Two possible reaction pathways for the rearrangement of the 2-bromooxazolines 

 

In order to gain more insight into the reaction mechanism several test reactions have been 

carried out with the 2-bromo-4,4’-dimethyloxazoline. The conversion of the bromooxazoline into 

the corresponding isocyanate derivative can be easily followed by 1H NMR by monitoring the 

two characteristic singlets of the brominated compounds (Figure 2.3.4). 
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Figure 2.3.4: 1H NMR spectra in chloroform-d1 (200 MHz) of the 2-bromo-4,4’-dimethyloxazoline (down) and the 

1-bromo-2-isocyanato-2-methylpropane (up): * = tetrahydrofuran 

 

The different reactions carried out in tetrahydrofuran, tetrahydrofuran-d8 or chloroform-d1 

and their corresponding results are summarised in Table 2.3.1.  
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Entry Solvent Temperature 
Additive / 
Conditions 

Reaction 
time 

Rearrangement 

1 THF R.T. H2O 3 d - 

2 CDCl3 R.T. H2O 1 d - 

3 THF R.T. compressed air 5 h - 

4 CDCl3 15°C UV 3 d - 

5 THF 25°C UV 2 d - 

6 CDCl3 
heat from the 

lamp 
UV 2 d complete 

7 CDCl3 -78°C to R.T. radical initiator 1 d - 

8 THF-d8 -78°C to R.T. radical initiator 1 d - 

9 THF-d8 R.T. Br2 1 d 
rearrangement 

(~10%) 
+ by-products 

10 CDCl3 R.T. Bu4NBr 2 d 
rearrangement 

(10%) 

11 CDCl3 R.T. HBr 2 h 

starting material  + 
rearrangement 

(~30%) 
+ by-product 

12 CDCl3 R.T. HBr 1 d 
starting material 

(~20%)  
+ by-product 

13 THF 75°C / 2 d complete 

14 CDCl3 75°C / 2 d complete 
 

Table 2.3.1: Attempts to obtain the rearrangement product of 2-bromo-4,4-dimethyloxazoline 

 

Addition of water (entries 1-2) to a solution containing the bromooxazoline did not lead 

to the rearrangement product even after three days of reaction. Air was bubbled through a 

solution of the monooxazoline derivative in tetrahydrofuran and no reaction was observed. This 

indicates that a radical reaction initiated by oxygen is not involved. Exposure of a 

tetrahydrofuran or chloroform solution of the compound to UV irradiation (entries 4-5) was 

unsuccessful. Notably, when the reaction mixture was not cooled with a cryostat to room 

temperature or lower, the conversion was complete (entry 6). Comparison of entries 4, 5 and 6, 

enables us to conclude that the heat coming from the lamp was the source of reaction and that 

photochemical reaction is not the cause of the isomerisation. Trying to obtain the isocyanate-

based compound by addition of a radical initiator (2,2’-azobis(4-methoxy-2,4-

dimethylvaleronitrile), AIBN) to the bromooxazoline is unsuccessful (entry 7-8). Addition of Br2 
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mostly led to degradation of the bromooxazoline giving unknown compounds. In view of the 

results of entries 4-9, we assume that the reaction pathway (b) from Scheme 2.3.2 is wrong and 

that the rearrangement is not induced by a radical cleavage of the Br-C bond. In the presence of 

Br- anions (from Bu4NBr) rearrangement is observed but the reaction is very slow (10% 

conversion after 2 days; entry 10). Addition of a concentrated aqueous solution of HBr led to the 

formation of the isocyanate derivative (30%) with some by-products after 2 hours. The next day, 

the degradation of the desired product was observed. Addition of an acid to the compound is not 

conclusive due to the total degradation of the isocyanate which has been partially obtained (the 

same was observed in case of HCl). The most interesting results have been obtained when a 

solution of the bromooxazoline has been heated (entries 13-14). In tetrahydrofuran, as well as in 

chloroform, complete conversion of the bromooxazoline into the isocyanate derivative has been 

observed after two days at 75°C. These results are in agreement with those observed for entry 6 

where conversion is obtained when heat and UV are combined, knowing that irradiations do not 

have any influence alone. A thermal heterolytic Br-C bond cleavage could be proposed for the 

rearrangement (Scheme 2.3.2 (a)).  

The thermal instability of the bromooxazolines has been confirmed by heating the 

different derivatives or simply by removing them from their cold bath. In fact, after sublimation, 

the (4R, 5S)-2-bromo-4,5-indanediyloxazoline must be kept a -78°C otherwise complete 

rearrangement happens in less then two minutes. The rearrangements appeared to be quite 

selective (~95%) and yields of 85-90% could be obtained after distillation for the isopropyl, 

dimethyl and phenyl derivatives.  

The degradation of the 2-bromo-4,4’-dimethyloxazoline has been followed by 1H NMR at 

60°C. The result showing the evolution of the concentrations of the bromooxazoline and 

isocyanate derivative in function of time is represented in Figure 2.3.5.  
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Figure 2.3.5: Proportions of 2-bromo-4,4’-dimethyloxazoline and 1-bromo-2-isocyanato-2-methylpropane in 

function of time at 60°C (C = 0.42 mol.L-1, followed by 1H NMR in THF-d8, 200 MHz) 
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These results show that the conversion from the bromooxazoline into the isocyanate 

derivative is quite fast at 60°C. After twelve hours there is no bromooxazoline left. Trisoxazoline 

syntheses by coupling between monooxazoline derivatives and bisoxazolines are carried out in 

solution of concentrations around 0.08-0.12 mol. L-1 and generally at higher temperature (70-

75°C). A low yield is obtained after five days of reflux (17%)2 for the 1,1,1-tris[4,4-

dimethyloxazolin-2-yl]ethane. The rearrangement of the bromooxazoline could explained this 

result. For the other bromooxazolines, it has been observed that higher temperatures are needed 

to form the rearrangement product and this explains the higher yields obtained for the coupling 

reaction.  

During the course of the tripod synthesis it has been observed that the rearrangement 

occurs more or less rapidly depending on the concentration of the tetrahydrofuran solution of the 

2-bromooxazolines. To confirm this observation the evolution of the concentration of bromine- 

and isocyanate-based compound in function of time has been followed by 1H NMR starting with 

different concentrations of 2-bromooxazoline. The two graphs summarising the results are 

depicted in Figure 2.3.6. 
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Figure 2.3.6: Proportions of 2-bromo-4,4’-dimethyloxazoline and 1-bromo-2-isocyanato-2-methylpropane as 

function of time at different concentrations (followed by 1H NMR in THF-d8, 200 MHz, 60°C) 
 

The rate determining step of the rearrangement is probably the heterolytic cleavage of the 

Br-C bond because high activation energy is needed to break heterolytic bonds. The shape of the 
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curves and the concentration dependence indicate that the bond cleavage step is not first order 

related to the concentration of bromooxazoline. The mechanism proposed in Scheme 2.3.2 a) is 

in that case not possible. A process involving dissociation of the bromine by attack of a second 

bromooxazoline and further nucleophilic substitution on the C5 carbon by the free bromine 

appears to be more likely (Scheme 2.3.3). 
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Scheme 2.3.3: Reaction pathway proposed for the rearrangement of the bromooxazolines 

 

The first step of this mechanism is similar to the nucleophilic addition of an imidazole on 

a 2-bromooxazoline which affords an oxazoline-imidazolium.23 The formation of this salt 

stabilises the oxazoline ring which undergoes the Br-C bond cleavage and activates its C5 carbon 

for further nucleophilic attack. To confirm that the rearrangement involves an ionic and not a 

radical process, one more experiment has been carried out. The evolution of the concentration of 

the two compounds in function of time with the addition of one equivalent tetrabutylammonium 

bromine has been followed by 1H NMR. The corresponding graph is depicted in Figure 2.3.7. 
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Figure 2.3.7: Evolution of the concentration of 1-bromo-2-isocyanato-2-methylpropane in function of time with 

additive (■) and without additive (▲) (C = 0.57 mol.L-1, followed by 1H NMR in THF-d8, 200 MHz, 60°C) 
 

Addition of an excess of Br- anions increases the reaction rate. In the presence of one 

equivalent tetrabutylammonium bromine the rearrangement is completed after two hours 

indicating the involvement of the anion.  

                                                 
23 V. Cesar, S. Bellemin-Laponnaz, L. H. Gade, Organometallics 2002, 21, 5204. 
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3. Conclusion 

It has been found that 2-bromooxazolines rearrange into isocyanate derivatives. The 

isomerisation is thermally induced and is dependent on the concentration of the solution of 

bromooxazolines in tetrahydrofuran. Upon heating, 2-bromo-4-substituted oxazolines can be 

converted into 2-bromo isocyanates with high selectivity. Yields of 85-90% are obtained with 2-

bromo-4-phenyloxazoline, 2-bromo-4-isopropyloxazoline or 2-bromo-4,4’-dimethyloxazoline. 

The mechanism of the rearrangement involves a heterolytic cleavage of the Br-C bond probably 

induced by a nucleophilic attack of a second bromooxazoline. 

IV. Reaction with the α-bromo-isocyanate derivatives 

1. Precedent in the literature 

Two of the isocyanates obtained by isomerisation of the bromooxazolines have been 

reported previously: the 1-bromo-2-isocyanato-2-methylpropane (25) and the 1-(2-bromo-1-

isocyanatoethyl)benzene (27), as well as other derivatives such as the 1-bromo-2-

isocyanatopropane. Rearrangement of N-halogenated β-lactames in the presence of olefins or 

alkynes leads to the isocynates by adding catalytic amounts of radical generators or by irradiation 

or heating (Scheme 2.4.1 (a)).24 A method based on the dehydrochlorination of compounds of 

type RNHCOCl in the presence of H2O and HCl enables to obtain, inter alia, 1-bromo-2-

isocyanato-2-methylpropane (Scheme 2.4.1 (b)).25 
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Scheme 2.4.1: Procedures described in the literature for the synthesis of the isocyanate derivatives 

 

                                                 
24 a) K. D. Kampe, Tetrahedron Lett. 1969, 2, 117 ; b) Farbwerke Hoechst A.-G., 1969, Patent FR 1565226; c) K. D. 
Kampe, 1970, Patent DE 1930329; d) K. D. Kampe, Justus Liebigs Ann. Chem. 1971, 752, 142. 
25 a) K. H. Koenig, W. Rohr, A. Fischer, 1972, Patent DE 2045907; b) K. H. Koenig, F. Zanker, D. Mangold, A. 
Fischer, 1972, Patent DE 2045906; c) F. Zanker, 1973, Patent DE 2156761. 



Ligand synthesis and rearrangement of 2-bromooxazolines 55 

The mechanism of the rearrangement of N-halogenated β-lactames is not fully understood 

but evidence for radical reactions have been found.27a,d Various applications of this type of 

isocyanates to generate new compounds, such as benzimidazoles derivatives,26 

oxazolinylpiperazines derivatives,27 oxazoloquinazolines,28 2-amino-2-oxazolines,29 fullerene 

derivatives30 and 1-amidino-2-imidazolidinones,31 are reported in the literature.  

Rearrangement of the 2-bromooxazolines does not affect the position 4 of the oxazoline 

unit and enantiomerically pure isocyanates are obtained after isomerisation. Considering the 

reactivity of isocyanates, an interesting application may be their use for the determination of the 

enantiomeric excess of primary or secondary amines.  

2. Reaction with phenylethylamine 

The enantiomerically pure as well as achiral isocyanate derivatives have been reacted 

with (S)-1-phenylethylamine or rac-phenylethylamine. Depending on the conditions, reaction 

between the isocyanates and the primary amine is expected to lead to either two N-cyclised 

regioisomers: a 2-imidazolidinone and an aziridine or to an O-cyclised 2-aminooxazoline 

(Scheme 2.4.2). 
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Scheme 2.4.2: Possible isomers formed by reaction between the isocyanate derivatives and phenylethylamine 

                                                 
26 G. Hoerlein, H. Mildenberger, A. Kroeniger, K. Haertel, 1972, Patent DE 2125815. 
27 a) A. Gobel, K. Schmitt, I. Linde-Ranke, 1973, Patent DE 2205814 ; b) A. Gobel, K. Schmitt, I. Linde-Ranke, 
1973, Patent DE 2205815.  
28 K. D. Kampe, 1974, Patent DE 2252122. 
29 a) K. D. Kampe, Justus Liebigs Ann. Chem. 1974, 4, 593; b) K. D. Kampe, M. Babej, J. Kaiser, 1974, Patent DE 
2253554 
30 K. D. Kampe, 1995, Patent EP 653424. 
31 B. Kulitzscher, C. Sommer, B. Kammermeier, 1996, Patent DE 19502790. 
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Before the cyclisation, reaction between the isocyanate and phenylethylamine leads to the 

formation of an urea. This urea is obtained by nucleophilic attack of the isocyanate function by 

the amine. The subsequent step is the intramolecular cyclisation of this intermediate. Two 

different reaction conditions have been employed to react the isocyanate derivatives with the 

amine. They are depicted in Scheme 2.4.3. 
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Scheme 2.4.3: The two reaction pathways studied and the three different products observed: Prod. A, Prod. B and 

Prod. C 
The reactions have been carried out for both reaction protocols with the isocyanate 

derivatives with dimethyl, (S)-isopropyl and (R)-phenyl substituents. In the two following 

sections determination of the products formed through Pathway I and Pathway II is described. 

a. Pathway I: characterisation of Prod. A 

Following Pathway I the reaction between the isocyanate derivative and the primary 

amine at -20°C followed by the addition of potassium tert-butoxide at -40°C leads to the 

formation of Prod. A. It has been confirmed by variable temperature 1H NMR studies in THF-d8 

that the urea is formed at low temperature. The urea bearing the isopropyl substituent (27) has 

been characterised by 1H, 13C {1H} and 15N NMR spectroscopy (Figure 2.4.1).  
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Figure 2.4.1: Urea formed by reaction between (S)-1-phenylethylamine and the isocyanate derivative bearing the 
(S)-isopropyl substituent 
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The NMR scale reactions conducted at low temperature (-20°C) have shown that the urea 

remains stable at least for five hours. Thus, when the base is added, the reaction that occurs is the 

intramolecular cyclisation of the urea. This cyclisation has proven to be selective and 1H NMR 

spectra of the reaction mixture show no by-products. Based on the spectroscopic and mass 

spectrometric data recorded it has been difficult to conclude whether the urea undergoes N-or O-

cyclisation. 

Suitable crystals for an X-ray diffraction study have been obtained by slow diffusion of 

pentane into a solution of Prod. A bearing the (S)-isopropyl substituent in dichloromethane. The 

molecular structure of the compound is depicted in Figure 2.4.2. The selected bond lengths and 

angles are summarised in Table 2.4.1.  

 

 
Figure 2.4.2: Thermal ellipsoid plot (25%) of (S)-2-isopropyl-N-((S)-1-phenylethyl)aziridine-1-carboxamide (31a) 

 

C(1)-O(1) 1.228(3)  C(1)-N(2) 1.342(3) 
C(1)-N(1) 1.408(3)  C(2)-N(1) 1.456(3 
C(2)-C(3) 1.485(3)  C(3)-N(1) 1.469(3) 
     

N(2)-C(1)-N(1) 113.25(18)  N(1)-C(2)-C(3) 59.94(15) 
N(1)-C(3)-C(2) 59.06(15)  C(2)-N(1)-C(3) 61.00(15) 
C(1)-N(1)-C(2) 118.87(18)  C(1)-N(1)-C(3) 119.14(19) 

 

Table 2.4.1: Selected bond lengths (Å) and angles (°) 

 

The formation of the 3-membered ring is confirmed by X-ray diffraction. Addition of the 

base to the pre-formed urea leads to the intramolecular N-cyclisation of the latter affording the 

aziridine. Following the procedure of Pathway I four aziridine derivatives have been isolated as 

the kinetically favoured product (Figure 2.4.3). 
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Figure 2.4.3: The compounds formed following the procedures of Pathway I 

 

Derivatives of this type of aziridines with two methyl groups on the carbon C(2) (2,2-

dimethyl-N-(1-phenylethyl)aziridine-1-carboxamide) (30) or two hydrogen atoms on the C(2) 

carbon (N-(1-phenylethyl)aziridine-1-carboxamide) have already been published and were 

obtained by reaction of the corresponding aziridine with 1-(1-isocyanatoethyl)benzene.32 

b. Pathway II: characterisation of Prod. B and Prod. C 

Following Pathway II the reaction between the isocyanate derivative and the primary 

amine at room temperature for three hours leads to the formation of Prod. B. This intermediate, 

a white foam, upon attempted isolation has only been characterised by NMR spectroscopy after 

evaporation of the solvent in vacuo. After dissolution in tetrahydrofuran and addition of 

potassium tert-butoxide at 0°C Prod. C is formed. This type of compounds has been isolated and 

fully characterised. 

The 1H NMR of Prod. B does not correspond to that of the urea. Interestingly during the 

course of our 1H NMR experiments it has been observed that, at room temperature, the urea is 

not stable and rearranges after less then two hours to give a product possessing the same 1H 

NMR spectrum as Prod. B. Thus, it has been assumed that the latter is already a cyclisation 

product of the urea. 

Identification of Prod. B and Prod. C proved to be not trivial. They present similar 

resonance patterns in the 1H and 13C {1H} NMR spectra with sometimes only slight variation in 

the chemical shifts. For the reaction between the amine and the isocyanate derivative with the 

4,4’-dimethyl substitution the two 1H NMR spectra are given in Figure 2.4.4. 

 

                                                 
32 a) A. P. Terent’ev, R. A. Gracheva, V. T. Bezruchko, Doklady Akademii Nauk SSSR 1967, 172, 622; b) R. G. 
Kostyanovskii, K. S. Zakharov, M. Zarinova, V. F. Rudchenko, Izvestiya Akademii, Nauk SSSR, Seriya 
Khimicheskaya 1975, 4, 875. 
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or 
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Figure 2.4.4: 1H NMR spectra in chloroform-d1 (400 MHz) of Prod. B and Prod. C obtained by reaction between 

phenylethylamine and the achiral isocyanate derivative  
 

For both compounds all the signals expected in case of cyclisation are present. Looking 

only at the 1H and 13C {1H} NMR spectra it is not possible to conclude whether the 

imidazolidinone or the aminooxazoline have been formed. Therefore 15N NMR and infrared data 

have been collected. The results are summarised in Table 2.4.2. 
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 Prod. B Prod. C 

R Me2 iPr Ph Me2 iPr Ph 
C1 160.5 161.5 161.6 158.3 159.2 160.7 
C2 81.6 73.8 76.9 79.1 70.2 75.1 
C3 60.0 61.7 61.3 65.1 70.0 67.9 
N1 103 101 100 78 79 80 
N2 112 97 / 177 160 / 
IR - - - 1687 1672 1686 

 

Table 2.4.2: 13C {1H} and 15N NMR (in ppm) and infrared data (υCN in cm-1) collected for Prod B. and Prod. C 

 

From the results presented in Table 2.4.2 it is possible to draw a first conclusion: Prod. C 

is an aminooxazoline, an assignment supported by different data. The chemical shifts of the 15N 
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resonances of both nitrogens present in the compound are drastically different. This would not be 

expected for a cyclic urea and is in agreement with the formation of an aminooxazoline ring.33 

Moreover the chemical shifts of the 13C resonances (as well as the 1H resonances) are in 

agreement with those reported for the cyclohexyl-(4,4-dimethyloxazolin-2-yl)amine (C1: 158.3 

ppm, C2: 78.8 ppm, C3: 65.0 ppm).34 In addition the infrared data confirm the formation the 

aminooxazoline. The infrared spectra of the three derivatives of Prod. C show an absorption 

between 1672 and 1687 cm-1 which is assigned to the νC=N stretching mode of the oxazoline. In 

the literature, aminooxazolines display a vibrational band between 1655 and 1687 cm-1 

depending on the substituents34,35 whereas those of imidazolidinones are observed between 1684 

and 1716 cm-1.36 

Addition of potassium tert-butoxide to Prod. B leads to the formation of Prod. C. In 

Table 2.4.2, the 15N resonances of Prod. B could correspond to those of imidazolidinones. 

However N-cyclisation of the urea to form Prod. B can not be envisaged. Indeed, knowing that 

Prod. C is an aminooxazoline is not possible that the intramolecular cyclisation of the urea 

afford an imidazolidinone. Based on the NMR data, on the fact that Prod. C stems from the O-

cyclisation and that the Prod. B derivatives appear as foam, we suggest that the latter are the 

hydrobromide salts of the corresponding aminooxazolines. In summary, reaction between the 

isocyanate derivatives and the primary amine generates the urea. The intramolecular O-

cyclisation of the latter then gives the hydrobromide salts which, after addition of potassium tert-

butoxide affords the aminooxazoline (Scheme 2.4.4). 
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Scheme 2.4.4: Reaction pathway for the synthesis of the aminooxazolines 

 

                                                 
33 It has been calculated that in an aminooxazoline the 15N nucleus of the C=N bond resonates at around 160 ppm 
and the 15N nucleus of the H-N bond resonates at around 95 ppm. In an imidazolidinone, it has been found that the 
15N nucleus of the C-N bond resonates at around 118 ppm and the 15N nucleus of the H-N bond resonates at around 
88 ppm. 
34 E. J. Crust, I. J. Munslow, P. Scott, J. Organomet. Chem. 2005, 690, 3373. 
35 T. H. Kim, N. Lee, G.-J. Lee, J. N. Kim, Tetrahedron 2001, 57, 7137. 
36 T. H. Kim, G.-J. Lee, J. Org. Chem. 1999, 64, 2941. 
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Formation of the salt also accounts for the differences observed in the chemical shifts in 

the 1H NMR spectra (see Figure 2.4.4). Addition of of HCl (from a 2M solution in diethylether) 

to Prod. C in chloroform-d1 clearly confirms that Prod. B is the protonated aminooxazoline. 

Indeed the 1H NMR spectrum of Prod. C in the presence of HCl is similar to the one of Prod. B. 

Using Pathway II, four different hydrobromide salts have been characterised by NMR 

spectroscopy and their four corresponding aminooxazolines have been isolated (Figure 2.4.5). 
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Figure 2.4.5: The compounds formed following the procedure of Pathway II 

c. Determination of the enantiomeric excess of primary amine 

Following Pathway I and II in the presence of rac-phenylethylamine and the isocyanate 

derivative bearing the (S)-isopropyl substituent the aziridine (31a+b), the salt of the 

aminooxazoline (34a+b) and the aminooxazoline (37a+b) have been prepared. It is possible to 

assign completely in the 1H NMR spectra the signals of the two diastereoisomers for all three of 

them. Formation of either the 2-aminooxazoline or the aziridine in principle enables the 

determination of the enantiomeric excess of the primary amine by NMR spectroscopy. 
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This chapter is devoted to the application of the trisoxazolines in palladium chemistry. 

The synthesis and structural characterisation of trisoxazoline-based palladium(II) and 

palladium(0) complexes are presented. The second part concentrates on the study of the dynamic 

fluxional behaviour of the Pd(II) and Pd(0) complexes. Finally, the application of the palladium 

complexes in asymmetric allylic substitution is discussed. 

I. Synthesis and structural characterisation of trisox-based palladium 

complexes 

1. [PdIICl2(trisox)] complexes 

Palladium(II) chloride complexes can easily be obtained by reaction of the desired ligand 

with a precursor from type [PdCl2L2] where L is a labile ligand. A series of neutral 

dichloropalladium(II) complexes was synthesized by reaction of the trisox derivatives with 

[PdCl2(PhCN)2] in dichloromethane at room temperature (Scheme 3.1.1). All four complexes 

[PdCl2(iPr-trisox)] (39), [PdCl2(Ph-trisox)] (40), [PdCl2(Bn-trisox)] (41) and [PdCl2(Ind-trisox)] 

(42) were isolated as crystalline orange air-stable solids. The analytical data confirmed the 

formation of the target complexes and the resonance pattern of the 1H, 13C{1H} and 15N NMR 

spectra recorded at 296 K are consistent with a κ2-coordination of the trisoxazoline ligands.  
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Scheme 3.1.1: Synthesis of palladium(II) complexes 39-42 

 

It was possible to obtain crystals suitable for X-ray diffraction of [PdCl2(iPr-trisox)] by 

slow diffusion of diethylether into a solution of 39 in dichloromethane. The molecular structure 

of compound 39 in the solid state is shown in Figure 3.1.1 and selected bond lengths and angles 

are given in Table 3.1.1. 
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Figure 3.1.1: Thermal ellipsoid plot (25%) of [PdCl2(iPr-trisox)] 39 

 

Pd-N(1) 2.050(2) Pd-N(2) 2.029(3) 
Pd-Cl(1) 2.2864(9) Pd-Cl(2) 2.2825(8) 
N(1)-C(3) 1.272(4) N(2)-C(9) 1.278(4) 
N(3)-C(15) 1.256(4)   
    
Cl(1)-Pd-N(1) 92.31(8) N(1)-Pd-N(2) 88.7(1) 
N(2)-Pd-Cl(2) 91.84(8) Cl(2)-Pd-Cl(1) 87.09(4) 

 

Table 3.1.1: Selected bond lengths (Å) and angles (°) for complex [PdCl2(iPr-trisox)] 39 

 

Similarly, complex [PdCl2(Ph-trisox)] crystallised by slow diffusion of pentane into a 

solution of 40 in CH2Cl2. The structure of 40 is depicted in Figure 3.1.2. Selected bond lengths 

and angles are given in Table 3.1.2. 

 

Pd-N(1) 2.030(2) Pd-N(2) 2.041(2) 
Pd-Cl(1) 2.2915 (7) Pd-Cl(2) 2.2606(8) 
N(1)-C(1) 1.273(4) N(2)-C(12) 1.283(4) 
N(3)-C(21) 1.294(4)   
    
Cl(1)-Pd-N(1) 91.58(7) N(1)-Pd-N(2) 89.42(10) 
N(2)-Pd-Cl(2) 91.02(8) Cl(2)-Pd-Cl(1) 88.07(3) 

 

Table 3.1.2: Selected bond lengths (Å) and angles (°) for complex [PdCl2(Ph-trisox)] 40 
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Figure 3.1.2: Thermal ellipsoid plot (25%) of [PdCl2(Ph-trisox)] 40 

 

In both complexes the geometry around the metal centre is distorted square planar, as 

expected for d8 palladium(II) complexes. The slight deformation is probably due to the steric 

repulsion of the chloro ligands and the isopropyl and phenyl substituents respectively. 

The trisoxazoline ligands adopt bidentate coordination, with the third oxazoline unit 

dangling, and the nitrogen donor pointing away from the metal centre. The free oxazoline ring is 

oriented perpendicularly to the plane defined by the six-membered metallacycle. The Pd-N and 

Pd-Cl bond lengths are in the range of those found for related structures.1 As expected, the C=N 

bond length of the free oxazoline is slightly shorter than those in the coordinated oxazoline units 

(1.256(4) vs. 1.272(4) and 1.278(4) Å for 39 and 1.249(4) vs. 1.273(4) and 1.283(4) Å for 40). 

The infrared spectrum of [PdCl2(iPr-trisox)] displays a vibrational band at 1660 cm-1 

which is assigned to the νC=N stretching mode of the free oxazoline ring and an absorption at 

1650 cm-1 corresponding to the νC=N stretching mode of the coordinated oxazoline units. In 

comparison, the νC=N stretching frequency of free iPr-trisox is 1660 cm-1. For complex 40, only 

the band assigned to the νC=N stretching mode of the coordinated oxazoline units is observed at 

1655 cm-1 (1665 cm-1 for the νC=N stretching mode of free Ph-trisox). 

                                                 
1 A. El Hatimi, M. Gómez, S. Jansat, G. Muller, M. Font-Bardía, X. Solans, J. Chem. Soc., Dalton Trans. 1998, 
4229. 
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2. A [PdII(allyl)(trisox)] complex 

Reaction of palladium allyl derivatives with our most commonly used tripod iPr-trisox 

yielded oily products. We then decided to focus on the phenyl-substituted trisoxazoline 

derivative Ph-trisox in order to obtain crystalline complexes. Reaction of commercially available 

[Pd(η3-C3H5)Cl]2 with Ph-trisox in dichloromethane followed by the addition of one equivalent 

of silver tetrafluoroborate did not lead to the expected compound. The desired (η
3-

allyl)palladium complex was prepared from [Pd(η
3-C3H5)(cod)]BF4 (cod = cyclooctadiene). The 

latter was obtained by reaction of the corresponding [Pd(η3-C3H5)Cl]2 dimer with cyclooctadiene 

and silver tetrafluoroborate in good yields according to the procedure of White et al.2 Reaction of 

[Pd(η3-C3H5)(cod)]BF4 with Ph-trisox in dichloromethane gave the expected corresponding allyl 

complex 43 (Scheme 3.1.2). 
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Scheme 3.1.2: Synthesis of [Pd(η3-C3H5)(Ph-trisox)]BF4 43 

 
Suitable crystals for an X-ray diffraction study were obtained by slow diffusion of 

pentane into a solution of complex 43 in dichloromethane. The molecular structure is displayed 

in Figure 3.1.3 and selected bond lengths and angles are given in Table 3.1.3. For clarity, only a 

single orientation of the allyl ligand is shown, corresponding to the major isomer. 

 

                                                 
2 D. A. White, Inorg. Synth. 1972, 13, 55. 
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Figure 3.1.3: Thermal ellipsoid plot (25%) of [Pd(η3-C3H5)(Ph-trisox)]BF4 43 

Hydrogen atoms and the counteranion are omitted for clarity  

 
Pd-N(1) 2.104(2) Pd-N(2) 2.102(2) 
Pd-C(32) 2.120(3) Pd-C(30) 2.131(3) 
N(1)-C(1) 1.279(3) N(2)-C(10) 1.274(3) 
N(3)-C(19) 1.264(3) C(32)-C31 1.405(5) 
C(30)-C(31) 1.345(5)   
    
C(32)-Pd-N(1) 102.16(9) N(1)-Pd-N(2) 88.14(7) 
N(2)-Pd-C(30) 100.85(10) C(32)-Pd-C(30) 68.87(12) 
C(32)-C(31)-C(30) 121.86(4)   

 

Table 3.1.3: Selected bond lengths (Å) and angles (°) for complex [Pd(η3-C3H5)(Ph-trisox)]BF4 43 

 

The palladium atom adopts a planar coordination geometry with the π-allyl ligand and 

two of the three oxazoline rings of the ligand being coordinated. As expected for [PdII(allyl)] 

complexes of this type,3,4 the coordination geometry of 43 is pseudo-square planar with the four 

coordination sites occupied by the two nitrogen donors and the allylic termini C(32) and C(30). 

As for the dichloropalladium derivatives 39-42, the third oxazoline unit is dangling with the 

                                                 
3 a) A. Albinati, C. Ammann, P. S. Pregosin, H. Rüegger, Organometallics 1990, 9, 1826; b) A. Albinati, R. W. 
Kunz, C. Ammann, P. S. Pregosin, Organometallics 1991, 10, 1800; c) P. von Matt, G. C. Lloyd-Jones, A. B. E. 
Minidis, A. Pfaltz, L. Macko, M. Neuburger, M. Zehnder, H. Rüeger, P. S. Pregosin, Helv. Chim. Acta 1995, 78, 
265. 
4 a) L. S. Hegedus, B. Åkermark, D. J. Olson, O. P. Anderson, K. Zetterberg, J. Am. Chem. Soc. 1982, 104, 697; b) 
N. W. Murrall, A. J. Welch, J. Organomet. Chem. 1986, 301, 109; c) A. Togni, G. Rihs, P. S. Pregosin, C. Ammann, 
Helv. Chim. Acta 1990, 73, 723. 
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nitrogen donor pointing away from the palladium centre. The free oxazoline ring is oriented 

perpendicularly to the plane defined by the six-membered metallacycle. The Pd-N and Pd-C 

bond lengths are within the range found for related complexes reported in the literature.5 Here 

again, as expected, the C=N bond length of the free oxazoline is slightly shorter than those in the 

coordinated oxazoline units (1.264(3) vs. 1.279(3) and 1.274(3) Å). 

The six-membered chelate ring adopts a slightly twisted boat conformation. A disorder in 

the central C-atom (C(31)) of the π-allyl ligand is found in the crystal structure of the complex 

with a relative occupancy of about 2:1. This indicates a mixture of the two diastereomers in that 

ratio, resulting of the reduction in the C2 symmetry of the coordinated bisoxazoline due to the 

presence of the third uncoordinated heterocycle. In the major isomer, the allyl group is orientated 

with the central C-H allylic bond pointing in the same direction as the axial methyl group (see 

Figure 3.1.3 where the structure of the major isomer is depicted). 

The infrared spectrum of [Pd(η3-C3H5)(Ph-trisox)]BF4 displays a vibrational band at 1658 

cm-1 which is assigned to the νC=N stretching mode of the coordinated oxazoline units (1665 cm-1 

for the νC=N stretching mode of free Ph-trisox). The absorption from the νC=N stretching mode of 

the free heterocycle is not observed.  

3. [Pd0(trisox)(alkene)] complexes 

Having explored the coordination chemistry of the trisoxazolines with palladium(II), we 

then turned our attention to zero-valent palladium complexes. Compared to the extensive work 

on phosphine-η2-alkene palladium(0) complexes, there are only few well defined [Pd0(η2-

alkene)] complexes that contain ancillary nitrogen donor ligands.6 In particular, we note that 

there is no report of structurally characterized Pd(0) complexes containing oxazoline-based 

ligands.  

Palladium(0) compounds are generally either formed in situ by reduction of a suitable 

palladium(II) precursor, or by starting from a zero-valent palladium precursor complex 
                                                 
5 a) O. Hoarau, H. Ait-Haddou, J.–C. Daran, D. Cramailere, G. G. A. Balavoine, Organometallics 1999, 18, 4718; b) 
M. Kehnder, M. Neuburger, P. von Matt, A. Pfaltz, Acta Cryst. 1995, C51, 1109. 
6 a) F. Ozawa, T. Ito, Y. Nakamura, A. Yamamoto, J. Organomet. Chem. 1979, 168, 375; b) K. J. Cavell, D. J. 
Stufkens, K. Vrieze, Inorg. Chim. Acta 1981, 47, 67; c) B. Crociani, F. Di Bianca, P. Uguagliati, L. Canovese, A. 
Berton, J. Chem. Soc., Dalton Trans. 1991, 71; d) B. Milani, A. Anzilutti, L. Vicentini, A. Sessanta o Santi, E. 
Zangrando, S. Geremia, G. Mestroni, Organometallics 1997, 16, 5064; e) R. A. Klein, P. Witte, R. Van Belzen, J. 
Fraanje, K. Goubitz, M. Numan, H. Schenk, J. M. Ernsting, C. J. Elsevier, Eur. J. Inorg. Chem. 1998, 319; f) M. W. 
van Laren, C. J. Elsevier, Angew. Chem. Int. Ed. 1999, 38, 3715; Angew. Chem. 1999, 111, 3926; g) C. Boriello, M. 
L. Ferrara,  I. Orabona, A. Panunzi, F. Ruffo, J. Chem. Soc., Dalton Trans. 2000, 2545; h) A. M. Kluwer, C. J. 
Elsevier, M. Bühl, M. Lutz, A. L. Spek, Angew. Chem. Int. Ed. 2003, 42, 3501; Angew. Chem. 2003, 115, 3625; i) 
A. M. Kluwer, T. S. Koblenz, T. Jonischkeit, K. Woelk, C. J. Elsevier, J. Am. Chem. Soc. 2005, 127, 15470; j) J. J. 
de Pater, D. S. Tromp, D. M. Tooke, A. L. Spek, B.-J. Deelman, G. van Koten, C. J. Elsevier, Organometallics 
2005, 24, 6411. 
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containing labile ligands. Attempts to reduce the [PdCl2(trisox)] complexes described in the 

previous sections did not lead to the isolation of the expected palladium(0) complexes (Scheme 

3.1.3). 
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Scheme 3.1.3: Attempts to reduce [PdCl2(iPr-trisox)] 

 
Reduction of 39 in the presence of an olefin was carried out by using either sodium 

borohydride or sodium trimethoxyborohydride as reducing agent.7 The reaction led to the 

formation of brown solids. 1H NMR spectra of these compounds showed the presence of an 

impure complex and all attempts at recrystallisation resulted in decomposition. 

Considering these results, we decided to try the alternative synthetic route, starting from 

zero-valent palladium complexes. The Pd(0) precursor was chosen based on interesting results 

reported by Elsevier et al. in which mixed alkene complexes were used as precursors for the 

synthesis of palladium(0) species.6f The stability of these different mixed olefin complexes is 

based on the appropriate combination of electron donating and electron withdrawing olefin 

ligands.8  

Palladium(0) precursors of the general formula [Pd(nbd)(alkene)] (nbd = norbornadiene; 

alkene = maleic anhydride or tetracyanoethylene) were synthesised, norbornadiene being the 

electron rich olefin and maleic anhydride or tetracyanoethylene being the electron poor olefins. 

A number of palladium(0) complexes with different ligands, including a potentially tridentate 

pyridine-bisoxazoline ligand, and alkenes were synthesised using these precursors. Complexes 

44-48 were obtained by substitution of the norbornadiene ligand by the respective tripod ligand 

                                                 
7 A. J. Blacker, M. L. Clarke, M. S. Loft, M. F. Mahon, M. E. Humphries, J. M. J. Williams, Chem. Eur. J. 2000, 6, 
353. 
8 K. Ito, F. Ueda, K. Hirai, Y. Ishii, Chem. Lett. 1977, 877. 
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in tetrahydrofuran and were isolated as highly air sensitive yellow powders in 50 -75% yield 

(Scheme 3.1.4). 
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Scheme 3.1.4: Synthesis of palladium(0) complexes of type [Pd(alkene)(tripod)] 44-48 
(nbd = norbornadiene, ma = maleic anhydride, tcne = tetracyanoethylene). 

 
For d10 palladium(0) complexes, two different molecular geometries can be expected. The 

first one is a trigonal planar geometry with the trisoxazoline acting as a bidentate ligand. The 

second molecular geometry possible is tetrahedral with the three nitrogen donors of the facial 

tridentate ligand coordinated to the metal centre. Crystallisation by slow diffusion of pentane into 

a solution of 44 in diethylether gave suitable crystals for an X-ray diffraction study. The 

molecular structure is presented in Figure 3.1.4 and selected bond lengths and angles are given in 

Table 3.1.4.  
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Figure 3.1.4: Thermal ellipsoid plot (25%) of [Pd(ma)(iPr-trisox)] 44 

 
Pd-N(1) 2.127(5) Pd-N(2) 2.115(4) 
Pd-C(1) 2.107(7) Pd-C(2) 2.082(6) 
N(1)-C(7) 1.261(7) N(2)-C(13) 1.261(7) 
N(3)-C(19) 1.254(9) C(1)-C(2) 1.448(9) 
C(4)-O(3) 1.179(8) C(3)-O(1) 1.212(9) 
    
N(1)-Pd-N(2) 85.6(2) N(2)-Pd-C(2) 116.9(2) 
C(1)-Pd-N(1) 117.6(2) C(1)-Pd-C(2) 40.4(2) 

Torsion angle C(3)-C(2)-C(1)-Pd -98.4° 
 

Table 3.1.4: Selected bond lengths (Å) and angles (°) for complex [Pd(ma)(iPr-trisox)] 44 

 

Complex 44 possesses Y-shaped trigonal planar geometry with the trisoxazoline ligand 

coordinated in a bidentate way whilst the third oxazoline unit is dangling with the nitrogen donor 

pointing away from the metal centre. Two nitrogen donor ligands are sufficient to stabilize the 

metal centre in its low oxidation state with maleic anhydride as co-ligand. The cyclic anhydride 

is oriented perpendicularly to the plane defined by the palladium atom and the two coordinated 

heterocycles in order to optimize the orbital overlapping between the π–orbital of the C=C bond 

and the d orbitals of the metal centre. The Pd-N (2.127(5) Å) and Pd-C (2.082(6) Å) bond 

lengths are in agreement with reported values for similar complexes that contain bidentate 

nitrogen-based ligands such as tBuDAB (3,6-diaza-2,2,7,7-tetramethyl-octa-3,5-diene).6j,9 The 

N(1)-Pd-N(2) angle of 85.6(2)° is greater than those reported for related complexes (typically 

                                                 
9 D. D. Ellis, A. L. Spek, Acta Crystallogr. C 2001, 57, 235. 
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77.2 - 77.5°).10 This increase of the bite angle is due to the six-membered chelate ring of a 

bidentate trisoxazoline compared to the values of five-membered rings described in the literature. 

As expected, upon coordination of the alkene an elongation of the C=C bond distance (1.448(9) 

Å) with respect to the free alkene (1.3322(9) Å) is observed.11 Considering the presence of the 

third dangling oxazoline unit, two diastereomers can be formed: one with the central oxygen of 

the olefin pointing in the same direction as the free oxazoline unit (A) and one with the central 

oxygen of the olefin pointing in the opposite direction of the free heterocycle (B) (Scheme 3.1.5).  
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Scheme 3.1.5: The two possible diastereomers for complexes [Pd(ma)(trisox)] 44-46 

 
Notably although an equilibrium of these two diastereomers is observed in solution at 

ambient temperature, the crystals employed for the X-ray diffraction study of 44 consists only of 

one diastereomeric form. 

Slow diffusion of pentane into a solution of [Pd(ma)(Ph-trisox)] in dichloromethane gave 

suitable crystals for X-ray diffraction. In the crystals of the phenyl substituted complex 45 the 

opposite diastereomers (B) is found exclusively. Apart from that, the molecular structure appears 

similar to that of 44. However, the quality of the data was only sufficient to unequivocally 

establish the molecular connectivity and configuration, but did not allow a more detailed 

appreciation of the structure. 

The infrared spectra of complexes 44-46 displayed the vibrational bands assigned to the 

νC=N stretching mode of the free oxazoline ring and of the coordinated oxazoline units (Table 

3.1.5). In case of complex 48, the infrared spectrum (KBr-Pellet) also showed the presence of 

one free and one coordinated oxazoline unit indicating the formation of a 7-membered 

metallacycle. Absorptions at 1786-1794 cm-1 and 1722-1727 cm-1 were assigned to the νC=O 

stretching mode of the anhydride (1784 cm-1 for the free maleic anhydride). 

 

 

                                                 
10 a) T. Schleis, J. Heinemann, T. P. Spaniol, R. Mülhaupt, J. Okuda, Inorg. Chem. Commun. 1998, 1, 431; b) M. L. 
Ferrara, F. Giordana, I. Orabona, A. Panunzi, F. Ruffo, Eur. J. Inorg. Chem. 1999, 1939. 
11 M. Lutz, Acta Crystallogr. Sect. E 2001, 57, o1136. 
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 νC=N 

dangling oxazoline 
νC=N 

coordinated oxazolines 
νC=O 

νC=N 

tripodal ligand 

44 1660 1650 1786, 1722 1660 
45 1662 1655 1798, 1727 1665 
46 1662 1655 1793, 1724 1664 
48 1664 1653 1794, 1723 1663 

 

Table 3.1.5: Selected νC=O and νC=N stretching mode (cm-1) of complexes [Pd(ma)(tripod)] 44-46 and 48 and νC=N 
stretching mode (cm-1) of the corresponding tripodal ligand 

4. Conclusion 

Trisoxazoline-based palladium complexes in the oxidation states (0) and (II) were 

successfully synthesized. They were obtained starting from the appropriate palladium precursors. 

For each family of complexes, [PdCl2(trisox)], [Pd(allyl)(trisox)] and [Pd(alkene)(tripod)], at 

least one compound could be structurally characterised. It has been shown that, in the solid state, 

trisoxazolines act as bidentate ligands with the third dangling oxazoline unit oriented 

perpendicularly to the plane defined by the two ligating heterocycles. This κ2-coordination of the 

trisoxazoline ligands was also confirmed by infrared spectroscopy.  

We were then interested in the behaviour of these complexes in solution. It has been 

observed, in the 1H NMR spectra at room or high temperature, that dynamic exchange between 

the three binding sites occurs. The next part of this chapter describes our investigations into the 

fluxional behaviour of the C3-symmetric ligands. 

II.  Dynamic behaviour of trisox-based palladium complexes in solution 

1. [PdIICl2(trisox)]complexes 

The 1H NMR spectra of [PdCl2(trisox)] complexes described in the first part of this 

chapter were recorded at 296 K. They are consistent with C1 symmetry compared to the C3 

symmetry observed in those from the free trisoxazolines. We obtained good quality 15N NMR 

spectra by direct detection of the heteronuclei on a 600 MHz NMR spectrometer. It was possible 

to completely assign the signals in the 1H and 13C NMR spectra of the coordinated oxazolines 

and the non-coordinated oxazoline by combined 2D 1H-15N and 1H-13C NMR experiments. For 

complexes 39-42, the 15N nuclei of the coordinated oxazoline rings resonate at δ = 160 – 167 and 

appear as two singlets due to their diastereotopicity. The signal assigned to the dangling 

oxazoline arm is observed at δ = 238 – 240. In complex 41, for example, the 15N nuclei of the 

coordinated oxazoline rings resonate at 161.3 and 162.2 ppm and the signal assigned to the free 

oxazoline unit is observed at 239.9 ppm. In comparison, the 15N nuclei of the C3-symmetric free 
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ligand (Bn-trisox) resonate at 234.0 ppm. The 1H-15N correlated spectrum of complex 41 is 

shown in Figure 3.2.1 with the directly recorded 1D 15N NMR spectrum displayed along the F1-

axis.  
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Figure 3.2.1: 2D 1H-15N NMR correlated experiment (HMBC) from complex 41 in CDCl3 

 

As indicated above, the 1H NMR spectrum of 39 at 296 K is consistent with the 

molecular structure established for the crystalline state. Separated sets of signals, which are 

attributable to the protons of the three different isopropyl groups of the oxazoline units, indicate 

the loss of local threefold symmetry for the tripod ligand. The same loss of degeneracy of the 

three oxazoline units is observed in the 13C NMR spectra (75 MHz, 296 K) and the 15N NMR 

spectrum (60 MHz, 296 K). Upon increasing the temperature to 373 K coalescence occurs. The 

two doublets for the –CH(CH3)2 isopropyl protons observed in the high temperature limiting 

spectrum, representing effective C3 symmetry, are consistent with a fast exchange between 

ligating and non-ligating oxazoline rings (Figure 3.2.2). 
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Figure 3.2.2: Variable temperature 1H NMR of complex [PdCl2(iPr-trisox)] 39 in 1,1,2,2-tetrachloroethane-d2 (400 

MHz) 
 

The effective threefold symmetry found for complex 39 at higher temperature was also 

observed for complexes 40-42. These observations indicate the presence of a fluxional process of 

the trisox ligands with increasing temperature. Two substitution mechanisms can be involved in 

this fluxional process: either an associative or a dissociative mechanism. Both differ in their 

entropy of activation which would be positive for a dissociative mechanism and negative for the 

associative case. In order to quantitatively study this exchange of the ligating arms and to gain 

insight into the mechanism of this process, a systematic series of magnetisation transfer 

experiments have been carried out.  

a. Principle of the magnetisation transfer 

Magnetisation transfer is a method for determining kinetics of chemical exchange by 

perturbing the magnetisation of nuclei in a particular site or sites and following the rate at which 

magnetic equilibrium is restored. The most common perturbations are saturation and inversion 

and the corresponding techniques are often called “saturation transfer” and “selective inversion 
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recovery”. The magnetisation transfer NMR technique12 has become a popular method for 

measuring rates of chemical exchange processes, in particular for systems of biological 

importance.13 Furthermore, this method often provides more detailed information about the 

exchange pathways than the classical line shape analysis.  

To determine the kinetics of exchange of the ligating arms on the metal centre we were 

interested in the selective inversion transfer method. To explain the principle of the inversion 

transfer, one may consider two nuclei, A and B, with JAB = 0 Hz and for both spin = 1/2. The 

inversion transfer experiment consists in the selective inversion of the spin population of a 

nucleus, here the one called A, using a 180° shaped pulse. After variable delays, a non selective 

90° pulse is applied (Scheme 3.2.1). 

timet = 0

1 2 3 4
 

Scheme 3.2.1: Inversion transfer experiment 

 

In Scheme 3.2.1, position 1 represents the selective 180° shaped pulse14 which is applied 

to A, 2 indicates the delay between the selective and the non selective pulse (5.10-4 s to 5 s), 

position 3 is the non selective 90° pulse and 4 represents the acquisition. The changes observed 

in the 1H NMR spectrum after inversion transfer are depicted in Scheme 3.2.2.  

 

                                                 
12 a) S. Forsén, R.A. Hoffman, J. Chem. Phys. 1963, 39, 2892; b) S. Forsén, R.A. Hoffman, J. Chem. Phys. 1964, 40, 
1189; c) R.A. Hoffman, S. Forsén, J. Chem. Phys. 1966, 45, 2049; d) J. R. Alger, J.H. Prestegard, J. Magn. Reson. 
1977, 27, 137; e) G. A. Morris, R. Freeman, J. Magn. Reson. 1978, 29, 433. 
13 a) K. Ugurbil, R. G. Shulman, T. R. Brown, „Biological Applications of Magnetic Resonance“ (R. G. Shulman, 
Ed.), Academic Press, New-York, 1979, 537; b) D. G. Gardian, G. K. Radda, T. R. Brown, E. M. Chance, M. J. 
Dawson, D. R. Wilkie, Biochem. J. 1981, 194, 215; c) K. M. Brindle, Prog. NMR Spectrosc. 1988, 20, 257; d) J. G. 
Sheldon, S.-P. Williams, A. M. Fulton, K. M. Brindle, Proc. Natl. Acad. Sci. USA 1996, 93, 6399; e) M. S. Sanford, 
J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543; f) J. S. Owen, J. A. Labinger, J. E. Bercaw, J. Am. 
Chem. Soc. 2004, 126, 8247; g) H. Wadepohl, U. Kohl, M. Bittner, H. Köppel, Organometallics 2005, 24, 2097; h) 
L. M. Klingensmith, E. R. Strieter, T. E. Barder, S. L. Buchwald, Organometallics 2006, 25, 82; i) J. Zhou, P. C. M. 
Van Zijl, Prog. NMR Spectros. 2006, 48, 109. 
14 See Chapter 6. 



Dynamic coordination of chiral trisoxazolines to palladium 

 

79 

A B A B A B

normal 
spectrum

A inverted
no exchange

A inverted
exchange

(a) (b) (c)  
Scheme 3.2.2: Changes observed in the 1H NMR spectrum after selective inversion 

 

Selective inversion of the spin population of A generates an inverted signal for A in the 
1H spectrum (b). If there is no chemical exchange between A and B, the signals are of the same 

intensity in case (b) as in case (a). Variation of the absolute intensities of the signals in the 1H 

NMR spectrum is observed in case of chemical exchange of nuclei A and B (c). Increasing the 

delay between the selective 180° shaped pulse and the non selective 90° pulse leads to an 

increase of the absolute intensity of the signal of A whereas the absolute intensity of the signal of 

B first decreases and then increases. 

The magnetisation transfer experiment makes it possible to directly monitor the exchange 

of the different sites involved in the process. This method has been used to determine the 

activation parameters of the fluxional exchange of the ligands in the [PdCl2(trisox)] complexes. 

Complexes 40 and 41 could not be used for this study due to overlapping signals in the 1H 

spectra. We therefore turned our attention to complexes 39 and 42 and the next two paragraphs, 

respectively, describe the results.  

b. Experimental determination of the activation parameters for the fluxional process in 

complex 39 

With the aim to monitor the exchange of the protons between the coordinated oxazolines 

and the non-coordinated oxazoline, it turned out that the most interesting signals for our study of 

complex 39 were protons a and a’, (-CHMe2) of the coordinated oxazolines and proton b, (-

CHMe2) of the non-coordinated oxazoline (Figure 3.2.3). 



Dynamic coordination of chiral trisoxazolines to palladium 

 

80 

ppm (f1) 1.02.03.04.0

Pd
N

N

O

ON

O Cl

Cl

a’

a
b

a, a’ b

1.02.03.04.05.0
 

Figure 3.2.3: 1H NMR spectrum of [PdCl2(iPr-trisox)] 39 in 1,1,2,2-tetrachloroethane-d2 at 296 K (400 MHz) 

 

In a series of experiments carried out with 39 in 1,1,2,2-tetrachloroethane-d2, the protons 

of the coordinated oxazolines (a) were selectively inverted with a shaped pulse, followed by 

monitoring of the time evolution of the intensities in the two sites a/a’ and b. In Figure 3.2.4 an 

example of the time evolution of the intensities in the two sites at 302 K is shown.  

 

2.02.22.42.62.8 1.8
 

Figure 3.2.4: Time dependence of the magnetisation of the inverted site a/a’ (left) and the one connected to it by 
chemical exchange b (right) at 302 K (in 1,1,2,2-tetrachloroethane-d2, 400 MHz) 

 

Evolution of the absolute intensities of the signals can be measured as a function of the 

delay (36 measurements between 5.10-4 s and 5 s) and as a function of the temperature (between 

302 K and 318 K). 1,4-dimethoxybenzene was used as internal standard to determine the 
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absolute intensities. The results of experiments in which magnetisation of protons a was inverted 

are shown in Figure 3.2.5.  
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Figure 3.2.5: Time evolution of the magnetisation in the two sites (exponential traces, coordinated oxazolines a, a’; 

other traces, non coordinated oxazoline b) after selective inversion of the coordinated oxazolines resonance. Data 
are represented in a 3D representation as a function of the temperature 

 

 

T (K) kchem_a kchem_b 
Combined data 

kchem 

302 3.19 2.63 2.91 
304 3.96 3.23 3.59 
306 4.77 3.90 4.34 
308 5.58 4.74 5.16 
310 6.87 5.78 6.32 
312 8.19 6.98 7.58 
314 9.57 8.46 9.01 
316 11.52 10.07 10.79 
318 13.71 11.93 12.82 

 

Table 3.2.1: Rate constants kchem (s
-1) for the fluxional process in complex 39 in 1,1,2,2-tetrachloroethane-d2  

 

Varying the temperature, the time dependence of the magnetisation in the two exchanging 

sites after inversion of protons a was fitted to the appropriate sets of equations derived from the 

McConnell equations.15,16,17 Fits of the theoretical curves to the experimental data gave the NMR 

spectroscopic rate constants kNMR_a  and kNMR_b for the fluxional exchange. It was found, as 

expected for our system due to the overlapping of a and a’, that kNMR_b ≈ 2 x kNMR_a. Taking the 

                                                 
15 H. M. McConnell, J. Chem. Phys. 1958, 28, 430. 
16 J.J. Led, H. Gesmar, J. Magn. Reson. 1982, 49, 444. 
17 See Chapter 5. 
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statistical factors for the fluxional exchange of the three sites into account, kNMR was converted 

into the chemical rate constants kchem_a and kchem_b using the relation between kNMR and kchem for 

A2B systems where A is inverted (kchem_a = 3 x kNMR_a and kchem_b = 3/2 kNMR_b) (Table 3.2.1).18 

The Eyring plot resulting from the measured rate constants is shown in Figure 3.2.6.  
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Figure 3.2.6: Eyring plot for the data reported in Table 3.2.1 (kchem)  

 

The analysis of the Eyring plot allows the determination of the activation parameters of 

the fluxional process of the ligand in [PdCl2(iPr-trisox)]. An enthalpy of activation for the 

fluxional process of ∆H‡= 75.6±0.5 kJ.mol-1 and an entropy of activation of ∆S‡= 14.0±1.5 

J.mol-1 have been found. To confirm the previously quoted activation parameters, the 

corresponding data from another series of magnetisation transfer experiments have been 

analysed.  

c. Experimental determination of the activation parameters for the fluxional process in 

complex 42 

To study the fluxional process in 42, the exchange of the protons between the coordinated 

oxazolines and the non-coordinated oxazoline was monitored. Regarding the 1H NMR spectrum 

of complex 42 (Figure 3.2.7), it turned out that the most convenient signals for our study were 

the ones of protons a and b (respectively one proton of the CH2 group of the indanyl substituent) 

of the coordinated oxazolines. The corresponding proton c of the non-coordinated oxazoline is 

overlapping with the other proton of the CH2 group of the indanyl substituent c’. 

 

                                                 
18 M. L. H. Green, L.-L. Wong, A. Sella, Organometallics 1992, 11, 2660. 
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Figure 3.2.7: 1H NMR spectrum of [PdCl2(Ind-trisox)] 42 in 1,1,2,2-tetrachloroethane-d2 at 296 K (400 MHz) 

 

In a series of experiments carried out with 42 in 1,1,2,2-tetrachloroethane-d2, the proton 

of one of the coordinated oxazolines a was selectively inverted with a shaped pulse, followed by 

monitoring the time evolution of the intensities in the two sites a and b. To confirm these results, 

proton b was selectively inverted with a shaped pulse, followed by monitoring of the time 

evolution of the intensities in the two sites a and b. Evolution of the absolute intensities of the 

signals was measured as a function of the delay (33 measurements between 5.10-4 s and 5 s) and 

as a function of the temperature (between 323 K and 331 K in the presence of 1,4-

dimethoxybenzene as internal standard). The results are displayed in Figure 3.2.8.  

 
Figure 3.2.8: Time evolution of the magnetisation in the different sites after selective inversion of the coordinated 

oxazolines resonance a (left) and b (right) . Data are represented in a 3D representation as a function of the 
temperature 
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For the different temperatures studied, the time dependence of the magnetisation in the 

exchanging sites after inversion of proton a and inversion of proton b was fitted to the 

appropriate sets of equations derived from the McConnell equations. Fits of the theoretical 

curves to the experimental data gave the NMR spectroscopic rate constants kNMR_a  and kNMR_b 

for the fluxional exchange. It was found, as expected, that kNMR_a and kNMR_b are equal. Taking 

the statistical factors for the fluxional exchange of the three sites into account, kNMR was then 

converted into the chemical rate constants kchem_a and kchem_b using the relation between kNMR and 

kchem for ABC systems where A or B are inverted (kchem_a = 3 x kNMR_a and kchem_b = 3 kNMR_b) 

(Table 3.2.2).18 

 

T (K) kchem_a kchem_b 
Combined data 

kchem 

323 2.54 2.65 2.59 
324 2.73 2.76 2.75 
325 2.93 3.07 3.00 
326 3.35 3.33 3.34 
327 3.59 3.54 3.57 
328 3.89 4.20 4.05 
329 4.36 4.30 4.33 
331 5.25 5.06 5.16 

 

Table 3.2.2: Rate constants kchem (s
-1) for the fluxional process in complex 42 in 1,1,2,2-tetrachloroethane-d2  

 

The Eyring plot resulting from the rate constants obtained from inversion of the 

coordinated oxazoline sites is shown in Figure 3.2.9.  
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Figure 3.2.9: Eyring plot for the data reported in Table 3.2.1 (kchem)  

 

The analysis of the Eyring plot enables us to determine the activation parameters of the 

fluxional process of the ligand in [PdCl2(Ind-trisox)]. An enthalpy of activation for the fluxional 

process of ∆H‡= 79.4±2.0 kJ.mol-1 and an entropy of activation ∆S‡= 9.3±6.0 J.mol-1 have been 

found. These results are discussed in the next part. 
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d. Solution dynamics of complexes 39-42 

As previously stated, either an associative or a dissociative ligand interchange mechanism 

could be suggested for the dynamic behaviour of the complexes in solution. Values of the 

activation parameters for the exchange process determined using magnetisation transfer 

experiments enable us to gain insight into the mechanism. The results are summarised in Table 

3.2.3. 

 39 42 

∆H‡ (kJ.mol-1) 75.6 ± 0.5 79.4 ±2.0 
∆S‡ (J.mol-1) 14.0 ± 1.5 9.3 ±6.0 
∆G‡

298K (kJ.mol-1) 71.4 ±0.6 76.4 ±2.8 
 

Table 3.2.3: Activation parameters for the dynamic exchange of coordinated and free oxazoline rings in complexes 
39 and 42 

 

 Whereas the calculated enthalpy values are as expected for such a dynamic process, the 

small activation entropy values indicate neither an associative nor a dominantly dissociative 

substitution mechanism. A reasonable intimate mechanism for the exchange between 

coordinating and non-coordinating oxazolines may resemble an interchange process. Given the 

mechanistic work carried out for substitutions at square-planar Pd(II) complexes,19 we assume 

that the interchange has slightly associative character (Ia-mechanism), which implies the 

transient formation of a pentacoordinated palladium(II) complex in the transition state. This type 

of mechanism via pentacoordination has been invoked by Vrieze et al for the case of tridentate 

N,N,N-type ligand.20 

We note that fluxional processes with potentially tridentate ligands have been 

encountered with terpyridine, bisoxazoline-phenylphosphonite or bisoxazoline-pyridine (Pybox) 

ligands.21 

                                                 
19 a) J. B. Goddard, F. Basolo, Inorg. Chem. 1968, 7, 936; b) L. A. P. Kane-Maguire, G. Thomas, J. Chem. Soc., 
Dalton Trans. 1975, 19, 1890. Studies published more recently include: c) T. Shi, L. I. Elding, Inorg. Chem. 1996, 
35, 735; d) T. Shi, L. I. Elding, Inorg. Chem. 1997, 36, 528; e) Z. D. Bugarčic, G. Liehr, R. van Eldik, J. Chem. 
Soc., Dalton Trans. 2002, 951. 
20 R. E. Rülke, J. M. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen, K. Vrieze, Inorg. Chem. 1993, 
32, 5769.  
21 a) P. Wehman, R. E. Rülke, V. E. Kaasjager, P. C. J. Kamer, H. Kooijman, A. L. Spek, C. J. Elsevier, K. Vrieze, 
P. W. N. M. Van Leeuwen, J. Chem. Soc., Chem. Commun. 1995, 331; b) G. Zhu, M. Terry, X. Zhang, Tetrahedron 
Lett. 1996, 37, 4475; c) P. J. Heard, C. Jones, J. Chem. Soc., Dalton Trans. 1997, 1083; d) P. Braunstein, F. Naud, 
A. Dedieu, M.-M. Rohmer, A. DeCian, S. J. Rettig, Organometallics 2001 , 20, 2966. 
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2. The [PdII(allyl)(Ph-trisox)] complex  

In the 1H NMR spectrum of complex 43 at room temperature, only three, well-defined 

signals for the oxazoline protons are observed indicating fast exchange between the three 

heterocycles as well as between the exo and endo diastereomers, exo being defined as the central 

C-H allylic bond pointing in the same direction as the axial methyl group (Scheme 3.2.3).22 

Formally, an apparent 180° rotation of the η
3-allyl ligand around its bond axis to the central 

metal interchanges an isomer of structure exo into the isomer of structure endo.  

 

N

*

O

R

=Pd Pd

endo exo
 

Scheme 3.2.3: The two possible exo and endo diastereomers 

Five signals are observed for the allyl moiety as expected for a non-symmetrical π–allyl 

ligand (Figure 3.2.10), the partial assignment being based on a 1H NOESY experiment. In Figure 

3.2.10, according to the accepted nomenclature of the planar allyl ligand, HS and HA respectively 

refer to the syn and anti protons in direct relation to the central hydrogen atom termed HC.  
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Figure 3.2.10: 1H NMR of complex [Pd(η3-allyl)(Ph-trisox)]BF4 43 in chloroform-d1 at 296 K (400 MHz) 

 

The 1H NOESY experiment shows, in addition to the negative phase non-diagonal NOE 

cross-peaks, weak EXSY signals between syn and anti protons, indicating slow exchange 

                                                 
22 The terms exo and endo were introduced by Faller et al. for the description of diastereomeric π-allyl complexes: a) 
R. D. Adams, D. F. Chodosh, J. W. Faller, A. M. Rosan, J. Am. Chem. Soc. 1979, 101, 2570; b) J. W. Faller, K.-H. 
Chao, J. Am. Chem. Soc. 1983, 105, 3893. 
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between η3-allyl and η1-allyl forms. Indeed the π-σ-π isomerisation, well described in the 

literature,23 is the only way of exchange for the syn and anti protons (Scheme 3.2.4). 
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Scheme 3.2.4: π-σ-π isomerisation explaining the exchange between syn and anti protons in the allyl termini 

 

A series of variable temperature 1H NMR experiments were performed between 296 K 

and 373 K. They indicate no spectral changes for the allyl proton resonances, neither between the 

pairs of the syn or anti protons nor cross exchange among them. As previously observed for 

other non-symmetrical allyl complexes, this is consistent with the stereochemical rigidity of the 

allyl-Pd fragment on the time scale of the experiments, in other words, it is not affected by the 

interchange of the oxazoline coordination as well as the (possibly concomitant) interconversion 

of exo and endo diastereomers.24 

In order to quantify the latter, a low temperature 1H NMR study was carried out. 

Coalescence of the trisoxazoline ligand resonances occurred at 198 K, however, the low 

temperature limit was not attained at 190 K (in dichloromethane-d2). Although the exchange of 

the three oxazolines was not completely frozen, an estimate of the activation barrier ∆G‡ for the 

oxazoline exchange of ca. 55 kJ.mol-1 may be derived. At low temperature, the resonance pattern 

of the ligand was thus consistent with the bidentate N,N chelation observed in the solid state. 

Notably, the signals of the allyl fragment begun to broaden at 190 K, presumably owing to the 

slowing down of the exo/endo exchange, however, complete decoalescence was not obtained. 

The stereochemical rigidity of the allyl-Pd fragment on the VT-NMR timescale and the 

observation that the oxazoline exchange and the exo/endo interconversion are associated with 

similarly low activation barriers may indicate that both are mechanistically coupled, that is to say 

                                                 
23 a) J. W. Faller, M. E. Thomsen, M. J. Mattina, J. Am. Chem. Soc. 1971, 93, 2642; b) J. W. Faller, M. T. Tully, J. 
Am. Chem. Soc. 1972, 94, 2676; c) E. Cesarotti, M. Grassi, L. Prati, F. Demartin, J. Organomet. Chem. 1989, 370, 
407 ; d) S. Hansson, P.-O. Norrby, M. P. T. Sjögren, B. Åkermark, M. E. Cucciolito, F. Giordano, A. Vitagliano, 
Organometallics 1993, 12, 4940; e) C. Breutel, P. S. Pregosin, R. Salzmann, A. Togni, J. Am. Chem. Soc. 1994, 116, 
4067 ; f) A. Gogoll, J. Örnebro, H. Grennberg, J.-E. Bäckvall, J. Am. Chem. Soc. 1994, 116, 3631. 
24 M. A. Pericas, C. Puigjamer, A. Riera, A. Vidal-Ferran, M. Gomez, F. Jimenez, G. Muller, M. Rocamora, Chem. 
Eur. J. 2002, 8, 4164 and references cited therein. 
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that the trisox fluxional process and the reorientation of the allyl-Pd unit occur by the same route. 

A possible pathway based on an oxazoline walkabout is proposed in Scheme 3.2.5. 

 

Pd Pd Pd

PdPdPd

endo endo

endo

exo

exoexo  
Scheme 3.2.5: Possible exchange pathway, based on a stereospecific interchange of the oxazolines 

3. [Pd0(alkene)(trisox)] complexes 

a. VT-NMR spectroscopic study of complexes 44-46 

1H NMR spectra of all complexes recorded at 296 K represent a dynamic exchange 

regime for the trisox ligand as well as the equilibrium between the two diastereomers due to the 

different orientation of the π-bonded maleic anhydride ligand relative to the pendant oxazoline 

arm (see Scheme 3.1.5). The protons of the maleic anhydride give rise to two different 

resonances because the cyclic anhydride is oriented perpendicularly to the plane defined by the 

palladium atom and the two coordinated heterocycles (see Chapter 3, I.3). The signals of the 

protons of the alkene ligand are shifted to lower frequency with respect to the free olefin and the 

alkene CH carbon resonances observed in the region of 39.8-41.4 ppm are strongly shifted to 

higher field with respect to the free alkene (Table 3.2.4).  

 

 1H NMR 13C NMR 
 HA HB CO CH 

44 3.69 3.74 172.3 172.8 40.4 
45 2.92 3.30 171.9 172.7 41.4 
46 2.78 3.13 172.8 173.6 39.8 

free alkene 7.05 164.6 136.8 
 

Table 3.2.4: Selected 1H and 13C NMR data in ppm for the alkene ligand in complexes 44-46 
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The NMR chemical shifts listed in Table 3.2.4 are in the range usually observed for other 

zero-valent [MLn(alkene)] palladium and platinum complexes.25 

Upon lowering the temperature, the fluxional processes are frozen for complexes 44-46 

and different sets of resonances attributable to the two possible diastereomers are observed. 

Variable temperature 1H NMR spectra were recorded between 296 K and 213 K for complex 45, 

and the low-temperature limiting spectrum (213.2 K) is consistent with the freezing up of the 

diastereomers interconversion and the ratio was found to be 1:1.1 (Figure 3.2.11). 
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Figure 3.2.11: Variable temperature 1H NMR of complex [Pd(ma)(Ph-trisox)] 45 in dichloromethane-d2 (400 

MHz). Only the signals from the protons of maleic anhydride are shown 
 

It was possible to determine the activation barrier of the process using the relation 

between the coalescence temperature and the free activation entropy: 

∆∆∆∆G‡ = R . Tc . [22.96 + ln(Tc/∆ν)] 

Tc: coalescence temperature 

∆ν: difference, in Hertz, between the two signals (HA/HA’  and HB/HB’) when the fluxional 

process is frozen 

 

 The activation barrier values obtained with this method are summarised in Table 3.2.5. 

 

 

                                                 
25 a) K. J. Cavell, D. J. Stufkens, K. Vrieze, Inorg. Chim. Acta 1980, 47, 67; b) R. Van Asselt, C. J. Elsevier, W. J. 
Smeets, A. L. Spek, Inorg. Chem. 1994, 33, 1521; c) R. Fernández-Gálan, F. A. Jalón, B. R. Manzano, J. Rodríguez 
de la Fuente, Organometallics 1997, 16, 3758. 
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∆ν (Hz) Tc (K) ∆G‡ (kJ.mol-1) Nuclei studied 

3.7 236.2 53.2 HA/HA’  
16.7 260.7 55. 7 HB/HB’ 

 

Table 3.2.5: Activation barrier values for complex 45 

 

The isomer interconversion may, in principle be caused by either an olefin rotation or a 

decoordination-coordination process that involves the alkene and/or the ligand. The ∆G‡ value 

measured for complex 45 is 54.5 kJ.mol-1 ∆G‡ values reported in the literature for alkene rotation 

are usually ca. 60-70 kJ.mol-1,26 however energy barriers of 50 kJ.mol-1 have also been 

observed.24b In the case of complex 45, it is therefore difficult to derive the exact mechanism. 

b. VT-NMR spectroscopic study of complex 47 

In the case of complex 47, which contains tetracyanoethylene as π-bonded alkene, the 

resonance pattern of the oxazoline protons is consistent with effective C3 symmetry and thus 

rapid exchange between the three heterocycles. Lowering the temperature leads to coalescence at 

243 K and to the non-symmetrical low temperature limiting spectrum at 198 K. The relative 

instability of the complex in solution did not allow us to gain more insight into the fluxional 

process of the ligand. Indeed, it was not possible to carry out magnetisation transfer experiments 

due to the long time needed to collect the data, more than fifteen hours, during which complex 

47 decomposed. However, the complex was stable enough to measure different variable 

temperature 1H NMR spectra at lower temperature. A simulation of the dynamic NMR spectra 

was carried out using gNMR software in order to determine the activation barrier of the fluxional 

process involved. In Figure 3.2.12 a simulation of the proton resonance of the CH2 group in the 

indanyl substituent of the ligand at 223 K is represented. 

2.402.45 2.432.482.502.53

2.402.45 2.432.482.502.53

2.402.45 2.432.482.502.53

a) b)
 

Figure 3.2.12: Simulation of the dynamic NMR spectrum of complex 47 at 223 K in dichloromethane-d2 (400 
MHz) using the gNMR software: a) overlapping spectra; b) top = experimental spectrum, bottom = simulated 

spectrum 

                                                 
26 R. Fernandez-Galan, F. A. Jalon, B. R. Manzano, J. Rodriguez-de la Fuente, Organometallics 1997, 16, 3758. 
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Simulation of the experimental spectra gave the NMR spectroscopic rate constant kNMR 

for the fluxional exchange. kNMR was then converted into the chemical rate constant using the 

relation kchem = 3 kNMR (Table 3.2.6). 

 

T (K) 228 226 223 220 217 214 211 

kNMR 65 52 35 33 17 8 4 

kchem 195 156 105 99 51 24 12 
 

Table 3.2.6: Rate constant kNMR  and kchem for the fluxional process in complex 47 in dichloromethane-d2 

 

The analysis of the Eyring plot, resulting from the rate constant values given in Table 

3.26, enabled us to determine the activation barrier of the fluxional process of the ligand in 

[Pd(tcne)(Ind-trisox)]: ∆G‡
298K

 = 42±5 kJ.mol-1.  

The fact that the activation barrier is lower than for complexes 44-46 indicates that the 

fluxional process of the ligand is facilitated in the latter case.  

c. VT-NMR spectroscopic study of complex 48 

Whereas the trisox-Pd complexes 44-47 contain threefold symmetrical tripods, complex 

48 contains a bisoxazoline ligand to which a 2-pyridylmethyl sidearm has been added. This 

renders the ligand completely non-symmetrical and thus there are potentially three species which 

differ in the way the ligand is coordinated to the metal center Apart from an isomer with two 

oxazoline units bound to the metal, there are two closely related but diastereomeric forms with 

one oxazoline ring and the pyridyl arm bound to the metal. Whereas the 1H NMR spectrum 

recorded at 296 K represents an intermediate dynamic regime, the exchange between the 

different diastereomers was frozen out at 218 K.  

A 1:1 equilibrium mixture of the bisoxazoline complex and the two forms of the 

oxazolin-pyridine isomer are observed. The oxazoline-pyridine isomers possess near-identical 

overlapping resonance patterns and therefore they were treated as one single species in the 

analysis of the dynamic process. The fact that the π-coordinated maleic anhydride can adopt two 

possible orientations with respect to the pendant arm renders the situation more complex. By 

means of a variable temperature 1H NMR study the high temperature limit for these exchange 

processes between a total of six diastereomers was attained (Figure 3.2.13).  
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Figure 3.2.13: Variable temperature 1H NMR of complex 48 in dichloromethane-d2 (600 MHz). The resonances of 

the protons of the apical methyl group of the tripod are shown 
 

An effective free enthalpy of activation for the overall process of bisoxazoline/oxazolin-

pyridine exchange of ∆G‡
315K

 ≈ 63 kJ.mol-1 was estimated with Tc = 315 K and ∆ν = 107.7 Hz.  

4. Conclusion 

The behaviour of the palladium complexes in solution has been studied. It has been 

observed that there is a dynamic exchange between the three binding sites either at room or at 

variable temperature, depending on the type of complex studied. We were able to determine the 

activation parameters of the exchange between coordinating and non-coordinating oxazolines for 

the palladium(II) chloride complexes by carrying out magnetisation transfer experiments. 

Regarding the values obtained, we assume that the substitution mechanism has a slightly 

associative character. In case of the palladium(II) allyl complex, we found that both the 

interchange of the oxazoline coordination and the interconversion of the exo and endo 

diastereomers may be concomitant. Palladium(0) complexes have shown fluxional behaviour in 

solution already at room temperature. It was possible to give an estimate of the activation 

barriers for the fluxional processes observed for the five complexes studied. The next part of this 

chapter reports the results of the asymmetric allylic substitution, chosen to study the activity and 

selectivity of the highly symmetric trisoxazolines. 
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III.  Palladium-catalysed asymmetric allylic substitution 

1. The test reaction 

As analysed in the Chapter 1, octahedral complexes are associated to threefold rotational 

symmetry in the same way that square planar complexes (or tetrahedral complexes) are 

associated to C2 symmetry. However we could expect a favourable situation with tridentate 

highly symmetrical ligands in square planar environment when the complex displays fluxional 

behaviour. 

In the preceding part of this chapter we have shown that the Pd(II) and Pd(0) complexes 

undergo fluxional processes. Thus, in the square planar complexes chemical exchange between 

the different κ2–coordinated species takes place and the non-coordinated sidearm may play a 

direct or indirect role at some earlier or later stage in the catalytic cycle.27 Such an exchange 

which induces an equilibrium between identical species for the highly symmetrical trisoxazolines 

is schematically shown in Scheme 3.3.1. 
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Scheme 3.3.1: Dynamic exchange between the three symmetry related square planar Pd(II) complexes bearing κ

2-
chelating C3-symmetric trisoxazoline ligands  

 

The palladium-catalysed allylic substitution is a catalytic reaction which involves active 

species with square planar coordination geometry. Thus, this catalysis may be viewed as a good 

test reaction to understand the effect of tridentate C3-symmetric ligands on catalytic reactions 

with intermediates having a bidentate coordination mode. 

For that purpose trisoxazolines will be used in this model reaction. In addition a direct 

comparison with the corresponding 1,1-bis(oxazolinyl)ethane and other functionalised 

bisoxazolines will help us to shed light upon the role of threefold rotational symmetry as well as 

the role of the third oxazoline arm.  

                                                 
27 a) H. Brunner, J. Kraus, H.-J. Lautenschlager, Monatsh. Chemie 1988, 119, 1161; b) H. Brunner, H.-J. 
Lautenschlager, Synthesis 1989, 706; c) H. Brunner, H.-J. Lautenschlager, W. A. König, R. Krebber, Chem. Ber. 
1990, 123, 847. 
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2. Palladium-catalysed asymmetric allylic substitution: general aspects 

a. Introduction 

In the field of organic synthesis, the discovery of the Wacker process in 1956 was the 

starting point of the increasing interest for palladium chemistry. The first π-allyl/Pd complex was 

reported in 195928 and only six years later its application in C-C bond forming substitution 

reactions was discovered by Tsuji et al.29 First attempts to achieve enantioselectivity with the 

help of a chiral ligand, and using a stoichiometric allylic substitution, were described in 1973 by 

Trost and coworkers.30 Since the successful report of catalytic asymmetric allylic alkylation 

(‘AAA’) in 1977 it took almost 20 years of research until effective catalytic systems based on 

chiral ligands were developed.31 The palladium-catalysed allylic substitution has now emerged as 

one of the most versatile asymmetric transformations. 

Among asymmetric bond forming reactions, the metal-catalysed asymmetric allylic 

substitution is remarkable for several reasons (Sheme 3.3.2).32 

 

R
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R
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NuH, base R *

Nu

R

LG = Leaving Group
 

Scheme 3.3.2: General scheme for catalytic asymmetric allylic substitution 

 

Notably, an asymmetric allylic substitution reaction can form many different kinds of 

bonds using the same catalyst: the nucleophilic centre may be N, O, S, C, H etc., giving access to 

C-N, C-O, C-S, C-C, C-H etc. bonds. Depending on the metal and/or the nucleophile, the 

reaction may proceed by an inversion or retention mechanism.  

b. Mechanism 

The generally accepted catalytic cycle of the asymmetric allylic substitution reaction is 

depicted in Scheme 3.3.3. 

                                                 
28 J. Smid, W. Hafner, Angew. Chem. 1959, 71, 284. 
29 J. Tsuji, H. Takahashi, A. Miyake, Tetrahedron Lett. 1965, 4387. 
30 B. M. Trost, T. J. Dietsche, J. Am. Chem. Soc. 1973, 95, 8200. 
31 B. M. Trost, P. E. Strege, J. Am. Chem. Soc. 1977, 99, 1649. 
32 a) B. M. Trost, D. L. van Vranken, Chem. Rev. 1996, 96, 395; b) A. Pfaltz, M. Lautens, In Comprehensive 
Asymmetric Catalysis II, Eds: E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Springer: Berlin, 1999, chap. 24, 833; c) B. 
M. Trost, C. B. Lee, In Catalytic Asymmetric Synthesis II, Ed.: I. Ojima, Wiley-VCH: New-York, 2000, chap. 8E, 
593; d) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921; e) B. M. Trost, J. Org. Chem. 2004, 69, 5813. 
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Complexation of the substrate to the palladium(0) active species is the first step of this 

catalytic cycle. The initial complexation step is reversible and therefore palladium can 

interconvert between the two π faces of the olefin. The second step is the formation of the 

cationic π-allyl complexes after oxidative addition/ionisation. Structurally, the π-allylpalladium 

intermediate is a square planar 16-electron complex consisting of a ligand and a coordinated allyl 

moiety.33 These η3-bound π-allylpalladium complexes are in equilibrium with the corresponding 

η
1 derivatives (see Scheme 3.2.4). It has to be noted that the rate of the π-σ-π isomerisation is 

increased in the presence of an external ligand such as halide.34 The ionisation step is followed 

by the nucleophilic addition leading to the formation of a palladium(0)-product complex. The 

nature of each of these three steps ultimately determines the overall stereochemical event. Finally 

decomplexation of the olefin affords the product and regenerates the Pd(0) active species. 

 

[LnPd]

LnPd

LG

LnPd

Nu

LG

Nu-

Nu

decomplexation

oxidative addition
ionisation

nucleophilic 
addition

complexation

LnPd

LG

 
Scheme 3.3.3: Palladium-catalysed allylic substitution catalytic cycle (L = ligand, LG = living group) 

 

If the process has an odd number of inversions of stereochemistry (or retentions), this 

overall process leads to a compound with inversion of configuration. On the other hand, a 

retention can result either from a double retention or a double inversion path (Scheme 3.3.4).  

 

                                                 
33 S. A. Godleski, Organometallics 1984, 3, 21. 
34 a) U. Burkhardt, M. Baumann, A. Togni, Tetrahedron: Asymmetry 1997, 8, 155; b) T. Cantat, E. Genin, C. 
Giroud, G. Meyer, A. Jutand, J. Organomet. Chem. 2003, 687, 365. 
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Scheme 3.3.4: Overall stereochemistry for the asymmetric allylic substitution 

 

Mechanistic work has demonstrated that the ionisation of the palladium-substrate 

complex occurs with inversion of configuration.35 In that case, one can think of this step as an 

SN2-like displacement of the leaving group by the incoming palladium “nucleophile”. The 

outcome of the process after the nucleophilic addition depends on the nature of the nucleophile. 

Use of “hard” nucleophiles, defined as those derived from conjugate acids whose pKa greater 

than 25, implies coordination of the nucleophile to the metal followed by reductive elimination. 

This leads to retention of configuration after the nucleophilic addition giving the product with net 

inversion of stereochemistry. On the other hand, addition of “soft” nucleophiles, defined as those 

derived from conjugate acids with pKa lower than 25, occurs with inversion of configuration. 

This step is also considered to be SN2 like with palladium(II) displaced. To summarise, 

palladium complexes associated to “soft” nucleophiles afford products with net retention (I  from 

Scheme 3.3.4) and combined with “hard” nucleophiles afford products with net inversion (II  

from Scheme 3.3.4).  

Because ionisation and nucleophilic attack occur in an antiperiplanar fashion for Pd-

catalysed asymmetric allylic substitution, both bond breaking and making events occur outside 

the coordination sphere of the metal and thus on the opposite face from the chirality control 

                                                 
35 a) B. M. Trost, L. Weber, J. Am. Chem. Soc. 1975, 97, 1611; b) B. M. Trost, T. R. Verhoeven, J. Am. Chem. Soc. 
1976, 98, 630; c) T. Hayashi, T. Hagihara, M. Konishi, M. Kumada, J. Am. Chem. Soc. 1983, 105, 7767; d) J. C. 
Fiaud, L. Y. Legros, J. Org. Chem. 1987, 52, 1907; e) I. Stary, J. Zajicek, P. Kocovsky, Tetrahedron 1992, 48, 7229. 
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element. Despite this potential obstacle, a wide range of chiral ligands have been employed with 

success. 

c. Catalysts 

Among the factors which contribute to high stereoselectivity in asymmetric 

transformations, the steric, electronic and symmetric properties of the reagents may play a role. 

All these factors are needed to be considered in the design of new ligands. 

The C2-symmetrical ligands BINAP,36 DIOP31 and CHIRAPHOS37 which have proven to 

be very efficient in asymmetric hydrogenation afforded only modest success in asymmetric 

allylic alkylation. Nevertheless, many other classes of ligands have shown excellent selectivities 

in asymmetric allylic substitution reactions. Selected classes of ligands that have proven to be 

efficient in the palladium-catalysed AAA are depicted in Figure 3.3.1. 
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Figure 3.3.1: Some examples of chiral ligands applied in allylic alkylation 

 

C2-symmetric diamine ligands (J)38 and bisoxazoline ligands (H)39 have both shown good 

chiral induction. Chiral diphosphine ligands displaying a large bite angle (such as K ) have been 

widely applied in AAA and have been the objects of study in mechanistic work.40 However for 

this catalysis, C2 symmetry is not required to achieve high levels of enantioselectivity. 

                                                 
36 a) B. M. Trost, D. J. Murphy, Organometallics 1985, 4, 1143; b) P. S. Pregosin, H. Ruegger, R. Salzmann, A. 
Albinati, F. Lianza, R. W. Kunz, Organometallics 1994, 13, 83. 
37 P. R. Auburn, P. B. Mackenzie, B. Bosnich, J. Am. Chem. Soc. 1985, 107, 2033. 
38 P. G. Andersson, A. Harden, D. Tanner, P. D. Norrby, Chem. Eur. J. 1995, 1, 12. 
39 A. Pfatz, Acc. Chem. Res. 1993, 26, 339. 
40 a) B. M. Trost, D. L. van Vranken, Angew. Chem. Int. Ed. Engl. 1992, 31, 228; Angew. Chem. 1992, 104, 194; b) 
B. M. Trost, B. Breit, S. Peukert, J. Zambrano, J. W. Ziller, Angew. Chem. Int. Ed. Engl. 1995, 34, 2386; Angew. 
Chem. 1995, 107, 2577; c) B. M. Trost, M. R. Machacek, A. Aponick, Acc. Chem. Res. 2006, 39, 747. 
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Ferrocenyl-based ligands, such as (L ), employing a chiral arm scaffold to extend the chiral 

environment for the approaching nucleophile were also successfully applied in the AAA41 and 

ferrocenyl ligands such as Josiphos (M ) also impart excellent selectivities in certain cases.42 

Knowing that the different properties of the donor atoms are transmitted to the allylic substrate 

through the metal, ligands with electronically differentiated bidentate scaffolds such as N43 or 

O44 were applied in AAA and induced high enantioselectivity even with less common substrates. 

Many other metals (Mo, 45 Ir,46 W,47 Cu,48 Rh, 49 Ru50, Ni,51 Pt52) also catalyse allylic 

alkylation and may involved different stereochemical courses as palladium. For example, Mo-

catalysed AAA involved a net retention of stereochemistry but by a double retention pathway 

(IV  from Scheme 3.3.4).45 

3. Trisox/palladium catalysts in allylic substitutions 

a. Experimental conditions 

Different classes of allylic substitutions can be carried out enantioselectively with chiral 

palladium-based catalysts depending on the type of substrate and nucleophile chosen. In this 

short part our experimental conditions are discussed.  

 

 
                                                 
41 a) T. Hayashi, A. Yamamoto, Y. Ito, T. Hagihara, Tetrahedron Lett. 1986, 27, 191; b) T. Hayashi, Pure Appl. 
Chem. 1988, 60, 7.  
42 A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert, A. Tijani, J. Am. Chem. Soc. 1994, 116, 4062. 
43 a) P. Von Matt, O. Loiseleur, G. Koch, A. Pfaltz, C. Lefeber, T. Feucht, G. Helmchen, Tetrahedron: Asymmetry 
1994, 5, 573; b) J. Sprinz, M. Kiefer, G. Helmchen, M. Reggelin, G. Huttner, O. Walter, L. Zsolnai, Tetrahedron 
Lett. 1994, 35, 1523; c) J. M. J. Williams, Synlett 1996, 705; d) G. Helmchen, J. Organomet. Chem. 1999, 576, 203; 
e) G. Helmchen, A. Pfaltz, Acc. Chem. Res. 2000, 33, 336. 
44 a) J. V. Allen, S. J. Coote, G. J. Dawson, C. G. Frost, C. J. Martin, J. M. J. Williams, J. Chem. Soc., Perkin Trans. 
1 1994, 15, 2065; b) D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M. R. Gagne, J. Am. Chem. Soc. 
2000, 122, 7905; c) O. G. Mancheno, J. Priego, S. Cabrera, R. G. Arrayas, T. Llamas, J. C. Carretero, J. Org. Chem. 
2003, 68, 3679. 
45 a) B. M. Trost, I. Hachiya, J. Am. Chem. Soc. 1998, 120, 1104; b) F. Glorius, A. Pfaltz, Org. Lett. 1999, 1, 141; c) 
B. M. Trost, K. Dogra, M. Franzini, J. Am. Chem. Soc. 2004, 126, 1944; d) O. Belda, C. Moberg, Acc. Chem. Res. 
2004, 37, 159; e) D. L. Hughes, G. C. Lloyd-Jones, S. W. Krska, L. Gouriou, V. D. Bonnet, K. Jack, Y. Sun, D. J. 
Mathre, R. A. Reamer, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5379. 
46 a) R. Takeuchi, N. Ue, K. Tanabe, K. Yamashita, N. Shiga, J. Am. Chem. Soc. 2001, 123, 952; b) B. Bartels, G. 
Helmchen, Chem. Commun. 1999, 741; c) G. Helmchen, A. Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Chem. 
Commun. 2007, 675. 
47 G. C. Lloyd-Jones, A. Pfaltz, Angew. Chem. Int. Ed. Engl. 1995,34, 462; Angew. Chem.1995, 107, 534. 
48 a) A. W. Van Zijl, L. A. Arnold, A. J. Minnaard, B. L. Feringa, Adv. Synth. Catal. 2004, 346, 413; b) H. 
Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 2005, 44, 4435; Angew. Chem.2005, 117, 4509 c) A. Alexakis, C. 
Malan, L. Lea, K. Tissot-Croset, D. Polet, C. Falciola, Chimia 2006, 60, 124; 
49 P. A. Evans, D. K. Leaky, Chemtracts 2003, 16, 567. 
50 a) B. M. Trost, P. L. Fraisse, Z. T. Ball, Angew. Chem. Int. Ed. 2002, 41, 1059; Angew. Chem.2002, 114, 1101; b) 
Y. Matsushita, K. Omitsuka, T. Kondo, T. Mitsudo, S. Takahashimi, J. Am. Chem. Soc. 2001, 123,10405. 
51 G. Consiglio, A. Indolese, J. Organomet. Chem. 1991, 417, C36. 
52 J. M. Brown, J. E. McIntyre, J. Chem. Soc., Perkin Trans. 2 1985, 961. 
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Choice of the substrate 

In the literature numerous substrates, precursors of the π-allylpalladium complexes, have 

been reported. Racemic allylic acetates are the most common employed substrates and Figure 

3.3.2 gives an overview of some symmetric (top) and asymmetric substrates (bottom). 
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Figure 3.3.2: Examples of symmetric (f-h) and asymmetric (i-k ) allylic acetates  

 

Trying to find a highly regioselective catalyst is not the aim of our study, therefore we 

turned our attention to symmetric allylic acetates and more precisely to the most commonly used 

substrate in allylic alkylation, rac-1,3-diphenylprop-2-enyl acetate (f-1 with R = Ph). Oxidative 

addition / ionisation in that case lead to the formation of allylic termini with two equivalent 

positions where the nucleophilic attack can occur for catalysts bearing a C2-symmetric ligand. 

The two possible enantiomers that can be obtained after AAA of f-1 with a nucleophile are 

shown in Scheme 3.3.5.  
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Scheme 3.3.5: Asymmetric allylic alkylation of rac-1,3-diphenylprop-2-enyl acetate 

 

Choice of the nucleophile 

Asymmetric allylic substitution enables the formation of C-C, C-N, C-O, C-H… bonds, 

depending on the nucleophile employed e.g. malonate, amine, and sodium borohydride. To make 

the comparison with results published in the literature possible, C-C bond formation was the 

object of our study with the “soft” nucleophile dimethyl malonate. 
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There are two possible ways to generate the carbanion Nu-. In the classical pathway the 

nucleophile is preformed by an acid-base reaction: 

NuH NaH Nu Na H2  

The carbanion can also be generated in situ under the catalytic conditions using N,O-bis-

trimethylsilylacetamide (BSA) as base precursor.53 The formation of the carbanion probably 

occurs through the mechanism depicted in Scheme 3.3.6. The oxidative addition of the allylic 

acetate affords a cationic π-allylpalladium complex. The nucleophilic substitution of the acetate 

on the BSA generates the N-trimethylsilylacetamide anion as well as the trimethylsilyl acetate 

by-product. The third step of the cycle is an acid-base reaction between NuH and N-

trimethylsilylacetamide giving the carbanion. Finally the intermolecular nucleophilic attack on 

the π-allyl yields the product and regenerates the palladium(0) active species.  
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Scheme 3.3.6: Mechanism of the formation of the nucleophile by reaction with BSA 

 

This method to generate the carbanion presents several advantages: i) the carbanion is 

formed in situ during the catalysis; ii) BSA is soluble in most of the solvents and allows the 

variation of the reaction conditions, e.g. use of dichloromethane as a solvent; iii) the 

concentration of the nucleophile relative to that of the catalyst remains constant and this can be 

significant for the selectivity. In our studies the second of the protocols described has been used 

to generate the carbanion.  
                                                 
53 B. M. Trost, D. J. Murphy, Organometallics 1985, 4, 1143. 



Dynamic coordination of chiral trisoxazolines to palladium 

 

101 

 

Palladium source 

The zerovalent Pd0(dba)2 complex (dba = dibenzylidene acetone) combined with 

diphosphine ligands is often used as palladium source in asymmetric catalytic allylic alkylations. 

The [Pd0P2] catalyst is generated by substitution of the labile dba ligand by the diphosphine. 

However, Amatore et al. have shown that sometimes the substitution is not always complete and 

the dba ligand may still coordinate to the metal centre and may thus influence the selectivity of 

the reaction.54 

With the [Pd(η3-C3H5)Cl]2 dimer in the presence of the ligand the [Pd0L2] active species 

is generated in situ after reduction of the palladium(II). The reduction occurs in the presence of 

the first equivalent of nucleophile (Scheme 3.3.7). 

Pd
Cl

2 L L PdII
L L

Cl
NuM

Pd0
L L Nu MCl

active species
 

Scheme 3.3.7: Formation of the active species starting from the [Pd(η3-C3H5)Cl]2 dimer 

b. Preliminary results 

Pfaltz and coworkers previously investigated this reaction with the well established 

bisoxazoline as stereodirecting ligands and this particular system therefore provided the point of 

reference for our work. The allylic alkylation of rac-1,3-diphenylprop-2-enyl acetate with 

dimethyl malonate as a nucleophile in the presence of BSA was carried out using the catalytic 

systems prepared in situ by addition of the ligand to the palladium allyl chloride dimer [PdCl(η3-

C3H5)]2 precursor (Scheme 3.3.8).55  
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Scheme 3.3.8: General scheme for the palladium-catalysed allylic alkylation of rac-1,3-diphenylprop-2-enyl acetate 

 

                                                 
54 C. Amatore, A. Jutand, F. Khalil, M. M’Barki, L. Mottier, Organometallics 1993, 12, 3168. 
55 B. M. Strickner, J. Am. Chem. Soc. 1983, 105, 568. 
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After 1.5 hours at 50°C in tetrahydrofuran to generate the catalytic precursor, the reaction 

mixture was cooled down to room temperature before starting the catalysis. Using 2.2 mol% of 

palladium and ligand iPr-BOX, an enantiomeric excess of 89% and 89% isolated yield were 

obtained after three days in reasonably good agreement with Pfaltz’ results.56 Under the same 

conditions, the analogous catalyst with iPr- trisox as stereodirecting ligand gave an ee value of 

95% and 90% yield (Table 3.3.1). 

These first results indicated higher selectivity for the trisox-based catalyst and possibly 

similar activity for both systems. The modular strategy of the ligand design enabled us to 

synthesise three highly symmetric trisoxazolines: Bn-trisox, Ph-trisox and Ind-trisox. A similar 

comparative study was then investigated with the different BOX/trisox couple available. 
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 iPr-BOX iPr-trisox 

Yield (%) 89 90 
ee (%) 89 95 

 

Table 3.3.1: Results of asymmetric allylic alkylation with iPr-BOX and iPr-trisox  

c. Trisoxazoline vs bisoxazoline 

The analogous comparative study with the other oxazoline derivatives shows that the 

trisoxazoline-based catalysts generally induce a better enantioselectivity compared to their 

bisoxazoline analogues (Table 3.3.2). This behaviour appears to be independent of the 

substituent as shown in Table 3.3.2.  
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Entry R Yield (%) ee (%) Yield (%) ee (%) 

1 (S)-iPr 89 89 90 95 
2 (R)-Ph 7 -72 28 -88 
3 (S)-Bn 88 83 92 88 
4 (4R,5S)-Ind 13 -93 95 -98 

 

Table 3.3.2 Results of asymmetric allylic alkylation with the different bisoxazolines and trisoxazolines 

                                                 
56 P. von Matt, G. C. Lloyd-Jones, A. B. E. Minidis, A. Pfaltz, L. Macko, M. Neuburger, M. Zehnder, H. Rüegger, P. 
S. Pregosin, Helv. Chim. Acta 1995, 78, 265. 
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Concerning the yields, for the oxazolines bearing the isopropyl (entry 1) and benzyl 

(entry 3) substituents both catalytic systems seem to lead to the same conversion after three days 

reaction. For the oxazolines with phenyl (entry 2) or indanyl (entry 4) substituents the trisox/Pd 

systems are clearly superior.  

The catalyst bearing the Ind-trisox ligand, i.e. with the lowest internal degrees of 

freedom, displays the highest selectivity and activity. Rigidity of the chiral environment around 

the palladium centre could explain this superiority. 

Kinetic studies have been carried out in order to obtain more insight. The catalytic 

conversions with the BOX and trisox ligands from Table 3.3.2 have been monitored by gas 

chromatography. The evolution of the conversion as a function of time for the four different 

BOX/trisox couple is depicted in Figure 3.3.3. 
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Figure 3.3.3: Comparison of the conversion curves for the trisox/Pd systems ( ) and the corresponding 

bisoxazoline/Pd systems () 
 

BOX/Pd complexes require longer induction periods than their corresponding trisox/Pd 

catalysts. The most notable observation is the rate acceleration with the tripods compared to the 

BOX ligands for all substitution patterns. The turn-over frequencies (TOFs) derived from the 

quasilinear section in the conversion curves are displayed in Table 3.3.3. The rate of the reaction 
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is strongly dependent on the substituent of the respective ligand. The iPr substituent yields the 

most active BOX-derivative whereas the indanyl subtituent leads to the highest rate for the 

trisox-based catalysts. With iPr, Ph and Bn-based ligands the TOFs differ by a factor of four in 

favour of the tripod, whilst a 64-fold acceleration was found for the indanyl-derivative. 
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TOF ratio 
trisox/BOX 

(S)-iPr 1.37 5.02 3.7 
(R)-Ph 0.05 0.2 4.0 
(S)-Bn 0.91 3.73 4.1 

(4R,5S)-Ind 0.19 12.2 64.2 
 

Table 3.3.3: Turn-over frequencies TOF (h-1) derived from the conversion curves shown in Figure 3.3.3 

 

Moreover, the effiency of the BOX and trisox ligands were compared in the allylic 

amination of rac-1,3-diphenylprop-2-enyl acetate. Only the oxazoline derivatives with isopropyl 

substituents were investigated. The general reaction scheme and results are displayed in Table 

3.3.4. 
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Yield (%) 16 68 

ee (%) 53 63 
 

Table 3.3.4: Results of allylic amination with iPr-BOX/Pd and iPr-trisox/Pd catalysts  

 

Again, the trisox-based catalyst shows higher activity and selectivity confirming that the 

trisoxazoline derivatives lead to superior catalysts compared to the bisoxazolines.  
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The third oxazoline arm may play a direct or indirect role at some earlier or later stage 

during the catalysis. To see the influence of the third heterocycle on the efficiency of the 

catalysts, a series of catalysts bearing oxazoline derivatives as stereodirecting ligands have been 

investigated. 

d. Extension of the study to functionalised bisoxazolines 

A series of modified bisoxazoline ligands containing potentially coordinating or non-

coordinating “sidearms” at the apical position were synthesised following literature procedures.57 

Additionally, several dually functionalized C2 symmetric systems which are readily obtained 

from the bis(oxazolinyl)methane, were also synthesised.58 For practical reasons only oxazoline 

derivatives with the isopropyl substituents were prepared. The results of the asymmetric allylic 

alkylations are summarised in Table 3.3.5 as well as the previously discussed results for the iPr-

BOX/iPr-trisox couple (entries 1-2).  

Increasing the steric bulk on the bridging carbon atom gives better ee’s compared to the 

BOX ligand however yields are significantly lower (entries 3-5). The two functionalised-

bisoxazoline derivatives with ketone-based arms induce the same enantioselectivity as the 

trisoxazoline probably due to steric hindrance, but give rise to lower yields than iPr-BOX and 

iPr-trisox (entries 6-7). In contrast, the introduction of the pyridylmethyl sidearm does not affect 

the yield but the ee value drops to 66% (entry 8). This is probably due to the presence of three 

isomeric active species, two of them coordinated by an achiral pyridine and an oxazoline. The 

same trend is followed with the introduction of a second pyridylmethyl sidearm (entry 9). In this 

case the observed ee value (3%) can be rationalised by four interchanging active species: 

bisoxazoline, oxazoline-pyridine (two diastereomers) and bispyridine. Finally the alkylation 

catalyst with the C1-symmetric trisoxazoline, containing an achiral oxazoline unit, displays a 

slightly lower ee value than the C3-symmetric catalyst (91% vs. 95%) (entry 10). For possible 

explanations, see chapter 4 and the copper-catalysed amination reaction. 

To summarise, the highest yields were obtained from ligands that contain a potentially 

donating heteroatom as sidearm, with ligands that contain nitrogen donors displaying slightly 

higher activity than oxygen donors. The enantioselectivity of the product is also affected by the 

nature of the sidearm. Ligands with no heteroatom-containing sidearms usually give lower yield 

and moderate to good enantiomeric excesses depending on the bulkiness of the substituents.  

                                                 
57 a) J. Zhou, M. C. Ye, Y. Tang, J. Comb. Chem. 2004, 6, 301; b) M. Honma, T. Sawada, Y. Fujisawa, M. Utsugi, 
H. Wanatabe, A. Umino, T. Matsamura, T. Hagihara, M. Takano, M. Nakada, J. Am. Chem. Soc. 2003, 125, 2860. 
58 M. Seitz, C. Capacchione, S. Bellemin-Laponnaz, H. Wadepohl, B. D. Ward, L. H. Gade, Dalton Trans. 2006, 
193. 
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Entry Ligand Yield (%) ee (%) 

1 N

OO

N

 

iPr-BOX 89 89 

2 
N

O

N

O
O

N

 

iPr-trisox 90 95 

3 N

OO

N

Ph

 

P 15 86 

4 N

OO

N

PhPh

 

Q 51 94 

5 
N

OO

N

 

R 63 93 

6 N

OO

N

tBu
O

 

S 74 95 

7 N

OO

N

Ph
O

 

T 68 95 

8 
N

OO

N

N

 

U 93 66 

9 
N

OO

N

NN

 

V 84 3 

10 N

O

N

O
O

N

 

W 67 91 

 

Table 3.3.5: Results of asymmetric allylic alkylation with different oxazoline derivatives 
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To further explore this influence, a comparative kinetic study of the catalytic conversion 

with two representative non-symmetric side-arm-functionalised ligands (-COtBu, entry 6 and -

CH2Py, entry 8) has been carried out and compared with the results obtained for iPr-BOX and 

iPr-trisox systems (Figure 3.3.4).  
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Figure 3.3.4: Comparison of the conversion curves for four catalyst systems 

 

This study confirms that the introduction of a donating sidearm leads to rate 

enhancement; the best catalytic activity being reached with the trisoxazoline ligand iPr-trisox. 

4. Conclusion 

The mechanism of palladium-catalysed allylic alkylation involves four steps: after 

coordination of the substrate to the palladium(0) species, an oxidative addition/ionisation 

sequence results in the formation of the π-allyl palladium(II) complex; the nucleophile then 

externally attacks the π-allyl intermediate giving rise to a palladium(0) species bearing the 

product which is displaced by way of substitution through another substrate molecule.  

Since our catalytic systems were prepared in situ from palladium(II) allyl chloride and the 

trisox ligand, the first step in the formation of the active catalyst involves the reduction of the 

palladium(II) precursor by a nucleophilic attack by the malonate. The observation of an 

induction period in the conversion curves is thus not surprising. Introduction of an additional 

donor function in the stereodirecting ligand generally resulted not only in a rate enhancement but 
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also in the reduction of this induction period. The observed overall rate acceleration might be due 

to the ability of the additional donating group to induce the formation of the palladium(0) species 

both in the initial generation of the active species as well as in the product/substrate exchange 

step at the end of the catalytic cycle. This mechanistic aspect, as well as the symmetry-related 

simplification of the reaction network for the catalysts bearing C3-chiral tripods, may be at the 

root of the superior performance of the trisox-systems. 
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This chapter is devoted to the application of the trisoxazolines in copper(II) chemistry. 

The first part concentrates on generalities about enantioselective copper-catalysed Lewis acid 

reactions and on the description of the aim of the work. The study of the influence of the catalyst 

loading on the activity and selectivity is presented in the following part. Finally, threefold vs. 

twofold symmetry in asymmetric catalysis is discussed by comparing the catalytic performance 

of BOX- and trisox- containing copper(II) Lewis acid. 

I. Introduction 

1. Asymmetric Lewis acid copper-based catalysis 

Many carbon-carbon or carbon-nitrogen bond-forming reactions are subject to Lewis 

acid-promoted rate acceleration.1 Cycloadditions, conjugate additions and aldol reactions are 

representative examples of such Lewis acid activations. If the Lewis acid complex is chiral, it 

may control the stereochemical outcome of the process. Electrophilic activation of carbonyl 

compounds by metal-centred chiral Lewis acids is an efficient method for the enantioselective 

catalysis of nucleophile-electrophile reactions. Different transition metals have been applied in 

Lewis acid-promoted catalytic reactions.2 Among them, copper(II) is an efficient Lewis acid and 

therefore has been the focus of great interest. The Irving-Williams series for divalent ions in the 

first transition series indicates that Cu(II) forms the most stable ligand/metal complexes and 

dissociation of the chelating chiral ligand in such complexes is negligible. The order of the 

stability Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II) has been found to be independent on 

the nature of the coordinated ligand or on the number of ligand molecules involved.3 The order 

of stability is directly correlated with the second ionisation potentials and ionic radii. Copper(II) 

displays a disposition to form square planar or elongated tetragonal complexes. For copper 

complexes bearing bidentate chelating ligands coordination of a bidentate substrate is thus 

favoured in the equatorial plane with the counterion being a weakly or non-coordinating ligand.4 

Jahn-Teller distortion in the d9 complex elongates the remaining apical sites where the 

                                                 
1 M. Santelli, J.-M. Pons, In Lewis Acids and Selectivity in Organic Synthesis, CRC Press: New York, 1996. 
2 See for example: a) S. Kobayashi, Pure Appl. Chem. 1998, 70, 1019; b) B. Bosnich, Aldrichimica Acta 1998, 31, 
76; c) S. Kobayashi, K. Manabe, Acc. Chem. Res. 2002, 35, 209; d) A. Corma, H. Garcia, Chem. Rev. 2002, 102, 
3837; e) A. Yanagisawa, In Modern Aldol Reactions, Ed.: R. Mahrwald, Wiley-VCH, 2004, Vol. 2, 1; f) J. S. 
Johnson, D. A. Nicewicz, In Modern Aldol Reactions, Ed.: R. Mahrwald, Wiley-VCH, 2004, Vol. 2, 69; g) Y. 
Yamashita, S. Kobayashi, In Modern Aldol Reactions Ed.: R. Mahrwald, Wiley-VCH, 2004, Vol. 2, 167; h) R. F. R. 
Jazzar, E. P Kündig, In Ruthenium in Organic Synthesis, Ed.: S.-I. Muharashi, Wiley-VCH, 2004, 257. 
3 H. Irving, R. J. P. Williams, J. Chem. Soc. 1953, 3192. 
4 B. J. Hathaway, D. E. Billing, Coord. Chem. Rev. 1970, 5, 143. 



Dynamic coordination of chiral trisoxazolines to copper 112 

counteranion may (or may not) reside. These considerations act jointly to provide well-defined 

complexes that may exhibit excellent properties as catalysts. 

In the field of chiral copper(II)-based Lewis acid catalysis, the catalyst, in general, 

consists of a cation coordinated to an optically active bidentate ligand to give a chiral complex 

with at least one vacant site suitable for coordination and activation of the reagent. The substrates 

generally used in these catalysis are often capable of chelating to the chiral Lewis acidic metal 

complex (Scheme 4.1.1). 
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Scheme 4.1.1: Lewis acid catalysts possessing two vacant Lewis acid sites for the coordination of the chelating 

substrate 
 

This chelating-assisted catalysis is applied in various types of reactions and 

transformations. Among these processes, those catalysed with chiral metal(II) complexes 

frequently reach enantioselectivities greater than 90%.5 An important outcome of the chelation 

criterion is that the analysis of the catalyst-substrate complex usually leads to an unambiguous 

prediction of the sense of asymmetric induction. To induce a good level of enantioselection, the 

coordinated reagent should be suitably oriented to favour a selective attack to one specific face.  

C2-symmetric bisoxazolines are among the most popular classes of chiral ligands 

satisfying the various requirements needed for good face selectivity. Corey et al first 

demonstrated that this class of ligands combined with Mn(II) and Fe(III) leads to effective chiral 

Lewis acid catalysts for Diels-Alder reactions.6 The versatility of chiral bisoxazoline/copper(II) 

complexes in such reactions has been first illustrated in 1993 by Evans et al.7 They reported that 

[Cu(tBu-BOX)](OTf)2 complex acts as an effective chiral Lewis acid for the Diels-Alder 

reaction described in Scheme 4.1.2. 

 
                                                 
5 a) D. A. Evans, T. Rovis, J. S. Johnson, Pure Appl. Chem. 1999, 71, 1407; b) Lewis Acids in Organic Synthesis, 
Ed.: H. Yamamoto, Wiley-VCH: New York, 2000, Vols. 1 and 2; c) S. Kobayashi, Y. Mori, Y. Yamashita, In 
Comprehensive Coordination Chemistry II 2004, 9, 399. 
6 a) E. J. Corey, N. Imai, H.-Y. Zhang, J. Am. Chem. Soc. 1991, 113, 728; b) E. J. Corey, K. Ishihara, Tetrahedron 
Lett. 1992, 33, 6807. 
7 D. A. Evans, S. J. Miller, T. Lectka, J. Am. Chem. Soc. 1993, 115, 6460. 
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Scheme 4.1.2: Diels-Alder reaction of a 2-oxazolidinone derivative with cyclopentadiene 

 

From these investigations it appears that copper(II) triflate is uniquely effective in 

delivering cycloadducts in high diastereo- and enantiomeric excesses (-78°C, > 98% ee) out of 

the ten metal triflates tested at the time.8 Since then, C2-symmetric bisoxazolines, including those 

immobilised on heterogeneous media,9 have proven to be efficient ligands in Lewis acid copper-

catalysed reactions yielding valuable enantiomerically enriched compounds.5,10  

During the course of the studies reported in the literature it has been observed that the 

isolation of the [Cu(BOX)]2+ precursors is not a prerequisite for their success as enantioselective 

catalysts. They can efficiently be prepared in situ: when the chiral bisoxazoline ligand is mixed 

with an inorganic copper salt in an organic solvent, a chiral BOX/metal complex is usually 

instantaneously formed, which is the precatalyst of the reaction in question. Therefore, any 

structural information is important to understand the arrangement at the metal centre of the 

molecules involved in the reaction and in the stereochemical outcome. Work to date has revealed 

that bisoxazoline/copper complexes provide a rigid square planar template with a defined chiral 

environment.  

2. Problem set and aims of the study 

Similar to palladium chemistry described in the previous section we expected a 

favourable effect of highly symmetrical trisoxazolines on the catalyst performance in square 

planar copper(II) complexes undergoing fluxional processes. The substitutional lability of the 

copper(II) complexes promotes this fluxionality. Thus, in the square planar complexes chemical 

exchange between the symmetry-equivalent κ
2–coordinated species takes place, with the non-

coordinated sidearm playing a direct or indirect role at some stage in the catalytic reaction. The 

expected interconverting key intermediates are represented in Figure 4.1.1. 

 

                                                 
8 D. A. Evans, S. J. Miller, T. Lectka, P. von Matt, J. Am. Chem. Soc. 1999, 121, 7569. 
9 D. Rechavi, M. Lemaire, Chem. Rev. 2002, 102, 3467. 
10 a) A. K. Ghosh, P. Mathivanen, J. Capiello, Tetrahedron: Asymmetry 1998, 9, 1; b) K. A. Jørgensen, M. 
Johannsen, S. Yao, H. Audrain, J. Thorhauge, Acc. Chem. Res. 1999, 32, 605; c) J. S. Johnson, D. A. Evans, Acc. 
Chem. Res. 2000, 33, 325; d) G. Desimoni, G. Faita, K. A. Jørgensen, Chem. Rev. 2006, 106, 3561. 
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Figure 4.1.1: The three symmetry-equivalent square planar Cu(II) complexes bearing κ2-chelating C3-symmetric 

trisoxazoline ligands 
 

The application of trisoxazoline ligands in Lewis acid copper-catalysed reactions is aimed 

to see if the use of these tridentate ligands may solve a limitation encountered with the 

bisoxazoline-based catalysts: the high catalyst loadings required. To that end trisoxazolines have 

been used in two model reactions, an asymmetric α-amination and a Mannich reaction. A direct 

comparison with the corresponding 2,2-bis(oxazolinyl)propane ligands will help us to find out 

whether the third donating arm influences the activity and/or the stereoselective outcome of 

catalysis carried out with lower catalyst loadings. This concept and the results obtained are 

described in the following part. 

Finally, the conceptual differences in exploiting twofold and threefold rotational 

symmetry in the design of chiral ligands for asymmetric catalysis have been addressed in a 

comparative study of the catalytic performance with BOX and trisox containing copper(II) 

catalysts. The results of this study are discussed in the last part of this chapter. 

II. Highly symmetric trisoxazolines in enantioselective copper(II) Lewis acid 

catalysis 

1. From bisoxazoline/copper(II) to trisoxazoline/copper(II) catalysts 

Some bisoxazoline ligands are commercially available, such as (R)- and (S)-Ph-BOX as 

well as (S)-tBu-BOX. These bisoxazolines belong to the most widely used ligands in the 

literature and their catalytic performance is a testimony to the efficiency of 4-aryl- and 4-alkyl-

substituted BOX-based catalysts.  

After formation of the bisoxazoline/copper(II) complex, the next step is coordination of 

the dicarbonyl substrate compound to the catalyst. It is generally accepted that the dicarbonyl 

compound utilizes both carbonyl functionalities for coordination to the copper centre. 

BOX/copper(II) catalysts have proven to be highly efficient for the addition reactions to 

dicarbonyl compounds and for the reactions where the latter act as pro-nucleophile. This is 

probably because the Lewis acidity of copper(II) is optimal for this class of substrates and 
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because the bidentate coordination of the dicarbonyl compound to the metal centre leads to a 

chiral environment with efficient shielding of one of the carbonyl faces. The latter is illustrated 

in Figure 4.2.1 for a [Cu((S)-tBu-BOX)(dicarbonyl)]2+ species. 
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Figure 4.2.1: Coordination of the dicarbonyl substrate to copper(II): one of the approach is blocked by the tBu 

group 
 

In Figure 4.2.1 the upper face of “left” carbonyl functionality is shielded by the tert-butyl 

group and therefore the nucleophilic/electrophilic attack occurs from the back of the dicarbonyl 

compound. Thus, BOX/copper(II) catalysts provide a chiral environment at the Lewis acidic 

centre leading to highly selective reactions. 

Based on the high stereoselectivity observed for the bisoxazoline-based Lewis acid 

catalysts, the trisoxazoline-based complexes may act as selective catalysts. The conceptual 

approach in which the high rotational symmetry of the chiral trisoxazoline renders the reversible 

pathways leading to the active catalyst equivalent has been presented above (see Figure 4.1.1). 

The three active species bearing a ligand with a bidentate coordination mode have a similar 

chiral environment at the Lewis acidic centre to that of the BOX/copper catalysts (Scheme 

4.2.1). 
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Scheme 4.2.1: Dynamic exchange between the three catalytic active species (a); the copper/bisoxazoline catalyst (b) 
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A possible facial coordination by a chiral tridentate ligand was thought to stabilise the 

resting state of the copper complexes. The additional oxazoline ligation is expected to deactivate 

the complexes in their Lewis acidity as shown in a theoretical study on BOX/copper(II) 

catalysts.11 Jørgensen et al. calculated the energy of the LUMO orbital of the 17 

electron[Cu(BOX)(substrate)]2+ and the 19 electron [Cu(BOX)(substrate)(CH3CN)]2+ complexes. 

An important factor for the reactivity of [Cu(BOX)(substrate)]2+ complexes is the energy of the 

LUMO orbital which is the orbital responsible for the interaction with the HOMO of the 

incoming electron rich reagent. For the 19 electron complex possessing a third nitrogen donor it 

has been found that the dicarbonyl is less reactive, as the LUMO was found to be 1.04 eV higher 

in energy than for the 17 electron complex. Moreover, the Cu-O bond of the reacting carbonyl 

oxygen atom was found to be longer in the 19 electron complex. This bond length change shows 

that the carbonyl functionality of the substrate is less coordinated to the Lewis acidic centre. This 

accounts for higher LUMO energy and thus for the reduced activity of the 19 electron complex 

compared to the 17 electron complex. 

Therefore the transformation of the resting state into the active 17 electron Cu(II) species 

necessitates the decoordination of an oxazoline unit and the opening up of the system (Scheme 

4.2.2). This required "hemilability"12 is provided stereoelectronically by the strong dynamic 

Jahn-Teller effect of the d9 Cu(II) centre. 
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Scheme 4.2.2: Coordination/decoordination equilibrium between the proposed resting and active states of the 

trisox/copper catalysts 
 

                                                 
11 J. Thorhauge, M. Roberson, R. G. Hazell, K. A. Jørgensen, Chem. Eur. J. 2002, 8, 1888. 
12 P. Braunstein, F. Naud, Angew. Chem. Int. Ed. 2001, 40, 680; Angew. Chem. 2001, 113, 702. 
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2. Model reactions 

Based on results published by Jørgensen and coworkers with bisoxazoline/copper(II) 

Lewis acid catalysts the asymmetric α-amination and Mannich reactions were chosen as test 

reactions. 

a. Mannich reaction 

The Mannich reaction is an effective carbon-carbon bond-forming process for the 

construction of nitrogen containing compounds.13 This reaction has been employed numerous 

times successfully as a key step in natural product synthesis as well as in medicinal chemistry.14 

The first catalytic enantioselective Mannich-type reaction was reported in 1997 by Kobayashi et 

al. using chiral zirconium/BINOL complexes as catalysts.15 In 2001, Jørgensen and coworkers 

disclosed a highly enantioselective catalytic direct Mannich reaction where 2-ketoesters were 

treated with N-protected α-iminoesters in the presence of bisoxazoline/copper(II) complexes 

(Scheme 4.2.3).16  
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Scheme 4.2.3: Diastereo- and enantioselective direct Mannich reaction of activated carbonyl compounds with α-

iminoesters catalysed by a chiral Lewis acid 
 

Lewis acid-catalysed reaction of 2-ketoesters with N-tosyl α-iminoesters gave 

enantiomeric excesses up to 97% using the chiral [Cu(Ph-BOX)](OTf)2 complex. The reaction 

allowed the formation of highly functionalised 4-oxo-glutamic acid ester derivatives which could 

be converted into highly functionalised optically active α-amino-γ-lactones.16 

In 2003, the group of Jørgensen reported the use of β-ketoesters as pro-nucleophiles in 

the catalytic asymmetric direct Mannich reaction with an activated N-tosyl α-iminoester. This 
                                                 
13 a) S. Kobayashi, H. Ishitani, Chem. Rev. 1999, 99, 1069; b) A. Córdova, Acc. Chem. Res. 2004, 37, 102. 
14 a) E. F. Kleinmann, In Comprehensive Organic Synthesis, Eds: B. M. Trost, I. Flemming, Pergamon Press: New 
York, 1991, Vol. 2, chap. 4.1; b) M. Arend, B. Westermann, N. Risch, Angew. Chem. Int. Ed. 1998, 37, 1044; 
Angew. Chem. 1998, 110, 1096; c) S. Denmark, O. J.-C. Nicaise, In Comprehensive Asymmetric Catalysis, Eds.: E. 
N. Jacobsen, A. Pfaltz, H. Yamomoto, Springer: Berlin, 1999, Vol. 2, 93. 
15 H. Ishitani, M. Ueno, S. Kobayashi, J. Am. Chem. Soc. 1997, 119, 7153. 
16 K. Juhl, N. Gathergood, K. A. Jørgensen, Angew. Chem. Int. Ed. 2001, 40, 2995; Angew. Chem. 2001, 113, 3083. 
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new chiral Lewis acid-catalysed reaction is an easy entry to the formation of chiral quaternary 

carbon centres. Moreover the utility of this catalysis could be enhanced by the development of a 

diastereoselective decarboxylation reaction of the Mannich adducts providing an attractive 

approach to optically active γ-keto α-amino acid derivatives. The direct asymmetric Mannich 

reaction of β-ketoesters with an activated N-tosyl α-iminoester described by Jørgensen et al. is 

depicted in Scheme 4.2.4.17  
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Scheme 4.2.4: Diastereo- and enantioselective direct Mannich reaction of β-ketoesters with α-iminoesters catalysed 

by a chiral Lewis acid 
 

It was found that the size of the alkoxy moiety of the β-ketoesters is critical. In order to 

obtain high enantioselectivities, the tert-butyl ester moiety was required, while the corresponding 

ethyl esters gave only low to moderate selectivities of 22-42% in the presence of 10 mol% of 

[Cu(Ph-BOX)](OTf)2. It was therefore interesting to choose the latter nucleophile for the 

Mannich reaction catalysed by [Cu(trisox)]2+, to try to optimise the reaction conditions and to 

find out whether high selectivities with this less selective substrate could be obtained. 

b. α-amination reaction 

As a second model reaction the direct α-amination of α-substituted β-ketoesters with 

azodicarboxylates which forms enantioselectively carbon-nitrogen bonds has been chosen. This 

reaction is of interest for the synthesis of β–hydroxy-α-amino acids such as oxazolidinone 

derivatives, and is a simple procedure for the formation of an asymmetric carbon centre attached 

to a nitrogen atom.18 An efficient bisoxazoline/copper(II) catalysed version has been reported 

recently by Jørgensen and coworkers. They disclosed the first direct α-amination of β-ketoesters 

                                                 
17 M. Marigo, A. Kjærsgaard, K. Juhl, N. Gathergood, K. A. Jørgensen, Chem. Eur. J. 2003, 9, 2359. This type of 
reaction was first developed by: D. A. Evans, S. G. Nelson, J. Am. Chem. Soc. 1997, 119, 6452. 
18 For a review on asymmetric α-amination reactions see: J.-P. Genet, C. Greck, D. Lavergne, In Modern Amination 
Methods, Ed: A. Ricci, Wiley-VCH: Weinheim, 2000, chap. 3. 
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catalysed by a chiral Lewis acid complex with azodicarboxylate derivatives as nitrogen fragment 

source (Scheme 4.2.5).19  
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Scheme 4.2.5: Enantioselective direct α-amination of ethyl 2-methylacetoacetate with dibenzyl azodicarboxylate 

catalysed by [Cu(Ph-BOX)](OTf)2 
 

High yields and excellent enantioselectivities were observed using 2,2-bis[(4S)-4-

phenyloxazolin-2-yl]propane (Ph-BOX) as ancillary ligand. Originally performed in the presence 

of 10 mol% of catalyst, they observed that the reaction proceeds with catalyst loadings of 0.2 - 1 

mol% without loss in selectivity (Table 4.2.1). However further reduction of the catalyst loading 

led to a significant drop in the stereoselectivity of the transformation. 

 

Catalyst loading  
(mol%) 

Yield  
(%) 

ee  
(%) 

10 98 98 
1 92 98 

0.5 91 96 
0.2 91 96 
0.05 65 55 

 

Table 4.2.1: Variation of the catalyst loadings in the enantioselective direct α-amination of ethyl 2-
methylacetoacetate with dibenzyl azodicarboxylate 

3. Influence of the third oxazoline unit on the catalyst loading 

a. Reaction conditions 

The [Cu(trisox)]2+ precursors have been efficiently prepared in situ by reacting the 

desired copper(II) salt with the trisoxazoline ligand in the organic solvent chosen for the 

catalysis. The reactions do not require any special precautions and have been carried out in air 

illustrating the practical applicability of the process. 

                                                 
19 M. Marigo, K. Juhl, K. A. Jørgensen, Angew. Chem. Int. Ed. 2003, 42, 1367, Angew. Chem. 2003, 115, 1405. 
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The different solutions containing the catalyst precursors with variable catalyst loadings 

have been prepared from a mother solution and the same procedure was followed for the 

Mannich reaction and for the α-amination reaction. The homogeneous stock solutions containing 

the copper(II) salt and the desired ligand have been stirred under air for 30 min. Successive 

aliquots have been then taken to obtain the desired catalyst loading for each run. 

b. Trisoxazolines in the asymmetric Mannich reaction 

The Mannich reaction of ethyl 2-methylacetoacetate with an activated N-tosyl α-imino 

ester was first investigated. After optimization of the reaction conditions, the Mannich reaction 

catalysed by the [Cu(iPr-trisox)]2+ catalyst afforded high activity and selectivity. The best 

catalyst efficiency has been found using the copper(II) perchlorate salt in a 1/3 mixture of 

acetone and diethyl ether at -28°C (Scheme 4.2.6).  

 

OEt

O O

+
N

Ts

CO2Et

Cu(ClO4)2 / iPr-trisox

CO2Et

O HN

CO2Et

Ts

acetone / Et2O, 1/3
-28°C / 36 h.

 
Scheme 4.2.6: Enantioselective Mannich reaction of ethyl 2-methylacetoacetate with N-tosyl α-imino methyl ester 

catalysed by [Cu(iPr-trisox)](ClO4)2 
 

With a ligand/metal ratio of 1.5 and using 10 mol% of catalyst the reaction proceeds in 

good yield (84%). The diastereoselectivity, measured by HPLC, is at ca. syn/anti = 13/87. The 

[Cu(iPr-trisox)](ClO4)2 precursor gives the reaction product with an excellent ee of 90% 

(enantiomeric excess of the major diastereomer).  

Using the reaction conditions described above, the evolution of the catalytic efficiency 

when decreasing the catalyst loadings has been investigated. This study has been carried out in 

the presence of 10, 1, 0.1 and 0.01 mol% of [Cu(iPr-trisox)](ClO4)2. As a direct comparison the 

same stepwise reduction of the catalyst loading has been investigated in the presence of [Cu(iPr-

BOX)](ClO4)2. The results are summarised in Table 4.2.2. 
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N

O

N

O
O

N

 

N

OO

N

 
 iPr-trisox iPr-BOX 

Catalyst loading 
(mol%) 

Yield 
(%) 

ee 
(%) 

Yield 
(%) 

ee 
 (%) 

10 84 90 84 84 
1 75 89 70 84 

0.1 59 91 56 80 
0.01 36 90 35 66 

 

Table 4.2.2: Variation of the catalyst loadings in the enantioselective Mannich reaction of ethyl 2-
methylacetoacetate with N-tosyl α-imino methyl ester catalysed by [Cu(iPr-trisox)](ClO4)2 and [Cu(BOX)](ClO4)2 

 

Upon reduction of the catalyst loading by a factor of 103, that is to say in the presence of 

only 0.01 mol% of catalyst, the enantioselectivity remains unchanged with the [Cu(iPr-

trisox)](ClO4)2 catalyst (90% ee). Throughout the dilution series, the diastereoselectivity remains 

constant. With the bisoxazoline ligand and in the presence of 10 mol% of catalyst, 84% ee (84% 

yield) is observed showing lower selectivity compared to the corresponding trisoxazoline-based 

system. For the BOX-based systems, reducing the catalyst loading leads to a decrease of the 

stereoselectivity. From 84% ee in the presence 10 and 1 mol% of catalyst loading the 

enantiomeric excess drops to 80% ee at catalyst concentration of 0.1 mol% and more 

dramatically to 66% ee at catalyst concentration of 0.01 mol%. 

c. Trisoxazolines in the asymmetric α-amination reaction 

The α-amination reaction of ethyl 2-methylacetoacetate with dibenzyl azodicarboxylate 

as nitrogen source has subsequently been the focus of our interest. Jørgensen and coworkers have 

shown that high yields and excellent enantioselectivities can be obtained in the presence of 10 

mol% of [Cu(Ph-BOX)](OTf)2 and that the reaction proceeds without loss in selectivity with a 

catalyst loading of 0.2 mol% (further decrease of the catalyst concentration induces lower 

selectivity, see Table 4.2.1). The concept of stereoelectronic hemilability of the divalent 

copper(II) has been tested by exploring this catalysis with the corresponding trisoxazoline ligand. 

Influence of the variation of the catalyst loadings on the outcome of the reaction have 

been investigated for both [Cu(Ph-BOX)](OTf)2 and [Cu(Ph-trisox)](OTf)2 catalysts to make a 

direct comparison of the catalytic efficiencies. The reactions were carried out under air in 

dichloromethane at 0°C over 16 hours and with a ligand/metal ratio of 1.2 (Scheme 4.2.7).  
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Scheme 4.2.7: Enantioselective α-amination reaction of ethyl 2-methylacetoacetate with dibenzyl azodicarboxylate 

catalysed by [Cu(Ph-trisox)](OTf)2 and [Cu(Ph-BOX)](OTf)2 
 

Catalyst loadings going from 10 to 0.01 mol% have been surveyed during the course of 

the study and the activities and selectivities observed upon successive reduction of the catalyst 

loading are summarised in Table 4.2.3. 

 

 

N

O

N

O
O

N

 

O

N N
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 Ph-trisox Ph-BOX 

Catalyst loading 
(mol%) 

Yield 
(%) 

ee 
(%) 

Yield 
(%) 

ee 
 (%) 

10 97 99 98 98 
1 91 99 93 98 

0.1 72 99 72 55 
0.01 49 48 41 15 

 

Table 4.2.3: Variation of the catalyst loading in the enantioselective α-amination reaction of ethyl 2-
methylacetoacetate with dibenzyl azodicarboxylate catalysed by [Cu(Ph-trisox)](OTf)2 and [Cu(Ph-BOX)](OTf)2 

 

Using 10 mol% of the tripodal system [Cu(Ph-trisox)](OTf)2, an enantiomeric excess of 

99% is observed for the reaction of ethyl 2-methylacetoacetate with dibenzyl azodicarboxylate 

and the product is obtained with 97% yield. Decreasing the amount of catalyst to 0.1 mol% 

affects moderately the yield and does not affect the enantioselectivity. However, further 

reduction of the catalyst loading by a factor of 10 leads to a significant decrease in 

enantioselectivity for this reaction. Concerning the bisoxazoline-based catalyst for 10 and 1 

mol% catalyst loading the system displays the same activity and selectivity as the one of the 

corresponding tridentate ligand. Nevertheless, already with 0.1 mol% of catalyst a decrease in 

both activity and stereoselectivity is observed. More dramatic is the drop of the selectivity when 

the reaction is carried out with 0.01 mol% of catalyst. 

Comparing the outcome of both Mannich reaction and α-amination reaction after 

variation of the catalyst loadings indicates that the difference between tridentate- and bidentate-

based catalysts is less significant in the latter reaction. The influence of the third oxazoline donor 

is less pronounced in the α-amination reaction. 
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d. The active catalyst: bidentate coordination mode of the trisoxazoline 

A considerable number of copper complexes bearing facially coordinated tripodal 

nitrogen donor ligands have been structurally characterized. Copper(II) complexes with facial 

coordination of C3v-symmetrical tris(pyrazolyl)methane ligand20 and tris(2-pyridyl)methane 

ligand21 have been characterized by X-ray diffraction. However the opening up of these systems, 

as postulated for the transformation of the resting state into the active species, is rarely observed. 

Direct evidence for the assumption of a partially decoordinated trisoxazoline ligand in the active 

state of the catalyst has been obtained in our group by Guido Marconi. Crystallisation of the 

reaction intermediate which results from the reaction of a [Cu(trisox)]2+ precursor with 

deprotonated ethyl 2-methylacetoacetate gave single crystals of [Cu(iPr-trisox)(κ2-O,O'-

MeCOCHCOOEt)](BF4) as well as of the analogous and isomorphous perchlorate salt. The 

molecular structure of the tetrafluoroborate salt in the solid state is depicted in Figure 4.2.3. 

Two of the oxazoline groups of the iPr-trisox ligand are coordinated to the central copper 

atom whilst the third oxazoline unit is dangling with the nitrogen donor pointing away from the 

metal centre.22 The geometry of the complex is square pyramidal with a fluorine atom of the 

BF4-counterion occupying the apical position. The six-membered metallacycles formed by the 

copper centre and the deprotonated β-ketoester, and by the metal and the bisoxazoline unit lie 

within one molecular plane. There are two possibilities for the coordination of the substrate 

(ketone and the ester functionalities could bind in the opposite fashion), however, in the solid 

state only one diastereoisomer has been observed. 

Given this arrangement of substrate and ligand as well as the coordination of the 

counterion, it appears likely that electrophilic attack on the metallated β-ketoester occurs on the 

face which is liberated by the decoordination of the hemilabile third oxazoline.17 This would lead 

to products having the correct absolute stereochemistry, as observed in the Mannich addition. 

However, the substitutional lability of the copper(II) complexes, and thus the possibility of rapid 

equilibria, limits the usefulness of interpretations based on X-ray structural data. 

 
                                                 
20 a) K. Fujisawa, T. Ono, H. Aoki, Y. Ishikawa, Y. Miyashita, K. Okamoto, H. Nakazawa, H. Higashimura, Inorg. 
Chem. Commun. 2004, 7, 330; b) D. L. Reger, C. A. Little, M. D. Smith, G. J. Long, Inorg. Chem. 2002, 41, 4453; 
c) D. Martini, M. Pellei, C. Pettinari, B. W. Skelton, A. H. White, Inorg. Chim. Acta 2002, 333, 72. 
21 a) M. Kodera, Y. Tachi, T. Kita, H. Kobushi, Y. Sumi, K. Kano, M. Shiro, M. Koikawa, T. Tokii, M. Ohba, H. 
Okawa, Inorg. Chem. 2000, 39, 226; b) M. Kodera, Y. Kajita, Y. Tachi, K. Kano, Inorg. Chem. 2003, 42, 1193; c) P. 
J. Arnold, S. C. Davies, J. R. Dilworth, M. C. Durrant, D. V. Griffiths, D. L. Hughes, R. L. Richards, P. C. Sharpe, 
Dalton Trans. 2001, 736; d) T. Astley, P. J. Ellis, H. C. Freeman, M. A. Hitchman, F. Richard Keene, E. R. T. 
Tiekink, J. Chem. Soc., Dalton Trans. 1995, 595. 
22 In this copper(II) complex, the bidentate coordination mode of the trisoxazoline, with the nitrogen donor of the 
free unit pointing away from the metal centre, is similar to that of the ligand in palladium(II) and palladium(0) 
complexes (see chapter 3) 



Dynamic coordination of chiral trisoxazolines to copper 124 

 
Figure 4.2.3: Thermal ellipsoid plot (25%) of [Cu(iPr-trisox)(κ2-O,O'-MeCOCHCOOEt)](BF4) 

4. Conclusion 

It has been shown that C3-symmetric trisoxazolines form highly efficient enantioselective 

copper(II) Lewis acid catalysts which are based on the concept of a stereoelectronic hemilability 

of the divalent copper. The trisoxazoline, dynamically coordinated to the copper(II), is thought to 

stabilise the resting state by (weak) coordination of the third donor.23 The opening-up of the 

system generates the 17 electron active species. In a direct comparison with the analogous 

bisoxazoline systems, the tripod/copper catalysts have proven to be more efficient in the 

enantioselective Mannich reaction as well as the enantioselective α-amination of prochiral β-

ketoesters. 

III. Stereochemical consequences of threefold symmetry 

1. Introduction: Inverting chiral centres in C2 and C3 symmetric stereodirecting ligands 

In the last section we have seen that C3-symmetric trisox ligands allow the reduction of 

the catalyst loading compared to C2-symmetric BOX ligands but the enantioselectivity is not 

greatly influenced by the addition of the third dangling arm (for 10 and 1 mol% catalyst). This is 
                                                 
23 Stereochemical models are based on this concept. See for example: a) M.-C. Ye, J. Zhou, Y. Tang, J. Org. Chem. 
2006, 71, 3576; b) R. Rasappan, M. Hager, A. Gissibl, O. Reiser, Org. Lett. 2006, 8, 6099. 
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expected by considering the proposed model of the active species based on a partially 

decoordinated tripod. At first sight one could conclude that C3-symmetric trisox behave as a C2-

symmetric bisoxazoline in terms of enantioselectivity. However, from the point of view of ligand 

design there is a remarkable difference between C2- and C3-chiral podands which becomes 

apparent when one chiral element (e.g. a chiral centre) out of n (n = 2,3 respectively) is inverted, 

while leaving all other structural features unchanged. The rotational symmetry is thus destroyed: 

whereas the inversion of a chiral centre in a C2-symmetrical chelate ligand will generate a meso-

structure, i.e. an achiral ligand possessing mirror symmetry (Cs), the same process carried out for 

one of the three ligand arms of a C3-chiral tripod will leave the system chiral and C1-symmetrical 

(Figure 4.3.1).  

 

inversion of 
a chiral centre

(R,R)-BOX
C2-chiral

(R,S)-BOX
meso

achiral

(R,R,R)-trisox
C3-chiral

(R,R,S)-trisox
C1-chiral

 
Figure 4.3.1: Transformation of a C2-chiral chelate (left) and a C3-chiral podand (right) upon inversion of the 

configuration at a chiral ligand arm 
 

The modular nature of BOX and trisox ligands allows for a systematic investigation of 

the implications that such an inversion has on the stereoselective outcome of the catalysis. The 

ligands employed in this work are represented in Figure 4.3.2. 
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Figure 4.3.2: Overview of the bis- and trisoxazoline ligands employed in this study 

 

The effect on the catalytic performance is investigated by direct comparison of C3-

symmetrical (R,R,R)-Ph-trisox with C1-symmetrical (R,S,S)-Ph-trisox and the pair of 

bisoxazoline ligands (R,R)-Ph-BOX and (R,S)-Ph-BOX. In addition, the combination of chiral 

and achiral podand arms has been investigated in a comparative study of Ph2-dm-trisox and Ph-
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dm2-trisox with the bidentate Ph-dm-BOX, the latter representing a minimal structure in 

asymmetric oxazoline/copper(II) catalysis. The α-amination of a β-ketoester by dibenzyl 

azodicarboxylate previously developed has been chosen as test reaction for this study. 

2. Effect of the inversion of one of the chiral centres in BOX and trisox ligands 

a. Catalytic α-amination of ethyl 2-methylacetoacetate 

The test reaction introduced above has been carried out using (R,R,R)-Ph-trisox and 

(R,S,S)-Ph-trisox as stereodirecting podands as well as the bisoxazolines (R,R)-Ph-BOX and 

(R,S)-Ph-BOX. The results of the catalytic runs performed with 1 mol% of catalyst are 

summarised in Table 4.3.1. 
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 (R,R,R)-Ph-trisox (R,R)-Ph-BOX (R,S,S)-Ph-trisox (R,S)-Ph-BOX 

ee (%) 99 98 -41 0 

Yield (%) 91 93 94 88 

 

Table 4.3.1: α-amination of ethyl 2-methylacetoacetate with dibenzyl azodicarboxylate with 1 mol% of catalyst 

 

The selectivity of the transformation catalysed by copper(II) complexes of (R,R,R)-Ph-

trisox and the chelating (R,R)-Ph-BOX is almost identical. This is as expected based on the 

proposed model of the active catalyst that contains a partially decoordinated podand. In it, the 

dangling oxazoline ring adopts a remote orientation (see next part), and the trisox system 

therefore effectively coordinates like the corresponding bisoxazoline. Whereas the use of the 

meso-BOX ligand (R,S)-Ph-BOX leads to a racemic product, the catalyst formed with the 

stereochemically mixed C1-symmetrical (R,S,S)-Ph-trisox gives the reaction product with -41% 

ee. In this case a closer look at the real active species is required. 
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b. Active species and consideration of “first coordination sphere” symmetry 

In the case of the C1-chiral (R,S,S)-Ph-trisox, the interplay of three isomeric forms of 

dicoordinated trisox has to be considered, all three being catalytically active. These three 

diastereomeric catalysts, which are thought to be involved, are depicted in Figure 4.3.3. 
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Figure 4.3.3: Effect of the inversion of a chiral centre in Ph-trisox (top) leading to an equilibrium between three 
diastereoisomeric active species in solution (bottom) 

 

The local environment (i.e. the arrangement of the coordinated oxazoline rings) at the 

metal centre is the most important parameter in the discussion of the effect, which the formal 

inversion of one of the chiral centres in (R,S,S)-Ph-trisox has on the catalyst system. As is readily 

apparent, only one of the three isomers expected to be in equilibrium with each other, contains 

the metal centre in an essentially C2-chiral BOX-like environment to be found for the three 

symmetry-equivalent species of the catalyst derived from the C3-symmetrical derivative (R,R,R)-

Ph-trisox. This local molecular shape and, specifically, the effective local symmetry of a 

coordinated ligand at a metal centre will be designated as first coordination sphere symmetry (fcs 

symmetry) and will play a key role in the following discussions.24 The other two isomeric forms 

have a fcs meso-arrangement of the oxazoline substituents. Given the orientation and distance of 

the dangling ligand arm (see Figures 4.2.3 and 4.3.4), the catalytic behaviour of the latter two 

                                                 
24 The term first coordination sphere (fcs) symmetry is introduced to designate the effective local symmetry of a 
coordinated ligand at a metal centre. This is meant to avoid confusion with the stereochemical term “local 
symmetry”, for which Mislow and Siegel have given a strict definition with reference to the symmetry of the whole 
molecule: K. Mislow, J. Siegel, J. Am. Chem. Soc. 1984, 106, 3319. 



Dynamic coordination of chiral trisoxazolines to copper 129 

forms should be similar to that of the complex bearing the achiral ligand (R,S)-Ph-BOX. This 

line of argument is supported by structural data obtained for intermediates of the catalytic cycle 

with both the C3- (see Chapter 4, II.3) and the C1-chiral tripods. The crystal structure of the latter 

is discussed in the following part. 

c. Crystal structure of a copper(II) complex with C1-chiral (R,S,S)-Ph-trisox 

The crystal structure of [CuII(iPr-trisox)(κ2-O,O'-MeCOCHCOOEt)]+(BF4
-) is depicted in 

figure 4.2.3. From the structure it is clear that the third oxazoline ring will have little influence 

upon the attack of an electrophile on the acylenolate (expected to approach from the left) and that 

the complex may therefore be effectively treated as a (substituted) bisoxazoline/Cu derivative. 

It has also been possible to crystallise the stereochemically mixed C1-trisox complex 

[CuII{( R,S,S)-Ph-trisox}(κ2-O,O'-MeCOCHCOOEt)(H2O)]+(ClO4
-) by a similar reaction of 

(R,S,S)-Ph-trisox/Cu with the deprotonated β-ketoester. The X-ray structure of this complex is 

depicted in figure 4.3.4 along with selected bond lengths and angles in Table 4.3.2. 

 

 
Figure 4.3.4: Thermal ellipsoid plot (25%) of [CuII{( R,S,S)-Ph-trisox}(κ2-O,O'-MeCOCHCOOEt)(H2O)]+(ClO4

-). 
The counter-anion is omitted for clarity 

 

Cu(1)-N(1) 1.973(4)  Cu(1)-N(2) 1.990(4) 
Cu(1)-O(1) 1.921(4)  Cu(1)-O(2) 1.886(3) 
Cu(1)-O(7) 2.293(4)    

N(1)-Cu(1)-N(2) 87.42(16)  N(1)-Cu(1)-O(2) 177.36(16) 
N(1)-Cu(1)-O(1) 90.92(16)  N(2)-Cu(1)-O(1) 169.48(17) 
N(2)-Cu(1)-O(2) 90.12(16)  O(1)-Cu(1)-O(2) 91.33(16) 

 

Table 4.3.2: Selected bond lengths (Å) and angles (°) for complex of [CuII{( R,S,S)-Ph-trisox}(κ2-O,O'-
MeCOCHCOOEt)(H2O)]+(ClO4

-) 
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In this acylenolate complex, the trisox ligand adopts a bidentate coordination [Cu-N 

bonds lengths: 1.976(3) and 1.990(4) Å], the third oxazoline unit pointing away from the 

coordinated oxazoline rings and thus also generating an effective bisoxazoline/copper system. 

Similar to complex with the C3-symmetric iPr-trisox, the coordination geometry is square 

pyramidal with an oxygen atom of a water molecule occupying the apical position [Cu(1)-O(7) 

2.293(4) Å]. 

As already discussed above, three stereochemically distinct ways of coordination of the 

trisox ligand are to be expected: one leading to an fcs C2-symmetric species and two representing 

fcs achiral meso species (Figure 4.3.3). One of the two diastereomeric species with an fcs meso 

arrangement of the coordinated bisoxazoline unit crystallised, the one with the phenyl 

substituents of the coordinated oxazoline units located on the same side as the dangling free 

oxazoline ring.  

d. A steady state kinetic model for the behaviour of the stereochemically mixed (R,S,S)-Ph-

trisox/copper catalyst 

In order to understand the observed enantiomeric excess for the catalytic α-amination of 

ethyl 2-methylacetoacetate of 41%, the ratio of the three isomeric active species as well as their 

relative catalytic activity needs to be established. For this purpose a kinetic study was carried out 

using the different catalysts bearing (R,R,R)-Ph-trisox, (R,S,S)-Ph-trisox as well as (R,R)-Ph-

BOX and (R,S)-Ph-BOX as stereodirecting ligands. The conversion curves under the standard 

catalytic conditions of 1 mol% of catalyst loading for the four catalysts are depicted in Figure 

4.3.5. 
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Figure 4.3.5: Conversion curves of the Cu-catalyzed α-amination (1 mol% of catalyst loading) for the four catalysts 
bearing (R,R,R)-Ph-trisox, (R,S,S)-Ph-trisox as well as (R,R)-Ph-BOX and (R,S)-Ph-BOX 

 

Whereas the (R,R)-Ph-BOX derivative displays the highest activity (first order rate 

constant derived from an exponential fitting analysis of the conversion curve: kRR = 2.484 h-1), 

the corresponding meso-system (R,S)-Ph-BOX proved to be the least active catalyst (kRS = 0.756 

h-1). Since it is thought that the stereodirecting ligand in the active trisox/copper catalyst acts as a 

bidentate ligand and thus effectively corresponds to the BOX analogues, the behaviour of both 

the homo and heterochiral systems should be explicable in reasonable approximation using the 

kinetic data: The copper(II) catalyst bearing the C3-chiral trisox ligand (R,R,R)-Ph-trisox 

possesses an activity (kRRR = 1.638 h-1) which is close to that of the C2-chiral bisoxazoline whilst 

the activity of the catalytic system based on the heterochiral tripod lies between this value and 

the conversion rate of the meso-BOX catalyst (kRSS = 1.074 h-1). The latter may indeed be an 

indication that both the fcs C2-symmetric chiral isomer as well as the two meso forms may play a 

role in the transformation catalyzed by (R,S,S)-Ph-trisox/copper. 

The behaviour of the “desymmetrised” trisox/Cu catalysts may be rationalised in terms of 

a general steady state kinetic model for the three possible active bisoxazoline-copper species 

which are expected to be in rapid exchange with each other in solution. This assumption is based 

on the well established substitutional lability of divalent copper complexes. 
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General model for the catalysis with C1-symmetric chiral tripods 

Given is a trisoxazoline in which two of the heterocycles bear a substituent A whilst the 

third substituent, B, is assumed to be different. This leads to three dicoordinate species in 

solution, in which the copper atom is either coordinated by two equally substituted oxazoline 

rings (A,A) or by a non-equal combination, (A,B) or (B,A). The two latter are diastereomers, 

however, since they differ only in terms of the orientation of the third, dangling oxazoline ring 

which is pointing away from the active centre, they may be assumed in reasonable 

approximation to be equivalent (both in terms of activity and stability). All three catalyst isomers 

will transform the substrate to a given product P with enantioselectivities of eeAA, eeAB and eeBA 

(eeAB ≈ eeBA) as shown in Scheme 4.3.1. 

 

 

[CuL*] substrate (A,B) (B,A)(A,A)
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Scheme 4.3.1: Model scheme describing the behaviour of a C1-symmetric trisox ligand in copper catalysis 

 

Designating two enantiomers of the product as PR and PS, it is possible to express the rate 

of formation of these two products as a function of the different rate constants, selectivities and 

the proportions xR and xS of (A,A) that give respectively PR or PS as well as the proportions xR’ 

and xS’ of (A,B) and (B,A) that give respectively PR or PS, with PR being assumed to be the major 

product: 

dPR

dt
xRk AA A , A 2xR' k AB A ,B

 
dPS

dt
xSk AA A , A 2 xS ' k AB A ,B

 

In this simplified form, the properties of (A,B) and (B,A) are treated as equal. In that case, the 

ratio of the two rates of formation is: 

dPR

dPS

x Rk AA A , A 2 xR ' k AB A , B

x Sk AB A , A 2 xS ' k AB A , B  

Knowing that and that 
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eeAA xR xS

xR xS 1  

eeAB xR' xS '

xR' xS' 1  

the four proportions xR, xS, xR’ and xS’ can be expressed in terms of partial enantiomeric excesses 

(eeAA and eeAB): 

xR

1 eeAA

2  
xS

1 eeAA

2  
xR'

1 eeAB

2  
xS '

1 eeAB

2  

The composition of the total amount of catalytically active species is as follow:25 

C cat A , A 2 A ,B  

Assuming steady state conditions gives the following expression for the observed ee-values: 

ee
k AA Ccat 2 A , B eeAA 2 k ABeeAB A , B

k AA C cat 2 A , B 2 k AB A , B  
(eq.1) 

This general equation could be applied to the different C1-symmetric chiral trisoxazolines.  

Application to the (R,S,S)-Ph-trisox/copper system 

In the case of the (R,S,S)-Ph-trisox ligand, the “hetero-substituent” B is an 

stereochemically inverted A, i.e. B = -A (B = S, A = R) and the two species (A,B) and (B,A) 

possess the two meso-configurations. Consequently eeA,-A ≈ ee-A,A ≈ 0, which gives the simplified 

expression: 

ee
k AA Ccat 2 A , A eeAA

k AA Ccat 2 A , A 2 k A A A , A  
(eq.2) 

In order to apply this equation, the pseudo first order rate constants derived from the 

conversion curves discussed above for the different BOX and trisox copper systems may be 

employed. It is assumed that the (A,-A) and (-A,A) active species from the trisox-based catalyst 

have approximately the same activity as the meso-(A,-A)-BOX/Cu catalyst and that the (A,A) 

active (trisox-derived) species has the same activity as the (A,A)-BOX/Cu catalyst. Assuming 

furthermore, that the meso and C2-symmetric active species give the same enantioselectivities as 

their corresponding BOX/copper catalysts, as implied by the data reported in the previous 

section, the relative concentrations and activities of the components of the (R,S,S)-Ph-

trisox/copper may be estimated.  

                                                 
25 To write this equation, the quantity of complex [CuL*] 2+ is assumed to be negligeable; i.e. the equilibrium is 
shifted to the right (see Scheme 4.3.1).  
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In a first step the concentration of the meso-species, [(R,S)] is calculated by re-arranging 

equation 2: 

A , A
1
2

k AA eeAA ee
ee k A A k AA eeAA ee

Ccat
 

(eq.3) 

 

Using the experimental value of ee = 41±1 % and the catalyst concentration Ccat of 1.5 

µmol/L in equation 3 (as well as kA-A = kRS = 0.756, kAA = kRR = 2.484 h-1 and eeAA = eeRR = 0.98 

derived from the two BOX-systems) gives a concentration of 0.615±0.005 µmol/L for each meso 

diastereomer (R,S) and (S,R) of the (R,S,S)-Ph-trisox-Cu catalyst and of 0.270±0.005 µmol/L for 

the C2-symmetric active species (S,S). This shows that the amount of each meso species is 

significantly greater than the proportion of the C2-symmetric species and that the former 

therefore possesses slightly greater stability (∆G < 1 kcal.mol-1). The greater amount of the meso 

isomers in the equilibrium of exchanging species could explain the observed preferred 

crystallisation of a catalyst-substrate intermediate with the (R,S,S)-Ph-trisox in which the two 

oxazoline units adopt a heterochiral relationship as demonstrated above. The domination of the 

fcs meso active species also explains the magnitude of the pseudo-first order rate constant found 

for the C1-symmetric tripod. This is closer to that observed for the (R,S)-Ph-BOX-Cu than to the 

one of the C2-symmetric bisoxazoline (kRSS = 1.074, kRS = 0.756 and kRR = 2.484 h-1). 

3. Effect of the combination of chiral and achiral oxazolines in C1-symmetric tripods 

a. Desymmetrisation of C3-symmetric trisox and dicoordinate isomers generated 

The inversion of one chiral centre in a C3-chiral tripod is one way of systematically 

distorting such a threefold symmetric species with the consequences for copper(II) Lewis acid 

catalysis discussed above. Another such operation is the successive replacement of chirally 

substituted oxazoline rings in a trisox system by achiral oxazolines. This transformation of the 

threefold symmetric chiral ligand Ph-trisox is schematically represented in Figure 4.3.6. 

Exchanging one 4-phenyloxazolin-2-yl unit by a 4,4’-dimethyloxazolin-2-yl unit results in the 

non-symmetrical tripod Ph2-dm-trisox and upon a similar replacement of a second oxazolinyl 

ring one arrives at Ph-dm2-trisox. 
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Figure 4.3.6: Successive replacement of chiral oxazoline units in a trisox system by achiral oxazoline rings (dm 
=dimethyl) 

 

Figure 4.3.6 also shows the expected equilibria between the three diastereomeric 

dicoordinate copper(II) complexes which have different sets of fcs symmetries for the two non-

symmetrical tripodal ligands. Whilst the Ph2-dm-trisox/copper system is composed of one isomer 

with fcs C2 symmetry and two which are fcs chiral but unsymmetrical, the proposed equilibrium 

of the catalytic species derived from Ph-dm2-trisox comprises one fcs achiral and two 

unsymmetrical chiral species. 
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b. Catalytic α-amination of ethyl 2-methylacetoacetate with the stereochemically “mixed” 

trisox/copper catalysts 

The results of the α-amination of ethyl 2-methylacetoacetate with dibenzyl 

azodicarboxylate with 1 mol% of catalyst using the copper(II) complexes of (R,R)-Ph-BOX, Ph2-

dm-trisox, Ph-dm2-trisox as well as Ph-dm-BOX are summarized in Table 4.3.3. 
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 (R,R)-Ph-BOX Ph2-dm-trisox Ph-dm2-trisox Ph-dm-BOX 

ee (%) 98 -97 82 83 

Yield (%) 93 90 73 85 

 

Table 4.3.3: α-amination of ethyl 2-methylacetoacetate with dibenzyl azodicarboxylate using 1 mol% of catalyst 

 

It is notable that the replacement of one 4-phenyloxazolin-2-yl by a 4,4’-

dimethyloxazolin-2-yl unit barely affects the catalyst performance (97% ee, 90% yield) and even 

the introduction of the second 4,4’-dimethyloxazolin-2-yl ring within the trisox system only 

leads to a reduction of the selectivity of the transformation to 82 % ee (1 mol% of cat.) and a 

lower yield due to a decreased catalytic activity. Remarkably, the bisoxazoline-copper catalyst 

bearing Ph-dm-BOX as the stereodirecting ligand generates the C-N coupling product with an 

enantiomeric excess of 83 % (88% ee for 10 mol% of catalyst). This catalyst with the bidentate 

ligand which only contains one chiral centre may therefore be viewed as possessing the minimal 

catalyst structure for efficient stereoselective catalysis of this transformation. 

The relative activities of the copper(II) Lewis acid catalysts bearing the bisoxazolines Ph-

BOX, Ph-dm-BOX and dm-BOX as well as the trisoxazolines Ph2-dm-trisox, Ph-dm2-trisox and 

dm-trisox were established in a kinetic study of the asymmetric C-N coupling under pseudo-first 

order conditions for the respective catalyst. The conversion curves are depicted in Figure 4.3.7 

and display the general trend that the replacement of a 4-phenyloxazolin-2-yl by a 4,4’-

dimethyloxazolin-2-yl unit leads to reduced activity. 
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Figure 4.3.7: Asymmetric C-N coupling for the stereochemically “mixed” catalysts involving the bisoxazolines Ph-
BOX, Ph-dm-BOX and dm-BOX as well as the trisoxazolines Ph2-dm-trisox, Ph-dm2-trisox and dm-trisox 

 

In general, the ligands with two 4-phenyloxazolin-2-yl rings give rise to more active 

catalysts than the ones with one 4-phenyloxazolin-2-yl unit. The catalysts with the achiral 

ligands dm-BOX and dm-trisox possess very low activity and only incomplete conversion of the 

substrates is observed even after more than 40 h of reaction time. An exponential analysis of the 

conversion curves gives the pseudo-first order rate constants kAA and kAB in equation 1 (Table 

4.3.4) and the relevant data for eeAA and eeAB for both systems are derived from the data listed in 

Table 4.3.3. 

 

 
(R,R)-Ph 

BOX 
Ph2-dm 

trisox 
Ph-dm 
BOX 

Ph-dm2 

trisox 
dm 

BOX 
dm 

trisox 

ee (%) 98 -97 83 82 0 0 

k (h-1) 2.484 0.594 0.222 0.096 0.060 0.012 
 

Table 4.3.4: Enantiomeric excesses and pseudo-first order rate constants of the asymmetric amination of ethyl 2-
methylacetoacetate with dibenzyl azodicarboxylate with the copper(II) Lewis acid catalysts 
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c. Estimate of the relative amounts of catalytic species for Ph2-dm-trisox/copper and Ph-

dm2-trisox/copper catalysts 

Equation 1 can be applied to the catalytic system with the C1-symmetric Ph2-dm-trisox, 

where A = S and B = dm and the quantity of the fcs-C1 symmetric (A,B) = (Ph,dm) isomer can be 

expressed in equation 4 by rearrangement of equation 1: 

A , B
Ccat kAA eeAA ee

2 k AB ee eeAB 2 k AA eeAA ee  
(eq.4) 

For the Ph-dm2-trisox/Cu catalyst, in which A is achiral and thus eeAA ≈ 0, concentration 

of mixed (A,B) is given by the simplified equation 5: 

A , B
Ccatk AAee

2 k ABeeAB 2 ee k AA kAB  
(eq.5) 

Numeric calculation of quantities of respective non-symmetrical (A,B) isomer is given in 

table 4.3.5 and shows that all three isomers relevant in exchange equilibrium are present in about 

equal amount. 

 

  
[(AA)] 

(%) 
[(AB)] + [(BA)] 

(%) 

N

O

N

O
O

N

 
Ph2-dm-trisox 

A = Ph 
B = dm 

56 ± 10 2 × 22 ± 10 

N

O

N

O
O

N

 
Ph-dm2-trisox 

A = dm 
B = Ph 

18.4 ± 8 2 × 40.8 ± 8 

 

Table 4.3.5: Estimated composition of the non-symmetrical A2B-trisox/copper(II) catalysts. The relative amounts of 
fcs C2-symmetric species are given in bold and those for fcs achiral species in italics. 

 

Therefore, the relatively high enantioselectivity of the catalysts bearing the Ph2-dm-trisox 

and Ph-dm2-trisox is a consequence of the significantly greater activity of the species giving the 

best ee: fcs-C2-symmetric (Ph,Ph) compared to fcs-C1-symmetric (Ph,dm) for Ph2-dm-trisox (11 

times more active) and fcs-chiral (Ph,dm) compared to fcs-achiral (dm,dm) for Ph-dm2-trisox (19 

times). 
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4. Conclusion 

The aim of this study was to shed some light onto the implications which the use of chiral 

tridentate podands may have in stereoselective catalysis as compared to the more established 

bidentate chelates. The different order of the rotational axis in symmetrical systems, whilst not 

affecting the principals of stereoselection by intermolecular interaction between substrate and 

catalyst, becomes apparent when the symmetry of the stereodirecting ligand is systematically 

reduced or modified. Here, the twofold rotational symmetry may in principle be mapped onto 

mirror-/centrosymmetry (as may play a role when chiral molecules adopt a conformation which 

renders their shape close to achiral) whilst such a scenario is not possible for chiral threefold 

symmetric systems. Regarding only the systems bearing ligated tripods, this study underscores 

the previous observations of superior performance of the catalysts bearing C3-chiral 

stereodirecting ligands as compared to systems of lower symmetry (see Chapter 3). The 

simplified behaviour with regard to potential catalyst equilibria in solution along with the 

stereochemical non-ambiguity of the active catalytic species appear to play the principal 

underlying role in this trend. 
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The aim of this work was to study the effect of threefold rotational symmetry as well as 

the role of the third oxazoline arm on catalytic reactions with intermediates preferring a bidentate 

coordination mode. For that purpose, new C1- and C3-symmetric 1,1,1-tris(oxazolinyl)ethane 

ligands have been synthesised and applied in several model reactions. 

Chapter 1 provides an introduction to the chemistry of oxazoline-based ligands, 

especially to trisoxazoline ligands. The synthetic strategies of the latter are reviewed, along with 

their applications in asymmetric catalysis and molecular recognition. 

Chapter 2 is dedicated to the synthesis of highly symmetrical chiral 1,1,1-

tris(oxazolinyl)ethane ligands bearing phenyl, benzyl or indanyl substituents. A description of 

the preparation of mixed bis- and trisoxazolines is also given. The last two parts of this chapter 

focus on the isomerisation of the brominated monooxazoline derivatives. It has been shown that 

the thermally induced rearrangement of the 2-bromooxazolines generates the corresponding α-

bromo-isocyanate derivatives. Reaction of the latter with phenylethylamine leads selectively to 

the N-cyclised aziridines or to the O-cyclised 2-aminooxazolines depending on reaction 

conditions. 

In Chapter 3, the coordination chemistry of the trisoxazoline ligands with palladium is 

first described. We have been able to isolate stable palladium(II) chloride or allyl complexes by 

reacting the desired trisoxazoline ligand with respectively [Pd(PhCN)2Cl2] and [Pd(η3-

C3H5)(cod)]BF4 as precursor. A number of palladium(0) complexes with different ligands, 

including a potentially tridentate pyridine-bisoxazoline ligand, and alkenes have been 

successfully synthesised using the most adapted Pd(0) precursor, namely the [Pd(alkene)(nbd)] 

complex. The dynamic behaviour of these complexes in solution has then been studied and 

activation parameters have been determined. Both π-allyl-Pd(II) and Pd(0) complexes are 

fluxional at room temperature, i.e. under the conditions of the asymmetric allylic alkylations. In 

the last part of the chapter, the systematic comparison of the catalytic efficiency of trisox- and 

bisox-palladium systems in allylic substitution is described. We have demonstrated that the 

trisoxazoline-based complexes are superior catalysts in direct comparison to the corresponding 

bisoxazoline-based catalysts. By using various C3-symmetric trisoxazolines, in addition to 

bisoxazolines that contain a hetero-sidearm, we have found that the use of potentially tridentate 

ligands in this reaction results in a rate enhancement and in an increase in enantioselectivity 

relative to the corresponding catalysts bearing purely bidentate stereodirecting ligands. The 

results show that the additional donor function appears to play a role in the product/substrate 

exchange step as well as in the initial generation of the active catalyst. 



General conclusion 144 

Finally, Chapter 4 describes the exploitation of the dynamic coordination of the 

trisoxazolines to copper (II) in two copper-catalysed asymmetric reactions. It has first been 

shown that C3-symmetric trisoxazolines form highly efficient enantioselective copper(II) Lewis 

acid catalysts which are based on the concept of a stereoelectronic hemilability of the divalent 

copper. In a direct comparison with the analogous bisoxazoline systems, the trisox/copper 

catalysts have proven to be more efficient in an enantioselective Mannich reaction as well as an 

enantioselective α-amination of prochiral β-ketoesters in presence of low catalyst loadings. 

Fianally, the implications of the use of chiral tridentate podands in stereoselective catalysis 

compared to the ones of the more established bidentate chelates have been lighten. In addition, 

the study underscores the superior performance of the catalysts bearing C3-chiral stereodirecting 

ligands as compared to systems of lower symmetry as observed in the palladium chemistry.  
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I. General methods and instrumentation 

1. Materials 

All manipulations, except those indicated, were performed under a nitrogen atmosphere using 

standard Schlenk techniques and a glove box.  

(S)-valinol, (S)-phenylalaninol and (R)-phenylglycinol were obtained by reduction of L-valine, L-

phenylalanine and D-phenylglycine respectively.1 The compounds 2,2-bis[(4S)-4-

isopropyloxazolin-2-yl]-1-(pyridin-2-yl)propane (U),2 2,2-bis[(4S)-4-isopropyloxazolin-2-yl]-1-

phenylpropane (P)2 and 2,2-bis[(4S)-4-isopropyloxazolin-2-yl]-1,3-diphenylpropane (Q)3 were 

synthesized according to literature procedures. 2,2-bis[(4S)-4-isopropyloxazolin-2-yl]-4,4-

dimethylpentan-3-one (S), 2,2-bis[(4S)-4-isopropyloxazolin-2-yl]-1-phenylpropan-1-one (T), 

2,2-bis[(4S)-4-isopropyloxazolin-2-yl]-1,3-di(napht-2-yl)propane (R) and 2,2-bis[(4S)-4-

isopropyloxazolin-2-yl]-1,3-di(pyridin-2-yl)propane (V) were obtained according to previously 

published protocols.4 The iPr-BOX, Ph-BOX, Bn-BOX, Ind-BOX and dm-BOX ligands were 

obtained by methylation of the corresponding 2,2-bis[oxazolin-2-yl]ethane. The trisoxazolines 

iPr-trisox and dm-trisox were prepared following the procedures developed in our group.5 The 

palladium precursors [(cod)Pd(η3-C3H5)]BF4,
6 [(η2,η2-nbd)(η2-ma)Pd]7 and [(η2,η2-nbd)(η2-

tcne)Pd]6 were prepared according to published methods.  

Ethyl 2-methylacetoacetate and dodecane are commercially available and were purified by bulb 

to bulb distillation prior to use. All other reagents were commercially available and used as 

received. All palladium(0) complexes synthesized were stored in the glove box. 

2. Solvents 

Solvents were predried over activated 4 Å molecular sieves and were refluxed over potassium 

(tetrahydrofuran, toluene and hexane), sodium/potassium alloy (pentane and diethyl ether) or 

calcium hydride (dichloromethane) under an argon atmosphere and collected by distillation. 

                                                 
1 A. Abiko, S. Masamune, Tetrahedron Lett. 1992, 33, 5517. 
2 J. Zhou, M. C. Ye, Y. Tang, J. Comb. Chem. 2004, 6, 301. 
3 M. Honma, T. Sawada, Y. Fujisawa, M. Utsugi, H. Wanatabe, A. Umino, T. Matsamura, T. Hagihara, M. Takano, 
M. Nakada, J. Am. Chem. Soc. 2003, 125, 2860. 
4 M. Seitz, C. Capacchione, S. Bellemin-Laponnaz, H. Wadepohl, B. D. Ward, L. H. Gade, Dalton Trans. 2006, 193. 
5 a) S. Bellemin-Laponnaz, L. H. Gade, Chem. Commun. 2002, 1286; b) S. Bellemin-Laponnaz, L. H. Gade, Angew. 
Chem. Int. Ed. 2002, 41, 3473, Angew. Chem. 2002, 114, 3623. 
6 D. A. White, Inorg. Synth. 1972, 13, 55. 
7 A. M. Kluwer, C. J. Elsevier, M. Bühl, M. Lutz, A. L. Spek, Angew. Chem. Int. Ed. 2003, 42, 3501; Angew. Chem. 
2003, 115, 3625. 
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Deuterated solvents were dried over calcium hydride (CD2Cl2, C2D2Cl4 and CDCl3), distilled 

under reduced pressure and stored under argon in Teflon valve ampoules.  

3. Nuclear Magnetic Resonance (NMR) 

1
 H and 13C NMR spectra were recorded on the following spectrometers: 

- Bruker DRX 200 (1H 200 MHz, 13C 50 MHz), 

- Bruker Avance 300 (1H 300 MHz, 13C 75 MHz), 

- Bruker Avance II 400 (1H 400 MHz, 13C 100 MHz), 

- Bruker  Avance III 600 (1H 600 MHz, 13C 150 MHz, 15N 60 MHz). 
1H and 13C assignments were confirmed when necessary with the use of DEPT-135 and two 

dimensional 1H-1H and 13C-1H NMR correlation experiments.  1H and 13C spectra were 

referenced internally to residual protio-solvent (1H) or solvent (13C) resonances, and are reported 

relative to tetramethylsilane (δ = 0 ppm). 
15N NMR spectra were recorded on a Bruker Avance III 600 spectrometer equipped with a 

cryogenically cooled direct detection probe (QNP-cryoprobeTM, optimized for detection of 31P, 
13C and 15N).  The experimental parameters for the direct 15N detection were optimized with a 

0.2 M solution of a non-enriched N-ligand titanium complex (ext. standard: liquid NH3). For 

routine direct 15N NMR detection concentrations of not less than 0.1 M are necessary. Selected 

parameters are: Puls-program: inverse gated decoupled; relaxation delay 6 sec; 90°-15N-puls (10 

µsec); pre-acquisition delay 400 µsec; time domain 65K; sweep 500 ppm; acquisition time 1 sec; 

number of accumulations 5000. 

Chemical shifts are quoted in δ (ppm) and coupling constants in Hertz (Hz). 

4. Infra-red Spectroscopy 

Infrared spectra of KBr pellets were recorded on a Varian 3100 FT-IR spectrometer between 

4000 and 250 cm-1. Infrared data are quoted in wavenumbers ν (cm-1). 

5. Mass Spectrometry 

Mass spectra were recorded by the mass spectrometry services of the University of Strasbourg 

and of the University of Heidelberg,  
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6. Elemental Analysis 

Elemental Analysis were carried out by the analytical services of the University of Strasbourg 

and of the University of Heidelberg. 

7. Gas Chromatography 

Gas chromatography analysis were obtained on a Finnigan Focus GC apparatus equipped with a 

capillary column (BPX5, 5 % phenyl, polysilphenylene-siloxane, nonpolar, 30 m x 0.25 mm x 

0.5 µm): Tinj = 200°C, Tdet = 220°C (Flame Ionization Detector), carrier gas: He. 

8. HPLC 

Determinations of the enantiomeric excesses were carried out using a Kontron 2000 HPLC 

equipped with a Daicel Chiralcel OD column (0.46 x 25 cm) and a Thermo Finnigan Surveyor 

HPLC equipped with a Daicel Chiralcel AD-H column (0.46 cm x 25 cm) and the corresponding 

pre-column (0.40 cm x 1 cm). Eluant: hexane/isopropanol (ratio depending on the compound). 

9. X-Ray Crystallography 

Intensity data were collected at low temperature, in Strasbourg on a Nonius Kappa CCD 

diffractometer for compounds 39 and 44 and in Heidelberg on Bruker Smart 1000 CCD 

diffractometer for compounds 7, 7 hydrolysed, 13, 14, 28, 31a, 39, 40, 43, 44 and 49.  

Data were corrected for Lorentz, polarization and absorption effects (semiempirical8 or 

empirical9) in Heidelberg. The structures were solved using heavy atom or direct methods and 

refined by a full-matrix least squares procedure based on F2 with all measured unique reflections. 

All non-hydrogen atoms were given anisotropic displacement parameters. Hydrogen atoms were 

included at calculated positions and refined with a riding model.  

The calculations were performed using the programs DIRDIF,10 SIR,11 SHELXS-86,12 

SHELXL-9713 and OpenMoleN.14 Graphical representations were drawn with XP.15 Anisotropic 

displacement ellipsoids are scaled to 25% probability. 

                                                 
8 G. M. Sheldrick, SADABS-2004/1, Bruker AXS, 2004. 
9 N. Walker, D. Stuart, Acta Cryst., 1983, A39, 158. 
10 P. T. Beurskens, G. Beurskens, R. de Gelder, S. Garcia-Granda, R. O. Gould, R. Israel, J. M. M. Smits, DIRDIF-
99, University of Nijmegen, The Netherlands, 1999. 
11 M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna, D. Viterbo, J. Appl. Cryst. 1989, 
22, 389. 
12 G. M. Sheldrick, SHELXS-86, University of Göttingen, 1986; G. M. Sheldrick, Acta Cryst. 1990, A46, 467. 
13 G. M. Sheldrick, SHELXL-97, University of Göttingen, 1997. 
14 OpenMoleN, Interactive Intelligent Structure  Solution, Nonius B.V., Delft, 1997. 
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II. Chapter 2 

1. Bisoxazolines with identical oxazoline units 

1,1-bis[(4R)-4-phenyloxazolin-2-yl]ethane (1),16 1,1-bis[4,4-dimethyloxazolin-2-yl]ethane17 and 

bis[(4R, 5S)-4,5-indanediyloxazolin-2-yl]methane (3)18 were obtained according to procedures 

reported in the literature. 

1,1-bis[(4S)-4-benzyloxazolin-2-yl]ethane (2) 

Diethyl methylmalonate (2.8 mL, 16.3 mmol) and (S)-phenylalaninol 

were added in a Schlenk flask. NaH (10 mg, 0.25 mmol; 60% dispersion in 

mineral oil) was then added under nitrogen to the flask which was sealed and 

heated to 130°C. After 16 h, the ethanol was removed under vacuum to leave 

a white solid pure enough to be used for the next step without further 

purification (5.9 g, 95%). To an ice-cooled solution of the dihydroxy diamide 

prepared in the previous step (5.9 g, 15.4 mmol), triethylamine (17.2 mL, 123.2 mmol) and 

DMAP (188 mg, 1.54 mmol) in CH2Cl2 (200 mL) a solution of TsCl (5.9 g, 30.8 mmol) in 

CH2Cl2 (30 mL) was slowly added. The mixture was warmed to room temperature, stirred for 

three days and washed with a saturated aqueous solution of NH4Cl and brine. The organic phase 

was dried over Na2SO4 and concentrated in vacuo to give a yellow oil. Purification by flash 

chromatography (CH2Cl2/MeOH/Et3N, 97/3/1) gave the desired product as a colorless oil (2.4 g, 

45% yield). 
1H NMR (200 MHz, CDCl3, 296 K) δ 1.46 (d, J = 7.2 Hz, 3H, CH3), 2.67 (dd, J = 8.5 Hz, 13.7 

Hz, 2H, CH2 Bn), 3.11 (dd, J = 5.0 Hz, 13.7 Hz, 2H, CH2 Bn), 3.48 (q, J = 7.2 Hz, 1H, CH bridge), 

4.00 (dd, J = 7.4 Hz, 8.3 Hz, 2H, CH2 oxa), 4.20 (m, 2H, CH2 oxa), 4.42 (m, 2H, CHoxa), 7.23 (m, 

10 H, CHarom). 
13C {1H} NMR (50 MHz, CDCl3, 296 K) δ 15.2 (CH3), 33.9 (CHbridge), 41.4 (CH2 Bn), 67.2 

(CHoxa), 72.1 (CH2 oxa), 126.5, 128.5, 129.3 (Carom), 137.7 (Cquat-arom), 166.1 (NCO). 

FT-IR (KBr): ν 1661 cm-1 (s, νC=N). 

MS (EI): m/z (%): 257.1 (100) [M-CH2Ph]+ 348.2 (50) [M]+. 

                                                                                                                                                             
15 SHELXTL, Bruker AXS GmbH, Karlsruhe, 1997. 
16 J. Bourguignon, U. Bremberg, G. Dupas, K. Hallman, L. Hagberg, L. Hortala, V. Levacher, S. Lutsenko, E. 
Macedo, C. Moberg, G. Quéguiner, F. Rahm, Tetrahedron 2003, 59, 9583. 
17 S.E. Denmark, C. M. Stiff, J. Org. Chem. 2000, 65, 5875. 
18 D. M. Barnes, J. Ji, M. G. Fickes, M. A. Fitzgerald, S. A. King, H. E. Morton, F. A. Plagge, M. Preskill, S. H. 
Wagaw, S. J. Wittenberger, J. Zhang, J. Am. Chem. Soc. 2002, 124, 13097. 
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elemental analysis calcd (%) for C22H24N2O2: C 75.83, H 6.94, N 8.04; found: C 75.62, H 6.99, 

N 7.96. 

1,1-bis[(4R, 5S)-4,5-indanediyloxazolin-2-yl]ethane (4)  

A solution of LDA (0.9 mL, 2 M in THF/pentane, 1.8 mmol) 

was added dropwise to a solution of bis[(4R, 5S)-4,5-

indanediyloxazolin-2-yl]methane (552 mg, 1.7 mmol) in THF (25 

mL) at -78°C. The brown reaction mixture was allowed to warm to 

ambient temperature and stirred for an additional 0.5 h prior to the addition of methyl 

trifluoromethanesulfonate (0.20 mL, 1.8 mmol). The colorless solution was stirred for 12 h and 

was concentrated to dryness. The residue was redissolved in dichloromethane (60 mL) and 

washed with a saturated aqueous solution of NH4Cl (10 mL) and brine (10 mL). The organic 

extract was dried over Na2SO4 and concentrated in vacuo to give a yellowish solid. Purification 

by flash chromatography (Hexane /EtOAc, 50/50) gave the desired product as a white solid (340 

mg, 59% yield). 
1H NMR (400 MHz, CD2Cl2, 296 K) δ 1.35 (d, J = 7.2 Hz, 3H, CH3), 3.03 (m, 2H, CH2 Ind), 3.39 

(m, 3H, CH2 Ind, CHbridge), 5.30 (m, 2H, OCHoxa), 5.52 (d, J = 8.0 Hz, 2H, NCHoxa), 7.28 (m, 6H, 

CHarom), 7.45 (m, 2H, CHarom). 
13C {1H}NMR (100 MHz, CD2Cl2, 296 K) δ 14.6 (CH3), 33.9 (CHbridge), 39.7 (CH2 Ind), 76.6 

(NCHoxa), 83.2 (OCHoxa), 125.3, 127.2, 128.3 (Carom), 139.9, 141.9 (Cquat-arom), 165.6 (NCO). 

FT-IR (KBr): ν 1653 cm-1 (s, νC=N). 

MS (EI): m/z (%): 344.4 (81) [M]+. 

elemental analysis calcd (%) for C22H20N2O2: C 76.72, H 5.85, N 8.13; found: C 76. 61, H 5.89, 

N 8.17. 

2. 2H-oxazolines 

(4S)-4-isopropyloxazoline, (4R)-4-phenyloxazoline (6) and (4S)-4-benzyloxazoline (5) were 

obtained by condensation of (S)-valinol, (R)-phenylglycinol and (S)-phenylalaninol respectively 

with the reagent dimethylformamide-dimethyl acetal (DMF-DMA) according to a procedure 

developed by Meyers et al.19 4,4-dimethyloxazoline was purchased from Acros. 

 

 

                                                 
19 W. R. Leonard, J. L. Romine, A. I. Meyers, J. Org. Chem. 1991, 56, 1961. 
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(4R, 5S)-4,5-indanediyloxazoline (7) 

(1R, 2S)-cis-1-amino-2-indanol (2.24 g, 15 mmol) and DMF-DMA were 

combined without solvent. After the reaction mixture was stirred for 12 h, the 

volatiles were removed and the mixture was twice azeotropically concentrated by 

addition of 100 mL portions of hexane. p-Toluenesulfonic acid (10 mg) was added to 

the resultant formamidine and the mixture was diluted with hexane (125 mL), the 

round-bottom flask was fitted with a liquid/solid extraction apparatus containing 20 g of 4Å 

molecular sieves and refluxed for 3 days. The solution was washed with 10% KHCO3 (15 mL) 

and brine (15 mL). The organic extract was dried over Na2SO4 and concentrated in vacuo to give 

the product as a white solid (1.82 g, 76%). 
1H NMR (CD2Cl2, 200 MHz, 296 K) δ 3.25 (dd, J = 1.1 Hz, 17.9 Hz, 1H, CH2 Ind), 3.50 (dd, J = 

6.8 Hz, 18.0 Hz, 1H, CH2 Ind), 5.29 (ddd, J = 1.7 Hz, 6.9 Hz, 8.2 Hz, 1H, OCHoxa), 5.55 (dd, J = 

1.4 Hz, 8.0 Hz, 1H, NCHoxa), 6.80 (d, J = 1.6 Hz, 1H, OCHN), 7.28 (m, 3H, CHarom), 7.46 (m, 

1H, CHarom). 
 13C {1H} NMR (CD2Cl2, 50 MHz, 296 K) δ 39.6 (CH2), 75.8 (NCHoxa), 81.9 (OCHoxa), 125.3, 

127.3, 128.4 (Carom), 139.8, 142.0 (Cquat-arom), 154.4 (NCO). 

FT-IR (KBr) ν 1617 cm-1 (νC=N). 

MS (EI) m/z (%) 159.1 (66) [M]+. 

elemental analysis calcd (%) for C29H27N3O3 (465.54): C 74.82, H 5.85, N 9.03; found: C 74.70, 

H 5.81, N 8.99. 

3. 2-bromooxazolines 

The 2-bromooxazolines were synthesized based on a procedure described in the literature.20  

2-bromo-4,4-dimethyloxazoline (8) 

tBuLi (21 mL, 1.5 M in pentane, 31.3 mmol) was added dropwise to a solution 

of 4,4-dimethyloxazoline (3 mL, 28.4 mmol) in anhydrous THF (150 mL) at -78°C. The 

bright yellow solution of the anion was allowed to stir at -78°C for an additional 0.5 h 

prior to the addition of 1,2-dibromo-1,1,2,2-tetrafluoroethane (3.8 mL, 31.3 mmol), was 

subsequently allowed to warm slowly to ambient temperature overnight, and then concentrated 

to about 5 mL. The brownish mixture was purified by a short bulb-to-bulb distillation to yield a 

colorless solution of the expected 2-bromooxazoline in THF (2.69 g of pure compound, 53%). 

                                                 
20 A. I. Meyers, K. A. Novachek, Tetrahedron Lett. 1996, 37, 1747 
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1H NMR (CDCl3, 600 MHz, 296 K) δ 1.34 (s, 6H, CH3), 4.13 (s, 2H, CH2). 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 28.1 (CH3), 68.8 (Cquat methyl), 81.8 (CH2), 141.2 

(NCO).  
15N NMR (CDCl3, 60 MHz, 296 K) δ 252.6 (N). 

HRMS (EI): m/z : calcd for C5H8BrNO ([M]+) 176.9789, found: 176.9800. 

(4S)-2-bromo-4-isopropyloxazoline (9) 

tBuLi (17.9 mL, 30.4 M) was added dropwise to a solution of (4S)-4-

isopropyloxazoline (3.12 g, 27.6 mmol) in anhydrous THF (150 mL) at -78°C. The 

bright yellow solution of the anion was allowed to stir at -78°C for an additional 0.5 

h prior to the addition of 1,2-dibromo-1,1,2,2-tetrafluoroethane (3.6 mL, 30.4 mmol), 

was subsequently allowed to warm slowly to ambient temperature overnight, and then 

concentrated to about 5 mL. The brownish mixture was purified by a short bulb-to-bulb 

distillation to yield a colorless solution of the expected 2-bromooxazoline in THF (2.91 g of pure 

compound, 55%). 
1H NMR (CDCl3, 300 MHz, 296 K) δ 0.91 (d, J = 6.7 Hz, 3H, CH3 isopropyl), 0.99 (d, J = 6.7 Hz, 

3H, CH3 isopropyl), 1.80 (m, 1H, CH isopropyl) 3.96 (m, 1H, CH oxa), 4.15 (pseudo-t, J = 8.2 Hz, 1H, 

CH2 oxa), 4.45 (dd, J = 8.3Hz, 9.7 Hz, 1H, CH2 oxa). 
13C {1H} NMR (CDCl3, 75 MHz, 296 K) δ 18.4, 18.1 (CH3 isopropyl), 32.5 (CH isopropyl), 72.9 (CH 

oxa), 73.2 (CH2 oxa), 141.7 (NCO). 

HRMS (EI): m/z : calcd for C6H10BrNO ([M]+) 190.9946, found: 190.9891. 

(4S)-2-bromo-4-benzyloxazoline (10) 

tBuLi (3.6 mL, 1.5 M in pentane, 5.4 mmol) was added dropwise to a 

solution of (4S)-4-benzyloxazoline (784 mg, 4.9 mmol) in anhydrous THF (50 

mL) at -90°C. The bright yellow solution of the anion was allowed to stir at -

90°C for an additional 0.5 h prior to the addition of 1,2-dibromo-1,1,2,2-

tetrafluoroethane (0.64 mL, 5.4 mmol), was subsequently allowed to warm slowly to ambient 

temperature overnight, and then concentrated to about 5 mL. The brownish mixture was purified 

by a short bulb-to-bulb distillation to yield a colorless solution of the expected 2-bromooxazoline 

in THF (634 mg of pure compound, 54%). 
1H NMR (CDCl3, 400 MHz, 296 K) δ 2.78 (dd, J=8.0 Hz, 13.9 Hz, 1H, CH2 Bn), 3.17 (dd, J=5.3 

Hz, 13.8 Hz, 1H, CH2 Bn), 4.19 (dd, J=7.1 Hz, 7.8 Hz, 1H, CH2 oxa), 4.42 (dd, J=8.1 Hz, 9.4 Hz, 

1H, CH2 oxa), 4.48 (m, 1H, CHoxa), 7.31 (m, 5H, CHarom). 
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13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 41.1 (CH2 Bn), 67.9 (CHoxa), 74.5 (CH2 oxa), 126.8, 

128.7, 129.2 (CHarom), 136.7 (Cquat-arom), 142.7 (NCO). 

HRMS (EI): m/z : calcd for C10H10BrNO ([M]+) 238.9946, found: 238.9953. 

(4R)-2-bromo-4-phenyloxazoline (11) 

tBuLi (3.9 mL, 1.7 M in pentane, 6.6 mmol) was added dropwise to a 

solution of (4R)-4-phenyloxazoline (890 mg, 6 mmol) in THF (100 mL) at -100°C. 

The light brown solution of the anion was allowed to stir at -100°C for an 

additional 0.5 h prior to the addition of 1,2-dibromo-1,1,2,2-tetrafluoroethane (0.8 

mL, 6.7 mmol). The reaction mixture was then allowed to warm slowly to ambient 

temperature overnight, and was concentrated to about 5 mL. The crude product was extracted 

from the reaction mixture with pentane (4 x 10 mL). The residue was purified by a short bulb-to-

bulb distillation to yield a colorless solution of the expected 2-bromooxazoline in THF (453 mg 

of pure compound, 33%).  
1H NMR (CDCl3, 600 MHz, 296 K) δ 4.33 (pseudo-t, J = 8.3 Hz, 1H, CH2 oxa), 4.82 (dd, J = 8.4 

Hz, 10.1 Hz, 1H, CH2 oxa), 5.27 (dd, J = 8.2 Hz, 10.1 Hz, 1H, CHoxa), 7.25-7.42 (m, 5H, CHarom). 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 70.1 (CH oxa), 77.4 (CH2 oxa), 128.1, 128.9, 129.4 

(CH arom), 140.4 (Cquat arom), 143.5 (NCO). 

HRMS (EI): m/z : calcd for C9H8BrNO ([M]+) 224.9789, found: 224.9740. 

 (4R, 5S)-2-bromo-4,5-indanediyloxazoline (12) 

tBuLi (3 mL, 1.5 M in pentane, 5.1 mmol) was added dropwise to a solution 

of (4R, 5S)-4,5-indanediyloxazoline (736 mg, 4.6 mmol) in anhydrous THF (50 mL) 

at -85°C. The bright yellow solution of the anion was allowed to stir at -85°C for an 

additional 0.5 h prior to the addition of 1,2-dibromo-1,1,2,2-tetrafluoroethane (0.6 

mL, 5.1 mmol), was subsequently allowed to warm slowly to ambient temperature 

overnight, and then concentrated to dryness. The crude product was sublimed to yield the 

expected 2-bromooxazoline as a white solid (346 mg, 32%).  
1H NMR (CD2Cl2, 400 MHz, 296 K) δ 3.38 (ddd, J = 18.3 Hz, 1.0 Hz, 0.4 Hz, 1H, CH2 Ind) 3.52 

(dd, J = 18.4 Hz, 6.5 Hz, 1H, CH2 Ind) 5.56 (ddd, J = 7.9 Hz, 6.5 Hz, 1.7 Hz, 1H, OCHoxa) 5.61 

(d, J = 7.9 Hz, 1H, NCHoxa) 7,34 (m, 3H, CHarom) 7.48 (m, 1H, CHarom). 
13C {1H} NMR (CD2Cl2, 100 MHz, 296 K) δ 39.3 (CH2), 76.9 (NCHoxa), 86.7 (OCHoxa), 125.3, 

125.4, 127.6, 128.9 (CHarom), 139.6, 140.5(Cquat-arom), 150.4 (NCO). 
15N NMR (CD2Cl2, 60 MHz, 296 K) δ 238.0 (N). 
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HRMS (FAB): m/z : calcd for C10H8BrNO ([M]+) 236.9789, found: 236.9782. 

4. C3-symmetric trisoxazolines 

1,1,1-tris[(4R)-4-phenyloxazolin-2-yl]ethane (13) 

tBuLi (1.2 mL, 1.7 M in pentane, 2 mmol) was added 

dropwise to a solution of 1,1-bis[(4R)-4-phenyloxazolin-2-yl]ethane 

(535 mg, 1.8 mmol) in THF (60 mL) at -78°C. The resulting yellow 

solution was stirred for an additional 30 minutes prior to the addition 

of 1.2 equivalent of (4R)-2-bromo-4-phenyloxazoline (453 mg, 2 

mmol). The reaction mixture was allowed to warm slowly to room temperature for 12 h and then 

concentrated to remove the pentane and finally the Schlenk tube was sealed. The stirred solution 

was heated at 70°C for five days. The resulting orange solution was evaporated to dryness. The 

residue was redissolved in dichloromethane (100 mL) and washed with water (10 mL). The 

organic extract was dried over Na2SO4 and concentrated in vacuo to give a yellow solid. 

Purification by crystallisation from CH2Cl2/pentane gave the desired product (470 mg, 60% 

yield).  
1H NMR (200 MHz, CDCl3, 296 K) δ 2.06 (s, 3H, CH3), 4.27 (dd, J = 7.8 Hz, 8.3 Hz, 3H, CH2 

oxa), 4.76 (dd, J = 8.3 Hz, 10.1 Hz, 3H, CH2 oxa), 5.32 (dd, J = 7.7 Hz, 10.1 Hz, 3H, CHoxa), 7.30 

(m, 15H, CHarom). 
13C {1H} NMR (50 MHz, CDCl3, 296 K) δ 21.4 (CH3), 45.2 ((CH3)C(oxa)3), 69.7 (CHoxa), 76.0 

(CH2 oxa), 126.9, 127.6, 128.7 (Carom), 142.1 (Cquat-arom), 166.1 (NCO). 

FT-IR (KBr): ν 1665 cm-1 (s, νC=N). 

MS (EI): m/z (%): 465.7 (92) [M]+. 

elemental analysis calcd (%) for C29H27N3O3: C 74.82, H 5.85, N 9.03; found: C 74.70, H 5.81, 

N 8.99. 

1,1,1-tris[(4S)-4-benzyloxazolin-2-yl]ethane (14) 

tBuLi (1.8 mL, 1.5 M in pentane, 2.6 mmol) was 

added dropwise to a solution of 1,1-bis[(4S)-4-

benzyloxazolin-2-yl]ethane (768 mg, 2.2 mmol) in THF (80 

mL) at -78°C. The resulting yellow solution was stirred for 

an additional 30 minutes prior to the addition of 1.2 

equivalents of (4S)-2-bromo-4-benzyloxazoline (634 mg, 2.6 mmol). The reaction mixture was 

allowed to warm slowly to room temperature for 12 hours and then concentrated to remove the 
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pentane and finally the Schlenk tube was sealed. The stirred solution was heated at 70°C for 

three days. The resulting orange solution was evaporated to dryness. The residue was redissolved 

in dichloromethane (100 mL) and washed with water (10 mL). The organic extract was dried 

over Na2SO4 and concentrated in vacuo to give an orange oil. Purification by flash 

chromatography (CH2Cl2/MeOH/Et3N, 97/3/1) gave the desired product as a white solid (620 

mg, 56% yield).  
1H NMR (400 MHz, CDCl3, 296 K) δ 1.76 (s, 3H, CH3), 2.68 (dd, J = 8.5 Hz, 13.7 Hz, 3H, CH2 

Bn), 3.11 (dd, J = 5.1 Hz, 13.7 Hz, 3H, CH2 Bn), 4.07 (dd, J = 6.9 Hz, 8.3 Hz, 3H, CH2 oxa), 4.23 

(dd, J = 8.5 Hz, 9.0 Hz, 3H, CH2 oxa), 4.46 (m, 3H, CHoxa), 7.24 (m, 15H, CHarom). 
13C {1H} NMR (100 MHz, CDCl3, 296 K) δ 20.9 (CH3), 41.2 (CH2 Bn), 44.6 ((CH3)C(oxa)3), 

67.2 (CHoxa), 72.5 (CH2 oxa), 126.4, 128.4, 129.4 (Carom), 137.7 (Cquat-arom), 165.0 (NCO). 
15N NMR (60 MHz, CDCl3, 296 K) δ 234 (N). 

FT-IR (KBr): ν 1664 cm-1 (s, νC=N). 

MS (FAB): m/z (%): 508.5 (100) [M]+. 

elemental analysis calcd (%) for C32H33N3O3: C 75.71, H 6.55, N 8.28; found: C 75.55, H 6.52, 

N 8.33. 

1,1,1-tris[(4R, 5S)-4,5-indanediyloxazolin-2-yl]ethane (15)  

tBuLi (0.52 mL, 1.5 M in pentane, 0.77 mmol) was added 

dropwise to a solution of 1,1-bis[(4R, 5S)-4,5-indanediyloxazolin-

2-yl]ethane (222 mg, 0.64 mmol) in toluene (60 mL) at -85°C. 

The resulting yellow solution was stirred for an additional 30 

minutes prior to the addition of a solution of (4R, 5S)-2-bromo-

4,5-indanediyloxazoline (346 mg, 1.45 mmol) in cold toluene (4 mL). The reaction mixture was 

allowed to warm slowly to room temperature for 12 h and then concentrated to remove the 

pentane and finally the Schlenk tube was sealed. The stirred solution was heated at 60°C for two 

days. The resulting orange solution was evaporated to dryness. The residue was redissolved in 

dichloromethane (100 mL) and washed with a saturated aqueous solution of NaHCO3 (10 mL) 

and brine (10 mL). The organic extract was dried over Na2SO4 and concentrated in vacuo to give 

an orange foam. Purification by flash chromatography (Hexane /EtOAc, 80/20) gave the desired 

product as a yellowish solid (100 mg, 31% yield).  
1H NMR (400 MHz, CD2Cl2, 296 K) δ 1.60 (s, 3H, CH3), 3.04 (dd, J = 1.8 Hz, 18.0 Hz, 3H, CH2 

Ind), 3.33 (dd, J = 7.2 Hz, 18.1 Hz, 3H, CH2 Ind), 5.29 (ddd, J = 2.1 Hz, 7.2 Hz, 8.0 Hz, 3H, 
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OCHoxa), 5.49 (d, J = 8.0 Hz, 3H, NCHoxa) 7.25 (m, 9H, CHarom), 7.36 (d, J = 7.2 Hz, 3H, 

CHarom). 
13C {1H} NMR (100 MHz, CD2Cl2, 296 K) δ 21.3 (CH3), 22.4 ((CH3)C(oxa)3), 39.9 (CH2 Ind), 

76.9 (NCHoxa), 84.0 (OCHoxa), 125.5, 125.8, 127.5, 128.7 (Carom), 140.4, 141.9 (Cquat-arom), 164.7 

(NCO). 

FT-IR (KBr): ν 1653 cm-1 (s, νC=N). 

MS (FAB): m/z (%): 502.4 (100) [M]+. 

elemental analysis calcd (%) for C32H27N3O3: C 76.63, H 5.43, N 8.38; found: C 76.50, H 5.47, 

N 8.45. 

5. C1-symmetric trisoxazolines 

1-((4R)-4-phenyloxazolin-2-yl)-1,1-di((4S)-4-phenyloxazolin-2-yl)ethane (16) 

tBuLi (2 mL, 1.5 M in pentane, 3 mmol) was added dropwise to a solution of 1,1-

bis[(4S)-4-phenyloxazolin-2-yl]ethane (794 mg, 2.5 mmol) in THF 

(80 mL) at -78°C. The resulting orange solution was stirred for an 

additional 30 minutes prior to the addition of 1.2 equivalent of (4R)-

2-bromo-4-phenyloxazoline (673 mg, 3 mmol). The solution was 

allowed to warm slowly to room temperature for 12 hours and then 

concentrated to remove the pentane and finally the Schlenk tube was sealed. The stirred solution 

was heated at 70°C for five days. The resulting orange solution was evaporated to dryness. The 

residue was redissolved in dichloromethane (100 mL) and washed with water (10 mL). The 

organic extract was dried over Na2SO4 and concentrated in vacuo to give an orange oil. 

Purification by flash chromatography (Hexane/EtOAc, 50/50) gave the desired product as an 

slightly orange solid (350 mg, 30% yield).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.38 (s, 3H, CH3 oxa), 1.39 (s, 3H, CH3 oxa), 2.04 (s, 3H, 

CH3 apical), 4.11 (d, J = 8.0 Hz, 1H, CH2 methyl oxa), 4.13 (d, J = 8.0 Hz, 1H, CH2 methyl oxa), 4.26 (dd, 

J = 2.5 Hz, 8.0 Hz, 1H, CH2 phenyl oxa), 4.28 (dd, J = 2.4 Hz, 7.9 Hz, 1H, CH2 phenyl oxa), 4.78 (m, 

2H, CH2 phenyl oxa), 5.32 (dd, J = 7.7 Hz, 9.8 Hz, 1H, CH oxa), 5.35 (dd, J = 7.6 Hz, 10.0 Hz, 1H, 

CH oxa), 7.25-7.38 (m, 5H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 21.6 (CH3 apical) 27.9 (CH3 oxa), 44.8 ((CH3)C(oxa)3), 

67.5 (Cquat methyl oxa), 69.5 (CH), 75.8, 75.9 (CH2 phenyl oxa),  79.8 (CH2 methyl oxa), 126.8, 126.9, 

127.4, 127.5, 128.5, 128.6 (CHarom), 142.2 (Cquat arom), 163.0 (NCO methyl oxa), 166.2, 166.3 (NCO 

phenyl oxa). 

HRMS (FAB): m/z : calcd for C29H28N3O3 ([M+H)]+) 466.2131, found: 466.2137. 
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elemental analysis calcd (%) C29H27N3O3: C 74.82, H 5.85, N 9.03; found: C 74.80, H 5.81, N 

9.10. 

1,1-Bis((4S)-4-phenyloxazolin-2-yl)-1-(4,4-dimethyloxazolin-2-yl)ethane (17) 

tBuLi (4.4 mL, 1.5 M in pentane, 6.6 mmol) was added dropwise 

to a solution of 1,1-bis[(4S)-4-phenyloxazolin-2-yl]ethane (1.8 g, 5.5 

mmol) in THF (100 mL) at -78°C. The resulting red solution was stirred 

for an additional 30 minutes prior to the addition of 1.2 equivalents of 2-

bromo-4,4-dimethyloxazoline (1.17 mg, 6.6 mmol), was subsequently 

allowed to warm slowly to room temperature for 12 hours and then concentrated to remove the 

pentane and finally the Schlenk tube was sealed. The stirred solution was heated at 70°C for four 

days. The resulting orange solution was evaporated to dryness. The residue was redissolved in 

dichloromethane (100 mL) and washed with water (10 mL). The organic extract was dried over 

Na2SO4 and concentrated in vacuo to give an orange oil. Purification by flash chromatography 

(Hexane/EtOAc, 95/5 to 50/50) gave the desired product as a white solid (906 mg, 39% yield). 
1H NMR (CDCl3, 400 MHz, 296 K) δ 2.13 (s, 3H, CH3), 4.27-4.34 (m, 3H, CH2), 4.79-4.85 (m, 

3H, CH2), 5.33-5.41 (m, 3H, CH), 7.25-7.42 (m, 15H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 21.7 (CH3), 45.1 ((CH3)C(oxa)3), 69.6, 69.6, 69.6 

(CH), 75.9, 75.9, 76.0 (CH2), 126.8, 126.8, 126.9, 127.6, 127.6, 127.6, 128.6, 128.7, 128.7 

(CHarom), 142.0, 142.1 (Cquat arom), 165.9, 166.0, 166.1 (NCO). 

FT-IR (KBr): ν 1654, 1677 cm-1 (s, νC=N). 

HRMS (FAB): m/z : calcd for C25H28N3O3 ([M+H]+) 418.2131, found: 418.2118. 

elemental analysis calcd (%) C25H27N3O3: C 71.92, H 6.52, N 10.06; found: C 71.85, H 6.50, N 

10.10. 

1-((4R)-4-phenyloxazolin-2-yl)-1,1-di(4,4-dimethyloxazolin-2-yl)ethane (18) 

tBuLi (1.7 mL, 1.5 M in pentane, 2.6 mmol) was added dropwise 

to a solution of 1,1-bis[(4,4-dimethyloxazolin-2-yl]ethane (485 mg, 2.2 

mmol) in THF (80 mL) at -78°C. The resulting bright yellow solution 

was stirred for an additional 30 minutes prior to the addition of 1.2 

equivalents of (4R)-2-bromo-4-phenyloxazoline (588 mg, 2.6 mmol), 

was subsequently allowed to warm slowly to room temperature for 12 hours and then 

concentrated to remove the pentane and finally the Schlenk tube was sealed. The stirred solution 

was heated at 75°C for five days. The resulting orange solution was evaporated to dryness. The 
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residue was redissolved in dichloromethane (100 mL) and washed with water (10 mL). The 

organic extract was dried over Na2SO4 and concentrated in vacuo to give an orange oil. 

Purification by flash chromatography (Hexane/EtOAc, 50/50) gave the desired product as an 

orange oil (360 mg, 45% yield).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.30 (s, 3H, CH3 oxa), 1.31 (s, 9H, CH3 oxa), 1.91 (s, 3H, 

CH3 apical), 4.00 (d, J = 8.0 Hz, 1H, CH2 methyl oxa), 4.01 (d, J = 8.0 Hz, 1H, CH2 methyl oxa), 4.04 (d, J 

= 8.0 Hz, 1H, CH2 methyl oxa), 4.05 (d, J = 8.0 Hz, 1H, CH2 methyl oxa), 4.17 (pseudo-t, J = 8.1 Hz, 

1H, CH2 phenyl oxa), 4.69 (dd, J = 8.4 Hz, 10.1 Hz, 1H, CH2 phenyl oxa), 5.24 (dd, J = 8.4 Hz, 10.1 Hz, 

1H, CH oxa), 7.23-7.34 (m, 5H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 21.8 (CH3 apical) 27.8 (CH3 oxa), 44.4 ((CH3)C(oxa)3), 

67.3, 67.4 (Cquat methyl oxa), 69.4 (CH), 75.8 (CH2 phenyl oxa), 79.6, 79.7 (CH2 methyl oxa), 126.8, 127.5, 

128.5 (CHarom), 142.4 (Cquat arom), 163.1, 163.2 (NCO methyl oxa), 166.4 (NCO phenyl oxa). 

HRMS (FAB): m/z : calcd for C21H28N3O3 ([M+H]+) 370.2131, found: 370.2135. 

6. Precursors of the non-symmetric bisoxazolines 

Monoethyl malonate was synthesised according to a procedure described by Strube.21 

2,2-dimethyl malonic acid ethyl monoester N-((S)-2-hydroxy-1-phenylethyl) monoamide (19) 

To a solution of monoethyl malonate (6.54 g, 41 mmol) in 

CH2Cl2 (250 mL) DCC (9.3 g, 45 mmol) and HOBT (6.1 g, 45 

mmol) were added under argon flow. After 2 hours stirring, (S)-

phenylglycinol (6.1 g, 45 mmol) was added and the solution was 

stirred at room temperature for 3 days. The reaction mixture was filtered through Celite to 

remove the DCU formed and washed with CH2Cl2 (4 x 100 mL). The organic solution is washed 

with an aqueous solution of KHCO3 10% (350 mL), with H2O (300 mL) and with brine (300 

mL) and is then dried over Na2SO4. Evaporation of the solvent gave the product as a white solid 

(9.8 g, 86% yield). The compound was used in the next step without further purification. 
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.31 (t, J = 7.1 Hz, 3H, CH3 ethyl), 1.52 (s, 3H, CH3 bridge), 

1.53 (s, 3H, CH3 bridge), 2.56 (br s, 1H, OH), 3.91 (pseudo-t, J = 3.9 Hz, 2H, CH2 future oxa), 4.25 (q, 

J = 7.1 Hz, 2H, CH2 ethyl), 5.10 (m, 1H, CH), 7.25 (d, J = 6.3 Hz, 1H, NH), 7.31-7.35 (m, 3H, 

CHarom), 7.39-7.42 (m, 2H, CHarom). 

                                                 
21 R. E. Strube, Org. Synth. 1963, 4, 417. 

 

O

O O

H
N

OH



Experimental part 162 

13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 13.9 (CH3 ethyl), 23.6, 23.8 (CH3 bridge), 49.9 (Cquat 

bridge), 55.9 (CH), 61.7 (CH2 ethyl), 66.5 (CH2 future oxa), 126.5, 127.8, 128.8 (Carom), 138.9 (Cquat 

arom), 172.3 (OCO), 174.9 (NCO ). 

MS (FAB): m/z (%): 262.1 (11) [M-OH]+, 280.1 (100) [M+H]+. 

HRMS (FAB): m/z : calcd for C15H22NO4 ([M+H]+) 280.1549, found: 280.1521. 

2,2-dimethyl malonic acid ethyl monoester N-(2-hydroxy-1,1-dimethylethyl) monoamide (20) 

To a solution of monoethyl malonate (5.84 g, 36.5 mmol) in 

CH2Cl2 (250 mL) DCC (8.3 g, 40.1 mmol) and HOBT (5.4 g, 40.1 

mmol) were added under argon flow. After 2 hours stirring, 2-amino 2-

methyl 1-propanol (3.6 g, 40.1 mmol) was added and the solution was stirred at room 

temperature for 3 days. The reaction mixture was filtered through Celite to remove the DCU 

formed and washed with CH2Cl2 (4 x 80 mL). The organic solution is washed with an aqueous 

solution of KHCO3 10% (100 mL), with H2O (100 mL) and with brine (100 mL) and is then 

dried over Na2SO4. After evaporation of the solvent the crude product was purified by flash 

chromatography (Hexane/EtOAc, 50/50) to give the product as a colorless oil (3.8 g, 45% yield). 
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.26 (m, 9H, CH3 ethyl,CH3 future oxa), 1.41 (s, 6H, CH3 bridge), 

3.56 (s, 2H, CH2 future oxa), 4.18 (q, J = 7.1 Hz, 2H, CH2 ethyl), 4.33 (br s, 1H, OH), 6.48 (br s, 1H, 

NH). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 14.0 (CH3 ethyl), 23.7 (CH3 bridge), 24.5 (CH3 future oxa), 

50.0 (Cquat bridge), 56.0 (Cquat future oxa), 61.7 (CH2 ethyl), 70.3 (CH2 future oxa), 172.7 (NCO), 175.1 

(OCO). 

MS (FAB): m/z (%): 200.1 (12) [M-CH2OH]+, 214.1 (6) [M-OH]+, 232.1 (100) [M+H]+. 

HRMS (FAB): m/z : calcd for C11H22NO4 ([M+H]+): 232.1549, found: 232.1559.  

N-((S)-2-hydroxy-1-phenylethyl)-N'-((R)-2-hydroxy-1-phenylethyl)-dimethylmalonamide (21) 

A solution of (R)-phenylglycinol (4.5 g, 32.5 mmol) 

and 2,2-dimethyl malonic acid ethyl monoester N-((S)-2-

hydroxy-1-phenylethyl) monoamide  (9.1 g, 32.5 mmol) in 

toluene (20 mL) was heated at 110°C for 2 days in the 

presence of a catalytic amount of NaH. The white precipitate obtained was filtered and washed 

with Et2O (3 x 40 mL). Evaporation of the solvents gave the product as a white solid (5 g, 42% 

yield). 
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1H NMR (DMSO-d6, 200 MHz, 296 K) δ 1.37 (s, 3H, CH3 bridge), 1.39 (s, 3H, CH3 bridge), 3.37 (br 

s, 1H, OH), 3.59 (pseudo-t, J = 5.0 Hz, 4H, CH2 future oxa), 4.89 (m, 2H, CH), 7.17-7.31 (m, 10H, 

CH arom), 7.25 (d, J = 7.8 Hz, 2H, NH). 
13C {1H} NMR (DMSO-d6, 50 MHz, 296 K) δ 23.1, 24.1 (CH3 bridge), 49.4 (Cquat bridge), 55.4 

(CH), 64.4 (CH2 future oxa), 126.6, 126.8, 128.0 (Carom), 141.2 (Cquat arom), 172.7 (OCN).  

N-((R)-2-hydroxy-1-phenylethyl)-N'-(2-hydroxy-1,1-dimethylethyl)-dimethylmalonamide (22) 

(R)-phenylglycinol (730 mg, 5.3 mmol) and 2,2-dimethyl 

malonic acid ethyl monoester N-(2-hydroxy-1,1-dimethylethyl) 

monoamide (1.23 g, 5.3 mmol) were heated at 110°C for 3 hours 

in the presence of catalytic amount of NaH. After evaporation of 

the ethanol formed the crude product was purified by flash chromatography (CH2Cl2/MeOH, 

95/5) to give the product as a colorless oil (943 mg, 55% yield).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.22 (s, 3H, CH3 future oxa), 1.23 (s, 3H, CH3 future oxa), 1.44 

(s, 3H, CH3 bridge), 1.46 (s, 3H, CH3 bridge), 3.48 (d, J = 11.5 Hz, 1H, CH2 methyl side), 3.63 (d, J = 

11.5 Hz, 1H, CH2 methyl side), 3.79 (ddd, J = 1.0 Hz, 4.0 Hz, 11.5 Hz, 1H, CH2 phenyl side), 3.88 (dd, J 

= 6.1 Hz, 11.5 Hz, 1H, CH2 phenyl side), 5.03 (ddd, J = 4.1 Hz, 6.5 Hz, 7.0 Hz, 1H, CH  phenyl side), 

6.51 (br s, 1H, NH methyl side), 7.11 (s, J = 7.3 Hz, 1H, NH phenyl side) 7.23-7.35 (m, 5 H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 23.7, 23.8 (CH3 bridge), 24.0, 24.5 (CH3 future oxa), 50.0 

(Cquat bridge), 55.7 (Cquat methyl side), 55.9 (CH), 66.2 (CH2 phenyl side), 69.6 (CH2 methyl side), 126.4, 

128.0, 128.9 (CHarom), 138.7 (Cquat arom), 173.9, 174.0 (CO). 

MS (FAB): m/z (%): 305.1 (36) [M-OH]+, 323.2 (100) [M+H]+. 

HRMS (FAB): m/z : calcd for C17H27N2O4 ([M+H] ) 323.1971, found: 323.2009. 

7. Mixed bisoxazolines 

1-((4R)-4-phenyloxazolin-2-yl)-1-((4S)-4-phenyloxazolin-2-yl)-1-methylethane (23) 

To an ice-cooled solution of N-((S)-2-hydroxy-1-phenylethyl)-

N'-((R)-2-hydroxy-1-phenylethyl)-dimethylmalonamide (4.8 g, 13 

mmol), triethylamine (14.5 mL, 104 mmol) and DMAP (160 mg, 1.3 

mmol) in CH2Cl2 (200 mL) a solution of TsCl (5.4 g, 28.5 mmol) in 

CH2Cl2 (30 mL) was slowly added. The mixture was warmed to room 

temperature, stirred for 10 days and washed with a saturated aqueous solution of NH4Cl and 

brine. The organic phase was dried over Na2SO4 and concentrated in vacuo to give a dark brown 
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oil. Purification by flash chromatography (Hexane/EtOAc, 80/20) gave the desired product as a 

yellowish oil (3.7 g, 86% yield).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.73 (s, 3H, CH3), 1.76 (s, 3H, CH3), 4.22 (pseudo-t, J = 

8.1 Hz, 2H, CH2), 4.72 (dd, J = 8.4 Hz, 10.1 Hz, 2H, CH2), 5.28 (dd, J = 7.7 Hz, 10.1 Hz, 2H, 

CH), 7.25-7.35 (m, 10 H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 24.4, 24.7 (CH3), 38.9 (Cquat bridge), 69.5 (CH), 75.5 

(CH2), 126.6, 127.6, 128.7 (CHarom), 142.4 (Cquat arom), 170.3 (NCO phenyl oxa). 

HRMS (FAB): m/z: calcd for C21H23N2O2 ([M+H]+) 335.1760, found: 335.1771. 

1-((4R)-4-phenyloxazolin-2-yl)-1-(4,4-dimethyloxazolin-2-yl)-1-methylethane (24) 

To a cooled solution (0°C) of N-((R)-2-hydroxy-1-phenylethyl)-

N'-(2-hydroxy-1,1-dimethylethyl)-dimethylmalonamide (737 mg, 2.29 

mmol) in CH2Cl2 (150 mL) was added dropwise SOCl2 (0.80 mL, 10.9 

mmol). The reaction mixture was stirred overnight at ambient 

temperature, cooled to 0°C and quenched by addition of aqueous NaHCO3 

(65 mL). After an additional 5 min of stirring, the aqueous phase was separated and extracted 

with CH2Cl2 (3 x 70 mL). The combined organic phases were dried over Na2SO4 and the solvent 

was evaporated to give 800 mg of the chlorinated compound. The colorless oil was used directly 

without further purification. A solution of the chlorinated product (800 mg, 2.23 mmol) and 

NaOH (223 mg, 5.58 mmol) in ethanol (125 mL) was heated to reflux for 3 hours and then 

cooled to room temperature followed by evaporation of the solvent under reduced pressure. To 

the resulting crude product was added in CH2Cl2 (50 mL) and a saturated aqueous solution of 

NH4Cl (40 mL), the phases were separated and the aqueous layer was extracted with CH2Cl2 (3 x 

50 mL). The combined organic phases were dried over Na2SO4 and the solvent was evaporated 

to give the oily yellowish crude product. Purification by flash chromatography (Hexane/EtOAc, 

50/50) gave the product as a colorless oil (391 mg, 60% yield). 
1H NMR (CDCl3, 600 MHz, 296 K) δ 1.30 (s, 6H, CH3 oxa), 1.58 (s, 3H, CH3 bridge), 1.60 (s, 3H, 

CH3 bridge), 3.97 (s, 2H, CH2 methyl oxa), 4.11 (pseudo-t, J = 8.0 Hz, 1H, CH2 phenyl oxa), 4.62 (dd, J = 

8.4 Hz, 10.1 Hz, 1H, CH2 phenyl oxa), 5.19 (dd, J = 7.6 Hz, 10.1 Hz, 1H, CH oxa),  7.23-7.35 (m, 5H, 

CH arom). 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 24.4, 24.5 (CH3 bridge), 28.0, 28.1 (CH3 oxa), 38.5 

(Cquat bridge), 67.1 (Cquat methyl oxa), 69.4 (CH), 75.5 (CH2 phenyl oxa), 79.4 (CH2 methyl oxa), 126.6, 127.5, 

128.6 (CHarom), 142.5 (Cquat arom), 167.4 (NCO methyl oxa), 170.5 (NCO phenyl oxa). 

HRMS (FAB): m/z : calcd for C17H23N2O2 ([M+H]+) 287.1760, found: 287.1757. 
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8. Isocyanate derivatives 

1-bromo-2-isocyanato-2-methylpropane (25) 

2-bromo-4,4-dimethyloxazoline in THF was heated at 65°C over 1 d. The 

resulting brown mixture was purified by bulb to bulb distillation to give the 

product as a colorless oil.  
1H NMR (CDCl3, 600 MHz, 296 K) δ 1.49 (s, 6H, CH3), 3.48 (s, 2H, CH2). 

13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 25.6 (CH3), 28.7 (CH2), 57.6 (Cquat methyl), 141.5 

(NCO).  
15N NMR (CDCl3, 60 MHz, 296 K) δ 51.7 (NCO). 

HRMS (EI): m/z : calcd for C5H8BrNO ([M]+) 176.9789, found: 176.9791. 

(2S)-1-bromo-2-isocyanato-3-methylbutane (26)  

(4S)-2-bromo-4-isopropyloxazoline in THF was heated at 95°C over 2 d. 

The resulting brown mixture was purified by bulb to bulb distillation to give a 

colorless oil.  
1H NMR (CDCl3, 600 MHz, 296 K) δ 0.99 (d, J = 6.7 Hz, 3H, CH3 isopropyl), 1.01 

(d, J = 6.8 Hz, 3H, CH3 isopropyl), 1.97 (m, 1H, CH isopropyl), 3.49 (m, 1H, CH2), 3.56 (m, 2H, CH2, 

CH). 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 17.3 (CH3 isopropyl), 19.6 (CH3 isopropyl), 32.3 (CH 

isopropyl), 36.0 (CH2), 62.7 (CH), 124.0 (NCO). 
15N NMR (CDCl3, 60 MHz, 296 K) δ 35.5 (NCO) 

FT-IR (KBr) ν 2265 cm-1 (s, νC=N isocyanate). 

HRMS (EI): m/z : calcd for C6H10BrNO ([M]+) 190.9946, found: 190.9947. 

 (1R)-1-(2-bromo-1-isocyanatoethyl)benzene (27) 

(4R)-2-bromo-4-phenyloxazoline in THF was heated at 95°C over 3 d. The 

resulting brown mixture was purified by bulb to bulb distillation to give a 

colorless oil.  
1H NMR (CDCl3, 300 MHz, 296 K) δ 3.55 (dd, J = 9.1 Hz, 10.6 Hz, 1H, CH2 oxa), 

3.66 (dd, J = 3.9 Hz, 10.6 Hz, 1H, CH2 oxa), 4.95 (dd, J = 3.9 Hz, 9.1 Hz, 1H, 

CHoxa), 7.32-7.45 (m, 5H, CHarom). 
13C {1H} NMR (CDCl3, 75 MHz, 296 K) δ 38.5 (CH2 oxa), 60.5(CH oxa), 126.1, 128.9, 129.0 (CH 

arom), 133.7 (Cquat arom), 138.0 (NCO). 
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FT-IR (KBr) ν 2265 cm-1 (s, νC=N isocyanate). 

HRMS (EI): m/z : calcd for C9H8BrNO ([M]+) 224.9789, found: 224.9764. 

(1R,2R)-2-bromo-1-isocyanato-2,3-dihydro-1H-indene (28) 

Solid (4R, 5S)-2-bromo-4,5-indanediyloxazoline in a Schlenk at -78°C was 

put at room temperature. Rearrangement occurred in the following 2 minutes. 
1H NMR (CD2Cl2, 600 MHz, 296 K) δ 3.30 (dd, J = 8.3 Hz, 16.0 Hz, 1H, CH2 Ind) 

3.60 (dd, J = 7.3 Hz, 16.0 Hz, 1H, CH2 Ind), 4.39 (dd, J = 7.5 Hz, 15.4 Hz, 1H, 

BrCH), 5.22 (m, 1H, NCH) 7.29-7.42 (m, 4H, CHarom). 
13C {1H} NMR (CD2Cl2, 150 MHz, 296 K) δ 40.7 (CH2), 52.8 (BrCH), 66.9 (NCH), 123.4, 

124.6, 127.8, 129.1 (CHarom), 139.3, 139.8(Cquat-arom). 
15N NMR (CD2Cl2, 60 MHz, 296 K) δ 36.0 (N). 

FT-IR (KBr) ν 2257 cm-1 (s, νC=N isocyanate). 

HRMS (FAB): m/z : calcd for C10H8BrNO ([M]+) 236.9789, found: 236.9796. 

9. Urea 

1-((S)-2-bromo-1-isopropylethyl)-3-((1S)-1-phenylethyl)urea (29) 

To a solution of the (2S)-1-bromo-2-isocyanato-3-methylbutane in 

tetrahydrofuran-d8 at -20°C was added one equivalent of (S)-

phenylethylamine. After 5 min the NMR spectroscopic data were collected 

at -20°C. 
1H NMR (THF- d8, 400 MHz, 253 K) δ 0.91 (pseudo-t, J = 6.9 Hz, 6H, CH3 isopropyl), 1.36 (d, J = 

6.9 Hz, 3H, CH3 phenyl side), 1.83 (m, 1 H, CH isopropyl), 3.59-3.75 (m, 3H, CH bromine side, CH2), 4.94 

(pseudo-quint, J = 7.0 Hz, 1H, CH phenyl side), 5.86 (d, J = 8.2 Hz, 1H, NH bromine side), 6.25 (d, J = 

8.2 Hz, 1H, NH phenyl side), 7.16-7.24 (m, 1H, CH arom), 7.27-7.36 (m, 4H, CH arom). 
13C {1H} NMR (THF- d8, 100 MHz, 253 K) δ 18.0, 19.0 (CH3 isopropyl), 22.8 (CH3 phenyl side), 30.3 

(CH isopropyl), 38.5 (CH2), 48.9 (CH phenyl side), 54.8 (CH bromine side), 125.8, 126.5, 128.2, (CHarom), 

145.5 (Cquat arom), 157.2 (CO). 
15N NMR (THF- d8, 40 MHz, 253 K) δ 86.4 (NH bromine side), 94.1 (NH phenyl side). 
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10. Aziridines 

2,2-dimethyl-N-(1-phenylethyl)aziridine-1-carboxamide (30) 

To a solution of the 1-bromo-2-isocyanato-2-methylpropane (25) 

(521 mg, 2.9 mmol) in THF (25 mL) at -20°C was added the 

phenylethylamine (0.38 mL, 2.9 mmol). The reaction mixture was stirred at 

-25°C for 2.5 h and then cooled down to -40°C prior to the addition of potassium tert-butoxide in 

solution in THF (2.9 mL, 2.9 mmol). The reaction mixture was then stirred overnight in the bath, 

quenched with water, extracted with CH2Cl2 (3 x 25 mL) and dried over Na2SO4. After 

precipitation by adding pentane to the crude dissolved in CH2Cl2, the product was obtained as a 

white solid (318 mg, 50%).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.20 (s, 3H, CH3 aziridine), 1.25 (s, 3H, CH3 aziridine), 1.48 (d, 

J = 6.9 Hz, 3H, CH3 phenyl side), 2.08 (s, 2H, CH2), 4.98 (pseudo-qt, J = 7.0 Hz, 1H, CH), 5.34 (br 

s, 1H, NH), 7.21-7.32 (m, 5H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 21.9 (CH3 phenyl side), 22.6 (CH3 aziridine), 37.2 (CH2), 

41.4 (Cquat aziridine), 50.1 (CH), 126.2, 127.2, 128.6 (CH arom), 143.5 (Cquat arom), 162.4 (CO). 
15N NMR (CDCl3, 60 MHz, 296 K) δ 71.1 (N aziridine), 116.4 (NH). 

FT-IR (KBr) ν 1642 cm-1 (s, ν aziridine), 3282 cm-1 (s, νNH). 

HRMS (FAB): m/z : calcd for C13H19N2O ([M+H]+) 219.1497, found: 219.1407. 

(2S)-2-isopropyl-N-((1S)-1-phenylethyl)aziridine-1-carboxamide (31a) 

To a solution of the (2S)-1-bromo-2-isocyanato-3-methylbutane 

(26) (508.1 mg, 2.6 mmol) in THF (25 mL) at -20°C was added the (S)-

phenylethylamine (0.34 mL, 2.6 mmol). The reaction mixture was stirred 

at -25°C for 1.5 h and then cooled down to -40°C prior to the addition of potassium tert-butoxide 

in solution in THF (2.6 mL, 2.6 mmol). The reaction mixture was then stirred over night in the 

bath, quenched with water, extracted with Et2O (3 x 25 mL) and dried over Na2SO4. The crude 

was purified by flash chromatography (Hexane/EtOAc, 50/50) to yield a white solid (359 mg, 

59% yield). Crystallisation from CH2Cl2/pentane gave white crystals suitable for X-ray 

diffraction.  
1H NMR (CDCl3, 600 MHz, 296 K) δ 0.95 (d, J = 6.8 Hz, 3H, CH3 isopropyl), 1.04 (d, J = 6.7 Hz, 

3H, CH3 isopropyl), 1.41 (m, 1H, CH isopropyl), 1.49 (d, J = 6.9 Hz, 3H, CH3 phenyl side), 1.85 (d, J = 

4.1Hz, 1H, CH2), 2.08 (m, 1H, CH aziridine), 2.34 (d, J = 6.6 Hz, 1H, CH2), 4.93 (pseudo-qt, J = 

7.0 Hz, 1H, CH phenyl side), 5.50 (br s, 1H, NH), 7.24-7.35 (m, 5H, CH arom). 
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13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 19.1, 20.0 (CH3 isopropyl), 22.3 (CH3 phenyl side), 30.7 

(CH2), 30.9 (CH isopropyl), 45.4 (CH aziridine), 50.1 (CH phenyl side), 125.9, 127.3, 128.7 (CH arom), 

143.5 (Cquat arom), 164.5 (CO). 
15N NMR (CDCl3, 60 MHz, 296 K) δ 49.6 (N aziridine), 109.9 (NH). 

FT-IR (KBr) ν 1659 cm-1 (s, ν aziridine), 3343 cm-1 (s, νNH). 

MS (EI) m/z (%) 105.1 (100) [ethylbenzene]+, 232.2 (20) [M]+. 

elemental analysis calcd (%) for C14H20N2O (232.32): C 72.38, H 8.68, N 12.06; Found: C 72.11, 

H 8.63, N 11.88. 

(2S)-2-isopropyl-N-(1-phenylethyl)aziridine-1-carboxamide (31a+b) 

To a solution of the (2S)-1-bromo-2-isocyanato-3-methylbutane 

(26) (775 mg, 4 mmol) in THF (25 mL) at -20°C was added the 

phenylethylamine (0.34 mL, 2.6 mmol). The reaction mixture was 

stirred at -25°C for 1.5 h and then cooled down to -40°C prior to the addition of potassium tert-

butoxide in solution in THF (2.6 mL, 2.6 mmol). The reaction mixture was then stirred over 

night in the bath, over 48 h at room temperature, quenched with water, extracted with Et2O (3 x 

25 mL) and dried over Na2SO4. The crude was purified by flash chromatography 

(Hexane/EtOAc, 50/50) to yield a colorless oil (578 mg, 62% yield).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 0.93 (d, J = 6.8 Hz, 3H, CH3 isopropyl dia 1), 0.94 (d, J = 6.8 

Hz, 3H, CH3 isopropyl dia 2), 1.02 (d, J = 6.7 Hz, 3H, CH3 isopropyl dia 1), 1.03 (d, J = 6.7 Hz, 3H, CH3 

isopropyl dia 2), 1.41 (m, 2H, CH isopropyl dia 1+2), 1.48 (d, J = 6.9 Hz, 6H, CH3 phenyl side dia 1+2), 1.84 (d, J 

= 4.1 Hz, 2H, CH2 dia 1+2), 2.08 (m, 1H, CH aziridine dia 1), 2.15 (m, 1H, CH aziridine dia 2), 2.29 (d, J = 

6.6 Hz, 1H, CH2 dia 2), 2.35 (d, J = 6.6 Hz, 1H, CH2 dia 1), 4.92 (m, 2H, CH phenyl side dia 1+2), 5.50 (br 

s, 2H, NH dia 1+2), 7.23-7.35 (m, 10 H, CH arom dia 1+2). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 19.1 (CH3 isopropyl dia 1+2), 20.0 (CH3 isopropyl dia 1+2), 

22.1 (CH3 phenyl side dia 1), 22.3 (CH3 phenyl side dia 2), 30.7 (CH2 dia 1), 30.9 (CH isopropyl dia 1+2), 31.0 

(CH2 dia 2), 45.1 (CH aziridine dia 2), 45.4 (CH aziridine dia 1), 50.1 (CH phenyl side dia 1+2), 125.9, 126.0, 

127.3, 127.4, 128.7 (CH arom dia 1+2), 143.4 (Cquat arom dia 1), 143.5 (Cquat arom dia 2), 164.5 (CO dia 1+2). 

FT-IR (KBr) ν 1658 cm-1 (s, ν aziridine), 3294 cm-1 (s, νNH). 

HRMS (FAB): m/z : calcd for C14H21N2O ([M+H]+) 233.1654, found: 233.1662. 

(2R)-2-phenyl-N-((1S)-1-phenylethyl)aziridine-1-carboxamide (32) 

To a solution of the  (1R)-1-(2-bromo-1-isocyanatoethyl)benzene 

(27) (141 mg, 0.6 mmol) in THF (15 mL) at -20°C was added the 
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phenylethylamine (0.08 mL, 0.6 mmol). The reaction mixture was stirred at -25°C for 2.5 h and 

then cooled down to -40°C prior to the addition of potassium tert-butoxide in solution in THF 

(0.6 mL, 0.6 mmol). The reaction mixture was then stirred overnight in the bath, quenched with 

water, extracted with CH2Cl2 (3 x 25 mL) and dried over Na2SO4. The crude was purified by 

flash chromatography (Hexane/EtOAc, 50/50) to yield a colorless solid (86 mg, 54% yield).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.48 (d, J = 6.9 Hz, 3H, CH3), 2.14 (d, J = 3.8 Hz, 1H, 

CH2), 2.74 (d, J = 6.7 Hz, 1H, CH2), 3.37 (dd, J = 3.9 Hz, J = 6.7 Hz,  1H, CH aziridine), 4.95 (m, 

1H, CH), 5.62 (d, J = 6.3Hz, 1H, NH), 7.24-7.35 (m, 10H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 22.0 (CH3), 35.1 (CH2), 40.3 (CH), 50.2 (CH 

aziridine), 126.0, 126.2, 127.4, 127.7, 128.5, 128.7 (CH arom), 143.1 (Cquat arom), 163.7 (CO). 
15N NMR (CDCl3, 60 MHz, 296 K) δ 63.9 (N aziridine), 114.9(NH). 

FT-IR (KBr) ν 1655 cm-1 (s, ν aziridine), 3356 cm-1 (s, νNH). 

HRMS (EI): m/z : calcd for C17H18N2O ([M]+) 266.1419, found: 266.1415, calcd for C8H9N ([M - 

CONHC8H9]
+) 119.0735, found: 119.0717. 

11. Hydrobromide salts of the 2-aminooxazolines 

General procedure to obtain the hydrobromide salts: To a solution of the desired isocyanate in 

THF was added 1-phenyl-1-ethylamine (1 equivalent) at room temperature. The mixture was 

stirred 3 h and the solvent was then evaporated in vacuo. The white foam obtained was used in 

the next step without further purification. 1H NMR spectra show complete conversion into the 

desired product without by-products. 

2-(1-phenylethylamino)-4,4-dimethyloxazoline hydrobromide (33)  

1H NMR (CDCl3, 400 MHz, 296 K) δ 1.42 (s, 3H, CH3), 1.49 (s, 3H, CH3 

ring) 1.61 (d, J = 7.0 Hz, 3H, CH3 ring), 4.25 (d, J = 8.6 Hz, 1H, CH2), 4.33 (d, J = 

8.6 Hz, 1H, CH2), 4.80 (q, J = 6.9 Hz, 1H, CH), 7.25-7.41 (m, 5H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 23.3 (CH3), 26.9, 27.0 (CH3 ring), 

53.7 (CH), 60.0 (Cquat), 81.6 (CH2), 125.7, 128.1, 129.0 (CHarom), 141.3(Cquat arom), 

160.5 (NCN). 
15N (CDCl3, 60 MHz, 296 K) δ 103.4 (NH), 112.1 (NH ring). 

MS (FAB): m/z (%): 817.1 (3) [(AAH)3Br2]
+, 640.2 (5) [(AAH)2Br+phenylethylamine]+, 517.1 

(80) [(AAH)2Br]+, 340.2 (30) [(AAH)+phenylethylamine]+, 219.2 (100) [(AAH)]+, 115.0 (100) 

[(AAH)–ethylbenzene]+, 100.0 (62) [(AAH)-phenylethylamine-isopropyl]+ (AA = 

aminooxazoline, AAH = protonated aminooxazoline). 
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(4S)-2-((1R)-1-phenylethylamino)-4-isopropyloxazoline hydrobromide (34a) 

1H NMR (CDCl3, 600 MHz, 296 K) δ 0.94 (d, J = 6.8 Hz, 3H, CH3 

isopropyl), 1.02 (d, J = 6.7 Hz, 3H, CH3 isopropyl), 1.60 (d, J = 7.0 Hz, 3H, CH3), 1.85 

(m, 1H, CH isopropyl), 3.89 (ddd, J = 6.7 Hz, 8.7 Hz, 1H, CH ring), 4.38 (dd, J = 6.5 

Hz, 9.0 Hz, 1H, CH2), 4.62 (pseudo-t, J = 8.9 Hz, 1H, CH2), 4.79 (q, J = 6.7 Hz, 

1H, CH), 7.27-7.40 (m, 5H, CH arom). 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 17.8, 18.2 (CH3 isopropyl), 23.3 (CH3), 

32.1 (CH isopropyl), 53.8 (CH), 61.7 (CH ring), 73.8 (CH2), 125.8, 126.2, 128.1, 128.7, 129.0 (CH 

arom), 141.2 (Cquat arom), 161.5 (NCN). 
15N (CDCl3, 60 MHz, 296 K) δ 97.0 (NH ring), 101.3(NH outside the ring). 

MS (FAB): m/z (%): 668.2 (6) [(AAH)2Br+phenylethylamine]+, 545.2 (10) [(AAH)2Br]+, 465.3 

(10) [(AA)(AAH)] +, 354.2 (15) [(AAH)+phenylethylamine]+, 233.1 (100) [(AAH)]+, 129.0 (35) 

[(AAH)–ethylbenzene]+, 100.0 (28) [(AAH)-phenylethylamine-isopropyl]+ (AA = 

aminooxazoline, AAH = protonated aminooxazoline). 

(4S)-2-(1-phenylethylamino)-4-isopropyloxazoline hydrobromide (34a+b) 

1H NMR (CDCl3, 600 MHz, 296 K) δ 0.93 (d, J = 6.8 Hz, 3H, CH3 isopropyl 

dia 1), 0.99 (d, J = 6.7 Hz, 3H, CH3 isopropyl dia 2), 1.01 (d, J = 6.7 Hz, 3H, CH3 isopropyl 

dia 1), 1.08 (d, J = 6.7 Hz, 3H, CH3 isopropyl dia 2), 1.66 (d, J = 6.9 Hz, 6H, CH3 dia1+2), 

1.82 (m, 1H, CH isopropyl dia 1), 1.89 (m, 1H, CH isopropyl dia 2), 3.95 (ddd, J = 6.8 Hz, 

8.6 Hz, 1H, CH ring dia 1), 4.01 (ddd, J = 6.8 Hz, 8.6 Hz, 1H, CH ring dia 2), 4.35 (dd, 

J = 6.4 Hz, 8.9 Hz, 1H, CH2 dia 1), 4.43 (dd, J = 6.5 Hz, 8.9 Hz, 1H, CH2 dia 2), 4.66 (pseudo-t, J = 

8.8 Hz, 1H, CH2 dia 1), 4.75 (pseudo-t, J = 8.8 Hz, 1H, CH2 dia 2), 4.48 (m, 2H, CH dia 1+2), 7.30-

7.42 (m, 10H, CH arom dia 1+2). 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 17.6, 17.7, 17.9, 18.1 (CH3 isopropyl dia 1+2), 23.2 (CH3 

dia 1), 23.3 (CH3 dia 2), 32.0 (CH isopropyl dia 1), 32.2 (CH isopropyl dia 2), 53.7 (CH dia 1+2), 61.7 (CH ring dia 

1), 61.7 (CH ring dia 2), 73.6 (CH2 dia 1), 73.6 (CH2 dia 2), 125.6, 125.7, 128.0, 128.0, 128.9 (CHarom dia 

1+2), 141.2 (Cquat arom dia 1), 141.2 (Cquat arom dia 2), 161.4 (NCN dia 1), 161.5 (NCN dia 2). 
15N (CDCl3, 60 MHz, 296 K) δ 102.0 (NH outside the ring). 

 

 

 

O NH

HN

Ph

Br

O NH

HN

Ph

Br



Experimental part 171 

(4R)-2-((1R)-1-phenylethylamino)-4-phenyloxazoline hydrobromide (35) 

1H NMR (CDCl3, 400 MHz, 296 K) δ 1.70 (d, J = 6.9 Hz, 3H, CH3), 4.34 

(dd, J = 7.4 Hz, J = 8.3 Hz, 1H, CH2), 4.94 (m, 2H, CH2, CH), 5.27 (dd, J = 7.4 

Hz, 8.7 Hz, 1H, CH ring), 7.24-7.26 (m, 2H, CH arom), 7.32-7.44 (m, 8H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 23.6 (CH3), 53.6 (CH), 61.3 (CH 

ring), 76.9 (CH2), 125.8, 126.2, 127.8, 127.9, 128.8, 129.0 (CHarom), 141.8, 143.0 

(Cquat arom), 161.6 (NCN). 
15N (CDCl3, 60 MHz, 296 K) δ 99.9 (NH outside the ring). 

12. 2-aminooxazolines 

2-(1-phenylethylamino)-4,4-dimethyloxazoline (36) 

To a solution of the hydrobride salt 33 (290 mg, 0.97 mmol) dissolved in 

THF at 0°C was added solid potassium tert-butoxide (131 mg, 1.16 mmol). The 

cloudy solution was stirred for 1.5 h, quenched with H2O and extracted with 

CH2Cl2. The crude product was purified by flash chromatography (Hexane/EtOAc, 

50/50) to yield 124 mg of a colorless solid (59%).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 1.20 (s, 3H, CH3 oxa), 1.24 (s, 3H, CH3 oxa), 1.48 (d, J = 6.8 

Hz,  3H, CH3 phenyl side), 3.84 (d, J = 7.6 Hz, 1H, CH2), 3.87 (d, J = 7.6 Hz, 1H, CH2), 4.76 (q, J = 

6.8 Hz, 1H, CH), 7.20-7.30 (m, 5H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 22.8 (CH3 phenyl side), 28.8 (CH3 oxa), 52.3 (CH), 65.1 

(Cquat oxa), 79.1 (CH2), 125.9, 127.1, 128.5 (CH arom), 143.9 (Cquat arom), 158.3 (NCO). 
15N NMR (CDCl3, 60 MHz, 296 K) δ 77.6 (N), 176.7 (NH). 

FT-IR (KBr) ν 1687 cm-1 (s, νC=N). 

HRMS (FAB): m/z : calcd for C13H19N2O ([M+H]+) 219.1497, found: 219.1485. 

(4S)-2-((1R)-1-phenylethylamino)-4-isopropyloxazoline (37a) 

To a solution of the hydrobromide salt 34a (501.2 mg, 1.6 mmol) dissolved 

in THF at 0°C was added solid potassium tert-butoxide (202 mg, 1.8 mmol). The 

cloudy solution was stirred for 1.5 h, quenched with H2O and extracted with 

CH2Cl2. The crude product was purified by flash chromatography (Hexane/EtOAc, 

50/50) to yield 210 mg of a yellowish oil (56%).  
1H NMR (CDCl3, 600 MHz, 296 K) δ 0.75 (d, J = 6.8 Hz, 3H, CH3 isopropyl), 0.80 (d, J = 6.8 Hz, 

3H, CH3 isopropyl), 1.48 (d, J = 6.9 Hz, 3H, CH3 phenyl side), 1.60 (m, 1H, CH isopropyl), 3.78 (m, 1H, 
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CH oxa), 3.95 (dd, J = 6.3 Hz, 8.0 Hz, 1H, CH2), 4.17 (dd, J = 8.1 Hz, 8.8 Hz, 1H, CH2), 4.78 (q, 

J = 7.0 Hz, 1H, CH phenyl side), 7.22-7.25 (m, 1H, CH arom), 7.29-7.34 (m, 4H, CH arom). 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 17.7, 18.4 (CH3 isopropyl), 23.2 (CH3 phenyl side), 33.1 

(CH isopropyl), 52.4 (CH phenyl side), 70.2 (CH2, CH oxa), 125.9, 127.0, 128.4 (CH arom), 144.3 (Cquat 

arom), 159.2 (NCO). 
15N NMR (CDCl3, 60 MHz, 296 K) δ 78.6 (N), 160.0 (NH). 

FT-IR (KBr) ν 1672 cm-1 (s, νC=N). 

HRMS (FAB): m/z : calcd for C14H21N2O ([M]+) 233.1654, found: 233.1643. 

(4S)-2-(1-phenylethylamino)-4-isopropyloxazoline (37a+b) 

To a solution of the hydrobromide salt 34a+b (848.4 mg, 2.7 mmol) 

dissolved in THF at 0°C was added solid potassium tert-butoxide (202 mg, 1.8 

mmol). The cloudy solution was stirred for 1.5 h, quenched with H2O and 

extracted with CH2Cl2. The crude product was purified by flash chromatography 

(Hexane/EtOAc, 50/50) to yield 389 mg of a colorless oil (62%).  
1H NMR (CDCl3, 400 MHz, 296 K) δ 0.81 (d, J = 6.7 Hz,  3H, CH3 isopropyl dia 1), 0.86 (d, J = 6.8 

Hz,  3H, CH3 isopropyl dia 1), 0.90 (d, J = 6.8 Hz, 3H, CH3 isopropyl dia 2), 0.98 (d, J = 6.8 Hz,  3H, CH3 

isopropyl dia 2), 1.53 (d, J = 6.9 Hz,  3H, CH3 phenyl side dia 1), 1.57 (d, J = 6.8 Hz, 3H, CH3 phenyl side dia 2), 

1.65 (qd, J = 6.6 Hz, 13.3 Hz, 1H, CH isopropyl dia 1), 1.77 (qd, J = 6.6 Hz, J = 13.2 Hz, 1H, CH 

isopropyl dia 2), 3.85 (m, 2H, CH oxa dia 1+2), 3.98 (dd, J = 6.6 Hz, 7.8 Hz, 2H, CH2 dia 1+2), 4.24 (m, 

2H, CH2 dia 1+2), 4.83 (q, J = 6.8 Hz, 2H, CH phenyl side dia 1+2), 7.22-7.25 (m, 2H, CH arom dia 1+2), 

7.34-7.39 (m, 8H, CH arom dia 1+2); 
13C {1H} NMR (CDCl3, 150 MHz, 296 K) δ 17.7 (CH3 isopropyl 

dia 1+2), 18.4 (CH3 isopropyl dia 1), 18.7 (CH3 isopropyl dia 2), 22.8 (CH3 phenyl side dia 2), 23.2 (CH3 phenyl side dia 

1), 30.9 (CH isopropyl dia 1), 33.1 (CH isopropyl dia 2), 52.4 (CH phenyl side dia 1), 52.5 (CH phenyl side dia 2), 

70.1 (CH ring dia 1+2), 70.3 (CH2 dia 1+2), 125.6, 125.9, 127.0, 127.2, 128.4, 128.6 (CH arom), 143.3 

(Cquat arom dia 2), 144.9 (Cquat arom dia 1), 159.2 (NCO dia 2), 159.4 (NCO dia 1). 

FT-IR (KBr) ν 1676 cm-1 (s, νC=N). 

HRMS (EI): m/z : calcd for C14H20N2O ([M]+) 232.1576, found: 232.1576. 
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(4R)-2-((1R)-1-phenylethylamino)-4-phenyloxazoline (38) 

To a solution of the hydrobromide salt 35 (257.7 mg, 0.74 mmol) dissolved 

in THF at 0°C was added solid potassium tert-butoxide (202 mg, 1.8 mmol). The 

cloudy solution was stirred for 1.5 h, quenched with H2O and extracted with 

CH2Cl2. The crude product was purified by flash chromatography (Hexane/EtOAc, 

50/50) to yield 95 mg of a yellowish solid (48%).  
1H NMR (CDCl3, 400 MHz, 296 K) 1.61 (d, J = 6.8 Hz, 3H, CH3), 4.06 (pseudo-t, J = 7.5 Hz, 

1H, CH2), 4.63 (pseudo-t, J = 8.5 Hz, 1H, CH2), 4.95 (q, J = 6.7 Hz, 1H, CH), 5.14 (dd, J = 7.7 

Hz, 8.5 Hz, 1H, CH ring), 7.30-7.41 (m, 10 H, CH arom). 
13C {1H} NMR (CDCl3, 100 MHz, 296 K) δ 22.9 (CH3), 52.6 (CH), 67.9 (CH oxa), 75.06 (CH2), 

125.9, 126.5, 127.3, 128.5, 128.6 (CH arom), 144.8, 144.0 (Cquat arom), 160.7 (NCO). 
15N NMR (CDCl3, 60 MHz, 296 K) δ 79.8 (N). 

FT-IR (KBr) ν 1686 cm-1 (s, νC=N). 

HRMS (EI): m/z : calcd for C17H18N2O ([M]+) 266.1419, found: 266.1432 

III. Chapter 3 

1. Palladium(II)chloride complexes 

General Procedure22 

Bis(benzonitrile)palladium(II) dichloride (0.142 mmol) and [trisox] (0.149 mmol) were 

dissolved in CH2Cl2 (1 mL). The reaction mixture was stirred for 90 min at room temperature 

and pentane was added (8 mL) to form an orange precipitate. The crude product was washed 

twice with pentane (8 mL) and dried in vacuo to give the complex as an orange powder. 

(1,1,1-tris[(4S)-4-isopropyloxazolin-2-yl]ethane)palladium(II) dichloride (39)  

Yield : 85%. Crystallisation from CH2Cl2/Et2O gave orange 

crystals suitable for X-ray diffraction.  
1H NMR (300 MHz, CDCl3, 296 K) δ 0.74 (m, 6H, CH(CH3)2, 2 C), 0.87 

(m, 9H, CH(CH3)2, 2 C, 1 F), 0.92 (d, J = 6.8 Hz, 3H, CH(CH3)2, F), 

1.81 (m, 1H, CH(CH3)2, F), 1.91 (s, 3H, CH3 apical), 2.87 (m, 2H, 

                                                 

22 S. E. Denmark, R. A. Stavenger, A.-M. Faucher, J. P. Edwards, J. Org. Chem. 1997, 62, 3375. 
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CH(CH3)2, C), 4.03 (m, 2H, CH2 oxa, F), 4.27 (m, 3H, CH2 oxa, C, CHoxa, F), 4.44 (m, 2H, CH2 oxa, 

C), 4.66 (m, 1H, CHoxa, C), 4.81 (m, 1H, CHoxa, C). 
13C {1H} NMR (75 MHz, CDCl3, 296 K) δ 13.1, 13.6, 17.8, 18.3, 18.5, 18.6 (CH(CH3)2), 22.5 

(CH3 apical), 29.3, 29.7 (CH(CH3)2, C), 32.1 (CH(CH3)2, F), 45.2 ((CH3)C(oxa)3), 69.3, 69.6 (CH2 

oxa, C), 70.0, 70.4 (CHoxa, C), 71.5 (CH2 oxa, F), 72.0 (CHoxa, F), 160.1 (NCO, F), 165.8, 166.7 

(NCO, C). 
15N (60 MHz, CDCl3, 296 K) δ 160.2 161.2 (N, C) 239.9 (N, F) (C = coordinated oxazoline, F = 

free oxazoline). 

FT-IR (KBr): ν 1660 cm-1 (s, νC=N free oxazoline), 1650 cm-1 (s, νC=N coordinated oxazoline). 

HRMS (ESI): m/z : calcd for C20H33Cl2N3NaO3Pd ([M+Na]+) 564.084, found: 564.084; calcd for 

C40H66Cl4N6NaO6Pd2 ([2M+Na]+) 1105.174, found: 1105.177. 

elemental analysis calcd (%) for C20H33Cl2N3O3Pd: C 44.42, H 6.15, N 7.77; found: C 44.28, H 

6.27, N 7.67. 

(1,1,1-tris[(4R)-4-phenyloxazolin-2-yl]ethane)palladium(II) dichloride (40) 

Yield: 89%. Crystallisation from CH2Cl2/pentane gave 

orange crystals suitable for X-ray diffraction.  
1H NMR (600 MHz, CDCl3, 296 K) δ 2.27 (s, 3H, CH3), 4.36 

(pseudo-t, J = 8.4 Hz, 1H, CH2oxa, F), 4.58-4.61 (m, 2H, CH2oxa, C), 

4.75 (pseudo-t, J = 8.9 Hz, 1H, CH2oxa, C), 4.80 (pseudo-t, J = 9.2 

Hz, 1H, CH2oxa, C),  4.90 (dd, J = 8.6 Hz, 10.2 Hz, 1H, CH2oxa, F), 

5.40 (dd, J = 8.3 Hz, 10.1 Hz, 1H, CHoxa, F), 5.91 (dd, J = 2.3 Hz, 

9.0 Hz, 1H, CHoxa, C), 6.08 (dd, J = 3.5Hz, 9.6 Hz, 1H, CHoxa, C), 7.25-7.27 (m, 3H, CHarom), 

7.32-7.40 (m, 15H, CHarom). 
13C {1H} NMR (150 MHz, CDCl3, 296 K) δ 22.4 (CH3), 45.6 ((CH3)C(oxa)3), 68.5 (CHoxa, C), 

68.7 (CHoxa, C) 69.7 (CHoxa, F), 76.7 (CH2oxa, F), 76.9 (CH2oxa, F), 77.3 (CH2oxa, C), 77.4 

(CH2oxa, C), 126.1, 126.6, 126.8 (Carom, F), 128.3, 128.4, 128.5, 128.9, 129.0, 129.1 (Carom, C), 

139.4, 139.5 (Cquat-arom, C), 140.5 (Cquat-arom, F), 161.8 (NCO, NC), 167.1, 168.0 (NCO, C). 
15N (60 MHz, CDCl3, 296 K) δ 160.8 161.6 (N, C) 239.9 (N, F), (C= coordinated oxazoline, F= 

free oxazoline). 

FT-IR (KBr): ν 1655 cm-1 (s, νC=N). 

HRMS (ESI): m/z : calcd for C29H27N3O3Pd ([M-2Cl]+) 570.103, found: 570.110. 

elemental analysis calcd (%) for C29H27Cl2N3O3Pd: C 54.18, H 4.23, N 6.54; found: C 53.01, H 

4.29, N 6.60. 
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(1,1,1-tris[(4S)-4-benzyloxazolin-2-yl]ethane)palladium(II) dichloride (41)  

Yield: 68%.  
1H NMR (600 MHz, CDCl3, 296 K) δ 1.55 (s, 3H, CH3), 2.37 

(pseudo-t, J = 11.2 Hz, 1H, CH2 Bn, C), 2.79 (dd, J = 7.4Hz, 

13.9Hz, 1H, CH2 Bn, F), 2.93 (dd, J = 8.5Hz, 13.4Hz, 1H, CH2 Bn, 

C), 3.01 (dd, J = 5.3 Hz, 13.8Hz, 1H, CH2 Bn, F), 3.44 (dd, J = 

1.4Hz, 13.8Hz, 1H, CH2 Bn, C), 3.82 (dd, J = 1.6 Hz, 13.2 Hz, 

1H, CH2 Bn, C), 4.06 (pseudo-t, J = 8.1 Hz, 1H, CH2 oxa, F), 4.17 

(pseudo-t, J = 8.6 Hz, 1H, CH2 oxa, C), 4.26 (pseudo-t, J = 8.8Hz, 1H, CH2 oxa, C), 4.30 (pseudo-t, 

J = 9.1 Hz, 1H, CH2 oxa, F), 4.37 (dd, J = 1.9 Hz, 8.9 Hz, 1H, CH2 oxa, C), 4.49 (m, 1H, CH oxa, F), 

4.54 (dd, J = 1.6 Hz, 8.8 Hz, 1H, CH2 oxa, C), 5.04 (m, 1H, CH oxa, C), 5.10 (m, 1H, CH oxa, C), 

7.19-7.24 (m, 4H, CH arom), 7.28-7.35 (m, 9 H, CH arom), 7.45 (m, 2H, CH arom). 
13C {1H} NMR (150 MHz, CDCl3, 296 K) δ 20.9 (CH3), 39.2, 39.4 (CH2 Bn, C) 40.6 (CH2 Bn, F) 

45.0 ((CH3)C(oxa)3), 66.2 (CH oxa, C), 67.1 (CH oxa, F) 67.2 (CH oxa, C), 72.8, 72.9 (CH2 oxa, C), 

73.3 (CH2 oxa, F), 126.8, 127.1, 1267.3 (Carom, F), 128.6, 128.7, 128.8, 129.7, 129.8, 130.1 (Carom, 

C),  135.4, 135.9 (Cquat-arom, C), 136.5 (Cquat-arom, F), 161.0 (NCO, F), 166.6, 166.8 (NCO, C). 
15N (60 MHz, CDCl3, 296 K) δ 161.3, 162.2 (N, C), 239.9 (N, F), (C= coordinated oxazoline, F= 

free oxazoline). 

FT-IR (KBr): ν 1655 cm-1 (s, νC=N). 

HRMS (FAB): m/z : calcd for C32H33N3O3Pd ([M-2Cl]+) 613.156, found: 613.151 

elemental analysis calcd (%) for C32H33Cl2N3O3Pd: C 56.11, H 4.86, N 6.13; found: C 56.04, H 

4.80, N 6.19. 

(1,1,1-tris[(4R, 5S)-4,5-indanediyloxazolin-2-yl]ethane)palladium(II) dichloride (42)  

Yield: 73%.  
1H NMR (400 MHz, 1,1,2,2-tetrachloroethane-d2, 296 K) δ 1.50 (s, 

3H, CH3), 2.09 (d, J = 18.2 Hz, 1H, CH2 Ind, C), 2.48 (d, J = 18.6 Hz, 

1H, CH2 Ind, C), 3.03 (dd, J = 6.8 Hz, 18.2 Hz, 1H, CH2 Ind,C), 3.08 

(dd, J = 5.8 Hz, 17.8 Hz, 1H, CH2 Ind, C), 3.37 (m, 2H, CH2 Ind, F), 

5.11 (ddd, J = 1.4 Hz, 5.8 Hz, 7.2 Hz, 1H, OCHoxa, C), 5.15 (dd, J = 

5.7 Hz, 7.2 Hz, 1H, OCHoxa, C), 5.41 (dd, J = 5.9 Hz, 7.3 Hz, 1H, 

OCHoxa, F), 5.49 (d, J = 7.6 Hz, 1H, NCHoxa, F), 6.25 (d, J = 6.8 Hz, 1H, NCHoxa, C), 6.26 (d, J 

= 6.5 Hz, 1H, NCHoxa, C), 7.16-7.46 (m, 10 H, CHarom), 8.41 (m, 1H, CHarom), 8.50 (m, 1H, 

CHarom). 
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13C {1H} NMR (100 MHz, 1,1,2,2-tetrachloroethane-d2, 296 K) δ 20.8 (CH3), 37.3, 38.8, (CH2 

Ind), 45.2 ((CH3)Coxa3), 73.3, 74.0 (NCHoxa, C), 76.4 (NCHoxa, F), 85.1, 86.7, (OCHoxa, C), 87.8, 

(OCHoxa, F), 124.9, 125.0, 125.3, 125.7, 127.6, 127.9, 128.0, 128.1, 128.3, 128.9, 129.7, 129.9 

(CHarom), 138.2, 138.5, 138.5, 138.6 (Cquat-arom, C), 139.5, 140.5 (Cquat-arom, F), 160.3 (NCO, F), 

166.6, 167.6 (NCO, C). 
15N (60 MHz, 1,1,2,2-tetrachloroethane-d2, 296 K) δ 161.5, 162.8 (N, C), 238.3 (N, F) (C= 

coordinated oxazoline, F= free oxazoline). 

FT-IR (KBr): ν 1653 cm-1 (s, νC=N free oxazoline), 1649 cm-1 (s, νC=N coordinated oxazoline). 

HRMS (ESI): m/z : calcd for C32H27Cl2N3NaO3Pd ([M+Na]+) 701.891, found: 701.035; calcd for 

C32H27ClN3O3Pd ([M-Cl]+) 642.078, found: 642.077. 

elemental analysis calcd (%) for C32H27Cl2N3O3Pd: C 56.61, H 4.01, N 6.19; found: C 56.70, H 

4.18, N 6.10. 

2. Palladium(II) allyl complex 

The palladium(II) complex was obtained following a procedure described in the literature. 23 

(η3-allyl)( 1,1,1-tris[(4R)-4-phenyloxazolin-2-yl]ethane)palladium(II) (43) 

Ph-trisox (65 mg, 0.14 mmol) in dry CH2Cl2 (2 mL) was 

added to a solution of [(cod)Pd(η3-C3H5)]BF4 (47.3 mg, 0.14 

mmol) in dry CH2Cl2 (1 mL). The reaction mixture was stirred for 

45 min, filtered through Celite and washed with CH2Cl2 (2 x 1 

mL). The solvents were evaporated to give a white powder which 

was washed twice with pentane (5 mL) and dried under vacuum to 

yield the complex (50 mg, 52%). Suitable crystals for an X-ray diffraction study were obtained 

by slow diffusion of pentane into a solution of the complex in CH2Cl2.  
1H NMR (400 MHz, CDCl3, 296 K) δ 1.89 (d, J = 12.5 Hz, 1H, HA allyl), 2.22 (s, 3H, CH3), 2.52 

(d, J = 12.6 Hz, 1H, HA allyl), 2.78 (dd, J = 2.0 Hz, 7.0 Hz, 1H, HS allyl), 3.44 (d, J = 6.9 Hz, 1H, 

HA allyl), 4.40 (pseudo-t, J = 8.3 Hz, 3H, CH2 oxa), 4.89 (m, 1H, HC allyl), 5.03 (dd, J = 8.7 Hz, 10.4 

Hz, 3H, CH2 oxa), 5.47 (dd, J = 7.9 Hz, 10.4 Hz, 3H, CHoxa), 7.33 (m, 15H, CHarom). 
13C {1H} NMR (100 MHz, CDCl3, 296 K) δ 20.8 (CH3), 45.9 ((CH3)C(oxa)3), 61.1 (C1 allyl, C3 

allyl), 71.6 (CHoxa), 77.0 (CH2 oxa), 115.6 (C2 allyl), 127.0, 128.6, 129.2 (Carom), 140.2 (Cquat-arom), 

167.6 (NCO). 

                                                 
23 D. Franco, M. Gomez, F. Jiménez, G. Muller, M. Rocamora, M. A. Maestro, J. Mahia, Oraganometallics 2004, 
23, 3197. 
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FT-IR (KBr): ν 1658 cm-1 (s, νC=N). 

MS (FAB): m/z (%): 612.1 (100) [M-BF4]
+. 

elemental analysis calcd (%) for C32H32N3O3PdBF4 with CH2Cl2: C 50.51, H 4.37, N 5.35; 

found: C 50.47, H 4.32, N 5.41. 

3. Palladium(0) complexes 

[Pd(ma)(trisox)] complexes: General Procedure 

Trisox (0.54 mmol) in dry THF (3 mL) was added to a solution of [(η2,η2-nbd)(η2-ma)Pd0] 24 

(0.54 mmol) in dry THF (4 mL). After stirring for 15 min, the reaction mixture was filtered 

through Celite and concentrated under reduced pressure to 2 mL. Pentane (10 mL) was then 

added to the solution, after which a yellow powder was obtained. The crude solid was washed 

with pentane (3 x 7 mL) and dried in vacuo to give the complex as a yellow powder.  

(1,1,1-tris[(4S)-4-isopropyloxazolin-2-yl]ethane)(maleic anhydride)palladium(0) (44)  

Yield: 54%. Crystallization from Et2O/pentane gave yellow crystals 

suitable for an X-ray diffraction study.  
1H NMR (300 MHz, CDCl3, 296 K) δ 0.81 (d, J = 6.8 Hz, 9H, CH(CH3)2), 

0.96 (d, J = 7.0 Hz, 9H, CH(CH3)2), 1.85 (s, 3H, CH3 apical), 2.23 (br m, 3H, 

CH(CH3)2), 3.69 (d, J = 3.7 Hz, 1H, C4H2O3), 3.74 (d, J = 3.7 Hz, 1H, 

C4H2O3), 4.20 (m, 6H, CH2 oxa), 4.33 (m, 3H, CHoxa). 
13C {1H} NMR (75 MHz, CDCl3, 296 K) δ 14.8 (CH(CH3)2), 18.4 

(CH(CH3)2), 21.9 (CH3 apical), 30.5 (CH(CH3)2), 38.9 (CHma), 40.4 (CHma), 44.6 ((CH3)C(oxa)3), 

69.5 (CHoxa), 72.8 (CH2 oxa), 164.3 (NCO), 172.3 (Cquat ma), 172.8 (Cquat ma). 

FT-IR (KBr): ν 1786, 1722 cm-1 (νC=O), 1660 cm-1 (νC=N, free oxazoline), 1650 cm-1 (νC=N, 

coordinated oxazoline). 

HRMS (ESI): m/z : calcd for C24H35N3NaO6Pd ([M+Na]+) 590.146, found: 590.162; calcd for 

C48H70N6NaO12Pd2 ([2M+Na]+) 1157.302, found: 1157.329. 

elemental analysis calcd (%) for C24H35Cl2N3O6Pd: C 50.75, H 6.21, N 7.40; found: C 50.86, H 

6.19, N 7.37. 

                                                 
24 A. M. Kluwer, C. J. Elsevier, M. Bühl, M. Lutz, A. L. Spek, Angew. Chem. 2003, 115, 3625; Angew. Chem. Int. 

Ed. 2003, 42, 3501 
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(1,1,1-tris[(4R)-4-phenyloxazolin-2-yl]ethane)(maleic anhydride)palladium(0) (45)  

Yield: 75%.  
1H NMR (600 MHz, CD2Cl2, 296 K) δ 2.16 (s, 3H, CH3), 2.92 (d, J = 3.9 

Hz, 1H, C4H2O3), 3.30 (d, J = 3.8 Hz, 1H, C4H2O3), 4.46 (br s, 3H, CH2 

oxa), 4.86 (pseudo-t, J = 9.2 Hz, 3H, CH2 oxa), 5.40 (dd, J = 6.7 Hz, 10.1 Hz, 

3H, CHoxa), 7.33-7.48 (m, 15H, CHarom). 
13C {1H} NMR (150 MHz, CD2Cl2, 296 K) δ 22.2 (CH3), 38.9 (CHma), 41.4 

(CHma), 45.6 ((CH3)C(oxa)3), 76.2 (CH2 oxa), 76.6 (CH2 oxa), 76.7 (CHoxa), 

127.0, 127.2,  127.9, 128.7 , 129.1(Carom), 140.7 (Cquat-arom), 166.5 (NCO), 171.9 (Cquat ma), 172.7 

(Cquat ma). 

FT-IR (KBr) ν 1798, 1727 cm-1 (νC=O), 1662 cm-1 (νC=N, free oxazoline), 1655 cm-1 (νC=N, 

coordinated oxazoline). 

HRMS (FAB): m/z : calcd for C29H27N3O3Pd ([M-ma]+) 571.109, found: 571.114. 

elemental analysis calcd (%) for C33H29N3O6Pd: C 59.16, H 4.36, N 6.27; found: C 58.02, H 

4.32, N 6.35. 

(1,1,1-tris[(4S)-4-benzyloxazolin-2-yl]ethane)(maleic anhydride)palladium(0) (46) 

Yield: 56%. 
1H NMR (400 MHz, CD2Cl2, 296 K) δ 1.53 (s, 3H, CH3), 2.78 (dd, J = 

8.1 Hz, 13.2 Hz, 2H, CH2 Bn, 1H, C4H2O3), 3.13 (br m, 2H, CH2 Bn, 1H, 

C4H2O3) 3.87 (br m, 2H, CH2 Bn), 4.14 (br m, 3H, CH2 oxa), 4.27 

(pseudo-t, J = 8.8 Hz, 3H, CH2 oxa), 4.51 (m, 3H, CHoxa), 7.22-7.34 (m, 

15H, CHarom). 
13C {1H} NMR (100 MHz, CD2Cl2, 296 K) δ 21.8 (CH3), 39.8 (CHma), 

40.5 (CH2 Bn), 41.2 (CHma), 45.0 ((CH3)C(oxa)3), 68.2 (CHoxa), 72.8 (CH2 oxa), 127.1, 128.9, 

130.2 (Carom), 139.8 (Cquat-arom), 164.4 (NCO), 172.8 (Cquat ma), 173.6 (Cquat ma). 

FT-IR (KBr): ν 1793, 1724 cm-1 (νC=O), 1662 cm-1 (νC=N, free oxazoline), 1655 cm-1 (νC=N, 

coordinated oxazoline). 

HRMS (FAB): m/z : calcd for C32H33N3O3Pd ([M-ma]+) 613.156, found: 613.162. 
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(2,2-bis[(4S)-4-isopropyloxazolin-2-yl]-1-(pyridin-2-yl)propane)(maleic anhydride)palladium(0) 

(48) 

Yield: 69%. 
1H NMR (600 MHz, CD2Cl2, 296 K) δ 0.48-0.53 (m, 2H, CH(CH3)2), 0.74-

0.98 (m, 10H, CH(CH3)2), 1.71, 173 (s, 3H, CH3 apical), 2.33 (br m, 1H, 

CH(CH3)2), 2.45 (br m, 1H, CH(CH3)2), 3.43 (d, J = 15.2 Hz, 1H, CH2 Py), 

3.52 (d, J = 16.1 Hz, 1H, CH2 Py), 3.60-3.68 (m, 2H, C4H2O3), 4.02-4.32 (m, 

6H, CH2 oxa, CHoxa), 7.11 (m, 2H, CHarom), 7.61 (m, 1H, CHarom), 8.41 (m, 1H, 

CHarom). 
13C {1H} NMR (150 MHz, CD2Cl2, 296 K) δ 13.6,13.8, 18.4 (CH(CH3)2), 

26.1 (CH3 apical), 29.1, 29.6 (CH(CH3)2), 37.5, 39.3 (CHma), 43.9 (CH2 Bn), 42.7 ((CH3)C(oxa)3), 

67.8, 68.2 (CHoxa), 72.2 (CH2 oxa), 121.6, 122.8, 136.0 (Carom),  156.3 (Cquat-arom), 169.1 (NCO), 

172.8, 173.8 (Cquat ma). 

 FT-IR (KBr): ν 1794, 1723 cm-1 (νC=O), 1664 cm-1 (νC=N, free oxazoline), 1653 cm-1 (νC=N 

coordinated oxazoline). 

HRMS (FAB): m/z : calcd for C20H29N3O2Pd ([M-ma]+) 419.130, found: 449.131. 

(1,1,1-tris[(4R,5S)-4,5-indanediyloxazolin-2-yl]ethane)(tetracyanoethylene)palladium(0) (47)  

Ind-trisox (105 mg, 0.21 mmol) in THF (2 mL) was added to 

a solution of [(η2,η2-nbd)(η2-tcne)Pd] (68 mg, 0.21 mmol) in THF (2 

mL). After stirring for 2 h, the reaction mixture was filtered through 

Celite and concentrated under reduced pressure to 2 mL. Pentane (10 

mL) was then added to the solution, after which a yellow powder 

was obtained. The crude solid was washed three times with pentane 

(7 mL) and dried in vacuo to yield 70 mg (50%) of the complex as a 

yellow powder. 
1H NMR (400 MHz, CD2Cl2, 296 K) δ 1.60 (s, 3H, CH3), 2.77 (d, J = 18.0 Hz, 3H, CH2 Ind), 3.28 

(dd, J = 6.4 Hz, 18.3 Hz, 3H, CH2 Ind), 5.40 (pseudo-t, J = 6.6 Hz, 3H, OCHoxa), 5.66 (d, J = 7.4 

Hz, 3H, NCHoxa) 7.28 (m, 3H, CHarom), 7.38 (m, 6H, CHarom); 7.73 (m, 3H, CHarom). 
13C NMR (100 MHz, CD2Cl2, 296 K) δ 20.6 (CH3), 38.6 (CH2 Ind), 45.6 ((CH3)C(oxa)3), 77.8 

(NCHoxa), 86.9 (OCHoxa), 114.6, 115.0 (Ctcne), 125.7, 126.2, 128.3, 129.8 (Carom), 139.3, 139.6 

(Cquat-arom), 159.7 (NCO). 
1H NMR (400 MHz, CD2Cl2, 203 K) δ 1.54 (s, 3H, CH3), 1.88 (d, J = 18.2 Hz, 1H, CH2 Ind), 2.42 

(d, J = 18.3 Hz, 1H, CH2 Ind), 3.01 (dd, J = 6.8 Hz, 18.4 Hz, 1H, CH2 Ind), 3.18 (dd, J = 5.2 Hz, 
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18.3Hz, 1H, CH2 Ind), 3.38 (d, J = 18.4 Hz, 1H, CH2 Ind), 3.46 (dd, J = 5.7 Hz, 19.2 Hz, 1H, CH2 

Ind), 5.14 (pseudo-t, J = 7.0 Hz, 1H, OCHoxa), 5.36 (pseudo-t, J = 6.1 Hz, 1H, OCHoxa), 5.53 (d, J 

= 7.8 Hz, 1H, NCHoxa), 5.58 (d, J = 7.0 Hz, 1H, NCHoxa), 5.61 (pseudo-t, J = 6.4 Hz, 1H, 

OCHoxa), 5.76 (d, J = 7.2 Hz, 1H, NCHoxa), 7.35 (m, 10 H, CHarom), 7.76 (d, J = 7.8 Hz, 1H, 

CHarom); 7.87 (d, J = 7.5 Hz, 1H, CHarom). 
13C NMR (100 MHz, CD2Cl2, 203 K) δ 20.6 (CH3), 37.1, 37.4, 38.1, 38.4 (CH2 Ind), 44.3 

((CH3)C(oxa)3), 76.0, 77,0 (NCHoxa), 77.7, 84.0, 86.7, (OCHoxa), 87.0, (NCHoxa), 113.8, 114.4 

(Ctcne), 124.8, 125.1, 127.6, 129.5 (Carom), 137.5, 138.9 (Cquat-arom), 160.2, 168.0 (NCO). 

FT-IR (KBr): ν 1653 cm-1 (νC=N, coordinated oxazoline), 1649 cm-1 (νC=N, free oxazoline). 

HRMS (FAB): m/z : calcd for C32H27N3O3Pd ([M-tcne]+) 607.109, found: 607.115; calcd for 

C38H27N7O3Pd ([M]+) 735.121, found: 735.129. 

4. Magnetisation transfer experiments 

Acquisition of the data 

The magnetisation transfer experiments were carried out on a Bruker Avance II 400 

spectrometer. To invert selectively the desired signal a selective shaped pulse was employed. 

The two major parameters defining the selective pulse, sp1 and p11, have been optimised 

manually (sp1 = power of the excitation, p11 = width of the excitation). 

 

Pulse program 

For both study, the pulse program employed (t1ir_car) was as followed: 

 

1 ze 
2 d1 
  4u pl0:f1 
  p11:sp1:f1 ph1:r 
  vd 
  p1 ph2 
  go=2 ph31 
  d11 wr #0 if #0 ivd 
  lo to 1 times td1 
exit 
 
ph1=0 2  
ph2=0 0 2 2 1 1 3 3 
ph31=0 0 2 2 1 1 3 3 
 
;pl1 : f1 channel - power level for pulse (default) 
;p1 : f1 channel -  90 degree high power pulse 
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;p2 : f1 channel - 180 degree high power pulse 
;d1 : relaxation delay; 1-5 * T1 
;d11: delay for disk I/O                             [30 msec] 
;vd : variable delay, taken from vd-list 
;NS: 8 * n 
;DS: 4 
;td1: number of experiments = number of delays in vd-list 

 

Acquisition parameters 

The relevant acquisition parameters are summarised in Table 5.3.1. 

 39 42 
General   
   PULPROG t1ir_car t1ir_car 
   TD 16384 16384 
   NS 8 8 
   DS 0 0 
   SWH (Hz) 30.78.82 30.78.82 
   AQ (s) 2.6608117 2.6608117 
   RG 128 228 
   DW (µs) 162.400 162.400 
   DE (µs) 6.50 6.50 
   D1 (s) 10.000 10.000 
   D11 (s) 0.0300 0.0300 
   P2 (µs) 30.00 30.00 
   VDLIST carole carole 
Channel f1   
   NUC1 1H 1H 
   P1 (µs) 10.00 10.00 
   P11 (µs) 35000.00 88666.70 
   PL1 (dB) -4.80 -4.80 
   PL1W (W) 19.72301865 19.72301865 
   SF01 (MHz) 399.8911325 399.8911325 
   SP1 (dB) 55.00 46.18 
   SP1W (W) 0.00002065 0.00015739 
   SPNAM1 Gaus1.1000 Re-burp_car 
SPOAL1 0.500 0.500 
SPOFFS1 (Hz) 0.00 0.00 

 

Table 5.3.1: Important acquisition paramaters 
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In Figure 5.3.1 is depicted the graphical edit of the pulse program used for complex 39. 

 

 
Figure 5.3.1: Graphical edit of the pulse program (study of complex 39) 

 

In Figure 5.3.2 is depicted the graphical edit of the pulse program used for complex 42. 

 

 
Figure 5.3.2: Graphical edit of the pulse program (study of complex 42) 

Theoretical fit of the experimental data 

Varying the temperature, the time dependence of the magnetisation in the two exchanging sites 

after inversion of the desired proton was fitted to the appropriate sets of equations derived from 

the McConnell equations.25,26 The fits of the experimental data with derived McConnell 

                                                 
25 H. M. McConnell, J. Chem. Phys. 1958, 28, 430. 
26 J.J. Led, H. Gesmar, J. Magn. Reson. 1982, 49, 444. 
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equations were carried out using the software SigmaPlot.27  Fits of the theoretical curves to the 

experimental data gave the NMR spectroscopic rate constants kNMR which are summarised in 

Table 3.2.1 for complex 39 and in Table 3.2.2 for complex 42 of Chapter 3. 

5. Asymmetric allylic alkylation 

Allylic acetate was prepared by acetylation of the corresponding commercially available allylic 

alcohol with acetic anhydride.28 

General procedure 

A degassed solution of [Pd(η3-C3H5)Cl]2 (6.4 µmol, 1.1 mol%) and ligand (14.5 µmol, 2.5 

mol%) in 0.7 mL THF was stirred at 50°C for 1.5 h. After cooling down to room temperature, 

rac-1,3-diphenylprop-2-enyl acetate (147 mg, 0.58 mmol) in THF (2.2 mL,) dimethyl malonate 

(0.2 mL, 1.75 mmol), N,O-bis(trimethylsilyl)acetamide-BSA- (0.4 mL, 1.75 mmol) and a few 

milligrams of potassium acetate were added. The reaction mixture was stirred at room 

temperature. After the desired reaction time the reaction mixture was diluted with CH2Cl2, 

washed with a saturated aqueous solution of ammonium chloride and the organic extract was 

dried over Na2SO4. The residue was purified by flash chromatography (EtOAc/ Hexane, 90/10) 

to yield a colorless oil. Yields and ee-values are the average of at least 2 corroborating runs. 

Determination of enantiomeric excesses 

The ee-values of the product were determined by HPLC using a Daicel Chiralpak AD-H column.  

HPLC method: Hexane/iPrOH 95/5, 1 mL/min, tR1 = 14.6 min, tR2 = 20.5 min, detection at 260, 

254 and 250 nm. 

The absolute configuration was assigned by comparing the observed value of the optical rotation 

with literature data.29 

Kinetic studies 

The comparative studies of the catalytic activities were conducted for each experiment using 

palladium catalysts prepared in situ by reacting the respective ligand with the [Pd(η
3-C3H5)Cl]2 

dimer at 50°C for 1.5 h in THF. The catalytic allylic alkylations were carried out at room 

temperature. The progress of the reaction was monitored by measuring the appearance of the 

product by GC, using dodecane as internal standard.  
                                                 
27 The files are saved on a DVD and are available for more informations. 
28 I. D. G. Watson, S.A Styler, A. K. Yudin, J. Am. Chem. Soc. 2004, 126, 5086. 
29 J. Sprinz, G. Helmchen, Tetrahedron Lett. 1993, 34, 1769. 
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GC method: Tinj = 200°C, Tdet = 250°C, 20 mL/min He flow, splitless, temperature program: 

90°C, 1 min, 30°C/min up to 250°C, 250°C, 10 min; tR dodecane = 4.1 min, tR product = 13.3 min. 

6. Asymmetric allylic amination 

General procedure 

A degassed solution of [Pd(η3-C3H5)Cl]2 (6.4 µmol, 1.1 mol-%) and ligand (14.5 µmol, 2.5 mol-

%) in 0.7 mL THF was stirred at 50°C for 15 min. Subsequently, rac-1,3-diphenylprop-2-enyl 

acetate (147 mg, 0.58 mmol) in THF (2.2 mL) and morpholine (35 µL, 0.40 mmol) were added. 

The reaction mixture was stirred 5 days at 50°C and worked out by quenching with aqueous 

ammonium chloride, extracting the organic compound with CH2Cl2 and drying with Na2SO4. 

The residue was purified by flash chromatography (Et2O/Pentane, 1/1) to yield a colorless oil. 

Yields and ee-values are the average of at least 2 corroborating runs. 

Determination of enantiomeric excesses 

The ee-values of the product was determined by HPLC using a Daicel Chiralpak OD column.  

HPLC method: Hexane/iPrOH 99/1, 1 mL/min, tR1 = 5.6 min, tR2 = 9.5 min, detection at 265, 257 

and 250 nm. 

IV. Chapter 4 

1. Copper(II) complex 

[Cu((R,S,S)-Ph-trisox)(β-ketoester)](ClO4) (49) 

A mixture of Cu(ClO4)2·6H2O (54 mg; 0.143 mmol) and 

(R,S,S)-trisox (70 mg; 0.150 mmol) in THF (2 mL) was stirred for 

1.5 hours. A 5.8·10–2 M solution of diethylmethylmalonate / t-

BuOK (2.7 mL, 0.157 mmol) was subsequently added and the 

resulting green mixture was stirred overnight. After removal of the 

volatiles in vacuo, the crude product was washed with hexane (3 x 5 

mL) and the green solid was dried under vacuum. This solid 

material was extracted with toluene and the resulting suspension 

was filtered through a Teflon microfilter (0.2 µm). Slow vapour diffusion of hexane into the 

solution at -4°C gave green crystals of the compound (57 mg; 52%). 
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elemental analysis calcd (%) C36H40ClCuN3O11: C 54.75, H 5.11, N 5.32; found: C 54.39, H 

5.09, N 5.36. 

2. Asymmetric Mannich reaction 

N-tosyl α-imino ester was prepared from ethyl glyoxylate and p-toluenesulfonyl isocyanate 

following a literature procedure.30 

The catalyst solutions for the enantioselective Mannich reaction of the β-ketoester were obtained 

by taking the appropriate amount of a stock solution and diluting to 1 mL. 

General procedure: 

A stock solution of CuClO4.6H2O (8.3 mg, 22.5 µmol) and the desired ligand (33.8 µmol) in 

acetone/Et2O (1.5 mL, 1/3 v/v) was prepared under air. The homogeneous solution was stirred 

for 30 min and successive aliquots were taken to obtain the desired catalyst loading for each run. 

To each catalyst solution was added ethyl 2-methylacetoacetate (22.5 µL, 0.15 mmol) and the 

solution was cooled down to -28°C. N-tosyl-α-imino ester (360 µL, 0.18 mmol) in solution in 

toluene (0.5 mol.L-1) was then added. After 36 h at -28°C, the solvent was removed in vacuo and 

the residue was purified by flash chromatography (CH2Cl2/MeOH 100/1) to yield a colorless oil. 

Yields and ee-values are the average of at least 2 corroborating runs. 

Determination of enantiomeric excesses 

The ee-values of the product was determined by HPLC using a Daicel Chiralpak AD-H column.  

HPLC method: Hexane/iPrOH 95/5, 0.8 mL/min, minor diastereomer: tR1 = 53.2 min, tR2 = 55.9 

min, major diastereomer: tR1 = 59.5 min, tR2 = 66.2 min, detection at 213, 220 and 254 nm. 

3. Asymmetric α-amination 

The catalyst solutions for the enantioselective Mannich reaction of the β-ketoester were obtained 

by taking the appropriate amount of a stock solution and diluting to 1 mL. 

General procedure:  

A stock solution of Cu(OTf)2 (8.1 mg, 22.5 µmol) and the ligand (27 µmol) in distilled CH2Cl2 

(1.5 mL) was prepared under air. The homogeneous solution was stirred for 30 min and 

successive aliquots were taken to obtain the desired catalyst loading for each run. To each 

                                                 
30 G. R. Heintzelman, S. M. Weinreb, M. Parvez, J. Org. Chem. 1996, 61, 4594 
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catalyst solution was added ethyl 2-methylacetoacetate (21.4 µL, 0.15 mmol) and the solution 

was cooled down to 0°C. Pre-cooled dibenzyl azodicarboxylate (54.8 mg, 0.18 mmol) in solution 

in CH2Cl2 (0.5 mL) was then added. After 16 h at 0°C, the product was isolated by flash 

chromatography (Hexane/EtOAc, 75/25) to yield a colorless oil. Yields and ee-values are the 

average of at least 2 corroborating runs. 

Determination of enantiomeric excesses 

The ee-values of the product was determined by HPLC using a Daicel Chiralpak AD-H column.  

HPLC method: Hexane/iPrOH 90/10, 1 mL/min, tR1 = 35 min, tR2 = 40 min, detection at 213 and 

254 nm. 

Kinetic studies 

The comparative studies of the catalytic activities were conducted for each experiment using 

copper catalysts prepared in situ by reacting the respective ligand with the Cu(OTf)2 salt at room 

temperature for 0.5 h in CH2Cl2. The catalytic α-amination reactions were carried out at 0°C. The 

progress of the reaction was monitored by measuring the disappearance of the ethyl 2-

methylacetoacetate by GC, using dodecane as internal standard. 

GC method: Tinj = 200°C, Tdet = 250°C, 20 mL/min He flow, splitless, temperature program: 

40°C, 1 min, 25°C/min up to 270°C, 270°C, 2 min; tR substrate = 3.5 min, tR dodecane = 6.4 min. 
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V. X-ray experimental data 

X-ray experimental data for palladium complexes 39-44: 

 

 39 40 43 44 
Empirical formula  C20H33Cl2N3O3Pd C29H27Cl2N3O3Pd C33H34BCl2F4N3O3Pd C24H35N3O6Pd 
Formula weight  540.81 642.84 784.74 567.96 
Temperature /K 173 100(2) 100(2) 173 
Crystal system  Orthorhombic Monoclinic Monoclinic Monoclinic 
Space group  P212121 P21 P21 P21 

Unit cell dimensions      
a /Å 8.7083(1) 10.2954(10) 9.1344(4) 10.4450(2) 
b /Å 10.8395(1) 10.0926(10) 20.6281(10) 10.0975(2) 
c /Å 24.8911(4) 13.0348(13) 9.3599(4) 14.0887(3) 
β  101.537(2) 111.4780(10) 90.161(5) 

Volume / Å
3 2349.56(5) 1327.0(2) 1641.17(13) 1485.91(5) 

Z  4 2 2 2 

Density (calcd.) / Mgm
-3 1.53 1.609 1.588 1.27 

Absorpt. Coeff. / mm
-1 1.042 0.938 0.790 0.661 

F000 1112 652 796 588 

Crystal size / mm
3 0.10 × 0.06 × 0.06 0.20 × 0.05 × 0.05 0.30 × 0.30 × 0.30 0.20 × 0.16 × 0.10 

θθθθ range for data collect. 
/° 

2.5 to 30.02 2.02 to 32.08 1.97 to 32.01 2.5 to 30.05 

Index ranges -12 ≤ h ≤ 12, 
-15 ≤ k ≤ 15, 
-34 ≤ l ≤ 35 

-15 ≤ h ≤ 14, 
-14 ≤ k ≤ 15, 

0 ≤ l ≤ 19 

-13 ≤ h ≤ 12, 
-30 ≤ k ≤ 25, 

0 ≤ l ≤ 13 

-14 ≤ h ≤ 14, 
-14 ≤ k ≤ 14, 
-19 ≤ l ≤ 19 

Reflections collected  32759 15547 8556 
Independent refl. [Rint] 6871 [0.040] 8646 [0.0583] 8670 [0.0224] 4588 [0.040] 
Completeness to θθθθ = 
30.02° /% 

99.9 95.6 100 99.8 

Absorption correction Empirical 
(SHELXA) 

Semi-empirical 
from equivalents 

Semi-empirical from 
equivalents 

Empirical 
(SHELXA) 

Max. and min. transm. 0.928 and 0.901 0.7458 and 0.6070 0.7974 and 0.7974 1.0000 and 0.9401 
data / restraints / param. 4997 / 0 / 262 8646 / 1 / 344 8670 / 8 / 43 3495 / 1 / 306 

Goodness-of-fit on F
2 1.323 1.084 1.072 1.966 

Final R indices [I > 
2σσσσ(I)]  

R1 = 0.033, 
wR2 = 0.037 

R1 = 0.0372, 
wR2 = 0.0688 

R1 = 0.0290, 
wR2 = 0.0748 

R1 = 0.038, 
wR2 = 0.061 

R indices (all data) R1 = 0.058, 
wR2 = 0.108 

R1 = 0.0560, 
wR2 = 0.0750 

R1 = 0.0303, 
wR2 = 0.0760 

R1 = 0.051, 
wR2 = 0.120 

Abs. struct. parameter -0.02(3) 0.000(19) -0.021(15) -0.04(3) 
Res. density, max diff. 

peak & hole / e·Å
-3 

1.115 and -0.304 1.430 and -0.609 1.218 and -0.603 0.895 and -0.317 
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X-ray experimental data for compound 31a and copper complex 49: 

 

 31a  49 

Empirical formula  C14H20N2O Empirical formula C50H56ClCuN3O11 
Formula weight  232.32 Formula weight 973.97 
Temperature /K 100 Crystal size /mm 0.2·0.2·0.1 
Crystal system  Orthorhombic Crystal system tetragonal 
Space group  P212121 Space group P 41212 
Unit cell dimensions   a /Å 15.9231(8) 
a /Å 5.1912(7) b /Å  
b /Å 11.6401(15) c /Å 36.637(3) 
c /Å 21.277(3) V /Å3 9289.2(9) 
β 90 Z 8 

Volume / Å
3 1285.7(3) Dc /M·gm-3 1.393 

Z  4 µ /mm-1 0.593 

Density (calcd.) / Mgm
-3 1.200 Max., min. transmission 

factors 
0.926, 0.890 

Absorpt. Coeff. / mm
-1 0.076 Index ranges, h,k,l -13...13, 0...19, 0...44 

F000 504 ϑ range /° 1.4...25.7 

Crystal size / mm
3 0.15 x 0.15 x 0.10 F000 4088 

θθθθ range for data collect. /° 1.91 to 28.70 Refl. collected 117733 [0.0729] 
Index ranges 0 ≤ h ≤ 7, 

0 ≤ k ≤ 15, 
0 ≤ l ≤ 28 

Refl. indep. [Rint] 8663 

Reflections collected 10195 Data / rest. / par. 8663 / 94 / 615 
Independent refl. [Rint] 1931 [0.0669] Goodness-of-fit on F2 1.064 
Completeness to θθθθ = 
30.02° /% 

100.0 
R indices [I>2σ·(I)] 

R1 = 0.0529, wR2 = 
0.1395 

Absorption correction Semi-empirical from 
equivalents 

R indices (all data) 
R1 = 0.0657, wR2 = 

0.1485 
Max. and min. transm. 0.8624 and 0.7746 Absolute structure 

parameter 
0.002(17) 

data / restraints / param. 1931 / 0 / 201 Largest residual peaks 
/e·Å-3 

0.522 and -0.754 

Goodness-of-fit on F
2 1.088   

Final R indices [I > 2σσσσ(I)]  R1 = 0.0429, 
wR2 = 0.0961 

  

R indices (all data) R1 = 0.0615, 
wR2 = 0.1048 

  

Abs. struct. parameter 4(2)   
Res. density, max diff. 

peak & hole / e·Å
-3 

0.052, 0.215 and -0.212 
  

 

 





 



Résumé 

 

I. Introduction 

Depuis près de vingt ans, le cycle oxazoline occupe une place prépondérante dans la 

conception de nouveaux ligands chiraux azotés. En raison de leur accessibilité, de leur nature 

modulaire et de leurs larges applications dans des réactions métallo-catalysées, les molécules 

contenant un cycle oxazoline chiral sont devenus une des classes de ligands les plus 

communément utilisés en catalyse énantiosélective. Depuis la première publication en 1986 de 

l’utilisation en catalyse asymétrique d’un ligand chiral contenant un cycle oxazoline, une grande 

variété de ligands contenant un ou plusieurs cycles oxazolines incorporants différents 

hétéroatomes, centres chiraux supplémentaires et caractéristiques structurales spécifiques, ont été 

utilisés avec succès dans de nombreuses réactions énantiosélectives.1  

Il existe déjà plusieurs publications dans la littérature portant sur la synthèse et 

l’utilisation de ligands trisoxazolines2 mais aucun de ceux-ci ne sont du type 1,1,1-

tris(oxazolinyl)éthane qui devrait donner la géométrie la plus adaptée pour coordiner un métal de 

façon tripodale (Figure 1). 
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Figure 1: Trisoxazolines du type 1,1,1-tris(oxazolinyl)éthane 

 

 Le but de ce travail a été de concevoir de nouveau ligands trisoxazolines de haute 

symétrie, basé sur une méthode de synthèse développée au sein du groupe. Nous avions ensuite 

comme objectif d’étudier leur comportement en catalyse énantiosélective et plus particulièrement 

de déterminer leur intérêt par rapport aux ligands de symétrie C2 bien établis dans la littérature. 

 Une étude de l’influence de la symétrie C3 en catalyse asymétrique par comparaison 

directe entre des systèmes trisoxazoline-métal et bisoxazoline-métal a donc été effectuée. 

                                                 
1 H. A. McManus, P. J. Guiry, Chem. Rev. 2004, 104, 4151. 
2 J. Zhou, Y. Tang, Chem. Soc. Rev. 2005, 34, 664. 



II. Synthèse des ligands 

 L’originalité du ligand trisoxazoline développé au sein du laboratoire et employé pour 

nos études provient du fait que les trois entités oxazolines sont toutes reliées au même atome de 

carbone. Les tentatives de synthèse d’une telle molécule par formation séquentielle des trois 

cycles oxazolines ont échoué en raison de la décarboxylation et décomposition des précurseurs 

durant la formation de la trisoxazoline. Une nouvelle méthode récemment mise au point permet 

de réaliser la synthèse de dérivés du type 1,1,1-tris(oxazolinyl)éthane par couplage entre une 

bisoxazoline lithiée et une 2-bromooxazoline (Figure 2). 
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Figure 2: Synthèse du ligand trisoxazoline 

 

Trois nouvelles trisoxazolines de symétrie C3 ont été développées durant ce travail avec 

les substituants suivant sur le cycle oxazoline: (4R)-phenyl, (4S)-benzyl et (4R,5S)-indanyl. La 

modularité de cette voie de synthèse permet aussi d’obtenir des trisoxazolines à groupement 

mixtes en effectuant le couplage entre une bromooxazoline avec un groupement R et une 

bisoxazoline contenant de groupements R’. Des trisoxazolines de symétrie C1 ont également été 

synthétisées pour être utilisées dans les réactions catalytiques étudiées.  

Il a également été démontré que les 2-bromooxazolines, intermédiaires clé de la synthèse 

des trisoxazolines, se réarrangent thermiquement pour donner les dérivés α-bromo-isocyanate 

correspondants. Ces derniers, après réaction avec la phenylethylamine, génèrent sélectivement 

des aziridines, produits de N-cyclisation, ou des aminooxazolines, produits de O-cyclisation, 

selon les conditions réactionnelles employées. 

III. Application en chimie du palladium 

L’utilisation de ligands tridentates de symétrie C3 dans des réactions où ceux-ci 

interviennent en tant que ligands bidentates dans les étapes stéréosélectivement déterminantes 

devrait simplifier la stéréochimie des intermédiaires catalytiques clés. Ceci s’appliquerait aux 

systèmes pour lesquels il y a échange entre les différentes espèces κ2-coordinées et pour lesquels 

le troisième bras non-coordiné joue un rôle direct ou indirect dans des étapes clés du cycle 



catalytique. La réaction de substitution allylique catalysée au palladium est une réaction 

appropriée pour tester cette hypothèse.  

Des complexes de palladium(II) ont été synthétisés par réaction entre les trisoxazolines 

respectives et le précurseur [Pd(PhCN)2Cl2]. A température ambiante, la perte de la symétrie C3 

du ligand est observée en RMN du 1H et indique un mode de coordination bidentate de la 

trisoxazoline. Des études RMN à température variable ainsi qu’une série d’expériences de 

transfert de magnétisation montrent un échange entre les cycles oxazoline coordinés et non-

coordinés. Pour les complexes [(iPr-trisox)PdCl2](1) et [(Ind-trisox)PdCl2](2), les valeurs des 

paramètres d’activation du processus fluxionnel ont pu être déterminées (1: ∆H‡= 75.6±0.5 

kJ.mol-1, ∆S‡= 14.0±1.5 J.mol-1; 2: ∆H‡= 79.4±2.0 kJ.mol-1, ∆S‡= 9.3±6.0 J.mol-1). Les faibles 

entropies d’activation n’indiquent la présence ni d’un mécanisme de substitution associatif, ni 

d’un mécanisme de substitution dissociatif dominant pour ce processus fluxionnel. Tenant 

compte des études mécanistiques effectuées concernant les substitutions sur les complexes de 

PdII plan carré, nous présumons que l’échange entre cycles oxazoline coordinés et libres a un 

caractère légèrement associatif impliquant ainsi la formation d’une espèce intermédiaire 

pentacoordinée de palladium(II). 

Des complexes de palladium(0) ont également été isolés par réaction entre le ligand 

désiré et le précurseur [Pd(nbd)(alcène)] (alcène = anhydride maléique (ma) ou 

tetracyanoéthylène (tcne)) en substituant le norbornadiène par le ligand. Pour les complexes 

[(Ph-trisox)Pd(ma)] et [(iPr-trisox)Pd(ma)] une analyse par diffraction des rayons X indique une 

géométrie trigonale plane avec le ligand trisoxazoline coordiné de façon bidentate et le dernier 

site de coordination occupé par l’alcène qui adopte l’une des deux orientations diastéréotopiques 

différentes possibles. En RMN du 1H, la symétrie des signaux du ligands indique un échange 

dynamique des cycles oxazolines pour ces complexes ainsi qu’un équilibre entre les 

diastéréomères présents en raison des différentes orientations possibles de l’alcène par rapport à 

l’hétérocycle libre. Des études RMN à basse température ont permis de figer les processus 

fluxionnels et dans certains cas d’obtenir la barrière d’activation ∆G‡ des échanges observés.  

Le but de notre étude est de déterminer si la présence d’un troisième bras sur le ligand 

chiral modifie l’activité et la sélectivité en catalyse asymétrique ayant dans l’espèce active un 

ligand bidentate. Comme citée précédemment, la réaction test utilisée est la réaction d’alkylation 

allylique (Figure 3).  
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Figure 3: Réaction d’alkylation allylique étudiée 

 

Dans cette optique, nous nous sommes penchés sur l’utilisation de ligands diazotés 

purement bidentates qui nous permettraient d’effectuer une comparaison logique. Nous avons 

donc réaliser une comparaison directe entre quatre couples différents trisoxazoline/bisoxazoline 

qui se distinguent par le substituant présent sur l’hétérocycle (Figure 4).  

 
Figure 4: Comparaison des courbes de conversion entre les systèmes avec ligands bisoxazoline ou 

trisoxazoline 
 

Les systèmes trisoxazoline/palladium induisent en général une meilleure 

énantiosélectivité comparés à leurs analogues bisoxazoline/palladium. Une réduction 

significative de la période d’induction ainsi qu’une augmentation de la vitesse de réaction ont 

également été observés avec les ligands tridentates. Ces dernières observations ont été 

confirmées avec l’étude de systèmes comportant des bisoxazolines fonctionnalisées avec un bras 

coordinant. 

IV. Application en chimie du cuivre 

Les ligands bisoxazolines sont intensivement utilisés en catalyse asymétrique d’acide de 

Lewis avec le Cu(II) avec en général  de bonnes activités et sélectivités. Cependant, l’utilisation 

d’une charge catalytique importante est nécessaire en raison de la labilité des ligands coordinés 

au cuivre. Un ligand tridentate favorisant une coordination faciale est censé limiter cette 



décoordination en stabilisant l’état stationnaire du complexe. En effet, la coordination du 

troisième cycle oxazoline devrait inhiber les propriétés d’acide de Lewis du complexe, comme 

montré récemment dans des études théoriques sur des catalyseurs de type CuII-bisoxazoline. Le 

passage de l’espèce au repos à l’espèce active à 17 électrons  nécessite la décoordination d’une 

unité oxazoline et l’ouverture du système (Figure 5). Le ligand présentant une symétrie C3, cette 

décoordination permet l’obtention de la même espèce active, quelle que soit le cycle oxazoline 

concerné.  
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Figure 5: Equilibre entre l’espèce active et l’état stationnaire 

 

Pour tester ce concept d’hémilabité du cuivre(II) des complexes du type [CuII(trisox)] ont 

été utilisés dans la réaction asymétrique de Mannich entre un β-cétoester et une imine activée et 

dans la réaction catalytique d’α-amination d’un β-cétoester (Figure 6).  
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Figure 6: Réactions de Mannich et d’α-amination étudiées 

 

Pour les deux réactions, il a été montré que les ligands trisoxazolines sont actifs et 

sélectifs dans les catalyses énantiosélectives de type acide de Lewis avec le cuivre(II). En 

comparaison directe avec leurs analogues bisoxazolines, les trisoxazolines se sont avérés être 

plus efficaces pour des charges catalytiques faibles (réaction de Mannich avec 10 et 0.01 mol% 

de catalyseur: 90% et 90% ee respectivement pour la trisox; 84% et 66% ee respectivement pour 

la BOX). Un ligand tridentate, limitant la labilité, combiné à la symétrie C3, limitant le nombre 

d’espèces actives possibles, aboutit donc à un système catalytique supérieur aux systèmes 

contenant les bisoxazolines correspondantes. 



 



Kurzfassung 

 

Diese Arbeit beschreibt die Koordinationschemie und die katalytische Anwendung der 

Familie der 1,1,1-Tris(oxazalinyl)-ethanliganden („Trisox“). Die hier beschriebenen 

Untersuchungen behandeln in erster Linie den Einfluß der dreizähligen Rotationssymmetrie der 

Liganden sowie die Rolle des dritten Oxazolinarms in katalytischen Reaktionen, deren 

Intermediate einen bidentaten Koordinationsmodus des Trisoxliganden beinhalten. 

Zu Beginn wird die Synthese hochsymmetrischer chiraler 1,1,1-Tris-

(oxazalinyl)ethanliganden, die Phenyl-, Benzyl- oder Indanylsubstituenten tragen, sowie 

nichtsymmetrischer Bis- und Trisoxazoline beschrieben, die gemischte Substituenten an der 4-

Position des Oxazolins tragen. Bei den bromierten Monooxazolin-Zwischenstufen wurde eine 

Isomerisierung beobachtet, bei der durch thermisch induzierte Umlagerung aus den 2-

Bromoxazolinen die korrespondierenden α-Bromo-isocyanat-Derivate entstehen. Diese reagieren 

mit Phenylethylamin in Abhängigkeit von den Reaktionsbedingungen selektiv entweder zu den 

N-zyklisierten Aziridinen oder den O-zyklisierten 2-Aminooxazolinen. 

Anschließend wird die Koordinationschemie der Trisoxazolinliganden mit Palladium 

beschrieben. Es konnten erfolgreich Palladium(II)chlorid- und -allyl-Komplexe und 

Palladium(0)-Komplexe synthetisiert werden. Im Zuge der Untersuchung des dynamischen 

Verhaltens dieser Komplexe in Lösung wurden die Aktivierungsparameter des Austauschs der 

Oxazolinreste bestimmt. Ein sys-tematischer Vergleich der katalytischen Effizienz von Trisox- 

und Bisox-Palladium-Systemen zeigte, daß die Trisox-basierten Komplexe den jeweils 

korrespondierenden Bisox-Systemen überlegen sind. Die zusätzliche Donorfunktion des dritten 

Oxazolinarms scheint eine wichtige Rolle beim Produkt-Substrat-Austausch und der Bildung der 

aktiven Katalysatorspezies zu spielen. 

Abschließend werden zwei kupferkatalysierte  Katalysen beschrieben, bei denen die 

dynamische Koordination der Trisoxazoline an Kupfer(II) ausgenutzt wird. Es konnte gezeigt 

werden, daß C3-symmetrische Trisoxazoline hocheffiziente Kupfer(II)-Komplexe für die 

enantioselektive Lewissäurekatalyse bilden, deren Aktivität auf der Hemilabilität des divalenten 

Kupfers basiert. Im direkten Vergleich mit den analogen Bisoxazolinsystemen erwiesen sich die 

Trisox/Kupfer-Katalysatoren insbesondere bei niedrigen Katalysatorbeladungen als effizienter in 

der enantioselektiven Mannich-Reaktion und der enantioselektiven α-Aminierung prochiraler β-

Ketoester. Zusätzlich wurden die Auswirkungen der Nutzung chiraler tridentater Podanden im 

Vergleich zu den besser etablierten bidentaten Bisox-Chelatliganden untersucht.  



 



Abstract 

 

This thesis describes the coordination chemistry and catalytic applications of the 1,1,1-

tris(oxazolinyl)ethane (“trisox”) family of ligands. The studies described herein are primarily 

concerned with the effect of the threefold rotational symmetry of the ligands, as well as the role 

of the third oxazoline arm in catalytic reactions in which there are intermediates that possess a 

bidentate coordination of the trisox ligand. 

The syntheses of highly symmetrical chiral 1,1,1-tris(oxazolinyl)ethane ligands bearing 

phenyl, benzyl or indanyl substituents, and of mixed bis- and trisoxazolines is described. The 

isomerisation of the 2-bromooxazolines was observed, in which the thermally induced 

rearrangement generates the corresponding α-bromo-isocyanate derivatives. Reaction of the 

latter with phenylethylamine led selectively to the N-cyclised aziridines or to the O-cyclised 2-

aminooxazolines, depending on the reaction conditions. 

The coordination chemistry of the trisoxazoline ligands with palladium is then described. 

Palladium(II) chloride and allyl complexes and a number of palladium(0) complexes were 

successfully synthesised. The dynamic behaviour of these complexes in solution was studied and 

activation parameters were determined for the exchange of the oxazoline moieties. The 

systematic comparison of the catalytic efficiency of trisox- and bisox-palladium systems in 

allylic substitution is described. It was demonstrated that the trisoxazoline-based complexes are 

superior catalysts in direct comparison to the corresponding bisoxazoline-based catalysts. The 

study showed that the additional donor function appears to play a role in the product/substrate 

exchange step as well as in the initial generation of the active catalyst. 

Finally, the exploitation of the dynamic coordination of the trisoxazolines to copper(II) in 

two copper-catalysed asymmetric reactions is described. It has been shown that C3-symmetric 

trisoxazolines form highly efficient enantioselective copper(II) Lewis acid catalysts, in which 

their success is based on the concept of a stereoelectronic hemilability of the divalent copper. In 

a direct comparison with the analogous bisoxazoline systems, the trisox/copper catalysts have 

proven to be more efficient in an enantioselective Mannich reaction as well as an 

enantioselective α-amination of prochiral β-ketoesters in presence of low catalyst loadings. To 

conclude the implications of the use of chiral tridentate podands in stereoselective catalysis 

compared to the more established bidentate chelates have been highlighted. 
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