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Notations

Sets

IR Set of real numbers

IR+ Set of positive real numbers, i.e. IR+ =
{
x ∈ IR | x ≥ 0

}

IRn Set of n-dimensional real vectors

IRn×m Set of n×m-dimensional real matrices

Z+ Set of positive integers

Sn Set of symmetric matrices in IRn×n,

i.e. Sn =
{
X ∈ IRn×n | X = XT

}

EN Set of indices of subsystems for switched system,

EN = {1, ..., N}
ES Set of tuples indicating the possible mode changes of the

switched system, ES ⊂ EN × EN

Matrices and Operators

A > 0 (A ≥ 0) Real symmetric (semi)positive-definite matrix A

A < 0 (A ≤ 0) Real symmetric (semi)negative-definite matrix A

In Identity matrix of dimension n× n

A−1 Inverse of matrix A ∈ IRn×n, det A 6= 0

AT Transpose of matrix A

A† Moore-Penrose pseudo-inverse of matrix A

iv



(?) Block induced by symmetry

det A Determinant of matrix A ∈ IRn×n

rank A Rank of matrix A ∈ IRn×m

λ(A) Set of eigenvalues of matrix A ∈ IRn×n

‖A‖ Induced Euclidian norm of matrix A ∈ IRn×n

Co(x, y) Convex hull of the set x, y,

Co(x, y) = {λx + (1− λ) y, 0 ≤ λ ≤ 1}

Additional Notations

θ Switching signal

σ Switching sequence∑
(Ci, Ai, Bi)M Switched linear system with subsystems (Ci, Ai, Bi), i ∈ M

φ(t, t0, x0, u, θ) State trajectory of the switched system

UO(Ci, Ai, Bi)M Unobservable set of the switched system
∑

(Ci, Ai, Bi)M ,

i ∈ M

Abbreviations

EFS Externally forced switching

IFS Internally forced switching

LPV Linear Parameter Varying

DMV T Differential Mean Value Theorem

v
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Chapter 1

General introduction

In the theory of systems, the internal state of a dynamic process is characterized

by a vector quantity. This notion is involved in the areas such as control, diagnosis

and surveillance. In most of the real-world applications, the measurement of the

physical state of the process by direct observation can be difficult when possible.

There are almost two reasons for that: difficulties from technical aspects (necessary

sensors are not available, insufficient accuracy, ...) and economic considerations

(choice of a minimum number of sensors to reduce the costs of calibration and

maintenance). In the absence of direct measurement, the value of the internal state

can be reconstructed from the measurement of different inputs and outputs of the

process. The auxiliary dynamic system which rebuilds the internal state of a process

from the record of the signal measurement, is called state observer or state estimator.

This is usually a mathematical model which can be implemented by computer. All

the models of process cannot determine their internal state from the measurements.

When this happens, the process is said to be observable.

The stability of system is an extremely important concept in the study of dynam-

ical systems. The Lyapunov approach is one of the more general paradigms for the

study of stability. It relies on an energy function also called Lyapunov function. The

stability is proved as soon as a decreasing Lyapunov function is found. When con-

sidering estimation, it is required that the estimate converges to the original value

of the state. In a sense, the observer should synchronize to the original system.

The synchronization issue can be turned into a stabilization issue by considering

a Lyapunov function based on the estimation error. In this thesis, the Lyapunov

approach is used to solve to the state observation problem.

A hybrid system is a dynamic system that combines events in continuous-time

and events in discrete-time. A switched system is a special case of hybrid system. It
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consists of several subsystems and a switching law that select at any moment, which

system is active. The multi-model systems are similar to switched systems: they

are composed of a series of subsystems (linear or nonlinear) and an interpolation

function which allows to mix the different models. Switched systems are multimodel

systems in which the law of mixture is piecewise constant.

Due to the fact that many processes and systems in real world applications can

be modeled as switched systems and/or multi-model systems, the synthesis of ob-

servers for these classes of systems has received a growing interest in the last decades.

A second reason that justifies the interest for this research area comes from the fact

that it can be applied to data encryption/decrytion for telecommunication appli-

cations. In this case, the message is encrypted by mixing it to a chaotic dynamic

process. At the reception side, the signal is reconstructed by synchronizing a chaotic

system of the same nature, using the technique of state estimation.

In this thesis, we propose some methods for synthesizing state observers for

switched systems and multi-model systems. By using new Lyapunov functions,

these methods reduce the conservatism of the current approaches available in the

literature.

In chapter 2 of this manuscript, the state of the art of switched systems is pre-

sented. After a simple introduction on hybrid systems and particularly on switched

systems, we present the modeling and stability analysis for switched systems. The

stability in presence of an arbitrary signal, stability in presence of a control signal

and stabilization are introduced successively.

Chapter 3 presents the principle of state estimation, some definitions on the

concept of observability, and the state of the art on the various techniques of the

observer synthesis for switched systems and multi-model systems.

In chapter 4, the problem of the observer design for a class of non-linear switched

system is studied. The developed solution is based on the assumption that the active

mode of the switched system is unknown. In particular, the observer updates the es-

timated state at every commutation instant. Our approach relies on the Mean Value

Theorem, which reduces the problem of state estimation for a nonlinear dynamic

system to a stability problem for a linear parameter varying (LPV) system. By using

a multi-quadratic Lyapunov function, we offer sufficient conditions for the observer

synthesis to guarantee an upper bound on the dynamics of the estimation error. By

determining the value of a scalar parameter, the synthesis problem is transformed
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into a linear matrix inequalities (LMI) problem, which is easily solvable numerically

by convex optimization techniques.

Chapter 5 presents the observer synthesis for a class of discrete-time multi-model

systems. The multi-model system is composed of two non-linear Lipschitz systems.

By using a particular Lyapunov function with a non-linear term, sufficient conditions

for the observer synthesis are given. This result is applicable to the systems with

Lipschitz constants whose values are less than one.

In chapter 6, we study the observer synthesis for a class of discrete-time multi-

model systems with unknown input. In order to ensure the synchronization between

the transmitter system and receiver system, we introduce a particular Lyapunov

function including a non-linear term. This leads to less restrictive synthesis condi-

tions which can be expressed as a LMI feasibility problem.

In the last chapter, we give the conclusion of this manuscript and discuss the

perspective of our research.



Chapter 2

Introduction to switched

systems

2.1 Hybrid systems and switched systems

A hybrid system is a dynamical system that contains interacting continuous dynam-

ics and discrete events. The former are associated with physical first principles,

the latter are associated with logic devices, such as switches, digital circuitry and

software code.

Since many complex systems, such as chemical processes, automotive systems,

computer-controlled systems, etc., are hybrid in nature, hybrid systems researches

has been extensively investigated from both the academia and the industry in the

last decade.

There are two categories of approaches for hybrid systems studies. The first

approach is taken by the computer scientists, which takes more attention to the

discrete events. The problems that have been studied in these domains include

verification, safety analysis, etc. The hybrid automata theory and logic are largely

applied in the studies of such problems. The second approach is taken by the control

engineers and takes more attention to the continuous dynamics. Development of

classic control theory have been tempted to study continuous systems with discrete

mode changes. The problems that have been studied in these domains include

stability, optimal control, stabilization, etc. More details of these approaches can

be found in a lot of publications as follows.

Branicky proposed to model hybrid systems in the form of a dynamic system,

embedding the discrete part into the continuous parts [1]. Based on the classifica-

tion of different hybrid phenomena, this model defines very clearly a hybrid system

5
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as a dynamic system and specifies how the change of models are involved. Another

modeling of hybrid system is obtained by the extension of the finite state automa-

tion theory in considering a differential equation for each discrete arrivals [2] [3]. An

interest of this modeling in the form of hybrid automation is the modularity of this

approach. There are other approaches for the modeling of hybrid system, which can

be find in [4] [5] [6] [7] [8].

Some very common systems have hybrid nature, like as a room heating system, or

computer-controlled system, etc.. The bouncing ball is a typical example of hybrid

system [9]. It consists of a ball dropped from an initial height and bouncing on

the ground, dissipating its energy with each bounce. The ball exhibits continuous

dynamics between each bounce; however, when the ball impacts the ground, its

velocity undergoes a discrete change modeled after an inelastic collision. Let x1 be

the height of the ball and x2 be the velocity of the ball, then the mathematical

description of bouncing ball can be given as follows:

• When x ∈ C = {x1 > 0}, flow is governed by ẋ1 = x2, ẋ2 = −g, where g is the

acceleration due to gravity. These equations state that when the ball is above

ground, it is being drawn to the ground by gravity.

• When x ∈ D = {x1 = 0}, jumps are governed by x+
1 = x1, x

+
2 = −γx2, where

0 < γ < 1 is a dissipation factor. That means that when the height of the

ball is zero (it touches the ground), the velocity of the ball is reversed and

decreased by a factor of γ. This describes the nature of the inelastic collision.

More examples of hybrid systems can be found in [10] [11] [12] [13] [14].

In the following, we focus on the presentation of a particular class of hybrid

systems, named switched systems. A switched system consists of several subsystems

and a switched law indicating the active subsystem at each instant of time. Switched

systems can exhibit jumps, particularly at the switching instants.

The motivation for studying switched systems comes from many aspect. It is

known that many practical systems are inherently multimodal in the sense that

their behavior may depend on various environmental factors. Since these systems

are essentially switched systems, powerful analysis or design results of switched sys-

tems are helpful dealing with real systems. Another important observation is that

switching among a set of controllers for a specified system can be considered as a
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Figure 2.1: An example of switched system

switched system. That switching has been used in adaptive control, to ensure stabil-

ity in situations where stability cannot be proved otherwise, or to improve transient

response of adaptive control systems. Also, the methods of intelligent control de-

sign are based on the idea of switching among different controllers. Therefore, the

study of switched systems contributes greatly in switching controller and intelligent

controller design.

Let us consider a simple example of switched system which is applicable on

adaptive supervisory control. The graphical representation of this system is shown

in Figure 2.1. The process can either be (2.1) or (2.2) as follows:

{
ẋ = A2x + B2u

y = C2x
(2.1)

{
ẋ = A1x + B1u

y = C1x
(2.2)

The supervisor determines which is the correct process model by observing u

and y, then select the appropriate controller.
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2.2 Classes of switched systems

Switched systems can be classified by different ways. Usually, switching events

in switched systems can be state-dependent or time-dependent, and it can be au-

tonomous or controlled [15].

2.2.1 General formulation

Let consider the continuous-time case and consider a switched system as follows:

ẋ = fθ(x), θ ∈ EN (2.3)

where fp, p ∈ EN is a family of sufficiently regular functions from IRn to IRn. It is

parameterized by some index θ in some index set EN . EN = {1, ..., N} is the set of

indices for subsystems.

A particular case is when the switched system is linear:

ẋ = Aθx, θ ∈ EN . (2.4)

The notion of switching sequence is necessary for the following parts.

Definition 2.2.1 (Switching Sequence) [16]

For a switched system, a switching sequence σ in [t0, tf ] is defined as:

σ = ((t0, i0), (t1, e1), (t2, e2), ..., (tK , eK)), (2.5)

with 0 ≤ K ≤ ∞, t0 ≤ t1 ≤ t2 ≤ ... ≤ tK ≤ tf , and i0 ∈ EN , and ek = (ik−1, ik) ∈
ES for k = 1, 2, ..., K(if K = 0, σ = ((t0, i0). ES is the set of tuples indicating the

possible mode changes of the switched system and ES ⊂ EN × EN , it means that

ek = (ik−1, ik) corresponds to a transition from mode k − 1 to k. K is the total

number of switchings.

Usually, a switching sequence is generated by a switching law, which is defined

as follows.

Definition 2.2.2 (Switching Law) [16]

For a switched system, a switching law s is defined to be a mapping s : IRn × IR →⋃
t0

∑
[t0,∞) which specifies a switching sequence σ = σ(x0, t0) for any initial point

x0 and any initial time t0.
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Moreover, the following assumptions on the switchings must be distinguished:

1. The known and the unknown modes cases:

If the active mode of the switched system is known, it allows to activate the

corresponding mode in the observer (see an example in [17]).

2. The autonomous and the non-autonomous cases:

The mode can be a map of the state (autonomous) or can be an arbitrary

input of the system (non-autonomous).

In the unknown autonomous case, the observability problem is more complex to

resolve, as the current mode must be estimated (see an example in [18]). This case

is considered in the contributions given in the following chapters.

2.2.2 State-dependent switching

The active mode can be considered as a function of the state, i.e, θ = θ(x).

Consider that the state space is partitioned into a finite or infinite number of re-

gions, separated by a family of switching surfaces. In every region, a continuous-time

dynamical system is given. When the trajectory intersects the switching surface, a

state jump can occur instantaneously. Then, a switched system with state-dependent

switching can be described by:

• a family of regions and corresponding switching surfaces,

• a family of continuous-time systems, one for each region,

• the jump function.

An example of state partition is shown in Figure 2.2, where the thin plain lines

represent the state trajectory, the plain lines represent the switching surfaces which

separate the regions.

Remark 2.2.1 Note that the instantaneous state jump at the switching moment

is equivalent to an impulse effect. If the impulse effect is absent, then the state

trajectory is continuous. In this dissertation, we focus on switched systems without

impulse effects.

Remark 2.2.2 A system with sliding mode controller can be considered as a switched

system. That means that when the state trajectory hits the switching surface, it slides

on the switching surface (see more details in [15]).
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Figure 2.2: State-dependent switching

Figure 2.3: Time-dependent switching

2.2.3 Time-dependent switching

The active mode can be also considered as a function of the time, i.e, θ = θ(t). Then

the sequence is time-scheduled.

In Figure 2.3, a simple example of time-dependent switching is shown, with the

set EN = {1, 2}. When the time t ∈ [to, t1) or t ∈ [t2, t3), the active mode of switched

system is 1; when the time t ∈ [t1, t2) or t ∈ [t3, t4), the active mode of switched

system is 2.



2.3. Multimodel systems 11

2.2.4 Autonomous switching and controlled switching

If the switching events are triggered by an internal mechanism over which we do not

have direct control, then the resulting systems is said to be a switched system with

autonomous switching, or an autonomous switched system.

Otherwise, if we have direct control over the switching mechanism to achieve a

desired behavior of the resulting system, the systems is said to be a switched system

with controlled switching.

Notice that the state-dependent and time-dependent switching systems can be

considered as autonomous.

2.3 Multimodel systems

Multiple model representation consists in constructing a nonlinear dynamic system

by mixing the behavior of several nonlinear time invariant subsystems. Consider the

following discrete-time multimodel representation:

xk+1 =
N∑

i=1

µi(yk)fi(k, xk)

yk = Cxk

where xk ∈ IRn is the state vector, function fi(k, xk) : IRn → IRn is the ith sub-

system which is nonlinear. The interpolation functions µi(yk) satisfy the following

properties:

N∑
i=1

µi(yk) = 1,

0 ≤ µi(yk) ≤ 1,∀i = 1, ..., N.

At each time, the function µi(yk) quantifies the relative contribution of each local

model.

If all the subsystems are linear, this becomes a linear multimodel system:

xk+1 =
N∑

i=1

µi(yk)Aixk

yk = Cxk
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(c) (a) (b) 

Figure 2.4: Possible trajectories of switched systems

where Ai is constant matrix of appropriate dimensions.

For the particular case, when µi(yk) = 1 and µj(yk) = 0, j 6= i, only the ith

subsystem is active, the system becomes a discrete-time switched system.

2.4 Stability analysis for switched systems

In this section, several stability issues for switched systems are briefly introduced.

The kind of stability considered herein is the asymptotic stability.

2.4.1 Stability under arbitrary switching signal

Consider the switched system (2.3). Obviously, a necessary condition for asymptotic

stability under arbitrary switching signal is that all the subsystems are asymptoti-

cally stable [15]. But this condition is not sufficient. This can be seen on an Fig-

ure 2.4: consider two second-order asymptotically stable systems whose trajectories

are shown in (a), (b) of Figure 2.4. With a particular switching signal, the trajectory

of the switched system might be instable, as it has been shown on Figure 2.4(c).

In order to guarantee the stability of the switched system, one feasible approach

consists in looking for a common Lyapunov function for all subsystems [15]. For the

system (2.3), the existence of a common Lyapunov function implies the asymptotic

stability. However, this stability condition may be difficult to check and approaches

that are less conservative have been developed. They rely on several Lyapunov

functions, one for each mode. These approaches are used in this thesis and will be

introduced in the following.
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2.4.2 Stability with multiple Lyapunov functions

Let us assume here that the intervals between consecutive switching times are large

enough, which is universal in the literature (see more details in [19]). With this

slow switching assumption, an extension of the Lyapunov’s second method, named

multiple Lyapunov functions approach, has been developed in [20].

Definition 2.4.1 (Lyapunov-like function) [16]

Assume that we are given a switching law s. A smooth real-valued function Vi(x)

is called a Lyapunov-like function for the subsystem ẋ = fi(x) if it satisfies the

following conditions

• Vi(x) is positive definite and Vi(0) = 0,

• V̇i(x) = ∂Vi(x)
∂x

≤ 0.

With the Lyapunov-like functions, the following results for linear switched sys-

tems where ẋ = Aix, i ∈ EN was developed by Peleties and DeCarlo in [20] [21].

Theorem 2.4.2 [20] [21]

Consider a switching sequence σ(x) is generated by a given switching law s. Assume

there exists a Lyapunov-like function Vi(x) for each subsystem i in IRn. If for any

sequence σ(x), for any (i, j) ∈ EN and for all the transitions from mode i to mode

j, we have:

Vi(x(tb))− Vi(x(ta)) < 0 (2.6)

where ta, tb, (tb > ta) are two switching instants from mode i to mode j, then the

switched system is stable.

A simple example of the evolution of these Lyapunov-like functions is shown in

Figure 2.5. Notice that Vi is nonincreasing in the intervals where subsystem i is

active. For instance, for mode i = 2 to mode j = 1, two switching instants ta = t2

and tb = t4, we have V2(t4) < V2(t2).

An alternative function was developed by Branicky [22] [23].

Theorem 2.4.3 [22] [23]

Consider a switching sequence σ(x) is generated by a given switching law s for a
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Figure 2.5: Evolution of the Lyapunov-like functions for Theorem 2.4.2

nonlinear switched system. Assume there exists a Lyapunov-like function Vi(x) for

each subsystem i. If for any switching sequence σ(x), for any (i, j) ∈ EN and for all

the transitions from mode i to mode j, we have:

Vj(x(tb))− Vj(x(ta)) < 0 (2.7)

where ta, tb, (tb > ta) are two switching instants, from mode i to mode j, then the

switched system is stable.

A simple example of the evolution of these Lyapunov-like functions is shown

in Figure 2.6, notice that Vi is nonincreasing in the intervals where subsystem i is

active. For instance, for mode i = 2 to mode j = 1, two switching instants ta = t2

and tb = t4, we have V1(t4) < V1(t2).

Notice that a more general result for multiple Lyapunov functions approach is

proposed by Ye et al.. This result does not require Vi to be nonincreasing in the

intervals where subsystem i is active (see more details in [24] [25]).

2.4.3 Stabilization of switched systems

Due to the possible instability of switched system for certain switching signals, the

important question is how to find a switching signal for which the switched system
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Figure 2.6: Evolution of the Lyapunov-like functions for Theorem 2.4.3

is asymptotically stable. With the assumption that none of the individual subsys-

tems are asymptotically stable, the problem consists in constructing a stabilizing

switching signal. There are many results in the literature dealing with this issue.

They are based on the stability analysis results presented in the precious section.

In order to design a stabilizing switching law, the methods are based on a com-

mon Lyapunov function or multiple Lyapunov functions and LMIs have been intro-

duced [26] [27] [28] [29] [30]. These methods are applicable for asymptotic stability,

for linear case or non-linear case. Notice these methods are based on sufficient con-

ditions, which means that if the method fails, one cannot conclude that the system

is not stabilizable.



Chapter 3

State of the art for observers

of switched systems

Due to the fact the many real-world processes and systems can be modeled as

switched systems, the observer synthesis for switched systems has known a growing

interest over the last decades. In this chapter, the observability of switched systems

and the existent approaches for the observation of switched systems is presented.

This chapter is structured as follows. In section 3.1, we present the principle of

the state estimation. In section 3.2, some definitions on the notion of the observ-

ability is presented. In section 3.3, we introduce the state of the art of the different

techniques for observer design of switched system.

3.1 Principle of state estimation

An observer is a dynamic system (O), whose inputs are the inputs/outputs of a

dynamic system (S) whose state is to be estimated. The observer outputs give an

estimation of the state of the system (S). The principle of the state observation can

be shown in Figure 3.1:

As this dissertation concerns both the continuous and the discrete-time case, we

use the following unique notation to describe a dynamic system (S):

ρx = f(x, u), (3.1a)

y = h(x, u), (3.1b)
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Figure 3.1: Principle of state observation

where

ρx =

{
ẋ, in the continuous-time case

xk+1, k ∈ Z+ in the discrete-time case

Definition 3.1.1 The dynamic system (O) described by the equations:

ρz = Φ(z, u, y), (3.2a)

x̂ = Ψ(z, u, y), (3.2b)

z ∈ IRs, is a local asymptotic observer for the system (S) if the following conditions

are satisfied:

1. x0 = x̂0 ⇒ xt = x̂t ∀t ≥ 0;

2. There exist an open neighborhood of the origin Ω ⊆ IRn such that:

x0 − x̂0 ∈ Ω ⇒ ‖xt − x̂t‖ → 0 when t → +∞.

If ‖xt− x̂t‖ tends exponentially towards zero, the system (O) is called an exponential

observer of the system (S).

When Ω = IRn, the system (O) is called a global observer of the system (S).

The second condition of Definition 3.1.1 indicates that the estimation error is

asymptotically stable. When the system (O) is linear, if there exists an observer of

the form (3.2) such that the second condition is satisfied, then the system is said

to be detectable. For the nonlinear case, the additional conditions are necessary for
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the detectability: the nonlinear functions must satisfy Lipschitz condition (see more

details in [31]).

The condition 1 means that if the observer (O) and the system (S) both have

the same initial state, then the estimated state (O) equals the actual state of the

system (S) at any time.

Let restrict to the case when z = x̂ (i.e. Ψ(z, u, y) = z). Then (3.2b) is equivalent

to:

ρx̂ = Φ(x̂, u, y) (3.3)

The condition 1 can be written as:

x̂ = x ⇒ ρx = ρx̂

which leads to:

x̂ = x ⇒ Φ(x̂, u, y) = f(x̂, u).

Then, without loss of generality, (3.3) can be rewritten as follows:

ρx̂ = f(x̂, u) + κ(x̂, u, y)

with

x̂ = x ⇒ κ(x̂, u, y) = 0. (3.4)

A function κ that would be proportional to x− x̂ would satisfy (3.4), but since x

cannot be measured, this is not possible. However, x̂ = x ⇒ h(x̂, u) = h(x, u) = y,

so we can take a function κ with the following form:

κ(x̂, u, y) = K(x̂, u, y) (y − ŷ)

where

ŷ = h(x̂, u).
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Then the observer can be described as follows:

ρx̂ = f(x̂, u) + K(x̂, u, y)(y − ŷ), (3.5a)

ŷ = h(x̂, u). (3.5b)

Notice that in the present case, we focus on observation of switched systems

and multimodel systems. Nevertheless, observer can be used with others classes of

systems. Let mention for instance the works on a class of nonlinear systems with

unknown inputs [32]. An unknown input observer is proposed, which is applicable

to Fuel Cell Stacks.

3.2 Observability of switched systems

In this section, some concepts for observability of switched systems are presented

(see [33] and [34]).

Consider the general model of switched linear systems as follows:

ρx = Aθx + Bθu,

y = Cθx, (3.6)

where x(t) ∈ IRn, u(t) ∈ IRm, y(t) ∈ IRp are the state vector, the input vector

and the output vector, respectively. θ ∈ EN is the switching signal, and ρx is the

derivative operator in continuous-time and shift forward operator in discrete-time

system case.

Let φ(t, t0, x0, u, θ) denote the state trajectory of switched system (3.6), starting

from x(t0) = x0 with input u and switching path θ, at time t.

Definition 3.2.1 State x is said to be unobservable, if for any switching path θ,

there exists an input u such that

Cθφ(t, t0, x, u, θ) = Cθφ(t, t0, 0, u, θ), ∀t ≥ t0.

The unobservable set of system (3.6), denoted by UO(Ci, Ai, Bi)M or UO in short,

is the set of states which are unobservable.

Definition 3.2.2 System (3.6) is said to be (completely) observable, if its unob-

servable set is null.
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Definition 3.2.3 State x ∈ IRn is unobservable via θ, if there exists an input u

such that

Cθφ(t, t0, x, u, θ) = Cθφ(t, t0, 0, u, θ), ∀t ≥ t0.

The unobservable set of system (3.6), denoted by UOθ(Ci, Ai, Bi)M or UOθ in short,

is the set of states which are unobservable via θ.

Observability of discrete-time switched linear systems

In the following, we introduce some recent definitions and concepts for the observ-

ability of discrete-time switched linear systems, which are referred to the thesis of

Mohamed Babaali [34].

Consider the general model of discrete-time switched linear systems given by:

xk+1 = Aθ(k)xk + Bθ(k)uk, (3.7a)

yk = Cθ(k)xk, (3.7b)

where xk ∈ IRn, uk ∈ IRm, yk ∈ IRp are the state vector, the input vector and the

output vector, respectively. A(.), B(.) and C(.) are real matrices of appropriate

dimensions. θ(k) is the mode at time k and takes values in the finite set {1, ..., s}.
In order to lighter the notations, we write θ(k) to recall that θ may vary from

a sample to another, even if θ can be a map of xk in the case of state-dependent

switching, i.e. θ(k) = θ(xk).

Pathwise observability (under known mode case)

The observability of discrete-time switched linear systems under known modes is

called pathwise observability.

Without lost of generality, consider the autonomous switched linear systems as

follows:

xk+1 = Aθ(k)xk, (3.8a)

yk = Cθ(k)xk, (3.8b)

For a path {θ1θ2...θN} of length N , let define the observability matrix as:
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Γ(θ) ,




Cθ1

Cθ2Aθ1

...

CθN
AθN−1

...Aθ1




,

Moreover, a path θ is observable if and only if its observability matrix Γ(θ) has

full rank n. Then, the definition is given as follows:

Definition 3.2.4 (Pathwise Observability [34])

The set of pairs {(A1, C1), ... , (As, Cs)} is pathwise observable if and only if there

exists an integer N such that all paths of length N are observable. We refer to the

smallest such integer as the index of pathwise observability.

Further results on pathwise observability can be found in chapter 2 and chapter

3 of [34].

Several observability concepts (under unknown mode case)

When the active mode of a switched system is unknown, consider the autonomous

system as follows:

xk+1 = Aθ(k)xk, (3.9a)

yk = Cθ(k)xk. (3.9b)

We define a path θ as a finite sequence of modes θ = θ1θ2...θN , where N is the path

length denoted by |θ|. We define ΘN as the set of all paths of length N . Moreover,

we denote by θ[i,j] the product of θ between i and j, i.e. θ[i,j] = θiθi+1...θj. We

use θθ′ to indicate the concatenation of θ with θ′, and we let φ(θ) , A(θN)...A(θ1)

denote the transition matrix of the path θ. We define the observability matrix Γ(θ)

of a path θ as:

Γ(θ) ,




Cθ1

Cθ2Aθ1

...

CθN
AθN−1

...Aθ1




.

Now, we define:

Y (θ, x) , Γ(θ)x, (3.10)
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if x = x1 and θ = θ1θ2...θN in (3.9), then Y (θ, x) = [ yT
1 ...yT

N ]T .

Definition 3.2.5 (Mode Observability [34])

The switched linear system (3.9) is mode observable at N if there exists an integer

N’ such that ∀x ∈ IRn and ∀ θ ∈ ΘN+N ′,

θ[1,N ] 6= θ′[1,N ] ⇒ Y (θ, x) 6= Y (θ′, x′) ∀x′ ∈ IRn. (3.11)

The index of mode observability is the smallest such N’.

Definition 3.2.6 (State Observability [34])

The switched linear system (3.9) is state observable if there exists an integer N (the

smallest being the index) such that ∀x ∈ IRn and ∀ θ ∈ ΘN ,

x 6= x′ ⇒ Y (θ, x) 6= Y (θ′, x′) ∀θ′ ∈ θN . (3.12)

This means that a system is state observable if any N consecutive measurements

Y (θ, x) yield x uniquely without knowledge of θ, i.e. if the map (x, θ) → Y (θ, x) is

injective in its first coordinate.

let us mention [35] in which a algebraic condition is given for a class of hybrid

systems.

3.3 Different types of observers for switched sys-

tems

In general, there are two kinds of approaches for the observer synthesis problem. In

the first kind, the active mode of the switched system is assumed to be known which

allows the mode of the observer to be changed accordingly. There are many results in

the literature dealing with this issue [36] [37] [38] [39]. In this context, Alessandri et

al. [36] proposed a method for the design of a Luenberger-like asymptotic observer.

Their method uses a common quadratic Lyapunov function that guarantees the

stability of the estimation error. In addition to the analysis of the observability of

linear switched systems presented in [37], a moving-horizon estimation technique

has been employed for the state estimation [38]. Moreover, for a particular class of

linear switched systems, a switched state jump observer was developed in [39] using

multiple Lyapunov functions.
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In the second kind of approaches, which is of interest in this paper, the active

mode of the switched system is unknown. There are some results in the literature

dealing with this issue [18] [40] [41] [42]. In [18], a Luenberger-type observer for

continuous-time bi-modal piecewise affine systems has been proposed. The observer

synthesis is based on a common quadratic Lyapunov function. The discrete-time

counterpart of [18] was developed in [40]. In [41], a switched state jump observer

was synthesized for continuous-time linear switched systems with multiple modes, by

using multiple quadratic Lyapunov functions. A moving horizon observer for mode

and continuous state estimation of nonlinear switched systems is developed in [42],

where mode and continuous state estimation is expressed as an optimization problem

which is solved using the Gauss-Newton algorithm. In [43], a hybrid observer for

a class of switched systems is proposed. With the association of a discrete state

detection method and a piecewise-linear switched observer, the observation error is

guaranteed to converge toward zero or to be bounded.

For a linear system, if the pair (A,C) is detectable (which means that there

exist L ∈ IRn×p such that the eigenvalues of matrix (A−LC) lies strictly in the left

complex half-plane), then we can guarantee that the estimation error exponentially

converges to zero. However, for a switched linear system, even if all the pairs (Ai, Ci)

are detectable, the convergence of the estimation error will not be guaranteed.

Alessandri et al. proposed a method for the design of a Luenberger-like asymp-

totic observer in [36]. Their method uses a common quadratic Lyapunov function

that guarantees the asymptotic stability of the estimation error.

For the general model of continuous-time switched linear systems given by:

ẋ = Aθ(t)x + Bθ(t)u, (3.13a)

y = Cθ(t)x, (3.13b)

where x ∈ IRn, u ∈ IRm, y ∈ IRp are the state vector, the input vector and the

output vector, respectively. A(.), B(.) and C(.) are real matrices of appropriate

dimensions. θ(t) is the mode at time t and takes values in the finite set {1, ..., s}.
The mode {θ(t)}∞t=1 is assumed to be an exogenous variable that is governed by some

external process, which could be controller itself, so the mode sequence {θ(t)}∞t=1 is

assumed to be arbitrary.
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Consider the Luenberger type observer as follows:

˙̂x = Aθ(t)x̂ + Bθ(t)u + Lθ(t)(y − ŷ), (3.14a)

ŷ = Cθ(t)x̂, (3.14b)

where Lθ(t) is the observer gain at instant t. The following theorem has been intro-

duced by Alessandri [36].

Theorem 3.3.1 [36] Consider the system (3.13) and assume that the pairs (Ai,

Ci), i = 1, 2, ..., n, are detectable. If there exists a symmetric positive definite matrix

P as the solution of the algebraic Lyapunov inequalities:

(Ai − LiCi)
T P + P (Ai − LiCi) < 0, i = 1, 2, ..., n (3.15)

then the observer (3.14) has an estimation error that is exponentially convergent

towards zero.

Let us consider (3.7), which is the discrete-time case of (3.13), the proposed

Luenberger type observer is as follows:

x̂k+1 = Aθ(k)x̂k + Bθ(k)uk + Lθ(k)(yk − ŷk), (3.16a)

ŷk = Cθ(k)x̂k, (3.16b)

where Lθ(t) is the observer gain at instant t. The following theorem has been intro-

duced. Then the following theorem is given by Alessandri [36].

Theorem 3.3.2 [36] Consider the system (3.7) and assume that the pairs (Ai, Ci),

i = 1, 2, ..., n, are detectable. If there exists a symmetric positive definite matrix P

as the solution of the algebraic Lyapunov inequalities

(Ai − LiCi)
T P (Ai − LiCi)− P < 0, i = 1, 2, ..., n (3.17)

then the observer (3.16) involves an estimation error exponentially convergent to

zero.

Pettersson proposed an observer for a class of switched linear systems in [39]. By

updating properly the estimated state at each switching instant, the convergence of

the estimation error can be guaranteed exponentially. When the mode changes, a
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jump of the estimated state is computed which only depend on the observer states

and the measured output. This jump allows to update the estimate at the switching

instants and allows better convergence.



Chapter 4

Switched observers with jump

for nonlinear switched systems

4.1 Introduction

In this chapter, the problem of observer design is addressed for a class of switched

systems, which is continuous-time system including a non-linear term. The devel-

oped solution is based on the assumption that the active mode of the switched

system is unknown. In particular, the observer updates the estimated state at each

switching instant. This work can be seen as an extension to nonlinear switched

systems of the result developed in [41] for continuous-time switched linear system

with multiple modes. Unlike the approach in [41], our approach uses the Differential

Mean Value Theorem (DMVT) which allows to write the dynamics of the estimation

error as a LPV system. Using multiple quadratic Lyapunov functions, we propose

sufficient conditions for the observer synthesis guaranteeing an upper bound on the

estimation error. For a fixed value of a scalar parameter, the problem is brought to

one of solving LMIs that are easily tractable by optimization techniques.

This chapter is structured as follows. In section 4.2, the considered class of

nonlinear switched systems and the structure of the state jump observer is presented.

In section 4.3, the Differential Mean Value Theorem approach is preseted. In section

4.4, we present our synthesis method of the switched state jump observer. In section

4.5, the applicability of the proposed approach is demonstrated on a numerical

example.
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4.2 Problem formulation

Consider the following class of switched systems with a nonlinear term:

{
ẋ = Aq(t)x + Bf(x),

y = Cx,
(4.1)

where x ∈ IRn, y ∈ IRp are the state vector and the output vector, respectively.

Aq(t),B and C are constant matrices of appropriate dimensions. The function f :

IRn → IR is nonlinear and assumed to be differentiable. q(t) is the switching function:

q(t) : Z+ → EN = {1, ..., N}

indicating which of the modes of the switched system is active at a certain time. In

the following, we consider that {Ωj | j ∈ EN} is a collection of polyhedral subsets

of IRn with mutually disjointed interiors and ∪jΩj = IRn. Moreover, the boundary

between the regions Ωi and Ωj is defined by the set Sij, which is described by:

Sij = {x ∈ IRn | sT
ijx = 0}, ∀(i, j) ∈ ES

where ES ⊂ EN ×EN is a set of tuples indicating the possible mode changes of the

switched system and sij ∈ IR1×1.

Moreover, for a hyperplane, a region containing the origin can be described by

xT Qix ≥ 0 for every mode i of the switched system (1) where Qi ∈ IRn×n (see [44] for

more details). For example, if the region Q1 is given by two set of states restricted

by two half-planes sT
12x ≥ 0 and sT

21x ≥ 0, then Q1 = s12s
T
21 + s21s

T
12, which is shown

in Figure 4.1.

The following assumption is made on the nonlinear part of the system (4.1).

Assumption. We assume that the functions:

hi(t) =
∂f

∂xi

(x(t)),∀i ∈ {1, ..., n}

are bounded, then the function h(t) evolves in a bounded domain Hn of which 2n

vertices are defined by:

ΛHn = {γ = (γ1, ..., γn) | γi ∈ {hi, hi}}
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Figure 4.1: State spaces satisfying xT Q1x ≥ 0

where hi = min(hi(t)), hi = max(hi(t)).

Now we consider the following observer described by:

{
˙̂x = Ar(t)x̂ + Bf(x̂) + Kr(t)(y − ŷ),

ŷ = Cx̂,
(4.2)

where x̂ ∈ IRn is the estimate of the state vector x and Kr ∈ IRn×p for r ∈ EN are

the observer gains to be designed. The switching function r(t) : Z+ → EN indicates

which of the observer modes is active at a certain instant.

The switching function r(t) changes its value according to the polyhedral subsets

Ω̂j which boundaries are defined by the sets

Ŝij = {x̂ ∈ IRn | sijx̂ = 0}, ∀(i, j) ∈ Es.

Moreover, when the observer is in the mode i and its state x̂ reaches the boundary

between the region Ωi and the region Ωj, the estimated state is updated according

to

x̂+ = T1ix̂ + T2iy (4.3)

where T1i, T2i are two matrices to be designed. This equation shows that the state of
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the observer jumps at the switching instants. For this reason, the observer is called

a jump observer.

Our objective is to guarantee that the state observation error is bounded. The

tuning parameters Ki, T1i, T2i with i ∈ EN will be designed accordingly.

4.3 Differential Mean Value Theorem

In this section, the differential mean value theorem (DMVT) approach for vector

functions is presented. This allows to write the dynamics of the estimation error as

a LPV system, which will be used in the following section.

The following definition is necessary:

Definition 4.3.1 Let x, y be two elements in IRn, we define by Co(x, y) the convex

hull of the set x, y, i.e.: Co(x, y) = λx + (1− λ)y, λ ∈ [0, 1].

Let

Ms = {es(i) | es(i) = (0, ..., 0, 1, 0, ...0)T , i = 1, ..., s.}

be the canonical basis of the vectorial space IRs for all s ≥ 1. Let: f : IRn → IRq

be a vector function. Then we have: f(x) = [f1(x), ..., fq(x)]T where fi: IRn → IR

is the ith component of f .

The vectorial space IRq is generated by the canonical basis Mq, so we can write:

f(x) =

q∑
i=1

eq(i)fi(x).

Now we give the following theorem which was presented in [45].

Theorem 4.3.2 (DMVT for vector functions) [45]

Let f : IRn → IRq. Let a, b ∈ IRn. We assume that f is differentiable on Co(a, b).

Then, there exist constant vectors c1, ..., cq ∈ Co(a, b), ci 6= a, ci 6= b for i = 1, ..., q

such that:

f(a)− f(b) =

q,n∑
i,j=1

eq(i)e
T
n (j)

∂fi

∂xj

(ci)(a− b).
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4.4 Main result

Our contribution, presented in this subsection, consists in sufficient conditions for

the synthesis of observer (4.2).

The dynamic of the estimation error is given by:

ė = ẋ− ˙̂x

= (Ar −KrC)e + (Aq − Ar)x + B(f(x)− f(x̂))

Using the the differential mean value theorem presented before, it can be shown

that there exist z(t) ∈ Co(x, x̂) such that:

f(x)− f(x̂) =
∂f

∂x
(z)(x− x̂) (4.4)

with
∂f

∂x
(z) =

n∑

k=1

eT
n(k)

∂f

∂xk

(z).

Using the notation hk = ∂f
∂xk

(z), we get:

f(x)− f(x̂) =
n∑

k=1

eT
n(k)hke. (4.5)

This allows to write the dynamics of estimation error as a LPV system.

In order to study the stability of the estimation error, let us consider multiple

Lyapunov functions, one for each observer mode i:

Vi(e) = eT Pie

where Pi ∈ IRn×n are symmetric positive definite matrices.

For given modes j = q(t) of the system and i = r(t) of the observer,

ė = (Ai −KiC)e + (Aj − Ai)x + B(f(x)− f(x̂)),
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then we can get the time derivative of the energy of the estimation error:

V̇i(e) = ėT Pie + eT Piė

= eT ([Ai −KiC]T Pi + Pi[Ai −KiC])e

+eT Pi(Aj − Ai)x + xT (Aj − Ai)
T Pie

+eT PiB(f(x)− f(x̂)) + BT Pie(f(x)− f(x̂)). (4.6)

Owing (4.5) and (4.6), we have:

V̇i(e) = eT ([Ai −KiC]T Pi + Pi[Ai −KiC])e

+eT Pi(Aj − Ai)x + xT (Aj − Ai)
T Pie + 2eT PiB

n∑

k=1

eT
n(k)hke. (4.7)

The following theorem states sufficient conditions for the observer synthesis.

Theorem 4.4.1 There exists an observer (4.2) for the switched system (4.1) if there

exist positive-definite matrices Pi, i ∈ EN , scalars ε > 0, α > 0, β > 0, µij > 0,

νij > 0 and matrices Dij, for all (i, j) ∈ ES, such that the following conditions are

satisfied:

αI ≤ Pi ≤ βI, i ∈ EN (4.8a)

Γi,j =

[
Γ11

i,j Γ12
i,j

(Γ12
i,j)

T Γ22
i,j

]
≤ 0, (i, j) ∈ ES (4.8b)

Pj = Pi + DT
ijC + CT Dij, (i, j) ∈ ES (4.8c)

where

Γ11
i,j = (Ai −KiC)T Pi + Pi(Ai −KiC) + I

+νijI + 2PiB

n∑

k=1

eT
n(k)γk,∀γk ∈ {hk, hk}

Γ12
i,j = Pi(Aj − Ai),

Γ22
i,j = µijQj − ε2νijI.

When the observer switches from mode i to mode j, the state of the observer is
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updated as following:

x̂+ = (I −R−1
i (CR−1

i )†C)x̂ + R−1
i (CR−1

i )†y,

∀x̂ ∈ Si,j, (i, j) ∈ ES, (4.9)

and Ri ∈ IRn×n is a symmetric positive-definite matrix such that Pi = RT
i Ri.

Then if for some T0 > 0

sup
t>T0

‖x(t)‖ ≤ xmax,

we have:

lim
t→∞

sup ‖e(t)‖ ≤
√

ν̄

ν̄ + 1

√
β

α
εxmax

where ν̄ is the largest value of νij, (i, j) ∈ ES.

Proof. In order to prove that the overall energy of the estimation error is upper

bounded, we show the following sufficient conditions:

• the energy decreases at the switching instants when the observer changes its

mode,

• the energy in every mode is upper bounded by a constant.

First, we need to prove that, when the observer switches from mode i to mode j,

the energy decreases at the switching instant i.e. Vj(e
+) ≤ Vi(e), which is equivalent

to

(x− x̂+)T Pj(x− x̂+) ≤ (x− x̂)T Pi(x− x̂). (4.10)

Let x̂+ be an arbitrary updated state estimate satisfying the measurement equa-

tion y = Cx̂+. Then, we have C(x̂+ − x) = y − y = 0 which implies that for any

matrix Di,j, the following relation is satisfied:

(x− x̂+)T (DT
i,jC + CT Di,j)(x− x̂+) = 0.

According to (4.8c), we have

(x− x̂+)T (Pj − Pi)(x− x̂+) = 0.
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Figure 4.2: Projection of Rix̂ onto the plan y = Cx̂+

Hence, (4.10) is equivalent to

(x− x̂+)T Pi(x− x̂+) ≤ (x− x̂)T Pi(x− x̂). (4.11)

Since Ri is the factorization of Pi, (4.11) is equivalent to:

‖Ri(x− x̂+)‖ ≤ ‖Ri(x− x̂)‖. (4.12)

Now let’s compute the updated estimated state x̂+ in the hyperplane y = Cx̂+

such that the distance ‖Ri(x̂
+ − x̂)‖ is minimized. This leads to the following

optimization problem:

min ‖Ri(x̂
+ − x̂)‖,

subject to : y = Cx̂+. (4.13)

This problem can be described geometrically in Figure 4.2.

Let’s introduce new variables εi = Ri(x̂
+− x̂), then we have x̂+ = R−1

i (εi +Rix̂),

the optimization problem (4.13) can be replaced as:

min ‖εi‖,
subject to : CR−1

i εi = y − Cx̂.

The solution of this problem is Ri(x̂
+ − x̂) = (CR−1

i )†(y − Cx̂), which implies
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(4.9) of the main theorem.

Moreover, the vectors Ri(x̂
+ − x̂) and Ri(x − x̂+) are orthogonal in the plane

y = Cx̂+, this implies that (4.12) is verified, herein (4.10) is satisfied, ending the

proof of the first part. Note that this part of the proof is same as in [41].

To prove the second part of the theorem, we introduce a new variable ḡ =

[eT xT ]Γi,j[e
T xT ]T . From (4.8b), we have

ḡ = eT Γ11
i,je + xT Γ21

i,je + eT Γ12
i,jx + xT Γ22

i,jx

= eT (Ai −KiC)T Pie + eT Pi(Ai −KiC)e + eT e + νije
T e

+xT (Aj − Ai)
T Pie + eT Pi(Aj − Ai)x + µijx

T Qix− ε2νijx
T x

+2eT PiB
n∑

k=1

eT
n(k)γke. (4.14)

Let’s introduce another variable g, so that the difference between ḡ and g is that

γk is replaced by hk:

g = eT (Ai −KiC)T Pie + eT Pi(Ai −KiC)e + eT e + νije
T e

+xT (Aj − Ai)
T Pie + eT Pi(Aj − Ai)x + µijx

T Qix− ε2νijx
T x

+2eT PiB
n∑

k=1

eT
n(k)hke. (4.15)

Due to the fact that γk are the vertices of hk and g is affine according to hk,

g ≤ 0 is equivalent to ḡ ≤ 0. Hence, if the conditions of the theorem are satisfied,

we have g ≤ 0.

By subtracting (4.15) from (4.7), we have

V̇i(e) = g − νije
T e− µijx

T Qix− eT e + ε2νijx
T x.

With g ≤ 0, this implies

V̇i(e) ≤ −νije
T e− µijx

T Qix− eT e + ε2νijx
T x.

Now, let set G =
−νij−1

β
and H = νijε

2x2
max, then we obtain

V̇i(e) ≤ GVi(e) + H.
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By integrating this first order differential equation, we obtain:

Vi(e) ≤ eG(t−t0)V (e(t0))− H

G
(1− eG(t−t0))

≤ e
−ν−1

β
(t−t0)V (e(t0)) +

ν̄ε2x2
maxβ

ν̄ + 1
(1− e

−ν−1
β

(t−t0)).

For t →∞, this inequality simplifies yields:

Vi(e) ≤ ν̄β

ν̄ + 1
ε2x2

max

which implies

lim
t→∞

sup ‖e(t)‖ ≤
√

ν̄

ν̄ + 1

√
β

α
εxmax.

It means that the energy in every mode is upper bounded by a constant. This ends

the proof.

Remark 4.4.1 Note that inequality (4.8b) is nonlinear in the unknown variables

Pi, Ki, ε and νij. By introducing the new variables Wi = PiKi with Wi ∈ IRn×p, we

get

Γ11
i,j = AT

i Pi − CT W T
i + PiAi −WiC + I + νijI + 2PiB

n∑

k=1

eT
n(k)γk.

This inequality becomes linear in the unknown variables by fixing ε. Hence, it can be

easily solved by using numerical methods. If the conditions of Theorem 4.4.1 admit

a solution, the gain matrices Ki can be calculated as Ki = P−1
i Wi because Pi are

positive-definite. In practice, we proceed by varying the parameter ε until a solution

to the LMIs is met.

Remark 4.4.2 To prevent the observer gains Ki to be too large which will make

the observer dynamics sensitive to measurement noise, it is necessary to restrict the

value of Wi. For instance, we can restrict Wi using W T
i Wi ≤ λ2I, which can be

formulated as

[
Wi λiIn×n

λiIp×p W T
i

]
≤ 0

where λi are design parameters.
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Remark 4.4.3 When f(x) = 0, theorem 1 is equivalent to the main theorem in [41],

which is the linear case. Our contribution is an extension of this approach to the

case.

4.5 Numerical example

In this section, we present a numerical example in order to show the applicability

of our result.

Consider the switched system (4.1) with two modes where Ai, B and C are given

by:

A1 =

[
1 −5

0 1

]
, A2 =

[
1 0

5 1

]
, B =

[
1

0

]
, C =

[
1

−2.4

]T

, f(x) = a cos(x1)

with a = 0.01 and s12 = [1.56 1], s21 = [1 − 1.56].

The design parameters are chosen as λ1 = λ2 = 5, ε = 4.8. By solving the LMI

conditions of Theorem 4.4.1 with the SeDuMi1.1 solver, we obtain the following

observer gains:

K1 = [1.8561 − 2.9405]T

K2 = [−5.7495 − 7.7089]T

and α = 0.4, β = 18.8, ν̄ = 5.4. With the processor Inter Pentium M, 1400 Mhz,

the CPU execution time is s = 813 ms. According to Theorem 4.4.1, we obtain the

bound ‖ ek ‖≤ 31.4 xmax.

With the initial conditions x(0) = [0 1]T (in region Ω1) and x̂(0) = [1 0]T (in

region Ω2), the trajectories of the system and the observer are shown in Figure 4.3

and Figure 4.4. Figure 4.5 shows the evolution of the energy function. The evolution

of the active modes of the system and of the observer are shown in Figure 4.6. The

simulation of this example shows the convergence of the estimation error in 2.5

seconds, which is better than the upper bound of the main theorem.

4.6 Conclusion

In this chapter, new sufficient conditions for the observer synthesis of nonlinear

switched system are proposed. By using multiple quadratic Lyapunov functions, the

main advantage of the proposed observer lies in the fact that the knowledge of the
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Figure 4.3: Trajectory of the system (solid line) and the observer (dash-dotted)
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observer (second subfigure)
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active mode of the switched system is not required. In order to improve the bound

of the estimation error, the estimated state is updated at each switching instant.

When a scale parameter is fixed a priori, these conditions can be expressed as a LMI

feasibility problem that is easily tractable by convex optimization techniques. The

interest of the proposed conditions have been validated on a numerical example.



Chapter 5

Observer design for nonlinear

multimodel systems

5.1 Introduction

In this chapter, we address the problem of observer synthesis for a class of discrete-

time multimodel systems. The multimodel system is composed of two Lipschitz

nonlinear systems. By using a particular Lyapunov function, we give sufficient

conditions for the observer synthesis. The synthesis problem is brought to a Linear

Matrix Inequality (LMI) feasibility problem which is easily tractable by optimization

techniques.

This chapter is structured as follows. In section 5.2, we introduce the considered

class of multimodel systems and the structure of the observer. In section 5.3, we

present our synthesis method of the observer. In section 5.4, the applicability of the

proposed approach is demonstrated on a numerical example.

5.2 Problem formulation

In this section, a class of multimodel systems, based on two discrete-time nonlinear

chaotic system, is introduced.

Consider two discrete-time systems with nonlinear terms:

{
xk+1 = A1xk + f1(xk)

yk = Cxk

(5.1)
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and: {
xk+1 = A2xk + f2(xk)

yk = Cxk

(5.2)

where x ∈ IRn, y ∈ IRp are the state vector and the output vector, respectively. Vari-

ables A1, A2 and C represent constant matrices of appropriate dimensions. Functions

f1 and f2 : IRn → IRn are nonlinear and assumed to be Lipschitz with respect to xk,

i.e ∃ki > 0 such that:

‖ fi(x)− fi(y) ‖2≤ ki ‖ x− y ‖2 (5.3)

The ki, i = 1, 2 are the Lipschitz constants.

Owing (1) and (2), we get the following multimodel nonlinear system:





xk+1 = µ(yk)(A1xk + f1(xk))

+(1− µ(yk))(A2xk + f2(xk))

yk = Cxk

(5.4)

in which µ(yk) is the activation function depending of the value of yk and 0 ≤
µ(yk) ≤ 1. Notice that µ(yk) is not required to be Lipschitz.

We consider the following observer described by:





x̂k+1 = µ(yk)(A1x̂k + f1(x̂k) + K1(yk − Cx̂k))

+(1− µ(yk))(A2x̂k + f2(x̂k) + K2(yk − Cx̂k))

ŷk = Cx̂k

(5.5)

where x̂ ∈ IRn is the estimate of the state vector x and Ki ∈ IRn×p for i = 1, 2 are

the observer gains to be determined.

Denoting the estimation error by ek = xk − x̂k, its dynamic writes:

ek+1 = xk+1 − x̂k+1

= µ(yk)((A1 −K1C)ek + ∆f1k)

+(1− µ(yk))((A2 −K2C)ek + ∆f2k) (5.6)

where ∆fik = fi(xk)− fi(x̂k),∀i = 1, 2.
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5.3 Main result

In this section, we introduce the main contribution of our paper which consists in

sufficient conditions for the synthesis of the observer (5.5).

Theorem 5.3.1 There exists an observer (5.5) for the nonlinear multimodel system

(5.4) if there exist positive-definite matrices P = P T > cI (P ∈ IRn×n), Q = QT >

0(Q ∈ IR2n×2n), Ri(Ri ∈ IRp×n) for all i = 1, 2 and scalars a > 0, b > 0, c > 0, such

that the conditions (5.7a) (5.7b) (5.7c) are satisfied,




(ak2
1 + bk2

2)I − P (?) 0 (?)

(d + 1)(PA1 −RT
1 C) (d + 1)P − aI −Q11 (?) 0

0 −Q21 −bI −Q22 0

PA1 −RT
1 C 0 0 −P/(d + 1)




< 0 (5.7a)




(ak2
1 + bk2

2)I − P 0 (?) (?)

0 −aI −Q11 (?) 0

(d + 1)(PA2 −RT
2 C) −Q21 (d + 1)P − bI −Q22 0

PA2 −RT
2 C 0 0 −P/(d + 1)




< 0 (5.7b)

Q− cI < 0 (5.7c)

with:

d = k2
1 + k2

2,

Q =

[
Q11 QT

21

Q21 Q22

]
(Qij ∈ IRn×n, i, j = 1, 2).

The gains of the observer are given by Ki = P−1RT
i .

Proof. Assume that all the conditions of the theorem are satisfied. The proof

of the theorem simply consists of showing that the observer is convergent in the

paradigm of the Lyapunov stability. Let us consider the following Lyapunov func-

tion:

Vk = eT
k Pek + ∆fT

k Q∆fk (5.8)

with ∆fk = [∆fT
1k ∆fT

2k]
T .
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We have:

Vk+1 = eT
k+1Pek+1 + ∆fT

k+1Q∆fk+1

= eT
k {µ2ÃT

1 PÃ1 + µ(1− µ)ÃT
1 PÃ2 + µ(1− µ)ÃT

2 PÃ1

+(1− µ)2ÃT
2 PÃ2}ek + eT

k {µ2ÃT
1 P∆f1k + µ(1− µ)ÃT

1 P∆f2k

+µ(1− µ)ÃT
2 P∆f1k + (1− µ)2ÃT

2 P∆f2k}
+{µ2∆fT

1kPÃ1 + µ(1− µ)∆fT
1kPÃ2 + µ(1− µ)∆fT

2kPÃ1

+(1− µ)2∆fT
2kPÃ2}ek + µ2∆fT

1kP∆f1k + µ(1− µ)∆fT
1kP∆f2k

+µ(1− µ)∆fT
2kP∆f1k + (1− µ)2∆fT

2kP∆f2k + ∆fT
k+1Q∆fk+1

where Ãi = Ai −KiC, i = 1, 2.

Now, let us compute ∆V = Vk+1 − Vk which can be rewritten as (5.9)

∆V =

ξT
k




D − P (?) (?) 0 0

µ2PÃ1 + µ(1− µ)PÃ2 µ2P −Q11 (?) 0 0

µ(1− µ)PÃ1 + (1− µ)2PÃ2 µ(1− µ)P −Q21 (1− µ)2P −Q22 0 0

0 0 0 Q11 Q12

0 0 0 Q12 Q22




ξk

(5.9)

where:

D = µ2ÃT
1 PÃ1 + µ(1− µ)ÃT

1 PÃ2

+µ(1− µ)ÃT
2 PÃ1 + (1− µ)2ÃT

2 PÃ2,

ξT
k =

[
eT

k ∆fT
k ∆fT

k+1

]
.

The Lipschitz condition (5.3) implies that, for any positive scalars a and b, the

following inequality holds:

(ak2
1 + bk2

2)e
T
k ek − a∆fT

1k∆f1k − b∆fT
2k∆f2k ≥ 0,∀a, b > 0.
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Denoting

L1 =




(ak2
1 + bk2

2)I 0 0 0 0

0 −aI 0 0 0

0 0 −bI 0 0

0 0 0 0 0

0 0 0 0 0




,

the inequality can be written:

ξT
k L1ξk ≥ 0.

From the Lipschitz condition (5.3), it is possible to derive that the following

condition holds:

(k2
1 + k2

2)e
T
k+1Pek+1 −∆fT

k+1P∆fk+1 ≥ 0.

The condition P > cI of theorem (∀c > 0) implies:

∆fT
k+1P∆fk+1 − c∆fT

k+1∆fk+1 > 0.

In addition to the previous inequality, we have then:

(k2
1 + k2

2)e
T
k+1Pek+1 − c∆fT

k+1∆fk+1 > 0. (5.10)

From the condition (5.6), the inequality (5.10) can be rewritten as:

ξT
k L2ξk ≥ 0

L2 =




dD (?) (?) 0 0

d(µ2ÃT
1 P + µ(1− µ)ÃT

2 P ) dµ2P (?) 0 0

d(µ(1− µ)ÃT
1 P + (1− µ)2ÃT

2 P ) dµ(1− µ)P d(1− µ)2P 0 0

0 0 0 −cI 0

0 0 0 0 −cI




(5.11)

where L2 is given in (5.11).
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Let us introduce an additional matrix M given in (5.12)

M =




M11 (?) (?) 0 0

M21 (d + 1)µ2P − aI −Q11 (?) 0 0

M31 (d + 1)µ(1− µ)P −Q21 M33 0 0

0 0 0 Q11 − cI QT
21

0 0 0 Q21 Q22 − cI




(5.12)

with

d = k2
1 + k2

2,

M11 = (d + 1)D + (ak2
1 + bk2

2)I − P,

M21 = (d + 1)(µ2PÃ1 + µ(1− µ)PÃ2),

M31 = (d + 1)(µ(1− µ)PÃ1 + (1− µ)2PÃ2),

M33 = (d + 1)(1− µ)2P − bI −Q22.

It is easy to check that ξT
k Mξk = ∆V + ξT

k L1ξk + ξT
k L2ξk. Therefore, as ξT

k L1ξk ≥ 0

and ξT
k L2ξk ≥ 0, the matrix inequality M < 0 implies ∆V < 0.

Due to its block-diagonal structure, the inequality M < 0 is equivalent to the

inequalities:

Q < cI (5.13)

and

F < 0 (5.14)

where F is given by (5.15).

F =




(d + 1)D + (ak2
1 + bk2

2)I − P (?) . . .

(d + 1)(µ2PÃ1 + µ(1− µ)PÃ2) (d + 1)µ2P − aI −Q11 . . .

(d + 1)(µ(1− µ)PÃ1 + (1− µ)2PÃ2) (d + 1)µ(1− µ)P −Q21 . . .

. . . (?)

. . . (?)

. . . (d + 1)(1− µ)2P − bI −Q22


 (5.15)
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Matrix F depends quadratically on µ. Based on the convexity principle, sufficient

conditions are derived in order to assure that F < 0 holds for any value of µ ∈ [0, 1]:

F (µ) < 0 with µ = {0, 1} and
∂2F

∂µ2
≥ 0, providing the inequalities (5.16), (5.17)

and (5.18).

F(1) =




(d + 1)ÃT
1 PÃ1 + (ak2

1 + bk2
2)I − P (?) 0

(d + 1)PÃ1 (d + 1)P − aI −Q11 (?)

0 −Q21 −bI −Q22


 < 0

(5.16)

F(0) =




(d + 1)ÃT
2 PÃ2 + (ak2

1 + bk2
2)I − P 0 (?)

0 −aI −Q11 (?)

(d + 1)PÃ2 −Q21 (d + 1)P − bI −Q22


 < 0

(5.17)

(d + 1)




ÃT
1 PÃ1 − ÃT

1 PÃ2 − ÃT
2 PÃ1 + ÃT

2 PÃ2 (?) (?)

PÃ1 − PÃ2 P (?)

−PÃ1 + PÃ2 −P P


 ≥ 0 (5.18)

By using the Schur complement and the notation Ri = KT
i P , the inequalities

(5.16) and (5.17) are respectively equivalent to (5.7a) and (5.7b) of the main theo-

rem, and the inequality (5.13) is equivalent to (5.7c). By using the Schur complement

for the non-strict inequalities [46], the inequality (5.18) is equivalent to the following

two inequalities:

P ≥ 0,[
∆ÃT P∆Ã ∆ÃT P

P∆Ã P

]
−

[
−∆ÃT P

−P

]
P−1

[
−P∆Ã −P

]
≥ 0

where Ã = Ã1 − Ã2.

Because of

[
−∆ÃT P

−P

]
(I − PP−1) = 0, we deduce that these conditions are

always satisfied.

Remark 5.3.1 Note that for a negative-definite matrix, each (i, i) bloc of the diag-

onal is negative-definite. Therefore, if the LMI conditions of the main theorem are
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verified then the blocs (1,1), (2,2) of (5.7a) and (3,3) of (5.7b) are negative-definite

which implies that the Lipschitz constants k1, k2 are less than one. Thus, the de-

veloped approach will not be efficient with nonlinear models that do not satisfy this

constraint.

Remark 5.3.2 This Lyapunov function (5.8) method has some conservatism be-

cause of the diagonal structure of the matrices P and Q. This conservatism could

be eliminated by using the following Lyapunov function:

Vk =

[
ek

∆fk

]T [
P ST

S Q

][
ek

∆fk

]
.

5.4 Numerical example

In this section, we present a numerical example in order to show the applicability

of our method.

Consider the following nonlinear system, which is described under the form (5.1)

(5.2) with the following parameters:

A1 =




0 −1 0

1 0.199 0

1 0 0


, A2 =




0 −1 0

1 0.199 0

3 0 0


, C =




1

0

0




T

,

f1(xk) =




0.02e−x2
1k

0

−5.7− 0.02e−x2
3k


, f2(xk) =




0.01e−x2
1k

0

−5.7− 0.02e−x2
3k


.

Now we establish the multimodel system by using the function µ(yk) = (1 +

tanh(εyk))/2. With initial condition x(0) = [0 0 0]T , the evolution of µ(yk), the

trajectories of nonlinear systems and the trajectory of the multimodel system (5.4)

are shown respectively in Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4.

By solving the LMI conditions of Theorem 5.3.1 with the SeDuMi1.1 solver, we

obtain the following observer gains:

K1 = [0.1501 0.9702 1.000]T ,

K2 = [0.1503 0.9701 3.000]T ,

with the processor Inter Pentium M, 1400 Mhz, the CPU execution time is 344 ms.
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With initial condition x̂(0) = [1 1 1]T , the observer trajectory is shown in

Figure 5.5. Figure 5.6 shows the evolution of the estimation error. This shows that

the estimation error converges after two iterations.

5.5 Conclusion

In this chapter, the problem of observer synthesis is addressed for a class of discrete-

time multimodel systems. The multimodel system is established by two discrete-time

Lipschitz systems. By using a particular Lyapunov function, sufficient conditions

for the synthesis of the observer is proposed. The applicability of this condition is

confirmed by a numerical example.

Notice that the result is only applicable to systems with Lipschitz constants

whose values are less than one. Future work on this topic could be dedicated to the

suppression of this limitation.
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Chapter 6

Unknown-input observer design

for nonlinear multimodel

systems

6.1 Introduction

Over the past decade, the synchronization problem between a transmitter and a

receiver, in the context of secure communication, became a challenging issue. Let

us notice that one of the most attractive and efficient synchronization techniques,

largely investigated during the last decade, is based on state observers [47], [48], [49],

[50], [51], [52]. If continuous-time nonlinear systems benefit from a well developed

control theory, analysis and synthesis of discrete-time systems remain a complex

and difficult problem in particular state observers design as can be shown in [53],

[54]. However, communication systems are generally digital and require specific

approaches.

Nonlinear Multi-Models were recently introduced to generate a new class of sys-

tems with complex behaviors that may be used for data encryption in communica-

tion systems. Note that, there are few results for the estimation of multiple model

system with unknown input. In [55], [56], a multiple observer with sliding mode

for a multimodel system with unknown input is proposed. In [57], the synthesis of

a Luenberger type observer is proposed, the considered system is represented by a

discrete-time multimodel linear system with unknown input.

In this chapter, we investigate observer design for a nonlinear multimodel system

to assure transmitter-receiver synchronization. To match this goal, we introduce a

simple and useful Lyapunov function, with a nonlinearity term, that leads to non
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conservative and convex conditions for convergence. Indeed, through some artefact

we provide sufficient and Linear Matrix Inequalities to assure synchronization. After

that, at the receiver, we easily deduce the encrypted signals. A diagram illustrating

synchronization and input recovery for our approach is shown in Figure 6.1.

Figure 6.1: Synchronization based observer approach

This chapter is structured as follows. In Section 6.2, we introduce the considered

class of multimodel systems, the structure of the observer and the estimation, then

the input recovery equation is given. In Section 6.3, we present our synthesis method

of the observer design. In section 6.4, the applicability of the proposed approach is

demonstrated on a numerical example. Finally, concluding remarks are made in the

last section.

6.2 Problem formulation

In this section, the observer problem for a class of multimodel systems with unknown

input, which is based on two discrete-time nonlinear systems, is introduced.

Consider the following multimodel nonlinear system:

{
xk+1 = µ(A1xk + f1(xk)) + (1− µ)(A2xk + f2(xk)) + Dūk

yk = Cxk

(6.1)

where x ∈ IRn, y ∈ IRp, ū ∈ IRm are the state vector, the output vector and the

unknown input respectively. A1, A2, C and D are constant matrices of appropriate

dimensions. Without loss of generality, we assume that D is of full column rank.

The functions f1 and f2: IRn → IRn are nonlinear and assumed to be Lipschitz with

respect to xk, i.e

‖ fi(x1)− fi(x2) ‖2≤ ki ‖ x1 − x2 ‖2 (6.2)
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where ki > 0 is the Lipschitz constant for i = 1, 2. µ(yk) is the activation function

according to the value of yk and 0 ≤ µ(yk) ≤ 1.

Inspired by the full order unknown input observer presented in [58], we consider

the following observer:





zk+1 = µ(N1zk + L1yk + M(µ)f1(x̂k))

+(1− µ)(N2zk + L2yk + M(µ)f2(x̂k))

x̂k+1 = zk+1 − µE1yk+1 − (1− µ)E2yk+1

(6.3)

where x̂ ∈ IRn is the estimate of the state x and Li ∈ IRn×p is the observer gain.

The matrix functions Ni, Li and M(µ) are defined by:

Ni = M(µ)Ai −KiC, ∀i = 1, 2,

Li = Ki(I + CEi)−M(µ)AiEi, ∀i = 1, 2, (6.4)

M(µ) =
2∑

i=1

Mi where M1 = µ(I + E1C) and M2 = (1− µ)(I + E2C),

Ei,Ki for i = 1, 2 are the matrices to be find.

The estimation error is defined as:

ek = xk − x̂k

= xk − zk + µE1yk + (1− µ)E2yk

= (I + µE1C + (1− µ)E2C)xk − zk

= Mxk − zk

and its dynamics is written as:

ek+1 = Mxk+1 − zk+1

= µ{(MA1 −N1M − L1C)xk + M(f1(xk)− f1(x̂k)) + N1ek}
+(1− µ){(MA2 −N2M − L2C)xk

+M(f2(xk)− f2(x̂k)) + N2ek}+ MDūk. (6.5)

Let’s assume that (I + EiC)D = 0 for all i = 1, 2, which implies

MD = 0. (6.6)
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From (6.4) and (6.6), we can deduce that

MAi −NiM − LiC = 0 ∀i = 1, 2. (6.7)

Then (6.5) becomes:

ek+1 = µ(N1ek + M∆f1k) + (1− µ)(N2ek + M∆f2k). (6.8)

where

∆fik = fi(xk)− fi(x̂k) ∀i = 1, 2.

If CD is of full column rank, all possible solutions of (I + EiC)D = 0 have the

following form:

Ei = −D(CD)† + Yi(I − (CD)(CD)†)

where (CD)† = ((CD)T (CD))−1(CD)T and Yi can be chosen arbitrarily. This can

be rewritten as:

Ei = U + YiV (6.9)

with U = −D(CD)† and V = I − (CD)(CD)†.

Using (6.4) and (6.9), matrices M and Ni write:

M = I + µ(UC + Y1V C) + (1− µ)(UC + Y2V C),

Ni = Ai + µ(UC + Y1V C)Ai (6.10)

+(1− µ)(UC + Y2V C)Ai −KiC.

If we obtain the matrices gains Yi,Ki for i = 1, 2, then the observer (6.3) can be

established.

Note that when both vectors xk and x̂k are synchronized, the information ūk can

be recoverable. In fact, the estimation of the error converges implies

x̂k+1 = µ(A1x̂k + f1(x̂k) + (1− µ)(A2x̂k + f2(x̂k)) + D ˆ̄uk

where ˆ̄uk is the estimation of unknown input.
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Using the least square method, we can deduce the recovered massage signal

ˆ̄uk = (DT D)−1DT{x̂k+1 − µ(A1x̂k + f1(x̂k)

−(1− µ)(A2x̂k + f2(x̂k))}

where x̂k+1 is given by observer (6.3).

6.3 Observer design

In this section, we introduce the main contribution of our paper which consists in

sufficient conditions for the synthesis of the observer (6.3) to guarantee the asymp-

totic stability of the estimation.

Theorem 6.3.1 Assume that CD of the nonlinear multimodel system (6.1) is of

full column rank, then there exists an observer (6.3) if there exist positive-definite

matrices P = P T > cI (P ∈ IRn×n), Q = QT > 0 (Q ∈ IR2n×2n), Ȳi (Ȳi ∈ IRn×p),

K̄i (K̄i ∈ IRn×p) for all i = 1, 2 and scalars a > 0, b > 0, c > 0, such that the

conditions (6.11a) (6.11b) (6.11c) are satisfied,




(ak2
1 + bk2

2)I − P 0 0 (?)

0 −aI −Q11 (?) (?)

0 −Q21 −bI −Q22 0

P (A1 + UCA1) + Ȳ1V CA1 − K̄1C P (I + UC) + Ȳ1V C 0 −P/(d + 1)




< 0 (6.11a)


(ak2
1 + bk2

2)I − P 0 0 (?)

0 −aI −Q11 (?) 0

0 −Q21 −bI −Q22 (?)

P (A2 + UCA2) + Ȳ2V CA2 − K̄2C 0 P (I + UC) + Ȳ2V C −P/(d + 1)




< 0 (6.11b)

Q− cI < 0 (6.11c)

with:

d = k2
1 + k2

2,

Q =

[
Q11 QT

21

Q21 Q22

]
(Qij ∈ IRn×n, i, j = 1, 2).
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∆V = ξT
k




Γ− P (?) . . .
µ2MT PN1 + µ(1− µ)MT PN2 µ2MT PM −Q11 . . .

µ(1− µ)MT PN1 + (1− µ)2MT PN2 µ(1− µ)MT PM −Q21 . . .
0 0 . . .
0 0 . . .

. . . (?) 0 0

. . . (?) 0 0

. . . (1− µ)2MT PM −Q22 0 0

. . . 0 Q11 Q12

. . . 0 Q12 Q22




ξk (6.13)

Proof. Let us consider the following Lyapunov function:

Vk = eT
k Pek + ∆fT

k Q∆fk

with ∆fk = [∆fT
1k ∆fT

2k]
T .

Then we have

Vk+1 = eT
k+1Pek+1 + ∆fT

k+1Q∆fk+1

= eT
k Γek + eT

k µ2NT
1 PM1∆f1k + eT

k µ(1− µ)NT
1 PM2∆f2k

+eT
k µ(1− µ)NT

2 PM1∆f1k + eT
k (1− µ)2NT

2 PM2∆f2k

+µ2∆fT
1kM

T
1 PN1ek + µ(1− µ)∆fT

1kM
T
1 PN2ek

+µ(1− µ)∆fT
2kM

T
2 PN1ek + (1− µ)2∆fT

2kM
T
2 PN2ek

+µ2∆fT
1kM

T
1 PM1∆f1k + µ(1− µ)∆fT

1kM
T
1 PM2∆f2k

+µ(1− µ)∆fT
2kM

T
2 PM1∆f1k + (1− µ)2∆fT

2kM
T
2 PM2∆f2k

+∆fT
k+1Q∆fk+1 (6.12)

where

Γ = µ2NT
1 PN1 + µ(1− µ)NT

1 PN2 + µ(1− µ)NT
2 PN1 + (1− µ)2NT

2 PN2.

Now, let us compute ∆V = Vk+1 − Vk which can be rewritten in (6.13) where

ξT
k =

[
eT

k ∆fT
k ∆fT

k+1

]
.
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The Lipschitz condition (6.2) implies the following inequality:

(ak2
1 + bk2

2) eT
k ek − a ∆fT

1k ∆f1k − b ∆fT
2k ∆f2k ≥ 0,∀a, b > 0.

This inequality is equivalent to:

ξT
k L1 ξk ≥ 0,∀a, b > 0

where

L1 =




(ak2
1 + bk2

2)I 0 0 0 0

0 −aI 0 0 0

0 0 −bI 0 0

0 0 0 0 0

0 0 0 0 0




.

By the Lipschitz condition (6.2) and P > cI, we obtain:

(k2
1 + k2

2)e
T
k+1Pek+1 − c ∆fT

k+1∆fk+1 > 0, ∀c > 0. (6.14)

By substituting ek+1 given by (6.5), inequality (6.14) can be rewritten as:

ξT
k L2 ξk ≥ 0, ∀a, b > 0

where L2 is given by:

L2 =




dΓ (?) . . .

d(µ2MT PN1 + µ(1− µ)MT PN2) dµ2MT PM . . .

d(µ(1− µ)MT PN1 + (1− µ)2MT PN2) dµ(1− µ)MT PM . . .

0 0 . . .

0 0 . . .

. . . (?) 0 0

. . . (?) 0 0

. . . d(1− µ)2MT PM 0 0

. . . 0 −cI 0

. . . 0 0 −cI




(6.15)
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Let’s introduce matrix Ω given by

Ω =




Ω11 (?) (?) 0 0

Ω21 (d + 1)µ2MT PM − aI −Q11 (?) 0 0

Ω31 (d + 1)µ(1− µ)MT PM −Q21 Ω33 0 0

0 0 0 Q11 − cI QT
21

0 0 0 Q21 Q22 − cI




(6.16)

with

d = k2
1 + k2

2,

Ω11 = (d + 1)Γ + (ak2
1 + bk2

2)I − P,

Ω21 = (d + 1)(µ2MT PN1 + µ(1− µ)MT PN2),

Ω31 = (d + 1)(µ(1− µ)MT PN1 + (1− µ)2MT PN2),

Ω33 = (d + 1)(1− µ)2MT PM − bI −Q22.

It is easy to derive ξT
k Ωξk = ∆V + ξT

k L1ξk + ξT
k L2ξk. From the inequality Ω < 0, we

can deduce ∆V < 0.

Due to its block-diagonal structure, the inequality Ω < 0 is equivalent to the

inequalities Q < cI and F < 0 where F is given by

F =


(d + 1)Γ + (ak2
1 + bk2

2)I − P (?) (?)

(d + 1)(µ2MT PN1 + µ(1− µ)MT PN2) (d + 1)µ2MT PM − aI −Q11 (?)

(d + 1)(µ(1− µ)MT PN1 + (1− µ)2MT PN2) (d + 1)µ(1− µ)MT PM −Q21 F 33




(6.17)

with F 33 = (d + 1)(1− µ)2MT PM − bI −Q22.

Since F is a matrix function depending quadratically on µ, using the convexity

principle, we deduce that F < 0 for any µ ∈ [0, 1] if F (µ) < 0 with µ = {0, 1} and
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∂2F

∂µ2
≥ 0, providing equations (6.18), (6.19) and (6.20)

F(1) =



(d + 1)NT
1(1)PN1(1) + (ak2

1 + bk2
2)I − P (?) 0

(d + 1)MT
(1)PN1(1) (d + 1)MT

(1)PM(1) − aI −Q11 (?)

0 −Q21 −bI −Q22




< 0 (6.18)

F(0) =



(d + 1)NT
2(0)PN2(0) + (ak2

1 + bk2
2)I − P 0 (?)

0 −aI −Q11 (?)

(d + 1)MT
(0)PN2(0) −Q21 (d + 1)MT

(0)PM(0) − bI −Q22




< 0 (6.19)

(d + 1)




NT
1 PN1 −NT

1 PN2 −NT
2 PN1 + NT

2 PN2 (?) (?)

MT PN1 −MT PN2 MT PM (?)

−MT PN1 + MT PN2 −MT PM −MT PM


 ≥ 0

(6.20)

with:

M(1) = M(µ = 1) = I + UC + Y1V C,

M(0) = M(µ = 0) = I + UC + Y2V C,

N1(1) = N1(µ = 1) = (I + UC + Y1V C)A1 −K1C, (6.21)

N2(0) = N2(µ = 0) = (I + UC + Y2V C)A2 −K2C.

By using the Schur complement for the non-strict inequalities in [46], we can

deduce that (6.20) is always verified. By using the Schur complement, (6.18) and
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(6.19) are equivalent to the following inequalities:




Θ 0 0 (?)

0 −aI −Q11 (?) (?)

0 −Q21 −bI −Q22 0

PN1(1) PM(1) 0 −P
d+1




< 0

(6.22)

and




Θ 0 0 (?)

0 −aI −Q11 (?) 0

0 −Q21 −bI −Q22 (?)

PN2(0) 0 PM(0)
−P
d+1




< 0

(6.23)

with Θ = (ak2
1 + bk2

2)I − P .

Now let’s define Yi = P−1Ȳi and Ki = P−1K̄i for all i = 1, 2. Substituting M1,

M2, N1(1), N2(0) given by (6.21) into (6.22) and (6.23) and substituting Y1, Y2, K1,

K2 by Ȳ1, Ȳ2,K̄1, K̄2, the problem of finding M(1), M(0), N1(1), N2(0), P in (6.22)

and (6.23) is equivalent to the problem of finding Ȳ1, Ȳ2,K̄1, K̄2, P in (6.11a) and

(6.11b) of the main theorem.

Based the main theorem, the unknown input observer design algorithm can be

proposed as follows:

a) Calculate U = −D(CD)† and V = I − (CD)(CD)†.

b) Solve the LMIs of the main theorem for P , Q, a > 0, b > 0, c > 0, and Ȳi, K̄i

for all i = 1, 2.

c) Deduce Yi = P−1Ȳi and Ki = P−1K̄i for all i = 1, 2.

d) Deduce the observer gains for all i = 1, 2 as follows:

Ei = U + YiV,

Ni = MAi −KiC,

M = I + µE1C + (1− µ)E2C,

Li = Ki(I + CEi)−MAiEi.
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Figure 6.2: Active function µ

6.4 Numerical example

In this section, we present a numerical example in order to show the applicability

of our method.

Consider the multimodel nonlinear system (6.1), which is described by the fol-

lowing parameters:

A1 =




0 −1 0

1 0.199 0

1 0 0


, A2 =




0 −1 0

1 0.199 0

3 0 0


, C =




1

0

0




T

, D =




1

0

1




T

,

f1(xk) =




0.02 exp(−x2
1k)

0

−5.7− 0.02 exp(−x2
3k)


, f2(xk) =




0.01 exp(−x2
1k)

0

−5.7− 0.02 exp(−x2
3k)


.

The active function is µ(yk) = (1 + tanh(εyk))/2 with the active value ε = 0.4.

The message is ūk =sin(0.01k). For initial condition x(0) = [2.8 0.5 0]T , the

evolution of µ(yk) and the trajectory of the multimodel system (6.1) are shown

respectively in Figure 6.2 and Figure 6.3. Figure 6.4 shows the output trajectory

yk, which can transmit the message to the observer.

By solving the LMI conditions of Theorem 6.3.1 with the SeDuMi1.1 solver, we
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Figure 6.5: Trajectory of multimodel observer

obtain the following observer gains:

K1 = [0 1.000 1.000]T ,

K2 = [0 1.000 3.000]T ,

with the CPU execution time s = 605 ms (the processor Inter Pentium M, 1400

Mhz), and we obtain by (6.9):

E1 = [−1 0 − 1]T ,

E2 = [−1 0 − 1]T .

With initial condition x̂(0) = [10 10 10]T , the observer trajectory is shown in

Figure 6.5; and the evolution of the estimation error of state x is shown in Figure 6.6.

This shows that the estimation error converges in 4 discrete time. The message

trajectory ūk and estimation trajectory of message ˆ̄uk is shown in Figure 6.7, and

the error estimation trajectory of message is shown in Figure 6.8.
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6.5 Conclusion

In this chapter, the problem of unknown input observer synthesis is addressed for

a class of discrete-time multimodel systems. The multimodel system is established

by two discrete-time Lipschitz systems. By using a particular Lyapunov function,

a sufficient condition for the observer of the multimodel system is proposed. These

conditions can be expressed as a LMI feasibility problem, which are easily tractable

by convex optimization techniques. The proposed conditions have been tested on a

numerical example. A particular, the proposed method can be applied to design the

communication systems, the objective is to recover a message imbedded in a signal

generated by a multimodel nonlinear system.



Chapter 7

General conclusion

In this thesis, several approaches for observer synthesis for a particular class of hy-

brid systems were proposed. We focused on the observation with/without unknown

inputs for switched systems and multimodel systems. Our main contributions were

given in chapters 4, 5 and 6. By using Lyapunov functions, sufficient conditions

for observer synthesis were proposed. These conditions is expressed as a LMI feasi-

bility problem that is easily solvable numerically by convex optimization techniques.

Our first approach was presented in chapter 4. In this chapter, an observer

synthesis method was presented for a nonlinear switched system. The switching

law of the switched system was assumed to be unknown. By using the Differential

Mean Value Theorem, the dynamic of the estimation error was transformed into a

LPV system. Then, by using multiple Lyapunov functions, sufficient conditions for

the observer synthesis which guarantee an upper bound on estimation error were

developed.

Notice that the estimation error is upper bounded by a constant in this approach.

On several numerical examples, the results showed that the computed upper bound

on the estimation error is large, despite of the fact that the simulation results are

good. This means that the proposed method may be pessimistic. Hence, as a future

work, it would be interesting to find a method which can reduce the pessimism, for

instance, by looking for other kinds of Lyapunov functions.

The proposed approach could be promising for data encryption / decryption for

telecommunication purposes. In order to do so, it is necessary to add an unknown

input to the switched system. Extending the proposed method to the problem of

observer synthesis with unknown input is an interesting and challenging issue.

67
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Our second contribution was presented in chapter 5 which deals with observer

synthesis for multimodel systems. The multimodel system is composed of two Lips-

chitz nonlinear systems. By using a Lyapunov function with an additional quadratic

term based on the nonlinear part of the system, we proposed sufficient conditions

for the observer synthesis.

Notice that this approach was developed only for multimodel systems composed

of two subsystems. For the case of more than two subsystems, it is necessary to

change the theorem.

Our approach is applicable to nonlinear multimodel systems where the Lipschitz

parameters are less than one. This is due to the fact that the Lyapunov function

method has some conservatism. In our case the bloc diagonal structures of the

matrices P and Q were used. Resulting conservatism could be eliminated by using

more general Lyapunov functions.

Chapter 6 presented an extension of the method developed in the previous chap-

ter to the observer synthesis problem for multimodel system with unknown inputs.

The system is composed of two nonlinear Lipschitz systems and an unknown in-

put. By using the same Lyapunov function as in Chapter 5, sufficient conditions for

observer synthesis were proposed.

As in the previous case, the main limitation of this approach comes from the

fact that it is applicable only to the case of two subsystems. For the case of more

than two subsystems, it is necessary to change the theorem.

The application to data encryption requires that the subsystems of the multi-

model system are chaotic. But our approach is not applicable to chaotic systems at

the moment because of the conservatism. How to reduce the conservatism of this

approach remains a challenging problem.

Notice that observer synthesis of hybrid system is still a subject of research and

there are a lot of interesting problems to explore. A direction is to look for new

Lyapunov functions, which allows to reduce the conservatism of current approaches

available in the literature. Another direction is to look for new structures of ob-

servers, which are adapted to new classes of systems, or reduce the conservatism

of available approaches. For solving matrix inequality, if the problem is not LMI,
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solver for the Bilinear Matrix Inequalities (BMI) could be used. However, in this

case, the solution obtained is not proved to be globally optimal.



Appendix A. Fundamental

elements

Schur Complement

Lemma 7.0.1 (Schur Complement) [46]

Given the matrices Q ∈ IRn×n, R ∈ IRm×m, S ∈ IRn×m and the matrix bloc M =[
Q S

ST R

]
, then the following representations are equivalents:

1. M is negative-definite.

2. R < 0 and Q− SR−1ST < 0.

3. Q < 0 and R− ST Q−1S < 0.

Lemma 7.0.2 (Schur complement for the non-strict inequalities) [46]

Given the matrices Q ∈ IRn×n, R ∈ IRm×m, S ∈ IRn×m and the matrix bloc M =[
Q S

ST R

]
, then the following representations are equivalents:

1. M is negative semi-definite.

2. R ≤ 0, Q− SR−1ST ≤ 0 and S(I −RR−1) = 0.

3. Q ≤ 0, R− ST Q−1S ≤ 0 and (I −Q−1Q)S = 0.

Some elements on the convexity

In this section, we present a few definitions and properties on the convex sets, convex

functions and the principle of convexity.

Definition 7.0.3 (convex set)

A set E is said convex if:

λx1 + (1− λ)x2 ∈ E
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for all x1, x2 ∈ E and for all 0 ≤ λ ≤ 1.

Geometrically, this means that every segment between any two points belonging to

a convex set is included in this set.

Definition 7.0.4 (convex function)

A function ϕ : IRn → IR is said convex if:

ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2)

for all x1, x2 ∈ IRn et for all 0 ≤ λ ≤ 1.

The function ϕ is strictly convex if and only if:

ϕ(λx1 + (1− λ)x2) < λϕ(x1) + (1− λ)ϕ(x2)

for all x1 6= x2 et for all 0 < λ < 1.

Stability of dynamical systems

In this section, we present several notions for the stability of dynamical systems

(continuous-time and discrete-time). The stability is an important propriety which

characterizes the comportment of dynamical systems. The Lyapunov theorem ap-

proach is the more general approach which allows us to study the stability of dy-

namical systems.

Several stability definitions

Consider an autonomous nonlinear dynamical system

ẋ(t) = f(x(t)), ∀t ≥ t0 (7.1)

where x(t) ∈ IRn is the state vector, f : IRn → IRn is a continuous locally Lipschitz

function, x(0) = x0. Without loss of generality, we assume the the origin is an

equilibrium point of the system (7.1).

Suppose the initial time t0 = 0, then
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• the origin of the above system is said to be Lyapunov stable, if for every ε > 0,

there exists a δ = δ(ε) > 0 such that if ‖x(0)‖ < δ, then ‖x(t)‖ < ε, for every

t ≥ 0.

• the origin of the above system is said to be asymptotically stable, if it is

Lyapunov stable and if there exists δ > 0 such that if ‖x(0)‖ < δ, then

limt→∞ x(t) = 0.

• the origin of the above system is said to be exponentially stable, if it is asymp-

totically stable and if there exist α, β, δ > 0 such that if ‖x(0)‖ < δ, then

‖x(t)‖ ≤ α‖x(0)‖e−βt, for t ≥ 0.

The definitions for discrete-time systems is almost identical to that for continuous-

time systems.

Lyapunov second theorem on stability

Lyapunov stability approach is the most general approach to study the stability of

dynamic systems, and there are a lot of results in this domain, for example [59].

Notice that Lyapunov stability theorems give only sufficient condition.

Consider a function V (x) : IRn → IR such that:

• V (x) ≥ 0 with equality if and only if x = 0 (positive definite),

• V̇ (x(t)) < 0 (negative definite),

then V(x) is called a Lyapunov function and the system is asymptotically stable in

the sense of Lyapunov.
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