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French Abstract

La prédiction de propriétés spectroscopiques moléculaires et I'interprétation de spec-
tres expérimentaux nécessitent de faire appel a la théorie. Une premiere étape
consiste a se limiter a la spectroscopie électronique dans I’approximation de Born-
Oppenheimer ce qui consiste a considérer les noyaux de la molécule comme étant fixes
et les états électroniques indépendants les uns des autres. L’objectif de cette these
est d’étudier la structure électronique de petites molécules organiques et organomé-
talliques dans I’approximation de Born-Oppenheimer dans un premier temps avant
d’aller au dela en prenant en compte des effets tels que le couplage vibronique ou le

couplage spin-orbite entre les états électroniques.
Chapitre 1: Aspects théoriques

Sont développées dans ce chapitre les méthodes utilisées pour obtenir les résul-
tats présentés dans les chapitres ultérieurs. Une premiere partie est consacrée aux
méthodes de structure électronique dans I’approximation de Born-Oppenheimer, elle

est suivie d’une partie qui traite des effets de couplage vibronique et spin-orbite.
Chapitre 2: Structure électronique de MCH; (M=Fe, Co, Ni)

Les carbenes métalliques ont été identifiés comme produits intermédiaires dans
certains processus catalytiques tels que la synthese Fischer-Tropsch, mais leur réac-
tivité, la nature de leurs liaisons, et leurs propriétés spectroscopiques sont loin d’étre
comprises et demeurent un domaine de recherche actif dans la chimie des métaux de
transition. Parmi ces carbénes métalliques FeCHJ, CoCHJ et NiCHJ sont d’intérét

particulier et leur photo fragmentation a récemment été étudiée pour établir leur mé-
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canisme de décomposition et estimer leurs énergies de dissociation [1]. Lorsqu’elles
sont irradiées (entre 310 et 360 nm dans le cas de FeCHS et CoCHJ et entre 360
et 410 nm dans le cas de NiCHj) ces molécules donnent trois produits majeurs,
M*, MC*t et MCHT, la dissociation en MT et CH, étant le canal principal. Les
études théoriques sur ces especes, essentiellement limitées aux états fondamentaux,
ont surtout porté sur leurs énergies de liaison et leurs structures d’équilibre plutot
que sur leur photochimie.

La structure électronique des complexes de métaux de transition est caractérisée par
une forte densité d’états électroniques, certains pouvant étre quasiment dégénérés,
ainsi que par la présence d’états haut spin (triplets, quadruplets voire quintuplets),
aussi le calcul de ces états n’est pas routinier et des approches non traditionnelles
sont parfois nécessaires pour les traiter avec succes.

Dans ce travail nous exploitons la flexibilité de la méthode Coupled Cluster (CC)
et de la méthode Equation Of Motion (EOM), son équivalent pour les états excités,
pour une approche non conventionnelle dans le traitement des complexes de métaux
de transition. Ainsi pour éviter les problemes de contamination de spin dans la
fonction d’onde nous utilisons une fonction de référence Kohn-Sham (KS) au lieu
d’une fonction Hartree-Fock (HF). De plus dans la méthode CC la définition d'un
espace actif n’est pas nécessaire ce qui permet d’éviter les problemes tels que la dis-
continuité de 1’énergie qui peut résulter d’un choix arbitraire de I'espace actif.
Chacun des trois carbenes MCHy est de symétrie Co,. Une étude préliminaire a
permis de déterminer la géométrie d’équilibre des trois carbenes métalliques étudiés,
de calculer leurs énergies de dissociation qui sont en bon accord avec ’expérience et
de caractériser I’état fondamental de chacun d’eux. NiCHJ est ainsi caractérisé par
un état fondamental 2A; séparé d’environ 30.0 kJ/mol du premier état excité 2A,.
FeCH; et CoCHJ sont quant & eux caractérisés par un état fondamental quasi dou-
blement dégénéré formé d’'une composante “B; et d’une composante “B,y dans le cas
de FeCHJ et d'une composante 3A, et d'une composante *A; dans le cas de CoCHj .

Cette étude a également permis de calculer les premiers états électroniques excités.
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La présence d’états de transfert de charge métal-myqy, avec des forces d’oscillateur
significatives dans le domaine du proche UV-Visible dans les spectres théoriques
de FeCHJ et de CoCHJ est sans doute a l'origine de la photo fragmentation de
ces molécules observée apres irradiation entre 310 et 360 nm. Forts de ses conclu-
sions nous avons également calculé les courbes d’énergie potentielle a une dimension
q=MT*-CH,. Ces courbes d’énergie potentielle sont extrémement compliquées et

difficiles a exploiter pour une étude dynamique plus avancée.

Chapitre 3: Couplages vibroniques dans la spectroscopie électronique des

fluoro-éthyléenes.

Les halo-éthylenes ont largement été étudiés notamment a cause de leur toxicité.

Cependant l'assignation de leurs spectres ainsi que la connaissance des propriétés
de leurs états électroniques demeurent incompletes. De nombreuses données expéri-
mentales allant des spectres d’absorption aux résultats issus des études de photo dis-
sociation sont disponibles principalement pour les fluoro-éthylenes. Elles montrent
une constance dans 1’énergie de 'orbitale moléculaire 7 de la liaison C=C alors que
les liaisons o sont stabilisées lorsqu’on passe de I’éthylene au tétrafluoro-éthylene.
Les études de photo fragmentation ont quant a elles permis de mettre en évidence
plusieurs canaux de dissociation comprenant la perte d'un atome d’hydrogene ou
de fluor voire I’élimination d’une molécule de HF de H, ou de F5,. Les mécanismes
supposés jusqu’ici sont purement spéculatifs voire inconnus.
A Tinverse peu d’études théoriques ont été menées sur les fluoro-éthylenes malgré
I’aide précieuse qu’elles pourraient apporter dans la compréhension de leur spectro-
scopie. Une étude récente utilisant la méthode Symmetry-Adapted Cluster Config-
uration Interaction (SAC-CI) a porté sur la spectroscopie électronique des fluoro-
éthylenes [2]. Elle a apporté de nouveaux éléments de réponse mais certaines én-
ergies d’excitation restent a assigner. En outre cette étude se limite a la géométrie
d’équilibre excluant ainsi les aspects liés aux effets de structure.

Dans le cadre de cette these nous proposons une étude plus détaillée de la spectro-
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scopie électronique des fluoro-éthylenes notamment en prenant en compte les effets
liés aux changements de structure. Pour ce faire nous faisons appel aux modes nor-
maux de vibration pour extraire la partie des spectres due aux mouvements des
noyaux mais aussi pour permettre aux états électroniques d’interagir entre eux et
ainsi mettre en évidence les couplages vibroniques [3]. Nous avons pu obtenir des
énergies d’excitation en meilleur accord avec I'expérience mais aussi montrer que cer-
taines parties des spectres ne provenaient pas d’une absorption directe mais étaient
dues a des couplages vibroniques entre états. L’analyse des surfaces d’énergie po-
tentielle le long des coordonnées normales nous donne également un apercu de la

dynamique des noyaux.

Chapitre 4: Effets du couplage spin-orbite sur la spectroscopie électron-

ique de H,X (X=0,Te,Po).

Dans I'étude de la spectroscopie et la réactivité des complexes de métaux de tran-

sition il est parfois utile voire indispensable de prendre en compte les interactions
spin-orbite. Il existe plusieurs méthodes permettant de traiter ces interactions et
de rendre compte des effets de corrélation électronique, ce sont les méthodes SO-CI
(Spin-Orbite Configuration Interaction).
Ayant une origine relativiste les interactions spin-orbite nécessitent, en toute rigueur,
un traitement dans un formalisme a quatre ou deux composantes. Cependant dans
I’étude de la réactivité des molécules il convient de distinguer les électrons de va-
lence des électrons de coeur, ces derniers pouvant étre considérés comme inertes. Le
traitement complet de I'atome dans le formalisme a quatre ou a deux composantes
n’est donc pas toujours justifié. De plus les effets relativistes sont plus importants
dans le coeur, la ou les électrons sont les plus rapides. Leur influence sur les orbitales
de valence peut aujourd’hui étre reproduite, sans trop perdre de précision, par des
potentiels effectifs de coeur, soit via des potentiels AIMP (abinitio Model Potentiels)
soit par des pseudopotentiels paramétrés.

La plupart des méthodes traitent ainsi les interactions spin-orbite dans un formal-
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isme a une composante, soit avec tous les électrons si les atomes sont 1égers, soit avec
des potentiels effectifs de coeur. Dans tous les cas il existe deux possibilités pour
traiter la corrélation électronique et l'interaction spin-orbite. Soit on considere les
deux dans la méme étape de calcul, ce sont les méthodes a une étape, soit on traite
la corrélation électronique le mieux possible dans une premiere étape en utilisant les
méthodes corrélées usuelles avant de traiter 'interaction spin-orbite dans une étape
ultime, ce sont les méthodes a deux étapes.

Les méthodes a une étape donnent des résultats de bonne qualité mais atteignent
vite leurs limites notamment en terme de cout de calcul. Les méthodes a deux
étapes qui traitent d’abord la corrélation électronique bénéficient quant a elles des
progres réalisés dans ce domaine, ce qui constitue d’ailleurs un de leurs principaux
avantages.

Dans ce travail nous utilisons principalement des méthodes a deux étapes a savoir la
méthode SO-RASSI [4] et la méthode EPCISO [5]. La premiere calcule I'interaction
spin-orbite entre les états électroniques sur la base de leurs fonctions d’onde cal-
culées au préalable au niveau RASSCEF. La méthode EPCISO récemment développée
présente I'avantage de n’utiliser qu'une fonction d’onde RASSCF pour calculer les
premiers états électroniques excités ainsi que leur interaction spin-orbite. Dans le
cas d’étude de 'eau et de ses homologues lourds (HyTe et HyPo) nous montrons que
lorsque la fonction d’'onde RASSCF utilisée est convenablement choisie des résultats
comparables a ceux de la méthode SO-RASSI peuvent étre obtenus, évitant ainsi de

calculer la fonction d’onde de chacun des états.
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Introduction

The purpose of this thesis is to open the route to new applications of coupled cluster
theory, to validate the vibronic approach interfaced to ACES II [6] quantum chemical
software on small organic molecules for which experimental spectra are known and

to study the spin-orbit effects in the series HoX (X=0, Te, Po).

Most of the quantum chemical calculations reported nowadays are based either
on density functional theory (DFT) for electronic ground states properties in large
organic/inorganic molecules or on CASSCF/MS-CASPT2 methods when possible.
This method is the method of choice for transition metal complexes spectroscopy.
In order to obtain better accuracy coupled cluster theory is an alternative. In
our tentative to apply cluster expansion theory to transition metal complexes spec-
troscopy [7,8] we aim in the present work at investigating the spectroscopy and the
complicated mechanism of photofragmentation of MCH; (M=Ni, Fe,Co) by various

coupled cluster methods.

The vibronic spectra of fluoroethylenes obtained by means of the module VI-
BRON [9] implemented and tested in ACES II within the present thesis, are com-
pared to the experimental ones. The ultimate goal is to reproduce the experimental
spectrum, analysis of the simulated spectrum will help us identify the root of each
absorption, whether it is from specific excited states, normal modes, or vibronic

coupling effects.

The electronic absorption spectra of Hy X (X=0O, Te, Po) including spin-orbit

(SO) corrections are compared and the use of two different approaches, EPCISO [10]
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and SO-RASST [4] is discussed in the perspective of future applications to large

transition metal complexes.

The first chapter of the manuscript is devoted to a brief survey of the theoretical
methods used in the present studies. The second chapter relates the study of the
electronic structure of MCHJ molecules whereas the third chapter is dedicated to
the simulation of vibronic spectra of fluoroethylene molecules. The last chapter deals

with the study of the spin-orbit effects on the spectroscopy of HoX (X=0, Te, Po).









Chapter 1

Theoretical aspects

In this chapter a brief overview of the methods used for this work is presented.
Particular attention is given to the coupled-cluster method which was used in most

of the results presented in this work.

1.1 Molecular hamiltonian

Solving the Schrodinger equation is the first step on a quantum study of the proper-
ties of a molecule and its interaction with an external field. To do so one has to write
down the molecular hamiltonian. For a system of N electrons located at {7;} and
M nuclei of mass m, with atomic numbers Z,4 and their location given by {R4},

the molecular hamiltonian is

A
I

Towe + T +V (1.1)
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where T}, is the kinetic energy operator for nuclei, T., the kinetic energy operator

for electrons and V the potential energy operator.

M

. 1
Thwe = —E 2 .
nuc ZmAv (RA) (1 2)
A=1
1 N
A _ 1 2/,
Tel - 9 ;1 \4 (rz) (13)
82

. . . 2 2 . .
in atomic units. V?(x;) = % + aa_yg + 57 in rectangular coordinates.

When limited to Coulombic interactions V' consists of nucleus-electron attractions
operator V,,., electron-electron repulsions operator V,. and nucleus-nucleus repulsions

operator Vj,,.

V= Vne+‘7ee+‘7nn (]-4)

with

i=1 A=1

N N

. 1

‘/;e = 1.6
22y (1.6
i=1 5>t
M M

~ ZAZB

Vi = 3. (17)
A=1B>A [Ra— Rg|

also in atomic units. Nucleus-electron attractions operator Vie couples the nuclear
and electronic motions and consequently complicates the treatment of electrons’
and nuclei’s dynamics at the same time. To overcome this difficulty electronic and
nuclear coordinates are decoupled by invoking the well known Born-Oppenheimer
approximation which consists of considering electrons to be moving in the field of
fixed nuclei. This assumption arises from the fact that compared to electrons nuclei

move slowly because of the large difference of mass. As a consequence, the kinetic
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energy operator for nuclei Thue can be neglected and nucleus-nucleus repulsions oper-
ator V,,,, becomes a constant. The electronic problem can then be solved separately
by considering the remaining terms in the molecular hamiltonian, this defines the

electronic hamiltonian

A A

Hel :Te+‘7ee+‘7ne+‘7nn (18)

This operation can be repeated along different all nuclear coordinates to obtain
series of points that will define potential energy surfaces. Solutions to the electronic
problem (for the wavefunction and for the energy) will depend parametrically on the

nuclear coordinates {R4}.

Ha®u({ri}. {Ra}) = Ea({Ra})@a({r:}, {Ra}) (1.9)

After solving the electronic energy, F,;, for a series of molecular geometries, nuclear
dynamics can be investigated knowing that electronic information is included into

potential energy surfaces.

In the next section (1.2) methods will be introduced for solving the electronic
problem within the Born-Oppenheimer approximation. In section 1.3 the discus-
sion will go beyond this approximation with the so-called vibronic and spin-orbit

couplings.
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1.2 Electronic problem in Born-Oppenheimer ap-

proximation

The electronic Schrédinger equation equation (1.9) can be solved exactly for only
hydrogen atom or hydrogen-like ones. In this section approximate solutions are
presented. The discussion begins with the well known Hartree-Fock approximation
which gives a good starting point to the more precise methods such as Configuration
Interaction (CI) or Coupled-Cluster (CC) methods. The CI method and its exact
solution (Full CI) to the Schrodinger equation are presented. It is followed by the
most important steps in the derivation of the CC equations with the inclusion of
single and double excitations (CCSD) by Purvis and Bartlett [11]. The essence of
the CC method is highlighted by showing how it gives a wavefunction closer to the
exact one in comparison to truncated CI for example. The section ends with a brief

presentation of multiconfigurational methods used in this work.

1.2.1 The Hartree-Fock approximation

A detailed overview of the Hartree-Fock method can be found in the excellent book
of A. Szabo and N. S. Ostlund [12]. The basic principals of the method are given
here. Starting with the electronic hamiltonian (1.8) and replacing the different terms

by their expressions (1.3) and (1.5)-(1.7), it can be rewritten

i ——%Ww—i S IS SRR o Y
el—\ 23 Z i=1 RA| =1 j>i |7 _TJ‘ A 1B>A‘RA—RB|
Z;’E(i) Zm 9(i.7) Vm

(1.10)
Since this section only deals with the electronic problem, the subscript in H,, will
be dropped for a more convenient form

H= Zh +Zgzy (1.11)

J>i
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where ﬁ(z) and ¢(i, j) are the one-particle and two-particle operators of the electronic

hamiltonian respectively.

The Hartree-Fock equations are obtained by minimizing the electronic energy
E = (U|H|D) (1.12)

with respect to the spin orbitals ¢, used to expand the electronic wavefunction |)

as the Slater determinant
|U) = |d1¢2 - d) (1.13)

They are eigenvalue equations of the form

A

f(0)bp(i) = epp(9) (1.14)

where ¢, is the energy of the spin-orbital ¢, and f (7) the Fock operator

A

f(i) = h() + 0" (4) (1.15)

In a finite basis of size P > N, there are P such equations (1.14) which means that
p can take the valuesp=1,2,---N,N+1,---P.

o1¥(4) is the average potential experienced by the ith electron due to the presence
of other electrons, it depends on their spin-orbitals which means that f depends
on its eigenfunctions. A method called Self-Consistent-Field (SCF) is used to solve
the Hartree-Fock equations. It starts with an initial guess of spin-orbitals {¢,},
calculates o1 from this starting guess and solves equation (1.14) for a new set of
spin-orbitals. 9f¥ is calculated with this new set of spin-orbitals and equation (1.14)
is solved again. This procedure is repeated until the spin-orbitals used to expand the

Fock operator are the same as its eigenfunctions, self-consistency is then reached.

Solving the Hartree-Fock equations provides a set of spin-orbitals ¢,. The N first
spin-orbitals (with the lowest energy) are called the occupied or hole spin-orbitals,
they are labeled 4, j, k, - - -, the remaining spin orbitals called virtual, unoccupied or
particle spin-orbitals and are labeled a, b, ¢, - - -. When the character of a spin-orbital

is not specified (occupied or unoccupied), it is labeled p, g, r, - - -. These spin-orbitals
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will appear in the definition of the exact wavefunction which is the topic of the next

section.

1.2.2 Exact wavefunction and Configuration Interaction (CI)

In the presentation of the CI and other methods discussed in this section it is con-
venient to work in the second quantization formalism, a summary of the notations

and formulas used here can be found in Appendix 1.

The exact electronic wavefunction is the so-called Full Configuration Interaction

(FCI) wavefunction. It has the following form

Upep = Co® +§ :cgcbg+§ OO 4+ § O o (1.16)
i,a i>7 i>5>ke--
ai]b a>>jbic---

where ®; = |0) is the Hartree-Fock SCF ground state wavefunction, it is the Slater
determinant formed from the occupied spin-orbitals obtained by solving the Hartree-
Fock equation. The Slater determinants @%’»’,ﬁj,’j are formed from the occupied spin-
orbitals except ¢;, ¢;, ¢, - - - which have been replaced by ¢, ¢s, ¢, - - - respectively.

They are called excited determinants, they can be singly excited, meaning that one

spin-orbital has been replaced, doubly excited, meaning that two spin-orbitals have

abe---

been replaced and so on. k.. are the coeflicients to solve for in order to obtain

the exact wavefunction.

In order to compare the FCI wavefunction with the coupled-cluster one can write
it as a function of &, for that we use second quantized operators and rewrite

singly excited determinants as
> ol = G (1.17)

where

Cy =) Crali, (1.18)

2,0
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doubly excited determinants as
>t = Chdy (1.19)
i>j
a>b
with
Cy =) Cra'blji (1.20)
i>j
a>b
and more generally n-tuply excited determinants as
D Cleee = Cudy (1.21)
> >k
a>b>c---
with
Co= Y Coealblel - kji. (1.22)
i>j>k-
a>b>c:-
FCI wavefunction can then be written
Upcr = (Co+ 1+ Co + -+ C) (1.23)

The CI method is an application of the linear variational method where a linear

combination of ®s is used as a trial function for the exact wavefunction and the

matrix representation of the hamiltonian in the basis of these ®s, the FCI matrix,

is formed and diagonalized in order to solve for its eigenfunctions. The FCI matrix

has the following structure

(0|0
0 (S|H]S)
(D|H|0) (D|H|S) (D|H|D)
0 (T|H|S) (T|H|D) (T|H|T)
0 0 (QIH|D) (QH|T) (QIH|Q)

HFCI =

(1.24)

where |S) represents the single excitation terms, |D) represents the double excitation

terms, and so on. Vanishing terms are consequences of the Brillouin theorem and
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Slater-Condon rules. Diagonalization of the CI matrix yields upper bound to the

ground and excited states energies.

FCI is the exact solution to the electronic Schrédinger equation for a given basis
set. When it is affordable it is a benchmark to which other electronic structure
methods should be compared to. In practice the number of excited determinants
grows very fast and only a reduced number of these determinants can be included
in the wavefunction. Truncation has to be made at some excitation level, double for

example to give the CI singles and doubles (CISD), the wavefunction then looks like
Uersp = (Co + C1 + Cs) P (1.25)

and the hamiltonian has the more tractable form

(0110}
Hewsp = 0 (S|H|S) (1.26)
(D|H|0) (D|H|S) (D|H|D)

The CC wavefunction is presented in the next section and compared to the one

of truncated CI and FCI.

1.2.3 Coupled-Cluster equations

The starting point of CC method is the exponential ansatz, it consists in writing the
CC wavefunction as
Voo = @,

~ ~

2 T3

:(HT+7+§+MWO (1.27)

where @y = |0) is the reference function and T is an excitation operator composed

of Cl-like excitation operators,

~

T=Ty+To+--+T, (1.28)
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where T 1 and TQ are given as
T, = Z teati,
T = Zt“b fb 52 (1.29)
1>
a>b
(1.30)
and more generally T, as
T,= > t¥eralblel - kji (1.31)
i>j>ke
a>b>c:-
t;-l]bg_fj are called 17, Ty, T3 - - - amplitudes.
When 7}, acts on the reference function it gives
= ) theaker (1.32)
i>5>k--
a>b>c---
The Coupled-Cluster wavefunction can be explicitly written as
Voo = (1+T1 4T+ - +T
n (Tl + Ty + - )
2
T+ Ty+-+1T,)°
(Gt = ) + o). (1.33)

Including only singly and doubly excited determinants into the wavefunction yields

the CC singles and doubles (CCSD) wavefunction. 7' defined in (1.28) is truncated

after TQ and is T' = Tl + Tg.

Then
s (T D)? | (T +Te)?
\IICCSD — (1+T1+T2+( 1 2 2) ( 1 3' 2) + )(I)()
= 1+ 1 i B0 pg B T TR T
- D N T 2 2 3!
€Cy eCs €eCy eCs c€Cs

+ )%

(1.34)
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where the C; are the same as in equations (1.23) and (1.25). The advantage of CC
over CI at the same truncation level can be seen immediately. Even though T is only
composed of Ty and Ty (singles and doubles), up to N-tuply excited determinants will
be present in the coupled-cluster wavefunction. Some of the terms in equation (1.2.3)
will vanish, however determinants present in the coupled-cluster wavefunction will
always be of higher excitation order than CI determinants for the same truncation

level.

To derive the coupled-cluster equations one can start with the Schrédinger equation
HVU = BV (1.35)

The hamiltonian in its normal order form (defined in Appendix 2) is obtained by

subtracting (0| H|0)¥ from both sides
(H = (0|H]0)¥ = (E — (0] H|0))¥ (1.36)

and rewritten as

HyU = AET (1.37)

where AF is the correlation energy in the Hartree-Fock case.
Replacing ¥ by the coupled-cluster wavefunction Voo = 6T|O> and multiplying from

the left by e T gives

e THyeT|0) = AE|0)

H|0) = AFE|0) (1.38)

where H = e T HyeT is the similarity transformed hamiltonian.

H can be considerably simplified by using Baker-Campbell-Hausdorff expan-

sion (Appendix 3) to obtain

~

R = iy + [y, T) + [, T 7) + {1, T, 70, 7) + {0, 7,7, 7,7
(1.39)
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It has been shown that 7 terminates after the fifth term using the Generalized
Wick’s Theorem (Appendix 4). When the latter is applied to the commutator
between Hy and T it gives

[Hy,T) = HyT — THy = {HNT} + {HNTY — {THy} — {THy} (1.40)

[ [

where {HyT} ({THy}) is the sum of all normal products in which there are one or

more contractions between the creation/annihilation operators in Hy and those in

T. Since Hy and T' contain a pair number of operators, { HyT} = {THy} and
[Hy,T] = {HNT} — {THy} (1.41)

M

The only nonzero contractions are i\ = &;; and ab! = 6, (see equation (1.115)
in Appendix 4). Since T contains only particle creation operators a’, b, and
hole annihilation operators i, 7, - -- no nonzero contraction can be obtained with a
T on the left. The only surviving terms are those in which Hy is on the left and is
connected by at least one contraction with each of the following T operators, they
are called connected terms and the connection is symbolized by — . Moreover,
Hy contains at most four creation/annihilation operators so it can be contracted
with at most four T operators, this is why Baker-Campbell-Hausdorff expansion
terminates after the fifth term.

The final form of H can then be written as

11
~

. L 15 T2 1 L U1 | N
H = Hx+ HNT + §HNTT + gHNTTT + EHNTTTT
= (Hne), (1.42)
The C subscript indicates the restriction to connected terms.
Substituting H into equation (1.38) and multiplying from the left by (0] one obtains

the energy equation

(O|HyeT|0)e = AE (1.43)

or multiplying from the left with the excited determinants ($¢| one obtains the

equations for the amplitudes

(@2 | HyeT |0)c = 0. (1.44)
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To derive CCSD equations we substitute 7" by T} +75 in (1.43) and (1.44) keeping
the surviving terms only. The latter can be identified using the fact that the hamil-
tonian is a two-particle operator which means that when acting on a determinant it
can change its excitation order by two to the maximum. The result of the product
of H ~ by a cluster operator Tl or TQ or a disconnected cluster, T1T » acting on the
reference function on its right has to be of same excitation order as the determinant

we use to project on the left. Energy and amplitude equations are then

. ~ o 1.
(O|Hn(Ty + Ty + 5T12)|0>C = AE (1.45)
A A A PN 1. 1.
(Y| HN(1+To+ Ty + ThTs + 5Tf + 5Tf)\0>c =0 (1.46)
ab j 1. 2 1. 2 e 3 - ol
(P Hy(1+ Ty + 2T + T+ TV Ty + 2T - 2T Ty + 3‘T + 40 )|0)e =0 (1.47)

To obtain programmable CCSD equations one can explicitly write all the terms in
1.45, 1.46 and 1.47 equations and algebraically derive the energy and the amplitude
equations using the contraction rules, however this method can be quite tedious
and prone to error. A more convenient method is the diagrammatic derivation.
Diagrammatic notation was introduced to help identify the non-vanishing terms, it
also brings out certain cancellations in these sums. Coupled-Cluster diagrams can be
systematically produced and a procedure developed by Kucharski and Bartlett [13]
ensures that only unique diagrams are obtained. Their interpretation will lead to
the energy and amplitude equations.

Diagrammatically, the CCSD energy equation looks like

S RTE R

The corresponding algebraic energy expression is
1 a a a
AE = 23 (ijllab)ts} + met += Z (ijllab)tstt (1.49)
ijab zgab
For more details a chapter on systematic derivation of the Coupled-Cluster equa-
tions can be found in reference [13] as well as complete amplitude equations up to

CCSDTQ (Coupled-Cluster with single, double, triple and quadruple excitations).



1.2 Electronic problem in Born-Oppenheimer approximation 23

For CCSD one obtains an equation for Ty amplitudes and another one for Ty
amplitudes and, by an iterative procedure, solves for t¢ for all i,a and t?;’ for all
i > j,a > b. All elements needed to calculate the CCSD correlation energy (1.49)

are then known.

Coupled-Cluster is the most accurate approximate ab initto method but it also
has its disadvantages, one of them is the computational cost, in particular the amount
of data to store and the number of computational steps. In general for a n-electron
system and N functions there are ~ n!N' amplitudes and an ~ n'N'*2 computa-
tional dependence for a given level of excitation [ [14]. This makes the application of
coupled-cluster method to large systems difficult, especially when high-order excita-
tions are included. To overcome this difficulty a set of methods have been developed
to approximate for example the inclusion of triples. Some of these methods like
CCSDT-1 [15] and CCSDT-3 [16] are still iterative but they only include the lead
terms in the CCSDT triples equations. Other methods like CCSD(T) [17,18] and

CCSDIT] [19] make a perturbative approximation of triple excitations.

Coupled-Cluster method, as described so far, is the so-called single-reference
coupled-cluster and is adequate for electronic states dominated by a single reference
which is the case for most molecules in their ground state and around their equilib-
rium geometry. The energy obtained can be used to estimate equilibrium structure,
vibrational frequencies or other observable quantities. However to describe processes
involving light absorption within the UV energy domain for example one has to ex-
tend coupled-cluster theory to excited states, this is done by the Equation Of Motion
Coupled-Cluster (EOM-CC). Basic concepts of the EOM method are presented in

the next section.
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1.2.4 Equation Of Motion Coupled-Cluster

Starting with a coupled-cluster calculation as described in section 1.2.3 one applies

a Cl-like excitation operator

Ry=mro+ Y ri{aliy+ Y riffaliblj}+ ... (1.50)

1<j, a<b

on the initial state ¥, to obtain the target state ¥y,
U, = R0, . (1.51)

The energy of the target state is obtained through the energy difference between
the initial state and the target state by simultaneously considering two Schrédinger

equations, one for the initial state

and one for the target state

HyU, = AE, U,

(1.53)
HyRpyWog = AELRp Yy .
The energy difference between initial and target state w, = Ej, — Ey is then

since AEy = Ey — By and AEy, = B, — Eyey.
Left multiplying Ry both sides of the initial state equation (1.52) and subtracting it

from the target state equation (1.53) one gets
HyRy| o) — R Hy|Wo) = (AE, — AEg) Ry | W) (1.55)
and, using ¥, = ¢7|0), obtains
[Hy, Bile?|0) = wypRieT|0) . (1.56)

Connected form of the EOM-CC equation, which eliminates common terms from

the target state and initial state, is then obtained by multiplying from the left by
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e~T and, writing the commutator between H = e 7 Hye! and Ry, as a connected

product, one obtains the connected form of the EOM-CC equation
(HR|0))c = wi, Ry |0) (1.57)

by applying the fact that eI and Ry commute.

Equation (1.57) is an eigenvalue equation and H and H have the same spectrum
regardless of the choice of T , in that sense EOM is identical to FCI. As for C
operator in CI, truncation has to be made in Ry expansion but EOM results are
better than CI’s in general because part of the correlation effects is folded in the

transformed hamiltonian.

Another important feature of EOM method is that it is a multi-state scheme,
diagonalization of the transformed hamiltonian yields several target states resulting
in an improvement of the accuracy of the method because of error cancellation, it
also simplifies the calculation of coupling elements, such as nonadiabatic or spin-orbit

couplings, between target states.

Ionisation Potential (IP)/Electron Attachment (EA) EOM-CC

Since initial and target states need not to have the same number of electrons in
the EOM-CC formalism this method can be applied to the treatment of ionization
and electron attachment processes by using an R operator that reduces (R[P) or

~

increases (Rp4) the number of electrons.

Rip =Y mi+ Y rbbljiv Y olebtjelki+. .. (1.58)
7 b, 5> b>c, j>k>1
and
Rpa=Y _ral+ > rbljal+ ... (1.59)
a a>b, j

The same treatment can be extended to double-ionization (DIP) or double electron
attachment (DEA) processes by reducing or increasing the number of electrons by

two instead of one.
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Depending on the problem of interest IP and EA EOM-CC can be a more reasonable
approach than EOM-CC. DIP method can be used to calculate Auger spectrum
while DEA seems most useful to calculate excitation spectra of open-shell systems
like carbon atom or oxygen molecule.

IP and EA methods are also one of the steps in the similarity-transformed EOM-
CC (STEOM-CC) approach [20,21] developed to overcome computational cost of
EE-EOM-CC, this is the next topic.

Similarity Transformed EOM

EOM-CC is a very accurate and convenient method for treatment of exited, ionized
and electron attached states. However it is computationally demanding since it re-
quires solutions of both the ground state CCSD amplitudes equations (1.46, 1.47)
and the EOM eigenvalue equation (1.57). The latter step consists in a diagonaliza-
tion of a matrix of the rank of all single and double excitations and is the key of the
problem to reduce the computational cost of the method.

The EOM hamiltonian is obtained through a similarity transformation H=eTHyel
of the normal ordered hamiltonian. The idea in STEOM is to perform another sim-

ilarity transformation that yields a new hamiltonian
G = e e (1.60)

in which two-particle matrix elements that couple singly and doubly excited deter-
minants are transformed to zero. All energies corresponding to singly excited states
can then be obtained by diagonalizing G only in the space of single excitations.

It has been shown how such a transformation can be carried out [22] and elements of
G that are required to vanish are gope; and gpp;. Subscript letters correspond to or-
bitals which are labeled as in subsection 1.2.1. The transformation can be obtained

through ¢S where

L1 O | s
S=5 > saeifaled’j} + 5 > spnig{mlibly} (1.61)

a7b7e7j m7i7j7b
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The first term in (1.61) corresponds to an EA process since two particles are created
in a and b while only one is annihilated in 7 because e is unoccupied and no particle
can be annihilated from it. Similarly the second term corresponds to an IP process
since two particles are annihilated, from ¢ and j, but only one is created, in b, because
m is already occupied. Thus, EA and IP equations must be solved to obtain sgpe;
and s,,,;; amplitudes respectively, however it is not necessary to include all EA’s

and IP’s, a set of active orbitals can be chosen to be included in EA and IP process.

1.2.5 Multiconfigurational methods

In cases of degeneracy or near-degeneracy between electronic configurations, as in
H, molecule at long internuclear distance, it’s necessary to use multiconfigurational
methods. Such methods exist in the coupled-cluster formalism but they have not
reached the maturity of variational methods such as Multiconfigurational (MC) Self-
Consistent Field (SCF) which are also used in this work, basic concepts of the method

are presented next.

MCSCF method

Like the Full-CI wavefunction (eq. 1.23), the MCSCF wavefunction is constructed

as a linear combination of several electronic configurations

Unesor = Qo+ Y CPBF + Y Copi -4 Y~ Ol dthe (1.62)
o e

There are two major differences between CI and MCSCF methods. The first is that
in MCSCF both CI coefficients C’fﬁf and molecular orbitals {¢;} used to expand
electronic configurations @%I»’,gjjj are optimized. The second difference is in the choice
of the electronic configurations included in the wavefunction. While in truncated
CI the criterion is the number of excitation, in MCSCF electronic configurations

are chosen to correctly describe near-degeneracy effects. The main difficulty of the
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method lies in that choice since it has to be made beforehand, therefore a knowledge
of the electronic structure is needed. To overcome this difficulty Complete Active
Space (CAS) method includes all electronic configurations generated from all possible
excitations, under symmetry and spin constraints, within a so-called active space.
In some cases the choice of this active space is rather obvious, in others some trial
calculations are needed to find the best choice. The active space is defined by
specifying the inactive orbitals that will remain doubly occupied, the active orbitals
that can be unoccupied, singly or doubly occupied and the external or virtual orbitals
that will remain unoccupied. When CAS is too big it can be divided into three active
spaces in which the number of electrons can be restricted, this reduces the size of
the problem.

The CASSCF method was developed to treat near-degeneracy effects, qualitatively
it gives a reasonable answer but does not take into account dynamic correlation
which is necessary to achieve accuracy. Nevertheless it gives a good starting point

for applying second-order perturbation theory (PT2) such as in CASPT2 method.

CASPT2 method

In perturbation theory the total hamiltonian is partitioned into a zeroth order part
H,, of which the eigenfunction and eigenvalue are known, and a perturbation term
V that is small compared to Hy. The smaller the perturbation is the closer the
cigenfunction and eigenvalue of the total hamiltonian are to those of Hy. The exact
eigenfunctions and eigenvalues can be systematically approached by introducing an
ordering parameter \ that will be set to 1 at the end.

The total hamiltonian can be written
Hy = Hy+ \V (1.63)

and the wavefunction and energy are expanded in Taylor series of A as

b = (I)(O) + )\(13(1) + )\2(1)(2) 4.
(1.64)
E=FE9 4 gD L \2E@ ...
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Using (1.63) and (1.64) one can rewrite the Schrodinger equation and collect terms

of the same order in A to get
f[0|q)(0)> = E©|30)
(o — EO)@) = (B - 7)]a) (1.65)
(ﬁo _ E(O))\CI)(2)> - (E(l) _ f/)|q)(1)> + E(2)|q)(0)>
If the perturbed wavefunctions are assumed to be orthogonal to the zeroth order

wavefunction, (®@|®®) = §;;, which means that (®|®®) = 1, perturbed energies

can be expressed as
EO — (@(0)|ﬁ0|¢(0)>
B — (q)(o)|f/|q)(0)> (1.66)
E®? — (q)(o)|f/|q)(1)>

Expanding the first order wavefunction in configurations and inserting it into its

equation in (1.65) yields, after some manipulations, a programmable expression of

the second order perturbation energy

P N (121 01
4 L~c,+ec;,—€c,—6p
ijab J

(1.67)

where (ij|lab) is a two-electron integral and ¢;’s are orbital energies. Higher order

perturbation energies can also be obtained.

The CASPT2 method extends perturbation theory to the multiconfigurational
case by partitioning the CI space into four subspaces: reference function, CAS, a
subspace of single and double excitations with respect to CAS and the rest of CI
space. The idea is to retrieve the second order perturbed energy of each of the

configurations in the CAS through single and double excitations with respect to the
CAS space.
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1.3 Beyond Born-Oppenheimer approximation

In methods described so far, electronic states are not supposed to interact with
each other in agreement with the Born-Oppenheimer approximation, however the
latter breaks down when electronic states energies become too close. When such a
situation is encountered the so-called non-adiabatic interactions between electronic
states take place. In the following we will present two of them, namely vibronic and

spin-orbit coupling, by describing their origin and how they can be treated.

1.3.1 Vibronic coupling

Excluding rotational and translational motions, a molecule can have up to 3N-6 (3N-
5 for a linear molecule) nuclear degrees of freedom, N being the number of atoms,
thus degeneracies between electronic states are very likely to occur as the nuclei
move. In such cases vibronic coupling between states have to be considered, this is
done by using a vibronic model that couples electronic states through vibrational

normal modes [3].

Before going beyond Born-Oppenheimer approximation it is important to under-
stand tis influence in molecular spectroscopy because. Although it shows limitations
for some systems it does give very good results for others and remains a good starting
point for when the non-Born-Oppenheimer effects have to be included. Up to now
this approximation has been discussed qualitatively to explain the decoupling of the
motion of the electrons from that of the nuclei, it is also central to the traditional
approach of molecular spectroscopy, namely the Franck-Condon approach [23,24].
As we have seen in section 1.1, after solving electronic Schrodinger equation 1.9,
obtained by invoking the Born-Oppenheimer approximation, one gets the electronic
wavefunction ®,(r, R) and the adiabatic potential energy surface V,(R) for each

electronic state a

[A{elq)a('rv R) = Va(R)(I)a<T7 R) (168)
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where shorthand notations » and R are used for electronic and nuclear coordinates
respectively. In terms of wavefunction the decoupling of the electronic and the
nuclear motions means that the molecular wavefunction can be written as a product

of the electronic, ®,(r, R), and nuclear, y,(R), wavefunction

Upo = Xa<R>(I)a<T7 R) (169>

The Born-Oppenheimer approximation also implies that electronic states are not
coupled to each other. This means that contribution from each state can be com-
puted separately and the complete spectrum is simply the sum of the contributions

of all electronic states.

Basically a molecule can interact with an electromagnetic field and absorb or
release a photon of frequency v only if it has, at least temporarily, a dipole oscillating
at the same frequency. A dipole can be induced by a transition, when the latter

occurs from an initial molecular state |¥;) to a final one |W), it can be expressed

as
prr = (Vr|ia|Vr) (1.70)
where
M
fi==> T+ > ZaR4 (1.71)
=1 A=1

is the dipole moment operator. The transition intensity is proportional to the square

of transition dipole moment pp;. Combining (1.69), (1.70) and (1.71), it can be

rewritten
N M
WHrr = <XF(I)F - Z T+ Z ZaR 4 qu)1> (1.72)
i=1 A=1
and factorised
N M
et ==Y (®rlril 1) (xrlxi) + Y Za (@rl®r) (xr [Ral x1) (1.73)
i=1 A=1

The second term in equation 1.73 is equal to zero because (®|®;) = 0 since electronic
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wavefunctions are orthogonal. Thus

N
prr=— Y (@p|ri| 1) (xrelxi)
i=1 (1.74)
= M<I>F<I>iSXfXI
where pg,o, = — Son, (®p || ;) is electronic transition dipole moment between

initial and final states and S, ,,, = (xr|x1) is overlap between the vibrational state
of the initial electronic state and the vibrational state of the final electronic state.
Since the transition intensity is proportional to the square of transition dipole mo-
ment, absorption is proportional to |Sy,,|* also called the Franck-Condon factor
of the transition. Therefore, the more vibrational states of the initial and the final
electronic states overlap, the stronger the intensity of the absorption will be.
Electronic transition dipole moments are provided by electronic structure calcu-
lation, what about nuclear wavefunctions ? The choice in this work is a set of
harmonic-oscillator wavefunctions associated with each vibrational normal mode in
the electronic ground state, they are also provided by electronic structure calcula-

tion.

As said before this picture of molecular spectroscopy does not hold anymore
when electronic states energies become close, in such a situation they have to be
coupled. Couplings between electronic states can be introduced in the wavefunction
by writing it as a Born-Huang expansion [25] that makes a sum over all electronic

states

VUpy = ZXa(R)(I)a(Tv R)7 (175)

hence, even though Born-Oppenheimer approximation reaches its limits for some
cases it remains the starting point for further improvements.

After the electronic problem is solved and the information about electrons is in
some manner folded into the potentials V,(R) at each geometry R, the molecular
hamiltonian can be built by adding the nuclear kinetic energy operator (excluding

overall rotational and translational motion) to the electronic hamiltonian and rewrite
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the total Schrodinger equation as

Z-He(Xa +Z ZQmA8R2 Xa a ZEXa a = (176)

Tnuc

where coordinates have been removed for clarity sake.
Multiplying from the left by ®; and integrating over the electronic coordinates leads
to

A h?  0?
H, — ——— | xa®, ) = F o (Pp| D) . 1.77
3 o) < EX i) 07

Because the electronic states at fixed geometry are orthogonal, the sum on the right

> (o

a

hand side of equation (1.77) collapses to x,. The derivation of the nuclear kinetic

energy takes more steps. Let’s first derive x,®, with respect to nuclear coordinates

0 8Xa 8(I)a
an aq)a = (I) a
ok, X oR, e T XeoR,
0? 0?x4 Oxe 0P,  Oxq 0P, *P,
L b, = TXegp T F oyt 1.78
R 2~ o2t T OR,oRs ORa0R,  Neomz TV
92y, Oxa 0P, 02,
= —qu)a +2 X + Xa D)
R, ORA R OR.A
We can then write
B2 92 K2 9? R 0 0 rz 02
2 g ) =5 [ + 2 (o ) (| )

(1.79)

and finally the total Schrédinger equation is

. h? 0 h?
Oab(Via +Tn) — —T ,— — T/ o=F 1.80
O R O e TR D rL ] O (B
where
Vie = (@],
T/ = <Q> g <I>> (1.81)
ba,A b aRA :
62
T/ = Oy |——| P, ).
ba,A < b aRAZ >
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Vba is the potential energy matrix of the electronic states and Ty, , and Ty, , are the

so-called kinetic coupling terms. The total Schrodinger equation can rewritten as

Ty — 2T, 1.82
Gr Ty = Epe= 5o S Mg + Tl 082

where the full hamiltonian is identified as

H=V,+Ty—A (1.83)
where
LA o ol Y VL (1.84)
ba — 2m 4 — £ ba,AaRA ba,A :

is the so-called non-adiabatic operator.

Adiabatic electronic states obtained by solving the Schrédinger equation un-
der the Born-Oppenheimer approximation vary significantly around conical inter-
sections. Such regions play an important role in the molecular dynamics, especially
when vibronic couplings are taken into account, and their correct description is nec-
essary. Unfortunately around those regions the energies of two different electronic
states become very close which makes integrals such as (®y,|0/0RA| ®,) diverge.

This can be seen by using the Hellmann-Faynman theorem [26,27] to rewrite these

Tl;a,A = < (I)b

Ty, 4 — 00 when Vy(R) — V,(R)

integrals as

0

ORA

dH,
<1>a> _ (57| )

Vo(R) — Va(R)

thus

To overcome this difficulty one can move to the so-called diabatic basis {¢,} to
expand the wavefunction and the hamiltonian. Diabatic states are defined in such a
way that they do not vary significantly along the nuclear coordinates, mathematically

they are defined as states satisfying

(

o)
Pa E‘¢b> =0 a#b (1.85)
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Energy

Diabatic

Diabatic

—— Adiabatic

Dimensionless coordinate
Figure 1.1: Potential energy surfaces in adiabatic and diabatic basis sets

and are obtained by a diabatization scheme that consists in finding the rotation
matrix R(R) that will create them under this constraint. For a two-state system, in

adiabatic basis the hamiltonian has the following form

H="Ty1+ (1.86)

as

H=Ty-1+R(R)" ‘R(R). (1.87)
—Apa Vi(R) — Ay

Thus calculating the kinetic coupling terms can be avoided by moving to a diabatic
basis set. In that basis the couplings between electronic states are potential. The
other advantage is that the elements V,;, (c.f. eq. 1.81) of the potential energy matrix
vary smoothly with the nuclear coordinates as can be seen in figure 1.1. They can
be expanded in a low-order accurate Taylor series, keeping in mind that each matrix

element is a function of all the normal mode coordinates. For the two-state system
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with electronic states a and b and m normal modes i, j, ... the elements are given as

Vao(R) = 0 (Vo(R) + Eu) +ZE;,,R - Z “bRR +- (1.88)

i,j=1

where Vy(R) is the energy of the ground state at the geometry where the Taylor
series expansion is made, generally at the ground state optimized geometry. E?, and
E;Jb are linear and quadratic coupling constants respectively, they connect electronic
states through normal modes. Due to group symmetry constraints some couplings
will vanish after integration over electronic coordinates. The product of the ir-
reducible representations of electronic states by that of the normal mode has to
belong to the completely symmetric representation.

For a two-state system (one symmetric, one asymmetric), two normal modes (one
symmetric Ry, one asymmetric R,) up to the quadratic term the vibronic hamilto-

nian is given as

E,+ Ei R + Z2RiR, + B2 R R, E)R; + “bRR
(Tn+Vo(R))- 1+
ELR;+ % RR By, + Ei,Ri+ ZSiRiR; + b"RR-
i (1.89)

The vibronic couplings in equation (1.89) are obtained through the following steps:

e Optimize the ground state geometry and obtain the force constant matrix and

normal modes ¢; of the ground state.

e Perform a calculation of the excited states at the ground state geometry and

select the electronic states to be included in the vibronic model.

e Loop over a suitable set of small nuclear displacements along the normal modes
A = R, to extract linear or diagonal quadratic couplings, or A = R; + R, to
extract off-diagonal quadratic coupling constants. At each slightly displaced

geometry A the following steps are carried out:
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- Calculate electronic energies F,(A), transition moments z,(A) (from the

ground state), and adiabatic wavefunctions W, (A).

- Evaluate an approximate form for the overlap elements
Sab = (Va(A)[W4(0)) (1.90)

- Determine a unitary transformation of the adiabatic states, R.,, that

minimizes the off-diagonal elements of the overlap matrix, i.e. that min-

imizes Y, |(1 = 0b) D, ReaSab|-

The unitary transformation defines the diabatic states
(@e(A)] =Y Real(da(D)] (1.91)

- Transform the diagonal matrix of adiabatic total energies and the transi-

tion moments to the diabatic representation, to obtain
Ea(A) =) ReaBa(A)Ra, (D) =) Reapa(d)  (1.92)

- Finally couplings are obtained by double-sided numerical differentiation,

e.g. diagonal linear coupling constants in (1.89) are given by

Eaa<Rz') - Eaa<_Ri)

El, = 1.93
: 7 (19
and diagonal quadratic couplings by
. FEu(Ry) —2F Eaa(—R;
Eéla — GG(RZ) GG(O) + aa( RZ) (1.94)

R;

Once couplings have been obtained, the potential energy matrix (1.88) can be built
up and diagonalized to get the adiabatic surfaces, the latter can provide great insight
into the spectroscopy and the short-time dynamics of the studied systems. Diag-
onalizing the total vibronic hamiltonian (1.89) will yield vibronic eigenvalues that

will ultimately appear as peaks in the simulated absorption spectrum.
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1.3.2 Spin-orbit coupling
Origin of spin-orbit coupling

Spin-orbit coupling is another physical effect that can break down the Born-Oppenheimer
approximation, its relativistic origin can be seen starting from the electronic hamil-
tonian (already seen in subsection 1.2.1) which has the general form
H=Y"h(i)+ > 3(i,5) + Van- (1.95)
i >

~

h(i) is the one-particle part and is composed of the kinetic energy operator of the
electrons and nucleus-electron attractions operator, g(i,j) is the two-particle part
and is only composed of electron-electron repulsions operator.

In relativistic theory iz(z) is given by Dirac’s hydrogen-like hamiltonian

ilDirac(i) - COZ; . ]71 + (ﬁz - I4)m62 + Z ‘A/Ai (196)
A
where I4 is the 4 x 4 unit matrix and p; = —iV; the momentum vector of the

electron 7. ([ is the 4 x 4 Dirac matrix and @ is a vector of matrices, its three
components (o, oy, ;) are expressed as a function of 2 x 2 Pauli matrices . Vi
is the interaction term with nucleus A.

This 4 x 4 matrix form of the hamiltonian implies a four component vector form for
the wavefunction

e
W) = 1/15 (1.97)
s
v

L and S represent large and small components of the wavefunction respectively while
«a and [ are related to spin.
Solving Dirac equation for meaningful solutions for chemists leads to a decoupling

of electronic and positronic degrees of freedom and to a two-component electronic
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form. From that decoupling follows Pauli hamiltonian
R R N N N
hfPauli = hnr + Z hmv@) + Z hD<Z> + Z hSO<Z> (198)

where ﬁm is the non-relativistic hamiltonian, ﬁmv the mass correction operator and
hp the Darwin term. The forth term is the one we are interested in, it is the

spin-orbit operator

A IS e A (1.99)

O' .
Am2c2p3

7

hso = —5—
4m?2c?

[SIST)

with §=

Here we present Pauli hamiltonian just to show the spin-orbit interaction term
in relativistic theory. In practice it can not be used for variational calculations but
for a perturbative treatment and gives a good estimation of relativistic corrections
to the energy up to transition metals of second and third rows of the periodic table.
Other hamiltonian as Breit-Pauli’s [28] or no-pair hamiltonian [29,30] are more often

used for spin-orbit calculations.

Physical origin of spin-orbit coupling can be understood by moving to electron’s
coordinate system. In its coordinate system the electron “sees” the nucleus moving
around him, this seeming motion of the nucleus creates a magnetic field that interacts
with the intrinsic magnetic momentum of the electron namely the spin, leading to

spin-orbit interaction.

In addition to spin-orbit coupling relativistic effects are also at the origin of other
phenomena very important for the chemist and known as scalar relativistic effects.
The latter mainly come from mass changing of the electron. In relativistic theory
electron in motion has a mass m = ymg where v = (1 — v?/c?)~"/? is the Lorentz
factor, ¢ the speed of light, v the speed the electron and my its mass when it is idle.
When v is close to ¢ the v?/c? term is not negligible and the mass of the electron
increases. Since Bohr radius is inversely proportional to the mass of the electron,

this phenomenon manifests itself by a direct stabilization of orbitals close to the
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nucleus, s and p orbitals especially, this stabilization induces, by a screening effect,

an indirect destabilization of diffuse orbitals, especially d and f orbitals.

Treatment of spin-orbit coupling

Now that we have seen relativistic origin of spin-orbit coupling and its physical

interpretation let’s see how it is treated in practice. Two models are often used :

LS or Russell-Saunders coupling. It corresponds to a weak spin-orbit coupling
for which the hamiltonian including electronic correlation and scalar relativistic but
no spin-orbit (noso) effects I;T,wso commutes with the total angular momentum L=
> [; and the total spin momentum S = >, 8 which are then good quantum numbers

for eigenstates of Hposo

Hposo|LS) = Epg|LS) (1.100)

|LS) states are obtained by a correlated method, CI or CASSCF for example, and
spin-orbit coupling is introduced as a perturbation and removes the degeneracy

between LS states that split to J components with |[L — S| < J < L+ S.

jj or magnetic coupling. In this case spin-orbit coupling is not a perturbation
anymore and is included in the hamiltonian from the beginning H,,. Individual
angular and spin momenta are not meaningful when taken separately, they strongly
interact to give individual total momentum jl = Z + §; which commutes with the

hamiltonian and is a good quantum number for its eigenstates

H,olj) = Ejl3) (1.101)

-

Interactions between individual total momenta define the total momentum J =
i Ji

How does one know which model to use ? In other words which of correlation
or spin-orbit coupling effects are more important ? In general the more an atom

is heavy the more spin-orbit coupling effects are important since they vary as Z4,

where Z is the atomic number. Rigorously they have to be treated in a four or
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two component formalism with the jj coupling model and taking into account all
electrons. However it is not always possible due to the size of the problem because,
as we said previously, these effects are more important in heavy atoms which means
a large number of electrons. For that reason four or two component methods quickly
reach their limits. Moreover, working in a four or two component formalism implies
changes in the nature of the hamiltonian which becomes complex making difficult
the treatment of correlation effects.

Approximations can be made by separating core electrons from the valence ones more
important for studying reactivity or valence spectroscopy. Effective core potentials
(ECP) can then be used for core electrons but they have to reproduce correctly
77 coupling effects of the core electrons and the influence of the relativistic effects
on valence electrons. The latter can then be treated with the LS coupling model

because they are slower then the electrons in the core.

The methods used in this work are based on the LS model. They treat electronic
correlation and spin-orbit coupling using a set of orbitals obtained from a variational
calculation in one component formalism. Two interactions can be treated in two
manners. One can consider both in the same calculation step by doing a CI in
the double symmetry group of the molecule, this is the so-called one-step method.
The other possibility is to treat electronic correlation in a first step keeping LS
coupling model and using habitual CI methods, spin-orbit coupling is then treated
in a second step using LS states as a basis to expand spin-orbit states, this is the
two-step method. In the following we will briefly talk about one-step methods before
describing more in detail two-step methods since the methods we use belong to this

category.

One-step methods
They treat correlation problem and spin-orbit coupling at the same time and for
that reason they suffer from some problems. Spin-orbit coupling operator couples

states of different spin which augments the size of the problem, moreover matrix
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elements of the hamiltonian become complex which complicates the diagonalization
process. Methods, such as a selection of states coupled by spin-orbit operator or
transformation of the hamiltonian matrix, have been developed to overcome these
problems with more or less success. Good results can be obtained at a reasonable

price but one-step methods quickly reach their limits in general.

Two-step methods

Two-step methods first concentrate on electronic correlation problem before consid-
ering spin-orbit coupling in a final step. In that way they take profit of progresses
made in the development of correlated methods like corrections of the non size-

consistency problem coming from truncation in CI method.

In the first step CI is performed yielding |W,,) states with energies F,, that are
eigenvalues of the hamiltonian without spin-orbit I:Inoso, each state |¥,,) is expanded

in total space of determinants {®;}
(U) =) Clin| ®5) (1.102)

Eigenfunctions corresponding to the roots of interest make the basis on which the
matrix of the total hamiltonian ]:Inoso + VSO will be built and diagonalized.

{®;} can be composed of thousands even millions of determinants and in some
cases needs to be reduced to a model subspace which contains only determinants
that contributes the most to the correlation energy. States |U! ) expanded in this
new basis are, in a good approximation, considered as eigenfunctions of H, o5 with
eigenvalues E/ different from FE,,. The difference originates from the reduction of
the basis. The correlation energy lost can be reintroduced in the model space with

an effective hamiltonian
IA{eff - f{noso + Z(Em - E1,n)|\11/m><\1//m| (1103)

The same technique can be used to improve the treatment of correlation effects by
using energies provided by higher correlated method for E,,. CASPT2 energies for

example will bring more dynamical correlation.
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Total space Model space
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— —
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Figure 1.2: Effect of the effective hamiltonian on model space

Two-step methods as described so far are the contracted SO-CI methods because
the total hamiltonian is built and diagonalised on the basis of {|W,,)} states which
means that Cj, coefficients are not optimized, SO-RASSI method [4] used in this
work belongs to this class of methods. They are not suited to describe the so-called
spin-orbit polarisation effects that arise from the spin-orbit interaction between de-
terminants.

To overcome this problem EPCISO method [10], also used in this work, builds and
diagonalises the hamiltonian matrix on the basis of {|®;)} determinants. The large
number of determinants enforces a selection to only include the ones needed to de-
scribe the states of interest and the ones contributing to spin-orbit polarisation.
Effective hamiltonian technique can also be used to recover correlation energy lost

by reducing the number of determinants.

In practice SO-RASSI and EPCISO methods have one major difference. SO-
RASSI needs the wavefunctions, basically MCSCF wavefunctions, of all states for
which one needs to compute the spin-orbit interaction while EPCISO has the ad-
vantage to start from a unique wavefunction and generates all |®;) determinants it

needs to build the states of interest and compute their spin-orbit interaction.
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Appendix

Appendix 1: Second quantized formulas

Here we summarize the second quantized notations and results we use in this chapter

without proving them.

p! is the creation operator for a spin-orbital ¢,,.
p is the annihilation operator for a spin-orbital ¢,.
When it’s not specified whether the operator is a creation or an annihilation operator

it’s noted p'.

A hole creation operator or a particle annihilation operator acting on the reference

function gives zero

i7|0) = aloy =0 (1.104)

Anti-commutation relations

The anticommutator of two operators A and B is defined as

[A, BL — AB+ BA (1.105)

The anticommutator of second quantized operators are:

[ﬁv(ﬂJr =0
4", = 0 (1.106)
B.d], = [p.d'], = on

Second quantized form of the electronic hamiltonian

Electronic hamiltonian can be written in the second quantized form

A R 1 e
H=) hyp'q+7 Y (pallrs)p''si (1.107)

p7q p7q7r7s
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where
hpg = (6plhl6g) (1.108)
and
wallrs) = [ G052 (1 = Po)s (o (2dndr, (1.109)
12 = |r1 — 73] and integration is over total coordinate (space and spin) 7; of

each electron. Pj5 is the operator exchanging electrons 1 and 2. For example

P12¢r<1)¢s(2> = ¢r(2>¢8<1)
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Appendix 2: Normal order form of the hamiltonian

Let’s introduce some notations before we derive coupled-cluster working equations.

Normal order of a sequence of operators

To take advantage of the fact that :7|0) = @|0) = 0 normal order notation can
be introduced. Normal order of a sequence of creation and annihilation operators
pqr - (N[p'@v -] ={p'¢t"---}) is obtained by commuting operators to place
all 7' or a to the right of other operators. If it and a are absent from the sequence

of operators, {'¢'*'--- }|0) = [®¢). In all cases
(O{p'q'#"--- }|0) =0 (1.110)

This result will simplify the computation of expectation values of a sequence of

operators by helping identify the terms that vanish.

Normal order form of the hamiltonian

The normal order form of the hamiltonian is

Hy = H = {0110 = 3 o710} + 5 T tallrs) (3'atar) (1)
pq7r7s
~ R 1 e
Hy =) hu{p'd} + 1 > (pallrs){p'q'sr} (1.112)

p7q p7q7r7s
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Appendix 3: Baker-Campbell-Hausdorff expansion
—-Brir -l yageselps il
2 3! o 2 3! o
A+ (AB— BA) + (A~ 2BAB + BA)

(AB® —3BAB? +3B°AB — B*A) + ...

(1.113)
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Appendix 4: Generalized Wick’s theorem

Before writing Generalized Wick’s theorem let’s define contraction between two cre-

ation/annihilation operators as

Pq =07 —{pq'} (1.114)
For holes creation/annihilation operators possibilities are:
FLE L i B -

i

ij=ij—i7=0

- (1.115)
it =15 =15t =0
ity =ty = (=5i") = ' jle = 6y
while for particles creation/annihilation operators possibilities are:
aibt = atht — afbt = 0
ab = ab— ab =0
(1.116)

Generalized Wick’s theorem can then be symbolically written
Py HsTHaY - = P07y Y EHITHA Y

single
contractions

,—ﬁ
+y Iy

double
contractions

T —
+ > P (1.117)

Sfull
contracted
products

The sums are over contractions of pairs of operators from different normal products
of operators since contractions of pairs of operators within the same normal product

of operators vanish. This can be seen from equation (1.114).






Chapter 2

Electronic structure and potential

energy curves of 1\/ICH5r

(M=Fe, Co, Ni)

The metal carbenes have been identified as intermediates in several important cat-
alytic processes, such as Fischer Tropsch synthesis. They also represent interesting
transition metal complex prototypes and have been studied both experimentally and
theoretically.

Theoretical studies have mainly focused on the nature of the metal-carbon bond. The
latter can be purely covalent or purely dative depending on the metal center [31-40].
In contrast, little attention has been devoted to the spectroscopic properties. Metal
carbenes are characterized by a high density of electronic states within a small energy
window with several nearly degenerate states. The ground state of FeCHj is de-
scribed by a pair of nearly degenerate B, and B, states with a *A, state very close
whereas the electronic ground state of CoCHJ is described by two nearly degenerate
3A; and ?A, states and NiCHy by a 2A; state [41-43]. An accurate description of the
structure and the energetics of the low-lying electronic states is required to clarify

and determine the ground state of each complex and the nature of the metal-carbon
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bond.

Recently, photofragment spectroscopy experiments have shown that the MCHJ
(M=Fe, Co, Ni) cations have three different dissociation channels [1]. The loss
of CHy is the most favorable but the departure of H or Hy was also reported. All
these pieces information make metal carbenes an interesting set of small transition
metal complexes with a few number of degrees of freedom to study the competition
between dissociation channels. The size of the systems is reasonable and can be
treated with highly correlated methods like coupled-cluster. The complexity of the
electronic structure (open shell, nearly degenerate states, unsaturated valence shell
of the metal) is a challenge to apply CC methods which have not yet been used so

much for this kind of problems.

This chapter reviews the study of the electronic structure of MCH; (M=Fe, Co,
Ni) complexes at the CCSD and EOM-CCSD level of theory with high quality basis
sets. After focusing on the Franck-Condon region to determine the electronic ground
state and the absorbing state(s), potential energy curves (PEC) are built along the
relevant coordinates. Spin contamination issue occurring in these open shell systems

is also discussed.

2.1 Electronic structure

The study of the electronic structure of metal carbenes is summarised in the following

article.
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2.2 Potential energy curves

Now that electronic states probably responsible of MCH; photo dissociation have
been identified the next step is to calculate PES corresponding to these electronic
states up to dissociation. The first thing is to identify relevant nuclear coordinates.
Since MCH; photo dissociation yields primarily M™ and CH,, potential energy

curves where calculated along the M-C bond elongation.

Coupled-Cluster method works well for most molecules around their equilibrium
geometry but suffers from problems due to the single determinant reference function.
RHF reference function does not describe correctly the asymptote for a closed-shell
molecule while a ROHF one will meet similar problems for an open-shell molecule.
The UHF gives the correct energy at dissociation limit but breaks the symmetry of

the wave function.

In the present study calculated dissociation energies are in agreement with the
experimental values. This suggests a correct treatment of the problem in hand by
UKS-EOM-CCSD at equilibrium geometry and dissociation limit. Despite the well
accepted fact that single reference methods are not always suitable to describe bond
breaking reactions correctly the same method is used to calculate PES. This choice
was motivated by different reasons. First off all coupled-cluster method and its ex-
cited state counterpart, equation of motion, are size-extensive which is a necessary
feature for any method to treat bond breaking correctly at dissociation. They also
have the advantage, over methods like CASSCF or CASPT2, to be not active space
dependent. Using different active spaces at different geometries can result in discon-
tinuities in potential energy curves. Coupled cluster method also has the advantage
of being very versatile. Different kinds of wave functions, HF or KS, can be used
as a reference function, that flexibility can be used to circumvent some difficulties.
Using KS orbitals for example can considerably reduce spin contamination in the
wave function as seen in section 2.1. Another feature of coupled-cluster method is

to use a reference state, that is not necessarily the ground configuration state, with



2.2 Potential energy curves 61

a number of electrons different from that of the target state as in IP, DIP, EA or
DEA-EOM. This last possibility makes EOM method even more flexible.

Moreover in the space created by Ry operator (equation 1.51) any determinant can
have any weight it needs in the target state, for that reason EOM-CC can de-
scribe multi reference state within a single reference formalism. The reference state,
however, is still described by a single reference coupled-cluster solution causing the
problems mentioned earlier. However this issue might be avoided by the use of a
high spin reference state which remains multiconfigurational in the bond breaking
process as was suggested by Krylov et al. who motivated a new model EOM, spin-
flip (SF) [44,45], by this argument. Basically this method uses a high spin reference
function and an excitation operator that conserves the total number of electrons
but changes the number of o and [ electrons to get a target state with a different
spin multiplicity. In the present study we are dealing with high spin ground states,
namely quartet, triplet and doublet states for FeCH;, CoCH; and NiCHJ respec-
tively and the use of these high spin states as reference states could avoid the single

reference problem.

PEC along metal carbon bond of studied molecules are calculated with the same
methods and basis sets used in section 2 to calculate electronic excited states at
equilibrium geometry. Wachters basis sets [46] augmented with f exponent were
used for metal atoms while Dunning’s correlation consistent triple zeta basis sets [47]
was used for C and H atoms. Excited states were calculated at EOM-CCSD level
of theory using a KS reference function to avoid the spin-contamination problem
discussed in section 2. Figures 2.1, 2.2 and 2.3 show potential energy curves of
calculated excited states along metal carbon bond for FeCH3 , CoCHJ and NiCHj
respectively. Only states that could be identified along the reaction pathway are
represented. Strong mixing between other states generate incoherent behavior of

PEC that become unworkable.
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2.2.1 FeCH;

Optimized bond length of 1.85 A for Fe-C bond reported in section 2 is in perfect
agreement with ground state potential energy curve of FeCH . The low lying elec-
tronic states of FeCHy are degenerate (a’B;, a*Ay, b1By,) and bound with respect to
the Fe-CH, bond elongation as well as the a’A; and b?B, higher states. The absorb-
ing state with most significant oscillator strength, namely the e*B,, calculated at
31180 cm ™! seems to dissociate. However the lack of points beyond 2.5 A prevents
further detailed analysis. At this point this state is the best candidate through
which photodissociation of FeCH; could occur. c*A; is the next most absorbing

state calculated at 24870 cm™! and seems to be slightly bound.

O
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Figure 2.1: Potential energy curves of excited states of FeCHgL along Fe-C bond.

2.2.2 CoCHj

As reported in section 2, the ground state of CoCHj is described by two degenerate

a’A, and a®A; states. Low lying excited states (a®B; and a®B,) are very close
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and become degenerate with the ground state as the Co-C bond is stretched and
molecular orbitals collapse into d orbitals of Co™ and CHy orbitals (SCHEME I in
section 2). The minimum energy value agrees very well with the optimized Co-C
bond length of 1.8 A. d3A, electronic state calculated at 31030 cm™" with the main
oscillator strength seems to be dissociative but here also the lack of points beyond
2.65 A prevents further detailed analysis. c®A, state calculated at 19020 cm™!
with significant oscillator strength is bound. The experimental irradiation between
27030 and 31250 cm™! exceeds the transition energy of this state. According to
these results, d®A, state would be responsible of CoCHj photodissociation after
irradiation in the energy window considered but more points beyond 2.65 A are

necessary to confirm this assumption.
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Figure 2.2: Potential energy curves of excited states of CoCHj along Co-C bond.
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2.2.3 NiCH}

In contrast to FeCH] and CoCHJ, NiCH; ground state is described by one well
separated electronic state (a?A;) with a minimum at 1.8 A in agreement with the
optimized geometry of Ni-C bond length. Low lying excited states (a?A,, a?Bs,
bzAl) are close to the ground state and also bound. c?A; state calculated at 17020
cm ™! with the most significant oscillator strength is bound. Many of NiCH; excited
states seem to be dissociative up to 2.2 A but non of them is assumed be a candidate
for the photodissociation of the molecule since their oscillator strength is either very
low or even zero. Notice however that d?B, dissociative state could be of some
interest since its oscillator strength (1.3 x 1073) is only one order of magnitude lower

then the most absorbing state f2A;.
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Figure 2.3: Potential energy curves of excited states of NiCHJ along Co-C bond.

At this point only speculative conclusions can be made for MCH PEC. For
further analysis they must be obtained at least for all absorbing states and up to

dissociation i.e. 3x equilibrium geometry. A solution must be found to the incoher-
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ent behavior of strongly mixed states. It might imply using a multiconfigurational
coupled-cluster methods, such as Fock-space coupled-cluster [48], most appropriate

to handle such cases.

A particular issue has focussed our attention in the calculation of PEC. At dis-
sociation limit one can expect the excited states of different fragments. In CoCHj
case for instance the calculation at the asymptotic limit must yield triplet excited
states of Cot and CHy. A calculation at dissociation limit (6 A) yields triplet states
of Cot and a 3B; of CH, located at -1741 em~'. The ground state of Cot is a
septuply degenerate °F, it is followed by a °F at about 4500 cm™! and another 3F
at around 10000 cm™! [49]. Our calculation of Co™ excited states, starting from the
closed-shell [Ar]3d'® Co™ and using EOM-DIP method (section 1.2.4), did not yield
the correct degeneracy of the 3F ground state when using a KS reference function. A
DIP calculation using a HF reference function perfectly reproduces the degeneracy
of the 3F state. The analysis reveals that atomic d orbitals are not degenerate in
the KS reference function inducing lost of degeneracy of the *F ground state. The
question whether the problem comes from the program or the method is not clarified

yet.

2.3 Summary

In this work, coupled-cluster method was used to study electronic structure of tran-
sition metal carbene cations MCH; (M=Fe, Co, Ni). Both ground and excited
states were investigated at equilibrium geometry to characterize the ground states
of different molecules and identify their absorbing excited states. After these states
were determined, PEC along the primary photodissociation pathway, namely the
metal carbon bond, were calculated to identify excited states through which the

photodissociation process occurs.

The electronic ground states of FeCH and CoCHJ are described by two nearly
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degenerate states, ‘B,/4B; and 3A,/3A;, respectively while electronic ground state

NiCH;, ?A;, is well separated from the other upper doublet states.

The lowest part of absorption spectra of FeCHy, CoCHJ and NiCHJ is charac-
terized by very low oscillator strengths and not expected to play a significant role in
the electronic spectroscopy or in the photofragmentation of these molecules. Metal-
Txicn, charge transfer states with significant oscillator strengths in the visible/near-
UV energy domain of the theoretical spectra of FeCHj and CoCHJ are at the origin
of the photofragmentation of these compounds observed after irradiation between
27800 and 32360 cm™!. In contrast NiCHJ does not show any significant absorption
in this energy domain in agreement with the low cross section of photodissociation

observed for this molecule.

Ground state PEC of studied molecules are in perfect agreement with optimized
bond lengths of metal-carbon bonds. Low lying electronic states of three molecules
are bound and become degenerate with the ground state as the metal-carbon bond
is stretched. e'By state of FeCH; and d®A, state of CoCHJ have significant os-
cillator strengths and seem to be dissociative. They would be good candidates for
photodissociation of these molecules but more points beyond 2.65 A would be nec-
essary to ascertain this point. PEC obtained for NiCH; correspond to states with
low oscillator strengths that are not expected to play a role in the photodissociation

process.

It is important to stress that all electronic states could not be represented all
along the studied dissociation pathway. Some states present a strong mixing char-
acter resulting in an incoherent behavior. A correct treatment of absorbing states
at least up to dissociation is necessary to study metal carbene cations photodissoci-
aton. A multiconfigurational method such as Fock-space coupled-cluster would be

more appropriate for treating strongly mixed states.

This preliminary study aiming of describing the photofragmentaion of small

metal carbenes (MCH2%, M=Fe, Co, Ni) reveals the complexity of their electronic
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structure, in particular a high density of states in a small energy range leading to
intricate PEC. It also shows that single reference EOM-CC is perhaps not the best
suited method to investigate PEC of studied molecules. Nevertheless the study
helped to identify electronic states probably responsible for the photodissociation
of small metal carbenes. Further investigations will be devoted to the calculation
of PEC of all electronic states along the metal carbon bond and up to dissociation.
Other methods could be checked to study the crossing regions characterized by strong
mixing between electronic states. Distortion along other molecular coordinates like

H-C-H angle and other dissociation pathways will also be considered.
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Electronic structure and potential energy curves of MCHJ
(M=Fe, Co, Ni)




Chapter 3

Vibronic spectra of fluoroethylenes

3.1 Molecular systems

The spectroscopy of haloethylenes has been widely studied experimentally for many
reasons including the fact that some of them are toxic pollutants. Studies reported
on absorption, photo electron, electron-impact excitation and electron energy loss
spectra of fluoroethylenes [50-54]. The absorption spectra are roughly characterized
by an easily identified broad @ — #n* band . This diffuse band and has some indi-
cation of vibrational fine structure but this is difficult to ascertain since the band is
overlapped by numerous Rydberg bands.

Tentatives of assignment and reassignment have been made with some controversies
and in some cases these assignments are only speculative. High-level theory was used
only recently to help assigning the transitions and understand the spectroscopy of
the complete series of fluoroethylenes [55]. In some cases agreement with experi-
mental results is good and reasons including structural changes where suggested to

interpret some features of the experimental spectra.

Photodissociation studies [56-64] found different dissociation channels for dif-
ferent fluoroethylenes. Depending on the case, irradiation of fluoroethylenes yields

H and F atoms, HF, Hy and F5 molecules or C=C bond breaking but the mech-
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anisms that might involve triplet states of such photolysis are not clearly known.

Photoisomerizations have also been evidenced [65].

Theoretical study of the electronic spectra of fluoroethylene is the first step
to understand their spectroscopy and photochemistry. Except for few number of
them [66] only vertical excitation energies were reported so far and vibrational effects

were not taken into account.

In this work we aim to go one step further by doing a detailed study of elec-
tronic absorption spectra of the whole series of fluoroethylenes. For that propose
we try to reproduce absorption spectra and identify interesting aspects arising from
controversies in interpretation or through the computational process. This includes
identifying the origin of the spectroscopic contributions, whether they are from spe-

cific excited electronic states, vibrational modes, or vibronic coupling effects.

3.2 Computational details

Absorption spectrum simulation goes through the following steps

i Geometry optimization
ii Vibrational normal modes calculation

iii Single-Point STEOM calculation to select electronic states to be included in

the vibronic Hamiltonian
iv Vibronic Hamiltonian calculation

v Potential energy surfaces generation. They can be used as a check to make sure
that the vibronic coupling constants are physically meaningful (upside-down

surfaces for example are an indication of an unphysical result)

vi Franck-Condon or Vibronic spectrum simulation
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All electronic structure calculations were performed with ACES II quantum chem-
ical program package [6] using polarized basis set (PBS) from Sadlej [67]. Ground
state optimized geometries (i) and normal mode frequencies (ii) have been calculated
at the CCSD [11] level of theory. Excited states energies and their transition mo-
ments (iii) are calculated with the STEOM-CCSD [20,21] method. Potential energy

surfaces and simulated spectra are obtained with the program VIBRON [9].

The absorption spectra of fluoroethylenes are characterized by a broad m# — 7*
band and a series of Rydberg states that become very dense after 9 eV. These
states can be accessed only by using a very large basis set which is not the case
in this work for computational reasons. Obtaining vibronic coupling Hamiltonian
requires calculation of all excited states at all distorted geometries, depending on
the couplings to be calculated the number of geometries can grow very fast e.g.
for a calculation of linear and diagonal quadratic vibronic coupling constants, 25
single-point calculations will be necessary while up to 103 single-point calculations
are needed to obtain cubic and quartic coupling constants in addition to linear and
diagonal quadratic. For that reason we limit our selves to the first part of the
spectrum, up to 9 eV, above that value the spectrum is essentially composed of

Rydberg states that are usually easier to assign anyway.

Symmetries of studied molecules and the size of the active space in the STEOM
calculation are summarized in table 3.1. Active space is chosen in such a way the
percentage of singles in excited states (IP, EA and EE) is above 90, experience
has shown that below that value results are poor and not very stable [68]. Active
space is specified by giving an energy threshold above which all occupied orbitals are
included (IP-low) and another energy threshold below which all virtual orbitals are
also included (EA-high). The corresponding number of orbitals is given and IP-low
and EA-high are in brackets.

The most time consuming step is the determination of quanta distribution in the

spectrum simulation, ideally one would simply include all possible electronic states
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and assign large quanta distributions to all normal modes but due to computational
limitation it is not possible to proceed that way. One solution is to break the
absorption spectrum into different regions based on spectral features or characters

(Valence or Rydberg) of the calculated excited state.

Orbitals in STEOM active space

Molecule Symmetry  —5 ed (IP Tow oV Virtual (BA high oV)
monofluoroethylene Cs 5 (-19.5) 22 (9.0)
cis-difluoroethylene Cay 6 (-20.0) 24 (10.0)

trans-difluoroethylene Con 8 (-21.5) 24 (9.5)
1,1-difluoroethylene Cay 8 (-23.0) 25 (10.2)
trifluoroethylene Cs 7 (-20.5) 22 (8.8)
tetrafluoroethylene Doy, 6 (-19.8) 28 (10.2)

Table 3.1: Symmetry of molecular systems and details of active space used in the STEOM

calculation.

3.3 Results and discussion

The most complete and recent theoretical study of the absorption spectra of fluoro-
ethylenes was done by Arulmozhiraja et al. [55]. They investigated electronic struc-
ture of these molecules using SAC-CI singles and doubles method [69] with Dun-
nings’s valence triple-zeta basis set and experimental geometries except for triflu-
oroethylene for which they used a DFT/B3LYP /aug-cc-pVTZ optimized geometry
since the experimental geometry seems inaccurate.

Except for one or two fluoroethylenes the excitation energies they obtained agree
well with the experiment. Thus the results obtained in this work will be compared
to their results, relative energies may be compared despite the fact that different
bases are used. To gauge the accuracy of the two theoretical methods, calculated

values will be compared to the values found in the literature.
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3.3.1 Optimized geometries and vibrational normal modes

Optimized geometries are reported in table 3.2 along with experimental geometries

that could be found in the literature.

Parameter monofluoroethylene Cis-difluorethylene trans-difluorethylene

r(C=C) 1.337 (1.333) 1.339 (1.324)° 1.338 (1.316)°
r(C-H) 1.097 (1.087) 1.093 (1.080) 1.094 (1.080)
r(C-F) 1.350 (1.343) 1.342 (1.337) 1.348 (1.352)
Z(H-C=C) 121.1 (120.3) 122.5 (121.2) 125.0 (126.3)
Z(F-C=C) 121.0 (121.6) 122.3 (122.9) 119.9 (119.2)
1,1-difluorethylene trifluorethylene tetrafluorethylene
r(C=0C) 1.331 (1.340)¢ 1.335 1.333
r(C-H) 1.090 (1.091) 1.090
r(C-F) 1.324 (1.315) 1.322 1.319
Z(H-C=C) 119.2 (119.0) 122.9
Z(F-C=C) 125.2 (124.7) 120.2 123.3
[

2Reference [70]
bReference [71]
“Reference [72]
dReference [73]

Table 3.2: Optimized and experimental (in parenthesis) geometries for fluoroethylenes.

Bond lengths are given in A and angles in degrees.

Calculated geometries agree very well with the experimental ones. Normal modes
frequencies calculated at these geometries also agree with experimental values we
could found in the literature. They are given in the appendix at the end of this

chapter with a description of vibrations.
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3.3.2 Electronic excited states

Vertical excitation energies

Calculated vertical excitation energies and oscillator strengths of singlet states in-
cluded in vibronic model Hamiltonians are reported in tables 3.3 and 3.4 for the

whole series of fluoroethylenes along with experimental and SAC-CI values.

All states are excitations from 7 orbital including the main 7 — 7* excitation.
The latter mentioned is preceded and followed by the first member of different Ry-
dberg series. Vertical excitation energies are calculated to gauge the accuracy of
the method for states that will be included in the vibronic model. For now, suffice
it to say that STEOM energies agree very well with available experimental values,
even better than SAC-CI’s. Higher excited states, mainly Rydberg states, can not
be reliably accessed considering the size of the basis set used, diffuse basis functions

would be necessary for that purpose.
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state STEOM SAC-CI* Expt.b
Nature AE(eV) f Nature AE(eV) f ’
monofluoroethylene
aA” 2a" — 11a’ 0.628 7.12 0.0548 T — 35 7.11 0.0549 6.98
2a"” — 19a’  -0.195
2a” — 20a’  -0.158
bA’ 2a"" — 3a" 0.462 7.56 0.3124 T — " 7.68 0.3240 7.45
2a" — 4a" -0.357
2a"" — 6a"’ -0.326
bA” 2a"" — 12d’ 0.610 .77 0.0043 T — 3pog 7.75 0.0037
2a" — 18a’ 0.210
cA” 2a" — 13a’ 0.481 8.00 0.0003 T — 3poy 7.96 0.0027
2a" — 14a’ 0.341
dA” 2a” — 13a’ 0.392 8.54 0.0000 m — 3do 8.50 0.0016 8.59
2a” — 14a’  -0.278
2a” — 15a’  -0.290
2a"" — 23d’ 0.218
cA’ 2a" — 3a” 0.459 8.56 0.0191 ™ — 3dm 8.92 0.0146
2a’" — 4a” 0.509
cis-difluoroethylene
aBo 2by — 8ay 0.487 6.60 0.0267 ™ — 3s 6.68 0.0380 6.49
2ba — 9a1 0.284
2by — 12a1 -0.313
bB2 2by — 8ay -0.400 7.25 0.0076 m™ — 3po./o* 7.37 0.0027
2by — 9a1 0.480
2by — 14a1 0.200
aB1 2by — 2as2 0.525 7.84 0.3437 T — " 8.12 0.3825 7.82
2by — 3a2 -0.437
aAsg 2by — Tby 0.633 7.93 0.0000 T — 3poy 8.02
2bo — 10b; -0.228
bA1 2by — 3ba 0.689 8.26 0.0207 m — 3pm 8.09 0.0111 7.82
trans-difluoroethylene
aBy 2a,, — 8by 0.452 6.84 0.0000 ™ — o*/3pos 7.02
2a, — 11b,  -0.400
2a,, — 15by 0.231
aAy 204 — 8ag 0.643 7.20 0.0377 ™ — 3s 7.40 0.0438 6.99
2ay — 12a4  -0.262
aBy 2ay — 2bg 0.557 7.46 0.2787 T — 7.79 0.3197 7.45
2ay — 3by -0.302
2ay — 4bg  0.261
bBy 2ay, — Thy 0.593 7.56 0.0000 T — 3poy 7.77
20y — 9by 0.256
bA4 20, — 3aqy 0.689 8.26 0.0000 w — 3pm 8.17 8.25

2Reference [55]
bReference [50]

Table 3.3: Calculated and experimental excitation energies (in €V) for monofluoroethy-

lene, cis- and trans-difluoroethylene. The oscillator strength f are also given.
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Potential energy curves

After electronic states to be included in the simulation have been chosen and the
vibronic Hamiltonian calculated, the potential energy curves can be generated along
each normal mode. They can be used as a check of the vibronic Hamiltonian. In
fluoroethylene for example linear and quadratic vibronic coupling constant were cal-
culated. Potential energy curves along modes 10, 11 and 12. These modes are
non-symmetric out-of-plane modes corresponding roughly to out-of-plane displace-
ments of the hydrogen atoms. They exhibit unphysical shape as shown in figure
3.1. Excited states energy is plotted along non-symmetric modes with zero being
the ground state geometry. Vibronic quadratic coupling constants along these out-
of-plane modes are known to be hard to obtain, their close inspection reveals their
abnormally high values compared to vibronic coupling constants in other modes. To
walk around this problem we decided to only include linear vibronic couplings in
these problematic modes. Potential energy curves obtained with this new vibronic
Hamiltonian model are more physically meaningful, they are also shown in figure 3.1.
We have the same problem with cis-difluoroethylene hydrogens out of plan bending
modes (6, 7 and 12), only linear coupling constants are included in those modes.
For other systems quadratic coupling constants yield unphysical potential energy
curves so we decided to include linear couplings only in the vibronic Hamiltonian.
Ultimately absorption spectrum simulation will give us an indication of how correct

the approximation we make is.

Potential energy curves are obtained by diagonalizing the potential energy matrix
containing vibronic coupling constants. Therefore coupling constants determine the
shapes of potential energy curves. Interactions between deferent excited states can
be seen with a quick look at potential energy curves. Notice for example the slight
“double well” shape of states aA” and cA” and the “steep well” shape of state cA’
along mode 12 in figure 3.1 in the linear model. Vibronic coupling forces interacting

states to bend, creating a “double well” lower surface (aA” and cA”) and a “steep well”
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it STEOM SAC-CI® Expt.?
Nature AE(eV) f Nature AE(eV) f '
1,1-difluoroethylene

aB1 2b1 — 9a1 0.600 7.00 0.0459 T — 3s 7.05 0.0580 6.74
2b; — 14a1 -0.293

bA; 2b; — 3b1 0.544 7.53 0.2876 m™ — 7 /3pm 7.74 0.2470 7.51
2b1 — 5by -0.358

alsg 2b1 — 6bg 0.613 8.09 0.0000 T — 3poy 8.02
2b1 — 8ba -0.285

bB1 2b1 — 9a1 -0.216 8.11 0.0003 T — 3po. 8.06 0.0009
2b; — 10a1 0.602
2b; — 15a1 0.205

bA2 2b1 — Thg 0.528 8.69 0.0000 m — 3do/o* 8.58
2b1 — 10b2 0.362

cAq 2b1 — 3b1 0.390 8.93 0.0684 w — 3p/m* /3dm 8.58 0.1588 7.91
2b1 — 4bq 0.499
2b; — 5b1 0.278

cB1 2b; — 1lay 0.575 9.13 0.0020 ™ — 3do 8.84 0.0023
2b; — 12a1 0.260
2b; — 17a; -0.255

trifluoroethylene

aA” 4a” — 174 0.455 6.59 0.0186 T — 3s 6.65 0.0287 6.50
4a” — 194a’ 0.302
4a” — 24a’ 0.282

bA” 4a" — 174’ 0.371 7.13 0.0123 m™ — 3poy/3s/c* 7.23 0.0120 7.1¢
4a’" — 18a’ 0.314
4a’ — 19a’ -0.259
4a’ — 26a’ 0.242

bA’ 4a’" — 5a” 0.532 7.75 0.2241 T—3pr+mT— T 7.79 0.1151 7.75
4a” — 6a” -0.244
4a” — 70" -0.224
4a” — 8a" -0.299

cA” 4a’" — 174’ -0.219 7.81 0.0009 T — 3pos 7.86 0.0028 7.97
4a” — 18a’ 0.461
4a” — 19a’ 0.375

cA’ 4a” — 5a" 0.438 8.51 0.1180 ™ — 7 + 7 — 3pr/3dm 8.43 0.2117 7.75
4a” — 6a” 0.375
4a” — 70" 0.259
4a” — 8a” 0.275

dA” 4a’" — 18a’ 0.317 8.84 0.0087 T — 3do 8.79 0.0286
4a” — 194’ -0.231
4a’’ — 20a’ -0.287
4a" — 21d’ -0.277
4a’ — 29a’ 0.247

tetrafluoroethylene

aBiy 2b1y — Tag 0.629 6.66 0.0246 w — 3s/o* 7.09 0.0381 6.37
%1y — 9ag  -0.178
%1, — 100,  -0.248

aBsg 2b14 — Hbay, 0.410 6.90 0.0000 T —o* 7.01
2b1y — Tboy, 0.510
2b1y — 8bay 0.216

aBog 2b14 — 6b3y, 0.592 7.83 0.0000 T — 3po. 8.24 8.01
2b1, — 8b3,,  -0.324

bA, 2b1y, — 3b1y, 0.692 8.13 0.0000 T — 3pm 8.24

aBsy 2b1y — 2b2g 0.231 8.70 0.4407 T — " 9.41 0.5108 8.89
b1y — 3by,  0.653

@Reference [55], PReference [50], “Reference [52]
Table 3.4: Calculated and experimental excitation energies (in eV) for electronic excited

states included in the vibronic model Hamiltonian of 1,1-difluoroethylene, trifluoroethylene

and tetrafluorethylene. The oscillator strength f are also given.
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upper surface (cA’). Examination of vibronic coupling constants confirms strong cou-
pling between both aA” and cA” with cA” along mode 12. A glance through potential

energy curves can give a rough idea of important vibrational modes.

3.3.3 Absorption spectra

Absorption spectra of the whole series of fluoroethylenes were simulated with both
Franck-Condon (FC) and vibronic coupling methods. All electronic states reported
in tables 3.3 and 3.4 were included in the simulations. In experimental spectra
taken from reference [50], R, R’ and R” Rydberg states correspond to excitations
from 7 orbital to ns, np and nd (where n is the principal quantum number) orbitals
respectively. FC overlap factors (section 1.3.1) that appear as peaks in the simulated
spectra are calculated until they sum up to threshold value of 0.99. Different trial
simulations have to be made to establish a vibronic simulation strategy. Individual
peaks are convoluted with Lorentzians to create line spectra, they are reported in

figures 3.2, 3.3 and 3.4 along with experimental spectra.

Simulated spectra do not perfectly reproduce experimental spectra but many
pieces of information can be gained from them. In all spectra the overall shape and
the position of the broad @ — 7* are reproduced.

In monofluoroethylene and cis-difluoroethylene, individual FC spectra show that
only the first member of the first Rydberg series, namely aA” and aB, respectively,
has significant intensities. Other Rydberg states have very small or zero intensities
in agreement with transition moments reported in table 3.3.

Trans-difluoroethylene presents an interesting case of vibronic coupling. The long
progression starting around 50000 cm™! and present in both experimental and vi-
bronic spectra but not in the FC spectrum is probably a vibronic coupling effect.

1

aB, states lying in that region with a vertical excitation energy of 55000 cm™" and

zero transition moment is probably absorbing through vibronic coupling with ab-
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Figure 3.1: Electronic excited states included in the vibronic model of monofluoroethylene along modes 10, 11

and 12 (described in the appendix). In the left panels only vibronic linear couplings are included while linear

and diagonal quadratic couplings are included in the right panels.
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Figure 3.2: Experimental (top panels, reference [50]), FC individual states (middle panels)
and total vibronic (bottom panels) absorption spectra of monofluoroethylene (on the left) and

cis-difluoroethylene (on the right).
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Figure 3.3: Experimental (top panels, reference [50]), FC individual states (middle panels) and

total vibronic (bottom panels) absorption spectra of trans-difluoroethylene (on the left) and

1,1-difluoroethylene (on the right).
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Figure 3.4: Experimental (top panels), FC individual states (middle panels) and total vibronic
(bottom panels) absorption spectra of trifluoroethylene (on the left) and tetrafluoroethylene (on

the right).



3.3 Results and discussion 83

sorbing states.

FC and vibronic spectra of 1,1-difluoroethylene are not very different from each
other, they don’t reproduce the overall experimental spectrum but the vibrational
progress seems to be well simulated.

The closer to experience calculated spectrum is vibronic spectrum of trifluoroethy-
lene. Comparison with FC shows that vibronic coupling effects mainly mitigate the
intensity and the vibrational progression in the valence (bA’) state.

There is no evident vibronic coupling effect in the spectrum of tetrafluoroethylene
since the FC simulation is very close to the experience but this has to be ascertained

by an improved vibronic spectrum.

Even though it provides a good insight in the absorption spectroscopy of fluo-
roethylenes, vibronic simulations did not yield satisfactory results. To improve the
agreement with experience a new two-step strategy was adopted. As the states cou-
ple to each other weak transitions can be become stronger. In the first step, vertical
transitions moments are recalculated using the vibronic model. A regular FC calcu-
lation is performed in the second step using recalculated transitions moments. The

7T — 7" valence state is simulated with a structure-less broad smooth feature.

Starting with vinyl fluoride, figure 3.5 shows, on the left panel, absorption spectra
of individual states, except the valence state bA’, using transition moments and
excitations energies obtained from STEOM calculation. One the right panel of the
same figure are shown absorption spectra of the same states simulated using new
transition moments and excitations energies. It can be seen that weak transitions
become stronger when vibronic couplings are included, especially for bA”, ¢A” and

dA” states.

The overall simulated spectrum is shown in figure 3.6 from 54000 to 70000 cm ™!
along with the experimental spectrum and the individual contributions of electronic
states. The simulated spectrum is shifted by 1500 cm™! to match the experimental

one and the intensity of the first Rydberg state (aA”) is scaled by 1/2.
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Figure 3.5: Absorption spectra for vinyl fluoride states (except bA’) using STEOM ex-
citation energies and transition moments (on the left) and using excitation energies and

transition moments recalculated with the vibronic model (on the right).

The improvement upon first simulated spectrum of monofluoroethylene 3.2 is
flagrant. Rydberg states (aA” and cA”) are at the origin of the vibrational pro-
gression in the spectrum, their sharp features is well reproduced. Other simulations
need to be performed for further analysis but one can state that this new strategy
is more suited for simulating absorption spectra of fluoroethylenes. It will be used

to simulate absorption spectra of other fluoroethylenes.

75000
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Figure 3.6: Experimental (top panel) and simulated (middle and bottom panels) absorp-

tion spectra for vinyl fluoride.



86 Vibronic spectra of fluoroethylenes

3.4 Summary

Absorption spectra of fluorotethylenes were investigated using FC and vibronic cou-
pling methods. In the vibronic method a model Hamiltonian is calculated through
the following steps:

The ground state geometry is optimized and frequencies of vibrational normal modes
calculated at the obtained geometry. Excited states are calculated at the same ge-
ometry and a selection of states to be included in the vibronic model is made. Cal-
culation of parameters that enter the vibronic Hamiltonian includes excited states
calculations at displaced geometries around the equilibrium. Potential energy curves
can be obtained from the vibronic Hamiltonian. Their analysis will help design a
vibronic model. Finally vibronic spectra can be simulated and compared to FC and

experimental ones.

Ground state optimized geometry, and frequencies of the vibrational normal
modes are obtained at CCSD level of theory, they are in good agreement with avail-
able experimental values. Excited states energies obtained at EOM-CCSD level of
theory are also in accord with experiment, even better than recent SAC-CI results.
Vibronic couplings calculations reveal that obtaining quadratic coupling constants
for fluoroethylenes is not a trivial task. Except for monofluoroethylene and cis-
difluoroethylene, for which quadratic constants were included for selected normal
modes, vibronic model is limited to linear coupling constants. However this simple
model shows that vibronic coupling effects can be significant and must be considered
to correctly describe the absorption spectroscopy of fluoroethylenes. Simulations do
not reproduce perfectly the experimental spectra but reveal evidence of vibronic
coupling effects. The absorption of Rydberg states of monofluoroethylene could be
reproduced only with the inclusion of vibronic coupling effects. The long progression

1in the absorption spectrum of trans-difluoroethylene is

starting around 50000 cm™
another vibronic coupling effect. Vibronic coupling effects mitigate the intensity and

the vibrational progression of the 7 — 7* (bA’) valence state of trifluoroethylene.
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There is no major difference in FC and vibronic spectra of other fluoroethylenes. Vi-
bronic simulations have to be improved. A new strategy that consists in recalculating
transition moments with the vibronic model and performing a regular FC simulation
with the obtained values was adopted. It has been applied to the monofluoroethy-
lene case and shows great improvement. Basically the new methodology does in two
steps what vibronic simulation does in one and results from both methods should
not be so different. This suggests us some investigations in the vibronic coupling
simulations that are being carried out. For the moment following simulations will be
made adopting the new strategy. Calculation of vibronic coupling constants has to
be improved to obtain higher order constants, that will allow us to reach high quality
simulations and also have access to high order effects such as Dushinsky [74, 75] or

anharmonicity effects.

After a good agreement with experiment is achieved, teasing the simulated spec-
tra apart and identifying the root of spectroscopic contributions, whether it is from
specific excited states, normal modes, or vibronic coupling effects, will give us great

insight into the absorption spectroscopy of the studied molecules.
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Figure 3.18: Potential energy curves of the excited states of tetrafluoroethylene along

vibrational normal modes represented in figure 3.17 including linear couplings only.
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Chapter 4

Spin-orbit effects on the
spectroscopy of HyX (X=0, Te,
Po)

4.1 Introduction

The spectroscopic properties of water molecule still received much attention both
from experimentalists [78,79] and from theoreticians [80-83] even though they have
been studied since long time ago [84,85]. Different levels of theory including CASPT2,
coupled-cluster and other methods were applied to it. Particular attention has been
devoted to answering wether the low-lying electronic excited states of water have a
valence or a Rydberg character. Photodissociation of water also still receive much
attention [86,87]. Meanwhile the spectroscopy of heavy hydrides (HyTe, HyPo) have
been wildly investigated and spin-orbit effects are known to have key role in their
photochemistry [88-90].

The aim of this work is to study the effect of spin-orbit coupling on the spectroscopy
of H,O, HyTe and HyPo and its evolution as the central atom changes, using the

EPCISO method (chapter 1). EPCISO method has the advantage of treating the
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so-called spin-orbit polarisation effects. To gauge the importance of these effects,

results obtained with EPCISO are compared with SO-RASSI results.

4.2 Theoretical treatment of spin-orbit effects

The theoretical treatment of spin-orbit effects of HoX (X=0, Te, Po) is summarised

in the following article.
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General summary

The goal of this work was to apply cluster expansion theory to transition metal com-
plexes spectroscopy, validate the vibronic approach interfaced to ACESII quantum
chemical software on small organic molecules and study the spin-orbit effects in the

series HyX (X=0, Te, Po).

The study of electronic structure and potential energy curves of MCH; (M=Fe,
Co, Ni) by means of coupled-cluster and equation of motion coupled-cluster has
characterized their ground states and identified the electronic states responsible of
their photofragmentation. The lowest part of absorption spectra of FeCH; , CoCHy
and NiCHJ is characterized by very low oscillator strengths and not expected to
play a significant role in the electronic spectroscopy or in the photofragmentation
of these molecules. Metal-my;-y, charge transfer states with significant oscillator
strengths in the visible/near-UV energy domain of the theoretical spectra of FeCHj
and CoCHj are at the origin of the photofragmentation of these compounds observed
after irradiation between 27800 and 32360 cm™!. In contrast NiCHJ does not show
any significant absorption in this energy domain in agreement with the low cross

section of photodissociation observed for this molecule.

All electronic states could not be represented all along the studied dissociation
pathway. Some states present a strong mixing character resulting in an incoherent

behavior. Further investigations will be necessary to study these states.

A simple model, including linear couplings only, shows that vibronic coupling ef-

fects can be significant and must be considered to correctly describe the absorption
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spectroscopy of fluoroethylenes. Simulations do not reproduce perfectly the exper-
imental spectra but reveal evidence of vibronic coupling effects. The absorption of
Rydberg states of monofluoroethylene could be reproduced only with the inclusion
of vibronic coupling effects. The long progression starting around 50000 cm ™! in the
absorption spectrum of trans-difluoroethylene is another vibronic coupling effect.
Vibronic coupling effects mitigate the intensity and the vibrational progression of
the 7 — 7* (bA’) valence state of trifluoroethylene. There is no major difference
in FC and vibronic spectra of other fluoroethylenes. Nevertheless the calculation
of vibronic coupling constants has to be improved to obtain higher order constants,
that will allow us to reach high quality simulations and also have access to high order
effects. After a good agreement with experiment is achieved, teasing the simulated
spectra apart and identifying the root of spectroscopic contributions, whether it is
from specific excited states, normal modes, or vibronic coupling effects, will give us

great insight into the absorption spectroscopy of the studied molecules.

In the study of spin-orbit effects on the electronic spectroscopy of the group
VI analogous H,O, HyTe, and HoPo by means of scalar-relativistic and spin-orbit
CASPT2 calculations the two approaches, EPCISO and RASSI, give very similar
results. No effect on the calculated spectrum of HoO which compares rather well with
experimental data and available theoretical spectra from the literature. Whereas
the SO effects induce significant splitting of the low-lying triplet states of HoPo with
large mixing between the SO-states they are unimportant for HyTe. The absorption
spectra of the heavy molecules are shifted to the red with respect to the one of
water. Due to the theoretical difficulties at describing the scalar relativistic and
spin-orbit effects in a balanced way a quantitative study is still a challenge. The
results obtained in the present work for HyTe and HyPo will be confronted to further

four and two-components relativistic calculations.
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Spectroscopie électronique de petites molécules organiques et organomé-
talliques: corrélation électronique, couplages vibronique et spin-orbite

La prédiction de propriétés spectroscopiques moléculaires et 'interprétation de spectres
expérimentaux nécessitent de faire appel a la théorie. Une premiere étape consiste a se
limiter & la spectroscopie électronique dans I’approximation de Born-Oppenheimer ce qui
consiste a considérer les noyaux de la molécule comme étant fixes et les états électron-
iques indépendants les uns des autres. L’objectif de cette these est d’étudier la structure
électronique de petites molécules organiques et organométalliques dans ’approximation
de Born-Oppenheimer dans un premier temps avant d’aller au dela en prenant en compte
des effets tels que le couplage vibronique ou le couplage spin-orbite entre les états élec-
troniques. Le premier chapitre est consacré aux méthodes ab initio utilisées pour obtenir
les résultats présentés dans les chapitres ultérieurs. Une premiere partie est consacrée
aux méthodes de structure électronique dans I’approximation de Born-Oppenheimer, elle
est suivie d'une partie qui traite des effets de couplage vibronique et spin-orbite. Le
second chapitre présente une étude de la structure électronique et des courbes d’énergie
potentielle des carbénes de métaux de transition MCHS (M=Fe, Co, Ni). Le troisi¢me
chapitre rapporte les spectres vibroniques des fluoroéthylenes obtenus par simulation et
comparés aux spectres expérimentaux afin d’identifier 'origine de différentes contributions
spectroscopiques. Enfin le dernier chapitre traite des effets spin-orbite dans ’eau et ses
homologues lourds (HoX avec X=0, Te, Po).

Electronic spectroscopy of small organic and organometallic molecules: elec-
tronic correlation, vibronic and spin-orbit couplings

Theory is sometime necessary to predict molecular spectroscopic properties and interpret
experimental spectra. A first step study can be limited to the electronic spectroscopy in
Born-Oppenheimer approximation which consists in considering nuclei fixed and electronic
states independent from each other. The scope of this thesis is to first study the elec-
tronic structure of small organic and orgnometallic molecules in the Born-Oppenheimer
approximation and ultimatly go beyond by taking into account effects such as vibronic
or spin-orbit couplings between electronic states. The first chapter is dedicated to the ab
initio methods used to obtain the results presented in the following chapters. Electronic
structure methods in the Born-Oppenheimer approximation are first presented followed by
the methods that treat vibronic and spin-orbit couplings. The second chapter is a study of
the electronic structure and potential energy curves of MCH; (M=Fe, Co, Ni) transition
metal carbenes. Chapter three reports simulated vibronic spectra of fluoroethylenes, they
are compared to experimental spectra to indentify the origin of the different spectroscopic
contributions. A last chapter deals with the spin-orbit effects in water and its heavy
homologous (HoX with X=0, Te, Po).





