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Chapter 1

Résumé

Comprendre les propriétés électroniques, et par conséquent structurales et magnétiques
des terres rares est un enjeu majeur en physique de la matiére condensée. Le succés des
méthodes dites ab-initio basées sur la fonctionnelle de la densité (DFT), a reproduire
et expliquer les propriétés physiques des matériaux, refléte leur efficacité et justifie leur
utilisation intensive. Ces méthodes permettent en particulier de comprendre la physique
des métaux de transition. En effet, les méthodes de calcul de la structure électronique dans
l"approximation locale de la densité (LDA) se sont avérées efficaces pour déterminer les
propriétés de ’état fondamental, telles que le paramétre de maille, le moment magnétique
intrinséque, ou le couplage magnétique (ferromagnétique ou antiferromagnétique). Par
contre, cette approximation a été inadéquate pour décrire la structure électronique des
semiconducteurs et des isolants. En effet, les résultats théoriques différent des résultats
expérimentaux pour les semiconducteurs et les isolants, puisque les bandes interdites
sont sous-estimées de 50 & 100% par rapport aux bandes interdites obtenues & partir des
expériences de spectroscopie optique [1|. A titre d’exemple, cette derniére approximation
confére au germanium des propriétés métalliques alors qu’il est un semiconducteur. Cet
échec est du au fait que les fortes corrélations électroniques sont mal représentées dans
cette approximation.

L’approximation du gradient généralisé (GGA), qui exprime le potentiel d’échange
et de corrélation, non seulement en fonction de la densité de charge, mais également en
fonction de son gradient, a permis une meilleure représentation de I'interaction d’échange-
corrélation. Cette approximation est en général supérieure a la LDA et a permis, entre
autre, de bien décrire I’état fondamental magnétique du fer [2]. En effet, la GGA, en
accord avec l'expérience, prédisait la structure cubique centrée comme étant la structure
crystalline de I’état de base ferromagnétique du fer, alors que la LDA favorisait un réseau
cubique a faces centrées (fcc) et un état non-magnétique. Bien que 'approximation GGA
ait été souvent meilleure que la LDA, les bandes interdites en général et les isolants de
Mott en particulier, restent toujours mal décrits par cette approximation. Il est vrai
que la GGA ait permis une meilleure description des systémes avec différents types de
densités électroniques, mais cette approximation prédisait un caractére métallique pour
des composés qui se sont avérés expérimentalement isolants.

La sous-estimation des interactions coulombiennes intra-atomiques par les potentiels
GGA ou LDA est la cause directe de la défaillance de ces méthodes ab-initio. C’est en
s'inspirant du modéle d’Hubbard |3, 4, 5, 6] qu’on aura réussi a représenter l'interaction
coulombienne intra-atomique dans le cadre du formalisme de la DFT. Ces nouvelles méth-
odes sont dites LDA(GGA)+U 7] et doivent leur succés a la bonne description de la
structure électronique des isolants de Mott [8, 9, 10, 11|. Désormais, nous disposons d’une
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approche qui nous permettra de bien décrire le caractére local et corrélé des matériaux,
grace a la bonne description de l'interaction coulombienne intra-site. L’idée fondatrice
de cette méthode consiste a séparer le potentiel électronique en deux parties. Une partie
d’électrons délocalisés qu’on peut correctement et facilement décrire avec le potentiel GGA
ou LDA, et une partie d’électrons localisés (les électrons d des métaux de transition ou
les électrons f des terres rare) pour laquelle 'interaction intra-atomique électron-électron
est introduite selon la théorie champ moyen de Hartree-Fock.

Ce n’est pas par hasard que cette méthode ait permis une meilleure compréhension
de la physique des systémes a électrons fortement corrélés, mais grace a 'efficacité du
traitement des électrons. En effet, traiter seulement les électrons délocalisés par un po-
tentiel GGA ou LDA et les électrons localisés par un potentiel LDA(GGA)+U perme-
ttrait d’éviter le double comptage des interactions électroniques et de soustraire l'auto-
interaction (SI) entre les électrons localisés. Il a été montré que cette derniére auto-
interaction contribuait énormément au potentiel total des matéraux a électrons localisés
[12]. A ce sujet nous pouvons rappeler que les systémes a électrons 4f tels que les terres
rares possédent aussi la propriété d’électrons localisés (4f) bien qu’ils soient métalliques.
En effet, les électrons 4 f des terre rares ont un aspect commun avec les électrons 3d des
isolants de Mott, sauf que dans le cas de ces isolants c’est ’'oxygéne qui renforce la localité
des électrons 3d, alors que dans le cas des terres rares c’est une localité intrinséque des
orbitales f.

Nous pouvons par conséquent nous attendre a ce que le traitement des électrons 4 f par
la méthode LDA(GGA)+U (de la méme maniére que les électrons 3d dans les isolants)
nous permette d’aborder correctement la structure électronique des terres rares. Si on
fait appel au schéma de Stoner [13|, concernant le magnétisme, nous pouvons facilement
comprendre que c’est la localité des électrons 4f qui confére aux terres rares la propriété
des matériaux fortement magnétiques. C’est par exemple le cas du gadolinium (Gd)
massif pour lequel on a un moment magnétique de l'ordre de 7 pp grace a la couche
4f qui est & moitié remplie. Ces matériaux peuvent par conséquent étre de bons candi-
dats pour des applications industrielles telles que les aimants permanents ou les systémes
d’enregistrements magnétiques. Cependant, la compréhension des mécanismes qui gérent
la structure électronique de ce type de matériaux, reste loin d’étre acquise. Méme dans
I’état pur, les matériaux magnétiques 4f sont plus difficiles a aborder que les matéri-
aux magnétiques 3d des métaux de transition (Fe,Co,Ni). C’est la nature des électrons
4f fortement localisés et corrélés qui rend ces matériaux difficiles a décrire a Paide des
méthodes de calcul de la structure électronique.

La complexité de ce type de matériaux réside dans la coexistence d’électrons forte-
ment localisés et d’électrons non localisés. Les calculs de structure électronique effectués
par Singh [14] avaient montré que, bien que les orbitales 4f soient suffisamment local-
isées, elles contribuent a I’établissement des liaisons chimiques. Grace a ses propriétés
magnétiques intéressantes le Gd est le plus étudié de nos jours. De nombreuses ques-
tions font toujours le sujet d’'un grand débat et ne cessent d’interpeller la communauté
scientifique. Les bandes 4f s’adaptent-elles avec les autres bandes, vont-elles s’hybrider
avec, ou conservent-elles leur caractére local? (voir papier I ainsi que les papiers cités).
Qu’en est-il de ’anisotropie magnétique, ressemble-t-elle a celle d'un métal de transition?
S’agit-il d’un magnétisme de Stoner pour lequel chauffer le systéme permettrait de libérer
les moments magnétiques du couplage fort qui les maintient paralléles [15, 16] ou plutot
d’un magnétisme de Heisenberg [17] ol le moment magnétique porté par chaque site sur-
vivra méme a des températures plus grandes? L’implication de ces différents aspects de
la structure électronique dans la représentation du magnétisme du Gd a fait de ce mag-
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nétisme, le plus étudié des terres rares.

C’est dans ce contexte que le projet de ma thése de doctorat avait été entrepris. Pen-
dent ces dernieres décennies, les méthodes de calcul de la structure électronique sont
de plus en plus utilisées, surtout pour étudier les matériaux magnétiques. La méthode
ab-initio que nous avons utilisée tout au long de notre étude repose sur la technique de
linéarisation des ondes planes augmentées a potentiel total (FLAPW) [18, 19]. Cette
base de fonctions d’ondes est parmi les plus précises. Contrairement aux autres bases
utilisant I’approximation des sphéres atomiques (ASA) ou le potentiel est approximé par
une constante dans la région inter-atomique, la méthode FLAPW calcule correctement
le potentiel dans la région inter- et intra-atomique. Le cristal est divisé en deux régions,
une région dite muffin-tin et une région interstitielle. A chaque itération du cycle self-
consistent la densité de charge et le potentiel sont calculés de la méme maniére dans ces
deux régions. Le potentiel ainsi calculé est sensible a la moindre variation de la densité de
charge et devrait donc proprement décrire la physique sous-jacente. C’est ce qui a motivé
notre utilisation de cette méthode, pour aborder la structure électronique du gadolinium
ainsi que certains de ses composés.

Malgré la grande température de Curie du gadolinium (de I'ordre de 295 K), I'importance
de la corrélation électronique sur sa stabilité et sur son état magnétique a été le sujet d'une
controverse durant la derniére décennie. Etant donné les progrés qu’ont connu les tech-
niques des rayons X telles que le dichroisme circulaire magnétique des rayons X (XMCD),
et les nombreuses investigations expérimentales qui ont été menées pour sonder le mag-
nétisme des différents matériaux, il nous a paru utile d’implémenter le calcul du XMCD
dans le code ab-initio de la méthode FLAPW. L’un des points forts de cette technique est
que la section efficace d’absorption qu’on mesure pour calculer le XMCD!, posséde deux
propriétés sélectives :

e la sélectivité de 'atome sondé : les seuils d’absorption ont des énergies qui sont
caractéristiques pour chaque élément,

e la sélectivité des états finaux : grace aux régles de sélection dipolaires, des états
finaux avec des symétries différentes peuvent étre sondés en choisissant ’état initial.

Notre démarche consisterait, d’une part a raffiner les calculs des spectres de dichroisme
magnétique circulaire, et en particulier a obtenir un accord quantitatif entre les spectres
théoriques et les spectres expérimentaux, et d’autre part a comprendre le role des électrons
non localisés dans le magnétisme, dont on sait qu’ils sont a l'origine des interactions a
longue portée. Par exemple, 'ordre magnétique dans les aimants permanents les plus
puissants connus a ce jour (SmCos, NdaFe4B) est di a Pinteraction des électrons 5d de
la terre-rare avec les électrons 3d du métal de transition.

Dans un premier temps, nous avons cherché a améliorer ’approche théorique utilisée
pour calculer les spectres XMCD. En effet il s’agit de comprendre pourquoi les rap-
ports intégrés de branchement restent sous-estimés par rapport a l'expérience dans les
calculs ab initio. Cette approche s’est appuyée sur le traitement des corrélations dans
Papproximation GGA-+U.

'Le XMCD est la différence, pour un matériau magnétique, entre ’absorption des rayons X polarisés
circulairement & gauche et & droite.
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— Nous avons utilisé les énergies GGA+U a la place des énergies LDA pour calculer
les spectres XMCD dans une approche ou ’on ne tient pas compte de I'attraction entre
le trou de coeur et 1’électron promu dans un état vide.

— Nous avons généralisé nos calculs aux composés de terres rares tels que le gadolinium,
le GAN et le GdFe;. Pour ce dernier par exemple, les propriétés magnétiques résultent
d’une forte hybridation des états bd de la terre rare et des états 3d du métal de transition
ainsi que des états localisés 4f de la terre rare. Nous avons alors, pour des composés
de la famille terre rare - métaux de transition, calculé le signal de dichroisme aux seuils
Ly 3 de la terre rare (transitions dipolaires électriques 2py/23/2» — 5d) et confronté les
spectres théoriques aux spectres expérimentaux disponibles. En effet, les électrons 4 f
jouent un role prépondérant dans I'interprétation du dichroisme aux seuils Ly 5 de la terre
rare. En absence de moment magnétique d’origine 4f, cas du LaFey et LuFey (couche
4f respectivement vide ou pleine), la bande 5d est polarisée en spin par les électrons
3d du fer et par conséquent la terre rare développe un magnétisme induit. Le signe du
spectre de dichroisme Ls 3 montre que le moment de spin des états 5d est antiparalléle au
moment magnétique des états 3d du fer en accord avec le calcul de structure de bandes.
Par contre, lorsque les états 4f sont partiellement remplis, le spectre de dichroisme Lg 3
est beaucoup plus compliqué car dans ce cas les états Hd interagissent également par
échange intra-atomique avec les électrons 4f. On doit éventuellement tenir compte des
transitions quadrupolaires électriques (2p — 4f) pour expliquer les détails des spectres
expérimentaux.

Nous ne pouvons pas nous permettre de parler de la spectroscopie XMCD sans évo-
quer ses régles de somme. Grace a ces régles, il est devenu possible d’extraire directe-
ment les moments de spin et orbital des spectres XMCD. C’est ce qui fait ['originalité
de cette technique, comparée aux autres. En effet, il existe plusieurs techniques pour
mesurer les propriétés magnétiques des matériaux. La plupart d’entre elles sont sensibles
a l'aimantation totale et ne peuvent pas différencier entre les contributions des différents
atomes d’'un alliage ou d’une multicouche, et leurs moments de spin et d’orbite. Pour
expliquer les spectres expérimentaux, nous avons confronté nos résultats de calcul XMCD
aux résultats expérimentaux (voir Fig. 1.1). Ceux concernant le gadolinium ont révélé le
role important des corrélations électroniques provenant des orbitales f fortement local-
isées, et I'adéquation de la méthode GGA+U pour décrire la structure électronique. Les
résultats obtenus par cette méthode sont en bon accord avec les résultats expérimentaux,
tels que la photoémission et la photoémission inverse (voir Fig. 1.2) et I'ordre magnétique.
Nos spectres XMCD et les moments calculés a partir de la régle de somme aux seuils Ly 3
ou My 5 sont également conformes a 'expérience (voir papier I).

Cet accord approuve ainsi I’approximation dipolaire que nous avons adoptée dans le
cadre du formalisme XMCD, et montre le caractére local des électrons f a travers I’accord
des moments calculés a partir du calcul auto-ccohérent et ceux des régles de somme. Ces
résultats devraient stimuler de futures recherches théoriques dans le cadre de la méthode
GGA+U, pour les autres terres rares.

Pendant longtemps, le role des états 4 f dans la détermination de la nature de la struc-
ture électronique du gadolinium était mal compris (voir papier I). En utilisant la méthode
FLAPW nous avons montré que la méthode LDA(GGA)+U permet une meilleure com-
préhension de la structure électronique du Gd, ce qui pourrait encourager I’étude de la
structure électronique des autres terres rares. Les calculs que nous avons effectués en
FLAPW nous ont permis de montrer que le magnétisme du Gd est proprement décrit
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Figure 1.1: Les spectres XMCD calculés (en courbe noire continue) comparés aux spectres
expérimentaux (en cercles rouge) pour le Gd massif. En haut a gauche le seuil Ly, a droite
le seuil L3, et en bas le seuil Ms.

dans le cas ou 'on prend en compte 'interaction intra-atomique des électrons 4f forte-
ment localisés, en utilisant la méthode LDA(GGA)+U.

L’émergence de la spintronique, et I'intérét qu’a suscité la communauté scientifique a
I'égard des semiconducteurs magnétiques dilués (DMS) et particuliérement a 1’égard des
demi-métaux — faisant de ces derniers des candidats potentiels pour I'injection de spin —
nous a tout naturellement amené a étudier le composé GdN.

Contrairement aux DMS classiques, ou le magnétisme est di aux électrons iténirants
d, le magnétisme du GdN est di aux électrons localisés f et aux orbitales délocalisées 5d.
De plus, le composé GdN, suivant la nature du substrat sur lequel on le fait croitre, couvre
une grande gamme de propriétés électroniques, allant d'un métal & un semi-conducteur
en passant par un demi-métal. La compréhension de ce type de systémes représente ainsi
un enjeu majeur pour la spintronique. Afin de souligner 'importance de la structure
électronique et magnétique du GdN, nous avons effectué des calculs ab-initio en utilisant
la méthode GGA+U dans le cadre de la méthode FLAPW. Les calculs que nous avons
faits a cet égard ont montré la forte hybridation des orbitales p du nitrogéne N avec les
orbitales d du Gd. Pour voir 'effet de la présence du N sur les orbitales d du Gd, nous
avons calculé les spectres XMCD aux seuils Lo 3 du Gd dans le composé GdN (voir Fig.

1.3).
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Figure 1.2: Densité d’états totale (en courbe noire) comparée aux expériences de pho-
toémission et photoémission inverse pour le Gd massif. Les spins majoritaires sont en
bleu et les spins minoritaires sont en rouge.

Nous avons également confirmé que la structure électronique du GdN est celle d’un
demi-métal pour le paramétre de réseau expérimental. Sous la compression ou I'extension
du réseau cristallin, due a la présence d’un substrat, la structure électronique est plutot
celle d’un semi-métal ou d’un semiconducteur. Sous pression hydrostatique, nos calculs
prédisent également la possibilité d’une transition de phase structurale de la phase rock-
salt vers une phase wurtzite (voir papier II).

Afin d’aborder plus en détails le magnétisme de ces matériaux, nous nous somines
intéressés a 1’énergie d’anisotropie magnétocrystalline (MAE). En utilisant le théoréme
de force?, nous avons effectué des calculs pour différentes directions de I'aimantation. Ces
calculs montrent que cette énergie est de 'ordre de quelques micro électronvolts et que
I'axe d’aimantation facile pour le Gd est le (0001) pour le paramétre de maille expérimen-
tal. Les calculs de la MAE, effectués en utilisant les différentes méthodes de traitement
des électrons 4f, montrent clairement que la méthode GGA-+U est la plus adéquate pour
représenter 1’énergie d’anisotropie magnétique du Gd (voir Fig. 5).

Pour simuler l'effet de la présence d’un autre élément non-magnétique (N) tel que le
composé GAN, ou d’un élément magnétique (Fe) tel que le composé GdFe, sur I’anisotropie
du Gd, nous avons procédé comme pour le calcul de I'anisotropie magnétique du gadolin-
ium. Le calcul montre que trois axes symétriquement équivalents : (100), (010), et (001)
sont les axes de facile aimantation pour le GAN et le GdFe, (voir papier I1I). Ainsi, méme

2Ce théoréme stipule que 'anisotropie magnétique peut étre calculée en supposant que le couplage
spin-orbite (SOC) est une perturbation dans I’Hamiltonien total. C’est surtout par rapport au temps de
calcul que ce théoréme est utile. Sile terme du SOC est de petite contribution, nous n’avons pas besoin de
converger le calcul self-consistent pour calculer ses effets sur la structure électronique. Une seule itération
serait suffisante pour introduire cette contribution pour différentes directions de ’aimantation tout en
gardant le potentiel cristallin gelé.

10
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Figure 1.3: Les spectres d’absorption et d’XMCD calculés (en courbe bleue continue)
comparés aux spectres expérimentaux (en cercles rouges) pour les atomes Gd dans le
GdN. Le panneau a groite; en haut (a) le spectre d’absorption au seuil Ly et en bas (c) le
spectre XMCD correspendant. Le panneau a groite; en haut (b) le spectre d’absorption

au seuil Ly et en bas (d) le spectre XMCD correspendant.

dans les systémes cubiques c¢’est le magnétisme du Gd qui gére "anisotropie magnétique
du systéme en question.

Le travail effectué dans le cadre de cette thése nous a permis d’étudier la structure élec-
tronique, magnétique et structurale des matériaux constitués d’électrons 4f. Les résultats
de cette étude ont montré le role important de la présence des orbitales f parmi les ban-
des de valences du gadolinium métallique. Malgré leur forte localisation, cette présence
se manifeste par une forte hybridation avec les orbitales 5d. La seule méthode qui nous
a permis de bien décrire ce type de systémes, tout en tenant compte de l'interaction
coulombienne intra-atomique des électrons 4f, est la méthode dite LDA(GGA)+U. En
effet, cette méthode semble la plus adaptée pour décrire des terres rares dont la structure
électronique est dominée par les électrons 4f. Le bon accord entre les spectres XMCD
calculés et I'expérience ainsi que les moments calculés a partir de ces spectres et ceux
de 'expérience, justifie indirectement ’approximation dipolaire électrique et le caractére
presque atomique des orbitales sondées. La spectroscopie XMCD est par conséquent un
moyen tres efficace pour étudier le magnétisme des électrons localisés.

Meéme si notre étude avait clairement mis en évidence 'adéquation et 'efficacité de
la méthode LDA(GGA)+U, cette méthode ne nous permettrait pas d’aborder I'aspect
physique de certains phénoménes dynamiques. Dans les spectres XMCD calculés aux
seuils My 5 du Gd par exemple (Fig. 6), nous ne retrouvons pas les structures expéri-
mentales qui apparaissent avant et aprés le pic principal. Ces structures proviendraient
de D'effet des multiplets et des processus dynamiques de I'interaction photoélectron-trou.
Selon la théorie du champ moyen dynamique (DMFT) il serait possible de comprendre
des scénarios de ce genre. En fait, la dynamique engendrée pendant les absorptions X
serait essentiellement due a l'interaction électron-trou. Etant donné que les niveaux én-
ergétiques initiaux sont des niveaux de coeur profonds en énergie, on peut s’attendre a
ce que les rayons X créent un trou avant qu'un électron déja excité puisse relaxer. Dans
le cadre de la méthode DMFT (voir Ref. [20] et les références qui y sont citées) on peut
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Figure 1.4: L’énergie d’anisotropie magnétique du Gd définie comme MAE = FE4(0) —
E4(0°). La figure (a) représente la MAE calculée en traitant les électrons 4f de trois
maniéres différentes; en noir le calcul GGA+U ou l'interaction coulombienne U est prise
en compte pour les électrons 4f qui font partie des électrons de conduction; en rouge le
calcul GGA-core ou les électrons 4f sont considérés comme des électrons du coeur, et
en vert le calcul GGA standard ou les électrons 4f sont traités comme des électrons de
conduction. La figure (b) représente le calcul GGA+U (la courbe en noir est la méme que
celle en (a)) comparé a I'expérience (courbe en bleu).

traiter 'atome de Gd excité comme une impureté. La dynamique de cette impureté serait
donc considérée comme son interaction moyenne a chaque instant, avec un bain formé par
le reste des atomes. Il serait donc important de faire des calculs XMCD dans le cadre de
cette méthode pour suivre 1’évolution des transitions pendant I'absorption X.

En perspective, il serait important d’étudier un autre aspect du magnétisme; le mag-
nétisme non-colinéaire (ou les ondes de spin). Ce qui permettrait de calculer la tempéra-
ture de Curie qui est une grandeur physique importante. Le magnétisme non-colinéaire
est une conséquence directe de la compétition entre le couplage spin-orbite et 'interaction
d’échange. La pression ou le dopage change la configuration magnétique et la tempéra-
ture de Curie. La continuation de ce travail sera par conséquent de doper GdN, soit avec
du manganése soit avec de I’hydrogéne, afin d’augmenter fortement sa température de
Curie, qui, dans I’état massif est de 'ordre de 60 K. Dans ce contexte, il est aussi envisagé
d’étudier l'effet du dopage en hydrogéne sur la température de Curie, des composés de
terres rares TRFey et TRMns.
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Chapter 2

Introduction

In the last few decades there have been a considerable improvements in designing and
manufacturing electronic devices, especially those based on the spin degrees of freedom,
labeled nowadays spintronic(s) devises. It is the functionnalization of the electronic spin
degrees of freedom together with the charge degrees of freedom which led to such inter-
esting electronic devices. In this respect, the 2007 Nobel prize in physics is awarded to
Fert and Griinberg for their discovery of the giant magnetoresistance. Their discovery has
given rise to many nanoelectronic devises of great usefulness to the computer industry.
Understanding magnetic properties of materials is therefore of great interest. In particu-
lar, mastering the spin degrees of freedom might be beneficial at the nanoscale, increased
data processing speed, decreased electric power consumption and increased integration
densities [21].

Nowadays mostly 3d magnetic materials are studied for such interesting applications while
only a few attention is paid to rare earth magnetic materials. Due to their 4f localized
orbitals rare earth materials exhibit a strong magnetism. These materials might be, there-
fore, promising candidates for the above mentioned applications. Because of its half-filled
4f shell, gadolinium (Gd) is certainly the most important among these materials. With
the evolution of the computational resources, modern electronic structure methods are
going to be more and more used for studying magnetic materials.

Since the pioneering work of Dimmock and Freeman [22| where the Gd electronic struc-
ture has been calculated using the core model for the treatment of the 4f electrons, there
has been a few more band-structure calculations for Gd. In this simple model, while the
4f bands have been successfully removed from the conduction band at the vicinity of the
Fermi level, the hybridization of the 4f states with the others states was not accounted
for. Some years later, the self-consistent calculations of Sticht and Kubler [23] have shown
that the standard LDA potential leads to a smaller lattice parameter because of the spu-
rious presence of the 4f minority states close to the Fermi level. Later, Temmerman
and Sterne [24] have found a very large sensitivity to the treatment of the extended 5p
core states as semi-core states. Afterwords, Singh |14] has shown that the LDA does not
provide a fully satisfactory description of Gd. This reflects particularly the complexity of
the Gd electronic structure due to the presence of 4 f electrons. The conduction electrons
of Gd consist of three kind of electrons: the 4f strongly localized electrons, the 5p and
5s semicore electrons, and the itinerant 3d and 6s electrons.

In addition, it is unclear whether the Gd magnetism is that of a typical Stoner-like mag-
netism |15, 16| or that of a Heisenberg-like magnetism [17|. It turns out that its electronic
properties and therefore its magnetic properties are far from being fully understood, and
a further theoretical investigations are therefore called for.
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The failure of the LDA for the description of localized electron systems was already proved,
i.e, the so-called Mott insulators were found to be metallic within the LDA calculations.
Indeed, unlike in pure 3d transition metals, the Mott insulators 3d electrons, such as,
NiO, are localized because of the presence of neighboring oxygen. This means that an
extra-Coulomb interaction between these electrons should take place. It is this interaction
which is missing in the LDA scheme and one should therefore, come up with a method
which allows an appropriate representation of those localized electrons.

The LDA(GGA)+U method |7] which is a generalization of the Hubbard model |3, 4, 5, 6]
was found to be adequate for the description of the electronic structure of localized electron
systems, where the U is the intra-atomic Coulomb interaction. Within this method, the
electronic structure of the Mott insulators was successfully accounted for [8, 9, 10, 11| by
correctly describing the 3d electrons. Henceforth, one is left with a method incorporating
the strong Coulomb intra-atomic interaction for localized electrons. The LDA(GGA)+U
method is therefore, expected to be efficient for the study of 4 f strongly localized systems
electronic structure such as Gd and Gd compounds.

The appreciable progress in spectroscopic techniques such as those of the x-ray magnetic
circular dichroism (XMCD), and the several investigations this spectroscopy had led to,
have motivated our implementation of the XMCD within the ab-initio Fleur code [25]
using the full potential linear augmented plane wave method (FLAPW) [18, 19]. In fact,
XMCD spectra have two useful properties for magnetic materials characterization. The
first one is that of the atomic species and orbital selectivity, i.e., each chemical element
and each core orbital has its own absorption edge(s), the second one is that of the final
shell or of the final states selectivity, i.e., the transitions involved during the x-ray ab-
sorption are selected according to the specific selection rules. Since the initial states are
chosen, only the transitions for which the final states satisfy the dipolar selection rules
may happen. In this respect, we should remind the powerful advantage of the XMCD
sum-rules. Nowadays, there are many techniques for magnetic properties measurements.
Most of them are sensitive to the total magnetization and do not distinguish between
the different atomic contributions of alloys, or between their spin magnetic and orbital
moments. With the derivation of the sum rules by Thole and cowerkers |26, 27|, XMCD
spectroscopy became the most efficient technique for studying magnetic materials. The
sum rules allow the extraction of both the spin and orbital magnetic moments from the
absorption spectra. In order to extract the spin and orbital moments from the x-ray
absorption spectra we have implemented these sum rules.

In this thesis, we have approached the electronic structure of Gd in a first step. The
calculations are carried out with the FLAPW, one of the most precise density functional
methods for multicomponent materials, open structures and surfaces. We have focused
on the GGA+U treatment of the electronic and magnetic structure of Gd (see paper I),
comparing the calculated density of states to the the experimental photoemission and
inverse photoemission spectra (XPS and BIS) the GGA+U is found to be the most ap-
propriate for treating the 4f Gd electrons. We have investigated the bulk properties,
and calculated the XMCD spectra at the Ly 3 and M, 5 edges within the dipolar approxi-
mation. The spin-orbit interaction is included in a second-variation scheme according to
the scalar relativistic approximation. The agreement of the calculated spectra with those
of the experiment is the indication of the relevance of the XMCD formalism within the
one-electron picture.

The emergence of spintronics, and the great interest which aroused the scientific com-
munity towards magnetic diluted semiconductors (DMS), and particularly half-metals
because of their applications for spin injections, have motivated us to study the GdN
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compound. Unlike the classical DMS, where the magnetism is due to 3d electrons, GdN
compound proposes a semi-itinerant magnetism due to the f electrons. Furthermore,
GdN, following the nature of the substrate on which it is grown, covers a big range of
electronic properties, half metal, semimetal, or semiconductor. The understanding of such
systems properties is thus of interest to spintronics.

Within the same FLAPW computational framework we have carried out first-principles
calculations of the GAN electronic, magnetic, and structural properties (see paper II). The
corresponding results show that the ground state electronic structure of GAN is that of a
half metal. Under hydrostatic pressure the half metal rocksalt (Nacl structure) transforms
into a wurtzite semiconductor.

The last part of our computational investigations is devoted to the magnetic anisotropy
aspect of the Gd and its compounds GAN and GdFe,. The rotation or the deviation
of the magnetization in a large variety of materials, e.g., permanent magnetic materials,
ultrathin films, low-dimensional magnetic nanostructures or atomic chain, influences the
magnetic and therefore the electronic properties of these materials. The energy required
to rotate the magnetization of a magnetic crystal is defined as the magnetocrystalline
anisotropy energy (MAE).

Using the force theorem, we have calculated the MAE of Gd, GAN, and GdFe, for dif-
ferent directions of the magnetization (see paper III). Indeed, owing to the nil spin-orbit
interaction of the 4f half filled shell, the force theorem is expected to be efficient for Gd
and Gd compounds MAE calculations. This theorem allows a considerable computational
effort gain since the spin-orbit coupling could be calculated only for one selfconsistent it-
eration.

Once again, the GGA+U method is found to be the most adequate approach for the force
theorem calculations of the Gd MAE. The GGA and GGA-core model treatment of the
4f states have led to a wrong Gd MAE. It turns out that the electronic properties and the
magnetic properties of 4f systems are tightly related, and the 4f electrons are of crucial
role in the rare earth magnetic anisotropy.

Though the Gd MAE is found to be too similar to that of a typical 3d transition metal
like hep Co, the GAN and GdFey cubic crystals MAEs are found to be different from
that of a pure 3d cubic material like fcc Ni. In these compounds we have found that
the magnetization lies along the (001) direction while it is found to lie along the (111)
direction for Ni.

This thesis is structured as follows. The founder ideas and the formulation of the DF'T are
presented in Chapter 3. The main features of the FLAPW method (as implemented in the
Fleur code) are described in Chapter 4. Emphasis is put on the description of the spin-
orbit coupling relativistic effect within the FLAPW method, a brief derivation of the force
theorem as well as a description for its application to the MAE calculations is provided in
Chapter 5. Chapter 6 is devoted to another consequence of the spin-orbit coupling, that
of the XMCD. A quit rich bibliography is supplied in preamble, and a special attention is
given to the description and the derivation of the XMCD formalism as a magneto-optical
effect. Chapter 7 is that of the main results (paper I, II, and III). Finally, in Chapter 8,
concluding remarks and perspectives for the 4 f magnetism theoretical investigations and
applications are presented.
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Chapter 3

Density Functional Theory

Calculating electronic and magnetic properties of solids is not trivial task even when
solids are in their ground state. In solid state, condensed matter is composed of atoms
held together by chemical bonds insured by the valence electrons. Involving so many
particles gives rise to a complex many-body problem. One of the early proposed model
to deal with such complexity is the Born-Oppenheimer approximation.

3.1 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation |28] consists of dividing the total solid-state prob-
lem into two parts: The motion of the electrons in a stationary lattice and that of the
ions in a uniform space charge of electrons. The total Hamiltonian H which represents
the total energy of a realistic system can be written as:

H = Hel+Hion+Hel—ion+Hex> (31)

where H.;, H;on, and He;_;,, are respectively the electrons, the ions, and the electrons-
ions interactions Hamiltonian. These terms consist of, the kinetic energy of all electrons,
all ions, and the energy associated with all the interactions between theses particles.
The last term represents any interactions with external fields. The Born-Oppenheimer
approximation allows us to rewrite separately the electron and ion components as follows:

, ——Z—h2vz+ ! < im (3.2)
“ — 2m P 8eg = vy, — 1| - '
h2 2 1 /
H,,, = — Z 2Mivi +5 Z Vien(Ri — R)) + H_. (3.3)

The Hamiltonian equation (3.3) is the basis for the study of lattice dynamics and ion-ion
interactions (phonons). The first terms in (3.2) and (3.3) are the kinetic energies, the
second terms are those of the Coulomb interactions between the charges of each kind, and
H, and H_ represent the interaction of the electrons (ions) with the average charge of
the ions p™ (the average charge of the electrons p~). This approximation is based on the
argument that electrons and ions have very different masses (the electron-ion inertia ratio
is about 1073). The ions can respond only slowly to a change in the electron configuration,
while the electrons respond adiabatically to a change in the positions of the ions and as
far as the motion of the electrons is concerned, it is only the instantaneous configuration
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Density Functional Theory

of the ions which is of interest. In the absence of an external field one can therefore adopt
for the electrons a Schrodinger equation of the form:

H,V = E, 0, (3.4)

where the wave function ¥ = W(ry,...ry) depends on the coordinates of the N elec-
trons'. However, since the Hamiltonian is the observable accounting for the measurable
total energy, according to quantum mechanic principles, the eigenfunction ¥ have to be
written as an expansion in terms of a complete set of wave functions, i.e., this is the case
for example for the configuration interaction (CI) method where the ground-state wave
function is a linear combination of Slater-wave functions. The Hartree-Fock mean field
approximation have offered a simpler approach to handle the N electrons problem.

3.2 The Hartree-Foch approximation

We focus now on the motion of the electrons, as described by (3.2). We consider an
electron gas which is embedded in a homogeneous, positively charged medium (jellium
medium) or in a rigid lattice of positively charged ions. Even with a jellium medium
this problem is very difficult to solve because of the complexity of the electron-electron
interaction. In the absence of this interaction, the many-body problem would decouple
into one-body problems which describe the motion of an electron in an effective potential
(the one-electron approzimation). In this case the Hamiltonian (3.2) becomes:

H= —Z;—mvi+ZV(rk). (3.5)

Here we have expressed the H, Hamiltonian of equation (3.2) as the total electron-
ion potential energy >, V(ry) with V(ry)=>_,V(r, — R;) the interaction between one
electron and all the other atoms seen as fixed sources of potential. The wave function of
the Schrodinger equation ), Hy¢ = E¢ could be written as the product of individual
wave functions:

O(ry...1y) = pr(r1)pa(rs) .. o(ry), (3.6)

with £ = ), E;. The full Schrédinger equation reduces to one-electron Schrodinger
equations: Hypp(ry) = Eppr(ry). If we take into account the electron-electron interaction
the Hamiltonian (3.5) becomes:

SR NI NI Do = n Eb LS 3R Y

kK’

From now on the wave function (3.6) is not any more an exact solution for the Hamiltonian
(3.7). The so-called Hartree approximation allow us to use the wave function (3.6) as an
approximate solution for the Hamiltonian (3.7). Inserting the function (3.6) into the
Schrodinger equation Hop = F¢, with H given by equation (3.7), the expectation value of
the energy F = (¢|H|¢) can be written as :

(p|H|g) = Z (oulHiliow) + 5 Z <§0k§0k’

k&

@k@k'> : (3.8)

|rk — Ty

!The wave function depends also on the coordinates of atoms, but these coordinates appear only as
parameters in equation (3.4).
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where the ¢ are assumed to be normalized. This is only the expectation value of the
energy for arbitrarily given ;. According to the variational principle, those ¢, which
minimize £ represent the best set of functions for the ground state. We therefore vary
(3.8) for any ¢} or ¢, and equate the variation to zero

OB =" exl(dnlow) —1)] =0, (3.9)
k
We then get
R oo ¢’ ew (), _
_%V + V(r) + e g;k WdT] or(r) = erpp(r), (3.10)

where F, are the Lagrange parameters.
Here we are representing the positions of the & (r;) and the & (r}/) electrons by r and
', respectively. Equation (3.10) is the Hartree 29| single-particle Schrédinger equation.
It describes an electron (k) at location r in the potential field V' (r) of the lattice ions, and
in the Coulomb potential of an average distribution of all other electrons (k' # k).
For the Pauli principle to apply, the expression (3.6) should be replaced by a Slater
determinant

e1(X1) - en(X)

o= (N)V2 L, (3.11)
e1(Xn) - en(Xw)

where the Xy coordinates stand for both the spatial coordinates ry and the spin coor-
dinates xn. The normalizing factor (N!)~'/2 accounts for the indistinguishability of the
electrons since there are N! possible ways of distributing NV electrons at the N positions
ri...ry. The fermionic character of the electrons is therefore insured by the antisym-
metric wave function (3.11). With the wave function (3.11), we can again calculate the
expectation value E = (¢ |H| ¢). It is given by

(X1) (X
b= Z/Spk (X1) HkSDk(Xl)d71+ /‘(pk DI low (Xo) dridry

kK’ |I'1 N I‘2|
(X1)pr(Xa)ph (X))o (X
Z/(Pk 1 Sok 2)9014( 2)(‘0k( 1>d7-1d7'2, (312)
87’(’60 ‘rl - 1'2‘
kK’

The integration here includes a summation over the spin variables. We note further that
in the absence of spin-orbit coupling, every wave function can be written as the product of
a space function and a spin function. The last term of the right-hand side of (3.12) leaves
us with just a summation over electrons with the same spin, because the orthogonality of
the spin functions causes the other spin terms to disappear. Taking this into account, the
spin does not explicitly appear further and we can replace X, with just the space vectors
ri. Equation (3.12) Compared with (3.8) an extra term appears. Taking into account the
orthogonality condition, and invoking the variation equation (3.9), we find

2

e € o (),
{—%V + V( ):| (I‘) + 471'6() ];ﬂ Wd’T QOk(I‘)

2

i (& gpk/ .
fE > / ‘r_r/| dT(pk (r) = erpr(r), (3.13)

k’;ék spin]|)
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where, as in (3.10), we use r for the coordinates of the electron under consideration and r’
for the integration variable. This is the Hartree-Fock equation [30, 31]. The Schrodinger
equation for the many-electron problem is thus splitted up into one-electron wave equa-
tions. While the Hartree equation was easy to interpret, the newly added third term
on the right-hand side of (3.13) has no classical analogue. It is called the ezchange in-
teraction. There is an equation of the same form for each of the different one-electron
functions, and these equations must be solved simultaneously. For a single atom this
can be done by a method of successive approximations, until self-consistency of the re-
quired degree of accuracy is reached. In metals the problem is too complicated and a
cruder approximations must be used. Electrons repel one another, so that they do not
move independently but in such a way as to avoid each other as far as possible. Such
correlations among the electrons motions, or positions, are called Coulomb correlations.
In the Hartree method Coulomb correlations are completely ignored, each electron being
supposed to move in the average charge distribution of the other electrons. The total
wave function is a single product of one-electron functions, so that the probability of a
given configuration depends only upon the one-electron functions and not directly upon
the distances between pairs of electrons. The Hartree-Fock method again neglects proper
Coulomb correlations, but includes correlations of another sort. These are correlations
among the positions of electrons with parallel spins only (the exchange interaction of the
equation (3.13)), and are due, not to the Coulomb force, but to the Pauli principle, as
embodied in the use of a determinantal wave function.

The correlations, associated with the exchange and known rather under the name of the
exchange-correlations potential in the density functional theory (DFT) formalism, will be
approached in more details in the fifth section of this chapter.

One of the early attempts to estimate the electron-electron interaction in solids and in-
troduce the charge dependent total energy in solids is that of the Thomas-Fermi model
[32, 33|, the Hartree-Fock approximation and the X-o method of Slater [34]. The exten-
sion of these ideas, which have given rise to a revolution in the parameter-free ab-initio
description of complex electronic structure, is known as DFT. This was established by
Hohenberg and Kohn [35] and Kohn and Sham [36].

3.3 The Hohenberg-Kohn theorem

The finding of Hohenberg and Kohn for non-magnetic systems with a non-degenerate
ground state is based on two theorems.

Theorem 1 For a given external potential v, the total energy of a system is a unique func-
tional of the ground state electron density.

Theorem 2 The exact ground state density minimizes the energy functional En(r)]. A
brief demonstration is provided in the Hohenberg-Kohn paper [35]. In their paper, the
Hamiltonian H is defined as, H =T+ V + W, for which T represents the kinetic energy
of the system, V' the interaction of the electrons with an external potential and W the
electron-electron interaction. The solution of this Hamiltonian is the many-body wave
function ¥(ry,re,...ry), and we have

HU = BV, (3.14)
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The electron density can be calculated from

n(r) = <\Il \IJ> (3.15)

N

Z o(r —ry)

i=1
The extension of these theorems to the spin polarized systems can be done by including
an external magnetic field, B(r), so that the Hamiltonian becomes H = T+ U + W, where
U= [vu(r)n(r) — B(r) - m(r)d’r
Using the variational principle (in the same way as it was used to demonstrate theorem
1) one can show that the ground state energy is a unique functional of the electron and
magnetization density (n(r) and m(r)). Using the theorems above to get a practical
scheme to use DFT in describing solids Kohn and Sham [36] have shown that instead
of solving the many-body equation (3.14), it suffices to solve an effective one-particle
equation.

3.4 The Kohn-Sham equations

An important step on the way to finding an applicable approximation of the Hohenberg-
Kohn functional energy is the Kohn-Sham [36] equations.

The main idea of their theory is to approximate the many-body equation (3.14) by a set
of effective one-particle equations

2

= V)] i) = ) (3.10

where the effective potential V,¢(r)

e? n(r’) .
= ! Nl
Vops©) = Vo) + 1 [ 2L+ Vi), 3.17)

where the first term is the external potential generated by the nuclei, the second term is
the electrostatic potential and the last is the exchange-correlation potential supposed to
include all many body effect. The density is now constructed using

n(r) = Z Wi ()2, (3.18)

where the sum runs over all occupied states.

The set of equations (3.16-3.18) represents the Kohn-Sham equations. The Kohn-Sham
equation (3.16) can be viewed as a Schrodinger equation in which the external potential
is replaced by the effective potential (3.17), which depends on the density. The density
itself depends on the one-particle states 1);. The Kohn-Sham equation therefore needs to
be solved in a self-consistent manner. The total energy functional E[n(r)] expressed in
terms of the one particle energies ¢; (the Fock eigenvalues) has the form

E[n(r)] :To[n(r)]+/n(r)Vm(r)d3r+ ¢ //%dgrd?’r/—i-f?m[n(r)], (3.19)

8meg |

where Ty[n(r)] accounts for independent-electron kinetic energy. This kinetic energy can
be expressed in terms of the one particle energies ¢; (the Fock eigenvalues) as

Tofo(r)] = Y i - / Vo (e)n(e)dr. (3.20)
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The whole total-energy functional can then be rewritten by using (3.20) as

Eln(r)] = Zei — 876;'60 //%dgrd?’r’ — /ch(r)n(r)d?’r + Ey[n(r)]. (3.21)

The exact exchange-correlation potential V,. and functional E,.[n(r)] are however not
known and further approximations are needed for the solution of the electronic structure
problem.

3.5 The Local Density Approximation

Since the first three terms on the right hand side of equation (3.19) are possible to calculate
numerically, in this way the problem of the complexity of the fully interacting system is
mapped onto the problem of finding the exchange and correlation functional. The most
common and widely used approximation of the exchange-correlation functional is the local
density approximation (LDA) where the exchange-correlation energy is assumed to be as
in an homogeneous uniform electron gas,

E.[n(r)] = /e;‘gm[n(r)]n(r)d?’r, (3.22)

where €™ is the sum of the exchange and the correlation energy density of the uniform
electron gas of density n(r). The exchange energy can be calculated analytically and
the correlation energy has been calculated to great accuracy numerically from quantum
Monte Carlo methods [37]. The exchange-correlation potential V.ZP4(r) is the functional

derivative of ELP4 which can be written as

Vi) = 222 — )] + n<>%?<)” (3.23)

The most early attempts to parametrize the exchange-correlation energy e,. are those of
Barth and Hedin [38]. The form suggested by von Barth and Hedin is given by

€nc(, 1)) = € (1) + [ege(rs) — eqelrs)]f (ny, ), (3.24)
where
f(ny,ny) = [(2ng/n)"? + (2ny /n)*? = 2] /(2 - 2), (3.25)
ny and n| represent respectively the spin-up and spin-down components of the total charge
n (n =mny +ny), and 7y is defined by
(4/3)7r® = 1/n. (3.26)
P _F

The paramagnetic and ferromagnetic exchange-correlation energies e, ,e,. in equation
(3.24) are given by

Ei‘c = e;icc(rs) - C’iG(TS/T’i)7z. - P7 F (327)
where ¢ = —0.91633/r,, £’ = 21/3¢L,
Gr)=(1+2)In(1+1/2) — 2> +2/2 —1/3, (3.28)

and cp, cp, rp, Tr were chosen by fitting equation (3.24) to €. for the homogeneous
electron gas. The resulting parameters 38| are:

Cp =0.045,7p = 21, cp = cp/2,7p = 2"%rp (3.29)
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The commonly used parametrization is that of Moruzzi et al. [39]. The corresponding

parameters are:
Cp =0.0504,7p = 30, cp = 0.0254, rp = 75. (3.30)

According to (3.24) and (3.23) the resulting potential takes the form:

Vie = [4/3€L (ry) + y(ef (rs) — €£ ()] (205 /n)"/?
g (1) — (el (rs) — €l (rs)) (3.31)
+[,U§(7“s) - ,Uf(TS) - 4/3(€§(T8) - Ef(TS)]f(n% nl)a
where
() = —cpn(l+7./rp),
pr(re) = —cpln(l+ry/rg), (3.32)

v o= 4/3(2'2 1),

This potential is referred to as the LDA exchange-correlation potential in the rest of the
manuscript.

Although the local density approximation is rather simple and expected to be valid only
for homogeneous cases, it turns out that it usually works remarkably well even for inho-
mogeneous cases. However, for solids LDA very often gives too small equilibrium volumes
(~ 3%) due to overbinding. A simple improvement to the LDA that corrects the lattice
parameter is based on the generalized gradient approximation (GGA).

3.6 The Generalized Gradient Approximation

Even though the LDA approximation has been successfully applied to systems with spa-
tially varying charge density, it is rather valid for systems with nearly constant charge
density. In order to understand the effect of the charge density variation in terms of the
exchange-correlation interaction many attempts have been done so far. One of these at-
tempts has given rise to the so-called generalized gradient approximation (GGA), where
not only the density itself enters in the exchange-correlation energy but also its local
gradient. The most successful one is the one suggested by Perdew and Wang (PW91)
[40| and its simpler form by Perdew, Burke and Ernzerhof (PBE) [41|. We focus here
on the latter one, which will be henceforth referred to as the GGA exchange-correlation
potential.

The exchange-correlation energy has now the form:

EGGA — /n(r)eg‘c’m(n(r), |Vn|)d*r. (3.33)
Which can be expressed as |41]:
EECGA = /f(nTv ng, VTLT, vnl>d3r- (334)

The simplified scheme of the PBE approximation consists of evaluating separately the
correlation and the exchange energy as follows:

B — [l 4 Hro g0 (339
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where r, is the local Seitz radius (as defined by equation (3.26)), £ is the relative spin
polarization, and ¢t = |Vn|/2¢({)ksn is a dimensionless density gradient. Here ¢(§) =

[(1+ )23 + (1 —€)*3]/2 is a spin scaling factor, and k, = \/(4kr/may) is the Thomas-
Fermi screening wave number. The constructed H function has the form:

5 B, 1+ A¢?
H = 2v¢ 1n{1+;t [1+At2+A2t4 : (3.36)

where
—1

A= § [eap(—e™id [ (v¢e? fag)) — 1]

3 =0.066725 and v = (1 — In2)/72. The exchange energy functional obeys the relation-
ship:

(3.37)

E.[ny,n)] = (E[2nq] + Ex[2n)])/2, (3.38)
where
E, = / ne,(n)F(s)dr, (3.39)
and
Fu(s) =1+ r —r/(1+ ps?/x). (3.40)
where s = |Vn|/2kpn is another dimensionless density gradient, x = 0.804 and p =

0.21951 are fitting parameters found optimal over a large number of systems.

It is worth mentioning here that like LDA the GGA approximation obeys the exchange
and correlation hole density sum rules, firstly derived for LDA (Ref. [42] and references
therein):

/nx(r,r')dgr’ =1, (3.41)
/nc(r, r)d*r’ =0, (3.42)
and the negativity condition of the exchange hole:

ng(r,r') <0, (3.43)

where ' = r 4+ u and n,(r,r +u), n.(r,r + u) are respectively the exchange and the cor-
relation hole density of radius u surrounding the electron at r according to the exchange-
energy definition of Gunnarson and Lundqvist [43]: the exchange-correlation energy is
the electrostatic interaction of each electron at r with the density n,.(r,r +u) = n, + n.
at r + u of the exchange-correlation hole which surrounds it. In other words, The
exchange-correlation energy is the sum of electrostatic interaction energies over all elec-
trons, whereby that situated at, say, r, interacts only with the exchange-correlation hole
Nge(r, T + 1) it carries around. Figure 3.1 illustrates the difference between the exchange-
correlation potential calculated using the GGA and LDA. As it can be seen from the
figure, although both approximations lead to small differences for different radii (be-
cause each of them is satisfying the same sum-rules), this difference is locally perceptible
(varying from 0.01 to 0.1 Htr). We have to mention here, that compared to the LDA
exchange-potential the GGA one leads to better structural properties, i.e., it gives lattice
parameters in better agreement with experiments, and gives somewhat a better estimation
of the semiconductors energy gaps. However both the LDA and GGA potentials suffer
from the self-interaction contribution. Perdew and Zunger [12] have tried to remove this
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Figure 3.1: (Color online) The difference between the GGA exchange-correlation and
that of the LDA up to the muffin-tin radii for gadolinium metal Gd. The spin up part
(in black) and the spin down part (in red).

contribution which is not in Hartree-Fock based methods. Their self-interaction correc-
tion consists in proposing an exchange-correlation potential parametrization so that the
sum of the self-interaction coming from the Coulomb interaction and that coming from
the exchange-correlation tend to cancel each other:

U [nl,a] + ECoulomb [nl,a] = 07 (344)

where [ is the orbital quantum number and o the spin. Although this approximation has
led to a good description (improved total energy and separate exchange and correlation
pieces of it, and improved description of the charge density) of light atoms and a number
of monovalent metallic atoms compared to the Hartree-Fock one, it has not been able
to remove this self-interaction for extended systems such as molecules and solids with
localized orbitals.

A powerful alternative is the so-called LDA(GGA)+U method, which allows us not only
to keep the LDA(GGA) potential but also to add the intra-atomic Coulomb interac-
tion, particularly necessary for strongly localized and correlated electrons systems. The
LDA(GGA)+U method should be efficient to remove of the self-interaction of localized
orbitals.

3.7 The LDA(GGA)+U method

The LDA+U method [44], which is a generalization of the Hubbard model [3, 4, 5, 6], is
aimed to include the intra-atomic Coulomb interaction U in a mean field (MF) Hartree-
Fock-like manner. The original idea of this method is to add the intra-atomic Coulomb
potential for the localized orbitals to the Hamiltonian. Separating thus the electronic
system into two systems: a Hartree-Fock-like localized electrons d (f) (with no self-
interaction) and an LDA delocalized electrons (with negligible self-interaction). Because
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of the involved localized orbitals (d or f) it would be technically practical to use atomiclike
orbitals as basis functions. The linearized muffin-tin orbital method (LMTO) in the
atomic-sphere approximation [44] (ASA) or its full-potential version [45] have been the
first methods within which the LDA+U method was implemented. We present here the
LDA-+U implementation within the FLAPW method as it has been described by Shick
et al. |7] without supplying details about the FLAPW method (the FLAPW method will
be discussed in the next section). The variational LDA+U total-energy functional takes

the form:
YA [n,] = BYPA ] 4 B [n] — B* ] (3.45)

where ELPA[n,] is the LDA total energy, E°®[n,] is the electron-electron interaction
energy of the correlated orbitals,

1
EC=530 3 (e mal Vg, ma)

o,0' m1,mz,m3,my

!

_<ml>m3|vee|m4a m2>5070’)n0 (346)

m3,ma4’

which can be also written as 45|

1
B = 2 Z Z (mu, ma|Vlme, mang, o nm m,

g mi,m2,M3,M4
+((my, mg| V| ma, my)
ne (3.47)

_<m1>m3|vee|m4am2>)n mg,ma’

o
mi,m2

and in terms of U and J as |46]

1
ee o —0c
£ = 2 Z Z Mg ma T g Ui ma,m ma

o Mm1,Mm2,Mm3,Mm4

+ (Um17m27m37m4 - Jml,mg,m37m4) n;‘n17m2ngn37m4, (348)
and E% [n,] the double counting part;

e — gn(n - g zg:n"(n" _). (3.49)

The LDA+U potential which corresponds to the EXPA+U can be expressed as

VEPARU =N "N |my, 0) Vg, g (2, 0], (3.50)
o mi,mg
where the potential matrix elements V7 are defined as

Ve B aELDA—i-U B 8Eee aEdc (3 51)
mimz o - on° on° ’

m,m’ m,m’ m,m’

Using (3.45), (3.46) and (3.49), (3.51) can be expressed as:
Voms = Z Z (ma, ms|Vma, mayn, 2 4 ((ma, ms| V' mg, my)
o m3,my

1
_<m1a m3|vee|m4> m2>)n;3,m4 - 5M1,m2U(n - _) + 5M1,m2 J(nU - _)a (352)
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where n? = Tr(n7,, ,..) and n =73 n°.
According to (3.50) the expected value of VIPA+U s then:

(W VEPA gy = N~ Ve onl (3.53)
mi,ma
where
Ny = D (W7 ma, o) (ma, o[0)7), (3.54)
t{occ}

is the density matrix, and ¢y is the FLAPW wave function (see equation 4.55).
With the help of the variational principal, one can minimize equation (3.45) with respect
to ¥7:

g

0
(V24 Vipa] U7 (1) 30 Vil =™ = {07 x). (3.55)

This set of equations is that of the Kohn-Sham equations with an additional term ac-
counting for the U (LDA+U) correction for selected Hartree-Fock-like states only.

It is worth noticing that the present derivation of the LDA+U method (to which we will
refer to from now on as the LDA+U method) is rotationally invariant [47]. That is be-
cause the main ingredients used in this formulation are of atomic-HF-equations. In its
atomic limit the electron-electron interaction takes the form ([45] and references therein):

mi,m2

<m17m3‘vee‘m27m4> == Zak(m17m27m37m4)Fk7
k
A i .
ax(my, ma, msz, my) i > {Ima|Yegllma) (Ims| Yy [Ima), (3.56)
q=—k

where |I,m) are d(f) spherical harmonics, Fj the Slater integrals and a; are related to
the Gaunt coefficients through the complex spherical harmonics.
The Slater integrals Fj, are given by:

I, =

62 00 o] Tk
1 / / d’l“ld’l“g—szﬂnl (Tl)Rk,mQ (Tl)RI@ml (T2)Rk,m2 (T2)> (357)
m€o Jo Jo s

where r(r~) is the lesser (greater) of ry and rs.
The on-site Coulomb and exchange interactions U, J are given by:

1

U = mm§3<m1,m3|v |m1,m3>,
1
T = U= gy 2o Lol e ma) = (ol )
1 ee
= m Z (ml,m3|V |m3,m1). (358)

mi#mg,ms

Although this atomic formulation is appropriate and reliable to incorporate these intra-
atomic interactions, the electron-electron interaction (3.56) is unscreened and is therefore
overestimated.

Some attempts have been already made to calculate U and J interactions. The results
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obtained within the constrained LDA [48] calculations have shown the difficulty of simu-
lating the screening effect for 3d and 4 f systems in an electron gas, and led to too strong
(for 3d metals) and too small (for 4f metals) intra-atomic interactions compared to that
provided by experiment. It turns out that the most realistic way to get an estimation of
these intra-atomic interactions is to make use of the experimental spectra such as XPS
(X-ray Photoemission Spectroscopy) and BIS (Bremsstrahlung Isochromat Spectroscopy)
spectra to extract the U and J interactions and use them as input parameters for LDA+U
calculations (see paper I).

Once the U and J parameters (the screened interactions) are known, the Slater integrals
can be calculated using equations (3.58);

for d orbitals (I=2):

U = F07
J = (Fy+ F)/14; Fy/F, = 5/8, (3.59)

for f orbitals (I=3):

U = F0>
J = (286F, + 195F, + 250F;)/6435; Fy/ Fy — 675 /451; Fy/ Fy — 2025/1001.(3.60)

Even though the conception of the LDA+U scheme parametrization (using U and J as
parameters) make the ab-initio DFT calculations lose its non-parametrized character,
this method has provided a better description (compared to the LDA) of the electronic
structure of transition-metal oxides and Mott-Hubbard insulators such as NiO and CoO
[8, 9, 10, 11]. We will show in the following chapters that the LDA-+U approach is also
appropriate for describing electronic structure of correlated 4f rare-earth metals (paper

I).
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Chapter 4

The FLAPW Method

4.1 Introduction

Before introducing the full-potential linear augmented plane wave (FLAPW) method, we
would like to give a brief overview of ab-initio methods. Several methods have been de-
veloped to practically solve the Kohn-Sham (KS) equations (3.16). The idea of dividing
the space into spheres centered at each atom site, the so-called muffun-tin (MT) regions,
and the remaining interstitial region was already proposed by Slater [49, 50, 51| before
the KS equations. The concept of this division for a periodic potential corresponds to the
Augmented Plane Wave (APW) technique. Soon after, this concept has been adopted by
the Korringa [52], Kohn and Rostoker [53] (KKR) method. The APW method, as all the
others M'T orbital based methods, has known some deficiencies. The most problematic
is that of the non-linearity of the eigenvalue equations with respect to the energy. Other
methods, such as the orthogonalized plane wave (OPW) method [54| and the linear com-
bination of atomic orbitals (LCAO) method [55|, which are quite similar to the APW
method!, have been successful due to their accurate calculations of particular crystals.
The applications of the OPW method, however, have been limited primarily to nearly-
free-electron (NFE) crystals. The reasons for that can be summarized in two points. The
first one is that this method requires the electrons in the crystal to be separated into core
and itinerant electrons, and all the non-overlapping atomic states with the neighboring
lattice site states are considered as core states, so that the d-states, for example, will be
considered as such?. The second one is that the OPW method is more difficult to apply
to heavy elements since they have more core electron states. Therefore orthogonalizing a
plane wave function® to these states requires more efforts. The complications of the OPW
method had stimulated, at that time, the development of the actually used pseudopoten-
tial methods.

In the APW method, all that is required is the total electronic charge density based on
atomic self-consistent calculations.

Some years later Andersen [57]| succeeded in linearizing these eigenvalue equations within
the same MT model, which thus has given rise to both the linear muffin-tin orbitals
(LMTO) method and the linear augmented plane wave (LAPW) method.

!Terrel has shown that the APW method gives nearly the same results as the OPW method for the
Be metal [56].

2The problem which we would like to notice here is that though the d-states are relatively narrow and
do not overlap with the other states they are still far from being considered as frozen core states.

3The OPW basis functions are constructed by orthogonalizing plane waves to the core states. The
resulting OPW’s have nodal character in the core region but are essentially plane waves in the outer part.
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One of the commonly used methods to solve the Kohn-Sham equations is to use some kind
of basis set to represent the Bloch wave functions. A suitable basis-set choice suggested
by Bloch’s theorem is a sum of plane waves. They have several advantages: the imple-
mentation of the plane-waves based methods is rather straightforward because of their
simplicity; they are orthogonal and diagonal in momentum. The only problem which
arises from this representation is that it requires so many plane waves to account for the
fast varying electron wave functions near the core. To overcome this problem with only
a few basis functions, one can use a basis set which contains radial wave functions to
describe the oscillations near the core. This is the suggested fundamental idea by Slater
[49] for the augmented plane wave (APW) method.
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Figure 4.1: (a) A typical form of a based APW potential, (b) The representation of space
into muffin-tin and interstitial regions.

4.2 The APW concept

Within the APW approach, space is divided into spheres centered at each atom site (the
muffin-tin spheres), and the remaining region is the interstitial region (Fig. 4.1). Inside
the muffin-tin spheres the potential is of spherical symmetry, and the interstitial potential
is constant. The single particle wave function v, (k, r), which describes the physics within
such environment, is therefore expressed in terms of the following basis functions:

{(GHK)r . s .
e interstitial region
- w (7)Y (T muffin-tin p. '
Thus, the wave function takes the form:
CG (k)e!(GHlr interstitial region
k,r)=)» CSockr)= 26 Yy . :
vler) =3 Chretien) = H0 5 100 1 (ue ) it
(4.2)

34



The FLAPW Method

Where k is the Bloch wave vector, G is the reciprocal lattice vector, [ and m are the
angular quantum numbers, and u; is the radial solution of the Schrodinger equation:

{ n?o* R+

2m or? = 2m  r?

+V(r)— El} ruy(r) = 0. (4.3)

Here E; is an energy parameter, and V(r) is the spherical component of the potential.
Since the wu; functions account for the regular solutions, the basis functions inside the
spheres should form a completely orthogonal basis set and the u; functions should be
orthonormal. Using the Rayleigh expression:

ei(k+G)r = 47TZlel(|k —|— GHI'D l;(k/‘i_\(;)nm(f‘)a (44)

Im

and the continuity of the wave functions at the boundary of the muffin-tin spheres, the
A9 (k) coefficients are calculated according to:

Abi(k) = ZCG )ji(lk + GI|R])Yin(k + G), (4.5)

\/7Ul

where R is the muffin-tin radius and €2 is the cell volume.
The eigenvalue problem has the following form:

Hip, (k1) = .50, (k, 1), (4.6)

where v is the band index.

Even though plane waves form an orthogonal basis set, the APW functions do not. The
plane waves in the interstitial region are non-orthogonal, because the muffin-tin regions are
cut-out and, therefore, the integration over r space (in terms of which the orthogonality is
defined) is not carried out over the whole unit cell, but only over the interstitial region. An
additional contribution comes from the muffin-tin regions, this is the so-called augmented
contribution, which somehow, make the plane waves coupled to the muffin-tin functions
(ur(r)Yim(7)).

Due to the non-orthogonality of the basis functions the overlap matrix S:

SG’G/(k) = /ng/(k, r)og(k,r)dr, (4.7)

is not diagonal.
Using the wave function expansion (4.2), the eigenvalue problem (4.6) can be rewritten
in its generalized form as:

(H(k) — e4S(k))Cok =0  V k € BZ. (4.8)

Within the APW method, the E; parameters are mapped to the real band energies e,
thus the w; solutions become the functions of these band energies w;(r,e,x), and the
equation (4.8) is therefore nonlinear in energy?*, so it can no longer be determined by
a simple diagonalization. One way of solving this problem is to fix the energy FE; and
scan over k to find the solution w;(g,x), which corresponds to the optimal shape of the
band energies €,x, instead of diagonalizing a matrix to find all the bands at a given k.
The Slater’s formulation of the secular equation is, thus, computationally much more

4The Hamiltonian matrix H depends not only on k, but also on &,x, H(c,x).
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demanding than an ordinary linear one.

Another limitation of the APW method (known as the asymptote problem) is that of the
zero value of u;(R) at the MT boundary in equation (4.5). The A“’s are no longer finite,
and the radial function and the plane wave become decoupled. Further details about
the APW method can be found in the book by Loucks [58], which contains several early
papers including Slater’s original publications.

These problems are circumvented within the LAPW method proposed by Andersen [57].
The following section is devoted to the discussion of the main features of this method.

4.3 The LAPW concept

The basic idea of the linearized version of the APW (LAPW) is to expand the w; functions
into a Taylor-series around the F; energy parameters

w(e,r) = w(E,r) +u(E,r)(e — E) +O[(e — E)?. (4.9)

Here 1i; denotes the energy derivative of u;, du;(e,r)/de, and O[(e — E;)?] denotes errors
that are quadratic in energy. Therefore, according to the variational principle the error
in the calculated band energies is of order (¢ — E;)%. Because of this high order, the
linearization works well even over a rather broad energy region.

With this linearization, the explicit form of the basis functions is now as following:

e (GHlr interstitial region

palkr) = { S (AL (W)ur(r) + BLS (k)i (1)) Vi () muffin-tin 1. (4.10)
The values of the coefficients A*S (k) and B!*“ (k) are determined by ensuring the conti-
nuity of the basis functions and their derivatives at the muffin-tin boundary (a detailed
description of these coefficients will be provided in the following sections). The energy de-
pendence of the Hamiltonian is therefore removed, which reduces the energy search given
by equation (4.8) to a standard eigenvalue problem of linear algebra. This is a direct
consequence of the disappearance of the discontinuity in the basis functions derivatives
(encountered in the APW method).

Taking the energy derivative of equation (4.3);

omor: | 2m  r2

{ o kR l(l+1>—l—V(r)—El}rul(r):rul(r), (4.11)

1y can be calculated as a solution of a Schrédinger-like equation.
Since it is no longer necessary to set the energy parameters equal to the band energies, the
latter can be determined by a single diagonalization of the Hamiltonian matrix (equation

(4.8)).
In order to simplify the calculation of the elements of the Hamiltonian matrix, the nor-
malization of w; is required,

Ryt
/ uf (r)ridr =1, (4.12)
0

which implies that the energy derivatives of u;, 4,(r) are orthogonal to the radial functions,
i.e.,

/0 () () = 0. (4.13)
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Once the u; and 4; are made orthogonal, the basis functions inside the spheres form a
completely orthogonal basis set, since the angular functions Y;,,(7) are also orthogonal.
However, the LAPW functions are, in general, not orthogonal to the core states, which
are treated separately in the LAPW method.

In some materials the high-lying core states, the so-called semicore states, pose a problem
to LAPW calculations: they are too delocalized to be described as core states, and too
deep in energy to be described as valence (conduction) states®. One of the strategies to
overcome this problem is the use of local orbitals [59]. The local orbitals are an extension
to the FLAPW basis, that can be used to improve the representation of the semicore
states. The extra basis functions are completely localized inside the muffin-tin spheres,
and their values and derivatives fall to zero at the muffin-tin radii®. This can be achieved
via a linear combination including three radial functions, the standard FLAPW functions
w; and 1; plus a further radial function v, , where [, is the quantum number [ for local
orbitals. This new radial function is constructed in the same way as wu;, but with different
energy parameter Fy,_. A detailed discussion of these problems can be found in the book
by Singh [14].

The three functions w;, 1; and u;,, have to be combined, so that the value and the derivative
of the local orbital are zero at the muffin-tin radii. In addition, the resulting radial
functions can be required to be normalized. Hence, to determine the coefficients of the

radial functions A€ B and cr 5’: we make use of the following three conditions:

llom ) llom
alloul(RMT) -+ blloul(RMT) -+ clloullo(RMT) = 0, (414)
0ul (9’&'1 0ullo o
@, (Baar) + by, 2 (Rarr) + ey, = = (Rur) =0, (4.15)
Ryr
/ (g ua(r) + b () + ca,u, (1) 2r2dr = 1, (4.16)
0

where [o is the index of the local orbital, which is necessary because more than one local
orbital can be added for each atom.
The local orbitals are finally coupled to “fictitious” plane waves, Gy, in the same way as
the FLAPW basis functions:
° lo lo . lo N
Pl (kor) = (AL (Ku + BIS) (k)i + CLS (K)uy,, ) Vi (7). (4.17)

liom liom
m

with (cf. equations (4.45))

o . ; 1 .

AZS::L (k) = el(k-‘rGlo)T allo47TWZl [:n(k _'_ (}10)7 (418)
o . } 1 P

BYC" (k) = ¢ilctGuo)T b A7 Y (6 o), (4.19)
° i W 1. -

Sy (k) = eiler G e ATV (K + o). (4.20)

In the results chapter we shall show the necessity of treating the 5s and 5p orbitals as
semicore orbitals for Gd metal (paper I) and GAN compound (paper II).

Given that the LAPW basis set offers enough variational freedom, its extension to non
spherical potentials could be done with little difficulty. This leads then to the full-potential
linearized augmented plane wave method (FLAPW).

5The corresponding energy parameter Ey, is already used to describe higher localized valence state.
6That is why no additional boundary conditions has to be satisfied.
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4.4 The FLAPW concept

The full-potential LAPW method (FLAPW) [18, 19] combines the choice of the LAPW
basis set with the treatment of the full-potential and charge density without any shape-
approximation in the interstitial region and inside the muffin-tins:

V(r) = { pore V}ngr ) interstit%al region (421)
Y i Varr (7)Y (£) - muffin-tin,
the charge density, p(r), is represented in the same way as the potential:
p(r) = { pIre ﬂ}ziGr ) interstit‘ial region (422)
Zlm pMT(T)Yim(I') muffin-tin.

We have to mention here that though the potential is nearly constant in the interstitial
region (the open systems and the systems with small packing factor), this is not the case
for the most of the metallic materials with relatively high packing factor. It turns out
that on contrary to the methods using the atomic sphere approximation (ASA)" [57],
the FLAPW method accounts for the most realistic potential and leads, therefore, to
a realistic distribution of the charge density within the whole space. In other words,
within the FLAPW scheme the charge density is sensitive to the slightest variation of the
potential in the whole space.

As other density functional theory based codes, the first-principles FLAPW (Fleur code

initial guess:
charge density:
atom positions: R }

n™3(r) + New {R}

‘H compute potential }%‘

for all k —points:
Solve KS equation:
-setup H, S
—diagonalize

‘ determine E ‘

'

compute output density: F{n(r}

Yes

Structure optimization

Figure 4.2: Typical loop struc-
ture of a first-principles code energy and force
based on density functional +
theory. done

compute
mix: n™M, F{nm}

[25]) method is implemented according to a typical self-consistent loop (figure (4.2)). We
provide in the following subsections the features of the main steps of a bulk calculation.

"In this method the potential is represented by the spherically averaged potentials in the overlapping
space-filling spheres centered at the atomic nuclei; such treatment of the potential and the charge space-
filling within both of the regions (muffin-tin and interstitial) on the same footing was at the origin of the
ASA method failure for many materials [60], i.e., the conduction band structure is strongly dependent
on the sphere radius.
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4.4.1 Construction of the potential

The total potential consists of two parts, the Coulomb potential, and the exchange-
correlation potential. The Coulomb potential is composed of the Hartree potential Vi (r)
and the external potential of the nuclei V;(r):

Vi(r) = Vir(r) + Vi(x). (4.23)

Once an initial charge density n°(r) (atomic charge) and atom positions (R) are given,
the Hartree potential can be determined from the charge density via the Poisson equation:

AVi(r) = ez(r), (4.24)

in real space the solution of equation (4.24) is given by:

Vi(r) = 4;:60 / |rn£rz,|d3r. (4.25)

In reciprocal space, however, the Poisson equation is diagonal:

en(G)

Vu(G) = WG

(4.26)

Therefore, and because of the representation of the charge density and the potential in
the interstitial region, the solution of the Poisson equation in reciprocal space appears to
be convenient. However, due to the rather localized core and valence states the charge
density changes on a very small length scale near the nuclei (the muffin-tin region). Thus,
the plane wave expansion of n converges slowly, and a direct use of equation (4.26) is
impractical. The pseudocharge method [61] is used to circumvent this difficulty.

The problem of determining the exchange-correlation potential is quite different from that
of the Coulomb potential, V.7, is a local quantity and depends only on n¢(r) and n(r)
at the same position r. Thus, the muffin-tin and the interstitial regions can be treated
independently. Furthermore, V.7, and €7, are non-linear functions of n; and n|, and have
to be calculated in real space. First, n; and n| are transformed to the real space, where
Ve and €, are calculated®, and then back-transformed. The potential V7, is then added
to the Coulomb potential, yielding the spin-dependent potential V; and V|, whereas €7, is
needed for the determination of the total energy.

4.4.2 Construction of the Hamiltonian matrix

The FLAPW Hamiltonian and overlap matrices consist of two contributions from the two
regions into which space is divided.

H:H[+HMT and S:S[+SMT. (4.27)

Both contributions have to be computed separately.

8 As it was explained in section (3.5) and section (3.6), V.2, and €7, are calculated using either the LDA
or the GGA.
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The muffin-tins contribution

By writing the product of the radial functions u; with the spherical harmonics as ¢;,, =
Yy, the contribution of the muffin-tin to the Hamiltonian matrix is given by:

HEE0) = 5, Sy (o A0 G (x = Ry) + BES (1) (0 = R,) ) Hag
(52 AL 0001 = Ry) + BLZ () du(x = R,) ) d'r. (4.28)
and
SEE) = 3 Sur (v A () bm (v = Ry) + By () (r — R, ).
((Zlvm A (K) i (v — Ry) + Bl (1) i (r — RM)) dr,  (4.29)

where Hy7w is the scalar relativistic Hamiltonian operator. It can be split into two parts,
the spherical Hamiltonian H,, (equation (4.3)) and the nonspherical contributions to the
potential V:

HY = Hy, + V. (4.30)
The functions ¢;,, and QSLm have been chosen to diagonalize the spherical part of the
muffin-tin Hamiltonian (equations (4.3) and (4.11):

Hop|drm) = Bildrm) and  Hy|rm) = Erldim) + [érm). (4.31)
Multiplying these equations by ¢y (r) and ¢y (r), respectively, and integrating over the
muffin-tins gives:
<¢l’,m’|Hsp|¢l,m>MT“ = 5ll’5mm’El; <¢l’,m’|f{sp|q‘5l,m>MT“ =0
(Pv | Hsp| @rm) v = 05 (@t | Hp|bt.m) varn = O Oy B (| 1) prv, (4.32)

where the normalization condition for u; has been used.
The above integrations contain the following type of matrix elements:

thot = Ot (0) Harrn G (1) 57 (4.33)
MTw
Since the potential is expanded into a product of radial functions and spherical harmonics:
VEE) = 37 Vi (1) Yoo () (4.34)
l//7m//

the corresponding integrals consist of a product of radial integrals and angular integrals
over three spherical harmonics, the so-called Gaunt coefficients:

thoe =Y I Gig™ + G B (4.35)
lll
where
G = [ Y Vi YirrdQY and I = [l (r)ul (r) Vi (r)r2dr, (4.36)

as well as similar expressions for I}y, and others. Finally, the Hamiltonian and overlap
matrix elements become:

HES ) =D ) (AN (k) o0, Al (k) + (Bl (k) 0, Bl (k)

'Im 'Im
woU'm/Im

F(ALC (k)840 BIC (k) + (BLS) (k)" tho%, AMS(k),  (4.37)

m/lm m/lm

Sir (k) = D > (AR (k)" A5 (k) + (B (K))"Bhy () (i) e (4.38)
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The interstitial contribution

The interstitial contributions to the Hamiltonian and overlap matrix have the following
form:

/ 1 —q r h’2 7 ! r
HFP® (k) = Q/f G (=g A+ V() ST, (4.39)
586’ _ % / o—i(GHr (GO (4.40)
I

The potential is also expanded into plane waves in the interstitial region:

V(r) =) Vge o (4.41)
G

Once the Hamiltonian and overlap matrix are determined in the whole space (muffin-tins
and interstitial), the eigenvalue problem (equation (4.8)) will be solved for each k point
of the Brillouin zone.

4.4.3 The muffin-tin A- and B- coefficients

Within the FLAPW method the electron wave functions are expanded differently in the
interstitial region and in the muffin-tins. Each basis function consists of a plane wave
in the interstitial region, which is matched to the radial functions and spherical harmon-
ics in the muffin-tins. The coefficients of the function inside the sphere are determined
from the requirement that the basis functions and their derivatives are continuous at
the sphere boundaries. A plane wave e’ " within the global representation transforms to
! RMK)r+RUT) within the local representation. Therefore, the Rayleigh expansion (equa-
tion (4.4)) expressed in the global frame becomes in the local frame:

e = T S i (K e} Yy (RVK) Y (8), (4.42)

lm

where K abbreviates G + k, and 7# is the position of a  atom type in the global frame.
Indeed, K and 7" looked at from the local frame viewpoint appear to be transformed
according to the space group operations {R|t}. More details can be found in the physics
diploma by Philipp Kurz [62].

The first requirement of continuity of the wave functions at the sphere boundary leads to
the equation:

> (A7 (w(Rarr) + By (k)iia(Rarr)) Y (£)

Ilm

= Ty il KIRarr ) Vi, (RVK) Y (8). (4.43)

Ilm

The second requirement is, that the derivative with respect to r, denoted by du/0r = v/,
is also continuous:

S (AUE (K)uwy(Rarr) + BUS (K)uj( Rarr)) Yo ()

Ilm
= T4y i (KR |) Y (RPK) Vi (£) (4.44)

m
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Therefore, the A*S (k) and B/ (k) coefficients, which satisfy these conditions, are deter-
mined as:

wre., L g, ~ T, X y .
Af (k) = T dr 'Yy (RVR) [ Rasr) Kt (Ragr K) = iy Ragr ) jn(Rasr )
w 1 % ~ ’ . ¥
B (k) = KT 47TWZ m(R'K) [Uz(RMT)KJl(RMTK) — w(Ryr) g, (RMTK)} , (4.45)
where K denotes |K| and W is the Wronskian:

4.4.4 Brillouin zone integration for Fermi energy and Fermi sur-
face energy

The Brillouin zone integrations are involved many times during the self-consistent loop
procedure. They are used to calculate the electron density, the total energy or the sum
of eigenvalues. All these physical quantities depend on the Bloch vector and the energy
band. These integrations are performed over the region of the Brillouin zone where the
band energy ¢, (k) is lower than the Fermi energy. Hence these integrals are of the form:

.- / Z £k, (4.47)
BZV{

Ev <EF}

where f is the function to be integrated.

Usually the special points method [63] is used to integrate a smoothly varying periodic
functions of k. The function to be integrated have to be calculated at a set of special
points in the IBZ, each of which is assigned a weight according to the employed point group
symmetry. Thus, the BZ integration is transformed into a sum over a set of k-points:

YooY hkuw(k), (4.48)

k€IBZ v{e, (k)<Er}

where the function f,(k) is now a product of the function f (to be integrated) with a
step function® that cuts out the region of the Brillouin zone, i.e., the band energies are
below the Fermi energy. In the implementation of the FLAPW method, the Fermi energy
is determined in two steps. First, the bands are occupied starting from the lowest energy
until the sum of their weights equals the total number of electrons per unit cell, i.e., the
discretized equivalent of equation (4.47) is solved at 7' = 0. Then, the step function is
replaced by the Fermi function and the Fermi energy is determined from the requirement

that:
N=>"> wke, k) - Ep), (4.49)

where the weights are given by:

1
ev(k)—Ep )

e kBT +1

w(k, e,(k) — Er) = w(k) (4.50)

9This step function is replaced by the Fermi function W to account for the so-called temper-
e B “+1
ature broadening and avoid the problem of the sudden (sharp differentiation) variations of the integrand
during the iterations. This is happening usually for bands very close to the Fermi energy.
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and N is the total electrons number.

The weights w(k,e, (k) — EF) are stored to be used for later Brillouin zone integrations.
The Fermi surface energy calculation method we have implemented (paper I) is based on
a linear tetrahedron method [64].

Metallic materials are characterized by a number of partially filled bands. In such systems
the energy of the highest occupied level, the Fermi energy Fr, lies within the energy range
of one or more bands. For each partially filled band there will be a surface in k-space,
separating the occupied levels from the unoccupied ones. The set of all such surfaces is
known as the Fermi surface. In a first step, a reciprocal equispaced grid is defined. The
next step consists of dividing each submesh cell into a six tetrahedra of equal volume.
These tetrahedra are, therefore, selected according to the range of the corresponding
eigenenergies’’. Figure (4.3) shows the different contributions to the calculated Fermi

k2; e2

k4; e4

Figure 4.3: One of the six tetrahedron of a submesh cubic cell. To each reciprocal space
corner (ki, ko, k3 and ky) corresponds an eigenvalue (g1, €9, €3 and £4). The different
contributions to the Fermi surface are presented as hatched planes (notice that only one
possibility out of three may occur for each tetrahedron).

surface energy. Using a linear interpolation of £(k) and arranging the eigenvalues as
€1 < €9 < €3 < g4, these contributions can be enumerated as:

1. If ] < ep < g9 < €3 < g4 the calculated contribution to the Fermi surface is the
hatched surface Sy (see figure (4.3)).

2. If 61 < g9 < g3 < e < g4 the calculated contribution to the Fermi surface is the
hatched surface Ss.

3. If ey < g9 < ep < g3 < g4 the corresponding contribution is the sum of the S3 and
S, surfaces.

The surface areas calculations are provided in Appendix (A).

107f the corresponding eigenvalues (1, €2, €3 and &4) lie around the Fermi energy, this means that these
tetrahedron should be crossed, in the reciprocal space, by the Fermi surface.
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4.4.5 Construction of the electron density

Once the diagonalization of the Hamiltonian is achieved, the resulting eigenfunctions can
be used to determine the charge density. The electron density is given by an integral over
the Brillouin zone (cf. equation (4.47)):

[ Y mknfer (451)

I/{€y(k <EF}

The summation includes also the spin-index o for spin-polarized calculations, while a
factor “2” has to be added to account for the spin degeneracy. This integration has to be
transformed into a weighted sum over the k-points in order to sample the eigenfunctions,
where the choice of k-points and their weights depend on the integration method used.
These weights depend not only on the k-points but also on the band energy, because each
band contributes to the electron density only if its energy is below the Fermi energy:

n(r) =3 Y | (k1) wik,e, (k) — Ep). (4.52)

k

Within the FLAPW method the eigenfunctions are presented in terms of the coefficients
of the augmented plane waves:

ZOG Joa(k,T). (4.53)

Inside the muffin-tin spheres each plane wave is coupled to a sum of spherical harmonics
and radial functions. Hence, in a sphere p an eigenfunction is given by:

= 2080 S u() + BEWamin®. (450
By performing a contraction over the plane waves, this equation becomes:
Gk r) = S0 (AL (u(r) + Bl (€ (1) Vi (), (4.55)
Ilm
where
A () =g CERALT(K) B (k) =Yg C2(k) B (k). (4.56)

Construction of the electron density in the muffin-tins

Substituting equation (4.55) into equation (4.51) yields the electron density in the muffin-
tin spheres:

1
=gl

D (A (W (r) + Bl (K)iae (1)) Yy (B)-

vev(K)<Ep U'm/

> (A (ui(r) + Bly, (k)i (r) Yim (B)d®k. (4.57)

lm

The particle density inside the muffin-tins is also expanded into spherical harmonics:

= Ch (1) Yim(7). (4.58)
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The coefficients CY,, ., (7) can be determined by multiplying equation (4.57) with [ dQYju,,» (7):

1 . «
Clirgn = 77— > (A (W (r) + Bi, (ki (1))
VBZ Bz vev(K)<Ep U'm/
> (AL (u(r) + B, (K)iu(r) Gi ™ d°F, (4.59)
im

where the Gaunt coefficients (G2 ™") are used as reals. Finally, applying a Brillouin
zone integration method yields:

Clir =Y (ZZZ Al (R) AL (K) G ™ w (v, k)) wp (r)uy(r)

'l v m'm
+...A"B+B*"A+B*B.... (4.60)
Construction of the electron density in the interstitial region

In the interstitial region the wave functions are represented in the following form:

Z CG 1(G+k (461)

Starting from equation (4.51) the electron density is expressed as:

n(r) = 1

VBZ BZ

S (cf’(k))*cf”(k) (G~ G)r 3y, (4.62)

veu(k)<Ep G'G”
The electron density in the interstitial region is also expanded into plane waves:
= necr. (4.63)
G
Hence, the plane wave coefficients of the electron density are:
1 ! * 1
nG = S 3 (OS (k)) CS" (k) dk. (4.64)
VBZ BZ ealll " —
vev(k)<Ep G'G",G"—G'=G
Therefore the k and state dependent density is given by the momentum space convolution:
k= Y (CFm) e m =Y (cFm) cEH) (465)
G/G//,GII_G/:G Gl

For each coefficient, a sum over G has to be performed. Consequently, the numerical
effort put into the determination of n% (k) scales proportional to the number of G-vectors
squared, i.e., proportional to (G, ). However, n%(k) can be calculated using the fast
Fourier transform (FFT)!.

"This can be done at a (Giaz)® In(Gae)® numerical effort cost instead of (Gpaz)®. First, CS (k) is
Fourier transformed to the real space, where it is squared on a real space mesh yielding n, (k,r), then all
states are summed up, and finally the resulting particle density is back-transformed to the momentum
space.

CS (k) EET, 4, (k,r) 2247, (k1) = n(k, 1) ZETL G (k). (4.66)

In a last step the plane waves have to be combined in order to form the three dimensional stars.
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4.5 The LDA(GGA)+U approach within the FLAPW

The LDA(GGA)+U implementation within the FLAPW method follows the same logic
as explained in section (3.7). The variational LDA(GGA)+U Schrodinger equations are
those of equations (3.55):

[V2 + VEDA wk v Z ml - 521 ,TN2 5;1}51{1,”(1‘), (467)
k,v

mi,ma2

where V7, 4(r) is the LSDA or GGA potential calculated using the LDA(GGA)+U charge
density:

W= iy 0070 (A (6) A3, (6) + () B () B (K] oo
An(K) = (WPYinlg,) , Bink) = (i Yialog.,) |

and (cf. equation (4.69)):

a_/

Vi = D (o, ma Vel lma, ma) = ma,ma|Velma, ma)doo g,
ms3,ma
1 1
—Omy.myU (N — 5) + Oy iy J (N7 — 5). (4.69)

The last term of the variational Hamiltonian is calculated from equation (4.68):

o
5nm1 ,1M2

0e = <wli,u|u7Ylmz>u?Ylm1 + <u7|u7><¢1€,u|ulaylmz>u7yim1
k,v

= [l Yim ) (U Yim, | + (07 [67) 107 Y i, ) (07 Yimo [ 9, - (4.70)

The U intra-atomic Coulomb interaction and the J exchange interaction can be calculated
according to equations (3.58) within an unscreened atomic formulation. Within the Fleur
implementation [25|, these interactions are considered as a parameters, and they are
usually extracted from experimental results.
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Chapter 5

Spin-orbit coupling and the magnetic
anisotropy

In a ferromagnetic material, below the Curie temperature, the total energy is found to
be dependent on the orientation of the magnetization. This is usually what is meant by
the magnetocrystalline anisotropy in the literature. Two principle magnetic mechanisms
are responsible for such phenomena. One is the dipole-dipole interaction between the
moments localized at different lattice points [65, 66, 67]. The second one is related to
the orientation of the spin axis and is of pure relativistic character appearing only when
the spin-orbit interaction is taken into account [68|. The spin-orbit coupling (SOC) pro-
vides the mechanism that couples the spin moment to the crystal generating thereby a
dependence of the energy from the spin axis.

5.1 The Kohn-Sham-Dirac equation

Relativistic effects are important for the correct description of core or valence electrons.
Both core and valence electrons have finite wave functions near the nucleus, where the
kinetic energy is large. This kinetic energy becomes more significant for heavier elements
and compounds. Additionally, only relativistic effects, in particular the spin-orbit cou-
pling, introduce a link between spatial and spin coordinates. Thus, information about
the orientation of spins relative to the lattice can only be gained if relativity is taken into
account. For fully relativistic description of the electronic structure all relativistic effects,
i.e., mass-velocity, Darwin-term, spin-orbit coupling, have to be taken into account [69].
However, in many applications an approximation is used, where the spin-orbit coupling is
neglected. This approximation is called the scalar relativistic approximation. It consists
in including the spin-orbit interaction additionally', either self-consistently or with the
use of Andersen’s force theorem [70].

In a relativistic density functional theory the Kohn-Sham equations have the form of a
single particle Dirac equation

{ea-p+ (B —1)mc* + Vi (r)} ¥ = BV, (5.1)
(L)) () e

g:(IO? _012). (5.3)

IThis is known as the second variational scheme.
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0z, 0y, and o, are the three components of the Pauli matrix vector o, p is the momentum
operator, and I,, is the (n x n) unit matrix. V.ss is the effective potential, that contains
electron-nucleon Coulomb potential, Hartree potential and exchange-correlation poten-
tial. In the case of spin-polarization, V. is spin-dependent. Finally, ¥ is the relativistic
four component wave function.

The straightforward way to solve this problem would be to expand each of the four com-
ponents of ¥ in terms of the FLAPW basis. However, if all four components were treated
with the same accuracy, this would result in a basis set which contains four times as many
functions as in the non-relativistic (non-magnetic) case.

The FLAPW implementation we use introduces some approximations to make relativistic
calculations more efficient. One of these approximations is the scalar relativistic approx-
imations, which has been suggested by D.D. Koelling and B.N. Harmon [71], where the
spin-orbit term is neglected, and spin and spatial coordinates become decoupled. Hence,
the Hamiltonian matrix reduces to two matrices of half the size, which can be diagonal-
ized separately. This saves a factor of four in computing time. The scalar relativistic
approximation will be discussed more detailed in the next section. It should be noted
that relativistic effects are only significant close to the nucleus, where the kinetic energy
is large. It is therefore reasonable to treat the interstitial region non-relativistically. Thus,
merely within the muffin-tin spheres the electrons are treated relativistically. Moreover,
only the large component of ¥ is matched to the non-relativistic wave functions at the
boundary between the muffin-tins and the interstitial region, because the small compo-
nent is already negligible at this distance from the nucleus. The small component is
attached to the large component, and cannot be varied independently. However, this is
a somewhat sensible approximation for two reasons: Firstly even inside the muffin-tin
sphere the large component is still much bigger than the small component, and plays an
important role, and secondly the two components are determined by solving the scalar
relativistic equations for the spherically averaged potential. Therefore, they are very well
suited to describe the wave functions.

Hence, the size of the basis set and the Hamiltonian matrix remains the same as in non-
relativistic calculations, but the problem has to be solved twice, once for each direction
of spin. This numerical effort is equal to that needed in spin-polarized non-relativistic
calculations.

5.2 The scalar relativistic approximation

As it was pointed out in the previous section, the electrons are only treated relativistically
inside the muffin-tin spheres. Thus the first problem that has to be addressed is the
construction of the radial function. This is done by solving the scalar relativistic equation,
including only the spherically averaged part of the potential. The starting point is the
following Dirac equation:

{ca-p+ (B—1)mc* +V(r)}¥ = EV. (5.4)

The solution of equation (5.4) is discussed in many textbooks, e.g., E.M. Rose [72]. Due
to the spin-orbit coupling m; and m, are not good numbers any more, and they have to
be replaced by the quantum numbers x and g (or j and p), which are eigenvalues of the
operators K and the z-component of the total angular momentum j, (or the total angular
momentum j and j,) respectively. K is defined by

K =p(o-141). (5.5)
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The solution of equation (5.4) have the form

veva= (), o

where g, (r) is the large component, f.(r) is the small component, X, and x_,, are spin
angular functions, which are eigenfunctions of j, j,, K, and s? with eigenvalues j, p, &
(—k) and s=1/2 respectively. The spin angular functions can be expanded into a sum of
products of spherical harmonics and Pauli spinors, where the expansion coefficients are
the Clebsh-Gordan coefficients. The radial functions have to satisfy the set of coupled

equations:
—’“””jfl — % 2Mc ge(r) \
( W -F) =-2 ) ( fulr) ) =0 57)
with )
M =m + 2—62(E —V(r)). (5.8)

To derive the scalar relativistic approximation D.D. Koelling and B.N. Harmon [71] have
introduced the following transformation:

() -(ate D) e

Using this transformation equation (5.7) becomes

( L5 o (Vﬁ_ B 4 s _cha ) ( 32(53 ) _9, (5.10)

2Mc 12 r 2MZ?c r or

where M’ denotes the radial derivative of M (%), and the identity x(k+1) = I(I+1) has

been used. Since k is the eigenvalue of K = (o -1+ 1) the term % can be identified
as the spin-orbit term. This term is dropped in the scalar relativistic approximation,
because it is the only one, that causes coupling of spin up and spin down contributions.
The radial functions g;(r) and ¢;(r) (the index s has been replaced by 1) can now be

calculated from the following differential equations:

L) = 2Mean(r), (5.11)
o) = (et V0 -B)at) - 200). 612

The energy derivative of these equations yields straightforwardly a set of equations for
gi(r) and ¢;(r), which are the relativistic analog of u;(r). For numerical reasons the
functions ¢;(r) and ¢;(r) are replaced by p;(r) = rg,(r) and q,(r) = créy(r).

5.3 The spin-orbit coupling implementation within the
FLAPW

In the present Fleur code implementation [25] of the FLAPW method the relativistic
radial wave functions are normalized according to

<< ;ZZE?) )‘ < ;ZZ,E:)) >> = /ORMT(Q?(T) + @2 (r))rdr = 1. (5.13)
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The energy derivatives of the radial functions have to be made orthogonal to the radial

functions: |
<< glz((i)) )‘ < ;ZIE:)) )> =0. (5.14)

So that the scalar relativistic FLAPW basis set takes the form

e (GHlr interstitial region

callr) ={ & ( A1 (1) ( gll((:: )) ) + BIS (k) ( illig )) Yu(f)  muffin-tin g,
(5.15)

which is similar to that of a non-relativistic basis set (equation (4.10)).

Note that the Pauli-spinors have been omitted, since the spin-up and spin-down problems
are solved independently within the scalar relativistic approximation. Ignoring the spin-
orbit coupling term in equation (5.10) the scalar relativistic Hamiltonian including only
the spherically averaged part of the potential can be expressed as:

w(a)) =2 (80 610

1 l(1+1) 2¢ 0
H,, = 2M 2 T Or . 5.17
P < c% —2mc* + V(r) ) ( )

with

Thus, the Hamiltonian will be set up and diagonalized in a similar manner to that of
section (4.4.2).
In a second step, the spin-orbit coupling is calculated according to the following relation:

- 1 hldV (VSTOT VSTOL)
o= .

Volt) = gz g ar 0 = \ VI 1/l o1

Therefore, the spin-orbit coupling of the two spin channels is related to the unperturbed
potential® via the angular momentum operator L and the Pauli spin matrix o.

The 2x2 matrix form is written in spinor basis. The two spin directions are denoted T
and |. The derivation of the spin-orbit coupling angular part L.o is supplied in Appendix
(B).

Finally the scalar relativistic Hamiltonian matrix elements will be constructed as:
bu(kr))., (5.19)

HES () = 20(K)duusbor + (0 (k1) |Vao

where the corresponding eigenfunctions are of the form:

W, (k,r) =Y al k1), (5.20)

where ¢, (k,r) and ¢,(k) are the eigenfunctions and the eigenvalues of the Hamiltonian
(5.17) calculated without spin-orbit coupling, and n, v are the band index. As it can
be easily seen from equation (5.20) the n index should be twice that of v because of the
summation is carried out over both spins. This leads to a spin mizing® which makes this
latter not a good quantum number.

2This is the spherical potential of equation (B.4) calculated without including the spin-orbit interac-
tion.

3This effect results in a lifting of the Kramers degeneracy and can be observed in the band structure
of typical magnetic metals.
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5.4 Force-theorem applied to the magnetic anisotropy

One of the interesting aspects of the magnetism is that of the magnetic anisotropy. Indeed
this anisotropy result from a complex interplay of the crystal and the magnetic degree
of freedom. This interplay is a direct consequence of the spin-orbit coupling [68]. In 3d
magnetic materials for example, the magnetocrystalline anisotropy energy (MAE) is found
to be of about some peV [73, 74| for bulk and up to some meV |75, 76] for surfaces and
thin films. According to the Bruno [75] and van der Laan 77| models these small values of
the MAE is a direct consequence of the tiny effect of the spin-orbit coupling. Given that
so small spin-orbit coupling compared to the rest of the contributions to the Hamiltonian,
this coupling can be treated as a perturbation in the same way that is explained in
the previous section. In this respect, because of the computational effort saving gained
by the force theorem [70| approximation many computational investigations |78, 79, 80|
have been performed to explain the corresponding experimental results |81, 82|. These
investigations have allowed a better understanding of the MAE of magnetic 3d based
materials. However, magnetic 4f material anisotropy is only rarely studied. In order to
get insight into the magnetic anisotropy in 4 f rare-earth magnetic metals we have chosen
to work with the gadolinium (Gd) materials. This choice was motivated by the interesting
magnetic properties of Gd, especially its high spin magnetic moment.

The MAE is defined as the difference in energy:

MAE = E(hard axis) — E(easy axis). (5.21)

Sometimes, since the hard and easy axes are not known in advance the definition of the
MAE is the one used in paper III, where, in a hcp crystal, we considered

MAE = E(a axis) — E(c axis). (5.22)

Further, one can define an anisotropy energy, or the energy dependence from the magne-
tization orientation, E4(f) as

EA(0) = E(0) — E(ref. axis), (5.23)

where ref. axis indicates the axis chosen as reference (typically the easy axis or a symmetry
axis of the crystal) and @ is the angle measured from it. The anisotropy energy can also
be expanded as

E4(0) = Kysin*(0) + Kasin®(0) + (K3 + Kycos¢)sin®(0) + . .. (5.24)

where K; are the anisotropy constants, which are increasingly small.

5.5 The force theorem

The fact that the spin-orbit interaction can be introduced as a perturbation to scalar
relativistic systems can be exploited in order to speed up the evaluation of the MAE. The
way to do so is given by the force theorem for band structure calculations |70]. Let us
consider an unperturbed system? with its total energy given by equation (3.19):

B=Tifute)) + [nepr+ [ [T wpy s pw)l. 65

4The perturbation will be, for our purposes the SOC, but, the theorem for more general.
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By switching on a perturbation, one introduces a change in the total energy, to the first
order in the charge density, dn, equal to

0E = 0Ty[n(r)] + /5n() (r)d*r
* 47r60// |r_ L4 dr'+/uxc[n(r)]5n(r)d r+0(6n%)  (5.26)

SToln(r)] + / V<r>6n<r>d3r +0(n?),

where the change in the nuclei has been disregarded and the identities

B, = / . [n(0)]n(r)dr, (5.27)

0Bz _ r) =n(r Ocxe[n(r)] €xcn(r
o Vi) = )5 e, (5.25)
V = U(I‘) + Vi + Ve, (5.29)

have been used. The last equality is that of the total Kohn-Sham potential of equation
(3.17). According to equation (3.20) the kinetic energy can be rewritten in the form

= Z € — /V(r)n(r)d?’r, (5.30)

therefore, its change is (also to the first order in the charge density change)
ITp[n(r)] =46 Z € — / (r)n(r)d*r — /V(r)én(r)dgr. (5.31)
Thus, if the potential is kept frozen, a substitution of equation (5.31) in (5.26), yields

SE=0) e, (5.32)

which is the force theorem we wanted to derive and is valid to order O(dn). The reason
why we wanted to show here the derivation of equation (5.32) is that it is interesting to
see that some changes in the single contributions to the total energy are not zero but they
partially cancel each other to first order.

Since the change in the total energy in a frozen potential is equal to just the change in the
eigenvalue sum, one calculate this latter, less computationally demanding quantity®, in
order to obtain the former. A large number of evaluations of MAE via the force theorem in
various elements and compounds have been carried out in the past 20 years |83, 84, 78, 85|,
showing that contributions of order O(dn?) are most often negligible and that the change
in the eigenvalue sum is very close to the total energy change.

5Using the force theorem, a self-consistent calculations is performed without including the SOC. Since
all one needs is the difference of the eigenvalues sum for two magnetization directions, one iteration would
be sufficient to introduce the spin-orbit interaction.
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5.6 The peculiar MAE of Gd

Gd metal is in the middle of the rare-earth (RE) series and its f-shell is half filled.
This means that, in a Russel-Saunders (RS) scheme, no orbital moment is to be ex-
pected from the f-electron shell. Because of the sphericity of the 4f shell, one expects
no crystal electric field (CEF) contribution to the anisotropy and indeed the MAE of Gd
(~35u eV /atom) is two order of magnitude smaller than the MAE of other RE metals
(~ meV /atom). The relevant question one may ask is therefore, where does the observed
MAE of Gd originate from? In paper III we addressed this question and we found that this
conduction band MAE is completely driven by the SOC band structure anisotropy (figure
(5.1)). Our calculated anisotropy is found to be in excellent agreement with experiment
[86], and can be explained by the Bruno model [75], according to which for spherical shell
the magnetic anisotropy stems from the orbital magnetic moment anisotropy:

Ea(f) = AE(0,0°) = —4,[% ([M(T)rb(e) - M(l)rb(e)] - [IU“(T)rb(OO) - Mirb(OO)D g (5.33)

where ¢ is the spin-orbit parameter for 5d Gd orbitals and pg , the orbital moment of the
spin o.
Our results make the classical dipole anisotropy contribution claimed by Colarieti-Tosti
et al. |87, 88] doubtful. The force-theorem investigations of this work have shown that
the Gd MAE stems from an interplay between the dipole interaction of the large localized
4f spin moments and the SOC conduction band MAE. This MAE was found to explain
well the observed anisotropy energy [86], E4(6).

40
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Figure 5.1: The force-theorem GGA-+U calculated MAE (in black circles) and the Bruno
model MAE (in black squares) compared to the experimental one |86].
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Chapter 6

X-ray Magnetic Circular dichroism

6.1 History

Since the x-ray discovery by Rontgen [89] in 1895 a considerable attention and effort have
been devoted to the use of the x-ray in different research areas. Some years after the
finding of Rontgen, Bassler discovered the polarized character of this light as presented in
his thesis: “Polarization of z-rays evidenced with secondary radiation” [90]. To go further
in the understanding of this x-rays properties many experiments were set up to observe
the interaction of light with magnetic materials [91] or non-magnetic materials with an
external magnetic field, e.g., aluminium, carbon, copper, iron, nickel, platinum, zinc and
silver [92]. The influence of the magnetism on x-ray absorption have then been investi-
gated measuring the difference of the absorption (or the cross-section) rate between two
different orientations of the magnetization. Unfortunately the tiny amount of this ab-
sorption difference rate has made the results of Bassler [90] questionable if not doubtful.
The measurements recorded using the equipment of that time does not have a sufficient
sensitivity |93] and have given rise to a long controversial debate [94, 95, 96, 97|.

In 1983, G. Schiitz and her colleagues 98| concentrated their efforts on the use of circularly
polarized x-rays in order to elucidate the influence of the magnetic state of iron on x-ray
absorption spectra. Again, the sensitivity of the experimental setup was not high enough
to detect in this energy range any spin-dependent contribution to x-ray absorption. One
year later, the attempt of Keller and Stern [99], despite of the use of a synchrotron ra-
diation, has failed to reveal the dichroism of Gd in GdigFegy alloy because the circular
polarization rate of the incident x-rays was only 5%. Shortly later, the existence of x-ray
magnetic circular dichroism (XMCD) was proved experimentally by Schiitz et al. at the
Fe K edge in an iron foil [100] and at the L edges of Gd in GdszFe;015 [101]'.

The first theoretical investigation of XMCD was performed by Erskine and Stern [103].
Unfortunately, very few people paid attention to their band structure calculation of
XMCD at the My 3 absorption edges of ferromagnetic nickel. The most important finding
from a theoretical point of view which marked the beginning of modern days for XMCD
is that of Thole and coworkers |26, 27|. They considered a single ion electric dipole
transitions model and derived a magneto-optical sum rules relating separately, integrated
intensities of XMCD spectra to the ground-state orbital |26] and spin [27| moments. These
sum rules provided experimentalists with a powerful tool to analyze XMCD spectra and to
extract magnetic moments magnitudes and directions, with the full benefit of the element

LA more detailed Story of the XMCD can be found in the section entitled ” X-ray Magnetic Circular
Dichroism: Historical Perspective And Recent Highlights” by Andrei Rogalev et al.[102]
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and orbital selectivity of x-ray absorption spectroscopy.

6.2 Theory

We have devoted this section to our implementation of XMCD calculations within the
Fleur code. However, before presenting the theoretical background of this implementation
it would be interesting to remind previous attempts to model, simulate and understand
experimental dichroic x-ray absorption spectra.

The first theoretical investigations of XMCD are those of Thole et al. [104] who imple-
mented an atomic multiplet approach [105|. This approach is based on an empirical atomic
calculation. In addition to the absence of the hybridization effect this method (as all the
others empirical methods) relies on the experimental spectra. Calculations applying this
method to the 34" multiplets of the My5 edges of Lanthanides are summarized in
the paper of Thole et al. [106]. Some years later Chen et al. [107] made use of the Erskine
and Stern model? [103] for their experimental Ly 3 edges spectra of nickel. The disagree-
ment between the measured branching ratio and that predicted by the model has been
ascribed to the change of spin dependent unoccupied density of states near the Fermi
level caused by the spin-orbit coupling effect. A year later the same group [108] pub-
lished results of a tight-binding analysis in which they presented an attempt to include
the spin-orbit coupling for d valence states. The valence spin-orbit £ and exchange split-
ting A., parameters extracted from numerical experiments are found to be respectively
larger and smaller than those of the ground-state to achieve an optimal agreement be-
tween the simulated and experimental spectra. Later Smith et al. [109] included properly
the spin-orbit coupling within a tight binding scheme. The results for nickel are not too
different from those of the previous calculation [108] but the parameters (£, A.,) found
for iron revealed the sensitivity of the XMCD spectra on the unfilled d band width. The
discrepancies between the calculated and the experimental parameters were imputed to
many-body effects, e.g., since the core hole is created, the 3d valence electrons will see
a stronger attractive core potential and the spatial extent of their orbitals will contract.
Consequently, relativistic effects such as the spin-orbit coupling will be stronger, and the
exchange interaction among the first neighbors will be weaker.

The development of x-ray spectroscopy experiments probing the magnetic properties of
a large variety of magnetic rare-earth materials and the growing interest of the scientific
community toward their applications in media storage, strong magnets and the emerging
field of spintronics have stimulated our XMCD calculations for these materials. The dis-
covery of XMCD sum rules may be a powerful tool for understanding and characterizing
magnetic properties.

In order to study the strongly localized magnetism of rare earth metals we have imple-
mented the XMCD absorption within the dipolar approximation using polar geometry?.
Before providing the corresponding theoretical background we will briefly discuss two
much earlier magneto-optical (MO) effects which are, to some extent, related to XMCD.
When the linearly polarized light beam penetrates a magnetized sample, the light will
become elliptically polarized upon transmission as well as reflection. No matter whether
the magnetization is present spontaneously or induced by an external magnetic field, these

2 According to this model the large spin-orbit coupling of the core states and it’s small value for valence
states should allow us to treat these valence states without spin-orbit coupling.

3This configuration corresponds to the case where the magnetization direction is parallel to the wave
vector of the x-ray beam.
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phenomena are called the Faraday [110] and Kerr [111] effects.

The quantum mechanical understanding of the Kerr MO effect began as early as 1932
when Hulme [112] ascribed Kerr effect to the spin-orbit coupling (SOC).

The interaction of the electromagnetic radiation with a magnetic medium is described
classically by Maxwell’s equations [113]:

0B
VXE+ — =0,

BT (6.1)
v-B=0, (6.2)

oD
VXH—E—J, (6.3)
v-D=p, (6.4)

where D is the electric displacement, which is related to the total electric field E caused
in part by the polarization P of the medium:

D=¢E+P = (14 x.)6E = €E, (6.5)

and B is the magnetic induction, which is related to the macroscopic magnetic field H
resulting from the magnetization M:

B = jio(H + M) = (1 + xm)poH = pH, (6.6)

where €y and po are the vacuum permittivity and the vacuum permeability, and y. and
Xm, are the electric and magnetic susceptibility respectively. According to Ohm’s law the
macroscopic current density J produced by an electric field E is given by:

J=o0"E. (6.7)

Equations (6.5), (6.6), and (6.7) are known as the material equations. They are known
such that because they characterize the response functions of the medium to external
excitations: the dielectric constant €, the magnetic permeability p, and the electrical
conductivity o. In general the dielectric constant is a function of both spatial and time
variables that relates the displacement field D(r,t) to the total electric field E(r’,t'):

Dir, ) = / /_ " (e OB ) dr (6.8)

In the following we neglect the spatial dependence of the dielectric constant and consider
only its frequency dependence €(w). Usually, the effect of the magnetic permeability p(w)
on optical phenomena is small and we assume that p(w) = pel where I is a unit tensor.
It should be stressed also that ¢ and p may depend on the field strength. In such cases
higher order terms in a Taylor expansion of the material parameters lead to appearance
of the non-linear effects [114|. Using the material equations and Maxwell equations it can

be easily shown that:
1 o
e=—(1+1i—). 6.9
—(1+i%) (69)
For simplicity let us consider a material of cubic structure with a magnetization M di-
rected along z axis. Above the Curie temperature T the three components of the dielectric
tensor are equal® so that

€(w) =el. (6.10)

4This is the case when the dielectric components are presented in the cubic principal axes. The
principal axes are the classical analogue of the local frame axes in quantum mechanics.
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When the magnetization M appears below Ty the symmetry is lower and €(w) be-
comes [115]
€xx  €zy O
eM,w)=| —€y €z 0 . (6.11)
0 0 €,

The remaining symmetry of the system depends on the orientation of the magnetization.
The components of the dielectric tensor depend on the magnetization and satisfy the
following Onsager relations

€i(—M,w) =¢€;,;(M,w), (6.12)

where 7,7 = x,y or z. These relations mean that the diagonal components of the dielectric
tensor are even functions of M, whereas the nondiagonal ones are odd functions of M. In

the lowest order in M
oy ~ M, €., — €p ~ M. (6.13)

In the absence of an external current (J = 0) and free charges (p = 0) Maxwell equations
reduce to

oOH
VXE=—pu— 6.14
OE
VxH=€e—. 6.15
X €5 (6.15)
After substitution of E and H in a form of plane waves
E = Ejeli@t-ar)] (6.16)
H = Hel@t-anl (6.17)
one arrives to a secular equation
N2 — € —€uy 0 E,
€xy N? — e, 0 E, | =0, (6.18)
O 0 N2 — €22 EZ

where w is the frequency, q is the wave vector of light and N is a unit vector directed
along q (N = Zc). When the light propagates along z direction, i.e., along M, E, = 0,
and one finds the eigenvalues

N = €pp T iy, (6.19)
This means that the normal modes of the light accounting for the response (the displace-
ment field D) to the plane-wave field (E) are

Dy =n’(E, +iE,),D_ =n’(E, —iE,), (6.20)

i.e., a left and right polarized light wave with complex refractive indices of n_ and n.,
respectively.

6.2.1 Faraday effect

In 1845 Faraday discovered [110] that the polarization vector of linearly polarized light is
rotated upon transmission through a sample of thickness [ that is exposed to a magnetic
field parallel to the propagation direction of the light. Indeed, in a ferromagnet the left-
hand and right-hand circularly polarized lights (which my constitute a linearly polarized
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light propagating along the z direction if they have the same amplitude) propagate gener-
ally with different refractive indices or different velocities ¢/n_ and ¢/n,. When the two
transmitted light waves are combined at the exit surface of the sample, they yield again
a linearly polarized light, but its plane of polarization is rotated by the so-called Faraday

angle O given by [116]
[
Op = ;L}—Re(mr —n_). (6.21)
c
The direction of the rotation depends on the relative orientation of the magnetization
and the light propagation. If two circularly polarized waves attenuate at different rates,
then after traveling through the sample, their relative amplitude change. Therefore the

transmitted light becomes elliptically polarized, with an ellipticity

wl
np = —2—Clm(n+ —n_). (6.22)

The ellipticity nz corresponds to the ratio of the minor to the major axes of the polariza-
tion ellipsoid, and is related to the magnetic circular dichroism, which is defined by the
difference of the absorption coefficient 1 between the right and left circularly polarized
light

Ap() = 1) — (i) = — ) (6.23)

6.2.2 Kerr Effect

About 30 years later, Kerr |111] observed that when linearly polarized light is reflected
from a magnetic solid, its polarization plane (the major axis of the ellipse) also rotates
over a small angle with respect to the incident light. Depending on the orientation of

\ ! \ /0
il —

it
Figure 6.1: The different geometries for the MO Kerr effect: (a) the polar Kerr effect, (b)
the longitudinal Kerr effect, (¢) the transversal, or the equatorial Kerr effect .

M M

the magnetization vector relative to the reflective surface and the plane of incidence of
the light beam, three types of the magneto-optical effects in reflection are distinguished:
polar, longitudinal, and transverse (equatorial) effects (figure (6.1). For linearly polarized
incident light the reflected light will in general be elliptically polarized in the polar Kerr
geometry (Fig. (6.1(a))). The relation between the complex polar Kerr angle and the
complex refraction indices can be derived from the Fresnel relations and is given by [117]
MQZGK _ (1 + 7’L+) (1 B n—) . (624)
1 — tan(ng) (I1—n4)(l4+no)
For most materials the Kerr rotation is less than 1deg. For more detailed explanations
for these effects and related results the reader is advised to see the chapter of reference
[118].
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6.2.3 The XMCD formalism

In the previous section the response of the medium to electromagnetic waves was de-
scribed in a phenomenological manner in terms of the frequency dependent complex di-
electric constant and conductivity. Within the linear response theory and using band
structure methods Callaway and Wang [119, 120] have proposed a microscopic model for
the calculations of the optical conductivity tensor

ZZ fled) = flewnd)) Mj,, ()M, () (6.25)

m2hV u} — ww/(k)—l—w) Wyp! (k)

O'Z] w)

It relates the macroscopic optical conductivity to the sum of interband transitions be-
tween Bloch states 1, and 1, with energies €, and €,/, where v and v/ being the band
indices, V' the unit cell volume, f(e,) the Fermi function, fiw,, (k) = €, — €, and
v = % is a phenomenological relaxation time parameter that takes into account the finite
lifetime of the excited electronic states. M ,(k) are the interband electronic transitions
matrix elements which account for the probability of transition after an electron-photon
interaction takes places. This matrix will be considered in more details later.

The real and imaginary parts ¢ (w) and ¢® (w) are related by the Kramers-Kronig re-
lations [121] and can be determined separately. It is important to note that the relation
(6.25) was derived for interband transitions, i.e., ¢ = k — k’=0. Usually the missing
intraband contributions depend on lattice imperfections of the system as well as on the
temperature. These contributions lie beyond the scope of our manuscript and are not
considered.

In recent years the study of magneto-optical effects in the x-ray range has gained a great
importance as a tool for the investigation of magnetic materials [122, 123]. The attenua-
tion of the x-ray intensity when passing through a sample of thickness d is given by Beer’s

law:
I(d) = Iye Far @), (6.26)

where gy (w) is the absorption coefficient which in general depends of the wave vector q,
the energy Aw, and the polarization A of the radiation. In the x-ray regime the absorption
coefficient p1q) is related to the absorptive part of the dielectric function eqy or the optical
conductivity oqy via [122]
W (9 47
Har(@) = ~egd (W) = —0gl (). (6.27)
This means that pqy(w) can be evaluated® using equation (6.25):

occ unocc

A2
Haa(w) = +— VZ Z |MP?6(hw — Ey + E;). (6.29)

In contrast to (6.25) in which the matrix elements of the electron photon interaction are
evaluated between two Bloch states, the matrix elements M ;¢ are calculated between a

®Equation (6.29) can be considered as the limit of the real part of the matrix elements (equation
(6.25)) when the frequency (w) become too high (x-ray regime). In this case the frequency w can be
rewritten as w = wg + dw because of the sharp energy of the involved core levels, and therefore
1 1 1

i ~ —. 2
w  wo+dw  wp (6.28)

This is why the factor % is again present in equation (6.29).
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well localized initial core state ¢ and an extended final state f. The sum over initial states
1 is usually restricted to one core shell which could be achieved by an experimental fine-
tuning of a particular absorption edge. This important property makes x-ray absorption
an element specific probe.

The M;}’\ transitions matrix accounts for the electron-photon interaction operator

A 1 1 )
Hopogn = ——JAqi (1) = =~ Je, Ac', (6.30)

where Ag,(r) is the vector potential with the wave vector q and polarization A, J is the
electronic current density operator

J = —eca, (6.31)

and a accounts for the electronic momentum operator®: (h/i)V. The components of the
polarization vector for linearly polarized light are given by

1 0 0
e,=(0 |,e,=[1]|,e.=1]0|. (6.33)
0 0 1

For q pointing along the z axis, left (4) and right (-) circularly-polarized lights are pre-
sented by the polarization vector
1 1
er=— | +i |. (6.34)
V2 g

In order to get insight into the corresponding absorption phenomena one needs to calculate
matrix elements of the form

ME = (i Ha—pn|ty). (6.35)
It is generally argued that in the frequency range of conventional optics the amplitude of

the vector potential varies only on a macroscopic scale. This implies that it is sufficient
to expand the exponential factor in (6.30)

'Y =1+ iqr — %(qr)2 ey (6.36)
and retain just the first constant term, in which case only the electric dipole interaction is
accounted for. For x-ray regime (XMCD) the next term in the expansion that represents
the quadripolar interaction may also be important. However, Arola et al. [124] showed that
the contribution from the quadripolar interaction to the K edge cross sections of iron is two
orders of magnitude smaller than that of the electric-dipole contribution. We have also
shown that for bulk gadolinium (paper I) as well as for gadolinium compounds (paper II)
(GdN) our dipolar XMCD calculations led to a good agreement with experiment without
need for including the quadripolar contribution. Within the dipolar approximation the
absorption coefficient reduces to

MP = (bifaeisy). (6.37)

SWithin the scalar-relativistic approximation (see section(5.2)) the total momentum operator is ex-
pressed as:

h
a=p+ O'XVV:?V—F o x VV, (6.32)

h
4mc? 4mc?

while in the non-relativistic case (¢ — o0) this operator reduces to the electronic momentum operator.
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The ec constant is deliberately omitted. It is worth mentioning that the symmetry re-
duction due to the presence of spontaneous magnetization, that leads to the appearance
of nonzero off-diagonal components of the dielectric tensor, e.g. €,, in (6.18), occurs only
if both the spin-polarization and the spin-orbit coupling are simultaneously taken into
account in the calculations. Technically speaking, our FLAPW-XMCD calculations are
performed in two steps. Firstly a good convergence is achieved (in term of total energy
and charge density) within a scalar relativistic calculation where the SOC is included in
a second variational way, after that one iteration is carried out in order to calculate the
absorption coefficients using the electronic wave functions accounting for the supposed
ground state. The initial core wave functions v; are given by

wi = 1/}]/1' = Z C]M 1 ulc (T)ncﬂ_msc (f')xmsc = Z C]M 1 ulc (T>Kcmc (f'>Xmsc7

lcﬂ—msc:7§msc lcm¢27§msc
Msc Msc

(6.38)
and the final wave functions s states are the dispersive (k-dependent) FLAPW valence
wave functions

¢f = %(k, T) = Z Z(Alm(k)ul(r)yim(f) + Blm(k)ulmm(f))Xmsa (639)

ms Im

where X, Xs, Mse, and my are the core spin functions, the valence spin functions, the
corresponding magnetic quantum numbers respectively. Cl]’; , are the Clebsh-Gordan

H—Ms, 5

coefficients, j is the total momentum of the electron, I, and [ are the core and valence
angular momentum quantum numbers, i (or m;) and m are the corresponding magnetic
quantum numbers. The core and valence states are calculated separately and in a different
way, that is to say that the core wave functions corresponding to deep energy levels are
determined within a fully relativistic calculation while valence eigenfunctions are evalu-
ated within a scalar relativistic calculation including the SOC as a perturbation (second
variation approximation). Let us consider one edge transitions involving the initial j
states and the final [ states. The M;})‘ matrix can be rewritten as

MP = M# (k) =

Yo (7 Yim, (B) x| (Aun (k) (1) Y (8) + Bim (&) Yim (8))) o,

lcm67§msc
m,Ms,Msc

(6.40)

Using the relation

— — —(e, x L).e,, (6.41)
where L is the orbital angular momentum operator, equation (6.40) becomes
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Both of the terms inside the parenthesis can be separated into radial and angular part as

€,.€)

%&gir) > + Bim(k) <“lc(7°) %af;ﬁ” >) (Yiom. ler-ex|Yim), (6.43)

(10.07Yin )

(4000 ()

and

1
—(e, x L).
T(ex ).ex

<wc(r>Yszc<f) (Apm (K (7)Y () + Blm(k)umm(f))> =
Yuur) )+ Bon09) (1)

(4009 (0| Lir) ) ) (i,

It can be easily seen that the angular multiplicative factor of equation (6.43) involves the

(e, x L).ey| Yin) . (6.44)

Gaunt coefficients Glmfl’\m Using the spherical harmonic relations [125]:
(+m+1)({—-—m+1) (l+m)(l—m)
0)Yi, = Yisim Vit 6.45
cos(B)Y; \/ Qi+ n@+3) TN e (6.45)

and
[L_,cos(0)] = he “sin(6), (6.46)

the angular multiplicative factor of equation (6.44) can be expressed as a function of
spherical harmonics. Using the mentioned relations, after some algebraic manipulations
the matrix transitions for different polarizations can be formulated as

Mﬁ;" (k) = mes Cljﬁnc Lm, <— <Alm(k) <ulc (r) 13111 > + By (k) <Ulc(7") i
+ (A (k) (g, (r) |2w(r) ) 4+ Byn(k) (ug, () |24u(r) ) %&nc m+1

(=m)(—m-1) (Hm+2)(I+m+1)
. <(l+1) (20—1)(2+1) 5161 1+ (20+1)(20+3) 516 l+1>)

M (k) =2, C* L, ((Am(k) <ulc (r)

leme

Lo > + Bim(k) <Uzc( )
— (Apn(K) (ur.(r) |F1n(r) ) + Bun () (. (r) [1a(r) )) J50mem—1

(+m)(I+m—1) (I=m+2)(I=m+1)
. <(l + 1) (21—1)(21+1) 5lcl 1+ 1 (20+1)(21+3) 5lc H‘l))

ML) =3, O (A ><ulc<r> L240)) - Bi(K) <ul (r)
(Alm <ul T) }l > + Blm <ulC ‘1 >) 5mcm
(0 0y s — 1y ) )

The brackets in (6.46) denote the commutator, and 6 and ¢ are the spherical angles.
Inserting equations (6.47),(6.48) and (6.49) in equation (6.29) and performing k-integration
(according to the Brillouin zone integration methods explained in section (4.4.4)) one can
finally calculate the corresponding absorption coefficients 9 (w), u9 (w), and p°(w) for
left, right, and z polarized light, and therefore calculate the key physical quantity:

Ap(w) = p**(w) — p*~ (w) # 0. (6.50)
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If x-rays are absorbed by a magnetic solid the absorption coefficients for left and right
circularly polarized photons are in general different so that Ap # 0. This quantity can be
measured experimentally [100] and is called x-ray magnetic circular dichroism (XMCD).
As it can easily be seen from equations (6.47), (6.48), and (6.49) the corresponding matrix
transitions elements M ;1#’\ (k) do not vanish only if

Al = 1—-1. = =1
Am = m-m. = A (6.51)
Amg = mg—mg = 0

These conditions are used to select the allowed transitions within the dipolar approxima-
tion and they are known as the dipole selection rules.

6.3 The XMCD sum rules

Magnetic compounds and alloys characterization represent one of the outstanding problem
in condensed matter physics. Recently, a considerable evolution of the spectroscopic
techniques has been achieved and was helped by theoretical efforts. With the derivation of
the sum rules by Thole and coworkers [26, 27] XMCD spectroscopy became the most used
technique for studying magnetic materials. These sum rules supply a firm basis to estimate

directly from XMCD spectra the orbital moment (m; = —#2 (L)) and the magnetic
moment (mg = —252 (S.)) contributions to the total magnetic moment associated with

a specific state of given symmetry. Thus the magnetic spin and orbital moments of the
absorber atom are related to the integrated absorption spectra for a specific core shell
and polarization of the radiation as

/ ApdE — [ll“]/ AudE:% {l(l“)_gl_ elle 1) gy ¢
W+ D)0+ 1) 4+ 20+ 1) +4] — 3(l. — 1)2(l. + 2)?
611,(1+ 1)

and

/ ApdE — N {l(l+1)+2—lc(lc+1)
j++j7 th l(l _'_ 1)

where N is the total integrated spectrum corresponding to the unpolarized radiation
(known also as the isotropic absorption contribution)

N=[ (Z M) dE, (6.54)

)‘:"'—7_70

] (L.), (6.53)

Ap=p" —p,
and 77, is the magnetic dipole operator

T. = = [o — 3¢(f.0)], . (6.55)

N~

fj++j7 means that the integral is performed over both of the j, =[+1/2and j_ =1—1/2
edge spectra, e.g., j+ = 3/2 and j_ = 1/2 for the Ly3 edges of transition metals, ny,
denotes the number of holes or the number of unoccupied final states, and (S.), (L.), and
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(T.) are respectively, the expectation values of the magnetic moment, the orbital moment,
and the magnetic dipole operator.

The expectation value of the magnetic dipole operator accounts for the asphericity of
the spin magnetization. This asphericity can be considered as a magnetic anisotropy
resulting from the spin-orbit coupling or crystal-field effects. Appendix (C) is devoted to
the implementation of 7, within the FLAPW method.

The application of these sum rules provide as with the magnetic spin and orbital moments
since the expectation value of the 7, operator is determined. In order to extract these
moments from the absorption spectra we have implemented (see paper I) the sum rules
for the different edges:

K
Ecut N
/ ApdE = L), (6.56)
Ep Ny
where
Ecut
N= Y / Ap, (6.57)
A=+,—,07 EF
Ly
Ecut N
[ k=) =20, = )] dE = (S +T@) (658)
Ep Np,
Ecut N
/ (02, = pzy) + (1, = pp,)| dE = (L), (6.59)
Ep N,
where p
N= 3 [ s, (6.60)
A=+,—07 EF
and M4’5
Ecut n _ 3 n _ N
(IUM5_IUM5)_§(:UM4_:UM4) dE = 3—[<Sz>+6<Tz>]> (6.61)
Ep Np
Ecut N
[ Tt ) + it — ) 4B = (L), (6.62)
Ep np
where

Ecut
(Apg, + Apiag,). (6.63)
F

N:Z/

A=+,—0"F
The integrations are carried out from the Fermi-energy Fr up to an energy cutoft F.,;.
This energy represents the energy of the top of the final magnetic states. The number of
holes ny, are also calculated from the density of states, and they are determined from the
integration of the unoccupied part of the involved density of final states.
In order to make a useful and relevant applications of these sum rules one should know
their limitations by knowing the assumptions made during the derivation. To derive the
XMCD sum rules, the authors have adopted the single ion model combined with a scalar
relativistic approach. The principle assumption of these sum-rules derivation is that of the
two-step model [100]. Depending on the photon polarization, the XMCD transitions will
be achieved in two steps. Firstly, the core electron will choose one of the spin directions
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according to the core spin-orbit splitting, that is to say, depending on the encountered
spin-orbit interaction and because of the conservation of the angular momentum during
the absorption process the angular momentum carried out by the photon is completely or
partially transferred to the photo-electron , in a second step the exchange spin-splitting
of the final state is different whether the spin of the incoming electron is up or down.
this could simulate the eventual change of the exchange splitting resulting from the spin
dependence of the incoming photo-electron. The others assumptions of the underlying
physics of the XMCD sum rules are to ignore the following [126]:

1. the exchange splitting of the core states,
2. the asphericity of the core states,

3. the difference between the radial relativistic part of the final wave functions, i.e.,
the radial parts w;(r) of p1/ and ps/s or ds/, and ds), are the same, and

4. the energy dependence of the wave function.

Despite such limiting approximations, the validity of the sum rules appears to be now
rather well established, at least in the cases of the Lo 3 absorption edges of 3d [127, 128,
129, 4d [130] and 5d [131] transition metals. However, one should keep in mind that there
are some problems when applying the sum rules to XMCD spectra. The most severe one
is the separation of the L,- and Ls-spectra, e.g., because of the strong hybridization
between the 2p N orbitals and the 4d Gd orbitals in GAN compound ([132] and references
therein). The 5d-Gd magnetic moment extracted from the application of the sum rules
to Lg 3 edges of Gd could not account for the realistic 5d magnetic moment since a part
of that moment is supposed transferred or transformed to 2p magnetic moment.

Apart from this weak point of the XMCD sum-rules, the successful use we have made of
the XMCD sum-rules to calculate the magnetic moment of Gd atoms in gadolinium bulk
have shown the validity and the usefulness of these sum rules for strongly localized 4 f
materials (see paper I). This is not surprising since 4 f rare-earth orbitals are so localized
that the hybridization with others orbital will be marginal and f states will carry the
whole magnetic moment of 4f electrons. Therefore we expect that 4 f magnetic materials
such as rare-earth metals are well studied by XMCD investigations.
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Chapter 7

Results

Each article will be referred to by its Roman numeral. In the preamble of this chapter
we would like to draw some comments on the results presented in these papers. All the
calculations presented in these papers are made by means of the FLAPW method [25],
which makes no shape approximation to either the potential or the charge density, and
is acknowledged to be the state-of-the-art in electronic calculations accuracy. In paper I,
a detailed study of the electronic structure of gadolinium bulk is provided. In the first
section, the controversial long debate concerning the manner in which the Gd f orbitals
should be treated is presented. This is supported by a quite rich bibliographical work.
Then the Gd electronic structure is reviewed within the LDA(GGA)+U method. The
results obtained within this method concerning the the photoemission, inverse photoe-
mission, the ground-state magnetic structures, as well as the x-ray absorption (XAS) and
x-ray magnetic circular dichroism (XMCD) of strongly localized 4f electrons are found
to be in good agreement with experiment.

Paper II is aimed at studying the GAN compound electronic structure. Within this paper
emphasis is put on structural properties. In this respect, it was shown that the GdN
ground state is that of a typical half-metal for the experimental lattice constant. Under
hydrostatic pressure the rocksalt GAN lattice prefers the wurtzite crystal lattice.

In paper III, we present the results concerning the magnetocrystalline anisotropy energy
(MAE) study of Gd and some of it’s compounds (GdN and GdFe;). Once more, the
GGA+U is found to be the most adequate to explain the observed magnetic anisotropy.
That is to say the GGA+U is not only the most appropriate method for electronic and
structural properties of strongly localized 4f electrons systems but also their magnetic
properties. The force-theorem calculated MAE showed that for Gd the easy axis of mag-
netization lies along the ¢ axis of the hcp structure, and for GAN and GdFes, the three
symmetry equivalent axes (100), (010), and (001) are those of the easy axes of magnetiza-
tion. The energy position of the 4f states is shown to be the responsible of the strength
of the MAE of Gd and Gd compounds.
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Calculated magnetic anisotropy of Gd, GAN and GdFe,
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Abstract

The tiny magnetocrystalline anisotropy energies (MAEs) of bulk Gd, GAN and GaFey have
been calculated by means of the the force theorem in conjunction with the full-potential linear
augmented plane-waves (FLAPW) method. The generalized gradient correction including the
Hubbard interaction U (GGA+U) produced the best possible agreement with the experimental
MAE compared to the GGA or the GGA where the 4f states are treated as core electrons (GGA-
core). However, it showed that the magnetization is along c axis in disagreement with experiment
and a recent calculation which showed that the easy axis of magnetization makes an angle of
about 20° with the ¢ axis. The GGA+U results are found in good agreement with Bruno’s model.
Therefore, the disagreement with experiment is attributed to possible presence of imperfection in
the hep structure of Gd, like defect states or dislocations. Because the 4f states of Gd are half-
filled, their orbital moment and spin-orbit coupling are zero, making the Gd MAE tuned by the
spin-orbit coupling of 5d states rather than the 4 f like in the case of other rare earth elements, such
as Th or Dy. The strength of MAE is found to be related to the energy position of the 4f states.
This suggests that the MAE of Gd is much similar to that of a transition metal rather than that of
a typical rare-earth metal such as Tb or Dy. It is not surprising therefore that Gd shows an easy
axis along the (0001) direction like hep cobalt. However, the MAEs of GAN and GdFey compounds
crystallizing, respectively, in cubic rocksalt and Laves phase structures, are more complex than
that of Gd. Tt is found that the magnetization is along one of the symmetry equivalent (100),
(010), or (001) direction, rather than the (111) direction of fcc nickel, and their respective MAEs

are much smaller than that of Gd.

PACS numbers:
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I. INTRODUCTION

The magnetocrystalline anisotropy energy (MAE) is the energy required to rotate the
magnetization from its ground state direction called the easy direction to the hardest direc-
tion. This rotation influences the magnetic properties of a films, low-dimensional magnetic
nanostructures or atomic chains. Its application field is growing fast, e.g., permanent mag-
netic materials anisotropy [1-4], perpendicular magnetic anisotropy of ultra-thin films and
surfaces [5-8| or the parallel interfacial magnetic anisotropy of a ferromagnetic (FM) and
antiferromagnetic (AFN) bilayer [9-11] known to be at the origin of the exchange-bias phe-
nomena, are promising for high-density magneto-optical storage media or for spin valve
devices, low-dimensional nanostructures [12]. Atomic chains or nanowires [13] magnetic
anisotropy is a challenging candidate for new high-density magnetic storage materials be-
cause of the peculiar physical properties of the nano-scale materials. The growing interest
of the scientific community working on magnetic anisotropy is therefore not surprising.

The intrinsic coupling between the magnetization and the crystal lattice in ferromag-
nets is insured by the strength of the spin-orbit coupling (SOC). For example, for the 3d
ferromagnets the crystal lattice variation under pressure, doping, alloying or compositional
disorder gives rise to a significant change of the magnetic properties, like the evolution of
the MAE with respect to the pressure in bulk or thin films cobalt (Co) [7, 14], which is
known as the magnetostrictive effect, and was investigated by means of element-specific
x-ray magnetic circular dichroism (XMCD) spectroscopy. In particular, the cubic mag-
netic anisotropy of (Ga,Mn)As ferromagnetic semiconductor is observed to survive under
doping [15], while it changes due to the substrate- or layer-induced strain [8, 16]. It has
also been found that the compositional modulations of Cog 5Pt 5 alloy have a significantly
enhanced MAE compared to that of the intrinsic L1y structure (3 times larger than that
of the L1, structure) based on calculations within the spin-polarized relativistic Korringa-
Kohn-Rostoker coherent-potential approximation (SPR-KKR-CPA) [1]. The same approach
applied, some years later, to bee-iron (Fe) based materials showed that the MAE of bee-Fe
bulk or bee-Fey V. disordered bulk alloys is altered by volume or concentration variation
2].

In the previously mentioned investigations for 3d based magnetic materials, the MAE

ranges from a few tenths of peV for bulk material, e.g., Co bulk [14], to some meV for
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surfaces or alloys, eg., Cog5Pto 5 thin film [17] or Fe on W(110) [8]. According to Bruno’s [5]
and van der Laan’s [18] models, this tiny MAE stems mainly from orbital moment anisotropy
due to the small spin-orbit interaction in 3d magnetic materials. However, despite the so
small SOC strength, the corresponding MAE is the result of a complex interplay of the crystal
and the magnetic degrees of freedom. In this respect, the magnetostriction phenomena is
still far from being fully understood. To put it in other words, the understanding of the
complexity of magnetic anisotropy phenomenon is a challenging task not only from the point
of view of practical interests but also from that of fundamental physics.

Despite the applications of MAE for many industrial needs, it is surprising to notice that
while it is intensively investigated for 3d based magnetic materials, only a little attention is
paid to that of rare earth materials, such as the gadolinium metal [19-21]. In this respect,
our paper is mainly devoted to the investigation of the magnetic anisotropy of hep Gd metal
which is known to be the strongest magnetic material of the rare-earth elements, whereas
those of terbium and dysprosium are only invoked for comparison. To get insight into the
MAE of Gd-compounds, the behavior of the Gd MAE in the presence of other elements
GdN and GdFey, MAE are also calculated and discussed.

To the best of our knowledge, apart from the early MAE Gd investigations of Franse et al.
[20] and that of the recent calculations of Colarieti-Tosti et al. [21], the magnetic anisotropy
of 4f rare earth metals is lacking. Therefore studying the MAE of such materials or their
compounds is enriching. Our MAE calculations for Gd are motivated by its interesting
magnetic properties. Indeed, despite its room temperature Curie temperature, this metal
is found to preserve a considerable spin magnetic moment up to an ultrahigh hydrostatic
pressure of about ~ 110 GPa [22, 23]. This magnetic moment, of about 7up, is much higher
than that of 3d transition metal because it stems mostly from the half-filled 4 f shell.

In the present work, we made use of the force theorem [24] to study the magnetic
anisotropy of Gd (Th and Dy), GdN, and GdFe, within the first-principles FLAPW method.
We have firstly shown that, like for the electronic and structural properties of Gd [25] and
GdN [26] that the GGA+U is also superior to the GGA method in calculating the MAE.
This shows indirectly that the MAE strength is related to the position of the 4f states with
respect to the Fermi level.

This paper is organized as follows. In Sec. II we provide some details of the computational

method and discuss the parameters used in the calculations, such as the values of Hubbard
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U and exchange J used for calculations of the MAE. Sec. III is devoted to the MAE of
Gd, i.e., we show the adequacy and the accuracy of the GGA+U method for force theorem
calculations, as well as the Bruno’s model calculation applied for the first time to study
the MAE of a rare earth Gd. In Sec. IV the magnetic anisotropies of the GAN and GdFe2
compounds are studied, and the manner in which the 4f magnetization might affect the

MAE of Gd compounds is discussed.

II. COMPUTATIONAL DETAILS

The calculations in the present work were made using the FLAPW method [27, 28]
as implemented in the FLEUR code [29]. The lattice parameter constants used for the
calculations are a=6.858 a.u. with a c/a ratio of 1.597 for hep bulk Gd [30], a=6.858 a.u.
for cubic rocksalt GAN [31], and a=13.96 a.u. for the cubic Laves structure of GdFe, [32].
In order to calculate the MAE using the force theorem, the SOC is calculated in a second-
variational scheme [25]. For the exchange and correlation potential, we used the generalized-
gradient approximation (GGA) of Perdew-Burke-Ernzerhof [33]. The rotationally invariant
GGA+U method used in this study is similar to the implementation of Shick et al. [34].
For the U and J parameters of the Gd sites required for GGA+U calculations we have used:
U=177¢eV,J=07¢eV[25,and U = 9.9 eV, J = 1.2 eV [26] for Gd bulk and GdN,
respectively. For GdFe, we have used those of bulk Gd [35]. The muffin-tin radii R, is
set to 2.8 a.u. for Gd, 2.19 a.u. for Fe, and 1.5 a.u. for N. The plane wave cutoff for the
basis functions is set to Kyee = 3.0 a.uw.™! for Gd bulk, K,nee = 4.4 a.u.”! for GdN, and
Kz = 3.5 a.u.7! for GdFey, the charge density and potential cutoff to Gee = 9.0 a.u.™
for bulk Gd and GdN, to G, = 11.4 a.u.”! for GdFe,. The wave functions as well as
the charge density and the potential inside the muffin-tin spheres were expanded on angular
momentum up to Ly, = 8 for Gd bulk and GdN, and up to l,,,4 = 10 for GdFe,. For the
Brillouin zone (BZ) integration, we have used the standard Gaussian broadening method
36] for the force theorem calculated MAE. The convergence of the MAE is obtained using
about 16, 7 and 10 thousand k points in the full BZ, for the case of Gd, GdN, and GdFe,,

respectively.
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III. FORCE THEOREM DETERMINATION OF THE MAE FOR GD METAL

The calculations carried out within the GGA+U method [25, 26]) have provided a good
description of the the electronic properties of the 4f Gd and GAN materials. These results
have motivated our present force theorem calculations of the MAE. At a first stage, we show
that the GGA+U approach is much better than the GGA and GGA-core for the description
of MAE. The force theorem GGA+U calculations explain the observed MAE. Then we use
the same method to predict the rotation that the magnetization might undergo in the case

of GdN and GdFey compounds.

A. GGA+U adequacy for magnetic anisotropy calculations

In the last two decades, the force theorem [24] has been an important and efficient tool
for computing the MAE [37-39]. As originally proposed by Van Vleck [40], the magnetocrys-
talline anisotropy originates mainly from the SOC. Its variation might lead to interesting
tuning of the orbital magnetic moments and MAE of complex materials and may lead to
the violation of Hund’s third rule [41]. Indeed, the force theorem based calculations save an
appreciable computational effort and computer CPU time. This is because the simulation
of the magnetization direction changes via the SOC requires only one single iteration of the
Kohn-Sham equations. The basic idea of the force theorem is to introduce the spin-orbit
interaction as a perturbation to the scalar relativistic Hamiltonian. It is shown that the
rotation of the spins is such a tiny perturbation that the electron-electron interaction hardly
changes. We expect therefore that most of the contributions to the total energy remain
unchanged, and subsequently the total energy difference between two spin configurations
with the magnetization along two different polarization directions is given approximately
by the difference between the sums of the eigenvalues up to the Fermi energy. Because
this change of the total energy using a frozen potential approximation is given by the sum
of one-electron energy difference [24], one can calculate this difference, with less computa-
tional effort, by switching on the SOC to diagonalize the relativistic Hamiltonian. This is
the way in which we proceeded during our evaluations of the MAE, i.e., we first make a
self-consistent calculation with a scalar relativistic potential without spin-orbit interaction,

then we calculated the eigenvalues including the spin-orbit interaction for a given spin axis
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without allowing the self-consistent potential to change. Notice that one has to make sure
that the scalar relativistic calculations are converged with the same number of k points as

these used to determine the MAE (see Fig 1 b).
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FIG. 1: (a) The GGA+U calculated MAE of Gd as a function of the angle 6 from the ¢ axis (black
circles) and the Bruno model MAE (equation 1) (violet squares) compared to the experimental one
(blue curve) [20]. (b) Difference in the sums of eigenvalues where the magnetization is along the
hard (6 = 90°) and easy (f = 0°) axis, respectively, as a function of the number of k points in the

whole Brillouin zone. The continuous curves are guides for the eye.

B. The Gd (0001) magnetization easy axis

In this section, we discuss the Gd MAE within the GGA4U method. Figure 1(a) shows
the MAE calculations for different angles 6, i.e., the difference of the eigenvalue sums as a
function of the angle f between the ¢ axis and the magnetization axis. The reference energy
is at # = 0°. The GGA4+U MAE calculations are in black circles and those calculated
according to the Bruno’s model are in violet squares (equation (1)). As it can be easily seen
from this figure, the minimum of the difference of the eigenvalue sums is obtained for 0° and
the maximum for 90°. These results show clearly that the easy axis of magnetization is lying

at # = 0° and the hard one at # = 90°. These calculations were carried out using a sampling
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of around 16000 k-points in the whole Brillouin zone. In order to justify the convergence of
this Gaussian broadening sampling [36], we have performed MAE calculations up to 18000
k points in the BZ. Figure 1(b) represents the MAE convergence according to the set of
k points. This MAE is defined as the difference energy between the hard and easy axis of
magnetization. The overall shape of the MAE presented in figure 1(b) shows that this latter
is sensitive to the k-points number up to the set of 16224 k points. The largest number
considered is 18928 k points and it yields a MAE that deviates by less than 2% from the
MAE using 16224 k points. We have checked the force theorem MAE by directly calculating
the total energy including the spin-orbit coupling in a self-consistent manner. The results
of the calculations showed that the MAE is about 32.14 eV using 16224 k points, in good
agreement with the converged force theorem calculation (see Fig. 1(b)). We note here
that though the force theorem allows a saving of considerable computational effort, it still
requires a considerable computational time because of the fine grid of k points one should
use to assess the tiny MAE.

Figure 2 summarizes the MAE calculations for the different ways in which the 4f electrons
are treated. In order to compare the GGA+U (figure 1(a)) MAE to the other methods this
latter is represented with the GGA, and the GGA-core. It is worth mentioning here the
controversial debate concerning whether the Gd 4f states should be considered as localized
core states or whether it should be allowed to hybridize as band states (Ref. [25] and
references therein). As it can be easily seen from figure 2, the Gd MAE calculated within
the GGA+U scheme is in much better agreement with experiment (figure 1(a)). The value
of 520 pueV of our MAE, calculated using the standard GGA potential, is in good agreement
with the FP-LMTO calculation of 571 peV by Colarieti-Tosti et al. [21]. However, within
our FLAPW framework, the core treatment of the 4f electrons leads to a MAE of 87 ueV,
while within the FP-LMTO one [21] it is of about only 24 peV in disagreement with our
calculation. In order to understand the SOC magnetic-anisotropy in more details, we have
applied Bruno’s model [5] to calculate the Gd MAE. According to this model the MAE
stems completely from the spin-orbit contribution and the anisotropy of orbital magnetic

moments and is given by:

Ea(0) = AE(9,0°) = —45

Ay

(I18(0) = 1 (0)] = [ (0°) = by (7)) . (1)

where ¢ is the spin-orbit parameter for 5d Gd orbitals and p,, the orbital moment of the

7



Results

e-o-- GGA+U 7
A4 -- GGA-core
-- GGA

1
?

I
‘O
\

X2

E,(6) (LeV)

[N
o

30 40 60 9

FIG. 2: (Color on line) Calculated Gd MAE for the different treatments of the 4f states. The
calculation within the GGA+U method is shown in black circles and is the same as that of figure 1.
The GGA-core, where the 4f states are considered as core electrons, is shown in red up triangles,
while the standard GGA, where the 4f electrons are allowed to relax as valence bands is shown
in green down triangles. Notice that the GGA and GGA-core curves are scaled, respectively, by a

factor of 1/10 and 1/2 to fit into the graph. The continuous curves are guides for the eye.

spin 0. We have presented in figure 1(a) (violet curve) the corresponding calculations. The
spin-orbit coupling parameter we have used to calculate the MAE according to the Bruno
model is that of the bd orbitals and is found to be of ¢ = ¢; = 71.15 meV. As it can be seen
from this figure the overall behavior of the estimated MAE of the model is too similar to
that of the GGA4U. The MAE calculated according to Bruno’s model is somewhat situated
between our GGA+U calculations and the experimental one. Bruno’s model predicts a
MAE maximum of 30 p eV. Given the fact that the spin-orbit parameter ¢ and the orbital
moment £, used in equation (1) are those of the GGA+U calculations, the agreement of
the full calculation with the model is not surprising. However, this implies that the MAE is
essentially due to the orbital moment anisotropy. Gd is such a complex metal, and we have
seen that the energy position of the 4f states is crucial for the strength of the MAE. We
can only conclude here, that once the 4f levels are well positioned, the MAE is mainly due

to the orbital moment anisotropy as suggested by Bruno’s model.
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Bruno’s model validity for describing the spin-orbit magnetic anisotropy of Gd should
reflect the fact that the magnetic anisotropy of Gd is too similar to that of a typical 3d
transition metal such as hep Co. However, there are additional terms which are related to
the magnetic dipole operator due to the anisotropy of the field of the spin. This additional
contribution was derived by van dar Laan [18]. The strong magnetic moment of the 4f
electrons might give rise to this latter contribution. The resulting exchange field of that
4f spin is large enough to be sufficient to polarize significantly the remaining conduction
electrons. In others words, the 4f magnetic field makes, in particular, the Gd 5d magnetic
moment parallel to that of the 4f. Despite this high magnetic field, the van dar Laan
contribution for Gd is found to be negligible compared to that expected from Bruno’s model.
In fact, this contribution is only considerable for non half-filled systems where spin flips
among the 4f electrons occur.

However, though the GGA+4U calculations using the force theorem have reproduced the
experimental magnitude of MAE of 34 peV, they did not show that the easy axis of the
magnetization makes 20° away from the ¢ axis as experimentally observed, instead they
show that it is along the ¢ direction. If we believe our calculation, which is in agreement
with Bruno’s model and in disagreement with the FP-LMTO calculation using 4f states
as core states [21], then the deviation of the magnetization from the ¢ axis could be only
explained if one invokes symmetry breaking lattice imperfections of the hcp structure of
Gd, like presence of intrinsic defects, impurities, or dislocations. We suspect the erroneous
GGA energy positions of the 4f minority states [25] to be at the origin of the corresponding
predicted large MAE. The presence of these states near the Fermi level leads to the erroneous
MAE. The integration of the one-electron energies includes an extra-contribution coming
from a strong mixing of the 4f states with the others states at the Fermi level. Using the
GGA+U method these 4f states are moved away from the Fermi level (U effect) resulting
in a more realistic assessment of the MAE. The MAE is therefore sensitive to the electronic
structure around the Fermi level and a better representation of the electronic structure could
lead to a precise evaluation of the MAE. Compared to the GGA and GGA-core, the GGA4+U
method is once more the best one for the MAE calculations. Given the adequacy of the

GGA+U, we have proceeded in the same way to calculate the MAEs of GAN and GdFe.
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IV. GdN AND GdFe; MAGNETIC ANISOTROPY

In order to get insight into the magnetic anisotropy of Gd compound, we have applied
the force theorem to calculate the MAE of the GAN pnictide and the metallic compound
GdFey. Using the GGA+U method, we have recently shown that the GAN compound is a
half-metal for the experimental lattice constant [26]. A better understanding of the magnetic

anisotropy of this compound would be useful for future spin-injection applications.

o Od——
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FIG. 3: GGA+U calculations of the GAN and GdFe, MAE; (a) Calculated MAE of GdN as a
function of the angles 0, ¢ for: varying ¢ while keeping 6 = 55° in red triangles and varying 6 while
keeping ¢ = 0° in black circles, (b) The GdFey MAE for the same magnetization directions. The

continuous curves are guides for the eye.

In this section the MAE, E4(f), is defined as in the previous section: E4() = Eyy —
Eje go. Unlike Gd, the GAN compound crystallizes in the cubic rocksalt structure and its
magnetic anisotropy will depend not only on # but also on ¢. In order to determine the easy
and the hard axes of magnetization, we have calculated the MAE as a function of spherical
coordinates angles 6 or ¢ by keeping one of them fixed and varying the other one.

Figures 3(a,b) show the MAEs of GAN and GdFe, as a function of the spherical coordi-
nates angles 6 or ¢. The black circles curve in figure 3(a) represents the GAN MAE versus
6 for ¢ = 0°, the red up triangles curve in the same figure represents the GAN MAE versus

10
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¢ for § = 55°. According to the black circle curve, the easy axis of magnetization is along
the direction (001) defined by (6 = 0°,¢ = 0°), and according to the red up triangles curve
the hard axis of magnetization is along the direction (111) defined by (0 = 55°, ¢ = 45°).
The GdFey, MAE (see figure 3(b)) is found to exhibit a similar behavior to that of GAN
MAE with the same axis of easy and hard magnetization, but with a higher MAE. The GdN
MAE is only of 0.38 pueV while that of the GdFe, is of about 9 peV. It is worth mentioning
here that although Gd monocrystal MAE is very similar to that of a 3d transition metal, the
MAEs of its GAN and GdFe; compounds seem to be different from that of a cubic transition
metal, like Ni. It is well known that in a fcc transition metal like Ni, the (111) direction
is that of the easy axis of magnetization and the hard axis is found to lie along one of the
symmetry equivalent (001), (010), or the (100) directions. Our results suggest the opposite
for GAN and GdFe; compounds. This peculiar behavior of the magnetic anisotropy of the
Gd compounds show that even in the presence of another non-magnetic (N) or magnetic
(Fe) atoms is the Gd strong magnetism which manages indirectly the magnetic anisotropy
in these compounds. Indeed, because of the zero spin-orbit coupling of the 4f half filled
shell, the 4f magnetic moment should not be involved directly in the MAE but only through
hybridization and polarization of the other valence orbitals. One could therefore easily notice
that the 4 f strong magnetic moment is to some extent decoupled from the crystal structure.
However, due to the strongly localized character of these orbitals, the 4 f states carry a strong
magnetic moment that polarizes strongly the remaining valence electron bands. Therefore,
despite their strong localized character and zero orbital moment, their energy positions in
the band structure is directly related to the strength of MAE. As it was discussed in the
previous section, there is a big difference between the GGA+U MAE and the GGA or the
GGA-core MAESs, i.e., one is left with a wrong magnetic anisotropy of 3 times that of the
GGA+U if the 4f orbitals are prevented to hybridize correctly with the other orbitals, and
one order of magnitude if they hybridize too much, like in the GGA calculation. In the case
of the GAN compound not only the 5d Gd orbital would be affected by the 4f exchange
magnetic field but also the 3p N orbitals. This happens because of the hybridization effect
of the 5d-Gd orbitals with 2p-N orbitals [26]. For the GdFe; compound the same scenario
happens to the 3d Fe orbitals. This interesting property would make of Gd a good candidate
for high performance ferromagnets. Indeed, if we could make materials with different 4 f

energy positions in order to change the hybridization and induce large spin polarization in
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other orbitals, we will be able to tune the MAE of Gd magnetic materials.

V. CONCLUSION

In conclusion, we have carried out first principles calculations of the MAE within the
GGA, GGA-core and GGA+U methods for the purpose of representing accurately the 4 f
electrons of Gd. It is shown that the MAE is very sensitive to the electronic structure
details at the Fermi level, i.e., the failure of the GGA method to account for the correct 4 f
energy position results in an overestimation of the Gd MAE. To the contrary, the GGA+U,
which produced the best position of the 4f states of Gd, reproduced the best MAE of Gd.
Indeed, the force-theorem MAE results of the GGA4U produced the best agreement with
the experimental MAE magnitude. The results of GGA+U are also in good agreement with
Bruno’s model, where the MAE is obtained from the anisotropy of the orbital magnetic
moments. Our calculation did not, however, find any deviation of the easy axis from the
crystal ¢ direction as shown in experiment and in the calculation of Colarieti-Tosti and
coworkers [21]. Based in our GGA+U calculations, Bruno’s model, and the symmetry of
the hep lattice, we did not find any good argument for the deviation of the easy axis from
the hep crystal ¢ direction. We can only speculate that this deviation might be the results
of symmetry breaking imperfections in the hep structure.

The comparison of the GGA-core MAE and the GGA+U MAE with experiment have
indirectly demonstrated that the 4f hybridization with the rest of the valence orbitals and
the corresponding induced polarizations are key mechanisms for the tuning of the MAE of
Gd or Gd based compounds. These mechanisms are tuned by the energy position of the 4 f
states in each compound. Indeed, within the GGA+U scheme we have shown that for both
GdN and GdFe; compounds, the Gd 4f states through hybridization and induced strong
polarization of, respectively, the nitrogen p and Fe 3d states change drastically the MAE.
Unlike 3d transition metals fcc structure like Ni, GAN and GdFe; magnetizations are found
to lie along one of the symmetry equivalent (100), (010), or (001) direction. It will be of
great interest to perform experimental measurements of MAE for GAN or GdFe; to check

our theoretical predictions.
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Chapter 8

Conclusions and perspectives

In this work, a detailed first principles study of the strong ferromagnetic Gd material
and Gd compounds were presented. The calculations were performed within the density
functional theory, using the full potential linear augmented plane wave method (FLAPW)
as implemented in the Fleur code.

In spite of the high Curie temperature of gadolinium (found to be of about 295° K),
the importance of the electronic correlation on the stability of its magnetic state was
the subject of a controversy during the last decade. Indeed, it is especially the strongly
localized and correlated 4f electrons which confers complexity to the Gd materials and
all 4f rare-earth magnetic materials. In order to elucidate the underlying physics of such
electronic structure we have treated the 4f electrons according to the GGA+U scheme.
Because of the growing progress of the XMCD techniques and its usefulness in charac-
terizing magnetic materials we have implemented the calculation of the magnetic circular
dichroism of the X-ray (XMCD), the corresponding sum rules, and the calculation of the
magnetic dipole within the ab-initio code (Fleur) using the FLAPW method.

Due to its half filled f shell the gadolinium metal is the strongest ferromagnet of the rare
earth materials class. One should, therefore, properly account for the peculiar strongly lo-
calized and correlated 4 f conduction electrons. We have clearly shown that the GGA+U
method is the most appropriate to describe the Gd electronic structure. The results we
have obtained using the GGA+U method are found to be in good agreement with the
experimental photoemission and inverse photoemission (XPS and BIS) results. Our cal-
culated Ly 3 and My s XMCD spectra are also found in good agreement with experiment.
The sum-rules spin and orbital magnetic moments calculated from the XMCD spectra
are mostly close to those predicted by experiment. This agreement approves the XMCD
dipolar approximation and shows the usefulness and the validity of these rules to probe
the magnetic properties of the 4f electrons systems.

The half-metallic ferromagnets of the diluted magnetic semiconductor (DMS) class, ma-
terials which show a metallic behavior in the majority spin band and semiconducting
behavior in the minority spin band, are very interesting for applications in the field of
spintronics, since, due to the 100% spin polarization that they present at Fermi level, they
can maximize the efficiency of spintronic devices. For this reason they are extensively
studied. Surprisingly, only those based on 3d transition metal magnetism are concerned
despite the strong 4f rare-earth magnetism. In this respect, we have approached the
GdN compound and shown the half metallic character of its electronic structure at the
experimental lattice parameter constant. We have also found that there is a considerable
hybridization of the 3d Gd orbitals with those of the 2p N ones. The calculated Lo 3
XMCD spectra are found to be in agreement with the experiment indicating indirectly
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that the GAN conduction bands are well described within our XMCD-FLAPW framework.
The self-consistent total energy calculations have revealed the electronic and structural
properties richness of GAN. Under hydrostatic pressure the rocksalt half-metal GdAN be-
comes a wurtzite semiconductor.

Several applications in spintronic devises require anisotropic magnetic materials. The
magnetic anisotropy is therefore a useful aspect for industrial magnetic applications. Due
to the strong 4 f magnetism, it is interesting to understand the magnetic anisotropy phe-
nomena in rare-earth materials.

Within the FLAPW framework we have studied the magnetic anisotropy of Gd, GdN,
and GdFey; materials. In order to simulate the magnetization rotation effect and calcu-
late the magnetocrystalline anisotropy energy (MAE) we have performed force theorem
calculations.

We have clearly shown that the 4 f materials magnetic anisotropy stems from the band-
structure spin-orbit coupling. The GGA-+U MAE is found to be in best agreement with
experiment compared to those obtained by means of the standard GGA and GGA-core
model. Since the 4f sub-band structure is correctly represented by the GGA-+U method,
one would be left with the correct MAE. This achieved appreciable agreement of the
GGA+U method with experiment compared to other methods should reflect the crucial
role of the 4f orbitals in the magnetic anisotropy despite their too localized character.
More striking is the magnetic anisotropy of the cubic GAN and GdFe, compounds. De-
spite the similarity of the magnetic anisotropy of Gd to that of the 3d transition metal
(found to be only of some peV), the magnetic anisotropy of these cubic compounds is
found to be different from that of the corresponding 3d cubic materials. The easy axis of
magnetization for GAN and GdFe, is found to lie along the (001) direction, and that of
the hard axis lies along the (111) direction. This means that it is the 4 f magnetism which
manages the magnetic anisotropy in pure rare-earth materials or rare-earth compounds
even if the half filled 4 f Gd shell has a nil spin-orbit coupling.

Though the good agreement of our Gd M, 5 XMCD spectra with experiment, the exper-
imental small structures appearing above and below the principal dipolar peak were not
reproduced. These structures are ascribed to dynamical processes involved during the ex-
perimental probe, i.e., core-hole interaction or multiplet effect and can not be accounted
for within a time-independent DFT scheme. The dynamical mean-field theory (DMFT)
is believed to be a major step towards the reunion of two theoretical approaches, i.e.,
the DFT and many-body model Hamiltonian of condensed matter physics. This method
should allow a reasonable understanding of the dynamical aspect of the XMCD. It is
planed to implement the XMCD calculations within this methods to follow the time evo-
lution of the electron-hole interaction during x-ray absorption.

Another interesting aspect of the magnetism is that of the non-collinearity. This phe-
nomena, which is a direct consequence of the competition between the spin-orbit coupling
and the exchange interactions, may take place under doping or hydrostatic pressure. In-
deed, this appears as a change of the magnetic configuration and therefore of the Curie
temperature. Understanding such phenomena and calculating the Curie temperature is
of great interest. As a continuation of this work, we plane to study of the doping of GAN
with hydrogen or manganese to raise its Curie temperature. Having shown the validity
of the force theorem for the calculation of the 4f systems magnetic anisotropy within
the GGA-+U method, and given the fact that the majority of the non-colinear implemen-
tations are based on the force theorem, we expect a fruitful investigations of the Curie
temperature of GdN.
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Appendix A

Tetrahedron Fermi-surface integration

This part is aimed at calculating the Fermi-surface areas for different cases. Let as follow
the same enumeration used in section (4.4.4). Assuming that the band structure energies
are linear in k points [133], one can straightforwardly calculate the interpolated wave-
vector kp and, therefore the corresponding Fermi surface.

1. If 61 < ep < g9 < g3 < g4, the wave-vector kr can be calculated as:

(er—c1)

ki =ky + —r—- (62 = 51) (ko — ky), (A.1)
_ (5F £1)

kpy = ks + ——= (&5 —21) (ks — ky), (A.2)
o (er —&1)

kps =ky + ——— (ca—c1) (ks — kq), (A.3)

these three wave-vectors are those forming the corner 1 marked by (ky,e;) in figure
(4.3). The Fermi surface area which crosses this corner is therefore

1
Sl = §(K1 X Kg), (A4)
where K; and K, are the reciprocal vectors:
K =kpo — kpi, Ky = kpz — kpy. (A.5)
2. If 61 < &9 < €3 < ep < &4, with the same manner, the wave-vector kg is calculated
as:
(er —€4)
ki = ko + ——>(ky — k A.6
F1 2 + (53_54)( 3 4)s (A.6)
(er —€4)
kpy =ks + —+2(ky — k A7
F2 3+ (52—54)( 2 1); (A7)
(er —e4)
ks =ks+ ———+2(k; — k A.8
F3 4+ (81—64)( 1 1) (A.8)

these three wave-vectors are those forming the corner 4 marked by (ky,e4) in figure
(4.3). The corresponding Fermi surface is calculated as in (A.4) and (A.5).

3. Ife1 < e9 < ep < e3 < g4, we will have two contributions S3 and S,. The calculation
of these surfaces is too similar to that of the previous ones.

The surfaces Sy, So, S3, and Sy are the hatched areas of figure (4.3).
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Appendix B

The spin-orbit coupling angular matrix
derivation

In this appendix we would like to derive the angular part of the spin-orbit coupling L.o. In
order to account for the appropriate geometry of this spin-orbit operator we shall remind
the reader that the quantization axis is conventionally the z-axis. Therefore, one should
rotate' the SOC operator toward the z-axis to get insight onto the involved z-components
of the spin orbital and magnetic moments. The rotation operation of the SOC is given
by:

[L.o], = R(L.o)R™, (B.1)

where R is the rotation matrix operator [134]:

ei%

)62% , (B.2)
where 6 and ¢ are the polar angles. Writing the spin operator o in terms of the Pauli
matrices o, 0y, and o,

(1) (1) (3 h) w

the spin-orbit operator takes the form

L, 1~
Lo = < ] ), (B.4)

where [~ and [T are the angular momentum operator defined as
Im =1, —ily,, " =1, +1l,. (B.5)

Substituting equations (B.4) and (B.2) into equation (B.1) leads to

55

Lol = [cos(O)L. + $sin(0)(e 1~ + €?lT)] [cos®(8)e"?1~ — sin?( I

TE TN [Fsin?(8)em T + cos?(§)elt — sin(0).]  — [cos(0). + Lsin(0)(e7 1T + e?1T)]
(B.6)

This is the formula we have adopted during our XMCD and magnetic anisotropy investi-

gations.

NN

'Rotating the SOC operator from the local frame to the global frame is equivalent to rotating the
system of reference from the global frame to the local frame.
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The spin-orbit coupling angular matrix derivation
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Appendix C

The magnetic dipole calculation within
the FLAPW method

This part is devoted to the derivation of the 7T, magnetic dipole within the FLAPW
method. As it is implemented by Baadji et al. (see paper I) within the Fleur code [25].
The magnetic dipole operator is given by:

(C.1)

Using the Pauli matrices (equation (B.3)) of the previous appendix the T, operator can
be written as:

o= (Lot ooty )=V (Vo )

(C.2)
if the magnetization is parallel to the z-axis the magnetic dipole operator takes the form
47 Yé 0 0
T, =4/ — ’ , C.3
5 ( 0 —Yao ) (C:3)
where Y} ,,, are the spherical harmonics.
In order to calculate the T, expectation value
(T%) = (g (k, 1) [T.] v (k, 1)), (C.4)

inside the muffin-tin spheres; one needs the corresponding FLAPW wave function (equa-
tion (4.55)):

Wik r) = Y (AL (K)uf (Jr — Ry|) + Bl (k)i (v — Ru|)Vi(r — R,).  (C.5)

m

For simplicity we consider the case of one atom per cell. The expectation value of the T,
operator is finally calculated as:

L) / Z A (k) A (k )0117;1/  + B (K) AL (K)Cr
VBZ ™ '
A () B ()R + Bie” () B (0Ce,,) dk, (C.6)

m,
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The magnetic dipole calculation within the FLAPW method

where

Cllr;f:l,m/ = Ungi}ml /rzdruf(r)u;’,(r),
Cfril/m/ =0 ;giiml/ﬁdruf(r)uf,(r),
Cf’,;zl,m, = aGZEiim/ /rzdruf(r)uf,(r),

Cot i = aG;jg?;;m' / r2drag (r)ug(r),

(C.7)
(C.8)
(C.9)

(C.10)

where the integration is that of the Brillouin zone (section (4.4.4)) and G;g’?l}m/ is the

Gaunt coefficient.
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