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Chapter 1RésuméComprendre les propriétés életroniques, et par onséquent struturales et magnétiquesdes terres rares est un enjeu majeur en physique de la matière ondensée. Le suès desméthodes dites ab-initio basées sur la fontionnelle de la densité (DFT), à reproduireet expliquer les propriétés physiques des matériaux, re�ète leur e�aité et justi�e leurutilisation intensive. Ces méthodes permettent en partiulier de omprendre la physiquedes métaux de transition. En e�et, les méthodes de alul de la struture életronique dansl'approximation loale de la densité (LDA) se sont avérées e�aes pour déterminer lespropriétés de l'état fondamental, telles que le paramètre de maille, le moment magnétiqueintrinsèque, ou le ouplage magnétique (ferromagnétique ou antiferromagnétique). Parontre, ette approximation a été inadéquate pour dérire la struture életronique dessemionduteurs et des isolants. En e�et, les résultats théoriques di�èrent des résultatsexpérimentaux pour les semionduteurs et les isolants, puisque les bandes interditessont sous-estimées de 50 à 100% par rapport aux bandes interdites obtenues à partir desexpérienes de spetrosopie optique [1℄. A titre d'exemple, ette dernière approximationonfère au germanium des propriétés métalliques alors qu'il est un semionduteur. Cetéhe est dû au fait que les fortes orrélations életroniques sont mal représentées dansette approximation.L'approximation du gradient généralisé (GGA), qui exprime le potentiel d'éhangeet de orrélation, non seulement en fontion de la densité de harge, mais également enfontion de son gradient, a permis une meilleure représentation de l'interation d'éhange-orrélation. Cette approximation est en général supérieure à la LDA et a permis, entreautre, de bien dérire l'état fondamental magnétique du fer [2℄. En e�et, la GGA, enaord ave l'expériene, prédisait la struture ubique entrée omme étant la struturerystalline de l'état de base ferromagnétique du fer, alors que la LDA favorisait un réseauubique à faes entrées (f) et un état non-magnétique. Bien que l'approximation GGAait été souvent meilleure que la LDA, les bandes interdites en général et les isolants deMott en partiulier, restent toujours mal dérits par ette approximation. Il est vraique la GGA ait permis une meilleure desription des systèmes ave di�érents types dedensités életroniques, mais ette approximation prédisait un aratère métallique pourdes omposés qui se sont avérés expérimentalement isolants.La sous-estimation des interations oulombiennes intra-atomiques par les potentielsGGA ou LDA est la ause direte de la défaillane de es méthodes ab-initio. C'est ens'inspirant du modèle d'Hubbard [3, 4, 5, 6℄ qu'on aura réussi à représenter l'interationoulombienne intra-atomique dans le adre du formalisme de la DFT. Ces nouvelles méth-odes sont dites LDA(GGA)+U [7℄ et doivent leur suès à la bonne desription de lastruture életronique des isolants de Mott [8, 9, 10, 11℄. Désormais, nous disposons d'une5



Résuméapprohe qui nous permettra de bien dérire le aratère loal et orrélé des matériaux,grâe à la bonne desription de l'interation oulombienne intra-site. L'idée fondatriede ette méthode onsiste à séparer le potentiel életronique en deux parties. Une partied'életrons déloalisés qu'on peut orretement et failement dérire ave le potentiel GGAou LDA, et une partie d'életrons loalisés (les életrons d des métaux de transition oules életrons f des terres rare) pour laquelle l'interation intra-atomique életron-életronest introduite selon la théorie hamp moyen de Hartree-Fok.Ce n'est pas par hasard que ette méthode ait permis une meilleure ompréhensionde la physique des systèmes à életrons fortement orrélés, mais grâe à l'e�aité dutraitement des életrons. En e�et, traiter seulement les életrons déloalisés par un po-tentiel GGA ou LDA et les életrons loalisés par un potentiel LDA(GGA)+U perme-ttrait d'éviter le double omptage des interations életroniques et de soustraire l'auto-interation (SI) entre les életrons loalisés. Il a été montré que ette dernière auto-interation ontribuait énormément au potentiel total des matéraux à életrons loalisés[12℄. A e sujet nous pouvons rappeler que les systèmes à életrons 4f tels que les terresrares possèdent aussi la propriété d'életrons loalisés (4f) bien qu'ils soient métalliques.En e�et, les életrons 4f des terre rares ont un aspet ommun ave les életrons 3d desisolants de Mott, sauf que dans le as de es isolants 'est l'oxygène qui renfore la loalitédes életrons 3d, alors que dans le as des terres rares 'est une loalité intrinsèque desorbitales f .Nous pouvons par onséquent nous attendre à e que le traitement des életrons 4f parla méthode LDA(GGA)+U (de la même manière que les életrons 3d dans les isolants)nous permette d'aborder orretement la struture életronique des terres rares. Si onfait appel au shéma de Stoner [13℄, onernant le magnétisme, nous pouvons failementomprendre que 'est la loalité des életrons 4f qui onfère aux terres rares la propriétédes matériaux fortement magnétiques. C'est par exemple le as du gadolinium (Gd)massif pour lequel on a un moment magnétique de l'ordre de 7 µB grâe à la ouhe
4f qui est à moitié remplie. Ces matériaux peuvent par onséquent être de bons andi-dats pour des appliations industrielles telles que les aimants permanents ou les systèmesd'enregistrements magnétiques. Cependant, la ompréhension des méanismes qui gèrentla struture életronique de e type de matériaux, reste loin d'être aquise. Même dansl'état pur, les matériaux magnétiques 4f sont plus di�iles à aborder que les matéri-aux magnétiques 3d des métaux de transition (Fe,Co,Ni). C'est la nature des életrons
4f fortement loalisés et orrélés qui rend es matériaux di�iles à dérire à l'aide desméthodes de alul de la struture életronique.La omplexité de e type de matériaux réside dans la oexistene d'életrons forte-ment loalisés et d'életrons non loalisés. Les aluls de struture életronique e�etuéspar Singh [14℄ avaient montré que, bien que les orbitales 4f soient su�samment loal-isées, elles ontribuent à l'établissement des liaisons himiques. Grâe à ses propriétésmagnétiques intéressantes le Gd est le plus étudié de nos jours. De nombreuses ques-tions font toujours le sujet d'un grand débat et ne essent d'interpeller la ommunautésienti�que. Les bandes 4f s'adaptent-elles ave les autres bandes, vont-elles s'hybriderave, ou onservent-elles leur aratère loal? (voir papier I ainsi que les papiers ités).Qu'en est-il de l'anisotropie magnétique, ressemble-t-elle à elle d'un métal de transition?S'agit-il d'un magnétisme de Stoner pour lequel hau�er le système permettrait de libérerles moments magnétiques du ouplage fort qui les maintient parallèles [15, 16℄ ou plut�td'un magnétisme de Heisenberg [17℄ où le moment magnétique porté par haque site sur-vivra même à des températures plus grandes? L'impliation de es di�érents aspets dela struture életronique dans la représentation du magnétisme du Gd a fait de e mag-6



Résuménétisme, le plus étudié des terres rares.C'est dans e ontexte que le projet de ma thèse de dotorat avait été entrepris. Pen-dent es dernières déennies, les méthodes de alul de la struture életronique sontde plus en plus utilisées, surtout pour étudier les matériaux magnétiques. La méthodeab-initio que nous avons utilisée tout au long de notre étude repose sur la tehnique delinéarisation des ondes planes augmentées à potentiel total (FLAPW) [18, 19℄. Cettebase de fontions d'ondes est parmi les plus préises. Contrairement aux autres basesutilisant l'approximation des sphères atomiques (ASA) où le potentiel est approximé parune onstante dans la région inter-atomique, la méthode FLAPW alule orretementle potentiel dans la région inter- et intra-atomique. Le ristal est divisé en deux régions,une région dite mu�n-tin et une région interstitielle. A haque itération du yle self-onsistent la densité de harge et le potentiel sont alulés de la même manière dans esdeux régions. Le potentiel ainsi alulé est sensible à la moindre variation de la densité deharge et devrait don proprement dérire la physique sous-jaente. C'est e qui a motivénotre utilisation de ette méthode, pour aborder la struture életronique du gadoliniumainsi que ertains de ses omposés.Malgré la grande température de Curie du gadolinium (de l'ordre de 295 K), l'importanede la orrélation életronique sur sa stabilité et sur son état magnétique a été le sujet d'uneontroverse durant la dernière déennie. Étant donné les progrès qu'ont onnu les teh-niques des rayons X telles que le dihroïsme irulaire magnétique des rayons X (XMCD),et les nombreuses investigations expérimentales qui ont été menées pour sonder le mag-nétisme des di�érents matériaux, il nous a paru utile d'implémenter le alul du XMCDdans le ode ab-initio de la méthode FLAPW. L'un des points forts de ette tehnique estque la setion e�ae d'absorption qu'on mesure pour aluler le XMCD1, possède deuxpropriétés séletives :
• la séletivité de l'atome sondé : les seuils d'absorption ont des énergies qui sontaratéristiques pour haque élément,
• la séletivité des états �naux : grâe aux règles de séletion dipolaires, des états�naux ave des symétries di�érentes peuvent être sondés en hoisissant l'état initial.Notre démarhe onsisterait, d'une part à ra�ner les aluls des spetres de dihroïsmemagnétique irulaire, et en partiulier à obtenir un aord quantitatif entre les spetresthéoriques et les spetres expérimentaux, et d'autre part à omprendre le r�le des életronsnon loalisés dans le magnétisme, dont on sait qu'ils sont à l'origine des interations àlongue portée. Par exemple, l'ordre magnétique dans les aimants permanents les pluspuissants onnus à e jour (SmCo5, Nd2Fe14B) est dû à l'interation des életrons 5d dela terre-rare ave les életrons 3d du métal de transition.Dans un premier temps, nous avons herhé à améliorer l'approhe théorique utiliséepour aluler les spetres XMCD. En e�et il s'agit de omprendre pourquoi les rap-ports intégrés de branhement restent sous-estimés par rapport à l'expériene dans lesaluls ab initio. Cette approhe s'est appuyée sur le traitement des orrélations dansl'approximation GGA+U.1Le XMCD est la di�érene, pour un matériau magnétique, entre l'absorption des rayons X polarisésirulairement à gauhe et à droite. 7



Résumé� Nous avons utilisé les énergies GGA+U à la plae des énergies LDA pour alulerles spetres XMCD dans une approhe où l'on ne tient pas ompte de l'attration entrele trou de oeur et l'életron promu dans un état vide.� Nous avons généralisé nos aluls aux omposés de terres rares tels que le gadolinium,le GdN et le GdFe2. Pour e dernier par exemple, les propriétés magnétiques résultentd'une forte hybridation des états 5d de la terre rare et des états 3d du métal de transitionainsi que des états loalisés 4f de la terre rare. Nous avons alors, pour des omposésde la famille terre rare - métaux de transition, alulé le signal de dihroïsme aux seuilsL2,3 de la terre rare (transitions dipolaires életriques 2p1/2,3/2 −→ 5d) et onfronté lesspetres théoriques aux spetres expérimentaux disponibles. En e�et, les életrons 4fjouent un r�le prépondérant dans l'interprétation du dihroïsme aux seuils L2,3 de la terrerare. En absene de moment magnétique d'origine 4f , as du LaFe2 et LuFe2 (ouhe
4f respetivement vide ou pleine), la bande 5d est polarisée en spin par les életrons
3d du fer et par onséquent la terre rare développe un magnétisme induit. Le signe duspetre de dihroïsme L2,3 montre que le moment de spin des états 5d est antiparallèle aumoment magnétique des états 3d du fer en aord ave le alul de struture de bandes.Par ontre, lorsque les états 4f sont partiellement remplis, le spetre de dihroïsme L2,3est beauoup plus ompliqué ar dans e as les états 5d interagissent également paréhange intra-atomique ave les életrons 4f . On doit éventuellement tenir ompte destransitions quadrupolaires életriques (2p −→ 4f) pour expliquer les détails des spetresexpérimentaux.Nous ne pouvons pas nous permettre de parler de la spetrosopie XMCD sans évo-quer ses règles de somme. Grâe à es règles, il est devenu possible d'extraire direte-ment les moments de spin et orbital des spetres XMCD. C'est e qui fait l'originalitéde ette tehnique, omparée aux autres. En e�et, il existe plusieurs tehniques pourmesurer les propriétés magnétiques des matériaux. La plupart d'entre elles sont sensiblesà l'aimantation totale et ne peuvent pas di�érenier entre les ontributions des di�érentsatomes d'un alliage ou d'une multiouhe, et leurs moments de spin et d'orbite. Pourexpliquer les spetres expérimentaux, nous avons onfronté nos résultats de alul XMCDaux résultats expérimentaux (voir Fig. 1.1). Ceux onernant le gadolinium ont révélé ler�le important des orrélations életroniques provenant des orbitales f fortement loal-isées, et l'adéquation de la méthode GGA+U pour dérire la struture életronique. Lesrésultats obtenus par ette méthode sont en bon aord ave les résultats expérimentaux,tels que la photoémission et la photoémission inverse (voir Fig. 1.2) et l'ordre magnétique.Nos spetres XMCD et les moments alulés à partir de la règle de somme aux seuils L2,3ou M4,5 sont également onformes à l'expériene (voir papier I).Cet aord approuve ainsi l'approximation dipolaire que nous avons adoptée dans leadre du formalisme XMCD, et montre le aratère loal des életrons f à travers l'aorddes moments alulés à partir du alul auto-ohérent et eux des règles de somme. Cesrésultats devraient stimuler de futures reherhes théoriques dans le adre de la méthodeGGA+U, pour les autres terres rares.Pendant longtemps, le r�le des états 4f dans la détermination de la nature de la stru-ture életronique du gadolinium était mal ompris (voir papier I). En utilisant la méthodeFLAPW nous avons montré que la méthode LDA(GGA)+U permet une meilleure om-préhension de la struture életronique du Gd, e qui pourrait enourager l'étude de lastruture életronique des autres terres rares. Les aluls que nous avons e�etués enFLAPW nous ont permis de montrer que le magnétisme du Gd est proprement dérit8
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Figure 1.1: Les spetres XMCD alulés (en ourbe noire ontinue) omparés aux spetresexpérimentaux (en erles rouge) pour le Gd massif. En haut à gauhe le seuil L2, à droitele seuil L3, et en bas le seuil M5.dans le as où l'on prend en ompte l'interation intra-atomique des életrons 4f forte-ment loalisés, en utilisant la méthode LDA(GGA)+U.L'émergene de la spintronique, et l'intérêt qu'a susité la ommunauté sienti�que àl'égard des semionduteurs magnétiques dilués (DMS) et partiulièrement à l'égard desdemi-métaux � faisant de es derniers des andidats potentiels pour l'injetion de spin �nous a tout naturellement amené à étudier le omposé GdN.Contrairement aux DMS lassiques, où le magnétisme est dû aux életrons iténirants
d, le magnétisme du GdN est dû aux életrons loalisés f et aux orbitales déloalisées 5d.De plus, le omposé GdN, suivant la nature du substrat sur lequel on le fait roître, ouvreune grande gamme de propriétés életroniques, allant d'un métal à un semi-onduteuren passant par un demi-métal. La ompréhension de e type de systèmes représente ainsiun enjeu majeur pour la spintronique. A�n de souligner l'importane de la strutureéletronique et magnétique du GdN, nous avons e�etué des aluls ab-initio en utilisantla méthode GGA+U dans le adre de la méthode FLAPW. Les aluls que nous avonsfaits à et égard ont montré la forte hybridation des orbitales p du nitrogène N ave lesorbitales d du Gd. Pour voir l'e�et de la présene du N sur les orbitales d du Gd, nousavons alulé les spetres XMCD aux seuils L2,3 du Gd dans le omposé GdN (voir Fig.1.3). 9
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Figure 1.3: Les spetres d'absorption et d'XMCD alulés (en ourbe bleue ontinue)omparés aux spetres expérimentaux (en erles rouges) pour les atomes Gd dans leGdN. Le panneau à groite; en haut (a) le spetre d'absorption au seuil L3 et en bas () lespetre XMCD orrespendant. Le panneau à groite; en haut (b) le spetre d'absorptionau seuil L2 et en bas (d) le spetre XMCD orrespendant.dans les systèmes ubiques 'est le magnétisme du Gd qui gère l'anisotropie magnétiquedu système en question.Le travail e�etué dans le adre de ette thèse nous a permis d'étudier la struture éle-tronique, magnétique et struturale des matériaux onstitués d'életrons 4f . Les résultatsde ette étude ont montré le r�le important de la présene des orbitales f parmi les ban-des de valenes du gadolinium métallique. Malgré leur forte loalisation, ette présenese manifeste par une forte hybridation ave les orbitales 5d. La seule méthode qui nousa permis de bien dérire e type de systèmes, tout en tenant ompte de l'interationoulombienne intra-atomique des életrons 4f , est la méthode dite LDA(GGA)+U. Ene�et, ette méthode semble la plus adaptée pour dérire des terres rares dont la strutureéletronique est dominée par les életrons 4f . Le bon aord entre les spetres XMCDalulés et l'expériene ainsi que les moments alulés à partir de es spetres et euxde l'expériene, justi�e indiretement l'approximation dipolaire életrique et le aratèrepresque atomique des orbitales sondées. La spetrosopie XMCD est par onséquent unmoyen très e�ae pour étudier le magnétisme des életrons loalisés.Même si notre étude avait lairement mis en évidene l'adéquation et l'e�aité dela méthode LDA(GGA)+U, ette méthode ne nous permettrait pas d'aborder l'aspetphysique de ertains phénomènes dynamiques. Dans les spetres XMCD alulés auxseuils M4,5 du Gd par exemple (Fig. 6), nous ne retrouvons pas les strutures expéri-mentales qui apparaissent avant et après le pi prinipal. Ces strutures proviendraientde l'e�et des multiplets et des proessus dynamiques de l'interation photoéletron-trou.Selon la théorie du hamp moyen dynamique (DMFT) il serait possible de omprendredes sénarios de e genre. En fait, la dynamique engendrée pendant les absorptions Xserait essentiellement due à l'interation életron-trou. Etant donné que les niveaux én-ergétiques initiaux sont des niveaux de oeur profonds en énergie, on peut s'attendre àe que les rayons X réent un trou avant qu'un életron déjà exité puisse relaxer. Dansle adre de la méthode DMFT (voir Ref. [20℄ et les référenes qui y sont itées) on peut11
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Figure 1.4: L'énergie d'anisotropie magnétique du Gd dé�nie omme MAE ≡ EA(θ) −
EA(0◦). La �gure (a) représente la MAE alulée en traitant les életrons 4f de troismanières di�érentes; en noir le alul GGA+U où l'interation oulombienne U est priseen ompte pour les életrons 4f qui font partie des életrons de ondution; en rouge lealul GGA-ore où les életrons 4f sont onsidérés omme des életrons du oeur, eten vert le alul GGA standard où les életrons 4f sont traités omme des életrons deondution. La �gure (b) représente le alul GGA+U (la ourbe en noir est la même queelle en (a)) omparé à l'expériene (ourbe en bleu).traiter l'atome de Gd exité omme une impureté. La dynamique de ette impureté seraitdon onsidérée omme son interation moyenne à haque instant, ave un bain formé parle reste des atomes. Il serait don important de faire des aluls XMCD dans le adre deette méthode pour suivre l'évolution des transitions pendant l'absorption X.En perspetive, il serait important d'étudier un autre aspet du magnétisme; le mag-nétisme non-olinéaire (ou les ondes de spin). Ce qui permettrait de aluler la tempéra-ture de Curie qui est une grandeur physique importante. Le magnétisme non-olinéaireest une onséquene direte de la ompétition entre le ouplage spin-orbite et l'interationd'éhange. La pression ou le dopage hange la on�guration magnétique et la tempéra-ture de Curie. La ontinuation de e travail sera par onséquent de doper GdN, soit avedu manganèse soit ave de l'hydrogène, a�n d'augmenter fortement sa température deCurie, qui, dans l'état massif est de l'ordre de 60 K. Dans e ontexte, il est aussi envisagéd'étudier l'e�et du dopage en hydrogène sur la température de Curie, des omposés deterres rares TRFe2 et TRMn2.
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Chapter 2IntrodutionIn the last few deades there have been a onsiderable improvements in designing andmanufaturing eletroni devies, espeially those based on the spin degrees of freedom,labeled nowadays spintroni(s) devises. It is the funtionnalization of the eletroni spindegrees of freedom together with the harge degrees of freedom whih led to suh inter-esting eletroni devies. In this respet, the 2007 Nobel prize in physis is awarded toFert and Grünberg for their disovery of the giant magnetoresistane. Their disovery hasgiven rise to many nanoeletroni devises of great usefulness to the omputer industry.Understanding magneti properties of materials is therefore of great interest. In partiu-lar, mastering the spin degrees of freedom might be bene�ial at the nanosale, inreaseddata proessing speed, dereased eletri power onsumption and inreased integrationdensities [21℄.Nowadays mostly 3dmagneti materials are studied for suh interesting appliations whileonly a few attention is paid to rare earth magneti materials. Due to their 4f loalizedorbitals rare earth materials exhibit a strong magnetism. These materials might be, there-fore, promising andidates for the above mentioned appliations. Beause of its half-�lled
4f shell, gadolinium (Gd) is ertainly the most important among these materials. Withthe evolution of the omputational resoures, modern eletroni struture methods aregoing to be more and more used for studying magneti materials.Sine the pioneering work of Dimmok and Freeman [22℄ where the Gd eletroni stru-ture has been alulated using the ore model for the treatment of the 4f eletrons, therehas been a few more band-struture alulations for Gd. In this simple model, while the
4f bands have been suessfully removed from the ondution band at the viinity of theFermi level, the hybridization of the 4f states with the others states was not aountedfor. Some years later, the self-onsistent alulations of Stiht and Kubler [23℄ have shownthat the standard LDA potential leads to a smaller lattie parameter beause of the spu-rious presene of the 4f minority states lose to the Fermi level. Later, Temmermanand Sterne [24℄ have found a very large sensitivity to the treatment of the extended 5pore states as semi-ore states. Afterwords, Singh [14℄ has shown that the LDA does notprovide a fully satisfatory desription of Gd. This re�ets partiularly the omplexity ofthe Gd eletroni struture due to the presene of 4f eletrons. The ondution eletronsof Gd onsist of three kind of eletrons: the 4f strongly loalized eletrons, the 5p and
5s semiore eletrons, and the itinerant 3d and 6s eletrons.In addition, it is unlear whether the Gd magnetism is that of a typial Stoner-like mag-netism [15, 16℄ or that of a Heisenberg-like magnetism [17℄. It turns out that its eletroniproperties and therefore its magneti properties are far from being fully understood, anda further theoretial investigations are therefore alled for.17



IntrodutionThe failure of the LDA for the desription of loalized eletron systems was already proved,i.e, the so-alled Mott insulators were found to be metalli within the LDA alulations.Indeed, unlike in pure 3d transition metals, the Mott insulators 3d eletrons, suh as,NiO, are loalized beause of the presene of neighboring oxygen. This means that anextra-Coulomb interation between these eletrons should take plae. It is this interationwhih is missing in the LDA sheme and one should therefore, ome up with a methodwhih allows an appropriate representation of those loalized eletrons.The LDA(GGA)+U method [7℄ whih is a generalization of the Hubbard model [3, 4, 5, 6℄was found to be adequate for the desription of the eletroni struture of loalized eletronsystems, where the U is the intra-atomi Coulomb interation. Within this method, theeletroni struture of the Mott insulators was suessfully aounted for [8, 9, 10, 11℄ byorretly desribing the 3d eletrons. Heneforth, one is left with a method inorporatingthe strong Coulomb intra-atomi interation for loalized eletrons. The LDA(GGA)+Umethod is therefore, expeted to be e�ient for the study of 4f strongly loalized systemseletroni struture suh as Gd and Gd ompounds.The appreiable progress in spetrosopi tehniques suh as those of the x-ray magnetiirular dihroism (XMCD), and the several investigations this spetrosopy had led to,have motivated our implementation of the XMCD within the ab-initio Fleur ode [25℄using the full potential linear augmented plane wave method (FLAPW) [18, 19℄. In fat,XMCD spetra have two useful properties for magneti materials haraterization. The�rst one is that of the atomi speies and orbital seletivity, i.e., eah hemial elementand eah ore orbital has its own absorption edge(s), the seond one is that of the �nalshell or of the �nal states seletivity, i.e., the transitions involved during the x-ray ab-sorption are seleted aording to the spei� seletion rules. Sine the initial states arehosen, only the transitions for whih the �nal states satisfy the dipolar seletion rulesmay happen. In this respet, we should remind the powerful advantage of the XMCDsum-rules. Nowadays, there are many tehniques for magneti properties measurements.Most of them are sensitive to the total magnetization and do not distinguish betweenthe di�erent atomi ontributions of alloys, or between their spin magneti and orbitalmoments. With the derivation of the sum rules by Thole and owerkers [26, 27℄, XMCDspetrosopy beame the most e�ient tehnique for studying magneti materials. Thesum rules allow the extration of both the spin and orbital magneti moments from theabsorption spetra. In order to extrat the spin and orbital moments from the x-rayabsorption spetra we have implemented these sum rules.In this thesis, we have approahed the eletroni struture of Gd in a �rst step. Thealulations are arried out with the FLAPW, one of the most preise density funtionalmethods for multiomponent materials, open strutures and surfaes. We have fousedon the GGA+U treatment of the eletroni and magneti struture of Gd (see paper I),omparing the alulated density of states to the the experimental photoemission andinverse photoemission spetra (XPS and BIS) the GGA+U is found to be the most ap-propriate for treating the 4f Gd eletrons. We have investigated the bulk properties,and alulated the XMCD spetra at the L2,3 and M4,5 edges within the dipolar approxi-mation. The spin-orbit interation is inluded in a seond-variation sheme aording tothe salar relativisti approximation. The agreement of the alulated spetra with thoseof the experiment is the indiation of the relevane of the XMCD formalism within theone-eletron piture.The emergene of spintronis, and the great interest whih aroused the sienti� om-munity towards magneti diluted semiondutors (DMS), and partiularly half-metalsbeause of their appliations for spin injetions, have motivated us to study the GdN18



Introdutionompound. Unlike the lassial DMS, where the magnetism is due to 3d eletrons, GdNompound proposes a semi-itinerant magnetism due to the f eletrons. Furthermore,GdN, following the nature of the substrate on whih it is grown, overs a big range ofeletroni properties, half metal, semimetal, or semiondutor. The understanding of suhsystems properties is thus of interest to spintronis.Within the same FLAPW omputational framework we have arried out �rst-priniplesalulations of the GdN eletroni, magneti, and strutural properties (see paper II). Theorresponding results show that the ground state eletroni struture of GdN is that of ahalf metal. Under hydrostati pressure the half metal roksalt (Nal struture) transformsinto a wurtzite semiondutor.The last part of our omputational investigations is devoted to the magneti anisotropyaspet of the Gd and its ompounds GdN and GdFe2. The rotation or the deviationof the magnetization in a large variety of materials, e.g., permanent magneti materials,ultrathin �lms, low-dimensional magneti nanostrutures or atomi hain, in�uenes themagneti and therefore the eletroni properties of these materials. The energy requiredto rotate the magnetization of a magneti rystal is de�ned as the magnetorystallineanisotropy energy (MAE).Using the fore theorem, we have alulated the MAE of Gd, GdN, and GdFe2 for dif-ferent diretions of the magnetization (see paper III). Indeed, owing to the nil spin-orbitinteration of the 4f half �lled shell, the fore theorem is expeted to be e�ient for Gdand Gd ompounds MAE alulations. This theorem allows a onsiderable omputationale�ort gain sine the spin-orbit oupling ould be alulated only for one selfonsistent it-eration.One again, the GGA+U method is found to be the most adequate approah for the foretheorem alulations of the Gd MAE. The GGA and GGA-ore model treatment of the
4f states have led to a wrong Gd MAE. It turns out that the eletroni properties and themagneti properties of 4f systems are tightly related, and the 4f eletrons are of ruialrole in the rare earth magneti anisotropy.Though the Gd MAE is found to be too similar to that of a typial 3d transition metallike hp Co, the GdN and GdFe2 ubi rystals MAEs are found to be di�erent fromthat of a pure 3d ubi material like f Ni. In these ompounds we have found thatthe magnetization lies along the (001) diretion while it is found to lie along the (111)diretion for Ni.This thesis is strutured as follows. The founder ideas and the formulation of the DFT arepresented in Chapter 3. The main features of the FLAPW method (as implemented in theFleur ode) are desribed in Chapter 4. Emphasis is put on the desription of the spin-orbit oupling relativisti e�et within the FLAPW method, a brief derivation of the foretheorem as well as a desription for its appliation to the MAE alulations is provided inChapter 5. Chapter 6 is devoted to another onsequene of the spin-orbit oupling, thatof the XMCD. A quit rih bibliography is supplied in preamble, and a speial attention isgiven to the desription and the derivation of the XMCD formalism as a magneto-optiale�et. Chapter 7 is that of the main results (paper I, II, and III). Finally, in Chapter 8,onluding remarks and perspetives for the 4f magnetism theoretial investigations andappliations are presented.
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Chapter 3Density Funtional TheoryCalulating eletroni and magneti properties of solids is not trivial task even whensolids are in their ground state. In solid state, ondensed matter is omposed of atomsheld together by hemial bonds insured by the valene eletrons. Involving so manypartiles gives rise to a omplex many-body problem. One of the early proposed modelto deal with suh omplexity is the Born-Oppenheimer approximation.3.1 The Born-Oppenheimer approximationThe Born-Oppenheimer approximation [28℄ onsists of dividing the total solid-state prob-lem into two parts: The motion of the eletrons in a stationary lattie and that of theions in a uniform spae harge of eletrons. The total Hamiltonian H whih representsthe total energy of a realisti system an be written as:
H = Hel +Hion +Hel−ion +Hex, (3.1)where Hel, Hion, and Hel−ion are respetively the eletrons, the ions, and the eletrons-ions interations Hamiltonian. These terms onsist of, the kineti energy of all eletrons,all ions, and the energy assoiated with all the interations between theses partiles.The last term represents any interations with external �elds. The Born-Oppenheimerapproximation allows us to rewrite separately the eletron and ion omponents as follows:
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i) +H−. (3.3)The Hamiltonian equation (3.3) is the basis for the study of lattie dynamis and ion-ioninterations (phonons). The �rst terms in (3.2) and (3.3) are the kineti energies, theseond terms are those of the Coulomb interations between the harges of eah kind, and

H+ and H− represent the interation of the eletrons (ions) with the average harge ofthe ions ρ+ (the average harge of the eletrons ρ−). This approximation is based on theargument that eletrons and ions have very di�erent masses (the eletron-ion inertia ratiois about 10−3). The ions an respond only slowly to a hange in the eletron on�guration,while the eletrons respond adiabatially to a hange in the positions of the ions and asfar as the motion of the eletrons is onerned, it is only the instantaneous on�guration21



Density Funtional Theoryof the ions whih is of interest. In the absene of an external �eld one an therefore adoptfor the eletrons a Shrödinger equation of the form:
HelΨ = EelΨ, (3.4)where the wave funtion Ψ = Ψ(r1, . . . rN) depends on the oordinates of the N ele-trons1. However, sine the Hamiltonian is the observable aounting for the measurabletotal energy, aording to quantum mehani priniples, the eigenfuntion Ψ have to bewritten as an expansion in terms of a omplete set of wave funtions, i.e., this is the asefor example for the on�guration interation (CI) method where the ground-state wavefuntion is a linear ombination of Slater-wave funtions. The Hartree-Fok mean �eldapproximation have o�ered a simpler approah to handle the N eletrons problem.3.2 The Hartree-Foh approximationWe fous now on the motion of the eletrons, as desribed by (3.2). We onsider aneletron gas whih is embedded in a homogeneous, positively harged medium (jelliummedium) or in a rigid lattie of positively harged ions. Even with a jellium mediumthis problem is very di�ult to solve beause of the omplexity of the eletron-eletroninteration. In the absene of this interation, the many-body problem would deoupleinto one-body problems whih desribe the motion of an eletron in an e�etive potential(the one-eletron approximation). In this ase the Hamiltonian (3.2) beomes:
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V (rk). (3.5)Here we have expressed the H+ Hamiltonian of equation (3.2) as the total eletron-ion potential energy ∑k V (rk) with V (rk)=∑i V (rk − Ri) the interation between oneeletron and all the other atoms seen as �xed soures of potential. The wave funtion ofthe Shrödinger equation ∑k Hkφ = Eφ ould be written as the produt of individualwave funtions:
φ(r1 . . . rN) = ϕ1(r1)ϕ2(r2) . . . ϕ(rN), (3.6)with E =
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k Ek. The full Shrödinger equation redues to one-eletron Shrödingerequations: Hkϕk(rk) = Ekϕk(rk). If we take into aount the eletron-eletron interationthe Hamiltonian (3.5) beomes:
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Hk,k′. (3.7)From now on the wave funtion (3.6) is not any more an exat solution for the Hamiltonian(3.7). The so-alled Hartree approximation allow us to use the wave funtion (3.6) as anapproximate solution for the Hamiltonian (3.7). Inserting the funtion (3.6) into theShrödinger equation Hφ = Eφ, with H given by equation (3.7), the expetation value ofthe energy E = 〈φ|H|φ〉 an be written as :
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, (3.8)1The wave funtion depends also on the oordinates of atoms, but these oordinates appear only asparameters in equation (3.4). 22



Density Funtional Theorywhere the ϕk are assumed to be normalized. This is only the expetation value of theenergy for arbitrarily given ϕk. Aording to the variational priniple, those ϕk whihminimize E represent the best set of funtions for the ground state. We therefore vary(3.8) for any ϕ∗
k or ϕk and equate the variation to zero

δ[E −
∑

k

ǫk(〈φk|φk〉 − 1)] = 0, (3.9)We then get
[

− ~2

2m
∇2 + V (r) +

e2

4πǫ0

∑

k′ 6=k

∫ |ϕk′(r′)|2
|r − r′| dτ

′

]

ϕk(r) = ǫkϕk(r), (3.10)where Ek are the Lagrange parameters.Here we are representing the positions of the kth (rk) and the k′th (rk′) eletrons by r and
r′, respetively. Equation (3.10) is the Hartree [29℄ single-partile Shrödinger equation.It desribes an eletron (k) at loation r in the potential �eld V (r) of the lattie ions, andin the Coulomb potential of an average distribution of all other eletrons (k′ 6= k).For the Pauli priniple to apply, the expression (3.6) should be replaed by a Slaterdeterminant
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, (3.11)where the XN oordinates stand for both the spatial oordinates rN and the spin oor-dinates χN . The normalizing fator (N !)−1/2 aounts for the indistinguishability of theeletrons sine there are N ! possible ways of distributing N eletrons at the N positions
r1 . . . rN . The fermioni harater of the eletrons is therefore insured by the antisym-metri wave funtion (3.11). With the wave funtion (3.11), we an again alulate theexpetation value E = 〈φ |H|φ〉. It is given by

E =
∑

k

∫

ϕ∗
k(X1)Hkϕk(X1)dτ1 +

e2

8πǫ0

∑

k,k′

∫ |ϕk(X1)|2 |ϕk′(X2)|2
|r1 − r2|

dτ1dτ2

− e2

8πǫ0

∑

k,k′

∫

ϕ∗
k(X1)ϕk(X2)ϕ

∗
k′(X2)ϕk′(X1)

|r1 − r2|
dτ1dτ2. (3.12)The integration here inludes a summation over the spin variables. We note further thatin the absene of spin-orbit oupling, every wave funtion an be written as the produt ofa spae funtion and a spin funtion. The last term of the right-hand side of (3.12) leavesus with just a summation over eletrons with the same spin, beause the orthogonality ofthe spin funtions auses the other spin terms to disappear. Taking this into aount, thespin does not expliitly appear further and we an replae Xk with just the spae vetors

rk. Equation (3.12) Compared with (3.8) an extra term appears. Taking into aount theorthogonality ondition, and invoking the variation equation (3.9), we �nd
[

− ~2

2m
∇2 + V (r)

]

ϕk(r) +
e2

4πǫ0

∑

k′ 6=k

∫ |ϕk′(r′)|2
|r − r′| dτ

′ϕk(r)

− e2

4πǫ0

∑

k′ 6=k(spin||)

∫

ϕ∗
k′(r′)ϕk(r

′)

|r − r′| dτ ′ϕk′(r) = ǫkϕk(r), (3.13)23



Density Funtional Theorywhere, as in (3.10), we use r for the oordinates of the eletron under onsideration and r′for the integration variable. This is the Hartree-Fok equation [30, 31℄. The Shrödingerequation for the many-eletron problem is thus splitted up into one-eletron wave equa-tions. While the Hartree equation was easy to interpret, the newly added third termon the right-hand side of (3.13) has no lassial analogue. It is alled the exhange in-teration. There is an equation of the same form for eah of the di�erent one-eletronfuntions, and these equations must be solved simultaneously. For a single atom thisan be done by a method of suessive approximations, until self-onsisteny of the re-quired degree of auray is reahed. In metals the problem is too ompliated and aruder approximations must be used. Eletrons repel one another, so that they do notmove independently but in suh a way as to avoid eah other as far as possible. Suhorrelations among the eletrons motions, or positions, are alled Coulomb orrelations.In the Hartree method Coulomb orrelations are ompletely ignored, eah eletron beingsupposed to move in the average harge distribution of the other eletrons. The totalwave funtion is a single produt of one-eletron funtions, so that the probability of agiven on�guration depends only upon the one-eletron funtions and not diretly uponthe distanes between pairs of eletrons. The Hartree-Fok method again neglets properCoulomb orrelations, but inludes orrelations of another sort. These are orrelationsamong the positions of eletrons with parallel spins only (the exhange interation of theequation (3.13)), and are due, not to the Coulomb fore, but to the Pauli priniple, asembodied in the use of a determinantal wave funtion.The orrelations, assoiated with the exhange and known rather under the name of theexhange-orrelations potential in the density funtional theory (DFT) formalism, will beapproahed in more details in the �fth setion of this hapter.One of the early attempts to estimate the eletron-eletron interation in solids and in-trodue the harge dependent total energy in solids is that of the Thomas-Fermi model[32, 33℄, the Hartree-Fok approximation and the X-α method of Slater [34℄. The exten-sion of these ideas, whih have given rise to a revolution in the parameter-free ab-initiodesription of omplex eletroni struture, is known as DFT. This was established byHohenberg and Kohn [35℄ and Kohn and Sham [36℄.
3.3 The Hohenberg-Kohn theoremThe �nding of Hohenberg and Kohn for non-magneti systems with a non-degenerateground state is based on two theorems.Theorem 1 For a given external potential υ, the total energy of a system is a unique fun-tional of the ground state eletron density.Theorem 2 The exat ground state density minimizes the energy funtional E[n(r)]. Abrief demonstration is provided in the Hohenberg-Kohn paper [35℄. In their paper, theHamiltonian H is de�ned as, H = T + V +W , for whih T represents the kineti energyof the system, V the interation of the eletrons with an external potential and W theeletron-eletron interation. The solution of this Hamiltonian is the many-body wavefuntion Ψ(r1, r2, . . . rN), and we have

HΨ = EΨ. (3.14)24



Density Funtional TheoryThe eletron density an be alulated from
n(r) =

〈

Ψ

∣

∣

∣

∣

∣

N
∑

i=1

δ(r− ri)

∣

∣

∣

∣

∣

Ψ

〉 (3.15)The extension of these theorems to the spin polarized systems an be done by inludingan external magneti �eld, B(r), so that the Hamiltonian beomes H = T +U+W , where
U =

∫

υ(r)n(r) − B(r) · m(r)d3r.Using the variational priniple (in the same way as it was used to demonstrate theorem1) one an show that the ground state energy is a unique funtional of the eletron andmagnetization density (n(r) and m(r)). Using the theorems above to get a pratialsheme to use DFT in desribing solids Kohn and Sham [36℄ have shown that insteadof solving the many-body equation (3.14), it su�es to solve an e�etive one-partileequation.3.4 The Kohn-Sham equationsAn important step on the way to �nding an appliable approximation of the Hohenberg-Kohn funtional energy is the Kohn-Sham [36℄ equations.The main idea of their theory is to approximate the many-body equation (3.14) by a setof e�etive one-partile equations
[−∇2

2
+ Veff(r)

]

ψi(r) = ǫiψi(r), (3.16)where the e�etive potential Veff (r)

Veff(r) = Vext(r) +
e2

4πǫ0

∫

n(r′)

|r− r′|d
3r′ + Vxc(r), (3.17)where the �rst term is the external potential generated by the nulei, the seond term isthe eletrostati potential and the last is the exhange-orrelation potential supposed toinlude all many body e�et. The density is now onstruted using

n(r) =
N
∑

i=1

|ψi(r)|2, (3.18)where the sum runs over all oupied states.The set of equations (3.16-3.18) represents the Kohn-Sham equations. The Kohn-Shamequation (3.16) an be viewed as a Shrödinger equation in whih the external potentialis replaed by the e�etive potential (3.17), whih depends on the density. The densityitself depends on the one-partile states ψi. The Kohn-Sham equation therefore needs tobe solved in a self-onsistent manner. The total energy funtional E[n(r)] expressed interms of the one partile energies ǫi (the Fok eigenvalues) has the form
E[n(r)] = T0[n(r)] +

∫

n(r)Vext(r)d
3r +

e2

8πǫ0

∫ ∫

n(r).n(r′)

|r− r′| d3rd3r′ +Exc[n(r)], (3.19)where T0[n(r)] aounts for independent-eletron kineti energy. This kineti energy anbe expressed in terms of the one partile energies ǫi (the Fok eigenvalues) as
T0[n(r)] =

∑

i

ǫi −
∫

Veff(r)n(r)d3r. (3.20)25



Density Funtional TheoryThe whole total-energy funtional an then be rewritten by using (3.20) as
E[n(r)] =

∑

i

ǫi −
e2

8πǫ0

∫ ∫

n(r).n(r′)

|r − r′| d3rd3r′ −
∫

Vxc(r)n(r)d3r + Exc[n(r)]. (3.21)The exat exhange-orrelation potential Vxc and funtional Exc[n(r)] are however notknown and further approximations are needed for the solution of the eletroni strutureproblem.3.5 The Loal Density ApproximationSine the �rst three terms on the right hand side of equation (3.19) are possible to alulatenumerially, in this way the problem of the omplexity of the fully interating system ismapped onto the problem of �nding the exhange and orrelation funtional. The mostommon and widely used approximation of the exhange-orrelation funtional is the loaldensity approximation (LDA) where the exhange-orrelation energy is assumed to be asin an homogeneous uniform eletron gas,
Exc[n(r)] =

∫

ǫhom
xc [n(r)]n(r)d3r, (3.22)where ǫhom

xc is the sum of the exhange and the orrelation energy density of the uniformeletron gas of density n(r). The exhange energy an be alulated analytially andthe orrelation energy has been alulated to great auray numerially from quantumMonte Carlo methods [37℄. The exhange-orrelation potential V LDA
xc (r) is the funtionalderivative of ELDA

xc , whih an be written as
Vxc(r) =

δExc

δn
= ǫxc[n(r)] + n(r)

δǫxc[n(r)]

δn(r)
. (3.23)The most early attempts to parametrize the exhange-orrelation energy ǫxc are those ofBarth and Hedin [38℄. The form suggested by von Barth and Hedin is given by

ǫxc(n↑, n↓) = ǫPxc(rs) + [ǫFxc(rs) − ǫPxc(rs)]f(n↑, n↓), (3.24)where
f(n↑, n↓) = [(2n↑/n)4/3 + (2n↓/n)4/3 − 2]/(24/3 − 2), (3.25)

n↑ and n↓ represent respetively the spin-up and spin-down omponents of the total harge
n (n = n↑ + n↓), and rs is de�ned by

(4/3)πr3
s = 1/n. (3.26)The paramagneti and ferromagneti exhange-orrelation energies ǫPxc,ǫFxc in equation(3.24) are given by

ǫixc = ǫixc(rs) − ciG(rs/ri), i = P, F (3.27)where ǫPx = −0.91633/rs, ǫFx = 21/3ǫPx ,
G(x) = (1 + x3) ln(1 + 1/x) − x2 + x/2 − 1/3, (3.28)and cP , cF , rP , rF were hosen by �tting equation (3.24) to ǫxc for the homogeneouseletron gas. The resulting parameters [38℄ are:
CP = 0.045, rP = 21, cF = cP/2, rF = 24/3rP (3.29)26



Density Funtional TheoryThe ommonly used parametrization is that of Moruzzi et al. [39℄. The orrespondingparameters are:
CP = 0.0504, rP = 30, cF = 0.0254, rF = 75. (3.30)Aording to (3.24) and (3.23) the resulting potential takes the form:

V σ
xc = [4/3ǫPx (rs) + γ(ǫFc (rs) − ǫPc (rs))](2nσ/n)1/3

+µP
c (rs) − γ(ǫFc (rs) − ǫPc (rs)) (3.31)

+[µF
c (rs) − µP

c (rs) − 4/3(ǫFc (rs) − ǫPc (rs)]f(n↑, n↓),where
µP

c (rs) = −cP ln(1 + rs/rP ),

µF
c (rs) = −cF ln(1 + rs/rF ), (3.32)

γ = 4/3(21/3 − 1).This potential is referred to as the LDA exhange-orrelation potential in the rest of themanusript.Although the loal density approximation is rather simple and expeted to be valid onlyfor homogeneous ases, it turns out that it usually works remarkably well even for inho-mogeneous ases. However, for solids LDA very often gives too small equilibrium volumes(∼ 3%) due to overbinding. A simple improvement to the LDA that orrets the lattieparameter is based on the generalized gradient approximation (GGA).3.6 The Generalized Gradient ApproximationEven though the LDA approximation has been suessfully applied to systems with spa-tially varying harge density, it is rather valid for systems with nearly onstant hargedensity. In order to understand the e�et of the harge density variation in terms of theexhange-orrelation interation many attempts have been done so far. One of these at-tempts has given rise to the so-alled generalized gradient approximation (GGA), wherenot only the density itself enters in the exhange-orrelation energy but also its loalgradient. The most suessful one is the one suggested by Perdew and Wang (PW91)[40℄ and its simpler form by Perdew, Burke and Ernzerhof (PBE) [41℄. We fous hereon the latter one, whih will be heneforth referred to as the GGA exhange-orrelationpotential.The exhange-orrelation energy has now the form:
EGGA

xc =

∫

n(r)ǫhom
xc (n(r), |∇n|)d3r. (3.33)Whih an be expressed as [41℄:

EGGA
xc =

∫

f(n↑, n↓,∇n↑,∇n↓)d
3r. (3.34)The simpli�ed sheme of the PBE approximation onsists of evaluating separately theorrelation and the exhange energy as follows:

EGGA
c =

∫

[ǫunif
c +H(rs, ξ, t)]d

3r, (3.35)27



Density Funtional Theorywhere rs is the loal Seitz radius (as de�ned by equation (3.26)), ξ is the relative spinpolarization, and t = |∇n|/2φ(ξ)ksn is a dimensionless density gradient. Here φ(ξ) =
[(1 + ξ)2/3 + (1 − ξ)2/3]/2 is a spin saling fator, and ks =

√

(4kF/πa0) is the Thomas-Fermi sreening wave number. The onstruted H funtion has the form:
H = 2γφ3 ln

{

1 +
β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}

, (3.36)where
A =

β

γ

[

exp(−ǫunif
c /(γφ3e2/a0)) − 1

]−1
. (3.37)

β = 0.066725 and γ = (1 − ln 2)/π2. The exhange energy funtional obeys the relation-ship:
Ex[n↑, n↓] = (Ex[2n↑] + Ex[2n↓])/2, (3.38)where

Ex =

∫

nǫx(n)Fx(s)d
3r, (3.39)and

Fx(s) = 1 + κ− κ/(1 + µs2/κ). (3.40)where s = |∇n|/2kFn is another dimensionless density gradient, κ = 0.804 and µ =
0.21951 are �tting parameters found optimal over a large number of systems.It is worth mentioning here that like LDA the GGA approximation obeys the exhangeand orrelation hole density sum rules, �rstly derived for LDA (Ref. [42℄ and referenestherein):

∫

nx(r, r
′)d3r′ = −1, (3.41)

∫

nc(r, r
′)d3r′ = 0, (3.42)and the negativity ondition of the exhange hole:

nx(r, r
′) ≤ 0, (3.43)where r′ = r + u and nx(r, r + u), nc(r, r + u) are respetively the exhange and the or-relation hole density of radius u surrounding the eletron at r aording to the exhange-energy de�nition of Gunnarson and Lundqvist [43℄: the exhange-orrelation energy isthe eletrostati interation of eah eletron at r with the density nxc(r, r + u) = nx + ncat r + u of the exhange-orrelation hole whih surrounds it. In other words, Theexhange-orrelation energy is the sum of eletrostati interation energies over all ele-trons, whereby that situated at, say, r, interats only with the exhange-orrelation hole

nxc(r, r+u) it arries around. Figure 3.1 illustrates the di�erene between the exhange-orrelation potential alulated using the GGA and LDA. As it an be seen from the�gure, although both approximations lead to small di�erenes for di�erent radii (be-ause eah of them is satisfying the same sum-rules), this di�erene is loally pereptible(varying from 0.01 to 0.1 Htr). We have to mention here, that ompared to the LDAexhange-potential the GGA one leads to better strutural properties, i.e., it gives lattieparameters in better agreement with experiments, and gives somewhat a better estimationof the semiondutors energy gaps. However both the LDA and GGA potentials su�erfrom the self-interation ontribution. Perdew and Zunger [12℄ have tried to remove this28
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Figure 3.1: (Color online) The di�erene between the GGA exhange-orrelation andthat of the LDA up to the mu�n-tin radii for gadolinium metal Gd. The spin up part(in blak) and the spin down part (in red).ontribution whih is not in Hartree-Fok based methods. Their self-interation orre-tion onsists in proposing an exhange-orrelation potential parametrization so that thesum of the self-interation oming from the Coulomb interation and that oming fromthe exhange-orrelation tend to anel eah other:
U [nl,σ] + ECoulomb [nl,σ] = 0, (3.44)where l is the orbital quantum number and σ the spin. Although this approximation hasled to a good desription (improved total energy and separate exhange and orrelationpiees of it, and improved desription of the harge density) of light atoms and a numberof monovalent metalli atoms ompared to the Hartree-Fok one, it has not been ableto remove this self-interation for extended systems suh as moleules and solids withloalized orbitals.A powerful alternative is the so-alled LDA(GGA)+U method, whih allows us not onlyto keep the LDA(GGA) potential but also to add the intra-atomi Coulomb intera-tion, partiularly neessary for strongly loalized and orrelated eletrons systems. TheLDA(GGA)+U method should be e�ient to remove of the self-interation of loalizedorbitals.3.7 The LDA(GGA)+U methodThe LDA+U method [44℄, whih is a generalization of the Hubbard model [3, 4, 5, 6℄, isaimed to inlude the intra-atomi Coulomb interation U in a mean �eld (MF) Hartree-Fok-like manner. The original idea of this method is to add the intra-atomi Coulombpotential for the loalized orbitals to the Hamiltonian. Separating thus the eletronisystem into two systems: a Hartree-Fok-like loalized eletrons d (f ) (with no self-interation) and an LDA deloalized eletrons (with negligible self-interation). Beause29



Density Funtional Theoryof the involved loalized orbitals (d or f ) it would be tehnially pratial to use atomilikeorbitals as basis funtions. The linearized mu�n-tin orbital method (LMTO) in theatomi-sphere approximation [44℄ (ASA) or its full-potential version [45℄ have been the�rst methods within whih the LDA+U method was implemented. We present here theLDA+U implementation within the FLAPW method as it has been desribed by Shiket al. [7℄ without supplying details about the FLAPW method (the FLAPW method willbe disussed in the next setion). The variational LDA+U total-energy funtional takesthe form:
ELDA+U [nσ] = ELDA [nσ] + Eee [nσ] − Edc [nσ] , (3.45)where ELDA [nσ] is the LDA total energy, Eee [nσ] is the eletron-eletron interationenergy of the orrelated orbitals,

Eee =
1

2

∑

σ,σ′

∑

m1,m2,m3,m4

nσ
m1,m2

(〈m1, m3|V ee|m2, m4〉

−〈m1, m3|V ee|m4, m2〉δσ,σ′)nσ′

m3,m4
, (3.46)whih an be also written as [45℄

Eee =
1

2

∑

σ

∑

m1,m2,m3,m4

〈m1, m3|V ee|m2, m4〉nσ
m1,m2

n−σ
m3,m4

+(〈m1, m3|V ee|m2, m4〉
−〈m1, m3|V ee|m4, m2〉)nσ

m1,m2
nσ

m3,m4
, (3.47)and in terms of U and J as [46℄

Eee =
1

2

∑

σ

∑

m1,m2,m3,m4

nσ
m1,m2

n−σ
m3,m4

Um1,m2,m3,m4

+ (Um1,m2,m3,m4 − Jm1,m2,m3,m4)n
σ
m1,m2

nσ
m3,m4

, (3.48)and Edc [nσ] the double ounting part;
Edc =

U

2
n(n− 1) − J

2

∑

σ

nσ(nσ − 1). (3.49)The LDA+U potential whih orresponds to the ELDA+U an be expressed as
V LDA+U =

∑

σ

∑

m1,m2

|m1, σ〉V σ
m1,m2

〈m2, σ|, (3.50)where the potential matrix elements V σ
m1,m2

are de�ned as
V σ

m1,m2
=
∂ELDA+U

∂nσ
m,m′

=
∂Eee

∂nσ
m,m′

− ∂Edc

∂nσ
m,m′

. (3.51)Using (3.45), (3.46) and (3.49), (3.51) an be expressed as:
V σ

m1,m2
=
∑

σ

∑

m3,m4

〈m1, m3|V ee|m2, m4〉n−σ
m3,m4

+ (〈m1, m3|V ee|m2, m4〉

−〈m1, m3|V ee|m4, m2〉)nσ
m3,m4

− δm1,m2U(n− 1

2
) + δm1,m2J(nσ − 1

2
), (3.52)30



Density Funtional Theorywhere nσ = Tr(nσ
m1,m2

) and n =
∑

σ n
σ.Aording to (3.50) the expeted value of V LDA+U is then:

〈ψσ
i |V LDA+U |ψσ

i 〉 =
∑

m1,m2

V σ
m1,m2

nσ
m2,m1

, (3.53)where
nσ

m2,m1
=
∑

i{occ}
〈ψσ

i |m1, σ〉〈m2, σ|ψσ
i 〉, (3.54)is the density matrix, and ψσ

i is the FLAPW wave funtion (see equation 4.55).With the help of the variational prinipal, one an minimize equation (3.45) with respetto ψσ
i :

[

∇2 + V σ
LDA(r)

]

ψσ
i (r) +

∑

m1,m2

V σ
m1,m2

δnσ
m1,m2

δψσ
i

= eσ
i ψ

σ
i (r). (3.55)This set of equations is that of the Kohn-Sham equations with an additional term a-ounting for the U (LDA+U) orretion for seleted Hartree-Fok-like states only.It is worth notiing that the present derivation of the LDA+U method (to whih we willrefer to from now on as the LDA+U method) is rotationally invariant [47℄. That is be-ause the main ingredients used in this formulation are of atomi-HF-equations. In itsatomi limit the eletron-eletron interation takes the form ([45℄ and referenes therein):

〈m1, m3|vee|m2, m4〉 =
∑

k

ak(m1, m2, m3, m4)Fk,

ak(m1, m2, m3, m4) =
4π

2k + 1

k
∑

q=−k

〈lm1|Ykq|lm2〉〈lm3|Y ∗
kq|lm4〉, (3.56)where |l,m〉 are d(f ) spherial harmonis, Fk the Slater integrals and ak are related tothe Gaunt oe�ients through the omplex spherial harmonis.The Slater integrals Fk are given by:

Fk =
e2

4πǫ0

∫ ∞

0

∫ ∞

0

dr1dr2
rk
<

rk
>

Rk,m1(r1)Rk,m2(r1)Rk,m1(r2)Rk,m2(r2), (3.57)where r<(r>) is the lesser (greater) of r1 and r2.The on-site Coulomb and exhange interations U , J are given by:
U =

1

(2l + 1)2

∑

m1,m3

〈m1, m3|vee|m1, m3〉,

J = U − 1

2l(2l + 1)

∑

m1,m3

[〈m1, m3|V ee|m1, m3〉 − 〈m1, m3|V ee|m3, m1〉

=
1

2l(2l + 1)

∑

m1 6=m3,m3

〈m1, m3|V ee|m3, m1〉. (3.58)Although this atomi formulation is appropriate and reliable to inorporate these intra-atomi interations, the eletron-eletron interation (3.56) is unsreened and is thereforeoverestimated.Some attempts have been already made to alulate U and J interations. The results31



Density Funtional Theoryobtained within the onstrained LDA [48℄ alulations have shown the di�ulty of simu-lating the sreening e�et for 3d and 4f systems in an eletron gas, and led to too strong(for 3d metals) and too small (for 4f metals) intra-atomi interations ompared to thatprovided by experiment. It turns out that the most realisti way to get an estimation ofthese intra-atomi interations is to make use of the experimental spetra suh as XPS(X-ray Photoemission Spetrosopy) and BIS (Bremsstrahlung Isohromat Spetrosopy)spetra to extrat the U and J interations and use them as input parameters for LDA+Ualulations (see paper I).One the U and J parameters (the sreened interations) are known, the Slater integralsan be alulated using equations (3.58);for d orbitals (l=2):
U = F0,

J = (F2 + F4)/14;F4/F2 = 5/8, (3.59)for f orbitals (l=3):
U = F0,

J = (286F2 + 195F4 + 250F6)/6435;F2/F4 = 675/451;F2/F6 = 2025/1001.(3.60)Even though the oneption of the LDA+U sheme parametrization (using U and J asparameters) make the ab-initio DFT alulations lose its non-parametrized harater,this method has provided a better desription (ompared to the LDA) of the eletronistruture of transition-metal oxides and Mott-Hubbard insulators suh as NiO and CoO[8, 9, 10, 11℄. We will show in the following hapters that the LDA+U approah is alsoappropriate for desribing eletroni struture of orrelated 4f rare-earth metals (paperI).
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Chapter 4The FLAPW Method
4.1 IntrodutionBefore introduing the full-potential linear augmented plane wave (FLAPW) method, wewould like to give a brief overview of ab-initio methods. Several methods have been de-veloped to pratially solve the Kohn-Sham (KS) equations (3.16). The idea of dividingthe spae into spheres entered at eah atom site, the so-alled mu�un-tin (MT) regions,and the remaining interstitial region was already proposed by Slater [49, 50, 51℄ beforethe KS equations. The onept of this division for a periodi potential orresponds to theAugmented Plane Wave (APW) tehnique. Soon after, this onept has been adopted bythe Korringa [52℄, Kohn and Rostoker [53℄ (KKR) method. The APW method, as all theothers MT orbital based methods, has known some de�ienies. The most problematiis that of the non-linearity of the eigenvalue equations with respet to the energy. Othermethods, suh as the orthogonalized plane wave (OPW) method [54℄ and the linear om-bination of atomi orbitals (LCAO) method [55℄, whih are quite similar to the APWmethod1, have been suessful due to their aurate alulations of partiular rystals.The appliations of the OPW method, however, have been limited primarily to nearly-free-eletron (NFE) rystals. The reasons for that an be summarized in two points. The�rst one is that this method requires the eletrons in the rystal to be separated into oreand itinerant eletrons, and all the non-overlapping atomi states with the neighboringlattie site states are onsidered as ore states, so that the d-states, for example, will beonsidered as suh2. The seond one is that the OPW method is more di�ult to applyto heavy elements sine they have more ore eletron states. Therefore orthogonalizing aplane wave funtion3 to these states requires more e�orts. The ompliations of the OPWmethod had stimulated, at that time, the development of the atually used pseudopoten-tial methods.In the APW method, all that is required is the total eletroni harge density based onatomi self-onsistent alulations.Some years later Andersen [57℄ sueeded in linearizing these eigenvalue equations withinthe same MT model, whih thus has given rise to both the linear mu�n-tin orbitals(LMTO) method and the linear augmented plane wave (LAPW) method.1Terrel has shown that the APW method gives nearly the same results as the OPW method for theBe metal [56℄.2The problem whih we would like to notie here is that though the d-states are relatively narrow anddo not overlap with the other states they are still far from being onsidered as frozen ore states.3The OPW basis funtions are onstruted by orthogonalizing plane waves to the ore states. Theresulting OPW's have nodal harater in the ore region but are essentially plane waves in the outer part.33



The FLAPW MethodOne of the ommonly used methods to solve the Kohn-Sham equations is to use some kindof basis set to represent the Bloh wave funtions. A suitable basis-set hoie suggestedby Bloh's theorem is a sum of plane waves. They have several advantages: the imple-mentation of the plane-waves based methods is rather straightforward beause of theirsimpliity; they are orthogonal and diagonal in momentum. The only problem whiharises from this representation is that it requires so many plane waves to aount for thefast varying eletron wave funtions near the ore. To overome this problem with onlya few basis funtions, one an use a basis set whih ontains radial wave funtions todesribe the osillations near the ore. This is the suggested fundamental idea by Slater[49℄ for the augmented plane wave (APW) method.

Figure 4.1: (a) A typial form of a based APW potential, (b) The representation of spaeinto mu�n-tin and interstitial regions.
4.2 The APW oneptWithin the APW approah, spae is divided into spheres entered at eah atom site (themu�n-tin spheres), and the remaining region is the interstitial region (Fig. 4.1). Insidethe mu�n-tin spheres the potential is of spherial symmetry, and the interstitial potentialis onstant. The single partile wave funtion ψν(k, r), whih desribes the physis withinsuh environment, is therefore expressed in terms of the following basis funtions:

ϕG(k, r) =

{

ei(G+k)r interstitial region
∑

lmA
µG

lm (k)ul(r)Ylm(r̂) mu�n-tin µ. (4.1)Thus, the wave funtion takes the form:
ψ(k, r) =

∑

G

CG
µkϕG(k, r) =

{ ∑

G C
G
µ (k)ei(G+k)r interstitial region

∑

G

∑

lmC
G
µkA

µ
lm(k)ul(r)Ylm(r̂) mu�n-tin µ. (4.2)34



The FLAPW MethodWhere k is the Bloh wave vetor, G is the reiproal lattie vetor, l and m are theangular quantum numbers, and ul is the radial solution of the Shrödinger equation:
{

− ~2

2m

∂2

∂r2 +
~2

2m

l(l + 1)

r2
+ V (r) −El

}

rul(r) = 0. (4.3)Here El is an energy parameter, and V (r) is the spherial omponent of the potential.Sine the ul funtions aount for the regular solutions, the basis funtions inside thespheres should form a ompletely orthogonal basis set and the ul funtions should beorthonormal. Using the Rayleigh expression:
ei(k+G)r = 4π

∑

lm

iljl(|k + G||r|)Y ∗
lm(k̂ + G)Ylm(r̂), (4.4)and the ontinuity of the wave funtions at the boundary of the mu�n-tin spheres, the

AµG

lm (k) oe�ients are alulated aording to:
AµG

lm (k) =
4πil√
Ωul(R)

∑

G

CG
µ (k)jl(|k + G||R|)Ylm(k̂ + G), (4.5)where R is the mu�n-tin radius and Ω is the ell volume.The eigenvalue problem has the following form:

Ĥψν(k, r) = ενkψν(k, r), (4.6)where ν is the band index.Even though plane waves form an orthogonal basis set, the APW funtions do not. Theplane waves in the interstitial region are non-orthogonal, beause the mu�n-tin regions areut-out and, therefore, the integration over r spae (in terms of whih the orthogonality isde�ned) is not arried out over the whole unit ell, but only over the interstitial region. Anadditional ontribution omes from the mu�n-tin regions, this is the so-alled augmentedontribution, whih somehow, make the plane waves oupled to the mu�n-tin funtions(ul(r)Ylm(r̂)).Due to the non-orthogonality of the basis funtions the overlap matrix S:
SG,G′

(k) =

∫

ϕG′(k, r)ϕG(k, r)d3r, (4.7)is not diagonal.Using the wave funtion expansion (4.2), the eigenvalue problem (4.6) an be rewrittenin its generalized form as:
(H(k) − ενkS(k))Cνk = 0 ∀ k ∈ BZ. (4.8)Within the APW method, the El parameters are mapped to the real band energies ενk,thus the ul solutions beome the funtions of these band energies ul(r, ενk), and theequation (4.8) is therefore nonlinear in energy4, so it an no longer be determined bya simple diagonalization. One way of solving this problem is to �x the energy El andsan over k to �nd the solution ul(ενk), whih orresponds to the optimal shape of theband energies ενk, instead of diagonalizing a matrix to �nd all the bands at a given k.The Slater's formulation of the seular equation is, thus, omputationally muh more4The Hamiltonian matrix H depends not only on k, but also on ενk, H(ενk).35



The FLAPW Methoddemanding than an ordinary linear one.Another limitation of the APW method (known as the asymptote problem) is that of thezero value of ul(R) at the MT boundary in equation (4.5). The AµG
lm 's are no longer �nite,and the radial funtion and the plane wave beome deoupled. Further details aboutthe APW method an be found in the book by Louks [58℄, whih ontains several earlypapers inluding Slater's original publiations.These problems are irumvented within the LAPW method proposed by Andersen [57℄.The following setion is devoted to the disussion of the main features of this method.4.3 The LAPW oneptThe basi idea of the linearized version of the APW (LAPW) is to expand the ul funtionsinto a Taylor-series around the El energy parameters

ul(ε, r) = ul(El, r) + u̇l(El, r)(ε− El) +O[(ε− El)
2]. (4.9)Here u̇l denotes the energy derivative of ul, ∂ul(ε, r)/∂ǫ, and O[(ε− El)

2] denotes errorsthat are quadrati in energy. Therefore, aording to the variational priniple the errorin the alulated band energies is of order (ε − El)
4. Beause of this high order, thelinearization works well even over a rather broad energy region.With this linearization, the expliit form of the basis funtions is now as following:

ϕG(k, r) =

{

ei(G+k)r interstitial region
∑

lm(AµG

lm (k)ul(r) +BµG

lm (k)u̇l(r))Ylm(r̂) mu�n-tin µ. (4.10)The values of the oe�ients AµG

lm (k) and BµG

lm (k) are determined by ensuring the onti-nuity of the basis funtions and their derivatives at the mu�n-tin boundary (a detaileddesription of these oe�ients will be provided in the following setions). The energy de-pendene of the Hamiltonian is therefore removed, whih redues the energy searh givenby equation (4.8) to a standard eigenvalue problem of linear algebra. This is a diretonsequene of the disappearane of the disontinuity in the basis funtions derivatives(enountered in the APW method).Taking the energy derivative of equation (4.3);
{

− ~2

2m

∂2

∂r2 +
~2

2m

l(l + 1)

r2
+ V (r) − El

}

ru̇l(r) = rul(r), (4.11)
u̇l an be alulated as a solution of a Shrödinger-like equation.Sine it is no longer neessary to set the energy parameters equal to the band energies, thelatter an be determined by a single diagonalization of the Hamiltonian matrix (equation(4.8)).In order to simplify the alulation of the elements of the Hamiltonian matrix, the nor-malization of ul is required,

∫ RMT

0

u2
l (r)r

2dr = 1, (4.12)whih implies that the energy derivatives of ul, u̇l(r) are orthogonal to the radial funtions,i.e.,
∫ RMT

0

ul(r)u̇l(r)r
2dr = 0. (4.13)36



The FLAPW MethodOne the ul and u̇l are made orthogonal, the basis funtions inside the spheres form aompletely orthogonal basis set, sine the angular funtions Ylm(r̂) are also orthogonal.However, the LAPW funtions are, in general, not orthogonal to the ore states, whihare treated separately in the LAPW method.In some materials the high-lying ore states, the so-alled semiore states, pose a problemto LAPW alulations: they are too deloalized to be desribed as ore states, and toodeep in energy to be desribed as valene (ondution) states5. One of the strategies tooverome this problem is the use of loal orbitals [59℄. The loal orbitals are an extensionto the FLAPW basis, that an be used to improve the representation of the semiorestates. The extra basis funtions are ompletely loalized inside the mu�n-tin spheres,and their values and derivatives fall to zero at the mu�n-tin radii6. This an be ahievedvia a linear ombination inluding three radial funtions, the standard FLAPW funtions
ul and u̇l plus a further radial funtion ullo , where llo is the quantum number l for loalorbitals. This new radial funtion is onstruted in the same way as ul, but with di�erentenergy parameter Ello . A detailed disussion of these problems an be found in the bookby Singh [14℄.The three funtions ul, u̇l and ullo have to be ombined, so that the value and the derivativeof the loal orbital are zero at the mu�n-tin radii. In addition, the resulting radialfuntions an be required to be normalized. Hene, to determine the oe�ients of theradial funtions AµGlo

llom , BµGlo

llom and CµGlo

llom we make use of the following three onditions:
alloul(RMT ) + bllo u̇l(RMT ) + clloullo(RMT ) = 0, (4.14)

allo

∂ul

∂r
(RMT ) + bllo

∂u̇l

∂r
(RMT ) + cllo

∂ullo

∂r
(RMT ) = 0, (4.15)

∫ RMT

0

(alloul(r) + bllo u̇l(r) + clloullo(r))
2r2dr = 1, (4.16)where lo is the index of the loal orbital, whih is neessary beause more than one loalorbital an be added for eah atom.The loal orbitals are �nally oupled to ��titious� plane waves, Glo, in the same way asthe FLAPW basis funtions:

ϕµ,lo
Glo

(k, r) =
∑

m

(AµGlo

llom (k)ul +BµGlo

llom (k)u̇l + CµGlo

llom (k)ullo)Ylm(r̂), (4.17)with (f. equations (4.45))
AµGlo

llom (k) = ei(k+Glo)τ µ

allo4π
1

W
ilY ∗

lm( ̂k + Glo), (4.18)
BµGlo

llom (k) = ei(k+Glo)τ µ

bllo4π
1

W
ilY ∗

lm( ̂k + Glo), (4.19)
CµGlo

llom (k) = ei(k+Glo)τ µ

cllo4π
1

W
ilY ∗

lm( ̂k + Glo). (4.20)In the results hapter we shall show the neessity of treating the 5s and 5p orbitals assemiore orbitals for Gd metal (paper I) and GdN ompound (paper II).Given that the LAPW basis set o�ers enough variational freedom, its extension to nonspherial potentials ould be done with little di�ulty. This leads then to the full-potentiallinearized augmented plane wave method (FLAPW).5The orresponding energy parameter El, is already used to desribe higher loalized valene state.6That is why no additional boundary onditions has to be satis�ed.37



The FLAPW Method4.4 The FLAPW oneptThe full-potential LAPW method (FLAPW) [18, 19℄ ombines the hoie of the LAPWbasis set with the treatment of the full-potential and harge density without any shape-approximation in the interstitial region and inside the mu�n-tins:
V (r) =

{ ∑

G V
G
I eiGr interstitial region

∑

lm V
l,m
MT (r)Ylm(r̂) mu�n-tin, (4.21)the harge density, ρ(r), is represented in the same way as the potential:

ρ(r) =

{ ∑

G ρ
G
I e

iGr interstitial region
∑

lm ρ
l,m
MT (r)Ylm(r̂) mu�n-tin. (4.22)We have to mention here that though the potential is nearly onstant in the interstitialregion (the open systems and the systems with small paking fator), this is not the asefor the most of the metalli materials with relatively high paking fator. It turns outthat on ontrary to the methods using the atomi sphere approximation (ASA)7 [57℄,the FLAPW method aounts for the most realisti potential and leads, therefore, toa realisti distribution of the harge density within the whole spae. In other words,within the FLAPW sheme the harge density is sensitive to the slightest variation of thepotential in the whole spae.As other density funtional theory based odes, the �rst-priniples FLAPW (Fleur ode

Figure 4.2: Typial loop stru-ture of a �rst-priniples odebased on density funtionaltheory.
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[25℄) method is implemented aording to a typial self-onsistent loop (�gure (4.2)). Weprovide in the following subsetions the features of the main steps of a bulk alulation.7In this method the potential is represented by the spherially averaged potentials in the overlappingspae-�lling spheres entered at the atomi nulei; suh treatment of the potential and the harge spae-�lling within both of the regions (mu�n-tin and interstitial) on the same footing was at the origin of theASA method failure for many materials [60℄, i.e., the ondution band struture is strongly dependenton the sphere radius. 38



The FLAPW Method4.4.1 Constrution of the potentialThe total potential onsists of two parts, the Coulomb potential, and the exhange-orrelation potential. The Coulomb potential is omposed of the Hartree potential VH(r)and the external potential of the nulei Vi(r):
Vc(r) = VH(r) + Vi(r). (4.23)One an initial harge density n0(r) (atomi harge) and atom positions (R) are given,the Hartree potential an be determined from the harge density via the Poisson equation:

△VH(r) =
en(r)

ǫ0
, (4.24)in real spae the solution of equation (4.24) is given by:

VH(r) =
e

4πǫ0

∫

n(r)

|r − r′|d
3r. (4.25)In reiproal spae, however, the Poisson equation is diagonal:

VH(G) =
en(G)

ǫ0G2
. (4.26)Therefore, and beause of the representation of the harge density and the potential inthe interstitial region, the solution of the Poisson equation in reiproal spae appears tobe onvenient. However, due to the rather loalized ore and valene states the hargedensity hanges on a very small length sale near the nulei (the mu�n-tin region). Thus,the plane wave expansion of n onverges slowly, and a diret use of equation (4.26) isimpratial. The pseudoharge method [61℄ is used to irumvent this di�ulty.The problem of determining the exhange-orrelation potential is quite di�erent from thatof the Coulomb potential, V σ

xc is a loal quantity and depends only on n↑(r) and n↓(r)at the same position r. Thus, the mu�n-tin and the interstitial regions an be treatedindependently. Furthermore, V σ
xc and ǫσxc are non-linear funtions of n↑ and n↓, and haveto be alulated in real spae. First, n↑ and n↓ are transformed to the real spae, where

V σ
xc and ǫσxc are alulated8, and then bak-transformed. The potential V σ

xc is then addedto the Coulomb potential, yielding the spin-dependent potential V↑ and V↓, whereas ǫσxc isneeded for the determination of the total energy.4.4.2 Constrution of the Hamiltonian matrixThe FLAPW Hamiltonian and overlap matries onsist of two ontributions from the tworegions into whih spae is divided.
H = HI +HMT and S = SI + SMT . (4.27)Both ontributions have to be omputed separately.8As it was explained in setion (3.5) and setion (3.6), V σ

xc and ǫσxc are alulated using either the LDAor the GGA. 39



The FLAPW MethodThe mu�n-tins ontributionBy writing the produt of the radial funtions ul with the spherial harmonis as φlm =
ulYlm, the ontribution of the mu�n-tin to the Hamiltonian matrix is given by:
HG′G

MT (k) =
∑

µ

∫

MT µ

(

(
∑

l′,m′ A
µG′

l′m′(k)φl′m′(r − Rµ) +BµG′

l′m′ (k)φ̇l′m′(r −Rµ)
)

ĤMT µ

(

(
∑

l,mA
µG

lm (k)φlm(r −Rµ) +BµG

lm (k)φ̇lm(r − Rµ)
)

d3r, (4.28)and
SG′G

MT (k) =
∑

µ

∫

MT µ

(

(
∑

l′,m′ A
µG′

l′m′(k)φl′m′(r − Rµ) +BµG′

l′m′ (k)φ̇l′m′(r −Rµ)
)

.
(

(
∑

l,mA
µG

lm (k)φlm(r − Rµ) +BµG

lm (k)φ̇lm(r −Rµ)
)

d3r, (4.29)where ĤMT µ is the salar relativisti Hamiltonian operator. It an be split into two parts,the spherial Hamiltonian Ĥsp (equation (4.3)) and the nonspherial ontributions to thepotential Vns:
Ĥµ

MT = Ĥsp + Vns. (4.30)The funtions φl,m and φ̇l,m have been hosen to diagonalize the spherial part of themu�n-tin Hamiltonian (equations (4.3) and (4.11):
Ĥsp|φl,m〉 = El|φl,m〉 and Ĥsp|φ̇l,m〉 = El|φ̇l,m〉 + |φl,m〉. (4.31)Multiplying these equations by φl′m′(r) and φ̇l′m′(r), respetively, and integrating over themu�n-tins gives:

〈φl′,m′ |Ĥsp|φl,m〉MT µ = δll′δmm′El; 〈φl′,m′ |Ĥsp|φ̇l,m〉MT µ = 0

〈φ̇l′,m′|Ĥsp|φl,m〉MT µ = 0; 〈φ̇l′,m′ |Ĥsp|φ̇l,m〉MT µ = δll′δmm′El〈u̇l|u̇l〉MT µ, (4.32)where the normalization ondition for ul has been used.The above integrations ontain the following type of matrix elements:
tµφφ
ll′mm′ =

∫

MT µ

φl′,m′(r)ĤMT µφl,m(r)d3r. (4.33)Sine the potential is expanded into a produt of radial funtions and spherial harmonis:
V µ(r) =

∑

l′′,m′′

V µ
l′′m′′(r)Yl′′m′′(r̂), (4.34)the orresponding integrals onsist of a produt of radial integrals and angular integralsover three spherial harmonis, the so-alled Gaunt oe�ients:

tµφφ
ll′mm′ =

∑

l′′

Iµuu
l′ll′′G

m′mm′′

l′ll′′ + δll′δmm′El. (4.35)where
Gm′mm′′

l′ll′′ =
∫

Y ∗
lmYl′m′Yl′′m′′dΩ and Iµuu

l′ll′′ =
∫

uµ
l′(r)u

µ
l (r)V

µ
l′′(r)r

2dr, (4.36)as well as similar expressions for Iµuu̇
l′ll′′ and others. Finally, the Hamiltonian and overlapmatrix elements beome:

HG′G
MT (k) =

∑

µ

∑

l′m′,lm

(AµG′

l′m′(k))∗tµφφ
l′m′lmA

µG

lm (k) + (BµG′
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l′m′lmB

µG
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+(AµG′
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l′m′lmB

µG

lm (k) + (BµG′

l′m′ (k))∗tµφ̇φ
l′m′lmA

µG

lm (k), (4.37)
SG′G

MT (k) =
∑

µ

∑

lm

(AµG′

lm (k))∗AµG

lm (k) + (BµG′

lm (k))∗BµG

lm (k)〈u̇l|u̇l〉MTµ. (4.38)40



The FLAPW MethodThe interstitial ontributionThe interstitial ontributions to the Hamiltonian and overlap matrix have the followingform:
HGG′

I (k) =
1

Ω

∫

I

e−i(G+k)r(− ~2

2m
△ + V (r))ei(G′+k)r, (4.39)

SGG′

I =
1

Ω

∫

I

e−i(G+k)rei(G′+k)r. (4.40)The potential is also expanded into plane waves in the interstitial region:
V (r) =

∑

G

VGe
−iGr. (4.41)One the Hamiltonian and overlap matrix are determined in the whole spae (mu�n-tinsand interstitial), the eigenvalue problem (equation (4.8)) will be solved for eah k pointof the Brillouin zone.4.4.3 The mu�n-tin A- and B- oe�ientsWithin the FLAPW method the eletron wave funtions are expanded di�erently in theinterstitial region and in the mu�n-tins. Eah basis funtion onsists of a plane wavein the interstitial region, whih is mathed to the radial funtions and spherial harmon-is in the mu�n-tins. The oe�ients of the funtion inside the sphere are determinedfrom the requirement that the basis funtions and their derivatives are ontinuous atthe sphere boundaries. A plane wave eiKr within the global representation transforms to

ei(RµK)(r+Rµτ ) within the loal representation. Therefore, the Rayleigh expansion (equa-tion (4.4)) expressed in the global frame beomes in the loal frame:
eiKr = eiKτ µ

4π
∑

lm

iljl(|K||r|)Y ∗
lm(RµK̂)Ylm(r̂), (4.42)where K abbreviates G + k, and τ µ is the position of a µ atom type in the global frame.Indeed, K and τ µ looked at from the loal frame viewpoint appear to be transformedaording to the spae group operations {R|t}. More details an be found in the physisdiploma by Philipp Kurz [62℄.The �rst requirement of ontinuity of the wave funtions at the sphere boundary leads tothe equation:

∑
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(AµG

lm (k)ul(RMT ) +BµG

lm (k)u̇l(RMT ))Ylm(r̂)

= eiKτ µ

4π
∑
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iljl(|K||RMT |)Y ∗
lm(RµK̂)Ylm(r̂). (4.43)The seond requirement is, that the derivative with respet to r, denoted by ∂u/∂r ≡ u′,is also ontinuous:
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The FLAPW MethodTherefore, the AµG

lm (k) and BµG

lm (k) oe�ients, whih satisfy these onditions, are deter-mined as:
AµG

lm (k) = eiKτ µ

4π
1

W
ilY ∗

lm(RµK̂)
[

u̇l(RMT )Kj
′

l (RMTK) − u̇
′

l(RMT )jl(RMTK)
]

,

BµG
lm (k) = eiKτ µ

4π
1

W
ilY ∗

lm(RµK̂)
[

u
′

l(RMT )Kjl(RMTK) − ul(RMT )j
′

l (RMTK)
]

, (4.45)where K denotes |K| and W is the Wronskian:
W =

[

u̇l(RMT )u
′

l(RMT ) − ul(RMT )u̇
′

l(RMT )
]

. (4.46)4.4.4 Brillouin zone integration for Fermi energy and Fermi sur-fae energyThe Brillouin zone integrations are involved many times during the self-onsistent loopproedure. They are used to alulate the eletron density, the total energy or the sumof eigenvalues. All these physial quantities depend on the Bloh vetor and the energyband. These integrations are performed over the region of the Brillouin zone where theband energy εν(k) is lower than the Fermi energy. Hene these integrals are of the form:
1

VBZ

∫

BZ

∑

ν{εν(k)≤EF }
fν(k)d3k, (4.47)where f is the funtion to be integrated.Usually the speial points method [63℄ is used to integrate a smoothly varying periodifuntions of k. The funtion to be integrated have to be alulated at a set of speialpoints in the IBZ, eah of whih is assigned a weight aording to the employed point groupsymmetry. Thus, the BZ integration is transformed into a sum over a set of k-points:

∑

k∈IBZ

∑

ν{εν(k)≤EF }
fν(k)w(k), (4.48)where the funtion fν(k) is now a produt of the funtion f (to be integrated) with astep funtion9 that uts out the region of the Brillouin zone, i.e., the band energies arebelow the Fermi energy. In the implementation of the FLAPW method, the Fermi energyis determined in two steps. First, the bands are oupied starting from the lowest energyuntil the sum of their weights equals the total number of eletrons per unit ell, i.e., thedisretized equivalent of equation (4.47) is solved at T = 0. Then, the step funtion isreplaed by the Fermi funtion and the Fermi energy is determined from the requirementthat:

N =
∑

k

∑

ν

w(k, εν(k) −EF ), (4.49)where the weights are given by:
w(k, εν(k) − EF ) = w(k)

1

e
εν(k)−EF

kBT + 1
, (4.50)9This step funtion is replaed by the Fermi funtion 1

e

εν (k)−EF
kB T +1

to aount for the so-alled temper-ature broadening and avoid the problem of the sudden (sharp di�erentiation) variations of the integrandduring the iterations. This is happening usually for bands very lose to the Fermi energy.42



The FLAPW Methodand N is the total eletrons number.The weights w(k,εν(k) − EF ) are stored to be used for later Brillouin zone integrations.The Fermi surfae energy alulation method we have implemented (paper I) is based ona linear tetrahedron method [64℄.Metalli materials are haraterized by a number of partially �lled bands. In suh systemsthe energy of the highest oupied level, the Fermi energy EF , lies within the energy rangeof one or more bands. For eah partially �lled band there will be a surfae in k-spae,separating the oupied levels from the unoupied ones. The set of all suh surfaes isknown as the Fermi surfae. In a �rst step, a reiproal equispaed grid is de�ned. Thenext step onsists of dividing eah submesh ell into a six tetrahedra of equal volume.These tetrahedra are, therefore, seleted aording to the range of the orrespondingeigenenergies10. Figure (4.3) shows the di�erent ontributions to the alulated Fermi

k1=0; e1

k2; e2

k4; e4

k3; e3
S1

S2

S4

S3

Figure 4.3: One of the six tetrahedron of a submesh ubi ell. To eah reiproal spaeorner (k1, k2, k3 and k4) orresponds an eigenvalue (ε1, ε2, ε3 and ε4). The di�erentontributions to the Fermi surfae are presented as hathed planes (notie that only onepossibility out of three may our for eah tetrahedron).surfae energy. Using a linear interpolation of ε(k) and arranging the eigenvalues as
ε1 < ε2 < ε3 < ε4, these ontributions an be enumerated as:1. If ε1 < εF < ε2 < ε3 < ε4 the alulated ontribution to the Fermi surfae is thehathed surfae S1 (see �gure (4.3)).2. If ε1 < ε2 < ε3 < εF < ε4 the alulated ontribution to the Fermi surfae is thehathed surfae S2.3. If ε1 < ε2 < εF < ε3 < ε4 the orresponding ontribution is the sum of the S3 and

S4 surfaes.The surfae areas alulations are provided in Appendix (A).10If the orresponding eigenvalues (ε1, ε2, ε3 and ε4) lie around the Fermi energy, this means that thesetetrahedron should be rossed, in the reiproal spae, by the Fermi surfae.43



The FLAPW Method4.4.5 Constrution of the eletron densityOne the diagonalization of the Hamiltonian is ahieved, the resulting eigenfuntions anbe used to determine the harge density. The eletron density is given by an integral overthe Brillouin zone (f. equation (4.47)):
n(r) =

1

VBZ

∫

BZ

∑

ν{εν(k)<EF }
|ψν(k, r)|2 d3k. (4.51)The summation inludes also the spin-index σ for spin-polarized alulations, while afator �2� has to be added to aount for the spin degeneray. This integration has to betransformed into a weighted sum over the k-points in order to sample the eigenfuntions,where the hoie of k-points and their weights depend on the integration method used.These weights depend not only on the k-points but also on the band energy, beause eahband ontributes to the eletron density only if its energy is below the Fermi energy:

n(r) =
∑

k

∑

ν

|ψν(k, r)|2w(k, εν(k) −EF ). (4.52)Within the FLAPW method the eigenfuntions are presented in terms of the oe�ientsof the augmented plane waves:
ψν(k, r) =

∑

G

CG
ν (k)ϕG(k, r). (4.53)Inside the mu�n-tin spheres eah plane wave is oupled to a sum of spherial harmonisand radial funtions. Hene, in a sphere µ an eigenfuntion is given by:

ψν(k, r) =
∑

G

CG
ν (k)

∑

lm

(AµG

lm (k)ul(r) +BµG

lm (k)u̇l(r))Ylm(r̂). (4.54)By performing a ontration over the plane waves, this equation beomes:
ψν(k, r) =

∑

lm

(Aµ
lm(k)ul(r) +Bµ

lm(k)u̇l(r))Ylm(r̂), (4.55)where
Aµ

lm(k) =
∑

G
CG

ν (k)AµG

lm (k) , Bµ
lm(k) =

∑

G
CG

ν (k)BµG

lm (k). (4.56)Constrution of the eletron density in the mu�n-tinsSubstituting equation (4.55) into equation (4.51) yields the eletron density in the mu�n-tin spheres:
nµ(r) =

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

l′m′

(Aµ
l′m′(k)ul′(r) +Bµ

l′m′(k)u̇l′(r))
∗Y ∗

l′m′(r̂).

∑

lm

(Aµ
lm(k)ul(r) +Bµ

lm(k)u̇l(r))Ylm(r̂)d3k. (4.57)The partile density inside the mu�n-tins is also expanded into spherial harmonis:
nµ(r) =

∑

lm

Cµ
lm(r)Ylm(r̂). (4.58)44



The FLAPW MethodThe oe�ients Cµ
l′′m′′(r̂) an be determined by multiplying equation (4.57) with ∫ dΩYl′′m′′(r̂):

Cµ
l′′m′′ =

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

l′m′

(Aµ
l′m′(k)ul′(r) +Bµ

l′m′(k)u̇l′(r))
∗.

∑

lm

(Aµ
lm(k)ul(r) +Bµ

lm(k)u̇l(r))G
mm′m′′

ll′l′′ d3k, (4.59)where the Gaunt oe�ients (Gmm′m′′

ll′l′′ ) are used as reals. Finally, applying a Brillouinzone integration method yields:
Cµ

l′′m′′ =
∑

l′l

(

∑

k

∑

ν

∑

m′m

(Aµ
l′m′(k))∗Aµ

lm(k)Gmm′m′′

ll′l′′ w(ν,k)

)

ul′(r)ul(r)

+ . . .A∗B +B∗A+B∗B . . . . (4.60)Constrution of the eletron density in the interstitial regionIn the interstitial region the wave funtions are represented in the following form:
ψν(k, r) =

∑

G

CG
ν (k)ei(G+k)r. (4.61)Starting from equation (4.51) the eletron density is expressed as:

n(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

G′G′′

(

CG′

ν (k)
)∗
CG′′

ν (k)ei(G′′−G′)rd3k. (4.62)The eletron density in the interstitial region is also expanded into plane waves:
n(r) =

∑

G

nGeiGr. (4.63)Hene, the plane wave oe�ients of the eletron density are:
nG =

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

G′G′′,G′′−G′=G

(

CG′

ν (k)
)∗
CG′′

ν (k)d3k. (4.64)Therefore the k and state dependent density is given by the momentum spae onvolution:
nG

ν (k) =
∑

G′G′′,G′′−G′=G

(

CG′

ν (k)
)∗
CG′′

ν (k) =
∑

G′

(

CG′

ν (k)
)∗
CG+G′

ν (k) (4.65)For eah oe�ient, a sum over G has to be performed. Consequently, the numeriale�ort put into the determination of nG
ν (k) sales proportional to the number of G-vetorssquared, i.e., proportional to (Gmax)
6. However, nG

ν (k) an be alulated using the fastFourier transform (FFT)11.11This an be done at a (Gmax)3 ln(Gmax)3 numerial e�ort ost instead of (Gmax)6. First, CG
ν (k) isFourier transformed to the real spae, where it is squared on a real spae mesh yielding nν(k, r), then allstates are summed up, and �nally the resulting partile density is bak-transformed to the momentumspae.

CG

ν (k)
FFT−−−→ ψν(k, r)

square−−−−→ nν(k, r)
P

ν−−→ n(k, r)
FFT−1

−−−−−→ nG(k). (4.66)In a last step the plane waves have to be ombined in order to form the three dimensional stars.45



The FLAPW Method4.5 The LDA(GGA)+U approah within the FLAPWThe LDA(GGA)+U implementation within the FLAPW method follows the same logias explained in setion (3.7). The variational LDA(GGA)+U Shrödinger equations arethose of equations (3.55):
[

∇2 + V σ
LDA(r)

]

ψσ
k,ν(r) +

∑

m1,m2

V σ
m1,m2

δnσ
m1,m2

δψσ
k,ν

= εσ
k,νψ

σ
k,ν(r), (4.67)where V σ

LDA(r) is the LSDA or GGA potential alulated using the LDA(GGA)+U hargedensity:
nσ

m1m2
=

∑

k,ν w(ν,k)
[

Alm1(k)A∗
lm2

(k) + 〈u̇σ
l |u̇σ

l 〉Blm1(k)B∗
lm2

(k)
]

;

Alm(k) = 〈uσ
l Ylm|ψσ

k,ν〉 , Blm(k) = 〈u̇σ
l Ylm|ψσ

k,ν〉.
(4.68)and (f. equation (4.69)):

V σ
m1,m2

=

σ′

∑

m3,m4

(〈m1, m3|V ee|m2, m4〉 − 〈m1, m3|V ee|m2, m4〉δσ,σ′)n−σ′

m3,m4

−δm1,m2U(n− 1

2
) + δm1,m2J(nσ − 1

2
). (4.69)The last term of the variational Hamiltonian is alulated from equation (4.68):

δnσ
m1,m2

δψσ
k,ν

= 〈ψσ
k,ν |uσ

l Ylm2〉uσ
l Ylm1 + 〈u̇σ

l |u̇σ
l 〉〈ψσ

k,ν|u̇σ
l Ylm2〉u̇σ

l Ylm1

= [|uσ
l Ylm1〉〈uσ

l Ylm2| + 〈u̇σ
l |u̇σ

l 〉|u̇σ
l Ylm1〉〈u̇σ

l Ylm2|]ψσ
k,ν . (4.70)The U intra-atomi Coulomb interation and the J exhange interation an be alulatedaording to equations (3.58) within an unsreened atomi formulation. Within the Fleurimplementation [25℄, these interations are onsidered as a parameters, and they areusually extrated from experimental results.
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Chapter 5Spin-orbit oupling and the magnetianisotropyIn a ferromagneti material, below the Curie temperature, the total energy is found tobe dependent on the orientation of the magnetization. This is usually what is meant bythe magnetorystalline anisotropy in the literature. Two priniple magneti mehanismsare responsible for suh phenomena. One is the dipole-dipole interation between themoments loalized at di�erent lattie points [65, 66, 67℄. The seond one is related tothe orientation of the spin axis and is of pure relativisti harater appearing only whenthe spin-orbit interation is taken into aount [68℄. The spin-orbit oupling (SOC) pro-vides the mehanism that ouples the spin moment to the rystal generating thereby adependene of the energy from the spin axis.5.1 The Kohn-Sham-Dira equationRelativisti e�ets are important for the orret desription of ore or valene eletrons.Both ore and valene eletrons have �nite wave funtions near the nuleus, where thekineti energy is large. This kineti energy beomes more signi�ant for heavier elementsand ompounds. Additionally, only relativisti e�ets, in partiular the spin-orbit ou-pling, introdue a link between spatial and spin oordinates. Thus, information aboutthe orientation of spins relative to the lattie an only be gained if relativity is taken intoaount. For fully relativisti desription of the eletroni struture all relativisti e�ets,i.e., mass-veloity, Darwin-term, spin-orbit oupling, have to be taken into aount [69℄.However, in many appliations an approximation is used, where the spin-orbit oupling isnegleted. This approximation is alled the salar relativisti approximation. It onsistsin inluding the spin-orbit interation additionally1, either self-onsistently or with theuse of Andersen's fore theorem [70℄.In a relativisti density funtional theory the Kohn-Sham equations have the form of asingle partile Dira equation
{cα · p + (β − 1)mc2 + Veff(r)}Ψ = EΨ, (5.1)

α =

((

0 σx

σx 0

)

,

(

0 σy

σy 0

)

,

(

0 σz

σz 0

))tr
=

(

0 σ

σ 0

)

, (5.2)
β =

(

I2 0
0 −I2

)

. (5.3)1This is known as the seond variational sheme.47



Spin-orbit oupling and the magneti anisotropy
σx, σy, and σz are the three omponents of the Pauli matrix vetor σ, p is the momentumoperator, and In is the (n × n) unit matrix. Veff is the e�etive potential, that ontainseletron-nuleon Coulomb potential, Hartree potential and exhange-orrelation poten-tial. In the ase of spin-polarization, Veff is spin-dependent. Finally, Ψ is the relativistifour omponent wave funtion.The straightforward way to solve this problem would be to expand eah of the four om-ponents of Ψ in terms of the FLAPW basis. However, if all four omponents were treatedwith the same auray, this would result in a basis set whih ontains four times as manyfuntions as in the non-relativisti (non-magneti) ase.The FLAPW implementation we use introdues some approximations to make relativistialulations more e�ient. One of these approximations is the salar relativisti approx-imations, whih has been suggested by D.D. Koelling and B.N. Harmon [71℄, where thespin-orbit term is negleted, and spin and spatial oordinates beome deoupled. Hene,the Hamiltonian matrix redues to two matries of half the size, whih an be diagonal-ized separately. This saves a fator of four in omputing time. The salar relativistiapproximation will be disussed more detailed in the next setion. It should be notedthat relativisti e�ets are only signi�ant lose to the nuleus, where the kineti energyis large. It is therefore reasonable to treat the interstitial region non-relativistially. Thus,merely within the mu�n-tin spheres the eletrons are treated relativistially. Moreover,only the large omponent of Ψ is mathed to the non-relativisti wave funtions at theboundary between the mu�n-tins and the interstitial region, beause the small ompo-nent is already negligible at this distane from the nuleus. The small omponent isattahed to the large omponent, and annot be varied independently. However, this isa somewhat sensible approximation for two reasons: Firstly even inside the mu�n-tinsphere the large omponent is still muh bigger than the small omponent, and plays animportant role, and seondly the two omponents are determined by solving the salarrelativisti equations for the spherially averaged potential. Therefore, they are very wellsuited to desribe the wave funtions.Hene, the size of the basis set and the Hamiltonian matrix remains the same as in non-relativisti alulations, but the problem has to be solved twie, one for eah diretionof spin. This numerial e�ort is equal to that needed in spin-polarized non-relativistialulations.5.2 The salar relativisti approximationAs it was pointed out in the previous setion, the eletrons are only treated relativistiallyinside the mu�n-tin spheres. Thus the �rst problem that has to be addressed is theonstrution of the radial funtion. This is done by solving the salar relativisti equation,inluding only the spherially averaged part of the potential. The starting point is thefollowing Dira equation:

{cα · p + (β − 1)mc2 + V (r)}Ψ = EΨ. (5.4)The solution of equation (5.4) is disussed in many textbooks, e.g., E.M. Rose [72℄. Dueto the spin-orbit oupling ml and ms are not good numbers any more, and they have tobe replaed by the quantum numbers κ and µ (or j and µ), whih are eigenvalues of theoperators K and the z-omponent of the total angular momentum jz (or the total angularmomentum j and jz) respetively. K is de�ned by
K = β(σ · l + 1). (5.5)48



Spin-orbit oupling and the magneti anisotropyThe solution of equation (5.4) have the form
Ψ = Ψκµ =

(

gκ(r)χκµ

ifκ(r)χ−κµ

)

, (5.6)where gκ(r) is the large omponent, fκ(r) is the small omponent, χκµ and χ−κµ are spinangular funtions, whih are eigenfuntions of j, jz, K, and s2 with eigenvalues j, µ, κ(−κ) and s=1/2 respetively. The spin angular funtions an be expanded into a sum ofproduts of spherial harmonis and Pauli spinors, where the expansion oe�ients arethe Clebsh-Gordan oe�ients. The radial funtions have to satisfy the set of oupledequations:
(

−κ+1
r

− ∂
∂r

2Mc
1
c
(V (r) − E) κ−1

r
− ∂

∂r

)(

gκ(r)
fκ(r)

)

= 0, (5.7)with
M = m+

1

2c2
(E − V (r)). (5.8)To derive the salar relativisti approximation D.D. Koelling and B.N. Harmon [71℄ haveintrodued the following transformation:

(

gκ(r)
φκ(r)

)

=

(

1 0
1

2Mc
κ+1

r
1

)(

gκ(r)
fκ(r)

)

. (5.9)Using this transformation equation (5.7) beomes
( − ∂

∂r
2Mc

1
2Mc

l(l+1)
r2 + 1

c
(V (r) − E) + κ+1

r
M ′

2M2c
−2

r
− ∂

∂r

)(

gκ(r)
φκ(r)

)

= 0, (5.10)where M ′ denotes the radial derivative ofM (∂M
∂r
), and the identity κ(κ+1) = l(l+1) hasbeen used. Sine κ is the eigenvalue of K = β(σ · l+1) the term (κ+1)M ′

2M2cr
an be identi�edas the spin-orbit term. This term is dropped in the salar relativisti approximation,beause it is the only one, that auses oupling of spin up and spin down ontributions.The radial funtions gl(r) and φl(r) (the index κ has been replaed by l) an now bealulated from the following di�erential equations:

∂

∂r
gl(r) = 2Mcφl(r), (5.11)

∂

∂r
φl(r) =

(

1

2Mc

l(l + 1)

r2
+

1

c
(V (r) −E)

)

gl(r) −
2

r
φl(r). (5.12)The energy derivative of these equations yields straightforwardly a set of equations for

ġl(r) and φ̇l(r), whih are the relativisti analog of u̇l(r). For numerial reasons thefuntions gl(r) and φl(r) are replaed by pl(r) = rgl(r) and ql(r) = crφl(r).5.3 The spin-orbit oupling implementation within theFLAPWIn the present Fleur ode implementation [25℄ of the FLAPW method the relativistiradial wave funtions are normalized aording to
〈(

gl(r)
φl(r)

)∣

∣

∣

∣

(

gl(r)
φl(r)

)〉

=

∫ RMT

0

(g2
l (r) + φ2

l (r))r
2dr = 1. (5.13)49



Spin-orbit oupling and the magneti anisotropyThe energy derivatives of the radial funtions have to be made orthogonal to the radialfuntions:
〈(

gl(r)
φl(r)

)∣

∣

∣

∣

(

ġl(r)

φ̇l(r)

)〉

= 0. (5.14)So that the salar relativisti FLAPW basis set takes the form
ϕG(k, r) =







ei(G+k)r interstitial region
∑

lm

(

AµG

lm (k)

(

gl(r)
φl(r)

)

+BµG

lm (k)

(

ġl(r)

φ̇l(r)

))

Ylm(r̂) mu�n-tin µ,(5.15)whih is similar to that of a non-relativisti basis set (equation (4.10)).Note that the Pauli-spinors have been omitted, sine the spin-up and spin-down problemsare solved independently within the salar relativisti approximation. Ignoring the spin-orbit oupling term in equation (5.10) the salar relativisti Hamiltonian inluding onlythe spherially averaged part of the potential an be expressed as:
Hsp

(

gl(r)
φl(r)

)

= E

(

gl(r)
φl(r)

)

, (5.16)with
Hsp =

(

1
2M

l(l+1)
r2 + V (r) −2c

r
− c ∂

∂r

c ∂
∂r

−2mc2 + V (r)

)

. (5.17)Thus, the Hamiltonian will be set up and diagonalized in a similar manner to that ofsetion (4.4.2).In a seond step, the spin-orbit oupling is alulated aording to the following relation:
V̂so(r) =

1

2m2c2
~

2

1

r

dV

dr
L.σ =

(

V ↑↑
so V ↑↓

so

V ↓↑
so V ↓↓

so

)

. (5.18)Therefore, the spin-orbit oupling of the two spin hannels is related to the unperturbedpotential2 via the angular momentum operator L and the Pauli spin matrix σ.The 2×2 matrix form is written in spinor basis. The two spin diretions are denoted ↑and ↓. The derivation of the spin-orbit oupling angular part L.σ is supplied in Appendix(B).Finally the salar relativisti Hamiltonian matrix elements will be onstruted as:
Hσ,σ′

ν,ν′ (k) = εν(k)δν,ν′δσ,σ′ +
〈

ψν(k, r)
∣

∣

∣
V̂so

∣

∣

∣
ψν′(k, r)

〉

, (5.19)where the orresponding eigenfuntions are of the form:
Ψn(k, r) =

∑

ν,σ

aσ
ν′,νψν(k, r), (5.20)where ψν(k, r) and εν(k) are the eigenfuntions and the eigenvalues of the Hamiltonian(5.17) alulated without spin-orbit oupling, and n, ν are the band index. As it anbe easily seen from equation (5.20) the n index should be twie that of ν beause of thesummation is arried out over both spins. This leads to a spin mixing3 whih makes thislatter not a good quantum number.2This is the spherial potential of equation (B.4) alulated without inluding the spin-orbit intera-tion.3This e�et results in a lifting of the Kramers degeneray and an be observed in the band strutureof typial magneti metals. 50



Spin-orbit oupling and the magneti anisotropy5.4 Fore-theorem applied to the magneti anisotropyOne of the interesting aspets of the magnetism is that of the magneti anisotropy. Indeedthis anisotropy result from a omplex interplay of the rystal and the magneti degreeof freedom. This interplay is a diret onsequene of the spin-orbit oupling [68℄. In 3dmagneti materials for example, the magnetorystalline anisotropy energy (MAE) is foundto be of about some µeV [73, 74℄ for bulk and up to some meV [75, 76℄ for surfaes andthin �lms. Aording to the Bruno [75℄ and van der Laan [77℄ models these small values ofthe MAE is a diret onsequene of the tiny e�et of the spin-orbit oupling. Given thatso small spin-orbit oupling ompared to the rest of the ontributions to the Hamiltonian,this oupling an be treated as a perturbation in the same way that is explained inthe previous setion. In this respet, beause of the omputational e�ort saving gainedby the fore theorem [70℄ approximation many omputational investigations [78, 79, 80℄have been performed to explain the orresponding experimental results [81, 82℄. Theseinvestigations have allowed a better understanding of the MAE of magneti 3d basedmaterials. However, magneti 4f material anisotropy is only rarely studied. In order toget insight into the magneti anisotropy in 4f rare-earth magneti metals we have hosento work with the gadolinium (Gd) materials. This hoie was motivated by the interestingmagneti properties of Gd, espeially its high spin magneti moment.The MAE is de�ned as the di�erene in energy:
MAE ≡ E(hard axis) −E(easy axis). (5.21)Sometimes, sine the hard and easy axes are not known in advane the de�nition of theMAE is the one used in paper III, where, in a hp rystal, we onsidered

MAE ≡ E(a axis) − E( axis). (5.22)Further, one an de�ne an anisotropy energy, or the energy dependene from the magne-tization orientation, EA(θ) as
EA(θ) ≡ E(θ) −E(ref. axis), (5.23)where ref. axis indiates the axis hosen as referene (typially the easy axis or a symmetryaxis of the rystal) and θ is the angle measured from it. The anisotropy energy an alsobe expanded as

EA(θ) = K1sin
2(θ) +K2sin

4(θ) + (K3 +K4cosφ)sin6(θ) + . . . (5.24)where Ki are the anisotropy onstants, whih are inreasingly small.5.5 The fore theoremThe fat that the spin-orbit interation an be introdued as a perturbation to salarrelativisti systems an be exploited in order to speed up the evaluation of the MAE. Theway to do so is given by the fore theorem for band struture alulations [70℄. Let usonsider an unperturbed system4 with its total energy given by equation (3.19):
E = T0[n(r)] +

∫

n(r)υ(r)d3r +
e2

8πǫ0

∫ ∫

n(r).n(r′)

|r − r′| d3rd3r′ + Exc[n(r)]. (5.25)4The perturbation will be, for our purposes the SOC, but, the theorem for more general.51



Spin-orbit oupling and the magneti anisotropyBy swithing on a perturbation, one introdues a hange in the total energy, to the �rstorder in the harge density, δn, equal to
δE = δT0[n(r)] +

∫

δn(r)υ(r)d3r

+
e2

4πǫ0

∫ ∫

n(r).δn(r′)

|r − r′| d3rd3r′ +

∫

µxc[n(r)]δn(r)d3r +O(δn2) (5.26)
≡ δT0[n(r)] +

∫

V (r)δn(r)d3r +O(δn2),where the hange in the nulei has been disregarded and the identities
Exc ≡

∫

ǫxc[n(r)]n(r)d3r, (5.27)
δExc

δn(r)
= Vxc(r) = n(r)

δǫxc[n(r)]

δn(r)
+ ǫxc[n(r)], (5.28)

V = υ(r) + VH + Vxc, (5.29)have been used. The last equality is that of the total Kohn-Sham potential of equation(3.17). Aording to equation (3.20) the kineti energy an be rewritten in the form
T0[n(r)] =

∑

i

ǫi −
∫

V (r)n(r)d3r, (5.30)therefore, its hange is (also to the �rst order in the harge density hange)
δT0[n(r)] = δ

∑

i

ǫi −
∫

δV (r)n(r)d3r −
∫

V (r)δn(r)d3r. (5.31)Thus, if the potential is kept frozen, a substitution of equation (5.31) in (5.26), yields
δE = δ

∑

i

ǫi, (5.32)whih is the fore theorem we wanted to derive and is valid to order O(δn). The reasonwhy we wanted to show here the derivation of equation (5.32) is that it is interesting tosee that some hanges in the single ontributions to the total energy are not zero but theypartially anel eah other to �rst order.Sine the hange in the total energy in a frozen potential is equal to just the hange in theeigenvalue sum, one alulate this latter, less omputationally demanding quantity5, inorder to obtain the former. A large number of evaluations of MAE via the fore theorem invarious elements and ompounds have been arried out in the past 20 years [83, 84, 78, 85℄,showing that ontributions of order O(δn2) are most often negligible and that the hangein the eigenvalue sum is very lose to the total energy hange.5Using the fore theorem, a self-onsistent alulations is performed without inluding the SOC. Sineall one needs is the di�erene of the eigenvalues sum for two magnetization diretions, one iteration wouldbe su�ient to introdue the spin-orbit interation.52



Spin-orbit oupling and the magneti anisotropy5.6 The peuliar MAE of GdGd metal is in the middle of the rare-earth (RE) series and its f -shell is half �lled.This means that, in a Russel-Saunders (RS) sheme, no orbital moment is to be ex-peted from the f -eletron shell. Beause of the spheriity of the 4f shell, one expetsno rystal eletri �eld (CEF) ontribution to the anisotropy and indeed the MAE of Gd(∼35µ eV/atom) is two order of magnitude smaller than the MAE of other RE metals(∼ meV/atom). The relevant question one may ask is therefore, where does the observedMAE of Gd originate from? In paper III we addressed this question and we found that thisondution band MAE is ompletely driven by the SOC band struture anisotropy (�gure(5.1)). Our alulated anisotropy is found to be in exellent agreement with experiment[86℄, and an be explained by the Bruno model [75℄, aording to whih for spherial shellthe magneti anisotropy stems from the orbital magneti moment anisotropy:
EA(θ) = ∆E(θ, 0◦) = − ξ

4µB

(

[µ↑
orb(θ) − µ↓

orb(θ)] − [µ↑
orb(0

◦) − µ↓
orb(0

◦)]
)

, (5.33)where ξ is the spin-orbit parameter for 5d Gd orbitals and µσ
orb the orbital moment of thespin σ.Our results make the lassial dipole anisotropy ontribution laimed by Colarieti-Tostiet al. [87, 88℄ doubtful. The fore-theorem investigations of this work have shown thatthe Gd MAE stems from an interplay between the dipole interation of the large loalized

4f spin moments and the SOC ondution band MAE. This MAE was found to explainwell the observed anisotropy energy [86℄, EA(θ).
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Chapter 6X-ray Magneti Cirular dihroism
6.1 HistorySine the x-ray disovery by Röntgen [89℄ in 1895 a onsiderable attention and e�ort havebeen devoted to the use of the x-ray in di�erent researh areas. Some years after the�nding of Röntgen, Bassler disovered the polarized harater of this light as presented inhis thesis: �Polarization of x-rays evidened with seondary radiation� [90℄. To go furtherin the understanding of this x-rays properties many experiments were set up to observethe interation of light with magneti materials [91℄ or non-magneti materials with anexternal magneti �eld, e.g., aluminium, arbon, opper, iron, nikel, platinum, zin andsilver [92℄. The in�uene of the magnetism on x-ray absorption have then been investi-gated measuring the di�erene of the absorption (or the ross-setion) rate between twodi�erent orientations of the magnetization. Unfortunately the tiny amount of this ab-sorption di�erene rate has made the results of Bassler [90℄ questionable if not doubtful.The measurements reorded using the equipment of that time does not have a su�ientsensitivity [93℄ and have given rise to a long ontroversial debate [94, 95, 96, 97℄.In 1983, G. Shütz and her olleagues [98℄ onentrated their e�orts on the use of irularlypolarized x-rays in order to eluidate the in�uene of the magneti state of iron on x-rayabsorption spetra. Again, the sensitivity of the experimental setup was not high enoughto detet in this energy range any spin-dependent ontribution to x-ray absorption. Oneyear later, the attempt of Keller and Stern [99℄, despite of the use of a synhrotron ra-diation, has failed to reveal the dihroism of Gd in Gd18Fe82 alloy beause the irularpolarization rate of the inident x-rays was only 5%. Shortly later, the existene of x-raymagneti irular dihroism (XMCD) was proved experimentally by Shütz et al. at theFe K edge in an iron foil [100℄ and at the L edges of Gd in Gd3Fe5O12 [101℄1.The �rst theoretial investigation of XMCD was performed by Erskine and Stern [103℄.Unfortunately, very few people paid attention to their band struture alulation ofXMCD at the M2,3 absorption edges of ferromagneti nikel. The most important �ndingfrom a theoretial point of view whih marked the beginning of modern days for XMCDis that of Thole and oworkers [26, 27℄. They onsidered a single ion eletri dipoletransitions model and derived a magneto-optial sum rules relating separately, integratedintensities of XMCD spetra to the ground-state orbital [26℄ and spin [27℄ moments. Thesesum rules provided experimentalists with a powerful tool to analyze XMCD spetra and toextrat magneti moments magnitudes and diretions, with the full bene�t of the element1A more detailed Story of the XMCD an be found in the setion entitled �X-ray Magneti CirularDihroism: Historial Perspetive And Reent Highlights� by Andrei Rogalev et al.[102℄55



X-ray Magneti Cirular dihroismand orbital seletivity of x-ray absorption spetrosopy.6.2 TheoryWe have devoted this setion to our implementation of XMCD alulations within theFleur ode. However, before presenting the theoretial bakground of this implementationit would be interesting to remind previous attempts to model, simulate and understandexperimental dihroi x-ray absorption spetra.The �rst theoretial investigations of XMCD are those of Thole et al. [104℄ who imple-mented an atomi multiplet approah [105℄. This approah is based on an empirial atomialulation. In addition to the absene of the hybridization e�et this method (as all theothers empirial methods) relies on the experimental spetra. Calulations applying thismethod to the 3d94fn+1 multiplets of the M4,5 edges of Lanthanides are summarized inthe paper of Thole et al. [106℄. Some years later Chen et al. [107℄ made use of the Erskineand Stern model2 [103℄ for their experimental L2,3 edges spetra of nikel. The disagree-ment between the measured branhing ratio and that predited by the model has beenasribed to the hange of spin dependent unoupied density of states near the Fermilevel aused by the spin-orbit oupling e�et. A year later the same group [108℄ pub-lished results of a tight-binding analysis in whih they presented an attempt to inludethe spin-orbit oupling for d valene states. The valene spin-orbit ξ and exhange split-ting ∆ex parameters extrated from numerial experiments are found to be respetivelylarger and smaller than those of the ground-state to ahieve an optimal agreement be-tween the simulated and experimental spetra. Later Smith et al. [109℄ inluded properlythe spin-orbit oupling within a tight binding sheme. The results for nikel are not toodi�erent from those of the previous alulation [108℄ but the parameters (ξ, ∆ex) foundfor iron revealed the sensitivity of the XMCD spetra on the un�lled d band width. Thedisrepanies between the alulated and the experimental parameters were imputed tomany-body e�ets, e.g., sine the ore hole is reated, the 3d valene eletrons will seea stronger attrative ore potential and the spatial extent of their orbitals will ontrat.Consequently, relativisti e�ets suh as the spin-orbit oupling will be stronger, and theexhange interation among the �rst neighbors will be weaker.The development of x-ray spetrosopy experiments probing the magneti properties ofa large variety of magneti rare-earth materials and the growing interest of the sienti�ommunity toward their appliations in media storage, strong magnets and the emerging�eld of spintronis have stimulated our XMCD alulations for these materials. The dis-overy of XMCD sum rules may be a powerful tool for understanding and haraterizingmagneti properties.In order to study the strongly loalized magnetism of rare earth metals we have imple-mented the XMCD absorption within the dipolar approximation using polar geometry3.Before providing the orresponding theoretial bakground we will brie�y disuss twomuh earlier magneto-optial (MO) e�ets whih are, to some extent, related to XMCD.When the linearly polarized light beam penetrates a magnetized sample, the light willbeome elliptially polarized upon transmission as well as re�etion. No matter whetherthe magnetization is present spontaneously or indued by an external magneti �eld, these2Aording to this model the large spin-orbit oupling of the ore states and it's small value for valenestates should allow us to treat these valene states without spin-orbit oupling.3This on�guration orresponds to the ase where the magnetization diretion is parallel to the wavevetor of the x-ray beam. 56



X-ray Magneti Cirular dihroismphenomena are alled the Faraday [110℄ and Kerr [111℄ e�ets.The quantum mehanial understanding of the Kerr MO e�et began as early as 1932when Hulme [112℄ asribed Kerr e�et to the spin-orbit oupling (SOC).The interation of the eletromagneti radiation with a magneti medium is desribedlassially by Maxwell's equations [113℄:
▽ × E +

∂B

∂t
= 0, (6.1)

▽ · B = 0, (6.2)
▽ × H− ∂D

∂t
= J, (6.3)

▽ · D = ρ, (6.4)where D is the eletri displaement, whih is related to the total eletri �eld E ausedin part by the polarization P of the medium:
D = ǫ0E + P = (1 + χe)ǫ0E = ǫE, (6.5)and B is the magneti indution, whih is related to the marosopi magneti �eld Hresulting from the magnetization M:

B = µ0(H + M) = (1 + χm)µ0H = µH, (6.6)where ǫ0 and µ0 are the vauum permittivity and the vauum permeability, and χe and
χm, are the eletri and magneti suseptibility respetively. Aording to Ohm's law themarosopi urrent density J produed by an eletri �eld E is given by:

J = σ ·E. (6.7)Equations (6.5), (6.6), and (6.7) are known as the material equations. They are knownsuh that beause they haraterize the response funtions of the medium to externalexitations: the dieletri onstant ǫ, the magneti permeability µ, and the eletrialondutivity σ. In general the dieletri onstant is a funtion of both spatial and timevariables that relates the displaement �eld D(r, t) to the total eletri �eld E(r′, t′):
D(r, t) =

∫ ∫ t

−∞
ǫ(r, r′, t′)E(r′, t′)dt′dr′. (6.8)In the following we neglet the spatial dependene of the dieletri onstant and onsideronly its frequeny dependene ǫ(ω). Usually, the e�et of the magneti permeability µ(ω)on optial phenomena is small and we assume that µ(ω) = µ0I where I is a unit tensor.It should be stressed also that ǫ and µ may depend on the �eld strength. In suh aseshigher order terms in a Taylor expansion of the material parameters lead to appearaneof the non-linear e�ets [114℄. Using the material equations and Maxwell equations it anbe easily shown that:

ǫ =
1

ǫ0
(1 + i

σ

ω
). (6.9)For simpliity let us onsider a material of ubi struture with a magnetization M di-reted along z axis. Above the Curie temperature TC the three omponents of the dieletritensor are equal4 so that

ǫ(ω) = ǫI. (6.10)4This is the ase when the dieletri omponents are presented in the ubi prinipal axes. Theprinipal axes are the lassial analogue of the loal frame axes in quantum mehanis.57



X-ray Magneti Cirular dihroismWhen the magnetization M appears below TC the symmetry is lower and ǫ(ω) be-omes [115℄
ǫ(M, ω) =





ǫxx ǫxy 0
−ǫxy ǫxx 0

0 0 ǫzz



 . (6.11)The remaining symmetry of the system depends on the orientation of the magnetization.The omponents of the dieletri tensor depend on the magnetization and satisfy thefollowing Onsager relations
ǫi,j(−M, ω) = ǫj,i(M, ω), (6.12)where i, j = x, y or z. These relations mean that the diagonal omponents of the dieletritensor are even funtions of M, whereas the nondiagonal ones are odd funtions of M. Inthe lowest order in M

ǫxy ∼M, ǫzz − ǫxx ∼M2. (6.13)In the absene of an external urrent (J = 0) and free harges (ρ = 0) Maxwell equationsredue to
▽ × E = −µ0

∂H

∂t
, (6.14)

▽ × H = ǫ
∂E

∂t
. (6.15)After substitution of E and H in a form of plane waves

E = E0e
[−i(ωt−q.r)], (6.16)

H = H0e
[−i(ωt−q.r)], (6.17)one arrives to a seular equation





N2 − ǫxx −ǫxy 0
ǫxy N2 − ǫxx 0
0 0 N2 − ǫzz









Ex

Ey

Ez



 = 0, (6.18)where ω is the frequeny, q is the wave vetor of light and N is a unit vetor diretedalong q (N = q
ω
c). When the light propagates along z diretion, i.e., along M , Ez = 0,and one �nds the eigenvalues

n2
± = ǫxx ± iǫxy. (6.19)This means that the normal modes of the light aounting for the response (the displae-ment �eld D) to the plane-wave �eld (E) are

D+ = n2
−(Ex + iEy), D− = n2

+(Ex − iEy), (6.20)i.e., a left and right polarized light wave with omplex refrative indies of n− and n+,respetively.6.2.1 Faraday e�etIn 1845 Faraday disovered [110℄ that the polarization vetor of linearly polarized light isrotated upon transmission through a sample of thikness l that is exposed to a magneti�eld parallel to the propagation diretion of the light. Indeed, in a ferromagnet the left-hand and right-hand irularly polarized lights (whih my onstitute a linearly polarized58



X-ray Magneti Cirular dihroismlight propagating along the z diretion if they have the same amplitude) propagate gener-ally with di�erent refrative indies or di�erent veloities c/n− and c/n+. When the twotransmitted light waves are ombined at the exit surfae of the sample, they yield againa linearly polarized light, but its plane of polarization is rotated by the so-alled Faradayangle θF given by [116℄
θF =

ωl

2c
Re(n+ − n−). (6.21)The diretion of the rotation depends on the relative orientation of the magnetizationand the light propagation. If two irularly polarized waves attenuate at di�erent rates,then after traveling through the sample, their relative amplitude hange. Therefore thetransmitted light beomes elliptially polarized, with an elliptiity

ηF = −ωl
2c
Im(n+ − n−). (6.22)The elliptiity ηF orresponds to the ratio of the minor to the major axes of the polariza-tion ellipsoid, and is related to the magneti irular dihroism, whih is de�ned by thedi�erene of the absorption oe�ient µ between the right and left irularly polarizedlight

∆µ(ω) = µ+(ω) − µ−(ω) = −4ηF (ω)

l
. (6.23)6.2.2 Kerr E�etAbout 30 years later, Kerr [111℄ observed that when linearly polarized light is re�etedfrom a magneti solid, its polarization plane (the major axis of the ellipse) also rotatesover a small angle with respet to the inident light. Depending on the orientation of
M

(c)

M

(a)

M

(b)

Figure 6.1: The di�erent geometries for the MO Kerr e�et: (a) the polar Kerr e�et, (b)the longitudinal Kerr e�et, () the transversal, or the equatorial Kerr e�et .the magnetization vetor relative to the re�etive surfae and the plane of inidene ofthe light beam, three types of the magneto-optial e�ets in re�etion are distinguished:polar, longitudinal, and transverse (equatorial) e�ets (�gure (6.1). For linearly polarizedinident light the re�eted light will in general be elliptially polarized in the polar Kerrgeometry (Fig. (6.1(a))). The relation between the omplex polar Kerr angle and theomplex refration indies an be derived from the Fresnel relations and is given by [117℄
1 + tan(ηK)

1 − tan(ηK)
e2iθK =

(1 + n+)

(1 − n+)

(1 − n−)

(1 + n−)
. (6.24)For most materials the Kerr rotation is less than 1 deg. For more detailed explanationsfor these e�ets and related results the reader is advised to see the hapter of referene[118℄. 59



X-ray Magneti Cirular dihroism6.2.3 The XMCD formalismIn the previous setion the response of the medium to eletromagneti waves was de-sribed in a phenomenologial manner in terms of the frequeny dependent omplex di-eletri onstant and ondutivity. Within the linear response theory and using bandstruture methods Callaway and Wang [119, 120℄ have proposed a mirosopi model forthe alulations of the optial ondutivity tensor
σij(ω) =

ie2

m2~V

∑

k

∑

νν′

(f(ǫνk) − f(ǫν′k))
(

ω − ωνν′(k)+iγ

)

M i
νν′(k)M j

νν′(k)

ωνν′(k)
. (6.25)It relates the marosopi optial ondutivity to the sum of interband transitions be-tween Bloh states ψνk and ψν′k with energies ǫνk and ǫν′k, where ν and ν ′ being the bandindies, V the unit ell volume, f(ǫνk) the Fermi funtion, ~ωνν′(k) = ǫνk − ǫν′k, and

γ = 1
τ
is a phenomenologial relaxation time parameter that takes into aount the �nitelifetime of the exited eletroni states. M i

νν′(k) are the interband eletroni transitionsmatrix elements whih aount for the probability of transition after an eletron-photoninteration takes plaes. This matrix will be onsidered in more details later.The real and imaginary parts σ(1)(ω) and σ(2)(ω) are related by the Kramers-Kronig re-lations [121℄ and an be determined separately. It is important to note that the relation(6.25) was derived for interband transitions, i.e., q = k − k′=0. Usually the missingintraband ontributions depend on lattie imperfetions of the system as well as on thetemperature. These ontributions lie beyond the sope of our manusript and are notonsidered.In reent years the study of magneto-optial e�ets in the x-ray range has gained a greatimportane as a tool for the investigation of magneti materials [122, 123℄. The attenua-tion of the x-ray intensity when passing through a sample of thikness d is given by Beer'slaw:
I(d) = I0e

−µqλ(ω)d, (6.26)where µqλ(ω) is the absorption oe�ient whih in general depends of the wave vetor q,the energy ~ω, and the polarization λ of the radiation. In the x-ray regime the absorptionoe�ient µqλ is related to the absorptive part of the dieletri funtion ǫqλ or the optialondutivity σqλ via [122℄
µqλ(ω) =

ω

c
ǫ
(2)
qλ(ω) =

4π

c
σ

(1)
qλ (ω). (6.27)This means that µqλ(ω) an be evaluated5 using equation (6.25):

µqλ(ω) =
πc2

~ωmV

occ
∑

i

unocc
∑

f

|Mqλ
if |2δ(~ω − Ef + Ei). (6.29)In ontrast to (6.25) in whih the matrix elements of the eletron-photon interation areevaluated between two Bloh states, the matrix elements Mqλ

if are alulated between a5Equation (6.29) an be onsidered as the limit of the real part of the matrix elements (equation(6.25)) when the frequeny (ω) beome too high (x-ray regime). In this ase the frequeny ω an berewritten as ω = ω0 + δω beause of the sharp energy of the involved ore levels, and therefore
1

ω
=

1

ω0 + δω
∼ 1

ω0

. (6.28)This is why the fator 1

ω
is again present in equation (6.29).60



X-ray Magneti Cirular dihroismwell loalized initial ore state i and an extended �nal state f . The sum over initial states
i is usually restrited to one ore shell whih ould be ahieved by an experimental �ne-tuning of a partiular absorption edge. This important property makes x-ray absorptionan element spei� probe.The Mqλ

if transitions matrix aounts for the eletron-photon interation operator
Ĥel−ph = −1

c
JAqλ(r) = −1

c
JeλAe

iqr, (6.30)where Aqλ(r) is the vetor potential with the wave vetor q and polarization λ, J is theeletroni urrent density operator
J = −ecα, (6.31)and α aounts for the eletroni momentum operator6: (~/i)∇. The omponents of thepolarization vetor for linearly polarized light are given by

ex =





1
0
0



 , ey =





0
1
0



 , ez =





0
0
1



 . (6.33)For q pointing along the z axis, left (+) and right (-) irularly-polarized lights are pre-sented by the polarization vetor
e± =

1√
2





1
±i
0



 . (6.34)In order to get insight into the orresponding absorption phenomena one needs to alulatematrix elements of the form
Mqλ

if = 〈ψi|Ĥel−ph|ψf〉. (6.35)It is generally argued that in the frequeny range of onventional optis the amplitude ofthe vetor potential varies only on a marosopi sale. This implies that it is su�ientto expand the exponential fator in (6.30)
eiqr = 1 + iqr − 1

2
(qr)2 . . . , (6.36)and retain just the �rst onstant term, in whih ase only the eletri dipole interation isaounted for. For x-ray regime (XMCD) the next term in the expansion that representsthe quadripolar interation may also be important. However, Arola et al. [124℄ showed thatthe ontribution from the quadripolar interation to the K edge ross setions of iron is twoorders of magnitude smaller than that of the eletri-dipole ontribution. We have alsoshown that for bulk gadolinium (paper I) as well as for gadolinium ompounds (paper II)(GdN) our dipolar XMCD alulations led to a good agreement with experiment withoutneed for inluding the quadripolar ontribution. Within the dipolar approximation theabsorption oe�ient redues to

Mqλ
if = 〈ψi|αeλ|ψf 〉. (6.37)6Within the salar-relativisti approximation (see setion(5.2)) the total momentum operator is ex-pressed as:

α = p +
~

4mc2
σ × ∇V =

~

i
∇ +

~

4mc2
σ × ∇V, (6.32)while in the non-relativisti ase (c→ ∞) this operator redues to the eletroni momentum operator.61



X-ray Magneti Cirular dihroismThe ec onstant is deliberately omitted. It is worth mentioning that the symmetry re-dution due to the presene of spontaneous magnetization, that leads to the appearaneof nonzero o�-diagonal omponents of the dieletri tensor, e.g. ǫxy in (6.18), ours onlyif both the spin-polarization and the spin-orbit oupling are simultaneously taken intoaount in the alulations. Tehnially speaking, our FLAPW-XMCD alulations areperformed in two steps. Firstly a good onvergene is ahieved (in term of total energyand harge density) within a salar relativisti alulation where the SOC is inluded ina seond variational way, after that one iteration is arried out in order to alulate theabsorption oe�ients using the eletroni wave funtions aounting for the supposedground state. The initial ore wave funtions ψi are given by
ψi = ψjµ =

∑

msc

Cjµ

lcµ−msc, 1
2
msc

ulc(r)Ylcµ−msc
(r̂)χmsc

=
∑

msc

Cjµ

lcmc, 1
2
msc

ulc(r)Ylcmc
(r̂)χmsc

,(6.38)and the �nal wave funtions ψf states are the dispersive (k-dependent) FLAPW valenewave funtions
ψf = ψν(k, r) =

∑

ms

∑

lm

(Alm(k)ul(r)Ylm(r̂) +Blm(k)u̇lYlm(r̂))χms, (6.39)where χsc, χs, msc, and ms are the ore spin funtions, the valene spin funtions, theorresponding magneti quantum numbers respetively. Cjµ

lcµ−ms, 1
2

are the Clebsh-Gordanoe�ients, j is the total momentum of the eletron, lc and l are the ore and valeneangular momentum quantum numbers, µ (or mj) and m are the orresponding magnetiquantum numbers. The ore and valene states are alulated separately and in a di�erentway, that is to say that the ore wave funtions orresponding to deep energy levels aredetermined within a fully relativisti alulation while valene eigenfuntions are evalu-ated within a salar relativisti alulation inluding the SOC as a perturbation (seondvariation approximation). Let us onsider one edge transitions involving the initial jstates and the �nal l states. The Mqλ
if matrix an be rewritten as
Mqλ

if = Mqλ
jµ (k) =

∑

m,ms,msc

Cjµ

lcmc, 1
2
msc

〈ulc(r)Ylcmc
(r̂)|αeλ|(Alm(k)ul(r)Ylm(r̂) +Blm(k)u̇lYlm(r̂))〉δmscms

.(6.40)Using the relation
αeλ =

er.eλ

i

∂

∂r
− 1

r
(er × L).eλ, (6.41)where L is the orbital angular momentum operator, equation (6.40) beomes

Mqλ
jµ (k) =

∑

m,ms

Cjµ

lcmc, 1
2
ms

(〈

ulc(r)Ylcmc
(r̂)

∣

∣

∣

∣

er.eλ

i

∂

∂r

∣

∣

∣

∣

(Alm(k)ul(r)Ylm(r̂) +Blm(k)u̇lYlm(r̂))

〉

−
〈

ulc(r)Ylcmc
(r̂)

∣

∣

∣

∣

1

r
(er × L).eλ

∣

∣

∣

∣

(Alm(k)ul(r)Ylm(r̂) +Blm(k)u̇lYlm(r̂))

〉)

. (6.42)62



X-ray Magneti Cirular dihroismBoth of the terms inside the parenthesis an be separated into radial and angular part as
〈

ulc(r)Ylcmc
(r̂)

∣

∣

∣

∣

er.eλ

i

∂

∂r

∣

∣

∣

∣

(Alm(k)ul(r)Ylm(r̂) +Blm(k)u̇lYlm(r̂))

〉

=

(

Alm(k)

〈

ulc(r)

∣

∣

∣

∣

1

i

∂ul(r)

∂r

〉

+Blm(k)
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ulc(r)

∣

∣

∣

∣

1

i

∂u̇l(r)

∂r

〉)

〈Ylcmc
|er.eλ|Ylm〉 , (6.43)and

〈

ulc(r)Ylcmc
(r̂)

∣

∣

∣

∣

1

r
(er × L).eλ

∣

∣

∣

∣

(Alm(k)ul(r)Ylm(r̂) +Blm(k)u̇lYlm(r̂))

〉

=

(

Alm(k)
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∣

∣

∣
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1

r
ul(r)

〉

+Blm(k)
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ulc(r)

∣

∣

∣

∣

1

r
u̇l(r)

〉)

〈Ylcmc
|(er × L).eλ| Ylm〉 . (6.44)It an be easily seen that the angular multipliative fator of equation (6.43) involves theGaunt oe�ients Gmcλm

lc1l . Using the spherial harmoni relations [125℄:
cos(θ)Ylm =

√

(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
Yl+1m +

√

(l +m)(l −m)

(2l + 1)(2l − 1)
Yl−1m, (6.45)and

[L−, cos(θ)] = ~e−iφsin(θ), (6.46)the angular multipliative fator of equation (6.44) an be expressed as a funtion ofspherial harmonis. Using the mentioned relations, after some algebrai manipulationsthe matrix transitions for di�erent polarizations an be formulated as
Mq+

jµ (k) =
∑

m,ms
Cjµ

lcmc, 1
2
ms

(

−
(

Alm(k)
〈

ulc(r)
∣
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∣

1
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∂ul(r)
∂r

〉

+Blm(k)
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1
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∂u̇l(r)
∂r

〉)√

4π
3
Gmc+1m

lc1l
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(

Alm(k)
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∣

∣

1
r
ul(r)

〉

+Blm(k)
〈

ulc(r)
∣

∣

1
r
u̇l(r)

〉)

1√
2
δmc,m+1

.
(

(l + 1)
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√
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. (6.47)
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∑
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. (6.48)
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+Blm(k)
〈

ulc(r)
∣

∣

1
r
u̇l(r)

〉)

δmc,m

.
(
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))

. (6.49)The brakets in (6.46) denote the ommutator, and θ and φ are the spherial angles.Inserting equations (6.47),(6.48) and (6.49) in equation (6.29) and performing k-integration(aording to the Brillouin zone integration methods explained in setion (4.4.4)) one an�nally alulate the orresponding absorption oe�ients µq+(ω), µq−(ω), and µq0(ω) forleft, right, and z polarized light, and therefore alulate the key physial quantity:
∆µ(ω) = µq+(ω) − µq−(ω) 6= 0. (6.50)63



X-ray Magneti Cirular dihroismIf x-rays are absorbed by a magneti solid the absorption oe�ients for left and rightirularly polarized photons are in general di�erent so that ∆µ 6= 0. This quantity an bemeasured experimentally [100℄ and is alled x-ray magneti irular dihroism (XMCD).As it an easily be seen from equations (6.47), (6.48), and (6.49) the orresponding matrixtransitions elements Mqλ
jµ (k) do not vanish only if






∆l = l − lc = ±1
∆m = m−mc = λ
∆ms = ms −msc = 0

(6.51)These onditions are used to selet the allowed transitions within the dipolar approxima-tion and they are known as the dipole seletion rules.6.3 The XMCD sum rulesMagneti ompounds and alloys haraterization represent one of the outstanding problemin ondensed matter physis. Reently, a onsiderable evolution of the spetrosopitehniques has been ahieved and was helped by theoretial e�orts. With the derivation ofthe sum rules by Thole and oworkers [26, 27℄ XMCD spetrosopy beame the most usedtehnique for studying magneti materials. These sum rules supply a �rm basis to estimatediretly from XMCD spetra the orbital moment (mL = −µB

~
〈Lz〉) and the magnetimoment (mS = −2µB

~
〈Sz〉) ontributions to the total magneti moment assoiated witha spei� state of given symmetry. Thus the magneti spin and orbital moments of theabsorber atom are related to the integrated absorption spetra for a spei� ore shelland polarization of the radiation as

∫

j+

∆µdE −
[

lc + 1

lc

] ∫

j−

∆µdE =
N

nh

[

l(l + 1) − 2 − lc(lc + 1)

3lc
〈Sz〉+

l(l + 1) [l(l + 1) + 2lc(lc + 1) + 4] − 3(lc − 1)2(lc + 2)2

6llc(l + 1)
〈Tz〉

]

, (6.52)and
∫

j++j−

∆µdE =
N

2nh

[

l(l + 1) + 2 − lc(lc + 1)

l(l + 1)

]

〈Lz〉 , (6.53)where N is the total integrated spetrum orresponding to the unpolarized radiation(known also as the isotropi absorption ontribution)
N =

∫

j++j−

(

∑

λ=+,−,0

µλ

)

dE, (6.54)
∆µ = µ+ − µ−,and Tz is the magneti dipole operator

Tz =
1

2
[σ − 3r̂(r̂.σ)]z . (6.55)

∫

j++j−
means that the integral is performed over both of the j+ = l+1/2 and j− = l−1/2edge spetra, e.g., j+ = 3/2 and j− = 1/2 for the L2,3 edges of transition metals, nhdenotes the number of holes or the number of unoupied �nal states, and 〈Sz〉, 〈Lz〉, and64



X-ray Magneti Cirular dihroism
〈Tz〉 are respetively, the expetation values of the magneti moment, the orbital moment,and the magneti dipole operator.The expetation value of the magneti dipole operator aounts for the aspheriity ofthe spin magnetization. This aspheriity an be onsidered as a magneti anisotropyresulting from the spin-orbit oupling or rystal-�eld e�ets. Appendix (C) is devoted tothe implementation of Tz within the FLAPW method.The appliation of these sum rules provide as with the magneti spin and orbital momentssine the expetation value of the Tz operator is determined. In order to extrat thesemoments from the absorption spetra we have implemented (see paper I) the sum rulesfor the di�erent edges:
K

∫ Ecut

EF

∆µdE =
N

nh
〈Lz〉 , (6.56)where

N =
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λ=+,−,0

∫ Ecut

EF

∆µλ, (6.57)
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L2

− µ−
L2

)
]
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3nh

[〈Sz〉 + 7 〈Tz〉] , (6.58)
∫ Ecut
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〈Lz〉 , (6.59)where
N =
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∫ Ecut
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(∆µλ
L3

+ ∆µλ
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), (6.60)and M4,5
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− µ−
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2
(µ+
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− µ−

M4
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3nh
[〈Sz〉 + 6 〈Tz〉] , (6.61)
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EF
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(µ+
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− µ−
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) + (µ+
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M4

)
]

dE =
N

3nh
〈Lz〉 , (6.62)where

N =
∑

λ=+,−,0

∫ Ecut

EF

(∆µλ
M5

+ ∆µλ
M4

). (6.63)The integrations are arried out from the Fermi-energy EF up to an energy uto� Ecut.This energy represents the energy of the top of the �nal magneti states. The number ofholes nh are also alulated from the density of states, and they are determined from theintegration of the unoupied part of the involved density of �nal states.In order to make a useful and relevant appliations of these sum rules one should knowtheir limitations by knowing the assumptions made during the derivation. To derive theXMCD sum rules, the authors have adopted the single ion model ombined with a salarrelativisti approah. The priniple assumption of these sum-rules derivation is that of thetwo-step model [100℄. Depending on the photon polarization, the XMCD transitions willbe ahieved in two steps. Firstly, the ore eletron will hoose one of the spin diretions65



X-ray Magneti Cirular dihroismaording to the ore spin-orbit splitting, that is to say, depending on the enounteredspin-orbit interation and beause of the onservation of the angular momentum duringthe absorption proess the angular momentum arried out by the photon is ompletely orpartially transferred to the photo-eletron , in a seond step the exhange spin-splittingof the �nal state is di�erent whether the spin of the inoming eletron is up or down.this ould simulate the eventual hange of the exhange splitting resulting from the spindependene of the inoming photo-eletron. The others assumptions of the underlyingphysis of the XMCD sum rules are to ignore the following [126℄:1. the exhange splitting of the ore states,2. the aspheriity of the ore states,3. the di�erene between the radial relativisti part of the �nal wave funtions, i.e.,the radial parts ul(r) of p1/2 and p3/2 or d3/2 and d5/2 are the same, and4. the energy dependene of the wave funtion.Despite suh limiting approximations, the validity of the sum rules appears to be nowrather well established, at least in the ases of the L2,3 absorption edges of 3d [127, 128,129℄, 4d [130℄ and 5d [131℄ transition metals. However, one should keep in mind that thereare some problems when applying the sum rules to XMCD spetra. The most severe oneis the separation of the L2- and L3-spetra, e.g., beause of the strong hybridizationbetween the 2p N orbitals and the 4d Gd orbitals in GdN ompound ([132℄ and referenestherein). The 5d-Gd magneti moment extrated from the appliation of the sum rulesto L2,3 edges of Gd ould not aount for the realisti 5d magneti moment sine a partof that moment is supposed transferred or transformed to 2p magneti moment.Apart from this weak point of the XMCD sum-rules, the suessful use we have made ofthe XMCD sum-rules to alulate the magneti moment of Gd atoms in gadolinium bulkhave shown the validity and the usefulness of these sum rules for strongly loalized 4fmaterials (see paper I). This is not surprising sine 4f rare-earth orbitals are so loalizedthat the hybridization with others orbital will be marginal and f states will arry thewhole magneti moment of 4f eletrons. Therefore we expet that 4f magneti materialssuh as rare-earth metals are well studied by XMCD investigations.
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Chapter 7ResultsEah artile will be referred to by its Roman numeral. In the preamble of this hapterwe would like to draw some omments on the results presented in these papers. All thealulations presented in these papers are made by means of the FLAPW method [25℄,whih makes no shape approximation to either the potential or the harge density, andis aknowledged to be the state-of-the-art in eletroni alulations auray. In paper I,a detailed study of the eletroni struture of gadolinium bulk is provided. In the �rstsetion, the ontroversial long debate onerning the manner in whih the Gd f orbitalsshould be treated is presented. This is supported by a quite rih bibliographial work.Then the Gd eletroni struture is reviewed within the LDA(GGA)+U method. Theresults obtained within this method onerning the the photoemission, inverse photoe-mission, the ground-state magneti strutures, as well as the x-ray absorption (XAS) andx-ray magneti irular dihroism (XMCD) of strongly loalized 4f eletrons are foundto be in good agreement with experiment.Paper II is aimed at studying the GdN ompound eletroni struture. Within this paperemphasis is put on strutural properties. In this respet, it was shown that the GdNground state is that of a typial half-metal for the experimental lattie onstant. Underhydrostati pressure the roksalt GdN lattie prefers the wurtzite rystal lattie.In paper III, we present the results onerning the magnetorystalline anisotropy energy(MAE) study of Gd and some of it's ompounds (GdN and GdFe2). One more, theGGA+U is found to be the most adequate to explain the observed magneti anisotropy.That is to say the GGA+U is not only the most appropriate method for eletroni andstrutural properties of strongly loalized 4f eletrons systems but also their magnetiproperties. The fore-theorem alulated MAE showed that for Gd the easy axis of mag-netization lies along the c axis of the hp struture, and for GdN and GdFe2, the threesymmetry equivalent axes (100), (010), and (001) are those of the easy axes of magnetiza-tion. The energy position of the 4f states is shown to be the responsible of the strengthof the MAE of Gd and Gd ompounds.
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Calculated magnetic anisotropy of Gd, GdN and GdFe2
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Abstract

The tiny magnetocrystalline anisotropy energies (MAEs) of bulk Gd, GdN and GaFe2 have

been calculated by means of the the force theorem in conjunction with the full-potential linear

augmented plane-waves (FLAPW) method. The generalized gradient correction including the

Hubbard interaction U (GGA+U) produced the best possible agreement with the experimental

MAE compared to the GGA or the GGA where the 4f states are treated as core electrons (GGA-

core). However, it showed that the magnetization is along c axis in disagreement with experiment

and a recent calculation which showed that the easy axis of magnetization makes an angle of

about 20◦ with the c axis. The GGA+U results are found in good agreement with Bruno’s model.

Therefore, the disagreement with experiment is attributed to possible presence of imperfection in

the hcp structure of Gd, like defect states or dislocations. Because the 4f states of Gd are half-

filled, their orbital moment and spin-orbit coupling are zero, making the Gd MAE tuned by the

spin-orbit coupling of 5d states rather than the 4f like in the case of other rare earth elements, such

as Tb or Dy. The strength of MAE is found to be related to the energy position of the 4f states.

This suggests that the MAE of Gd is much similar to that of a transition metal rather than that of

a typical rare-earth metal such as Tb or Dy. It is not surprising therefore that Gd shows an easy

axis along the (0001) direction like hcp cobalt. However, the MAEs of GdN and GdFe2 compounds

crystallizing, respectively, in cubic rocksalt and Laves phase structures, are more complex than

that of Gd. It is found that the magnetization is along one of the symmetry equivalent (100),

(010), or (001) direction, rather than the (111) direction of fcc nickel, and their respective MAEs

are much smaller than that of Gd.

PACS numbers:

1



Results
I. INTRODUCTION

The magnetocrystalline anisotropy energy (MAE) is the energy required to rotate the

magnetization from its ground state direction called the easy direction to the hardest direc-

tion. This rotation influences the magnetic properties of a films, low-dimensional magnetic

nanostructures or atomic chains. Its application field is growing fast, e.g., permanent mag-

netic materials anisotropy [1–4], perpendicular magnetic anisotropy of ultra-thin films and

surfaces [5–8] or the parallel interfacial magnetic anisotropy of a ferromagnetic (FM) and

antiferromagnetic (AFN) bilayer [9–11] known to be at the origin of the exchange-bias phe-

nomena, are promising for high-density magneto-optical storage media or for spin valve

devices, low-dimensional nanostructures [12]. Atomic chains or nanowires [13] magnetic

anisotropy is a challenging candidate for new high-density magnetic storage materials be-

cause of the peculiar physical properties of the nano-scale materials. The growing interest

of the scientific community working on magnetic anisotropy is therefore not surprising.

The intrinsic coupling between the magnetization and the crystal lattice in ferromag-

nets is insured by the strength of the spin-orbit coupling (SOC). For example, for the 3d

ferromagnets the crystal lattice variation under pressure, doping, alloying or compositional

disorder gives rise to a significant change of the magnetic properties, like the evolution of

the MAE with respect to the pressure in bulk or thin films cobalt (Co) [7, 14], which is

known as the magnetostrictive effect, and was investigated by means of element-specific

x-ray magnetic circular dichroism (XMCD) spectroscopy. In particular, the cubic mag-

netic anisotropy of (Ga,Mn)As ferromagnetic semiconductor is observed to survive under

doping [15], while it changes due to the substrate- or layer-induced strain [8, 16]. It has

also been found that the compositional modulations of Co0.5Pt0.5 alloy have a significantly

enhanced MAE compared to that of the intrinsic L10 structure (3 times larger than that

of the L10 structure) based on calculations within the spin-polarized relativistic Korringa-

Kohn-Rostoker coherent-potential approximation (SPR-KKR-CPA) [1]. The same approach

applied, some years later, to bcc-iron (Fe) based materials showed that the MAE of bcc-Fe

bulk or bcc-Fe1−cVc disordered bulk alloys is altered by volume or concentration variation

[2].

In the previously mentioned investigations for 3d based magnetic materials, the MAE

ranges from a few tenths of µeV for bulk material, e.g., Co bulk [14], to some meV for
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surfaces or alloys, eg., Co0.5Pt0.5 thin film [17] or Fe on W(110) [8]. According to Bruno’s [5]

and van der Laan’s [18] models, this tiny MAE stems mainly from orbital moment anisotropy

due to the small spin-orbit interaction in 3d magnetic materials. However, despite the so

small SOC strength, the corresponding MAE is the result of a complex interplay of the crystal

and the magnetic degrees of freedom. In this respect, the magnetostriction phenomena is

still far from being fully understood. To put it in other words, the understanding of the

complexity of magnetic anisotropy phenomenon is a challenging task not only from the point

of view of practical interests but also from that of fundamental physics.

Despite the applications of MAE for many industrial needs, it is surprising to notice that

while it is intensively investigated for 3d based magnetic materials, only a little attention is

paid to that of rare earth materials, such as the gadolinium metal [19–21]. In this respect,

our paper is mainly devoted to the investigation of the magnetic anisotropy of hcp Gd metal

which is known to be the strongest magnetic material of the rare-earth elements, whereas

those of terbium and dysprosium are only invoked for comparison. To get insight into the

MAE of Gd-compounds, the behavior of the Gd MAE in the presence of other elements

GdN and GdFe2 MAE are also calculated and discussed.

To the best of our knowledge, apart from the early MAE Gd investigations of Franse et al.

[20] and that of the recent calculations of Colarieti-Tosti et al. [21], the magnetic anisotropy

of 4f rare earth metals is lacking. Therefore studying the MAE of such materials or their

compounds is enriching. Our MAE calculations for Gd are motivated by its interesting

magnetic properties. Indeed, despite its room temperature Curie temperature, this metal

is found to preserve a considerable spin magnetic moment up to an ultrahigh hydrostatic

pressure of about ∼ 110 GPa [22, 23]. This magnetic moment, of about 7µB, is much higher

than that of 3d transition metal because it stems mostly from the half-filled 4f shell.

In the present work, we made use of the force theorem [24] to study the magnetic

anisotropy of Gd (Tb and Dy), GdN, and GdFe2 within the first-principles FLAPW method.

We have firstly shown that, like for the electronic and structural properties of Gd [25] and

GdN [26] that the GGA+U is also superior to the GGA method in calculating the MAE.

This shows indirectly that the MAE strength is related to the position of the 4f states with

respect to the Fermi level.

This paper is organized as follows. In Sec. II we provide some details of the computational

method and discuss the parameters used in the calculations, such as the values of Hubbard
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U and exchange J used for calculations of the MAE. Sec. III is devoted to the MAE of

Gd, i.e., we show the adequacy and the accuracy of the GGA+U method for force theorem

calculations, as well as the Bruno’s model calculation applied for the first time to study

the MAE of a rare earth Gd. In Sec. IV the magnetic anisotropies of the GdN and GdFe2

compounds are studied, and the manner in which the 4f magnetization might affect the

MAE of Gd compounds is discussed.

II. COMPUTATIONAL DETAILS

The calculations in the present work were made using the FLAPW method [27, 28]

as implemented in the FLEUR code [29]. The lattice parameter constants used for the

calculations are a=6.858 a.u. with a c/a ratio of 1.597 for hcp bulk Gd [30], a=6.858 a.u.

for cubic rocksalt GdN [31], and a=13.96 a.u. for the cubic Laves structure of GdFe2 [32].

In order to calculate the MAE using the force theorem, the SOC is calculated in a second-

variational scheme [25]. For the exchange and correlation potential, we used the generalized-

gradient approximation (GGA) of Perdew-Burke-Ernzerhof [33]. The rotationally invariant

GGA+U method used in this study is similar to the implementation of Shick et al. [34].

For the U and J parameters of the Gd sites required for GGA+U calculations we have used:

U = 7.7 eV, J = 0.7 eV [25], and U = 9.9 eV, J = 1.2 eV [26] for Gd bulk and GdN,

respectively. For GdFe2 we have used those of bulk Gd [35]. The muffin-tin radii Rmt is

set to 2.8 a.u. for Gd, 2.19 a.u. for Fe, and 1.5 a.u. for N. The plane wave cutoff for the

basis functions is set to Kmax = 3.0 a.u.−1 for Gd bulk, Kmax = 4.4 a.u.−1 for GdN, and

Kmax = 3.5 a.u.−1 for GdFe2, the charge density and potential cutoff to Gmax = 9.0 a.u.−1

for bulk Gd and GdN, to Gmax = 11.4 a.u.−1 for GdFe2. The wave functions as well as

the charge density and the potential inside the muffin-tin spheres were expanded on angular

momentum up to lmax = 8 for Gd bulk and GdN, and up to lmax = 10 for GdFe2. For the

Brillouin zone (BZ) integration, we have used the standard Gaussian broadening method

[36] for the force theorem calculated MAE. The convergence of the MAE is obtained using

about 16, 7 and 10 thousand k points in the full BZ, for the case of Gd, GdN, and GdFe2,

respectively.
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III. FORCE THEOREM DETERMINATION OF THE MAE FOR GD METAL

The calculations carried out within the GGA+U method [25, 26]) have provided a good

description of the the electronic properties of the 4f Gd and GdN materials. These results

have motivated our present force theorem calculations of the MAE. At a first stage, we show

that the GGA+U approach is much better than the GGA and GGA-core for the description

of MAE. The force theorem GGA+U calculations explain the observed MAE. Then we use

the same method to predict the rotation that the magnetization might undergo in the case

of GdN and GdFe2 compounds.

A. GGA+U adequacy for magnetic anisotropy calculations

In the last two decades, the force theorem [24] has been an important and efficient tool

for computing the MAE [37–39]. As originally proposed by Van Vleck [40], the magnetocrys-

talline anisotropy originates mainly from the SOC. Its variation might lead to interesting

tuning of the orbital magnetic moments and MAE of complex materials and may lead to

the violation of Hund’s third rule [41]. Indeed, the force theorem based calculations save an

appreciable computational effort and computer CPU time. This is because the simulation

of the magnetization direction changes via the SOC requires only one single iteration of the

Kohn-Sham equations. The basic idea of the force theorem is to introduce the spin-orbit

interaction as a perturbation to the scalar relativistic Hamiltonian. It is shown that the

rotation of the spins is such a tiny perturbation that the electron-electron interaction hardly

changes. We expect therefore that most of the contributions to the total energy remain

unchanged, and subsequently the total energy difference between two spin configurations

with the magnetization along two different polarization directions is given approximately

by the difference between the sums of the eigenvalues up to the Fermi energy. Because

this change of the total energy using a frozen potential approximation is given by the sum

of one-electron energy difference [24], one can calculate this difference, with less computa-

tional effort, by switching on the SOC to diagonalize the relativistic Hamiltonian. This is

the way in which we proceeded during our evaluations of the MAE, i.e., we first make a

self-consistent calculation with a scalar relativistic potential without spin-orbit interaction,

then we calculated the eigenvalues including the spin-orbit interaction for a given spin axis
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without allowing the self-consistent potential to change. Notice that one has to make sure

that the scalar relativistic calculations are converged with the same number of k points as

these used to determine the MAE (see Fig 1 b).
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FIG. 1: (a) The GGA+U calculated MAE of Gd as a function of the angle θ from the c axis (black

circles) and the Bruno model MAE (equation 1) (violet squares) compared to the experimental one

(blue curve) [20]. (b) Difference in the sums of eigenvalues where the magnetization is along the

hard (θ = 90◦) and easy (θ = 0◦) axis, respectively, as a function of the number of k points in the

whole Brillouin zone. The continuous curves are guides for the eye.

B. The Gd (0001) magnetization easy axis

In this section, we discuss the Gd MAE within the GGA+U method. Figure 1(a) shows

the MAE calculations for different angles θ, i.e., the difference of the eigenvalue sums as a

function of the angle θ between the c axis and the magnetization axis. The reference energy

is at θ = 0◦. The GGA+U MAE calculations are in black circles and those calculated

according to the Bruno’s model are in violet squares (equation (1)). As it can be easily seen

from this figure, the minimum of the difference of the eigenvalue sums is obtained for 0◦ and

the maximum for 90◦. These results show clearly that the easy axis of magnetization is lying

at θ = 0◦ and the hard one at θ = 90◦. These calculations were carried out using a sampling
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of around 16000 k-points in the whole Brillouin zone. In order to justify the convergence of

this Gaussian broadening sampling [36], we have performed MAE calculations up to 18000

k points in the BZ. Figure 1(b) represents the MAE convergence according to the set of

k points. This MAE is defined as the difference energy between the hard and easy axis of

magnetization. The overall shape of the MAE presented in figure 1(b) shows that this latter

is sensitive to the k-points number up to the set of 16224 k points. The largest number

considered is 18928 k points and it yields a MAE that deviates by less than 2% from the

MAE using 16224 k points. We have checked the force theorem MAE by directly calculating

the total energy including the spin-orbit coupling in a self-consistent manner. The results

of the calculations showed that the MAE is about 32.14 µeV using 16224 k points, in good

agreement with the converged force theorem calculation (see Fig. 1(b)). We note here

that though the force theorem allows a saving of considerable computational effort, it still

requires a considerable computational time because of the fine grid of k points one should

use to assess the tiny MAE.

Figure 2 summarizes the MAE calculations for the different ways in which the 4f electrons

are treated. In order to compare the GGA+U (figure 1(a)) MAE to the other methods this

latter is represented with the GGA, and the GGA-core. It is worth mentioning here the

controversial debate concerning whether the Gd 4f states should be considered as localized

core states or whether it should be allowed to hybridize as band states (Ref. [25] and

references therein). As it can be easily seen from figure 2, the Gd MAE calculated within

the GGA+U scheme is in much better agreement with experiment (figure 1(a)). The value

of 520 µeV of our MAE, calculated using the standard GGA potential, is in good agreement

with the FP-LMTO calculation of 571 µeV by Colarieti-Tosti et al. [21]. However, within

our FLAPW framework, the core treatment of the 4f electrons leads to a MAE of 87 µeV,

while within the FP-LMTO one [21] it is of about only 24 µeV in disagreement with our

calculation. In order to understand the SOC magnetic-anisotropy in more details, we have

applied Bruno’s model [5] to calculate the Gd MAE. According to this model the MAE

stems completely from the spin-orbit contribution and the anisotropy of orbital magnetic

moments and is given by:

EA(θ) = ∆E(θ, 0◦) = − ξ

4µB

(

[µ↑
orb(θ) − µ↓

orb(θ)] − [µ↑
orb(0

◦) − µ↓
orb(0

◦)]
)

, (1)

where ξ is the spin-orbit parameter for 5d Gd orbitals and µσ
orb the orbital moment of the
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FIG. 2: (Color on line) Calculated Gd MAE for the different treatments of the 4f states. The

calculation within the GGA+U method is shown in black circles and is the same as that of figure 1.

The GGA-core, where the 4f states are considered as core electrons, is shown in red up triangles,

while the standard GGA, where the 4f electrons are allowed to relax as valence bands is shown

in green down triangles. Notice that the GGA and GGA-core curves are scaled, respectively, by a

factor of 1/10 and 1/2 to fit into the graph. The continuous curves are guides for the eye.

spin σ. We have presented in figure 1(a) (violet curve) the corresponding calculations. The

spin-orbit coupling parameter we have used to calculate the MAE according to the Bruno

model is that of the 5d orbitals and is found to be of ξ = ξd = 71.15 meV. As it can be seen

from this figure the overall behavior of the estimated MAE of the model is too similar to

that of the GGA+U. The MAE calculated according to Bruno’s model is somewhat situated

between our GGA+U calculations and the experimental one. Bruno’s model predicts a

MAE maximum of 30 µ eV. Given the fact that the spin-orbit parameter ξ and the orbital

moment µσ
orb used in equation (1) are those of the GGA+U calculations, the agreement of

the full calculation with the model is not surprising. However, this implies that the MAE is

essentially due to the orbital moment anisotropy. Gd is such a complex metal, and we have

seen that the energy position of the 4f states is crucial for the strength of the MAE. We

can only conclude here, that once the 4f levels are well positioned, the MAE is mainly due

to the orbital moment anisotropy as suggested by Bruno’s model.
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Bruno’s model validity for describing the spin-orbit magnetic anisotropy of Gd should

reflect the fact that the magnetic anisotropy of Gd is too similar to that of a typical 3d

transition metal such as hcp Co. However, there are additional terms which are related to

the magnetic dipole operator due to the anisotropy of the field of the spin. This additional

contribution was derived by van dar Laan [18]. The strong magnetic moment of the 4f

electrons might give rise to this latter contribution. The resulting exchange field of that

4f spin is large enough to be sufficient to polarize significantly the remaining conduction

electrons. In others words, the 4f magnetic field makes, in particular, the Gd 5d magnetic

moment parallel to that of the 4f . Despite this high magnetic field, the van dar Laan

contribution for Gd is found to be negligible compared to that expected from Bruno’s model.

In fact, this contribution is only considerable for non half-filled systems where spin flips

among the 4f electrons occur.

However, though the GGA+U calculations using the force theorem have reproduced the

experimental magnitude of MAE of 34 µeV, they did not show that the easy axis of the

magnetization makes 20◦ away from the c axis as experimentally observed, instead they

show that it is along the c direction. If we believe our calculation, which is in agreement

with Bruno’s model and in disagreement with the FP-LMTO calculation using 4f states

as core states [21], then the deviation of the magnetization from the c axis could be only

explained if one invokes symmetry breaking lattice imperfections of the hcp structure of

Gd, like presence of intrinsic defects, impurities, or dislocations. We suspect the erroneous

GGA energy positions of the 4f minority states [25] to be at the origin of the corresponding

predicted large MAE. The presence of these states near the Fermi level leads to the erroneous

MAE. The integration of the one-electron energies includes an extra-contribution coming

from a strong mixing of the 4f states with the others states at the Fermi level. Using the

GGA+U method these 4f states are moved away from the Fermi level (U effect) resulting

in a more realistic assessment of the MAE. The MAE is therefore sensitive to the electronic

structure around the Fermi level and a better representation of the electronic structure could

lead to a precise evaluation of the MAE. Compared to the GGA and GGA-core, the GGA+U

method is once more the best one for the MAE calculations. Given the adequacy of the

GGA+U, we have proceeded in the same way to calculate the MAEs of GdN and GdFe2.
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IV. GdN AND GdFe2 MAGNETIC ANISOTROPY

In order to get insight into the magnetic anisotropy of Gd compound, we have applied

the force theorem to calculate the MAE of the GdN pnictide and the metallic compound

GdFe2. Using the GGA+U method, we have recently shown that the GdN compound is a

half-metal for the experimental lattice constant [26]. A better understanding of the magnetic

anisotropy of this compound would be useful for future spin-injection applications.
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FIG. 3: GGA+U calculations of the GdN and GdFe2 MAE; (a) Calculated MAE of GdN as a

function of the angles θ, φ for: varying φ while keeping θ = 55◦ in red triangles and varying θ while

keeping φ = 0◦ in black circles, (b) The GdFe2 MAE for the same magnetization directions. The

continuous curves are guides for the eye.

In this section the MAE, EA(θ), is defined as in the previous section: EA(θ) = Eθ,φ −
E0◦,0◦ . Unlike Gd, the GdN compound crystallizes in the cubic rocksalt structure and its

magnetic anisotropy will depend not only on θ but also on φ. In order to determine the easy

and the hard axes of magnetization, we have calculated the MAE as a function of spherical

coordinates angles θ or φ by keeping one of them fixed and varying the other one.

Figures 3(a,b) show the MAEs of GdN and GdFe2 as a function of the spherical coordi-

nates angles θ or φ. The black circles curve in figure 3(a) represents the GdN MAE versus

θ for φ = 0◦, the red up triangles curve in the same figure represents the GdN MAE versus
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φ for θ = 55◦. According to the black circle curve, the easy axis of magnetization is along

the direction (001) defined by (θ = 0◦, φ = 0◦), and according to the red up triangles curve

the hard axis of magnetization is along the direction (111) defined by (θ = 55◦, φ = 45◦).

The GdFe2 MAE (see figure 3(b)) is found to exhibit a similar behavior to that of GdN

MAE with the same axis of easy and hard magnetization, but with a higher MAE. The GdN

MAE is only of 0.38 µeV while that of the GdFe2 is of about 9 µeV. It is worth mentioning

here that although Gd monocrystal MAE is very similar to that of a 3d transition metal, the

MAEs of its GdN and GdFe2 compounds seem to be different from that of a cubic transition

metal, like Ni. It is well known that in a fcc transition metal like Ni, the (111) direction

is that of the easy axis of magnetization and the hard axis is found to lie along one of the

symmetry equivalent (001), (010), or the (100) directions. Our results suggest the opposite

for GdN and GdFe2 compounds. This peculiar behavior of the magnetic anisotropy of the

Gd compounds show that even in the presence of another non-magnetic (N) or magnetic

(Fe) atoms is the Gd strong magnetism which manages indirectly the magnetic anisotropy

in these compounds. Indeed, because of the zero spin-orbit coupling of the 4f half filled

shell, the 4f magnetic moment should not be involved directly in the MAE but only through

hybridization and polarization of the other valence orbitals. One could therefore easily notice

that the 4f strong magnetic moment is to some extent decoupled from the crystal structure.

However, due to the strongly localized character of these orbitals, the 4f states carry a strong

magnetic moment that polarizes strongly the remaining valence electron bands. Therefore,

despite their strong localized character and zero orbital moment, their energy positions in

the band structure is directly related to the strength of MAE. As it was discussed in the

previous section, there is a big difference between the GGA+U MAE and the GGA or the

GGA-core MAEs, i.e., one is left with a wrong magnetic anisotropy of 3 times that of the

GGA+U if the 4f orbitals are prevented to hybridize correctly with the other orbitals, and

one order of magnitude if they hybridize too much, like in the GGA calculation. In the case

of the GdN compound not only the 5d Gd orbital would be affected by the 4f exchange

magnetic field but also the 3p N orbitals. This happens because of the hybridization effect

of the 5d-Gd orbitals with 2p-N orbitals [26]. For the GdFe2 compound the same scenario

happens to the 3d Fe orbitals. This interesting property would make of Gd a good candidate

for high performance ferromagnets. Indeed, if we could make materials with different 4f

energy positions in order to change the hybridization and induce large spin polarization in
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other orbitals, we will be able to tune the MAE of Gd magnetic materials.

V. CONCLUSION

In conclusion, we have carried out first principles calculations of the MAE within the

GGA, GGA-core and GGA+U methods for the purpose of representing accurately the 4f

electrons of Gd. It is shown that the MAE is very sensitive to the electronic structure

details at the Fermi level, i.e., the failure of the GGA method to account for the correct 4f

energy position results in an overestimation of the Gd MAE. To the contrary, the GGA+U,

which produced the best position of the 4f states of Gd, reproduced the best MAE of Gd.

Indeed, the force-theorem MAE results of the GGA+U produced the best agreement with

the experimental MAE magnitude. The results of GGA+U are also in good agreement with

Bruno’s model, where the MAE is obtained from the anisotropy of the orbital magnetic

moments. Our calculation did not, however, find any deviation of the easy axis from the

crystal c direction as shown in experiment and in the calculation of Colarieti-Tosti and

coworkers [21]. Based in our GGA+U calculations, Bruno’s model, and the symmetry of

the hcp lattice, we did not find any good argument for the deviation of the easy axis from

the hcp crystal c direction. We can only speculate that this deviation might be the results

of symmetry breaking imperfections in the hcp structure.

The comparison of the GGA-core MAE and the GGA+U MAE with experiment have

indirectly demonstrated that the 4f hybridization with the rest of the valence orbitals and

the corresponding induced polarizations are key mechanisms for the tuning of the MAE of

Gd or Gd based compounds. These mechanisms are tuned by the energy position of the 4f

states in each compound. Indeed, within the GGA+U scheme we have shown that for both

GdN and GdFe2 compounds, the Gd 4f states through hybridization and induced strong

polarization of, respectively, the nitrogen p and Fe 3d states change drastically the MAE.

Unlike 3d transition metals fcc structure like Ni, GdN and GdFe2 magnetizations are found

to lie along one of the symmetry equivalent (100), (010), or (001) direction. It will be of

great interest to perform experimental measurements of MAE for GdN or GdFe2 to check

our theoretical predictions.
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Chapter 8Conlusions and perspetivesIn this work, a detailed �rst priniples study of the strong ferromagneti Gd materialand Gd ompounds were presented. The alulations were performed within the densityfuntional theory, using the full potential linear augmented plane wave method (FLAPW)as implemented in the Fleur ode.In spite of the high Curie temperature of gadolinium (found to be of about 295◦ K),the importane of the eletroni orrelation on the stability of its magneti state wasthe subjet of a ontroversy during the last deade. Indeed, it is espeially the stronglyloalized and orrelated 4f eletrons whih onfers omplexity to the Gd materials andall 4f rare-earth magneti materials. In order to eluidate the underlying physis of suheletroni struture we have treated the 4f eletrons aording to the GGA+U sheme.Beause of the growing progress of the XMCD tehniques and its usefulness in hara-terizing magneti materials we have implemented the alulation of the magneti irulardihroism of the X-ray (XMCD), the orresponding sum rules, and the alulation of themagneti dipole within the ab-initio ode (Fleur) using the FLAPW method.Due to its half �lled f shell the gadolinium metal is the strongest ferromagnet of the rareearth materials lass. One should, therefore, properly aount for the peuliar strongly lo-alized and orrelated 4f ondution eletrons. We have learly shown that the GGA+Umethod is the most appropriate to desribe the Gd eletroni struture. The results wehave obtained using the GGA+U method are found to be in good agreement with theexperimental photoemission and inverse photoemission (XPS and BIS) results. Our al-ulated L2,3 and M4,5 XMCD spetra are also found in good agreement with experiment.The sum-rules spin and orbital magneti moments alulated from the XMCD spetraare mostly lose to those predited by experiment. This agreement approves the XMCDdipolar approximation and shows the usefulness and the validity of these rules to probethe magneti properties of the 4f eletrons systems.The half-metalli ferromagnets of the diluted magneti semiondutor (DMS) lass, ma-terials whih show a metalli behavior in the majority spin band and semiondutingbehavior in the minority spin band, are very interesting for appliations in the �eld ofspintronis, sine, due to the 100% spin polarization that they present at Fermi level, theyan maximize the e�ieny of spintroni devies. For this reason they are extensivelystudied. Surprisingly, only those based on 3d transition metal magnetism are onerneddespite the strong 4f rare-earth magnetism. In this respet, we have approahed theGdN ompound and shown the half metalli harater of its eletroni struture at theexperimental lattie parameter onstant. We have also found that there is a onsiderablehybridization of the 3d Gd orbitals with those of the 2p N ones. The alulated L2,3XMCD spetra are found to be in agreement with the experiment indiating indiretly111



Conlusions and perspetivesthat the GdN ondution bands are well desribed within our XMCD-FLAPW framework.The self-onsistent total energy alulations have revealed the eletroni and struturalproperties rihness of GdN. Under hydrostati pressure the roksalt half-metal GdN be-omes a wurtzite semiondutor.Several appliations in spintroni devises require anisotropi magneti materials. Themagneti anisotropy is therefore a useful aspet for industrial magneti appliations. Dueto the strong 4f magnetism, it is interesting to understand the magneti anisotropy phe-nomena in rare-earth materials.Within the FLAPW framework we have studied the magneti anisotropy of Gd, GdN,and GdFe2 materials. In order to simulate the magnetization rotation e�et and alu-late the magnetorystalline anisotropy energy (MAE) we have performed fore theoremalulations.We have learly shown that the 4f materials magneti anisotropy stems from the band-struture spin-orbit oupling. The GGA+U MAE is found to be in best agreement withexperiment ompared to those obtained by means of the standard GGA and GGA-oremodel. Sine the 4f sub-band struture is orretly represented by the GGA+U method,one would be left with the orret MAE. This ahieved appreiable agreement of theGGA+U method with experiment ompared to other methods should re�et the ruialrole of the 4f orbitals in the magneti anisotropy despite their too loalized harater.More striking is the magneti anisotropy of the ubi GdN and GdFe2 ompounds. De-spite the similarity of the magneti anisotropy of Gd to that of the 3d transition metal(found to be only of some µeV), the magneti anisotropy of these ubi ompounds isfound to be di�erent from that of the orresponding 3d ubi materials. The easy axis ofmagnetization for GdN and GdFe2 is found to lie along the (001) diretion, and that ofthe hard axis lies along the (111) diretion. This means that it is the 4f magnetism whihmanages the magneti anisotropy in pure rare-earth materials or rare-earth ompoundseven if the half �lled 4f Gd shell has a nil spin-orbit oupling.Though the good agreement of our Gd M4,5 XMCD spetra with experiment, the exper-imental small strutures appearing above and below the prinipal dipolar peak were notreprodued. These strutures are asribed to dynamial proesses involved during the ex-perimental probe, i.e., ore-hole interation or multiplet e�et and an not be aountedfor within a time-independent DFT sheme. The dynamial mean-�eld theory (DMFT)is believed to be a major step towards the reunion of two theoretial approahes, i.e.,the DFT and many-body model Hamiltonian of ondensed matter physis. This methodshould allow a reasonable understanding of the dynamial aspet of the XMCD. It isplaned to implement the XMCD alulations within this methods to follow the time evo-lution of the eletron-hole interation during x-ray absorption.Another interesting aspet of the magnetism is that of the non-ollinearity. This phe-nomena, whih is a diret onsequene of the ompetition between the spin-orbit ouplingand the exhange interations, may take plae under doping or hydrostati pressure. In-deed, this appears as a hange of the magneti on�guration and therefore of the Curietemperature. Understanding suh phenomena and alulating the Curie temperature isof great interest. As a ontinuation of this work, we plane to study of the doping of GdNwith hydrogen or manganese to raise its Curie temperature. Having shown the validityof the fore theorem for the alulation of the 4f systems magneti anisotropy withinthe GGA+U method, and given the fat that the majority of the non-olinear implemen-tations are based on the fore theorem, we expet a fruitful investigations of the Curietemperature of GdN. 112



Appendix ATetrahedron Fermi-surfae integrationThis part is aimed at alulating the Fermi-surfae areas for di�erent ases. Let as followthe same enumeration used in setion (4.4.4). Assuming that the band struture energiesare linear in k points [133℄, one an straightforwardly alulate the interpolated wave-vetor kF and, therefore the orresponding Fermi surfae.1. If ε1 < εF < ε2 < ε3 < ε4, the wave-vetor kF an be alulated as:
kF1 = k2 +

(εF − ε1)

(ε2 − ε1)
(k2 − k1), (A.1)

kF2 = k3 +
(εF − ε1)

(ε3 − ε1)
(k3 − k1), (A.2)

kF3 = k4 +
(εF − ε1)

(ε4 − ε1)
(k4 − k1), (A.3)these three wave-vetors are those forming the orner 1 marked by (k1,e1) in �gure(4.3). The Fermi surfae area whih rosses this orner is therefore

S1 =
1

2
(K1 ×K2), (A.4)where K1 and K2 are the reiproal vetors:

K1 = kF2 − kF1,K2 = kF3 − kF1. (A.5)2. If ε1 < ε2 < ε3 < εF < ε4, with the same manner, the wave-vetor kF is alulatedas:
kF1 = k2 +

(εF − ε4)

(ε3 − ε4)
(k3 − k4), (A.6)

kF2 = k3 +
(εF − ε4)

(ε2 − ε4)
(k2 − k4), (A.7)

kF3 = k4 +
(εF − ε4)

(ε1 − ε4)
(k1 − k4), (A.8)these three wave-vetors are those forming the orner 4 marked by (k4,e4) in �gure(4.3). The orresponding Fermi surfae is alulated as in (A.4) and (A.5).3. If ε1 < ε2 < εF < ε3 < ε4, we will have two ontributions S3 and S4. The alulationof these surfaes is too similar to that of the previous ones.The surfaes S1, S2, S3, and S4 are the hathed areas of �gure (4.3).113
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Appendix BThe spin-orbit oupling angular matrixderivationIn this appendix we would like to derive the angular part of the spin-orbit oupling L.σ. Inorder to aount for the appropriate geometry of this spin-orbit operator we shall remindthe reader that the quantization axis is onventionally the z-axis. Therefore, one shouldrotate1 the SOC operator toward the z-axis to get insight onto the involved z-omponentsof the spin orbital and magneti moments. The rotation operation of the SOC is givenby:
[L.σ]z = R(L.σ)R+, (B.1)where R is the rotation matrix operator [134℄:

R =

(

cos( θ
2
)e−i φ

2 sin( θ
2
)ei φ

2

−sin( θ
2
)e−i φ

2 cos( θ
2
)ei φ

2

)

, (B.2)where θ and φ are the polar angles. Writing the spin operator σ in terms of the Paulimatries σx, σy, and σz

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, (B.3)the spin-orbit operator takes the form
L.σ =

(

lz l−

l+ −lz

)

, (B.4)where l− and l+ are the angular momentum operator de�ned as
l− = lx − ily, l

+ = lx + ily. (B.5)Substituting equations (B.4) and (B.2) into equation (B.1) leads to
[L.σ]z =

( [

cos(θ)lz + 1
2
sin(θ)(e−iφl− + eiφl+)

] [

cos2( θ
2
)e−iφl− − sin2( θ

2
)eiφl+ − sin(θ)lz

]

[

−sin2( θ
2
)e−iφl− + cos2( θ

2
)eiφl+ − sin(θ)lz

]

−
[

cos(θ)lz + 1
2
sin(θ)(e−iφl− + eiφl+)

]

)

.(B.6)This is the formula we have adopted during our XMCD and magneti anisotropy investi-gations.1Rotating the SOC operator from the loal frame to the global frame is equivalent to rotating thesystem of referene from the global frame to the loal frame.115
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Appendix CThe magneti dipole alulation withinthe FLAPW methodThis part is devoted to the derivation of the Tz magneti dipole within the FLAPWmethod. As it is implemented by Baadji et al. (see paper I) within the Fleur ode [25℄.The magneti dipole operator is given by:
Tz =

1

2
[σ − 3r̂(r̂.σ)]z . (C.1)Using the Pauli matries (equation (B.3)) of the previous appendix the Tz operator anbe written as:

Tz =

(

1 − 3cos2(θ) −3cos(θ)sin(θ)e−iφ

−3cos(θ)sin(θ)eiφ −1 + 3cos2(θ)

)

=

√

2π

5

( √
2Y2,0 −

√
3Y2,−1√

3Y2,1 −
√

2Y2,0

)

,(C.2)if the magnetization is parallel to the z-axis the magneti dipole operator takes the form
Tz =

√

4π

5

(

Y2,0 0
0 −Y2,0

)

, (C.3)where Yl,m are the spherial harmonis.In order to alulate the Tz expetation value
〈Tz〉 = 〈φν(k, r) |Tz|φν′(k, r)〉 , (C.4)inside the mu�n-tin spheres, one needs the orresponding FLAPW wave funtion (equa-tion (4.55)):

ψσ
ν (k, r) =

∑

lm

(Aµ,σ
lm (k)uσ

l (|r− Rµ|) +Bµ,σ
lm (k)u̇l

σ(|r− Rµ|))Ylm(r̂ − Rµ). (C.5)For simpliity we onsider the ase of one atom per ell. The expetation value of the Tzoperator is �nally alulated as:
〈Tz〉 =

1

VBZ

∫

∑

lm,l′m′

(

A∗µ,σ
lm (k)Aµ,σ

l′m′(k)C1,σ
lm,l′m′ +B∗µ,σ

lm (k)Aµ,σ
l′m′(k)C2,σ

lm,l′m′

+ A∗µ,σ
lm (k)Bµ,σ

l′m′(k)C3,σ
lm,l′m′ +B∗µ,σ

lm (k)Bµ,σ
l′m′(k)C4,σ

lm,l′m′

)

d3k, (C.6)117



The magneti dipole alulation within the FLAPW methodwhere
C1,σ

lm,l′m′ = σGm,2,m′

l,2,l′

∫

r2druσ
l (r)u

σ
l′(r), (C.7)

C2,σ
lm,l′m′ = σGm,2,m′

l,2,l′

∫

r2druσ
l (r)u̇

σ
l′(r), (C.8)

C3,σ
lm,l′m′ = σGm,2,m′

l,2,l′

∫

r2dru̇σ
l (r)u

σ
l′(r), (C.9)

C4,σ
lm,l′m′ = σGm,2,m′

l,2,l′

∫

r2dru̇σ
l (r)u̇

σ
l′(r), (C.10)where the integration is that of the Brillouin zone (setion (4.4.4)) and Gm,2,m′

l,2,l′ is theGaunt oe�ient.
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