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Résuḿe

Introduction

Récemment, des expériences [1–11], des simulations numériques [12–21] ainsi que
des approches théoriques [22–27] ont́et́e utilisées afin d’explorer le ph́enom̀ene de la
transition vitreuse en milieu confiné, de m̂eme que les ḿechanismes sous-jacents. Ces
études mettent eńevidence des d́eviations par rapport au comportement en volume si
le syst̀eme est confińe à l’échelle nanoscopique.

Un liquide de polym̀eres formant un verre présente des propriét́es que l’on re-
trouve également dans le cas d’autres liquides sujetsà une transition vitreuse; par
exemple, une forte augmentation (de type non Arrhenius) du temps de relaxation
structurale lors du refroidissement au voisinage de la température de transition vit-
reuseTg [28, 29]. L’hypoth̀ese selon laquelle cette augmentation est liéeà une crois-
sance de la longueur de corrélationξg existe de longue date.ξg est senśe correspondre
à la taille moyenne de la zone de réarrangement coopératif (cooperatively rearrang-
ing region, CRR), c’est-̀a-dire d’un sous-ensemble de particules susceptible de se
réarranger en une nouvelle configuration indépendament des autres particules dans
leur entourage [29]. Une approche tentante pour mettre enévidence l’existence de
telles CRR et estimer leur taille consiste en uneétude de la transition vitreuse en mi-
lieu confińe. L’augmentation deξg devrait alorsêtre tronqúee par la taille finie du
syst̀eme confińe, ce qui devrait conduirèa une diminution deTg [29].

De ŕecents travaux expérimemtaux et nuḿeriques ont en effet rapporté deśecarts
dans la valeur deTg pour des liquides confińes et des films de polym̀eres. Cependant,
ces d́eviations peuvent̂etre aussi bien des augmentations que des diminutions par
rapportà la valeur observ́ee en volume (cf. [2, 30, 31] pour des revues et [24, 25, 27]
pour des approches théoriques ŕecentes). Ceci implique qu’en plus des effets dûs
au confinement, d’autres facteurs jouent un rôle important. L’un des facteurs clé
devraitêtre l’interaction du liquide avec le substrat le confinant [11]. Les simulations
sugg̀erent que cette interaction liquide-substrat se décompose en deux contributions,
l’une énerǵetique et l’autre st́erique. Par exemple, une forte attraction liquide-substrat
peut píeger temporairement des particules proches des parois et contribuerà ralentir
la dynamique par rapport̀a celle observ́ee en volume [16, 17]. Par ailleurs, même
en l’absence d’attraction préférentielle, la dynamique peut se trouver ralentie si des
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particules sont emprisonnées dans des cavités du substrat [19, 32–34]. Dans les deux
cas, les particules lentes proches des parois ralentissent partiellement leur voisines qui
à leur tour ĝenent le mouvement de leurs voisines, etc. Ceci permet au ralentissement
induit par les parois de se propager vers le centre du système. Ceci ŕesulte en une
augmentation deTg, particulìerement dans le cas de confinements importants (pores
trèsétroits, films ultra fins). A contrario, on peut s’attendreà ce que des parois lisses
facilitent le mouvement des particules les plus proches, et ainsi conduisentà une
diminution deTg [35, 36].

La plupart deśetudes exṕerimentales de la transition vitreuse en géoḿetrie con-
finée ont port́e sur la ŕeponse moyenne du liquide confiné. On trouve parmi les excep-
tions notables les travaux récents de Nugent et al. [37] et ceux de Ellison et Torkel-
son [9, 10]. Ellison et al. utilisent une technique de fluorescence sur multicouches
dans laquelle une couche mince fluorescente de polystyrène (PS) est incorporée dans
un film de PS non marqué. Ceci permet de mesurerTg localement en diff́erents en-
droits du film. Ils obtiennent une forte réduction deTg à l’interface libre des films de
PS et une atténuation continue de l’effet quand la couche fluorescente est située de
plus en plus profond dans le film. Il est possible de mesurer une diminution deTg dans
une couche marquée sitúee jusqu’̀a 30 nm de la surface libre du film. Cette distance
exc̀ede largement la valeur deξg estiḿeeà 2-3 nm. Egalement, de récentes simula-
tions nuḿeriques indiquent l’existence d’une dynamique hét́erog̀ene [17, 35, 38] et
une distribution continue deTg dans les couches minces de polymères [15, 21, 39].

Films de polymères libres et support́es

Dans cette th̀ese, nous apportons de nouvelles preuves de la diminution deTg dans
les couches minces de polymères avec une surface libre et deséléments en faveur
de l’existence d’une température de transition vitreuse locale. Nous avons utilisé des
simulations de dynamique moléculaire de films libres et supportés pour des chaı̂nes
non enchev̂etŕees. Dans le cas du film supporté, le substrat est modélisé par un mur
attractif lisse. Pour ces deux géoḿetries diff́erentes, nous avonsétudíe l’influence du
confinement sur les propriét́es statiques et dynamiques du fondu.

Nous avons mis eńevidence une structure en couche de la densité de monom̀eres
à l’interface support́ee, tandis que le profil de densité au voisinage de la surface libre
décrôıt vers źero de façon monotone comme on peut l’observer sur la figure 1.

Cette structure en couches s’accentue lors d’un refroidissement et se propage
vers l’intérieur du film. La dynamique dans nos systèmes est́egalement modifíee
de par l’existence des interfaces. Une analyse résolue en couches démontre claire-
ment que les monom̀eres aux interfaces libre et solide sont plus rapides que ceux
situés au centre du film, qui conservent les propriét́es observ́ees en volume. De plus,
les monom̀eresà l’interface libre sont plus rapides que ceux proches du mur. Ces
monom̀eres de surface très mobiles transmettent une partie de leur mobilité élev́eeà
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Figure 1: Profil de densité ρ(y) pour un film supporté (trait plein) et un film libre (trait
pointillé) à T = 1 et T = 0.44. Chacun des deux systèmes contient n = 576 chaı̂nes.
La ligne verticale marquée “wall” indique la position de la paroi dans la simulation
du film supporté. La ligne pointillée verticale indique les positions des surfaces de
Gibbs (GDS). Comme la surface de gauche du film supporté yG

− est située à une
distance valant environ 1 de la paroi, la définition h = yG

+ − yG
− donne une valeur

de h inférieure à la définition h = yG
+− (position de la paroi), c’est-à-dire h = 16.6

au lieu de h = 17.6 à T = 1 par exemple. La première définition h = yG
+ − yG

− sera
toujours employée par la suite. Les lignes pointillées horizontales correspondent
aux densités moyenne en volume à T = 1 et T = 0.44 (ρbulk(T = 1) = 0.85 et
ρbulk(T = 0.44) = 1.013).

la couche suivante située plus en profondeur, quià son tour peut accélérer la couche
suivante, et ainsi de suite jusqu’à ce que l’effet se trouve amorti dans le cas où le
film est suffisamment́epais (pour des couches minces et/ou une basse température,
les perturbations créées par les deux surfaces interagissent l’une avec l’autre au centre
du film). Ceci est illustŕe par la figure 2, òu les d́eplacements carrés moyens ŕesolus
par couches au sein d’un film libre sont présent́es.

Ainsi, à une temṕerature donńee, la dynamique des films (moyenne pour l’en-
semble du film) est plus rapide que celle observée en volume comme on peut le
voir sur la figure 3 òu les d́eplacements carrés moyens et la fonction de structure
incoh́erente pour des films d’épaisseurs et de géoḿetries diff́erents sont comparées.
Qui plus est, on observe que les films libres relaxent plus rapidement que les films
support́es (qui n’ont qu’une seule interface libre au lieu de deux dans le cas des
préćedents).

Ces ŕesultats ont un effet sur les températures caractéristiques telles que la tem-
pérature de transition vitreuse et la température critique de la th́eorie du couplage de
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Figure 2: FIGURE PRINCIPALE: Déplacements carrés moyens résolus en couches
g0(t, y) à T = 0.44 pour un film libre d’épaisseur h = 14. y représente la distance
à la surface de Gibbs (située en y = 0). Seuls les déplacements parallèles à la
paroi sont considérés pour le film (lignes pleines); les données pour la situation en
volume (•) ont été multipliées par 2/3 afin d’obtenir la même échelle que pour le film.
g0(t, y) est obtenu après une moyenne sur l’ensemble des monomères d’une chaı̂ne
restant durant le temps considéré dans une couche d’épaisseur ∆y = 2 centrée en y
(equation (4.10)). Finalement, les monomères quittent la couche dans laquelle ils se
trouvent initialement, donnant lieu à une baisse de la précision statistique pour les
temps longs; les données sont donc parfois tronquées lorsque le bruit statistique est
très fort. La ligne pointillée horizontale indique la définition du temps de relaxation
locale τ(y, T ) ((4.12)). ENCART: Profil de densité de monomères correspondant
ρ(y) en fonction de y. Les couches pour lesquelles g0(t, y) est présenté dans la
figure principale sont indiquées par des nombres (1, 2, 3, 4).

modes (Mode Coupling Theory).Tg a ét́e d́etermińeeà partir de la d́ependence en
temṕerature de l’́epaisseur du filmh au cours du refroidissement;Tc est obtenuèa
partir d’une analyse des temps de relaxation dans les films. Qualitativement,Tg(h)
et Tc(h) ont les m̂emes caractéristiques. Les valeurs des deux températures sont
abaisśees par rapport̀a la situation en volume, et la diminution devient plus prononcée
lorsqueh décrôıt. La d́ependence deTc (ou Tg) en épaisseur est bien décrite par
Tc(h) = T bulk

c /(1 + h0/h). Un fit des donńeesà l’aide de cette expression donne une
hauteur caractéristiqueh0 qui est approximativement deux fois plus grande dans le
cas des films libres que dans celui des films supportés. Les ŕesultats obtenus dans nos
simulations sont comparés aux pŕedictions de Herminghaus dans la figure 4. Ils se
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Figure 3: Déplacements carrés moyens des monomères intérieurs (g1(t)) et
facteur de structure dynamique incohérent (φs

q(t)) dans le film et en volume à
T = 0.44. ORDONNÉES DE DROITE : Tracé logarithmique de g1(t) en fonction de
t; les déplacements carrés moyens sont mesurés dans la direction parallèle à la
paroi et multiplié par 3/2 afin de prendre en compte la différence de dimension par
rapport à la situation en volume. Les lignes pointillées horizontales représentent la
valeur du rayon de giration en volume R2

g ' 2.09 ainsi que la distance bout-à-bout
R2

e ' 12.3. Les régimes ballistiques (∼ t2), subdiffusif (∼ t0.63), et diffusif (∼ t) sont
indiqués (D est le coefficient de diffusion d’une chaı̂ne). ORDONNÉES DE GAUCHE

: Facteur de structure dynamique incohérent φs
q(t) à q = 6.9 (≈ q∗ = maximum

du facteur de structure statique S(q)). Le régime ballistique (∼ t2) est également
indiqué.

retrouvent sur une courbe maı̂tresse si l’on redimensionne l’épaisseur parh0 etTc par
T bulk

c .
Cette observation est qualitativement en accord avec les résultats exṕerimentaux

pour la diminution deTg dans les films de PS libres et supportés [4, 40, 41]. Ces
exṕeriences sugg̀erent queTg pour un film libre d’́epaisseurh est en accord dans les
barres d’erreurs avec la valeur deTg pour un film support́e d’épaisseurh/2. D’après
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Figure 4: Tc(h)/Tc (Tc = valeur en volume) en fonction de l’épaisseur redimen-
sionnée h/h0 pour un film supporté (cercles), un film libre (disques pleins) et des
résultats de simulation pour un film confiné entre des parois lisses (modèle BE à
p = 1) [35, 36] (cercles grisés). La ligne pointillée représente la courbe maı̂tresse
y = 1/(1 + x) avec h0 = 0.77 pour le film supporté, h0 = 1.47 pour le film libre et
h0 = 1.64 pour le film confiné.

ce seul ŕesultat, il semble donc que le substrat pourraitêtre introduit dans le plan au
centre d’un film libre sans entraı̂ner de perturbations considérables de ses propriét́es.
Nos ŕesultats concernant la dynamique résolue en couches indique cependant qu’une
telle interpŕetation pourrait̂etre trop simplifíee. Pour notre modèle, la pŕesence du
substrat entrâıne une dynamique plus rapide, semblableà celle observ́eeà l’interface
libre.

En ce qui concerne la température de transition vitreuse mesurée dans nos simula-
tions, l’influence exerćee par les bords sur les propriét́es (dynamiques) du système est
un facteur cĺe (il està noter que certains types de murs peuvent laisser la structure in-
chanǵee tout en affectant la dynamique : pour une discussion complète, cf. [19, 32]).
Dans le cas de nos films-modèles, l’interface polym̀eres–substrat comme l’interface
polymères–vide contribuent̀a une mobilit́e accrue. Alors que cela peutêtre le cas
en ǵeńeral pour l’interface avec le vide, ce n’est pas forcément vrai pour un liquide
susceptible de former un verre en contact avec un substrat. Alors, la diminution de
Tg dépend de l’interaction “particule–paroi”. Ici, le terme “particule–paroi” possède
un double sens. D’une part, il s’agit de l’attraction entre les particules et les parois.
Une attraction suffisamment forte peut entraı̂ner une augmentation deTg [16, 17].
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D’autre part, cela correspond̀a la topographie de la surface : même en l’absence
d’une attraction pŕeférentielle, la dynamique peutêtre fortement ralentie si les par-
ticules sont prisonnières dans des anfractuosités à la surface du substrat (voir par
exemple [19, 33, 34]). Cet effect stérique peut́egalement entraı̂ner une augmentation
deTg.

En accord avec de récents ŕesultats exṕerimentaux sur les films supportés de
PS [9], nous avons observé que la surface libre donne lieuà une temṕerature de tran-
sition vitreuse locale qui d́ecrôıt à l’approche de la surface. Mous avons montré que
cette d́ependence en la distance peut se comprendre d’après le comportement moyen
du film, c’est-̀a-dire d’apr̀es la diminution deTg quand l’́epaisseur du film diminue.
Ceci est bien d́ecrit par une expression suggéŕee par Hermingaus et al. [4].

Solvant explicite

Nous avonśetudíe l’influence de la pŕeparation du film sur sa structure finale. Une
méthode couramment employée pour la pŕeparation de couches ultra-minces est le
proćed́e dit du spin coating. Ce procéd́e consistèa d́eposer une goutte de solution
diluée de polym̀eres (par exemple, du polystyrène en solution dans le toluène) sur
une surface qui est ensuite mise en rotation rapide. L’étalement de la goutte sous
l’influence des forces centrifuges et l’augmentation de la surface de contact qui en
résulte conduisent̀a uneévaporation initiale tr̀es rapide du solvant jusqu’à ce que le
film vitrifie. Il reste alors une fraction volumique d’environφS = 20% de solvant̀a
l’int érieur du film. L’́epaisseur du film peut̂etre mesuŕee au cours du processus de
spin coating̀a l’aide de l’ellipsoḿetrie. On observe alors une décroissance exponen-
tielle avec le temps, l’échelle de tempśetant de l’ordre de la minute.

Des exṕeriences [42–44] et des travaux théoriques [45] sugg̀erent que ce procéd́e
pourrait píeger le film dans uńetat horśequilibre dont la nature n’est pas entièrement
comprise. Les exṕerimentateurs rapportent des différences de comportement pour le
démouillage ainsi qu’une d́ependance en température du coefficient de dilatation ther-
mique diff́erente pour les films prépaŕes par spin coating. Les tentatives de modéliser
ce probl̀emeà l’aide de simulations nuḿeriques sont rares [46–48], et restreintesà
l’ étude de la dynamique de l’évaporation bien au dessus de la température de transi-
tion vitreuse.

Nous avons inclus une description explicite du solvant dans nos simulations afin
de v́erifier que le film se trouve piéǵe dans uńetat horśequilibreà cause de la transi-
tion vitreuse subie par le système de polym̀eres. Afin d’obtenir une première estima-
tion du type de comportement de phase auquel on peut s’attendre, nous avons utilisé le
mod̀ele Flory–Huggins pour les solutions de polymères. Les param̀etres d’interaction
sont choisis de manière à reproduire une solution polystyrène–tolùene. Puisque la
décroissance initiale de la concentration de solvant est très rapide, de m̂eme que la re-
laxation des polym̀eres en solution, nous avons démarŕe nos simulations dans unétat
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Figure 5: FIGURE PRINCIPALE : Déplacements carrés moyens des molécules de
solvant dans les trois régions différentes détaillées dans l’encart. Les symboles
correspondent à une longueur de chaı̂ne N = 10 et les lignes grisées à N = 64.
ENCART : Profils de densité pour solvant et polymères d’un film contenant φS = 21%
de solvant avec une longueur de chaı̂ne N = 10 à T = 0.5. La ligne pointillée
horizontale indique les limites des régions dans lesquelles les déplacements carrés
moyens présentés dans la figure principale sont calculés.

de solution assez dense contenant une fraction volumique de solvant deφS = 21%.
Nous avons caractériśe les propríet́es initiales de la solution de polymères et discuté
l’ évaporation du solvant.

Le solvant est plus favorablement localisé aux interfaces entre le polymère et la
paroi ou la surface libre. Nous observons une influence croissante de la concentration
de solvant et de la proximité de l’interface sur la mobilité locale des monom̀eres avec
une baisse de la température. Le solvant se conduit comme un agent plastifiant qui
acćelère la relaxation du polym̀ere. Par ailleurs, plus les monomères sont proches
des interfaces, plus la dynamique est rapide. Ceci est visible sur la figure 5 où les
déplacements carrés moyens du solvant sont présent́es dans diff́erentes ŕegions du
film comme il est indiqúe dans l’encart. A la température de transition vitreuse, les
valeurs des temps de relaxation locaux s’étendent sur trois ordres de grandeur en



Conclusions xiii

0 5 10 15 20 25
y

0

0.5

1

1.5
ρ(

y)
polymer
solvent
total

t=2500t=100000

Figure 6: Profils de densité pour le polymére (pointillés), le solvant (ligne pleine
épaisse) et l’ensemble (ligne pleine fine) lors de l’évaporation du solvant à T = 0.5
et pour N = 64, à des temps compris entre t = 2500 et t = 100000.

fonction de la composition et de la distanceà la surface. Le processus d’évaporation
s’en trouve fortement influencé.

Les profils de densité du solvant et du polym̀ere alors que le solvant s’évaporèa
T = 0.5 sont pŕesent́es sur la figure 6. Au cours de l’évaporation, une couche riche
en polym̀eres se forme en surface. Dans la figure 7, l’épaisseur en fonction du temps
est pŕesent́eeà T = 0.5 et T = 0.4. A des temṕeratures bien au dessus deTg = 0.4
(T = 0.5), nous observons que l’épaisseur du film d́ecroit comme la racine carrée
du temps, ce qui est en accord avec un processus contrôlé par la diffusion jusqu’̀a
ce que les effets de taille finie deviennent importants. Le solvant prisonnier entre le
polymère et la paroi qui le supporte ne quitte le film que bien plus lentement. A haute
temṕerature, l’́evaporation complète du solvant est10 fois plus lente pour un film
support́e que dans le cas d’un film libre de la mêmeépaisseur. Si l’́evaporation se
produit à Tg, nous n’observons aucun régime dans lequel l’épaisseur se comporte en√

t. Ceci est probablement dû à une forte d́ependence des mobilités en composition
et distancèa la surface.

Conclusions

Nous avons utiliśe des simulations de dynamique moléculaire pouŕetudier des films
ultra-fins de polym̀eres, supportés et libres,̀a l’aide d’un mod̀ele coarse-grained qui
retient uniquement les caractéristiques les plus importantes des polymères, c’est-̀a-
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(N = 64 (traits gris) N = 10 (traits pleins)) tracées sous la forme [h(0)− h(t)]/
√

t.

dire la connectivit́e de la châıne, la ŕepulsionà courte distance entre monomères, et
leur attractivit́e à plus grandéechelle qui assure l’intégrit́e du syst̀eme en ǵeoḿetrie
ouverte. Nous avons analysé la dynamique au sein du film, aussi bien en moyenne que
par couches en fonction de la distanceà la surface. Nous avonségalement d́etermińe
la temṕerature de transition vitreuseTg au cours de refroidissements. Il ressort de
cesétudes que la dynamique est accéléŕee dans les couches minces par rapportà la
situation du fondu en volume, etTg diminue. Ces deux effets sont principalement dus
à la surface libre du film. Ainsi, les films supportés relaxent moins rapidement que
les films libres pour unéepaisseur donńee.

Des films de polym̀eres en solution ont́egalement́et́e étudíes en pŕesence d’un
solvant explicite. Nous nous sommes intéresśesà la formation de films de polym̀eres
purs parévaporation du solvant; les résultats obtenus montrent que la dynamique
est plus rapide etTg plus basse en présence du solvant. Les temps de relaxation
en fonction de la concentration de solvant s’étendent sur trois ordres de grandeur
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à la transition vitreuse du polym̀ere pur. La cińetique de l’́evaporation s’en trouve
fortement influenćee. Alors que nous pouvons observer une diffusion fickienneà
des temṕeratures suṕerieures̀a Tg, pour des temṕeratures plus basses, les déviations
par rapport̀a ce comportement sont notables. A toutes températures, l’́evaporation
est plus rapide de plusieurs ordres de grandeur dans un film libre que dans un film
support́e, ce qui est d̂u au pìegeage des molécules de solvant entre le polymère et la
paroi.
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Chapter 1

Introduction

Polymer melts are bulk liquids consisting of macromolecules [49]. In the simplest
case of linear homopolymers each macromolecule containsN monomeric repeat units
of the same type, which are connected to form a chain. The chain lengthN may be
large. A typical range in experiments is103 . N . 105. This implies that the average
size of a polymer, measured e.g. by the radius of gyrationRg [50, 51], varies between
Rg ∼ 100 Å andRg ∼ 1000 Å. The size of a chain thus exceeds that of a monomer
(∼1 Å) by several orders of magnitude.

These different length scales are reflected in the particular features of a polymer
melt. In the melt the monomers pack densely, leading to an amorphous short-range
order on a local scale and to an overall low compressibility of the melt. Both fea-
tures are characteristic of the liquid state. Qualitatively, the collective structure of the
melt thus agrees with that of non-polymeric liquids. Additional features, however,
occur if one considers the scale of a chain. A long polymer in a (three-dimensional)
melt is not a compact, but a self-similar object [51–53]. It possesses a fractal ‘open’
structure which allows other chains to penetrate into the volume defined by its ra-
dius of gyration. On average, a polymer experiences

√
N intermolecular contacts

with other chains, a huge number in the large-N limit. This strong interpenetration
of the chains has important consequences. For instance, intra-chain excluded volume
interactions, which would swell the polymer in dilute solution, are screened by neigh-
boring chains [50–52, 54–56]. A polymer in a melt thus behaves on large scales as
if it were a random coil, implying that its radius of gyration scales with chain length
like Rg ∼

√
N . However it has been discovered recently that there are corrections

to this so called ideality hypothesis [56]. Furthermore, the interpenetration of the
chains creates a temporary network of topological constraints [50–52, 57]. These
entanglements greatly slow down the chain dynamics and render the melt in general
very viscous compared to low-molecular liquids.

Polymeric solids: crystallization and glass transition. Polymeric solids are ei-
ther glassy or semicrystalline (figure 1.1) [60]. Semicrystalline polymers contain

1
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Figure 1.1: Volume per monomer v versus temperature T for a polymer melt which
tends to crystallize. In the high-T liquid phase the chains have random-coil-like con-
figurations and the structure of the melt is amorphous. The amorphous structure
is preserved when the melt is cooled rapidly enough to avoid crystallization. Then,
it undergoes a glass transition at Tg. For slower cooling the melt transforms into a
semicrystalline material at the crystallization temperature Tcrys. In the semicrys-
talline state sections of folded chains order in lamellar sheets that coexist with
amorphous regions. On heating (dashed grey line) the crystal melts at Ti > Tcrys.
This hysteresis is characteristic of first-order phase transitions. The shown volume-
temperature diagram is a result of molecular-dynamics simulations for a model of
poly(vinyl alcohol) (courtesy of H. Meyer; see references [58, 59] for further details).

both amorphous and crystalline regions. The crystalline regions consist of lamellar
sheets in which the polymers are folded back and forth so that sections of chains can
align parallel to each other. The sheets twist and branch as they grow outward from
a nucleus into spherulitic structures [60]. This hierarchy of morphological features,
ranging from the lamellar ordering of the chains (∼10 nm) to the macroscopic pack-
ing of the spherulites (100µm and larger), reflects the complexity of the underlying
crystallization process which is not yet fully understood [61–64].

The ability of crystal formation crucially depends on the microstructure of the
chains. Only polymers with regular configurations, e.g. isotactic or syndiotactic
orientations of the side-groups [51] or chains without side-groups, polyethylene be-
ing the prime example, can align parallel to each other so as to pack into crystalline
lamellae. However, even in these favorable cases full crystallization is almost never
achieved (see e.g. [62]).

Due to this intrinsic difficulty of crystal formation polymer melts are in general
good glass formers [28, 29, 65]. Either they can be readily supercooled (figure 1.1)
or, due to the irregular configuration of the chains, a crystalline phase does not exist at
all. There are numerous examples for the latter case. They comprise homopolymers
with an atactic orientation of (bulky) side-groups, e.g. atactic polystyrene, or random
copolymers, such ascis-transpolybutadiene, in which monomers, having the same
chemical composition, but different microstructure (cis/transconfiguration of butadi-
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ene), are randomly concatenated. These polymeric glass formers exhibit features that
are also prevalent in other (intermediate and fragile) glass-forming liquids [28, 29].
For instance, as the melt is cooled from the liquid state toward the glass transition
temperatureTg, it displays a non-Arrhenius increase of all measured structural relax-
ation times. In proportion to this huge effect on the dynamics the amorphous structure
of the melt only changes very little on cooling. This discrepancy poses a formidable
scientific problem. Understanding its molecular origin represents an important issue
in the research on the glass transition [29, 66–68].

A long-standing conjecture is that this non-Arrhenius increase of structural re-
laxation times upon approachingTg is caused by the growth of a correlation length
ξg with decreasing temperature.ξg is supposed to measure the average size of a co-
operatively rearranging region (CRR), i.e. of a subensemble of particles which can
rearrange into a new configuration independently of the other particles surrounding
them [29].

The glass transition in confinement

An appealing approach to evidencing the existence of CRRs and estimating their size
appears to lie in the study of the glass transition in spatial confinement. An increase
of ξg should be truncated by the finite dimension of the confinement and this in turn
should lowerTg [29].

Experiments [1–11], computer simulations [12–21], and theoretical approaches
[22–27] have recently been used to explore the phenomenology and underlying mech-
anism of the glass transition in spatial confinement. Typically, these studies report
deviations from bulk behavior if a glass former is confined to nanoscopic dimensions.

These experiments and computer simulations find shifts ofTg in confined glass-
forming liquids and thin polymer films. But the shift can be upward and downward
with respect to the bulk (see e.g. [2, 30, 31] for reviews; for recent theoretical ap-
proaches see e.g. [24, 25, 27]). This implies that, in addition to possible confinement
effects, other factors are also important. One key factor should be the interaction of
the liquid with the confining substrate (see e.g. [11]).

Simulations suggest that this liquid-substrate interaction consists of two contribu-
tions, an energetic and a steric one. For instance, strong liquid-substrate attractions
can temporarily trap particles close to the confining walls and lead to slower dynamics
than in the bulk [16, 17]. On the other hand, even without preferential attraction the
dynamics may be slow if particles are caged in cavities of the substrate [19, 32–34].
In both cases, the slow particles at the walls partly slow down their neighbors which in
turn obstruct the motion of their neighbors, and so on. This enables the wall-induced
retardation to propagate into the core of the system. As a result,Tg can increase,
particularly in strong confinement (narrow pores, ultra-thin films). Conversely, one
expects non-attractive smooth walls to facilitate the motion of nearby particles and
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thus to lead to a decrease ofTg [35, 36].
Computer simulations of model systems provide an example for the importance

of these interfacial effects. For free-standing films, i.e. for systems with two liquid-
vacuum interfaces, faster than bulk dynamics and, along with that, a depression of
Tg is found [12, 16, 21, 38]. Furthermore, the simulations suggest that the dynamics
of the confined liquid is very heterogeneous at low temperatureT . Near the inter-
face relaxation times are faster by orders of magnitude in comparison with those of
the bulk. Below the bulkTg one could interpret the presence of these more mobile
monomers close to the surface as a molten layer on top of an already glassy polymer
film. The thickness of the molten layer being dependent on temperature [5]. The fast
relaxation continuously turns into bulk-like relaxation with increasing distance from
the interface as already explained above. For allT this crossover remains continuous,
but its range grows on cooling so that the surface-induced perturbations may propa-
gate across the entire liquid at lowT or for strong confinement (see [32] for a review)
shifting Tgin parts of the film close to the surface or even the entire film if it is thin
enough.

Most experimental approaches to the glass transition in restricted geometry have
been concerned with the average response of the confined liquid. Notable exceptions
are the recent work by Nugent et. al. [37] and by Ellison and Torkelson [9, 10].
Ellison et. al. employ a fluorescence/multilayer technique in which a thin fluorescent
polystyrene (PS) layer is incorporated in an unlabeled PS film. This allows them to
measure the localTg at different positions in the film. They find a strong reduction
of Tg at the free surface of the PS films and a continuous attenuation of the effect as
the fluorescent layer is buried more and more deeply in the film. It was possible to
measure a decrease ofTg in a labeled layer as far as 30 nm from the free surface. This
distance exceeds by far the average estimated size ofξg of about 2-3 nm. Also recent
computer simulation results point towards heterogeneous dynamics [17, 35, 38] and
a continuous distribution ofTg in thin polymer films [15, 21].

Non-equilibrium nature of thin polymer films

A further point that has been raised repeatedly in connection with experimental stud-
ies onTg in confinement is the sensitivity of the results to the exact experimental
protocol applied to prepare and anneal thin polymer films [31, 42–45, 69]. It is ar-
gued that a thin polymer film whose thickness is smaller than the coil size of the bulk
polymer is not an equilibrium structure. Experiments [42–44, 70, 71] and theoreti-
cal work [45] suggest that films prepared by spin-coating are trapped in an out-of-
equilibrium state whose nature is not fully understood. Experiments report changes
of the dewetting behavior [70, 71] and also a different temperature dependence of
the thermal expansion coefficient of films prepared by spin-coating upon first heat-
ing after the film preparation [43, 72]. They find a decrease of film thickness upon
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increasing temperature within a certain temperature interval.

The spin-coating process is a common method for the preparation of ultra-thin
polymer films. In this procedure, a drop of a dilute polymer solution (for example
polystyrene (PS) and toluene) is put onto a waver which is then spun very quickly
(normally 1000-4000 rpm) [73, 74]. The spreading of the droplet due to the centrifu-
gal forces and the accompanying increase of the surface lead to an ejection of excess
material off the edge of the substrate and a very fast evaporation of the solvent. A PS
film becomes glassy while there is still a volume fraction of aboutφS = 14% of the
solvent (toluene) inside the film [75]. The final, slower thinning of the film is only
due to solvent evaporation [76]. The remaining solvent is then evaporating out of an
already glassy polymer matrix. This ‘solvent quench’ might trap the polymer coils
in an out-of-equilibrium state as does a rapid temperature quench [43, 69]. The situ-
ation is complicated by the fact that some solvent might still be trapped in the film.
The resulting film may contain so-called ‘residual stresses’ [44, 45, 71], because the
chains below a critical solvent concentration are no longer mobile enough to relax
their conformations to adapt to their changing environment as the solvent is lost. The
final thickness of the film is dependent on parameters such as the initial viscosity of
the solution, the spinning speed and the concentration of the solution [73, 74].

To allow a relaxation of these stresses, the films are usually annealed above the
bulk Tg. The relaxation aboveTg might include the loss of solvent still trapped in
the film as well as the rearrangement of chains to minimize the energy, redistribut-
ing and changing the free volume available. Both processes result in changes of the
film thickness. Strong interactions with the substrate can inhibit the reorientation of
chains. In addition the films tend to break up and dewet at temperatures aboveTg,
limiting the amount of chain relaxation possible without destroying the film. There
is no unambiguously defined procedure how to best relax chains in ultra-thin poly-
mer films. Ideally, the film would be kept at an elevated temperature longer than the
time it takes a polymer to displace over its size to allow a complete relaxation of the
stresses. For the annealing of PS films atT = 388K for 12h this condition is only
met for molecular weights smaller thanMw < 850× 103g/mol [69, 77].

Keddie et. al. [42, 43] report measurements of the film thickness right after spin-
coating and find an exponential decrease of film thickness, the time scale being of
the order of minutes due to further solvent loss. There have been very few attempts
to model this problem using computer simulations [46–48], all of which investigated
the evaporation dynamics far above the glass transition temperature. One aim of
this thesis is to make a first step to explore the phenomenon associated with solvent
evaporation belowTg.
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Simulations of free-standing and supported model poly-
mer films

In this thesis we provide further evidence for the reduction ofTg in polymer films
with a free surface and the scenario of a local glass transition temperature. We per-
form molecular-dynamics simulations of free-standing and supported films of non-
entangled polymer chains using a simple coarse-grained bead-spring model for chains
of lengthN = 10 andN = 64 monomers. In the supported films the substrate is
modeled as a smooth attractive wall. Related previous work in the group [32, 35] was
concerned with simulations of confined films at chain lengthN = 10.

For both film geometries we investigated the influence of confinement on static
and dynamic properties of the melt on the local scale and determine the glass tran-
sition temperatureTg. The surface height fluctuations or capillary waves are investi-
gated in detail as it has been suggested that a coupling of the viscous flow of the bulk
to the capillary waves at the surface is responsible for the foundTg reductions [4].
In ultra-thin polymer films the thickness of the film can become comparable or even
smaller than the equilibrium size of the polymer coil. Therefore perturbations of the
chain conformations are expected in thin films. We assess the structure of the chains
and its dependence on confinement by looking at the intra-chain structure factor and
the layer-resolvedRg andRe.

Simulations with explicit solvent

With the help of computer simulations we try to gain a better understanding of the
spin-coating process. We include the solvent explicitly in our simulations and choose
the interaction parameters to mimic the solution of polystyrene and toluene. A simu-
lation of the entire experimental procedure starting from a dilute solution is certainly
beyond the scope of this thesis. Since the initial decrease of the solvent concentration
is very rapid and also the relaxation of the polymer in solution is very fast we only
start our simulations for a rather dense polymer solution containing a volume fraction
of solvent ofφS = 20%, initially at thermodynamic equilibrium. As it is known that
in the final stages of the film preparation, when the solution reaches a very high vis-
cosity and vitrifies, the decrease in film thickness is only due to solvent evaporation, a
simulation only taking into account this final stage of the process could nevertheless
be able to capture the creation of residual stresses and the trapping of the chains in an
out-of-equilibrium state.

Therefore we limit our simulations to the evaporation of solvent from a dense
solution at low temperature. The problem of drying and the evaporation of a liquid
is omnipresent. The observed cases range from the drying of a coffee droplet, the
drying of a paint to the formation of ultra-thin films and coatings by the evaporation of
solvent. Our approach will treat this problem on the microscopic scale. Therefore we
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cannot describe phenomena where large-scale inhomogeneities, i. e. larger than the
size of our system of approximately10 nm, due to for example convection or intrinsic
inhomogenties of the material are important. We will study the solvent evaporation at
different temperatures and film geometries and compare the results to the predictions
of simple theoretical approaches to solvent evaporation [78–83] based on diffusion
equations. We will determine whether our systems show deviations from Fickian
diffusion. Non-Fickian diffusion is often observed upon solvent penetration into a
glassy polymer matrix in experiments [84–88]. Also in computer simulations non-
Fickian diffusion has been recently observed by Janeva and coworkers [89], while a
recent study on inter-diffusion of solvent into glassy polymer films by Grest and Tsige
did not find any deviations from Fickian behavior [90]. Theoretical descriptions [91–
95] of this so called anomalous or case-II diffusion are based on a high dynamic
asymmetry between polymer and solvent in combination with a strong acceleration
of the polymer dynamics in the presence of the solvent. While this phenomenon has
been studied systematically in the literature, the inverse process of solvent evaporation
from a glassy matrix, has to our knowledge, obtained much less attention. A notable
exception is the recent work of Souche and Long who investigated solvent evaporation
from a glassy polymer using a mesoscale model [95].

Outline of this thesis

First we will introduce the coarse-grained bead-spring model used in our simulations
of thin polymer films in chapter 2. Details are given on how the films are set up and
which algorithms are used to perform the MD simulations. In the following chapter 3
results onTg in thin polymer films are presented.Tg is determined upon cooling the
film with a constant rate while monitoring its thickness, a pseudo-thermodynamic
approach often used in experiments. Subsequently we present a detailed analysis
of the local structure of the films in comparison with the structure of the bulk in
section 3.2.

Chapter 4 gives a detailed analysis of the dynamics of the films averaged over the
whole system (section 4.1) as well as layer-resolved (section 4.3) as a function of the
distance from the surface looking at the incoherent scattering function at the max-
imum of the static structure factor and the mean-square displacements. We extract
the characteristic temperatureTc of mode coupling theory (MCT) from an analysis of
relaxation times extracted from equilibrium simulations in section 4.2. In section 4.4
a comparison of our results of the thickness dependence ofTc andTg to experimen-
tal results is presented. In connection with the functional dependence ofTg on film
thickness suggested in reference [4] we will introduce a position dependentTc in
section 4.5. Finally an analysis of the non-Gaussian parameter is given in section 4.6.

The influence of capillary waves at the free surface on the structure and relax-
ation of the films is addressed in chapter 5. This is interesting in connection with
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the foundTg reductions since it was suggested by Herminghaus [96] that a coupling
of the bulk flow to the capillary wave fluctuations at the free surface gives rise toTg

reductions in thin polymer films. We first look at the static correlations of these fluc-
tuations (section 5.1), followed by an analysis of the relaxation of these fluctuations
in section 5.2.

As a complementary approach to analyze polymer dynamics, used in experiments
employing dielectric spectroscopy, the dielectric relaxation spectra in our thin model
polymer films are calculated in chapter 6. We determine the effect confinement has
on the different relaxation modes of the film.

The last part of this work is dedicated to simulations with explicit solvent de-
scribed in chapters 7 and 8. First the choice of the model parameters is explained in
section 7.2. We study the equilibrium structures of our model of a polymer-solvent
mixture based on toluene and polystyrene. We will present data on the local mo-
bility of polymer and solvent as a function of composition in section 7.3 and on the
static structure of the binary mixture in section 7.4. The evaporation of solvent is
discussed in chapter 8. We will first present the simulation results in section 8.1 and
a simple theory of evaporation in section 8.2 followed by a discussion of the results
in comparison with theories of solvent evaporation in section 8.3.



Chapter 2

Model

There are several methods to simulate the behavior of a system [97, 98]. A choice
has to be made according to the length scale to be probed, to capture the relevant
phenomenon. In case we are interested in physical properties which involve sev-
eral polymer chains—which amounts to thousands of atoms at least—, the method
of choice would definitely not involve explicit electrons, nor should it consider the
system as a continuous medium. In the former case one would have to cope with a lot
of unnecessary information, while in the latter the relevant degrees of freedom would
already be averaged out and therefore not accessible anymore.

Since we are interested in polymer melts and solutions, we need to adopt a method
that allows to keep track of the behavior of the chains themselves, and therefore retain
enough detail in the way they are modeled. The possibilities are numerous, depending
on the degree of accuracy we require in the description of the chains. The more de-
tailed scheme we can use consists in simulating the molecules by taking into account
all the atoms of a chain [99, 100] (‘atomistic model’). This scheme has the advantage
that, doing so, we can hope to reproduce precisely the structure and dynamics of a
specific polymer. Since we are more interested in the aspects of the behavior com-
mon to many polymers independent of chemical specificity, we adopt a more coarse
grained model [101–103] where the atomistic degrees of freedom are not accounted
for explicitly, but only implicitly through the choice of the effective potentials de-
scribing the interactions of the coarse-grained blobs. Such a coarse grained model
which retains only the generic features of polymers, like chain connectivity and ex-
cluded volume interactions, allows to study the behavior of the system on larger time
and length scales than an atomistic simulation [98].

2.1 Simulation model

We performed molecular dynamics (MD) simulations [104] of a generic bead-spring
(BS) model [101] for a polymer melt. Non-bonded monomer-monomer interactions
are given by a truncated and shifted Lennard-Jones (LJ) potential with cut-off radius

9
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Figure 2.1: The Lennard-Jones potential ULJ(r) (equation (2.1)), the harmonic
bond potential Ubond(r) (equation (2.2)) and the potential to mimic the interaction
with the substrate Uwall(r = y) (equation (2.3)) are shown.

rc = 2.3 ' 2rmin (rmin is the minimum of the LJ potential),

ULJ(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]
− ULJ(rc) , r ≤ rc . (2.1)

For nearest neighbors along the chain the LJ interaction is not included. These
monomers are connected to each other by a harmonic spring potential of equilibrium
distancebeq = 0.967σ and spring constantk = 1111 ε/σ2,

Ubond(r) =
k

2
(r − beq)

2 . (2.2)

k is chosen large enough so that chains cannot cut through each other, which allows
the formation of entanglements [50]. The potentials are displayed in figure 2.1.

In the following we will use LJ units. That is,ε = 1, σ = 1, and massm = 1.
Then, temperature is measured in units ofε/kB (Boltzmann constantkB = 1), and
time in units ofτ = (mσ2/ε)1/2.

In previous work [32], a slightly different bead spring model, the Bennemann
(BE) model [105], was used. This model differs from the present one in the choice of
the bond potential (BE model: superposition of FENE potential and nearest neighbor
Lennard-Jones interaction [106]). In equation (2.2), we adapted the potential param-
eters so that static and dynamic properties of our BS model are identical or at least
very similar to those found for the BE model. This will be shown in chapters 3.2.1
and 4.1.1.



2.1. Simulation model 11

Figure 2.2: A schematic drawing of a supported polymer film.

The distancermin of the LJ potential is incommensurate withbeq of the bond
potential. This implies that the bond potential locally distorts possible crystalline
arrangements of the monomers (fcc or bcc), which the LJ potential alone would im-
pose. Moreover, the polymer chains are very flexible because back-folding of adja-
cent bonds is only suppressed by the repulsive part of the LJ potential. These two
features together effectively eliminate the risk of crystallization on cooling [32].

We mainly simulate chains consisting ofN = 10, N = 64 and N = 256
monomers each. The chain lengthN = 10 has already been employed in the pre-
vious studies (see e.g. [32] for a review) and is below the estimated entanglement
length ofNe ≈ 32 [106, 107]. When employing the primitive path analysis a higher
entanglement length is foundNe ≈ 64 [108].

Modeling polymer films

With this model we simulate thin polymer films. Three film geometries are investi-
gated: confined films, supported films with one polymer-substrate and one polymer-
vacuum (“free”) interface, and free-standing films with two polymer-vacuum inter-
faces. A schematic drawing of a supported film is shown in figure 2.2.

For supported and confined films we introduce a wall aty = 0 and in the latter
case also aty = h in thexz-plane of the simulation box. To model the monomer-wall
interaction we use a (non-truncated) 9-3 LJ-potential

Uwall(y) = εwε

[(
σ

y

)9

−
(

σ

y

)3
]

, (2.3)
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wherey denotes the distance from the wall in they-direction andεw is the potential
strength. Equation (2.3) can be obtained, up to a prefactor for the term proportional
to y−3, by integrating the LJ-interaction between monomers and wall atoms over the
half spacey < 0 [109]. The wall potential is shown in figure 2.1.

With increasingεw the wall attracts the monomers more and more, and finally
the polymers will wet the substrate. The wetting transition was investigated in refer-
ence [110]. It was found that a film at temperatureT = 1.68 and pressurep = 0 wets
the wall for εw & εwet

w = 3.2. Here, we chose a value in the vicinity of the wetting
transition,εw = 3, for all temperatures studied (T ∈ [0.1, 1]). For this choice we did
not observe any sign of dewetting.

2.2 Molecular dynamics simulations

Classical molecular dynamics (MD) simulations [97, 98] consist in solving Newton’s
equations of motion for a set of particles interacting via effective forces, in our case
determined by the coarse grained model potentials defined above. The equations of
motion have to be solved:

mir̈i = Fi , (2.4)

wheremi, ri andFi are respectively the mass and position of monomeri, and the
force exerted on it. These equations have to be solved for allnN particles (n chains
of N monomers) in our system. The forceFi derives from the potentials describing
the interactions:

Fi = −∂Upot(r1, . . . , rN)

∂ri

; (2.5)

and in our case of single particle and pairwise additive interactions,

Upot =
nN∑
i=1

Uwall(yi) +
nN∑
i=1

nN∑
j=i+1

[ULJ(rij) + Ubond(rij)] , rij = ri − rj . (2.6)

Using the MD simulation scheme, the positions and velocities of thenN particles
in the system are calculated at all times, allowing to compute from there all the phys-
ical properties. These quantities are time-averaged in the course of the simulation,
which corresponds to an ensemble average, if the ergodic principle holds [97, 98].
An MD simulation originally creates configurations in the microcanonical ensemble
since the number of particlesN remains unchanged, the volumeV of the simulation
box does not vary in time, and the equations of motion are known to conserve the
total energyE. It is possible to add some other degrees of freedom to the system so
as to run a simulation in other ensembles thanNV E [97, 98]. This will be described
in section 2.2.2.
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2.2.1 Integration of the equations of motion

The method used to simulate the time evolution of the system consists in solving
numerically the equations of motion (2.4). There are several algorithms to do so. All
of them rely on the Taylor expansion of the expression of the positions at timet+∆t,
∆t being a short time interval (called “time-step” in the following):

ri(t + ∆t) = ri(t) + ∆tvi(t) + . . . , (2.7)

wherevi(t) is the velocity of particlei. Combining this with the equivalent expres-
sion forri(t − ∆t), one arrives at the Verlet formulation for the resolution of equa-
tion. (2.4), which gives an estimate forri(t + ∆t) andvi(t) as a function ofri(t),
ri(t −∆t), ∆t and the forcesFi(t). This result achieves accuracy up to∆t2 for ve-
locities and∆t4 for positions; though, this particular algorithm suffers from several
inconveniences (ri(t + ∆t) andvi(t + ∆t) are not known at the same time, and other
problems mentioned, for instance, in [97]).

Velocity-Verletalgorithm. There exist other forms of the algorithm that tackle those
problems, such as the so-calledvelocity-Verletalgorithm (this algorithm is imple-
mented in themd_spherical program that we used for our simulations). The
positions are updated using

ri(t + ∆t) = ri(t) + ∆tvi(t) +
1

2mi

Fi(t)∆t2 . (2.8)

By adding the equation

ri(t) = ri(t + ∆t)−∆tvi(t + ∆t) +
1

2mi

Fi(t + ∆t)∆t2 (2.9)

one obtains the following expression which is used for the calculation of the veloci-
ties:

vi(t + ∆t) = vi(t) +
1

2mi

∆t
(
Fi(t) + Fi(t + ∆t)

)
. (2.10)

2.2.2 Different ensembles: NVE, NVT, NPT

By integrating Newton’s equations of motion an MD simulation would explore the
phase space of the microcanonical (NVE) ensemble provided that the algorithm is
accurate enough (i.e. the time step small enough) to guarantee the conservation of
the total energy. In practice integration errors can cause a drift of the energy. The
Verlet algorithm has the advantages of conserving the phase space volume and being
time-reversible. The fact that the algorithm is simplectic makes larger time steps
admissible. Simulations of the NVT and NpT ensemble are often more desirable
because they often represent an experimental situation better. A local thermostat can
stabilize the integration scheme allowing for even larger time-steps [111].
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NVT ensemble

The canonical ensemble models a subsystem in contact with a much larger system
the so called heat bath. The two systems cannot exchange particles but energy can be
transferred between them. Therefore the total energy is not conserved in the subsys-
tem of interest. The heat bath is assumed to be so large as not to be affected by these
energy transfers. At equilibrium the temperatureT of the subsystem is equal to the
one of the heat bathText.

T is related to the kinetic energy via the equipartition theorem (we are considering
instantaneous values of the different quantities here):

Ek =
nN∑
i=1

1

2
mivi

2 (2.11)

=
3

2
nNkBT . (2.12)

There are many different ways to include the effects of a heat bath on a system in a
simulation. We will discuss here two different thermostating mechanisms used in our
simulations.

Nose-Hoover thermostat. One way to control the temperature is by acting on the
global kinetic energy of the system defined in equation (2.11). Nose and Hoover
achieved this by deriving equations of motion

ṙi =
pi

mi

(2.13)

ṗi = Fi − ξpi (2.14)

ξ̇ =
1

Q

(∑ p2
i

mi

− 3NkBText

)
(2.15)

using an extended Lagrangian [112–114]. A further degree of freedomξ is introduced
whose equation of motion is governed by the imbalance between the total instanta-
neous kinetic energy and the desired canonical average, i.e. the temperatureText.

Choice of the coupling strength. The strength of the coupling is determined by
the fictitious mass parameterQ. The rate of change ofξ is proportional to the inverse
of Q. For very small values ofQ one is in the strong coupling limit. In this case
ξ oscillates much faster than the energy fluctuations. Asξ enters directly the rate
of change of the momenta, the kinetic energy will mainly follow large magnitude
oscillations ofξ. The configurational part of the energy, however, will be decoupled
from ξ which can make the thermostat very inefficient. On the other hand in the limit
Q → ∞, ξ is constant and Newton’s equations (2.4) and a simulation in the NVE
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ensemble are recovered. The thermostat is known to work well for a wideQ range
between these two extremes. Noose [115] suggested to chooseQ as

Q ∼ 6NkBT

ω2
intrinsic

∼ 5 , (2.16)

whereωintrinsic is a typical intrinsic oscillation frequency of the system. This allows
an optimal coupling of the thermostat to the system.

Dissipative particle dynamics (DPD) thermostat. In many simulations of poly-
mer melts, a Langevin thermostat is used [111, 116]. Another possibility to perform
simulations at constant temperature using stochastic dynamics is the DPD thermo-
stat. We do not perform dissipative particle dynamics but only use the thermostat in
MD simulations [117] as described below. The DPD thermostat controls the tem-
perature, as the Langevin thermostat, by the counter-balance between a friction force
dissipating energy and a random force pumping energy into the system. These two
forces are linked through the fluctuation-dissipation theorem. But as opposed to the
Langevin thermostat the DPD thermostat allows to conserve the total momentum of
the system and should therefore treat problems were fluxes and thus hydrodynamics
are important more accurately.

The equations of motion of the particles including the thermostat are given by

ṙi =
pi

mi

, (2.17)

ṗi = Fi + FD
i + FR

i (2.18)

whereFD
i is the damping force andFR

i is the random force, both acting on the par-
ticle i. Fi refers to the conservative force defined in equation (2.6). The DPD forces
are given as sums over pairwise inter-particle forces according to

FD
i =

∑
j 6=i

FD
ij , FR

i =
∑
j 6=i

FR
ij . (2.19)

All forces exerted on the particle by the thermostat are based on two-particle forces
acting along the inter atomic axisrij = ri − rj. This thermostat therefore conserves
the total momentum. Since it only acts on the difference of the velocities, it does not
extenuate hydrodynamic correlations. Following Warren et al [118] the inter-particle
damping force is defined as

FD
ij = −γwD(rij)(r̂ij · vij)r̂ij , (2.20)

whereγ denotes the friction constant andvij = vi − vj is the relative velocity of
particlesi andj andr̂ij = rij/|rij|. The corresponding random force is given by

FR
ij = σwR(rij)θij r̂ij . (2.21)
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σ is the strength of the noise andθij is a gaussian random variable withθij = θji

whose first and second moments are

〈θij(t)〉 = 0 (2.22)

〈θij(t)θkl(t
′)〉 = (δikδjl + δilδjk)δ(t− t′) . (2.23)

Note that the DPD thermostat is not applied between particles bonded to each other
and also not between the particles and the wall.

In our implementation a random number generator which provides uniformly dis-
tributed random numbers is used. In order to satisfy the fluctuation-dissipation theo-
rem, the equations

σ2 = 2kBTγ (2.24)

and (
wR(r)

)2
= wD(r) (2.25)

need to be fulfilled. The functional dependence ofwD can be chosen arbitrarily.
Following Warren et. al. [118] we chose

wD(r) = (1− r

rc
) , r < rc (2.26)

with a cut-off radius which is the same as the one used for the Lennard-Jones poten-
tial. Another possibility would be to choosewD(r) = 1 for r < rc.

When integrating the equations of motion (2.17) and (2.18) the dependence of the
damping forces on the velocities can cause problems. Deviations from true equilib-
rium behavior have been encountered, including an unphysical systematic drift of the
temperature [119–122]. In the velocity-Verlet scheme the forces at timest andt+∆t
are required to update the velocities since

vi(t + ∆t) = vi(t) + ∆t
Ftot

i (t) + Ftot
i (t + ∆t)

2
, (2.27)

whereFtot
i = Fi +FD

i +FR
i . For the calculation of the forceFtot

i (t+∆t) on the other
handvi(t+∆t) must be known due to the velocity dependence of the damping force.

As a first approximation the velocities at timet only can be used to calculate
the forces at timest and t + ∆t necessary for the updating of the velocities. This
increases the error of the algorithm and leads to a slightly increased temperature in
our systems. For the step size∆t = 0.005 used in these simulations the relative error
∆T/T = 0.1%, for a cut-off radiusrc = 2.3. The error decreases with decreasing
time step.

There have been different methods suggested to overcome these problems [120–
122]. Corrections based on the inclusion of higher order terms were suggested by
several authors [120, 121]. The Euler formula can be used to predict the velocities at
time t + ∆t,

ve
i(t + ∆t) = vi(t) + ∆tFtot

i (t) . (2.28)
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This allows to calculate an estimate forFtot
i (t + ∆t). The inclusion of this correction

is sufficient to improve the accuracy and allow a propagation with a time step as large
as∆t = 0.01 in our systems. An alternative, more rigorous approach, would be to
determine the force and the velocity self consistently [119, 122]. But that requires a
repeated calculation of the forces for each time step. Since for the time step applied
in this calculation a satisfactory accuracy can be obtained without implementing this
time consuming procedure it is not used.

We first investigated the dependence of the dynamics on the thermostats. We
calculate the velocity auto-correlation function

Z(t− t′) = 〈v(t)v(t′)〉 . (2.29)

For the dense polymer melt under investigation this correlation develops a negative
tail for large times, signifying the rattling motion of a particle in the cage formed by its
surrounding particles. It is related to the mean square displacement of the monomers
g0(t) = 〈|r(t)− r0|2〉 by a Green-Kubo relation [123]

g0(t) =

∫ t

0

dt′
∫ t

0

dt′′Z(t′ − t′′) . (2.30)

The negative tail of the velocity autocorrelation function is reflected in a lowering of
the diffusion coefficientD = g0(t)/6t or equivalently

D =

∫ ∞

0

dtZ(t) . (2.31)

In a normal liquid the diffusion coefficient is inversely proportional to the viscosity.
It can be shown that the Nose-Hoover thermostat as well as the DPD thermostat

allow to sample a canonical distribution [113, 118]. The Nose-Hoover scheme is also
known to not alter the dynamics of the system in comparison to the dynamics in an
NVE simulation [98]. We compared the dynamics of polymers in a confined film of
thicknessh = 10 at temperatureT = 1 being thermostated by the Nose-Hoover ther-
mostat and the DPD thermostat respectively via the velocity auto-correlation function.
The area of the simulation box was chosen such that the average pressure was set to
p = 0. The dependence of the DPD results on the friction parameterγ were explored.

In figure 2.3 the velocity auto-correlation functions are shown. For higher values
of the friction parameterγ the velocities decorrelate faster. We find a decreasing
diffusion constant with increasing friction parameterγ. In the following we will
always use a value ofγ = 0.5 which is large enough to efficiently thermostat the
system and on the other hand is small enough to not significantly alter the dynamics
of the monomers.

NpT ensemble

It is also possible to perform simulations in the isothermal-isobaric (NpT) ensemble.
In this case, the volume of the simulation box has to fluctuate, allowing the pressure to
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Figure 2.3: Velocity-autocorrelation functions for different values of the friction pa-
rameter γ at constant volume (The volume was set to the mean value obtained from
a NpT simulations at p = 0) for a confined film with wall-to-wall distance h = 10 at
T = 1 are compared to the result for the Nose-Hoover thermostat. The chain length
was 10. The time step was dt = 0.005 in all cases.

remain constant. In an isotropic system the instantaneous pressure can be calculated
as [97]

p(t) =
1

3V

(∑
i

miv
2
i +

∑
i<j

rij · (Fij −Rcm)

)
. (2.32)

Here,V = BxByBz is the volume of the simulation box (Bx, By, Bz are the linear
dimensions of the box inx, y, andz directions) andFij the force acting between
particlesi andj which are a distancerij apart from each other andRcm is the system’s
center of mass. (It is subtracted to allow a correct sampling of the NpT ensemble
using this expression for the instantaneous pressure in the equations of motion of the
Andersen barostat [124] described in the following.) For anisotropic systems the total
pressure is a tensor [125] given by

P̂ =
1

V

(∑
i

miviv
T
i +

∑
i<j

rij(Fij −Rcm)T

)
. (2.33)

The superscriptT refers to the transposed vector. For a fluid at equilibrium that is
confined in one direction (in our case they direction) the off-diagonal components
of P̂ vanish, and the two diagonal components parallel to the wall are identical. For
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films, there is thus only a normal component (cf. e.g. [104, 126])

PN =
1

V

[∑
i

p 2
i,⊥

mi

+
∑

i

Fi,⊥(yi −Rcm,⊥)

]
, (2.34)

and a parallel component

PT =
1

2V

[∑
i

p 2
i,||

mi

+
∑

i

Fi,|| · (ri,|| −Rcm,||)

]
. (2.35)

Here,pi = (pi,||, pi,⊥) is the momentum of particlei at positionri = (ri,||, ri,⊥ = y),
Fi = (Fi,||, Fi,⊥) is the total force acting on particlei, andRcm = (Rcm,||, Rcm,⊥) is
the position of the system’s center of mass.

We would like to use our bulk simulations to bench mark the results we obtain
for the films. If a free surface is present and no external forces act on the monomers,
the component of̂P , the pressure tensor, perpendicular to the surface vanishes. The
pressure becomes isotropic as we go further from the interface, so thatp = 0 far from
the interface. It is therefore natural to choose an NpT ensemble withp = 0 in the
simulation of the bulk polymer and the confined films.

Berendsen barostat. A very simple approach to simulate at constant pressure in
the bulk is the Berendson barostat [127]. With the Berendsen method, one defines a
time constantτP which couples the system to an external piston through

dp

dt
=

Pext− p

τP
, (2.36)

wherePext is the target pressure; to satisfy such a requirement, it is then necessary to
impose a new form for the equations of motion, and to modify the volume accord-
ingly:

ṙi = vi + ηri (2.37)

V̇ = 3ηV . (2.38)

The isothermal compressibility is defined by

β = − 1

V

(
dV

dp

)
T

(2.39)

and can be used to linkη to the coupling constantτP [using eqs. (2.36) and (2.38)]:

dp

dt
= − 1

βV

dV

dt
' ∆p

∆t
(2.40)

Pext− p

τP
= − 1

βV
3ηV (2.41)

⇒ η = − β

3τP
(Pext− p) . (2.42)
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The differential equation (2.37) forri can be solved by scaling the positions by a
factor

µ = 1− β∆t

3τP
(Pext− p) (2.43)

to first order in∆t. So that the system volume and coordinates are rescaled after each
time step according to

r′i = µri (2.44)

and

B′
x = µBx B′

y = µBy B′
z = µBz . (2.45)

This coupling scheme will adapt the system volume such that the average pressure
reaches the imposed valuePext. The height of the fluctuations is proportional to the
parameterµ and thus dependent on the ratioβδt/τP = 0.0001. The choice made
here mirrors the small compressibility of the system keeping the amplitude of volume
fluctuations low. The Berendsen barostat does not rigourously sample the isobaric-
isothermal ensemble but provides a simple stable method to get the desired average
system size.

The Berendson barostat needs to be modified for anisotropic systems. We choose
to adjust the area that the film covers and impose the normal pressurePN. The wall-
to-wall distance is kept constant. The following coupling scheme was used to allow a
simulation at constant normal pressurePN.

x′i = µxi z′i = µzi (2.46)

B′
x = µBx B′

z = µBz, (2.47)

whereµ = 1 − βδt
3τP

(Pext − PN) is thus dependent on the normal component of the
pressure tensor. This coupling scheme adjusts the area and gives the desired average
pressure. This scheme does not rigourously sample the isobaric-isothermal ensemble
which was already noted for the bulk system.

Andersen barostat. As in the case of the thermostat it is possible to realize states
distributed according to the isothermal isobaric ensemble by the use of an extended
Lagrangian [124, 128]. As a further degree of freedom, the volume is introduced.
The system volume and its conjugate variableη are driven by the difference between
the imposed pressure and the instantaneous pressure of the system. The resulting
equations are the Hoover-Melchionna equations [124].
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For a bulk system the barostat acts isotropically in all three directions such that the
chosen external pressurePext is imposed. The equations governing the time evolution
of the particles are given by

ṙi =
pi

mi

+ η(pi −Rcm) (2.48)

ṗi = Fi − (ξ + η)pi (2.49)

ξ̇ =
1

Q

(∑ p2
i

mi

− 3NkBText

)
(2.50)

η̇ =
V

M
(P (t)− Pext) (2.51)

V̇ = 3V η . (2.52)

The position of the center of massRcm is subtracted to ensure that the isothermal
isobaric ensemble is realized [124, 126]. The coupling parameter is the mass of the
barostatM . It determines the frequency of the volume fluctuations, but not their
amplitude as opposed to the Berendson barostat. In the case ofM → ∞ the Nose-
Hoover equations and the canonical ensemble are recovered.

Choice of the mass parameterM . As opposed to the Nose-Hoover thermostat
which performs well for a rather larger range of the coupling parameterQ, this baro-
stat is more sensitive to the value ofM . According to Anderson the time scale of the
volume fluctuations should be comparable to the time it takes a sound wave to make
at least one round trip in the simulation box. This time is sufficient for the system to
respond to the volume changes [129]. Using this criterion an expression for the mass
parameter can be found [126]

M ∼ n2
rt3N

(
V 1/3

π

)2

∼ 106 , (2.53)

wherenrt refers to the number of round trips of a sound wave during a full period of
volume fluctuations. Andersen suggested thatnrt = 1 but we usenrt = 10 which gives
the system more time to respond to volume fluctuations and increases the performance
of the barostat [130].

Barostating a film. When applying this barostat to a film one is faced with the prob-
lem that there are different possibilities how to couple the barostat to the asymmetric
simulation box. One can either vary the area of the film or its thickness to adjust the
tangential or normal pressure respectively [126]. We adopt a solution where the nor-
mal pressure is kept constant and thus the wall-to-wall separation is allowed to vary.
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The equations in this case read as follows:

ṙi,|| =
pi,||

mi

(2.54)

ẏi =
pi,y

mi

+ η(yi −Rcm,y) (2.55)

ṗi,|| = Fi,|| − ξpi,|| (2.56)

ṗi,y = Fi,y − (η + ξ)pi,y (2.57)

ξ̇ =
1

Q

(∑ p2
i

mi

− 3NkBText

)
(2.58)

η̇ =
V

M
(PN(t)− Pext) (2.59)

Ḃy = Byη . (2.60)

The normal pressure is calculated as indicated in equation (2.34). While the thermo-
stat acts isotropically in all three directions, the variableη, conjugate to the separation
of the wallsBy, acts only in the direction perpendicular to the wall. Equally only the
wall-to-wall distanceBy is changing while the lateral box size is kept constant.

Fathollah Varnik [126, 130] chose in his simulations of confined films to vary the
area of the filmA = BxBz and keep its thickness given by the wall-to-wall distance
By fixed while still imposing the normal pressure of the system to be equal toPN = 1.
This corresponds to the coupling scheme we employed when using the Berendsen
barostat for confined films. AsPN andA are not conjugate variables a slightly more
complicated procedure has to be used to achieve a rigorous sampling of the desired
ensemble within the frame work of the Andersen barostating scheme [126, 130].

DPD thermostat and Andersen barostat. A third approach we explored was to
combine the Andersen barostat with the DPD-thermostat [131] to be able to simulate
a system where hydrodynamic correlations are important. As one of the goals of this
thesis is the simulation of the solvent evaporation from a thin polymer-solvent film, it
is desirable to include hydrodynamic effects as accurately as possible. The equations
of motion are given by:

ṙi,|| =
pi,||

mi

(2.61)

ẏi =
pi,y

mi

+ η(yi −Rcm,y) (2.62)

ṗi,|| = Fi,|| + FD
i,|| + FR

i,|| (2.63)

ṗi,y = Fi,y + FD
i,y + FR

i,y − ηpi,y (2.64)

η̇ =
V

M
(PN(t)− Pext) (2.65)

Ḃy = Byη . (2.66)
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The randomFR
i and frictionFD

i forces are still defined by equations (2.19). The cou-
pling of the barostat to the wall-to-wall separation and the coordinates in the perpen-
dicular direction remains unchanged. In the limit of an infinite mass of the barostat
M →∞, the equations of motion using the DPD thermostat to sample the isothermal
ensemble are recovered.

The volume undergoes long-range fluctuations in these cases whose frequency is
dependent on the mass parameterM . These fluctuations can show undesired long-
range correlations which decay very slowly in time. Therefore it can be useful to
introduce a random force acting on the friction coefficientη in analogy with the
Langevin thermostat. This method is called the Langevin piston method [128, 132].
The Andersen barostat and the Langevin Piston method in combination with the DPD
thermostat have been studied in detail by Jacobsen [131].

The equation of motion of the friction coefficientη changes accordingly to

η̇ =
V

M
(PN(t)− Pext)− γpη + σpθp , (2.67)

whereσp is the strength of the noise andθp is a gaussian random variable whose first
and second moments are

〈θp(t)〉 = 0 (2.68)

〈θp(t)θp(t
′)〉 = δ(t− t′) . (2.69)

In our implementation a random number generator which provides equally distributed
random numbers is used. In order to obtain an isothermal- isobaric probability density
equation

σ2
p = 2kBTγpM (2.70)

needs to be fulfilled.
In figure 2.4 the volume of the box in a bulk simulation atT = 1 with 288 chains

of 10 monomers at pressurep = 0 is shown. The DPD thermostat was used in all
three cases. The Berendson barostat tends to underestimate the volume fluctuations
considerably for the chosen value of the coupling strength. Probably it would be
possible to improve its performance by tuning the coupling parameter better. The
volume and energy showed a gaussian distribution in all cases. For the Berendson
barostat the half width of these curves was much smaller than for the other barostats
as the fluctuations were underestimated.

2.3 Simulation procedure

All simulations presented in the following chapters are performed under isothermal
and isobaric conditions (NpT ensemble). To control temperature the DPD thermo-
stat is used with coupling constantγ = 0.5 and a cutoff functionw(rij) = 1 − rij

rc
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Figure 2.4: The time evolution of the volume of the box for the bulk system at p = 0
and T = 1 for different barostating methods. The chain length was 10.

employing the same cutoffrc = 2.3 as the LJ-potential (see for further detail [117]).
The pressure in the bulk system and the confined films is adjusted using the Andersen
barostat [114, 131] described in the last section. No barostat is necessary in the case
of the supported and free films.

To perform the simulations the programmd_spherical developed by Hen-
drik Meyer was used. The DPD and Nose-Hoover thermostat as well as the An-
dersen barostat and the Langevin piston method were implemented as described in
section 2.2.2. In addition the double bridging algorithm was included to allow a
faster equilibration of systems containing longer chains. This will be described in
section 2.4.

All simulations are carried out in 3 steps. First the initial configurations have to
be set up from which the MD simulations can start. Then an equilibration run needs
to be carried out, so that the system reaches its equilibrium properties and results are
independent from the method initially chosen to prepare the system. Finally produc-
tion runs are carried out to gather data which allows the calculation of diverse static
and dynamic properties of the system.

Initial configuration. It is advantageous to try to provide a starting configuration
that closely resembles an equilibrated, disordered system. This can be achieved using
a Monte-Carlo algorithm that will efficiently decorrelate an artificial configuration so
as to let it mimic the properties of the system in questions at thermodynamic equilib-
rium as is best possible. For instance in our simulation program, an algorithm pre-
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pares a random-walk-like configuration for each chain, with bond lengths and bond
angles distributed according to distributions determined by the potentials constrain-
ing them. As we did not impose a bending potential the angles are chosen randomly.
Then the chains’ centers of mass are moved using a Monte-Carlo method to distribute
the monomers as uniformly as possible. In the initial set up of the film configurations
we introduce walls aty = 0 andy = By. Reflecting boundary conditions are used
at the walls, meaning that chains that would penetrated the wall are folded back into
the film. In this way we can create start configuration for films confined between two
walls.

Up to this point, the chains are treated as ideal, i. e. no excluded volume is taken
into account. The simulation is then started with an intermolecular potential that is
multiplied by a factor increasing steadily in time, from 0 to 1, in order to allow the
overlaps of different particles to relax. The time scale upon which the intermolecular
potential is switched on is important. The faster it is done the larger are the distortions
of the chain conformations induced by this procedure. A slow push-off provides less
deformed chain conformations and is therefore preferable [133]. The initial velocities
are picked up at random from a Maxwell-Boltzmann distribution, corresponding to
the desired temperature, as expected in the NVT ensemble.

Set up of films. The different film geometries are prepared in two steps. The initial
configurations of the confined films are equilibrated in an NpT simulation atT = 1
andp = 0. (Note that the profile of the normal pressure must be constant across the
film due to mechanical stability [134].) The thermodynamic variable conjugate to
PN, the wall-to-wall distance (By), thus fluctuates in the simulation, while the area
A (= BxBz) of the simulation box is kept constant and chosen equal for all films
studied. Periodic boundary conditions are applied in the parallelxz-directions.

In a second step the equilibrated configuration of the confined film is used to
create films with one or two free surfaces. The wall potential aty = By and in the
latter case also aty = 0 is switched off and the resulting films are equilibrated at
T = 1. It is not necessary to employ a barostat to maintainp = 0 because the system
has free interfaces.

For the chain lengthN = 10 we prepared supported and free-standing films con-
tainingn = 288 andn = 576 chains (lateral system size ofBx = Bz = 20.21). This
gives rise to an initial film thickness ofh = 8.4 andh = 16.6 at T = 1 for both
film geometries. Furthermore, a supported film ofn = 864 chains was set up with
an initial thickness ofh = 24.9 at T = 1. For the chain lengthN = 64 supported
and free-standing films were set up containingn = 48 andn = 96 chains each. The
lateral system size was in this caseBx = Bz = 20.9 and the initial film thickness at
T = 1 was found to beh = 8.2 andh = 16.3.

Equilibration. These initial configurations were cooled to lowT in the follow-
ing way. We first performed cooling runs in which the temperature is continuously
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decreased fromT = 1 to T = 0.1 with a finite rate ofΓT = 2 × 10−5 via the cool-
ing scheduleT (t) = 1 − ΓT t. The configurations obtained on cooling were then
used as starting points for isothermal runs. ForN = 10 they were equilibrated until
the monomer mean-square displacementg0(t) exceeded the mean-square end-to-end
distance of a chain, i.e.,g0(t) > R2

e. Subsequent production runs were of a max-
imum length of150000 for T & Tc, whereTc is the characteristic temperature of
Mode coupling theory. No isothermal runs were carried out belowTc. For N = 64
the double-bridging algorithm which will be introduced in the following section was
used to equilibrate the systems. The isothermal runs of maximal length200000 were
not long enough to reachg0(t) > R2

e. Also in this case no isothermal runs were car-
ried out belowTc. At the high temperatureT = 1 we also set up films of thickness
h = 4 andh = 17 for chains of lengthN = 256. They were equilibrated at this high
temperature by isothermal runs of length500000 and also by long bridging runs. No
isothermal runs belowT = 1 were carried out.

2.4 Double-bridging algorithm

To thoroughly equilibrate a system in MD simulations, i.e. to erase all memory of
the initial configuration, it is necessary to propagate the system as long as its largest
relaxation time. This time corresponds to the relaxation of the end-to-end vector of a
chaini, Ri

e = r1
i − rN

i . As this time grows very fast with increasing chain length it
becomes impossible to equilibrate a system of long chains on all length scales in an
MD simulation.

In order to achieve a faster equilibration of the systems we implement the double
bridging algorithm following [133, 135]. Applying Monte Carlo moves, changing the
chain connectivity everyNbridge = 2 MD-steps in a way such that the sample remains
monodisperse, allows to improve the statistical accuracy for static observables such
as the radius of gyration. The applied changes in connectivity are illustrated in figure
2.5. Here a schematic drawing of a chain before and after the bridge move is shown.
A move is carried out as will be described in the following paragraph.

At each move a certain fraction of all monomersNB = 0.05Nn are chosen at
random. For a selected monomeri, we determine the numberkbridgeof possible bridge
partners by checking how many of its non-bonded neighbors are withinacut = 0.1 of
the equilibrium bond lengthbeq = 0.967, so that(ri,j−beq)

2 < a2
cut and(rl,k−beq)

2 <
a2

cut, wherel = i ± 1 andk = j ± 1 refer to the neighbors of particlei andj with
which the bonds are cleaved. The move is only suggested if the chain indices ofk
andj allow to preserve monodispersity

mod(j, N) = mod(i, N)± 1 or mod(j, N) = N −mod(i, N)± 1 (2.71)

mod(k,N) = mod(l, N)± 1 or mod(k,N) = N −mod(l, N)± 1.(2.72)

One of these pairs of bridge partners,j andk, is chosen at random.
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Figure 2.5: UPPER PANEL: Snapshot of a chain before and after a bridge move.
LOWER PANEL: Schematic drawing of the chain before and after the bridge move.

The change in energy due to the move is calculated by

∆E = ULJ(ri,j) + Ubond(ri,l) + Ubond(rj,k) + ULJ(ri,k)

− ULJ(ri,l)− Ubond(ri,j)− ULJ(rj,k)− Ubond(rk,l) . (2.73)

Here one has to pay attention that the cleaved bonds fulfill as well the criterion(ri,l−
beq)

2 < a2
cut and(rj,k− beq)

2 < a2
cut. Otherwise the inverse move is not possible and to

maintain detailed balance the move has to be rejected. The number of possible bridge
moves for the chosen bridge partnerj after the exchange of the bondskreturn needs to
be determined to fulfill detailed balance. The end monomers and its nearest neighbors
are excluded from bridge moves. The probability to carry out a move is then found
as

P = min

(
e

∆E
kBT

kbridge

kreturn
, 1

)
. (2.74)

We tested this algorithm in the bulk as well as for films with the parametersNB =
0.05Nn, acut = 0.1 and an attempted double-bridging move everyNbridge = 2 MD-
steps, as stated above.NB should not become too large because otherwise a lot of
the performed moves are reversed upon the next attempt. A small value ofNbridge

also increases the number of reversed moves as the configurations do not change
significantly between successive series of moves, on the other hand the number of
attempted moves perτ increases which in turn also leads to an increase of the accepted
moves perτ . acut should be on the order of the normal bond-fluctuations since a move
which suggested an energetically very unfavorable conformation is very unlikely to
be accepted.

The amount of successful attempts decreases strongly with temperature as

mac(T )/τ = A e
−Ea
kBT , (2.75)

whereEa = 2.43 is independent of the system’s geometry, whileA is higher in
the bulk (A = 8.8) than in the film (A = 6.79). As the density is the same this
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Figure 2.6: LEFT PANEL: The acceptance rate as a function of temperature is shown
on the left ordinate. On the right axis the attempt rate as a function of temperature is
displayed. The circles and triangles refer to the bulk system of chain length N = 64
while the stars and crosses refer to a thin film of thickness h ∼ 7 of chains of length
N = 64. Both systems contained n = 48 chains. RIGHT PANEL: R2

s/s as a function
of a is shown for a long MD run (circles) and a much shorter run using the bridge
algorithm (line) at T = 0.7 for chains of length N = 64 in the bulk.

might be due to a difference in the number of entanglements in the bulk and the films
because the number of attempted bridge moves increases with the number of inter-
chain contacts. There is also the possibility of a chain bridging with itself. Indeed we
do find an increase in the self bridges for the film in comparison with the bulk, but it
is not strong enough to make up for the decrease in inter-chain bridge moves.

The number of attempted moves increases with decreasing temperature as the
density gets higher

mat(T )/τ = m0 − bT , (2.76)

wherem0 = 26.6 andb = 12.97 for the bulk. The values in the film are again by
a factor of1.3 lower. Fits of the above equations to the simulation results for a bulk
system and a film are shown in figure 2.6.

In order to test that the algorithm works correctly and allows to sample the chain
conformations efficiently we look at the intra-chain distance function of a chainR2

s/s.
We thus consider a set ofn chains ofN monomers each, whose positions are denoted
by

ra
i , (a = 1, . . . , N ; i = 1, . . . , n) (2.77)

meaning that the different chains are indexed byi, j, . . . and the monomers bya,
b, . . . R2

s/s which describes the mean-square distance of two monomers which have
s− 1 monomers in-between them is defined as

R2
s/s = 〈R2

s〉/s =
1

s

1

n

n∑
i=1

1

N − s

N−s∑
a=1

〈
|ra

i − ra+s
i |2

〉
. (2.78)
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For long chains it is found thatR2
s/s = C∞b2

eq, whereC∞ is Flory’s characteristic
ratio [51].

For chains ofN = 64 it takes150000τ to fully equilibrate the system atT =
0.7. Using the bridge algorithm the system is considered as equilibrated after each
monomer has bridged at least once. So the average time for equilibration is found
to be Nn/mac τ ∼ 15000τ as mac = 0.27 and nN = 3072 for a bulk system
of n = 48 chains of lengthN = 64 at T = 0.7. This is much faster than for a
normal MD simulation. As can be seen in figure 2.6 the results obtained for the
mean-square distance of monomers as a function of their distance along the chain
are the same. Unfortunately the performance of the algorithm decreases considerably
due to the very low acceptance rates at lower temperatures. Therefore the double
bridging scheme, at least in its present implementation, is not of much help for the
equilibration of the system close toTc.
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Chapter 3

Static structure

Experiments find a decrease of the glass transition temperature (Tg) for thin supported
polymer films of thickness belowh < 100nm if the interactions between polymer and
substrate are weak. The magnitude of the decrease with decreasing thickness depends
on the specific polymer. For polystyrene reductions as large as40K were found for
films of thicknessh ' 15nm (see e. g. for reviews [31, 69]). ExperimentallyTg

is often determined using ellipsometry which allows to monitor the changes of film
thickness with decreasing temperature as the sample is cooled. Because this is a non-
equilibrium procedure the results are found to be dependent on the cooling rate. We
will also measureTg by determining the film thickness on cooling in section 3.1.

The decrease ofTg found in thin polymer films with a free surface was linked to
a higher mobility of the monomers in the vicinity of the free interface in experiments
[5, 9, 10] and computer simulations [12, 16, 21, 38]. In the framework of mode
coupling theory (MCT) the local density correlations have a large influence on the
dynamics of the system. Small changes in the structure can in the vicinity ofTc, the
characteristic temperature of MCT, entail large differences in the dynamics [67, 136].
We study therefore the local packing of the monomers by looking at the total structure
factor as a function of the distance from the surface and compare the results to the
structure found in the bulk in section 3.2. A similar simulation study by Fathollah
Varnik concerned with films confined between smooth repulsive walls found that the
encounteredTc reductions could be linked to a suppression of the first maximum of
the static structure factor, indicating smaller local packing constraints [32, 35].

Additionally in ultra-thin polymer films the thickness of the film can become com-
parable or even smaller than the equilibrium size of the polymer coil. Therefore per-
turbations of the chain conformations are expected in thin films. We asses the struc-
ture of the chains and its dependence on confinement by looking at the intra-chain
structure factor and the layer-resolvedRg andRe in section 3.3.

31
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3.1 Glass transition temperature

We begin our analysis by a discussion of the glass transition temperatureTg in our thin
model polymer films. To determineTg we monitor the film thicknessh on cooling,
and identifyTg with the temperature where the slope ofh changes. Such a “pseu-
dothermodynamic” approach [31] is commonly employed in experiments.

3.1.1 Definition of the film thickness

The density profile can be determined numerically

ρ(y) =
1

A

〈
nN∑
i=1

δ (y − yi)

〉
, (3.1)

whereA is the area of the simulation box.
The film thickness can be derived from the monomer density profile defined by

equation 3.1 via the method of the Gibbs dividing surface (GDS) [123]. First, the
mean density of the film̄ρ is calculated by averagingρ(y) over an interval of width
∆y = 3σ in the centeryc of the film

ρ̄ =
1

∆y

∫ yc+∆y/2

yc−∆y/2

dy ρ(y) . (3.2)

The position of the left (yG
−) and the right (yG

+) GDS is found by

yG
± = yc +

1

ρ̄

∫ ±∞

yc

dy ρ(y) , (3.3)

from which we obtainh ash = yG
+−yG

−. The result weakly depends on the choice for
∆y, especially for thin supported films at lowT where density oscillations propagate
far into the core of the system (cf. figure 3.1).

Figure 3.1 shows equilibrated density profiles of a supported and a free-standing
film at T = 1 andT = 0.44. The vertical dashed lines indicate the position of the
GDSs atT = 1. At this temperature the GDSs coincide for both films and the average
densityρ̄ in the middle of the film is very close to the bulk densityρbulk at the same
p andT . Because the density increases on cooling,h decreases. This decrease is
probably too strong in our simulations, since the system can only adapt the volume
in one direction (they-direction; we keepA fixed). Figure 3.1 also shows that the
density profile is qualitatively different at the free and supported surfaces. Close to
the wall,ρ(y) displays density oscillations which are typical of liquids in contact with
an impenetrable smooth substrate (see e.g. [32]), while at the free surface the density
smoothly goes to zero. On cooling the oscillations become more pronounced and the
width of the vacuum-polymer interface decreases. Nevertheless, even atT = 0.44
the difference inh between the two film geometries remains small (cf. table A.1).
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Figure 3.1: Density profiles ρ(y) for a supported film (full lines) and a free-standing
film (dashed lines) at T = 1 and T = 0.44. Both systems contain n = 576 chains.
The solid vertical line, labeled “wall”, shows the position of the wall in the simulation
of the supported film. The vertical dashed lines indicate the positions of the GDSs.
Since the left GDS yG

− of the supported film is at a distance of about 1 from the
wall, the definition h = yG

+ − yG
− results in a lower value for h than the definition

h = yG
+− (wall position), e.g. h = 16.6 instead of h = 17.6 at T = 1. We always

use the former definition h = yG
+ − yG

− in the following. The horizontal dotted lines
correspond to the average bulk density at T = 1 and T = 0.44 (ρbulk(T = 1) = 0.85
and ρbulk(T = 0.44) = 1.013).

3.1.2 Thickness dependence ofTg

A common approach to determineTg is to monitorh(T ) as the film is continuously
cooled with a constant rateΓT . Since this is not an equilibrium procedure, the re-
sult will depend onΓT . Figure 3.2 provides an example. It depicts the temperature
dependence ofh, of the thermal expansion coefficient

αp =
1

h

∂h

∂T
, (3.4)

and of its derivativeα′p = ∂αp/∂T , obtained from cooling runs withΓT = 2 ×
10−5. The liquid and the glassy states have different thermal expansion coefficients
which are constant over a wide temperature range.h(T ) gradually changes slope
upon crossingTg. Following previous experimental and computational studies we
first determineTg as the intersection point of linear extrapolations from the liquid and
glass sides. As has been pointed out before (see e.g. [17]), the result of this procedure
depends on the interval chosen for the fit. We only used a relatively smallT interval
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Figure 3.2: Results from continuous cooling runs with rate ΓT = 2× 10−5 for a sup-
ported (squares) and a free-standing film (circles) of h ' 15. The figure shows the
film thickness h(T ) (RIGHT ORDINATE), the thermal expansion coefficient α(T ) and
its first derivative α′(T ) = ∂α/∂T (LEFT ORDINATE). The thickness of the supported
film is shifted upward by 1 and α′ was divided by 10 for clarity. The solid lines repre-
sent tangents fitted to the low-T and high-T branches of h(T ) in order to determine
Tg via the intersection of these lines. For the high-T branch, only temperatures close
to the transition to the glassy phase were used in the fit. The resulting Tg values (cf.
table A.1) are indicated by filled circles. If the tangent in the liquid phase was fitted
to the whole high-T branch shown in the figure (dotted line), a larger value for Tg

would be obtained (intersection of the dotted line with the solid line for low T ). We
indicate this uncertainty due to the choice of the fit interval at high T by a horizontal
error bar associated with the filled circles. The dashed lines show parabola fits to α′

in order to determine its maximum. This maximum occurs at Ti (vertical dash-dotted
lines: Ti = 0.363 free-standing film, Ti = 0.381 supported film; cf. table A.1). For the
bulk, Tg, its systematic error due to choice of the high-T fit interval, and Ti are also
indicated for comparison.

aboveTg, since in experimental studies the range of temperatures explored aboveTg

is much smaller than in our simulations. This analysis results in a systematically
lower value ofTg than had we used the wholeT range available. The systematic error
due to this arbitrary choice is rather large. However, this error does not affect the
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qualitative dependence ofTg(h) onh so long as the same interval at high-T is chosen
for all films and the bulk.

As a less ambiguous definition ofTg which does not hinge on hidden fit param-
eters, such as theT interval, we suggest to identifyTg with the inflection pointTi of
αp, i.e., with the maximum ofα′p. We determine this maximum by fitting a parabola
to α′p ∝ −(T − Ti)

2 for T nearTi. This procedure requires the calculation of the
second derivatived2 ln(h)/dT 2 which is only possible after considerable smoothing
of the data for bothh andαp. We carried out running averages overT intervals as
large as∆T = 0.08. Nevertheless we did not find a systematic dependence ofTi on
∆T . The results forTi are higher than those forTg but within the error bars of the
systematic error.

Qualitatively,Tg andTi show the same trends (cf. table A.1). The glass transi-
tion is depressed with respect to the bulk. The thinner the films, the lowerTg or Ti.
Moreover, we find the depression ofTg to be larger for free-standing films than for
supported films of the same thickness.

3.1.3 Chain length dependence ofTg

As most experiments are done with polymers of much higher molecular weight than
the chains we used in our simulation, it is interesting to see how the found results
depend on chain length although, of course, the window ofN we can cover is much
smaller than in experiments. Chains ofN = 64, are too short to show the dynamic
signatures of long chains such as reptation - the entanglement length for this model
was estimated to beN = 32,- but their characteristic size is already considerably
larger than forN = 10 (Re(N = 10) ' 3.5 versusRe(N = 64) ' 10). Therefore the
chain configurations are influenced more strongly by the confinement. To see whether
this has an effect on the thermodynamic properties of the film we compare the results
for Tg andTi in the last sections to the ones found forN = 64.

In figure 3.3 the volume per monomerV (T )/nN is shown as a function of tem-
perature for bulk systems of chains ofN = 10 andN = 64 monomers. The longer
chains have a higher density and thus a lower volume per monomer. The thermal ex-
pansion coefficientαp, defined in equation (3.4), in the liquid state is smaller, while
the one in the glassy state seems to be rather independent of chain length. We find
an increase ofTg andTi with increasing chain length. This increase ofTg towards an
asymptotic limit with chain length has also been observed experimentally [137, 138].

Figure 3.3 also displays the volume per monomerV (T )/nN = h(T )A/nN found
in free standing films of different thickness for both chain lengths. As forN = 10
we find a decrease ofTg andTi with decreasing film thickness for the free-standing
films of N = 64. The decrease is more pronounced in comparison with the shorter
chains, so that free standing films of thicknessh ' 7 have the sameTg within the error
bars for both chain length. As for the bulk systems the thermal expansion coefficient
in the liquid state is smaller for the longer chains while the one in the glassy state
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Figure 3.3: LEFT PANEL: The Volume per particle is shown as a function of temper-
ature for a cooling rate of ΓT = 2×10−5 for N = 10 (stars) and N = 64 (circles) for a
bulk system at p = 0. The vertical lines indicate the values of Tg extracted from the
data. In the inset the thermal expansion coefficient for N = 64 (circles) is compared
to the one for N = 10 (stars). The vertical lines indicated the values of Ti extracted
from the data. RIGHT PANEL: The volume per particle is shown as a function of
temperature for a cooling rate of ΓT = 2 × 10−5 for N = 10 (thin lines) and N = 64
(symbols) for free standing films of h ' 7 (grey symbols and lines) and h ' 14 (black
symbols and lines). The vertical lines indicate the values of Tg extracted from the
data. In the inset the thermal expansion coefficient is plotted. The symbols and
lines are attributed as for the main plot. The vertical lines indicated the values of Ti

extracted from the data.

is approximately equal to the one found forN = 10. The thicker film of chains
N = 64 shows a larger broadening of the transition region than the thinner film or the
films containing chains ofN = 10. In the bulk system we did not see a significant
broadening of the transition with increasing chain length. A summary of the different
Tg values etc. can be found in table A.2.

3.1.4 Cooling rate dependence ofTg

The transition from the liquid to the amorphous solid state can be described as the
falling out of equilibrium of the system, because the relaxation times of the system
exceed the time scale of the experiment. Thus the resulting glass is not in thermal
equilibrium and it can therefore be expected that the properties of the glass will de-
pend on the production history of the system, as, e. g., the cooling rate with which
the sample was cooled. This has been observed in various experiments probing the
density of the glass andTg as a function of the cooling rate (see e. g. [139]) as well as
in computer simulations [140, 141].Tg is usually found to decrease with decreasing
cooling rate. Experimentally this dependence is found to be logarithmic in the cool-
ing rate. Therefore a large window of cooling rates has to be sampled to evidence this
phenomenon.
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Figure 3.4: LEFT PANEL: The position of the surface as a function of the temperature
is shown for 3 different cooling rates ΓT = 2×10−6 (dash-dotted line), ΓT = 5×10−6

(dashed line) and ΓT = 2 × 10−5 (full line). The method used to determine the
position of the interface was the criterion ρ(y = h05) = 0.5 as described in the
text. Also indicated is the result for the position of the interface using the method
of the GDS (thin dotted line) described in section 3.1.1 (ΓT = 2 × 10−5). INSET:
The inset shows the position of the surface according to the GDS method as a
function of temperature for 3 different cooling rates ΓT = 2×10−6 (dash-dotted line),
ΓT = 5 × 10−6 (dashed line) and ΓT = 2 × 10−5 (full line). The chain length was
N = 64 in all cases. RIGHT PANEL: The thermal expansion coefficient for a cooling
rate of ΓT = 2×10−5 is shown for chains of length N = 256 and film thickness h ' 5
(dotted line), N = 64 (full line) and N = 10 (dashed line). The thermal expansion
coefficient was calculated from the results of the film thickness obtained from the
method of the GDS.

We did not find a pronounced dependence on the cooling rate for the system in-
vestigated which should not be expected as we only varied the cooling rate by a factor
of 10. The most significant change we encountered for a rather thin supported film
of chains of lengthN = 64. This dependence might be due to the inaccuracy of
the determination of the film thickness as it becomes more and more difficult to un-
ambiguously determine the overall density of the film because of very pronounced
layering effects which propagate through the whole film (see section 3.1.1). As the
density profile in the simulation is not a step profile there is always a certain ambigu-
ity where to place the interface exactly. Therefore the method of choice can change
the values one obtains for the thickness systematically. This error is on the order of
the interfacial width∆ ' 1. It will have a larger influence on the overallh of the
film, the thinner the film is, so that the relative error increases with decreasing film
thickness. For our thinnest films the thicknessh ' 7 and the error is∆/h ' 15%.

Therefore we employed two different approaches for determining the thickness of
the films. The first one was based on the method of the GDS as described in section
3.1.1 while the other was a much simpler approach for which it was not necessary
to know the momentary overall density. We simply chose the interface to be at the
point where the density reached the valueρ(y = h05) = 0.5. This choice of course
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is rather arbitrary and changes the curves one obtains for the dependence of the film
thickness on temperature considerably. This can be seen in the left panel of figure 3.4
(compare the thin line (GDS method) and the thick lines). While one does not detect a
cooling rate dependence using the method of the Gibbs dividing surface, a clear trend
can be seen using the simpler approach. This means that the average density and
the film thickness depend on the cooling rate. These two effects seem to counteract
when determining the film thickness with the GDS method resulting in almost no
dependence on the cooling rate.

In figure 3.4 the thermal expansion coefficient is also shown. No matter how one
determines the film thickness one always finds an increase of the thermal expansion
coefficient with decreasing temperature before the system undergoes the glass tran-
sition. This overshoot increases with increasing chain length. It is not yet present
for the short chainsN = 10. For thicker films and free-standing films we did not
encounter this phenomenon. Probably it is related to layering effects at the wall. This
makes it difficult to determine the glass transition temperature in very thin supported
films. Therefore we do not report a value ofTg for the thinnest supported film at chain
lengthN = 64.

3.2 Static structure factors

Since we are interested in the glass transition in these thin films which is a local
phenomenon, an analysis of the structure of the melt on this length scale might give
important insight into the reasons for the foundTg reductions. AlthoughTg was deter-
mined by a non-equilibrium procedure, the equilibrium structure of the liquid slightly
aboveTg could still provide some understanding of the observed changes inTg in thin
films. In this section, we will therefore be mainly concerned with equilibrium proper-
ties. For our simulations this limits the temperature regime toT > Tc(h), Tc(h) being
the critical temperature of mode-coupling theory (MCT) [67] for a film of thickness
h. A detailed discussion howTc(h) is determined will be given in section 4.2.

Density fluctuations for the wave vectorq can be measured by static structure
factors [123]. For a polymeric liquid it is natural to distinguish between the structure
factor of a chain and of the melt. To introduce these quantities we consider a system
containingn monodisperse chains of lengthN in a volumeV . The chain densityρcm

and the monomer densityρ are then given by

ρcm =
n

V
, ρ =

nN

V
. (3.5)

We write the static structure factor of the meltS(q) as a sum of an intrachain and
an interchain part:

S(q) = w(q) + ρh(q) (q = |q|) . (3.6)
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The intrachain part is given by

w(q) =
1

nN

〈 n∑
i=1

N∑
a,b=1

exp
[
−iq · (r a

i − r b
i )
]〉

, (3.7)

and the interchain part by

ρh(q) =
1

nN

〈 n∑
i6=j

N∑
a,b=1

exp
[
−iq · (r a

i − r b
j )
]〉

. (3.8)

In these equationsr a
i is the position of theath monomer in theith chain.h(q) is the

Fourier transform of the intermolecular pair-correlation function [123].

3.2.1 Bulk

We begin our discussion with the bulk system atp = 0 which will serve as an impor-
tant reference point for the analysis of the statics in the films. Figure 3.5 compares
S(q) andw(q) for the BS model atp = 0 to the results for the BE model atp = 1
(see section 2.1 for details on the different models). The temperature interval extends
from the ”normal” liquid state of the melt to temperatures in the supercooled state
slightly above the critical temperatureTc of mode-coupling theory in both systems.
The results of both models agree very well with each other if one shifts the temper-
ature axes to make up for the difference inTc. The critical temperatureTc ' 0.45,
deduced from an extensive analysis of the dynamics of the BE model (see e.g. [32] for
a review) is about∆T ' 0.045 higher thanTc for our model which was determined
asTc ' 0.405 (see section 4.2). The fingerprint of this difference inTc reappears in
the static structure of the melt:S(q) at T = 0.46 for the BE model overlaps almost
completely with theS(q) atT = 0.42 for the BS model.

We observe thatw(q) of the BS and BE models agree quantitatively with one an-
other. Apparently, the different bond potentials do not affect the intrachain structure
factor. Furthermore, the dependence ofw(q) on T is negligible. This demonstrates
that the chains preserve a random-coil-like conformation upon cooling. There is no
discernable trend of incipient crystallization. The same applies to the collective struc-
ture factor. S(q) exhibits features characteristic of a dense disordered system. The
structure factor is small at lowq, reflecting the small compressibility of the melt.
Then, it increases with increasingq toward a maximum, the ‘amorphous halo’, before
it converges to 1 in an oscillatory manner asq → ∞. As w(q) is (almost) indepen-
dent ofT , modifications ofS(q) with decreasingT must be caused by changes in the
intermolecular packing. The fact that the positionq∗ of the amorphous halo and its
amplitudeS(q∗) grow on cooling indicates that the packing of the monomers on a lo-
cal scale becomes tighter as a consequence of the increase of density with decreasing
T .
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Figure 3.5: MAIN FIGURE: Static structure factor S(q) of the melt (equation (3.6))
and intrachain structure factor w(q) (equation (3.7)) versus the modulus of the wave
vector q for the BE model (T = 0.7 and T = 0.46; p = 1; N = 10) and the BS model
(T = 0.6 and T = 0.42; p = 0; N = 10). Since w(q) is (almost) independent of T , it
is depicted only for T = Tc + 0.01 (BE model: dashed line, BS model: circles). The
arrows indicate the q-value corresponding to the radius of gyration (Rg ' 1.45) and
the position of the amorphous halo, q∗, at T = 1. q∗ slightly increases on cooling:
q∗(T = 1) ' 6.9 and q∗(T = 0.46) ' 7.15. INSET: Amplitude of the amorphous halo
S(q∗) versus T − Tc (BE model: Tc(p = 1) = 0.45; BS model: Tc(p = 0)=0.405).
The dashed horizontal line at 3.54 indicates the Hansen-Verlet freezing criterion for
the glass transition of hard spheres [142]. (S(q∗) and q∗ are expected to increase
slightly with chain length N ; see e.g. [143]).

Following reference [144] we may interpret this observation in terms of an empir-
ical freezing criterion, the Hansen-Verlet criterion [145]. According to this criterion
a liquid solidifies as soon asS(q∗) surmounts a critical value. For crystallization this
threshold isS(q∗) ≈ 2.85. For the glass transition of hard sphere mixtures described
within the framework of ideal MCT [67] the Hansen-Verlet criterion was suggested
to beS(q∗) ' 3.54 [142].

We can compare this prediction with our results. The inset of figure 3.5 demon-
strates for the BS and BE models thatS(q∗) approaches3.54 on cooling towardTc.
The close agreement between the hard-sphere system and the present simulation re-
sults suggests that the modification of the local structure in the melt—and the atten-
dant slowing down of the dynamics—is mainly driven by packing constraints result-
ing from the repulsive interactions between the monomers.

In this respect, our polymer melt behaves similarly to a soft-sphere system. For
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such a system it is known that the only relevant parameter needed to fully specify its
thermodynamic state isΓ = ρm(Tc)T

−1/4 if the repulsive interaction scales as∼ r−12

[123]. For the BE model we determinedΓc = ρcTc
−1/4 = ρm(Tc)Tc

−1/4 for different
pressures (p = 0.5, 1, 2) [146] and found thatΓc is constant to a good approximation
(Γc = 1.27 ± 0.02). Here, we confirm this finding also for the BS model. We obtain
Γc ' 1.28 for Tc ' 0.405 andρc ' 1.024 at p = 0. The observation thatΓc is
a pertinent parameter was also made in simulations of other glass-forming systems
[147, 148] and in experiments [149].

3.2.2 Films

Since the results for the bulk suggest in accordance with MCT that the glass transition
is driven by packing constraints of the monomers and short range order which is
reflected in the amplitude of the structure factor’s amorphous halo we also try to
apply the Hansen-Verlet criterionS(q∗) = 3.54 to find an estimate of the transition
temperature for supported and free films.

We look atS(q) averaged over the whole film as well as in layers close to the
surface. For thin films the structure factor is determined within planes parallel to the
surface as

S(q, y) =
1

nl

〈
nN∑
i,j

e−iq·(si−sj) δ (y − yi) δ (y − yj)

〉
, (3.9)

wherenl is the total number of monomers in the slab for whichS(q) is calculated.
The typical width of the slab is∆y = 2.

Figure 3.6 shows thatS(q) depends on the distance from the interface and thus on
the film thickness. The first peak ofS(q) is lower for the structure factors averaged
over the whole films than the bulk value. In the middle of the films the behavior
is bulk-like while at the surfaces the first peak is shifted to lowerq and S(q∗) is
considerably smaller. As has been pointed out [35] this resembles the behavior of the
bulk at higher temperature. Since the influence of the surfaces is felt more strongly in
thinner films, their averaged structure factors exhibit a weaker first maximum than the
thicker films irrespective of film geometry. The compressibility of the films reflected
by the low-q behavior of the structure factor is larger at the supported surface than the
bulk value. The presence of capillary waves at the free surfaces causes the structure
factor to increase at smallq asS(q) ∝ q−2 as predicted by J̈ackle [150]. The capillary
waves at the free surface and their influence on the structure and relaxation of the
films will be discussed in chapter 5

The suppression of the first peak is comparable atT = 0.44 for the supported
surface and the free surface as can be seen in figure 3.6. Both layers were not chosen
to be of the same thickness but to contain the same number of monomers. As a
consequence the height of the first peak of the structure factor averaged over the
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Figure 3.6: MAIN FIGURE: Two dimensional structure factor averaged over a free
film with h = 7 (dash-dotted line) at T = 0.44 for chains of N = 10 monomers at
p = 0. The structure factor in the middle of the films (full line) at the supported
surface (dashed line) and at the free surface (dotted line) given by equation (3.9).
All bins contained n = 300 monomers. The chain length was N = 10. INSET:
Amplitude of the amorphous halo S(q∗) versus the Tc(h) for the bulk (circles) and
supported films with h ' 7 (rectangles) and h ' 14 (triangles) and free standing films
(crosses: h ' 7 and stars: h ' 14). The dashed horizontal line at 3.54 indicates
the Hansen-Verlet freezing criterion for the glass transition of hard spheres [142].
LOWER PANEL:The lower panel shows the same plot as a function of T .
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whole film is not strongly dependent on the film geometry but only on film thickness.
At even lower temperatures the suppression of the amplitude of the amorphous halo
is larger for the supported films than for the free standing films of similar thickness.

Varnik et al [32, 151] found in the vicinity of purely repulsive walls the first peak
of the structure factor and thus the local order in the packing of the monomers to
be less pronounced. They linked this decrease in constraints of the monomers to the
faster relaxation of the monomers they found in their system. In the film the cage
cannot tighten as quickly as in bulk which leads to an acceleration of the dynamics.
This could in turn be an explanation for the foundTg reductions. We also see a
decrease inS(q∗) with decreasing film thickness.

The amplitudes ofS(q∗) for the different films and the bulk do not superimpose
upon shifting the temperature axis byT = Tc(h) (How Tc is determined will be
described in section 4.2 in chapter 4.). It would be possible to obtain good agreement
of S(q∗) by shifting the temperature axis byT ∗. The temperature decreases with
decreasingh is in qualitative agreement with the results found forTc (see section
4.2) andTg (section 3.1), but the suppression ofT ∗ is larger for supported films than
for free standing films in contrast to the analysis ofTg andTc. The Hansen-Verlet
criterion which worked well for the bulk cannot be applied to the films successfully.
We thus conclude that the packing of the monomers as measured by the amplitude of
the amorphous halo cannot alone account for the reduction ofTg andTc found in our
systems.

Longer chain length N = 64. So far the discussion was concerned with chains
of lengthN = 10. The dependence of the total structure factorS(q) and the intra-
chain structure factorw(q) on chain length is explored in figure3.7. The dependence
of the total structure factor on chain length is rather weak. The local packing of
the monomers is not strongly effected byN . We observe the same trends as for the
shorter chains. The first peak of the structure factor is lower in the films than in the
bulk and the properties of the free surface are reflected in the divergence ofS(q) for
small q. As the surface tension is slightly higher for the longer chains this effect is
a bit weaker for the longer chains. A more detailed discussion of the influence of
capillary waves at the free surface on the relaxation in the films is given in chapter 5.

The intra-chain structure changes as the chain-length is increased. But the chain-
structure atN = 64 is not strongly effected by confinement on the local scale asw(q)
for bulk and film of the same chain length agree well as can be seen in figure 3.7. The
influence of the confinement on the chain conformation forN = 64 on larger scales
can be explored in more detailed by an analysis of the end-to-end distance, the radius
of gyration and more generally of the gyration tensor performed in the next section.
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3.3 Radius of gyrationRg and end-to-end distanceRe

End-to-end distance. In order to characterize the size of one chain, one can use the
end-to-end vectorRe that is defined by

R2
e = 〈R2

e〉 =

〈(
N−1∑
a=1

ba
i

)2〉
i

=
N−1∑
a,b=1

〈
ba

i · bb
i

〉
i

, (3.10)

where〈. . . 〉i denotes an average over all chainsi (= 1, . . . , n) [51].

Radius of gyration. The radius of gyrationRg is also frequently used:

R2
g =

1

N

N∑
a=1

〈(
ra

i −Ri
cm

)2〉
i
=

1

2N2

N∑
a,b=1

〈(
ra

i − rb
i

)2〉
i

. (3.11)

Ri
cm = 1

N

∑N
a=1 ra

i refers to the position of the center of mass of chaini. For an ideal
chain, one expects the following property:

R2
g =

1

6
R2

e =
1

6
N`2 (3.12)
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Figure 3.8: LEFT PANEL: R2
s/s as a function of n is shown for a T = 1 (dashed

line), T = 0.7 (full line), T = 0.55 (dash-dotted line) and T = 0.48 (dotted line)
for chains of length N = 64 in the bulk. The results were obtained by combining
the MD simulations with the bridge algorithm as described in section 2.4. RIGHT

PANEL: R2
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s y/s as a function of n are shown for a T = 0.45 (dashed
line), T = 0.7 (full line), T = 0.55 (dash-dotted line) and T = 0.48 (dotted line) for
chains of length N = 64 in a supported film of thickness h ' 7. Also indicated (thin
lines) is R2

s/3s calculated in the bulk.

which defines the statistical segment`. To get a better idea of the over-all structure of
a chain also the intra-chain distance function as defined in equation (2.78) in section
2.4 is calculated.

In figure 3.8 the mean-square intra-chain distance is shown for a bulk system at
different temperatures. While the qualitative behavior does not change upon cooling,
i.e. there is no sign of crystallization, one can see clearly that the chains in the bulk
system are shrinking as the system becomes cooler. This effect should be due to the
densification of the system. Nevertheless the overall change ofRg andRe remains
small (R2

g(T = 1) = 16.99 and R2
g(T = 0.48) = 16.03). The chains have the

property of an ideal random walk given by equation (3.12) within the accuracy of our
calculations at all temperatures.

In the films we in addition look at the intra-chain distance function split into the
directions parallelR2

s xz/2s and perpendicularR2
s y/s to the surface defined as

R2
s xz/2s =

1

2s

n∑
i=1

1

n

N−s∑
a=1

1

N − s

〈
(xa

i − xa+s
i )2 + (za

i − za+s
i )2

〉
(3.13)

and

R2
s y/s =

1

s

n∑
i=1

1

n

N−s∑
a=1

1

N − s

〈
(ya

i − ya+s
i )2

〉
. (3.14)

These quantities are compared to the bulk results in figure 3.8. The chain is com-
pressed on all length scales in they-direction. The larger the distance of the mono-
mers the stronger the effect of the confinement is felt. This effect grows with lowering
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the temperature probably because the film thickness decreases with decreasing tem-
perature. The extensions of the chains in the parallel direction are larger than in the
bulk system. The stretching increases slightly as the temperature decreases but the
effect of temperature seems to be rather small.

In the films we find that the overallRg decreases with decreasing film thickness as
the confinement effect becomes stronger, i.e. the compression in they-direction has
a stronger impact on the overall structure than the stretching in the parallel direction.
The radius of gyration decreases fromR2

g = 16.29 in the bulk toR2
g = 14.58 in a thin

film of thicknessh = 7.2 atT = 0.7. The relation between the radius of gyration and
the end-to-end distance given by equation (3.12) is violated in the films. For a film of
h = 7.2 we find for exampleR2

g = 1
5.68

R2
e at T = 0.7. To understand this difference

better we calculate a layer-resolved radius of gyration and end-to-end distance by
considering only chains whose center of mass is in a certain distancey from the wall.

Layer-resolvedRe and Rg. As the dimensions of the film become comparable to
the size of the polymer coil the Gaussian statistics of the chains in the melt are per-
turbed due to the confinement.

The layer-resolved radius of gyration is defined as

R2
g xz(y) =

〈
1

2n(y)N

n∑
i=1

N∑
a=1

[(
xa

i −Ri
cm x

)2
+
(
za

i −Ri
cm z

)2]
δ
(
y −Ri

cm y

)〉

R2
g y(y) =

〈
1

n(y)N

n∑
i=1

N∑
a=1

[(
ya

i −Ri
cm y

)2]
δ
(
y −Ri

cm y

)〉
, (3.15)

wheren(y) is the number of chains whose center of mass is at distancey from the
wall. Analogously the layer-resolved end-to-end distance as

R2
e xz(y) =

〈
1

2n(y)

n∑
i=1

[(
x1

i − xN
i

)2
+
(
z1

i − zN
i

)2]
δ
(
y −Ri

cm y

)〉

R2
e y(y) =

〈
1

n(y)

n∑
i=1

[(
y1

i − yN
i

)2]
δ
(
y −Ri

cm y

)〉
. (3.16)

We also determine the density profile of the chain’s center of mass

ρcm(y) =
1

A

〈
n∑

i=1

δ(y −Ri
cm y)

〉
. (3.17)

In figure 3.9 the results of this analysis are shown. The confinement on the one
hand, constrains the chain in they-direction where also the ratio betweenR2

e and
R2

g deviates from the prediction for Gaussian chains. The chains are the stronger
deformed, the closer they are to the surfaces. There is no pronounced difference of
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Figure 3.9: LEFT PANEL: The layer-resolved radius of gyration (lines) and end-to-
end distance divided by 6 (symbols) in the parallel and the perpendicular direction
as indicated in the film are shown for a supported film of thickness h = 7.2 (grey) and
h = 14.4 (black) are shown for chains of length N = 64 at T = 0.7. The horizontal
line indicates the R2

g/3 = 5.45 of the bulk system at the same conditions. The inset
shows the density profile of the chains center of mass in both films. RIGHT PANEL:
The layer-resolved radius of gyration is shown in the parallel and the perpendicular
direction as indicated in the graph for T = 0.7 (black lines), T = 0.55 (gray lines) and
T = 0.45 (symbols) for a supported film (h = 7.2) of chains of length N = 64. The
horizontal lines indicate R2

g/3 of the bulk system at T = 0.7 and T = 0.45.

the extension of the chains in the perpendicular direction between the free and the
supported surface. The end-to-end distance is stronger affected by the confinement
than the radius of gyration. In the parallel direction, on the other hand, the chains have
the same dimension as in bulk in the center of the film. When approaching the surface
the chains are stretched in comparison to the bulk system. This effect is stronger at
the supporting surface. Nevertheless they still have the property of Gaussian chains
as far as the ratio ofRg andRe is concerned.

In the films of thicknessh = 14.4 the chains have bulk dimensions in the center
of the film within the accuracy of our calculations. The density profile changes quali-
tatively between the two film thicknesses. While the thinner film only has the highest
density of chains in the center of the film the thicker films shows two peaks in the
density at a distance of about3 from the surface. The density is constant in the center
of the film. The deviations from the bulk values at a given distance form the surface
does not increase upon stronger confinement. A chain at a given instant in time is on
average not a spherical object but can be described by an ellipsoid. In bulk simula-
tions of our model we find the ratio of the axis of the ellipsoid to be12.2 : 2.7 : 1
for N = 64. The confinement leads to a preferential orientation of these ellipsoids
with the shortest axis perpendicular to the wall. This was also described in detail in a
review by Mischler [152].

Upon cooling one finds a stronger decrease ofRg andRe in the films than for
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the bulk. As can be seen in figure 3.9 this is mainly due to the decrease of the film
thickness and the therefore stronger confinement of the chains in they direction and
not due to a homogeneous shrinkage of the chains . The layer-resolved values ofRg

are not accurate enough to see the rather small effect of temperature on the overall
extensions of the chains we encountered in the bulk systems. Overall the change in
structure of the chains remains small. Note that temperature effects are small be-
cause the model is completely flexible. Models with rigidity should exhibit a more
pronouncedT -dependence.

3.4 Summary

Tg was determined upon cooling the bulk system as well as the thin model polymer
films at a constant rate for chains of lengthN = 10 andN = 64. The glass transition
temperature was suppressed in the films in comparison with the bulk. The decrease
becomes more pronounced with decreasing film thickness. At a given film thickness
the decrease inTg is stronger for free-standing films than for supported films. For
chains of lengthN = 64 the relative decrease ofTg was stronger than for chains of
lengthN = 10.

We investigated the local packing of the monomers in the film in comparison
with the bulk using the total static structure factor. The first maximum of the static
structure factor is smaller in free-standing and supported films at a given temperature
in comparison with the bulk. The weaker packing constraints with decreasing film
thickness could give rise to faster dynamics in the films. This in turn could be an
explanation for the observedTg reductions. Such an argumentation along the lines of
mode-coupling theory was also used in previous studies on confined films to explain
the reduction ofTc, the critical temperature of MCT, with decreasing film thickness
[32, 151]. Nevertheless the suppression of the first maximum of the static structure
factor is comparable in supported and free-standing films and can therefore not ex-
plain the differences inTg between the two film geometries.

The conformations of the chains are perturbed by the confinement. We find a
decrease of the radius of gyration and the end-to-end distance in the perpendicular
direction and an increase in the plane of the film. The effect is strongest at the surfaces
and decreases towards the film center where the chains have bulk like dimensions if
the film is thick enough.



Chapter 4

Dynamic properties

In this chapter we would like to see whether the structural differences we found be-
tween bulk and film entail also differences in the dynamics. These dynamic differ-
ences could be linked to the observed changes inTg. First we present an analysis
of the dynamics in the bulk system which is going to serve as a benchmark for the
further analysis. Then we are going to look at the dynamics of the confined systems
averaged over the whole film via the mean-square displacements and the incoherent-
scattering function. We also perform a layer-resolved analysis of the dynamics to
show the spatial inhomogeneity of the relaxation. The film analysis will allow us to
present a formula for the thickness dependence ofTc and to suggest a position depen-
dentTc to explain the found profiles of the relaxation times. Eventually we will look
at the non-Gaussian parameterα2 in the bulk and the films.

4.1 Average dynamic properties

Mode-coupling theory (MCT) [67, 136] predicts that structural relaxation times of
a (bulk) glass-forming system diverge whenT approaches a critical temperatureTc

from above. To extract such relaxation times we determine the mean-square displace-
ment (MSD) of the innermost monomer

g1(t) =
〈[

r
‖
N/2(t)− r

‖
N/2(0)

]2〉
. (4.1)

and the incoherent intermediate scattering function at the maximumq∗ of the static
structure factorS(q)

φ
s‖
q∗(t) =

1

nN

〈
nN∑
i=1

exp
(
− iq ∗‖ · [r ‖i (t)− r

‖
i (0)]

)〉
. (4.2)

Here,r ‖i (t) is the position, parallel to the wall, of monomeri at timet, and bothg‖1(t)
andφ

s‖
q∗(t) are averaged over all monomers in the film. We only consider displace-
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Figure 4.1: Log-log plot of the MSD of all monomers g0(t) for N = 10 at p = 0
and T = 1, T = 0.6, T = 0.5, T = 0.45 and T = 0.42 for the BS model (lines) and
at p = 1 and T = 1, T = 0.65, T = 0.55, T = 0.5, T = 0.47 and T = 0.46 for
the BE model (symbols). The open squares indicate the MSD g3(t) of the chain’s
center of mass at T = 0.46 in the BE model and the filled squares show g3(t)
at T = 0.42 in the BS model. The dashed horizontal lines represent the radius
of gyration R2

g ' 2.09, the end-to-end distance R2
e ' 12.3, and the plateau value

6r2
0,c = 0.054 (the latter value is obtained from an MCT analysis of the BE model

[32]). The solid lines indicate early-time ballistic motion (∼ t2), sub-diffusive motion
due to chain connectivity (∼ t0.63), and final diffusion at late times (= 6Dt, D being
the diffusion coefficient).

ments and scattering vectors within the plane of the film, since motion in perpendic-
ular direction is constrained by film thickness.

To further explore the correspondence between the BE and BS models for the bulk
system established in section 3.2.1, we also compare the MSDs of all monomers

g0(t) =
1

nN

nN∑
i=1

〈
|ri(t)− ri(0)|2

〉
, (4.3)

and of the chain’s center of mass (CM)

g3(t) =
1

n

n∑
i=1

〈
|Ri

cm(t)−Ri
cm(0)|2

〉
, (4.4)

whereRi
cm(t) is the position of the center of mass of theith chain at timet.
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In the films it can often be useful to distinguish between the MSD in the directions
parallel to the wall

g
‖
0(t) =

1

nN

nN∑
i=1

〈
|r‖i (t)− r

‖
i (0)|2

〉
, (4.5)

and the MSD perpendicular to the wall

g⊥0 (t) =
1

nN

nN∑
i=1

〈
|r⊥i (t)− r⊥i (0)|2

〉
. (4.6)

4.1.1 Bulk

Figure 4.1 showsg0(t) andg3(t) for the BE and the BS model at different tempera-
tures ranging from the liquid regime to the supercooled state close toTc. For short
times the motion is ballistic andg0(t) ∝ g3(t) ∼ t2. For longer times and lowT ,
a plateau regime emerges which becomes more and more pronounced as tempera-
ture decreases. The plateau implies that the monomers remain temporarily trapped in
the cage formed by their nearest neighbors. When they escape from their cages the
monomers enter a sub-diffusive regime (g0(t) ∝ t0.63) due to connectivity. This sub-
diffusive regime does not exist for the MSD of the CM, which continuously crosses
over to the final diffusion directly after the plateau regime. At very larget the chains
and monomers move diffusivelyg0(t) = g3(t) = 6Dt with the same diffusion con-
stantD.

As for S(q) we find good agreement for the MSDs at the same distance from
Tc, especially at lowT . This agreement, between the two models under different
external conditions (p = 0 for the BS model andp = 1 for the BE model) for both
static and dynamic quantities, upon shifting the temperature axis by∆Tc ' 0.045 is
an argument in favor of MCT which suggests that a strong coupling between local
spatial correlations on the scale1/q∗ and the dynamics is responsible for the slowing
down of the relaxation on cooling towardTc.

4.1.2 Film versus bulk dynamics: qualitative features

Figure 4.2 comparesg‖1(t) andφ
s‖
q∗(t) obtained for supported and free-standing films

at T = 0.44 with the corresponding bulk results. Qualitatively, bulk and film dis-
play the same relaxation features. Forg

‖
1(t) for instance we find the following be-

havior: At short times the motion is ballistic (g
‖
1(t) ∼ t2). For longer times, the

monomer displacement slows down, particularly in the bulk where a plateau regime
emerges. The plateau implies that the monomers remain temporarily trapped in the
“cage” formed by their neighbors. When they escape from their cage the motion
becomes sub-diffusive due to chain connectivity (g

‖
1(t) ∝ t0.63). This sub-diffusive
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Figure 4.2: MSD of the innermost monomer (g1(t)) and incoherent intermediate
scattering function (φs

q(t)) at T = 0.44. RIGHT ORDINATE: Log-log plot of g1(t)
versus t; the MSDs are measured in direction parallel to the wall and multiplied by
3/2 to account for the difference in the number of directions compared to the bulk.
The dotted horizontal lines represent the bulk radius of gyration R2

g ' 2.09 and bulk
end-to-end distance R2

e ' 12.3. The ballistic (∼ t2), sub-diffusive (∼ t0.63), and
diffusive regimes (∼ t) are indicated (D is the diffusion coefficient of a chain). LEFT

ORDINATE: Incoherent intermediate scattering function φs
q(t) at q = 6.9 (≈ q∗ =

maximum of the static structure factor S(q)). The ballistic regime (∼ t2) is also
indicated.

motion crosses over to diffusive behavior,g
‖
1(t) ∼ t, if the MSD exceeds the average

chain size.
Compared to the bulk, figure 4.2 shows that the film dynamics is faster and caging

is less pronounced. It appears as if the films would correspond to a bulk melt at a
higher temperature thanT = 0.44. This conclusion was also drawn in our previous
studies of polymer films confined between two smooth walls [32, 35]. But here the
films have free surfaces, and the number of free surfaces seems to have a large influ-
ence on the relaxation. We find e.g. that the dynamics of a free-standing film of the
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thicknessh and a supported film of the thicknessh/2 are very similar (cf.h ' 7.5 for
the supported film andh ' 15 for the free-standing film in figure 4.2).

This finding qualitatively agrees with experimental results on the depression ofTg

for supported and free-standing polystyrene (PS) films [4, 40, 41]. These experiments
suggest thatTg of a free-standing film of thicknessh agrees, within the error bars,
with theTg of a supported film of thicknessh/2. It appears as if the substrate could
be introduced in the midplane of the free-standing film with negligible perturbation
of its properties. While there may be concerns about the generality of this result, it
still suggests that theTg reduction of PS films should be related to the presence of the
free surface which possibly allows for an enhanced mobility of the monomers. We
will show in section 4.3 that monomers at the free surface are indeed more mobile
than those in the center of the film.

4.2 Relaxation times andTc

Following reference [35] we introduce two relaxation timesτ1 and τq∗ which are
obtained fromg

‖
1(t) andφ

s‖
q∗(t) by

g
‖
1(t = τ1) = 1 (4.7)

and
φ

s‖
q∗(t = τq∗) = 0.3 . (4.8)

These times correspond to theα-relaxation regime. Forτ1 we can quickly see this by
the following argument.τ1 is the time it takes a monomer to cover the distance of its
own size. This is only possible after the monomer manages to leave the cage of its
nearest neighbors (cf. figure 4.2 and figure 4.1). This time thus belongs to the final
structural (α-) relaxation.

In analogy to the prediction of ideal MCT for the bulk [136] we attempted to fit
the relaxation time for quantity A by a power law of the form

τA(T, h) ∝
(

1

T − Tc(h)

)γA(h)

. (4.9)

Here, we assume that the critical temperatureTc(h) only depends on film thickness
and geometry, whereas the exponentγA(h) may additionally change with the quantity
under consideration (for further discussion of this assumption see [32]). We find that
equation (4.9) is only applicable in a limitedT interval aboveTc. For largeT − Tc

and very close toTc equation (4.9) is expected to break down (see e.g. [32]). In
the first case the asymptotic formula (4.9) is not valid yet, whereas forT very close
to Tc decay processes which are not included in the ideal MCT allow the system to
relax after a large but finite time. The choice of the interval for which the MCT-
like prediction (4.9) may be expected to hold cannot be made unambiguously; this
introduces an uncertainty in the determination ofTc.
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Figure 4.3: MAIN FIGURE: Relaxation times τ1 and τq∗, defined in equations (4.7)
and (4.8), versus T−Tc(h). Results for all studied systems are shown: free-standing
films [h ' 7.5 (×) and h ' 15 (+)], supported films [h ' 7.5 (open squares), h ' 15
(open circles), and h ' 21 (open triangles)], and the bulk (stars). The values of
Tc(h) and γA(h), obtained by fits to equation (4.9), are compiled in table A.1. The
fit curves for the bulk and the supported film with h ' 7.5 chains (corresponding to
h = 7.5) are shown for τ1 and τq∗ (they are labeled by the exponent γA(h)). INSET:
The inset depicts τ1 as a function of the absolute temperature T .

4.2.1 Chain lengthN = 10

Figure 4.3 displaysτ1 andτq∗ as a function ofT − Tc(h), while the inset depicts a
plot of τ1 versusT . When the relaxation times are plotted versusT − Tc(h), film
and bulk data agree well with each other for intermediate distances fromTc. The
films, however, show a larger exponentγA. Following MCT [67, 136] this should
imply a larger stretching of theα-relaxation when passing from bulk to films. A
glance at figure 4.5 reveals that this interpretation is in qualitative agreement with the
simulation data.

While the value ofγA depends on the quantity from which it is extracted (we find
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γ1 < γq∗; cf. table A.1), the fit results forTc are independent of A. All films have a
Tc which is lower than the bulk valueTc = 0.405. The films with two free surfaces
show a larger decrease ofTc for a given film thickness. Furthermore, we find that
a free-standing film of thicknessh and a supported film of thicknessh/2 have very
similar relaxation times andTc values (compare open squares and pluses in the inset
of figure 4.3). This suggests again that the influence of the supported surface on the
dynamics is weaker than that of the free surface.

We find the same trends forTc andTg with respect to their dependence on film
thickness and geometry. WhileTg < Tc, the fit results forTc coincide within the error
bars withTi (cf. table A.1). Experimentally, one often observes thatTc/Tg ' 1.2
[153]. We rather find thatTc/Tg ' 1.03 or evenTc/Tg ' 1, if Ti is identified with
Tg. The difference betweenTc andTg is thus much smaller than in experiments. The
difficulty to distinguishTc andTg is due to the very high cooling rate used in the
nonequilibrium simulations of section 3.1.

4.2.2 Chain lengthN = 64

For the longer chainsN = 64 we performed the same analysis. This provides a
hint at the chain length dependenceTc. As for the results onTg we find the same
trends as for the short chains.Tc in the bulk increases fromTc(N = 10) = 0.405
to Tc(N = 64) = 0.415 for the longer chains. The relaxation times are slightly
larger than for the longer chains but the qualitative behavior remains the same. The
relaxation in the films is faster than the one in the bulk. Free-standing films and
supported films of twice the thickness show similar relaxation behavior.

In figure 4.4 the relaxation time extracted from the mean-square displacement
of the innermost monomer is shown as function of temperature as well as distance
from the respectiveTc. Again when plotted as a function of the distance fromTc the
results collapse onto a master curve. Nevertheless the exponentγA(h) increases with
decreasing film thickness as we also observed forN = 10. The valuesTc(h) as well
as the exponentsγA(h) are compiled in table A.2.

The decrease for a given film thicknessh is larger for the longer chainsN = 64
than for the shorter chainsN = 10. We already observed a stronger influence of the
confinement onTg for the longer chains in section 3.1, where we determined the glass
transition temperature upon cooling of the sample at a constant rate. Also forTc we
find that films of thicknessh ' 7 have the same value ofTc independent of chain
length which is due to the stronger decrease ofTg or Tc in films with longer chains
which makes up for the initially higher value ofTc andTg in the bulk.

4.2.3 Film versus bulk behavior: choosingTc as a reference point

MCT suggests thatTc is an important reference temperature for the structural relax-
ation in the (moderately) supercooled state. It is therefore interesting to compare bulk
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Figure 4.4: RIGHT AXIS: The relaxation times τ1, defined in equations (4.7)
and (4.8), versus T − Tc(h). Results for N = 10 (black symbols) and N = 64
(grey symbols) are shown: free-standing film [h ∼ 15 (+)], supported film [h ∼ 7.5
(open squares)] and the bulk (stars). The values of Tc(h) and γA(h), obtained by fits
to equation (4.9), are compiled in tables A.1 and A.2. The fit curves for the bulk and
the supported film of N = 10 with h ' 7.5 are shown for τ1 (they are labeled by the
exponent γA(h)). LEFT AXIS: The relaxation times τ1 as a function of the absolute
temperature T are depicted.

and film dynamics for temperatures that are at the same distance∆Tc (= T−Tc) to the
respectiveTc. Figure 4.5 shows such a comparison. For∆Tc ' 0.05 and' 0.03, the
figure depictsg‖1(t) andφ

s‖
q∗(t) for two supported films of respective thicknessh ' 14

andh ' 21, for a free-standing film withh ' 14, and for the bulk.Tc provides in-
deed an important reference point. For the same∆Tc the main differences, observed
in figure 4.2 when comparing bulk and film dynamics at the sameT , are removed
and finer details of the time evolution become apparent. For the incoherent scattering
function we find good agreement between bulk and film in the plateau regime. In the
α-regime, however, differences emerge and grow with time. The scattering functions
of the films are more stretched, and the differences are larger for thinner films. For
the MSDs, however, we find the opposite trend. Film and bulk dynamics agree fairly
well for late times, while they differ in the plateau regime.

In reference [32] the same analysis as shown in figure 4.5 was performed for films
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Figure 4.5: RIGHT ORDINATE: Log-log plot of g1(t) versus t; the MSDs are mea-
sured in the direction parallel to the wall in the films and multiplied by 3/2. LEFT

ORDINATE: Incoherent intermediate scattering function φs
q(t) at q = 6.9 (first maxi-

mum of S(q)). In all plots the temperatures for the films and the bulk are different, but
the distance ∆Tc to the respective Tc is the same, i.e., ∆Tc ' 0.05 and ∆Tc ' 0.03.
For the bulk (filled circles) the temperatures are T = 0.455 and T = 0.435, for the
supported film with h ' 21 chains (dashed line) T = 0.442 and T = 0.422, for the
supported film with h ' 14 chains (dash-dotted line) T = 0.433 and T = 0.413, and
for the free-standing film with ' 7 chains (full line) T = 0.415 and T = 0.395.

confined between two smooth purely repulsive walls. There, it was also found that
measuringT with respect toTc(h) is a viable approach to bring film and bulk results in
close agreement with one another. But the details of this comparison appear to differ
from the results presented in figure 4.5. Reference [32] reports good agreement, better
than forφs

q∗(t), for the MSDs in the plateau regime, whereas deviations between bulk
and film MSDs occur in theα-regime and grow witht (more precisely, the MSD of
the bulk increases faster than that of the films).

This difference between the present findings and those of [32] can be explained
by the fact that the quality of the superposition between bulk and film results is fairly
sensitive to the precise value ofTc. A slight difference inTc(h) for the films due to
a different choice of the temperature interval for the fits to equation (4.9) may affect
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the time interval over which a good collapse of the data is observed. For instance, if
we extended the fit interval toT closer toTc, as done in [32], we could obtain lower
values ofTc(h) (and along with that, larger values forγA). A lower value ofTc(h)
would imply that a smaller temperatureT must be used in order to preserve the same
∆Tc as in figure 4.5. Then,g1(t) of the bulk and the films would no longer coincide at
late times (e.g. atg1(t = τ1) = 1). By loweringTc(h) by approximately∆T = 0.007
we could thus improve the superposition ofg1(t) for the bulk and the films in the
plateau regime, while, of course, the agreement ofφs

q∗(t) between the bulk and the
films would deteriorate. This would allow us to reproduce the results of [32] very
well. This shift ofTc(h) by ∆T is outside of the statistical error given in table A.1,
but well within the much larger systematic error due to the choice of theT interval
for the fit.

4.3 Layer-resolved dynamics

In order to pinpoint the origin of the faster dynamics in supported and free-standing
films it is interesting to determine they dependence of dynamic quantities. This will
allow us to test the hypothesis that the surfaces have the main impact on the change
of Tg in our films.

4.3.1 Layer-resolved analysis: definition and qualitative features

The mean-square displacement discussed in chapter 4.1.2 aggregates contributions
from all (middle) monomers, irrespective of their position in the film. Further in-
sight can be obtained by a layer-resolved analysis. When trying to perform such a
layer-resolved analysis the question arises of how local time-displaced correlation
functions should be defined [32]. Here, we introduce they-dependent MSDg‖0(t, y)

of all monomers and the incoherent scattering functionφ
s ‖
q (t, y). These quantities are

defined in the following way:

g
‖
0(t, y) =

〈
1

nt

∑
i

t∏
t′=0

δ [y − yi (t
′)] |r ‖i (t)− r

‖
i (0)|2

〉
(4.10)

and

φs ‖
q (t, y) =

〈
1

nt

∑
i

t∏
t′=0

δ [y − yi (t
′)] e−iq·[r ‖i (t)−r

‖
i (0)]

〉
. (4.11)

These definitions only take into account thent monomers which are at all timest′ < t
within the slab centered aty and of width∆y = 2. As before, we only consider the
dynamics in the unconstrained directions parallel to the surface in order to allow for a
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full line indicates the layer-resolved MSD (cf. equation (4.10)) in the middle of the
film; the dashed and dotted lines depict the layer-resolved MSD at the supported
and free surfaces, respectively. Eventually, monomers will leave the layer to which
they were initially assigned, which deteriorates the statistics. Thus, the curve cor-
responding to the free surface is shorter than the others. g

‖
0(t) is multiplied by 3/2

for all films to account for the difference in spatial directions with respect to the bulk.
Early-time ballistic motion (∼ t2) and sub-diffusive motion due to chain connectivity
(∼ t0.63) are also indicated.

comparison with the bulk. (4.10) averages over all monomers of a chain—instead of
focusing only on the middle monomer as in (4.1)—because the layer-wise resolution
of the dynamics is statistically very demanding.

Figure 4.6 compares the monomer MSDs of the bulk and a supported film of
thicknessh = 13.85. We see that the monomer motion close to the surfaces is faster
than in the middle of the film, whereg‖0(t) is bulk-like. Furthermore, the motion
at the free surface is faster than at the supported one. We may thus expect that the
acceleration of the monomer dynamics is more pronounced in thinner films (due to
the stronger overall influence of the interfaces) and in free-standing films (due to two
free surfaces).

Figure 4.7 depictsg0(t, y) for a free-standing film of thicknessh = 14 at T =
0.44 (Tc(h) = 0.365). The figure reveals a pronounced dependence of the monomer
dynamics on the distance from the free surface. Whileg0(t, y) displays a two-step
relaxation—characteristic of the cold melt close toTc—in the center, this feature is
gradually lost on approaching the surface, and is absent at the surface. Similar results
are found in other simulations [12, 14, 16, 21]; our findings also agree qualitatively
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Figure 4.7: MAIN FIGURE: Layer-resolved MSD g0(t, y) at T = 0.44 for a free-
standing film of thickness h = 14. y denotes the distance from the Gibbs’s dividing
surface (situated at y = 0). Only displacements parallel to the wall are considered
for the films (lines); the bulk data (•) are multiplied by 2/3 to put them on the same
scale as the film data . g0(t, y) is obtained as an average over all monomers of
a chain which remain for all times shown in a layer of width ∆y = 2 that is cen-
tered at y (equation (4.10)). Eventually, monomers will leave the layer in which they
were initially. This gives rise to a loss of statistical accuracy at long t; the data are
thus sometimes truncated at late times where large statistical noise occurred. The
dashed horizontal line indicates the definition of the local relaxation time τ(y, T )
((4.12)). INSET: Corresponding monomer density profile ρ(y) versus y. The layers
for which g0(t, y) is shown in the main figure are labeled by numbers (1, 2, 3, 4).

with the results of fluorescence [9] and NMR experiments [5].

It is tempting to try to correlate the layer dependence ofg0(t, y) to the monomer
density profileρ(y) (cf inset of figure 4.7). Since the average monomer density de-
creases on approaching the free surface, this could give rise to faster relaxation. How-
ever, while the low density is certainly an important factor for the fast dynamics in the
surface layer (layer ‘1’), figure 4.7 suggests that a one-one correspondence between
ρ(y) and g0(t, y) is too simplified. For instance, the density of layers ‘2’ and ‘3’
is already bulk-like, whereas the correspondingg0(t, y) is larger than the bulk MSD.
Apparently, surface effects penetrate into the film more deeply for the monomer MSD
than for the monomer density (see [32] for a fuller discussion).

Figure 4.8 displays the layer-resolved incoherent intermediate scattering func-
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Figure 4.8: MAIN FIGURE: Layer-resolved incoherent scattering function φ
s ‖
q (t, y) at

q = 6.9 (≈maximum of S(q)) at T = 0.42 for a supported film of thickness h = 20.3. y
denotes the distance from the wall. Only q vectors parallel to the wall are considered
for the films while the bulk data (•) are averaged over 3 spatial directions. φ

s ‖
q (t, y)

is obtained as an average over all monomers which remain for all times in a layer of
width ∆y = 2 which is centered at y (cf. equation (4.11)). The average behavior of
the film (average over all layers) is indicated by crosses (×). The dashed lines show
φ

s ‖
q (t, y) in layers situated between the free surface and the film center (y > 12), the

thick line presents the results for the middle of the film (y = 11), and the thin gray
lines show φ

s ‖
q (t, y) for layers located between the supported surface and the film

center (y < 10). INSET: Monomer density profile ρ(y) versus y for a supported film
of h = 20.3 at T = 0.42. The layers for which φ

s ‖
q (t, y) is shown in the main figure

are indicated.

tion φ
s ‖
q∗ (t, y) for a supported film ofh = 20.3 at T = 0.42. The data presented in

figure 4.8 confirm a result that one might have expected from the discussion of fig-
ures 4.6 and figure 4.7. The monomer mobility decreases as we go from the support-
ing wall toward the center of the film and increases again as we cross the middle and
approach the free surface. While there is a clear two-step relaxation—characteristic
of the cold melt close toTc—in the center, this feature is gradually lost on approach-
ing the surfaces and is completely absent at the free surface. Seemingly, the forces
acting on monomers at the surfaces (monomer-wall and monomer-monomer interac-
tions) are very different from those in the bulk-like center of the film, and this leads,
in the present case, to faster relaxation.

The accelerated dynamics at the surface (the “boundary condition”) described
above seems to fuel—in the present case of smooth attractive walls and free sur-
faces—a form of continuous tempering which induces the observed decrease ofTc (or
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Tg) of the film: “Fast” monomers at the surface transfer part of their higher mobility to
monomers in the adjacent layer, which in turn partly excite a high monomer mobility
in the next deeper layer, and so on until the surface-induced stimulus is damped, and
bulk behavior is recovered. This gradual damping should allow one to extract a length
scaleξ characterizing the penetration of the surface effects into the inner part of the
film.

4.3.2 An attempt to quantify the penetration depth of the surface
effects

An approach for determiningξ was suggested in references [19, 20, 33, 154]; it uti-
lizes a local relaxation time as an intermediate step. Following reference [32] we
introduce such a relaxation time by

g
‖
0(t = τ(y, T ), y) = 1 . (4.12)

Thus,τ(y, T ) is the time it takes a monomer to move across its own size parallel to
the wall in a layer at distancey from the wall.

Figure 4.9 depicts the results of this analysis for a supported film ofn = 864
chains at various temperatures. Not unexpectedly, we find that surface effects are
small for highT . At T = 1, for example,τ(y) is independent ofy in a large portion
of the film. The corresponding constant value ofτ(y) agrees with the relaxation time
τ obtained by applying equation (4.12) to the bulk data forg0(t). Upon cooling,
however, surface effects become pronounced. They penetrate more and more into the
film, the region of constant relaxation time shrinks, and it should finally disappear
when the perturbations emanating from both surfaces, overlap in the center of the
film. Figure 4.9 shows that this problem occurs already atT = 0.44 for all films—free
and supported ones—if the system contains less thann = 864 chains. Such finite-
thickness effects seriously interfere with the desired determination ofξ and should
be avoided. Forn = 864, the thickest supported film studied here, they become
prominent ifT . 0.41. We thus restricted the analysis toT ≥ 0.42.

In the following we want to extract a length scale from the range over whichτ(y)
deviates near the surfaces from bulk behavior. When addressing this issue one is faced
with the problem that there appears to be no theoretical concept to guide the analysis.
One thus has to resort to an empirical parametrization of the data. Depending on the
quantity under consideration different parameterizations have been proposed (see e.g.
[19, 20, 33, 154]).

Simulations of a confined binary LJ-liquid [19, 33] suggest the ansatz

ln

(
τ(y, T )

τ(T )

)
= −A(T ) exp

(
− y

ξ(T )

)
(4.13)

to model they-dependence of some local relaxation time, such asτ(y, T ). Equa-
tion (4.13) introduces the length scaleξ(T ) to quantify the range of the deviations
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Figure 4.9: UPPER PANEL: Layer-resolved relaxation time τ(y, T ) for various T
versus distance y from the wall for a supported film containing n = 864 chains. y
is defined as the distance of the center of a layer from the wall. The thickness of
a layer is ∆y = 2. τ(y, T ) is computed from g

‖
0(t, y) via equation (4.12). In this

analysis, only those monomers were considered that remained in the layer at y
for all times (equation 4.10). LOWER PANEL: τ(y, T ) at T = 0.44 for free-standing
films of h = 7 (filled triangles) and h = 14 (filled squares) and supported films of
h = 6.9 (open triangles), h = 13.85 (open squares), and h = 20.5 (open circles) (cf.
table A.1). The films are shifted in y direction so that the free surfaces coincide for all
film thicknesses. The dashed lines indicate a fit to equation (4.13) for the supported
surface and the dotted lines for the free surface.

of τ(y, T ) from the bulk valueτ(T ). The fact that this ansatz provides an accurate
description of various local relaxation times in previous studies, not only for smooth
walls [32], but also for rough amorphous walls [19, 33], prompted us to apply equa-
tion (4.13) to our simulation results forτ(y, T ). In addition toξ(T ), A(T ) is a further
adjustable parameter which was found previously [19, 32, 33] to depend only weakly
on temperature.

Figure 4.9 illustrates that they dependence of the relaxation times can indeed be
well described by equation (4.13). The temperature dependence of the fit parameters,
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Figure 4.10: LEFT PANEL: Penetration depth ξ versus T . ξ is obtained from a fit
of equation (4.13) to the τ(y, T ) data shown in figure 4.9. Also reproduced are the
results of reference [32] for a polymer film confined between two purely repulsive
walls (crosses; the model of reference [32] is slightly different from that studied in
the present work (BE model, cf. section 2.1), and the pressure was p = 1 instead of
p = 0 employed here). RIGHT PANEL: Temperature dependence of A(T )/A(T = 1),
the prefactor in equation (4.13) normalized to one at T = 1. A(T = 1) = 2.03 at the
free surface and A(T = 1) = 2.19 at the supported surface.

ξ and A, is depicted in figure 4.10. For the supported surface we find thatξ(T )
slightly increases on cooling and that this increase closely agrees with that obtained
previously for confined films [32]. However, the numerical value ofξ(T ) remains
small for all T studied (ξ(T ) ∼ 1 =̂ monomer diameter). For the free surface, we
also find an increase ofξ(T ). However, it is weaker than that obtained at the supported
surface, although visual inspection of figure 4.9 would suggest the penetration depth
of the perturbation of the dynamics to be of comparable range for both the free and
supported surfaces. Apparently, the increase of the second fitting parameterA(T )
interferes with that ofξ (cf. figure 4.10). Due to this interdependence ofξ andA,
it appears fair to say that, while equation (4.13) allows to parameterize the data, it
does not provide an unambiguous interpretation ofξ as a length scale measuring
the penetration depth of the surface-induced deviation of the dynamics from bulk
behavior.

4.4 Thickness dependence ofTc

In references [4, 5] Herminghaus et al. suggested a formula for the thickness depen-
dence ofTg

Tg(h) =
Tg

1 + h0/h
. (4.14)

HereTg denotes the bulk glass transition temperature andh0 is a characteristic length
scale. Equation (4.14) is obtained from the assumption that the relaxation in a film
close toTg is mainly due to a coupling of the viscoelastic bulk to capillary waves at
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Figure 4.11: LEFT PANEL: Tc(h)/Tc (Tc = bulk value) versus rescaled height h/h0

for supported films (open circles), free-standing films (full circles), and MD results
for a polymer film confined between two smooth repulsive walls (BE model at p = 1)
[35, 36] (shaded circles). The dashed line indicates the master curve y = 1/(1 + x)
with h0 = 0.77 for the supported films, h0 = 1.47 for the free-standing films, and h0 =
1.64 for the confined films. RIGHT PANEL: same scaling plot for Tc(h) and Tg(h).
The results for Tc(h) are reproduced from the left figure. They are compared to
the glass transition temperatures Tg(h) of three studies: (i) Monte Carlo simulations
of a lattice model for free-standing atactic polypropylene (PP) films [12] (crosses;
N = 50; Tg = 391 K, h0 = 6.1 Å; 9.95 Å ≤ h/2 ≤ 48.1 Å). Both Tg and h0 are
results of a fit to equation (4.14). (ii) Experiments of supported atactic polystyrene
(PS) films (spin cast from toluene solution onto silicon wafers) [4] (open squares;
N ' 20; Tg = 327 K = bulk Tg for N = 20, h0 = 8.2 Å; 38.5 Å ≤ h ≤ 1678 Å). (iii)
Experiments of supported, high-molecular weight PS films [1] (stars; N ' 29000;
Tg = 375 K, h0 = 6.8 Å [155]; 110 Å ≤ h ≤ 3100 Å). The data of references [4, 12]
are reproduced with permission. The high-molecular weight PS data are reproduced
from reference [2]. The dashed line indicates equation (4.14).

the free surface. The analysis of this model determines the parameterh0 ash0 = γ/E
whereE is Young’s modulus of the film andγ the surface tension at the free surface.
Equation (4.14) allows to parameterize theh dependence ofTg fairly well, for both
experimental (see e.g. [4, 8, 155]) and simulation results (see inset of figure 4.11).

We want to apply equation (4.14) to our simulation data and use the critical tem-
peraturesTc(h) for this analysis. Since the bulkTc is known, the only open parameter
is h0. We deduceh0 by inversion of equation (4.14), i.e., byh0 = h (Tc/Tc(h)− 1)
with the choiceh = h(Tg). (The difference in film thickness betweenTg andTc is
negligible because both temperatures are fairly close to each other.)

The results of this analysis are included in table A.1 forN = 10 and in table A.2
for N = 64. Two conclusions may be drawn: (i) Theh0 values obtained from dif-
ferent thicknesses of the same film geometry (supported or free-standing) are almost
constant, although the agreement is better for the free-standing films. (ii) Theh0

value for the free-standing film is almost twice as large as that for the supported film.
This corroborates our previous conclusion that a free-standing film of thicknessh



66 Chapter 4. Dynamic properties

(roughly) corresponds to a supported film of thicknessh/2. Both findings are in ac-
cordance with experimental results (see e.g. [5, 40, 156]). We find an increase of
h0 with increasing chain length. However, from the experimental results—cf. figure
4.11—one should expecth0 to decrease with increasingN . We found the opposite
trend.

In figure 4.11 we showTc(h)/Tc for all films as a function of the rescaled height
h/h0, usingh0 = 1.47 for the free-standing films andh0 = 0.77, the average of theh0

values quoted in table A.1, for the supported films. With a surface tension at the free
surface ofγ = 1.55 this would suggest an elastic modulus of approximatelyE ∼ 1.
This value is not unreasonable [15].

Figure 4.11 also includes the data from references [35, 36] obtained from MD
simulations of polymer films confined between purely repulsive, flat walls atp = 1
employing a slightly different bead-spring model (BE model, see section 2.1). Here
the good agreement with equation (4.14) is surprising, since capillary waves should
be suppressed by the solid interface. In references [32, 35, 36] the depression ofTc

for the confined films was attributed to the weaker packing of the monomers (i.e.,
smallerS(q∗)) compared to the bulk. This raises doubts that the mechanism which
led Herminghaus et al. to suggest equation (4.14) is alone responsible for the found
Tc (or Tg) reductions (for further discussion of references [4, 5] and other theoretical
approaches see e.g. [32]).

4.5 Position-dependentTc

In the following we want to once again focus on the penetration depth of the surface
effects for the dynamics at a free surface and explore itsT dependence further. To
this end, we use again the local relaxation time defined in equation (4.12).τ(y, T )
measures the time it takes a monomer to move across its own size parallel to the wall,
provided the monomer is in a layer at distancey from the wall.

Figure 4.12 shows the results of this analysis for a free-standing filmh ∼ 14
at various temperatures. Not unexpectedly, we find thatτ(y, T ) is small at the free
surface and increases towards the bulk value with increasingy. Upon cooling, wall
effects penetrate further and further into the film. In section 4.3.2 we tried, as was
done in previous work on confined films [32], to extract a growing length scale from
the range over whichτ(y, T ) deviates near the interface from bulk behavior. The
analysis used an empirical formula suggested in [19]. We found that a drawback
of this approach was that it was not always possible to unambiguously identify a
growing length scale because other fit parameters could also increase (strongly) on
cooling (see section 4.3.2 and [38]). Therefore, we suggest a different approach here
which does not introduce a length scale, but associates a different critical temperature
Tc(y) with each layer at distancey from the interface.

Our approach is based on two assumptions. First, we presume that the average
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Figure 4.12: LEFT ORDINATE: Layer-resolved relaxation time τ(y, T ) for N = 10
and various T versus distance y from the Gibbs dividing surface (GDS) for a free-
standing film with h ∼ 14. y is defined as the distance of the center of a layer from
the GDS. The thickness of a layer is ∆y = 1. τ(y, T ) is defined by (4.12). The dotted
horizontal lines indicate the bulk value τbulk(T ). The dashed lines represent (4.17)
where Tc(y) is computed from (4.16). RIGHT ORDINATE: τ(y, T ) as a function of
the reduced temperature T − Tc(y) in different layers of the films. The dashed line
indicates (4.17). The bulk results are also included.

Tc(h) of the film can be written as an arithmetic mean ofTc(y). That is,

Tc(h) =
2

h

∫ h/2

0

dy Tc(y). (4.15)

Here we integrate from the position of the free surface (i.e. of the Gibbs dividing
surface) toh/2 because a free-standing film is symmetric about its center. Using then
(4.14) one can determineTc(y) by differentiation. This gives

Tc(y) =
Tc(1 + h0

y
)

(1 + h0

2y
)2

. (4.16)

The second hypothesis is that the sole effect of the surface is to shiftTc—from the
bulk value toTc(y). We thus postulate that the position and temperature dependent
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Figure 4.13: LEFT ORDINATE: Layer-resolved relaxation time τ(y, T ) for N = 64
and various T versus distance y from the Gibbs dividing surface (GDS) for a free-
standing film with h ∼ 15. y is defined as the distance of the center of a layer from
the GDS. The thickness of a layer is ∆y = 1. τ(y, T ) is defined by (4.12). The dotted
horizontal lines indicate the bulk value τbulk(T ). The dashed lines represent (4.17)
where Tc(y) is computed from (4.16). RIGHT ORDINATE: τ(y, T ) as a function of
the reduced temperature T − Tc(y) in different layers of the films. The dashed line
indicates (4.17). The bulk results are also included.

relaxation timeτ(y, T ) can be expressed as

τ(y, T ) =
abulk

(T − Tc(y))γbulk
. (4.17)

For N = 10 all parameters of equations (4.16) and (4.17) are known from the
analysis performed in the previous sections (see also [38]), so thath0 = 1.47; Tc =
0.405, abulk = 3.01 andγbulk = 1.96 can be used to evaluate equation (4.17) and
allow for a direct comparison between the prediction and simulation. Figure 4.12 de-
picts the results of this comparison. For allT shown they-dependence ofτ(y, T ) is
very well described by (4.17). Only if the distance from the surface becomes compa-
rable to the thickness of the layer the MSDs are calculated in deviations arise. This is
the case here fory ≤ 1. Additionally, it can be seen from the inset that the slowing
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down within the different layers of the film is indeed bulk-like upon replacing the
bulk Tc by Tc(y). This supports our initial assumption, (4.15).

The results presented in figure 4.12 are not an exception. To demonstrate that,
we extended our analysis to longer chains,N = 64. For N = 64 we obtained
h0 = 1.68; Tc = 0.415, abulk = 3.3 andγbulk = 2.03. As expected,Tc is (slightly)
larger than forN = 10 (Tc = 0.405). Figure 4.13 shows that we can again describe
τ(y, T ) by (4.17) over the wholey andT range, except for the lowest temperatureT =
0.41. Contrary to the analysis forN = 10, this temperature is below the bulk critical
temperatureTc = 0.415. Close toTc the MCT approximation for the relaxation
time breaks down (see e.g. [32] for a detailed discussion of this point) and thus also
equation (4.17) cannot be expected to reproduce the simulation data.

4.6 Non-Gaussian parameter

The parameterα2 quantifies the deviation of the distribution of the mean-square-
displacements from a Gaussian distribution. Here we investigate the deviations of the
MSD of all monomersg0(t), defined in equation (4.3) from a Gaussian distribution
of displacements. In three dimensions the non-Gaussian parameter is defined as

α2(t) =
3〈|ri(t)− ri(0)|4〉

5g0(t)2
− 1 . (4.18)

If the probabilityP to have a displacement ofr at time t is given by a Gaussian
distribution

P (r) = (πσ2)−3/2 exp(− r(t)2

σ(t)2
) , (4.19)

the second momentm2 and fourth momentm4 of this Gaussian distribution are given
by

m2 =

∫ ∞

0

4πr2drr2P (r) = σ/3 (4.20)

and

m4 =

∫ ∞

0

4πr2drr4P (r) = σ2/15 . (4.21)

It follows directly thatm4/m
2
2 = 5/3 andα2 = 0.

Upon the assumption of a Gaussian distribution of the displacements the incoher-
ent scattering function defined in equation (4.2) can by approximated by

φG
q (t) = e−

1
6
q2g0(t) . (4.22)

Non-Gaussian displacements can result in slower relaxation than expected from equa-
tion (4.22). A first correction is given by introducingα2 [123]

φGc
q (t) = φG

q (t)

(
1 +

1

2

[
q2g0(t)

6

]2

α2(t)

)
. (4.23)
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Figure 4.14: MAIN FIGURE: Incoherent scattering function at wave vector q = 7 and
T = 0.52 for the bulk. The dashed line corresponds to the Gaussian approxima-
tion (equation (4.22) while the dash-dotted line includes the first correction (equa-
tion (4.23); the bin width was ∆q = 0.1. INSET: shows the non-Gaussian parameter
α2 at temperatures T = 0.6, T = 0.53, T = 0.52, T = 0.5, T = 0.48, T = 0.47,
T = 0.46, T = 0.45, T = 0.43, and T = 0.41

4.6.1 Bulk

In figure 4.14 the incoherent scattering function of the bulk melt atT = 0.52 and
p = 0 is displayed. In addition the Gaussian approximation is indicated. Already
at this relatively high temperature(T − Tc ' 0.1) the system relaxes more slowly
than expected from equation (4.22). The inclusion of the first correction as given in
equation (4.23) allows to represent the incoherent scattering function quite well.

The inset showsα2 for different temperatures. At very small times the displace-
ment of the monomers is proportional to their velocities which are spread in a Gaus-
sian distribution, the Maxwell distribution. At very large times the motion is diffusive
and this by definition is a Gaussian process. Thusα2 is zero for very large and very
small times. At intermediate times deviations from Gaussian behavior occur. The
non-Gaussian parameter exhibits a small step att ∼ 0.1 due to the inter-particle
forces followed by a strong increase towards a maximum as the effects of caging
become apparent and a plateau as the monomers move sub-diffusively which might
be due to the weak interactions of the chains centers of mass. For a more detailed
description see [157].

As the system is cooled the peak of the non-Gaussian parameter increases and is
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Figure 4.15: We show the non-Gaussian parameter α2 at temperatures T = 0.6,
T = 0.5, T = 0.47, T = 0.45, T = 0.435, T = 0.42, and T = 0.41 for the BS model
(see section 2.1) at p = 0 and at temperatures T = 0.65, T = 0.55, T = 0.52,
T = 0.5, T = 0.48, and T = 0.46 for the BE model at p = 1 (data from reference
[157]).

shifted to larger times as more and more particles need to move cooperatively to leave
their cage. The height of the following plateau remains unaltered as temperatures
changes.

In reference [157] the BE model atp = 1 introduced in section 2.1 was used to
calculate the non-Gaussian parameter and investigate the dynamics of the particles.
As we already have done for the static properties in section 3.2.1 and the MSDs in
section 4.1.1 we now want to also compare our results atp = 0 using the BS model
(see section 2.1) forα2(t) at the same distance fromTc to the results obtained in
[157]. The difference inTc between the two models atp = 1 andp = 0 respectively
was determined to be∆Tc ' 0.045 (see section 3.2.1 and 4.1.1).

Figure 4.15 shows the results of this comparison at different temperatures reach-
ing from the liquid state down into the super-cooled regime close toTc. α2 in the
two different systems agrees quantitatively if one accounts for the difference inTc

at all temperatures but for the lowest temperatures. For most of the curves shown
∆T = 0.05 while ∆Tc ' 0.045. Because the dynamics become very sensitive to
small changes in temperature, deviations occur due to small mismatches in∆Tc be-
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tween the two systems. At the lowest temperature displayed this effect can be seen
clearly. The good agreement of the two models is another hint that the same mech-
anism is responsible for the slowing down of the dynamics in our system as in the
extensively studied BE model.

4.6.2 Films

The Gaussian approximation and the first correction are dependent on the dimension-
ality of the system. Therefore one obtains for displacements within the plane of the
film

φG‖
q (t) = e−

1
4
q2g

‖
0(t) (4.24)

and

φGc‖
q (t) = φG‖

g (t)

1 +
1

2

[
q2g

‖
0(t)

4

]2

α
‖
2(t)

 (4.25)

with

α
‖
2(t) =

〈|r ‖i (t)− r
‖
i (0)|4〉

2g
‖
0(t)

2
− 1 , (4.26)

whereg
‖
0(t), given in equation (4.5), is the MSD of all monomers in the plane of the

film. We also calculate the non-Gaussian parameter in layers centered aty as was
done for the MSDs and the incoherent scattering function in section 4.3.1.

α
‖
2(t, y) =

1

2g2
0(y, t)

〈
1

nt

∑
i

t∏
t′=0

δ [y − yi (t
′)] |r ‖i (t)− r

‖
i (0)|4

〉
− 1 , (4.27)

whereg0(y, t) is the layer-resolved MSD of all monomers defined in equation (4.10).
In figure 4.16 the non-Gaussian parameterα

‖
2 is compared for the bulk to the one

averaged over the whole film for supported and free standing films of different thick-
ness atp = 0 andT = 0.52. This is about∆T = 0.1 above the critical temperature of
the bulk. As for the bulk at very small timesα‖2 = 0 in the films. Thenα‖2 increases
towards a maximum and decays to zero for very large times. The bulk exhibits the
smallest maximum at the largest time. The maxima shift to shorter times the smaller
the film thickness. The height of the maxima is slightly larger for thicker films and
the decay time is longer. The films have an additional source of dynamic heterogene-
ity, since the beads at the surface move faster than the ones in the middle which is
responsible for the increase inα‖2(t) as we will show in the following.

Also indicated in the left panel of figure 4.16 is the layer-resolvedα
‖
2(y, t) cal-

culated in layers at the center, at the supported and at the free surface of the films of
width ∆y = 1. The results in the center of the film agree well with the bulk data while
the ones at the surfaces show a lower maximum at a shorter time. This is in agreement
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Figure 4.16: LEFT PANEL: The non-Gaussian parameter α2, calculated for the
MSDs in the parallel direction is compared between the bulk (circles) and supported
films of h = 7.4 (squares) and h = 14.8 (stars) and free-standing films of h = 7.4
(triangles) and h = 14.8 (+) at T = 0.52 and N = 10. Also indicated is α2 calcu-
lated for the layer resolved MSDs in a slab of thickness ∆y = 1 at the supported
surface (dashed line), in the center (full line) and at the free surface (dotted line).
RIGHT PANEL: The non-Gaussian parameter α2, calculated for the MSDs in parallel
direction, is compared between the bulk (circles) and a free standing film of h = 7.4
(triangles) at T = 0.52 and N = 10. Also indicated is α2 calculated for the layer-
resolved MSDs in a slab of thickness ∆y = 1 (dotted line), ∆y = 2 (dash-dotted
line) and ∆y = 4 (dashed line) centered at the free surface.

with our previous observation thatTc is lower at the surfaces. Only if one looks at
the overall non-Gaussian parameter of the films the peak is much higher than the bulk
value. This stems from the heterogeneities of the dynamics between different layers,
which is illustrated in the right panel of figure 4.16. The height of the maximum of
α
‖
2(y, t) centered at the free surface of a free-standing film is strongly dependent on

the width of the slab for which the coefficient is calculated. The wider the slab, the
larger is the difference in the relaxation times of the beads because of their different
distance from the surface. As a consequence the peak ofα

‖
2(t) grows with growing

slab width∆y.
The non-Gaussian parameter in the perpendicular direction is given as

α⊥2 (t) =
〈|r⊥i (t)− r⊥i (0)|4〉

3g⊥0 (t)2
− 1 , (4.28)

whereg⊥0 (t) defined in equation (4.6) is the MSD of all beads in the direction perpen-
dicular to the wall. It does not decay to zero for large times due to the confinement.
Since at large times the initial and final positions decorrelate, the probability to have
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Figure 4.17: MAIN FIGURE:The non-Gaussian parameter in the parallel direction α
‖
2

for a free standing film containing 288 polymers at T = 0.52, T = 0.5, T = 0.48,
T = 0.47, T = 0.46, T = 0.45, T = 0.43, T = 0.41, T = 0.38 and T = 0.35. The
thickness at T = 0.52 was h = 8. INSET: shows α

‖
2 (dashed line), α⊥2 (full line), αbulk

2

(full circles) and g⊥0 (t)/2g⊥0 (∞) (dash-dotted line). The horizontal lines indicate the
asymptotic values.

a displacementy is proportional to the average density at the initial pointyi and final
pointyf = yi±y so thatP (y) ∝

∫
dyiρ(yi)ρ(yi+y). For a free standing film the den-

sity is quite well approximated by a rectangular distributionρ(y) = ρ0 for 0 < y < h
and zero elsewhere. In this case

α⊥2 (t →∞) = −0.2 . (4.29)

The exact limiting value found in the simulations is dependent on the exact features
of the density profile. For the MSD in the perpendicular direction it is found that

g⊥0 (∞) =

∫∞
0

dy′
∫∞

0
dyρ(y′)ρ(y)(y − y′)2(∫∞
0

dyρ(y)
)2 , (4.30)

and the non-Gaussian parameter saturates at

α⊥2 (∞) =
1

3

∫∞
0

dy′
∫∞

0
dyρ(y′)ρ(y)(y − y′)4(∫∞

0
dyρ(y)

)2
g⊥0 (∞)2

− 1 . (4.31)
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In figure 4.17 the non-Gaussian parameterα
‖
2 for T = 0.52 to T = 0.35 is dis-

played for a free standing film of thicknessh = 8. For small times the behavior is
very similar to the one of the bulk but the increase towards the peak begins earlier and
the maximum is higher. Also the decrease is much slower and no pronounced plateau
can be seen. Only for the highest temperature,α

‖
2 decays to zero.

The inset shows the dynamics in the direction perpendicular to the film. It can
take much longer than the relaxation time of a chain to reach a regime where the
conditions leading to equation (4.29) are full-filled. Only then each monomer has
visited the whole film and all monomers move diffusively with the same effective
diffusion constant. Thus the decay of the non-Gaussian parameter is coupled to the
dynamics of the system in the perpendicular direction. This is also the reason why the
decay is faster for thinner films because it takes a shorter time to reach the asymptotic
condition in the perpendicular direction. The non-Gaussian parameterα⊥2 saturates at
a value close to−0.2 as explained above.

Therefore the assumption made in the previous section on the position dependence
of Tc that the slowing down is bulk like but for the shift inTc is in agreement with the
fact that we could show that the non-Gaussian parameter is larger in the films only
due to the dynamic differences between the layers and not due to a growing dynamic
heterogeneity at a given distance from the wall.

4.7 Summary

When a supported or free-standing polymer film is confined to nanoscopic dimensions
its glass transition temperature can be depressed relative to the bulk value [30, 31]
in experiments. We extended the simulations of Fathollah Varnik on confined films
[32, 35] to supported and free-standing films. For the studied polymer films we clearly
find by a layer-resolved analysis (section 4.3.1) that monomers at the free and solid
interfaces are faster than those in the center of the film, and that the monomers at the
free surface are faster than those at the solid interface. These highly mobile monomers
appear to transfer part of their mobility to the next deeper layer, which in turn can
accelerate the next layer, and so on until the effect is damped out if the film is thick
enough. The dynamics of the monomers in the film center is then bulk-like. This
also leads to faster dynamics on average (section 4.1) in the thin films in comparison
with the bulk. At the same thickness the relaxation is faster in free standing than in
supported films. These trends are reflected in the decrease ofTc determined in section
4.2 andTg (see section 3.1) with decreasing film thickness. At a given film thickness
Tc andTg are lower in a free-standing film than in a supported film. These results
were published in reference [38].

We also find that the first maximum of the static structure factorS(q) is smaller
in the films than in the bulk when the same temperatures are compared (see section
3.2). By contrast, the intrachain structure factor remains essentially unchanged. This
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implies that the confinement alters the intermolecular packing. The dynamic differ-
ences could therefore be explained along the lines of MCT by the difference in static
structure of the bulk and the films. The “cage” around a monomer cannot “tighten”
so quickly on cooling, as it is possible in the bulk. Since this effect becomes more
pronounced with decreasingh, and the tightening of the cage appears to be the main
factor triggering the slow relaxation in the supercooled bulk melt, we believe that this
perturbation of the liquid structure is for our model an important reason why the dy-
namics is faster in the films than in the bulk as was also suggested by the simulations
on confined films by Varnik et al. [32, 35]. Nevertheless it is not possible to explain
the differences in relaxation time between supported and free standing films within
this picture as the reduction of the first peak of the static structure factor is comparable
in both film geometries at a given film thickness.

It appears natural to assume—and also other simulations [12, 14, 16, 21] suggest—
that monomers in contact with the free surface are less constrained and thus more
mobile than in the bulk. Faster dynamics at the free surface were also observed using
atomistic MD simulation of thin films of polypropylene [12] as well as in simulations
employing more coarse-grained models [14, 16, 21] similar to the one employed in
this study. An investigation of the local mechanical properties of the films by de Pablo
and coworkers [15, 16] as well as an analysis of the segmental mobility carried out
very recently by Morita et al. [21] find evidence for a lowerTg at the surface.

One may thus hypothesize that the observedTg reductions are caused by a liquid-
like surface layer [1]. There is experimental evidence supporting this idea. For in-
stance, NMR experiments by Herminghaus et al. suggest that there is a well-defined
molten layer at the surface of a thin film of nonentangled polystyrene (PS) chains
[5]. Similar results are also obtained for highly entangled PS chains by Ellison and
Torkelson [9]. By means of a fluorescence/multilayer technique they conclude that
there is a continuous reduction ofTg on approaching the free surface.

In section 4.5 we provide further evidence for these experimental observations by
molecular dynamics simulations of a bead-spring model. We studied nonentangled
(N = 10) and slightly entangled (N = 64) chains in a temperature regime above
the critical temperatureTc of mode-coupling theory. For both chain lengths we find
that the film dynamics is spatially heterogeneous. Monomers at the free surface relax
faster than they would in the bulk at the same temperatureT . The relaxation transi-
tions from enhanced to bulk dynamics with increasing distancey from the surface.
For allT the crossover to bulk dynamics remains smooth, but its range grows on cool-
ing. This gradient in the relaxation dynamics may be associated with a gradient of
critical temperaturesTc(y). HereTc(y) is not a fit parameter; its distance dependence
can be derived from two ingredients. First, we assume thatTc(h)—the globalTc for
a film of thicknessh—is the arithmetic mean ofTc(y). Second, we use the result that
the depression ofTc(h) with decreasingh, found in our simulations, can be well de-
scribed by equation (4.14), an expression suggested in reference [4] for the reduction
of Tg in supported PS films.
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The so-obtained localTc(y) appears to be an important reference point for the
layer-resolved dynamics in our model. When plottingτ(y, T ), the local relaxation
time, versus the reduced temperatureT − Tc(y) we find a master curve for all layers
which coincides with the increase of the bulk relaxation time on cooling toward the
bulk Tc (see figures 4.12 and 4.13). Individual layers thus behave as if they were
a bulk system with reduced critical temperature. This suggests that the differentT
dependence of the bulk and film-averaged relaxation times—see figure 4.2—is prob-
ably due to ‘dynamic heterogeneities’ between the layers and not due to a growing
heterogeneity within a given layer relative to the bulk. An assumption which is fur-
ther supported by the analysis of the non-Gaussian parameter in the bulk and the films
in section 4.6. Our results further suggest that the heterogeneity between the layers
increases upon cooling because layers close to the film center experience a stronger
slowing down than surface layers which are still quite far from their respectiveTc(y).
These results were published in reference [39].
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Chapter 5

Capillary waves

It was suggested that capillary waves at the free surface couple to the viscous flow of
the bulk allowing a faster relaxation of the chain segments [4, 5] on the local scale,
thus decreasingTg. We found a decrease ofTg andTc in our model polymer films and
a decrease of the local packing constraints at the free surface as described in chapters
3 and 4. The question remains whether this effect is linked to capillary waves as
suggested in reference [4]. Therefore in this chapter we would like to investigate the
influence of capillary waves on the relaxation of the films in comparison with the
bulk. We will first focus on the static correlations and then investigate the dynamics
of the systems via the coherent scattering function and the dynamic structure factor.

While our study in section 3.2 was concerned with fluctuations at wavelengths of
the order of2π/σ, whereσ is the monomer diameter, and the properties of the chains
in the melt, we now look at the long wavelength limit. This is often described by
continuum theories. Here, we will compare the predictions of continuum theory to
our simulation. In a film, density fluctuations at lowq are dominated by capillary
waves, i.e. fluctuations in the local film thickness. These fluctuations, as we will
show, are a priori not limited in size. They are controlled by the surface tension
and, in real experimental systems, the maximum length scale of the surface height
fluctuations is limited by gravity or in thin films with strong substrate interactions by
the so-called van der Waals cutoff related to the system’s Hamaker constant [158].
As we did not include gravity in our model and the substrate interactions are weak
they become as large as the lateral dimensions of the simulation box in our systems.
These large spatial correlations entail long lived temporal correlations. A capillary
wave is identified by its wave vectorq and frequencyf = ωp + iΓc, where the real
part reflects the propagation frequency and the imaginary part the damping. The wave
can be either propagating or overdamped depending onq, the surface tensionγ, the
viscosityη and the densityρ of the liquid [150, 159].

79
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Figure 5.1: MAIN FIGURE: The density profile ρ(y) of a supported film of thickness
h = 8 at T = 1 is shown for different lateral system sizes [Bx = 41.1245 (dash-
dotted line), Bx = 29.0708 (dashed line) , Bx = 20.5622 (full line) and Bx = 14.5223
(dotted line)]. INSETS:The right inset shows the width of the interface given by equa-
tion (5.8) as a function of the logarithm of the system size (rectangles) and a fit to
equation (5.11) (dashed line). The left inset displays the y-resolved difference in
normal and lateral pressure for different lateral system sizes. The same legends
apply as for the main figure.

5.1 Statics

First we are interested in the influence of capillary waves on the static structure of the
films. Here the relevant parameter is the surface tension.

5.1.1 Surface tension

The surface tension can be calculated from the difference of the normal and the tan-
gential components of the pressure tensor defined in equation (2.33) as

γp =

∫ ∞

h/2

dy [PN(y)− PT (y)] . (5.1)

Due to the mechanical stability of the film [125] the normal pressure has to be constant
at p = 0 throughout the whole film while the tangential pressure can vary in the
y-direction. Far from the surfaces the system assumes bulk-like behavior and the
pressure is isotropic. In figure 5.1 they-resolved difference in normal and tangential
pressure at a free surface is shown for different lateral system sizes. The shape of the
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Figure 5.2: The local interface position h(x,z) for a film of average thickness h = 8.
The lateral box size was 41.1245. In order to find the local position of the inter-
face, averages over blocks of the size 6.85 were taken so that only the large scale
fluctuations of the local interface position can be seen.

profile broadens as does the density profile with increasing lateral box size because
larger and larger fluctuations of the interface position can be accommodated in the
simulation box. But the surface tension given by equation (5.1) isγp = 0.71 within
the error bars for all lateral box sizes investigated.

Alternatively, the surface tension can be calculated by analyzing the increasing
broadening of the interface due to capillary waves with increasing lateral system size.
This method was used to determine the surface tension of polymer mixtures by [160–
162].

5.1.2 Capillary wave theory

The local position of the interface can be described by a functionh(x, z). Long-
wavelength fluctuations ofh(x, z) lead to an increase of the interfacial area and thus
they increase the free energy associated with the area. The capillary-wave Hamilto-
nian corresponding to this simple picture is given by

HCW =
γ

2

∫
dxdz|∇h|2 . (5.2)
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In Fourier spaceHCW can be written as
∑

q q2 γ
2
|h̃(q)|2 whereh̃(q) denotes the Fourier

transform of the local interface position for the wave vectorq. From the equipartition
theorem one can then deduce that

〈|h̃(q)|2〉 =
T

γq2
. (5.3)

These assumptions result in a diverging mean-square displacement of the interface
position

s2 = 〈|h(x, z)|2〉 ' T

2πγ

∫
dq

1

q
, (5.4)

meaning, as already stated above, that fluctuations are not limited in size for a laterally
infinite system. The amplitude of the fluctuations can be the larger, the larger their
length scale is. It is necessary to introduce a lower cutoffqmin = 2π

L
and an upper

cutoff qmax = 2π
B0

of the wave vector yielding

s2 =
T

2πγ
ln

(
qmax

qmin

)
=

T

2πγ
ln

(
L

B0

)
. (5.5)

In our simulations the fluctuations become as large as the lateral size of the box allows
them to be. The largest length scale in our system is thus the lateral box sizeBx = Bz

which naturally leads to the choiceL = Bx. This only holds if the film thicknessh
is large in comparison with the surface height fluctuations at theq-vectors of interest.
The smallest scale is related to the interfacial width of the so called intrinsic density
profile which is in our case in the order of the monomer diameter, leading toB0 ∼ 1.

For the local interface position one finds a Gaussian height distribution

PL(h) =
1√
2πs2

e−h2/2s2

(5.6)

The resulting interface is thus broadened due to capillary waves in addition to its
intrinsic width∆2

0. This intrinsic width corresponds to an intrinsic interface profile.
The apparent profile is assumed to be given by the convolution

ρ(y) =

∫
dhρint(y − h)PL(h) . (5.7)

The broadening of the interface due to capillary waves is simply added to the intrinsic
broadening

∆2 = ∆2
0 +

T

2πγ
ln

(
L

B0

)
, (5.8)

in this approximation.
If one fits the density profileρ(y) defined in equation (3.1) to the function

ρ(y) =
ρ̄

2

(
1− erf

(√
π (y − h)

wi

))
, (5.9)
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whereh is the film thickness,̄ρ the average density of the film andwi a fitting pa-
rameter related to the interfacial width through∆2 =

w2
i

2π
[162]. erf(x) is the error

function defined as

erf(x) =
1√
2π

∫ ∞

x

du e−
u2

2 . (5.10)

By carrying out simulations at different lateral system sizesL the surface tension can
be found by fitting the data to

∆2 = a + b ln(L) , (5.11)

which givesγ = T
2πb

. In figure 5.1 the density profile for different lateral system
sizesL is shown. As expected from the theory sketched above,ρ(y) broadens with
increasingL. The surface tensionγc = 0.72 obtained by this approach andγp =
0.71 calculated from the difference in lateral and normal pressure agree well and is
independent of the area of the film. The films in our study are also thick enough
for the surface tension and the surface height fluctuations to be independent of film
thickness.

5.1.3 Low-q limit of the static structure factor

The fluctuations of the interface position due to capillary waves should also be re-
flected in the static structure factorS(q) defined in equation (3.6) at smallq. For
q < 1 we expect

S(q) ∝ T

γ

1

q2
, (5.12)

because at large length scales the dominant fluctuations are the ones due to capillary
waves so that they should give a large contribution toS(q).

In figure 5.3 we look at the structure factor at smallq in layers in the middle
and close to the surface of the film as well as in the bulk. All layers had a width of
∆y = 2. In a bulk liquidS(q = 0) = βρT , whereβ is the isothermal compressibility
of the system. Indeed we also find a constant value at smallq in the middle of the
film as well as at the supported surface. Indicating a higher compressibility of the
system the plateau value is larger than in the bulk at the supporting wall as well as in
the center of the film.

At the free surface we observe a completely different behavior. The structure
factor shows a divergence following a power law as predicted by theory. Nevertheless,
also the oscillations due to the packing of the monomers at largerq are still visible.
The behavior at smallq is independent of the system size which is as an indication
that the periodic boundary conditions do not interfere with the longest wavelength
capillary waves present so that an accurate description of the dynamics is possible
down to wavelengthsq = 2π

L
.

Following an analysis of the shape and width of the interfacial profile in a ho-
mopolymer blend in references [160, 161], we calculate the local interface position
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Figure 5.3: MAIN FIGURE: The layer-resolved structure factor in a slab of width
∆y = 2 centered at the free surface of a supported film (h = 8, N = 10 and T = 1)
for different lateral system sizes L = 41.1245 (crosses), L = 29.0708 (circles), L =
20.5665 (triangles) and L = 12.5223 (stars) is shown. Also indicated are the structure
factor of the bulk melt (pluses), the layer-resolved structure factor found in the center
of a supported film of thickness h = 8 with lateral box size L = 20.5665 (diamonds),
and the layer resolved structure factor calculated at the supported surface of a film of
thickness h = 8 with lateral box size L = 20.5665 (squares). The dotted line indicates
the prediction of capillary wave theory for S(q) given in equation (5.12). INSET: The
inset compares the layer-resolved structure factor in a slab of width ∆y = 2 centered
at the free surface of a supported film (h = 8, N = 10) at T = 1 (open symbols) and
T = 0.5 (full symbols). The lateral system size was L = 20.5665.

h(x, z) on different length scales. We determine the local interface positionh(x, z)
within slabs of different sizes. With the method of the GDS described earlier, one
finds thatρ̄ = N

V
= N

BxBzh
. If the density is known, one can determine the height as

h = N
BxBz ρ̄

. Under the assumption that density fluctuations are negligible on the scale
of the slab size, i.e. the average density in the slab is assumed to beρ̄, the local inter-
face positionh(x, z) can be calculated counting the particlesNp(x, z) within a slab of
areaLB

x LB
z centered atx andz by h(x, z) = Np(x,z)BxBy

NLB
x LB

z
h. We always chose the slab

to be quadratic withLB
x = LB

z = LCG. This procedure averages out fluctuations on
length scales smaller than the slab sizeLCG. Thus it becomes now the natural upper
cut-off for the fluctuation spectrumB0 = LCG.

In figure 5.2 the local position of the interface is displayed for a supported film
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Figure 5.4: The spectrum of the surface height fluctuations calculated using differ-
ent slab sizes (LCG = 2.05 circles,LCG = 1.65 squares and LCG = 1 stars) is shown.
Also indicated are the static structure factor in the surface layer of the film (filled
circles) and a fit to equation (5.12) (dashed line). The calculations were done for a
supported film of h = 8 at T = 1 and a lateral box size Bx = 41.1245.

of average film thicknessh = 8. For the calculation a very large size of the slabs
was chosenLCG = 6.85 which averages out all fluctuations but the largest scale
fluctuations present in the box resulting in a locally smooth surface. The smaller
LCG the rougher the resulting surface becomes as smaller and smaller fluctuations are
picked up. The amplitude of the fluctuations is of the order of 2 monomer diameters,
which is still considerably smaller than the overall thickness of the film.

In figure 5.4 the spectrum of the surface height fluctuations〈|h̃(q)|2 〉 for different
slab sizesLCG is shown. At low wave lengths the results agree well with the theo-
retical predictions independent of slab size. Ifq becomes comparable to2π/LCG, a
suppression of the fluctuations forLCG = 2.05 (circles) with respect to the theoretical
prediction is seen, as expected. For the smallest value ofLCG which is comparable
to the monomer diameter, on the other hand, an enhancement at higherq values be-
comes visible. As in this case there are only a few monomers in the slab, it becomes
questionable whether the assumption of constant density used to derive the interface
position is still valid. The result resembles the static structure factor just measured
within the surface layer of the film.

Since the structure factor is normalized by the number of monomers which is pro-
portional to the system volume while the effect of the capillary waves only increases
with the surface area, we make the following ansatz for the overall structure factor
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Figure 5.5: LEFT PANEL:The structure factor at T = 1 averaged over the whole
film [supported film h=8.4 (filled squares), h=16.6 (filled diamonds), free film h=8.4
(triangles) and h=16.6 (pluses); the filled circles indicate the bulk] is displayed. The
dashes lines show the approximation according to equations (5.13) and (5.14). Only
q-vectors within the plane parallel to the surface are considered. RIGHT PANEL: Re-
scaled structure factor (S(q)−β)γh(T )

Tnf
averaged over the whole film: supported film

n = 288 (squares), free film n = 288 (circles) and n = 576 (triangles) at T = 0.44
(filled symbols) and T = 0.52 (open symbols). The black line indicates q−2. Only
q-vectors within the plane parallel to the surface are considered.

S(q) of a supported thin film

Ssup(q) = Sbulk(q) +
T

γhq2
+ ∆βT , (5.13)

andS(q) of a free film

Sfree(q) = Sbulk(q) +
2T

γhq2
+ ∆βT , (5.14)

since there are two surfaces.h is the thickness of the film and the constant∆βT takes
into account the difference in overall compressibility between the thin film and the
bulk. As can be seen in figure 5.5 this works nicely for all film thicknesses displayed.
The free film and the supported film of half the thickness agree very well at smallq
giving a further indication that the finite thickness of the films does not interfere with
the surface height fluctuations.

We further test this assumption for lower temperatures by re-scaling the structure
factor at lowq with (S(q)−βT)γh(T )

Tnf
with nf being the number of free surfaces andβT a

constant related to the compressibility. In figure 5.5 the re-scaled structure factor for
different film geometries and temperatures is shown. The curves indeed collapse on
a curve proportional to1/q2 at low q although there is a large scatter.



5.2. Dynamic structure factors 87

5.2 Dynamic structure factors

It is now interesting to also investigate the influence of the capillary waves on the
coherent scattering function given by

F (q, t) =
1

nN

nN∑
i=1

nN∑
j=1

e−iq·[ri(0)−rj(t)] . (5.15)

and its Fourier transform the dynamic structure factorS(q, ω)

S(q, ω) =
1

2π

∫ ∞

−∞
dt eiωtF (q, t) . (5.16)

5.2.1 Bulk relaxation in the hydrodynamic limit

We start by looking at the hydrodynamic limit i.e. at smallq-vectors and large times
of these functions in the bulk liquid. From the solution of the linearized Navier-Stokes
equations one obtains for density fluctuations of wave vectorq [123]:

ρq(t) = ρq(0)

[
γH − 1

γH

exp(−DT q2t) +
1

γH

exp(−Γq2t) cos(csqt)

]
(5.17)

Here,DT = λ
cP ρ

, wherecp is the isobaric specific heat capacity andλ the thermal

conductivity, andΓ = 1
2

[
λ

cV ρ
γH−1

γH
+ 4/3η+ζ

ρ

]
, wherecV is the specific heat capacity

at constant volume,γH = cP

cV
, η is the shear-viscosity andζ is the bulk viscosity.

From the Fourier transform of the density by definitionF (q, t) can be calculated as

F (q, t) =
1

nN
〈ρq(t)ρ−q(0)〉 , (5.18)

yielding

F (q, t) = S(q)

[
γH − 1

γH

exp(−DT q2t) +
1

γH

exp(−Γq2t) cos(csqt)

]
. (5.19)

F (q, t) can be split into two parts one corresponding to a so-called thermal mode
which describes entropy fluctuations decaying exponentially and a propagating mode
representing sound waves damped in the viscous fluid [123]. Continuum theory thus
predictsS(q, ω) to be given by

S(q, ω) =
1

2π
S(q)

[
γH − 1

γH

2DT q2

ω2 + (DT q2)2 +

1

γH

(
Γq2

(ω − csq)2 + (Γq2)2 +
Γq2

(ω + csq)2 + (Γq2)2

)]
. (5.20)
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It is possible to independently determine all parameters needed to evaluateF (q, t)
andS(q, ω) for our model system. The thermal conductivityλ, the shear viscosityη
and the bulk viscosityζ can be derived from Green-Kubo relations (all numbers refer
to N = 10, T = 1 andp = 0 in a bulk system). The thermal conductivity can be
evaluated as

λ =
1

3V T 2

∫ ∞

0

dt 〈 J(t) · J(0)〉 ' 4.9 , (5.21)

whereJ(t) is the energy current in the system given by

Jα(t) =
∑

i

1

2

[
vα

i v
2
i + vα

i

∑
j 6=i

Upot(ri,j) + vi · ri

∑
j 6=i

Fα
i,j

]
. (5.22)

The viscosities can be found via the auto-correlation functions of the stress tensor
calculated as

σαβ =
∑

i

(
1

2

∑
j 6=i

Fα
i,jr

β
i + vα

i v
β
i

)
. (5.23)

The shear viscosity is given by

η =
1

V T

∫
dt 〈σαβ(t)σαβ(0)〉 ' 9.3 . (5.24)

The sum of the bulk and the shear viscosity can then be determined using

4

3
η + ζ =

1

V T

∫ ∞

0

〈dt (σαα(t)− pV )(σαα(0)− pV )〉 ' 21.5 . (5.25)

The precision of the evaluation of these integrals is limited due to the long tail that
especially the stress auto-correlation function exhibits. This problem is much smaller
for the auto-correlation function of the energy current which decays much faster.

The isobaric and isochoric specific heat capacities can be determined atp = 0 by
an analysis of the equilibrium fluctuations of the total energyE of the system in an
NpT/NVT simulation with

cV =
〈δE2〉NV T

(nN)T 2
' 2.7 , (5.26)

cp =
〈δ(E + pV )2〉NpT

(nN)T 2
' 3.8 , (5.27)

and thus estimates forγH ' 1.4, Γ ' 14.5 andDT ' 1.5 can be found atT = 1 and
p = 0 in the bulk. Due to the box sizeBx = 15 the smallestq-vector which can be
considered isqmin = 2π

Bx
= 0.42.

In figure 5.6 the coherent scattering functions of the bulk atT = 1 andp = 0 is
shown. The oscillations are due to propagating acoustic waves. Using equation (5.19)
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Figure 5.6: LEFT PANEL: Coherent scattering function at q = 0.42 of the bulk at T =
1 and p = 0. The system contained n = 288 chains of N = 10 monomers (circles).
The thick lines indicate F (q, t) given by equation (5.19) in the hydrodynamic limit
using values of the constants extracted from the simulation (γH = 1.4, Γ = 14.5,
cS = 5 and DT = 1.5). The dashed line and the dashed dotted line show the
thermal and the viscous contribution to the dissipation. RIGHT PANEL: The dynamic
structure factor of the bulk at T = 1 and p = 0 is shown (blue circles). Also indicated
are the hydrodynamic limit for S(q, ω) which was calculated using the values for
the various coefficients which were determined independently γH = 1.4, Γ = 14.5,
cS = 5 and DT = 1.5 (dotted line). The partial contribution are indicated by the
dash-dotted line and the dashed line.

and the constants extracted from simulations as described above, we can compare our
results to the prediction forF (q, t) at small wave vectors and large times. We indi-
cate the total coherent scattering function in the hydrodynamic limit as well as the
thermal mode and the propagating mode. At large times the agreement between the-
oretic prediction and the simulation results is much better than at short times were
considerable deviations can be observed. The relaxation time predicted by the hy-
drodynamic theory is faster than the relaxation of the particles due to ballistic mo-
tion given asS(q)(1 − (q2T )t2/2). It would be necessary to go to smallerq-vectors
(q < 0.1), which shifts the relaxation dynamics to larger times in comparison to
whichS(q)(1− (q2T )t2/2) will be fast, to obtain a better agreement with the predic-
tion given in equation (5.19).

In order to allow for a comparison with equation (5.20) we carried out a Fourier
transformation ofF (q, t) to determineS(q, ω). The Fourier transform is carried out
with a simple trapezoidal Filon algorithm [163] on a logarithmic grid in the time as
well as in the frequency domain. This allows a much more efficient calculation of the
Fourier transform for slowly varying functions than a fast Fourier transform (FFT).
The results are shown in figure 5.6. The numerically calculated dynamic structure
factor deviates considerably from the hydrodynamic limit at largeω which could
already be expected from the results forF (q, t). The deviations are the largest for
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large frequencies corresponding to short times. If we attempt a fit to equation (5.20)
we obtain a better agreement between theory and our results but at intermediateq
the deviation are still large. Also the values for the parameters derived from the
fit do not correspond very well to the estimates determined earlier. EspeciallyΓ is
underestimated by a factor of3. Also in the time domain the agreement is improved at
short times while at large times the agreement is not as good which is in contradiction
with the expected range of validity of the theory. Therefore the fit does not provide
reliable results as our simulations are not carried out at small enough q vectors.

5.2.2 Relaxation of surface height fluctuations

In the films the situation is different. Here the long-range (spatially as well as tem-
porally) fluctuations of the interface position should dominate the relaxation at small
q-vectors. The spectrum due to capillary waves was investigated in detail by [150]
using linear response theory. The Hamiltonian of the system in the presence of an
external perturbation is given by

H = H0 + He(t) , (5.28)

whereH0 characterizes the unperturbed system. Following Jäckle [150, 164] the
Hamiltonian for the external perturbation is chosen as

He(t) = −
∫ ∫

dA Py(r, t)h(r) = −
∑
q

P̃y(−q, t)h̃(q) , (5.29)

wherePy(r, t) is a time and position dependent force field acting on the liquid surface.
It is defined as

Py(r, t) =
1√
A

∑
q

P̃y(q, t) exp(iq · r) , (5.30)

where the Fourier components are given asP̃y(q, t) = Py,0 exp(−iωt). The vectorq
lies within thexz-plane. The changes in the interface positionh introduced by this
force field can be calculated in the regime of linear response as

h̃(q, t) = Py,0 exp(−iωt)χ(q, ω) , (5.31)

whereχ(q, ω) is the dynamic susceptibility.
Through the fluctuation-dissipation theorem [123] the imaginary part of the dy-

namical susceptibilityχ′′(q, ω) is related to the auto-correlation function of the sur-
face height fluctuationsC(q, t) = 〈h̃(q, t)h̃(−q, 0)〉

C(q, ω) =
kBT

πω
χ′′(q, ω) (5.32)

=
1

2π

∫
dt exp(iωt)C(q, t) . (5.33)
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Figure 5.7: LEFT PANEL: The coherent scattering function normalized to 1 of a
supported film of thickness h = 8 (full line) and the bulk (dashed line) at approxi-
mately the same q = 0.45 and at T = 1. The dash-dotted line indicates the single
exponential decay predicted by capillary wave theory. RIGHT PANEL: The coherent
scattering function normalized to 1 in an adsorbed film of h = 8 at T = 1 for various
q-vectors (full lines). Also indicated are the approximations of capillary wave theory
in the limit of an overdamped system (dashed lines).

Therefore by determiningχ′′(q, ω) one can predict the relaxation behavior of the sys-
tem. By solving the linearized Navier-Stokes equations which govern the hydrody-
namics of an incompressible liquid of densityρ, J̈ackle [150] obtained a rather com-
plicated expression forχ(q, ω) as a function of the density of the liquid, the surface
tension, the depth and the viscosity. In the limiting cases of a dense, highly viscous
liquid (η > 1 andρ ' 1) the capillary modes at the surfaces should be strongly over-
damped. In this case it can be shown [150, 159] thatC(q, ω) is given by a Lorentzian
function

C(q, ω) =
2kBT

γq2

∆ω2

ω2 + ∆ω2
(5.34)

with line width ∆ω = 1/τcap. In our case of a dense, viscous polymer liquid we
should be in this regime of overdamped capillary waves. Here, in the time domain the
decay of the fluctuations should be described by a single exponential function with
relaxation time

τcap =
2η

γq

cosh2(qh) + (qh)2

sinh(qh) cosh(qh)− qh
. (5.35)

This has been verified for various film thicknesses and temperatures experimentally
by neutron scattering in reference [159].

First we look at the coherent scattering function of the films at a similarq vector
as the bulk. This is shown in the left panel of figure 5.7. Although the correlations in
the film ‘live’ longer than in the bulk, the decay is not exponential and the relaxation
time is smaller than suggested by the theory. In the case of the films, due to the
smaller extension iny-direction, it is easier to go to smaller wave vectors. The largest
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Figure 5.8: LEFT PANEL: The coherent scattering function at q = 0.33 normalized to
1 of a supported film of thickness h ' 7 at T = 0.7, T = 0.55, T = 0.48, T = 0.45,T =
0.43, and T = 0.41. The dashed line indicates the criterion F (q, τq=0.33)/S(q) = 1/ e
used to extract the relaxation time. RIGHT PANEL: The relaxation time τq=0.33 for a
supported and free standing films as a function of temperature.

lateral box size investigated isBxz = 41.1245; this allows us to look at wave vectors
as small asq = 0.152.

In figure 5.7 (right) it can be seen that for thisq-vector the agreement with the
prediction form theory is much better although the decay is still not perfectly expo-
nential. This is probably due to the fact thatq is still too large, with an additional
complication in the films. Since we do not separate the spectrum of the surface waves
form the response of the rest of the film (bulk system), we get a contribution from
both. The bulk contribution is proportional to the system volume and also the value
of the static structure factorS(q) = ρTβT for smallq, whereβT is the system’s com-
pressibility which is rather small (atT = 1 andp = 0 we findβT = 0.076), while the
capillary wave contribution is proportional to the area and also toS(q) ' T

γhq2 ' 6
which at thisq = 0.152 is much larger.

In figure 5.8 the normalized coherent scattering function for a supported film of
thicknessh ' 7 is shown as a function of temperature. The dependence of the ampli-
tude on film geometry and thickness was discussed in section 5.1. The relaxation of
the capillary wave fluctuations becomes slower with decreasing temperature. We use
the criterion

F (q, τq=0.33)/S(q) = 1/ e (5.36)

to extract a relaxation time to compare the decay times of the fluctuations at different
temperature in different film geometries.

Equation (5.35) suggests that at a given temperature andq-vector the relaxation
is slower in thinner films than in thicker films provided that the surface tension and
the viscosity are independent of film thickness. In the limitlimh→∞ τcap = 2η

γq
is

found. A film thickness ofh ' 14 is already close to this asymptotic value for the
q vectors investigated here. For films of thicknessh ' 7 the relaxation is predicted
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to be by a factor of1.4 slower than ath ' 14 for q = 0.33. However it is unclear
insofar this equation can be applied since we observed considerable deviations from
the predictions of capillary wave theory at thisq vector. Although the decay of the
incoherent scattering function is dominated by the effects of capillary wave fluctua-
tions atq = 0.33, the purely exponential decay with a relaxation timeτcap could not
be observed.

When comparing the relaxation times of the capillary wave fluctuations at a high
temperatureT = 0.7, the relaxation in thinner films is indeed slower than for thicker
films at the same geometry. Nevertheless the differences in relaxation times are very
small in comparison with the error bars, which makes a reliable comparison diffi-
cult. AsF (q, t) is a collective system property very long runs are necessary to obtain
sufficiently good statistics to obtain reliable results.

Upon lowering the temperature this trend is reversed and atT = 0.41 which
is close to the bulkTg for N = 64 the relaxation in thinner films is faster than in
thicker films. At a given film thickness the relaxation in free-standing films is faster
than the one in supported films. This is the same dependence of relaxation times on
film thickness and geometry as was observed for the local relaxation times extracted
from the incoherent scattering function and the MSD. As the surface tension at the
free surface changes only by a factor of2 in the temperature interval investigated
and is rather independent of film thickness and geometry this difference can only be
explained if one assumes that the viscosity in the thinner films is lower than in the
thicker films.

5.3 Summary

We find a divergence of the total structure factor at smallq asS(q) ∝ q−2 in free
standing and supported films as predicted by capillary wave theory. The effect of the
capillary wave fluctuations on the total structure factor increases with decreasing film
thickness and is stronger at a given film thickness in free-standing than in supported
films due to the presence of two free surfaces.

The relaxation of the films is slower and qualitatively different than in the bulk
at smallq-vectors due to the presence of capillary waves. At high temperature the
relaxation of the capillary wave fluctuations is faster in thicker films than in thinner
films in agreement with capillary wave theory. At low temperatures however the
relaxation is faster in thinner films which could be an indication that the viscosity in
the films is lower than in the bulk and that the viscosity decreases with decreasing
film thickness.

In the last chapter we showed that equation (4.14) introduced by [4] allows to pa-
rameterize the dependence of the local dynamics in the films very well. However, the
theoretical basis remains unclear. The authors suggested a coupling of the capillary
waves at the surface to the viscous flow in the bulk accelerating the dynamics. We
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could show in section 5.2 that the relaxation in the lowq limit is slower in the films
than in the bulk because the capillary wave fluctuations are long lived. On the other
hand we find the local relaxation to be faster in the films than in the bulk. Because
the local relaxation times grow rapidly as the film approaches its glass transition, also
the relaxation time of the capillary wave fluctuations related to the system’s viscos-
ity increase. Apparently the faster local dynamics encountered in the last chapter go
along with a decrease in the film’s viscosity in comparison with the bulk at low tem-
peratures. This shows that the dynamics in our films is influenced on all scales by the
confinement.

Whether the capillary wave fluctuations are the reason for the differences in the
slowing down of the dynamics on the local scale between bulk and film could not
be determined. Simulations on confined films which suppress these fluctuations find
also a decrease ofTc which could be well described by equation (4.14) [32]. As in
this case capillary wave fluctuations are strongly suppressed by the confining walls,
other factors as the change in the local order induced by the confinement have a
predominant influence on the system’s dynamics.
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Dielectric relaxation

Broadband dielectric spectroscopy is a common experimental technique to study the
conformation, the structure and the dynamics of polymers [165]. The sample is sub-
jected to an ac electrical field and the response is measured in form of a frequency de-
pendent complex dielectric permittivity. This allows to follow the different relaxation
processes of polymeric systems. Using this method one can evidence modes which
can have very different characteristic relaxation times as the frequency window these
experiments can cover today is very large. The typical relaxation processes one en-
counters are theβ relaxation corresponding to motion of side chains, theα relaxation
linked to the structural relaxation of the monomers and the normal mode relaxation
due to the reorientation dynamics of the whole chain [166]. The broad frequency
range accessible also allows to follow theα relaxation dynamics during its many
decade change fromTg, deep into the liquid state [167, 168].

Recently this technique was used to probe the dynamics of the normal mode of
polymers in thin film geometry [169–173]. The experiments found evidence for
an additional relaxation mode due to the confinement in these so-called type A-
polymers. The additional mode is situated between the segmental mode and the
normal mode. Its relaxation time decreases with decreasing films thickness while
its dielectric strength increases with decreasing film thickness. Kremer and cowork-
ers assigned this mode to the relaxation of terminal subchains. Due to the strong
adsorption of monomers at the wall chain segments at the interface are immobilized.
As more than one monomer of a chain can be immobilized at the surface large parts of
the chain can become dielectrically inactive. Simulations of ideal random walks were
monomers at the wall were pinned down support this explanation [174]. However
a thickness dependent relaxation time of this confinement induced mode could only
be observed in the simulations if monomers were only immobilized at one interface.
This could be explained by the asymmetric preparation of the films.

We attempt to calculate the dielectric spectra of our model polymer films and
compare it to the bulk spectrum to see how the film geometry alters the relaxation in
our systems. By dielectric spectroscopy, dynamic processes can be detected that in-

95
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Figure 6.1: Schematic drawing of the dipoles on a chain.

volve the reorientation of dipolar entities or the displacement of charged entities. The
results are usually reported as spectra of the real and imaginary part of the complex
dielectric permittivity [165]. In order to calculate such spectra in our simulation we
need to attach dipolar units to our bead-spring chains. How this can be achieved was
reported in reference [175] and will be described in section 6.1. We will calculate the
auto-correlation function of the polarization of the system and use the fluctuation dis-
sipation theorem to obtain the permittivity measured in experiments. We will discuss
the auto-correlation function in the bulk and the film in section 6.2. In section 6.3 the
calculation of the dielectric loss spectra is explained. Finally results on the segmental
mode and the normal mode relaxation in our systems are presented in section 6.3.1
and 6.3.2.

6.1 Definition of the system’s polarization

Following a previous study [175] employing a similar model to analyze the dynamic
properties of short chains in the bulk, we introduce two local dipole moments. One is
oriented parallel to the chain back bone and therefore proportional to the bond-vector,

ba
j =

1

beq

(
ra

j − ra+1
j

)
. (6.1)

The other dipole is attached locally perpendicular to the chain backbone in the direc-
tion of

ta
j = (−1)j

(
ba−1

j − ba
j

)
. (6.2)



6.2. Auto-correlation functions of the polarization 97

The total polarization in the system is then given by

P(t) = Pseg(t) + PN(t)

=
n∑

j=1

Pj(t) =
n∑

j=1

(
µsegTj + µNRj

e

)
, (6.3)

where

Tj =
N−1∑
a=2

ta
j (6.4)

and the end-to-end vector

Rj
e =

N−1∑
a=1

ba
j . (6.5)

µseg andµN account for the strength of the local dipole moments parallel and perpen-
dicular to the chain back bone. They can be chosen arbitrarily to match a certain poly-
mer. Following [175] we setµseg = 1.5 andµN = 1. This ratio corresponds to the one
found for cis-polyisoprene. The choice of non-zero dipole moments parallel as well
as perpendicular to the bond vectors corresponds to so called type A-polymers [166].
These polymers allow to follow the segmental motion orα-relaxation of the system
via decorrelation ofPseg(t) as well as the relaxation of the whole chain viaPN(t).
This second process corresponds to the reorientation of the end-to-end vectorRe of
a chain and is also referred to as normal mode. Its characteristic time is dependent on
chain length.

6.2 Auto-correlation functions of the polarization

The dynamics of the system can be investigated via the auto-correlation function of
the total polarization vector.

C(t) =
〈P(t) ·P(0)〉
〈P(0) ·P(0)〉

(6.6)

We expect there to be two distinct relaxation processes. One related to a reordering
of the chain segments

Cseg(t) =
〈Pseg(t) ·Pseg(0)〉
〈Pseg(0) ·Pseg(0)〉

, (6.7)

and a second one corresponding to the reorientation of the whole chain

CN(t) =
〈PN(t) ·PN(0)〉
〈PN(0) ·PN(0)〉

. (6.8)
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Figure 6.2: LEFT PANEL: The auto-correlation function (full line) given by equation
6.6 of a bulk system for N = 10 (black lines) and N = 64 (gray lines) at T = 0.7 is
shown. Additionally the segmental (dash-dotted line) and the normal (dashed line)
auto-correlation functions are shown. RIGHT PANEL: The auto-correlation function
Cseg(t) for T = 0.7, T = 0.45, T = 0.43 of a bulk system at p = 0 with chains of
length N = 64 are shown from left to right. The thin solid lines correspond to Cseg(t)
while the thick lines are calculated from CSC

seg (t).

If the chain lengthN is very large the time scales of these two modes are very different
and therefore they decouple completely so that the total correlation function can be
described as a sum of two distinct auto-correlation functions

C(t) = aCseg(t) + bCN(t) . (6.9)

6.2.1 Bulk

In figure 6.2 the total correlation function as well as the separate components are
shown for a bulk system at a temperature well above the glass transition for two
different chain length. In both cases one can clearly observe a two step behavior in
C(t) corresponding to the segmental relaxation and the reorientation ofRe. With
increasing chain length,Re relaxes more slowly while theα-relaxation is almost
unaffected, and the two step behavior becomes more pronounced. While for shorter
chains the approximation given by equation (6.9) does not hold entirely due to the
coupling of the two relaxation processes, they are well separated for the larger chain
length andC(t) can be described well by this factorization.

We make a further approximation by

CSC(t) =
1

n

n∑
j=1

Cj(t) =
1

n

n∑
j=1

〈Pj(t) ·Pj(0)〉
〈Pj(0) ·Pj(0)〉

(6.10)

which assumes that there is no correlation between the polarization of the different
chains i. e. 〈Pj(0) · Pi(0)〉 = 0 for i 6= j. While this certainly holds for the
orientation ofRe,j, there might be correlations between segments of different chains
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Figure 6.3: The auto-correlation function C(t) is shown for a supported film of thick-
ness h = 7.5 (grey lines) at T = 0.7 and the bulk (black lines) (chain length N = 64).
Also indicated is the decomposition in segmental (dash-dotted lines) and normal
(dashed lines) component given by equation (6.6).

due to local packing order. We test the validity of this assumption by looking at the
auto-correlation functionCseg in comparison withCSC

seg for a bulk system at different
temperatures in figure 6.2. Although there are slight differences which might be due
to insufficient statistics forCseg(t) the global features of the curves are unaffected.
Therefore in the rest of this chapter we will only present data forCSC

seg and drop the
super-scriptSC.

6.2.2 Films

To see the influence of the confinement we compare the relaxation in a supported thin
film at high temperature to the properties of the bulk under the same conditions in
figure 6.3. We find that theα-relaxation at this elevated temperature is rather unper-
turbed by the confinement although there can already be seen a slight acceleration
of the dynamics in comparison to the bulk which becomes more pronounced as the
systems are cooled.Re on the other hand reorients much faster in the film than in the
bulk.

The radius of gyrationRg of the chains in the film of thicknessh = 7.5 is
Rg = 3.7 ∼ h

2
. The film thickness is so small in comparison with the size of a

molecule that the end-to-end distance of the polymers in they-direction is less than
the one within the plane of the film, which is still bulk like. This is schematically
illustrated in figure 6.4. For the end-to-end distance of the chains in the filmRfilm

e in
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Re y

Re xz

Figure 6.4: Schematic drawing of a chain confined in a film. Indicated are the
gyration ellipsoid and the end-to-end distance.

comparison to the one of the bulkRbulk
e one thus findsRbulk

e ' 3
2
Re xz > Rfilm

e > 3Re y

(see equation (3.16) and figure 3.9 in section 3.3 for more details). In other words the
momentary gyration ellipsoid tends to orient with its shortest axis perpendicular to
the plane of the film. Since the relative amplitude of the normal mode is proportional
to the expectation value of the end-to-end distance (the expectation value of〈T 〉 de-
fined in equation (6.4) is not affected by the confinement within the accuracy of our
calculation) the films show a lower plateau in the correlation function. This can be
seen clearly for the total correlation function in the film and the bulk in figure 6.3.

6.3 Dielectric loss spectra

Through the dissipation fluctuation theorem it is possible to calculate the dielectric
loss spectrum via a Fourier transform of the auto-correlation function

ε(ω)− ε∞
∆ε

= −F

[
∂

∂t
C(t)

]
, (6.11)

where∆ε is the relaxation strength andε∞ the dielectric constant of the medium
[123, 175].

The Fourier transform is carried out with a simple trapezoidal Filon algorithm
[163] on a logarithmic grid in the time as well as in the frequency domain. This
allows a much more efficient calculation of the Fourier transform for slowly varying
functions than a fast Fourier transform (FFT).

In figure 6.5 the dielectric loss spectra of bulk systems with different chain lengths
are compared. While for the shorter chain length the peak corresponding to the nor-
mal mode and the peak characteristic of theα-relaxation overlap considerably, so that
the normal process can only be seen as a wing of the segmental relaxation peak, the
two peaks are well separated at the larger chain length and the overlap of the two
processes is rather small. As already stated above the normal mode exhibits a strong
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Figure 6.5: UPPER LEFT PANEL: The dielectric loss spectrum for chains of length
N = 10 at T = 0.7 and p = 0 in the bulk is shown. The full line indicates the normal
mode, the dashed line the segmental relaxation and the dash dotted line the total
spectrum. UPPER RIGHT PANEL: The dielectric loss spectrum for chains of length
N = 64 at T = 0.7 and p = 0 in the bulk is shown. The full line indicates the normal
mode, the dashed line the segmental relaxation and the dash dotted line the total
spectrum. LOWER PANEL: The renormalized peaks of the segmental and the normal
mode at T = 0.7 and p = 0 in the bulk for N = 10 and N = 64 are shown.

dependence on chain length, while the local segmental relaxation is not strongly af-
fected by the chain length.

6.3.1 Temperature dependence of the segmental mode relaxation

In figure 6.6 we look atCseg(t) and the corresponding dielectric loss-spectrum as a
function of temperature. As the system is cooled the relaxation times grow and the
cooperativeα-relaxation process separates from the partial relaxation due to micro-
scopic degrees of freedom. The strong increase of relaxation times as the system
approaches the glass transition has already been observed in the last chapter when
analyzingτ1(T ) extracted from the MSD of the inner monomers in section 4.2. We
used a power-law diverging atTc inspired by MCT to describe the slowing down
of the dynamics asTc is approached. There are other formulas which allow to de-
scribe these deviations from Arrhenius behavior common to glass-forming polymeric
liquids equally well (see e. g. [28, 29] for a summary).

One of the most commonly used parameterizations is the so called Vogel, Fulcher,
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Figure 6.6: LEFT PANEL: The dielectric loss spectra ε
′′

seg for T = 0.7, T = 0.55,
T = 0.5, T = 0.48, T = 0.46, T = 0.45, T = 0.43 of a bulk system at p = 0 with
chains of length N = 64 are shown from right to left. The thin solid lines correspond
to the Fourier transform of Cseg(t) while the thick lines are calculated from CSC

seg (t).
The curves are normalized such that ε

′′

seg(νmax) = 1. RIGHT PANEL: The auto-
correlation function Cseg(t) for T = 0.7, T = 0.55, T = 0.5, T = 0.48, T = 0.46,
T = 0.45, T = 0.43 of a bulk system at p = 0 with chains of length N = 64 are
shown from left to right. The thin solid lines correspond to Cseg(t) while the thick
lines are calculated from CSC

seg (t).

Tammann (VFT) equation [176]

νmax(T ) ∝ exp

(
− DT0

T − T0

)
. (6.12)

This equation implies the existence of a non-zeroT0 at which relaxation times diverge.
In experimentsT0 is found to be lower thanTg. Angell determined that this temper-
ature is very close to the independently evaluated Kauzmann temperatureTK [177]
at which the configurational entropy vanishes for many substances [28]. The MCT
prediction of a power law divergence and the VFT equation both allow a fit of the
relaxation times within the4 decades accessible in our simulations.

The frequencyνmax at the maximum of the dielectric loss spectrum is shown as a
function of temperature in figure 6.7. The dependence can be fitted well with a VFT
law for the films as well as the bulk system at both chain lengths. The temperature
T0 is lower in the films (TN=64

0 = 0.293, TN=10
0 = 0.286) than in the bulk system

(TN=64
0 = 0.327, TN=10

0 = 0.31) and longer chains have a slightly higherT0 for the
same geometry. These trends are in agreement with the ones found forTg andTc

earlier. The parameterD ∼ 2.5 for all systems which shows that our model polymer
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Figure 6.7: LEFT ORDINATE: An Arrhenius plot of the peak frequency of ε
′′

seg is
given for a bulk system of chains N = 10 (stars), a bulk system of chains N = 64
(circles), a film of thickness h ∼ 7 (thickness changes as a function of T ) of chains
N = 10 (pluses) and a film of thickness h ∼ 7 (thickness changes as a function
of T ) of chains N = 64 (squares). The dashed and dotted lines indicate a fit to
equation (6.12). RIGHT ORDINATE: The auto-correlation functions of the segmental
mode at T = 0.45 in the bulk system for chains of N = 64 (thick black line), at
T = 0.45 (thick gray line) and at T = 0.41 (dashed gray line) in a film of h = 7.5 of
chains of length 64 are shown. The thin lines indicate the auto-correlation functions
of the segmental mode calculated only parallel (dashed) and only perpendicular
(dotted) to the plane of the film.

is a rather fragile glass former.
The films exhibit globally the same behavior as the bulk system on approach-

ing the glass transition but the onset of the strong slowing down is shifted to lower
temperatures. This was already pointed out in other extensive MD-studies of the dy-
namics in thin films [32, 38]. If one compares data at the same relative distance form
Tc as done in the right panel of figure 6.7 one finds that the large differences in re-
laxation time between the bulk and the film disappear but the film exhibits a stronger
stretching of the correlation function as the bulk.

It is also interesting to look whether the confinement induces a different behavior
parallel or perpendicular to the plane of the film. In order to study this dependence
we introduce two additional correlation functions

C⊥
seg(t) =

〈P⊥
seg(t) ·P⊥

seg(0)〉
〈P⊥

seg(0) ·P⊥
seg(0)〉

(6.13)

and

C‖
seg(t) =

〈P‖
seg(t) ·P‖

seg(0)〉
〈P‖

seg(0) ·P‖
seg(0)〉

, (6.14)
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Figure 6.8: LEFT ORDINATE: The dielectric loss calculated from the total correlation
function of the polarization (dotted line), the correlation function of the polarization
within the plane of the film (dashed line), the correlation function of the polarization
perpendicular to the plane of the film (dash-dotted line) and the correlation function
of the bulk (full line). RIGHT ORDINATE: The total correlation function of the polar-
ization (dotted line), the correlation function of the polarization within the plane of
the film (dashed line), the correlation function of the polarization perpendicular to
the plane of the film (dash-dotted line) and the correlation function of the bulk (full
line). Only contribution from the dipole moment parallel to the chain backbone are
shown. The film had a thickness of h = 7.5 and the chain length was N = 64. The
temperature was T = 0.7.

whereP⊥
seg(t) refers to the component of the segmental polarization perpendicular

to the plane of the film andP‖
seg(t) to the component within the plane of the film.

The result of this analysis is shown in figure 6.7. The confinement does not strongly
bias the relaxation in the different directions. The segmental dynamics of the film are
rather isotropic.

6.3.2 Normal mode relaxation

Now we apply the same analysis to the normal mode. It was suggested before [169–
173] that type-A polymers exhibit upon confinement an additional relaxation mode
whose relaxation time is dependent on film thickness. As it was related to chain
segments being immobilized at the wall we do not expect to observe the same phe-
nomenon in our simulations.

In complete analogy to the analysis of the segmental mode we define

C⊥
N (t) =

〈P⊥
N(t) ·P⊥

N(0)〉
〈P⊥

N(0) ·P⊥
N(0)〉

(6.15)
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Figure 6.9: MAIN FIGURE: The correlation function of the polarization within the
plane of the film (dashed line), the correlation function of the polarization perpen-
dicular to the plane of the film (dotted line) and the total correlation function of the
film (full line) are shown for h = 17 (gray lines) and h = 4 (black lines) and the chain
length was N = 256. INSET: The dielectric loss calculated from the correlation func-
tions. Colors as indicated above. Only contributions from the dipole moment parallel
to the chain backbone are shown. The temperature was T = 1.

and

C
‖
N(t) =

〈P‖
N(t) ·P‖

N(0)〉
〈P‖

N(0) ·P‖
N(0)〉

, (6.16)

whereP⊥
N(t) refers to the component of the normal polarization perpendicular to the

plane of the film andP‖
N(t) to the component within the plane of the film.

In figure 6.8 the results of this analysis are shown. The relaxation of the normal
mode is anisotropic in the films. The end-to-end distance in they-direction reorients
faster than the one within the plane of the film. Also the decay ofRe is more strongly
stretched in the perpendicular direction than in the parallel direction. Partially this
might be due to the fact that on averageRe y is smaller and a shorter vector can re-
orient faster. In the total normal mode relaxation of the film the relaxation in the
y-direction does not play an important role since its amplitude is proportional toRe y

which is about3-times smaller thanRe xz whose dynamics dominates the total spec-
trum. It can be expected that for even longer chains/stronger confinement this effect
becomes more pronounced and the time scales of the decorrelation ofRe in the two
different directions could be well separated.

In figure 6.9 we extended our study to longer chains. In order to be able to equi-
librate the chains the simulations were run at a higher temperatureT = 1. Indeed
in the thinnest film investigated the timescales of the relaxation ofRe in the normal
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and the parallel direction are well separated. As expected this two step process is
not visible in the total spectrum since the ratio(Re y/Re xz)

2 ∼ 0.02 is too small and
the overall relaxation is dominated by the process within the plane of the film. We
also observe that the assumption of the relaxation time of the end-to-end vector being
only determined by its length does no longer hold in the plane of the film at these film
thicknesses. The end-to end vector in the plane of the thinner film is larger than the
one of the thicker film, nevertheless the decorrelation is faster in the thinner film.

6.4 Summary

We performed a complementary investigation of the dynamics in thin polymer films
with a free surface in comparison with the bulk using the auto-correlation function
of the system’s polarization. Following Barbieri et al. [175] dipoles were attached
to the chains parallel as well as perpendicular to the chain backbone allowing to fol-
low the segmental relaxation and the relaxation of the whole chain. Via a Fourier
transformation we calculated the dielectric loss spectrum.

We found that the segmental relaxation is isotropic in the films. The increase of
the segmental relaxation times with decreasing temperature can be described well by
a VFT law in the bulk as well as in the film. The temperatureT0 is found to be lower
in the film than in the bulk which is in qualitative agreement with the trends observed
for Tg andTc.

The normal mode relaxation is anisotropic in thin films. It is faster in the perpen-
dicular direction than in the parallel direction. The relaxation time of the mode in the
perpendicular direction decreases with decreasing film thickness as the end-to-end
vector in the perpendicular directions is diminished with decreasing film thickness
but it is not independent of molecular weight within the range of chain length and
film thickness investigated. The relaxation strength is found to be proportional to the
end-to-end distance in the perpendicular directionRe y which decreases with decreas-
ing film thickness in comparison to the amplitude of the segmental mode. Within the
regime of film thickness and chain-length investigated the normal mode within the
plane is slightly accelerated in thinner films and its dielectric strength relative to the
segmental mode increases asRe xz increases with decreasing film thickness. How-
ever, for these effects to become significant, the film thickness must become smaller
than the radius of gyration of the chains.

The explanation of the confinement induced mode observed in experiments [171–
173] was based on a bimodal distribution inRe due to chains that are not in contact
with the immobilizing surface showing an almost bulk like distribution of the total
Re and chains that have segments arrested at one wall (the other wall was chosen
to be purely reflecting) allowing only the shorter and film thickness dependentRe

of the terminal subchains to fluctuate [174]. The authors concluded that as the film
becomes thinner there are more chains attached to the wall and therefore the confine-
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ment induced mode grows in dielectric strength on the expense of the normal mode
relaxation as there are less and less free chains. These results are in agreement with
the experimental findings of [171–173].

In our system, however, we do not find a bimodal distribution of the total end-
to-end distance in the films because also monomers at the supporting wall are highly
mobile as we showed in chapter 4. If the total polarization is used to calculate the
dielectric spectra we find a decrease of the normal mode in comparison with the
segmental mode and a slight shift to higher frequencies.
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Chapter 7

Simulations with explicit solvent

This and the following chapter deal with simulations of polymers in solution contain-
ing explicit solvent molecules. The aim of these simulations is to model the spin-
coating process. Experiments and theoretical predictions suggest that films prepared
in such a way are far from thermodynamic equilibrium. A strong dependence of the
properties of these films on the annealing procedure after the preparation by spin-
coating has been observed experimentally [31, 42–44, 69, 71]. An MD-simulation
treating the entire process is certainly beyond the scope of current simulation capa-
bilities because this would require the inclusion of a very high number of solvent
particles to model the initially very dilute solution. Also the spinning of the waver is
not compatible with the periodic boundary conditions of the simulation box requiring
very large systems.

As the initial solvent loss is very rapid and the viscosity of the solution still low
and therefore the chains can relax fast, it might be possible to capture the essential
features of the process by starting the simulations from a rather dense solution at
equilibrium. It is known [76] that at the last stages of the spin-coating process, the
film thickness only decreases due to the evaporation of solvent from the at this point
highly viscous solution which vitrifies while there is still a volume fraction of solvent
of aboutφS = 14% inside the film [75]. Due to the vitrification of the polymer
during solvent evaporation, the film might be trapped in an out-of-equilibrium state
and residual stresses could be present.

Before we discuss the solvent evaporation in the next chapter, we assess the equi-
librium structure of the chosen model in this chapter. To get a first idea of the type of
phase behavior we can expect for a polymer solution we employ the Flory-Huggins
model for polymer solutions described in section 7.1. The interaction parameters are
chosen to mimic the solution of polystyrene and toluene as will be described in sec-
tion 7.2. We start our simulations for a rather dense polymer solution containing a
volume fraction of solvent ofφS = 21% . Ideally one should choose a temperature be-
low Tg of the pure polymer but above the one of the solution used as a starting point,
to observe a vitrification of the polymer upon solvent evaporation, while there is still

109
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solvent trapped inside the film. Despite the fact that we only start from a dense solu-
tion it is still very challenging to run long enough simulations to be able to observe
complete solvent evaporation at these low temperatures. This restricts the tempera-
ture interval accessible to our study. To cover the different temperature regimes we
choose three different temperatures:T = 0.5 which is aboveTg of the pure polymer,
T = 0.4 ' Tg which is similar toTg of the pure polymer andT = 0.35 which is
belowTg of the pure polymer. The equilibrium properties of the polymer solution are
described in section 7.3, where the dynamic characteristics of the solution are dis-
cussed and in section 7.4, where we investigate the static structure. In section 7.5Tg

at different solvent concentrations inside the film is determined.

7.1 Flory-Huggins model

In this model [51, 178] it is assumed that each monomer or solvent particle occupies a
lattice site with coordination numberz. To estimate the energy of mixing this theory
randomly places monomers and solvent particles onto lattice sites, ignoring correla-
tions. This means that all deviations from random placement due to the interactions
between the particles are ignored. As the overall number of sites is constant the over-
all density is constant as well. The variable of interest is thus the volume fraction of
polymerφP = φ or the volume fraction of solventφS = 1−φP = 1−φ. This follows
from the incompressibility of the solution.

The entropy of mixing of a polymer solution is given by

Smix(φ)

kB

= −kB

(
φ ln φ

N
+ (1− φ) ln(1− φ)

)
. (7.1)

The free energy of mixing can then be written as

∆Fmix(φ)

kBT
=

φ

N
ln φ + (1− φ) ln(1− φ) + χφ(1− φ), (7.2)

where the Flory-Huggins parameter is defined to characterize the difference of inter-
action energies in the mixture asχ = e/kBT , by e = z

(
uPS− uPP+uSS

2

)
we denote the

average interaction energy per particle and byuii the energy gain per pair-interaction
(uii < 0). The topology of the phase diagram of the mixture is strongly dependent
on the value ofχ. Forχ > 0 the mixture is only stable within a certain composition
range, where the entropy is sufficient to promote mixing, while forχ < 0 solvent and
polymer should mix at any composition.

7.2 Simulation model with explicit solvent

We will use the same coarse-grained bead-spring model as in the simulations of the
pure polymer films to model the chains in solution. In addition we will add solvent
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Figure 7.1: LEFT PANEL: Schematic drawing of polymer and solvent interactions in
thin film geometry. RIGHT PANEL: Schematic drawing of the film geometry used to
equilibrate the solution and its vapor.

particles, described by single coarse grained beads. The interactions will be chosen
such as to model the solution of polystyrene and toluene. In figure 7.1 a schematic
drawing of the interactions of polymer and solvent is shown.

7.2.1 Choice of the model parameters

Long and Lequeux provided a model for the thermodynamic equilibrium of a polymer
melt aboveTg [25]. They calculate the equilibrium density by balancing the van
de Waals attractions between the monomers and the entropic repulsion. The theory
suggests the following dependence of the density on temperature

ρ(T ) =
ρ0

2

(
1 +

√
1− T

Tcr

)
Tg < T � Tcr , (7.3)

whereTcr is the hypothetical temperature at which air should be a good solvent for
the polymer setting the energy scale andρ0 is the effective monomer density of the
polymer melt atT = 0. For polystyrene they found the parameters to beρ0 = 3.57×
1027/m3 andTcr = 1225K ' 3.3Tg. By adjusting the above density dependence to
our LJ-model polymers we can deduce a mapping of our model to polystyrene. We
obtain from a fit to equation (7.3) thatρ0 = 1.113/σ3

PP andTcr = 1.32εPP/kB. In
figure 7.2 it can be seen that equation (7.3) describes the temperature dependence
of the density reasonably well in the intervalTg < T � Tcr. By comparing with
the parameters of polystyrene this allows to conclude thatεPP = 1.3 × 10−20J and
σPP = 6.8× 10−10m.

We also map the LJ monomer onto toluene to find the interaction parameters of
the solvent. This is achieved by equating the critical point of tolueneTc = 591.8K,
pc = 4.11MPa andρc = 288kg/m3 [179] with the critical point of the LJ fluid found
at Tc = 1.312εSS/kB, ρc = 0.316σ3

SS andpc = 0.1279ε/σ3
SS [123]. We obtain that
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Figure 7.2: The density in a bulk polymer (N = 10) melt is shown as a function of
temperature (circles). The black line indicates a fit to equation (7.3) with parameters
as indicated in the plot and the text. The vertical line indicates the Tg in the bulk
(see section 3.1).

εSS = 6.23× 10−21J andσSS = 5.79× 10−10m. When comparing with the results for
polystyrene we see thatεPP' 2εSS andσSS' σPP.

The molar masses of the monomer ’styrene’ and the solvent are similarmS
mT

'
1.14, so that we choose in our MD simulationsmSS = mPP = 1. The interactions
between solvent-solvent particles is chosen to be given by the Lennard-Jones potential
defined in equation (2.1) withεSS = 0.5, while the monomer-monomer interaction is
chosen as beforeεPP = 1. For the simulation of supported films we now also need to
specify the interaction of the solvent with the wallεWS. We choose an attraction which
is weaker than the polymer wall attractionεWP = 3 for the solvent wall interaction,
so thatεWS = εWP

√
εPPεSS = 3/

√
2, to avoid a very strong segregation of the solvent

at the wall.
There are two additional parameters to determine, the interaction energy between

polymer and solventεPS and the size between solvent and polymerσPS. The solvent
particles have the same size as the polymer particles, so that we choseσSS = σPP =
σPS = 1. According to the Lorentz-Berthelot mixing rulesεSP = ξ

√
εSSεPP, with

ξ = 1 [178, 180]. Here in order to promote mixing we choseξ = 1.1313. If we
denote bȳuLJ the average energy per pair interaction with a Lennard Jones potential
and withz̄ the average coordination number in our system we findχ = 0.05ūLJz̄/kBT
while in the case of the Lorentz-Berthelot mixing rulesχ = −0.0429ūLJz̄/kBT . As
ūLJ, the average energy per LJ interaction, is negative, for the choice of parameters
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Figure 7.3: LEFT PANEL: The density profiles of the solvent (thin lines) and the
polymer (thick lines) are shown at T = 0.5 for chains of length N = 10 (full black
lines) and N = 64 (dashed grey lines). RIGHT PANEL: The density profiles of the
solvent (thin lines) and the polymer (thick lines) are shown for at T = 0.5 (full black
lines) and T = 0.4 (dashed grey lines) for chains of length N = 10.

used above, mixing is energetically favorable which would not be the case if we used
the Lorentz-Berthelot mixing rule (ξ = 1). The exact numerical values ofūLJ and
z̄ are dependent on solvent concentration and temperature. By integrating the radial
distribution function up to the first minimum we obtain̄z ' 10. We calculate the
average interaction energy per particleē by integrating the Lennard-Jones potential
weighed by the radial distribution function up to the first minimum of the latter and
obtainē = ūLJz̄ ' −6. This gives an estimate ofχ ' −0.3.

7.2.2 System preparation

The system is equilibrated in an NVT simulation under constant vapor pressure. This
is achieved by introducing a second wall at distance30 or 40 (depending on solvent
concentration as the films swell with increasing solvent concentration) allowing to
form a solvent vapor phase in thermodynamic equilibrium with the solution as shown
in the schematic drawing in figure 7.1. The potential at the upper wall is chosen to be
purely repulsive

Uupperwall(y) =

(
σ

y

)9

, (7.4)

for both species. The simulations containNtot = Nn + NS particles. The number
of chains is kept fixed atn = 96 for chains of lengthN = 64 andn = 576 at chain
lengthN = 10. We set up systems containing different numbers of solvent particles
(NS = 4608, NS = 3072, NS = 2304, NS = 1536, NS = 768) at chain length
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N = 64, while we only set up a system containingNS = 2880 solvent particles at
chain lengthN = 10.

In figure 7.3 density profiles for the solvent and the polymer are shown at solvent
volume fraction in the center of the film ofφS ' 21% at T = 0.5. There is a strong
accumulation of solvent at both surfaces. This leads to a reduction of the surface ten-
sion. The profiles are not strongly dependent on chain length. Nevertheless it can be
seen that the solvent concentration in the center of the film decreases with increasing
chain length atT = 0.5 (NS/Ntot = 1/3 andnN/Ntot = 2/3 for both systems). The
solvent density in the vapor phase decreases with decreasing temperature and the vol-
ume fraction of solvent in the film increases with decreasing temperature if the total
number of particles is fixed. We will refer to the different systems not by the number
of solvent particles in the system but by the volume fraction of solvent in the center
of the film.

7.3 Dynamic properties of the binary mixture

The mobilities of polymer and solvent are expected to have a large influence on the
evaporation process. We will look at the dependence of the monomer and solvent
mobility on composition and position, i. e. distance from the interface, at different
temperatures.

7.3.1 Mean-square displacements of polymer and solvent

We begin with an analysis of the dynamics of the solvent in the binary mixture by
looking at the MSDs of the solvent molecules in the different regions of the film. This
is shown in figure 7.4. The diffusion constants differ by a few orders of magnitude
in the different regions of the film. While in the gas region (region 3)g0(t) crosses
over directly from ballistic to diffusion dynamics, in the center of the film the MSD
develops a slight plateau due to the onset of the cage effect. This is also the reason for
the slow dynamics inside the film. The behavior in the solvent-rich transition region
right at the film surface is also characterized by a direct cross over from ballistic
motion to diffusion. Due to the higher density the ‘mean free path’, and thus the time
window of ballistic motion, is much shorter than in the more dilute gas region.

The MSD of the polymer chains in presence of the solvent is accelerated. The
solvent acts as a plasticizer speeding up the dynamics of the polymer at both chain
lengths investigatedN = 10 andN = 64. This is shown in figure 7.5. At short
times the dynamics of the monomers is ballistic and independent of chain length or
solvent concentration. The intermediate plateau due to the cage effect is reduced
in the presence of the solvent. Here the curves for the two different chain lengths
separate because they do not follow the same power-law in the sub-diffusive regime.
This regime is characterized by chain connectivity. The Rouse theory [50] predicts
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Figure 7.4: MAIN FIGURE: The MSD of the solvent molecules in 3 different regions
of the film as indicated in the inset are shown. The symbols correspond to the chain
length N = 10 and the gray lines indicate N = 64. INSET: The density profiles for
solvent and polymer of a film containing φS = 21% solvent with chain length N = 10
at T = 0.5 are shown. The horizontal dashed lines indicate the boundaries of the
regions for which the MSDs in the main figure are calculated.

g0(t) ∝ t0.5 whereas the exponent forN = 10 is found to beg0(t) ∝ t0.63. The larger
chain lengthN = 64 agrees better with the Rouse prediction. The shorter chains
enter free diffusion sooner than the longer chains. In the diffusive regime the MSD
increases linearly with timeg0(t) ∝ 4Dt.

Figure 7.5 shows the dependence of the MSD of all monomers forN = 64 on
temperature as well as solvent concentration. The acceleration due to the solvent
becomes more pronounced at lower temperatures. This figure also indicates the MSD
in layers situated in the center of the film as well as close to its surfaces calculated
according to equation (4.10). As was observed in section 4.3 the dynamics at the
surface is faster than in the center of the film. We found that further away fromTc the
relative acceleration at the surface is weaker. In the solution the deviations are thus
smaller than for the pure polymer films, because the presence of the solvent lowers
the glass transition temperature.
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Figure 7.5: LEFT PANEL: The MSD of all monomers g0(t) for chains of length
N = 10 (black lines) and N = 64 (gray lines) are shown for the pure polymer
(dashed lines) and the mixture with φS = 21% (full lines). The thin dashed lines
indicate ballistic and diffusive motion respectively. The dotted lines indicates the
sub-diffusive regime preceding the final free diffusion. The circles indicate the MSD
of the solvent particles in solution. RIGHT PANEL: The MSDs of the monomers in a
binary mixture averaged over the film (grey lines) are shown at T = 0.5, T = 0.4 and
T = 0.35. The films contained a volume fraction φS = 21% of solvent molecules in
the center of the film. In addition at T = 0.5 the MSD of the monomers in the center,
at the free surface (crosses) and at the supported surface (circles) are shown. The
chain length is N = 64. Also indicated is g0(t) for the pure polymer at T = 0.5 and
T = 0.4 (black lines). The horizontal line indicates the criterion used to extract the
relaxation times g0(τ) = 1.

7.3.2 Layer-resolved relaxation times

We use again the definition of equation (4.12) to extract a local relaxation time to get
an overview of the influence of composition as well as position on the relaxation in
the film. We denote withτP(y, φS) the time it takes a monomer to be displaced by its
own diameter parallel to the walls in a film with a volume fractionφS of solvent in
the center. Only monomers are taken into account which are within a slab of width
∆y = 2 centered at distancey from the supporting wall placed aty = 0. τS(y, φS)
corresponds to the same time measured for a solvent particle in the same system.

Relaxation times aboveTg (T = 0.5). The results of this analysis for solvent as
well as polymer are shown in figure 7.6. The relaxation time of the polymer decreases
at the surfaces and with increasing solvent concentration. The position of the free
surface shifts to largery at higher solvent concentration since the films are the thicker,
the more solvent they contain. The solvent particles show the same behavior. The
effect of the surfaces becomes weaker with increasing solvent concentration and the
relaxation times increase with decreasing solvent concentration. The relaxation times
of the solvent are about a factor of two lower than those of the polymer.
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Figure 7.6: UPPER PANEL: The relaxation times for the polymer as a function of
position for different compositions at T = 0.5 calculated according to equation (4.12).
LOWER PANEL: The relaxation times for the solvent as a function of position for
different compositions at T = 0.5 calculated according to equation (4.12) .

Relaxation at Tg (T = 0.4). Upon lowering the temperature toT = 0.4 the influ-
ence of the solvent concentration on the dynamics becomes stronger. In figure 7.7 the
relaxation times of polymer and solvent are again shown as a function of the distance
from the wall. As for the pure polymer films and the solution at higher tempera-
ture we find an increase of mobility at the surface. It is more pronounced than for
T = 0.5. It can be seen in figure 7.7 that the relaxation times span more than 3 orders
of magnitude as a function of position (distance from the surface) and composition.
At T = 0.5 we found that the relaxation times of the solvent was by a factor of 2
faster than the one of the monomers independent of composition. AtT = 0.4 this is
no longer the case at low solvent concentrations. The relaxation times of the poly-
mer and solvent become equal as the solvent concentration decreases and the system
approaches its glass transition.T = 0.4 is approximately the glass transition temper-
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Figure 7.7: The relaxation times as a function of position for different compositions
at T = 0.4 calculated according to equation (4.12) for the polymer (lines with sym-
bols) and the solvent (symbols) are shown. The same symbols correspond to the
same system. The chain length is N = 64.

ature of the pure polymer. This is a clear sign that the coupling of the dynamics of the
two species becomes stronger as the system gets denser and the cage effect becomes
more pronounced.

To allow for a better comparison of the relaxation times at different positions
we rescale they coordinate with the position of the right GDS (see section 3.1) at
the given solvent concentration and temperature so that the polymer solvent vapor
interface is always aty/yG

+ = 1 and the relaxation times by the value they reach in
the center of the filmτ(yc, φS) = τ c(φS). The results of this comparison are shown
in figure 7.8. It can be seen clearly that the acceleration emanating from the free
surface reaches further into the film at lower temperature and lower solvent volume
fractionφS both for the polymer and the solvent. The relative decrease of relaxation
times at the free surface increases as well with decreasing temperature and solvent
volume fraction. The relaxation of the pure polymer atT = 0.4 is thus by3 orders of
magnitude faster at the free surface than in the center of the film. In the lower panel it
can also be seen that the relaxation time of the solvent in the gas phase in comparison
to the one in the liquid phase decreases as the temperature decreases. The changes in
relaxation time with temperature and composition at the supporting wall are smaller.

7.3.3 Composition dependence of the relaxation times

As the relaxation time of polymer and solvent are extracted from the MSDs of the
solvent particles and the monomers in an equilibrium simulation they are related to
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Figure 7.8: UPPER PANEL: The relaxation times as a function of position for differ-
ent compositions at T = 0.5 calculated according to equation (4.12) for the polymer.
LOWER PANEL: The relaxation times as a function of position for different com-
positions at T = 0.5 calculated according to equation (4.12) for the solvent. The
y-coordinate is rescaled by the position of the right GDS y/yG

+ and the relaxation
time by the value it reaches in the film center of the film denoted by yc so that
τ(y, φS)/τ(yc, φS). The vertical line indicates the position of the GDS.

the self-diffusion constants. There are many theories describing the self diffusion co-
efficientDself of a polymer as a function of concentration in bulk polymer solutions
(see for example [181] for a review). The appropriate model has to be chosen depend-
ing on the concentration of the solution and also its thermodynamic state. Polymer
solutions close to their glass transition will behave differently than in the rubbery
state. In rather concentrated polymer solutions far from the glass transition models
taking into account the hydrodynamic interactions present in the system such as the
friction between the monomers and the solvent are necessary to describe the findings
correctly.
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Figure 7.9: LEFT PANEL:The local relaxation times in the center of the film extracted
according to equation (4.12) are plotted as a function of the volume fraction of sol-
vent in the center of the film at T = 0.5. The chain length was N = 64. The dotted
line indicates a fit to equation (7.6). RIGHT PANEL: The relaxation time of solvent
and polymer in the center of the film as a function of the volume fraction of solvent
φS in the center of the film at T = 0.4. The full lines indicate a fit to equation (7.7).

A theory by Phillies [182–184] is known to describe polymer self-diffusion in a
wide range of concentrations successfully based on a stretched exponential law

Dself = D0 exp(−αφβ
P) , (7.5)

whereα and β are scaling parameters.β is found to be dependent on molecular
weight of the polymer. Experimentally, the exponentβ ranges from1 for low molec-
ular weight0.5 for very large molecular weight substances [182].

Indeed atT = 0.5 the dependence of the relaxation times of the polymer in the
center of the film, which should best correspond to the ones of the bulk solution, on
the volume fractionφS can be well parameterized by a stretched exponential function
as follows

τ(yc, φS) = τ(yc, 0) exp
[
−(φS/φ

0
S)

β
]

, (7.6)

whereτ(yc, 0) = 570 corresponds to the relaxation time of the pure bulk polymer and
yc refers to the position of the film center which changes as a function ofφS because
the film is thicker at higher solvent concentrations. The fit parameters are found to be
φ0

S = 0.105 andβ = 0.75. Also the relaxation times of the solvent can be described
well by this law if one changes the prefactorτ(yc, 0) = 320 to account for faster
movement of the solvent.

In the left panel of figure 7.9 the relaxation times of polymer and solvent in the
center of the film atT = 0.5 are shown for films with different solvent volume frac-
tion. The lines indicate a fit to equation (7.6). The relaxation times can be described
well by the fit. It can be seen that the relaxation times of polymer and solvent are
proportional to one another at all times, so thatτP(yc, φS) = 1.8τS(yc, φS).

At the lower temperatureT = 0.4 this approach fails because it does not capture
the very rapid increase of relaxation time with decreasing solvent concentration. As
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we are faced with a non-Arrhenius increase of the relaxation time as the system ap-
proaches its glass transition at approximatelyφS ' 0 becauseT = 0.4 ' Tg is the
glass transition temperature of the pure polymer film, we use a power law to model
the increase in relaxation time as in section 4.2. The role of temperature is replaced
by the volume fraction of solvent.

Both the relaxation time of the polymer and the one of the solvent in the center of
the film atT = 0.4 can be fitted by

τ(yc, φS) = τ c(φS) =
a

(φS− φc)γ
. (7.7)

For the polymer we finda = 67.8 andγ = 1.73 while for the solvent we finda = 29.0
andγ = 1.96 with φc = −0.01 in both cases. A negative volume fraction is not
physical and due to the fact that the relaxation times remain finite at this temperature
and do not diverge as suggested by the equation. The relaxation times of polymer and
solvent atT = 0.4 are shown in the right panel of figure 7.9. In comparison withT =
0.5 where the relaxation times cover an order of magnitude within the composition
window investigated, atT = 0.4 they already cover3 orders of magnitude. If we
return to figure 7.8 we see that the effect of composition and position on the relaxation
times of polymer and solvent are comparable in magnitude at both temperatures.

7.4 Static structure in the presence of the solvent

First we will discuss the static structure factors of the binary mixture, then we will
look at the layer-resolved radius of gyration.

7.4.1 Static structure factor

The layer-resolved partial structure factors are defined as

SSS(q, y) =
1

nS

〈
NS∑
i,j

e−iq·(ri−rj)δ (y − yi) δ (y − yj)

〉
, (7.8)

wherenS is the number of solvent particles in the layer andNS the number of solvent
particles in the system. Analogously the partial structure factor of the polymer is
written as

SPP (q, y) =
1

nP

〈
nN∑
i,j

e−iq·(ri−rj)δ (y − yi) δ (y − yj)

〉
, (7.9)

wherenP is the number of monomers in the layer andn the number of chains ofN
monomers.
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Figure 7.10: LEFT PANEL: The partial static structure factors SSS(q) (+), SPP(q)
(squares) and the total structure factor (full symbols) averaged over the whole film
are shown for chains of length N = 10 at T = 0.5. The solvent concentration in
the center of the films was φS = 21%. Also indicated is the structure factor of the
pure polymer film (full line) containing the same number of chains. RIGHT PANEL:
The partial static structure factors SSS(q) (+), SPP(q) (squares) and the total structure
factor (full symbols) calculated in a slab of width ∆y = 2 in the center of the film
are shown for chains of length N = 10 at T = 0.5. The solvent concentration in the
center of the films was φS = 21%. Also indicated is the structure factor of the pure
polymer film (full line) containing the same number of chains.

The total structure factorS(q, y) is again calculated using equation (3.9) without
making a distinction between solvent particles and monomers

S(q, y) =
1

nl

〈
nN+NS∑

i,j

e−iq·(ri−rj)δ (y − yi) δ (y − yj)

〉
. (7.10)

Herenl thus indicates the total number of particles in a layer. The partial structure
factorSPS(q) can then be defined as

S(q, y) = φS(y)SSS(q, y) + φP(y)SPP (q, y) + SPS(q, y) . (7.11)

In figure 7.10 the partial structure factors and the total structure factor are shown
calculated in the center of the film and averaged over the whole film. The main
difference between the two is found at smallq where the total structure factor shows
a divergence due to capillary waves (see section 5.1 for a more detailed discussion)
at the free surface. Also the first maximum is slightly lower in the average structure
factor in comparison to the one in the center. This is due to a less efficient packing of
the monomers at the surface which we have already encountered in the pure polymer
films (see section 3.2.2). The presence of the solvent lowers the surface tension which
leads to a stronger increase of the structure factor at smallq due to larger fluctuations
of the local film thickness in comparison with the pure polymer film.

In addition it can be interesting to define the concentration structure factor [123,
185]. To measures the correlations in the deviations of the local volume fractionφ(r)
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Figure 7.11: The partial static structure factors SSS(q) (dashed line), SPP (q) (full
line) and SPS(q) (dash-dotted line) calculated in a slab of width ∆y = 2 in the center
of the film are shown for chains of length N = 64 at T = 0.5. The solvent concen-
tration in the center of the films was φS = 23%. Also indicated are SSS(q) (circles),
SPP (q) (rectangles) and SPS(q) (stars) for the same system at T = 0.35. INSET:
The concentration structure factor (equation (7.12)) is shown at T = 0.5 (full grey
line) and T = 0.35 (symbols) as well as the mean-field prediction in the small-q limit
(dotted line), a best fit to equation (7.18) (dashed line) and the results obtained from
equation (7.19) (thin black line).

from its averageφ, we define the concentration densityρcon = [ρS(r)φP− ρP(r)φS],
whereφS and φP = 1 − φS denote the average volume fractions of polymer and
solvent in the film andρi(r) refers to the local density of solvent and polymer. The
concentration structure factor is then defined as [123, 185]

Scon(q) =
1

N
〈ρcon(q)ρcon(−q)〉 . (7.12)

The concentration structure factor can be expressed in terms ofSSS(q), SPP(q), and
S(q) as

Scon(q) =φ2
SφPSPP (q) + φ2

PφSSSS(q)− φSφPSPS(q)

=(φ2
SφP + φ2

PφS)(SSS(q) + SPP (q))− φSφPS(q) . (7.13)

In the thermodynamic limit it can be found that [51]

lim
q→0

Scon(q) = kBT

(
∂2∆Fmix

∂φ2
S

)−1

, (7.14)
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which gives together with equation (7.2) the prediction of the Flory-Huggins theory
for concentration fluctuations at vanishing wave vector

1

Scon(0)
=

1

NφP
+

1

1− φP
− 2χ . (7.15)

This means thatχ can be found by measuringScon(0). Using the random phase ap-
proximation this result can be extended to non-zeroq using the form factor of an ideal
chainP (q, N) [51]

P (q, N) =
2

(q2R2
g)

2

(
e−q2R2

g − 1 + q2R2
g

)
. (7.16)

By approximating 1
P (q,N)

' 1 + q2Nb2

12
one finds that

1

Scon(q)
=

1

Scon(0)
+

q2b2

12φP(1− φP)
. (7.17)

In the inset of figure 7.11 the comparison betweenScon(q) (symbols) and equa-
tion (7.17) (dotted line) is shown. They are not in good agreement. Equation (7.17)
has a functional dependence according to

Scon(q) =
Scon(0)

1 + (qξ)2
(7.18)

and forξ = ξFH =
√

b2S(0)
12φ(1−φ)

= 0.335 equation (7.17) is recovered. From a fit of

equation (7.18) toScon(q) we obtainξ = 0.21 (dashed line) andScon(0) = 0.255.
This value ofξ is not in agreement with the predictionξFH = 0.335. The Flory-
Huggins parameter is found using equation (7.15)χ = 0.22. In comparison with
χ = 0.05ēz̄ = −0.3 this value is quite different. The obtained value forχ has a
large error bar as the equation is very sensitive to the value ofScon(0) which cannot
be determined very accurately.

To improve the approximations made it is possible to use instead of the form factor
of an ideal chain the intra-chain structure factorw(q) determined in the simulations
according to equation (3.7). Then still using the random phase approximation one
gets

1

Scon(q)
=

1

φw(q)
+

1

1− φ
− 2χ . (7.19)

The agreement between this prediction (see thin black line and thick grey line in
figure 7.11) and the measured curve is better but it does not resolve the differences
found in theχ parameters, which is determined byScon(0) and this value does not
change.

Also shown in figure 7.11 are the partial structure factors in the center of a sup-
ported film atT = 0.5 andT = 0.35 at a volume fraction ofφS = 0.23% in the
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Figure 7.12: The partial static structure factors SSS(q) (thin lines), SPP (thick lines)
averaged over the whole film are shown for different solvent concentrations as in-
dicated in the plot. Also shown is the structure factor of the pure polymer film (full
black line) containing the same number of chains.

center of the film. Although we see an increase in the first peak of the partial struc-
ture factors upon lowering the temperature, the small-q dependence dominated by the
concentration fluctuations is rather independent of temperature which shows clearly
that we do not see any signs of demixing at lower temperatures. Also this should not
be expected, since we chose the parameters in a way such that mixing is energetically
favorable as described in section 7.2.

Figure 7.12 displays the composition dependence of the partial structure factors
of solvent and polymer averaged over the whole film atT = 0.5. As stated above
the surface tension is lowered with increasing solvent concentration which leads to
a stronger increase ofS(q) at smallq with increasing solvent concentration. The
first peak ofSPP(q) decreases with increasing solvent concentration while the peak of
SSS(q) increases with increasing solvent concentration.

7.4.2 Layer resolvedRg

As the dimensions of the film become comparable to the size of the polymer coil the
Gaussian statistics of the chains in the melt are perturbed due to the confinement as
shown in section 3.3. In order to study this effect we look at the radius of gyration of
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the chains introduced in section 3.3 given as

R2
g =

1

N

N∑
a=1

〈(
ra

i −Ri
cm

)2〉
i
=

1

2N2

N∑
a,b=1

〈(
ra

i − rb
i

)2〉
i

. (7.20)

Ri
cm = 1

N

∑N
a=1 ra

i refers to the position of the center of mass of chaini. We also
calculate a layer-resolved radius of gyration by considering only chains whose center
of mass is in a certain distancey from the wall given by equation (3.15) here repeated
for clarity

R2
g xz(y) =

〈
1

2n(y)N

n∑
i=1

N∑
a=1

[(
xa

i −Ri
cm x

)2
+
(
za

i −Ri
cm z

)2]
δ
(
y −Ri

cm y

)〉

R2
g y(y) =

〈
1

n(y)N

n∑
i=1

N∑
a=1

[(
ya

i −Ri
cm y

)2]
δ
(
y −Ri

cm y

)〉
, (7.21)

wheren(y) is the number of chains whose center of mass is at distancey from the
wall.

In figure 7.13 the results of this analysis are shown for the pure polymer film
and a film containing the same amount of polymer in solution with a volume frac-
tion of φS = 21% of solvent. The chains in the center of the film have a radius of
gyration very close to the bulk value of the pure polymer in the pure polymer film
as well as in solution. The parallel component ofR2

g increases as the film surface is
approached while the perpendicular component decreases. Apart from the difference
in film thickness there is no pronounced difference between the radius of gyration of
the chains with or without solvent.

7.5 Glass transition temperature of the binary mix-
ture

We saw in the last sections that the dynamics are accelerated in the presence of the
solvent and also observed a decrease of the first maximum of the static structure factor
in the presence of the solvent. Two factors which we linked in the previous chapters
to a decrease in the glass transition temperature of the films.

We determineTg(φS) in the binary mixture as before upon cooling the solution
at a constant rate and monitoring the film thickness as a function of temperature. We
used a cooling rate ofΓT = 2 × 10−5 as for most of the cooling runs for the pure
polymer films described in section 3.1. The equilibrium concentration of solvent
inside the polymer solution increases with decreasing temperature. Therefore the
concentration of solvent inside the film did not stay constant upon cooling. But the
amount of solvent initially in the vapor phase entering the film upon cooling remained
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Figure 7.13: MAIN FIGURE: The square radius of gyration in the direction parallel
and perpendicular to the plane of the film as a function of the distance of the chain’s
center of mass from the wall as introduced in equation (7.21). The symbols refer to a
film containing a volume fraction of φS = 21% of solvent in the center of the film while
the lines indicate the results for the pure polymer film containing the same amount
of chains. The open symbols and the dashed line show the parallel component of
R2

g(y) and the full symbols and the full line show the perpendicular component. The
horizontal line indicates R2

g/3 of the pure bulk polymer. INSET: The density profile
of the chains center of mass is shown for a film containing a volume fraction of
φS = 21% of solvent in the center of the film (symbols) and the pure polymer film
(line).

small changing the solvent volume fractionφS by less than a percent, so that we only
report the average solvent concentration.

In figure 7.14 the film thickness of the binary mixture at different concentrations
is shown as a function of temperature. As expected from our previous resultsTg de-
creases with increasing solvent concentration. The relative film thickness fluctuations
increase with increasing solvent concentration especially at higher temperature which
is due to a lower surface tension in the presence of the solvent. The thermal expansion
coefficient increases slightly with increasing solvent concentration in both the liquid
and the glassy state. At a solvent volume fraction ofφS = 10% the glass transition
temperature is found to beT = 0.35 which is a moderate decrease in comparison
with Tg = 0.38 for the pure polymer film. At a solvent concentration ofφS = 25%
the decrease is much more pronounced.
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Figure 7.14: The film thickness as a function of temperature at different solvent
concentrations as indicated is shown (symbols). The curves for φS = 10% and
φS = 0% are shifted upwards by a constant value (2.8 and 5) for clarity. The black
lines indicate fits to the liquid and the glassy branches of the curves. The values of
Tg are found as indicated in the figure. The chain length is N = 10.

7.6 Summary

In this chapter we studied a dense polymer solution in two film geometries as for
the pure polymer films, namely free-standing and supported films. The parameters
were chosen such as to mimic the solution of polystyrene and toluene. The solvent is
enriched between the polymer and the wall as well as at the free surface. The presence
of the solvent reduces the glass transition temperature of the binary mixture. We find
that the solvent also suppresses correlations in local density fluctuations as measured
by the maximum of the static structure factor. The conformations of the chains in
solution do not differ a lot from the conformations in the pure film at the studied
concentrations. The chains are only very slightly swollen. The radius of gyration of
the chainsRg in the parallel direction in the center of the pure polymer film and in the
center of the polymer solution are close to the bulk value ofRg of the pure polymer.

An increasing sensitivity of the local mobility of the monomers on the solvent
concentration and the proximity to the interface is observed with decreasing temper-
ature. The solvent acts in our model solution as a plasticizer accelerating the relax-
ation of the polymer. A simulation study by Riggleman and coworkers with solvent
molecules half the size of the monomers found an anti-plasticizing effect [14]. The
closer the monomers are to the surface, the faster their dynamics. AtTg of the pure
polymer the local relaxation times span three orders of magnitude as a function of
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composition and distance from the surface for the solvent as well as for the poly-
mer. The dynamics of solvent and polymer are strongly coupled at all times since
polymer and solvent molecules have the same size and the overall density is very
high at all temperatures (ρtot ' 1). This coupling increases with decreasing solvent
concentration and decreasing temperature. Therefore in our model a movement of
solvent molecules without a relaxation of the polymer on the local scale should not
be possible.
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Chapter 8

Solvent evaporation

The MD simulations of the solvent evaporation are carried out starting from an equi-
librated configuration under constant vapor pressure as described in the last chapter
with the solvent volume fraction in the center of the film aroundφS = 20%. We re-
move the upper wall to create a vacuum above the film. Particles which travel further
than45σ from the supporting wall are not allowed to return. This is achieved by a
very strongly attractive potential at the upper wall which traps the particles there. The
evaporation runs are carried out for different temperaturesT = 0.5, T = 0.4 and
T = 0.35. One of the key features we want to capture with the simulations of the
evaporation of solvent from our model polymer films is whether the vitrification upon
solvent loss has an influence on the evaporation kinetics and the resulting structure.
While atT = 0.5 the film is liquid at all times,T = 0.4 corresponds toTg of the pure
polymer film and atT = 0.35 the system undergoes the glass transition at a solvent
volume fraction of about10% as determined in the last section.

Mainly we are concerned with the evaporation of the solvent from supported films
which contain always the same amount of polymer chains (n = 96 in the case of
N = 64 andn = 576 for N = 10) as we have investigated the pure polymer films of
these dimensions extensively. But we also carry out some evaporation runs for free-
standing films. The preparation of the initial state was carried out by equilibration
under constant vapor pressure analogously to the supported films. Then the walls
were again moved at a distance of45σ from the surfaces and a strongly attractive
potential was switched on at both walls, not allowing particles having ventured a
certain distance into the gas phase to return.

8.1 Simulation results

Snapshots of a supported film of chains of lengthN = 64 are shown as the solvent
is evaporating in figure 8.1. Initially the surplus of solvent located at the free surface
is evaporating fast. In the later stages of the evaporation the remaining solvent is
mainly located between the polymer and the supporting wall. Only very few solvent
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Figure 8.1: Snapshots of the film of polymer solution as the solvent is evaporating
at T = 0.5 and N = 64. The solvent is indicated by dark spheres and the polymer
by light lines. The horizontal rectangles indicate the supporting wall.

molecules manage to leave the film at a given time. Therefore the solvent vapor in the
gas phase is so dilute that the solvent particles do not experience enough collisions to
show diffusive behavior before they reach the adsorbing wall. The mean free path of
the molecules is much larger than the distance between the surface and the wall, where
the solvent particles are trapped. It should be expected that the simulation results are
dependent on the position of the adsorbing wall. As we cannot place the wall far away
enough for the particles to move diffusively, the exact position of the wall does not
matter in our simulations as the particles fly into the boundary ballistically. Therefore
the probability of solvent molecules returning into the liquid phase from the gas phase
is very small once they detached from the surface.

In figure 8.2 the polymer as well as the solvent and the total density are shown
as the solvent is evaporating from a supported film of chains with lengthN = 64 at
T = 0.5. As could already be inferred from the snapshots, the solvent is depleted
rather quickly close to the surface. The peak corresponding to the surplus of solvent
decreases in height during the evaporation but it does not disappear. A deep minimum
in the solvent density develops close to the surface. One could speculate that the
solvent evaporation takes place in two stages. First the solvent molecules manage to
leave the solution and are situated in the solvent rich layer at the surface from where
they evaporate in a second step. The decrease in solvent density leads to an increase in
polymer density close to the surface. A polymer rich crust forms there. Initially this
peak in the polymer density is quite sharp but it broadens as the evaporation process
continuous. The total density of the film varies only very weakly upon solvent loss.

Only in the later stages of the evaporation the accumulation of solvent at the sup-
porting wall is depleted. In the final stages of the evaporation most of the solvent
density is located at the adsorbing wall as was already suggested by the snapshots in
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Figure 8.2: The density profile of polymer (dashed lines), solvent (thick full lines)
and all particles (thin full lines) is shown as the solvent is evaporating from a sup-
ported film at T = 0.5 and N = 64 at times ranging from t = 2500 to t = 100000. The
initial film was h = 20.25 and the film thickness of the corresponding pure polymer
film at T = 0.5 is h = 14.85.

figure 8.1. As a consequence also the polymer density at the wall remains low and
increases only in the final stages of the evaporation.

We also monitor the mobility of the solvent particles during evaporation as a func-
tion of position. In figure 8.3 the relaxation times determined as described in the sec-
tion 7.3 from MSDs which were calculated in time intervals ranging from20000τ to
100000τ during evaporation (as indicated in the legends) are shown. In doing so we
average over a certain interval in the evaporation process. Initially the film thickness
changes fast at larger times the change becomes slower. AtT = 0.5 the decrease in
film thickness in the chosen intervals is about∆h ' 2. At T = 0.4 the intervals are
much smaller in comparison with the evaporation kinetics.

While at T = 0.5 the relaxation times change only very weakly with time and
position the situation atT = 0.4 is entirely different. The relaxation times develop
a maximum which does not correspond to the maximum of the polymer density but
is shifted in wards by about2σ. This maximum grows as the evaporation continues.
At the free surfaces despite the high polymer concentration the dynamics are still fast
but as we move away from the surface the system becomes more and more sensitive
to the decrease in solvent density which leads to an increase of the relaxation time
until it decreases once again as the supporting wall is approached.
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Figure 8.3: LEFT PANEL: The relaxation times of the solvent as a function of position
calculated within the time intervals [0 : 2 × 104], [2 × 104 : 5 × 104], [5 × 104 :
8×104], [8×104 : 1.3×105], [1.3×105 : 1.6×105], [1.6×105 : 2.1×105], [2.1×105 :
2.6×105], [2.65 : 3.6×105] during the evaporation of the solvent at T = 0.4 (lines) and
in the intervals [0 : 2× 104] and [2× 104 : 1.2× 105] at T = 0.5 (symbols) according
to equation (4.12). RIGHT PANEL: The density profiles of polymer and solvent are
shown averaged over the same time intervals as indicated for the relaxation time in
the left panel. The chain length was N = 64 and the temperature T = 0.4.

8.2 Theories of diffusion and solvent evaporation

The first mathematical model describing the transport of particles was set up by Fick
[186]. This simple diffusion model assumes that the fluxJ is proportional to the
gradient in concentrationc so that

J = −D∇c , (8.1)

whereD, the diffusion constant, is the proportionality factor between the flux and the
concentration gradient. Together with the continuity equation stating that no mass is
lost

∂c

∂t
+∇ · J = 0 (8.2)

this gives rise to Fick’s law :
∂c

∂t
= D∆c . (8.3)

8.2.1 Mutual versus self diffusion

When describing the diffusion of particles in a binary mixture one has to distinguish
between the self diffusion constantsDself and the intrinsic diffusion constantDint of a
given species [181]. There is also a so called mutual or collective diffusion constant
Dmut which is common to both species [187]. Usually measured in simulation is the
self diffusion constantDself because it can be extracted either from the MSD of a given
species or from its velocity auto-correlation function by an equilibrium simulation
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at a given concentration. In an out of equilibrium situation, where a concentration
gradient is present, the relevant diffusion constant is the intrinsic diffusion constant
Dint. It takes into account the thermodynamic forces acting on the particles and is
related to the self-diffusion constant via

Dint = Dselfφ
∂µ

∂φ
, (8.4)

whereφ is the volume fraction of the component andµ its chemical potential.
Finally the mutual diffusion constantDmut describes the transport of two speciesA

andB. As motion of either species leads to a change in concentration of both species
a single diffusion constantDmut describes the process. There have been proposed
different relation betweenDself andDmut. One of the most widely used is the Darken
equation [188]

Dmut = Dc

(
∂ ln f

∂ ln φ

)
, (8.5)

wheref is the fugacity of the solvent in the polymer andDc the so called corrected
diffusivity. Dc can be extracted from a simulation at equilibrium as [187, 189]

Dc =
1

3NtotφPφS

∫ ∞

0

dt 〈J(t) · J(0)〉 , (8.6)

whereJ(t) is the interdiffusion current

J(t) = φS

Nn∑
i=1

vi(t)− φP

Ns∑
i=1

vi(t) . (8.7)

This Green-Kubo relation can also be evaluated in its corresponding Einstein form
which is computationally more advantageous [187]

Dc = NtotφPφS lim
t→∞

1

6t

〈∣∣[RP
cm(0)−RS

cm(0)]− [RP
cm(t)−RS

cm(t)]
∣∣2〉 , (8.8)

whereRP
cm andRS

cm denote the position of the center of mass of polymer and solvent.
While the self-diffusion constant is a single particle property the corrected diffusion
constant is a collective property of the system.

Tsige and Grest [190] compared the valuesDS
self of the solvent,Dc andDmut for

a polymer solvent system using a similar coarse-grained polymer model at high tem-
peratureT = 1 and foundDmut = DS

self at very low solvent concentration as should
be expected whileDmut was systematically smaller thanDself as the solvent concen-
tration increased. Nevertheless the difference between the two remained small and
both were of the same order of magnitude.
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8.2.2 Fickian versus non-Fickian diffusion

In the case of solvent adsorption studies into a polymer network one finds two differ-
ent types of diffusion, Fickian diffusion which is characterized by a diffusion distance
proportional to the square root of time (Case-I) and non-Fickian diffusion [78]. If the
polymer is in its rubbery state usually Fickian diffusion is observed upon solvent up-
take while in glassy polymers non-Fickian diffusion namely, Case-II and anomalous
diffusion, are often encountered as the solvent enters the glassy polymer. Non-Fickian
diffusion is characterized by a deviation from the

√
t scaling law predicted for Case-I

diffusion. If the displacement of the front is linear in time it is classified as Case-II
diffusion, the intermediate anomalous diffusion is characterized by exponents lying
betweent0.5 andt1.

Experimental studies reporting Case-II or anomalous diffusion in polymer/solvent
systems upon solvent uptake are abundant [84–88]. Also a lot of theoretical models
have been proposed to explain the phenomenon [91–94]. The most widely accepted
model is the Thomas and Windle model for Case-II diffusion [91, 92] which was
extended by [94]. It is based on the assumption of a strong disparity between the mo-
bilities of the two pure species and the plasticizing effect, i. e. a strong enhancement
of the dynamics of the slow species (glassy polymer) in presence of the fast species
(solvent molecules). Upon plasticization of the slow polymer the solvent can enter
quickly. A transient swelling regime obeying a

√
t law followed by steady-state front

motion, meaning a constant shape of the concentration profile together with a linearly
moving front, is observed [86, 87]. Additionally, stresses between the swollen poly-
mer solution and the glassy matrix can influence the process [191]. A mathematical
model based on stresses induced in the glassy matrix during the process was proposed
by Edwards [93].

In computer simulations non-Fickian diffusion has been observed by Janeva and
coworkers [89] in a study of interdiffusion of Lennard-Jones spheres where the dy-
namical asymmetry was created by choosing different friction constants of the DPD
thermostat for the two species. A large difference in the friction constants was neces-
sary to observe deviations from Fickian diffusion in their system. A recent study on
inter-diffusion of solvent into glassy polymer films by Grest and Tsige on the other
hand did not find any deviations from Fickian behavior [90].

For the inverse process of solvent evaporation Fickian diffusion models where
suggested by Vrentas [80] and Alsoy and Duda [82]. Recently Okuzono and Doi
[192] proposed a model for the skin formation caused by solvent evaporation also
based on Fickian diffusion equations. Computer simulations carried out for sol-
vent evaporation from a polymer matrix far above the glass transition temperature
of the matrix find Fickian behavior [46–48] as well. Souche and Long developed a
mesoscale model [95] allowing to describe solvent evaporation from a glassy poly-
mer. This model is also applicable to the swelling of glassy polymer films where
anomalous or Case-II diffusion are observed.
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Figure 8.4: Schematic drawing of the density profiles of the solvent at the interface
between the solution and the vapor upon solvent evaporation.

8.2.3 Moving boundary problem

Within the framework of Fickian diffusion a simple description of the problem is pos-
sible. It is assumed that the partial molar volumes of all components are independent
of composition so that there is no volume change on mixing. This assumption leads to
the conclusion that the gradient of the volume average velocity or flux is zero in both
phases. Based on this result the volume average velocity becomes zero everywhere
inside the polymer film because it is zero at the wall. In all phases it is a function of
time only [78, 79, 81, 82].

This model is based on diffusion equations describing the concentration profiles of
the solvent in the liquid and the gas phase. As the total fluid velocity is zero and there
is no net flux, the purely diffusive dynamics inside the liquid film can be described by
the following differential equation

∂

∂t
φL(y, t) =

∂

∂y

[
DL (φL(y, t), y)

∂

∂y
φL(y, t)

]
, (8.9)

whereDL (φL(y, t), y) is the diffusion coefficient in the binary mixture which is a
priori, as we have seen in the last section, dependent on position and composition.
φL(y, t) is the volume fraction of solvent in the mixture.

In the gas phase convection is possible and the flux of particles away from the
interface has to be included to describe the evolution of the volume fraction of solvent
in this phase:

∂

∂t
φG(y, t) = DG

∂2

∂y2
φG(y, t) + vG(t)

∂

∂y
φG(y, t) , (8.10)

whereDG is the diffusion coefficient in the gas phase,φG(y, t) is the volume fraction
of solvent in the gas andvG(t) is the average velocity of the particles in the gas phase.
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These equations are subject to the following boundary conditions

φL(−∞, t) = φ0
L (8.11)

φL(h(t), t) = φeq
L (8.12)

φL(y, t = 0) = φ0
L (8.13)

φG(∞, t) = φ0
G (8.14)

φG(h(t), t) = φeq
G (8.15)

φG(y, t = 0) = φ0
G , (8.16)

whereφ0
L is the initial volume fraction of solvent in the film andφ0

G the initial volume
fraction of solvent in the atmosphere. We assume local equilibrium at the moving
interface situated at positiony = h(t) so thatφeq

L = Kφeq
G , whereK is the activity

coefficient. The film is taken to be semi-infinite.
In addition at the interface the mass balance i.e. the fact that no material is lost

provides another equation

(φeq
L − φeq

G )
dh

dt
= DG

∂φG

∂y

∣∣∣∣
y=h(t)

− vGφeq
G −DL

∂φL

∂y

∣∣∣∣
y=h(t)

(8.17)

determining the motion of the interface.

8.2.4 Analytical solution

To solve this moving boundary problem analytically we need to make a few further
assumptions [81, 83]. The most restricting is certainly to set

DL (φL(y, t), y) = DL (8.18)

constant. Furthermore, motivated by the diffusion equation (8.9,8.10), we assume the
interface to move as

h(t) = h(0) + 2λ
√

DGt , (8.19)

and then we perform a similarity transformation introducing the new variable

η =
y − h(0)

2
√

DGt
. (8.20)

As the interface is now immobilized atη = λ, this allows to rewrite the partial dif-
ferential equation (8.9) with moving boundary conditions as an ordinary differential
equation with stationary boundaries as follows

2η
d

dη
φL(η) +

DL

DG

d2

dη2
φL(η) = 0, (8.21)



8.3. Comparison of the simulation results with theory 139

with the boundary conditions

φL(−∞) = φ0
L (8.22)

φL(λ) = φeq
L . (8.23)

The set of equations (8.21-8.23) can be solved analytically [81, 83]. The volume
fraction of solvent in the film is dependent on position and time but can be expressed
as a function ofη only as follows:

φL(η) = (φ0
L − φeq

L )

1−
1 + erf

(√
DL/DGη

)
1 + erf

(√
DL/DGλ

)
 + φeq

L , (8.24)

where erf(x) is the error function defined as

erf(x) =
1√
2π

∫ ∞

x

du e−
u2

2 . (8.25)

If the diffusion constant was not constant, but a function of composition only, i. e.
DL = DL(φL), it would still be possible to reduce the problem to a simple ordinary
differential equation. In this case the differential equation would read

2η
d

dη
φL(η) +

d

dη

[
DL(φL)

DG

d

dη
φL(η)

]
= 0 , (8.26)

which in general cannot be solved analytically anymore. But the solution would
still be consistent with a decrease of the film thickness proportional to the square-
root of time. Only the form of the profile as a function ofη would change. This
means that a different functional dependence of the thickness reduction requires an
explicitly position dependent diffusion constantDL(φL, y) within the framework of
this diffusion theory.

8.3 Comparison of the simulation results with theory

Before comparing theory and simulation results we briefly comment on basic assump-
tions made by the theory:

• The total density stays constant.This is not perfectly fulfilled but the density
varies very weakly fromρt(φS = 0.27) = 0.95 to ρt(φS = 0) = 1.01 and thus
the net volume average velocity is zero within the accuracy of our simulation
inside the film.

• The diffusion constant is independent of position and composition.This is not
fulfilled as we have shown in the last section. It remains to be determined how
this influences the results. As the dependence of the dynamics on composition
and position will certainly become even stronger as we lower the temperature
further this is an important point to investigate.
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• The system is semi-infinite.This means that finite size effects as the solvent is
completely depleted in the simulations are not accounted for by the theory.

Based on these assumptions the theory makes the following predictions we can com-
pare to our simulation results:

• Equation (8.24) suggests a superposition of the density-profiles obtained by
simulation at different times during the evaporation if plotted as a function ofη
and predicts also the functional form.

• The film thickness is predicted to decrease as the square-root of time according
to equation (8.19).

8.3.1 Solvent evaporation from supported films

In figure 8.5 the film thickness as a function of time during the evaporation process
is shown for two different temperaturesT = 0.5 and T = 0.4 and chain length
N = 10 andN = 64. The chain length slightly alters the results because also the
local dynamics were weakly dependent on chain length. The qualitative features seem
to remain unchanged but the process is slower for longer chains. The temperature has
a much stronger influence on the evaporation kinetics. While forT = 0.5 we indeed
find a regime at intermediate times where the film thickness decreases ash(t) −
h(0) ∝

√
t, this is not the case at the lower temperatureT = 0.4. This temperature

is in the vicinity of the bulkTg (Tg(N = 64) = 0.408 andTg(N = 10) = 0.392)
but it is aboveTg of the pure polymer films (Tg(h,N = 10) = 0.371 andTg(h,N =
64) = 0.385). The deviations from the theoretical prediction can be seen clearly in
the inset of figure 8.5 where a decrease of the film thickness as the square root of time
corresponds to a horizontal line. The exponent we find atT = 0.4 is smaller than0.5
which is expected for Fickian diffusion.

At T = 0.5 the decrease of the film thickness is initially different than predicted
by theory. This is probably due to the fast evaporation of the surplus of solvent at the
surface (see figures 8.2 and 8.3) while the polymer film does not decrease in height.
This leads to an increase in surface tension because the interfacial energy between
polymer and vacuum is higher than the one between the binary mixture and its vapor.
Therefore the polymer density profile narrows quickly in this stage of the evaporation.

At intermediate times2500 < t < 50000 we find a regime where the film thick-
ness decreases as the square root of time as predicted for Fickian diffusion. This can
also be seen in the inset of figure 8.5 whereh(0)−h(t)√

t
is plotted as a function of time. In

this plot this regime corresponds to a straight line at−λ/2
√

DG. The difference in the
parameterλ is rather small for the two chain length (λ(N = 10) = −0.022/2

√
DG

andλ(N = 64) = −0.018/2
√

DG). The diffusion constant of the solvent in the dilute
gas phase is very large in the order ofDG ' 10 and of course independent ofN .
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Figure 8.5: MAIN FIGURE: The film thickness h(t) is shown as a function of log-
arithmic time for N = 10 at T = 0.5 (black circles) and T = 0.4 (black stars)
and for N = 64 at T = 0.5 (grey squares) and T = 0.4 (grey crosses). The
dashed lines indicate fits to equation (8.19) yielding λ(N = 10) = −0.022/2

√
DG

and λ(N = 64) = −0.018/2
√

DG. INSET: The inset shows the same data (N = 64
(grey lines) N = 10 (black lines)) replotted as [h(0)− h(t)]/

√
t.

In this regime (2500 < t < 50000) we attempt to describe the solvent density
profile with equation (8.24). As can be seen in figure 8.6 forN = 64 atT = 0.5 this
equation describes the density profile quite nicely. The fit gives an effective diffusion
constant in the liquid ofDL = 0.003. This corresponds to an effective relaxation time
of about

τeff =
1

4DL

= 83 . (8.27)

This value is reasonable in comparison with the relaxation times directly extracted
from the MD-simulations shown in figure 7.6 in the last section. When comparing
solvent evaporation and equilibrium simulations one has to bear in mind that the diffu-
sion constantDL is the mutual diffusion constant of the polymer and solvent mixture.
As the volume is assumed to be constant neither species can move without the other
and the transport is described by a single diffusion constant depending on the intrinsic
diffusion constants of both polymer and solvent which take into account the gradient
in chemical potential. The relaxation times extracted from the equilibrium simula-
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Figure 8.6: MAIN FIGURE: The density-profile of the solvent in the film as it is
evaporating at T = 0.5 is shown every 10000τ starting from t = 7500 to t = 47500.
The full lines indicate the theoretical prediction according to equation (8.24) and the
connected circles the results of the MD simulations. INSET: The inset shows the
same data as a function of the variable η defined in equation (8.20). The circles
refer to the simulation data, the full line to the theoretical prediction.

tions on the other hand are related to the self-diffusion constant if the relation (8.27)
holds. While this is not the case for the polymer due to the existence of the subdif-
fusive regime and might also not be the case for the solvent if the plateau due to the
cage effect becomes very pronounced, it can still provide an estimate for the value
of DS

self of the solvent. If we return to figure 8.3 we see that the relaxation times ex-
tracted from the simulations of the evaporation atT = 0.5 are almost constant in a
wide range of positions andτS(y) ' τeff is approximately fulfilled.

8.3.2 Finite-size effects

To see how the finite size of the film affects the evaporation dynamics we look how
the solvent concentration decreases in different parts of the film. In figure 8.7 the
solvent density is shown at different times. We look at the height of the peakφP

S (t)
corresponding to the accumulation of solvent between the polymer and the wall and
the mean solvent concentrationφM

S (t) in the region between2 < y < 5 as indicated
in the figure.
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Figure 8.7: LEFT PANEL: The density of solvent at T = 0.5 in the film is shown at
τ = 2500, τ = 35000 and τ = 100000. The chain length was N = 64. The position
of the maximum solvent density φP

S (t) and the mean solvent density φM
S (t) in the

region 2 < y < 5 are indicated. RIGHT PANEL: The position of the maximum solvent
density φP

S (t) and the mean solvent density φM
S (t) in the region 2 < y < 5 are plotted

as a function of logarithmic time. The chain length was N = 64. The dashed line
indicates a fit of the data to an exponential function while the dotted line shows the
prediction of equation (8.28).

As the analytical theory outlined above predicts the solvent volume fraction to be
given by equation (8.24), it follows directly that the concentration at a given position
y as a function of time is given by

φL(y, t) = (φ0
L − φeq

L )

1−
1 + erf

(√
DL

y−h(0)

2
√

t

)
1 + erf

(√
DL/DGλ

)
 + φeq

L . (8.28)

Evaluated aty = 3.5 this gives an estimate forφM
S (t) indicated by the dotted line in

figure 8.7.
In figure 8.7φP

S (t) andφM
S (t) are plotted as a function of time. They show a quite

different behavior. WhileφP
S (t) rests constant untilt ' 30000 (this corresponds to the

time where the film thicknessh(t) starts to deviate from equation (8.19) atT = 0.5),
φM

S (t) seems to follow a simple exponential decay as

φM
S (t) = φM

S (0) exp(−t/τevap) . (8.29)

The time constantτevap is found to beτevap = 66250 at T = 0.5. The prediction of
the analytical theory which does not account for the finite dimension of the film is in
agreement with the simulation data fort < 30000.

It is also possible to fitφM
S (t) at T = 0.4 with a simple exponential but the time

scaleτevap = 420400 is too large in comparison with the simulated time to judge the
quality of the fit. The decrease ofφM

S (t) reaches the value below which finite size
effects become important only at the very end of the simulation fort > 300000. The
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simulated time is also not long enough to see a decrease inφP
S (t) at T = 0.4 which

stays constant through out the simulation. A finite size effect can therefore not explain
the deviations from equation (8.19) atT = 0.4 which are observed fort > 10000.

8.3.3 Influence of temperature on the evaporation kinetics

We also look at the solvent evaporation for a supported film atT = 0.35, where
the film undergoes the glass transition while there is still a volume fraction of about
φS = 10% inside the film (see figure 7.14). The results for all three temperatures for
chain lengthN = 64 are summarized in figure 8.8. As should be expected the evap-
oration slows down with decreasing temperature. AtT = 0.35 the amount of solvent
evaporated within the simulated time is even smaller than atT = 0.4. Therefore also
in this case we do not consider finite size effects to be important within the simulated
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time interval. Only atT = 0.5 the simulations could be run long enough to come
close to a complete evaporation of the solvent. But also in this case a small amount of
solvent remained in the film mainly situated close to the supporting wall. The solvent
trapped between the polymer and the support evaporates very slowly.

When the data for the film thicknessh(t) is plotted as a function of[h(t) −
h(0)]/

√
t, it becomes apparent that at allT there is a regime at intermediate times

which follows a decrease in film thickness according to
√

t indicated by the horizon-
tal lines in figure 8.8. While we showed in section 8.3.2 that atT = 0.5 the deviations
encountered at large times are due to finite size effects this is not the case forT = 0.4
or for T = 0.35. At T = 0.4 as well as atT = 0.35 the time interval within which
Fickian diffusion is observed is very small. While atT = 0.4 the subsequent regimes
can be described by a power law where the thickness decreases ash(0)−h(t) ∝ t0.312

the exponent is even lower atT = 0.35 where the thickness at large times is described
by h(0)− h(t) ∝ t0.164.

Upon these observations it is tempting to rescale the time axis byt′ = t/τ ∗

(τ ∗(T = 0.5) = 3086, τ ∗(T = 0.4) = 5554 andτ ∗(T = 0.35) = 11100) which
allows to bring the data for the decrease of film thickness at all three temperatures to
superposition at early times as well as at intermediate times whereh(0)−h(t′) =

√
t′

is observed. At late times differences emerge as the power-law decrease in film thick-
ness has different exponentsκ(T ) at different temperatures. We find that

h(0)− h(t′) = t′κ(T ) (8.30)

as can be seen in the right panel of figure 8.8. Whileκ(T = 0.5) = 0.5 is valid
until finite size effects become relevant, we find thatκ(T = 0.4) = 0.312 and
κ(T = 0.35) = 0.164 for large times, where finite size effects are not yet encountered
because the simulations were not run long enough to include these. The pre-factor re-
mains unaltered equal to1 upon the change in exponent within the accuracy of our
simulations.

8.3.4 Influence of film geometry on the evaporation kinetics

We also considered the solvent evaporation from free-standing films of similar thick-
ness as the supported films. In figure 8.9 the evaporation of solvent from free-standing
and supported films of similar initial solvent volume fraction and thickness is com-
pared atT = 0.4 andT = 0.5. As the solvent is leaving through2 surfaces the
evaporation is by definition at least twice as fast in the free-standing films. Therefore
we do not compare the decrease in total film thickness between the two geometries
but we use the position of the right GDSyG

+ (see section 3.1) of the free-standing
and supported films to monitor the evaporation process. Using this definition at small
times the change in interface position is independent of film geometry within the ac-
curacy of the simulations atT = 0.5 andT = 0.4. Finite size effects kick in much
earlier for the free-standing films and the complete solvent evaporation is much faster
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Figure 8.9: LEFT PANEL: The position of the right GDS (see section Tg) as a function
of temperature upon solvent evaporation for supported (h(0) = 19.2 and φS = 21% at
T = 0.5; h(0) = 19.6 and φS = 25% at T = 0.4) and free standing films (h(0) = 18.2
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+ at t = 0. RIGHT PANEL: The same data replotted as a
function of rescaled time t′ = t/τ∗ (τ ∗ (T = 0.5) = 3086, τ ∗ (T = 0.4) = 5554 and
τ ∗ (T = 0.35) = 11100).

than for the supported films of the same thickness. This disparity is on the one hand
due to the fact that the film thickness per surface is twice as large for supported films
and on the other hand caused by the very slow evaporation of solvent trapped between
the polymer and the wall as the film dries completely.

Again by rescaling the time axis byt′ = t/τ ∗ the data for all film geometries and
temperatures collapse. While large differences arise between the data forT = 0.4
andT = 0.5 at later times in the supported films as discussed in the last section this
is not the case for the free-standing films. Although there are differences for the two
temperatures they are by far smaller than for the supported films and the regime where
the film shrinks according toh(0)−h(t) ∝

√
t is very short at both temperatures due

to finite size effects. The differences arising are cut short by finite size effects altering
the evaporation dynamics and thus the different power-law dependencies cannot be
observed clearly for the free-standing films.

8.4 Numerical solution of the diffusion equation

An analytical solution for equation (8.9) can only be found if the system is semi-
infinite and the diffusion constant is a constant while a numerical solution of the same
problem does not have to resort to these restrictions. Our approach is similar to the
one presented by [192] but we apply different boundary conditions which changes the
evaporation kinetics. We implement a numerical solution of the evaporation problem
based on equation (8.9). We only take into account the liquid phase explicitly. Mean-
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ing that the condition of mass conservation at the interface at positionh(t) (8.17) has
to be written differently. As we assume the total density to be constant we can ex-
press the volume fraction of polymer byφP(y, t) = 1 − φL(y, t). The polymers do
not evaporate and their mass is conserved so that

d

dt

∫ h(t)

0

dy (1− φL(y, t)) = 0 , (8.31)

or, in other words, the total amount of mass lost corresponds to the amount of solvent
lost (i.e. there is no solvent returning to the liquid phase from the gas phase)

d

dt

∫ h(t)

0

dy =
d

dt

∫ h(t)

0

dyφL(y, t) . (8.32)

The volume fraction of solvent at the interface is fixed assuming local equilibrium as
for the theory presented before, while at the other end of the finite slab we now impose
the gradient of the volume fraction as opposed to the volume fraction at infinity in an
infinite slab as was considered by the analytical theory. The boundary conditions are
thus chosen to be

∂φL(y, t)

∂y

∣∣∣∣
y=0

= 0 (8.33)

φL(h(t), t) = φeq
L . (8.34)

From these equation together with equation (8.9) one obtains the differential equa-
tion governing the evolution of the interface position

(1− φL(h(t), t))
dh(t)

dt
= D(h(t), φL(h(t), t))

∂φL(y, t)

∂y

∣∣∣∣
y=h(t)

. (8.35)

As initial condition we chose again a rectangular profile so that

φL(y, t = 0) = φ0
L 0 < y < h(t) . (8.36)

In order to be in agreement with the boundary condition (8.34) we set

φL(h(0), t = 0) = φeq
L . (8.37)

Equations (8.35-8.37) together with equation (8.9) form a set of coupled non lin-
ear differential equations that can be solved numerically for any functional depen-
dence of the diffusion constantD(y, φL(y), t). The only further input parameters are
φ0

L, φeq
L and the initial film thicknessh(0) = h0.
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8.4.1 Numerical implementation

To solve these equations numerically we perform the coordinate transformation

u =
y

h(t)
(8.38)

which maps the film onto the interval [0:1] and thus immobilizes the moving bound-
ary atu = 1. Equation (8.9) becomes in this new coordinate system

∂φL(u, t)

∂t
=

1

h(t)2

∂

∂u

[
D(uh(t), φL(u, t))

∂φL(u, t)

∂u

]
+

u

h(t)

dh

dt

∂φL(u, t)

∂u
. (8.39)

Following [193] we rewrite the above equation using the identities∂(φLh)
∂t

=

φL
dh
dt

+ h∂φL

∂t
and ∂(φLu)

∂u
= φL + u∂φL

∂u
as

∂(φLh)

∂t
=

dh

dt

∂(φLu)

∂u
+

1

h

∂

∂u

(
D

∂φL

∂u

)
. (8.40)

To discretize this differential equation the space coordinateu is given on an
equidistant grid with step sizedu = 1/(N − 1) from (u0 = 0, ..., uN−1 = 1) and we
use an equidistant time stepdt so thattj+1 = tj + dt. By integrating equation (8.40)
over one space and one time step∫ ui+i/2

ui−1/2

∫ tj+1

tj
dtdu

∂(φLh)

∂t
=∫ ui+i/2

ui−1/2

∫ tj+1

tj
dtdu

∂

∂u

[
dh

dt
φLu +

D

h

∂φL

∂u

]
, (8.41)

whereui±1/2 denotes the position midway betweenui andui±1 on obtains the follow-
ing finite difference equation

(φj+1
L i hj+1−φj

L ih
j)du =

dt

hj+σ

[
Dj+σ

i+1/2

φj+σ
L i+1 − φj+σ

L i

du
−Dj+σ

i−1/2

φj+σ
L i − φj+σ

L i−1

du

]
+ (hj+1 − hj)(φj+σ

L i+1/2ui+1/2 − φj+σ
L i−1/2ui−1/2) , (8.42)

where the superscriptj + σ represents the given quantity after a proportionσ of the
time step has elapsed. This equation can be used to obtain the values ofφj+1

L i for
i = 1, .., N − 2 if the future interface positionhj+1 is known. In agreement with the
boundary condition (8.37) we setφj+1

L N−1 = φeq
L . If we discretize (8.33), this reads

(φj+1
L 0 hj+1 − φj

L 0h
j)du/2 =

dt

hj+σ
Dj+σ

1/2

φj+σ
L 1 − φj+σ

L 0

du
+ (hj+1 − hj)φj+σ

L 1/2du/2 .

(8.43)
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Now we need to also find a finite difference representation for equation (8.35).
This we do by applying the mass balance in its discretized form so that

(hj+1 − hj) = hj+σdu
N−1∑
i=0

φj+σ
L i − hjdu

N−1∑
i=0

φj
L i (8.44)

This allows to determinehj+1 provided thatφj+σ
L i andhj+σ are known.

This is only possible through an iterative procedure. So we proceed as follows to
solve this system of coupled finite difference equations.

1. Initially we chooseφj+σ
L i =φj

L i andhj+σ = hj.

2. This allows to get a first result forhj+1 using equation (8.44).

3. Now we can update the estimate forhj+σ.

4. Then we solve equation (8.42) to determineφj+1
L i .

5. This gives updates forφj+σ
L i .

Now we can return to the second point and recalculate the new interface position and
also repeat the following steps until convergence is reached.

If we chooseσ = 1/2 this implementation corresponds to the Crank-Nicolson
scheme [194] which is accurate up to orders ofdt2 but is numerically less stable
than the fully implicit procedure whereσ = 1 which is only accurate up to order
dt [195]. Stability is only guaranteed ifdt < du2 while the stability of the latter is
not dependent on the size ofdt. For the same reason of stability of the procedure
we choose the so-called ‘down wind’ approximation and approximateφLi+1/2 = φL i

andφLi−1/2 = φL i−1 [79, 193].

8.4.2 Solvent evaporation at high temperature (T = 0.5)

We test our numerical implementation by comparing our results to the analytical so-
lution outlined before and to an MD simulation of the evaporation of solvent from a
free standing film of initial thicknessh = 18.2 and a solvent volume fraction in the
center of the film ofφS = 0.187. As it is a good assumption that the boundary condi-
tion (8.33) is fulfilled in the center of the film, the numerical solution is only done for
the half spacey > 0. We setφeq

L = 0 assuming that the solvent concentration at the
interface is very low andh(0) = 8 which is less than half of the film thickness in the
MD simulation, as the film in the simulation is additionally swollen by the surplus
of solvent at the surface and the thickness obtained from the density profile of the
polymer is thus larger than would be found for a rectangular profile.

In figure 8.10 the results of this comparison are shown. The simulation data of
the solvent density are well reproduced by the numerical solution of the diffusion
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Figure 8.10: MAIN FIGURE: The density of solvent inside a free standing film during
solvent evaporation at t = 1250, t = 2500, t = 5000, t = 7500, t = 12500 and
t = 22500. The symbols refer to the MD data while the dashed lines indicate the
numerical solution and the thin black lines the analytical solution of the problem.
INSET: The film thickness as a function of time during evaporation is shown. The
vertical dotted lines indicate the times for which the solvent profiles are shown in the
main figure. The numerical and analytical solution are shifted vertically as to obtain
best superposition with the MD data.

equation at all times. At this point we have not yet included the dependence of the
diffusion constant on position or composition, but only the fact that the film has a
finite size. We choose the value of the diffusion constantDL = 0.003 extracted from
the comparison with analytical theory. The composition dependence of the mobilities,
we encountered in section 7.3 as well as the influence of the gradient of the chemical
potential on the diffusion dynamics up to the fact that solvent and polymer have to
move collectively to comply with the condition of constant density are buried within
this diffusion constant. While it is not surprising that the composition dependence of
DL cannot be seen in the decrease of the film thickness, it could give rise to a differ-
ent functional form of the density profiles. Apparently the above mentioned effects
are not strong enough to considerably alter the profiles in comparison to the results
obtained from the MD simulations. Initially also the analytical solution described in
section 8.2.4 gives a good prediction of the results found in the MD simulation.
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In the free-standing films as the solvent can leave through two surfaces the finite
size effects kick in earlier than for the supported film of comparable thickness. The
surplus of solvent at the surface is not accounted for by the theory. This effect only
present in the MD simulations seems not to alter the evaporation kinetics noticeably
but for the fact that the polymer film is initially thicker than anticipated by the theory.

8.4.3 Solvent evaporation at the glass transition temperatureTg

We also attempt a numerical solution of the diffusion equation to model the evapo-
ration of the solvent atT = 0.4. At this temperature the analytical solution failed
although there is still too much solvent inside the film for finite size effects to be rel-
evant. The prediction that the interface position should decrease as the square root
of time was not borne out (see figures 8.5 and 8.8). We try to improve the results
by considering the position as well as the composition dependence of the diffusion
constant. To this end, we have to parameterize the diffusion constant as a function
of the distance from the interface and the volume fraction of solvent inside the film.
The volume fraction of the polymer need not be considered as we assumed the overall
density in the film to be constant.

We will use the local relaxation times extracted from the equilibrium simulations
of the solvent polymer systems at different solvent concentrations described in sec-
tion 7.3 to guide the model of the functional dependence on position and composition
of the diffusion constant. We found that atT = 0.4 the relaxation times in the center
of the film are well described by equation (7.7). We will thus use this formula for
the composition dependence and add the position dependence by applying the phe-
nomenological formula (equation 4.13) used to model the increase in mobility at the
surface of the pure polymer films. To obtain the diffusion constant we assume that
DL = 1

4τ(y,φS)
. Using these resultsDL(y, φS) is given as

DL(y, φS) =
(φS− φc)

γ

4a
exp

[
A exp

(
−y

ξ

)]
, (8.45)

where we choseγ = 2, φc = −0.01 anda = 30 as determined in section 7.3. The
further fit constantsA andξ are themselves dependent on composition but we do not
account for that and choose an average valueA = 8 andξ = 1.75. As the inter-
face changes upon evaporation one cannot hope to achieve more than a qualitative
agreement from fits to equilibrium profiles anyway. In addition this description is
lacking the influence of thermodynamic forces due to the gradients in the chemical
potential. Also it does not consider correctly that polymer and solvent cannot move
independently.

In figure 8.11 the results of the numerical solution using this time and explicitly
position dependent diffusion constantDL(y, φS) are compared to the results for the
evaporation of the solvent from a free-standing film of initial thicknessh = 18 and
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Figure 8.11: MAIN FIGURE: The density of solvent inside a free standing film during
solvent evaporation at t = 2500, t = 10000, t = 30000, t = 50000, t = 90000 and
t = 300000. The symbols refer to the MD data while the dashed lines indicate the
numerical solution with the diffusion constant chosen according to equation (8.45).
LEFT INSET: The film thickness as a function of time during evaporation is shown.
The vertical dotted lines indicate the times for which the solvent profiles are shown
in the main figure. The numerical solution are shifted vertically as to obtain best
superposition with the MD data. RIGHT INSET The same data is presented as in the
left inset replotted as h(0)−h(t)√

t
. The thin black line indicates a slope of h(0)−h(t)√

t
∝

t−0.25.

initial solvent volume fractionφS = 23%. Again the numerical solution is only com-
puted for the half spacey > 0, φeq = 0, and the initial thickness was less than half
the initial thickness in the MD simulation,h0 = 8.7. We can reproduce the devia-
tions from the prediction that the thickness should decrease as the square-root of time
and describe the thickness dependence encountered in the MD simulation correctly.
The density profiles of the solvent are quite well approximated but at late times slight
deviations arise and the time scale upon which the evaporation takes place is well
predicted which is quite surprising if one looks at the crude estimate of the diffusion
constant used.

It is important that the position and composition dependence ofDL is accounted
for because otherwise the simulation results cannot be reproduced. Qualitatively dif-
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Figure 8.12: LEFT ORDINATE: The volume fraction of solvent inside a free standing
film during solvent evaporation at times as marked by the horizontal dashed lines
in the inset. The black lines indicate the numerical solution for a position and com-
position dependent diffusion constant given by equation (8.45) while the grey lines
indicate the solution for an only composition dependent diffusion constant. The y-
dependent term in equation (8.45) is set to 1. The circles indicate a solution using a
constant diffusion value of DL. RIGHT ORDINATE: The film thickness as a function
of time during evaporation is shown. The horizontal dotted lines indicate the times
for which the solvent profiles are shown in the main figure. The dash-dotted lines
indicate a decrease in film thickness as the
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ferent density profiles are obtained along with a time scale of the evaporation which
is by a factor of10 larger than in the MD simulation, if only the composition de-
pendence is taken into account. This can be seen in figure 8.12 where the numerical
solution for a composition dependent diffusion constant is compared with that of a
position and composition dependent diffusion constant. The profiles are compared at
equal film thickness. Thus they do not correspond to the same time in the evaporation
process. When an only composition dependent diffusion constant is used a very steep
increase of solvent volume fraction followed by a flat plateau is observed. The plateau
is due to the fact the solvent in the center of the film has enough time to reduce the
density gradient and assume an almost constant value during the very slow evapora-
tion because of the low mobility right at the interface. In the case of a composition
and position dependent diffusion constant the evaporation is faster and initially pro-
files, very similar to the ones for a constant diffusion constant are recovered (compare
circles and black lines in figure 8.12).
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Figure 8.13: LEFT PANEL: The density profiles of the solvent at times t = 10000
(full black circles), t = 35000 (open grey circles), t = 145000 (open black circles)
and 310000 (full grey circles) during the evaporation of the solvent from a supported
film at T = 0.4 containing initially a volume fraction of φS = 25% in an MD simula-
tion. Also indicated is the numerical solution of the diffusion equation (lines) with
the position and composition dependent diffusion constant given in equation (8.45).
The film thickness was chosen very large h0 = 40, φ0

L = 25% and φeq
L = 0. MID-

DLE PANEL: The relaxation times extracted from the simulation shown in figure 8.3
(circles) are compared to the values of the diffusion constant used in the numerical
solution of the diffusion equation via τS = 1/4/DL (lines). DL [y, φS(y, t)] was cal-
culated from the density profile of the solvent and the local interface position using
equation (8.45).

A composition and position dependent diffusion constant leads to deviation from
the

√
t law, but in such a thin film this is also the case for a solution employing a

constant diffusion constant or an only composition dependent diffusion constant due
to the importance of finite size effects. They all show similar behavior if one adjusts
the time-scales. This is in agreement with our observations of solvent evaporation
from free-standing films in the MD simulations, where the differences in the func-
tional curves of the decrease in film thickness atT = 0.5 andT = 0.4 are small (see
figure 8.9).

An agreement of the decrease in film thickness with simulation results for a free-
standing film atT = 0.4, where the time evolution is altered by finite size effects
very early in the evaporation process, might therefore not be convincing. Also the
shape of the density profiles show systematic deviations. The profiles in the simula-
tion show a small density gradient at the surface followed by a steep increase and a
plateau in the center of the film. This shape is a mirror image of the behavior of the
local mobilities which are high at the surface, decrease to a minimum at a distance
of about2 monomer diameters from the surface and increase again in the center of
the film. Although the numerical solution for a position and composition dependent
diffusion constant shows tendencies in this direction, the effect in the simulations is
more pronounced, especially in the late stages of the evaporation process.

Therefore we also calculate the numerical solution of the diffusion equation for
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a very thick film (h0 = 40) where finite size effects do not play a role within the
time interval accessible by simulations. The parametrization of the diffusion constant
is again chosen to be given by equation (8.45). We compare these results to the
MD simulations of the evaporation of solvent from a supported film atT = 0.4 in
figure 8.13. For this film finite size did not play a role within the time window of the
simulation (see section 8.3.2).

The density profiles obtained from the numerical solution of the diffusion equa-
tion are in reasonable agreement with the simulations at all times. The layering effects
at the supporting wall as well as the solvent accumulation between the film and the
wall are not accounted for by the theory, but the decrease of solvent in the center of
the film and at the free surface are predicted correctly. Also displayed are the re-
laxation times extracted from the simulation in comparison with the relaxation times
calculated viaτL = 1/4/DL from the position and composition dependent diffusion
constant used for the numerical solution of the diffusion equation. The profiles agree
semi-quantitatively and show the same qualitative trends. The growing maximum of
the relaxation times is reproduced. The deviations of the thickness decrease from
h(0)− h(t) ∝

√
t shown in figure 8.14 is in agreement with the simulation data.

8.4.4 Possible interpretations

The model based on a numerical solution of the diffusion equation described above
is sufficient to explain the observations although the parametrization of the diffusion
constant used should be put on more rigorous grounds. In this simple picture the
deviations from Fickian diffusion are due to the acceleration of the dynamics at the
free surface. Together with the counteracting slowing down of the dynamics with
decreasing solvent content close to the surface this results in a minimum of the dif-
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fusion constant at a distance of about2 from the surface. This minimum decreases
with time as the solvent density decreases during evaporation. This time-dependent
diffusion constant gives rise to a slower decrease of the film thickness than expected
for Fickian diffusion.

Whether stresses induced in the glassy polymer alter the evaporation dynamics
in addition as described by [93] is not clear. These history dependent stresses in the
glassy matrix give rise to an additional gradient term in the diffusion equation of the
liquid. It could play a similar role as the explicit position dependence of the diffusion
constant. It has also been suggested that due to local density and/or composition
fluctuations there exist faster domains [95]. If these domains percolate there could
exist fast paths allowing the solvent to evaporate within an experimental timescale
even below the glass transition temperature. Although we did not see any evidence
of the latter in out model it cannot be excluded that local fluctuations in the mobility
play a role in the process.

An argument in favor of the picture based on a composition and position depen-
dent diffusion constant described above is the fact that no deviations from Fickian
diffusion were observed upon MD simulations of solvent penetration into a glassy
polymer matrix employing a very similar model for polymer and solvent [90]. If
stresses or local fluctuations in the mobilities of the particles play a role in the pro-
cess one would expect that it is also the case upon solvent penetration. Within the
diffusion model presented above on the other hand the minimum of the diffusion
constant does not develop upon solvent penetration and therefore no deviations from
Fickian diffusion are expected. Further investigations are necessary to clarify these
points.

8.5 Limiting-cases – Instantaneous extraction of the
solvent belowTg

As complete solvent evaporation was only accessible aboveTg, where we did not
encounter any deviations from the equilibrium structure, it is not possible to deduce
from our simulations of the solvent evaporation if there exist residual stresses in the
film due to solvent evaporation belowTg as suggested by experiments and theory.
To get a benchmark whether the system gets trapped in an out-of-equilibrium state
upon very rapid solvent evaporation we resort to a method which is, of course, only
possible in simulations. There it is feasible to instantaneously remove all solvent
molecules by simply taking them out of the simulation box without changing the
polymer conformations.

To achieve this we proceed as follows. First we set up an equilibrated polymer
film of chains ofN = 64 monomers and a volume fraction ofφs = 23% in the center
of the film atT = 0.35. This configuration is cooled toT = 0.3, a temperature
slightly above theTg of the mixture at this composition and well belowTg of the pure
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Figure 8.15: LEFT PANEL: The density profile at times t = 0 (full line), t = 25
(dashed line), t = 75 (dash-dotted line), t = 20000 (dotted line) after the deletion of
all solvent molecules in the simulation at T = 0.3. The chain length is N = 64. An
equilibrated configuration at T = 0.35 with an volume fraction of φS = 23% in the
center of the film was cooled to T = 0.3 with a cooling rate of ΓT = 2 × 10−5 to
create the initial configuration from which the solvent was deleted. Also indicated
is the density profile obtained upon cooling the pure polymer film containing the
same amount of chains (n = 96) from T = 1 to T = 0.3 with a cooling rate of
ΓT = 2 × 10−5 (thin dotted line). RIGHT PANEL: The thickness of the film as a
function of time after the deletion of all solvent molecules. The initial configuration
was prepared as described before.

polymer film, with a cooling rate ofΓT = 2 × 10−5. At T = 0.3 we take out all
solvent molecules and continue the simulation at this temperature.

As can be seen in figure 8.15 the film contracts very fast and reaches a density
very similar to the density in the center of a pure polymer film cooled to this tem-
perature with a constant rate ofΓT = 2 × 10−5. Initially the layering at the wall is
less pronounced and it increases quite slowly towards the amplitude found in a pure
polymer film cooled to this temperature. The thickness nevertheless reaches a value
very close to the thickness of the cooled polymer film after only100τ .

The total structure factor and the intra-chain structure factor of the pure polymer
film cooled toT = 0.3 and the one created by solvent deletion are compared in figure
8.16. Also the differences found in structure of a cooled film and the one created by
deleting the solvent seem to be very small within the scatter ofS(q) due to the poor
sampling of configuration space at this temperature far below the glass transition
temperatureTg = 0.4. There is no sign of large scale inhomogeneities in the density
which would correspond to holes. The film contracts closing the holes left by the
solvent molecules and reaching a homogeneous density distribution. Small holes
seem to be energetically very unfavorable and there is no large scale inhomogeneity
in the system which could give rise to larger holes which could be more stable.
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Figure 8.16: Total structure factor S(q) (squares) and intra-chain structure factor
w(q) (black line) of a pure polymer film cooled to T = 0.3 with a cooling rate of
ΓT = 2 × 10−5 and S(q) (filled circles) and w(q) (grey line) obtained at t = 15000
after deletion of the solvent at T = 0.3 from a film containing an initial volume fraction
of solvent of φS = 23%.

8.6 Summary

We simulated the evaporation of solvent aboveTg of the pure polymer film, atTg of
the pure polymer film and also belowTg for free-standing and supported films. As
initial condition a dense solution with a solvent volume fraction of aboutφS ' 20%
is used. Upon solvent evaporation at all temperatures a polymer rich crust is formed
at the surface.

AboveTg of the pure polymer the solvent evaporation can be described by Fick-
ian diffusion while atTg and below deviations are observed. The decrease in film
thickness follows a power law dependence. Only aboveTg could the simulations be
run long enough to end up with a pure polymer film. In this case we did not observe
any deviations of the properties of the film from equilibrium. The evaporation from
free-standing films is faster than the solvent evaporation from supported films where
the solvent trapped between the polymer and the wall only leaves the film very slowly.
Residual solvent trapped between the polymer and the wall could lead to a negative
thermal expansion coefficient upon heating observed in experiments when the film
dries completely.

Even upon an instantaneous extraction of the solvent we did not observe consid-
erable deviations of the resulting glassy film structure from a glassy polymer film
obtained by cooling a pure polymer film from high temperature. The conformation
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of the chains in solution do in our model not differ strongly from the chain confor-
mations encountered in the melt. Probably to observe out of equilibrium structures
where the chains are only poorly entangled or otherwise strained, it is necessary to
start the evaporation from a more dilute solution and use longer chains, so that the ini-
tially swollen conformations need to rearrange considerably to reach an equilibrium
structure in the melt.
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Chapter 9

Conclusions

The realization of ever smaller structures confronts nanosciences with a challenging
fundamental problem: To what extent are properties and concepts, well established
in the bulk, still pertinent on the nanoscale? In this respect, polymer films play an
important role. Not only because of their technical significance, but also because
of our increased capabilities to explore their behavior. Numerous recent studies have
revealed unexpected deviations from bulk behavior for films thinner than about 10 nm.
For instance, the glass transition temperature can be dramatically reduced, implying
that the film is in a fluid state at temperatures where the bulk would be solid.

Within the framework of the Marie Curie Research Training Network ‘POLY-
FILM’, research groups from the United Kingdom, the Netherlands, Belgium, Ger-
many, and France combine their efforts to study such nanoscopic polymer films. Of
particular interest are questions of how the thermodynamic, structural and dynami-
cal properties of the polymer films deviate from the bulk behavior, and of how these
properties are affected by the film preparation techniques.

Our group at the Institut Charles Sadron (ICS) in Strasbourg contributed to this
interdisciplinary research by computer simulations of coarse-grained polymer models
[101] presented in this thesis. In a first step, a recently developed model for polymer
films [32, 35] was extended to consider films with a free surface. Conformational,
structural, and dynamical properties were investigated, as the polymer film is cooled
towards its glass transition. In a second step, the film preparation technique (‘spin-
coating’) was modeled by simulating the solvent evaporation from a polymer film on
a substrate.

Relaxation and structure of polymer films close to the
glass transition

We performed MD simulations of ultra-thin polymer films in free-standing and sup-
ported film geometries using a coarse-grained bead-spring model which retains only

161
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the most prominent features of polymers, such as chain-connectivity, short range re-
pulsion between the monomers, and long range attraction of the monomers ensuring
the integrity of the material in the presence of a free surface.

Average and layer-resolved static and dynamic properties. We find a layering
of the monomer density at the supported surface, while the density profile at the free
surface monotonically decays to zero. The layering becomes more pronounced on
cooling and reaches further into the film. The dynamics in our system are also altered
due to the presence of the surfaces. A layer-resolved analysis clearly demonstrates
that monomers at the free and solid interfaces are faster than those in the center of the
film, which remain bulk-like. Furthermore, monomers at the free surface are faster
than those at the solid interface. These highly mobile surface monomers transfer part
of their high mobility to the next deeper layer, which in turn can accelerate the next
layer, and so on until the effect is damped out if the film is thick enough (for thin
films and/or lowT , the perturbations emanating from both surfaces interfere with
one another in the film center). The static structure is affected by the presence of the
surfaces as well. We find a decrease of comparable magnitude of the first maximum
of the static structure factor in the vicinity of both surfaces indicating that the packing
constraints are weaker. In addition, a divergence ofS(q) asq−2 for small q due to
capillary waves is observed at the free surface.

Therefore, if we consider the same temperature, we find that the dynamics of
the films, averaged over the whole film, is faster than that of bulk and, furthermore,
that the free-standing films relax faster than the supported films (two free surfaces
instead of one). The first peak of the average static structure factor measuring local
correlations in density fluctuations is also lower in the films than in the bulk and
decreases with decreasing film thickness. Contrary to the dynamic properties we find
the reduction in the first maximum ofS(q) to be comparable in size for both film
geometries. This makes an interpretation within the picture of mode-coupling theory
which suggest a strong coupling of the static structure on the local scale and the
system’s dynamics difficult. Although the general trend of weaker packing constraints
and a decrease of relaxation times with decreasing thickness are in agreement with
these ideas, the differences encountered for supported and free-standing films cannot
be explained.

Thickness dependence ofTc and Tg. These results have an impact on characteris-
tic temperatures, such as the glass transition temperatureTg and the critical temper-
ature of MCTTc. Tg was determined from the temperature dependence of the film
thicknessh on cooling;Tc was derived from an analysis of relaxation times in the
films. Qualitatively,Tg(h) andTc(h) display the same features. The values of both
temperatures are depressed with respect to the bulk, and the depression becomes more
pronounced with decreasingh. The thickness dependence ofTc (or Tg) can be well
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described byTc(h) = T bulk
c /(1 + h0/h). The fit yields a characteristic heighth0 that

is about twice as large for free-standing films than for supported films.
This finding qualitatively agrees with experimental results on the depression ofTg

for supported and free-standing polystyrene (PS) films [4, 40, 41]. These experiments
suggest thatTg of a free-standing film of thicknessh agrees, within the error bars, with
theTg of a supported film of thicknessh/2. From this result alone it thus appears as if
the substrate could be introduced in the midplane of the free-standing film with neg-
ligible perturbation of its properties. Our discussion of the layer-resolved dynamics,
however, indicates that such an interpretation may be too simplified. For our model,
the substrate leads to faster dynamics, similar to that found at the free interface.

Local glass transition temperature. In agreement with recent experiments on sup-
ported polystyrene films [9] we find that the free surface gives rise to a local glass
transition temperature which decreases with decreasing distance to the surface. We
show that this distance dependence can be understood from the average behavior of
the film, that is, from the depression ofTg with decreasing film thickness which is
well described by a parametrization suggested by Herminghaus and coworkers [4].

Dielectric relaxation in thin polymer films. We performed a complementary anal-
ysis of the dynamics in our model polymer films and the bulk, based on the auto-
correlation function of the system’s polarization. This method provids results, similar
to the ones obtained in experiments employing broadband dielectric spectroscopy, a
technique often used to study polymer dynamics and especially also the glass tran-
sition in thin polymer films. We attached dipoles locally parallel and perpendicular
to the chain backbone [175] allowing to follow the segmental relaxation as well as
the normal mode relaxation related to the dynamics of the whole chain. We find that
the segmental mode is faster in the films than in the bulk and a fit to a VFT equation
yields a lower temperatureT0 in comparison with the bulk. The segmental relax-
ation in the films is found to be isotropic while the normal mode relaxation becomes
anisotropic in thin films. The normal mode relaxation is faster perpendicular to the
plane of the film than in the plane of the film. As the interaction with the supporting
wall was chosen such that the monomers at the wall remained highly mobile, we did
not observe an additional confinement induced mode in our systems as suggested by
[171–174].

Simulations with explicit solvent

We performed simulations of a coarse-grained polymer in solution with explicit sol-
vent. The interaction parameters were chosen to model the solution of polystyrene
and toluene. We investigated the system in the regime of high polymer concentration
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(the solvent volume fractionφS is varied between0% and30%) at 3 different temper-
atures:T = 0.5 which is well aboveTg of the pure polymer, atT ' Tg = 0.4 and at
T = 0.35 which is below the glass transition temperature of the pure polymer. The
solution becomes glassy at this temperature below a solvent volume fraction of about
φS = 10%.

We studied two film geometries as for the pure polymer films, namely supported
and free-standing films. The solvent is enriched between the polymer and the wall as
well as at the free surface. The presence of the solvent reduces the glass transition
temperature of the binary mixture. We find that the solvent also suppresses correla-
tions in local density fluctuations as measured by the maximum of the static structure
factor. An increasing sensitivity of the local mobility of the monomers on the solvent
concentration and the proximity to the interface is observed with decreasing tempera-
ture. The solvent acts as a plasticizer accelerating the relaxation of the polymer. The
closer the monomers are to the surface, the faster their dynamics. AtTg of the pure
polymer the local relaxation times span three orders of magnitude as a function of
composition and distance from the surface.

We simulate the evaporation of solvent aboveTg of the pure polymer film, atTg

of the pure polymer film and also belowTg for free-standing and supported films. As
initial condition a dense solution with a solvent volume fraction of aboutφS ' 20%
is used. Upon solvent evaporation at all temperatures a polymer rich crust is formed
at the surface.

Solvent evaporation aboveTg. At temperatures well aboveTg we observe a Fick-
ian diffusion process. The film thickness decreases as the square root of time until
finite size effects become relevant in both free-standing and supported films. The
complete evaporation of the solvent from a supported film is by more than an order
of magnitude slower than the one from a free-standing film of the same thickness
and solvent content. The solvent trapped between the polymer and the supporting
wall only leaves the film very slowly prolonging the final stages of the evaporation
process.

Solvent evaporation atTg and below. If the evaporation is performed atTg or
below, we initially also observe Fickian diffusion. In this regime the results at all
temperatures superimpose upon rescaling the time axis by a characteristic timeτ ∗.
This initial short regime of Fickian diffusion is followed by a regime characterized
by the decrease of the film thickness ash(0) − h(t) ∝ tκ(T ). The exponentκ(T ) is
smaller than0.5 which would be expected for Fickian diffusion and decreases with
decreasing temperature. In free-standing films the second regime cannot be observed
clearly due to the early onset of finite-size effects which alter the evaporation kinetics.
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Comparison with theory. We use a simple model of solvent evaporation based on
diffusion equations to describe the problem theoretically. The differential equations
are solved numerically yielding the density profiles of the solvent inside the liquid
film as well as the decrease of film thickness as a function of time. The results of
the simulations at high temperatures can be reproduced well using a constant value
of the diffusivity in the liquid phase. A possible explanation for the regime of non-
Fickian diffusion observed in the simulations at lower temperatures is based on the
strong dependence of the mobilities on composition and the distance from the surface.
These counteracting trends, i.e. the acceleration in the vicinity of the surface and
on the other hand the strong decrease of solvent concentration at the surface lead
to a minimum in mobility at a distance of about two monomer diameters from the
surface. This ‘mobility barrier’ becomes more pronounced with time slowing down
the evaporation at the later stages and leading to deviations from Fickian diffusion.

Outlook

Although our simulations could shed some light on the influence of a free surface
on the glass transition in our simple polymer model there remain still a lot of ques-
tions unanswered. Nevertheless our results can provide some guidelines for further
investigation of the problem.

Coupling between relaxation on the local scale and capillary wave fluctuations.
The theoretical basis leading to the equationTc(h) = T bulk

c /(1 + h0/h) is still un-
clear. There are few theoretical guidelines how to determine the parameterh0. By
Herminghaus and coworkers [4] it was suggested thath0 = γ/E, whereγ is the sur-
face tension andE is the elastic modulus of the bulk polymer atTg. As E changes
very abruptly upon approachingTg, this does not allow to determineh0 in practice.
In connection with the foundTg reductions in thin polymer films with a free surface it
would therefore be interesting to further investigate the influence of capillary waves
on the relaxation in thin polymer films. Our analysis of this process did not allow
to determine whether there exists a coupling between these large scale fluctuations
and the local relaxation of the monomers usually thought more relevant for the glass
transition. Maybe four-point correlation functions as introduced by Bouchaud [196]
and Glotzer [197] might provide a means to determine whether the acceleration of
the dynamics on the local scale in these thin films can be linked to the presence of
capillary waves. The fact that simulations by Fathollah Varnik for confined films,
where these capillary wave fluctuation should be suppressed, gave very similar re-
sults, raises doubts that the idea of a coupling between the viscous bulk flow and the
capillary wave fluctuations, that lead to the derivation ofTc(h) = T bulk

c /(1 + h0/h),
are correct.
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Influence of chain stiffness on the thickness dependence ofTc and Tg. While our
simulations so far focused on general features of polymers, experimentally also the
specific structure of different polymers has a large influence on the observed results
and therefore onh0. It has also become clear that, whileh0 seems to be rather in-
dependent of chain length for low and intermediate molecular weight polymer films,
this is no longer the case for very high molecular weight polymers [10, 198]. Experi-
mentally the decrease inTg for ultra-thin polymer films with a free surface is found to
differ strongly in magnitude between different polymers, ranging from a few Kelvin
for PMMA to more than forty Kelvin for PS [31, 198]. The influence of chain specific
properties such as stiffness or bulky side-groups on the glass transition in confinement
have not yet been investigated using computer simulations. An extension of our sim-
ulations to include for example the influence of chain stiffness on theTg reductions
in thin films could therefore provide further insight into the phenomenon.

Towards a simulation of the spin-coating process. Our simulations on the evap-
oration of solvent from a dense polymer solution provide a starting point for further
analysis of the effects of this film preparation technique on the resulting structures.
In order to come closer to the experimental scenario during spin coating, it would be
desirable to carry out longer MD simulations of the evaporation at low temperature
probably for polymer films containing longer chains. The influence of the solvent
concentration on the entanglement length and the chain conformation itself should be
stronger for longer chains. As this requires very large scale simulations, it is worth-
while to explore other paths to gain insight into the process.

Artificial preparation of non-equilibrium configurations. The question whether
films prepared by spin-coating are non-equilibrium structures could only be partially
addressed in this thesis. The evaporation of solvent belowTg was too slow to prepare
pure glassy polymer films by this procedure. Therefore, also the relaxation of these
structures could not be addressed. Another way to tackle this problem would by the
artificial preparation of non-equilibrium configurations and subsequent MD simula-
tions investigating the relaxation towards equilibrium of these structures. One sug-
gestion from experiments was that residual stresses in films prepared by spin-coating
are due to poorly entangled chains. The initially in dilute solution isolated chains are
thought not to have had enough time to interpenetrate during the rapid solvent loss.
Such a structure could be created in computer simulations for example by forming
a film as an array of single chain globules. It would also be possible to take a very
dilute system at a temperature above theθ temperature so that the chains are initially
swollen and compress it very rapidly upon lowering the temperature belowTg, i. e.
the change of the chains environment due to the solvent loss in this case would be
modeled by a temperature change, to obtain a dense glassy film. The relaxation of
these structures towards equilibrium could then be investigated.
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Mesoscopic theories of solvent evaporation.MD simulations can only address a
limited range of time and length scales. It is in our case desirable to be able to go to
lower temperatures to observe a glass transition upon solvent evaporation. Thus even
slower evaporation rates and relaxation times make it difficult to treat this problem by
MD-simulations alone. It is desirable to find a method to complement our simulation
results which makes larger time scales accessible. A quite common choice for such a
method is the self-consistent mean field theory (SCMFT) [199–201]. This approach
has been applied successfully to a wide range of problems but its biggest short-coming
is that it ignores fluctuations which can become important near critical points and
at interfaces. To include the effect of fluctuations and to also be able to treat the
dynamical aspect of the problem it can be extended to perform single chain in mean
field (SCMF) simulations [48, 202].

The knowledge we gained from MD simulations on the static and dynamic prop-
erties of the solution as a function of solvent content can provide guidelines how to
model this phenomenon within the framework of SCMF theory and simulations. Also
a very simple time-dependent version of SCMFT along the lines of a time-dependent
Ginzburg-Landau theory [199, 203] using a square gradient expansion of the free en-
ergy could be used to further complement this study. By comparing with the results
from SCMF simulations the importance of chain connectivity in the process could be
assessed. Also Ginzburg-Landau theory provides a natural way to improve on our
simple diffusion model treating only the solvent volume fraction in the liquid phase.
While this theory is still based on diffusion equations, it includes the interfaces and
therefore both phases can be accounted for, as well as the thermodynamic forces de-
scribed by the gradients in the chemical potential. Work in this direction is under
way.
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Appendix A

Tables

N = 10 supported free supported free supported bulk
n = 288 n = 288 n = 576 n = 576 n = 864 n = 288

Tg 0.341(8) 0.322(4) 0.371(2) 0.355(3) 0.384(2) 0.392(5)
Tm 0.347(7) 0.330(6) 0.381(5) 0.363(6) 0.396(7) 0.401(9)
Tc 0.361(5) 0.333(6) 0.383(8) 0.365(5) 0.392(8) 0.405(4)
γ1 2.2(2) 2.2(1) 2.09(9) 2.1(1) 2.1(2) 1.96(8)
γq∗ 3.4(2) 3.4(2) 3.0(1) 3.3(2) 2.95(10) 2.2(1)
h0 0.80 1.47 0.76 1.47 0.74

h(T = 1) 8.4 8.4 16.6 16.6 24.9
h(T = 0.44) 6.9 7.0 13.85 14.0 20.5

Table A.1: Survey of characteristic temperatures and other parameters for the sys-
tem sizes n (= number of chains) and geometries studied: glass transition temper-
ature Tg and inflection point of the thermal expansion coefficient Tm as described
in section 3.1; mode-coupling critical temperature Tc(h) and exponents γA(h) (sec-
tion 4.2). The error bars refer to the statistical error due to the noise in the data for
a given fit interval. The parameter h0 is found by inversion of equation (4.14).
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N = 64 supported free supported free bulk
n = 48 n = 48 n = 96 n = 96 n = 48

Tg 0.328(5) 0.379(4) 0.369(9) 0.402(4)
Tm 0.337(7) 0.385(6) 0.375(8) 0.416(6)
Tc 0.365(4) 0.331(7) 0.391(7) 0.370(5) 0.415(6)
γ1 2.3(2) 2.35(8) 2.2(1) 2.2(1) 2.0(2)
γq∗ 3.7(2) 3.6(3) 3.3(1) 3.5(2) 3.15(10)
h0 1.67 0.93 1.69

Table A.2: Survey of characteristic temperatures and other parameters for the sys-
tem sizes n (= number of chains) and geometries studied: glass transition temper-
ature Tg and inflection point of the thermal expansion coefficient Tm as described
in section 3.1; mode-coupling critical temperature Tc(h) and exponents γA(h) (sec-
tion 4.2). The error bars refer to the statistical error due to the noise in the data for
a given fit interval. The parameter h0 is found by inversion of equation (4.14).

φS ρP ρL
S ρG

S ρtot h NS

27% 0.695 0.256 0.12 0.951 22.1 4608
22% 0.751 0.213 0.095 0.964 20.25 3072
21% 0.772 0.198 0.077 0.97 20.15 3072
15% 0.835 0.15 0.0538 0.985 18.6 2304
10% 0.892 0.098 0.031 0.99 17.3 1536
5% 0.948 0.049 0.012 0.997 15.97 768
0% 1.01 0 0 1.01 14.82 0

Table A.3: A compilation of the density of polymer ρP and solvent ρL
S in solution in

the center of the film as well as the total density in the center of the film ρtot and the
density of the solvent in the vapor phase ρL

G in the MD simulations of a supported
film of lateral L = 20 containing n = 96 chains of N = 64 monomers at T = 0.5 and
a number of solvent molecules as indicated in the table. The film thickness is also
indicated.
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φS ρP ρL
S ρG

S ρtot h NS

35% 0.63 0.34 0.03 0.97 23.96 4608
25% 0.745 0.245 0.02 0.99 20.61 3072
19% 0.81 0.19 0.015 1.0 18.78 2304
12% 0.89 0.125 0.0105 1.015 17.12 1536
6% 0.975 0.058 0.0042 1.03 15.55 768
0% 1.03 0 0 1.03 14.61 0

Table A.4: A compilation of the density of polymer ρP and solvent ρL
S in solution in

the center of the film as well as the total density in the center of the film ρtot and the
density of the solvent in the vapor phase ρL

G in the MD simulations of a supported
film of lateral L = 20 containing n = 96 chains of N = 64 monomers at T = 0.4 and
a number of solvent molecules as indicated in the table. The film thickness is also
indicated.
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