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French Abstract

La prédiction de propriétés spectroscopiques moléculaires et l’interprétation de spec-

tres expérimentaux nécessitent de faire appel à la théorie. Une première étape

consiste à se limiter à la spectroscopie électronique dans l’approximation de Born-

Oppenheimer ce qui consiste à considérer les noyaux de la molécule comme étant fixes

et les états électroniques indépendants les uns des autres. L’objectif de cette thèse

est d’étudier la structure électronique de petites molécules organiques et organomé-

talliques dans l’approximation de Born-Oppenheimer dans un premier temps avant

d’aller au delà en prenant en compte des effets tels que le couplage vibronique ou le

couplage spin-orbite entre les états électroniques.

Chapitre 1: Aspects théoriques

Sont développées dans ce chapitre les méthodes utilisées pour obtenir les résul-

tats présentés dans les chapitres ultérieurs. Une première partie est consacrée aux

méthodes de structure électronique dans l’approximation de Born-Oppenheimer, elle

est suivie d’une partie qui traite des effets de couplage vibronique et spin-orbite.

Chapitre 2: Structure électronique de MCH+
2 (M=Fe, Co, Ni)

Les carbènes métalliques ont été identifiés comme produits intermédiaires dans

certains processus catalytiques tels que la synthèse Fischer-Tropsch, mais leur réac-

tivité, la nature de leurs liaisons, et leurs propriétés spectroscopiques sont loin d’être

comprises et demeurent un domaine de recherche actif dans la chimie des métaux de

transition. Parmi ces carbènes métalliques FeCH+
2 , CoCH+

2 et NiCH+
2 sont d’intérêt

particulier et leur photo fragmentation a récemment été étudiée pour établir leur mé-
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canisme de décomposition et estimer leurs énergies de dissociation [1]. Lorsqu’elles

sont irradiées (entre 310 et 360 nm dans le cas de FeCH+
2 et CoCH+

2 et entre 360

et 410 nm dans le cas de NiCH+
2 ) ces molécules donnent trois produits majeurs,

M+, MC+ et MCH+, la dissociation en M+ et CH2 étant le canal principal. Les

études théoriques sur ces espèces, essentiellement limitées aux états fondamentaux,

ont surtout porté sur leurs énergies de liaison et leurs structures d’équilibre plutôt

que sur leur photochimie.

La structure électronique des complexes de métaux de transition est caractérisée par

une forte densité d’états électroniques, certains pouvant être quasiment dégénérés,

ainsi que par la présence d’états haut spin (triplets, quadruplets voire quintuplets),

aussi le calcul de ces états n’est pas routinier et des approches non traditionnelles

sont parfois nécessaires pour les traiter avec succès.

Dans ce travail nous exploitons la flexibilité de la méthode Coupled Cluster (CC)

et de la méthode Equation Of Motion (EOM), son équivalent pour les états excités,

pour une approche non conventionnelle dans le traitement des complexes de métaux

de transition. Ainsi pour éviter les problèmes de contamination de spin dans la

fonction d’onde nous utilisons une fonction de référence Kohn-Sham (KS) au lieu

d’une fonction Hartree-Fock (HF). De plus dans la méthode CC la définition d’un

espace actif n’est pas nécessaire ce qui permet d’éviter les problèmes tels que la dis-

continuité de l’énergie qui peut résulter d’un choix arbitraire de l’espace actif.

Chacun des trois carbènes MCH+
2 est de symétrie C2v. Une étude préliminaire a

permis de déterminer la géométrie d’équilibre des trois carbènes métalliques étudiés,

de calculer leurs énergies de dissociation qui sont en bon accord avec l’expérience et

de caractériser l’état fondamental de chacun d’eux. NiCH+
2 est ainsi caractérisé par

un état fondamental 2A1 séparé d’environ 30.0 kJ/mol du premier état excité 2A2.

FeCH+
2 et CoCH+

2 sont quant à eux caractérisés par un état fondamental quasi dou-

blement dégénéré formé d’une composante 4B1 et d’une composante 4B2 dans le cas

de FeCH+
2 et d’une composante 3A2 et d’une composante 3A1 dans le cas de CoCH+

2 .

Cette étude a également permis de calculer les premiers états électroniques excités.
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La présence d’états de transfert de charge métal-π∗
MCH2

avec des forces d’oscillateur

significatives dans le domaine du proche UV-Visible dans les spectres théoriques

de FeCH+
2 et de CoCH+

2 est sans doute à l’origine de la photo fragmentation de

ces molécules observée après irradiation entre 310 et 360 nm. Forts de ses conclu-

sions nous avons également calculé les courbes d’énergie potentielle à une dimension

q=M+-CH2. Ces courbes d’énergie potentielle sont extrèmement compliquées et

difficiles à exploiter pour une étude dynamique plus avancée.

Chapitre 3: Couplages vibroniques dans la spectroscopie électronique des

fluoro-éthylènes.

Les halo-éthylènes ont largement été étudiés notamment à cause de leur toxicité.

Cependant l’assignation de leurs spectres ainsi que la connaissance des propriétés

de leurs états électroniques demeurent incomplètes. De nombreuses données expéri-

mentales allant des spectres d’absorption aux résultats issus des études de photo dis-

sociation sont disponibles principalement pour les fluoro-éthylènes. Elles montrent

une constance dans l’énergie de l’orbitale moléculaire π de la liaison C=C alors que

les liaisons σ sont stabilisées lorsqu’on passe de l’éthylène au tétrafluoro-éthylène.

Les études de photo fragmentation ont quant à elles permis de mettre en évidence

plusieurs canaux de dissociation comprenant la perte d’un atome d’hydrogène ou

de fluor voire l’élimination d’une molécule de HF de H2 ou de F2. Les mécanismes

supposés jusqu’ici sont purement spéculatifs voire inconnus.

A l’inverse peu d’études théoriques ont été menées sur les fluoro-éthylènes malgré

l’aide précieuse qu’elles pourraient apporter dans la compréhension de leur spectro-

scopie. Une étude récente utilisant la méthode Symmetry-Adapted Cluster Config-

uration Interaction (SAC-CI) a porté sur la spectroscopie électronique des fluoro-

éthylènes [2]. Elle a apporté de nouveaux éléments de réponse mais certaines én-

ergies d’excitation restent à assigner. En outre cette étude se limite à la géométrie

d’équilibre excluant ainsi les aspects liés aux effets de structure.

Dans le cadre de cette thèse nous proposons une étude plus détaillée de la spectro-
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scopie électronique des fluoro-éthylènes notamment en prenant en compte les effets

liés aux changements de structure. Pour ce faire nous faisons appel aux modes nor-

maux de vibration pour extraire la partie des spectres due aux mouvements des

noyaux mais aussi pour permettre aux états électroniques d’interagir entre eux et

ainsi mettre en évidence les couplages vibroniques [3]. Nous avons pu obtenir des

énergies d’excitation en meilleur accord avec l’expérience mais aussi montrer que cer-

taines parties des spectres ne provenaient pas d’une absorption directe mais étaient

dues à des couplages vibroniques entre états. L’analyse des surfaces d’énergie po-

tentielle le long des coordonnées normales nous donne également un aperçu de la

dynamique des noyaux.

Chapitre 4: Effets du couplage spin-orbite sur la spectroscopie électron-

ique de H2X (X=O,Te,Po).

Dans l’étude de la spectroscopie et la réactivité des complexes de métaux de tran-

sition il est parfois utile voire indispensable de prendre en compte les interactions

spin-orbite. Il existe plusieurs méthodes permettant de traiter ces interactions et

de rendre compte des effets de corrélation électronique, ce sont les méthodes SO-CI

(Spin-Orbite Configuration Interaction).

Ayant une origine relativiste les interactions spin-orbite nécessitent, en toute rigueur,

un traitement dans un formalisme à quatre ou deux composantes. Cependant dans

l’étude de la réactivité des molécules il convient de distinguer les électrons de va-

lence des électrons de coeur, ces derniers pouvant être considérés comme inertes. Le

traitement complet de l’atome dans le formalisme à quatre ou à deux composantes

n’est donc pas toujours justifié. De plus les effets relativistes sont plus importants

dans le coeur, là où les électrons sont les plus rapides. Leur influence sur les orbitales

de valence peut aujourd’hui être reproduite, sans trop perdre de précision, par des

potentiels effectifs de coeur, soit via des potentiels AIMP (abinitio Model Potentiels)

soit par des pseudopotentiels paramétrés.

La plupart des méthodes traitent ainsi les interactions spin-orbite dans un formal-
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isme à une composante, soit avec tous les électrons si les atomes sont légers, soit avec

des potentiels effectifs de coeur. Dans tous les cas il existe deux possibilités pour

traiter la corrélation électronique et l’interaction spin-orbite. Soit on considère les

deux dans la même étape de calcul, ce sont les méthodes à une étape, soit on traite

la corrélation électronique le mieux possible dans une première étape en utilisant les

méthodes corrélées usuelles avant de traiter l’interaction spin-orbite dans une étape

ultime, ce sont les méthodes à deux étapes.

Les méthodes à une étape donnent des résultats de bonne qualité mais atteignent

vite leurs limites notamment en terme de coût de calcul. Les méthodes à deux

étapes qui traitent d’abord la corrélation électronique bénéficient quant à elles des

progrès réalisés dans ce domaine, ce qui constitue d’ailleurs un de leurs principaux

avantages.

Dans ce travail nous utilisons principalement des méthodes à deux étapes à savoir la

méthode SO-RASSI [4] et la méthode EPCISO [5]. La première calcule l’interaction

spin-orbite entre les états électroniques sur la base de leurs fonctions d’onde cal-

culées au préalable au niveau RASSCF. La méthode EPCISO récemment développée

présente l’avantage de n’utiliser qu’une fonction d’onde RASSCF pour calculer les

premiers états électroniques excités ainsi que leur interaction spin-orbite. Dans le

cas d’étude de l’eau et de ses homologues lourds (H2Te et H2Po) nous montrons que

lorsque la fonction d’onde RASSCF utilisée est convenablement choisie des résultats

comparables à ceux de la méthode SO-RASSI peuvent être obtenus, évitant ainsi de

calculer la fonction d’onde de chacun des états.
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Introduction

The purpose of this thesis is to open the route to new applications of coupled cluster

theory, to validate the vibronic approach interfaced to ACES II [6] quantum chemical

software on small organic molecules for which experimental spectra are known and

to study the spin-orbit effects in the series H2X (X=O, Te, Po).

Most of the quantum chemical calculations reported nowadays are based either

on density functional theory (DFT) for electronic ground states properties in large

organic/inorganic molecules or on CASSCF/MS-CASPT2 methods when possible.

This method is the method of choice for transition metal complexes spectroscopy.

In order to obtain better accuracy coupled cluster theory is an alternative. In

our tentative to apply cluster expansion theory to transition metal complexes spec-

troscopy [7,8] we aim in the present work at investigating the spectroscopy and the

complicated mechanism of photofragmentation of MCH+
2 (M=Ni, Fe,Co) by various

coupled cluster methods.

The vibronic spectra of fluoroethylenes obtained by means of the module VI-

BRON [9] implemented and tested in ACES II within the present thesis, are com-

pared to the experimental ones. The ultimate goal is to reproduce the experimental

spectrum, analysis of the simulated spectrum will help us identify the root of each

absorption, whether it is from specific excited states, normal modes, or vibronic

coupling effects.

The electronic absorption spectra of H2X (X=O, Te, Po) including spin-orbit

(SO) corrections are compared and the use of two different approaches, EPCISO [10]
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and SO-RASSI [4] is discussed in the perspective of future applications to large

transition metal complexes.

The first chapter of the manuscript is devoted to a brief survey of the theoretical

methods used in the present studies. The second chapter relates the study of the

electronic structure of MCH+
2 molecules whereas the third chapter is dedicated to

the simulation of vibronic spectra of fluoroethylene molecules. The last chapter deals

with the study of the spin-orbit effects on the spectroscopy of H2X (X=O, Te, Po).







Chapter 1

Theoretical aspects

In this chapter a brief overview of the methods used for this work is presented.

Particular attention is given to the coupled-cluster method which was used in most

of the results presented in this work.

1.1 Molecular hamiltonian

Solving the Schrödinger equation is the first step on a quantum study of the proper-

ties of a molecule and its interaction with an external field. To do so one has to write

down the molecular hamiltonian. For a system of N electrons located at {ri} and

M nuclei of mass mA with atomic numbers ZA and their location given by {RA},

the molecular hamiltonian is

Ĥ = T̂nuc + T̂el + V̂ (1.1)
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where T̂nuc is the kinetic energy operator for nuclei, T̂el the kinetic energy operator

for electrons and V̂ the potential energy operator.

T̂nuc = −
M∑

A=1

1

2mA

∇2(RA) (1.2)

T̂el = −
1

2

N∑

i=1

∇2(ri) (1.3)

in atomic units. ∇2(xi) = ∂2

∂x2

i

+ ∂2

∂y2

i

+ ∂2

∂z2

i

in rectangular coordinates.

When limited to Coulombic interactions V̂ consists of nucleus-electron attractions

operator V̂ne, electron-electron repulsions operator V̂ee and nucleus-nucleus repulsions

operator V̂nn.

V̂ = V̂ne + V̂ee + V̂nn (1.4)

with

V̂ne = −

N∑

i=1

M∑

A=1

ZA

|ri − RA|
(1.5)

V̂ee =
N∑

i=1

N∑

j>i

1

|ri − rj|
(1.6)

V̂nn =
M∑

A=1

M∑

B>A

ZAZB

|RA − RB|
(1.7)

also in atomic units. Nucleus-electron attractions operator V̂ne couples the nuclear

and electronic motions and consequently complicates the treatment of electrons’

and nuclei’s dynamics at the same time. To overcome this difficulty electronic and

nuclear coordinates are decoupled by invoking the well known Born-Oppenheimer

approximation which consists of considering electrons to be moving in the field of

fixed nuclei. This assumption arises from the fact that compared to electrons nuclei

move slowly because of the large difference of mass. As a consequence, the kinetic
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energy operator for nuclei T̂nuc can be neglected and nucleus-nucleus repulsions oper-

ator V̂nn becomes a constant. The electronic problem can then be solved separately

by considering the remaining terms in the molecular hamiltonian, this defines the

electronic hamiltonian

Ĥel = T̂e + V̂ee + V̂ne + V̂nn (1.8)

This operation can be repeated along different all nuclear coordinates to obtain

series of points that will define potential energy surfaces. Solutions to the electronic

problem (for the wavefunction and for the energy) will depend parametrically on the

nuclear coordinates {RA}.

ĤelΦel({ri}, {RA}) = Eel({RA})Φel({ri}, {RA}) (1.9)

After solving the electronic energy, Eel, for a series of molecular geometries, nuclear

dynamics can be investigated knowing that electronic information is included into

potential energy surfaces.

In the next section (1.2) methods will be introduced for solving the electronic

problem within the Born-Oppenheimer approximation. In section 1.3 the discus-

sion will go beyond this approximation with the so-called vibronic and spin-orbit

couplings.
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1.2 Electronic problem in Born-Oppenheimer ap-

proximation

The electronic Schrödinger equation equation (1.9) can be solved exactly for only

hydrogen atom or hydrogen-like ones. In this section approximate solutions are

presented. The discussion begins with the well known Hartree-Fock approximation

which gives a good starting point to the more precise methods such as Configuration

Interaction (CI) or Coupled-Cluster (CC) methods. The CI method and its exact

solution (Full CI) to the Schrödinger equation are presented. It is followed by the

most important steps in the derivation of the CC equations with the inclusion of

single and double excitations (CCSD) by Purvis and Bartlett [11]. The essence of

the CC method is highlighted by showing how it gives a wavefunction closer to the

exact one in comparison to truncated CI for example. The section ends with a brief

presentation of multiconfigurational methods used in this work.

1.2.1 The Hartree-Fock approximation

A detailed overview of the Hartree-Fock method can be found in the excellent book

of A. Szabo and N. S. Ostlund [12]. The basic principals of the method are given

here. Starting with the electronic hamiltonian (1.8) and replacing the different terms

by their expressions (1.3) and (1.5)-(1.7), it can be rewritten

Ĥel = −
1

2

N∑

i=1

∇2(ri) −

N∑

i=1

M∑

A=1

ZA

|ri − RA|
︸ ︷︷ ︸

P

i ĥ(i)

+

N∑

i=1

N∑

j>i

1

|ri − rj|
︸ ︷︷ ︸

P

j>i ĝ(i,j)

+

M∑

A=1

M∑

B>A

ZAZB

|RA − RB|
︸ ︷︷ ︸

V̂nn

(1.10)

Since this section only deals with the electronic problem, the subscript in Ĥel will

be dropped for a more convenient form

Ĥ =
∑

i

ĥ(i) +
∑

j>i

ĝ(i, j) + V̂nn (1.11)
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where ĥ(i) and ĝ(i, j) are the one-particle and two-particle operators of the electronic

hamiltonian respectively.

The Hartree-Fock equations are obtained by minimizing the electronic energy

E = 〈Ψ|Ĥ|Ψ〉 (1.12)

with respect to the spin orbitals φp used to expand the electronic wavefunction |Ψ〉

as the Slater determinant

|Ψ〉 = |φ1φ2 · · ·φN〉 (1.13)

They are eigenvalue equations of the form

f̂(i)φp(i) = εpφp(i) (1.14)

where εp is the energy of the spin-orbital φp and f̂(i) the Fock operator

f̂(i) = ĥ(i) + v̂HF(i) (1.15)

In a finite basis of size P > N, there are P such equations (1.14) which means that

p can take the values p = 1, 2, · · ·N,N + 1, · · ·P .

v̂HF(i) is the average potential experienced by the ith electron due to the presence

of other electrons, it depends on their spin-orbitals which means that f̂ depends

on its eigenfunctions. A method called Self-Consistent-Field (SCF) is used to solve

the Hartree-Fock equations. It starts with an initial guess of spin-orbitals {φp},

calculates v̂HF from this starting guess and solves equation (1.14) for a new set of

spin-orbitals. v̂HF is calculated with this new set of spin-orbitals and equation (1.14)

is solved again. This procedure is repeated until the spin-orbitals used to expand the

Fock operator are the same as its eigenfunctions, self-consistency is then reached.

Solving the Hartree-Fock equations provides a set of spin-orbitals φp. The N first

spin-orbitals (with the lowest energy) are called the occupied or hole spin-orbitals,

they are labeled i, j, k, · · · , the remaining spin orbitals called virtual, unoccupied or

particle spin-orbitals and are labeled a, b, c, · · · . When the character of a spin-orbital

is not specified (occupied or unoccupied), it is labeled p, q, r, · · · . These spin-orbitals
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will appear in the definition of the exact wavefunction which is the topic of the next

section.

1.2.2 Exact wavefunction and Configuration Interaction (CI)

In the presentation of the CI and other methods discussed in this section it is con-

venient to work in the second quantization formalism, a summary of the notations

and formulas used here can be found in Appendix 1.

The exact electronic wavefunction is the so-called Full Configuration Interaction

(FCI) wavefunction. It has the following form

ΨFCI = C0Φ0 +
∑

i,a

Ca
i Φa

i +
∑

i>j
a>b

Cab
ij Φab

ij + · · ·+
∑

i>j>k···
a>b>c···

Cabc···
ijk···Φ

abc···
ijk··· (1.16)

where Φ0 = |0〉 is the Hartree-Fock SCF ground state wavefunction, it is the Slater

determinant formed from the occupied spin-orbitals obtained by solving the Hartree-

Fock equation. The Slater determinants Φabc···
ijk··· are formed from the occupied spin-

orbitals except φi, φj, φk, · · · which have been replaced by φa, φb, φc, · · · respectively.

They are called excited determinants, they can be singly excited, meaning that one

spin-orbital has been replaced, doubly excited, meaning that two spin-orbitals have

been replaced and so on. Cabc···
ijk··· are the coefficients to solve for in order to obtain

the exact wavefunction.

In order to compare the FCI wavefunction with the coupled-cluster one can write

it as a function of Φ0, for that we use second quantized operators and rewrite

singly excited determinants as

∑

i,a

Ca
i Φa

i = Ĉ1Φ0 (1.17)

where

Ĉ1 =
∑

i,a

Ca
i â

†î, (1.18)
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doubly excited determinants as

∑

i>j
a>b

Cab
ij Φab

ij = Ĉ2Φ0 (1.19)

with

Ĉ2 =
∑

i>j
a>b

Cab
ij â

†b̂†ĵ î (1.20)

and more generally n-tuply excited determinants as

∑

i>j>k···
a>b>c···

Cabc···
ijk···Φ

abc···
ijk··· = ĈnΦ0 (1.21)

with

Ĉn =
∑

i>j>k···
a>b>c···

Cabc···
ijk··· â

†b̂†ĉ† · · · k̂ĵî. (1.22)

FCI wavefunction can then be written

ΨFCI = (C0 + Ĉ1 + Ĉ2 + · · · + Ĉn)Φ0 (1.23)

The CI method is an application of the linear variational method where a linear

combination of Φs is used as a trial function for the exact wavefunction and the

matrix representation of the hamiltonian in the basis of these Φs, the FCI matrix,

is formed and diagonalized in order to solve for its eigenfunctions. The FCI matrix

has the following structure

HFCI =


















〈0|Ĥ|0〉

0 〈S|Ĥ|S〉

〈D|Ĥ|0〉 〈D|Ĥ|S〉 〈D|Ĥ|D〉

0 〈T |Ĥ|S〉 〈T |Ĥ|D〉 〈T |Ĥ|T 〉

0 0 〈Q|Ĥ|D〉 〈Q|Ĥ|T 〉 〈Q|Ĥ|Q〉

...
...

...
...

...
...


















(1.24)

where |S〉 represents the single excitation terms, |D〉 represents the double excitation

terms, and so on. Vanishing terms are consequences of the Brillouin theorem and
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Slater-Condon rules. Diagonalization of the CI matrix yields upper bound to the

ground and excited states energies.

FCI is the exact solution to the electronic Schrödinger equation for a given basis

set. When it is affordable it is a benchmark to which other electronic structure

methods should be compared to. In practice the number of excited determinants

grows very fast and only a reduced number of these determinants can be included

in the wavefunction. Truncation has to be made at some excitation level, double for

example to give the CI singles and doubles (CISD), the wavefunction then looks like

ΨCISD = (C0 + Ĉ1 + Ĉ2)Φ0 (1.25)

and the hamiltonian has the more tractable form

HCISD =








〈0|Ĥ|0〉

0 〈S|Ĥ|S〉

〈D|Ĥ|0〉 〈D|Ĥ|S〉 〈D|Ĥ|D〉








(1.26)

The CC wavefunction is presented in the next section and compared to the one

of truncated CI and FCI.

1.2.3 Coupled-Cluster equations

The starting point of CC method is the exponential ansatz, it consists in writing the

CC wavefunction as

ΨCC = eT̂ Φ0

= (1 + T̂ +
T̂ 2

2
+
T̂ 3

3!
+ · · · )Φ0 (1.27)

where Φ0 = |0〉 is the reference function and T̂ is an excitation operator composed

of CI-like excitation operators,

T̂ = T̂1 + T̂2 + · · · + T̂n (1.28)



1.2 Electronic problem in Born-Oppenheimer approximation 19

where T̂1 and T̂2 are given as

T̂1 =
∑

a,i

tai â
†î,

T̂2 =
∑

i>j
a>b

tab
ij â

†b̂†ĵ î (1.29)

(1.30)

and more generally T̂n as

T̂n =
∑

i>j>k···
a>b>c···

tabc···
ijk···â

†b̂†ĉ† · · · k̂ĵî. (1.31)

tabc···
ijk··· are called T1, T2, T3 · · · amplitudes.

When T̂n acts on the reference function it gives

T̂nΦ0 =
∑

i>j>k···
a>b>c···

tabc···
ijk···Φ

abc···
ijk···. (1.32)

The Coupled-Cluster wavefunction can be explicitly written as

ΨCC = (1 + T̂1 + T̂2 + · · ·+ T̂n

+
(T̂1 + T̂2 + · · ·+ T̂n)2

2

+
(T̂1 + T̂2 + · · ·+ T̂n)3

3!
+ · · · )Φ0. (1.33)

Including only singly and doubly excited determinants into the wavefunction yields

the CC singles and doubles (CCSD) wavefunction. T̂ defined in (1.28) is truncated

after T̂2 and is T̂ = T̂1 + T̂2.

Then

ΨCCSD = (1 + T̂1 + T̂2 +
(T̂1 + T̂2)

2

2
+

(T̂1 + T̂2)
3

3!
+ · · · )Φ0

= (1 + T̂1
︸︷︷︸

Ĉ1

+ T̂2 +
T̂ 2

1

2
︸ ︷︷ ︸

∈Ĉ2

+
T̂ 3

1

3!
+ T̂1T̂2

︸ ︷︷ ︸

∈Ĉ3

+
T̂ 2

2

2
+

T̂ 2
1 T̂2

2
︸ ︷︷ ︸

∈Ĉ4

+
T̂ 2

2 T̂1

2
︸ ︷︷ ︸

∈Ĉ5

+
T̂ 3

2

3!
︸︷︷︸

∈Ĉ6

+ · · · )Φ0

(1.34)
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where the Ĉi are the same as in equations (1.23) and (1.25). The advantage of CC

over CI at the same truncation level can be seen immediately. Even though T̂ is only

composed of T̂1 and T̂2 (singles and doubles), up to N-tuply excited determinants will

be present in the coupled-cluster wavefunction. Some of the terms in equation (1.2.3)

will vanish, however determinants present in the coupled-cluster wavefunction will

always be of higher excitation order than CI determinants for the same truncation

level.

To derive the coupled-cluster equations one can start with the Schrödinger equation

ĤΨ = EΨ (1.35)

The hamiltonian in its normal order form (defined in Appendix 2) is obtained by

subtracting 〈0|Ĥ|0〉Ψ from both sides

(Ĥ − 〈0|Ĥ|0〉)Ψ = (E − 〈0|Ĥ|0〉)Ψ (1.36)

and rewritten as

ĤNΨ = ∆EΨ (1.37)

where ∆E is the correlation energy in the Hartree-Fock case.

Replacing Ψ by the coupled-cluster wavefunction ΨCC = eT̂ |0〉 and multiplying from

the left by e−T̂ gives

e−T̂ ĤNe
T̂ |0〉 = ∆E|0〉

Ĥ|0〉 = ∆E|0〉 (1.38)

where Ĥ = e−T ĤNe
T is the similarity transformed hamiltonian.

Ĥ can be considerably simplified by using Baker-Campbell-Hausdorff expan-

sion (Appendix 3) to obtain

Ĥ = ĤN + [ĤN , T̂ ] +
1

2
[[ĤN , T̂ ], T̂ ] +

1

3!
[[[ĤN , T̂ ], T̂ ], T̂ ] +

1

4!
[[[[ĤN , T̂ ], T̂ ], T̂ ], T̂ ]

(1.39)
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It has been shown that Ĥ terminates after the fifth term using the Generalized

Wick’s Theorem (Appendix 4). When the latter is applied to the commutator

between ĤN and T̂ it gives

[ĤN , T̂ ] = ĤN T̂ − T̂ ĤN = {ĤN T̂} + {ĤN T̂} − {T̂ ĤN} − {T̂ ĤN} (1.40)

where {ĤN T̂} ({T̂ ĤN}) is the sum of all normal products in which there are one or

more contractions between the creation/annihilation operators in ĤN and those in

T̂ . Since ĤN and T̂ contain a pair number of operators, {ĤN T̂} = {T̂ ĤN} and

[ĤN , T̂ ] = {ĤN T̂} − {T̂ ĤN} (1.41)

The only nonzero contractions are î†ĵ = δij and âb̂† = δab (see equation (1.115)

in Appendix 4). Since T̂ contains only particle creation operators â†, b̂†, · · · and

hole annihilation operators î, ĵ, · · · no nonzero contraction can be obtained with a

T̂ on the left. The only surviving terms are those in which ĤN is on the left and is

connected by at least one contraction with each of the following T̂ operators, they

are called connected terms and the connection is symbolized by . Moreover,

ĤN contains at most four creation/annihilation operators so it can be contracted

with at most four T̂ operators, this is why Baker-Campbell-Hausdorff expansion

terminates after the fifth term.

The final form of Ĥ can then be written as

Ĥ = ĤN + ĤNT̂ +
1

2
ĤNT̂ T̂ +

1

3!
ĤNT̂ T̂ T̂ +

1

4!
ĤNT̂ T̂ T̂ T̂

=
(
ĤNe

T̂
)

C
(1.42)

The C subscript indicates the restriction to connected terms.

Substituting Ĥ into equation (1.38) and multiplying from the left by 〈0| one obtains

the energy equation

〈0|ĤNe
T̂ |0〉C = ∆E (1.43)

or multiplying from the left with the excited determinants 〈Φab···
ij··· | one obtains the

equations for the amplitudes

〈Φab···
ij··· |ĤNe

T̂ |0〉C = 0. (1.44)
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To derive CCSD equations we substitute T̂ by T̂1+T̂2 in (1.43) and (1.44) keeping

the surviving terms only. The latter can be identified using the fact that the hamil-

tonian is a two-particle operator which means that when acting on a determinant it

can change its excitation order by two to the maximum. The result of the product

of ĤN by a cluster operator T̂1 or T̂2 or a disconnected cluster, T̂1T̂2 acting on the

reference function on its right has to be of same excitation order as the determinant

we use to project on the left. Energy and amplitude equations are then

〈0|ĤN(T̂2 + T̂1 +
1

2
T̂ 2

1 )|0〉C = ∆E (1.45)

〈Φa
i |ĤN(1 + T̂2 + T̂1 + T̂1T̂2 +

1

2
T̂ 2

1 +
1

3!
T̂ 3

1 )|0〉C = 0 (1.46)

〈Φab
ij |ĤN(1 + T̂2 +

1

2
T̂ 2

2 + T̂1 + T̂1T̂2 +
1

2
T̂ 2

1 +
1

2
T̂ 2

1 T̂2 +
1

3!
T̂ 3

1 +
1

4!
T̂ 4

1 )|0〉C = 0 (1.47)

To obtain programmable CCSD equations one can explicitly write all the terms in

1.45, 1.46 and 1.47 equations and algebraically derive the energy and the amplitude

equations using the contraction rules, however this method can be quite tedious

and prone to error. A more convenient method is the diagrammatic derivation.

Diagrammatic notation was introduced to help identify the non-vanishing terms, it

also brings out certain cancellations in these sums. Coupled-Cluster diagrams can be

systematically produced and a procedure developed by Kucharski and Bartlett [13]

ensures that only unique diagrams are obtained. Their interpretation will lead to

the energy and amplitude equations.

Diagrammatically, the CCSD energy equation looks like

∆E = +
×

+ . (1.48)

The corresponding algebraic energy expression is

∆E =
1

4

∑

ijab

〈ij‖ab〉tab
ij +

∑

ia

fiat
a
i +

1

2

∑

ijab

〈ij‖ab〉tai t
b
j . (1.49)

For more details a chapter on systematic derivation of the Coupled-Cluster equa-

tions can be found in reference [13] as well as complete amplitude equations up to

CCSDTQ (Coupled-Cluster with single, double, triple and quadruple excitations).
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For CCSD one obtains an equation for T̂1 amplitudes and another one for T̂2

amplitudes and, by an iterative procedure, solves for tai for all i, a and tab
ij for all

i > j, a > b. All elements needed to calculate the CCSD correlation energy (1.49)

are then known.

Coupled-Cluster is the most accurate approximate ab initio method but it also

has its disadvantages, one of them is the computational cost, in particular the amount

of data to store and the number of computational steps. In general for a n-electron

system and N functions there are ∼ nlN l amplitudes and an ∼ nlN l+2 computa-

tional dependence for a given level of excitation l [14]. This makes the application of

coupled-cluster method to large systems difficult, especially when high-order excita-

tions are included. To overcome this difficulty a set of methods have been developed

to approximate for example the inclusion of triples. Some of these methods like

CCSDT-1 [15] and CCSDT-3 [16] are still iterative but they only include the lead

terms in the CCSDT triples equations. Other methods like CCSD(T) [17, 18] and

CCSD[T] [19] make a perturbative approximation of triple excitations.

Coupled-Cluster method, as described so far, is the so-called single-reference

coupled-cluster and is adequate for electronic states dominated by a single reference

which is the case for most molecules in their ground state and around their equilib-

rium geometry. The energy obtained can be used to estimate equilibrium structure,

vibrational frequencies or other observable quantities. However to describe processes

involving light absorption within the UV energy domain for example one has to ex-

tend coupled-cluster theory to excited states, this is done by the Equation Of Motion

Coupled-Cluster (EOM-CC). Basic concepts of the EOM method are presented in

the next section.
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1.2.4 Equation Of Motion Coupled-Cluster

Starting with a coupled-cluster calculation as described in section 1.2.3 one applies

a CI-like excitation operator

R̂k = r0 +
∑

i,a

ra
i {â

†î} +
∑

i<j, a<b

rab
ij {â

†îb̂†ĵ} + . . . (1.50)

on the initial state Ψ0 to obtain the target state Ψk,

Ψk = R̂kΨ0 . (1.51)

The energy of the target state is obtained through the energy difference between

the initial state and the target state by simultaneously considering two Schrödinger

equations, one for the initial state

ĤNΨ0 = ∆E0Ψ0 (1.52)

and one for the target state

ĤNΨk = ∆EkΨk

ĤNR̂kΨ0 = ∆EkR̂kΨ0 .

(1.53)

The energy difference between initial and target state ωk = Ek − E0 is then

ωk = ∆Ek − ∆E0 (1.54)

since ∆E0 = E0 − Eref and ∆Ek = Ek − Eref .

Left multiplying R̂k both sides of the initial state equation (1.52) and subtracting it

from the target state equation (1.53) one gets

ĤNR̂k|Ψ0〉 − R̂kĤN |Ψ0〉 = (∆Ek − ∆E0)R̂k|Ψ0〉 (1.55)

and, using Ψ0 = eT̂ |0〉, obtains

[ĤN , R̂k]e
T̂ |0〉 = ωkR̂ke

T̂ |0〉 . (1.56)

Connected form of the EOM-CC equation, which eliminates common terms from

the target state and initial state, is then obtained by multiplying from the left by
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e−T̂ and, writing the commutator between Ĥ = e−T̂ ĤNe
T̂ and R̂k as a connected

product, one obtains the connected form of the EOM-CC equation

(ĤR̂k|0〉)C = ωkR̂k|0〉 (1.57)

by applying the fact that e−T̂ and R̂k commute.

Equation (1.57) is an eigenvalue equation and Ĥ and Ĥ have the same spectrum

regardless of the choice of T̂ , in that sense EOM is identical to FCI. As for Ĉ

operator in CI, truncation has to be made in R̂k expansion but EOM results are

better than CI’s in general because part of the correlation effects is folded in the

transformed hamiltonian.

Another important feature of EOM method is that it is a multi-state scheme,

diagonalization of the transformed hamiltonian yields several target states resulting

in an improvement of the accuracy of the method because of error cancellation, it

also simplifies the calculation of coupling elements, such as nonadiabatic or spin-orbit

couplings, between target states.

Ionisation Potential (IP)/Electron Attachment (EA) EOM-CC

Since initial and target states need not to have the same number of electrons in

the EOM-CC formalism this method can be applied to the treatment of ionization

and electron attachment processes by using an R̂ operator that reduces (R̂IP ) or

increases (R̂EA) the number of electrons.

R̂IP =
∑

i

rîi+
∑

b, j>i

rb
jib̂

†ĵ î+
∑

b>c, j>k>i

rbc
jkib̂

†ĵĉ†k̂î+ . . . (1.58)

and

R̂EA =
∑

a

raâ† +
∑

a>b, j

rba
j b̂

†ĵâ† + . . . . (1.59)

The same treatment can be extended to double-ionization (DIP) or double electron

attachment (DEA) processes by reducing or increasing the number of electrons by

two instead of one.
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Depending on the problem of interest IP and EA EOM-CC can be a more reasonable

approach than EOM-CC. DIP method can be used to calculate Auger spectrum

while DEA seems most useful to calculate excitation spectra of open-shell systems

like carbon atom or oxygen molecule.

IP and EA methods are also one of the steps in the similarity-transformed EOM-

CC (STEOM-CC) approach [20, 21] developed to overcome computational cost of

EE-EOM-CC, this is the next topic.

Similarity Transformed EOM

EOM-CC is a very accurate and convenient method for treatment of exited, ionized

and electron attached states. However it is computationally demanding since it re-

quires solutions of both the ground state CCSD amplitudes equations (1.46, 1.47)

and the EOM eigenvalue equation (1.57). The latter step consists in a diagonaliza-

tion of a matrix of the rank of all single and double excitations and is the key of the

problem to reduce the computational cost of the method.

The EOM hamiltonian is obtained through a similarity transformation Ĥ = e−T̂ ĤNe
T̂

of the normal ordered hamiltonian. The idea in STEOM is to perform another sim-

ilarity transformation that yields a new hamiltonian

Ĝ = e−ŜĤeŜ (1.60)

in which two-particle matrix elements that couple singly and doubly excited deter-

minants are transformed to zero. All energies corresponding to singly excited states

can then be obtained by diagonalizing Ĝ only in the space of single excitations.

It has been shown how such a transformation can be carried out [22] and elements of

Ĝ that are required to vanish are gabej and gmbij . Subscript letters correspond to or-

bitals which are labeled as in subsection 1.2.1. The transformation can be obtained

through eŜ where

Ŝ =
1

2

∑

a,b,e,j

sabej{â
†êb̂†ĵ} +

1

2

∑

m,i,j,b

smbij{m̂
†îb̂†ĵ} (1.61)
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The first term in (1.61) corresponds to an EA process since two particles are created

in a and b while only one is annihilated in j because e is unoccupied and no particle

can be annihilated from it. Similarly the second term corresponds to an IP process

since two particles are annihilated, from i and j, but only one is created, in b, because

m is already occupied. Thus, EA and IP equations must be solved to obtain sabej

and smbij amplitudes respectively, however it is not necessary to include all EA’s

and IP’s, a set of active orbitals can be chosen to be included in EA and IP process.

1.2.5 Multiconfigurational methods

In cases of degeneracy or near-degeneracy between electronic configurations, as in

H2 molecule at long internuclear distance, it’s necessary to use multiconfigurational

methods. Such methods exist in the coupled-cluster formalism but they have not

reached the maturity of variational methods such as Multiconfigurational (MC) Self-

Consistent Field (SCF) which are also used in this work, basic concepts of the method

are presented next.

MCSCF method

Like the Full-CI wavefunction (eq. 1.23), the MCSCF wavefunction is constructed

as a linear combination of several electronic configurations

ΨMCSCF = Φ0 +
∑

i,a

Ca
i Φa

i +
∑

i>j
a>b

Cab
ij Φab

ij + · · ·+
∑

i>j>k···
a>b>c···

Cabc···
ijk···Φ

abc···
ijk··· . (1.62)

There are two major differences between CI and MCSCF methods. The first is that

in MCSCF both CI coefficients Cabc···
ijk··· and molecular orbitals {φi} used to expand

electronic configurations Φabc···
ijk··· are optimized. The second difference is in the choice

of the electronic configurations included in the wavefunction. While in truncated

CI the criterion is the number of excitation, in MCSCF electronic configurations

are chosen to correctly describe near-degeneracy effects. The main difficulty of the
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method lies in that choice since it has to be made beforehand, therefore a knowledge

of the electronic structure is needed. To overcome this difficulty Complete Active

Space (CAS) method includes all electronic configurations generated from all possible

excitations, under symmetry and spin constraints, within a so-called active space.

In some cases the choice of this active space is rather obvious, in others some trial

calculations are needed to find the best choice. The active space is defined by

specifying the inactive orbitals that will remain doubly occupied, the active orbitals

that can be unoccupied, singly or doubly occupied and the external or virtual orbitals

that will remain unoccupied. When CAS is too big it can be divided into three active

spaces in which the number of electrons can be restricted, this reduces the size of

the problem.

The CASSCF method was developed to treat near-degeneracy effects, qualitatively

it gives a reasonable answer but does not take into account dynamic correlation

which is necessary to achieve accuracy. Nevertheless it gives a good starting point

for applying second-order perturbation theory (PT2) such as in CASPT2 method.

CASPT2 method

In perturbation theory the total hamiltonian is partitioned into a zeroth order part

Ĥ0, of which the eigenfunction and eigenvalue are known, and a perturbation term

V̂ that is small compared to Ĥ0. The smaller the perturbation is the closer the

eigenfunction and eigenvalue of the total hamiltonian are to those of Ĥ0. The exact

eigenfunctions and eigenvalues can be systematically approached by introducing an

ordering parameter λ that will be set to 1 at the end.

The total hamiltonian can be written

Ĥel = Ĥ0 + λV̂ (1.63)

and the wavefunction and energy are expanded in Taylor series of λ as

Φ = Φ(0) + λΦ(1) + λ2Φ(2) + · · ·

E = E(0) + λE(1) + λ2E(2) + · · · .

(1.64)
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Using (1.63) and (1.64) one can rewrite the Schrödinger equation and collect terms

of the same order in λ to get

Ĥ0|Φ
(0)〉 = E(0)|Φ(0)〉

(Ĥ0 − E(0))|Φ(1)〉 = (E(1) − V̂ )|Φ(0)〉

(Ĥ0 − E(0))|Φ(2)〉 = (E(1) − V̂ )|Φ(1)〉 + E(2)|Φ(0)〉

(1.65)

If the perturbed wavefunctions are assumed to be orthogonal to the zeroth order

wavefunction, 〈Φ(0)|Φ(i)〉 = δ0i, which means that 〈Φ|Φ(i)〉 = 1, perturbed energies

can be expressed as

E(0) = 〈Φ(0)|Ĥ0|Φ
(0)〉

E(1) = 〈Φ(0)|V̂ |Φ(0)〉

E(2) = 〈Φ(0)|V̂ |Φ(1)〉

(1.66)

Expanding the first order wavefunction in configurations and inserting it into its

equation in (1.65) yields, after some manipulations, a programmable expression of

the second order perturbation energy

E(2) =
1

4

∑

ijab

|〈ij‖ab〉|2

εi + εj − εa − εb
(1.67)

where 〈ij‖ab〉 is a two-electron integral and εi’s are orbital energies. Higher order

perturbation energies can also be obtained.

The CASPT2 method extends perturbation theory to the multiconfigurational

case by partitioning the CI space into four subspaces: reference function, CAS, a

subspace of single and double excitations with respect to CAS and the rest of CI

space. The idea is to retrieve the second order perturbed energy of each of the

configurations in the CAS through single and double excitations with respect to the

CAS space.
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1.3 Beyond Born-Oppenheimer approximation

In methods described so far, electronic states are not supposed to interact with

each other in agreement with the Born-Oppenheimer approximation, however the

latter breaks down when electronic states energies become too close. When such a

situation is encountered the so-called non-adiabatic interactions between electronic

states take place. In the following we will present two of them, namely vibronic and

spin-orbit coupling, by describing their origin and how they can be treated.

1.3.1 Vibronic coupling

Excluding rotational and translational motions, a molecule can have up to 3N-6 (3N-

5 for a linear molecule) nuclear degrees of freedom, N being the number of atoms,

thus degeneracies between electronic states are very likely to occur as the nuclei

move. In such cases vibronic coupling between states have to be considered, this is

done by using a vibronic model that couples electronic states through vibrational

normal modes [3].

Before going beyond Born-Oppenheimer approximation it is important to under-

stand tis influence in molecular spectroscopy because. Although it shows limitations

for some systems it does give very good results for others and remains a good starting

point for when the non-Born-Oppenheimer effects have to be included. Up to now

this approximation has been discussed qualitatively to explain the decoupling of the

motion of the electrons from that of the nuclei, it is also central to the traditional

approach of molecular spectroscopy, namely the Franck-Condon approach [23, 24].

As we have seen in section 1.1, after solving electronic Schrödinger equation 1.9,

obtained by invoking the Born-Oppenheimer approximation, one gets the electronic

wavefunction Φa(r, R) and the adiabatic potential energy surface Va(R) for each

electronic state a

ĤelΦa(r, R) = Va(R)Φa(r, R) (1.68)
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where shorthand notations r and R are used for electronic and nuclear coordinates

respectively. In terms of wavefunction the decoupling of the electronic and the

nuclear motions means that the molecular wavefunction can be written as a product

of the electronic, Φa(r, R), and nuclear, χa(R), wavefunction

ΨBO = χa(R)Φa(r, R). (1.69)

The Born-Oppenheimer approximation also implies that electronic states are not

coupled to each other. This means that contribution from each state can be com-

puted separately and the complete spectrum is simply the sum of the contributions

of all electronic states.

Basically a molecule can interact with an electromagnetic field and absorb or

release a photon of frequency ν only if it has, at least temporarily, a dipole oscillating

at the same frequency. A dipole can be induced by a transition, when the latter

occurs from an initial molecular state |ΨI〉 to a final one |ΨF 〉, it can be expressed

as

µFI = 〈ΨF |µ̂|ΨI〉 (1.70)

where

µ̂ = −
N∑

i=1

ri +
M∑

A=1

ZARA (1.71)

is the dipole moment operator. The transition intensity is proportional to the square

of transition dipole moment µFI . Combining (1.69), (1.70) and (1.71), it can be

rewritten

µFI =

〈

χF ΦF

∣
∣
∣
∣
∣
−

N∑

i=1

ri +

M∑

A=1

ZARA

∣
∣
∣
∣
∣
χIΦI

〉

(1.72)

and factorised

µFI = −

N∑

i=1

〈ΦF |ri|ΦI〉 〈χF |χI〉 +

M∑

A=1

ZA 〈ΦF |ΦI〉 〈χF |RA|χI〉 (1.73)

The second term in equation 1.73 is equal to zero because 〈Φf |Φi〉 = 0 since electronic
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wavefunctions are orthogonal. Thus

µFI = −

N∑

i=1

〈ΦF |ri|ΦI〉 〈χF |χI〉

= µΦF Φi
Sχf χI

(1.74)

where µΦF ΦI
= −

∑N
i=1 〈ΦF |ri|ΦI〉 is electronic transition dipole moment between

initial and final states and SχF χI
= 〈χF |χI〉 is overlap between the vibrational state

of the initial electronic state and the vibrational state of the final electronic state.

Since the transition intensity is proportional to the square of transition dipole mo-

ment, absorption is proportional to |SχF χI
|2 also called the Franck-Condon factor

of the transition. Therefore, the more vibrational states of the initial and the final

electronic states overlap, the stronger the intensity of the absorption will be.

Electronic transition dipole moments are provided by electronic structure calcu-

lation, what about nuclear wavefunctions ? The choice in this work is a set of

harmonic-oscillator wavefunctions associated with each vibrational normal mode in

the electronic ground state, they are also provided by electronic structure calcula-

tion.

As said before this picture of molecular spectroscopy does not hold anymore

when electronic states energies become close, in such a situation they have to be

coupled. Couplings between electronic states can be introduced in the wavefunction

by writing it as a Born-Huang expansion [25] that makes a sum over all electronic

states

ΨBH =
∑

a

χa(R)Φa(r, R), (1.75)

hence, even though Born-Oppenheimer approximation reaches its limits for some

cases it remains the starting point for further improvements.

After the electronic problem is solved and the information about electrons is in

some manner folded into the potentials Va(R) at each geometry R, the molecular

hamiltonian can be built by adding the nuclear kinetic energy operator (excluding

overall rotational and translational motion) to the electronic hamiltonian and rewrite
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the total Schrödinger equation as

∑

a

Ĥe(χaΦa) +
∑

a

−
∑

A

~
2

2mA

∂2

∂R2
A

︸ ︷︷ ︸

T̂nuc

(χaΦa) −
∑

a

E(χaΦa) = 0 (1.76)

where coordinates have been removed for clarity sake.

Multiplying from the left by Φ∗
b and integrating over the electronic coordinates leads

to
∑

a

〈

Φb

∣
∣
∣
∣
∣
Ĥe −

∑

A

~
2

2mA

∂2

∂R2
A

∣
∣
∣
∣
∣
χaΦa

〉

= E
∑

a

χa 〈Φb|Φa〉 . (1.77)

Because the electronic states at fixed geometry are orthogonal, the sum on the right

hand side of equation (1.77) collapses to χb. The derivation of the nuclear kinetic

energy takes more steps. Let’s first derive χaΦa with respect to nuclear coordinates

∂

∂RA
χaΦa =

∂χa

∂RA
Φa + χa

∂Φa

∂RA

∂2

∂RA
2χaΦa =

∂2χa

∂RA
2Φa +

∂χa

∂RA

∂Φa

∂RA

+
∂χa

∂RA

∂Φa

∂RA

+ χa
∂2Φa

∂RA
2 (1.78)

=
∂2χa

∂RA
2Φa + 2

∂χa

∂RA

∂Φa

∂RA
+ χa

∂2Φa

∂RA
2

We can then write

∑

a

〈

Φb

∣
∣
∣
∣

~
2

2mA

∂2

∂RA
2

∣
∣
∣
∣
χaΦa

〉

=
∑

a

[
~

2

2mA

δab

∂2

∂RA
2

+ 2

〈

Φb

∣
∣
∣
∣

~
2

2mA

∂

∂RA

∣
∣
∣
∣
Φa

〉
∂

∂RA

+

〈

Φb

∣
∣
∣
∣

~
2

2mA

∂2

∂RA
2

∣
∣
∣
∣
Φa

〉]

χa

(1.79)

and finally the total Schrödinger equation is

∑

a

[

δab(Vba + T̂N ) −
∑

A

~
2

mA
T ′

ba,A

∂

∂RA
−

∑

A

~
2

2mA
T ′′

ba,A

]

χa = Eχb (1.80)

where

Vba =
〈

Φb

∣
∣
∣Ĥe

∣
∣
∣ Φa

〉

T ′
ba,A =

〈

Φb

∣
∣
∣
∣

∂

∂RA

∣
∣
∣
∣
Φa

〉

(1.81)

T ′′
ba,A =

〈

Φb

∣
∣
∣
∣

∂2

∂RA
2

∣
∣
∣
∣
Φa

〉

.
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Vba is the potential energy matrix of the electronic states and T ′
ab,A and T ′′

ab,A are the

so-called kinetic coupling terms. The total Schrödinger equation can rewritten as

(Vb + T̂N − E)χb =
~

2

2mA

∑

a

∑

A

[

2T ′
ba,A

∂

∂RA
+ T ′′

ba,A

]

χa (1.82)

where the full hamiltonian is identified as

Ĥ = V̂b + T̂N − Λ̂ (1.83)

where

Λ̂ba =
~

2

2mA

∑

a

∑

A

[

2T ′
ba,A

∂

∂RA
+ T ′′

ba,A

]

χa (1.84)

is the so-called non-adiabatic operator.

Adiabatic electronic states obtained by solving the Schrödinger equation un-

der the Born-Oppenheimer approximation vary significantly around conical inter-

sections. Such regions play an important role in the molecular dynamics, especially

when vibronic couplings are taken into account, and their correct description is nec-

essary. Unfortunately around those regions the energies of two different electronic

states become very close which makes integrals such as 〈Φb |∂/∂RA|Φa〉 diverge.

This can be seen by using the Hellmann-Faynman theorem [26,27] to rewrite these

integrals as

T ′
ba,A =

〈

Φb

∣
∣
∣
∣

∂

∂RA

∣
∣
∣
∣
Φa

〉

=

〈

Φb

∣
∣
∣
∂Ĥel

∂RA

∣
∣
∣ Φa

〉

Vb(R) − Va(R)

thus

T ′
ba,A → ∞ when Vb(R) → Va(R)

To overcome this difficulty one can move to the so-called diabatic basis {φa} to

expand the wavefunction and the hamiltonian. Diabatic states are defined in such a

way that they do not vary significantly along the nuclear coordinates, mathematically

they are defined as states satisfying

〈

φa

∣
∣
∣
∣

∂

∂RA

∣
∣
∣
∣
φb

〉

= 0 a 6= b (1.85)
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Figure 1.1: Potential energy surfaces in adiabatic and diabatic basis sets

and are obtained by a diabatization scheme that consists in finding the rotation

matrix R(R) that will create them under this constraint. For a two-state system, in

adiabatic basis the hamiltonian has the following form

Ĥ = T̂N · 1 +








Va(R) − Λ̂aa −Λ̂ab

−Λ̂ba Vb(R) − Λ̂bb








(1.86)

After R(R) has been found the hamiltonian can then be obtained in diabatic basis

as

Ĥ = T̂N · 1 + R(R)−1·








Va(R) − Λ̂aa −Λ̂ab

−Λ̂ba Vb(R) − Λ̂bb







· R(R). (1.87)

Thus calculating the kinetic coupling terms can be avoided by moving to a diabatic

basis set. In that basis the couplings between electronic states are potential. The

other advantage is that the elements Vab (c.f. eq. 1.81) of the potential energy matrix

vary smoothly with the nuclear coordinates as can be seen in figure 1.1. They can

be expanded in a low-order accurate Taylor series, keeping in mind that each matrix

element is a function of all the normal mode coordinates. For the two-state system
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with electronic states a and b and m normal modes i, j, ... the elements are given as

Vab(R) = δab(V0(R) + Eab) +
m∑

i=1

Ei
abRi +

m∑

i,j=1

Eij
ab

2!
RiRj + · · · (1.88)

where V0(R) is the energy of the ground state at the geometry where the Taylor

series expansion is made, generally at the ground state optimized geometry. Ei
ab and

Eij
ab are linear and quadratic coupling constants respectively, they connect electronic

states through normal modes. Due to group symmetry constraints some couplings

will vanish after integration over electronic coordinates. The product of the ir-

reducible representations of electronic states by that of the normal mode has to

belong to the completely symmetric representation.

For a two-state system (one symmetric, one asymmetric), two normal modes (one

symmetric Rs, one asymmetric Ra) up to the quadratic term the vibronic hamilto-

nian is given as

Ĥ = (T̂N+V0(R))· 1+











Ea + Ei
aaRi + Eii

aa

2!
RiRi + Ejj

aa

2!
RjRj Ej

abRj +
Eij

ab

2!
RiRj

Ej
baRj +

Eij
ba

2!
RiRj Eb + Ei

bbRi +
Eii

bb

2!
RiRi +

Ejj
bb

2!
RjRj











(1.89)

The vibronic couplings in equation (1.89) are obtained through the following steps:

• Optimize the ground state geometry and obtain the force constant matrix and

normal modes qi of the ground state.

• Perform a calculation of the excited states at the ground state geometry and

select the electronic states to be included in the vibronic model.

• Loop over a suitable set of small nuclear displacements along the normal modes

∆ = Ri to extract linear or diagonal quadratic couplings, or ∆ = Ri + Rj to

extract off-diagonal quadratic coupling constants. At each slightly displaced

geometry ∆ the following steps are carried out:
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- Calculate electronic energies Ea(∆), transition moments µa(∆) (from the

ground state), and adiabatic wavefunctions Ψa(∆).

- Evaluate an approximate form for the overlap elements

Sab = 〈Ψa(∆)|Ψb(0)〉 (1.90)

- Determine a unitary transformation of the adiabatic states, Rca, that

minimizes the off-diagonal elements of the overlap matrix, i.e. that min-

imizes
∑

cb |(1 − δcb)
∑

a RcaSab|.

The unitary transformation defines the diabatic states

〈φc(∆)| =
∑

a

Rca〈φa(∆)| (1.91)

- Transform the diagonal matrix of adiabatic total energies and the transi-

tion moments to the diabatic representation, to obtain

Ẽcb(∆) =
∑

a

RcaEa(∆)Rab, µ̃c(∆) =
∑

a

Rcaµa(∆) (1.92)

- Finally couplings are obtained by double-sided numerical differentiation,

e.g. diagonal linear coupling constants in (1.89) are given by

Ei
aa =

Ẽaa(Ri) − Ẽaa(−Ri)

2Ri
(1.93)

and diagonal quadratic couplings by

Eii
aa =

Ẽaa(Ri) − 2Ẽaa(0) + Ẽaa(−Ri)

Ri
(1.94)

Once couplings have been obtained, the potential energy matrix (1.88) can be built

up and diagonalized to get the adiabatic surfaces, the latter can provide great insight

into the spectroscopy and the short-time dynamics of the studied systems. Diag-

onalizing the total vibronic hamiltonian (1.89) will yield vibronic eigenvalues that

will ultimately appear as peaks in the simulated absorption spectrum.
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1.3.2 Spin-orbit coupling

Origin of spin-orbit coupling

Spin-orbit coupling is another physical effect that can break down the Born-Oppenheimer

approximation, its relativistic origin can be seen starting from the electronic hamil-

tonian (already seen in subsection 1.2.1) which has the general form

Ĥ =
∑

i

ĥ(i) +
∑

j>i

ĝ(i, j) + V̂nn. (1.95)

ĥ(i) is the one-particle part and is composed of the kinetic energy operator of the

electrons and nucleus-electron attractions operator, ĝ(i, j) is the two-particle part

and is only composed of electron-electron repulsions operator.

In relativistic theory ĥ(i) is given by Dirac’s hydrogen-like hamiltonian

ĥDirac(i) = c~αi · ~pi + (βi − I4)mc
2 +

∑

A

V̂Ai (1.96)

where I4 is the 4 × 4 unit matrix and ~pi = −i~∇i the momentum vector of the

electron i. β is the 4 × 4 Dirac matrix and ~α is a vector of matrices, its three

components (αx, αy, αz) are expressed as a function of 2 × 2 Pauli matrices ~σ. V̂Ai

is the interaction term with nucleus A.

This 4× 4 matrix form of the hamiltonian implies a four component vector form for

the wavefunction

|Ψ〉 =












ψL
α

ψL
β

ψS
α

ψS
β












(1.97)

L and S represent large and small components of the wavefunction respectively while

α and β are related to spin.

Solving Dirac equation for meaningful solutions for chemists leads to a decoupling

of electronic and positronic degrees of freedom and to a two-component electronic
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form. From that decoupling follows Pauli hamiltonian

ĥPauli = ĥnr +
N∑

i

ĥmv(i) +
N∑

i

ĥD(i) +
N∑

i

ĥSO(i) (1.98)

where ĥnr is the non-relativistic hamiltonian, ĥmv the mass correction operator and

ĥD the Darwin term. The forth term is the one we are interested in, it is the

spin-orbit operator

ĥSO =
~σ

4m2c2
· (~∇V (r) × ~p)

V =−Z
r−→

Z

4m2c2r3
~σ ·~l (1.99)

with ~s = ~σ
2
.

Here we present Pauli hamiltonian just to show the spin-orbit interaction term

in relativistic theory. In practice it can not be used for variational calculations but

for a perturbative treatment and gives a good estimation of relativistic corrections

to the energy up to transition metals of second and third rows of the periodic table.

Other hamiltonian as Breit-Pauli’s [28] or no-pair hamiltonian [29,30] are more often

used for spin-orbit calculations.

Physical origin of spin-orbit coupling can be understood by moving to electron’s

coordinate system. In its coordinate system the electron “sees” the nucleus moving

around him, this seeming motion of the nucleus creates a magnetic field that interacts

with the intrinsic magnetic momentum of the electron namely the spin, leading to

spin-orbit interaction.

In addition to spin-orbit coupling relativistic effects are also at the origin of other

phenomena very important for the chemist and known as scalar relativistic effects.

The latter mainly come from mass changing of the electron. In relativistic theory

electron in motion has a mass m = γm0 where γ = (1 − v2/c2)−1/2 is the Lorentz

factor, c the speed of light, v the speed the electron and m0 its mass when it is idle.

When v is close to c the v2/c2 term is not negligible and the mass of the electron

increases. Since Bohr radius is inversely proportional to the mass of the electron,

this phenomenon manifests itself by a direct stabilization of orbitals close to the
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nucleus, s and p orbitals especially, this stabilization induces, by a screening effect,

an indirect destabilization of diffuse orbitals, especially d and f orbitals.

Treatment of spin-orbit coupling

Now that we have seen relativistic origin of spin-orbit coupling and its physical

interpretation let’s see how it is treated in practice. Two models are often used :

LS or Russell-Saunders coupling. It corresponds to a weak spin-orbit coupling

for which the hamiltonian including electronic correlation and scalar relativistic but

no spin-orbit (noso) effects Ĥnoso commutes with the total angular momentum ~L =
∑

i
~li and the total spin momentum ~S =

∑

i ~si which are then good quantum numbers

for eigenstates of Ĥnoso

Ĥnoso|LS〉 = ELS|LS〉 (1.100)

|LS〉 states are obtained by a correlated method, CI or CASSCF for example, and

spin-orbit coupling is introduced as a perturbation and removes the degeneracy

between LS states that split to J components with |L− S| ≤ J ≤ L+ S.

jj or magnetic coupling. In this case spin-orbit coupling is not a perturbation

anymore and is included in the hamiltonian from the beginning Ĥso. Individual

angular and spin momenta are not meaningful when taken separately, they strongly

interact to give individual total momentum ~ji = ~li + ~si which commutes with the

hamiltonian and is a good quantum number for its eigenstates

Ĥso|j〉 = Ej |j〉 (1.101)

Interactions between individual total momenta define the total momentum ~J =
∑

i
~ji.

How does one know which model to use ? In other words which of correlation

or spin-orbit coupling effects are more important ? In general the more an atom

is heavy the more spin-orbit coupling effects are important since they vary as Z4,

where Z is the atomic number. Rigorously they have to be treated in a four or
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two component formalism with the jj coupling model and taking into account all

electrons. However it is not always possible due to the size of the problem because,

as we said previously, these effects are more important in heavy atoms which means

a large number of electrons. For that reason four or two component methods quickly

reach their limits. Moreover, working in a four or two component formalism implies

changes in the nature of the hamiltonian which becomes complex making difficult

the treatment of correlation effects.

Approximations can be made by separating core electrons from the valence ones more

important for studying reactivity or valence spectroscopy. Effective core potentials

(ECP) can then be used for core electrons but they have to reproduce correctly

jj coupling effects of the core electrons and the influence of the relativistic effects

on valence electrons. The latter can then be treated with the LS coupling model

because they are slower then the electrons in the core.

The methods used in this work are based on the LS model. They treat electronic

correlation and spin-orbit coupling using a set of orbitals obtained from a variational

calculation in one component formalism. Two interactions can be treated in two

manners. One can consider both in the same calculation step by doing a CI in

the double symmetry group of the molecule, this is the so-called one-step method.

The other possibility is to treat electronic correlation in a first step keeping LS

coupling model and using habitual CI methods, spin-orbit coupling is then treated

in a second step using LS states as a basis to expand spin-orbit states, this is the

two-step method. In the following we will briefly talk about one-step methods before

describing more in detail two-step methods since the methods we use belong to this

category.

One-step methods

They treat correlation problem and spin-orbit coupling at the same time and for

that reason they suffer from some problems. Spin-orbit coupling operator couples

states of different spin which augments the size of the problem, moreover matrix
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elements of the hamiltonian become complex which complicates the diagonalization

process. Methods, such as a selection of states coupled by spin-orbit operator or

transformation of the hamiltonian matrix, have been developed to overcome these

problems with more or less success. Good results can be obtained at a reasonable

price but one-step methods quickly reach their limits in general.

Two-step methods

Two-step methods first concentrate on electronic correlation problem before consid-

ering spin-orbit coupling in a final step. In that way they take profit of progresses

made in the development of correlated methods like corrections of the non size-

consistency problem coming from truncation in CI method.

In the first step CI is performed yielding |Ψm〉 states with energies Em that are

eigenvalues of the hamiltonian without spin-orbit Ĥnoso, each state |Ψm〉 is expanded

in total space of determinants {Φi}

|Ψm〉 =
∑

i

Cim|Φi〉 (1.102)

Eigenfunctions corresponding to the roots of interest make the basis on which the

matrix of the total hamiltonian Ĥnoso + V̂so will be built and diagonalized.

{Φi} can be composed of thousands even millions of determinants and in some

cases needs to be reduced to a model subspace which contains only determinants

that contributes the most to the correlation energy. States |Ψ′
m〉 expanded in this

new basis are, in a good approximation, considered as eigenfunctions of Ĥnoso with

eigenvalues E ′
m different from Em. The difference originates from the reduction of

the basis. The correlation energy lost can be reintroduced in the model space with

an effective hamiltonian

Ĥeff = Ĥnoso +
∑

m

(Em − E ′
m)|Ψ′

m〉〈Ψ
′
m| (1.103)

The same technique can be used to improve the treatment of correlation effects by

using energies provided by higher correlated method for Em. CASPT2 energies for

example will bring more dynamical correlation.
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Figure 1.2: Effect of the effective hamiltonian on model space

Two-step methods as described so far are the contracted SO-CI methods because

the total hamiltonian is built and diagonalised on the basis of {|Ψm〉} states which

means that Cim coefficients are not optimized, SO-RASSI method [4] used in this

work belongs to this class of methods. They are not suited to describe the so-called

spin-orbit polarisation effects that arise from the spin-orbit interaction between de-

terminants.

To overcome this problem EPCISO method [10], also used in this work, builds and

diagonalises the hamiltonian matrix on the basis of {|Φi〉} determinants. The large

number of determinants enforces a selection to only include the ones needed to de-

scribe the states of interest and the ones contributing to spin-orbit polarisation.

Effective hamiltonian technique can also be used to recover correlation energy lost

by reducing the number of determinants.

In practice SO-RASSI and EPCISO methods have one major difference. SO-

RASSI needs the wavefunctions, basically MCSCF wavefunctions, of all states for

which one needs to compute the spin-orbit interaction while EPCISO has the ad-

vantage to start from a unique wavefunction and generates all |Φi〉 determinants it

needs to build the states of interest and compute their spin-orbit interaction.
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Appendix

Appendix 1: Second quantized formulas

Here we summarize the second quantized notations and results we use in this chapter

without proving them.

p̂† is the creation operator for a spin-orbital φp.

p̂ is the annihilation operator for a spin-orbital φp.

When it’s not specified whether the operator is a creation or an annihilation operator

it’s noted p̂′.

A hole creation operator or a particle annihilation operator acting on the reference

function gives zero

î†|0〉 = â|0〉 = 0 (1.104)

Anti-commutation relations

The anticommutator of two operators Â and B̂ is defined as

[

Â, B̂
]

+
= ÂB̂ + B̂Â (1.105)

The anticommutator of second quantized operators are:

[p̂, q̂]+ = 0̂

[
p̂†, q̂†

]

+
= 0̂ (1.106)

[
p̂†, q̂

]

+
=

[
p̂, q̂†

]

+
= δ̂pq

Second quantized form of the electronic hamiltonian

Electronic hamiltonian can be written in the second quantized form

Ĥ =
∑

p,q

hpqp̂
†q̂ +

1

4

∑

p,q,r,s

〈pq||rs〉p̂†q̂†ŝr̂ (1.107)
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where

hpq = 〈φp|ĥ|φq〉 (1.108)

and

〈pq||rs〉 =

∫

φ∗
p(1)φ∗

q(2)r−1
12 (1 − P12)φr(1)φs(2)dτ1dτ2 (1.109)

r12 = |r1 − r2| and integration is over total coordinate (space and spin) τi of

each electron. P12 is the operator exchanging electrons 1 and 2. For example

P12φr(1)φs(2) = φr(2)φs(1)
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Appendix 2: Normal order form of the hamiltonian

Let’s introduce some notations before we derive coupled-cluster working equations.

Normal order of a sequence of operators

To take advantage of the fact that î†|0〉 = â|0〉 = 0 normal order notation can

be introduced. Normal order of a sequence of creation and annihilation operators

p̂′q̂′r̂′ · · · (N [p̂′q̂′r̂′ · · · ] = {p̂′q̂′r̂′ · · · }) is obtained by commuting operators to place

all î† or â to the right of other operators. If î† and â are absent from the sequence

of operators, {p̂′q̂′r̂′ · · · }|0〉 = |Φab···
ij··· 〉. In all cases

〈0|{p̂′q̂′r̂′ · · · }|0〉 = 0 (1.110)

This result will simplify the computation of expectation values of a sequence of

operators by helping identify the terms that vanish.

Normal order form of the hamiltonian

The normal order form of the hamiltonian is

ĤN = Ĥ − 〈0|Ĥ|0〉 =
∑

p,q

hpq{p̂
†q̂} +

1

4

∑

p,q,r,s

〈pq||rs〉{p̂†q̂†ŝr̂} (1.111)

ĤN =
∑

p,q

hpq{p̂
†q̂} +

1

4

∑

p,q,r,s

〈pq||rs〉{p̂†q̂†ŝr̂} (1.112)
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Appendix 3: Baker-Campbell-Hausdorff expansion

e−B̂ÂeB̂ =
(
1 − B̂ +

1

2
B̂2 −

1

3!
B̂3 + . . .

)
Â

(
1 + B̂ +

1

2
B̂2 +

1

3!
B̂3 + . . .

)

=Â+ (ÂB̂ − B̂Â) +
1

2
(ÂB̂2 − 2B̂ÂB̂ + B̂2Â)

+
1

3!
(ÂB̂3 − 3B̂ÂB̂2 + 3B̂2ÂB̂ − B̂3Â) + . . .

=Â+ [Â, B̂] +
1

2

{
(ÂB̂ − B̂Â)B̂ − B̂(ÂB̂ − B̂Â)

}

+
1

3!

{
[(ÂB̂ − B̂Â)B̂ − B̂(ÂB̂ − B̂Â)]B̂

− B̂[(ÂB̂ − B̂Â)B̂ − B̂(ÂB̂ − B̂Â)]
}

+ . . .

=Â+ [Â, B̂] +
1

2
[ [Â, B̂], B̂] +

1

3!
[ [ [Â, B̂], B̂], B̂] + . . . .

(1.113)
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Appendix 4: Generalized Wick’s theorem

Before writing Generalized Wick’s theorem let’s define contraction between two cre-

ation/annihilation operators as

p̂′q̂′ = p̂′q̂′ − {p̂′q̂′} (1.114)

For holes creation/annihilation operators possibilities are:

î†ĵ† = î†ĵ† − î†ĵ† = 0

îĵ = îĵ − îĵ = 0

îĵ† = îĵ† − îĵ† = 0

î†ĵ = î†ĵ − (−ĵ î†) = [̂i†, ĵ]+ = δij

(1.115)

while for particles creation/annihilation operators possibilities are:

â†b̂† = â†b̂† − â†b̂† = 0

âb̂ = âb̂− âb̂ = 0

â†b̂ = â†b̂− â†b̂ = 0

âb̂† = âb̂† − (−b̂†â) = [â, b̂†]+ = δab

(1.116)

Generalized Wick’s theorem can then be symbolically written

{p̂′q̂′r̂′}{ŝ′t̂′}{x̂uv̂
′} · · · = {p̂′q̂′r̂′ · · · } +

∑

single
contractions

{p̂′q̂′r̂′}{ŝ′t̂′}{û′v̂′} · · ·

+
∑

double
contractions

{p̂′q̂′r̂′}{ŝ′t̂′}{û′v̂′} · · ·+ · · ·

+
∑

full
contracted
products

{p̂′q̂′r̂′}{ŝ′t̂′}{û′v̂′} · · · (1.117)

The sums are over contractions of pairs of operators from different normal products

of operators since contractions of pairs of operators within the same normal product

of operators vanish. This can be seen from equation (1.114).





Chapter 2

Electronic structure and potential

energy curves of MCH+
2

(M=Fe, Co, Ni)

The metal carbenes have been identified as intermediates in several important cat-

alytic processes, such as Fischer Tropsch synthesis. They also represent interesting

transition metal complex prototypes and have been studied both experimentally and

theoretically.

Theoretical studies have mainly focused on the nature of the metal-carbon bond. The

latter can be purely covalent or purely dative depending on the metal center [31–40].

In contrast, little attention has been devoted to the spectroscopic properties. Metal

carbenes are characterized by a high density of electronic states within a small energy

window with several nearly degenerate states. The ground state of FeCH+
2 is de-

scribed by a pair of nearly degenerate 4B1 and 4B2 states with a 4A2 state very close

whereas the electronic ground state of CoCH+
2 is described by two nearly degenerate

3A1 and 3A2 states and NiCH+
2 by a 2A1 state [41–43]. An accurate description of the

structure and the energetics of the low-lying electronic states is required to clarify

and determine the ground state of each complex and the nature of the metal-carbon
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bond.

Recently, photofragment spectroscopy experiments have shown that the MCH+
2

(M=Fe, Co, Ni) cations have three different dissociation channels [1]. The loss

of CH2 is the most favorable but the departure of H or H2 was also reported. All

these pieces information make metal carbenes an interesting set of small transition

metal complexes with a few number of degrees of freedom to study the competition

between dissociation channels. The size of the systems is reasonable and can be

treated with highly correlated methods like coupled-cluster. The complexity of the

electronic structure (open shell, nearly degenerate states, unsaturated valence shell

of the metal) is a challenge to apply CC methods which have not yet been used so

much for this kind of problems.

This chapter reviews the study of the electronic structure of MCH+
2 (M=Fe, Co,

Ni) complexes at the CCSD and EOM-CCSD level of theory with high quality basis

sets. After focusing on the Franck-Condon region to determine the electronic ground

state and the absorbing state(s), potential energy curves (PEC) are built along the

relevant coordinates. Spin contamination issue occurring in these open shell systems

is also discussed.

2.1 Electronic structure

The study of the electronic structure of metal carbenes is summarised in the following

article.
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2.2 Potential energy curves

Now that electronic states probably responsible of MCH+
2 photo dissociation have

been identified the next step is to calculate PES corresponding to these electronic

states up to dissociation. The first thing is to identify relevant nuclear coordinates.

Since MCH+
2 photo dissociation yields primarily M+ and CH2, potential energy

curves where calculated along the M-C bond elongation.

Coupled-Cluster method works well for most molecules around their equilibrium

geometry but suffers from problems due to the single determinant reference function.

RHF reference function does not describe correctly the asymptote for a closed-shell

molecule while a ROHF one will meet similar problems for an open-shell molecule.

The UHF gives the correct energy at dissociation limit but breaks the symmetry of

the wave function.

In the present study calculated dissociation energies are in agreement with the

experimental values. This suggests a correct treatment of the problem in hand by

UKS-EOM-CCSD at equilibrium geometry and dissociation limit. Despite the well

accepted fact that single reference methods are not always suitable to describe bond

breaking reactions correctly the same method is used to calculate PES. This choice

was motivated by different reasons. First off all coupled-cluster method and its ex-

cited state counterpart, equation of motion, are size-extensive which is a necessary

feature for any method to treat bond breaking correctly at dissociation. They also

have the advantage, over methods like CASSCF or CASPT2, to be not active space

dependent. Using different active spaces at different geometries can result in discon-

tinuities in potential energy curves. Coupled cluster method also has the advantage

of being very versatile. Different kinds of wave functions, HF or KS, can be used

as a reference function, that flexibility can be used to circumvent some difficulties.

Using KS orbitals for example can considerably reduce spin contamination in the

wave function as seen in section 2.1. Another feature of coupled-cluster method is

to use a reference state, that is not necessarily the ground configuration state, with
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a number of electrons different from that of the target state as in IP, DIP, EA or

DEA-EOM. This last possibility makes EOM method even more flexible.

Moreover in the space created by R̂k operator (equation 1.51) any determinant can

have any weight it needs in the target state, for that reason EOM-CC can de-

scribe multi reference state within a single reference formalism. The reference state,

however, is still described by a single reference coupled-cluster solution causing the

problems mentioned earlier. However this issue might be avoided by the use of a

high spin reference state which remains multiconfigurational in the bond breaking

process as was suggested by Krylov et al. who motivated a new model EOM, spin-

flip (SF) [44,45], by this argument. Basically this method uses a high spin reference

function and an excitation operator that conserves the total number of electrons

but changes the number of α and β electrons to get a target state with a different

spin multiplicity. In the present study we are dealing with high spin ground states,

namely quartet, triplet and doublet states for FeCH+
2 , CoCH+

2 and NiCH+
2 respec-

tively and the use of these high spin states as reference states could avoid the single

reference problem.

PEC along metal carbon bond of studied molecules are calculated with the same

methods and basis sets used in section 2 to calculate electronic excited states at

equilibrium geometry. Wachters basis sets [46] augmented with f exponent were

used for metal atoms while Dunning’s correlation consistent triple zeta basis sets [47]

was used for C and H atoms. Excited states were calculated at EOM-CCSD level

of theory using a KS reference function to avoid the spin-contamination problem

discussed in section 2. Figures 2.1, 2.2 and 2.3 show potential energy curves of

calculated excited states along metal carbon bond for FeCH+
2 , CoCH+

2 and NiCH+
2

respectively. Only states that could be identified along the reaction pathway are

represented. Strong mixing between other states generate incoherent behavior of

PEC that become unworkable.
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2.2.1 FeCH+
2

Optimized bond length of 1.85 Å for Fe-C bond reported in section 2 is in perfect

agreement with ground state potential energy curve of FeCH+
2 . The low lying elec-

tronic states of FeCH+
2 are degenerate (a4B1, a4A2, b4B2,) and bound with respect to

the Fe-CH2 bond elongation as well as the a4A1 and b4B2 higher states. The absorb-

ing state with most significant oscillator strength, namely the e4B2, calculated at

31180 cm−1 seems to dissociate. However the lack of points beyond 2.5 Å prevents

further detailed analysis. At this point this state is the best candidate through

which photodissociation of FeCH+
2 could occur. c4A1 is the next most absorbing

state calculated at 24870 cm−1 and seems to be slightly bound.
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Figure 2.1: Potential energy curves of excited states of FeCH+
2 along Fe-C bond.

2.2.2 CoCH+
2

As reported in section 2, the ground state of CoCH+
2 is described by two degenerate

a3A2 and a3A1 states. Low lying excited states (a3B1 and a3B2) are very close
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and become degenerate with the ground state as the Co-C bond is stretched and

molecular orbitals collapse into d orbitals of Co+ and CH2 orbitals (SCHEME I in

section 2). The minimum energy value agrees very well with the optimized Co-C

bond length of 1.8 Å. d3A2 electronic state calculated at 31030 cm−1 with the main

oscillator strength seems to be dissociative but here also the lack of points beyond

2.65 Å prevents further detailed analysis. c3A2 state calculated at 19020 cm−1

with significant oscillator strength is bound. The experimental irradiation between

27030 and 31250 cm−1 exceeds the transition energy of this state. According to

these results, d3A2 state would be responsible of CoCH+
2 photodissociation after

irradiation in the energy window considered but more points beyond 2.65 Å are

necessary to confirm this assumption.
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Figure 2.2: Potential energy curves of excited states of CoCH+
2 along Co-C bond.
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2.2.3 NiCH+
2

In contrast to FeCH+
2 and CoCH+

2 , NiCH+
2 ground state is described by one well

separated electronic state (a2A1) with a minimum at 1.8 Å in agreement with the

optimized geometry of Ni-C bond length. Low lying excited states (a2A2, a2B2,

b2A1) are close to the ground state and also bound. c2A1 state calculated at 17020

cm−1 with the most significant oscillator strength is bound. Many of NiCH+
2 excited

states seem to be dissociative up to 2.2 Å but non of them is assumed be a candidate

for the photodissociation of the molecule since their oscillator strength is either very

low or even zero. Notice however that d2B2 dissociative state could be of some

interest since its oscillator strength (1.3×10−3) is only one order of magnitude lower

then the most absorbing state f2A1.
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Figure 2.3: Potential energy curves of excited states of NiCH+
2 along Co-C bond.

At this point only speculative conclusions can be made for MCH+
2 PEC. For

further analysis they must be obtained at least for all absorbing states and up to

dissociation i.e. 3× equilibrium geometry. A solution must be found to the incoher-
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ent behavior of strongly mixed states. It might imply using a multiconfigurational

coupled-cluster methods, such as Fock-space coupled-cluster [48], most appropriate

to handle such cases.

A particular issue has focussed our attention in the calculation of PEC. At dis-

sociation limit one can expect the excited states of different fragments. In CoCH+
2

case for instance the calculation at the asymptotic limit must yield triplet excited

states of Co+ and CH2. A calculation at dissociation limit (6 Å) yields triplet states

of Co+ and a 3B1 of CH2 located at -1741 cm−1. The ground state of Co+ is a

septuply degenerate 3F, it is followed by a 5F at about 4500 cm−1 and another 3F

at around 10000 cm−1 [49]. Our calculation of Co+ excited states, starting from the

closed-shell [Ar]3d10 Co− and using EOM-DIP method (section 1.2.4), did not yield

the correct degeneracy of the 3F ground state when using a KS reference function. A

DIP calculation using a HF reference function perfectly reproduces the degeneracy

of the 3F state. The analysis reveals that atomic d orbitals are not degenerate in

the KS reference function inducing lost of degeneracy of the 3F ground state. The

question whether the problem comes from the program or the method is not clarified

yet.

2.3 Summary

In this work, coupled-cluster method was used to study electronic structure of tran-

sition metal carbene cations MCH+
2 (M=Fe, Co, Ni). Both ground and excited

states were investigated at equilibrium geometry to characterize the ground states

of different molecules and identify their absorbing excited states. After these states

were determined, PEC along the primary photodissociation pathway, namely the

metal carbon bond, were calculated to identify excited states through which the

photodissociation process occurs.

The electronic ground states of FeCH+
2 and CoCH+

2 are described by two nearly
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degenerate states, 4B2/
4B1 and 3A2/

3A1, respectively while electronic ground state

NiCH+
2 , 2A1, is well separated from the other upper doublet states.

The lowest part of absorption spectra of FeCH+
2 , CoCH+

2 and NiCH+
2 is charac-

terized by very low oscillator strengths and not expected to play a significant role in

the electronic spectroscopy or in the photofragmentation of these molecules. Metal-

π∗
MCH2

charge transfer states with significant oscillator strengths in the visible/near-

UV energy domain of the theoretical spectra of FeCH+
2 and CoCH+

2 are at the origin

of the photofragmentation of these compounds observed after irradiation between

27800 and 32360 cm−1. In contrast NiCH+
2 does not show any significant absorption

in this energy domain in agreement with the low cross section of photodissociation

observed for this molecule.

Ground state PEC of studied molecules are in perfect agreement with optimized

bond lengths of metal-carbon bonds. Low lying electronic states of three molecules

are bound and become degenerate with the ground state as the metal-carbon bond

is stretched. e4B2 state of FeCH+
2 and d3A2 state of CoCH+

2 have significant os-

cillator strengths and seem to be dissociative. They would be good candidates for

photodissociation of these molecules but more points beyond 2.65 Å would be nec-

essary to ascertain this point. PEC obtained for NiCH+
2 correspond to states with

low oscillator strengths that are not expected to play a role in the photodissociation

process.

It is important to stress that all electronic states could not be represented all

along the studied dissociation pathway. Some states present a strong mixing char-

acter resulting in an incoherent behavior. A correct treatment of absorbing states

at least up to dissociation is necessary to study metal carbene cations photodissoci-

aton. A multiconfigurational method such as Fock-space coupled-cluster would be

more appropriate for treating strongly mixed states.

This preliminary study aiming of describing the photofragmentaion of small

metal carbenes (MCH2+, M=Fe, Co, Ni) reveals the complexity of their electronic
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structure, in particular a high density of states in a small energy range leading to

intricate PEC. It also shows that single reference EOM-CC is perhaps not the best

suited method to investigate PEC of studied molecules. Nevertheless the study

helped to identify electronic states probably responsible for the photodissociation

of small metal carbenes. Further investigations will be devoted to the calculation

of PEC of all electronic states along the metal carbon bond and up to dissociation.

Other methods could be checked to study the crossing regions characterized by strong

mixing between electronic states. Distortion along other molecular coordinates like

H-C-H angle and other dissociation pathways will also be considered.
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Chapter 3

Vibronic spectra of fluoroethylenes

3.1 Molecular systems

The spectroscopy of haloethylenes has been widely studied experimentally for many

reasons including the fact that some of them are toxic pollutants. Studies reported

on absorption, photo electron, electron-impact excitation and electron energy loss

spectra of fluoroethylenes [50–54]. The absorption spectra are roughly characterized

by an easily identified broad π → π∗ band . This diffuse band and has some indi-

cation of vibrational fine structure but this is difficult to ascertain since the band is

overlapped by numerous Rydberg bands.

Tentatives of assignment and reassignment have been made with some controversies

and in some cases these assignments are only speculative. High-level theory was used

only recently to help assigning the transitions and understand the spectroscopy of

the complete series of fluoroethylenes [55]. In some cases agreement with experi-

mental results is good and reasons including structural changes where suggested to

interpret some features of the experimental spectra.

Photodissociation studies [56–64] found different dissociation channels for dif-

ferent fluoroethylenes. Depending on the case, irradiation of fluoroethylenes yields

H and F atoms, HF, H2 and F2 molecules or C=C bond breaking but the mech-
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anisms that might involve triplet states of such photolysis are not clearly known.

Photoisomerizations have also been evidenced [65].

Theoretical study of the electronic spectra of fluoroethylene is the first step

to understand their spectroscopy and photochemistry. Except for few number of

them [66] only vertical excitation energies were reported so far and vibrational effects

were not taken into account.

In this work we aim to go one step further by doing a detailed study of elec-

tronic absorption spectra of the whole series of fluoroethylenes. For that propose

we try to reproduce absorption spectra and identify interesting aspects arising from

controversies in interpretation or through the computational process. This includes

identifying the origin of the spectroscopic contributions, whether they are from spe-

cific excited electronic states, vibrational modes, or vibronic coupling effects.

3.2 Computational details

Absorption spectrum simulation goes through the following steps

i Geometry optimization

ii Vibrational normal modes calculation

iii Single-Point STEOM calculation to select electronic states to be included in

the vibronic Hamiltonian

iv Vibronic Hamiltonian calculation

v Potential energy surfaces generation. They can be used as a check to make sure

that the vibronic coupling constants are physically meaningful (upside-down

surfaces for example are an indication of an unphysical result)

vi Franck-Condon or Vibronic spectrum simulation



3.2 Computational details 71

All electronic structure calculations were performed with ACES II quantum chem-

ical program package [6] using polarized basis set (PBS) from Sadlej [67]. Ground

state optimized geometries (i) and normal mode frequencies (ii) have been calculated

at the CCSD [11] level of theory. Excited states energies and their transition mo-

ments (iii) are calculated with the STEOM-CCSD [20,21] method. Potential energy

surfaces and simulated spectra are obtained with the program VIBRON [9].

The absorption spectra of fluoroethylenes are characterized by a broad π → π∗

band and a series of Rydberg states that become very dense after 9 eV. These

states can be accessed only by using a very large basis set which is not the case

in this work for computational reasons. Obtaining vibronic coupling Hamiltonian

requires calculation of all excited states at all distorted geometries, depending on

the couplings to be calculated the number of geometries can grow very fast e.g.

for a calculation of linear and diagonal quadratic vibronic coupling constants, 25

single-point calculations will be necessary while up to 103 single-point calculations

are needed to obtain cubic and quartic coupling constants in addition to linear and

diagonal quadratic. For that reason we limit our selves to the first part of the

spectrum, up to 9 eV, above that value the spectrum is essentially composed of

Rydberg states that are usually easier to assign anyway.

Symmetries of studied molecules and the size of the active space in the STEOM

calculation are summarized in table 3.1. Active space is chosen in such a way the

percentage of singles in excited states (IP, EA and EE) is above 90, experience

has shown that below that value results are poor and not very stable [68]. Active

space is specified by giving an energy threshold above which all occupied orbitals are

included (IP-low) and another energy threshold below which all virtual orbitals are

also included (EA-high). The corresponding number of orbitals is given and IP-low

and EA-high are in brackets.

The most time consuming step is the determination of quanta distribution in the

spectrum simulation, ideally one would simply include all possible electronic states
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and assign large quanta distributions to all normal modes but due to computational

limitation it is not possible to proceed that way. One solution is to break the

absorption spectrum into different regions based on spectral features or characters

(Valence or Rydberg) of the calculated excited state.

Molecule Symmetry
Orbitals in STEOM active space

Occupied (IP low eV) Virtual (EA high eV)

monofluoroethylene Cs 5 (-19.5) 22 (9.0)

cis-difluoroethylene C2v 6 (-20.0) 24 (10.0)

trans-difluoroethylene C2h 8 (-21.5) 24 (9.5)

1,1-difluoroethylene C2v 8 (-23.0) 25 (10.2)

trifluoroethylene Cs 7 (-20.5) 22 (8.8)

tetrafluoroethylene D2h 6 (-19.8) 28 (10.2)

Table 3.1: Symmetry of molecular systems and details of active space used in the STEOM

calculation.

3.3 Results and discussion

The most complete and recent theoretical study of the absorption spectra of fluoro-

ethylenes was done by Arulmozhiraja et al. [55]. They investigated electronic struc-

ture of these molecules using SAC-CI singles and doubles method [69] with Dun-

nings’s valence triple-zeta basis set and experimental geometries except for triflu-

oroethylene for which they used a DFT/B3LYP/aug-cc-pVTZ optimized geometry

since the experimental geometry seems inaccurate.

Except for one or two fluoroethylenes the excitation energies they obtained agree

well with the experiment. Thus the results obtained in this work will be compared

to their results, relative energies may be compared despite the fact that different

bases are used. To gauge the accuracy of the two theoretical methods, calculated

values will be compared to the values found in the literature.
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3.3.1 Optimized geometries and vibrational normal modes

Optimized geometries are reported in table 3.2 along with experimental geometries

that could be found in the literature.

Parameter monofluoroethylene Cis-difluorethylene trans-difluorethylene

r(C=C) 1.337 (1.333)a 1.339 (1.324)b 1.338 (1.316)c

r(C-H) 1.097 (1.087) 1.093 (1.080) 1.094 (1.080)

r(C-F) 1.350 (1.343) 1.342 (1.337) 1.348 (1.352)

∠(H-C=C) 121.1 (120.3) 122.5 (121.2) 125.0 (126.3)

∠(F-C=C) 121.0 (121.6) 122.3 (122.9) 119.9 (119.2)

1,1-difluorethylene trifluorethylene tetrafluorethylene

r(C=C) 1.331 (1.340)d 1.335 1.333

r(C-H) 1.090 (1.091) 1.090

r(C-F) 1.324 (1.315) 1.322 1.319

∠(H-C=C) 119.2 (119.0) 122.9

∠(F-C=C) 125.2 (124.7) 120.2 123.3
aReference [70]
bReference [71]
cReference [72]
dReference [73]

Table 3.2: Optimized and experimental (in parenthesis) geometries for fluoroethylenes.

Bond lengths are given in Å and angles in degrees.

Calculated geometries agree very well with the experimental ones. Normal modes

frequencies calculated at these geometries also agree with experimental values we

could found in the literature. They are given in the appendix at the end of this

chapter with a description of vibrations.
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3.3.2 Electronic excited states

Vertical excitation energies

Calculated vertical excitation energies and oscillator strengths of singlet states in-

cluded in vibronic model Hamiltonians are reported in tables 3.3 and 3.4 for the

whole series of fluoroethylenes along with experimental and SAC-CI values.

All states are excitations from π orbital including the main π → π∗ excitation.

The latter mentioned is preceded and followed by the first member of different Ry-

dberg series. Vertical excitation energies are calculated to gauge the accuracy of

the method for states that will be included in the vibronic model. For now, suffice

it to say that STEOM energies agree very well with available experimental values,

even better than SAC-CI’s. Higher excited states, mainly Rydberg states, can not

be reliably accessed considering the size of the basis set used, diffuse basis functions

would be necessary for that purpose.



3.3 Results and discussion 75

state
STEOM SAC-CIa

Expt.b
Nature ∆E(eV ) f Nature ∆E(eV ) f

monofluoroethylene

aA” 2a′′ → 11a′ 0.628 7.12 0.0548 π → 3s 7.11 0.0549 6.98
2a′′ → 19a′ -0.195
2a′′ → 20a′ -0.158

bA’ 2a′′ → 3a′′ 0.462 7.56 0.3124 π → π∗ 7.68 0.3240 7.45
2a′′ → 4a′′ -0.357
2a′′ → 6a′′ -0.326

bA” 2a′′ → 12a′ 0.610 7.77 0.0043 π → 3pσx 7.75 0.0037
2a′′ → 18a′ 0.210

cA” 2a′′ → 13a′ 0.481 8.00 0.0003 π → 3pσy 7.96 0.0027
2a′′ → 14a′ 0.341

dA” 2a′′ → 13a′ 0.392 8.54 0.0000 π → 3dσ 8.50 0.0016 8.59
2a′′ → 14a′ -0.278
2a′′ → 15a′ -0.290
2a′′ → 23a′ 0.218

cA’ 2a′′ → 3a′′ 0.459 8.56 0.0191 π → 3dπ 8.92 0.0146
2a′′ → 4a′′ 0.509

cis-difluoroethylene

aB2 2b2 → 8a1 0.487 6.60 0.0267 π → 3s 6.68 0.0380 6.49
2b2 → 9a1 0.284
2b2 → 12a1 -0.313

bB2 2b2 → 8a1 -0.400 7.25 0.0076 π → 3pσz/σ∗ 7.37 0.0027
2b2 → 9a1 0.480
2b2 → 14a1 0.200

aB1 2b2 → 2a2 0.525 7.84 0.3437 π → π∗ 8.12 0.3825 7.82
2b2 → 3a2 -0.437

aA2 2b2 → 7b1 0.633 7.93 0.0000 π → 3pσy 8.02
2b2 → 10b1 -0.228

bA1 2b2 → 3b2 0.689 8.26 0.0207 π → 3pπ 8.09 0.0111 7.82

trans-difluoroethylene

aBg 2au → 8bu 0.452 6.84 0.0000 π → σ∗/3pσx 7.02
2au → 11bu -0.400
2au → 15bu 0.231

aAu 2au → 8ag 0.643 7.20 0.0377 π → 3s 7.40 0.0438 6.99
2au → 12ag -0.262

aBu 2au → 2bg 0.557 7.46 0.2787 π → π∗ 7.79 0.3197 7.45
2au → 3bg -0.302
2au → 4bg 0.261

bBg 2au → 7bu 0.593 7.56 0.0000 π → 3pσy 7.77
2au → 9bu 0.256

bAg 2au → 3au 0.689 8.26 0.0000 π → 3pπ 8.17 8.25
aReference [55]
bReference [50]

Table 3.3: Calculated and experimental excitation energies (in eV) for monofluoroethy-

lene, cis- and trans-difluoroethylene. The oscillator strength f are also given.
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Potential energy curves

After electronic states to be included in the simulation have been chosen and the

vibronic Hamiltonian calculated, the potential energy curves can be generated along

each normal mode. They can be used as a check of the vibronic Hamiltonian. In

fluoroethylene for example linear and quadratic vibronic coupling constant were cal-

culated. Potential energy curves along modes 10, 11 and 12. These modes are

non-symmetric out-of-plane modes corresponding roughly to out-of-plane displace-

ments of the hydrogen atoms. They exhibit unphysical shape as shown in figure

3.1. Excited states energy is plotted along non-symmetric modes with zero being

the ground state geometry. Vibronic quadratic coupling constants along these out-

of-plane modes are known to be hard to obtain, their close inspection reveals their

abnormally high values compared to vibronic coupling constants in other modes. To

walk around this problem we decided to only include linear vibronic couplings in

these problematic modes. Potential energy curves obtained with this new vibronic

Hamiltonian model are more physically meaningful, they are also shown in figure 3.1.

We have the same problem with cis-difluoroethylene hydrogens out of plan bending

modes (6, 7 and 12), only linear coupling constants are included in those modes.

For other systems quadratic coupling constants yield unphysical potential energy

curves so we decided to include linear couplings only in the vibronic Hamiltonian.

Ultimately absorption spectrum simulation will give us an indication of how correct

the approximation we make is.

Potential energy curves are obtained by diagonalizing the potential energy matrix

containing vibronic coupling constants. Therefore coupling constants determine the

shapes of potential energy curves. Interactions between deferent excited states can

be seen with a quick look at potential energy curves. Notice for example the slight

“double well” shape of states aA” and cA” and the “steep well” shape of state cA’

along mode 12 in figure 3.1 in the linear model. Vibronic coupling forces interacting

states to bend, creating a“double well” lower surface (aA”and cA”) and a“steep well”
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state
STEOM SAC-CIa

Expt.b
Nature ∆E(eV ) f Nature ∆E(eV ) f

1,1-difluoroethylene

aB1 2b1 → 9a1 0.600 7.00 0.0459 π → 3s 7.05 0.0580 6.74
2b1 → 14a1 -0.293

bA1 2b1 → 3b1 0.544 7.53 0.2876 π → π∗/3pπ 7.74 0.2470 7.51
2b1 → 5b1 -0.358

aA2 2b1 → 6b2 0.613 8.09 0.0000 π → 3pσy 8.02
2b1 → 8b2 -0.285

bB1 2b1 → 9a1 -0.216 8.11 0.0003 π → 3pσz 8.06 0.0009
2b1 → 10a1 0.602
2b1 → 15a1 0.205

bA2 2b1 → 7b2 0.528 8.69 0.0000 π → 3dσ/σ∗ 8.58
2b1 → 10b2 0.362

cA1 2b1 → 3b1 0.390 8.93 0.0684 π → 3p/π∗/3dπ 8.58 0.1588 7.91
2b1 → 4b1 0.499
2b1 → 5b1 0.278

cB1 2b1 → 11a1 0.575 9.13 0.0020 π → 3dσ 8.84 0.0023
2b1 → 12a1 0.260
2b1 → 17a1 -0.255

trifluoroethylene

aA” 4a′′ → 17a′ 0.455 6.59 0.0186 π → 3s 6.65 0.0287 6.50
4a′′ → 19a′ 0.302
4a′′ → 24a′ 0.282

bA” 4a′′ → 17a′ 0.371 7.13 0.0123 π → 3pσy/3s/σ∗ 7.23 0.0120 7.1c

4a′′ → 18a′ 0.314
4a′′ → 19a′ -0.259
4a′′ → 26a′ 0.242

bA’ 4a′′ → 5a′′ 0.532 7.75 0.2241 π → 3pπ + π → π∗ 7.79 0.1151 7.75
4a′′ → 6a′′ -0.244
4a′′ → 7a′′ -0.224
4a′′ → 8a′′ -0.299

cA” 4a′′ → 17a′ -0.219 7.81 0.0009 π → 3pσx 7.86 0.0028 7.97
4a′′ → 18a′ 0.461
4a′′ → 19a′ 0.375

cA’ 4a′′ → 5a′′ 0.438 8.51 0.1180 π → π∗ + π → 3pπ/3dπ 8.43 0.2117 7.75
4a′′ → 6a′′ 0.375
4a′′ → 7a′′ 0.259
4a′′ → 8a′′ 0.275

dA” 4a′′ → 18a′ 0.317 8.84 0.0087 π → 3dσ 8.79 0.0286
4a′′ → 19a′ -0.231
4a′′ → 20a′ -0.287
4a′′ → 21a′ -0.277
4a′′ → 29a′ 0.247

tetrafluoroethylene

aB1u 2b1u → 7ag 0.629 6.66 0.0246 π → 3s/σ∗ 7.09 0.0381 6.37
2b1u → 9ag -0.178
2b1u → 10ag -0.248

aB3g 2b1u → 5b2u 0.410 6.90 0.0000 π → σ∗ 7.01
2b1u → 7b2u 0.510
2b1u → 8b2u 0.216

aB2g 2b1u → 6b3u 0.592 7.83 0.0000 π → 3pσz 8.24 8.01
2b1u → 8b3u -0.324

bAg 2b1u → 3b1u 0.692 8.13 0.0000 π → 3pπ 8.24
aB3u 2b1u → 2b2g 0.231 8.70 0.4407 π → π∗ 9.41 0.5108 8.89

2b1u → 3b2g 0.653

aReference [55], bReference [50], cReference [52]

Table 3.4: Calculated and experimental excitation energies (in eV) for electronic excited

states included in the vibronic model Hamiltonian of 1,1-difluoroethylene, trifluoroethylene

and tetrafluorethylene. The oscillator strength f are also given.
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upper surface (cA’). Examination of vibronic coupling constants confirms strong cou-

pling between both aA”and cA”with cA’ along mode 12. A glance through potential

energy curves can give a rough idea of important vibrational modes.

3.3.3 Absorption spectra

Absorption spectra of the whole series of fluoroethylenes were simulated with both

Franck-Condon (FC) and vibronic coupling methods. All electronic states reported

in tables 3.3 and 3.4 were included in the simulations. In experimental spectra

taken from reference [50], R, R’ and R” Rydberg states correspond to excitations

from π orbital to ns, np and nd (where n is the principal quantum number) orbitals

respectively. FC overlap factors (section 1.3.1) that appear as peaks in the simulated

spectra are calculated until they sum up to threshold value of 0.99. Different trial

simulations have to be made to establish a vibronic simulation strategy. Individual

peaks are convoluted with Lorentzians to create line spectra, they are reported in

figures 3.2, 3.3 and 3.4 along with experimental spectra.

Simulated spectra do not perfectly reproduce experimental spectra but many

pieces of information can be gained from them. In all spectra the overall shape and

the position of the broad π → π∗ are reproduced.

In monofluoroethylene and cis-difluoroethylene, individual FC spectra show that

only the first member of the first Rydberg series, namely aA” and aB2 respectively,

has significant intensities. Other Rydberg states have very small or zero intensities

in agreement with transition moments reported in table 3.3.

Trans-difluoroethylene presents an interesting case of vibronic coupling. The long

progression starting around 50000 cm−1 and present in both experimental and vi-

bronic spectra but not in the FC spectrum is probably a vibronic coupling effect.

aBg states lying in that region with a vertical excitation energy of 55000 cm−1 and

zero transition moment is probably absorbing through vibronic coupling with ab-
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Figure 3.1: Electronic excited states included in the vibronic model of monofluoroethylene along modes 10, 11

and 12 (described in the appendix). In the left panels only vibronic linear couplings are included while linear

and diagonal quadratic couplings are included in the right panels.
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Monofluoroethylene Cis-difluoroethylene

Experimental spectrum Experimental spectrum
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Figure 3.2: Experimental (top panels, reference [50]), FC individual states (middle panels)

and total vibronic (bottom panels) absorption spectra of monofluoroethylene (on the left) and

cis-difluoroethylene (on the right).
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Figure 3.3: Experimental (top panels, reference [50]), FC individual states (middle panels) and

total vibronic (bottom panels) absorption spectra of trans-difluoroethylene (on the left) and

1,1-difluoroethylene (on the right).
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Trifluoroethylene Tetrafluoroethylene

Experimental spectrum Experimental spectrum
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Figure 3.4: Experimental (top panels), FC individual states (middle panels) and total vibronic

(bottom panels) absorption spectra of trifluoroethylene (on the left) and tetrafluoroethylene (on

the right).
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sorbing states.

FC and vibronic spectra of 1,1-difluoroethylene are not very different from each

other, they don’t reproduce the overall experimental spectrum but the vibrational

progress seems to be well simulated.

The closer to experience calculated spectrum is vibronic spectrum of trifluoroethy-

lene. Comparison with FC shows that vibronic coupling effects mainly mitigate the

intensity and the vibrational progression in the valence (bA’) state.

There is no evident vibronic coupling effect in the spectrum of tetrafluoroethylene

since the FC simulation is very close to the experience but this has to be ascertained

by an improved vibronic spectrum.

Even though it provides a good insight in the absorption spectroscopy of fluo-

roethylenes, vibronic simulations did not yield satisfactory results. To improve the

agreement with experience a new two-step strategy was adopted. As the states cou-

ple to each other weak transitions can be become stronger. In the first step, vertical

transitions moments are recalculated using the vibronic model. A regular FC calcu-

lation is performed in the second step using recalculated transitions moments. The

π → π∗ valence state is simulated with a structure-less broad smooth feature.

Starting with vinyl fluoride, figure 3.5 shows, on the left panel, absorption spectra

of individual states, except the valence state bA’, using transition moments and

excitations energies obtained from STEOM calculation. One the right panel of the

same figure are shown absorption spectra of the same states simulated using new

transition moments and excitations energies. It can be seen that weak transitions

become stronger when vibronic couplings are included, especially for bA”, cA” and

dA” states.

The overall simulated spectrum is shown in figure 3.6 from 54000 to 70000 cm−1

along with the experimental spectrum and the individual contributions of electronic

states. The simulated spectrum is shifted by 1500 cm−1 to match the experimental

one and the intensity of the first Rydberg state (aA”) is scaled by 1/2.
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Figure 3.5: Absorption spectra for vinyl fluoride states (except bA’) using STEOM ex-

citation energies and transition moments (on the left) and using excitation energies and

transition moments recalculated with the vibronic model (on the right).

The improvement upon first simulated spectrum of monofluoroethylene 3.2 is

flagrant. Rydberg states (aA” and cA”) are at the origin of the vibrational pro-

gression in the spectrum, their sharp features is well reproduced. Other simulations

need to be performed for further analysis but one can state that this new strategy

is more suited for simulating absorption spectra of fluoroethylenes. It will be used

to simulate absorption spectra of other fluoroethylenes.
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Figure 3.6: Experimental (top panel) and simulated (middle and bottom panels) absorp-

tion spectra for vinyl fluoride.
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3.4 Summary

Absorption spectra of fluorotethylenes were investigated using FC and vibronic cou-

pling methods. In the vibronic method a model Hamiltonian is calculated through

the following steps:

The ground state geometry is optimized and frequencies of vibrational normal modes

calculated at the obtained geometry. Excited states are calculated at the same ge-

ometry and a selection of states to be included in the vibronic model is made. Cal-

culation of parameters that enter the vibronic Hamiltonian includes excited states

calculations at displaced geometries around the equilibrium. Potential energy curves

can be obtained from the vibronic Hamiltonian. Their analysis will help design a

vibronic model. Finally vibronic spectra can be simulated and compared to FC and

experimental ones.

Ground state optimized geometry, and frequencies of the vibrational normal

modes are obtained at CCSD level of theory, they are in good agreement with avail-

able experimental values. Excited states energies obtained at EOM-CCSD level of

theory are also in accord with experiment, even better than recent SAC-CI results.

Vibronic couplings calculations reveal that obtaining quadratic coupling constants

for fluoroethylenes is not a trivial task. Except for monofluoroethylene and cis-

difluoroethylene, for which quadratic constants were included for selected normal

modes, vibronic model is limited to linear coupling constants. However this simple

model shows that vibronic coupling effects can be significant and must be considered

to correctly describe the absorption spectroscopy of fluoroethylenes. Simulations do

not reproduce perfectly the experimental spectra but reveal evidence of vibronic

coupling effects. The absorption of Rydberg states of monofluoroethylene could be

reproduced only with the inclusion of vibronic coupling effects. The long progression

starting around 50000 cm−1 in the absorption spectrum of trans-difluoroethylene is

another vibronic coupling effect. Vibronic coupling effects mitigate the intensity and

the vibrational progression of the π → π∗ (bA’) valence state of trifluoroethylene.
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There is no major difference in FC and vibronic spectra of other fluoroethylenes. Vi-

bronic simulations have to be improved. A new strategy that consists in recalculating

transition moments with the vibronic model and performing a regular FC simulation

with the obtained values was adopted. It has been applied to the monofluoroethy-

lene case and shows great improvement. Basically the new methodology does in two

steps what vibronic simulation does in one and results from both methods should

not be so different. This suggests us some investigations in the vibronic coupling

simulations that are being carried out. For the moment following simulations will be

made adopting the new strategy. Calculation of vibronic coupling constants has to

be improved to obtain higher order constants, that will allow us to reach high quality

simulations and also have access to high order effects such as Dushinsky [74, 75] or

anharmonicity effects.

After a good agreement with experiment is achieved, teasing the simulated spec-

tra apart and identifying the root of spectroscopic contributions, whether it is from

specific excited states, normal modes, or vibronic coupling effects, will give us great

insight into the absorption spectroscopy of the studied molecules.
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1 2 3
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Figure 3.7: Calculated frequencies for the vibrational normal modes of monofluoroethylene at CCSD

level of theory.
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Figure 3.8: Potential energy curves of the excited states of monofluoroethylene along

vibrational normal modes represented in figure 3.7. Linear and diagonal quadratic

couplings are included along modes 1 to 9 and linear couplings only are included

along mode 10 to 12.



92 Vibronic spectra of fluoroethylenes

1 2 3

A1 218 A1 1017 A1 1270

4 5 6

A1 1776 A1 3240 A2 486

7 8 9

A2 877 B2 766 B2 1142

10 11 12

B2 1387 B2 3214 B1 784

Figure 3.9: Calculated frequencies for the vibrational normal modes of cis-difluoroethylene at CCSD

level of theory.
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Figure 3.10: Potential energy curves of the excited states of cis-difluoroethylene along

vibrational normal modes represented in figure 3.9. Linear couplings are included

along modes 6, 7 and 12 while linear and diagonal quadratic couplings are included

along the remaining modes.
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1 2 3

Ag 498 (548) Ag 1105 (1123) Ag 1252 (1286)

4 5 6

Ag 1768 (1694) Ag 3224 (3111) Bg 830 (788)

7 8 9

Bu 272 (341) Bu 1171 (1159) Bu 1287 (1274)

10 11 12

Bu 3204 (3114) Au 324 (329) Au 875 (875)

Figure 3.11: Calculated (and experimental [76] in parenthesis) frequencies for the vibrational normal

modes of trans-difluoroethylene at CCSD level ot theory.
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Figure 3.12: Potential energy curves of the excited states of trans-difluoroethylene

along vibrational normal modes represented in figure 3.11 including linear couplings

only.
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1 2 3

A1 550 A1 930 A1 1415

4 5 6

A1 1788 A1 3185 A2 724

7 8 9

B2 629 B2 897 B1 418

10 11 12

B1 978 B1 1341 B1 3305

Figure 3.13: Calculated frequencies for the vibrational normal modes of 1,1-difluoroethylene at

CCSD level of theory.
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Figure 3.14: Potential energy curves of the excited states of 1,1-difluoroethylene

along vibrational normal modes represented in figure 3.13 including linear couplings

only.
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1 2 3

A’ 238 A’ 485 A’ 624

4 5 6

A’ 941 A’ 1184 A’ 1290

7 8 9

A’ 1389 A’ 1857 A’ 3261

10 11 12

A” 325 A” 574 A” 795

Figure 3.15: Calculated frequencies for the vibrational normal modes of tri-fluoroethylene at CCSD

level of theory.
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Figure 3.16: Potential energy curves of the excited states of trifluoroethylene along vibrational normal

modes represented in figure 3.15 including linear couplings only.
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1 2 3

Ag 393 (394) Ag 784 (778) Ag 1948 (1872)

4 5 6

Au 201 (190) B1g 580 (551) B1g 1375 (1337)

7 8 9

B2g 519 (508) B3u 580 (558) B3u 1182 (1186)

10 11 12

B2u 169 (218) B2u 1375 (1337) B1u 413 (406)

Figure 3.17: Calculated (and experimental [77] in parenthesis) frequencies for the vibrational normal

modes of tetrafluoroethylene at CCSD level of theory.
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Figure 3.18: Potential energy curves of the excited states of tetrafluoroethylene along

vibrational normal modes represented in figure 3.17 including linear couplings only.
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Chapter 4

Spin-orbit effects on the

spectroscopy of H2X (X=O, Te,

Po)

4.1 Introduction

The spectroscopic properties of water molecule still received much attention both

from experimentalists [78,79] and from theoreticians [80–83] even though they have

been studied since long time ago [84,85]. Different levels of theory including CASPT2,

coupled-cluster and other methods were applied to it. Particular attention has been

devoted to answering wether the low-lying electronic excited states of water have a

valence or a Rydberg character. Photodissociation of water also still receive much

attention [86,87]. Meanwhile the spectroscopy of heavy hydrides (H2Te, H2Po) have

been wildly investigated and spin-orbit effects are known to have key role in their

photochemistry [88–90].

The aim of this work is to study the effect of spin-orbit coupling on the spectroscopy

of H2O, H2Te and H2Po and its evolution as the central atom changes, using the

EPCISO method (chapter 1). EPCISO method has the advantage of treating the
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so-called spin-orbit polarisation effects. To gauge the importance of these effects,

results obtained with EPCISO are compared with SO-RASSI results.

4.2 Theoretical treatment of spin-orbit effects

The theoretical treatment of spin-orbit effects of H2X (X=O, Te, Po) is summarised

in the following article.
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General summary

The goal of this work was to apply cluster expansion theory to transition metal com-

plexes spectroscopy, validate the vibronic approach interfaced to ACESII quantum

chemical software on small organic molecules and study the spin-orbit effects in the

series H2X (X=O, Te, Po).

The study of electronic structure and potential energy curves of MCH+
2 (M=Fe,

Co, Ni) by means of coupled-cluster and equation of motion coupled-cluster has

characterized their ground states and identified the electronic states responsible of

their photofragmentation. The lowest part of absorption spectra of FeCH+
2 , CoCH+

2

and NiCH+
2 is characterized by very low oscillator strengths and not expected to

play a significant role in the electronic spectroscopy or in the photofragmentation

of these molecules. Metal-π∗
MCH2

charge transfer states with significant oscillator

strengths in the visible/near-UV energy domain of the theoretical spectra of FeCH+
2

and CoCH+
2 are at the origin of the photofragmentation of these compounds observed

after irradiation between 27800 and 32360 cm−1. In contrast NiCH+
2 does not show

any significant absorption in this energy domain in agreement with the low cross

section of photodissociation observed for this molecule.

All electronic states could not be represented all along the studied dissociation

pathway. Some states present a strong mixing character resulting in an incoherent

behavior. Further investigations will be necessary to study these states.

A simple model, including linear couplings only, shows that vibronic coupling ef-

fects can be significant and must be considered to correctly describe the absorption
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spectroscopy of fluoroethylenes. Simulations do not reproduce perfectly the exper-

imental spectra but reveal evidence of vibronic coupling effects. The absorption of

Rydberg states of monofluoroethylene could be reproduced only with the inclusion

of vibronic coupling effects. The long progression starting around 50000 cm−1 in the

absorption spectrum of trans-difluoroethylene is another vibronic coupling effect.

Vibronic coupling effects mitigate the intensity and the vibrational progression of

the π → π∗ (bA’) valence state of trifluoroethylene. There is no major difference

in FC and vibronic spectra of other fluoroethylenes. Nevertheless the calculation

of vibronic coupling constants has to be improved to obtain higher order constants,

that will allow us to reach high quality simulations and also have access to high order

effects. After a good agreement with experiment is achieved, teasing the simulated

spectra apart and identifying the root of spectroscopic contributions, whether it is

from specific excited states, normal modes, or vibronic coupling effects, will give us

great insight into the absorption spectroscopy of the studied molecules.

In the study of spin-orbit effects on the electronic spectroscopy of the group

VI analogous H2O, H2Te, and H2Po by means of scalar-relativistic and spin-orbit

CASPT2 calculations the two approaches, EPCISO and RASSI, give very similar

results. No effect on the calculated spectrum of H2O which compares rather well with

experimental data and available theoretical spectra from the literature. Whereas

the SO effects induce significant splitting of the low-lying triplet states of H2Po with

large mixing between the SO-states they are unimportant for H2Te. The absorption

spectra of the heavy molecules are shifted to the red with respect to the one of

water. Due to the theoretical difficulties at describing the scalar relativistic and

spin-orbit effects in a balanced way a quantitative study is still a challenge. The

results obtained in the present work for H2Te and H2Po will be confronted to further

four and two-components relativistic calculations.
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Spectroscopie électronique de petites molécules organiques et organomé-

talliques: corrélation électronique, couplages vibronique et spin-orbite

La prédiction de propriétés spectroscopiques moléculaires et l’interprétation de spectres

expérimentaux nécessitent de faire appel à la théorie. Une première étape consiste à se

limiter à la spectroscopie électronique dans l’approximation de Born-Oppenheimer ce qui

consiste à considérer les noyaux de la molécule comme étant fixes et les états électron-

iques indépendants les uns des autres. L’objectif de cette thèse est d’étudier la structure

électronique de petites molécules organiques et organométalliques dans l’approximation

de Born-Oppenheimer dans un premier temps avant d’aller au delà en prenant en compte

des effets tels que le couplage vibronique ou le couplage spin-orbite entre les états élec-

troniques. Le premier chapitre est consacré aux méthodes ab initio utilisées pour obtenir

les résultats présentés dans les chapitres ultérieurs. Une première partie est consacrée

aux méthodes de structure électronique dans l’approximation de Born-Oppenheimer, elle

est suivie d’une partie qui traite des effets de couplage vibronique et spin-orbite. Le

second chapitre présente une étude de la structure électronique et des courbes d’énergie

potentielle des carbènes de métaux de transition MCH+
2 (M=Fe, Co, Ni). Le troisième

chapitre rapporte les spectres vibroniques des fluoroéthylènes obtenus par simulation et

comparés aux spectres expérimentaux afin d’identifier l’origine de différentes contributions

spectroscopiques. Enfin le dernier chapitre traite des effets spin-orbite dans l’eau et ses

homologues lourds (H2X avec X=O, Te, Po).

Electronic spectroscopy of small organic and organometallic molecules: elec-

tronic correlation, vibronic and spin-orbit couplings

Theory is sometime necessary to predict molecular spectroscopic properties and interpret

experimental spectra. A first step study can be limited to the electronic spectroscopy in

Born-Oppenheimer approximation which consists in considering nuclei fixed and electronic

states independent from each other. The scope of this thesis is to first study the elec-

tronic structure of small organic and orgnometallic molecules in the Born-Oppenheimer

approximation and ultimatly go beyond by taking into account effects such as vibronic

or spin-orbit couplings between electronic states. The first chapter is dedicated to the ab

initio methods used to obtain the results presented in the following chapters. Electronic

structure methods in the Born-Oppenheimer approximation are first presented followed by

the methods that treat vibronic and spin-orbit couplings. The second chapter is a study of

the electronic structure and potential energy curves of MCH+
2 (M=Fe, Co, Ni) transition

metal carbenes. Chapter three reports simulated vibronic spectra of fluoroethylenes, they

are compared to experimental spectra to indentify the origin of the different spectroscopic

contributions. A last chapter deals with the spin-orbit effects in water and its heavy

homologous (H2X with X=O, Te, Po).




