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me financially, and of course Université Louis Pasteur and Middle East Technical

University for offering me a great environment during my research. I thank also Adem
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INTRODUCTION

La richesse des variétés complexes est essentiellement due à deux applications

fondamentales: la multiplication par i et la conjugaison complexe. Afin d’obtenir des

variétés lisses qui ressemblent le plus possible à des variétés complexes, on introduit

des généralisations de ces deux applications aux variétés lisses de dimension paire. La

généralisation de la multiplication par i est appelée une structure presque complexe,

tandis que la généralisation de la conjugaison complexe est une structure réelle.

Dans cette thèse, on étudie les fibrations de Lefschetz qui admettent une structure

réelle. Rappelons qu’une fibration de Lefschetz d’une variété lisse de dimension 4 est

une fibration de la variété par des surfaces telle que seul un nombre fini de fibres

présentent une singularité nodale. Les fibrations de Lefschetz apparaissent de façon

naturelle sur les surfaces complexes dans l’espace projectif complexe de dimension 3

comme l’éclatement des pinceaux génériques de sections hyperplanes. Il est connu que

la monodromie des fibrations de Lefschetz autour d’une fibre singulière est donnée

par un seul twist de Dehn (positif) le long d’une courbe fermée simple (qu’on appelle

le cycle évanescent) [K] et que les décompositions de la monodromie (définies aux

mouvements de Hurwitz et à la conjugaison par un élément du mapping class group

près) en produit de twists de Dehn classifient les fibrations de Lefschetz sur D2. Une

des propriétés importantes des fibrations de Lefschetz est qu’elles fournissent un ana-

logue topologique aux variétés symplectiques de dimension 4 (voir S. Donaldson [Do],

R. Gompf [GS]).

L’étude des fibrations de Lefschetz réelles est initiée par un travail de S. Yu. Orev-

kov [O1] dans lequel il présente une méthode pour lire la monodromie (en tresses)

d’une fibration π : C → CP 1 d’une courbe complexe C (invariante par la conjugaison

complexe) dans CP 2 à partir de la restriction RP 2 ∩ C → RP 1. Ici, la fibration π

de C est obtenue à partir d’un pinceau de droites réel générique par rapport à C.

S. Yu. Orevkov a observé que la monodromie totale est quasi-positive si la courbe C

est algébrique (c’est-à-dire qu’elle s’écrit comme un produit des conjugués de twists

positifs) et il en a déduit que certaines distributions d’ovales dans RP 2 ne sont pas

réalisables algébriquement. Il n’est pas difficile de voir que si l’on applique cette

construction aux surfaces dans CP 3, on n’obtient rien d’autre qu’un pinceau de Lef-
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schetz qui commute avec la conjugaison complexe standard de CP 3. Cela fournit un

prototype des fibrations de Lefschetz réelles.

Nous définissons une structure réelle sur une variété lisse de dimension 2k de la

façon suivante : c’est une involution qui renverse l’orientation si k est impair, et qui la

préserve si k est pair. Afin de se rapprocher le plus possible de la situation classique de

la conjugaison complexe, on demande en plus que l’ensemble des points fixes, s’il n’est

pas vide, soit de dimension k. Une variété munie d’une structure réelle est appelée une

variété réelle et l’ensemble des points fixés par la structure réelle est appelé la partie

réelle. Bien qu’on ne puisse évidemment pas parler de structure réelle sur une variété

de dimension impaire, nous emploierons le terme réel pour les variétés qui forment le

bord d’une variété réelle.

Une structure réelle sur une fibration de Lefschetz π : X → B est une paire

(cX , cB) de structures réelles, cX : X → X et cB : B → B, vérifiant π ◦ cX = cB ◦ π.
Nous étudions les fibrations de Lefschetz à difféomorphisme équivariant près. Nous

considérons également les fibrations réelles sur S1 qui apparaissent comme bord d’une

fibration de Lefschetz réelle au-dessus d’un disque.

Dans cette thèse, nous trâıtons principalement les cas B = D2 et B = S2. Dans

ces deux cas, nous considérons les structures réelles dont la partie réelle est non vide.

Par abus de notation, les deux structures réelles seront notées conj . En effet, on peut

identifier S2 avec CP 1 de sorte que conj soit la conjugaison complexe standard sur

CP 1. De même, (D2, conj ) s’identifie à un disque de dimension 2 dans CP 1 invariant

par la conjugaison complexe. Dans la plupart des cas, nous supposons que la partie

réelle de (D2, conj ) est orientée. Nous appelons de telles fibrations des fibrations de

Lefschetz réelles dirigées.

Le premier chapitre de cette thèse contient les définitions de base. Dans le cha-

pitre 2, nous étudions les monodromies des fibrations de Lefschetz réelles en termes

des monodromies des fibrations réelles sur S1. Notons que les fibres F± au-dessus de

deux points réels r± de (S1, conj ) héritent d’une structure réelle c± déduite de celle

de X. La principale observation est que ces deux structures réelles sont reliées via

la monodromie f par la relation c+ ◦ c− = f . Cette propriété de décomposition est

fondamentale pour les résultats obtenus dans cette thèse. Dans la dernière section du

chapitre 2, nous donnons une classification des fibrations réelles sur S1 dont le genre
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des fibres est égal à un, en utilisant la propriété de décomposition de leur monodromie.

Le chapitre 3 est consacré à la classification des fibrations de Lefschetz réelles au-

dessus d’un disque et dont une seule fibre est singulière ; on appelle de telles fibrations

des fibrations de Lefschetz réelles élémentaires. Elles servent de modèle local pour les

fibrations de Lefschetz réelles autour d’une fibre réelle singulière. Remarquons que la

compatibilité des structures réelles avec la fibration oblige à ce que la valeur critique

et le point critique d’une fibration de Lefschetz réelle élémentaire soient réels.

Nous travaillons principalement avec des fibrations de Lefschetz marquées, c’est-

à-dire qu’on fixe un point de base b et une identification ρ : Σg → Fb de la fibre

au-dessus de b avec une surface abstraite Σg de genre g. Sur les fibrations réelles de

Lefschetz, on considère deux types de marquages : les R-marquages (b, ρ) où b est un

point réel du bord, et les C-marquages ({b, b̄}, {ρ, ρ ◦ cX}) où {b, b̄} est une paire de

points complexes conjugués du bord. Dans le cas d’un R-marquage, Σg a une structure

réelle c : Σg → Σg obtenue en tirant en arrière la structure réelle induite sur Fb ; on

demande donc que ρ satisfasse la relation cX ◦ ρ = ρ ◦ c. Pour les C-marquages, Fb,

et donc aussi Σg, n’a pas de structure réelle ; cependant, on peut en obtenir une en

tirant en arrière la structure réelle d’une fibre réelle. Ainsi, on obtient une structure

réelle définie à isotopie près.

Choisissons un représentant a ⊂ Σg du cycle évanescent tel que c(a) = a. Notons

[c, a] la classe d’isotopie et {c, a} la classe de conjugaison de la paire (c, a) vérifiant

c(a) = a.

Le théorème principal du chapitre 3 est le suivant :

Proposition 0.0.1. À difféomorphisme équivariant préservant le marquage près, les

fibrations de Lefschetz réelles élémentaires C-marquées dirigées sont déterminées par

la classe d’isotopie [c, a].

À difféomorphisme équivariant près, les fibrations de Lefschetz réelles élémentaires

dirigées sont déterminées par la classe de conjugaison {c, a}.

En examinant les classes {c, a} possibles, on obtient la classification des fibrations

de Lefschetz réelles élémentaires dirigées.

Dans le chapitre 4, nous étendons la classification des fibrations de Lefschetz réelles

élémentaires aux fibrations de Lefschetz réelles sur D2 dont les valeurs critiques sont

toutes réelles. Dans ce but, nous définissons une somme connexe le long des fibres
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de bords pour les fibrations de Lefschetz réelles sur D2. Notons que contrairement à

la somme connexe le long des fibres de bords des fibrations de Lefschetz, la somme

connexe le long des fibres de bords de deux fibrations de Lefschetz réelles n’est pas

toujours définie puisqu’il est nécessaire que les structures réelles sur les fibres se recol-

lent. Nous montrons que pour g > 1, la somme connexe le long des fibres de bord de

deux fibrations de Lefschetz réelles C-marquées de genre g sur D2 est unique, pourvu

qu’elle soit définie. Si g = 1 (auquel cas on parle de fibration de Lefschetz elliptique),

nous obtenons l’unicité de la somme connexe le long des fibres de bords des fibrations

de Lefschetz réelles qui admettent une section réelle.

Soit π : X → D2 une fibration de Lefschetz réelle C-marquée ayant uniquement des

valeurs critiques réelles q1 < q2 < · · · < qn. On découpe D2 en disques (topologiques)

plus petits qui contiennent chacun une seule valeur critique, cf. Figure 1. Soient

r0 = r−, r1, . . . , rn−1, rn = r+ les points réels du bord des petits disques.

x xx
q q q

1 2 3

...
...

b

b

rr = r1
+-0 rr = n

r 2

Fig. 1.

Chaque fibration au-dessus de ces parties est déterminée par la paire [ci, ai] qui

vérifie ci(ai) = ai et ci ◦ ci−1 = tai où ci est la structure réelle issue de celle de la

fibre Fri . Lorsque g > 1, les classes [ci, ai] peuvent se transférer uniquement à Σg.

On obtient ainsi une suite [c1, a1], [c2, a2], . . . , [cn, an] sur Σg qui vérifie ci(ai) = ai

et ci ◦ ci−1 = tai . Cette suite est appelée la châıne de Lefschetz réelle. Dans le

cas g = 1, on peut appliquer la même approche aux fibrations de Lefschetz réelles qui

admettent une section réelle; les structures réelles sont alors déterminées à isotopie près

relativement aux points déterminés par la section. Notons la classe d’isotopie relative

[c, a]∗. La suite [c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗ vérifiant ci(ai) = ai et ci ◦ ci−1 = tai est

appelée la châıne de Lefschetz réelle pointée.
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Théorème 0.0.1. Lorsque g > 1, il y a une correspondance biunivoque entre les

châınes de Lefschetz réelles [c1, a1], [c2, a2], . . . , [cn, an] sur Σg et les classes d’iso-

morphisme de fibrations de Lefschetz réelles C-marquées de genre g dirigées sur D2

ayant seulement des valeurs critiques réelles.

Lorsque g = 1, il y a une correspondance biunivoque entre les châınes de Lefschetz

réelles pointées [c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗ sur Σ1 et les classes d’isomorphisme de

fibrations de Lefschetz réelles C-marquées de genre g dirigées sur D2 ayant une section

réelle et seulement des valeurs critiques réelles.

De plus, dans les deux cas, si la monodromie totale est isotope à l’identité, on

peut étendre la fibration à une fibration sur S2. Nous avons montré dans les deux cas

l’unicité de cette extension.

Un résultat similaire peut être formulé pour les fibrations de Lefschetz qui n’ad-

mettent pas de section réelle. Cependant, la châıne de Lefschetz réelle ne suffit pas

pour le théorème de correspondance, puisque la somme connexe le long des fibres

de bords n’est pas uniquement définie pour ces fibrations. Notons que sur Σ1, pour

certaines structures réelles, un phénomène particulier peut se produire : deux courbes

invariantes peuvent être isotopes sans être isotopes de façon équivariante. Lorsque

l’on recolle deux fibrations de Lefschetz élémentaires le long de fibres réelles où les

cycles évanescents sont de telles courbes, la somme dépend du fait que l’on permute

ou non ces deux cycles lors de l’identification des fibres. Nous marquons un tel point de

recollement si l’on permute les deux cycles. Considérons la châıne de Lefschetz réelle

{c1, a1}, {c2, a2}, . . . , {cn, an} et appelons-la châıne de Lefschetz réelle faible. Nous

marquons la classe de conjugaison {ci, ai} par {ci, ai}R sur la châıne de Lefschetz

réelle faible au-dessus des points marqués. La châıne qui en résulte est appelée la

châıne de Lefschetz réelle faible décorée.

Théorème 0.0.2. Il y a une correspondance biunivoque entre les châınes de Lef-

schetz réelles faibles décorées et les classes d’isomorphisme des fibrations de Lefschetz

elliptiques réelles dirigées sur D2 n’ayant que des valeurs critiques réelles.

Si la monodromie totale est l’identité, on peut considérer l’extension de la fibration

sur D2 à une fibration sur S2. Nous avons montré que cette extension est unique, à

condition que le point à l’infini ne soit pas marqué; s’il l’est, l’extension est uniquement

déterminée par le marquage à l’infini.
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La dernière partie de cette thèse est dévolue à la classification des fibrations de

Lefschetz réelles elliptiques sur S2 n’ayant que des valeurs critiques réelles. Nous

verrons que les fibrations de Lefschetz elliptiques π : X → S2 ayant seulement des

valeurs critiques réelles sont déterminées par leur “partie réelle” πR : XR → S1, où

XR = Fix(cX) et πR = π|Fix(cX). De plus, s’il existe une section réelle, on peut

contrôler les types d’isotopie des structures réelles au-dessus des valeurs régulières

de πR. En codant sur S1 les types des structures réelles, on obtient une décoration.

Nous introduisons un objet combinatoire appelé diagramme de collier motivé par la

décoration de S1.

Comme l’a montré B. Moishezon, [Mo], les fibrations de Lefschetz elliptiques (non

réelles) sont classifiées par le nombre de leurs valeurs critiques. Ce dernier est divisible

par 12 et on note E(n) la classe de fibrations de Lefschetz elliptiques ayant 12n valeurs

critiques. Dans le chapitre 5, nous répondons à la question suivante : pour chaque n,

combien de fibrations réelles n’ayant que des valeurs critiques réelles la fibration E(n)

admet-elle ?

La réponse est donnée à l’aide des diagrammes de collier. Un diagramme de

collier orienté est un cercle orienté appelé châıne sur lequel se trouvent un nombre

fini d’éléments de l’ensemble S = {¤, , >,<}. Les éléments de S sont appelés des

pierres. Deux diagrammes de collier seront identifiés si leurs pierres sont disposée

dans le même ordre. Un exemple de diagramme de collier est donné par la Figure 2.

Fig. 2.

On peut associer une matrice de PSL(2,Z) à chaque pierre de S. Cette matrice

est appelée la monodromie de la pierre. Par définition, la monodromie d’un dia-

gramme de collier est le produit des monodromies des pierres, le produit étant pris

selon l’orientation et relativement à un point de base. Clairement, la monodromie

relativement à un autre point de base est conjuguée à la précédente.

Théorème 0.0.3. Soit n ∈ N. Il y a une correspondance biunivoque entre l’ensemble
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des diagrammes de collier orientés à 6n pierres dont la monodromie est l’identité et

l’ensemble des classes d’isomorphisme de fibrations réelles dirigées E(n) admettant

une section réelle et dont toutes les valeurs critiques sont réelles.

Il y a un algorithme pour compter les diagrammes de collier possibles. Il n’est pas

difficile de voir qu’une fibration de Lefschetz réelle elliptique non dirigée correspond à

deux diagrammes de collier, l’un étant l’image de l’autre dans un miroir. À l’aide de

cet algorithme et en prenant en compte cette symétrie on obtient le résultat suivant

pour n = 1.

Théorème 0.0.4. Il y a exactement 25 classes d’isomorphisme de fibrations réelles

(non-dirigeées) E(1) admettant une section réelle et des valeurs critiques réelles. Les

structures réelles sur E(1) sont présentées sur la Figure 3 sous forme de diagrammes

de collier (non-orienté) des fibrations réelles.

Fig. 3.

En appendice, nous avons montré que parmi les 25 classes d’isomorphismes obte-

nues, il y en a 8 qui ne sont pas algébriques. La démonstration utilise les dessins

d’enfants réels introduits par S. Yu. Orevkov [O2].

En utilisant les diagrammes de collier on a obtenu des exemples interessants, tels

les fibrations de Lefschetz réelles de type E(n) qui ne peuvent pas être decomposées

en une somme de deux fibrations de Lefschetz réelles de types E(n− 1) et E(1).
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Les diagrammes de collier peuvent être adaptés au cas des fibrations n’ayant pas

de section réelle. On doit remplacer chaque pierre de type par une pierre parmi

, , , sans changer la monodromie dans PSL(2,Z). Les diagrammes de collier

ainsi obtenus sont appelés des diagrammes de collier raffinés.

Théorème 0.0.5. Soit n ∈ N. Il y a une correspondance biunivoque entre l’ensemble

des diagrammes de collier raffinés orientés à 6n pierres dont la monodromie est

l’identité et l’ensemble des classes d’isomorphisme de fibrations réelles dirigées E(n)

telles que toutes les valeurs critiques sont réelles.
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Chapter 1

Introduction

The richness of complex manifolds is mainly due to the existence of two important

maps: multiplication by i and complex conjugation. To be able to obtain smooth

manifolds which resemble complex manifolds as much as possible, generalizations of

these maps to smooth even-dimensional manifolds are introduced. The generalization

of multiplication by i is called an almost complex structure and of complex conjugation

is called a real structure.

In this thesis, we study Lefschetz fibrations which admit a real structure. Let us

recall that a Lefschetz fibration of a smooth 4-manifold is a fibration by surfaces such

that only a finite number of fibers are allowed to have a nodal type of singularity.

Lefschetz fibrations naturally appear on complex surfaces in complex projective 3-

space as blow ups of a pencil of planes, generic with respect to surfaces. It is known

that the monodromy of Lefschetz fibrations around a singular fiber is given by a single

(positive) Dehn twist along a simple closed curve (called the vanishing cycle) [K]

and that decompositions of the monodromy (up to Hurwitz moves and conjugation

by an element of the mapping class group) into a product of Dehn twists classify

Lefschetz fibrations over D2. One important property of Lefschetz fibrations is that

they give the topological counterpart of symplectic 4-manifolds (see S. Donaldson [Do],

R. Gompf [GS]).

The study of real Lefschetz fibrations is motivated by the work of S. Yu. Orevkov

[O1] in which he presented a method of reading the (braid) monodromy of a fibration,

π : C → CP 1, of a (complex) curve C (which is invariant under complex conjugation)

9



Chapter 1. Introduction

in CP 2 from the part RP 2 ∩ C → RP 1 where the fibration, π, of C is obtained from

a real pencil of lines in CP 2, generic with respect to C. He observed that the total

monodromy is quasipositive (product of conjugations of positive twists) if the curve

C is algebraic and used this observation to show that certain distributions of ovals in

RP 2 are not algebraically realizable. It is not hard to see that if his construction is

applied to surfaces in CP 3, what we obtain is nothing but a Lefschetz pencil which

commutes with the standard complex conjugation of CP 3. This gives a prototype of

the real Lefschetz fibrations.

We define a real structure on a smooth 2k-dimensional manifold as an orientation

reversing involution if k is odd and an orientation preserving involution if k is even.

We also require that the fixed point set, if it is not empty, has dimension k to make the

situation as similar as possible to that of an honest complex conjugation. A manifold

together with a real structure is called a real manifold and the set of points fixed by

the real structure is called the real part. Although, naturally, we cannot talk about

a real structure on an odd dimensional manifold, we also use the term real for odd

dimensional manifolds which appear as the boundary of real manifolds.

A real structure on a Lefschetz fibration, π : X → B, is a pair, (cX , cB), of real

structures, cX : X → X and cB : B → B, such that π ◦ cX = cB ◦ π. We study

Lefschetz fibrations up to equivariant diffeomorphisms. We assume that fibrations are

relatively minimal (that is none of the vanishing cycles bounds a disc on the fiber)

and that the genus of the regular fibers is at least 1. We consider also real fibrations

over S1 which are boundaries of real Lefschetz fibrations over a disc.

In this thesis, we treat mainly the cases B = D2 and B = S2. In both cases,

we consider real structures which have nonempty real part. By abuse of notation,

we denote both real structures by conj . Indeed, one can identify S2 with CP 1 in a

way such that conj becomes the standard complex conjugation on CP 1. Similarly,

(D2, conj ) can be identified with a 2-disc in CP 1 which is invariant under complex

conjugation. Most of the time, we assume that the real part of (D2, conj ) is oriented.

We call such fibrations directed real Lefschetz fibrations.

The first chapter of the thesis gives some basic definitions. In Chapter 2 we

examine monodromies of real Lefschetz fibrations in terms of monodromies of real

fibrations over S1. Note that there are two real points, r±, of (S1, conj ) and the

10



fibers over them, F±, inherit a real structure, c±, from the real structure of X. The

main observation is that these two real structures are related by the monodromy, f ,

of the fibration: namely, c+ ◦ c− = f . This decomposition property is fundamental

for the results obtained in this thesis, so it is discussed in detail. In the last section

of Chapter 2, we give a classification of real fibrations over S1, whose fiber genus is 1,

using the decomposition property of their monodromy.

Chapter 3 is devoted to the classification of real Lefschetz fibrations over a disc

with a unique nodal singular fiber, we call such fibrations elementary real Lefschetz

fibrations. Such fibrations give a local model for real Lefschetz fibrations around a real

singular fiber. Note that the compatibility of real structures with the fibration forces

the critical value and the critical point of the elementary real Lefschetz fibration to

be real.

We mostly work with marked Lefschetz fibrations. This means that we fix a base

point b and an identification, ρ : Σg → Fb, of the fiber over b with an abstract genus-g

surface, Σg. On real Lefschetz fibrations, we consider two types of markings: R-

marking, (b, ρ), where b is a real boundary point and C-marking, ({b, b̄}, {ρ, ρ ◦ cX}),
where {b, b̄} is a pair of complex conjugate points on the boundary. In the case of

R-marking, Σg has a real structure c : Σg → Σg obtained as the pull back of the

inherited real structure on Fb, so we require that ρ satisfies cX ◦ ρ = ρ ◦ c. For C-

markings, Fb and hence Σg, have no real structure; however, one can obtain a real

structure by pulling back a real structure on a real fiber. This way we obtain a real

structure defined up to isotopy.

Let us choose a simple closed curve, a ⊂ Σg, representing the vanishing cycle on

Σg such that c(a) = a. We call the pair (c, a) with c(a) = a a real code. Two real

codes (c, a) and (c′, a′) are called isotopic if there exists a smooth family of orientation

preserving diffeomorphisms φt : Σg → Σg such that φ0 = id and φ1(a) = a′, c ◦ φ1 ◦
c = c′. We denote by [c, a] the isotopy class of the real code (c, a). Similarly, two

real codes (c, a) and (c′, a′) are called conjugate if there is an orientation preserving

diffeomorphism φ : Σg → Σg such that φ(a) = a′ and φ ◦ c = c′ ◦ φ. The conjugacy

class of the real code is denoted by {c, a}.
The main theorem of Chapter 3 is the following.

Proposition 1.0.2. Up to equivariant diffeomorphisms preserving the marking, di-

11



Chapter 1. Introduction

rected C-marked elementary real Lefschetz fibrations are classified by the isotopy classes,

[c, a].

Up to equivariant diffeomorphisms, directed elementary real Lefschetz fibrations

are classified by the conjugacy classes, {c, a}.

By enumerating possible classes {c, a}, we have obtained the classification of di-

rected elementary real Lefschetz fibrations.

In Chapter 4, we generalize the classification of elementary real Lefschetz fibrations

to a classification of real Lefschetz fibration over D2 whose critical values are all

real. For this purpose we define a boundary fiber sum for real Lefschetz fibrations

over D2. Let us note that unlike the boundary fiber sum of Lefschetz fibrations the

boundary fiber sum of two real Lefschetz fibrations is not always defined since one

needs the compatibility of real structures on fibers to be glued. We have shown that

the boundary fiber sum (when it is defined) of two directed C-marked genus-g real

Lefschetz fibrations over D2 is well-defined if g > 1. In case of g = 1 (in this case we

call the fibration elliptic Lefschetz fibration), the boundary fiber sum is well-defined

provided fibrations admit a real section.

Let π : X → D2 be a C-marked real Lefschetz fibration with only real critical

values, q1 < q2 < · · · < qn. We divide D2 into smaller (topological) discs, each

containing a single critical value (see Figure 1.1). Let r0 = r−, r1, . . . , rn−1, rn = r+

denote the real boundary points of the obtained smaller discs.

x xx
q q q

1 2 3

...
...

b

b

rr = r1
+-0 rr = n

r 2

Fig. 1.1.

Each fibration over such discs is determined by the pair [ci, ai] such that ci(ai) = ai.

And each pair of real structures ci−1, ci are related by the monodromy tai ; ci ◦ ci−1 =
tai where ci is the real structure carried over from the real structure on the fiber Fri
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and ai is the vanishing cycle corresponding to the critical value qi.

If g > 1 the classes [ci, ai] can be carried over to Σg canonically. Thus, we get a

sequence [c1, a1], [c2, a2], . . . , [cn, an] on Σg such that ci(ai) = ai and ci ◦ ci−1 = tai .

We call this sequence the real Lefschetz chain. In the case of g = 1, we can apply

the same idea for real Lefschetz fibrations which admit a real section, then the real

structures are determined up to isotopy relative to the points determined by the

section. Let us denote the relative isotopy class by [c, a]∗. We call the sequence

[c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗ such that ci(ai) = ai and ci ◦ ci−1 = tai the pointed real

Lefschetz chain.

Theorem 1.0.3. If g > 1, there is a one-to-one correspondence between the real

Lefschetz chains, [c1, a1], [c2, a2], . . . , [cn, an] on Σg and the isomorphism classes of

directed C-marked genus-g real Lefschetz fibrations over D2 with only real critical

values.

If g = 1, there is a one to one correspondence between the pointed real Lefschetz

chains, [c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗, on Σ1 and the isomorphism classes of directed

genus-g C-marked real Lefschetz fibrations over D2 with a real section and with only

real critical values.

Moreover, in the both cases, if the total monodromy is isotopic to the identity, one

can extend the fibration to a fibration over S2. We will show that such an extension

is unique in both cases.

A similar result can be obtained for directed real elliptic Lefschetz fibrations which

do not admit a real section. However, for such fibrations there is no canonical way to

carry the classes [ci, ai] to the fiber Σg. Thus, we consider the boundary fiber sum of

non-marked fibrations and work with the conjugacy classes {ci, ai} of real codes. We

see that the boundary fiber sum is not uniquely defined for certain cases and hence

the chain {c1, a1}, {c2, a2}, . . . , {cn, an} of conjugacy classes of real codes, called the

weak Lefschetz chain, is not sufficient for a correspondence theorem.

On Σ1, for certain real structures a special phenomenon may occur: two invari-

ant curves can be isotopic without being equivariantly isotopic. When we glue two

elementary real Lefschetz fibrations at real fibers where the vanishing cycles are such

invariant curves, the boundary sum depends on whether or not we switch the two

such vanishing cycles while identifying the fibers. We mark such a gluing point

13



Chapter 1. Introduction

if we switch the two vanishing cycles. We consider the weak real Lefschetz chain,

{c1, a1}, {c2, a2}, . . . , {cn, an} and mark the real codes corresponding to marked glu-

ing points by {ci, ai}R (where R refers to the rotation exchanging the vanishing cycles).

The resulting chain is called the decorated weak real Lefschetz chain.

Theorem 1.0.4. There exists a one-to-one correspondence between the decorated weak

real Lefschetz chains and the isomorphism classes of directed (non-marked) real elliptic

Lefschetz fibrations over D2 with only real critical values.

(Let us note that if on the weak real Lefschetz chain, none of the real structures

ci has no real component and none of the real codes {ci, ai} is marked then the

corresponding real elliptic Lefschetz fibration admits a real section.)

If the total monodromy is the identity then we can talk about the extension of the

fibration over D2 to a fibration over S2. We show that such an extension is unique, if

the point of infinity does not require a marking; otherwise, the extension is uniquely

determined by the marking of infinity.

The remaining part of the thesis is devoted to the classification of real elliptic

Lefschetz fibrations over S2 with only real critical values. We see that elliptic Lefschetz

fibrations, π : X → S2, with only real critical values are determined by their real locus,

πR : XR → S1, where XR = Fix(cX) and πR : π|Fix(cX). In fact, under the assumption

that there is a real section, one can control the isotopy types of the real structures

over the regular fibers of πR. By encoding the types of the real structure on the fibers

(singular or nonsingular) on S1, we obtain a decoration. We introduce a combinatorial

object called necklace diagrams related to the decorated S1. When the fibration is

directed the associated necklace diagram is naturally oriented.

As was shown by B. Moishezon, [Mo] (non-real) elliptic Lefschetz fibrations are

classified by the number of critical values. The latter is divisible by 12 and one denotes

by E(n) the class of elliptic Lefschetz fibrations with 12n critical values. In Chapter

5, we respond to the following question: how many real structures does the fibration

E(n) admit, for each n, such that all critical values are real? We give the answer to

the above question in terms of necklaces diagrams.

An oriented necklace diagram is an oriented circle, called the necklace chain on

which we have finitely many elements of the set S = {¤, , >,<}. The elements of S

are called the necklace stones. Two necklace diagrams will be considered identical if
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their stones go in the same cyclic order.

An example of an oriented necklace diagram is shown in Figure 1.2.

Fig. 1.2.

There is a way to assign a matrix in PSL(2,Z) to each stone of S. We call such

a matrix the monodromy of the stone. The necklace monodromy is by definition the

product of the monodromies of the stones where the product is taken in accordance

with the orientation and relative to a base point on the necklace chain.

Clearly, the necklace monodromy relative to another base point is conjugate to the

previous one.

Theorem 1.0.5. There exists a one-to-one correspondence between the set of oriented

necklace diagrams with 6n stones whose monodromy is the identity and the set of

isomorphism classes of real directed fibrations E(n), n ∈ N, which have only real

critical values and admit a real section.

A non-directed real elliptic Lefschetz fibration corresponds to a pair of oriented

necklace diagrams, in which one is the mirror image of the other. By using an algo-

rithm which takes into account such symmetry equivalence to enumerate all possible

such necklace diagrams we obtain the following result for n = 1.

Theorem 1.0.6. There exist precisely 25 isomorphism classes of real non-directed

fibrations E(1) having only real critical values and admitting a real section. These

classes are characterized by the non-oriented necklace diagrams presented in Fig-

ure 1.3.

In Appendix, we will show that among the 25 isomorphism classes which we ob-

tain, there are 8 which are not algebraic. The proof uses the real dessins d’enfants

introduced by S. Yu. Orevkov [O2].

Using necklace diagrams, we found some interesting examples. For example, there

are real elliptic Lefschetz fibrations of type E(n) with only real critical values which

15



Chapter 1. Introduction

Fig. 1.3.

can not be decomposed into a fiber sum of a real E(n− 1) and a real E(1) both with

only real critical values. Note that for fibrations (non-real) without real structure we

have E(n) = E(n− 1)#ΣE(1), [Mo].

Necklace diagrams can be modified to cover the case of fibrations without a real

section. Namely, one needs to replace each -type stone by one of , , , without

changing the monodromy in PSL(2,Z). The resulted necklace diagrams are called

refined necklace diagrams. (Refined necklace diagrams whose circle-type stones are all

-type correspond to fibrations admitting a real section.)

Theorem 1.0.7. There is a one-to-one correspondence between the set of oriented

refined necklace diagrams with 6n stones whose monodromy is the identity and the set

of isomorphism classes of directed real fibrations E(n), n ∈ N, whose critical values

are all real.
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Chapter 2

Preliminaries

2.1 Lefschetz fibrations

Throughout the present work X will stand for a compact connected oriented smooth

4-manifold and B for a compact connected oriented smooth 2-manifold.

Definition 2.1.1. A Lefschetz fibration is a surjective smooth map π : X → B such

that:

• π(∂X) = ∂B and the restriction ∂X → ∂B of π is a submersion;

• π has only a finite number of critical points (that is the points where df is

degenerate), all the critical points belong to X \∂X and their images are distinct

points of B \ ∂B;

• around each of the critical points one can choose orientation-preserving charts

ψ : U → C2 and φ : V → C so that φ ◦ π ◦ ψ−1 is given by (z1, z2)→ z1
2 + z2

2.

We will often address a Lefschetz fibration by its initials LF .

Let ∆ ⊂ B denote the set of critical values of π. As a consequence of the definition

above the restriction, π|π−1(B\∆) : π
−1(B \∆)→ B \∆, of π to B \∆ is a fiber bundle

whose fibers are closed oriented surfaces of the same genus; inheriting a canonical

orientation from the orientations of X and B. At critical values, the fibers have nodal

singularities.
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Chapter 2. Preliminaries

When we want to specify the genus of the nonsingular fibers, we prefer calling

them genus-g Lefschetz fibrations. In particular, we will use the term elliptic Lefschetz

fibrations when the genus is equal to one. For each integer g, we will fix a closed

oriented surface of genus g, which will serve as a model for the fibers, and denote it

by Σg.

In what follows we will always assume that a Lefschetz fibration is relatively min-

imal, that is none of its fibers contains a self intersection -1 sphere. This is not

restrictive (if g ≥ 1) since any self intersection -1 sphere can be blown down while

preserving the projection a Lefschetz fibration.

Definition 2.1.2. A marked genus-g Lefschetz fibration is a triple (π, b, ρ) such that

π : X → B is an LF , b ∈ B is a regular value of π (if ∂B 6= ∅ then b ∈ ∂B) and

ρ : Σg → Fb = π−1(b) is a diffeomorphism. (Later on, when precision is not needed,

we will denote Fb simply as F .)

Definition 2.1.3. Two Lefschetz fibrations, π : X → B and π′ : X ′ → B′, are called

isomorphic if there exist orientation preserving diffeomorphisms H : X → X ′ and

h : B → B′, such that the following diagram commutes

X
H

//

π

²²

X ′

π′

²²

B
h

// B′.

Two marked Lefschetz fibrations, say (π, b, ρ) and (π′, b′, ρ′), are called isomorphic

if H,h also satisfy h(b) = b′ and H ◦ ρ = ρ′.

Let Map(S) denote the mapping class group of a compact closed orientable surface

S, that is the group of isotopy classes of orientation preserving diffeomorphisms S → S.

Definition 2.1.4. The monodromy homomorphism µ : π1(B \ ∆, b) → Map(Σg)

of a marked Lefschetz fibration (π, b, ρ) is defined as follows: pick an element γ ∈
π1(B \∆, b), represent it by a smooth map γ̃ : (S1, ∗)→ (B \∆, b), and consider the

pull back γ̃∗(X), which is a fiber bundle over S1 with fibers Σg. This fiber bundle

does not depend on the choice of γ̃ ∈ γ and can be obtained from the trivial bundle

Fb × I over an interval I by identifying both ends by a diffeomorphism fγ : Fb → Fb,
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that is γ∗(X) = Fb× IÁ(fγ(x),0)∼(x,1). The latter diffeomorphism is well defined up to

isotopy and the image of γ is defined as the isotopy class [ρ−1 ◦ fγ ◦ ρ] which is called

the monodromy of π along γ relative to the marking ρ.

Obviously, if ρ : Σg → F is replaced by ρ′ = ρ ◦ φ, where φ ∈ Map(Σg), we get the

monodromy µ′(γ) = φ−1 ◦ µ(γ) ◦ φ, which is φ-conjugate to the previous one.

Therefore, for Lefschetz fibrations without marking the monodromy is defined up

to conjugation.

Let us give an example of LFs obtained by blowing up the pencil of cubics in

CP 2.

Example 2.1.5. Take two generic cubics C1, C2 defined by degree three polynomials

Q1, Q2. Let {p1, . . . , p9} denote the intersection points of C1 and C2.

The pencil t0C1+t1C2, [t0 : t1] ∈ CP 1, defines a projection π : CP 2\{p1, . . . , p9} →
CP 1 where π−1([t0 : t1]) is the cubic t0Q1+ t1Q2 = 0. By blowing up CP 2 at p1, .., p9

we obtain a Lefschetz fibration CP 2#9CP 2 → CP 1 whose nonsingular fibers are

smooth cubics, which are topologically closed genus-1 surfaces, while singular fibers

are nodal cubics. We will denote the manifold CP 2#9CP 2 considered with such a

Lefschetz fibration by E(1). The Lefschetz fibration E(1) that we obtain does not

depend, up to isomorphism, on the choice of C1, C2, due to the fact that the space of

generic pencils of cubics in CP 2 is connected (cf. [KRV]).

We have χ(CP 2#9CP 2) = 12 and χ(Σ1) = 0 while χ(Nodal Σ1) = 1. Therefore,

applying to E(1) the additivity and multiplicativity of the Euler characteristic, we

find that E(1) has 12 singular fibers.

Notice that E(1) is also unique, up to isomorphism, as a marked Lefschetz fibra-

tion.

Definition 2.1.6. Let us take two marked genus-g Lefschetz fibrations, (π : X →
B, b, ρ) and (π′ : X ′ → B′, b′, ρ′), such that ∂B = ∂B′ = ∅. We consider small

neighborhoods of the fibers F and F ′ over b and b′, respectively, and identify them

both with Σg × D2. The fiber sum, X#ΣX
′ → B#B′, is the Lefschetz fibration

obtained by gluing X \ (Σg×D2) and X ′ \ (Σg×D2) along their boundaries by a map

Φ : ∂(Σg×D2)→ ∂(Σg×D2) given by Φ = (id, conj ) where conj stands for the usual

complex conjugation.
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In order to define a fiber sum for LFs without marking, one can pick a diffeo-

morphism φ between two arbitrary chosen regular fibers F and F ′ of π : X → B and

π′ : X ′ → B′ respectively, then we will employ Φ = (φ, conj ), and will proceed in the

same manner as we have done in the definition above. Note that the diffeomorphism

type of the 4-manifold X#ΣX
′ and the fibration depend, in general, on the choice

of the diffeomorphism φ : F → F ′. We denote the fiber sum as X#Σ,φX
′ when the

gluing diffeomorphism φ is not the identity.

Let us take a fiber sum of E(1), n times with itself. The fibration we obtain, E(n) =

#nE(1), has got 12n singular fibers. It follows from the theorem of B. Moishezon and

R. Livne [Mo] that elliptic Lefschetz fibrations over S2 are classified by their number

of singular fibers, which is a multiple of 12. As a consequence, E(n) is well defined up

to isomorphism and each elliptic LFs over S2 is isomorphic to E(n) for suitable n.

Definition 2.1.7. The notion of Lefschetz fibration can be slightly generalized to

cover the case of fibers with boundary. Then X turns into a manifold with corners

and its boundary, ∂X, becomes naturally divided into two parts: the vertical boundary

∂vX which is the inverse image π−1(∂B), and the horizontal boundary ∂hX which is

formed by the boundaries of the fibers. We call such fibrations Lefschetz fibrations

with boundary.

2.2 Real Lefschetz fibrations

Definition 2.2.1. A real structure on a smooth 4-manifold X is an orientation pre-

serving involution cX : X → X, c2X = id, such that the set of fixed points, Fix(cX),

of cX is empty or of the middle dimension.

Two real structures, cX and c′X , are said to be equivalent if there exists an ori-

entation preserving diffeomorphism ψ : X → X such that ψ ◦ cX = c′X ◦ ψ. A real

structure, cB, on a smooth 2-manifold B is an orientation reversing involution B → B.

Such structures are similarly considered up to conjugation by orientation preserving

diffeomorphisms of B.

The above definition mimics the properties of the standard complex conjugation

on complex manifolds. In fact, around a fixed point, every real structure defined as

above, behaves like the complex conjugation.
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We will call a manifold together with a real structure a real manifold and the set

Fix(c) the real part of c.

It is well known that for given g there is a finite number of equivalence classes

of real genus-g surfaces (Σg, c), which can be distinguished by their types and the

number of real components. Namely, one distinguishes two types of real structures:

separating and nonseparating. A real structure is called separating if the complement

of its real part has two connected components, otherwise we call it nonseparating (in

fact, in the first case the quotient surface Σg/c is orientable, while in the second case

it is not). The number of real components of a real structure (note that the real part

forms the boundary of Σg/c), can be at most g+1. This estimate is known as Harnack

inequality [KRV]. By looking at the possible number of connected components of the

real part, one can see that on Σg there are 1+ [ g2 ] separating real structures and g+1

nonseparating ones. Let us also note that, in the case of genus 1, the number of real

components, which can be 0, 1, or 2, is enough to distinguish the real structures.

Definition 2.2.2. A real structure on a Lefschetz fibration π : X → B is a pair of

real structures (cX , cB) such that the following diagram commutes

X
cX

//

π

²²

X

π

²²

B
cB

// B.

A Lefschetz fibration equipped with a real structure is called a real Lefschetz fibration,

and is referred as RLF .
When the fiber genus is 1, we call it real elliptic Lefschetz fibration, or abbreviated

RELF .

Definition 2.2.3. An R-marked RLF is a triple (π, b, ρ) consisting of a real Lefschetz

fibration π : X → B, a real regular value b and a diffeomorphism ρ : Σg → Fb such

that cX ◦ ρ = ρ ◦ c where c : Σg → Σg is a real structure. Let us note that if ∂B 6= ∅
then b will be chosen in ∂B.

A C-marked RLF is a triple (π, {b, b̄}, {ρ, cX ◦ ρ}) including an RLF , π : X → B,

a pair of complex conjugate regular values b, b̄, and a pair of diffeomorphisms ρ :

Σg → Fb, ρ̄ = cX ◦ ρ : Σ̄g → F̄b̄ where Fb, F̄b̄ = cX(Fb) are the fibers over b and b̄,
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respectively. As in the case of R-marking, if ∂B 6= ∅ then we choose b in ∂B. Later

on, when precision is not needed we will denote Fb, F̄b̄ by F, F̄ , respectively.

Two real Lefschetz fibrations, π : X → B and π′ : X ′ → B′ are said to be

isomorphic if there exist orientation preserving diffeomorphisms H : X → X ′ and

h : B → B′, such that the following diagram is commutative

X
H

//

π
²²

X ′

π′

²²

X

cX ??
Ä
Ä
Ä

H
//

π

²²

X ′
cX′

??
ÄÄÄ

π′

²²

B
h

// B′

B
h

//

cB ??
Ä
Ä
Ä

B′.
cB′

??
ÄÄÄ

Two R-marked RLFs, are called isomorphic if they are isomorphic as RLFs,
h(b) = b′, and the following diagram is commutative

F
H

//

cX

²²

F ′

cX′

²²

Σg
ρ′

::tttttρ

ddJJJJJ

c

²²

F
H

// F ′

Σg.
ρ′

::ttttρ

ddJJJJJ

Two C-marked RLFs are called isomorphic if they are isomorphic as RLFs and

the following diagram is well defined and commutative

F
H

//

cX

²²

F ′

cX′

²²

Σg
ρ′

::tttttρ

ddJJJJJ

id

²²

F̄
H

// F̄ ′

Σ̄g.
ρ̄′

::ttttρ̄

ddJJJJJ

Definition 2.2.4. A real Lefschetz fibration π : X → B is called directed if the real

part of (B, cB) is oriented.

For example, if cB is separating then we consider an orientation on the real part

inherited from one of the halves B \ Fix(cB).
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2.2. Real Lefschetz fibrations

Two directed RLFs are isomorphic if they are isomorphic as RLFs with the addi-

tional condition that the diffeomorphism h : B → B preserves the chosen orientation

on the real part.

Example 2.2.5. The construction given in Example 2.1.5 can be made equivariantly

to obtain an RLF . Namely, we pick out two generic real cubics C1, C2 in (CP 2, conj)

given by real degree three polynomials Q1, Q2 and consider, following Example 2.1.5,

the associated elliptic Lefschetz fibration CP 2#9CP 2 → CP 1. The set of 9 blown up

points and the fibration are clearly conj-invariant. In this way we obtain a real E(1).

Note that unlike in the complex case the real fibration does depend on the choice of

real cubics C1, C2 already since any even number of the 9 blown up points can happen

to be imaginary.

The fiber sum of two directed R-marked RLFs is defined as the fiber sum of two

marked LFs. Notice that by definition the gluing diffeomorphism is equivariant as

soon as D2 is chosen equivariant. Evidently, the ultimate RLF is directed.

For RLFs without marking, one can start from choosing equivariantly diffeomor-

phic regular real fibers and then follow the construction with markings.

Remark 2.2.6. The construction of Example 2.2.5 can be applied to pencils of curves

of arbitrary degree d. In this way, we obtain RLFs over CP 1 ∼= S2 with regular fibers

diffeomorphic to a genus g = (d−1)(d−2)
2 surface.

Definition 2.2.7. Let π : X → B be an LF . We define the conjugate LF as the

fibration π̄ : X → B̄ which coincides with π as a map and differs from the initial LF
only by changing the orientation of the base and the fibers.

To introduce a conjugate of a marked LF , we preselect an orientation reversing

diffeomorphism j : Σg → Σg and define the conjugate marked LF as (π̄, b, ρ ◦ j).

Remark 2.2.8. It is obvious that two conjugate Lefschetz fibrations have the same

set of critical points and critical values. Indeed, let ψ : U → C2 and φ : V → C be the

local charts of an LF such that φ ◦ π ◦ ψ−1 is (z1, z2)→ z1
2 + z2

2. Then local charts

of the conjugate LF can be chosen as conj ◦ ψ : U → C̄2 and conj ◦ φ : V → C̄ with

(z̄1, z̄2)→ z̄21 + z̄22 .

Definition 2.2.9. An LF is called weakly real if it is equivalent to its conjugate,

or in other words if there exist an orientation reversing diffeomorphism, h, of B and

23



Chapter 2. Preliminaries

an orientation preserving diffeomorphism, H, of X such that the following diagram

commutes

X
H

//

π

²²

X

π

²²

B
h

// B̄.

In particular, every RLF is weakly real. At this point, one can naturally doubt

if the converse is true or not. In case of g = 1, a partial answer will be given in

Section 3.7.
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Chapter 3

Factorization of the monodromy

of real Lefschetz fibrations

3.1 Fundamental factorization theorem for real Lefschetz

fibrations

We will discuss below decomposability of the monodromy of real Lefschetz fibrations

over a 2-disc into a product of two involutions, presenting the real structures of the

two real fibers. This is a well-known fundamental fact, which we generalize to weakly

real Lefschetz fibrations in Theorem 3.1.2. The restriction of a Lefschetz fibration to

the boundary of the 2-disc is a usual fibration over a circle, and it will be convenient

to extend the terminology from the previous chapter to such fibrations.

More precisely, let π : Y → S1 be a fibration whose fiber is a compact connected

oriented smooth 2-manifold F . Shortly, such π will be called an F -fibration. In

particular, when the genus of F is equal to 1, we call π an elliptic F -fibration

Definition 3.1.1. An F -fibration π : Y → S1 is called weakly real if there is an

orientation preserving diffeomorphism H : Y → Y which sends fibers into fibers

reversing their orientations. If H2 = id, then H will be called a real structure on the

F -fibration Y → S1. An F -fibration equipped with a real structure will be called real.

Note that H induces an orientation reversing diffeomorphism hS1 : S
1 → S1 such
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

that the following diagram commutes

Y
H

//

π

²²

Y

π

²²

S1
h
S1

// S1.

It is not difficult to see that the set of orientation reversing involutions form a

single conjugacy class in the diffeomorphism group of S1 (the crucial observation is

that any such involution has precisely two fixed points). So, any real F -fibration is

equivariantly isomorphic to an F -fibration whose involution hS1 is standard. Let it

be the complex conjugation cS1 : S
1 → S1, z 7→ z̄, z ∈ S1 ⊂ C.

In the case of a weakly real F -fibration, hS1 may be not an involution, however, it

also has precisely two fixed points and can be changed into an involution by an isotopy.

It is not difficult to see that this isotopy can be lifted to an isotopy of H. Thus, by

modification of H we can always make hS1 an involution. So, it is not restrictive for

us to suppose always that hS1 = cS1 both for real and weakly real F -fibrations.

The restrictions of H to the invariant fibers F± = π−1(±1) will be denoted h± :

F± → F±. In the case of real F -fibrations, we will prefer to use notation cY for the

involution H, and c± for the involutions h±.

It is well known that any F -fibration π : Y → S1 is isomorphic to the projection

Mf → S1 of a mapping torus Mf = F × IÁ(f(x),0)∼(x,1) of some diffeomorphism

f : F → F . More precisely, if we fix a particular fiber F = Fb = π1(b), b ∈ S1, then

an isomorphism φ : Mf → Y can be chosen so that F × 0 and F × 1 are identified

with the fiber Fb, so that x× 0 7→ x and x× 1 7→ f(x).

An F -fibration π determines a diffeomorphism f up to isotopy and thus provides a

well-defined element in the mapping class group [f ] ∈ Map(F ) called the monodromy

of π (relative to the fiber F = Fb). A map f representing the class [f ] will be also

often called monodromy, or more precisely, a monodromy map.

In some cases, we fix a marking ρ : Σg → Fb. Then the diffeomorphism ρ−1 ◦f ◦ρ :

Σg → Σg (the pull-back of f) as well as its isotopy class [ρ−1 ◦ f ◦ ρ] ∈ Map(Σg) will

be called the monodromy of π relative to the marking ρ.

In what follows, we choose the point b in the upper semi-circle, S1
+. The restriction

Y+ = π−1(S1
+)→ S1

+ of π admits a trivialization φ+ : Y+ → F ×S1
+ which is identical

on the fiber F = Fb. This allows us to consider the pull-back of c± via φ, namely,
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3.1. Fundamental factorization theorem for real Lefschetz fibrations

the two involutions x 7→ φ+(c±(φ
−1
+ (x×±1))) on the same fiber F . We will preserve

notation c± for these involutions.

Theorem 3.1.2. Let π : Y → S1 be a weakly real F -fibration with a distinguished fiber

F = Fb, b ∈ S1
+. Then the two product diffeomorphisms of the fiber F , (h+)

−1 ◦ h−,
and h+ ◦ (h−)−1 are isotopic and describe the monodromy of π relative to the fiber

F . In particular, if π is a real F -fibration, then the monodromy can be factorized as

f = c+ ◦ c−.

Proof. Consider a trivialization Y− → F ×S1
− of the restriction Y− = π−1(S1

−)→
S1
− of π over the lower semi-circle, S1

−, which is the composition of φ+ ◦ H : Y− →
S1
+ × F , with the map F × S1

+ → F × S1
−, (x, z) 7→ (x, cS1(z)).

b

x

x

x xx
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x
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x

x

x
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+-

+

-

S1

S1

Fig. 3.1.

If S1 is split into several arcs and a fibration over S1 is glued from trivial fibrations

over these arc, then the monodromy is clearly the product of the gluing maps of the

fibers over the common points of the arcs, ordered in the counter-clockwise direction

beginning from a marked point b ∈ S1. In our case, the arcs are S1
+, S

1
−, their com-

mon points follow in the order −1, +1, and the corresponding gluing maps, are h−1−

and h+. This gives monodromy h+ ◦ (h−)−1. If we consider another trivialization

Y− → F × S1
− replacing in its definition H by H−1, then the gluing maps will be h−

and h−1+ , and the monodromy is factorized as (h+)
−1 ◦ h−. 2

Remark 3.1.3. It follows from Theorem 3.1.2 that the diffeomorphisms h−1 ◦ f ◦ h
as well as h ◦ f ◦ h−1, where h stands either for h+, or for h−, are all isotopic to the
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

inverse f−1 of the monodromy f of a weakly real F -fibration π (note that f−1 is the

monodromy map of the conjugate F -fibration). In particular, if π is a real F -fibration,

then f−1 = c+ ◦ f ◦ c+ = c− ◦ f ◦ c−.

Corollary 3.1.4. Consider a weakly real F -fibration π : Y → S1, fix a trivialization of

π+ : Y+ → S1
+, and consider the associated diffeomorphisms h± : F → F . Let h stands

for any of the four maps h±, h
−1
± . Then there exists a diffeomorphism f : F → F

representing the monodromy class [f ] ∈ Map(F ) of π, such that f−1 = h ◦ f ◦ h−1.
In particular, if F -fibration π is real, then one can choose a monodromy map f

such that f−1 = c ◦ f ◦ c.

Definition 3.1.5. A diffeomorphism f : F → F as well as its isotopy class [f ] ∈
Map(F ) will be called real (weakly real) if it is a monodromy of a real (weakly real,

respectively) F -fibration.

Proposition 3.1.6. An F -fibration is real (weakly real) if and only if its monodromy

f is real (weakly real).

Proof. We give the proof for real F -fibrations; the proof for weakly real ones is

analogous. Necessity of the condition in the Proposition is trivial. For proving the

converse, let π : Y → S1 be an F -fibration with the monodromy class [f ] ∈ Map(F ),

and f its representative such that f−1 = c ◦ f ◦ c, where c is some real structure on F .

Presenting Y as F × IÁ(f(x),0)∼(x,1), we obtain a well-defined involution cY : Y → Y

induced from the involution (x, t) 7→ (c(x), 1 − t) in F × I. It preserves the fibration

structure and acts as c and f◦c on the real fibers F× 1
2 and F×0 = F×1 respectively. 2

3.2 Homology monodromy factorization of elliptic F -fib-

rations

We will characterize all real elliptic F -fibrations by answering to the question: which

elements in Map(F ) are real in the case of torus, F = T ?

It is well known that Map(T ) = SL(2,Z), due to the fact that every diffeomor-

phism f : T → T is isotopic to a linear diffeomorphism. The latter diffeomorphisms

by definition are induced on T = R2/Z2 by a linear map R2 → R2 defined by a
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3.2. Homology monodromy factorization of elliptic F -fibrations

matrix A ∈ SL(2,Z). Note that we can naturally identify T = H1(T,R)/H1(T,Z),

and interpret matrix A as the induced automorphism f∗ in H1(T,Z). The latter au-

tomorphism is called the homology monodromy. Since isotopic diffeomorphisms have

the same homology monodromy in H1(T,Z), we obtain well defined homomorphisms

Map(T ) → Aut+(H1(T,Z)) → SL(2,Z) which are in fact isomorphisms (here Aut+

stand for the orientation preserving automorphisms).

Let a denote the simple closed curve on T represented by the equivalence class of

the horizontal interval I×0 ⊂ R2, and b is similarly represented by the vertical interval

0× I. We have a ◦ b = 1 hence, the homology classes represented by these curves are

integral generators of H1(T,Z). The mapping class group of T is generated by the

Dehn twists ta and tb, which can be characterized by their homology monodromy

homomorphism matrices ta∗ =
(

1 0

1 1

)

, and tb∗ =
(

1 −1

0 1

)

.

Therefore, for elliptic Lefschetz fibrations, the question of characterization of real

monodromy classes [f ] ∈ Map(T ) can be interpreted as the question on the decompos-

ability of their homology monodromy f∗ ∈ SL(2,Z) into a product of two linear real

structures. The latter structures by definition are linear orientation reversing maps

of order 2 defined by integral (2× 2)-matrices. Such decomposability is equivalent to

the property that f∗ is conjugate to its inverse by a linear real structure. Hence a

necessary condition for a matrix A to be real is that both A and A−1 lies in the same

conjugacy classes in the group GL(2,Z).

Recall that there are three types of real structures on T distinguished by the

number of their real components: 0, 1, or 2. We will say that a real structure on

T is even if it has 0 or 2 components, and odd if it has 1 component. Note that

the automorphisms of H1(T,Z) induced by even real structures are diagonalizable

over Z, namely, their matrices are conjugate to
(

1 0

0 −1

)

in GL(2,Z). So, we cannot

determine if the number of components 0 or 2 knowing only the matrix representing the

homology action of the real structure. The homology action of an odd real structure

is presented by a matrix conjugate to
(

0 1

1 0

)

.
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

3.3 The modular action on the hyperbolic half-plane

Let C2 be considered as the vector space of 2 × 1 matrices over C. Then a matrix

A =
(

a b

c d

)

in GL(2,Z) acts on C2 from the left as matrix multiplication.

(

a b

c d

)(

z1

z2

)

=

(

az1 bz2

cz1 dz2

)

This action can be extended to CP 1 = C2 \ {(0, 0)}Á(z1,z2)∼(λz1,λz2) since

(

a b

c d

)(

λz1

λz2

)

=

(

aλz1 λbz2

cλz1 λdz2

)

= λ

(

az1 bz2

cz1 dz2

)

.

Let us identify CP 1 ∼= {(z1, z2) ∈ C2, z2 6= 0} ∪ {∞} ∼= C ∪ {∞} and rewrite the

action of GL(2,Z). We obtain a linear fractional transformation z → az+b
cz+d where z =

z1
z2
. In particular, if A ∈ SL(2,Z), then the transformation preserves the orientation

of C and takes R ∪ {∞} to itself preserving its orientation. Hence, it gives rise to

a diffeomorphism of the upper half plane H which can be seen as a model for the

hyperbolic plane where the geodesics are the semi-circles centered at a real point or

vertical half-lines which can also be considered as arcs of infinite radius. By identifying

the upper half plane with lower half plane by complex conjugation, one extends the

action of SL(2,Z) to an action of GL(2,Z). The standard fundamental domain of the

action is the set {z| |Re(z)| ≤ 1
2 , |z| ≥ 1} which is shown in the Figure below.

0-1 1-1/2 1/2
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Fig. 3.2. The upper half plane model of hyperbolic space, and the standard fundamental

domain of SL(2,Z).
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3.4. The Farey Tessellation

3.4 The Farey Tessellation

Let us identify the upper half plane model with the Poincaré disk model D. We will

consider the disk D together with its boundary R ∪∞ and define a tessellation on D

as follows:

Set∞ as 1
0 and consider the two fractions 0

1 and 1
0 , spot them on D as the south and

the north poles respectively and connect them with a line which will be the vertical

diameter. Consider their mediant 0+1
1+0 = 1

1 and connect each of them with a geodesic

to the mediant. Apply the same to the fractions { 01 , 11} and {11 , 10}. Iterating this

process one obtains a tessellation of the right semi-disk. By taking the symmetry one

extends the tessellation to D. (See Figure 3.3).
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Fig. 3.3. Tessellation of D.

In the literature this tessellation is called the Farey tessellation. Let us denote

the disk together with the Farey tessellation by DF . Note that Farey tessellation is

a tessellation of D by ideal triangles ( i.e. triangles with vertices on the boundary

DF . In fact, the set of vertices of the triangles is exactly Q ∪ {∞}. Moreover, two

fractions m1
n1
, m2
n2

are connected by a line iff m1n2 −m2n1 = ±1. Hence the action of

GL(2,Z) on D induces an action on DF which is transitive on the geodesics of DF.

Only ±I acts as the identity hence the modular group PGL(2,Z) = GL(2,Z)/± I is

the symmetry group of DF where the subgroup PSL(2,Z) = SL(2,Z)/± I gives the

orientation preserving symmetries. In what follows we denote by Γ the triangle with

vertices {0, 1,∞}. Note that Γ splits in 3 copies of a fundamental region.
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

3.5 Elliptic and parabolic matrices

The fixed points of the modular action of a matrix A ∈ PSL(2,Z), A 6= I, in DF are

solutions of z = az+b
cz+d . This gives a quadratic equation cz2 + (d− a)z− b = 0 with the

discriminant (d− a)2+4bc = (d− a)2+4(ad− 1) = (a+ d)2− 4, and we have 3 cases.

If the trace |tr(A)| < 2 then the discriminant is negative and the modular action is a

rotation around an imaginary point (an interior point of DF ). Such matrices are called

elliptic. If |tr(A)| = 2, then the discriminant vanishes, and A acts as a translation

with one fixed rational point, d−a2 (on the boundary of DF ). Such matrices are called

parabolic. The hyperbolic matrices have |tr(A)| > 2 and define a translation of DF

with two fixed quadratically irrational real points (on the boundary of DF ).

Elliptic Matrices: As mentioned above an elliptic matrix, A ∈ PSL(2,Z) act

on DF as rotation around a point in the interior of DF . The center of the rotation

belongs to one of the triangles of the tessellation. Without loss of generality let us

assume that the fixed point belongs to the triangle Γ. If the fixed point belongs to

an edge of Γ, then A rotates Γ by an angle π. The other possibility is rotation by

angle ±2π
3 around the center of Γ. Note that the pair of rotations by angles ± 2π

3 are

conjugate to each other via an orientation reversing matrix from PGL(2,Z).

Since PGL(2,Z) acts transitively on the triangles of the tessellation rotation by π

around the center of an edge of Γ and rotation by 2π
3 around the center of Γ defines

the conjugacy classes in PGL(2,Z) of elliptic matrices of PSL(2,Z).

0/1

1/0
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3/1
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2/3
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-1/2

-2/3

-1/3

.π.

0/1

1/0

1/1

2/1

1/2

3/1

3/2

2/3

1/3

-2/1

-1/1

-3/1

-3/2

-1/2

-2/3

-1/3

.π/3

Fig. 3.4. Modular actions of elliptic matrices, Eπ,E 2π
3
.

With respect to the triangle Γ, we can consider following matrices representing

these two conjugacy classes. Eπ =
(

0 1

−1 0

)

, E 2π
3

=
(

0 1

−1 1

)

.
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3.6. Hyperbolic matrices

Each matrix A in PSL(2,Z) defines two matrices ±A in SL(2,Z). It is not hard to

see that the matrices ±Eπ are conjugate to each other via reflection with respect to the

edge containing the fixed point while ±E 2π
3

are not, simply by the fact that they have

different traces. Hence, there are three conjugacy classes in GL(2,Z), Eπ,±E 2π
3

, of

matrices in SL(2,Z) where E 2π
3

gives the clockwise rotation while −E 2π
3

is conjugate

to the clockwise rotation of DF with respect to the center of the triangle Γ.

Parabolic Matrices: The fixed point of the action of a parabolic matrix in

PSL(2,Z) is rational, thus it is a common vertex of an infinite set of triangles of DF .

Since PGL(2,Z) acts transitively on the rational points, it is not restrictive to assume

that the fixed point of the translation is 0.

0/1

1/0

1/1

2/1

1/2

3/1

3/2

2/3

1/3

-2/1

-1/1

-3/1

-3/2

-1/2

-2/3

-1/3 .

Fig. 3.5. Modular actions of parabolic matrices Pn.

Hence, a parabolic element can shift the triangle Γ by arbitrary number n triangles

to the right or to the left(Figure 3.5) fixing 0. The left shift is conjugated to the right

shift by the reflection with respect to the vertical line. Hence the equivalence classes in

PGL(2,Z) are determined by the number n of shifts. Such a shift can be represented

by the matrix Pn =
(

1 0

n 1

)

, n ∈ N.
The matrix Pn ∈ PSL(2,Z) corresponds to matrices ±Pn ∈ SL(2,Z). Note that

±Pn can not be in the same conjugacy class since they have different traces. Thus the

conjugacy classes in GL(2,Z) of parabolic matrices in SL(2,Z) are determined by the

integer ±n. A representative of conjugacy classes can be chosen as ±
(

1 0

n 1

)

, n ∈ N.

3.6 Hyperbolic matrices

A hyperbolic matrix A ∈ PSL(2,Z) acts on DF as translation fixing two irrational

points. The geodesic (a semicircle), lA, connecting these fixed points, oriented in the
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

direction of translation, remains invariant under the translation, so A preserves also

the set of the triangles of DF which are cut by lA.
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-2/3
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.

..

invariant
geodesic

Fig. 3.6. Modular action of a hyperbolic matrix.

With respect to the orientation of lA, such triangles are situated in two different

ways: a set of triangles with a common vertex lying on the left of lA followed by a set

of triangles with common vertex lying on the right of lA, see Figure 3.7.
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Fig. 3.7. Periodic pattern of the truncated triangles of the Farey tessellation.

Let us label right and left triangles by R and L, respectively. Then we encode

the arrangement of left and right triangles with respect to lA as an infinite word,

. . . LL . . . LRR . . . RLL . . . L . . ., of 2 letters. This word is called the cutting word

of lA. Let us fix a point p at the intersection of lA with an edge separating two

types of triangles. Relative to this point, we obtain a sequence, (a1, a2, a3, . . .)p,

from the cutting word where a2i−1 stands for the number of consecutive triangles

of one type while a2i, i = 1, 2, . . . is the number of consecutive triangles of the

other type. For example, if the cutting word with respect to p reduced to the word

LL . . . L
︸ ︷︷ ︸

a1

RR . . . R
︸ ︷︷ ︸

a2

LL . . . L
︸ ︷︷ ︸

a3

. . . = La1Ra2La3 . . ., then we obtain (a1, a2, . . .)p. This se-
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3.6. Hyperbolic matrices

quence is called the cutting sequence relative to the point p.

Left and right triangles form a periodic pattern and the action of A is a shift by

the period, so the cutting sequence has a period of even length. Note that choice

of the point p is not canonical, hence we can encode the period only as a cycle,

[a1a2 . . . a2n−1a2n]A, which we call the cutting period-cycle associated to the matrix A.

Because of the fact that PGL(2,Z) is the full symmetry group of DF , the cut-

ting period-cycle of a hyperbolic matrix A ∈ PSL(2,Z) gives the complete invari-

ant of the conjugacy class in PGL(2,Z) of A. In other words, two matrices A,B ∈
PSL(2,Z) are in the same conjugacy class in PGL(2,Z) if and only if [a1a2 . . . a2n]A =

[aσ(1)aσ(2) . . . aσ(2n)]B for a cyclic permutation σ. Hence we will denote the conjugacy

classes in PGL(2,Z) of hyperbolic matrices of PSL(2,Z) by the cycle [a1a2 . . . a2n]

(defined up to cyclic ordering).

It can be seen geometrically that with respect to the triangle Γ a matrix repre-

senting a translation corresponding to the cutting period-cycle [a1, a2, . . . , an] can be

chosen as the following product of parabolic matrices.

(

1 a1

0 1

)(

1 0

a2 1

)

· · ·
(

1 a2n−1

0 1

)(

1 0

a2n 1

)

.

For the sake of simplicity, let us denote U =
(

1 1

0 1

)

and V =
(

1 0

1 1

)

. Then

the above product is written as Ua1V a2 . . . V a2n . Note that U is conjugate to V in

PGL(2,Z) but not in PSL(2,Z).

Let us note that in certain cases, namely if lA intersects the vertical line of DF ,

(since the action of PGL(2,Z) is transitive on the geodesics of DF , up to conjugation

this property is always satisfied), the cutting sequence of lA with respect to the point

of intersection of lA with the vertical line is related to the continued fraction expansion

of the fixed point, ξ, which is the “end point” of lA with respect to the orientation.

The corresponding theorem is due to C. Series [S1, S2].

Theorem 3.6.1 ([S1, S2]). Let x > 1, and let l be any geodesic ray joining some

point p on the vertical line of DF to x, oriented from p to x. Suppose that cutting

word of l with respect to p is La1Ra2La3 . . .. Then x = a1 +
1

a2+
1

a3+···

.

Note that if 0 < x < 1 then the sequence starts with R and x = 1
a1+

1

a2+
1

a3+···

.

If x < 0 everything applies with x replaced by −x and with R and L interchanged.
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

A matrix A ∈ PSL(2,Z) corresponds to ±A ∈ SL(2,Z). Since ±A have different

traces the cutting period-cycle [a1a2 . . . a2n]A, together with the sign determine the

conjugacy of ±A in GL(2,Z). A representative of the conjugacy classes of ±A can be

chosen as ±Ua1V a2 . . . V a2n .

3.7 Real factorization of elliptic and parabolic matrices

Let us first recall that the modular action of linear real structures
(

1 0

0 −1

)

,
(

0 1

1 0

)

on the hyperbolic plane D is z 7→ −z̄ and z 7→ 1
z̄
respectively. Geometrically, these

are reflections with respect to the vertical and, respectively, the horizontal lines, see

Figure 3.8. In particular, the first reflection takes our basic triangle Γ with vertices

{0, 1,∞} to the triangle with vertices {0,−1,∞}, and the second one takes Γ to itself.

0/1

1/0

1/1

2/1

1/2

3/1

3/2

2/3

1/3

-2/1

-1/1

-3/1

-3/2

-1/2

-2/3

-1/3

Fig. 3.8. Modular actions of linear real structures.

Theorem 3.7.1. Every elliptic and parabolic matrices in SL(2,Z) is a product of two

linear real structures.

Proof. The explicit real decomposition for each conjugacy class of elliptic matrices

is given below.

E 2π
3

=

(

0 1

−1 1

)

=

(

1 0

1 −1

)(

0 1

1 0

)

−E 2π
3

∼=
(

−1 1

−1 0

)

=

(

1 −1
0 −1

)(

0 1

1 0

)

Eπ =

(

0 1

−1 0

)

=

(

1 0

0 −1

)(

0 1

1 0

)

.
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Figure 3.9 illustrates geometrically the above decompositions in terms of the cor-

responding modular action of the matrices.
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3 2 1

3 2 3

4�2 3

3 2 4
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7 3 2 5
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Fig. 3.9. Decompositions of modular actions of elliptic matrices.

A real decomposition for each conjugacy class of parabolic matrices can be given

as follows.

Pn =

(

1 0

n 1

)

=

(

1 0

n −1

)(

1 0

0 −1

)

−Pn =

(

−1 0

−n −1

)

=

(

1 0

n −1

)(

−1 0

0 1

)

.

2

Example 3.7.2. Figure 3.10 shows the real decomposition of the modular action of

matrices
(

1 0

n 1

)

for n = 1, 2.
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Fig. 3.10. Decompositions of modular actions of parabolic matrices P1, P2.
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

3.8 Criterion of factorizability for hyperbolic matrices

Lemma 3.8.1. If the cutting period-cycle of a hyperbolic matrix A is [a1a2 . . . a2n]A,

then the cutting period-cycle of A−1 is [a2na2n−1 . . . a1]A−1.

Proof. Note that lA = lA−1 with opposite orientation. So, the cutting word of

A−1 can be obtained from the cutting word of A by taking the mirror image of the

word and interchanging L with R. Interchanging L and R does not effect the cutting

period-cycle, hence the cutting period-cycle of A−1 is the reverse [a2na2n−1 . . . a1]A−1

of the cutting period-cycle [a1a2 . . . a2n] of A. 2

Definition 3.8.2. A finite sequence (a1a2 . . . ak) is called palindromic if it is equal to

the reversed sequence (akak−1 . . . a1). We call k the length of the sequence.

Definition 3.8.3. A cutting period-cycle is called bipalindromic if there is a cyclic

permutation of it such that the permuted period can be subdivided into two palin-

dromic sequences.

In particular, if the cutting period-cycle is subdivided into two palindromic se-

quences of odd length (even length) we call it odd-bipalindromic (respectively, even-

palindromic).

For example, if the period [1213] is odd-bipalindromic, while the period [1122] is

even-bipalindromic.

If A−1 = Q−1AQ for some Q ∈ PGL(2,Z) then by Lemma 3.8.1 we get that

[aσ(1), aσ(2), . . . , aσ(2n)] = [a2n, a2n−1, . . . , a1] for some cyclic permutation σ. This

implies that the cutting period-cycle [a1a2 . . . a2n] is bipalindromic.

Note that when the cutting period-cycle is odd-bipalindromic then the symmetry

of palindromic pieces lifts to a symmetry of left/ right triangles corresponding to

cutting period-cycle. This is not true for even-bipalindromic periods. For example,

for [1213] we have 121 ∼ LR2L = LRRL and 3 ∼ R3 = RRR while for [1122] we have

11 ∼ LR and 22 ∼ L2R2 = LLRR.

Theorem 3.8.4. A hyperbolic matrix A is a product of two linear real structures if

and only if its cutting period-cycle [a1a2 . . . a2n]A is odd-bipalindromic.
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Lemma 3.8.5. Let A ∈ PSL(2,Z) such that A−1 = Q−1AQ for some Q ∈ PGL(2,Z)
and let lA be the geodesic invariant under the action of A. Then Q(lA) = lA.

Proof. Clearly, if A(lA) = lA then A−1(lA) = lA. Hence,

A−1(lA) = Q−1AQ(lA)⇔ Q(lA) = A(Q(lA)).

By the uniqueness of the invariant geodesic we get Q(lA) = lA. 2

Lemma 3.8.6. Let A,Q, lA as above. If the cutting period-cycle [a1a2 . . . a2n]A of A

is even-bipalindromic, then Q is orientation preserving.

Proof. By Lemma 3.8.5 we have Q(lA) = lA, hence Q preserves triangles meeting

lA. The action of Q on DF is a linear fractional transformation, so it preserves the

angles. An analysis on the angles at meeting points of lA and the edges of the triangles

will forbid the existence of the orientation reversing map in the case that the cutting

period-cycle is even-bipalindromic. Let us assume that the cutting period-cycle has

the form

[a1a2 . . . akak . . . a2a1
︸ ︷︷ ︸

P

a′1a
′
2 . . . a

′
sa
′
s . . . a2a

′
1

︸ ︷︷ ︸

P ′

]

where s+k = n and P and P ′ are two palindromic pieces. Substituting the pieces P, P ′

to the cutting sequence we obtain a sequence of P and P ′ of the form PP ′PP ′ . . ..

Clearly, the action of the matrix A on the sequence we obtain, corresponds to a shift

by two: it takes P to P , P ′ to P ′. Let us call edges which separate the triangles

corresponding to P from the triangles corresponding to P ′ as boundaries. There are

two types of boundaries: if we go in the direction of translation along lA we encounter

boundaries where we pass from P to P ′ and boundaries where we pass from P ′ to P .

Let us denote such boundaries by ei and e
′
i respectively.

Each triangle of DF which is cut by lA splits into two pieces one of which is a

triangle. Let τi (τ
′
i) be triangles having one edge ei (e

′
i, respectively) and obtained as

the union of triangle-pieces of triangles of DF with a common vertex of one side of lA,

see Figure 3.11. Let αi, (α
′
i) be the interior angles of τi (τ

′
i , respectively) between the

edges ei (e
′
i, respectively) and lA. Let βi and β

′
i be the other interior angles of τi and

τ ′i corresponding to edges on lA.
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

Note that since A shift triangles by the period PP ′, A takes αi to αi+1 (similarly

α′i to α
′
i+1). Hence all αi (similarly all α′i) are equal. Let α = αi for all i (and α

′ = α′i

for all i.)
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3/1
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Fig. 3.11.

Moreover, there is an elliptic matrix in the conjugacy classes of Eπ which fixes the

point of intersection of lA with the middle edge of P or P ′(such edge exists since the

pieces have even length). Such matrix interchanges the edges ei to e
′
i. Hence α = α′.

(In the same way we obtain β = βi = β′i for all i.)

P

α αα

P'

e e' '

Fig. 3.12.

Let us assume that α < π
2 . (If it is not so, we can replace α with β. Being two

interior angles of a triangle, α and β can not be both grater then π
2 .)

Let us chose an orientation of DF by specifying (v1, v2) where v1 is a tangent vector

of lA and v2 is the tangent vector of ei or e
′
i such that the angle α between v1 and

v2 is α < π
2 , see Figure 3.13. The proof follows from the following observation. The

matrix Q takes (v1, v2) to itself since it preserves lA and the set of boundaries of P

and P ′ hence the angles between them. However, an orientation reversing map can

not preserve the angle both α < π
2 between the vectors (v1, v2) and the vectors at the

same time.2
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Fig. 3.13.

Proof of the Theorem 3.8.4 (⇒) The matrix A is a product of two liner

real structures, which implies that the cutting period-cycle is odd-bipalindromic by

Lemma 3.8.6.

(⇐) If the cutting period-cycle is odd-bipalindromic, then up to cyclic ordering,

the period cutting-cycle has two palindromic pieces of odd length. Let us assume that

the cutting period-cycle is of the form

[a1a2 . . . akak+1ak . . . a2a1a
′
1a
′
2 . . . a

′
sa
′
s+1a

′
s . . . a

′
2a
′
1]

where (2k+1)+ (2s+1) = 2n. Then for some Q ∈ PGL(2,Z), we have B = Q−1AQ

such that B = Ua1V a2 . . . Ua2V a1Ua
′
1V a′

2 . . . Ua
′
2V a′

1 . Matrices Uai and V ai have the

following real decompositions,

Uai =

(

1 −ai

0 −1

)(

1 0

0 −1

)

andV ai =

(

1 0

0 −1

)(

1 0

−ai −1

)

.

Hence the product Ua1V a2 . . . Ua2V a1 can be rewritten in the form
(

1 −a1

0 −1

)

· · ·
(

1 0

−ak −1

)(

1 −ak+1

0 −1

)(

1 0

−ak −1

)

· · ·
(

1 −a1

0 −1

)

.

This gives a linear real structure, since it is a conjugate of
(

1 −ak+1

0 −1

)

. Similarly, the

product Ua
′
1V a′

2 . . . Ua
′
2V a′

1 gives a linear real structure conjugate to
(

1 −as+1

0 −1

)

. 2

Theorem 3.8.7. Every elliptic F -fibration is real if and only if it is weakly real.
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Chapter 3. Factorization of the monodromy of real Lefschetz fibrations

Proof. Theorem follows from the following observations

(1) π : Y → S1 is real if and only if the monodromy f is real. i.e. f−1 = c ◦ f ◦ c,
where c is a real structure. (Proposition 3.1.6).

(2) π : Y → S1 is weakly real if and only if the monodromy f is weakly real.

i.e. f−1 = h ◦ f ◦ h−1, where h is an orientation reversing diffeomorphism. (Proposi-

tion 3.1.6).

(3) f−1 = c ◦ f ◦ c iff f−1 = h ◦ f ◦ h−1.
We only need to prove the observation (3).

Obviously f is real ⇒ f is weakly real.

For the converse note that, if f−1 = h ◦ f ◦ h, where h is orientation revers-

ing, then the cutting period-cycle [a1a2 . . . a2n−1a2n]f∗ of the corresponding homology

monodromy f∗ is odd-bipalindromic by Lemma 3.8.6. Then by Proposition 3.8.4, we

have f−1 = c ◦ f ◦ c, for a real structure c. 2
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Chapter 4

Real Lefschetz fibrations around

singular fibers

It is well known that a singular fiber of a Lefschetz fibration is obtained from a nearby

regular fiber, F , by pinching a simple closed curve, a ⊂ F , the so-called vanishing

cycle. In a neighborhood of a singular fiber, a Lefschetz fibration is determined by the

monodromy, which is a positive Dehn twist, ta, along the vanishing cycle [K]. Recall

that ta is a homeomorphism of F obtained by cutting F along a and gluing back after

one full twist in the positive direction.

In this chapter we classify and enumerate the real structures in a neighborhood of a

real singular fiber of a real Lefschetz fibration. Such a neighborhood can be viewed as

a Lefschetz fibration over a disc D2 with a unique critical value q = 0 ∈ D2. Without

loss of generality, we may assume that the complex conjugation, conj in D2 is the

standard one, induced from C ⊃ D2. We call such fibrations elementary Lefschetz

fibrations (real or not). We start with an exposition of the techniques giving the (well

known) classification of Lefschetz fibrations in the non-real setting and then generalize

it for the real setting.

4.1 Elementary Lefschetz fibrations

Let (π : X → D2, b, ρ : Σg → Fb) be an elementary marked LF . By definition there

exist local charts (U, φU ), (V, φV ) around the critical point p ∈ π−1(0) and the critical
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Chapter 4. Real Lefschetz fibrations around singular fibers

value 0 ∈ D2, respectively, such that U , V are closed discs and π|U : U → V is

isomorphic (via φU and φV ) to ξ : E → Dε, where

E = {(z1, z2) ∈ C2 : |z1| ≤
√
ε,
∣
∣z21 + z22

∣
∣ ≤ ε2}

and

Dε = {t ∈ C : |t| ≤ ε2}, 0 < ε < 1

with ξ(z1, z2) = z21 + z22 .

Replacing the Lefschetz fibration by an isomorphic one over a smaller base, we can

assume that Dε = D2 and b ∈ ∂Dε and the critical value q = 0 ∈ Dε.

The projection (z1, z2) → z1 maps each fiber ξ−1(t) = {(z1, z2) : z21 + z22 = t} of

ξ to the disc |z1| ≤
√
ε. This mapping represents the fiber ξ−1(t) as a two sheeted

covering ramified at z1 = ±
√
t. Therefore, topologically the regular fibers ξ−1(t), t 6=

0, are cylinders and the fiber ξ−1(0) is a cone obtained from a nearby fiber by pinching

a simple closed curve, a, the vanishing cycle. Furthermore, such a curve a realizes a

non-trivial homology class in ξ−1(t) and, hence, it is unique up to isotopy in ξ−1(t).

Recall that ∂E is naturally divided in two parts, ∂vE and ∂hE, see Definition 2.1.7.

Let us fix a marking s : S1 × I → ξ−1(b), I = [0, 1]. Then, using the double sheeted

coverings of V ramified at z1 = ±
√
t, the vertical boundary ∂vE = ξ−1(∂Dε) → ∂Dε

can be identified with S1 × I × [0, 1]Á(ta(x),0)∼(x,1) → [0, 1]Á0∼1 and the horizontal

boundary ∂hE → Dε with S
1 ×Dε → Dε.

The complement of U in π−1(V ) does not contain any critical point. Therefore, X

can be written as union of two LFs with boundary: one of them, U → V , is isomorphic

to E → Dε, and the other one is isomorphic to the trivial fiber bundle R→ Dε whose

fibers are diffeomorphic to the complement of an open regular neighborhood of the

vanishing cycle a in Fb.

Let Ag be the set of isotopy classes of simple closed non-contractible (non-oriented)

curves on Σg, and let Vg be the set of isotopy classes of non-contractible embeddings

ν : S1×I → Σg. We denote by Lg the set of isomorphism classes of elementary marked

genus-g Lefschetz fibrations and define Ω̂ : Vg → Lg such that Ω̂([ν]) = [Lν ] where

[Lν ] stands for the isomorphism class of the Lefschetz fibration Lν . The construction

of Lν is as follows.

Let us choose a representative ν of [ν], and let Σνg denote the closure of Σg \ν(S1×
I). Consider the trivial fibration Rν = Σνg × Dε → Dε with horizontal boundary

44



4.1. Elementary Lefschetz fibrations

∂Σνg × Dε → Dε. We take (ξ : E → Dε, b, s : S1 × I → ξ−1(b)) as above, switch

the marking to s ◦ ν−1 : ν(S1 × I) → ξ−1(b), and denote by Eν → Dε the marked

Lefschetz fibration (ξ : E → Dε, b, s ◦ ν−1 : ν(S1 × I)→ ξ−1(b)). Then Lν → Dε and

its marking ρν : Σg → Fb is obtained by gluing Rν → Dε and Eν → Dε along their

trivial horizontal boundaries.

Lemma 4.1.1. Ω̂ : Vg → Lg is a well defined map.

Proof. Let ν, ν ′ : S1 × I → Σg be two isotopic embeddings, and let ψt :

S1 × I → Σg, t ∈ [0, 1], be a continuous family of embeddings such that ψ0 = ν

and ψ1 = ν ′. Then, there exists an ambient isotopy Ψt : Σg → Σg such that Ψ0 = id

and ψt = Ψt ◦ ψ0. Clearly, Ψ1 induces diffeomorphisms Rν → Rν′ and Eν → Eν′ ,

which respects the gluing and the fibrations, so that it gives an equivalence of Lν → Dε

and Lν′ → Dε as marked fibrations. Hence [Lν ] = [Lν′ ]. 2

We consider the map o : Vg → Ag such that o([ν]) = [ν(S1 × {12})] = [a]. Due

to the uniqueness of regular neighborhoods, the mapping o is a two sheeted covering:

the two elements of a fiber o−1([a]) corresponding to opposite orientations of a. Since

the automorphism (z1, z2) → (z1,−z2) of E → Dε is reversing the orientation of

the vanishing cycle (or, equivalently, since the Dehn twist does not depend on the

orientation on the vanishing cycle), the map Ω̂ descends to a well defined map Ω and

the following diagram commutes

Vg
Ω̂

²²

o
// Ag

Ω
~~||
||
||
||

Lg.

Remark 4.1.2. The above diagram implies that the isomorphism class of resulting

fibration Lν → Dε does only depend on [a] = o([ν]). From now on we will denote Lν

by La.

Theorem 4.1.3. Ω : Ag → Lg is a bijection.

Proof. The surjectivity is already shown at the beginning of this section. Let

us show that Ω is injective. Consider [a], [a′] ∈ Ag such that Ωg([a]) = Ωg([a
′]). We
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Chapter 4. Real Lefschetz fibrations around singular fibers

will show that [a] = [a′]. Since Ω is well defined, for some representatives a, a′ of

[a], [a′] respectively, (La → Dε, b, ρν : Σg → Fb) is isomorphic to (La′ → Dε, b
′, ρν′ :

Σg → F ′b′). Then there exist orientation preserving diffeomorphisms H : La → La′

and h : Dε → Dε such that we have the following commutative diagram

La
H

//

π

²²

La′

π′

²²

Dε
h

// Dε

where h(b) = b′ and H ◦ ρν = ρν′ .

The diffeomorphismH necessarily takes the critical point to the critical point hence

it takes the corresponding vanishing cycle a to a curve in a regular neighborhood of

a′. Since in a cylinder all non-contractible closed curves are isotopic, H(a) is isotopic

to a′. Moreover, since H ◦ ρ = ρ′, we have H(ρν(a)) = ρν′(a) and hence ρν′(a) is

isotopic to ρν′(a
′).

Let ψt : F ′b′ → F ′b′ , t ∈ [0, 1] such that ψ0 = id and ψ1(ρ
′(a)) = ρ′(a′). Then

Ψt = ρ′−1 ◦ ψt ◦ ρ′ : Σg → Σg provides an isotopy from a to a′. 2

To deal with Lefschetz fibrations without marking we introduce the following def-

inition. Two simple closed curves, a and a′, on Σg are called conjugate if there is an

orientation preserving diffeomorphism of Σg which carries a to a′. Note that isomor-

phic LFs give conjugate vanishing cycles by the following evident lemma.

Lemma 4.1.4. If there exists a diffeomorphism φ : Σg → Σg such that φ(a) is isotopic

to a then there exists a diffeomorphism ψ of Σg which takes ψ(a) = a′. 2

Proposition 4.1.5. There is a one-to-one correspondence between the classes of el-

ementary Lefschetz fibrations (non-marked) and the set of conjugacy classes of non-

contractible simple closed curves on Σg.

Proof. The proposition follows from Lemma 4.1.4 and Theorem 4.1.3. 2

Corollary 4.1.6. There are 1+ [ g2 ] isomorphism classes of elementary (non-marked)

genus-g Lefschetz fibrations.
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Proof. Topologically, there are two types of simple closed curves on Σg: sepa-

rating and nonseparating. Up to diffeomorphism there exists only one nonseparating

curve. The separating curves are determined by how they divide the genus in two

positive integer summands (the summands are positive because we should exclude

the case when the curve bounds a disc in Σg, since pinching such a curve creates a

sphere with self intersection -1). Hence, totally we obtain 1+[ g2 ] many local models. 2

4.2 Elementary Real Lefschetz fibrations

Let (π : X → D2, b, ρ : Σg → Fb) be an R-marked elementary real Lefschetz fibration.

We classify such fibrations up to isomorphism then obtain a classification of C-marked

and non-marked RLFs.
As in the non-real case, there exist equivariant local charts (U, φU ), (V, φV ) around

the critical point p ∈ π−1(0) and the critical value 0 ∈ D2, respectively, such that U

and V are closed discs and π|U : (U, cU ) → (V, conj ) is equivariantly isomorphic (via

φU and φV ) to either of ξ± : (E±, conj )→ (Dε, conj ), where

E± = {(z1, z2) ∈ C2 : |z1| ≤
√
ε,
∣
∣z21 ± z22

∣
∣ ≤ ε2}

and

Dε = {t ∈ C : |t| ≤ ε2}, 0 < ε < 1

with ξ±(z1, z2) = z21 ± z22 ,
The above two real local models ξ± : E± → Dε can be seen as two real structures

on ξ : E → Dε. These two real structures are not equivalent. The difference can be

seen already at the level of the singular fibers: in the case of ξ+ the two branches

are imaginary and they are interchanged by the complex conjugation; in the case of

ξ− the two branches are both real (see Figure 4.1 where the two halves of the cone

correspond to the two branches so that the real structure becomes a corresponding

reflection).

To understand the action of the real structures on the regular real fibers of ξ±,

we can use the branched covering defined by the projection (z1, z2) → z1. Thus, we

obtain that:
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c

c

z + z z - z
1

2 22
22

2
1

real part

=0 =0

Fig. 4.1. Actions of real structures on the singular fibers of ξ±.

• in the case of ξ+, there are two types of real regular fibers; the fibers Ft with

t < 0 have no real points, their vanishing cycles have invariant representatives

(that is c(at) = at set-theoretically), and in this case, c acts on the invariant

vanishing cycles as an antipodal involution; the fibers Ft with t > 0 has a circle

as their real part and this circle is an invariant, pointwise fixed, representative

of the vanishing cycle;

• in the case of ξ−, all the real regular fibers are of the same type and the real part

of such a fiber consists of two arcs each having its endpoints on the two differ-

ent boundary components of the fiber; the vanishing cycles have still invariant

representatives and c acts on them as a reflection.

(In Figure 4.2, all types of the real regular fibers and vanishing cycles of ξ± are

shown.)

Using once more the ramified covering (z1, z2)→ z1, we observe that the horizontal

part of the fibration ξ± is equivariantly trivial and, moreover, has a distinguished

equivariant trivialization. On the other hand, since the complement of U in π−1(V )

does not contain any critical point, X can be written as union of two RLFs with

boundary: one of them, U → V , is isomorphic to ξ± : E± → Dε, and the other one

is isomorphic to the trivial real fiber bundle R → Dε whose fibers are equivariantly

diffeomorphic to the complement of an open regular neighborhood of the vanishing

cycle a in Fb. The two types of models, with ξ+ and with ξ−, can also be distinguished
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4.2. Elementary Real Lefschetz fibrations
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Fig. 4.2. Nearby regular fibers of ξ± and vanishing cycles.

by the action of the complex conjugation on the boundary components of the real fiber

of R → Dε: in the case of ξ+ it switches the boundary components, and in the case

of ξ− they are preserved (and the complex conjugation acts as a reflection on each of

them).

Let Acg denote the set of equivariant isotopy classes of non-contractible curves on

the real surface (Σg, c) such that c(a) = a, and Vcg the set of equivariant isotopy classes

of non-contractible embeddings ν : S1 × I → Σg such that c ◦ ν = ν and LR,c
g the set

of classes of directed R-marked elementary genus-g real Lefschetz fibrations.

Let [ν]c ∈ Vcg . We consider the map Ω̂c : Vcg → LR,c
g such that Ω̂c([ν]c) = [LR

ν ]c,

where [LR
ν ]c denote the isomorphism class of directed R-marked real Lefschetz fibration

LR
ν . The construction of LR

ν is the equivariant version of the construction of Lν . Let ν

be a representative of [ν]c, we consider Σ
ν
g which is the closure of Σg \ν(S1×I). Since

c◦ν = ν, the surface Σνg inherits a real structure from (Σg, c). On the boundary of Σνg

the real structure acts in two ways, either it switches two boundary components or

acts as reflection on each boundary components. We consider a trivial real fibration

Rν = Σνg × Dε → Dε where cRν = (c, conj ) : Rν → Rν is the real structure. Let

Eν± → Dε denote the model ξ± : E → Dε whose marked fiber is identified with

ν(S1× I). Depending on the real structure on the horizontal boundary S1×Dε → Dε

(where the real structure on S1 ×Dε is taken as (c∂Σνg , conj )) of Rν → Dε, we choose

either of Eν± → Dε and then glue Rν → Dε and the suitable model Eν± → Dε along

their horizontal trivial boundaries.

Lemma 4.2.1. Ω̂c : Vcg → LR,c
g is well defined.
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Chapter 4. Real Lefschetz fibrations around singular fibers

Proof. Let ν, ν ′ : S1 × I → Σg be two c-equivariant isotopic embeddings, and

let ψt : S
1 × I → Σg, t ∈ [0, 1], be a continuous family of equivariant embeddings

such that ψ0 = ν and ψ1 = ν ′. Then, there exists an equivariant ambient isotopy

Ψt : Σg → Σg such that Ψ0 = id and ψt = Ψt ◦ ψ0 with Ψt ◦ c = c ◦ Ψt for all t.

Hence Ψ1 induces an equivariant diffeomorphisms Rν → Rν′ and Eν± → Eν′±, which

respects the fibrations, and the gluing thus it gives an equivalence of LR
ν → Dε and

LR

ν′ → Dε as R-marked fibrations. 2

Since c ◦ ν = ν, we have c(ν(S1 × {12})) = ν(S1 × {12})). Hence we can define

oc : Vcg → Acg such that o([ν]c) = [ν(S1 × {12})]c = [a]c. As in the case of LFs the

mapping oc is two-to-one. Since the monodromy does not depend on the orientation

of the vanishing cycle, there exists a well defined mapping, Ωc, such that the following

diagram commutes

Vcg
Ω̂c

²²

oc
// Acg

Ωc
}}{{
{{
{{
{{

LR,c
g .

Theorem 4.2.2. Ωc : Acg → LR,c
g is a bijection.

Proof. The proof is the equivariant version of the proof of 4.1.3. Let us denote the

image of Ωc by [LR
a ]c. As it is discussed in the beginning of the section, any elementary

RLF can be divided equivariantly into two RLFs with boundary: an equivariant

neighborhood of the critical point (isomorphic to one of the models, ξ±), and the

complement of this neighborhood (isomorphic to a trivial real Lefschetz fibration).

Such a decomposition defines the equivariant isotopy class of the vanishing cycle.

This gives the surjectivity of Ωc.

To show that Ωc is injective let us consider [a]c, [a
′]c ∈ Vcg such that Ωc([a]c) =

Ωc([a′]c). We will show that [a]c = [a′]c. Since Ω
c is well defined we have [LR

a ]c = [LR

a′ ]c

hence there exist equivariant orientation preserving diffeomorphisms H : LR
a → LR

a′

and h : Dε → Dε such that we have the following commutative diagrams
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4.2. Elementary Real Lefschetz fibrations

LR
a

H
//

π
²²

LR

a′

π′

²²

LR
a

c
LR
a ??
ÄÄ
H

//

π

²²

LR

a′

c
LR

a′

??
ÄÄ

π′

²²

Dε
h

// Dε

Dε
h

//

conj ??
ÄÄÄ

Dε
conj

??
ÄÄÄ

F
H

//

c
LR
a

²²

F ′

c
LR

a′

²²

Σg
ρν′

::tttttρν

ddJJJJJ

c

²²

F
H

// F ′

Σg.
ρν′

::ttttρν

ddJJJJJ

Clearly, H(ρν(a)) is equivariantly isotopic to ρν′(a
′) where a and a′ are represen-

tatives of [a]c and [a′]c respectively. Moreover, we have H ◦ ρν = ρν′ which gives

H(ρ(a)) = ρ′(a), so ρ′(a) is equivariant isotopic to ρ′(a′). Let ψt : F
′ → F ′, t ∈ [0, 1]

such that ψ0 = id and ψ1(ρ
′(a)) = ρ′(a′), ψt ◦ c′ = c′ ◦ ψt. Then Ψt = ρ′−1 ◦ ψt ◦ ρ′ :

Σg → Σg is the required isotopy. 2

Theorem 4.2.2 shows that c-equivariant isotopy classes of vanishing cycles clas-

sify the directed R-marked elementary RLFs. To obtain a classification for directed

C-marked RLFs we study the difference between two markings. We will be also

interested in the classification of non-marked RLFs.

m

m

b

F

F
F

m

b
m

Σgx

m

m
x

c
c

ρ

ρ
ρ
b

Fig. 4.3.

A C-marking on a directed elementary RLF defines an R-marking up to isotopy.

Let ({m, m̄}, {ρm, cX ◦ ρm}) be a C-marking on a directed RLF , π : X → D2. The

complement, ∂D2\{m, m̄}, has two pieces S± (upper/ lower semicircles) distinguished

by the direction. By considering a trivialization of the fibration over the piece of S+

connectingm to the real point, b, (the trivialization over the piece connecting m̄ to the

real point obtain by the symmetry), we can pull the marking, ρm : Σg → Fm, to Fb to

obtain a marking, say ρb : Σg → Fb and a real structure c = ρ−1b ◦ cX ◦ ρb : Σg → Σg.

Any other trivialization results in an other marking isotopic to ρb and a real structure
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Chapter 4. Real Lefschetz fibrations around singular fibers

isotopic to c : Σg → Σg.

Hence directed elementary C-marked RLFs defines a vanishing cycle defined up

to c-equivariant isotopy where the real structure c is considered up to isotopy.

Definition 4.2.3. A pair (c, a) of a real structure c : Σg → Σg and a non-contractible

simple closed curve a ∈ Σg, is called a real code of an elementary RLF if c(a) = a.

Two real codes, (c0, a0), (c1, a1), will be called isotopic if there exist an isotopy (ct, at),

t ∈ [0, 1] such that ct(at) = at, ∀t. Moreover, two real codes, (c0, a0) and (c1, a1), will

be called conjugate if there is an orientation preserving diffeomorphism φ : Σg → Σg

such that φ ◦ c0 = c1 ◦ φ and that [φ(a0)]c1 = [a1]c1 . We denote the isotopy class of

the real code, (c, a), by [c, a] and the conjugacy class by {c, a}.

Proposition 4.2.4. There is a one-to-one correspondence between the isomorphism

classes of directed C-marked elementary RLFs and the isotopy classes of real codes.

Proof. Let LC,[c]
g denote the set of classes of directed C-marked elementary genus-

g real Lefschetz fibrations and A[c]
g denote the isotopy classes, [c, a], of real codes.

We consider the map ω : LC
g → A[c]

g . As it is discussed above, a directed C-marked

elementaryRLF determines an isotopy class of a directed R-marked elementaryRLF .
By Theorem 4.2.2 we obtain a vanishing cycle up to c-equivariant isotopy. Since

the real structure c is also determined up to isotopy we obtain the real code [c, a].

Evidently, isomorphic directed C-marked elementary RLFs give isotopic real codes.

Hence ω is well-defined. Surjectivity of ω is also clear.

For the injectivity, we consider two isotopy classes [ci, ai], i = 1, 2 such that

[c1, a1] = [c2, a2]. Let (π1 : X1 → D2, {m1, m̄1}, {ρm1 , ρ̄m1}) and (π2 : X2 →
D2, {m2, m̄2}, {ρm2 , ρ̄m2}) be two directed C-marked elementary RLFs, associated

to the classes [c1, a1] and [c2, a2], respectively. We need to show that π1 and π2 are

isomorphic as directed C-marked RLFs.
Note that we can always choose a representative c for both [c1] and [c2] such that

[a1]c = [a2]c. Then by Theorem 4.2.2, π1 is isomorphic to π2 as R-marking RLFs.
An isomorphism of R-marked RLFs may not preserve the C-markings. However, it

can be modified to preserve the C-markings:

Up to homotopy, one can identify X2 with a subset of X1. Let
◦
π2:

◦
X2→ D2 be the

corresponding fibration. Then, one can transform
◦
m2 to m1 preserving the real mark-

ing and the trivializations over the corresponding paths, S+ and
◦
S+, see Figure 4.4 to
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4.3. Vanishing cycles of real Lefschetz fibrations
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Fig. 4.4.

obtain an isomorphism of C-marked RLFs, preserving the isomorphism of R-marked

RLFs. Since the difference X1\
◦
X2 has no singular fiber. 2

For fibrations without marking we allow to change [c, a] by an equivariant diffeo-

morphism. Hence we have the following proposition.

Proposition 4.2.5. There is a one-to-one correspondence between the set of conju-

gacy classes, {c, a}, of real codes and the set of classes of directed non-marked ele-

mentary real Lefschetz fibrations. 2

4.3 Vanishing cycles of real Lefschetz fibrations

By definition any real code, (c, a), of directed elementary RLF satisfies c(a) = a.

Hence, the real structure acts on the vanishing cycle a. Such an action can be either

the identity, or an antipodal map, or a reflection. In the latter case, there are two

points fixed by c. They either belong to the same or different real components of c.

We call the curves on which c acts as an antipodal map totally imaginary and

those curves on which c acts as a reflection real-imaginary. (Recall that the curves on

which c acts as the identity are called real.)

In Figure 4.5 we show an invariant curve a together with the action of c. When

necessary, on figures, we will distinguish invariant curves by showing the action of c.

Lemma 4.3.1. Let c be a real structure on a closed surface Σg, let a be an embedded

simple closed curve on Σg such that c(a) = a then c′ = ta ◦ c ( as well as c′′ = c ◦ ta)
is a real structure on Σg.
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Chapter 4. Real Lefschetz fibrations around singular fibers

Real curve Totally  imaginary curve Real-imaginary curve

Fig. 4.5. Invariant curves together with the action of real structures.

Moreover, if a is real with respect to c then a is totally imaginary with respect to

c′, and vice versa. On the other hand, a is real-imaginary with respect to c if and only

if a is real-imaginary with respect to c′.

Proof. Clearly ta ◦ c is an orientation reversing diffeomorphism of Σg. Since c

is orientation reversing, the conjugation c ◦ ta ◦ c coincides with t−1
c(a). Then we have

(ta ◦ c)2 = ta ◦ c ◦ ta ◦ c = ta ◦ t−1c(a) = ta ◦ t−1a = id. This shows that ta ◦ c is a real

structure on Σg. (The proof of the case c ◦ ta is analogous.)

As for the second part, let us first recall the definition of the Dehn twist on Σg

along a. Let ν(a) be a regular neighborhood of a. We choose an orientation preserv-

ing diffeomorphism φ : S1 × [0, 1] → ν(a) such that φ(S1 × {12}) = a and consider

τ : S1 × [0, 1] → S1 × [0, 1] such that τ(θ, t) = (θ + 2πt, t). The Dehn twist ta along

a is the diffeomorphism obtained by taking φ ◦ τ ◦ φ−1 : ν(a) → ν(a) on ν(a) and

extending it to Σg by the identity. In particular, ta rotates a by an angle of π. Hence,

c|a is the identity if and only if (ta ◦ c)|a is the antipodal map and c|a is reflection if

and only if (ta ◦ c)|a is reflection. See Figure 4.6. 2

ac a
c ^

_

`ba `ba a
RF

RF

Fig. 4.6. Actions of the real structure on nearby regular fibers of ξ±.

The next example shows a real surface together with some non-contractible c-
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4.4. Classification of elementary real Lefschetz fibrations with nonseparating
vanishing cycles

invariant curves.

Example 4.3.2. Let c′ be a reflection on a genus-5 surface whose real part is the

set of curves {a1, a2, a3, a4} shown in Figure 4.7. We set c = ta1 ◦ c′ and consider

the real surface (Σ5, c). Figure 4.7 shows some examples of invariant curves on the

real surface (Σ5, c). Lemma 4.3.1 implies that c acts on a1 as the antipodal map,

hence the curve a1 is totally imaginary, while a2, a3, a4 are real. The curves, a5 and

a6 are real-imaginary. The real points of a5 belong to two different real curves, a2 and

a3, whereas the real points of a6 belong to the real curve a4. Note that the curves

a1, a2, a3, a4, a5, a6 are nonseparating. While the curve a7 is an example of separating

real-imaginary curve.

a a a a

a
a

1 2 3

5

4

6a7

Real curve Totally  imaginary curve Real-imaginary curve

Fig. 4.7. c-invariant curves on (Σ5, c). We showed explicitly the action of c on

a1, a2, a3, a4, a5, a6, a7.

4.4 Classification of elementary real Lefschetz fibrations

with nonseparating vanishing cycles

Let S∗g be the set of classes of real closed genus-g surfaces ( g ≥ 1) with two marked

points which are, as a set, invariant under the action of real structure and let Lcg be

the set of classes of directed non-marked elementary genus-g RLFs. We assume that

the vanishing cycle is nonseparating and define a map e : Lcg → S∗g−1 as follows.

Given a directed elementary RLF , we consider the associated real code (c, a). We

take a c-invariant regular closed neighborhood, ν(a), of a in (Σg, c). The complement
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Chapter 4. Real Lefschetz fibrations around singular fibers

Σ
ν(a)
g = Σg \ ν(a) inherits the real structure from Σg and can be seen as a real

surface with two punctures. Let us consider the punctures as marked points on the

closed surface and define the image of e as the closed marked surface we obtain.

By construction the pair of marked points is invariant under the action of the real

structure. Clearly, equivalent real codes give equivalent real genus-(g − 1) surfaces,

hence e is well defined.

Lemma 4.4.1. The map e : Lcg → S∗g−1 is surjective.

Proof. Given (Σg−1, cg−1), a representative of a class in S∗g−1, by Proposi-

tion 4.2.5 it is enough to assign to it, a real code (c, a). Let {s1, s2} be the marked

points on Σg−1, consider open neighborhoods ν(s1) , ν(s2) of s1 and s2, respectively

such that,

• if s1 and s2 are real then we have cg−1(ν(si)) = ν(si) for i = 1, 2,

• if one is the conjugate of the other then we set ν(s2) = cg−1(ν(s1)).

The complement, Σνg−1, of the neighborhoods ν(si), i = 1, 2, in Σg−1 is a real surface

with two boundary components. We consider S1× [0, 1] and glue it to Σνg−1 along the

boundary components. The resulted surface has genus g.

The real structure of Σνg−1 can be extended to S1× [0, 1] to obtain a real structure

c on Σg such that a = S1 × {12} is a c-invariant curve. Thus, we obtain c : Σg → Σg

and a ⊂ Σg such that c(a) = a.

Clearly, any other representative (Σ′g−1, c
′
g−1) give another code which is conjugate

to (c, a). 2

Lemma 4.4.2.

|S∗g−1| =
{

9g−5
2 if g-1 even,

9g−6
2 if g-1 odd.

Proof. Note that an invariant pair of marked points on a real surface can be

chosen:

• as a pair of complex conjugate points,

• as real points on a real component, if there is at least one real component,
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• as real points on two different real components, if there are at least 2 real

components.

Up to equivariant diffeomorphisms such choices are unique. Thus, for each real

structure which has at least two real components we have 3 choices. When there is

only one real component, we get 2 choices and lastly if there are no real component,

we get only 1 choice for marked points. Recall that for each genus there is only

one real structure with no real component. There is one real structure with one real

component, if genus is odd and there are two such real structures if genus is even.

Since on Σg−1 there are g+1+ [ g−12 ] real structures, we obtain |S∗g−1| = 3(g+1+

[g−12 ])− k where

{

k = 4 if g-1 even,

k = 3 if g-1 odd.
2

Proposition 4.4.3.

|Lcg| =







6 if g=1,

8g − 3 if g>1 odd,

8g − 4 if g>1 even.

Proof. Since e is surjective we will count the inverse images of (Σg−1, cg−1) ∈
S∗g−1. By Proposition 4.2.5, it is enough to count the real codes of elementary RLFs.

Case 1: Let (Σg−1, cg−1) be a real surface with a pair of conjugate marked points,

say s1, s2. As we discussed above we obtain the genus-g surface by gluing a cylinder

to the surface Σνg−1. Note that if marked points are conjugate pairs the real structure

switches the boundary components Σνg−1. Hence on the cylinder S1× [0, 1] we consider

a real structure which exchanges the boundaries. There are two such real structures.

One has a real component which is the central curve the other has no real component.

Hence, we have two inverse images for each real surface Σg−1.

Since the points, s1, s2 are not real, there is no condition on the number of real

components, so there are exactly 2(g + 1 + [ g−12 ]) directed elementary RLFs.
Case 2: Let us assume that two marked points are chosen on a real component

of the real genus-(g − 1) surface. In this case, the real structure on the boundary

components of Σνg−1 is reflection hence each component has two real points. Recall

that there is a unique real structure up to diffeomorphism on the cylinder where the
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Chapter 4. Real Lefschetz fibrations around singular fibers

...

*

*

... ...Real curve Totally imaginary
curve

Fig. 4.8. Gluing neighborhood of the vanishing cycle to a real genus-(g− 1) surface with two

complex conjugated marked points.

action on the boundary is reflection. However, if we extend the real structure of Σνg−1

to the cylinder we have two choices to connect the real points. These choices result in

different real structures since their number of real components are not the same.

Excluding the case when the real structure has no real component we obtain 2(g+

[g−12 ]) many local models.

Case 3: Finally, let us assume that the marked points are real points belonging

to different real components. This case can occur only if g − 1 > 0. As in the case

2, boundary components of Σνg−1 have two real points. Unlike the previous case, the

way we connect the real points does not effect the number of real components, see

Figure 4.10. However, it may change the type of the real structure.

Namely, if cg−1 is separating then we may obtain either separating or nonseparating

real structure. When cg−1 is nonseparating the resulted real structure is nonseparating

regardless of how we connect the real points.

There are exactly g nonseparating real structures on a genus-(g−1) surface. Among

nonseparating real structures there is one without real component and one with a

unique real component. The number of separating real structures on a genus-(g − 1)

surface whose real part has at least two real components is 1 + [ g−12 ] if g − 1 is odd

and [ g−12 ] if g − 1 is even.

Hence, totally we have g − 2 + 2(1 + [ g−12 ]) real structures if g − 1 is odd, and

g − 2 + 2[ g−12 ] real structures if g − 1 is even.
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...

... ...

Real curve
* *

Real curves

Real curve

* *

Two real components One real component

Fig. 4.9. Gluing neighborhood of the vanishing cycle to a real genus-(g− 1) surface with two

real marked points belonging to the same real component.

Therefore,

• If g = 1, we have only cases 1 and 2, hence there are 4 + 2 = 6 directed non-

marked elementary RLFs with nonseparating vanishing cycle,

• if g > 1, is even then we have 2(g+1+[ g−12 ])+2(g+[ g−12 ])+2(1+[ g−12 ])+g−2 =

8g − 4,

• if g > 1, odd we have 2(g + 1 + [ g−12 ]) + 2(g + [ g−12 ]) + 2[ g−12 ] + g − 2 = 8g − 3

directed non-marked elementary RLFs with nonseparating vanishing cycle.

2
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... Real curves
* *

... Real curve ... Real curve

* *

One real component One real component

Fig. 4.10. Gluing neighborhood of the vanishing cycle to a real genus-(g − 1) surface with

two real marked points belonging to different real components.

4.5 Classification of elementary real Lefschetz fibrations

with separating vanishing cycles

In this section, we consider the real code (c, a) of an elementaryRLF such that a ⊂ Σg

is a separating curve. Recall that we restrict ourselves to the study of relatively

minimal LFs. That is no fiber contains an exceptional sphere. Such phenomenon

corresponds to the case when the vanishing cycle bounds a disc. Hence, we will

assume that the vanishing cycle a does not bound a disc.

As before c acts on a. This action can be the identity, the antipodal map or

reflection. However, since a is separating if c acts on a as a reflection then two real

points of a necessarily belong to the same real component.

Lemma 4.5.1. If g is even then there exists a real structure c and a separating

invariant simple closed curve a on (Σg, c) such that a is real or totally imaginary with

respect to c.
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4.5. Classification of elementary real Lefschetz fibrations with separating vanishing
cycles

Proof. Clearly, a real curve separates the surface if and only if the real structure

is separating and has only one real component, see Figure 4.11. Such phenomenon

appears only in the case of even genus. Evidently, up to diffeomorphism there exists

unique such pair (c, a).

a a

Fig. 4.11. Real and totally imaginary separating curves.

Recall that there is a strong relation between the real curves and the totally imag-

inary curves. Namely, one can change the real structure by a Dehn twist along a (see

Lemma 4.3.1) to obtain a totally imaginary curve from a real curve and vice versa.

Hence, a totally imaginary separating curve a appears only in the case of even genus

and the real structure is nonseparating without real component. 2

Unlike real and totally imaginary curves, there are many separating real-imaginary

curves on a real surface. They are distinguished by how they separate the real surface.

...
Real curve

a

Fig. 4.12. Real-imaginary separating curve.

Note that if there is a real-imaginary curve then the real structure has necessarily

at least one real component. Let us fix a real surface (Σg, c) of genus g ≥ 1 such that c

has at least one real component. Then to calculate the possible separating curves we
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Chapter 4. Real Lefschetz fibrations around singular fibers

will make use of the quotient Σg/c. For a nonseparating real structure c on a genus-g

surface with k > 0 real components, the quotient Σg/c is a disc with k − 1 holes and

l = g − k + 1 cross caps see Figure 4.13.

...
a

...

... ...

Fig. 4.13.

If the real structure is separating, the quotient Σg/c is an orientable genus g+1−k
2

surface with k boundary components, see Figure 4.14. By abuse of notation we will

denote g+1−k
2 also by l.

...

...

a

...

...

Fig. 4.14.

Hence in either case we have the following calculations.

Lemma 4.5.2. If both k− 1 and l are even numbers then we have [ k(l+1)
2 ] separating

curves. Otherwise there are [k(l+1)
2 ]− 1 separating curves.

Proof. This is a counting problem. A separating curve on Σg gives an arc on

Σg/c with endpoints lying on one of the boundary components. We count how many

different ways we can divide Σg/c by a such an arc.

When both k − 1 and l are even the arc can divide the Σg/c into two symmetric

pieces, Figure 4.15. Excluding such case we have (k−1+1)(l+1)−1
2 choices. Hence, totally

we obtain (k−1+1)(l+1)−1
2 + 1. Finally, by subtracting the case when the curve bounds

a disc we obtain (k−1+1)(l+1)−1
2 + 1− 1 = [ (k)(l+1)

2 ] such arc.
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a a

Fig. 4.15. Examples of k = 3, l = 2.

When k − 1 or l is odd, we repeat the same idea. Note that in this case, such an

arc can not divide Σg/c symmetrically, hence we get (k−1+1)(l+1)
2 −1 = [ (k)(l+1)

2 ]−1. 2

Proposition 4.5.3. The number of conjugacy classes of real codes {c, a} where a is

a separating curve is given as follows. By Proposition 4.2.5 this gives the number of

classes of directed R-marked elementary RLFs whose vanishing cycle is separating.

g > 0 is even







1 +
∑

k∈{1,3,...,g+1}

l even

[k(l+1)
2 ] +

∑

k∈{1,3,...,g+1}

l odd

([k(l+1)
2 ]− 1) if c is separating,

1 +
∑

k∈{1,2,...,g}

l even

[k(l+1)
2 ] +

∑

k∈{1,2,...,g}

l odd

([k(l+1)
2 ]− 1) if c is nonseparating,

g is odd







∑

k∈{2,4,...,g+1}

([k(l+1)
2 ]− 1) if c is separating,

∑

k∈{1,2,...,g}

([k(l+1)
2 ]− 1) if c is nonseparating.

Proof. The proposition follows from Lemma 4.5.1 and Lemma 4.5.2. Note that

if c is nonseparating then k − 1 + l = g. Thus,

if g > 0 is even: (k − 1, l) = (even, even) or (k − 1, l) = (odd, odd)

if g is odd: (k − 1, l) = (even, odd) or (k − 1, l) = (odd, even).

If c is separating then k − 1 + 2l = g. Thus,

if g is even: (k − 1, l) = (even, even) or (k − 1, l) = (even, odd)

if g is odd: (k − 1, l) = (odd, even) or (k − 1, l) = (odd, odd).

2
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Chapter 5

Invariants of real Lefschetz

fibrations with only real critical

values

The classification of elementary RLFs can be used to obtain certain invariants for

RLFs over a disc with only real critical values. For this reason we introduce boundary

fiber sum of real directed Lefschetz fibrations over D2. We will study separately the

cases of the fiber genus g > 1 and g = 1, since they are of different nature with respect

to the boundary fiber sum. On the other hand, if we assume that fibration admits a

real section then the case of g = 1 can be treated similar to the case g > 1.

5.1 Boundary fiber sum of genus-g real Lefschetz fibra-

tions

Let π : X → D2 be a directed real Lefschetz fibration. Following the notation of

previous sections, we denote by S± the upper/ lower semicircles of ∂D2. We consider

also left/ right semicircles, denoted by S±, and the quarter-circles S±± = S± ∩ S±.
(Here directions right/ left and up/ down are determined by the orientation of the

real part.)

Let r± be the real points of S±, and c± the real structures on F± = π−1(r±).
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5.1. Boundary fiber sum of genus-g real Lefschetz fibrations

S

S

S+
+
+

-

-
-S
+

-

r r+-

Fig. 5.1.

Definition 5.1.1. Let (π′ : X ′ → D2, {b′, b̄′}, {ρ′, ρ̄′}) and (π : X → D2, {b, b̄}, {ρ, ρ̄})
be two directed C-marked real Lefschetz fibrations such that the real structures c′+ on

F ′+ and c− on F− induce (via the markings) isotopic real structures on Σg. Then we

define the boundary fiber sum, X ′\ΣgX → D2\D2, of C-marked RLFs as follows.

r'+

F'
F'

b'
+

b'

b'

Σg ρ

F

b

b

r

Fb

-

-

ρ'

c' c+ -

Fig. 5.2.

We choose trivializations of π′−1(S+
+) and π

−1(S−+) such that the pull backs of c′+

and c− give the same real structure c on Σg. Then the trivialization of π′−1(S+) can

be obtained as a union Σg × S+
+ ∪ Σg × S+

−Á(x,1+)∼(c(x),1−) and similarly π−1(S−) =

Σg×S−+∪Σg×S−−Á(x,−1+)∼(c(x),−1−). Then the boundary fiber sum X ′\ΣgX → D2\D2

is obtained by gluing π′−1(S+) to π−1(S−) via the identity map.

Remark 5.1.2. 1. In fact, the construction described above creates a manifold with

corners but there is a canonical way to smooth the corners, hence the boundary fiber

sum is the manifold obtained by smoothing the corners.

2. By definition, the boundary fiber sum is associative but not commutative.

3. The boundary fiber sum of C-marked RLFs is naturally C-marked.
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Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

4. Note that D2\D2 = D2 so when the precision is not needed we use D2 instead

of D2\D2.

Proposition 5.1.3. If g > 1, then the boundary fiber sum, X ′\ΣgX → D2, of directed

C-marked genus-g real Lefschetz fibrations is well-defined up to isomorphism of C-

marked RLFs.

Proof. Note that the boundary fiber sum does not effect the fibrations outside a

small neighborhood of the intervals where the gluing is made. Let us slice a topological

disc D, a neighborhood (which does not contain a critical value) of the gluing interval

on D2 = D2\D2. Let c′+ and c− denote the real structures on the real fibers over the

real boundary points of D, see Figure 5.3. Since D contains no real critical value,

real structures c′+, c− induce isotopic real structures on Σg. Hence each real fibration

over a disc without a critical value defines a path in the space of real structures on

Σg. Therefore, the difference of two boundary fiber sums gives a loop in this space.

The proof follows from contractibility of such loops discussed in the next section, see

Proposition 5.2.4. 2

b

b

.

c c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c cc c c c c c c c c c c c c c c
+
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FF' -c' c+ -

r r- +

Fig. 5.3.

5.2 Equivariant diffeomorphisms and the space of real

structures

Let Cc(Σg) denote the space of real structures on Σg which are isotopic to a fixed

real structure c, and let Diff0 (Σg) denote the group of orientation preserving dif-

feomorphisms of Σg which are isotopic to the identity. We consider the subgroup
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5.2. Equivariant diffeomorphisms and the space of real structures

of Diff0 (Σg), denoted Diff c
0 (Σg), consisting of those diffeomorphisms which commute

with c and the subgroup Diff0 (Σg, c) of Diff0 (Σg) consisting of diffeomorphisms which

are c-equivariantly isotopic to the identity. Note that the group Diff0 (Σg) acts transi-

tively on Cc(Σg) by conjugation. The stabilizer of this action is the group Diff c
0 (Σg).

Hence Cc(Σg) can be identified with the homogeneous space Diff0 (Σg)/Diff
c
0 (Σg).

Lemma 5.2.1. If g > 1 then Diff c
0 (Σg) is connected for all c : Σg → Σg. However,

for g = 1, the space Diff c
0 (Σg) is connected if c is an odd real structure (i.e. it has 1

real component).

Proof. (We will use different techniques for g > 1 and g = 1.) Let us first discuss

the case of g > 1. To show that Diff c
0 (Σg) is connected, we consider the fiber bundle

description of conformal structures on Σg, introduced in [EE]. Let Conf Σg denote the

space of conformal structures on Σg equipped with C∞-topology. The group Diff0 (Σg)

acts on Conf Σg by composition from right. This action is proper, continuous, and

effective hence Conf Σg → Conf Σg/Diff0 (Σg) is a principle Diff0 (Σg)-fiber bundle,

(cf. [EE]). The quotient is the Teichmuller space of Σg, denoted TeichΣg . Note that

conformal structures can be seen as equivalence classes of Riemannian metrics with

respect to the relation that two Riemannian metrics are equivalent if they differ by a

positive function on Σg. Let RiemΣg denote the space of Riemannian metrics on Σg

then we have the following fibrations

{u : Σg → R : u > 0} // RiemΣg

p2

²²

Diff0 (Σg) // Conf Σg

p1

²²

TeichΣg .

The real structure c acts on Diff0 (Σg) by conjugation. This action can be extended

to Conf Σg and RiemΣg as follows. We fix a section s : TeichΣg → Conf Σg of the bundle

p1 and we consider a family of diffeomorphisms φsζ : Diff0 (Σg)→ p−11 (ζ) parametrized

by TeichΣg such that φsζ(id) = s(ζ). Let [µx] denote a conformal structure where

µx is a Riemannian metric on Σg. Then we have φsζ(f(x)) = [µf(x)] for all f ∈
Diff0 (Σg), in particular φsζ(id) = s(ζ) = [µx]. The action of real structure, then, can
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Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

be written as c.[µf(x)] = [µc◦f◦c(x)]. Clearly the definition does not depend the choice

of representative of the class [µf(x)] so the action extends to RiemΣg .

Let FixConf Σg
(c) denote the set of fixed points of the action of c on Conf Σg and

FixRiemΣg
(c), the set of fixed points on RiemΣg . Note that s(ζ) ∈ FixConf Σg

(c), ∀ζ ∈
TeichΣg . In fact each [µf(x)] where f ∈ Diff c

0 (Σ1) is in FixConf Σg
(c). Our aim is the

show that FixConf Σg
(c) is connected.

Note that if FixConf Σg
(c) is disconnected then the inverse image FixRiemΣg

(c) is

also disconnected in RiemΣg . It is known that RiemΣg is convex and hence FixRiemΣg
(c)

is convex. However this contradicts to disconnectivity, therefore FixConf Σg
(c) is con-

nected. Then FixConf Σg
(c) ∩ Diff0 (Σg) = Diff c

0 (Σg) is connected since FixConf Σg
(c)

is a union of sections.

For the case of g = 1, we consider the quotient Σ1/c which is a Möbius band (MB)

when c is an odd structure. It is known that the space of diffeomorphisms of Möbius

band has two components: the identity component Diff0 (Σ1/c), and the component of

diffeomorphisms isotopic to the reflection h shown in Figure 5.4. Note that when the

Möbius band is obtained by from I× I by identifying appropriate points of I× 0 with

the points of I × 1, the diffeomorphism h can be seen as the diffeomorphism induced

from the reflection of I × I with respect to the I × 1
2 . The diffeomorphism h is not

isotopic to the identity, since before identifying the ends it reverses the orientation of

I × I.

real part

Mobius Band Real Torus

h

Fig. 5.4.

The diffeomorphism h lifts to the central symmetry ĥ : Σ1 → Σ1 of Σ1. Central

symmetry is not isotopic to the identity on Σ1 since it reverses the orientation of the
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5.2. Equivariant diffeomorphisms and the space of real structures

real curve. Hence, we have

{f : Σ1/c→ Σ1/c : f̂ : Σ1 → Σ1 is isotopic to id} = {f : Σ1/c→ Σ1/c : f ∼= id}.

The former is identified by Diff c
0 (Σ1) and the latter is connected, hence Diff c

0 (Σ1) is

connected. 2

Lemma 5.2.2. For any real structure c : Σg → Σg

π1(Diff0 (Σg)/Diff0 (Σg, c), [id]) =

{

0 if g > 1

Z if g = 1

Proof. (When it is not needed we will omit the base point from the notation.)

Note that the subgroup Diff0 (Σg, c) acts from the left on Diff0 by composition.

Diff0 (Σg, c)×Diff0 (Σg) → Diff0 (Σg)

(f, g) → f ◦ g

Such action is free so Diff0 (Σg) → Diff0 (Σg)/Diff0 (Σg, c) is a Diff0 (Σg, c)-fiber

bundle. We consider the following long exact homotopy sequence of this fibration

...→ π2(Diff0 (Σg))→ π2(Diff0 (Σg)/Diff0 (Σg, c))→ π1(Diff0 (Σg, c))→
π1(Diff0 (Σg))→ π1(Diff0 (Σg)/Diff0 (Σg, c))→ π0(Diff0 (Σg))→ ...

Case of g > 1: it is known that Diff0 (Σg) is contractible if g > 1, so we have

πk(Diff0 (Σg), id) = 0 for all k [EE]. Using the exact homotopy sequence we obtain

π1(Diff0 (Σg)/Diff0 (Σg, c), [id]) ∼= π0(Diff0 (Σg, c), id).

Note that the group Diff0 (Σg, c) is isomorphic to Diff0 (Σg/c). Moreover, since for any

real structure c the Euler characteristic of Σg/c is negative, Diff0 (Σg/c) is contractible

[ES]. Hence, π1(Diff0 (Σg)/Diff0 (Σg, c), [id]) = 0.

Case of g = 1: it is known that Σ1 is deformation retract of Diff0 (Σ1). Hence up

to homotopy we consider Diff0 (Σ1) as a group generated by two rotations, shown in

Figure 5.5.
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Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

l

l

1

2

Fig. 5.5. Rotations generating Diff0 (Σ1).

• If c has 2 real components, we consider an identification of Σ1 by C/Z2 such

that the real structure c is induced from the standard complex conjugation on C. Let

% : C/Z2 → Σ1 be such an identification.

We consider the following family of diffeomorphisms for t ∈ [0, 1],

R′1(t) : C/Z2 → C/Z2 R′2(t) : C/Z2 → C/Z2

(x+ iy)Z2 → (x+ t+ iy)Z2 (x+ iy)Z2 → (x+ i(y + t))Z2 .

where (x+ iy)Z2 denotes the equivalence class of x+ iy in C/Z2.

Note that R′i(0) = R′i(1) = id and each R′i(t), t ∈ [0, 1] is isotopic to identity.

Hence Ri(t) = % ◦R′i(t) ◦ %−1, i = 1, 2 form a bases of Diff0 (Σ1).

To understand Diff0 (Σ1, c) ⊂ Diff0 (Σ1) we consider the quotient Σ1/c which is

topologically an annulus. It is known that πk(Diff0 (Σ1/c), id) = πk(Diff0 (S
1), id) [I].

Hence, using the fact Diff0 (Σg, c) = Diff0 (Σg/c) we get

πk(Diff0 (Σ1, c), id) =

{

0 if k > 1

Z if k = 1

Note that with respect to the identification %, diffeomorphismsR1(t) ∈ Diff0 (Σ1, c),

∀t ∈ [0, 1], hence R1(t) gives a loop in π1(Diff0 (Σ1, c), id). Thus we choose R1(t) as a

generator of π1(Diff0 (Σ1, c), id) = Z. Then from the exact sequence

0 → π1(Diff0 (Σg, c))
f ′→ π1(Diff0 (Σg))

g′→ π1(Diff0 (Σg)/Diff0 (Σg, c)) → 0

0 → Z
f ′→ Z+ Z

g′→ π1(Diff0 (Σg)/Diff0 (Σg, c)) → 0

1 → (1, 0)
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5.2. Equivariant diffeomorphisms and the space of real structures

C

Fig. 5.6.

we get Im(f ′) = ker(g′) = π1(Diff0 (Σ1)/Diff0 (Σ1, c), [id]) = Z.

• If c has no real component, we consider % : R2/Z2 → Σ1 such that the real

structure c is induced from the real structure c′ where

c′ = %−1 ◦ c ◦ % : R2/Z2 → R/Z2

(x, y)Z2 → (x+ 1
2 ,−y)Z2 .

Then we consider the family of diffeomorphisms R′i(t) : R
2/Z2 → R2/Z2, t ∈ [0, 1]

such that

R′1(t) : R2/Z2 → R2/Z2 R′2(t) : R2/Z2 → R2/Z2

(x, y)Z2 → (x+ t, y)Z2 (x, y)Z2 → (x, y + t)Z2 .

Hence Ri(t) = % ◦ R′i(t) ◦ %−1, i = 1, 2 form a bases of Diff0 (Σ1). As above to

understand Diff0 (Σ1, c) we consider the quotient Σ1/c is a Klein bottle (KB). It

is known that Diff0 (KB) ∼= S1, [EE]. Hence we consider Diff0 (Σ1/c) as a group

generated by the rotation which lifts to a translation in the universal cover of Klein

bottle. Such translation in the lattice and corresponding rotation shown in Figure 5.7.

Since Diff0 (Σ1, c) ∼= Diff0 (Σ1/c) ∼= S1 we have π1(Diff0 (Σ1, c), id) = Z. With

respect to the identification % and the real structure c, R1(t) gives a generator of

π1(Diff0 (Σ1, c), id) = Z. Then from the exact sequence

0 → π1(Diff0 (Σ1, c)) → π1(Diff0 (Σ1)) → π1(Diff0 (Σ1)/Diff0 (Σ1, c)) → 0

1 → (1, 0)

we get π1(Diff0 (Σ1)/Diff0 (Σ1, c), [id]) = Z.
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Shift

Fig. 5.7.

• If c is an odd real structure, Σ1 has unique real component, denoted C. The

restriction of f ∈ Diff0 (Σ1, c) to C defines a diffeomorphism of C. This restriction

gives a fibration with fibers isomorphic to

Diff0 (Σ1, C) = {f ∈ Diff0 (Σ1, c) : f |C = id}.

Note that Diff0 (Σ1, C) ∼= Diff0 (Σ1 \ C, ∂) where Σ1 \ C denote the closure of Σ1 \ C
and Diff0 (Σ1 \ C, ∂) diffeomorphisms of Σ1 \ C which are the identity on the bound-

ary. Note that Σ1 \ C is an annulus. It is known that Diff0 (Σ1 \ C, ∂) is contractible
[I]. Hence from the exact sequence of the fibration

Diff0 (Σ1,C) // Diff0 (Σ1, c)

²²

Diff0 (C)

we get πk(Diff0 (Σ1, c), id) ∼= πk(Diff0 (C), id), ∀k.
Let us choose the identification % : C/Λ→ Σ1 where Λ is the lattice generated by

v1 = (12 ,
1
2) and v2 = (12 ,−1

2), see Figure 5.8. Then the real structure c can be taken

as the one induced from the complex conjugation on C.

We consider R′i(t) : C/Λ→ C/Λ, t ∈ [0, 1] such that

R′1(t) : C/Z2 → C/Z2 R′2(t) : C/Z2 → C/Z2

(x+ iy)Λ → (x+ t+ iy)Λ (x+ iy)Λ → (x+ i(y + t))Λ.

Clearly, Ri(t) = % ◦ R′i(t) ◦ %−1 gives a bases for Diff0 (Σ1), since R1(t) commutes

with the real structure gives a generator for π1(Diff0 (Σ1, c)) = Z.
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v

v

2

1

1

2

-1

1

2

-1

Fig. 5.8.

Therefore, we have

0 → π1(Diff0 (Σg, c))
f→ π1(Diff0 (Σg))

g→ π1(Diff0 (Σg)/Diff0 (Σg, c)) → 0

0 → Z
f→ Z+ Z

g→ π1(Diff0 (Σ1)/Diff0 (Σ1, c)) → 0

1 → (1, 0)

Since the sequence is exact

Im(f) = ker(g) = π1(Diff0 (Σ1)/Diff0 (Σ1, c), [id]) = Z.

2

Definition 5.2.3. A rotation in Diff0 (Σ1) is called real rotation if it is in the subgroup

Diff0 (Σg, c), otherwise it will be called imaginary rotation.

Proposition 5.2.4. For any real structure c : Σg → Σg

π1(Diff0 (Σg)/Diff
c
0 (Σg), [id]) =

{

0 if g > 1

Z if g = 1

Proof. If g > 1, then Diff c
0 (Σg) is connected ∀c; if g = 1, then Diff c

0 (Σg) is

connected for the real structures c which have 1 real component. Therefore, in these

cases we have Diff c
0 (Σg) = Diff0 (Σ1, c) and thus the result follows from Lemma 5.2.2.
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If g = 1 and c : Σ1 → Σ1 has 2 real components, then we consider the identification

% : C/Z2 → Σ1 and the diffeomorphism R2(
1
2) induced from (x + iy)Z2 → (x + i(y +

1
2))Z2 . Since y+

1
2 = y− 1

2 modulo Z, the diffeomorphism R2(
1
2) is equivariant, however

it is not equivariantly isotopic to the identity.

π

Fig. 5.9.

Similar construction can be made for real structure with no real component by

considering % : R2/Z2 → Σ1. Therefore, if c is an even real structure (has either 2

or no real components) on Σ1, then Diff c
0 (Σ1) has two components: Diff0 (Σ1, c) and

the group of diffeomorphisms generated by the imaginary rotation R2(
1
2). (In what

follows we denote R2(
1
2) by R 1

2

.)

The quotient Diff0 (Σ1)/Diff
c
0 (Σ1) contains only imaginary rotations up to com-

position by R 1

2

. By letting {(x + iy)Z2 → (x + i(y + t))Z2} −→ 2πt, we identify

imaginary rotations by S1. Then, rotations in Diff0 (Σ1)/Diff
c
0 (Σ1) are identified by

S1/α∼(α+π) ∼= S1. Thus, we have π1(Diff0 (Σ1)/Diff
c
0 (Σ1), [id]) = Z. 2

5.3 Real Lefschetz chains

Let us consider a directed RLF over D2 with only real critical values. We slice D2

up into smaller discs, Di, shown in Figure 5.10 such that over each Di, we have an

elementary C-marked RLF .
Let r0, r1, r2, . . . , rn be the real points on the boundaries of Di (ordered with

respect to the orientation of the real part of (D2, conj )). We denote by ci the real

structure on Σg which is the pulled back from the real structure on Fri . Then we have

74



5.3. Real Lefschetz chains

x xx
q q q

1 2 3

...
...

b

b

rr = r1
+-0 rr = n

r 2

Fig. 5.10.

ci ◦ ci−1 = tai where ai denotes the corresponding vanishing cycle. As we have seen

in the previous section that each C-marked elementary RLF over Di is determined

by the isotopy class, [ci, ai], of a real code. Hence, an RLF over D2 with only real

critical values gives a sequence of real codes [ci, ai] satisfying ci ◦ ci−1 = tai .

Definition 5.3.1. A sequence [c1, a1], [c2, a2], ..., [cn, an] of isotopy classes of real codes

is called the real Lefschetz chain if we have ci ◦ ci−1 = tai for all i = 2, ..., n.

Theorem 5.3.2. If g > 1, then there is a one-to-one correspondence between the

real Lefschetz chains, [c1, a1], [c2, a2], ...., [cn, an] on Σg and the isomorphism classes

of directed C-marked genus-g real Lefschetz fibrations over D2 with only real critical

values.

Proof. Above we have discussed how to associate a real Lefschetz chain to a

class of directed C-marked RLF . As for the converse, we consider a real Lefschetz

chain [c1, a1], [c2, a2], ...., [cn, an], by Theorem 4.2.4, we know that each code [ci, ai]

determines a unique isomorphism class of C-marked elementary RLFs. Using the

boundary fiber sum, we glue these fibrations from left to right respecting the order

determined by the chain. By Proposition 5.1.3 the boundary fiber sum is unique up

to isomorphism if g > 1. 2

When the total monodromy of a fibration π : X → D2 is the identity then we

can consider the extension of it to a fibration π̂ : X̂ → S2. Two such extensions,

π̂ : X̂ → S2 and π̌ : X̌ → S2, will be considered isomorphic if there is an equivariant

orientation preserving diffeomorphism H : X̂ → X̌ such that π̂ = π̌ ◦H.

75



Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

Proposition 5.3.3. In g > 1 and c0 = c1 ◦ ta1 is isotopic to cn, then the fibration

π : X → D2 can be extended uniquely up to isomorphism to a real Lefschetz fibration

over S2.

Proof. The real structure cn is isotopic to c0 if and only if the total monodromy,

cn ◦ c0, is isotopic to the identity hence we can glue to π : X → D2 a trivial real Lef-

schetz fibration Σg × D2 (with the real structure (cn, conj )) along their boundaries.

This gives an extension of π over S2. A trivial fibration glued to π : X → D2 defines

an isotopy between c0 and cn hence an extension gives a path in the space of real

structures connecting c0 and cn. The difference of two extensions give a loop in this

space. Thus, the result follows from Proposition 5.2.4. 2

5.4 Real elliptic Lefschetz fibrations with real sections

and pointed real Lefschetz chains

Definition 5.4.1. Let s : B → X be a section of a real Lefschetz fibration π : X → B.

The section s is said to be real if s ◦ cB = cX ◦ s.

Two real Lefschetz fibrations (π : X → B, s) and (π′ : X ′ → B′, s′) with a real

section are called isomorphic as fibrations with a real section if there are orientation

preserving diffeomorphisms H : X → X ′ and h : B → B′ such that the following

diagram commutes

X
H

//

π
²²

X ′

π′

²²

X

cX ??
Ä
Ä
Ä

H
//

π

²²

X ′
cX′

??
ÄÄÄ

π′

²²

B
h

//

s

GG

B′

s′

WW

B
h

//

cB ??
Ä
Ä
Ä

s

GG

B′.
cB′

??
ÄÄÄ

s′

WW

If r denotes a real point on B, then we have c(s(r)) = s(r) where c denotes the

real structure on the fiber Fr.

Let us consider a directed C-marked elementaryRELF (π : X → D2, {b, b̄}, {ρ, ρ̄})
with a real section s. The section s defines a point ∗ (the pull back of the point s(b))
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chains

on Σ1 such that if (c, a) is a real code then c(∗) = ∗ and ∗ is disjoint from a. Such a real

code will be called the pointed real code. Recall that the real code is determined up

to an isotopy on Σ1. Let [c, a]
∗ denote the isotopy class of a pointed real code (c, a)∗,

where the isotopy is taken relative to the point marked by the section. In other words,

the pointed real code considered up to the action of the group Diff0
∗(Σg), which is the

connected component of the identity of the group Diff ∗(Σg) formed by the orientation

preserving diffeomorphisms of Σg which keep fixed a marked point ∗.

Lemma 5.4.2. The isotopy classes of pointed real codes [c, a]∗ classify the directed

C-marked elementary RELFs endowed with a real section.

Proof. Above we have shown how we assign a pointed class [c, a]∗ to a given

directed C-marked elementary RELF (considered up to isomorphism of directed C-

marked RELFs).
As for the converse, let us consider [c, a]∗ on Σ1 with a distinguished point ∗.

Let us consider the directed C-marked elementary RELF , π : X → D2, associated

to the underlying isotopy class [c, a]. We will construct the section s : D2 → X as

follows. Let us consider a continuous family of paths αr(t) on the upper half-disc of

D2 connecting the base point b to regular real points r of (D2, c), see Figure 5.11.

b

x r

α

r0 1

r0
α r1

...

Fig. 5.11.

Using these paths we obtain a family of identifications ρr : Σ1 → Fr. Then by

setting s(r) = ρr(∗) we obtain a section over the real part of D2 except the singular

fiber. Since the vanishing cycle a does not contain the distinguished point ∗, this

section extends to the singular fiber.

The section s can be extended to real section over small neighborhood of the

real part. This finishes the proof because the fibration over a small neighborhood of

77



Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

the real part of D2, is homotopically the same as π : X → D2 as π has only real

critical values. Note that changing the paths αr up to homotopy, defines a directed

C-marked elementary RELF with a section associated to a real code [c′, a′]∗ such that

[c, a]∗ = [c′, a′]∗. 2

With a Lefschetz fibration over D2 which has only real critical values and is en-

dowed with a section, we associate a sequence [c1, a1]
∗, [c2, a2]

∗, ...., [cn, an]
∗ of isotopy

classes of pointed real codes, such that ci ◦ ci−1 = t∗ai for all i = 2, ..., n. Here t∗ai

denotes a Dehn twist as an element of Diff ∗(Σg). This kind of sequence is called

pointed real Lefschetz chain.

Let us consider the subgroup Diff c
0
∗(Σg) ⊂ Diff0

∗(Σg) consisting of those diffeo-

morphisms which commute with c.

Lemma 5.4.3. π1(Diff0
∗(Σ1)/Diff

c
0
∗(Σ1), [id]) = 0.

Proof. Basically we repeat the idea of the proof of Lemma 5.2.2. Note that

Diff0
∗(Σ1) can be identified with Diff0 (Σ1 \ {pt}). The latter is known to be con-

tractible by [EE]. Moreover, Diff c
0
∗(Σ1) is a connected subgroup of Diff0

∗(Σ1) hence

the result follows. 2

Theorem 5.4.4. If g = 1, then there is a one to one correspondence between the

pointed real Lefschetz chains, [c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗, on Σ1 and the isomor-

phism classes of directed C-marked real Lefschetz fibrations over D2 endowed with a

real section and having only real critical values.

Proof. The proof is analogous to the proof of Theorem 5.3.2 and it follows from

Lemma 5.4.2 and Lemma 5.4.3. 2

Proposition 5.4.5. If c0 = c1 ◦ ta1 is isotopic to cn then there is a unique extension

of π : X → D2 to a fibration with a section over S2.

Proof. The proof is analogous to the proof of Proposition 5.3.3. The result follows

from Lemma 5.4.3. 2
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5.5. Real elliptic Lefschetz fibrations without real sections

Remark 5.4.6. In fact, if two real Lefschetz fibrations with only real critical values

and with a real section are isomorphic then they are isomorphic as fibrations with

a real section. The result follows from the observation that any two sections can be

carried to each other (without changing the isomorphism type of the fibration) by the

twist transformations, TN and double TNsing which we introduce in the next section.

5.5 Real elliptic Lefschetz fibrations without real sections

Let us recall that the boundary fiber sum of two C-marked RELFs without a real

section is not well-defined already because there is no canonical way to carry real

codes [ci, ai] to the surface Σg. So, in this section, we consider the boundary fiber

sum of directed non-marked RLFs. We show that for some elementary RLFs the

boundary fiber sum is well-defined.

Definition 5.5.1. Let π′ : X ′ → D2 and π : X → D2 be two directed non-marked

RLFs. We consider fibers, F ′+ and F− of π′ and π over the real points r′+ and r−,

respectively. Let us assume that the real structure c′+ : F ′+ → F ′+ is equivalent to

c− : F− → F−, or in the other words, there is an orientation preserving equivariant

diffeomorphism φ : F ′+ → F−. Then we define the boundary fiber sum of non-marked

RLFs, X ′\F,φX → D2, using the identification of the fibers F ′+ and F− via φ.

r' r+ -

F' F+ -
φ

Fig. 5.12.

The boundary fiber sum does depend on the choice of φ, however, there is the

following (well-known and simple) criterion for a pair of such diffeomorphisms φ and

ψ to give isomorphic fibrations.
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Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

Lemma 5.5.2. The boundary fiber sums defined via equivariant diffeomorphisms

φ, ψ : F ′+ → F− are isomorphic, if ψ ◦ φ−1 : F− → F− can be extended to an equiv-

ariant diffeomorphism of X → D2, or if φ−1 ◦ ψ : F ′
+
→ F ′

+
can be extended to an

equivariant diffeomorphism of X ′ → D2. 2

We will call these two cases the right extendibility and the left extendibility respec-

tively.

The results in the previous chapter yield a condition for the right (and similarly,

for the left) extendibility in the case of elementary RLFs. Namely, ψ◦φ−1 : F− → F−

can be extended to an equivariant diffeomorphism of an elementary RLF , X → D2, if

and only if ψ ◦φ−1 takes the vanishing cycle, a, of X to a curve which is equivariantly

isotopic to a.

Lemma 5.5.3. Let g(F ) = 1. Then,

• if a real structure c on F has 1 real component, then F contains a unique c-

equivariant isotopy class of totally imaginary curves, a unique c-equivariant iso-

topy class of non-contractible real-imaginary curves, and one real curve,

• if c has 2 real components, then there is a unique c-equivariant isotopy class

of non-contractible real-imaginary curves, no totally imaginary curves, and two

real curves,

• if c has no real components, then there exist two c-equivariant isotopy classes of

totally imaginary curves, but no real and real-imaginary curves.

Proof. If c has 1 real component, then the quotient F/c which is a Möbius band.

The quotient of a totally imaginary curve is a simple closed curve in F/c homologous

to the central curve of the band. Such curve has to be isotopic to the central curve.

The quotient of a real-imaginary curve is an arc connecting two boundary points on

F/c. There is a unique isotopy class of such arcs which are not contractible. Namely,

such arcs are isotopic to the fibers of the standard fibration of the Möbius band,

F/c→ S1 (see 5.13).

If c has 2 real components, then F/c is an annulus and the quotient of a real-

imaginary curve is a simple arc. It connects the opposite boundary components of

F/c if the curve is non-contractible. Such arcs are also obviously all isotopic.
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5.5. Real elliptic Lefschetz fibrations without real sections

Fig. 5.13.

If c has no real component, then F/c is the Klein bottle which can be viewed as

a pair of Möbius bands glued along their boundaries. The two central curves of these

two Möbius bands represent the quotients of the two c-equivariantly non-isotopic to-

tally imaginary curves in F . 2

Lemma 5.5.3 implies that the boundary fiber sum of elementary non-marked

RELFs may be not well-defined only in two cases: if c has 2 real components and

a is real, or if c has no real components and a is totally imaginary. In these cases

there are two c-equivariant isotopy classes of curves a, and we will be calling a pair

of representatives of different classes c-twin curves. Note that the imaginary rotation

R 1

2

(introduced in the proof of Proposition 5.2.4) switches the c-twin curves. Hence,

c-twin curves can be carried to each other via equivariant diffeomorphisms, although

they are not equivariantly isotopic. Thus a diffeomorphism on a real fiber which

switches the c-twin curves can not be extended to a fibration over D2. This shows

that in the above two cases there is an ambiguity in the definition of the boundary

fiber sum X ′\X: it can be defined in two ways, and to resolve the ambiguity we should

specify how we identify the c-twin curves in the fiber F ′+ in X ′ with the c-twin curves

in the fiber F− in X.

c

Fig. 5.14.
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Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

However in certain cases the problem of switching c-twin curves can be eliminated.

For this reason we consider the following definition.

Definition 5.5.4. Let π : X → D2 be a directed RELF . We consider a real slice N

of D2 which contains no critical value, shown in Figure 5.15.

xxx
N1
1
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N xx

Fig. 5.15.

Let ξ : I × I → N , I = [0, 1] be an orientation preserving diffeomorphism such

that first interval correspond to the real direction on N . The fibration over N has no

singular fiber hence it is trivializable. Let us consider a trivialization Ξ : Σ1× I× I →
π−1(N) such that the following diagram commutes

Σ1 × I × I Ξ
//

²²

π−1(N)

π

²²

I × I ξ
// N.

Note that since N has no critical value the isotopy type of the real structure on the

fibers over the real part of N is constant. If the real structure c has 2 real components

then we consider the model % : C/Z2 → Σ1 and set

%̄ = (%, id) : C/Z2 × I × I → Σ1 × I × I

then we consider the map,

T ′ : C/Z2 × I × I → C/Z2 × I × I

such that T ′((x+ iy)Z2 , t, s) = ((x+ t+ iy)Z2 , t, s). Then let

TN = Ξ ◦ (%̄ ◦ T ′ ◦ %̄−1) ◦ Ξ−1 : π−1(N)→ π−1(N).
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5.5. Real elliptic Lefschetz fibrations without real sections

Since at t = 0, 1, TN is the identity we can extend TN to X by the identity outside of

π−1(N). The map TN is called a twist of an RELF over N .

If c has 1 real component then we can construct the twist TN using % : C/Λ→ Σ1;

similarly if c has no real component then we repeat the same using % : R2/Z2 → Σ1

(introduced in the previous section).

Remark 5.5.5. 1. Since the twist TN is defined by a real rotation, TN preserves the

isomorphism class of the real Lefschetz fibration.

2. The map TN depends only on the isotopy type of π−1(N).

One can define an equivariant twist for a slice Nsing which contains only one

critical value where the corresponding vanishing cycle is real-imaginary. Let us divide

the boundary of Nsing into to two pieces: left and right boundaries (left/ right being

determined by the direction). Note that since the vanishing cycle is real-imaginary, the

real structures on the fibers over real boundary points of Nsing have 1 real component

on one side and 2 real components on the other side. Let us assume that the real

structure on the fiber over the left boundary point has 1 real component.

xx xx

e e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e ee e e e e e e e e e e e e e e e e e e

x

Nsing

Fig. 5.16.

To construct TNsing we consider the following well-known model for elementary

elliptic fibrations. Let Ω̂ = {z| |Re(z)| ≤ 1
2 , Im(z) ≥ 1} ∪ ∞, (the subset bounded

by Im(z) ≥ 1 of the one point compactification of the standard fundamental domain

{z| |Re(z)| ≤ 1
2 , |z| ≥ 1} of the modular action on C, see Figure 5.17.)

We consider the real structure cΩ̂ : Ω̂ → Ω̂ such that cΩ̂(ω) = −ω. Let Ω denote

the quotient Ω̂Á 1

2
+iy∼− 1

2
+iy. The real structure cΩ̂ induces a real structure on Ω.

Note that Ω is a topological real disc and can be identified with Nsing so that the real

part of Nsing corresponds to the union of the half-lines iy and 1
2 + iy where y ≥ 1. For
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0-1 1-1/2 1/2
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Fig. 5.17.

any ω ∈ Ω, the fiber over ω is given by Fω = C/(Z + ωZ), where the fiber F∞ has a

required nodal type singularity.

Let πΩ : XΩ → Ω denote the fibration such that ∀ω ∈ Ω we have π−1Ω (ω) = Fω =

C/(Z+ ωZ). Then we consider the translation T ′sing defined by

T ′sing : XΩ → XΩ

zω ∈ Fω → (z + τ(w))ω ∈ Fω
where zω denotes the equivalence class of z in C/(Z + ωZ) and τ : Ω → Ω such

that

τ(ω) = −1

2
+ (

1

2
− f(Re(ω)) + i)exp(−Im(ω) + 1)

for some smooth mapping f : R/Z→ R/Z satisfying the following properties:

01
2

1
2

1
2

The graph of  f

• f(0) = 1
2 (modulo Z),

• f(1− x) = 1− f(x), (⇒ f( 12) =
1
2) (modulo Z),

• f is linear on [14 ,
3
4 ] (modulo Z).

Note that τ has the following properties. (Equations are considered modulo the

relation −1
2 + iy ∼ 1

2 + iy, y ≥ 1.)

• τ(−ω) = −τ(ω),

84



5.5. Real elliptic Lefschetz fibrations without real sections

• τ(∞) = 1
2 ,

• τ(12 + iy) = −1
2 + iexp(−y + 1) = 1

2 + iexp(−y + 1),

in particular, if y = 1 then τ( 12 + i) = 1
2 + i,

•τ(iy) = −1
2 + iexp(−y + 1) = 1

2 + iexp(−y + 1),

in particular, if y = 1 then τ(i) = 1
2 + i.

Let TNsing denote the twist on π−1(Nsing) induced from the twist T ′sing on XΩ.

By definition TNsing is equivariant and is the identity over the left boundary and half

rotation on the right boundary component of Nsing.

Lemma 5.5.6. Let π′ : X ′ → D2 and π : X → D2 be two non-marked elementary

RELFs such that both c′+ and c− have 2 real components. We assume that the van-

ishing cycle a of π is real with respect to c−. Then boundary fiber sum X ′\FX → D2

is well-defined if the vanishing cycle a′ of π′ is real-imaginary with respect to c′+.

Proof. Let φ and ψ be two equivariant diffeomorphism of F+ such that

φ ∈ Diff0 (F+, c) and ψ = φ′ ◦R 1

2

where φ′ ∈ Diff0 (F+, c).

As we have discussed in the beginning of this section that the boundary fiber sums

X ′\F,φX → D2 and X ′\F,ψX → D2 obtained using diffeomorphisms φ and ψ may

not give isomorphic fibrations, since two gluing diffeomorphisms belong to different

components of Diff c
0 (F+).

xx xx

TNsing

Fig. 5.18. The action of TNsing on the real part.

As the vanishing cycle of π′ is real-imaginary we can apply TNsing to X ′. At the

singular fiber TNsing acts as half rotation, hence the fiber TNsing(F
′)− differs from the

fiber F ′− by the rotation R 1

2

. Therefore, X ′\F,φX is isomorphic to TNsing(X
′)\F,φ◦R 1

2

X
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Chapter 5. Invariants of real Lefschetz fibrations with only real critical values

which is isomorphic to X ′\F,ψX → D2. 2

Remark 5.5.7. Let π : X → S2 be a real elliptic Lefschetz fibration with only real

critical values. Let s and s′ be two real sections on X → D2. Using the twists TN and

double TNsing we can modify the section s, over the intervals where s′ differs from s,

see Figure 5.20. The double twist operation is defined for real Lefschetz fibrations with

two critical values where the corresponding vanishing cycles are both real-imaginary.

The model we use to define the double twist is obtained as follows. Let us consider the

disc with two critical values as the double cover of a disc with one critical value (where

the corresponding vanishing cycle is real-imaginary) branched at a regular real point.

Let Nsing− and Nsing+ denote the two corresponding copies of Nsing on the branched

cover. By pulling back the fibration XΩ over Nsing, we obtain a model fibration over

Nsing− ∪ Nsing+ where the vanishing cycles are real-imaginary. Thus, we can apply

TNsing at the same time to fibrations over Nsing− and Nsing+. This way we obtain a

twist which is identity over the boundary of Nsing− ∪Nsing+ and a half twist over the

common boundary of Nsing− and Nsing+.

xx xx
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Nsing+

x

Fig. 5.19.

We use double TNsing to modify the section around the two neighboring singular

fibers with real-imaginary vanishing cycles. Possible modification on the real part is

shown in Figure 5.20.

Using TN and double TNsing , we obtain an isomorphism (as fibrations with a sec-

tion) of (π : X → D2, s) and (π : X → D2, s′). Since TN and double TNsing do not

change (π : X → D2, s′) outside some slices of D2, if π can be extended to a fibration

over S2, then extensions of s and s′ match, by Lemma 5.4.3.
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5.6. Weak real Lefschetz chains

T

T

TN

N

N

sing
double

Fig. 5.20. Modification of the real section over the real part of D2.

5.6 Weak real Lefschetz chains

Let us now consider a directed non-marked RELF over D2 with only real critical

values, q1 < q2 < ... < qn. Around each critical value qi we choose a real disc Di such

that Di ∩ {q1, q2, ..., qn} = {qi} and each Di ∩ Di+1 = {ri} ⊂ [qi, qi+1]. Each (non-

marked) fibration over Di is classified by the conjugacy class {ci, ai} of the real code.

Thus we obtain a sequence {c1, a1}, {c2, a2}, ..., {cn, an} such that ci ◦ tai is conjugate
to ci−1 for all i = 2, ..., n. We will call this sequence the weak real Lefschetz chain.

Clearly, weak real Lefschetz chains are invariants of directed non-marked RELFs over
disc with only real critical values.

x x xx...

...

q q q q21 nn-1

Fig. 5.21.
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The discussion about well-definedness of boundary fiber sum shows that weak

Lefschetz chains are not sufficient for the classification of the directed RELFs over

D2 with only real critical values. An additional information is needed if for some i,

the real structure ci has no real component or ci has 2 real components and vanishing

cycles corresponding to the critical values qi and qi+1 are real with respect to ci.

We fix the fiber Fri over a real point ri and consider the vanishing cycles ai and

ai+1 on Fri , corresponding to critical values qi and qi+1, respectively. When the

real structure ci has no real component then both ai and ai+1 are necessarily totally

imaginary with respect to ci. Either these curves are the same or they are the ci-twin

curves, see Figure 5.22.

X X

Real part

Fibers

q q
i i+1i

r

:

Imaginary:

X X
q qri i+1i

Fig. 5.22.

Similarly, if ci has 2 real components and both ai and ai+1 on Fri are real with

respect to ci then either ai and ai+1 are the same curve or they are the ci-twin curves on

Fri . Note that when both vanishing cycles are the same curve on Fri then the fibration

admits a section over [qi, qi+1], otherwise there is no such section, see Figure 5.23.

In the above situations if ai and ai+1 are ci-twin curves then we mark ri by r
R
i .

(Notation refers to imaginary rotation R 1

2

, since one can switch the vanishing cycle

by applying to the imaginary rotation R 1

2

). Then we decorate the weak real Lefschetz

chain by marking classes {ci, ai}R corresponding to the marked points. The weak

Lefschetz chain we obtain is called the decorated weak real Lefschetz chain.

Theorem 5.6.1. There exists a one-to-one correspondence between the decorated weak

real Lefschetz chains and the isomorphism classes of directed non-marked real elliptic

Lefschetz fibrations over D2 with only real critical values.
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X X
q qr

i i+1i

Real part

Fibers

:

Imaginary:

X X
q qr

i i+1
i

Fig. 5.23.

Proof. Above we discuss how to assign a decorated weak Lefschetz chain to a

directed non-marked RELF . As for the converse, we consider a decorated weak real

Lefschetz chain. Each real code {ci, ai} gives a unique class of directed non-marked

elementary RELFs then we consider boundary fiber sums respecting the decoration

from left to right with the order determined by the chain. We obtain unique real Lef-

schetz fibration up to isomorphism since boundary fiber sum is determined uniquely

by the decoration. 2

If c1 ◦ ta1 is conjugate to cn then we can consider an extension of π : X → D2 to

a fibration over S2. As before, in case when cn has 2 real components and neither a1

nor an is a real-imaginary curve or when cn has no real component a decoration at

infinity will be needed.

Proposition 5.6.2. If cn has 2 real components and either a1 or an is real-imaginary

or if cn has 1 real component then there exists a unique extension.

Otherwise, there are two extensions distinguished by the decoration at infinity.

Proof. Let π : X → D2 be the directed RELFs associated to a given decorated

weak real Lefschetz chain. An extension of π to a fibration over S2 defines a trivial-

ization, φ : Σ1 × S1 → π−1(∂D2) over the boundary ∂D2. Two trivializations φ, φ′

correspond to isomorphic real fibrations if φ−1 ◦ φ′ : Σ1 × S1 → Σ1 × S1 can be ex-

tended to an equivariant diffeomorphism of Σ1×D2 with respect to the real structure

(cn, conj ) : Σ1 ×D2 → Σ1 ×D2. Let Φt = (φ−1 ◦ φ′)t : Σ1 → Σ1, t ∈ S1. Since there

is no fixed marking, up to change of marking we assume that Φt ∈ Diff0 (Σ1).
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The real structure splits the boundary into two symmetric pieces, so instead of

considering an equivariant map over the entire boundary we consider a diffeomor-

phism over one the symmetric pieces. Let Φt, t ∈ [0, 1] denote the family of such

diffeomorphisms. The family, Φt, t ∈ [0, 1] defines a path in Diff0 (Σ1) whose end

points lie in Diff cn
0 (Σ1), thus Φt defines a relative loop in π1(Diff0 (Σ1),Diff

cn
0 (Σ1)).

We will be interested in the contractibility of this relative loop.

As we have calculated in Section 5.2 we have π1(Diff0 (Σ1),Diff
cn
0 (Σ1)) = Z. How-

ever, there is a way to modify Φt without changing the isomorphism class of theRELF
such that Φt is transformed to a contractible relative loop. The proposition follows

from Lemma 5.6.3 below. 2

First, let us consider the exact sequence of the pair (Diff0 (Σ1),Diff
cn
0 (Σ1))

... → π1(Diff
cn
0 ) → π1(Diff0 )

f→ π1(Diff0 ,Diff
cn
0 )

g→ π0(Diff
cn
0 )

h→ π0(Diff0 ) →
π0(Diff0 ,Diff

cn
0 )→ 0.

In case when cn is an odd real structure, Diff cn
0 (Σ1) is connected so map h is

injective hence g is the zero map which implies that f is surjective. Hence any path

in π1(Diff0 (Σ1),Diff
cn
0 (Σ1), [id]) can be seen as a loop in π1(Diff0 (Σ1), id). The fol-

lowing Lemma shows that any loop in π1(Diff0 (Σ1), id) can be written in terms of

transformations TNi , for some regular slices Ni.

In other cases, Diff cn
0 (Σ1) has two components. Let us mark one of the compo-

nents. Then the map h restricted to the marked component is injective. Hence g is

the zero map and f is surjective over the marked component of Diff cn
0 . Note that

decoration of real Lefschetz chain distinguishes one of the component of Diff cn
0 (Σ1)

hence marking one component or other give the two different extension determined

by the decoration.

In the case cn has 2 real components and either a0 or an is real-imaginary, the

transformation TNsing changes one marking to other.

Lemma 5.6.3. Let us assume that π : X → D2 has at least one real-imaginary

vanishing cycle. Then there exists a generating set for π1(Diff0 (Σ1), id) = Z + Z

consisting of transformations TNi for some nonsingular slices Ni.

Proof. Let ai denote the real-imaginary vanishing cycle and qi corresponding

critical value. Let N−, N+ be two nonsingular slices of D2 intersecting the real part
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5.6. Weak real Lefschetz chains

(qi−1, qi) and (qi, qi+1), respectively. Let r− and r+ be left boundary points of N− and

N+ shown in Figure 5.24, and c± be the real structures on the fibers π−1(r±).

xxx
N

N
1

1

q
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Fig. 5.24.

Since the vanishing cycle is real-imaginary, the real structures on the nearby regular

fiber can have either 1 or 2 real components. Let us assume that the real structure

over (qi−1, qi) has 2 real components. (The other case can be treated similarly.)

Let us choose an auxiliary C-marking ({b, b̄}, {ρ : Σ1 → Fb, ρ̄ : Σ1 → Fb̄}). We

will also fix an identification % : S1 × S1 → Σ1 of Σ1 with S1 × S1. Since c− has 2

real components, we can assumed that the induced real structure on S1 × S1 is the

reflection (α, β) → (α,−β). Then real part consists of the curves C1 = (α, 0) and

C2 = (α, π). Since ai is real-imaginary a representative can be chosen as (0, β). By

Theorem 3.1.2, we have c+ = tai ◦ c− on S1×S1. Then the real part of c+ is the curve

C3, given homologically by 2C1 − ai, see in Figure 5.25.

C C C

- +

1 2

a i

F F

3

Fig. 5.25.

Since C3 intersects C1 at one point. We can identify Σ1 = C1×C3. Then rotations

along C1, C3 generates Diff0 (Σ1). Hence TN± generates π1(Diff0 (Σ1)). 2
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Remark 5.6.4. The assumption that the fibration admits a real-imaginary vanishing

cycle is not restrictive. In fact, every real elliptic Lefschetz fibration over S2 with only

real critical values has at least one real-imaginary vanishing cycle. This can be seen

easily by analysis of the homology monodromy which will be discussed in next chapter

(Corollary 6.10.3).

Theorem 5.6.1 applies naturally to directed non-marked RELFs over D2 which

admit a real section. Since there is a real section weak Lefschetz chain does not contain

a real code [ci, ai] with a real structure which has no real component. In addition, if the

real structure has 2 real components and the vanishing cycle is real the decoration is

not needed, since existence of a real section defines uniquely the gluing of two directed

non-marked elementary RELFs over D2. Similarly, the extension to a fibration over

S2 is uniquely defined.

Proposition 5.6.5. Two directed RELFs over S2 admitting a section and having

the same weak Lefschetz chain up to cyclic ordering are isomorphic. 2

92



Chapter 6

Necklace Diagrams

6.1 Real locus of real elliptic Lefschetz fibrations with

real sections

Let π : X → S2 be a directed RELF admitting a real section, and πR : XR → S1

the restriction of π to the real part, XR, of X. Since π has a real section, none of

the fibers of πR is empty. As a consequence, topologically regular fibers of πR are

either two copies of S1 (this happens if the real fiber of π has two real components)

or a copy of S1 (this happens if the real fiber π has one real component). There are

two types of singular fibers of πR: topologically either a disjoint union of a circle and

an isolated point or a wedge of two circles. In the first case, the singularity, called a

solitary double point, appear as a local maximum (the local model −x21−x22), or a local

minimum (the local model x21 + x22) of πR, while in the second case, the singularity is

called a crossing double point and appear as a saddle critical point (the local model

±(x21 − x22)) of πR.

The isotopy type of the real structures and in particular the topology of the fibers

of πR over its regular intervals (between the pairs of neighboring critical points) is

constant.

Definition 6.1.1. A regular interval I ⊂ S1 is called odd if the real structure over I

is an odd real structure, and otherwise is called even.

Lemma 6.1.2. The topology of the regular fibers of πR alternates as we pass through
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a critical value.

Proof. Let ci−1 and ci be the real structures on the fibers over the points neigh-

boring a critical value, qi, and ai the vanishing cycle corresponding to qi.

If ai is real with respect to ci−1, then by Lemma 4.3.1, ai is totally imaginary

with respect to ci = ci−1 ◦ tai , vice versa. Therefore, the number of real components

increase or decrease by 1.

O

Real Part

Imaginary part
of the fibers

Fig. 6.1.

If ai is real-imaginary with respect to ci−1, then there are two cases: either ci−1

has two real components and ai intersects each of the real components at one point

or ci−1 has one component and ai intersects the real curve at two points. In fact, the

latter case can be seen as the inverse of the former case with respect to the direction

of S1. So, it will be sufficient to give a prove for the former case.

Real Part Imaginary part
of the fibers

Fig. 6.2.

Note that in the former case, after the Dehn twist along ai, two real components

are connected to each other and form an invariant curve. Since a Dehn twist is the
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6.1. Real locus of real elliptic Lefschetz fibrations with real sections

identity map outside a neighborhood of ai, the real structure ci acts as the iden-

tity on the pieces of this curve, so it should act as the identity on the whole curve.

Hence we obtain one real curve which intersects the vanishing cycle ai at two points. 2

On S1 (the base of πR), we will mark the critical values corresponding to the

solitary double points by ◦ and those corresponding to the crossing double points

by ×. Moreover, we mark the regular intervals over which fibers of πR have two

components by sketching an extra edge, like is shown on Figure 6.3. Evidently, the

decoration we obtain is an invariant of real Lefschetz fibrations. We call S1 together

with such a decoration an uncoated necklace diagram.

x

xx

x

xx

Fig. 6.3.

Remark 6.1.3. Since the decoration of S1 determines the vanishing cycle and the

real structure up to conjugation, uncoated necklace diagrams give a geometric inter-

pretation of weak Lefschetz chains, (up to cyclic ordering).

Let us mark an odd interval on S1\{critical set}. Then with respect to the marked

interval, we have 4 basic positions.

We introduce the following notation for the even intervals.
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−→
−→
−→
−→

Thus, we modify the decoration of a circle and call the object we get an oriented

necklace diagram associated to a directed real elliptic Lefschetz fibration with a real

section. We call the elements of the set { ,¤, >,<} necklace stones and the circle

necklace chain of the necklace diagram. Two oriented necklace diagrams are con-

sidered identical if they contain the same types of stones going in the same cyclic

order.

x

xx

x

xx

x

xx

x

xx

Fig. 6.4. Uncoated necklace diagram.

A necklace diagram is called non-oriented, if the orientation of its chain is not

fixed. Such diagrams are invariants of non-directed RELFs admitting a real section.

Fixing an orientation, we can obtain a pair of oriented necklace diagrams related by

a mirror symmetry. Thus, non-oriented necklace diagrams will be considered up to

symmetry.

Note that although (oriented) necklace diagrams can be defined for any directed

real elliptic Lefschetz fibration which admits a real section, to be able to obtain a one

to one correspondence we will concentrate ourselves on those fibrations whose critical

values are all real.
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6.2 Monodromy representation of stones

Any real structure, c : Σ1 → Σ1, induces a homomorphism c∗ on H1(Σ1,Z) = Z + Z

which defines two rank 1 subgroups Hc
± = {[a] : [a]c∗ = ±[a]} of H1(Σ1,Z). (Here,

[a]c∗ denotes c∗[a].) For any real structure c, the subspaces Hc
± is nonempty. When

the real structure c has two real components, we have H1(Σ1,Z) = Hc
+ +Hc

−. Other-

wise any element of H1(Σ1,Z) can be written as a linear combination of generators of

Hc
± where the coefficients taken from the set 1

2Z = {12m : m ∈ Z}. Vanishing cycles

corresponding to the critical value of type ◦ are either real or totally imaginary, hence

they give a generator for the subspace Hc
+. On the other hand, vanishing cycles cor-

responding to the critical values of type × are real-imaginary so they give a generator

of the subspace Hc
−.

Let q be a critical value and c and c′ be the real structures on the fibers over q− ε
and q + ε, respectively, where ε is a sufficiently small positive real number. We will

call c and c′ as left-hand and right-hand real structure, respectively.

Let < [a] >= Hc
+ and < [b] >= Hc

−; similarly, < [a′] >= Hc′

+ and < [b′] >= Hc′

+ .

To each critical value, q, we assign the transition matrix, Pq, defined up to sign, such

that ([a], [b])Pq = ([a′], [b′]).

There are two types of critical values. For each type there are two cases distin-

guished by the direction.

Lemma 6.2.1. Up to a sign, we obtain the following matrices

P(−×<) = 1
2

(
1 0

−1 2

)

, P(>×−) =
(

2 0

−1 1

)

P(−◦<) = 1
2

(
2 1

0 1

)

, P(>◦−) =
(

1 1

0 2

)

.

Proof. We give the proof for one of the four cases, say P(−×<). (Calculations for

other cases are analogous.)

Recall that, in this case, the vanishing cycle is a real-imaginary curve and hence,

gives a generator of Hc
−. Let us denote the vanishing cycle by b, so that we have

< [b] >= Hc
−. Then, we choose a generator [a] for Hc

+ such that [a] ◦ [b] > 0. Since

c is an odd real structure, [a] ◦ [b] = 2. By Theorem 3.1.2, we have c′ = tb ◦ c and

thus c′∗ = tb∗ ◦ c∗ = c∗tb∗. (To be consistent with the notation [a]c∗, in the level of

homology we consider the product notation for the composition.) We obtain,
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[a]c′∗ = [a]c∗tb∗ = [a]tb∗ = [a] + ([b] ◦ [a])[b] = [a]− 2[b]

[b]c′∗ = [b]c∗tb∗ = −[b]tb∗ = −[b].
Note that

([a] + [a]c′∗)c
′
∗ = [a] + [a]c′∗ and ([b]− [b]c′∗)c

′
∗ = −([b]− [b]c′∗).

Therefore a generator [a′] of Hc′

+ and [b′] of Hc′

− can be obtained by normalizing

[a] + [a]c′∗ = 2[a] − 2[b] and [b] − [b]c′∗ = 2[b] so that [a′] ◦ [b′] = 1. We choose

[a′] = 1
2([a]− [b]) and [b′] = [b]. Then we get P(−×<) =

1
2

(
1 0

−1 2

)

.

We can always replace ([a], [b]) by (−[a],−[b]). Thus, the resulted matrix is well-

defined up to a sign. 2

Each necklace stone corresponds to a pair of critical values, and the matrices

associated to the necklace stones are obtained as the following products (up to an

ambiguity of the sign)

P¤ = P(−×<)P(>×−) =

(

1 0

−2 1

)

,

P = P(−◦<)P(>◦−) =

(

1 2

0 1

)

,

P> = P(−×<)P(>◦−) = 1
2

(

1 1

−1 3

)

,

P< = P(−◦<)P(>×−) = 1
2

(

3 1

−1 1

)

.

We consider two presentations of SL(2,Z);

SL(2,Z) = {α =
(

1 1

0 1

)

and β =
(

1 0

−1 1

)

: (αβ)6 = id}
= {x =

(
0 1

−1 0

)

and y =
(

0 1

−1 1

)

: x2 = y3, x4 = id}.

One can pass from the first presentation to the second by letting x = αβα = βαβ

and y = αβ.

Since x2 = −id we have PSL(2,Z) = {x, y : x2 = y3 = id}.
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Lemma 6.2.2. Let R = 1
2

(
1 −1

1 1

)

and P̃ = R−1PR. Then for each stone we obtain

the following factorization.

P̃¤ = yxy

P̃ = xyxyx

P̃> = y2x

P̃< = xy2

Proof. We have

P̃¤ = R−1P¤R =
(

0 1

−1 2

)

, P̃> = R−1P>R =
(

1 1

0 1

)

,

P̃ = R−1P R =
(

2 1

−1 0

)

, P̃< = R−1P<R =
(

1 0

−1 1

)

.

Note that P̃¤ = αβα−1, P̃> = α, P̃ = α−1βα, P̃< = β.

Thus, we obtain the following elements in PSL(2,Z) as monodromies of necklace

stones.
P̃> = α = β−1α−1αβα = y−1x = y2x

P̃< = β = βαββ−1α−1 = xy−1 = xy2

P̃¤ = αβα−1 = αβα−1β−1α−1αβ = yxy

P̃ = α−1βα = α−1β−1α−1(αβα−1)αβα = x(yxy)x.
2

Remark 6.2.3. Note that P̃ = xP̃¤x and P̃< = xP̃>x, hence if a necklace diagram

has the identity monodromy, then the necklace diagram obtained from the original by

replacing each ¤-type stone with -types stone, and each >-type stone with <-type

stones, and vice versa has also monodromy the identity. Such a necklace diagram is

called the dual necklace diagram.

Lemma 6.2.4. Let π : X → S2 be a directed real elliptic Lefschetz fibration having

only real critical values and admitting a real section. Then the monodromy of the

necklace diagram associated to π is the identity in PSL(2,Z).

Proof. We mark an odd interval on S1 and denote by {q1, q2, ..., qn} the set

of critical values, ordered with respect to the orientation and the marked interval.

We consider real structures ci, i = 1, 2, ..., n over regular intervals Ii = (qi, qi+1), i =

1, ..., n−1, and In = (qn, q1). Since c0 = c1◦ta1 and cn are isotopic, we have c0∗ = cn∗.
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Chapter 6. Necklace Diagrams

Note that with respect to ([a0], [b0]), such that [a0] ∈ Hc0
+ and [b0] ∈ Hc0

− , we can

write c0∗ and cn∗ as

c0∗ =
(

1 0

0 −1

)

and cn∗ = Pq1Pq2 ...Pqn

(
1 0

0 −1

)

P−1qn P
−1
qn−1

...P−1q1
.

Thus,

c0∗ = cn∗ ⇒
(

1 0

0 −1

)

= Pq1Pq2 ...Pqn

(
1 0

0 −1

)

P−1qn P
−1
qn−1

...P−1q1
.

By equating two matrices we see that the latter equality holds if and only if Pq1Pq2 ...Pqn

is the identity ∈ PSL(2,Z). The product Pq1Pq2 ...Pqn corresponds to the monodromy

of the corresponding necklace diagram. Note that the any other choice of marked odd

interval changes the monodromy up to conjugation, which does not effect the result. 2

6.3 The Correspondence Theorem

Recall that the elliptic Lefschetz fibrations of type E(n) can be characterized by the

number 12n of their critical values.

Theorem 6.3.1. There exists a one-to-one correspondence between the set of oriented

necklace diagrams with 6n stones whose monodromy is the identity and the set of

isomorphism classes of directed real fibrations E(n), n ∈ N, which have only real

critical values and admit a real section.

Proof. In the previous section we have discussed how to assign an oriented neck-

lace diagram whose monodromy is the identity to a real E(n) which admits a real

section and has only real critical values. Since E(n) has 12n critical values the corre-

sponding oriented necklace diagram has 6n stones.

For a given necklace diagram with 6n stones whose monodromy the identity, we

consider the underlying uncoated necklace diagram. The underlying uncoated neck-

lace diagram defines a weak Lefschetz chain up to cyclic ordering. Hence by Proposi-

tion 5.6.5 there is a unique class of directed non-marked RELF over S2 admitting a

section and having only real critical values.2
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Corollary 6.3.2. There exists a bijection between the set of symmetry classes of non-

oriented necklace diagrams with 6n stones whose monodromy is the identity, and the

set of isomorphism classes of non-directed real E(n), n ∈ N which have only real

critical values and admit a real section. 2

6.4 Refined necklace diagrams

One can define a necklace diagram for fibrations not necessarily having a real section.

When we discard the condition that the fibration admits a real section, we need to

consider also the real structure with no real component. Let us recall that a vanishing

cycles with respect to such a real structure can only be totally imaginary. Thus real

structure with no real component are associated to the -type necklace stones. Recall

that -type necklace stones define two critical values of type ◦, so corresponding

singularities are solitary double points. Therefore, in case when the real Lefschetz

fibrations has no real section, with respect to a real structure c on a real fiber F

between the corresponding singular fibers, vanishing cycles are both real (if c has

2 real components) or totally imaginary (if c has no real component). As it was

discussed in Section 5.6, the isomorphism class of the fibration depends on whether

these vanishing cycles are the same curve, or c-twin curves (c-invariant curves which

are isotopic but not c-equivariantly isotopic) on F .

Recall that, if c has 2 real components and two vanishing cycles are real, two

possible classes of fibrations are already distinguished by whether or not there exists

a real section over the interval corresponding to two critical values, as is clear from

Figure 6.5.

(1) (2)

Fig. 6.5.

If c has no real component, as discussed in Section 5.6 we have two non-isomorphic
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Chapter 6. Necklace Diagrams

real Lefschetz fibrations although the real part of the fibration does not distinguish

two choices of vanishing cycles, see Figure 6.6.

(3) (4)

Fig. 6.6.

On the homological level, there is no difference between the real structure with

2 real components and the real structure with no component. As a result, there is

no difference in the calculation of the monodromy of the necklaces stones. Thus we

assign a refined (oriented) necklace diagram to a (directed) real Lefschetz fibration

without real sections by replacing -type necklace stones with , , , corresponding

respectively to the four cases discussed above, see Figures 6.5 and 6.6. (Each refined

necklace stone corresponds to xyxyx ∈ PSL(2,Z).) The necklace diagram which

we obtain will be called a refined necklace diagram. (Clearly if the refined necklace

diagram is identical to the necklace diagram then the corresponding real Lefschetz

fibration admits a real section.)

Fig. 6.7. An example of refinements of a necklace diagram.

Theorem 6.4.1. There is a one-to-one correspondence between the set of oriented

refined necklace diagrams with 6n stones whose monodromy is the identity and the set
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6.4. Refined necklace diagrams

of isomorphism classes of directed real E(n), n ∈ N with only real critical values.

Proof. As we discuss in the beginning of this section, to a given directed real

E(n) with only real critical values we can assign an oriented refined necklace diagram.

As for the converse, to an oriented refined necklace diagram, we assign a deco-

rated weak real Lefschetz chain. Note that one can always get a necklace diagram

from a refined necklace diagram by forgetting different nuance of -type stones. Let

us consider the underlying uncoated necklace diagram associated to the necklace dia-

gram obtained from the refined necklace diagram. We get refinement of the uncoated

necklace diagram by considering dotted intervals for refined stones of type , , see

Figure 6.8. Then the oriented refined uncoated necklace diagram defines a weak real

Lefschetz chain up to cyclic ordering, where dotted intervals correspond to a real

structure with no real component.

Fig. 6.8. Refinement of uncoated necklace diagram.

Note that by its construction, the refinement of -type stones encodes the deco-

ration of the weak Lefschetz chain. Namely, the stone ( ) corresponds to a pair of

critical values where the real code {ci, ai} on a fiber Fi over a real point between the

critical values is decorated (corresponding vanishing cycles on F are ci-twin curves)

and ci has 2 real components (no real components, respectively). On the other hand,

the stone ( ) corresponds to a pair of critical values where the real code {ci, ai} on
a fiber Fi over a real point between the critical values is not decorated (corresponding

vanishing cycles are the same) and ci has 2 real components (no real components,

respectively).

Then by Theorem 5.6.1 and Proposition 5.6.2 we get a unique isomorphism class

of directed RELF with only real critical values. 2
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6.5 The Euler characteristic and the Betti numbers of

necklace diagrams

Proposition 6.5.1. Let π : X → S2 be a RELFs admitting a real section. Then the

Euler characteristic of the real part is

χ(XR) = 2(| | − |¤|),

and the total Betti number is

β∗(XR) = 2(| |+ |¤|) + 4.

Proof. Each stone of type includes two singular fibers having a solitary double

point, and, similarly, each stone of type ¤ includes two singular fibers having a crossing

double point. Regular fibers are either one S1 or two copies of S1, hence their Euler

characteristics are zero. The Euler characteristic of a singular fiber having a solitary

double point is 1, while that of a fiber having a crossing double point is -1. Thus, the

result follows by applying Euler characteristic formula for fibrations.

Necklace diagrams determines the topology of the real part of XR. Indeed, each

|¤|-type stone defines a genus on the real part XR and since there is a real section

each | |-type stone defines a sphere component. Note also that each stone of arrow

type does not effect the homology of XR. Hence, we have β0 = β2 = | | + 1 and

β1 = 2(|¤|+ 1). Thus β∗ = 2(| |+ 1) + 2(|¤|+ 1) = 2(| |+ |¤|) + 4. 2

Remark 6.5.2. The calculation of the Euler characteristic of the real part of a fibra-

tion π : X → S2 using a necklace diagram can be made for a fibration without a real

section by replacing | | with | |+ | |+ | |+ | |.

Definition 6.5.3. We call the quantity 2(| | − |¤|) the Euler characteristic of the

necklace diagram and 2(| |+|¤|)+4 as the total Betti number of the necklace diagram.

Definition 6.5.4. Let (X, c) be a real manifold, then the real part XR is called

maximal if β∗(XR) = β∗(X). (Note that in general we have β∗(XR) ≤ β∗(X), called

Smith inequality.)
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In our case, the total Betti number of E(n) is β∗(E(n)) = 12n [GS]. We call

a necklace diagram with 6n stones maximal if its total Betti number is 12n. This

happens when | | + |¤| = 12n−4
2 . In particular, if n = 1, 2, then | | + |¤| = 4 and

| |+ |¤| = 10, respectively.

6.6 Horizontal and vertical transformations of necklace

diagrams

Let N (i,j)
k denote the set of oriented necklace diagrams with | | = i and |¤| = j.

We define transformations which allow us to produce new necklace diagrams from the

given one.

The transformation h interchanges the pieces as is shown below.

h : Nk(i,j) → Nk(i,j)

↔
↔

h

Canceling 
the handle

Recreating 
the handle

Canceling 
the handle

Recreating 
the handle

Fig. 6.9. The relation between transformations h and the real part of X.

Clearly, h preserves the Euler characteristic and the total Betti number of the

necklace diagram.

The transformations v1 and v2 are defined as follows.

v1 : Nk(i,j) → Nk(i−1,j)

→
→
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v Canceling 
the handle1

Fig. 6.10. The relation between v1 and the real part of X.

v2 : Nk(i,j) → Nk(i,j−1)

→
→

Canceling 
the handle

v2

Fig. 6.11. The relation between v2 and the real part of X.

Note that unlike h, transformations v1, v2 change the Euler characteristic and the

Betti number of the necklace diagram.

h
e

d

e

da

b

a

b

h

a

b

ab

v2

d

e
v1

d

e

Fig. 6.12. Examples of transformations h, v1, v2.

Note that transformations h, v1, v2 can be defined for non-oriented necklace dia-

grams in the same way.
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6.7 Producing new necklace diagrams using necklace con-

nected sum

We consider two connected sum operations for oriented necklace diagrams called odd

sum and even sum. Note that even and odd sum of necklace diagrams correspond

to fiber sums of real Lefschetz fibration π : X → S2, where the gluing is made on

an even or odd interval of S1. To perform an odd sum, we cut each of two necklaces

along an odd interval (piece of chain) and then reglue them crosswise respecting the

orientation.

The even sum is obtained by cutting necklace diagrams at a stone (this corresponds

to cutting the chain on an even interval) and regluing them according to the table

shown in Figure 6.13.

Fig. 6.13.

Observe that the Euler characteristic is additive with respect to the odd sum.

However, it is not always additive with respect to the even sum.

Example 6.7.1. Examples of odd and even connected sums are given in Figure below.
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Fig. 6.14. An example of odd connected sum.

Fig. 6.15. Examples of even connected sums.

We can also consider the sum of two non-oriented necklace diagrams by fixing

orientations on the necklace chains.

6.8 Classification of real E(1) with real sections via neck-

lace diagrams

Theorem 6.8.1. There exist precisely 25 isomorphism classes of real non-directed

fibrations E(1) admitting a real section and having only real critical values. These

classes are characterized by the non-oriented necklace diagrams presented in Fig-

ure 6.16.

Proof. By Theorem 6.3.2, it is enough to find the list of symmetry classes

of necklace diagrams of 6 stones whose monodromy is the identity. To find the

symmetry classes of necklace diagrams, we consider the following algorithm. Let

S,C, L,R ∈ PSL(2,Z) = {x, y : x2 = y3 = [id]}, such that S = yxy, C = xyxyx,

L = xy2 and R = y2x. Then,

1. Consider words of length 6 of the letters S,C, L,R.

2. Quotient out the words which are equivalent to each other up to cyclic ordering.

3. Quotient out the symmetry classes. Symmetry classes of necklace diagrams in
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β=12

β=10

β=8

β=6

β=4

χ =−8 χ =8χ=0

Fig. 6.16. List of necklace diagrams of real E(1) having only real critical values and admitting

a real section.

terms of words can be seen as follows. Two words will be called symmetric if one is

obtained from the other by reading from the end to beginning and by changing each

letter L by the letter R, and vice versa. For example, CLLSLL ∼ RRSRRC. 2

If a necklace diagram has monodromy identity, its dual has also, thus we can

always assume | | ≤ |¤|. One can also proceed by considering words of length 3,

then checking the words which are inverses to each other in PSL(2,Z). This way it

is possible to get the list without using computer. There is also a computer program

written by Andy Wand, which works for the cases n = 1, 2.

Proposition 6.8.2. All necklace diagrams with 6 stones whose monodromy is the

identity can be obtained from the maximal necklace diagrams of 6 stones by applying

the transformations h, v1, v2.

Proof. Direct analysis of necklace diagrams listed in Figure 6.16. 2

By calculating possible refinements of the necklace diagrams (considered up to

symmetry) listed in Figure 6.16 we obtain the following results. (Note that refinement

concerns only those necklace which have at least one -type stone.)
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• (| |, |¤|) = (1, 1) there are 4 refined necklace diagrams,

• (| |, |¤|) = (1, 0) there are 4 refined necklace diagrams,

• (| |, |¤|) = (2, 0) there are 46 refined necklace diagrams,

• (| |, |¤|) = (3, 0) there are 84 refined necklace diagrams,

• (| |, |¤|) = (4, 0) there are 251 refined necklace diagrams.

6.9 Real elliptic Lefschetz fibrations of type E(2) with

real sections

Using the algorithm written by Andy Wand, we obtain 25263 real E(2) having only

real critical values and admitting a real section.

Proposition 6.9.1. There are 10 maximal necklace diagrams (| |+ |¤| = 10) of 12

stones whose monodromy is the identity. The list is given in Figure 6.17. 2

(9,1)
(5,5)

(1,9)

Fig. 6.17. List of necklace diagrams of maximal real E(2) having only real critical values and

admitting a real section.
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Proposition 6.9.2. There exist necklace diagrams of 12 stones whose monodromy is

the identity and which can not be written as a connected sum of two necklace diagrams

of 6 stones whose monodromy the identity.

Proof. In Figure 6.18, we construct an example using the necklace connected

sum and the operation h of necklace diagrams. Note that neither h nor vi effects the

monodromy of necklace diagram.

= h

Fig. 6.18. An example of construction of a non-decomposable necklace diagram.

By analyzing possible divisions of the pair (| |, |¤|), we see that the necklace dia-

gram shown in Figure 6.18 cannot be divided into two necklace diagrams of 6 stones

with the identity necklace monodromy, listed in Figure 6.16. 2

Remark 6.9.3. The idea of construction can be applied to obtain non-decomposable

examples for all n.

Proposition 6.9.4. There exists a necklace diagram of 12 stones which can not be

obtained from the maximal necklace diagram by applying the transformations h, v1, v2.

Proof. Examples are given in Figure 6.19, the result is obtain by simple analysis

on possible cases. 2

(9,0) (0,9)

Fig. 6.19. Example of necklace diagrams which can not be obtained from the maximal

necklace diagrams using v1, v2, h.
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6.10 Some other applications of necklace diagrams

Denote by | | (respectively |¤|) the number of stones of type (respectively, of type

¤). By fixing the pair (| |, |¤|), we fix the topology of the real part of E(n), hence

we obtain a classification of real parts of E(n) which have only real critical values

and admit a real section. Note that, | | is the number of spherical components of

the real part and the number of genus of the higher genus component is |¤| + 1. In

Figure 6.20 and Figure 6.21 we show the corresponding classification for n = 1 and

n = 2, respectively.

(1,1)

(0,0)

(0,4)

(0,3)

(0,2)

(0,1)

(4,0)

(3,0)

(2,0)

(1,0)

v

E(1)

v

v

vv

v

v

vv

v

1

1 1

1

1

2

2

2

2

2

Fig. 6.20. Vertices of the graph correspond to the necklace diagrams of real E(1) whose real

part has fixed topological type. Edges correspond to the transformations v1 or v2.

Remark 6.10.1. If the real part of real elliptic Lefschetz fibration, E(n), (admitting

a section) is disjoint union of 2 tori (happen when n is even) or of 2 Klein bottles

(happen when n odd), then E(n) does not admit a real fibration with real critical

values.

Proposition 6.10.2. Each (refined) necklace diagram whose monodromy is the iden-

tity contains at least two arrow type stones.

Proof. Assume that there are necklace diagrams whose monodromy is the iden-

tity and which have either no or only one arrow type stones. If there is no arrow

type stones then we have only ¤ and/ or . However, there is no cancellation in the

product of monodromies of the stones of type ¤ and . Hence, the product can not
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(1,9) (5,5) (9,1)

(0,0)

(0;9) (9,0)

(0,8)

(0,7)

(0,6)

(0,5)

(0,4)

(0,3)

(0,2)

(0,1)

(2,6) (6,2)

(8,0)

(7,0)

(6,0)

(5,0)

(4,0)

(3,0)

(2,0)

(1,0)

(2,2)

(3,3)

(4,4)

(1,1)

(1,8)

(1,7)

(1,6)

(1,5)

(1,4)

(1,3)

(1,2)

(2,5)

(2,4)

(2,3)

(2,1)

(3,5)

(3,4)

(3,2)

(3,1)

(4,5)

(4,3)

(4,2)

(4,1)

(5,4)

(5,3)

(5,2)

(5,1)

(8,1)

(7,1)

(6,1)

E(2)

v v1 2v2

v2

v1

v1

Fig. 6.21. Vertices of the graph correspond to necklace diagrams of real E(2) whose real part

has fixed topological type. Edges correspond to the transformations v1 or v2.

be the identity. Similarly, if there is one arrow type stone, to be able to obtain the

identity the monodromies of rest should give yx or xy. Again it can not be possible

since there is no cancellation in the product of monodromies of ¤ and/ or . 2

Corollary 6.10.3. Each real elliptic Lefschetz fibration with only real critical values

contains at least two critical values of type ×. 2
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Appendix A

Algebraicity of real elliptic

Lefschetz fibrations with a

section

In this section, we study the algebraicity of the real elliptic Lefschetz fibrations with a

real section. We concentrate ourselves mainly on fibrations with 12 real critical values.

Note that any algebraic elliptic Lefschetz fibration, E(n), can be seen as the double

branched covering of a Hirzebruch surface of degree 2n, branched at the exceptional

section and a trigonal curve disjoint from this section.

S.Yu. Orevkov [O2] introduced a real version of dessins d’enfants for trigonal curves

on Hirzebruch surfaces which are disjoint from the exceptional section. We apply his

results to determine which of the trigonal curves that appear as the branching set of

the covering E(n)→ H(2n), are realizable algebraically and which are not.

A.1 Trigonal curves on Hirzebruch surfaces

The Hirzebruch surface, H(k), of degree k is a complex surface equipped with a

projection, πk : H(k) → CP 1, which defines a CP 1-bundle over CP 1 with a unique

exceptional section s such that s ◦ s = −k. In particular, H(0) = CP 1 × CP 1 and

H(1) is CP 2 blown up at one point.

Each Hirzebruch surface H(k) can be obtained from H(0) by successive birational

114



A.2. Real dessins d’enfants associated to trigonal curves

transformations, namely, by a sequence of blow ups followed by blow downs at a certain

set of points. If these points are chosen to be real, then the resulting Hirzebruch surface

has a real structure inherited from the real structure conj × conj on H(0): this is the

real structure which we deal with.

With respect to this real structure, the real part of H(k) is a torus if k is even,

otherwise it is a Klein bottle.

In this Appendix, we consider nonsingular curves only, so by a trigonal curve on

a Hirzebruch surface H(k) we understand a smooth algebraic curve C ⊂ H(k) such

that the restriction to it of the bundle projection, πk : H(k)→ CP 1, is of degree 3. A

trigonal curve on H(k) is called real if it is invariant under the real structure of H(k).

A.2 Real dessins d’enfants associated to trigonal curves

Let us choose affine coordinates (x, y) for H(k) such that the equation x = const

corresponds to fibers of πk and y =∞ is the exceptional section s. Then, with respect

to such affine coordinates any (algebraic) trigonal curve can be given by a polynomial

of the form y3 + p(x)y + q(x) where p and q are real one variable polynomials such

that deg p = 2k and deg q = 3k.

The discriminant of y3 + p(x)y + q(x) = 0 with respect to y is −4p3 − 27q2.

Following [O2], we put D = 4p3 + 27q2. The fraction f(x) = D(x)
q2(x)

defines a rational

function whose poles are the roots of q taken with multiplicity 2, zeros are the roots

of D, and the solutions of f = 27 are the roots of p taken with the multiplicity 3.

Let us color RP 1 as in Figure A.1.

x
0 27

Fig. A.1. Coloring of RP 1.

Then the inverse image f−1(RP 1) turns naturally into an oriented colored graph

on CP 1. Since f(x) is real, the graph is symmetric with respect to the complex

conjugation on CP 1.

Sufficient conditions for the realizability of a graph (and the existence of respective

polynomials p, q,D) is given by the following theorem.
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x

Fig. A.2. The graph around the inverse images of zeros of p, q,D.

Theorem A.2.1. [O2] Let Γ ⊂ S2 be an embedded oriented graph where some of its

vertices are colored by the elements of the set {◦, •,×} and each of its edges is one of

the three kinds: , , . Let Γ satisfy the following conditions:

(1) The graph Γ is symmetric with respect to an equator of S2, which is included into

Γ;

(2) The valency of each vertex ′′•′′ is divisible by 6, and the incident edges are colored

alternatively by incoming , and outgoing ;

(3) The valency of each vertex ′′◦′′ is divisible by 4, and the incident edges are colored

alternatively by incoming , and outgoing ;

(4) The valency of each vertex ′′×′′ is even, and the incident edges are colored alter-

natively by incoming , and outgoing ;

(5) The valency of each non-colored vertex is even, and the incident edges are of the

same color;

(6) Each connected component of S2\Γ is homeomorphic to an open disc whose bound-

ary is colored as a covering of RP 1 (colored and oriented as in Figure A.1) and the

orientations of the boundaries of neighboring discs are opposite.

Then, there exists a real rational function f = 4p3+27q2

q2
whose graph is Γ.

Definition A.2.2. A graph on S2 satisfying the conditions (1)-(6) of the above the-

orem is called a real dessin d’enfant.

A.3 Correspondence between real schemes and real dessins

d’enfants

The real scheme of a trigonal curve imposes strong restrictions on the arrangement of

the real roots of p, q and D. For example, the zeros of D correspond to the points

where the trigonal curve is tangent to the fibers of πk : H(k) → CP 1. A typical
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correspondence for certain model pieces of the curve is shown in Figure A.3. (cf [O2]

or [DIK])

xx

xx xx x x

Fig. A.3. Because of the symmetry property we consider only one of the symmetric piece of

real dessins d’enfants.

More precisely, fragments of the graph depicted in Figure A.3 determine uniquely

the corresponding pieces of the curve.

The topology of the real part of E(n) and hence the real part of the corresponding

trigonal curve are determined by the necklace diagrams. Using the correspondences

shown in Figure A.3, we obtain a new correspondence between fragments of necklace

diagrams and fragments of the graph, see Figure A.4.

xx

x

. xx .

x . xx.Pieces of
chains 
between the
stones
 

Stones 
 

Fig. A.4.

Definition A.3.1. A piece of a chain of a necklace diagram is called a necklace

interval. We call a necklace interval essential if the corresponding fragment of the

graph is
xx

, see Figure A.4.

Lemma A.3.2. If a real elliptic Lefschetz fibration, E(n), admitting a real section is

algebraic then on the corresponding necklace diagram
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Appendix A. Algebraicity of real elliptic Lefschetz fibrations with a section

• the number of essential intervals cannot be more then 2n,

• the sum of the number of essential intervals and the number of arrow type stones

cannot be greater then 6n.

Proof. For a trigonal curve on H(2n) defined by y3 + p(x)y + q(x), we have

deg p = 2 · 2n and deg q = 3 · 2n. Thus, the real dessin d’enfant can have at most 4n

vertices colored by “•” and at most 6n vertices colored by “◦”. Each essential interval

corresponds to a graph fragment which contains at least two “•” type vertices and

at least one “◦” type vertex, while each arrow type stones corresponds to a graph

fragment having at least one “◦” type vertex. 2

For n = 1, the number of essential intervals can not be more then 2 and the sum

of the number of arrow type stones and the number of essential intervals can not be

more then 6. Thus real elliptic Lefschetz fibrations admitting a section, corresponding

to the following necklace diagrams can not be algebraic.

1

2

3

1

2

3

4

1

2

3

1

2

3

1
2

3

1

2

3

4

1

2

3

Fig. A.5. Necklace diagrams which contains more then 2 essential intervals.

A.4 Algebraicity of real elliptic Lefschetz fibrations with

real sections

Lemma A.4.1. If a real elliptic Lefschetz fibration admitting a section is algebraic

then the real elliptic Lefschetz fibration whose necklace diagram is dual to the necklace
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A.4. Algebraicity of real elliptic Lefschetz fibrations with real sections

1

2

Fig. A.6. The number of essential intervals is 2 and there are 6 arrow type stones.

diagram of the former is also algebraic.

Proof. Although the real parts of fibrations associated to the two dual necklace

diagrams are different, trigonal curves appearing as the branching curves of coverings

E(n) → H(2n) are the same. Two different real structures on the elliptic fibrations

correspond exactly to two different liftings of the real structure of H(2n) to E(n). 2

+-

+

- +
-

+ -

Fig. A.7. For each trigonal curve on H(2n), there are two real structures of E(n).

Theorem A.4.2. All real elliptic Lefschetz fibrations admitting a real section and hav-

ing 12 real critical values are algebraic except those whose associated necklace diagram

is one of the diagrams shown in Figure A.8.

Fig. A.8. Necklace diagrams of non-algebraic real E(1) having only real critical values and

admitting a real section.
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Appendix A. Algebraicity of real elliptic Lefschetz fibrations with a section

Proof. We construct real dessins d’enfants corresponding to necklace diagrams

which are not prohibited by Lemma A.6. By Lemma A.4.1, we only need to consider

necklace diagrams with | | ≥ |¤|. Figure A.12 and Figure A.13 show such a list of

real dessins d’enfants.2

Proposition A.4.3. Real elliptic Lefschetz fibrations of type E(2) which admit a real

section and have only real critical values and which correspond to maximal necklace

diagrams are algebraic.

Proof. Recall that maximal necklace diagrams of 6n stones are those with | |+
|¤| = 12n−4

2 . In fact, any maximal necklace diagram with 12 stones can be obtained

as an even sum of maximal necklace diagrams of 6 stones, where the even sum is made

on two arrow type stones of opposite direction. Such a sum increase the number of

| |-type and |¤|-type stones by 1 and | |+ |¤| = 4 + 4 + 2 = 10.

Fig. A.9.

We have shown that in case n = 1, maximal necklace diagrams (| | + |¤| = 4)

are algebraic. Thus, we need to show that such even sum preserves algebraicity. This

follows from the observation that real dessins d’enfants associated to such an even sum

can be obtain from the dessins d’enfants of the summands as shown in Figure A.10.

2

Example A.4.4. An example of even sum which creates maximal necklace diagram

and corresponding real dessins d’enfants are given in Figure A.11
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A.4. Algebraicity of real elliptic Lefschetz fibrations with real sections
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.
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Fig. A.10.
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Fig. A.11. An example of even connected sum creating a maximal necklace diagram.

121



Appendix A. Algebraicity of real elliptic Lefschetz fibrations with a section

Real dessins d’enfants of real E(1) with real sections.

xx

xx

xx

x x

x
x x

x
x

x
x

x

xx
x x

x
x x

x

x

x

xx

x

x

x

x x

x x

x

x

x

xx

x

x

x

x x

x x

x x

x

xx

x

x

x

x
xx

x

x

x

x

xx

x

x

x

x

xx
x

x

Fig. A.12. Around necklace diagrams, the real part of the corresponding real elliptic Lefschetz

fibrations are shown. The dotted inner circle stands for a lift of the exceptional section.

122



A.4. Algebraicity of real elliptic Lefschetz fibrations with real sections
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Fig. A.13. Around necklace diagrams, the real part of the corresponding real elliptic Lefschetz

fibrations are shown. The dotted inner circle stands for a lift of the exceptional section.
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Index of symbols

Ag the set of isotopy classes of simple closed non-contractible

non-oriented curves on Σg

Acg the set of c-equivariant isotopy classes of simple closed

non-contractible non-oriented curves on Σg

A[c]
g the set of isotopy classes of the pair [c, a]

Aut+(H1(T,Z)) the orientation preserving automorphisms of H1(T,Z)

[a1, a2, . . . , a2n]A the cutting period-cycle associated to the matrix A

B compact connected oriented smooth 2-manifold

βi the ith Betti number

β∗ the total Betti number

C,R,Q the fields of complex, real and rational numbers

CPn,RPn the complex and the real projective space of dimension n

cX a real structure on X

Cc(Σg) the space of real structures on Σg which are isotopic to c

conj the complex conjugation

[c, a] isotopy classes of real code

{c, a} conjugacy classes of real code

[c1, a1], [c2, a2], . . . , [cn, an] the real Lefschetz chain

[c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗ the pointed real Lefschetz chain

{c1, a1}, {c2, a2}, . . . , {cn, an} the weak real Lefschetz chain

ConfΣg the space of conformal structures on Σg

D the Poincaré disc

DF the Poincaré disc equipped with Farey tessellation

Diff (Σg) the space of orientation preserving diffeomorphism of Σg
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Index of symbols

Diff0 (Σg) the identity component of the space of orientation preserving

diffeomorphisms of Σg

Diff0 (Σg, c) the identity component of the space of orientation preserving

c-equivariant diffeomorphisms of Σg

Diff c
0 (Σg) the identity component of the space of orientation preserving

diffeomorphisms of Σg which commute with c

Diff ∗(Σg) the space of orientation preserving diffeomorphisms of Σg

fixing a point on Σg

Diff0
∗(Σg) the identity component of Diff ∗

∆ the set of critical values

E(n) elliptic Lefschetz fibrations with 12n critical values

Fb the fiber over b

F ix(c) the fixed point set of c

F ixConfΣg (c) the set of fixed points of the action of c on ConfΣg

FixRiemΣg (c) the set of fixed points of the action of c on RiemΣg

FixTeichΣg (c) the set of fixed points of the action of c on TeichΣg

[f ] the isotopy class of the diffeomorphism f

GL(2,Z) the general linear group

H(k) the Hirzebruch surface of degree k

H1(T,Z) the integral first homology of T

LF Lefschetz fibration

KB Klein bottle

Lg the set of isomorphism classes of elementary marked Lefschetz fib.

Lcg,LR,c
g ,LC,[c]

g the set of isomorphism classes of elementary non-marked,

R-marked, C-marked real Lefschetz fibrations

Mf Mapping torus

MB Mobius band

Map(Σg) the Mapping class group of Σg

µ monodromy homomorphism

N (i,j)
k the set of necklace diagrams of k stones where i of them of type ,

j of them of type ¤
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Index of symbols

N the set of positive intergers

π the projection of Lefschetz fibration

π̄ the projection of conjugate Lefschetz fibration

PSL(2,Z) the projective special linear group

PGL(2,Z) the projective general linear group

∂h(X) horizontal boundary of a Lefschetz fibration

∂v(X) vertical boundary of a Lefschetz fibration

RiemΣg the space of Riemannian metrics on Σg

RLF real Lefschetz fibration

RELF real elliptic Lefschetz fibration

SL(2,Z) the special linear group

S∗g the set of real closed genus-g surfaces with two marked points

which are, as a set, invariant under the action of the real structure

Σg compact connected oriented smooth surface of genus g

(Σg, c) real surface

ta Dehn twist along the curve a

t∗a Dehn twist along the curve a as an element of Diff ∗
tr trace

T torus identified by R2/Z2

TN twist of real elliptic Lefschetz fibration over a disc N

TNsing twist of real elliptic Lefschetz fib. over disc N with a critical value

TeichΣg the Teichmuller space of Σg

Vg the set of isotopy classes of non-contractible embeddings S1 × I → Σg

Vcg the set of equivariant isotopy classes of non-contractible

embeddings S1 × I → Σg

X compact connected oriented smooth 4-manifold

X ′#ΣX the fiber sum using id

X ′#Σ,φX the fiber sum using the diffeomorphism φ

X ′\ΣX the boundary fiber sum using id

X ′\Σ,φX the boundary fiber sum using the diffeomorphism φ

χ the Euler characteristics

Z the ring of integers
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Index

F -fibration, 25

elliptic, 25

real, 25

weakly real, 25

c-twin curves, 81

bipalindromic cut. period-cycle, 38

even, 38

odd, 38

boundary fiber sum

C-marked, 65

non-marked, 79

boundary of Lefschetz fib.

horizontal, 20

vertical, 20

curve

real, 53

real-imaginary, 53

totally imaginary, 53

Dehn twist, 43

double point

crossing, 93

solitary, 93

Euler char. of necklace diag., 104

extendibility

left, 80

right , 80

extensions

isomorphic, 75

Farey tessellation, 31

fiber sum of

R-marked real Lefschetz fib., 23

Lefschetz fibrations, 20

marked Lefschetz fibrations, 19

real Lefschetz fibrations, 23

Hirzebruch surface, 114

Homology monod. homomorphism, 29

interval

even, 93

odd, 93

isomorphism of

C-marked Real Lefschetz fib., 22

R-marked Real Lefschetz fib., 22

RLF with a real section, 76

directed real Lefschetz fib., 23

Lefschetz fibrations, 18

marked Lefschetz fibrations, 18

real Lefschetz fibrations, 22

Lefschetz fibration, 17
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Index

conjugate, 23

elementary, 43

elliptic, 18

genus-g, 18

marked, 18

relatively minimal, 18

weakly real, 23

with boundary, 20

length of sequences, 38

mapping class group, 18

maximal

necklace diagram, 105

real part, 104

monodromy

homomorphism of Lefschetz fib., 18

of LFs relative to marking, 19

of Lefschetz fib., 19

of necklace stones, 99

necklace chain, 96

necklace diagram

dual, 99

oriented, 96

uncoated, 95

necklace interval, 117

essential, 117

necklace stone, 96

necklace sum

even, 107

odd, 107

palindromic sequence, 38

real code, 52

conjugacy classes, 52

isotopy classes of, 52

pointed, 77

real dessin d’enfant, 116

real Lefschetz chain, 75

decorated weak, 88

pointed, 78

weak, 87

real Lefschetz fibration, 21

C-marked, 21

R-marked, 21

directed, 22

real manifold, 21

real part, 21

real section, 76

real structure, 20

left-hand, 97

nonseparating, 21

right-hand, 97

separating, 21

rotation

real, 73

imaginary, 73

Smith inequality, 104

total Betti number of neck. diag., 104

twist of an RELF , 83
twist of an RLF

double, 86

Vanishing cycle, 43
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