
PH.D. THESIS

presented at
Louis Pasteur University, Strasbourg

Department of Computer Science
LSIIT Laboratory, UMR CNRS-ULP N:7005

For obtaining the degree:
Louis Pasteur University

Doctor of Philosophy (Ph.D) in
Computer Science

by

Emil Ivov

Optimizing Real-Time Communications
over the Internet Protocol

Public defense on April 1st 2008 with the following jury :

Andrzej Duda, External evaluator
Professor at ENSIMAG, Grenoble
Eckhart Koerner, External evaluator
Professor at the University of Mannheim
Thomas Noel, Thesis advisor
Professor at Louis Pasteur University, Strasbourg
Jean-Jacques Pansiot, Internal evaluator
Professor at Louis Pasteur University, Strasbourg
David Simplot-Ryl, Examinator
Professor at the Lille University of Science and Technology

2

Acknowledgements

Getting to the end of a Ph.D. is a tough matter and one could hardly get through it alone.
Throughout my last years in the Louis Pasteur University I have been fortunate to meet
and receive help from many people. One of the pleasures of finally finishing this task is
the opportunity to thank them.

First and foremost, I would like to express my gratitude to Thomas Noel. I could
hardly overstate his role in my life during the last years: not only would I have never
even thought of starting a Ph.D. if it hadn’t been him but I would have certainly not
finished it. Thank you, Thomas, for guiding me when I most needed it, for helping me
stay on track, and for being a great friend during the last years.

My work on the field of peer-to-peer real-time communication has evolved in a
context of tight collaboration with Enrico Marocco from Telecom Italia Labs, Turin. I
would like to express my most sincere gratitude to him for sharing his vast experience
in the fields of SIP and P2P overlays.

I have started my Ph.D. together with Julien Montavont and we have worked to-
gether on subjects related to seamless IPv6 mobility. We have shared many common
problems and many of the ideas presented in this thesis have came up during discus-
sions with him. In addition to helping me out with his experience in geolocation as-
sisted mobility, he was also the first of us to finish his thesis and he has provided me
with generous advice while I was preparing mine.

Through my entire life I have always been able to count on the unconditional support
of my family. Mom, Dad, Tsveti, thank you very much for always being there for me
and for tolerating all the whims and the weird effects that a Ph.D. thesis may have on a
student :).

Experimentation has been a very important part of my Ph.D. and work on the SIP
Communicator and fmipv6.org projects has taken a substantial amount of the effort that
I’ve spent on it. I would therefore like to thank Yana Stamcheva and Martin Andre for
working with me on these projects. I really enjoyed working with you! Thank you!

i

One of the most difficult things for a Ph.D. student is having to learn and adopt a
proper research attitude. Knowing what to take for granted, and what to prove, when to
lean on previous work, and when to question it are choices that are far from being easy.
I esteem myself particularly lucky in this respect because I have had the possibility of
observing and learning this research attitude from a true scientist. I would hereby like
to express my profound admiration for Jean-Jacques Pansiot, who represents in my eyes
the very image of a researcher and thank him for all the intersting discussions: no matter
how minor they may have seemed, to me they have always been a source of inspiration
and a display of a model to follow.

Many thanks to the members of my jury: Andrzej Duda, Eckhart Koerner, and David
Simplot-Ryl for spending the effort of reading the whole lot of pages contained in the
manuscript of my thesis. Thank you, I do appreciate the effort!

I have shared the time spent in the ULP Network Research Team with many students,
engineers and interns, all of which I am more than glad to have met. I would like to take
this chance and also say thanks to all of them for all the fun we’ve shared. Alexander
Pelov, Antoine Gallais, Arnaud Frey, Christophe Jelger, Cristina Tabacaru, Guillaume
Schreiner, Jean Lorchat, Jean-Marc Muller, Koshiro Mitsuya, Mickael Hoerdt, Nicolas
Dichtel, Nicolas Montavont, Pascal Merindol, Romain Kuntz, Symphorien Wanko, Tom
Remoleur, and Vincent Lucas, guys, it has been a pleasure working with you!

A considerable part of my efforts during the past years has been dedicated to devel-
opment. One of the people that I have most learned from and that I consider in many
aspects to be my mentor is Mudumbai Ranganathan from the Advanced Network Tech-
nologies Division of the National Institute of Standards and Technology in USA. Ranga,
thanks for always being there and always taking the time to discuss all the matters that
I needed help on!

Last but certainly not least, I would like to profoundly thank my beloved Véronique
Dupont, for sharing my life since the very start of my Ph.D. adventures ;), for giving me
all necessary support and reassuring me every time I needed it while writing this thesis
(and that means many times indeed). Thank you, Véro!

ii

To my family

iv

Contents

Acknowledgements i

1 Introduction 1
1.1 Background . 1

1.2 Managing micro mobility . 3

1.3 Using Peer-to-Peer in real-time communication 5

1.4 The rest of this paper ... 6

I Transparent mobility for real-time communication 9

2 Introduction and state of the art in the field of IP mobility 11
2.1 Mobility Background . 12

2.2 Layer 2 mobility in IEEE 802.11 WLAN networks 13

2.2.1 Scanning . 13

2.2.2 Authentication . 15

2.2.3 Association . 16

2.3 Layer 3 mobility in IPv6 networks . 17

2.3.1 The Mobile IPv6 protocol . 17

2.3.2 Network mobility (NEMO) . 21

2.4 Application layer mobility . 23

2.4.1 Session Initiation Protocol Basics 24

2.5 Limitations of existing standards . 27

2.5.1 Layer 2 handover latency . 27

v

2.5.2 Layer 3 handover latency . 28

2.6 Work on optimizing the Layer 2 handover procedure 29

2.6.1 IAPP and Context Caching using Neighbor Graphs 30

2.6.2 Selective scanning and AP cache 32

2.6.3 Synchronized Beacons . 34

2.6.4 Reverse engineering Cisco System’s Wireless Domain Service . 36

2.7 Layer 3 Movement Detection Optimizations 41

2.7.1 Periodic Router Advertisement Beaconing (Dense RAs) 42

2.7.2 Fast Router Advertisement (FastRA) 42

2.7.3 RA caching in Access Points (Fast Router Discovery) 43

2.7.4 Link Layer triggers on the Mobile Node 44

2.7.5 RA Link Identification for Mobile IPv6 Movement Detection . . 45

2.8 Optimizing DAD . 45

2.8.1 Optimistic Duplicate Address Detection 46

2.8.2 Duplicate Address Detection Optimization using IPv6 Multi-
cast Listener Discovery . 46

2.9 Work on optimizing the Layer 3 handover procedure 47

2.9.1 Hierarchical Mobile IPv6 . 47

2.9.2 The FMIPv6 protocol . 49

2.9.3 S-MIP: A Seamless Handoff Architecture for Mobile IP 52

2.9.4 Bi-casting . 56

2.10 Conclusion . 58

3 Optimizing VoIP mobility at the application layer 61
3.1 Analytical evaluation of application layer handovers 61

3.1.1 Description of the optimization 63

3.2 Implementation and testing . 64

3.2.1 Testbed . 64

3.2.2 Experimental evaluation results 64

3.3 Conclusion . 66

vi

4 Evaluating a generic layer 3 solution 69
4.1 Previous evaluations of the FMIPv6 protocol 69

4.2 Testbed and Test Scenarios . 71

4.3 FMIPv6 evaluation results and analysis 73

4.3.1 Predictive Handovers . 73

4.3.2 Buffering issues . 74

4.3.3 Reactive handovers . 75

4.3.4 Candidate Access Point Discovery 76

4.3.5 Results summary . 78

4.4 Drawing some conclusions from this evaluation 78

5 Optimizing IPv6 mobility 81
5.1 Multiple interfaces for IEEE 802.11 nodes 82

5.1.1 Analysis and evaluation . 84

5.1.2 Simulation results . 87

5.1.3 Necessary further analysis . 91

5.1.4 Summary conclusion on the soft handover approach 92

5.2 Double Wireless Network Interfaces with FMIPv6 93

5.2.1 Solution Description . 93

5.2.2 An experimental performance evaluation 94

5.2.3 Conclusions and future work 103

5.3 Optimizing FMIPv6 with geographical positioning information 104

5.3.1 Database extension for Access Routers 105

5.3.2 Mobility cache . 105

5.3.3 Selecting the next Access Point 106

5.3.4 Handover management . 108

5.3.5 Experimentation . 110

5.4 Conclusion . 114

6 Concluding our work on mobility ... and moving on 117
6.0.1 Possible further improvement 118

vii

6.0.2 Where to now ... 119

II Real-time communications using peer-to-peer overlays 121

7 Introduction: Using peer-to-peer methods in real-time communications 123
7.1 Common architectures . 124

7.1.1 Hosted providers . 124

7.1.2 Private installations . 125

7.2 Problems with existing topologies . 125

7.2.1 Difficult scalability and limited flexibility 125

7.2.2 Repetitive services . 126

7.2.3 Federation . 127

7.2.4 IP layer mobility . 127

7.3 The Peer-to-Peer Promise . 128

7.3.1 Scalability . 128

7.3.2 Abundance of new, custom services 129

7.3.3 Federation . 129

7.3.4 IP layer mobility . 129

7.3.5 IPv4/IPv6 interoperability . 130

7.3.6 Sharing more than CPU and bandwidth 130

8 State of the art in the field of peer-to-peer overlays 131
8.1 Basic concepts of P2P architectures 131

8.2 Peer-to-peer Security . 134

8.2.1 Introduction . 134

8.2.2 Admission control . 135

8.2.3 Determining the position in the overlay 136

8.2.4 Identification and dissemination 137

8.2.5 Integrity in P2P networks . 139

8.2.6 The attackers . 140

8.2.7 P2P in Real-Time Communication 141

viii

8.2.8 Security . 145

8.2.9 Conclusion and future work 148

9 The Extensible Peer Protocol 149
9.1 Introduction . 149

9.1.1 Why UDP . 150

9.1.2 Relation with other Proposals 151

9.2 Terminology . 151

9.3 Overview . 152

9.3.1 XPP Sessions . 152

9.3.2 XPP Operations . 152

9.3.3 Requests and Responses . 153

9.4 Use Cases . 153

9.4.1 Session Establishment . 153

9.4.2 A Sample XPP Operation Scenario 153

9.4.3 Message fragmentation . 153

9.5 Protocol Details . 154

9.5.1 XPP Fragment Header . 155

9.5.2 XPP Message . 157

9.5.3 Parameters . 158

9.5.4 Session Establishment . 158

9.5.5 Session Teardown . 158

9.5.6 Session Failure . 160

9.5.7 Managing XPP Operations . 160

9.6 Transport . 161

9.6.1 Fragmentation . 161

9.6.2 Retransmissions . 162

9.6.3 Keep-alive . 162

9.7 Conclusion . 163

10 XPP-PCAN: XPP Extensions for CAN DHT overlays 165

ix

10.1 Introduction . 165

10.1.1 The Passive Approach . 167

10.1.2 Why CAN? . 168

10.2 Algorithm Overview . 168

10.2.1 General Design . 168

10.2.2 Peer Join . 169

10.2.3 Failure Recovery . 171

10.2.4 Stabilization . 171

10.2.5 Data Replication . 172

10.3 Client Behavior . 172

10.4 Peer Behavior . 173

10.4.1 Key-Point Mapping . 173

10.4.2 Internal State . 173

10.4.3 Routing XPP Messages . 176

10.4.4 Handling SIP Registrations . 177

10.4.5 Routing SIP Requests . 178

10.4.6 Inviting a Client to Join . 178

10.4.7 Generating PUT Operation Requests 179

10.4.8 Handling PUT Operation Requests 180

10.4.9 Generating GET Operation Requests 180

10.4.10 Handling GET Operation Requests 181

10.4.11 Generating REPLICA Operation Requests 181

10.4.12 Handling REPLICA Operation Requests 181

10.4.13 Generating QUERY Operation Requests 182

10.4.14 Handling QUERY Operation Requests 182

10.4.15 Generating UPDATE Operation Requests 182

10.4.16 Handling UPDATE Operation Requests 183

10.4.17 Generating JOIN Operation Requests 183

10.4.18 Handling JOIN Operation Requests 184

10.4.19 Generating TAKEOVER Operation Requests 184

x

10.4.20 Handling TAKEOVER Operation Requests 185

10.5 XPP Extensions . 185

10.6 Security Considerations . 185

11 P2P Conclusion and future work 187
11.1 Future work . 188

III Overall conclusions and future work 189
11.2 Seamless mobility . 191

11.2.1 Future work . 193

11.3 P2P networks in real-time communications 193

11.3.1 Future work . 194

IV Annex: The SIP Communicator VoIP and instant messaging
client 197

11.4 Introduction . 199

11.5 A short history . 200

11.6 Existing features . 201

11.6.1 Audio video conversations . 202

11.6.2 Instant Messaging . 202

11.6.3 Multiplatform support . 203

11.6.4 Multichat support with Jabber and IRC 203

11.6.5 Plugin management . 204

11.6.6 And other goodies ... 204

11.7 Features currently in development . 205

11.7.1 Shared white boards . 205

11.7.2 Peer-to-peer communication 205

11.7.3 Secure communication . 206

11.7.4 Reliable and robust connectivity with the ICE protocol 206

11.7.5 Support for new communication protocols 206

xi

11.7.6 Exchanging geographic location 207

11.7.7 Centralized bundle repositories 207

11.7.8 The architecture . 207

11.8 The different services . 209

11.9 Advantages for research labs and universities 211

11.9.1 Support for heterogeneous platform envorinments 212

11.9.2 Cost free use . 212

11.9.3 An open development process 212

11.9.4 Ease of deployment and maintenance 213

11.9.5 Compliance with existing standards 213

11.9.6 Support for a large number of protocols 214

11.9.7 Easy to customize and extend 214

11.9.8 Support for IPv6 . 214

11.10Conclusion . 215

11.11Acknowledgements . 215

V Annex: XPP-PCAN details 217
11.12Zone state transitions . 219

11.12.1 Failure Detection Event . 219

11.12.2 Timer TC1 Event . 219

11.12.3 Timer TC2 Event . 220

11.12.4 TAKEOVER Operation Request Event 221

11.12.5 Timer TC3 Event . 222

11.13XPP Extensions . 223

11.14Parameters . 223

11.15Operations . 227

11.16Parameter Formats . 230

11.16.1 Integer . 230

11.16.2 String . 230

11.16.3 String List . 231

xii

11.16.4 Point . 232

11.16.5 Zone . 232

References 235

12 List of publications 253

xiii

xiv

List of Figures

2.1 Layer 2 handover . 13

2.2 Layer 3 handover . 14

2.3 Layer 2 handover using active scanning in a 802.11 wireless network . . 16

2.4 A mobile node in its home network . 18

2.5 A mobile node in a visited network . 19

2.6 Management of layer 3 handovers with the MIPv6 protocol 21

2.7 A NEMO mobile router in its home network 22

2.8 A NEMO mobile router in a foreign network 23

2.9 A basic Session Initiation Protocol scenario 25

2.10 Midcall mobility with SIP . 26

2.11 The WLAN Association Process (Active Scanning) with IAPP 31

2.12 Cache miss and cache hit during reassociation with IAPP 32

2.13 Creating a roaming history and a channel mask 34

2.14 Various entities in the Wireless Domain Service 37

2.15 Using an overlay network for the transfer of unicast data packets 39

2.16 Layer 2 and layer 3 handovers with the WDS system 41

2.17 The HMIPv6 protocol . 48

2.18 Candidate access point discovery with FMIPv6 50

2.19 Predictive mode of operation of the FMIPv6 protocol 52

2.20 Predictive mode of operation of the FMIPv6 protocol 53

2.21 A handover scenario using S-MIP . 55

2.22 Bi-casting . 57

xv

3.1 Cross Layer Module Architecture . 64

3.2 Testbed network configuration . 65

3.3 Cross layer triggers experimentation results 66

4.1 The fmipv6.org Experimental Testbed 72

4.2 Packet loss and handover latency for a predictive handover 74

4.3 Packet loss and HO latency without buffering at NAR 75

4.4 Packet loss and handover latency during a reactive handover. 76

4.5 Packet loss and latency during scanning for candidate APs. 77

5.1 Typical behavior of a DIMoN . 85

5.2 The SimulX Wireless LAN simulator 88

5.3 Scenario used in DIMoN evaluation tests. 89

5.4 Duration of the handover process with a DIMoN. 90

5.5 Packet loss during handover with a DIMoN. 91

5.6 Extra traffic incurred by various hadover solutions. 92

5.7 Testbed and scenarios used in the experiments 94

5.8 Impact of FMIPv6 Predictive HO on a video stream 96

5.9 Impact of FMIPv6 Predictive HO on a video conference stream 97

5.10 Impact of FMIPv6 network-initiated HO on a video stream 97

5.11 Impact of FMIPv6 network-initiated HO on a video conference 98

5.12 Impact of FMIPv6 Reactive HO on a video stream 98

5.13 Impact of FMIPv6 Reactive HO on a video conference stream 99

5.14 FMIPv6 Reactive Handover performance 101

5.15 Benefits of FMIPv6 for IEEE 802.11 handovers (scenario 2) 103

5.16 Protocol overview when the anticipation is successful 109

5.17 Testbed used in the geolocation experiments 111

5.18 Candidate access points discovery followed by an FMIPv6 predictive
handover . 113

5.19 Impact of the Predictive FMIPv6 handovers on a video stream 114

xvi

8.1 Node join in an XPP-PCAN [127] overlay: neighbors of the new peer
are notified by the admitting peer. 145

9.1 Simultaneous establishment of an XPP Session. 154

9.2 A sample XPP operation. 155

9.3 Fragmentation . 156

9.4 XPP fragment header. 157

9.5 XPP Message. 157

9.6 Parameter. 158

9.7 Simultaneous establishment of an XPP Session. 159

9.8 Session teardown . 160

10.1 A bi-dimensional space with 5 peers. 170

10.2 Zone state diagram. 174

11.1 SIP Communicator screen shots . 202

11.2 A video conversation with SIP Communicator 203

11.3 Plugin management interface . 204

11.4 Simplified representation of the SIP Communicator architecture. 208

11.5 A representation of the notion of services and service implementations
in SIP Communicator. 211

11.6 Encoding of a point parameter with components 0xAABBCCDDEE
and 0x0102030405 . 232

11.7 Encoding of a zone parameter . 234

xvii

xviii

List of Tables

3.1 Handover duration by layers . 63

3.2 Mean values for results from experiments with cross layer triggers . . . 65

4.1 Results from different handover scenarios 78

5.1 Results for experiments related to VLC 102

5.2 Results for experiments related to Gnomemeeting 102

xix

xx

Chapter 1

Introduction

The work that we present in this thesis focuses on the optimization of two different
aspects of real-time communication over the Internet Protocol.

First, in part I we will describe different ways of improving network mobility over
IEEE 802.11 wiress LANs with IPv6, including: usage of link layer triggers in appli-
cation layer mobility; usage of a secondary wireless interface; and an optimization for
Fast Handovers with Mobile IPv6 that allows assisting discovery of neighboring access
points with geographic positioning information.

In the second part of this thesis we will be presenting a solution that allows using
Peer-to-Peer technologies in real-time communication. The solution includes the defi-
nition of two new protocols used in the maintenance of such overlay networks and the
transport of DHT operation requests.

1.1 Background

During the last several years use of the Internet has become quite popular and white-
spread. Numerous existing applications and services that we have been using for tens
of years are now being migrated over the Web. Telephony and television are one such
example with their web counterparts: VoIP and (live) video streaming. This evolution
is boosted even further by the constant development of wireless technologies such as
IEEE 802.11 networks, more commonly known as Wi-Fi (Wireless Fidelity). Wireless
devices are now offering bandwidth and reliability that are sufficient for the transporta-

1

tion of real-time media. Their massive adoption by both homes and enterprises have
clearly shown the user eagerness for mobility.

Along with the growth of the Internet we have also witnessed the increase of prob-
lems related to the limited number of publicly routable addresses. For several years now,
different sources have been predicting that the unallocated pool of addresses usable with
the currently deployed version of the Internet Protocol (IPv4) will run out by 2011 at
the latest [161]. In order to address this problem the Internet Engineering Task Force
has defined Internet Protocol version 6 which, among other things, allows for a virtually
unlimited number of addresses. Deployment of IPv6 has taken a while to get into gear
(given that the first Internet Standard defining it has been available for more than ten
years) but it now seems to be finally taking up [11, 61, 50]. In addition to the greater
space of internet addresses IPv6 is also offering the possibility of improving existing
services such as IP mobility.

Mobility for real-time applications in Wi-Fi networks can occur and be handled on
different layers of the OSI ISO model. Simply moving from one wireless Access Point
(AP) to another, located in the same subnet, is a link layer event that is transparent for
the IP protocol stack and the applications themselves. If however, the second point of
attachment is located behind a different access router, a mobile node would have to up-
date its network layer configuration in order to avoid ingress filtering. This qualifies
the process as a network layer handover and in the case where the mobile node is not
using any mobility management mechanisms such as Mobile IP or Mobile IPv6, net-
working applications would have to re-establish their ongoing sessions from within the
new network.

Depending on the layer where mobility occurs, a node could experience different
problems. After disconnecting from a particular access point for example, and before
being able to connect to the new one, a mobile node has to discover all APs available
in the surroundings. The process could vary from several hundred milliseconds to more
than ten seconds - a delay which is unacceptable for most real-time applications. Select-
ing the Access Point to connect to might also be a problem as the link layer protocols
do not provide a way for a network interface driver to determine the availability of net-
work connectivity for a specific AP before actually connecting to it. Reconfiguring the
IPv6 stack so that it would be operational on the new subnet in the case of a network
layer handover could also prove a lengthly process. The address autoconfiguration and
location update procedures, described in detail in the rest of the document, could often
last for more than a second.

There have already been a number of studies and a large set of optimizations that try
to address these issues. In this thesis we will be presenting those that we consider most
interesting and efficient, we will be pointing their weaknesses and we would also de-

2

scribe our own work on getting closer to a solution that could provide seamless mobility
with an acceptable level of complexity and deployment cost.

Another consequence of the popularity of the Internet comes from the greater expo-
sure of network services and the fact that any particular provider could easily address
vast numbers of potential users regardless of otherwise blocking criteria such as geo-
graphic location. As a result, classic centralized architectures like those adopted by con-
ventional telephony are proving inefficient when used in offering large scale real-time
services over the Internet. Back in the late 1990’s Shawn Fanning from the Northeastern
University in Boston created and launched the Napster application [10] which allowed
users to share and download content in a distributed manner. This model proved quite
successful and was later adopted by many other applications. It is now mostly referred
to as Peer-to-Peer (P2P) networking. In August 2003 the Skype Limited company has
launched the first telephony service and application [13] using a P2P protocol. In addi-
tion to simply distributing registration servers, usage of P2P in real-time communication
has the advantage to also offer an easy way of decentralizing algorithms for traversal of
Network Address Translation (NAT) gateways.

In the second part of this thesis we will describe our work on a protocol whose
purpose would be to build and maintain an open and relatively generic overlay network.

1.2 Managing micro mobility

Our work on the subject of optimizing Wi-Fi mobility has started at the application
layer. Application layer mobility consists in having all applications manage handovers
by themselves. A software phone using the SIP protocol for example would send a
reINVITE request to its correspondent as soon as it detects movement and would thus
reestablish all ongoing sessions. There are numerous advantages of handling mobil-
ity by applications themselves. Deployment for example is relatively simple since it
does not require configuration or installation of network layer entities (e.g. routers or
home gateways). Other advantages include reduced complexity, and the possibility to
optimize performance for one particular application. One of the difficulties, however,
comes from the fact that applications would only become aware of a handover once all
of the underlying layers have completed it and this is often too late.

In [67] we have therefore investigated the possibility of assisting application layer
mobility with information from the lower layers. We have implemented a solution that
uses a standard UNIX mechanism (RTNETLINK sockets) to subscribe for and receive
events from the network card driver and the IP stack. Using this implementation we

3

have completed a number of evaluation experiments which show that the use of such
mechanisms greatly optimizes handover performance and brings resulting latency and
packet loss down to reasonable levels.

It is clear however, that hoping for explicit mobility support in all applications that
might need it is an overly optimistic assumption and that in order to expect to one day
have reliable seamless handovers we would need to work on transparent mobility sup-
porting lower layers. Our work has therefore continued with an evaluation of one of the
most popular solutions for IPv6 mobility - Mobile IPv6 and its Fast Handovers exten-
sion the FMIPv6 protocol. Back at the time the FMIPv6 protocol was relatively new
and there were no implementations that we could use for our work. We have therefore
created the open source fmipv6.org implementation suite [66] and used it to complete a
comprehensive evaluation of the protocol [93].

Our analysis have shown that the FMIPv6 protocol helps to completely eliminate
handover latency and packet loss in many cases. However, we have also seen that all
advantages brought by the protocol are greatly outweighed by the connection disrup-
tion necessary for a node to scan its environment during discovery of neighbor access
points. The reason why this happens is that IEEE 802.11 devices are unable of using
more than one radio frequency at a time. WLAN scanning therefore requires nodes
to disconnect from their current channel and only then consecutively probe the rest of
the Wi-Fi channels. This has led us to the next stage of our work. In [92] we define
and evaluate a way for WLAN nodes to execute soft (also referred to as “make before
break“) handovers through the use of a secondary wireless interface. With 0 packets
lost and handover latency completely eliminated, the simulational evaluation of the so-
lution is quite encouraging. Our next step has been to port this solution and adapt it to
a standardized mechanism such as the FMIPv6 protocol. As we have already pointed
out, handovers in FMIPv6 are sufficiently optimized and it is only the discovery phase
that causes problems. We have therefore simplified our soft handover approach and kept
the use of the secondary wireless interface to the scanning phase only. [65] presents a
thorough description and an experimental evaluation of this approach. As expected, the
results are quite satisfactory with handovers being completely seamless in cases when
triggered by the mobile and hardly perceptible for unexpected loss of connectivity.

We are of course conscious that existing mobile devices rarely come with more than
one wireless interface which has made us work on alternative schemes for the optimiza-
tion of candidate access point discovery. In [98] we present the design, implementation
and evaluation of a comprehensive solution that allows assisting Wi-Fi handovers with
positioning information obtained by the mobile device. The decision to direct our work
this way has been influenced by the growing number of network enabled devices that

4

come equipped with a GPS. As expected the evaluation presented in [98] shows results
which are quite similar to those obtained with the multi interface solution.

It is probably worth mentioning that work on this topic has been completed in the
context of a contract with Orange Labs France, which would probably help further ex-
plain our desire to keep the proposed solutions relatively applicable, implementation
friendly, and compatible with existing standardization efforts.

1.3 Using Peer-to-Peer in real-time communication

The second part of this thesis concentrates on the use of Peer-to-Peer networks in real-
time communication. Work on it has been completed in a joint effort with Telecom Italia
Labs, Turin, represented by Enrico Marocco, and partially with Columbia University,
NYC USA, represented by Dhruv Chopra and Henning Schulzrinne, and it is currently
continued in the context of the P2PSIP working group of the Internet Engineering Task
Force.

There are numerous reasons why one might want to use P2P in real time communi-
cation. We go through them in detail later in this thesis but to put it short it’s all about the
fact that applications such as telephony, streaming, video conferencing and other kinds
of real-time communication are generally relatively expensive resource-wise. This is
particularly important for algorithms that deal with the traversal of Network Address
Translation (NAT) gateways. Most such mechanisms get down to relaying media ex-
changed between NAT-ed clients through a point on the public Internet. Using a single
server for all relaying necessary for a particular provider is quite an expensive solution
and, depending on the scale, it may even be impossible in certain cases. Other than NAT
and firewall traversal P2P networks are also used for the distribution of the registration
services and routing policies.

A common concern related to P2P overlay networks is that of security. We therefore
begin the presentation of our work on peer-to-peer with a state of the art description of
different security pitfalls associated to this networks, as well as the existing solutions.
Results presented in this part of the thesis have been published in [53].

Keeping security constraints in mind we have started work on two protocols that
allow to build and maintain P2P overlays the primary use of which would be real-time
communication with the SIP protocol.

XPP [126] (the eXtensible Peer Protocol) is the first of these protocols. Its purpose
is to serve as a transport mechanism for all overlay and DHT maintenance operations.

5

One of the primary constaints that we have kept in mind while designing it was the
fact that it should allow maximum tolerance for firewalls and NATs for a minimum
cost. XPP sessions are therefore initiated ”simultaneously“ by both sides using the SIP
protocol and in a way that very much resembles initiation of normal SIP calls. Another
important characteristic of the protocol comes from the fact that it could be used with
virtually any Distributed Hash Tables algorithm.

In parallel with XPP we have also completed a second protocol that we will refer to
as XPP-PCAN (XPP Extensions for Implementing a Passive P2PSIP Overlay Network
based on the CAN Distributed Hash Table) [127]. It consists in a set of XPP extensions
required for creating an overlay network based on the CAN distributed hash table algo-
rithm. It specifies how peers and clients must behave in order to maintain the overlay
and use it for the establishment of multimedia communication sessions.

To limit the overhead due to maintenance operations and to allow the adoption of
security policies for preventing malicious nodes to damage the overlay, making the deci-
sion when a user/client of the overlay should contribute to it by joining as a peer belongs
to existing peers (hence the passive in PCAN).

Both protocols have been implemented in an open source project [125] and their
integration in the SIP Communicator [15] client is pending.

1.4 The rest of this paper ...

... is organized as follows: Part I contains the description of our work on optimiz-
ing seamless mobility. This part starts with a problem statement describing the different
parts of mobility over IEEE 802.11 networks and a state of the art classification of exist-
ing solutions and optimizations in Chapter 2. Next, in Chapter 3 we go over our efforts
on improving application layer mobility through the use of link layer information. In
Chapter 4 we present our evaluation of the FMIPv6 protocol.

The following Chapter 5 contains our work on the network layer. We describe in
detail our solution for achieving soft handovers through the use of a secondary Wi-Fi
interface in Section 5.2. The application of this solution to the FMIPv6 protocol as well
as its evaluation are presented in Section 5.3, and finally, our geolocation extensions of
the FMIPv6 protocol are described in Section 5.3

The second part of this thesis (i.e. Part II) contains our work in the field of Peer-
to-Peer real-time communication. Chapter 7 begins with an introduction containing the
reasons why we believe P2P networks to be important for services like Internet tele-

6

phony as well as a state of the art presentation of security concerns and solutions often
associated with P2P. The following Chapter 9 presents the mechanics of the eXtensible
Peer Protocol, and Chapter 10 the description of the XPP PCAN extension.

Part III concludes this thesis and presents possible perspectives and future work.

We have decided to include in this thesis a brief annex (Part IV) which describes the
history, architecture, and features of the SIP Communicator application. Though not
directly related to the content of our research work, SIP Communicator has been used
in a number of evaluations. It represents a substantial amount of the effort that we’ve
spent during the last several years and would probably be a key factor our future work.

7

Part I

Transparent mobility for real-time
communication

9

Chapter 2

Introduction and state of the art in the
field of IP mobility

Nowadays Internet is arguably, one of the most widely deployed networks for real-time
communication. The main protocol used for the transportation of data over this network
is called the Internet Protocol (IP). According to the OSI and TCP/IP network models,
this is a network layer (layer 3) protocol. Currently it is the version four (IPv4 [151])
of this protocol that is most widely deployed over the Internet. However, usage of
this version of the Internet Protocol is now becoming problematic mainly because of
the limited number of available IP addresses used for identifying and locating network
enabled devices. As a result of the rapid expansion of the Internet network, the number
of connected devices, that is those that are assigned an IP address, greatly increased.
Today numerous sources predict that in the following several years there would be no
more unallocated IPv4 addresses [161].

The reason for this is that IPv4 addresses are encoded as integer numbers over 32
bits. Theoretically, this allows for the simultaneous identification of a maximum of 232

devices, or in other words 4 billion approximately. In reality, this number is reduced
even further by inefficiencies like subnetting and the fact that many of the segments in
the address space have been attributed to countries or organizations who do not neces-
sarily use all available addresses.

In order to address this problem, the Internet Engineering Task Force (IETF) [89]
has designed a new version of the IP protocol, often referred to as IPv6 [60]. The
main difference brought about by this new version comes from the fact that it defines
an encoding of IP addresses based over 128 bits. In other words this would make it
possible to simultaneously address (superficially) an unthinkable number of machines:

11

about 340 trillion, trillion, trillion (3.4x1038). In reality, as with IPv4, addresses are
structured, and as a result the number effectively available is somewhat less according
to the administrative policy adopted. For example, on one model, each site running
IPv6 would be given a 48-bit prefix, leaving 80 bits for local use. There could be
35,184,372,088,832 such prefixes - 35 trillion IPv6 sites, which seems to be enough for
9 billion people.

Other than that, the IPv6 protocol also makes possible the adding of new options
in the IP header which greatly facilitates the development of new protocols extensions.
Another new and interesting feature is the definition of a stateless address autoconfig-
uration [192], which allows network connected nodes to automatically obtain an IPv6
address withour using external centralized servers or other mechanisms such as DHCP
[64].

These, as well as other new features and possibilities, the version 6 of the IP protocol
is expected to soon be adopted as the default protocol for Next Generation Networks.

In this chapter, we will present excising mechanisms and procedures that allow mo-
bile terminals to move through multiple IPv6 Wi-Fi networks. We will particularly
focus on the standard procedures, their limitations, as well as some of the optimizations
that have been suggested in the literature and that we esteem most efficient.

2.1 Mobility Background

In most cases mobility in IP networks happens at two levels. A change of the physical
point of attachment to the network is often referred to as layer 2 handover because it
only uses the first two layers of TCP/IP network model (i.e. the physical and data link
layers). In Wi-Fi networks for example, layer 2 handovers can occur when a mobile
terminal disconnects from its current access point (AP) and associates with a new one
(see the figure 2.1).

Following a layer 2 handover, a mobile node is able to communicate using its link
layer connection (e.g., ethernet or Wi-Fi) with other devices located in the same link
segment. Moreover, if after the link layer handover the IP subnet of a mobile has not
changed (e.g. both Wi-Fi access points are on the same IP subnet) it would also be able
to retain its layer 3 connectivity.

The possible second phase of a mobility event is called a layer 3 handover and
corresponds to the change of the IP subnet that occurs as a result of the handover. When,
for example, the new point of attachment of a node is not located in the same subnet as

12

Figure 2.1: Layer 2 handover

the one it was using before, the node would also have to go through a layer 3 handover
before being able to restore its network connectivity (see figure 2.2).

2.2 Layer 2 mobility in IEEE 802.11 WLAN networks

When a mobile node enters or simply wakes up in the coverage area of a new access
point, it must connect or associate with it before actually being able to communicate.
This procedure is defined by the 802.11 standard and it consists of the following three
phases: scanning, authentication, and association.

2.2.1 Scanning

The first stage of the 802.11 association procedure consists in the discovery of an ac-
cess point whose characteristics best correspond to those of the mobile terminal. The

13

Figure 2.2: Layer 3 handover

scanning phase defines exactly how the discovery of surrounding access points is to be
accomplished. The 802.11 standard defines two methods for access point discovery:
active and passive.

Active scanning

When performing active scanning, most mobile nodes probe all radio channels used by
Wi-Fi devices by broadcasting Probe Request messages. When an access point receives
such a message, it answers the sending terminal by a Probe Response containing the
various parameters which it supports.

Depending on the number of access points in the vicinity, sending a single Probe
Request can generate the transmission of multiple Probe Response messages. Every
time the scanning node receives a Probe Response, it records the various parameters of
the access point that is described by the message, and it continues its search through
the rest of the available frequencies. After having probed all (or a prefined list of)

14

radio channels, the node selects an access point among those which it discovered and it
initiates the authentication phase.

It is worth mentioning that the Probe Requests are the only messages of the associa-
tion procedure which do not require any acknowledgement. This means that the absence
of a Probe Response following the sending of a Probe Request on a particular channel
can be interpreted in two different ways. One possibility would be that a collision has
occurred during the transmission of the Probe Request, another option would mean that
none of the access points located in the vicinity operate on this channel. Knowing that
the Probe Response messages require an delivery acknowledgement, if an access point
sends a Probe Response to the terminal, it is virtually certain to receive it because of
the retransmissions mechanism. To prevent mobile terminals from being delayed on
channels which are not used, the 802.11 standard defines two timers that are used when
scanning a channel: MinChannelTime and MaxChannelTime. Following the emission
of the first Probe Request on a channel, the terminal starts the MinChannelTime timer. If
when the timer fires the terminal has not received any Probe Response messages, it can
conclude that there are no access points on this channel and moves on to the next one.
In the case where one or more Probe Response messages have been received on a chan-
nel, the mobile node would wait for the MaxChannelTime timer to fire before sorting all
received Probe Response messages and moving to the next channel. The standard only
defines the relation MinChannelT ime ≤ MaxChannelT ime without specifying any
exact numerical values. As we will observe in the rest of this thesis, these parameters
can strongly vary according to the maker and the implementation of the wireless device
drivers.

Passive Scanning

The 802.11 standard also defines a method of passive access point discovery, in which
a terminal would only intercept the signalling frames coming from surrounding access
points. These signalling frames are called Beacons and are generally sent every 100
milliseconds. The time spent on each channel is calculated the same way as for the
active scanning.

2.2.2 Authentication

Once a mobile node has completed the discovery phase and has as a result selected its
new access point, it must try and authenticate with it. The 802.11 standard defines two
possible methods of authentication. The open method requires only one sequence of

15

two messages (request/answer). This method is used when terminals are systematically
authorized to connect to the network. The second option, referred by the standard as a
shared key method, requires the exchange of a sequence of four messages. The node
initiates the sequence by sending its identity to the access point. The AP then requires
the terminal to respond to a challenge in order to prove knowledge of a shared secret
(password or key). Depending on the validity of the message that the node has sent
as a response to the challenge, the access point would either authenticate or reject the
mobile.

2.2.3 Association

The association phase represents the last stage of a layer 2 handover and it consists of
the messages Association Request and Association Response. Following a successful
authentication, the association phase allows a mobile node and an access point to nego-
tiate the various parameters that they will use during communication. A mobile node is
able to both transmit and receive data once this association phase has been completed.

Figure 2.3 illustrates all the stages of a layer 2 handover. For reasons of readability,
the figure does not represent any of the acknowledgement messages.

Figure 2.3: Layer 2 handover using active scanning in a 802.11 wireless network

16

2.3 Layer 3 mobility in IPv6 networks

In the previous sections we have described the procedures that the 802.11 standard de-
fines so that mobile nodes could move from one access point to another. These pro-
cedures allow nodes to maintain layer 2 connectivity while roaming through different
wireless networks as long as they remain in the same IP subnet. Quite naturally, the
802.11 standard does not go beyond the data link layer of the TCP/IP model and it does
not define the way a node would restore connectivity on layer 3 - the network layer of
the TCP/IP model. While movement between two access points located on the same
IP link does not imply any routing problems, changing subnets requires an update of
the IP address of the terminal. In the absence of any specific IP layer support, none of
the correspondent of the moving node would be able to detect the change in its address
and would therefore continue sending data to the old address of the terminal which has
become obsolete after the handover. As a result, the mobile terminal would have to
re-initialize all of its ongoing sessions after the completion .

In order to handle these problems, the IETF organization has recently defined and
standardized two protocols addressing mobility management in IPv6 networks. On the
one hand, the Mobile IP protocol allows movement of mobile terminals and lets them
control their mobility. On the other hand, the NEMO (Network Mobility) BASIC Sup-
port protocol [62] concentrates all mobility management inside special routers, which
allows the movement of whole networks without exposing user nodes to the complexity
of managing this movement. Even though the NEMO BASIC Support protocol was es-
pecially defined for IPv6 networks, Mobile IP itself exists in two versions. One, MIPv4
[69], is specifically designed for IPv4 networks, whereas the other, MIPv6 [103], as
an extension to the IPv6 protocol. In this document we are mainly interested on Next
Generation Networks and we therefore focus on the IPv6 version - MIPv6.

2.3.1 The Mobile IPv6 protocol

The main idea behind the MIPv6 protocol is to use a centralized node that relays all
communication bound to mobile nodes towards their current location. From the MIPv6
perspective, all mobile nodes therefore regard the Internet as two different kinds of sub-
nets: the visited and home networks. While in its home network, a mobile node com-
municates using its primary, home address (HoA), just as any other internet connected
node would. This case is illustrated on figure 2.4.

The relay node responsible for that terminal, also referred to as home agent (HA),
is located in the same home network. When the terminal leaves its home network and

17

Figure 2.4: A mobile node in its home network

moves to a visited one, it obtains a second IPv6 address. This new address is only
temporary and is called a Care-of Address (CoA). It identifies the terminal inside the
new network that it has moved to. In order to maintain its ongoing sessions, the terminal
must inform its home agent any time it moves to such new networks and keep its CoA
record with it up to date. This way, once a node has left its home network, the home
agent intercepts all packets that are bound to the mobile node (with MIPv6, when not
using route-optimization procedures, packets are always sent to the home address of the
terminal) and redirects them towards its currentlocation using the CoA. Any time when
sending packets from a visited network, a mobile node would also use its home agent so
that its movement would remain transparent for its correspondents. In other words, the
home agent and the mobile node establish a bidirectional communication tunnel (see
figure 2.5).

To carry out these operations, the home agent maintains up to date a list of mappings
between the home and the temporary addresses of all nodes that it is responsible for. It
updates this list every time it receives a BU (Binding Update) or a BACK (Binding Ac-

18

Figure 2.5: A mobile node in a visited network

knowledgement) message from a mobile node. These messages can also be exchanged
securely by using the IPsec protocol [21]. The redirection of the IPv6 packets by the
home agent, and the transmission of packets using the home address of a mobile as
a source even when it is topologically invalid uses the extension header mechanisms
permitted by the IPv6 protocol. In other words sending MIPv6 devices add to all IPv6
packets an extra header of additional routing information (see the figure 2.5).

The basic specifications of the MIPv6 protocol also define two routing optimizations
(see figure 2.5). The first alternative to the bidirectional tunnel established between a
mobile node and its home agent is called triangular routing. In this mode, the mobile
node can directly send its IPv6 packets to the correspondents (CN) without passing
through the home agent. With this intention, the terminal uses its temporary address but
adds an option containing its home address. The addition of the home address makes it
possible for the correspondents to identify the sending terminal. Packets coming from
the correspondents on the other hand, are still being relayed through the home agent
(hence the name - triangular routing).

19

A second optimization, which is often simply referred to as Routing Optimization
tries to resolve the constraint of triangular routing. It makes it possible for correspon-
dents to use the temporary address of the mobile node in order to communicate with it.
Same as the home agent, the correspondents that support this mode maintains a list of
mappings in order to keep track of the relations between home and temporary addresses.
As a result, the mobile node must also notify all its correspondents when moving using
the BU and BACK messages. Each update of a correspondent is preceded by a Return
Routability procedure. This procedure aims at preventing malicious users from send-
ing fictitious updates to the correspondents assuming the identity of a mobile terminal.
This procedure allows correspondents to make sure that the same terminal is reachable
through its home and temporary addresses. Once the cache entry of a mobile has been
updated, correspondents start adding a particular routing header to all packets intended
for this mobile node. This routing header contains the home address of the mobile node
and it indicates the final destination of the packet. Although this routing technique helps
avoiding packet relayring, it requires a certain amount of extra management by corre-
spondents themselves and can therefore not be used with correspondents that do not
support the MIPv6 standard. For this reason, through the rest of this paper we will only
focus on standard MIPv6 routing using the bidirectional tunnel between a home agent
and its mobile nodes.

The mechanisms introduced by the MIPv6 protocol, including all the messages ex-
changed between the arrival of a node in a visited network and the re-establishment of
the bidirectional tunnel are often referred to as a layer 3 handover. Once it has com-
pleted a layer 2 handover, a mobile node has to determine if its new point of attachment
is in a new subnet. This detection is generally based on the reception of aRouter Adver-
tisement (RA) messages. These messages are periodically sent by the access routers of
the link and are used at the time of the stateless address autoconfiguration [192] by the
neighbor discovery protocol [142]. Upon the reception of a router advertisement mes-
sage, the terminal could detect that it has moved to a new subnet and can thus configure
its new temporary address. After having checked that this address is not used by other
nodes on the same link, a procedure also known as Duplicate Address Detection (DAD),
the terminal can send a BU to update the binding cache of its home agent. When the
update is completed, the home agent sends a BACK to the terminal in order to notify it
of the end of the layer 3 handover. Figure 2.6 illustrates the complete layer 3 handover
various procedure.

20

Figure 2.6: Management of layer 3 handovers with the MIPv6 protocol

2.3.2 Network mobility (NEMO)

The mechanisms introduced by NEMO BASIC Support protocol mainly reuse those
defined by MIPv6. The main difference comes from the migration of all mobility man-
agement within the routers, which are now called mobile routers. This allows entire
networks to support mobility, while keeping movements completely transparent to all
devices located behind the mobile router. All terminals located behind a mobile router
would therefore only have to support the IPv6 protocol. However, we could still have
mobile nodes supporting MIPv6 behind a mobile router and the NEMO BASIC Support
protocol therefore defines three possible types of devices. Local Fixed Nodes (LFN) are
nodes or routers that belong to the mobile network and that do not support any form of
mobility (i.e. they have no support for MIPv6 or NEMO). In other words they are not
capable of changing their point of attachment to the network without interrupting their
ongoing communication sessions.

Mobile Visiting Nodes (VMN) on the other hand, are mobile devices (terminals or
router) which are capable of moving without interrupting their active communication

21

sessions. Such devices would therefore support either the MIPv6 protocol, in the case
of a terminal, or the NEMO BASIC Support protocol in the case of a router. For such
nodes, the mobile network represents a mere visited network which they use in a tem-
porary way.

Finally, Local Mobile Nodes (LMN) are similar to VMNs with the only difference
being the fact that their home network is actually the mobile network whereas this is not
the case for VMNs.

Figure 2.7: A NEMO mobile router in its home network

The NEMO BASIC Support protocol completely reuses the MIPv6 protocol archi-
tecture and it adds to it the concept of Mobile Network Prefixes (MNP). Just as with the
MIPv6 protocol, a mobile router will have two addresses and will establish a bidirec-
tional tunnel between its current localization and its home agent. Because of its role as
a router, it would announce an IPv6 prefix to all devices located behind it using standard
Router Advertisement (RA) messages. This prefix is often referred to as an MNP prefix
and remains the same regardless of the location of the router. The IPv6 packets sent
towards an MNP prefix are automatically delivered to its home agent using the standard

22

IPv6 routing mechanisms. The home agent would then also act as a router and would
either route such packets directly to the mobile router when it is in the home network,
or use the bidirectional mobility tunnel that it has previously established with it.

Figure 2.8: A NEMO mobile router in a foreign network

[135] provides a practical evaluation of this protocol based on an IPv6 Wi-Fi net-
work deployed in the Louis Pasteur University in Strasbourg.

2.4 Application layer mobility

In addition to handling terminal mobility on layer 2 and 3 it is also possible to develop
real-time applications in a way that makes them capable of handling it themselves. One
way of doing this is by using the IETF Session Initiation Protocol (SIP) [167]. This
approach brings numerous advantages such as the fact that SIP mobility allows to avoid
the encapsulation and the triangular routing typical for Mobile IP. Another advantage of

23

handling mobility on the application layer comes from the fact that it is easily deployed
and does not require deployment of any network layer entities. It is therefore possible
to use this solution even in cases where one does not have control over the network
infrastructure, which is the case of most home and small office users. The following
sections present this protocol and the way it handles mobility.

2.4.1 Session Initiation Protocol Basics

The Session Initiation Protocol (SIP) [167] is a protocol for establishing and tearing
down multimedia sessions. SIP can also support various types of mobility such as ter-
minal mobility, session mobility, personal mobility, and service mobility [179]. Since
our focus in this thesis is on terminal mobility, in the rest of this section we only de-
scribe SIP terminal mobility after briefly mentioning the basics of the Session Initiation
protocol.

Figure 2.9, shows a typical example of a SIP message exchange between two users,
Alice and Bob. In this example, Alice uses a SIP application on her PC (referred to as
a softphone) to call Bob on his SIP phone over the Internet. Also shown are two SIP
proxy servers that act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the "SIP trapezoid" as shown by the
geometric shape of the dotted lines in the figure.

Alice "calls" Bob using his SIP identity, a type of Uniform Resource Identifier (URI)
called a SIP URI. It has a form similar to an email address, typically containing a user-
name and a host name. In this case, it is sip:bob@biloxi.com, where biloxi.com is the
domain of Bob’s SIP service provider. Since Alice’s softphone does not know the loca-
tion of Bob or the SIP server in the biloxi.com domain, the softphone sends an initial SIP
INVITE request to the SIP server that is responsible for Alice’s domain, atlanta.com.
The proxy server receives the INVITE request and sends a 100 (Trying) response back
to Alice’s softphone. The 100 (Trying) response indicates that the INVITE has been
received and that the proxy is working on her behalf to route the INVITE to the destina-
tion. The atlanta.com proxy server locates the proxy server at biloxi.com and forwards,
or proxies, the INVITE request there. The biloxi.com proxy server receives the INVITE
and responds with a 100 (Trying) response back to the atlanta.com proxy server to in-
dicate that it has received the INVITE and is processing the request. It then consults
a database, generically called a location service that contains the current IP address of
Bob and proxies the INVITE to Bob’s SIP phone.

Bob’s SIP phone receives the INVITE and alerts Bob for the incoming call from
Alice so that Bob can decide whether to answer the call, or in other words, Bob’s phone

24

Figure 2.9: A basic Session Initiation Protocol scenario

rings. Bob’s SIP phone indicates this in a 180 (Ringing) response, which is routed back
through the two proxies in the reverse direction. When Alice’s softphone receives the
180 (Ringing) response, it passes this information to Alice, perhaps using an audio ring
back tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his
SIP phone sends a 200 (OK) response to indicate that the call has been answered. Fi-
nally, Alice’s softphone sends an acknowledgement message, ACK, to Bob’s SIP phone
to confirm the reception of the final response (200 (OK)). The ACK is sent directly from
Alice’s softphone to Bob’s SIP phone, bypassing the two proxies. This occurs because
the endpoints have learned each other’s address from the Contact header fields through
the INVITE/200 (OK) exchange, which was not known when the initial INVITE was
sent.

Alice and Bob’s media session has now begun. During the session, either Alice
or Bob may change the characteristics of the media session (e.g. media formats or

25

endpoint location). This is accomplished by sending a re-INVITE containing a new
media description. A re-INVITE scenario is discussed a bit later.

At the end of the call, Bob disconnects (hangs up) first and generates a BYE mes-
sage. This BYE is routed directly to Alice’s softphone, again bypassing the proxies.
Alice confirms receipt of the BYE with a 200 (OK) response, which terminates the
session.

Session Initiation Protocol Mobility

[179] shows how SIP can be used to support terminal mobility and its advantages over
other mobility protocols. It is important to note that SIP-based terminal mobility does
not add anything new to the standard SIP protocol in order to support mobility. For the
completeness of the paper, we briefly illustrate mid-call mobility [179] on figure 2.10.
Midcall mobility allows a node to continue an ongoing session with a peer after chang-
ing networks. Figure 2.10, shows an example of how mid-call mobility is supported by
SIP. In this example, an MN sends a re-INVITE request with its new IP address to the
CN (1), and the CN directly sends packets to the MN at the new point of attachment to
the network (2, 3).

Figure 2.10: Midcall mobility with SIP

26

2.5 Limitations of existing standards

In the previous section we have described existing standard protocols which make it
possible for mobile nodes to move through IPv6 WLAN networks without interrupting
their ongoing communication sessions. However, during the time of the handover itself,
it is not possible for a node to neither receive nor send any data. Depending on the
applications that are being used, such connection disruptions can be more or less per-
ceptible to the users. The increasing popularity of IEEE 802.11 networks and the ever
growing bandwidth provided by this technology, more and more users count on them
for the transportation of real-time traffic. The term real-time communication is used
when referring to applications that are subject to a time constraint in the reception or the
transmission of data. Voice over IP (VoIP) and Video conferencing are among the most
common examples of such applications. In order for real-time communications traffic
to have a quality satisfactory for the end user, the latency accumulated during a layer 2
and layer 3 handover should not exceed 150 milliseconds [106].

2.5.1 Layer 2 handover latency

Numerous studies carried out on 802.11 networks during the last few years show that
layer 2 mobility, such as it is described in the standard, does not allow for handovers,
rapid enough to satisfy the constraints of real-time applications [133, 195, 196]. In most
cases, the latency accumulated during a handover would exceed the 150 milliseconds
threshold that we have mentioned above. The candidate access point discovery phase of
the layer 2 handover takes approximately 90% of the total handover time which makes
it the principal cause for the accumulated latency [133]. According to the distribution
of the surrounding access points over the radio frequencies, a node may have to probe
several channels before discovering a new access point. As a result, all unused channels
would be probed in vain during MinChannelTime each one, while the terminal would
have to spend MaxChannelTime on those that are occupied. According to the numeri-
cal values of the MinChannelTime and MaxChannelTime parameters, the terminal can
largely spend more than one second to probe all of the 14 available channels.

In practice, however, we could also note that in most cases, in addition to the nu-
merical values of the parameters MinChannelTime and MaxChannelTime, the scanning
algorithms can also vary from one device to the next. This comes from the fact that the
IEEE 802.11 standard does not define the order in which devices should go through the
wireless channels nor the number of channels to probe before completing a handover.
As a result, some devices would systematically probe all radio operator channels, while
others would enter the authentication phase as soon as they have discovered an access

27

point and after having spent MaxChannelTime on a particular channel. Even in this last
case, layer 2 handovers could still remain perceptible to the user. The latency accumu-
lated during a layer 2 handover would generally lie between 50 and 400 milliseconds
when using recently manufactured wireless cards [133, 195, 196]. We have already
mentioned that in order not to disturb user quality, this interval should not exceed 150
ms [106].

2.5.2 Layer 3 handover latency

As we have mentioned in previous sections, in some cases, mobile nodes would also
have to carry out a layer 3 handover following the one on layer 2. The total connection
disruption time can therefore be further increased by the mechanisms of the MIPv6
protocol [136, 137]. This is mainly caused by the following three factors: the detection
of the fact that a mobile node has moved to a new IPv6 link (movement detection), the
verification of the uniqueness of the newly configured care-of address, and the update
of the binding cache entry that the home agent keeps for this address and node. Layer
3 movement detection is terminated by the first Router Advertisement message (RA)
received on the new link. The time necessary for this phase would therefore depend on
the frequency at which these messages are being broadcasted by the access routers. This
frequency would generally lie between 200 and 600 seconds [142], which is insufficient
for prompt mobility management. The MIPv6 protocol therefore overrides these values
and encourages network administrators to increase this frequency down to between 30
and 70 milliseconds but still stipulates that these values should not be used by default.
With the retransmission interval being between 30 and 70 milliseconds, a node would
need an average of 50 milliseconds to detect a new IPv6 link and thus obtain its new
temporary address.

In order to avoid IP address conflicts, the stateless address autoconfiguration proto-
col specifies that, after a terminal has acquired a new IPv6 address, and before actually
using it, it must verify that it is unique on the current link and that it is not being used
by another node. Therefore after configuring their new address mobile nodes should
go through the Duplicate Address Detection procedure (DAD) defined in [192]. The
procedure uses messages and semantics defined by the neighbor discovery protocol for
IPv6 [142]. This procedure adds an additional delay to the total duration of the layer
3 handover since it delays the emission of the BU messages towards the home agent.
After the configuration of a new IPv6 address, a mobile node must wait between 0 and
1 second before sending its first DAD verification request, which is actually a Neighbor
Solicitation (NS) message [142, 192]. The default values in the definition of the DAD
procedure specify that a node would generally broadcast a single NS message. If at the

28

end of one second it has not received a Neighbor Advertisement (NA) indicating that its
new address is already allocated to someone else, it can conclude that there is no address
conflict on the link and can therefore start using it to communicate. In other words, if
no collision is detected DAD would generally add approximately 1500 milliseconds to
the duration of a handover.

Finally, the time of routing of the packets between the home agent and the current
location of the mobile node can also contribute to the amount of the total time of con-
nection disruption. Following the move of a mobile node to a new subnet, a home agent
would continue sending data packets towards the old location of the terminal until it re-
ceives a new location update. Since, after a handover, a terminal is no longer connected
to its previous subnet, these packets are lost. After configuring its care-of address (as-
suming that the node uses oDAD), the time of reception of the data packets on the new
IPv6 link would directly depend on the time required to route these packets from the
home agent to the mobile node and vice versa. The greater the topological (or geo-
graphical) network distance between the two, the longer it would take to complete the
update of the CoA, HoA binding that the home agent maintains for this mobile.

As a result of the poor performance (in terms of achieving a seamless handover)
of the standard 802.11 handovers and MIPv6 protocol, we have seen many proposals
attempting to reduce the time of connection disruption accumulated during handovers.
In the next section, we will describe those that we consider most popular and/or most
efficient.

2.6 Work on optimizing the Layer 2 handover proce-
dure

A possible classification of the various optimizations suggested in the related work
would be to separate them depending on the network layer that they operate on. Some
optimization proposals for example focus on layer 2 handovers in IEEE 802.11 net-
works. Others operate on layer 3 and focus on the MIPv6 protocol. A third type of
proposals proposals provide complete solutions, addressing at the same time layer 2 and
layer 3 issues. In this section we focus on optimizations targetting the layer 2 handover.

29

2.6.1 IAPP and Context Caching using Neighbor Graphs

[88] describes a method that allows APs to build neighbor graphs within a set of IEEE
802.11 wireless subnets, also referred to as Extended Service Set (ESS). The authors
propose using that graph for caching and transferring MN authentication context in-
formation across APs with the purpose of accelerating the authentication stage of the
802.11 handoff process.

The optimization proposed in this document is based on the Inter Access Point Pro-
tocol (IAPP) [88]. IAPP was conceived in order to ensure a Single Association Invariant
(i.e. maintaining a single association of a station with the wireless network) and the se-
cure transfer of state and context information between APs involved in a reassociation
reducing or eliminating the latency due to context transfer.

The protocol specifies two types of interaction for completing context transfer. The
first form of interaction occurs between APs during a handoff and is achieved by the
IAPP protocol, and the second form of interaction is between an AP and the RADIUS
server.

Association and reassociation events change a station’s point of access to the net-
work. When a station first associates to an AP, the AP broadcasts an Add-Notify mes-
sage notifying all APs of the station’s association. Upon receiving the Add-Notify, the
APs clear all stale associations and state for the station. This enforces a unique asso-
ciation for the station with respect to the network. When a station reassociates to a
new-AP, it (the new AP) informs the old-AP of the reassociation using IAPP messages.
Figure 2.11 shows the sequence of messages involved in the reassociation.

At the beginning of a reassociation, the new-AP can optionally send a Security Block
message to the old-AP, which acknowledges with an Ack-Security-Block message. This
message contains security information to establish a secure communication channel be-
tween the APs. The new-AP sends a Move-Notify message to the old-AP requesting
station context information and notifying the old-AP of the reassociation. The old-AP
responds by sending a Move-Response message.

For confidentiality of the context information, the IAPP draft recommends the use
of a RADIUS server (to obtain shared keys) to secure the communication between APs.
The RADIUS server can also provide the address mapping between the MAC addresses
and the IP addresses of the APs, which is necessary for IAPP communication at the
network layer.

The Inter AP Protocol was originally designed to only transfer MN context reac-
tively. In other words, the context transfer was initiated only after the mobile station

30

Figure 2.11: The WLAN Association Process (Active Scanning) with IAPP

had associated with the next base station or access router. This inevitably led to overall
increase in the latency of the handover rather than reducing it.

With the addition of the CACHE-notify and CACHE-response messages [148], it
became possible to proactively transfer the context of a roaming host. The CACHE-
notify message is sent from an AP to its neighbors and carries the context information
pertaining to the client. It is sent following a reassociation or an association request.
A Cache-Response is sent in order to acknowledge the receipt of Cache-Notify. A
timeout on this message results in the removal of the edge connecting the two APs in
the neighbour graph as the new AP might not be alive (see Figure 2.12).

In order to actually build a neighbor graph, an access point could either use 802.11
reassociation requests (these requests contain the BSSID of MN’s previous AP) or listen
for incoming Move-Notify requests sent upon MN reassociation from neighbor APs via
IAPP.

31

Figure 2.12: Cache miss and cache hit during reassociation with IAPP

The algorithm uses an LRU (Least Recently Used) approach for refreshing the graph
which ensures removal of stale nodes. The last is also achieved by eliminating nodes
that do not return a CACHE-response after receiving a CACHE-notify message.

Authors provide both simulation and experimental evaluation of their proposition.
In the experiments they conduct, 114 reassociations occur with an average reassociation
latency of 23.58 ms (including the one outlier) and 15.37 ms (without the outlier) for a
cache-miss (traditional handoff), and 1.69 ms for a cache-hit.

2.6.2 Selective scanning and AP cache

Some mobility optimizations propose storing and using the roaming history of a mobile
in order to optimize its layer 2 handovers. One of the most popular solutions of this
kind is called Selective Scanning and Caching [173]. With it a mobile node would cre-
ate a radio channels mask which would contain the Wi-Fi frequencies that have to be
probed first during a handover. Over the time, together with going through successive

32

handovers, the terminals also build a history of the access points that they have com-
pleted association with. With every next handover, they will use the information that
they have accumulated in their roaming history in order to avoid having to go through
the whole phase of candidate access point discovery. As mentioned previously, this dis-
covery phase represents the main source of the latency accumulated during the layer 2
handover. The authors of [173] also propose an approach that allows limiting the du-
ration of the scanning phase even if the history does not contain any information from
previous handovers. The details of this approach are described in the rest of this section.

After a terminal has activated its IEEE 802.11 interface, it needs to go through an
active scanning procedure over all the 14 Wi-Fi channels in order to initialize its radio
channel mask. For each Probe Response that it receives, the mobile would record the
channel that the message originated on (see figure 2.13).

By default, the mobile would also add channels 1, 6 and 11 since they are generally
preferred in many Wi-Fi deployments as the transmissions on any of them do not cause
any interference with devices using the other two. In addition, they are also allowed in
the majority of the countries in spite of the various frequency restrictions that have been
imposed around the world.

Once this initialization has been completed, the mobile node would associate with an
access point and would remove the channel that it uses since, chances are, that adjacent
access points of the same operator would not use the same radio channel. During every
next handover, the mobile node would start by only probing the channels that are present
in its mask. If the mobile does not receive an answer on any of these channels, it would
invert its mask and start the scanning procedure all over again. If after this second scan,
there is still no response, the mobile would go back to the standard scanning procedure:
it would go through all channels and create a new mask. This procedure is called Se-
lective Scanning and according to the evaluation presented by the authors, it generally
reduces the duration of the layer 2 handover to approximately 130 milliseconds.

Another important aspect of this solution is the fact that mobile nodes are expected
to store a history of the access points that they have associated with. When a terminal
connects to an access point, it creates a new entry in its roaming history and records
the link layer address of its wireless interface as well as the number of the channel
that it has connected with the AP on. For each entry in its history, the mobile node
also records the details (link layer address and frequency) of the second closest access
points (see 2.13). These details are discovered at the time a Selective Scanning run, or
during one of the handovers. Before the terminal initiates a handover, it looks up in
its history the parameters of the access points that it has recorded as being closest to
its current attachment point. If there are no such records yet, the mobile executes the
complete Selective Scanning procedure. In the opposite case, when there are records of

33

Figure 2.13: Creating a roaming history and a channel mask

two alternative access points located in the vicinity, it would try to connect with the first
of them. If the AP is still available and the mobile succeeds in authenticating with it, the
mobile moves to the phase of association. If, on the other hand, the authentication fails
(the terminal is not authorized to use this access point or the access point is not within its
range any more), it would move down its history list and try to with the second nearest
alternative access point in it. If this authentication also fails, the terminal executes the
complete Selective Scanning procedure.

Combined use of a roaming history and the Selective Scanning procedure makes it
possible to reduce the latency accumulated during a layer 2 handover to approximately
3 milliseconds in some of the best cases [173].

2.6.3 Synchronized Beacons

The authors of an optimization technique called SyncScan propose a way of achieving
rapid handovers based on a system that synchronizes the 802.11 control frames [157].

34

The idea behind it is that a mobile could periodically “listen” to the various Beacon
frames broadcasted by the surrounding access points in order and use them to pro-
actively build a list of the access points that are most closely located to it. The solution
completely removes the use of active scanning and as a result allows to shorten the
layer 2 handover procedure by bringing it down to only authentication and association.
Moreover, such an approach allows for a finer management of the handover process and
particularly, better choice of the “right” moment to trigger it since the mobile node is
constantly monitoring the quality of the signal being emitted by the various surrounding
access points. A terminal is therefore able to anticipate or delay the execution of a
handover depending on the intensity of the signal being casted upon it by the most
closely located access points.

In order for this solution to work the system clocks of the participating access points
need to be synchronized as closely as possible. In order to achieve this the authors of
the solution propose using the Network Time Protocol (NTP) [132]. Then, at a given
instant, t, all access points implementing the solution and operating on channel 1 will
emit a Beacon. At instant t+d, that is d milliseconds later, all access points set to operate
on channel 2 would do the same and also broadcast a Beacon. The same repeats on all
channels. This way, a mobile node associated with a particular access point, operating
on channel c would be able to detect the access points which use channel (c + 1) if it
switches to that channel d milliseconds after the reception of a Beacon coming from its
current access point.

In order to limit the risk of collisions during the synchronized broadcast of the Bea-
con frames coming from access points which use the same radio channel, the exact time
of emission of the Beacon frames for a given channel varies slightly (e.g. t+x, x ∈ [0; 3]
milliseconds).

Periodically, over a certain period of time (e.g. every 500 milliseconds), a mobile
node would execute a partial passive research with the intention of intercepting Beacon
frames broadcasted by the nearby access points. Each one of these partial scans is
carried out on a new channel.

Every time the mobile is about to switch to a new frequency in order to passively
scan it, it indicates to its current access point that it would temporarily enter an energy
save mode. This request is part of the IEEE 802.11 standard and it would make the
access point put on standby all data packets that it needs to send to the mobile. This
way the MN would be able to turn off its radio interface for a certain length of time. In
the case of SyncScan this length would be a multiple of the frequency Beacon frames
broadcast frequency and the MN would use it to switch to the channel that it wishes to
scan. Using the energy save mode allows the mobile to complete its periodic passive
scans without losing data packets. The change of the frequency that the mobile is listen-

35

ing to should always be synchronized with the broadcast of the Beacon frames. After
scanning a new channel long enough to receive a Beacon frame, the node would record
the parameters of the access point that it has just discovered, and return to its operating
channel. It would then send a new request to its current access point, indicating that it
is leaving its energy save mode.

The mobile repeats this procedure until it has accumulated the complete list of the
surrounding access points. A node can thus directly begin the layer 2 handover proce-
dure with the phase of authentication, which is enough to make link layer handovers
imperceptible to the end user [157].

One of the problems with the SyncScan solution is that in reality, it is quite a chal-
lenging task to synchronize all participating access points. This is even more so for
wireless devices because of the specificities of the physical medium.

Another problem comes from the fact that, depending on the wireless device and
the implementation of the device drivers, switching from one Wi-Fi channel to another
channel may have a considerable cost in terms of time. The switching interval may vary
from 5 to 40 milliseconds [157]. That leaves a relatively small margin for adjustment to
the exact time of the Beacon broadcast which makes fine grained control of the wireless
devices especially important..

2.6.4 Reverse engineering Cisco System’s Wireless Domain Service

Cisco Systems, the Sillicon Valley device manufacturer have implemented and propose
in a number of their networking products a complete solution for fast and protected han-
dover management spanning over both layer two and three [188, 189, 190]. Although
this solution was designed for use in IPv4 networks, we also believe the general model
to be applicable with IPv6 without substantial modifications. The name of this solution
is Wireless Domain Services (WDS) and it is entirely based on proprietary protocols and
requires specific network equipment (see figure 2.14).

The WDS solution introduces a new network entity called the WDS server. The role
of this WDS server is, among other things, the authentication of access points as well as
mobile terminals that are part of or use the system. It is also in charge of the management
of all handovers of the using mobile nodes. In the following sections, we will describe
the algorithms that this system uses in order to achieve rapid handovers. We will also
present the mechanisms that it employs in order to guarantee network security.

36

Figure 2.14: Various entities in the Wireless Domain Service

Layer 2 handovers

The major improvement that the WDS system brings to layer 2 handovers comes from
the fact that the WDS server provides to all mobile nodes the list of access points lo-
cated in their vicinity in order to optimize the scanning procedure defined in the IEEE
802.11 standard. Each access point in the network has to dynamically build a neighbor
cache using information provided by the mobile nodes, through the WDS protocols, af-
ter they complete their associations. This information consists mainly in the parameters
that mobiles have used to connect to their previous access points, including the radio
channel, and their SSID.

When filling in their neighbor cache, access points also receive from mobile nodes
the exact time when they have (been) disconnected from their previous access point.
When this time exceeds 10 seconds, the corresponding access point is not considered as
a neighbor and are as a result not considered as candidates for the WDS neighbor cache.

37

The time necessary for an access point to build a complete neighbor cache depends
directly on the number of surrounding access points, the number of mobile nodes and
the rate at which the mobiles move through the access points.

After a mobile node has associated with an access point, it would receive from it the
content of the AP’s WDS neighbor cache. During its next layer 2 handover, the terminal
could therefore use this list and only probe the channels that are expected to be used by
the neighboring access points. Right after obtaining its first response from one of the
access points on the list, the terminal immediately authenticates and associates with it.
This procedure thus makes it possible to strongly reduce the latency time accumulated
during a layer 2 handover.

It is also worth noting that whether or not a mobile would use the WDS optimizations
for a layer 2 handover depends on the traffic that was being exchanged by the mobile
right before the handover. If the MN has received a data packet within 500 milliseconds
directly preceding the handover, it will use the WDS optimizations the way we have
just described. In the opposite case, that is, if the terminal did not have any time-critical
communication sessions in progress (e.g. real time), it is assumed that a fast handover
would be unnecessary. In this case, the terminal does not use the neighbor cache and
carries out a standard 802.11 handover.

In order to benefit from the layer two handover optimization of the WDS system, it
is necessary for both the wireless network cards and access points to be manufactured
by Cisco Systems. For layer 2 only optimizations, there is no need for extra equipment
since one of the access points could also play the role of a WDS server and handle the
authentication of the access points and the mobiles.

Layer 3 handovers

In the WDS system, support for layer 3 mobility is not based based on the Mobile IP
protocol but it uses a relatively similar approach. A logical overlay layer 3 network is
set up above over the IP network. This overlay network will make it possible for mobile
terminals to keep the same IP address independently of IP subnet that it is actually on.
As a result, this system goes around one of the fundamental principles of the protocol
IP which states that the IP address of a terminal also corresponds to its current location.

In order to activate management of layer 3 mobility, it is necessary for a network to
be equipped with a Cisco Catalyst 6500 Series Wireless LAN Services Module (WLSM)
and a Supervisor Engine 720 (SE). In this setup, it is the Cisco Catalyst that plays the
role of the WDS Server (again through the use of the WLSM module).

38

Figure 2.15: Using an overlay network for the transfer of unicast data packets

Creating the logical network used by WDS for layer 3 handover management is
above all the role of the SE and the access points. The SE uses an alternative of the
Generic Routing Encapsulation mechanism (GRE [74]) called multipoint Generic Rout-
ing Encapsulation (mGRE). This mechanism makes it possible to create simple com-
munication tunnels between a single source and multiple recipients. Usage of various
tunnels using the mGRE encapsulation between the SE and the access points is what
actually constitutes the logical layer 3 network. All the unicast IP data packets must
go through this logical network in order to reach their destinations. As a result, the
SE can be regarded as the central point of the network (see figure 2.15). On the other
hand, all control traffic (between the access points and the WDS server) does not use
the logical network and employs another proprietary protocol called Wireless LAN Con-
text Protocol (WLCP). This last is a somewhat modified version Light-Weight Access
Point Protocol (LWAPP [38]) which is standardized by the IETF. The primary purpose
of these protocols is to centralize the management and the configuration of all access
points in a wireless network.

The SE also maintains an up to date local copy of mobility cache, in which it records
IP address, link layer address and the current access point of each mobile currently in
the system.

The SE also creates a tunnel for each IP subnet controlled by the WDS server, and
assigns it to a mobility group. When a mobile arrives in the network, it must be identified
by the WDS server before it is granted access to the network. At the time of the request

39

of the mobile, the WDS server transmits to the SE a message including the IP address
and the MAC address of the terminal as well as the identifier of its current access point.
After receiving such a message, the SE updates its mobility neighbor cache and adds
the terminal to a mobility group according to its IP address. It also registers the access
point that the terminal is currently associated to, as a new end point of the tunnel which
corresponds to this mobility group. NEXT, the SE sends a message to the WDS server
notifying it of this last update. The WDS server then transmits this message to the
current access point of the mobile node so that it could also update its own associations
table. This table makes it possible to transmit the IP packets which arrive through the
tunnel towards this mobile node and vice versa.

When moving through access points that lie in different IP subnets, mobiles carry
out almost the same procedure as the one that we described in section 2.6.4. The mobile
node itself remains associated with the same mobility group since it does not change its
IP address and regardless of the actual IP subnet corresponding to its new location.

However, what does change is the tunnel associated with this mobility group. The
new access point is therefore added as one of the endpoints of this tunnel while the old
access point may be removed since it may not be used any more by any of the mobile in
this mobility group. In other words, mobile nodes in the Cisco Systems WDS system do
not in any way intervene in the layer 3 handover management, and the entire procedure
is only managed by the network itself (see figure 2.16).

Security

The WDS System uses the 802.1X protocol [18] to guarantee security in the network.
When using the basic scenario of this solution (i.e. the one that only covers layer 2 mo-
bility), mobile nodes have to authenticate against the WDS authentication server after
each layer 2 handover. However, such authentications tend to be relatively time consum-
ing since they require a long exchange of authentication messages. As a result, these
procedures may account for a substantial part of the layer 2 handover latency. WDS
optimizes this stage with the joint use of a centralized key management system called
Cisco Centralized Key Management (CCKM) and the Cisco Lightweight Extensible Au-
thentication Protocol (Cisco LEAP) protocol which make it possible for the WDS server
to also the role of an authentication server.

The phase of authentication against the WDS server is executed during the associ-
ation phase of the layer 2 handover and introduces only two extra WLCCP messages
between the access point and the WDS server: a pre-registration request and response.

40

Finally the WDS system reduces the latency accumulated by the layer 2 and layer 3
handovers to less than 50 milliseconds [188, 189, 190]. Figure 2.16 shows examples of
layer 2 and layer 3 handovers in a WDS system.

Figure 2.16: Layer 2 and layer 3 handovers with the WDS system

2.7 Layer 3 Movement Detection Optimizations

Movement detection is the task of determining whether an IPv6 node has moved to a
new subnet. This detection is important since in the case that the device has moved, the
addresses that it had been using so far become invalid and additional configuration must
be undertaken in order to re-establish or maintain upper layer connectivity.

Movement detection is accomplished by determining that the current router is un-
reachable, and discovering a new router available on the particular subnet. The follow-
ing sections go through some of the most popular techniques in optimizing this part of
the network handover.

Subsection 2.7.1 presents an optimization of router discovery that consists in making
ARs broadcast RA messages on a high frequency and thus allowing newly arrived mo-
bile nodes to quickly detect subnet configuration settings. Section 2.7.2 goes through
a description of a mechanism proposing immediate responses to Router Solicitations
(as opposed to those randomly delayed by an interval between 0ms and 500ms by stan-
dard). In 2.7.3 we expose a scheme that makes APs cache the last seen RA and re-emit

41

it each time an MN associates with that particular AP. Section 2.7.4 describes the very
common notion of aiding movement detection through link layer triggers and 2.7.5 pro-
poses incorporating link identifiers into RAs and thus aiding unreachability detection of
a previous AR.

2.7.1 Periodic Router Advertisement Beaconing (Dense RAs)

Beaconing is a term used to refer to broadcasting of network identification information
at regular intervals. Mobile IPv6 reduces the lower bound of the MinRtrAdvInterval and
MaxRtrAdvInterval to 30 and 70 ms respectively [103]. With these settings, beacons
will be sent no more closely than 30 ms apart, and with no greater separation than
70ms. Routers are required to send the beacons at random times within this interval.
This means that an MN will receive an RA within 70ms of arriving on the link, and may
expect to receive an RA within 25ms, if we assume MN entry into the network to be
randomly distributed in the interval.

This technique requires no action on the part of the MN other than listening to RA
multicasts. The bandwidth consumption by multicast beacons is 14 kbps when RAs
only include one Prefix Information option. Addition of a Source-Link-layer-Address
option and a MIPv6 Advertisement Interval option typically increase this to 16.6 kbps.

On some networks, such overhead (20 multicast packets per second) causes a se-
rious burden on network bandwidth. In these cases, RFC2461 [142] specified intervals
should be used, if other movement detection mechanisms are available.

Additionally, the reduced interval between messages may have side effects for non-
MIPv6 nodes on the same networks. The AdvDefaultLifetime value is used to set the
lifetime of the default router in seconds, as advertised in the Router Lifetime field of the
RA. The minimum value specified in [142] for this value is MaxRtrAdvInterval. This
value is less than one second when using MIPv6 specified advertisement intervals. Even
if default router lifetimes are rounded up to the nearest second, nodes which assume
MaxRtrAdvInterval is at RFC2461 values could be confused about the lifetime of their
default router. Routers should ensure that AdvDefaultLifetime is greater than or equal
to 4 seconds, in order to avoid this confusion.

2.7.2 Fast Router Advertisement (FastRA)

Fast Router Advertisement [107] removes the random delay required of a router (be-
tween 0 and 500 ms as specified by Neighbor Discovery) before it responds to RS mes-

42

sages. It relies on the fact that only one router on a given subnet would be configured
for FastRA, so that responses are not simultaneous. FastRA principally aims at delivery
of unicast RA messages, since the rate limiting of multicast RA messages specified in
RFC2461 mandates that RA messages may not be sent within 3 seconds of each other.

This could be easily dealt with if FastRA adopted the MinDelayBetweenRAs value
advised by MIPv6. This way, responses to RS request would only be delayed if the last
multicast RA occurred more recently than MinDelayBetweenRAs before the RS arrived
at the router (or MaxFastRAs has been consumed). This could work well if the arrival of
mobile nodes occurred much less frequently than the unsolicited multicast RA interval.

FastRA incorporates a rate limiting feature aimed at diminishing the potential effect
of FastRA traffic on nodes which are already connected to the network. Routers may
transmit no more than MaxFastRAs advertisements in an interval before discarding so-
licitations until the next unsolicited multicast RA.

Either of the solicitation mechanisms may be used to get FastRA response from a
router, although Advertisement Interval timeout will only be invoked on packet loss if
Link-triggers are available. Movement detections times are bounded only by the time
to send the Multicast RS message and send the unicast RA response. Recent testing
has indicated 95% of RAs were received within 15 ms of sending an RS on 802.11b
networks, when Neighbor Discovery was being performed on the MN’s Link-Local
address. If RS messages include Source link-layer Address options or are multicast
responses with no timer delays, movement detection time will be lower.

2.7.3 RA caching in Access Points (Fast Router Discovery)

One method which requires no solicitation from the MN is network triggering of RA.
Router advertisements are sent to the MN when it attaches to an access point (AP)
associated with this network. In network deployments, the router may not be the link-
layer device which the MN connects to, and therefore may be unaware of MN link-
connection. Only in the case where the the AP advises the router of connection or AAA
state, can the router send (unscheduled) unsolicited RAs before receiving packets from
the MN.

The Fast Router Discovery (FRD) [95] places the responsibility of sending triggered
RA messages upon APs. The Access Points cache RA’s recently sent from the router,
and deliver a frame to the MN when it connects. This frame is datalink-unicast to the
MN and contains the most recent unsolicited RA.

43

In this case, less frequent transmission of unsolicited multicast RA messages may
be used. At the same time, the first frame which is queued for the MN is the RA
required for movement detection. Deployment of FRD requires each of the APs for the
network to be capable of both the caching and triggered sending operations. Analysis
and experimental results indicate that this is potentially the fastest network-layer based
movement detection optimization, dependent on AP processing capacity.

2.7.4 Link Layer triggers on the Mobile Node

For situations where RA packets have been transmitted correctly, the Advertisement
Interval’s best case occurs when the timeout occurs just after the MN joins a new link.
In environments where the MN can receive an indication that a link has been joined (e.g.
WLAN association has ended), this information can be used to either simply trigger an
RS immediately (although once again a random delay before sending RSs is advised by
[142]) or play a role in determining a mobility management policy by the mobile node
and assist upper layers during handover [191, 67]

Additionally, even if the MN doesn’t send an RS upon receiving a link-up trigger,
it can use the trigger to validate received RA messages for movement detection with
eager-binding. The MN may be able to enter an ’eager-binding’ state until it receives
its first RA on the new link. If it receives an RA from a previously unseen router, it may
be useful to confirm bidirectional reachability with it, and then undertake movement
signaling.

If the MN joins a subnet, then until it knows the identity of the segment (i.e. before
it has received an RA), it MUST assume that it is on a new link, where its Link-Local
address is tentative. This means that RS messages will either be deferred until DAD
operations have been performed on the Link-Local address or the RS MUST be sent
with an unspecified address. A multicast response will be scheduled no sooner than:

Max(LastMcastRATime + MinDelayBetweenRAs, (2.1)
now + 0 − 500msRSResponseDelay) (2.2)

Where MinDelayBetweenRAs could be as high as 3 seconds. Even if the response
is not multicast, the RS response delay is still incurred.

44

2.7.5 RA Link Identification for Mobile IPv6 Movement Detection

In IPv6 multiple routers are allowed on a link, and these routers do not have to advertise
overlapping prefixes. Therefore, reception of an RA from a new router does not always
mean that movement has occurred. For reliable movement detection, nodes can check
the reachability of the current router. Determination that the current router is unreach-
able is typically a slow process, but provides safeguards which allow nodes to be sure
that movement has occurred.

Link Identifiers (LinkIDs) [28] are numeric values automatically configured on a
link, which are extremely unlikely to conflict with an identifier on an adjacent link.

The Link Identifier is randomly generated by one of the routers on a link and all of
the other Link Identifier supporting routers on that link agree to use that identifier.

Mobile Nodes (MNs) receiving Router Advertisements (RAs) with LinkID options
can use the LinkID value to identify the link that they are attached to. This may aid
movement detection by allowing MNs to determine when the link changes. A change
to the LinkID implies to the MN that currently configured router is unreachable.

All routers supporting the Link Identifier Option advertise it in each of their Router
Advertisements. Advertised Link Identifiers are consistent within any one link.

Mobile Nodes store the Link Identifier internally, for comparison with subsequently
received Router Advertisements.

Upon receiving an RA with a LinkID that differs from the MN’s currently recorded
value of LinkID, the MN can assume that it has moved to a new network and that its
current default router is unreachable. This information may be used to initiate further
stateful or stateless autoconfiguration procedures, or appropriate mobility signalling by
the MN.

When an MN receives an RA from a previously unseen router, which contains the
same LinkID as its default, this means the MN is on the same link, but does not guaran-
tee reachability for the current default router.

2.8 Optimizing DAD

In order to generate a unique address, IPv6 nodes perform the Duplicate Address Detec-
tion (DAD) procedure [142]. The neighbor discovery specification states that payload

45

packets can not be sent or received before this procedure is complete. In an environment
where frequent movements are expected, this delay can be problematic. As the reduc-
tion or removal of the delay would be quite useful, different DAD optimizations have
been proposed. Optimistic DAD (presented in section 2.8.1) consists in allowing the use
of tentative addresses before DAD has actually completed. Subsection 2.8.2 describes a
modification of ARs making them keep a list of all MLD listener reports sent by nodes
whenever they perform DAD and then transmit this list to newly arrived MNs which
may thus determine whether or not they are the first to join this group and thus the only
one to be using the corresponding address.

2.8.1 Optimistic Duplicate Address Detection

Optimistic DAD [139] is a modification of the existing IPv6 Neighbor Discovery [142]
and Stateless Address Autoconfiguration process. Its intention is to minimize address
configuration delays in the case of successful duplicate address detection, and to reduce
disruption as far as possible in the case DAD fails.

Optimistic DAD is based on the assumption that DAD is far more likely to succeed
than fail for a well-distributed random address. Disruption is minimized by limiting
nodes’ participation in Neighbor Discovery while their addresses are still Tentative.

The main idea behind preventing disruption in the case of a failure is making sure
that an Optimistic Node (ON) does not, while tentative, send any messages which will
override its neighbors’ Neighbor Cache (NC) entries for the address it is trying to con-
figure: doing so would disrupt the rightful owner of the address in the case of a collision.
The document offers a set of necessary modifications and additions to [142] and [192]
so that such an ON implements the proper behavior.

2.8.2 Duplicate Address Detection Optimization using IPv6 Multi-
cast Listener Discovery

[75] describes a possible optimization to Duplicate Address Detection (DAD) which
can be used to successfully terminate DAD for a relatively short period, based on the
presence of listeners on the link-scope solicited nodes multicast address (i.e. the address
of a multicast group where all potentially conflicting addresses belong). The document
makes use of the idea that Nodes that have completed DAD, and own an address listen
on the link scope solicited-node multicast address [60] related to the IPv6 address which
they have completed DAD on. When a new node attempts to configure an address on

46

the network, it sends a neighbor solicitation message to the same address, and succeeds
if no device responds to this message within a timeout period. As part of this process,
the new node also listens to the solicited-node multicast address

The MLD RFC requires a node to send an MLD report before listening to the
solicited-node multicast address [197]. This process allows informing the router on
a link about the presence of listeners for the address, so that a multicast-group can be
managed.

To sum up, the optimization described in this subsection allows nodes to ask the
router to tell them if they are the first node to enter this multicast group. If they are
the first to enter the group then it follows that no-one else is currently performing DAD
defense against the required unicast address.

2.9 Work on optimizing the Layer 3 handover proce-
dure

2.9.1 Hierarchical Mobile IPv6

The purpose of introducing a hierarchical architecture is reducing considerably the time
necessary to update the binding cache entries that a home agent uses to map care-of
and home addresses. One way to do this is to separate the network in different domains
which are independent of the actual IP subnets and whose size is defined by the operator
or the administrative entity in charge of the network. Throughout the years there have
been various models suggesting to do this in different ways. The Hierarchical Mobile
IPv6 Mobility Management (HMIPv6) is one such solution. Work on it started at INRIA
Rhone-Alpes by Claude Castelluccia around the year of 2000 [40], and it was then
continued in the MIPSHOP working group at the engineering task force until it was
standardised as RFC 4140 [184] in August 2005.

For every administrative domain, the HMIPv6 protocol introduces, a new network
entity called a Mobility Anchor Point (MAP). The MAP primarily plays the role of a lo-
cal home agent, making it possible to mask from home agents and correspondents, the
majority of the moves that a mobile terminal would undertake, in order to minimize the
traffic between the mobiles and their home agents. In addition to traffic, the HMIPv6
protocol also allows to decrease the time necessary for a mobile to update its address
record after moving. Figure 2.17 illustrates the procedure defined by the HMIPv6 pro-
tocol.

47

Figure 2.17: The HMIPv6 protocol

When a mobile node arrives in a new domain, it receives the address of the MAP (or
MAPs) responsible for this domain through a newly defined option of the RA messages.
This new option also allows the mobile node to configure a valid temporary address in
the same sub-network as that of the MAP. Such addresses are called Regional Care-of
Addresses or RCoA and will be preserved by the terminal as long as it remains in the
domain. In addition to the RCoA and according to the IPv6 mechanisms that we’ve
described in previous sections, the reception of an RA allows the mobile to configure
a care-of address for use in its current sub-network. In HMIPv6 CoA addresses are
called one-Link Care-of Addresses or LCoA. After obtaining these two addresses, the
node sends a first BU message to the MAP in order to establish a new binding between
its RCoA and LCoA addresses. This way the mobile creates a bidirectional tunnel,
similar to the one used in the standard MIPv6 protocol, between the MAP and its current
location. In the same time, the mobile node also sends a second BU, this time to its
home agent, in order to create a binding between its RCoA and its home address. After
receiving this BU, the home agent updates its binding cache and starts relaying towards
the RCoA address that it has just learned all MN bound packets. These packets would
be intercepted by the MAP which would, on its turn, relay them to the current location
of the terminal (presumable in the same domain) through the bidirectional tunnel that
was established with the first BU (see figure 2.17).

After moving from one subnet to a new one inside the domain, the mobile node
obtains a new LCoA which it would again send to the MAP. As long as it remains in the
same domain however, the MN would keep the same RCoA which makes its movement

48

completely transparent at the level of the home agent (see figure 2.17). As a result, the
time necessary to update the temporary addresses of a mobile is considerably reduced
because the MAP and the MN are both located in the same domain.

After changing a domain the mobile node would have to obtain a new RCoA address,
and would therefore have to update its registration with the home agent. The change of
domain is detected through a new option transported by the router advertisements.

2.9.2 The FMIPv6 protocol

The protocol Fast Handovers for Mobile IPv6 (FMIPv6) is an improvement of the
MIPv6 protocol and is, without a doubt, among the most promising handover optimiza-
tions. Work on it was first described in [111] by Rajeev Koodli and Charles Perkins and
it was later accepted as an Internet Standard [70]. Its purpose is reducing to a maximum
the time of connection disruption on the layer 3 and limit, as much as possible, the loss
of data packets. The main idea behind is for the mobile node to try and determine the
IPv6 subnet that a node is going to connect to before it has actually done so.

The FMIPv6 protocol defines new mechanisms that allow mobile terminals to ask
their current access routers for information on all surrounding access points as well
as the layer 3 parameters of the IPv6 subnets that they are located on. Requests for
such information are sent out through a new type of ICMP messages called Router
Solicitation for Proxy Advertisement requests (RtSolPr). Responses to such requests
are sent by the currently active access router through another type of specially defined
ICMP messages called Proxy Router Advertisement (PrRtAdv). The RtSolPr messages
are anycasted by mobile nodes on the local link and they are generally addressed to
all current access routers (the ff02::2 anycast address). These messages can contain
the identifier of one or more access points that the mobile node would like to retrieve
information for. Exactly which access point identifiers would be included in the RtSolPr
request is outside the scope of the FMIPv6 protocol but it is generally expected that after
performing a layer 2 scanning procedure the mobile node would come up with a list of
surrounding access points and their IDs. It could then use these IDs (generally the layer
2 address of the access point) in the RtSolPr message since they are the ones that the
mobile node is likely to move to.

A node could also request information for the complete list of access points and
routers known to its current access router by sending a request for a special access point
address (the all zero address).

49

When it receives an RtSolPr message, an access router would reply by sending to the
mobile a corresponding PrRtAdv message containing the requested information. This
information is transported in the form of one or more [AP-ID, AR-Info] t-uples. Each
t-uple contains the MAC address of the access point that the information is about, the
MAC address of the access router behind it, the IPv6 prefix announced by this access
router and the length of this prefix. After obtaining such information a mobile node is
ready to initiate a fast handover although it would not always do so. One characteristic
of the FMIPv6 protocol is that it allows to completely separate the candidate access
point discovery phase from the rest of the handover. The FMIPv6 scanning phase is
described on figure 2.18.

Figure 2.18: Candidate access point discovery with FMIPv6

The FMIPv6 protocol defines two ways to actually proceed with a handover. They
were originally referred to as Predictive and Reactive Context transfer by [111] and
were later described by RFC 4068 as two different modes of operation called Predictive
and Reactive mode [70].

A mobile node would use the predictive mode of operation in cases where it is
capable of anticipating the need for carrying out a handover (e.g., by using information
of level 2 such as the quality of the radio signal). After detecting the need for a handover
the mobile would send to its current access router a message defined by the FMIPv6
protocol, and using the mobility header packet format, called a Fast Binding Update
(FBU). This router is referred by the FMIPv6 specification as a Previous Access Router
(PAR) since the mobile node expected to leave the link that it is responsible for. FBU
messages contain the current temporary address of the mobile terminal (called Previous

50

CoA or PCoA for the same reasons as above) as well as the identifier of the access
router towards which the terminal is planning on moving. This new router is called Next
Access Router or NAR as the mobile node is expected to connect to a link that it is
responsible for after leaving its current subnet.

After receiving an FBU, the PAR sends a Handover Initiate message (HI) to the
NAR. HI messages contain various information on the mobile node such as its link
layer address, PCoA and (optionally) the address that the terminal would like to use
in the sub-network of the NAR (NCoA). This message is used to notify the NAR of
the intentions of the mobile terminal in order to as a first step in verifying whether
the handover is feasible. The NAR can either accept or refuse the handover using a
Handover Acknowledge message (HACK). After receiving the HACK, the PAR sends
to the terminal a Fast Binding Acknowledgement message (FBACK, another mobility
header message) in response to its earlier FBU. The FBACK is the last of the FMIPv6
messages exchanged during a handover and once it has received it, the mobile node is
ready to move.

It is important to note that in addition to simply triggering the HI message the FBU
also serves as a means for the mobile node and the PAR to establish a bi-directional data
tunnel. All the data packets destined for the mobile node are intercepted by the PAR
and transmitted to the node’s NCoA, and hence the NAR, through this tunnel.

When it receives a message destined for the NCoA, the NAR could either transmit
it directly to the MN, provided it has already arrived, or use the buffering mechanisms
defined by the neighbor discover protocol in order to store them until the MN has turned
up in its local link, at the end of the handover.

After arriving on the link of the NAR, the terminal would notify the NAR of its
arrival using a Fast Neighbor Advertisement (FNA) mobility header message, which is
supposed to update its neighbor cache and unlock the transmission of all data packets
that it has buffered for the time of the handover. The FNA is thus the last message of
signalling defined FMIPv6 protocol.

The bidirectional tunnel established between the PAR and the NAR is generally
maintained over a period of time that is sufficiently long for the terminal to update its
registration with the Home Agent, and notify it of its new temporary address (NCoA),
all this without losing any data packets. As long as this tunnel is active, (given the fact
that it is bidirectional) the terminal is also able to send data packets using its previous
care-of address (PCoA). The predictive mode is illustrated on figure 2.19.

The FMIPv6 protocol also defines a reactive mode of operation, which represents the
cases where the mobile terminals are either unable to anticipate their movement or are

51

Figure 2.19: Predictive mode of operation of the FMIPv6 protocol

forced to leave their current link without waiting for the Fast Binding Acknowledgement.
In such cases most of the FMIPv6 is carried out once the layer 2 handover has been
completed. In these particular cases, the FBU is sent encapsulated in an FNA and from
within the new subnet (the one of the NAR). This is done regardless of whether an FBU
has also been sent from the previous link, since the mobile has no way of knowing
whether this FBU has been received.

After receiving an FNA containing an FBU, an NAR would extract and transmit the
FBU to the PAR. From this point on, the exchange of the HI/HACK messages proceeds
the same way as in the predictive mode, which allows the PAR to transmit data packets
towards the NCoA of the mobile through the same bi-directional tunnel that it uses in
predictive mode. The reactive mode of operation is illustrated on figure 2.20.

2.9.3 S-MIP: A Seamless Handoff Architecture for Mobile IP

In [85] authors define the following as primary objectives of the S-MIP protocol: “Ex-
treme Low Handoff Latency, Minimal Handoff Signaling, Indoor Large Open Space
Environment, Scalability, High Availability, Fault Tolerance”.

The key concepts in the article are:

52

Figure 2.20: Predictive mode of operation of the FMIPv6 protocol

Combined usage of the FMIPv6 [70] and HMIPv6 [184] protocols: No changes are
made to FMIPv6 and HMIPv6 protocol semantics.

Synchronized-Packet-Simulcast (SPS): By SPS authors mean simulcasting (i.e. bi-
casting) packets to the current network that the mobile node is attached to, and to the
potential access network that the mobile node is “asked” to switch onto.

A Decision Engine: The Decision Engine (DE) is similar to a MAP in its scope, and
makes handoff decision for its network domain. Through periodic feedback information
from individual ARs, the DE maintains a global view of the connection state of any
mobile devices in its network domain, as well as the movement patterns of all these
mobile devices. The DE is also capable of offering load-balancing services where it
is able to instruct ARs, responsible for fewer mobile devices, to take on new mobile
device, rather than ARs that are closer to the mobile device.

Figure 2.21 illustrates a basic S-MIP scenario. S-MIP defines six new messages:

• Current Tracking Status (CTS) message from the MN to DE. It contains location
tracking information.

• Carrying Load Status (CLS) message from the ARs to DE. The CLS message
contains the information regarding how many mobile devices an AR is currently
managing.

53

• Handoff Decision (HD) message from the DE to ARs. The HD message contains
the outcome of the handoff decision at the DE, namely which AR a MN should
handoff to.

• Handoff Notification (HN) message from the PAR to MN. The HN contains the
indication from the PAR to the MN, directing exactly which NAR the MN should
handover to (this is sent in combination with the PrRtAdv). The PAR derives the
content of the HN message from the received HD message.

• Simulcast (Scast) message from PAR to MAP. The Scast message triggers the
start of the SPS process.

• Simulcast Off (Soff) message from NAR to MAP. This message terminates the
SPS process.

Like HMIPv6 [184] the S-MIP protocol also modifies RAs in order to distribute the
address of the Decision Engine.

Note: During the following authors seem to consider an AP and an AR to always
coincide and call both an AR. It should also be noted that FMIPv6 protocol semantics
been different at the time the article was written as they do not match those of the latest
FMIPv6 version even though authors explicitly declare them to remain unchanged.

Upon receiving a beacon advertisement message from the newly discovered ARs
(or rather APs), the MN initiates a handoff by sending the RtSolPr message to the PAR
(currently a handover is only initiated after an FBU message and not an RtSolPr). At
that point the PAR sends HI messages, to all the potential NARs identified by the MN
in the RtSolPr message. This HI message contains within the requested care-of address
(CoA) on the NAR and the current care-of address being used at the PAR. All NARs
will respond to the HI message with a HAck message either accepting or rejecting the
new CoA. As specified in [85], if the new CoA is accepted by the NAR, the PAR sets
up a temporary tunnel to the new CoA. Otherwise the PAR tunnels packets destined for
the MN to the NAR, which takes care of forwarding packets to the MN temporarily. In
response to the RtSolPr message, the MN will receive a PrRtAdv messages from the
PAR, similar to the hierarchical scheme.

ARs send CLS messages to the DE periodically (every 3 seconds approximately)
as a reply to the modified Router Advertisement message (with DE reply option). The
CLS message indicates how many mobile devices are associated with a particular AR
as well as the IP addresses of those MNs. A CTS message is generated by the MN
every time it receives a L2 beacon advertisement from the ARs. Each CTS message
contains the signal strength of the detectable AR and the respective Ids of the AR. The

54

Figure 2.21: A handover scenario using S-MIP

signal strength and AR Ids serve as MN’s location tracking information. The current
AR will forward this tracking information (CTS) every second until the reception of
the HD message from the DE. The MN may send the tracking information to other
ARs, other than the current AR, if the connection to the current AR is poor. In this

55

case, duplicated CTS messages will arrive at the DE, which will simply discard the
duplicated messages. After analyzing the CTS and CLS messages, including tracking
the mobile node’s movement for a short period (minimum of 3 seconds, analysis shown
in Appendix C), the DE sends HD messages to all participating ARs for the specific
mobile node requesting a seamless handoff. In turn, the PAR sends a HN message
together with the PrRtAdv to the MN indicating exactly which AR that the MN should
switch to.

Next, after receiving the HN, the MN sends a FBU message to the PAR containing
the new care-of address. Upon receiving it, the PAR would send an Scast message to
the MAP initiating the simulcasting of packets. All packets received by the MAP and
destined for the MN are now sent to both the PAR and the NAR. After receiving the
FNA the NAR will start delivering packets from the FMIPv6 buffer to the MN and once
this buffer is empty it would turn off bicasting by issuing an Soff message towards the
MAP.

Authors provide an analytical evaluation (simulations) of S-MIP that “prove” it to
be an effective protocol. It should be noted that very little detail of these simulations is
actually given to the reader. Furthermore, the exposed results show a connection loss
inferior to 100ms which most probably means that L2 handover time and connection
loss are most probably not considered. Nevertheless, the document introduces some
worthwhile concepts such as the presence of a Decision Engine, and network aided
handover based on AP load.

2.9.4 Bi-casting

One way of extending the FMIPv6 protocol involves a method often referred to as Bi-
casting or n-casting [124]. The main idea behind it is to simply duplicate all traffic
intended for a mobile terminal over a short period of time, with the purpose of transmit-
ting all MN bound data packets not only towards its current location, but also towards
one or more other locations where the terminal is likely to move. The result intended by
this technique is reducing the number of packets lost during the time of a handover and
clearing any hesitations over choosing the optimal moment of initiating the tunnelling
of data packets between the PAR and the NAR in the FMIPv6 protocol.

An extra advantage comes from the fact that bi-casting data flows is one good solu-
tion of the ping pong effect (successive handovers among the same two IPv6 subnets).
The bi-casting method can also be used in the case of the traditional MIPv6 protocol
or the HMIPv6 protocol. The procedures being almost identical in these various cases
(with the only difference being the entity that is actually doing the bi - casting: e.g.,

56

access router, home agent or MAP). For the sake of simplicity we will mainly focus on
the traditional MIPv6 protocol.

In order to use bi-casting, a mobile node must be able to simultaneously manage
multiple care-of addresses. On the other side, the home agent must also be able to
associate more than a single care-of address per terminal, which actually amounts to
being able to support multiple binding-cache entries for the same node. The bi-casting
method does not require new messages, all information that needs to be exchanged
between a mobile and the bicasting entity is piggybacked in existing MIPv6 messages.

Figure 2.22: Bi-casting

When node is ready to start the bi-casting procedure (e.g., in a case) of pending
handover, all it has to do is send to its home agent a Binding Update containing the
new CoA address that it is going to use in addition to the one it currently has. Setting
specific bit in the BU to 1, allows the mobile to indicate to its home agent, that the CoA
transported in the BU is a secondary, additional address, and that the home agent should
not remove its existing association.

57

When it receives a message with the bi-casting bit set to 1, the home agent creates a
new entry in its binding cache and it initiates the transmission of data packets towards
all the care-of addresses known for this particular terminal. In case it has active sessions
with correspondent nodes that also support the MIPv6 protocol, the mobile node can
send bi-casting BUs to them too. If this is not the case, or the correspondent nodes
simply do not support multiple associations, they will simply ignore the bi-casting bit
and proceed as with a normal handover.

The amount of time that the home agent, and those of the correspondents that sup-
port bi-casting, should keep the multiple associations active is indicated in the BU that
initiates the whole bi-casting procedure. After the expiration of the bi-casting timer, the
home agent would update its binding cache and replace all earlier CoA bindings with
the new ones. Figure 2.22 illustrates the whole bi-casting procedure.

It is important to note that having the home agent do all the bi-casting for the termi-
nal is a solution that lacks scalability. In this situation all traffic bound for the mobile
terminal is duplicated on all the way from the home agent to the terminal while in most
cases all data packets would generally follow the same route almost all the way to the
MN except from the last several hops. This generates a significant amount of extra net-
work traffic. It is therefore reasonable to only deploy bi-casting together with protocols
such as FMIPv6 and HMIPv6 where all packets could be duplicated by either a PAR or
a MAP.

2.10 Conclusion

High popularity of wireless devices and rapid deployment of Wi-Fi networks have raised
user expectations for uninterrupted connectivity. Members of the research community
have been working for several years on different mechanisms that would allow for trans-
parent mobility and enable users to roam through wireless networks without interrupting
their communication sessions or experiencing lower quality.

In this chapter we have presented the mechanisms that allow network protocols on
the different OSI model layers to handle such mobility and we have also pointed out
some of their shortcomings:

• The IEEE 802.11 standard defines basic mechanisms that enable mobile Wi-Fi
terminals to reestablish layer 2 connectivity when moving from one access point
to another. However, the scanning phase of the layer 2 handover, as defined in the

58

IEEE 802.11 standard, may be excessively long and cause interruptions of more
than several seconds.

• On the network layer, the support for transparent layer 3 mobility in IPv6 net-
works has been addressed by the design and implementations of a new protocol.
Among the various solutions proposed for this problem it now seems that the
MIPv6 protocol has been widely accepted as the de-facto standard for handling
network mobility. Yet, some of the mechanisms associated with this protocol are
still causing lengthy connection disruption intervals during the layer 3 handovers.

• Finally, we have also described solutions for handling mobility at the applica-
tion layer using the SIP protocol. Such solutions have the advantage of being
very easily deployed in existing network configurations since they do not require
modification of lower layer protocol entities or OS components. However, being
situated at the topmost OSI stack layer, such applications are subject to movement
detection delays accumulated by the lower layers

In the following chapters of this thesis we will present our work on evaluating and
optimizing mobility on each of these layers. We start by describing a way of using link
layer triggers with SIP mobile applications in chapter 3. In chapter 4 we go through
an extensive experimental evaluation of one of the most popular mobility solutions -
the Fast handovers for Mobile IPv6 protocol, and then in chapter 5 we describe a set
of mobility optimizations using various techniques such as the use of multiple wireless
interfaces and an FMIPv6 implementation aided by geographic positioning information.

59

Chapter 3

Optimizing VoIP mobility at the
application layer

As we have mentioned earlier (Section 2.4), one of the ways to manage mobility is
to handle it in the applications themselves. There are numerous advantages to this ap-
proach, such as the fact that application layer mobility allows avoiding the encapsulation
and the triangulation typical for Mobile IP.

Handling mobility with application layer protocols such as SIP is an easy to setup
and deploy solution that does not require the installation of any new network layer
entities such as the Mobile IPv6 Home Agent for example. It is therefore possible to
use it even in cases where one does not have control over the network infrastructure,
which is the case of most home and small office users. In this chapter we present an
evaluation of one such solution. We also describe the various optimizations that we have
experimented with, such as using Cross Layer Triggers (CLT), and removing DAD.

Acknowledgement: Work described in this chaper has been funded by a research
contract with Orange Labs, France.

3.1 Analytical evaluation of application layer handovers

The handover process over WLAN, when controlled by an application layer entity, con-
sists of 3 major phases : Layer 2 handover, Layer 3 address configuration and Applica-
tion Layer Handover which gives us a total handover time of :

61

T = T (L2) + T (L3) + T (APP) (3.1)

1. T(L2) - Layer 2 handover - synchronization, authentication, and association. We
will be calling the time necessary for a Layer 2 handover - T(L2) 160ms [137].

2. T(L3) - Layer 3 address construction - Router Solicitation, and Router Adver-
tisement. The time needed by Layer 3 to construct a new network address is
referred to as T(L3). T(L3)= T(movement detection) +T(DAD). Assuming that
the movement detection process is terminated by the reception of an RA we have
T(movement detection) 750ms [192], and T(DAD) 1500ms [192, 141]

3. T(APP) - Application Layer handover - Session reinitialization, referred to as
T(APP) consists in the time that it takes the application layer to detect the address
change, send the SIP re-INVITE request, and re-establish the media flow towards
the new location of the MN. In our testbed this comes down to the following
T(APP) T(app layer movement detection) + 50 ms

In this thesis we focus on handover optimization by bringing T(L3) and T(APP) to
a minimum. T(L3) depends mainly on the delay accumulated before receiving an RA.
To bring that to a minimum an MN may send a Router Solicitation (RS) or a router
may send RAs at a small interval. Both have their inconveniences: [141] specifies that
responses to RSs must be randomly delayed by 0-500 ms and having dense RAs incurs
extra traffic of approximately 14 kbps when sending RA frames at their minimum size
of 88 bytes. On some networks, consumption of such bandwidth may be undesirable.
T(APP) may vary according to implementations. The only way for an application entity
to get notified for a mobility event is to cache a node’s network address and perform
periodic verifications for a change. The exact interval at which these verifications would
occur is quite delicate to determine since big values bring to a delay in detecting node
movement and short intervals may take significant resources on the host machine.

In our solution a mobile node would send an RS right after moving to a new subnet.
This would cause a nearby router to respond with an RA (after introducing an average
delay of 250 ms) and speed up address construction by Layer 3. Once the MN receives
the RA, it does not perform DAD in order to avoid the significant delay it implies, as
explained in section 1.2. Right after that the application entity, controlling handover and
mobility, would send its session re-initialization message to a CN.

Table 3.1 shows estimated time values needed by each layer to complete the han-
dover process.

62

Table 3.1: Handover duration by layers

SIP SIP+DenseRA SIP+CLT r
L2 Handover - T(L2) 160 ms 160 ms 160 ms
L3 Autoconf - T(L3) 1900 ms 50 ms 260 ms
SIP Handover 50 ms + detection 50 ms + detection 50 ms

3.1.1 Description of the optimization

SIP is an application layer protocol and as such standard SIP entities could only rely on
indirect mobility notification such as constantly scanning local addresses for a change.
A mobility event would reach a SIP application only after all procedures described in
section 1 have completed and, assuming that there are no lower layer mobility handlers
(such as MIPv6 [103]), it is obliged to acquiesce to delays imposed by lower layers (e.g.
waiting for an RA).

On the link layer level, though, there is an underlying awareness of connection
events, which one might convey to a SIP application. If this information is available, it
is always available faster than multicast-ed RAs and hence address changes.

Link-Layer movement, however doesn’t necessarily mean that subnet and network
address have changed so an RA must be solicited to confirm movement.

In our solution we introduce a Cross Layer Module (CLM), figure 3.1, that interacts
with link, network, and application layer entities. Many network cards support notifi-
cation model that enables communication with user-space processes. The CLM listens
for event notifications and would send an RS every time an AP change is reported (i.e.
right after the reception of an Association Response). The corresponding RA response
is received and processed by the Network Layer. The network address is thus updated.
The CLM on its turn uses the RA as a trigger to send a notification to a pre-registered
application layer SIP entity and it is able to send its session re-initialization message
(re-INVITE).

The implementation of CLM does not require any changes in the network config-
uration and will behave the same way over networks with dense RAs and standard
RFC2461 [141] compliant networks (i.e. with standard density of RA emissions).

63

Figure 3.1: Cross Layer Module Architecture

3.2 Implementation and testing

3.2.1 Testbed

The testbed used for testing the proposed optimization consists of three IPv6 access
networks. Two of these are equipped with an 802.11b Wireless LAN access point.
All APs are Cisco Aironet 350 series. Handovers occur back and forth the two IPv6
networks equipped with an AP. Network topology is shown on figure 3.2.

MNs are Linux equipped terminals with modified IPv6 stacks so that no DAD is
performed, as proposed by [140].

We implemented the CLM as described in the previous section. We also modi-
fied a SIP client called the SIP Communicator [15] so that it would handle incoming
reINVITEs and interact with the CLM (i.e. send a re-INVITE upon CLM mobility
notification).

3.2.2 Experimental evaluation results

We have measured the handoff delay with SIP terminal mobility in our IPv6 testbed.
Three different scenarios have been considered: (a) SIP mobility over a network with
standard RA density (400 s) and with DAD; (b) SIP mobility over a network with dense

64

Figure 3.2: Testbed network configuration

Table 3.2: Mean values for results from experiments with cross layer triggers

Case L2 start L2 end Address Autoconf reINVITE OK Data
(a) 0 0,165 407,54 409,149 409,192 409,2
(b) 0 0,165 0,755 2,149 2,199 2,247
(c) 0 0,168 0,666 0,699 0,756 0,797
(d) 0 0,167 0,313 0,346 0,395 0,454

RAs (750 ms) and with DAD; (c) Standard SIP mobility over a network with dense
RAs (750 ms) and without DAD; (d) SIP mobility of a node using Cross Layer Triggers
(CLT). The table shows the handoff delay for each of these configurations. Values shown
in the table are the average result of ten successive handovers for each configuration.

Table 3.2 shows the signalling delay measured from the first Probe Request sent by
the Mobile Node after entering the new BSS until the first UDP data packet received by
the MN on its new location. As we can see, Layer 2 trigger usage combined with kernel
modifications (removed DAD) have reduced handoff delay by 1500 ms to over 400 s for
some cases. The same tests are illustrated on figure 3.3.

65

Figure 3.3: Cross layer triggers experimentation results

3.3 Conclusion

In this chapter, we have described an optimization of the handover process, its analyt-
ical evaluation, and sample results for SIP mobility in an IPv6 laboratory testbed. In
our performance study we concentrate on optimizing the movement detection part of
the handover process. We observe that using Cross Layer Triggers (CLT) and removing
DAD greatly improve SIP mobility. Results shown here reflect handoff delays for stan-
dard network configurations, networks with dense RA emissions, and MNs with and
without kernel modifications and CLT usage.

It is however still clear that mobility solutions implemented solely at the application
layer could not serve the purposes of a long-term deployment. Despite the fact that even
though a handover latency of 450ms is impressive from a Layer 7 perspective, it is far
from enough when trying to obtain completely seamless mobility. In addition to this,
SIP mobility would only give the possibility to roam uninterrupted, to applications that
explicitly implement it.

66

For all of the above reasons we have decided to direct our next efforts to the lower
layers and to the optimization of Mobile IPv6 based mobility.

67

Chapter 4

Evaluating a generic layer 3 solution

As we have mentioned in Section 2 we consider the FMIPv6 protocol as one of the most
promising mobility solutions. As a result a considerable amount of time of this thesis
has been spent on the implementation, evaluation and improvement of this protocol.
The Louis Pasteur University in Strasbourg, has produced one of its first implementa-
tions, which was, by the way, the first to be distributed under an open source license as
fmipv6.org FMIPv6 implementation [66].

In this chapter we go through an experimental evaluation of some of the most im-
portant scenarios and use cases of the FMIPv6 protocol. The purpose of this evalua-
tion has mainly been to understand the strengths and weaknesses of this protocols, and
see which of its features, if any, would need further work and optimization. Acknowl-
edgement: Work described in this chaper has been funded by a research contract with
Orange Labs, France.

4.1 Previous evaluations of the FMIPv6 protocol

To this date, numerous studies exist on the behavior of FMIPv6. [111] is one of the
early papers available on the protocol. Authors provide an evaluation based upon a
proprietary experimental implementation and also propose a context transfer scheme
(the latter being outside the scope of our current study). The paper was published a
relatively long time ago (2001 - approx. 5 years) when still little was known about
FMIPv6 and there were many uncertainties concerning its performance. It was therefore
of considerable use and had a significant impact on following work in the IETF. Yet we
find the experimentation setup somewhat unrealistic and results to be incomplete from

69

a today’s point of view. Handovers, for example are triggerred upon reception of a user
issued command, and do not make use of L2 triggering or any other scheme. More
importantly, experimentation results only include the length of the handover procedure
but not the handover latency (the amount of time that connection was unavailable and
packets were being dropped by the AR). Last but not least, there is no consideration
of candidate AP discovery which we believe to be critical in the current state of the
protocol (we talk about this in section 4.3.5).

In [80] authors provide an analytical evaluation and comparison of the FMIPv6,
HMIPv6 [184], and MIPv6 protocols, based on default values provided by the respective
RFCs and drafts. Given the analytical approach however, many of the practical aspects
that we already mentioned (e.g. scanning, packet loss and etc) have been neglected or
not fully taken into account.

Authors of [84] analyze a combination of FMIPv6 and HMIPv6 and present an
evaluation with NS2 [14] in the case of a TCP flow. Both HMIPv6 and FMIPv6 are
reported to reduce MIPv6 handover latency 7 and 15 times respectively. The paper
also uncovers a problem with the superposition of the two handover optimizations that
consists in packet disordering due to ARs being often closer to the HMIPv6 MAP than
to each other. This problem seems to be tampering with TCP flows and thus hindering
the maximum potential handover performance. We believe that the document is quite
useful and provides valuable insight on properly combining both optimizations. Yet it
doesn’t seem to have the objective of providing detailed and realistic protocol feedback.
Values for L2 handover delay for example are fixed to 20 ms (which might correspond
to a certain link layer technology but this could hardly be the case of IEEE 802.11).

Another performance analysis of FMIPv6 is provided in [149]. Authors focus on
protocol overhead, wrongful anticipation, and "eating up buffer space" in access routers,
and study how these problems relate to the "sensitivity" of L2 Triggers. They show that
these vary largely depending on how close in time is the link layer trigger event to the
actual connection disruption. They also give an optimal value for the time distance be-
tween this event and the disconnection (i.e. how long before the MN loses connection
should it start its handover) and prove it analytically. We find, however, that this re-
search is of little use for implementors and protocol designer since the exact moment in
time that connection disruption happens is rarely (if ever) known in advance. We also
believe that authors slightly overstate the problem with the protocol overhead since it is
negligible compared to the data flows typical for VoIP, that are often used as a reference
for handover performance evaluations.

Kempf, Wood and Fu provide in [108] yet another evaluation based upon experimen-
tation with a proprietary implementation. Experiments make use of a wired handover
emulator configured for 40ms link layer handover length (i.e. connection is unavailable

70

for 40 ms) and 10ms of packet delaying. The values were reportedly chosen to match
those of 3G systems. Yet we find that this emulator adds a level of uncertainty and
though useful to some extent from an analytical point of view - it (like all simulations
and emulations) introduces some doubts as to the validity of the experimentation in real
world deployments and usage of the protocol over wireless networks. Link layer trig-
gers for example are (once again) configured to be sent at a predefined amount of time
before the link layer handover is to occur. Access routers receive an instant link down
trigger for mobile nodes belonging to their network which is not quite the case in reality
and especially not for IEEE 802.11 that have not been taken into consideration in this
work.

4.2 Testbed and Test Scenarios

The testbed that we have built and used both for the development of the implementation
and for our experiments consists of three access routers a mobile node and a corre-
spondent node (Figure 4.1). Two of the access routers, FMIP-AR1 and FMIP-AR2,
both had a commercial AP connected on one of their wired interfaces. During the tests
the mobile node FMIP-MN switched back and forth and performed handovers between
those two routers. A third router FMIPNET was both serving the role of a home agent
and interconnecting the rest of the testbed with the Internet. A correspondent FMIP-CN
node, connected to the internet from a completely different IPv6 subnet in our campus,
was used for generating flows destined to the FMIP-MN.

All three routers were running the Linux Operating System with the USAGI mod-
ified 2.6.8.1 kernel and the Quagga Routing Suite[154] (version 0.98.4). The routing
protocol used both inside the testbed and on the interconnection link was RIPv3. FMIP-
NET was using the MIPL 2.0rc2 [9] Home Agent implementation from the Helsinki
University of Technology.

FMIP-AR1 and FMIP-AR2 were also running the fmipv6-ar router implementation
from fmipv6.org [66].

FMIP-MN was running the Linux Operating System with the USAGI modified
2.6.8.1 kernel and was equipped with a single wireless interface using an Atheros chipset
and the MADWiFi [44] driver. The MADWiFi version running on the MN had minor
modifications that optimized its behavior during handovers controlled by userland ap-
plications (i.e. the fmipv6 daemon) and thus allowed it to perform rapid L2 handovers
(note that these modifications do not in the least deviate from standard IEEE 802.11

71

Figure 4.1: The fmipv6.org Experimental Testbed

practices). FMIP-MN was also running the fmipv6-mn mobile node implementation
from fmipv6.org [66].

The reason for choosing this exact configuration is because we believe it’s widely
spread and Wireless LAN deployments often include one or more of its components.
We therefore believe that results obtained in this experimentation set are of high interest
and should be considered when implementing and/or improving the protocol.

Fig 4.1 provides a diagram describing the testbed and the way it’s deployed.

For all predictive testing, the mobile node (FMIP-MN) was beginning the experi-
ment attached to one of the FMIPv6 routers (FMIP-AR1 or FMIP-AR2). The Tx Power
on that router was then manually lowered through a Wireless Extensions [193] ioctl
call. The fmipv6.org MN implementation uses link layer information provided by the
MADWiFi driver through the Wireless Extensions package. Whenever quality dropped
below a configurable threshold (which is what happened upon modification of transmis-

72

sion power on the AP) the implementation performed a handover and switched to the
other router.

Reactive handovers were tested by turning down the wireless interface of the router,
that FMIP-MN was currently attached to and thus forcing it to associate with the other
one.

We are aware that these scenarios do not represent all possible FMIPv6 use cases but
we believe they are covering and put into use most key parts of the protocol semantics.

4.3 FMIPv6 evaluation results and analysis

4.3.1 Predictive Handovers

The predictive mode of operation of the FMIPv6 protocol is the one that best addresses
handover issues and allows bringing connection disruption time and packet loss to levels
that would satisfy most existing real time applications.

Figure 4.2 contains results from a (representative) experiment with one such predic-
tive handover. Exactly 12.3 seconds after the beginning of the experiment the mobile
node, by regularly scanning link layer quality, detects that it has crossed the predictive
handover threshold and decides to begin a handover. It therefore sends the Fast Bind-
ing Update that we see as the first FMIPv6 message on Figure 4.2. In the experiment
at hand, the FBU does not get immediately answered and the corresponding FBACK
is only received after a retransmission of the FBU. This actually happens quite often
since before sending an FBACK, the PAR needs to send a Handover Initiate message
to the NAR, wait for a Handover Acknowledge and (in the case of fmipv6.org) create
the forwarding tunnel so that it could be already operational once the MN has moved to
NAR’s network. Right after receiving the FBACK (at time 12.294), the MN starts an L2
handover which lasts for about 10 ms. After it arrives on the new link (at approximately
12.312s) it announces its arrival by broadcasting an ICMPv6 Neighbor Advertisement
and sending a Fast Neighbor Advertisement to NAR. The FNA also allows routers to
stop buffering packets and forward those that have been received through the tunnel
prior to MN’s arrival. In this case there is one such packet and it is the one immediately
following the last packet received by the MN on PAR’s link.

As shown on Figure 4.2 the MIPv6 implementation on the MN (MIPL v2.0 in our
case [9]) sends a Binding Update upon detection of MN’s new address, modifies its
tunnel to match NAR’s link and thus ends the usage of the FMIPv6 tunnel. In this

73

PreH

L2Han

F6Tun

PostH

 12.2 12.25 12.3 12.35 12.4 12.45 12.5

BU(F)NAFBACKFBUFBU

H
an

do
ve

r
S

ta
ge

Time

A Predictive Handover with Buffering at the NAR

Data Packets
Link Layer Signalling

MIPv6 Signalling
FMIPv6 Signalling

Figure 4.2: Packet loss and handover latency for a predictive handover

experiment that has happened 133 ms after the FNA has been sent. The reason for
this delay comes from the fact that in order to confirm movement, MIPL had to send
a Router Solicition and wait for the corresponding advertisement, which is by the way
purposefully delayed by the NAR (see [141]) before sending the BU. The advantage that
FMIPv6 offers in this case is the fact that an FMIPv6 implementation "knows" exactly
what handover has taken place since it is the entity that has caused it and that controls
it.

The time that the MN has suffered connection loss is equal to 10.42ms and there has
been no packet loss as the one packet that arrived while the MN was out of reach, was
buffered and later resent by the NAR.

4.3.2 Buffering issues

An interesting phenomenon that we have observed during our predictive experiments
is the fact that L2 triggered events may sometimes be delayed significantly and thus
have an impact on protocol performance. The standard mechanism used for L2 trigger
event delivery to userland in Linux based Operating Systems is through RTNETLINK
sockets. When and under what conditions these are sent is currently a matter of driver
behavior and though there is intensive work on standardizing them this is not currently
the case. When we were using a Wireless LAN card managed by the HostAP [83] driver
for example, the events received indicating L2 handover end were received more than
100ms later than the MN had actually associated with the new AP. In such cases the
MN’s (Fast) Neighbor Advertisement on NAR’s link suffered significant delay. And
in the cases where NAR was providing an insufficient amount of buffering (such as

74

neighbor discovery’s default 3 packets for example [141]), packets were being dropped
while they could have been received by the MN, had they been sent.

PreH

L2Han

PreEv

F6Tun

 42.65 42.7 42.75 42.8 42.85 42.9

FNAAssocFBACKFBUFBU

H
an

do
ve

r
S

ta
ge

Time

A Predictive Handover, without Buffering at NAR

Data Packets
Link Layer Signalling

FMIPv6 Signalling

Figure 4.3: Packet loss and HO latency without buffering at NAR

We therefore conducted a set of experiments with the host AP driver on the MN side
and without any buffering being done by the NAR. One such experiment, represented on
Figure 4.3, shows that the MN receives 5 packets before it gets notified of L2 attachment
and loses 1 because of the lack of buffering on the NAR. Using buffering would have
saved that one packet (provided the configuration at NAR had allowed it to store a
sufficiently large number of packets) but would have delayed the other 5 by more that
110ms. It is difficult to say whether it would have been better for the MN to receive all
packets saved by the buffering but delayed by the L2 trigger delay or rather get them
immediately but lose one. We believe that the MN alone could determine whether short
handover latency or low packet loss is more critical to it as that depends on the types of
applications being run on the mobile node. Yet the FMIPv6 protocol does not provide
MNs with a way to indicate their preference to routers and this is one of the issues that
we’d like to resolve in future work.

4.3.3 Reactive handovers

On figure 4.4 we see results from a reactive handover scenario. At a certain point of the
experiment we turned down the accesspoint that FMIP-MN was associated with. The
MADWiFi driver detects link loss through missed beacons. By default the number of
beacons that need to be lost on a link for MADWiFi to declare it down is 7 which makes
for at least a 700ms delay. We modified that number to 3 in order to achieve better per-
formance for reactive handovers. Do notice that losing link layer connectivity generate
a completely different event from the one caused by a drop in signal strength. Signal

75

strength is measured upon received packets and if there is no AP to send packets, no
signal strength would be measured and no link quality event generated. Thus there is no
risk of wrongfully beginning a predictive handover and waiting for the FBU transaction
to expire (700 ms with default values from [70]) before initiating a reactive handover
and thus losing time on a dead link.

2.289s after the beginning of the experiment or 375 ms after the last data packet
received on the link the fmipv6.org daemon on the MN detected that the link was down
and started an L2 handover to the access point that seemed to offer best quality during
its last scan (results being stored by the FMIPv6 daemon itself). Right after it arrived
on the new link the MN sent an FNA, to the NAR, followed by an FBU for the PAR.

PreH

L2Han

F6Tun

PostH

 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

BUL2.Start

H
an

do
ve

r
S

ta
ge

Time

A Reactive Handover

Data Packets
Link Layer Signalling

MIPv6 Signalling
FMIPv6 Signalling

Figure 4.4: Packet loss and handover latency during a reactive handover.

Note that this is not really the standard protocol behavior since the FMIPv6 [70]
protocol advises that FBUs in reactive handovers SHOULD be encapsulated in the FNA
(as opposed to sending them separately). We didn’t take this approach as it was caus-
ing problems with the Mobile IPv6 stack on the router which ignored mobility header
packets with the "next header" value different from NONE. From that point on, the
handover continued in the manner seen in previous sections - PAR started tunnelling
packets destined to MN’s PCoA to its NCoA and once MIPL detected the change as
well, it modified the MIPv6 tunnel to point to NCoA. The handover has thus caused us
a connection loss during approximately (less than) 343.53ms and caused us to lose 17
data packets.

4.3.4 Candidate Access Point Discovery

Figure 4.5 shows what we believe to be one of the currently most flagrant operational
issues with the protocol. FMIPv6 does not provide a way for mobile nodes to discover

76

Candidate (neighbor) Access Points. Sending a wild card RtSolPr to PAR requests a
list of Access Point link layer addresses known to the AR but it would by no means tell
the MN whether these APs are within its coverage or either of their link characteristics
such as channel/frequency, ESSID and others. A mobile node has therefore no other
choice but to perform a wireless scan and only then send an RtSolPr demanding infor-
mation on the discovered packets. The length of the scanning procedure may vary from
one implementation to the other but is generally considered to be the heaviest part of a
Wireless LAN handover. In our testbed we performed tests with two kinds of WLAN
cards - one that supported IEEE 802.11a/b/g standards and one that only worked for
IEEE 802.11b/g. Those supporting only the "a" and "b" standards were by default per-
forming the complete scan procedure over the 13 standard channels for an average of
2670ms. The cards that also supported the "a" standard in addition to the "b" and "g"
required more time in order to "sweep" through 802.11a’s frequencies which made for
an average of 15266ms. After modifying the MADWiFi variant of MaxChannelTime
(called by the implementors as "dwelltime") from its default MADWiFi value of 200ms
to the minimum allowed 100ms, times for b/g and a/b/g cards dropped to 1368ms and
4728ms respectively.

AftSc

BefSc

 11 11.5 12 12.5

ScanEndScanStart

H
an

do
ve

r
S

ta
ge

Time

Packet Loss during the IEEE 802.11 Scanning Procedure

Data Packets
FMIPv6 Signalling (RtSolPr/PrRtAdv)

Figure 4.5: Packet loss and latency during scanning for candidate APs.

Figure 4.5 represents the impact that the shortest of the above times has had on
packet loss. In that particular example 69 packets have been lost during a frequency
scanning, that took 1368ms.

Note that performing this scan at an arbitrary point of FMIPv6’s execution not only
has a significant impact on ongoing communications but is by no means a guarantee that
at the time the MN initiates a predictive or reactive handover, the set of candidate APs
discovered during the last scanning procedure is still valid.

77

4.3.5 Results summary

Table 4.1 contains a summary of the results exposed in the previous subsections. One
could easily see that predictive handovers are making for great handover performance by
bringing packet loss and latency to a minimum. We do not provide a separate compara-
tive "bare MIPv6" set since the purpose of this document is not to show the advantages
of the FMIPv6 protocol over standard MIPv6. This has been already done far more than
once in documents referenced in the 4.1 section. Furthermore, we believe that such
comparisons are somewhat "unfair" as MIPv6 implementations do not generally pro-
vide any management of the handover destination selection process, the reason for that
being the fact that MIPL’s primary goal is to provide transparent mobility handling (i.e.
avoid addressing and routing problems), and not protocol deficiencies. FMIPv6 on the
other hand was designed to do just that. We have, however, included MIPv6 signalling
so that the reader could could see the way both protocols interact.

Table 4.1 shows a summary of the losses during the different experiments and parts
of FMIPv6 operation. The problem with candidate access point discovery is obvious -
and losses in packet delivery caused by that problem greatly overpower whatever gains
have been accomplished during the handover itself.

Table 4.1: Results from different handover scenarios
Test Conn Pack Pack FMIP Mvmt

Scenario LossTime Loss Buff Tunnelled Detect
Predictive 10.42ms 0 1 8 21.07ms
Buffer Issues 9.35ms 1 0 5 104.80ms
Reactive 343.53ms 17 0 0 332.21ms
Scanning 1368.11ms 69 NA NA NA

4.4 Drawing some conclusions from this evaluation

After studying the results shown in this chapter, we were quite convinced, that FMIPv6
has the potential of bringing considerable optimizations upon the use of Mobile IPv6 for
packet loss sensitive applications such as VoIP. According to experimentation conducted
in our testbed the protocol considerably reduces (and in some cases even eliminates)
packet loss (during handover) and handover latency to a level acceptable for real-time
communications.

78

Yet there are obviously still issues not addressed by the protocol that remain quite
disturbing for media streaming, namely - candidate Access Point discovery. We have
shown that the impact of a wireless scan, conducted for lack of alternative ways to
discover neighboring APs, causes severe packet loss and lengthy connection disruption.

Another (rather minor, but still an) issue that we have demonstrated is the lack of
a way for the mobile node to specify whether it wishes a New Access Router to buffer
packets before the MN has had the chance of announcing itself on the new link.

Through the following chapters we have therefore presented work that we have com-
pleted on the subject, trying to resolve exactly that candidate Access Point discovery
problem and that includes elaborating alternative, non-interrupting mechanisms. One
possible way of doing so would be rendering possible parallel scanning and communi-
cation. This could be achieved through either the use of a secondary wireless interface,
rapid alternation of frequencies on a single interface through temporal division of the
medium access, or using multiple antennas on the wireless device.

We have also studied possible extensions of the protocol with new IEEE 802.11
specific options that allow access routers to send to mobile nodes, all details that they
might need for rapidly associating with a new Access Point, such as frequency, ESSID,
and authentication info.

79

Chapter 5

Optimizing IPv6 mobility

In this chapter we describe our work on optimizing transparent mobility with Mobile
IPv6. In the following sections we would present a possible way of improving MIPv6
seamless mobility and two different approaches for extending the FMIPv6 protocol in
a way that would resolve the problems related to the candidate access point discovery
phase that we discussed in the previous Chapter 4.

In Section 5.1 we will be presenting a rather generic MIPv6 improvement (i.e., not
related to one of its extensions) that allows IEEE WLAN 802.11 nodes to accomplish a
softhandover (i.e., move from one IPv6 subnet to another without losing connectivity at
all) through the use of multiple wireless interfaces, or in other words.

Next, in Section 5.2 we are using a similar technique to resolve the problems of the
Fast Handovers for Mobile IPv6 protocol, that we discussed in Chapter 4 and that are
related to the discovery of candidate access points.

Finally, in Section 5.3, we will be addressing the same FMIPv6 issue (i.e., access
point discovery) only this time we present an alternative solution where the discovery
procedure is aided by geographic positioning systems.

Acknowledgement: Work described in this chaper has been funded by a research
contract with Orange Labs, France.

81

5.1 Multiple interfaces for IEEE 802.11 nodes

A major issue with IEEE 802.11 mobility is the fact that WLAN devices are not able
to associate with more than one AP at a given moment. Most existing handover opti-
mizations are therefore based on the assumption that the handover process is inherently
accompanied by connection loss. In other words it is always considered that at a given
moment a MN is bound to lose its network connectivity and would therefore become
unreachable.

Soft Handover is the process where a MN will first connect at its new point of
network attachment and will only then drop its previous link. In order to achieve this
in an 802.11b environment we give MNs a second wireless interface. Furthermore, in
order to eliminate power consumptions concerns, we try to avoid having both network
interfaces functioning together for more than a couple of seconds (i.e. only during the
handover process).

Compared to other mobility optimizations, the multi interfaces solution has the ad-
vantage of keeping to a minimum changes to existing protocols such as Mobile IPv6
and 802.11b and does not require changes in existing standard Mobile IPv6 network
topologies (i.e. it does not define any new network entities).

During the rest of the document we will be using the following terminology and
abbreviations:

• Double Interface Mobile Node (DIMoN) - A mobile node equipped with two
(802.11b) network interfaces.

• Access Router (AR) - A DIMoN’s default router

• Previous Access Router (PAR) - The DIMoN’s default router prior to and during
its handover

• New Access Router (NAR) The DIMoN’s default router during and subsequent
to its handover

• Bicasting The splitting of a stream of packets destined for a MN into two or more
streams, and the simultaneous transmission of the streams to PAR and one or more
NARs. We use this technique to reduce packet loss during handover.

While not on the move, or rather during its stay under the coverage area by a single
access point a DIMoN would behave as a standard mobile node. All application traffic

82

would go through the currently default network interface. During that period the node’s
second interface may be in a power save mode or completely turned off.

When a DIMoN starts moving the signal that the AP casts upon it would gradually
fade away. When signal intensity goes below a certain threshold the DIMoN will “wake”
its second interface and begin with it the 802.11b synchronization procedure. The pro-
cedure is slightly different in that the selection of an Access Point after the scan has
been completed would ignore the AP the Old Network Interface is currently attached to.
If no other AP has been found during the scanning process the New Network Interface
is shut down and the DIMoN would behave as a standard MN.

Once synchronized with the newly found AP the DIMoN will form its New Care-
of Address based on the prefix of the foreign link. In case of using stateless address
autoconfiguration [192] it is highly advisable for the DIMoN to use at least one of the
movement detection optimizations described in section 2.7 above since the time that
network connectivity would be available through the Old Network Interface is likely to
be relatively short.

Next the DIMoN would be supposed to perform Duplicate Address Detection (DAD)
[142]. However, given the time that DAD normally takes to complete, it might be a
better option to either skip that part or run it in a non-blocking fashion. It is important
to notice that up to this point the Old Network Interface has remained operational and
network connectivity has been uninterrupted.

Following address configuration, the DIMoN informs its home agent of its move-
ment by sending a Binding Update (BU) message. The binding update message con-
tains the mobile node’s home address and its New and Previous care-of addresses. The
home address is included in the home address option, the Previous Care-of Address
is included in the source address field of the IP header and the New Care-of Address
is recorded in an alternate-care-of address option. The bicasting flag of this message
should be set to 1 as specified by [124]. From this point on, the home agent acts as a
bicasting proxy for the DIMoN. It receives all packets addressed to the mobile node, and
after duplicating them, sends a copy to both of the node’s care-of addresses. The HA
will then send a Binding Acknowledgement to the mobile node.

Data packets received by the HA from either of the DIMoN’s care-of addresses are
handled as in standard Mobile IPv6 - the HA decapsulates the packet and forwards the
contents to its destination.

During this part of the soft handover process (the time when the HA is doing the
bicasting), some packets would be seen twice by the DIMoN’s upper layers. This should

83

not add any complications since packet duplication is expected to happen according to
[60].

Once the BA has been received by the DIMoN it is up to it to determine when to stop
the bicasting. It could do so right after receiving the acknowledgement or when signal
intensity from one of the interfaces has gone above a certain threshold and may therefore
be considered as reliable. At that stage the node will send a second BU without including
the alternate address option so that the HA would stop duplicating packets. The node
would then turn off its other interface and the soft handover procedure is considered
terminated.

Figure 5.1 illustrates the DIMoN behavior that we have just explained.

Compared to other mobility optimizations such as FMIPv6 [70] and HMIPv6 [184]
for example, the soft handover solution has the advantage of being extremely simple.
It does not introduce any new entities in a network topology and completely reuses
existing MIPv6 message semantics, header syntax and options. Furthermore it does not
add enormous amounts of extra signalling traffic as in the case of MIPv6. The primary
advantage of the soft-handover is that there is no actual disruption and no physical
connection loss.

A major concern, often associated with multi interface nodes is elevated power con-
sumption. We try to resolve that by only using both network interfaces for a very short
interval - the time of the handover. In the following section we show that a worst case
scenario would require both interfaces to stay simultaneously lit up for a period of ap-
proximately 2s. According to [115] a wireless device that discharges for 202 minutes
without using a network interface, would lose approximately 67 minutes of battery life-
time when constantly transmitting at a maximum rate through its wireless interface.
This means that using the wireless interface during one minute would “cost” around 30
seconds of battery lifetime, or in other words, having our second wireless interface lit up
during 2 seconds, would shorten discharge time with approximately 1 second. Needless
to say this could hardly be a cause for concern.

5.1.1 Analysis and evaluation

When an active DIMoN moves to a new IP subnet, it changes its point of attachment
to the network through the following soft handover process. First Link-layer handoff
occurs to (maybe) change the wireless AP to which the DIMoN is associated. According
to evaluations such as [136, 137] the time needed for a node to attach to an AP is between
160 and 260 ms. This gives us:

84

Figure 5.1: Typical behavior of a DIMoN

T (L2) ≈ 200ms.

Where T(L2) is the time needed for Link-layer handover mechanisms to complete.

After a new Link-layer connection is established, Networklayer handover is per-
formed, which broadly involves movement detection, IP address configuration and lo-
cation update. The time this stage takes may vary depending on the movement detec-
tion scheme employed by the DIMoN. In the case of a New Access Router configured

85

in accordance with [103], it would take about 50ms (i.e., (MinRtrAdvInterval + MaxR-
trAdvInterval)/2) until a RA is received by the node.

T (MIPv6MoveDetect) ≈ 50ms.

If using a Link Layer Triggered RS against a standard RFC2461 [141] router the
node would get a RA in about 250ms (the RFC mandates a random delay between
0 and 500 ms when sending RAs in response to a RS). We will label this time as
T(LLTriggerMoveDetect).

T (LLTriggerMoveDetect) ≈ 250ms.

Once the DIMoN discovers its New AR, it performs DAD. RFC2461 [141] default
values stipulate a random delay between 0 and 1000ms before sending an initial NS
and an extra delay of 1000ms before confirming address uniqueness. This would add
another 1500 ms to the network layer handover.

T (DAD) ≈ 1500ms.

Mobility signalling procedures are then started, with the DIMoN sending its first
BU to the HA. The time needed for the first data packet to arrive after the BU leaves
the mobile node may strongly vary depending on nodes’ location. According to our
experiments this interval comes close to 60 ms:

T (TrafficRedirection) ≈ 60ms.

Keeping all the above in mind, our best case scenario would be one where no DAD
is performed (or it is run in a non blocking manner) and the New Access Router is
configured to send RAs at the interval defined in [103] or it implements the FastRA
[107].

T (BestCase) = T (L2) + T (MIPv6Movement.Detection) +

+T (TrafficRedirection) ≈ 310ms.

86

The slowest possible setup, where no movement detection optimizations are im-
plemented by the New Access Router and where DAD is completed before using the
auto-configured address:

T (WorstCase) = T (L2) + T (LLTriggerMovement.Detection) +

+T (DAD) + T (TrafficRedirection) ≈ 2010ms.

Finally, a scenario that we find most realistic is where the DIMoN uses a link-up
trigger for sending an RS and where DAD is run in parallel of network communication
(or not at all). What makes this case interesting is that no special features are required
from the network setup.

T (Optimal) = (L2) + T (LLTriggerMoveDetect) +

+T (TrafficRedirection) ≈ 510ms.

According to [8] the average speed of a walking adult person may vary between
125cm/s and 150cm/s. The 510 ms from our third (optimal) case would thus require a
minimal overlap interval length between 63.9cm and 76.9cm where network access will
be available through both access points. For indoor areas this is close to 2% of a typical
Access Point’s range [2].

5.1.2 Simulation results

To be able to completely evaluate and experiment with Soft Handovers we have used
the SimulX network simulator. SimulX (figure 5.2) was designed and developed by the
Network Research Team at the Louis Pasteur University in Strasbourg.

At the time when we were working on the Soft Handover mobility optimization,
the SimulX simulator did not support nodes with multiple network interfaces. We have
therefore implemented the feature as well as the interface selection policies and the
necessary behavior to be able to completely explore its potential.

In this section we present the results of a series of simulations run over the network
topology and scenario presented on figure 5.3.

Typically, handover duration is a key characteristic of Mobile IPv6 optimizations
since it suggests loss of network connectivity. When performing a Soft Handover a mo-
bile node remains constantly connected to at least one network. Yet it is still advised to

87

Figure 5.2: The SimulX Wireless LAN simulator

keep the process short to lower the risk of leaving the area covered by the AP before ac-
tually completing the handover (not to mention risks reasons like elevated consumption
of resources, such as processor time, power consumption and network load).Therefore
we have also added to the DIMoN the capability to receive and handle Link Layer Trig-
gers by sending a Router Solicitation.

Figure 5.4 shows the following scenario: A mobile node would start moving at time
0 as shown on Figure 5.3. Exactly 1.242 seconds later it would lose the signal from its
AP (i.e. signal intensity would drop below -82dbm). At that point signal from a second
AP has already been available for some time. The same scenario is run for three mobile
nodes, each handling mobility in a different manner.

• Node 1: implements Soft Handover and is located on a link with an RFC2461
compliant router. It is represented by the topmost bar on figure 5.4.

88

Figure 5.3: Scenario used in DIMoN evaluation tests.

• Node 2: implements standard MIPv6 and is on a link with an RFC3775 (MIPv6)
compliant router (i.e. RAs are sent every 50 ms). The node is represented by the
middle bar on figure 5.4.

• Node 3: implements MIPv6 mobility + the ability to send router solicitations.
The node is represented by the bottom bar on figure 5.4.

As we can see from the figure, Node 2 (MIPv6 MN on a MIPv6 router’s link) has
managed to perform the fastest handover of all three nodes. Yet it was in a disconnected
state for a period of about 330 ms.

The handover for Node 1 and Node 3 (see figure 5.4) lasted approximately the same
time (Node1: 532ms and Node3: 515ms). Node 1, however started handover 694 ms

89

Figure 5.4: Duration of the handover process with a DIMoN.

after beginning its movement and at the time when the signal from the first AP faded
away, it was already associated with the next one.

Next we analyze packet loss during handover. Figure 5.5 represents the same three
nodes and the number of data packets that were emitted for each node and did not get
to their destination due to connection loss. All three nodes are in the middle of a media
session using a G.711 [91] stream.

Given the short handover duration for (the middle) Node2, packets that got lost on
their way to it are fewer than in the case of (the leftmost) Node1. As expected, the
(rightmost) DIMoN, going through a soft handover has not lost any data regardless of
the relatively longer period needed to complete the transition.

Flow bicasting, inherent to Soft Handover algorithms, is often pointed out as in-
creasing network load and therefore pointed out as a major disadvantage. Figure 5.6.
shows the amount of extra network traffic caused by signaling or bicasting for the same
three mobile nodes. Each column on figure 5.6. shows the number of extra packets dur-
ing the handover and an enclosing second. As we can see the rapidity of the (middle)

90

Figure 5.5: Packet loss during handover with a DIMoN.

Node2 comes at a cost. RAs broadcasted to aid movement detection generate excessive
signaling traffic. Duplicating the data flow, quite on the contrary, turns out to be a more
economical solution since it goes on during a relatively short interval.

5.1.3 Necessary further analysis

Though simple to implement, instantly switching to a new Access Point upon signal in-
tensity drop, is not always the best strategy. It is necessary to explore further constraints.
For example, prior to requesting ceasing of bicasting, a node should make sure that at
least one of the two APs has signal intensity higher than a certain threshold. This may
turn out to be crucial for certain network topologies and non-linear node movement.
Another example constraint would be Access Point load. It would also be of interest to
define a means for the Access Point or other network equipments to initiate handover as
a way of implementing a load sharing policy.

91

Figure 5.6: Extra traffic incurred by various hadover solutions.

Combining Soft Handover with existing MIPv6 extensions such as FMIPv6 [70]
and HMIPv6 [184]is another promising field of research as it would allow for better
centralized network control.

5.1.4 Summary conclusion on the soft handover approach

This section proposes an optimization of the handover process over WLAN, employing
a model from cellular network architectures (soft handover) with the aid of an extra
Wireless LAN interface. After an analytical evaluation and some simulation based per-
formance testing it proved to be quite successful as it succeeds to virtually eliminate
packet loss during handover in our simulation scenarios. Yet further work would have
to prove the optimization merits by experimenting in real world conditions with an ac-
tual implementation. Existing mobility optimizations such as FMIPv6 would probably
be needed to extend the applicability of the solution.

92

5.2 Double Wireless Network Interfaces with FMIPv6

In the previous section we have described a solution that allows a mobile node to use a
secondary wireless interface in order to eliminate packet loss and reduce the connection
disruption time during a handover.

The results from the evaluation of this approach have encouraged us to try and eval-
uate its impact when applied on existing mobility extensions such as the Fast Handovers
for Mobile IPv6 protocol.

5.2.1 Solution Description

Applying the concept of multiple interfaces to the FMIPv6 protocol is quite straight-
forward and easy to understand. One of the protocol’s strongest points is the fact that
it completely separates the scanning phase, or in other words the discovery of nearby
access points and routers, from the rest of the handover procedure.

We have already shown in Chapter 4 that the process of switching from one wireless
network to another is quite optimal with FMIPv6. The protocol completely eliminates
packet loss and keeps the connection disruption interval lower than the maximum which
is generally allowed by jitter buffers.

We have also shown that the only limitation with the FMIPv6 protocol comes from
candidate access point discovery since it is virtually unoptimized. Connection disrup-
tion time and packet loss accumulated during this phase are so high that it they greatly
outweigh any benefits that the protocol may bring during the handover itself. It is there-
fore important that any optimizations and future work on that protocol focus on its
discovery phase.

We have thus decided to limit use of multiple interfaces only to this phase. In other
words, after every handover or on any other occasion that a node is to trigger a IEEE
802.11 scan, it would enable a secondary wireless interface and use it to perform the
scanning procedure. In order to keep unnecessary energy consumption to a minimum,
the node would disable the interface as soon as it has completed scanning and would
keep it down until the next time it needs to scan its environment. Note that the node
would only use its secondary WLAN interface for scanning and all other communication
would continue uninterrupted through the primary interface of the node.

Through the rest of this section we will describe a comprehensive evaluation of this
solution. We study behavior of a multi interface FMIPv6 node for both predictive and

93

reactive handover and we also analyze its advantages in a network initiated and a layer
two only handover.

5.2.2 An experimental performance evaluation

The testbed

Our testbed is composed of three AR-s, three AP-s, one MN and one correspondent
node. It also contains three IPv6 subnets. A top AR provides IPv6 Internet connectivity
to the rest of the testbed and is also configured as a HA. AP1 is connected to one of
the AR-s while AP2 and AP3 are connected to a second AR and hence a different IPv6
subnet. Figure 5.7 illustrates the testbed.

Figure 5.7: Testbed and scenarios used in the experiments

All devices are running the GNU/Linux operating system, except for the AP-s which
are 802.11b Cisco AP 1200 devices. The HA is running the new MIPv6 daemon for the
GNU/Linux operating system (MIPL-2 [143]). The MN and the AR-s (AR1 and AR2)

94

are using the FMIPv6 Open Source Implementation Suite (fmipv6.org [66]) which is
based on MIPL-2. We are also using a legacy IPv6 node connected to the Internet from
a point outside the testbed.

Due to the nature of the FMIPv6 protocol, the fmipv6.org implementation requires
fine grained control over the behavior of the wireless card so that it could be efficient.
We have therefore equipped the MN with a 3Com 802.11 a/b/g PCMCIA wireless card
managed by the MADWiFi driver [44]. MADWiFi is an open source GNU/Linux kernel
device driver for wireless LAN chipsets from Atheros. Our driver modifications address
the periodic scans (occurring prior the RtSolPr/PrRtAdv exchange), the link-layer trig-
gers (required for predictive handover) and the L2 handover itself.

It is important to note that for all testing we have been using an fmipv6.org specific
feature that allows all scanning to be executed on a secondary wireless interface. This
allows us to resolve (or rather circumvent) FMIPv6’s inability to provide the Link-Layer
details of candidate Access Points, such as their ESSID and frequency. By using a
secondary interface for all scanning, communication through the primary interface is
never interrupted. The candidate access point discovery problem is described in more
detail in [94, 134].

Evaluation scenarios

In order to provide a complete and consistent evaluation of FMIPv6, we have run two
distinct series of tests in two different scenarios. In Scenario 1, the MN would move
between AP1 and AP2 and it would therefore also change its IPv6 subnet, moving from
AR1 to AR2. This case represents a very common FMIPv6 demonstration scenario.
Although FMIPv6 is often presented as a L3 solution, we have decided to evaluate
its performance when optimizing L2 only handovers. In Scenario 2 the MN would
therefore be moving between AP2 and AP3, without changing an AR in the process.
(See Figure 5.7).

For both scenarios we have executed a series of tests in which the MN is in the
process of having a video conversation with its correspondent (both hosts are equipped
with a webcam and use the Gnomemeeting software [175]). We have also run a second
series of tests in which the MN receives a video stream from the correspondent node
(using VLC [42]). In the video stream case, data is encapsulated and sent through
the Real-time Transport Protocol (RTP) [178]. RTP packets have an average length of
approximately 1336 bytes and are sent every 30ms. Gnomemeeting also uses RTP only
this time the audio and video are sent in separate flows. Average audio packet size is

95

DATA

FMIPv6
signaling

DATA

 51.6 51.7 51.8 51.9 52

PAR starts tunneling
packets to NAR

Time (seconds)

Tunneled packets
Packets sent

to NCoA

Buffered packets (2)

O
LD

 L
IN

K
N

E
W

 L
IN

K

DATA
FBU

FBACK
FNA

Figure 5.8: Impact of FMIPv6 Predictive HO on a video stream

approximately 70 bytes and packets are sent every 30ms. Video packets have an average
size of 950 bytes and are sent every 160ms.

In Scenario 1, we perform an evaluation of all use cases defined by the FMIPv6 pro-
tocol: predictive handovers, reactive handovers and network-initiated handovers. Note
that the FMIPv6 specification does not define network-initiated handovers as a separate
mode of operation but we have decided to run separate tests for them as we believe,
that due to their possibility to allow for network mobility control and load sharing, they
might represent special interest to many readers and potential implementors. With the
tests run for Scenario 2, we analyze the influence of predictive handover on L2 han-
dover in order to evaluate the benefits of buffering (or lack of it) while performing L2
only handovers.

Evaluation results

Results presented in this section are obtained by running the Ethereal tool [45] on the
MN, the correspondent node and the AR-s. Every distinct test case (e.g. a Gnomemeet-
ing conversation during a Predictive Handover in Scenario 1, or a VLC streaming ses-
sion in a reactive L2 only handover) was evaluated through a series of at least ten con-
secutive test runs, which gives us a total of 13 cases and more than 130 test handovers.
Results shown on all following figures correspond to the test run whose L2 handover
time represents the median for all L2 handovers in the corresponding test case.

Figures 5.8 and 5.9 present the results for FMIPv6 predictive handovers in Scenario
1. We can see, that the predictive mode allows MN-s to not lose even a single packet

96

DATA
(downstream)

DATA
(upstream)

FMIPv6
signaling

DATA
(downstream)

DATA
(upstream)

 21.6 21.7 21.8 21.9 22 22.1

Time (seconds)

PAR starts tunneling
packets to NAR

O
LD

 L
IN

K
N

E
W

 L
IN

K
Tunneled packets

Packets sent
to NCoA

Buffered packets (4)

DATA (audio)
DATA (video)

FBU
FBACK

FNA

Figure 5.9: Impact of FMIPv6 Predictive HO on a video conference stream

DATA

FMIPv6
signaling

DATA

 50.1 50.15 50.2 50.25 50.3 50.35 50.4

Time (seconds)

PAR starts tunneling
packets to NAR

Tunneled packets

Buffered packets (2)

O
LD

 L
IN

K
N

E
W

 L
IN

K

DATA
PrRtAdv

FBU
FBACK

FNA

Figure 5.10: Impact of FMIPv6 network-initiated HO on a video stream

while performing the handover. Triggered by a link-layer event, the MN initiates the
handover by sending to its current AR (i.e. the PAR) a FBU containing the identity of
the AR that it plans to switch to (i.e. the NAR). After exchanging the HI and HACK
messages with the NAR, the PAR starts tunneling packets bound to MN and routes them
to the NAR. It then sends a FBACK back to the MN. Upon reception of the FBACK,
the MN starts the L2 handover and associates with the new AP. Once on the NAR’s link
(after approximately 20ms), the MN sends a FNA requesting the NAR to deliver all
packets that it has buffered so far. At this point data packets are still being forwarded
to the PAR by the HA and are therefore tunneled to the NAR through the FMIPv6
tunnel until the MN sends a BU from the NAR’s link allowing the HA to update the
corresponding binding cache entry. After the MIPv6 BU/BACK exchange, the HA starts
forwarding data packets directly through the NAR. The tunnel between the PAR and the

97

DATA
(downstream)

DATA
(upstream)

FMIPv6
signaling

DATA
(downstream)

DATA
(upstream)

 34.25 34.3 34.35 34.4 34.45 34.5

Time (seconds)

O
LD

 L
IN

K
N

E
W

 L
IN

K

PAR starts tunneling
packets to NAR

Tunneled packets

Buffered packets (2)

DATA (audio)
DATA(video)

PrRtAdv
FBU

FBACK
FNA

Figure 5.11: Impact of FMIPv6 network-initiated HO on a video conference

DATA

FMIPv6
signaling

DATA

 30 30.5 31 31.5

L2 HO startsShutdown of current AP

Time (seconds)

Missing reception of 7 beacons (1.324s)

O
LD

 L
IN

K
N

E
W

 L
IN

K

DATA
FNA (+FBU)

Figure 5.12: Impact of FMIPv6 Reactive HO on a video stream

NAR has been active (i.e. has been forwarding packets) for 190ms (Figure 5.8) and
134ms (Figure 5.9) on average, with respectively 5 and 12 packets forwarded through
the FMIPv6 tunnel. The lifetime of the tunnel between PAR and NAR is specified by
the MN at the transmission of the FBU. During our experiments, we configured the
MN to request the minimal allowed tunnel lifetime, i.e. 4 seconds according to [70].
Note that the MN is not required to perform DAD before sending the BU as its NCoA
is negotiated prior to the handover (through the FMIPv6 exchanges) which explains
the relatively short interval between the end of the L2 handover and the transmission
of the BU. We observe small delays during the reception (or transmission) of buffered
packets, but these delays have no impact on the user application (neither on the MN nor
on the correspondent node). As a result, the test runs for these cases are an example of
completely seamless FMIPv6 predictive mode handovers.

98

DATA
(downstream)

DATA
(upstream)

FMIPv6
signaling

DATA
(downstream)

DATA
(upstream)

 37.5 38 38.5 39 39.5

L2 HO startsShutdown of current AP

Time (seconds)

O
LD

 L
IN

K
N

E
W

 L
IN

K

Missing reception of 7 beacons (1.497s)

DATA (audio)
DATA(video)
FNA (+FBU)

Figure 5.13: Impact of FMIPv6 Reactive HO on a video conference stream

Results related to FMIPv6 network-initiated handovers in Scenario 1 are shown on
Figures 5.10 and 5.11. As expected we can see that FMIPv6 performance here is very
similar to that observed during predictive handovers. In fact, the only thing that differ-
entiates a network-initiated handover from a predictive one is that it is up to the PAR
to select a destination AP and NAR for the MN, as well as the fact that the handover
would start right after the MN has received the PrRtAdv (Figures 5.10 and 5.11). As
a result FMIPv6 network-initiated handovers, like those initiated by the MN, are in
most cases completely seamless. Note that packets sent directly to MN’s NCoA (after
the BU/BACK exchange between the MN and the HA) are not shown for readability
reasons.

Figures 5.12 and 5.13 show the performance of FMIPv6 reactive handovers for Sce-
nario 1. If a mobile node fails to anticipate a handover and does not sent a FBU from
the PAR’s link, it would perform a FMIPv6 reactive handover. To trigger reactive han-
dovers, we manually shutdown the current AP of the MN (hard reset). As we can see
from both Figures 5.12 and 5.13, it takes respectively 1.324s in the VLC test case and
1.497s when testing with Gnomemeeting for the wireless device (network card) to detect
the link failure and starts the L2 handover. In wireless LANs, a link failure is generally
detected through the Beacon messages that AP-s send periodically. After missing more
than a certain number of such beacons a node would assume that it has lost its con-
nection with the corresponding AP. Missing a single beacon frame does not necessarily
imply connection loss as the event may be due to a link layer collision. The probability
for such collisions to occur in wireless LAN-s is quite high, and wireless devices would
generally wait a certain amount of time before giving up on the connection. When con-
figured with default parameters the MADWiFi driver would wait for 7 times the default
beacon retransmission interval before reporting that the link is down. In our testbed, the

99

AP-s are configured to send Beacon every 200ms which explains the amount of time
necessary for the MN to initiate the L2 handover.

After completing the L2 handover, the MN sends a FNA and a FBU from its new
link. The rest of the handover is not different from a standard predictive one (see Sec-
tion 2.9.2). All packets sent between the shutdown of the AP and the reception of
the FBU on the PAR are lost as there has been no buffering or tunneling (the PAR
would tunnel packets for the MN only after receiving the FBU from the MN). Dur-
ing these delays, the MN has lost 60 packets for VLC (Figure 5.12) and 130 packets
for Gnomemeeting (Figure 5.13) which leads to a relatively long interruption of media
flows. For the Gnomemeeting tests the 130 packets can be divided to: 57 audio and 11
video packets (downstream) and 51 audio + 11 video packets (upstream).

As the lower performance of the FMIPv6 reactive handovers is mainly due to the
slow link failure detection mechanism of the wireless device, we have decided to fur-
ther evaluate them in some slightly different conditions. Instead of simply unplugging
the AP we shut it down through its user interface. In this case the AP sends a Disasso-
ciation Request to the MN which is now able to immediately detect the link failure and
start a L2 handover. Through the rest of this section we refer to this test case as “Fast
Detection”. We also include this test case when evaluating reactive handovers in Sce-
nario 2 (i.e. when the MN only performs a L2 handover). The results have been obtained
in the same circumstances as already explained (i.e. using VLC and Gnomemeeting).
Figure 5.14 shows the results of these additional experiments. Each dot represents the
reception of a data packet, at the time indicated in the X-axis. We have included the
results for the FMIPv6 predictive handover in Scenario 1 as a reference. During a Fast
Detection test, the MN loses an average of 8 packets, which is more than with a pre-
dictive handover, where there were no lost packets, but considerably less than the 60
packets of the standard reactive case. Using such fast detection of the link failure, the
MN could initiate the handover sooner and therefore reduce the duration of the overall
procedure. However, such amount of lost packets still introduces short flow interrup-
tions in the video. In the case of a L2 only reactive handover, for standard and Fast
Detection schemes, we have lost respectively 43 and 1 packets while the MN has been
disconnected.

In Scenario 2 we analyze the benefits of the FMIPv6 predictive mode when the MN
only performs a L2 handover. Due to the fact that FMIPv6 is often presented as a net-
work layer solution, some might argue that using it in a Wi-Fi deployment that only uses
a single subnet might be unnecessary. Therefore in order to demonstrate the benefits of
FMIPv6 in L2 only handovers, we have completed a series of tests in such an environ-
ment. Figure 5.15 shows the results from these experiments for both video streaming
and a videoconference. Each dot represents the reception (or transmission) of a data

100

 6380

 6400

 6420

 6440

 6460

 6480

 6500

 29 29.5 30 30.5 31 31.5 32

S
eq

ue
nc

e
N

um
be

r
(D

at
a

P
ac

ke
t)

Time (sec.)

Predictive HO
Reactive HO
Reactive HO (Fast Detection)
Reactive HO (L2 only)
Reactive HO (L2 only with Fast Dectection)

Handover
60 packets lost

Handover
43 packets lost

Handover
0 packet lost

Reception of
buffered packets

Handover
8 packets lost

Handover
1 packet lost

Figure 5.14: FMIPv6 Reactive Handover performance

packets at the time indicated on the X-axis. We can see that if the MN does not send
a FBU for a L2 handover (the case is referred to as no-optim. on the figure) it loses 1
packet in the video streaming use case and 3 packets for the videoconference use case.
This relatively small number of lost packets is explained by the short duration of the L2
handover. When using the information previously discovered through periodic scanning
and the RtSolPr/PrRtAdv exchange, takes approximately 20ms to complete, as the MN
could immediately send and receive packets after the L2 handover has completed. How-
ever, with even as few as 1-3 lost packets the MN would still experience noise in audio
and video rendering for both VLC and Gnomemeeting applications. When applying
the mechanism of L3 predictive handovers (cases shown as with-optim. on the figure),
the MN does not lose a single data packet because of the buffering at both the MN and
the NAR (which is also the PAR in this scenario). Despite the short delays observed in
the reception (or transmission) of buffered packets, the handover remains seamless for
the user in both the VLC and the Gnomemeeting use case. In other words it appears
that a MN can earn a lot in terms of performance when using FMIPv6 even for L2 only
handovers. Finally, Tables 5.1 and 5.2 present the average values for all results related
to our experiments.

101

Table 5.1: Results for experiments related to VLC

Handover Average HO Average Average Average User
Proc. Length (ms) P. Loss Packet Buffered Experience

Predictive 33.2 0 1.3 No interrupt.
Predictive 19.3 0 0.5 No interrupt.
(L2 only)
L2 no opt. 18.5 0.6 0 Short flow

interruption
Network 32.6 0 1.7 No interrupt.
Initiated
Reactive 1518.9 52.6 0 Long flow

Interruption
Reactive 248.4 8.3 0 Long Flow
(Fast det.) Interruption
Reactive 1442.3 45.1 0 Long Flow
(L2 only) Interruption
Reactive 20.0 0.8 0 Short Flow
(L2 only +) Interruption
Fast det.)

Table 5.2: Results for experiments related to Gnomemeeting

Handover Average HO Average Average Average User
Proc. Len (ms) P. Loss P. Buffered Experience

Predictive 36.6 0 2.3 No interrupt.
Predictive 20.9 0 0.4 No Interrupt.
(L2 only)
L2 no opt. 17.7 1.7 0 Short flow

Interruption
Network 28.9 0 1.6 No Interrupt.
Initiated
Reactive 1542.3 127.7 0 Long Flow

Interruption

102

 0

 20

 40

 60

 80

 100

 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

S
eq

ue
nc

e
N

um
be

r
(D

at
a

P
ac

ke
t)

Time (sec.)

Handover
1 packet lost

Handover
0 packet lost

Handover
0 packets lost

Handover
3 packets lost

VideoLan no-optim.
VideoLan with-optim.

Gnome no-optim. (downstream)
Gnome no-optim. (upstream)

Gnome with-optim. (downstream)
Gnome with-optim. (upstream)

Figure 5.15: Benefits of FMIPv6 for IEEE 802.11 handovers (scenario 2)

5.2.3 Conclusions and future work

The results that we have presented in Section 5.2.2 show that the performance of a
solution using a secondary interface to improve the FMIPv6 protocol is generally quite
satisfactory, even though the exact duration could vary a lot depending on the employed
FMIPv6 operation mode. The FMIPv6 predictive mode in this case has proved to be
very efficient with as few as 0 lost packets during a handover and no user-perceptible
cuts or delays at all. After successfully anticipating a movement event, every packet sent
while the MN is performing handover is forwarded to and buffered by its Next Access
Router (NAR). Once the MN is connected to its new subnet, the NAR could directly
deliver buffered data packets. This mode is clearly the main advantage of the solution.

Network-initiated handovers, that we analyzed in order to get an idea on the possi-
bility of using the protocol for purposes like load sharing, provide performance that is
virtually the same as with predictive handovers.

Not surprisingly, the FMIPv6 reactive mode is less impressive and when MNs are
not able to anticipate a handover it only allows to limit the damage to some extent. As

103

we can see from the results, the performance of reactive handovers is directly related
to the time that is necessary for the wireless device to detect link failure. The longer
this detection lasts, the more it is going to take for reactive handover to complete, and
since no buffering has been started, all packets delivered during this period of time are
lost. We have shown, however, that even in this case, a reactive mode handover could
still be performed with satisfactory performance if we have a relatively fast link failure
detection mechanism (see Figure 5.14). Note, that this problem is not related to the use
of multiple interfaces or even FMIPv6 and is also an issue with the standard Mobile
IPv6 protocol.

Finally, we have seen that using FMIPv6 with a secondary wireless interfaces (pre-
dictive mode in particular) could also reduce the number of lost packets during a layer
2 only handover (i.e. when the new access point of a MN is located in the same IPv6
subnet as the old one). Depending on the layer 2 handover latency and the rate at
which data packets are sent (respectively every 20ms and 30ms on average in our ex-
periments), the MN is likely to lose a substantial number of packets while performing
a layer 2 only handover without any optimizations. FMIPv6 allows a MN to request
packet buffering from its current access router prior to initiating its layer 2 handover, by
simply notifying it that it is planning to move to another one of its access points (i.e.
the PAR is the same as the NAR). In other words, while presented as a layer 3 specific
solution, FMIPv6 could just as easily be used for layer 2 only handovers.

In conclusion, the FMIPv6 protocol combined with the use of a secondary wire-
less interface for scanning is particularly well suited for achieving seamless handovers
over wireless LANs: predictive and network-initiated handovers prevent a MN from
losing data packets and even with reactive handovers we are still able to achieve bet-
ter handover performance than what we could hope for with the standard Mobile IPv6
protocol.

5.3 Optimizing FMIPv6 with geographical positioning
information

The goal of the solution that we describe in this section is to provide an optimized
method for discovering candidate APs and remove the delay inherent to the standard
procedure (i.e. periodically performing complete or partial scanning [130]). This solu-
tion is an alternative to the one presented in the previous Section 5.2 and its use does not
mandate the presence of a secondary wireless interface. It allows to take into account
the geographical position of an MN in order to anticipate its trajectory and choose its
next AP/AR couple accordingly. This way, based on its position, velocity and direction,

104

an MN would be able to request from its current AR the parameters of the AP it is most
likely to switch to. We also define several ICMPv6 options that an AR could use with a
PrRtAdv message in order to send L2 connection parameters to an MN so that it won’t
need to discover them through a scan.The actual handover (i.e. the way FBU, FBACK,
HI, and HACK messages are exchanged) remains unchanged and follows the procedure
defined by FMIPv6.

Our FMIPv6 extension requires MNs to be able to determine their geographical
coordinates using a generic geographic positioning system (e.g. GPS for an outdoor en-
vironment). In order to do this , existing geolocation systems generally use triangulation
based on radio signal strength as "seen" byfixed or mobile nodes with a known location.
There are three major kinds of geolocation systems: mobile-based, mobile-assisted and
network-based [185, 146]. We consider that for assisting mobility using a geolocation
system in wireless LAN, it is best to use a mobile-based solution such as the GPS Sys-
tem or the wireless LAN infrastructure itself as suggested by [72]. This is the approach
we have adopted for our experiments. In all tests scenarios MNs use a mobile-based
geolocation system, i.e. each MN is aware of its own position.

5.3.1 Database extension for Access Routers

In order to support our new candidate AP detection mechanism, we had to extend
FMIPv6 routers. As previously mentioned, FMIPv6 defines the semantics that allow
sending to an MN the properties of IPv6 subnets behind the surrounding APs before it
has actually engaged in a handover. For this purpose, every AR manages a database that
maps APs to IPv6 subnets, including the layer 3 parameters of these IPv6 subnets. We
have extended this database to include some extra layer 2 parameters related to APs. In
addition to the link layer addresses (already stored in the database), the APs are regis-
tered together with their operating channel, Service Set Identifier (ESSID), radio range,
and position (either with relative or geodesic coordinates). As this information does not
change often, the database is populated manually.

5.3.2 Mobility cache

In addition to the database described in the previous section, every AR also monitors
the MNs currently connected to its subnet and keeps their last known status in a so
called Mobility Cache. Every record in this cache contains the link layer address of the
corresponding MN, its last coordinates, the link layer address of its current AP, and a

105

context. A context is a collection of layer 2 and 3 data related to the APs that the MN
may move to. Section 5.3.3 describes the way we create such contexts.

The Mobility Cache of an AR is dynamically updated by RtSolPr messages. In
FMIPv6, an MN would generally send an RtSolPr message to its current AR when it
needs to resolve one or more Access Point Identifier (generally the link layer address) to
subnet specific information (see Section 2.9.2). We have slightly extended the purpose
of RtSolPr-s and in our solution an MN would also use them to periodically update its
geographic position with its AR. For this reason, we have defined a new ICMPv6 option,
called Position Information Option, that allows the MN to also send its coordinates
inside the RtSolPr. It contains the coordinates of the MN and the identifier of its current
AP (i.e. the link layer address).

In order to limit the signaling overhead that may be generated by frequent transmis-
sions of RtSolPr, the MN would only be sending periodic updates if the signal quality
of its radio connection with the AP has fallen below a certain level. We define a first
signal quality threshold Sa corresponding to an average quality. Whenever the signal
quality drops below Sa, the MN would start sending, the results of its position checks
to the AR which would update its Mobility Cache . The AR would then try to deter-
min if the MN would soon have to perform a handover. This assessment is based on
the AP range parameter R, that we store in the extended AR database. R corresponds
to the maximum distance between the AP and an MN that still allows for a relatively
good signal quality. As long as the distance D between the MN and its AP is shorter
than R, we assume that the MN is still well covered by its current AP. Otherwise (i.e.
when R < D), the AR would try to select a new AP for the MN according to its trajec-
tory. The combination of signal quality and distance allows ARs to overcome temporary
signal degradations or geographic positioning errors which may disturb the algorithm
behavior when taken separately. According to the results presented in [138], we have
set Sa between [-75dBm;-78dBm] and R to the half of the maximum range of the cor-
responding AP.

5.3.3 Selecting the next Access Point

As previously mentioned, the selection of the next APs is based on the trajectory of the
MNs. To do this, we determine a trajectory by applying a linear interpolation on the two
last known positions of the MN. This gives us the following parametric representation:

x(t) = Ox + t′Ux (5.1)
y(t) = Oy + t′Uy (5.2)

106

where Ox and Oy are the coordinates of a point, and Ux and Uy the coordinates of
the director vector ~U of a line that passes through that point. Let (x0, y0) and (x1, y1) be
the two last known positions of an MN. The equation of the trajectory would then be:

x(t) = Ox + t′(x1 − x0) (5.3)
y(t) = Oy + t′(y1 − y0) (5.4)

We assume that the coverage area of an AP is a circle. Let us denote the radius of
this circle as G and let (a, b) be the coordinates of its center (the geographical position
of the AP). The equation of the boundary of its coverage area would then be:

G2 = (x − a)2 + (y − b)2 (5.5)

Then, if we replace x and yin Eq. 5.5 by Eq. 5.3, we obtain a polynomial equation
of second degree:

At2 + Bt + C = 0 (5.6)

in which:

A = ||~U ||2 (5.7)

B = 2′ ~MO.~U (5.8)
C = || ~MO||2 − G2 (5.9)

where is the line’s director vector for the MN’s trajectory, is a point of the MN’s
trajectory, and is the center of the circle defined by Eq. 5.5.

In order to select a new AP for an MN, the AR will resolve Eq. 5.6 for every AP
that is geographically adjacent to the current one (i.e. the zones covered by both APs
intersect). When the discriminant is negative, the Eq. 5.6 has no real roots, this means
that the MN is probably not headed for the coverage area of the AP. If the discriminant is
zero, the Eq. 5.6 has exactly one root, this means that the trajectory of the MN is tangent
to the coverage area of the corresponding AP. Finally, if the discriminant is positive, the

107

Eq. 5.6 has two distinct roots, this would mean that the MN seems to be moving right
into the zone covered by the corresponding AP. When resolving Eq. 5.6, the AR will
create a list of adjacent APs sorted in ascending order by the value of t. This way the
first AP of the list would be the one that is likely to cover the MN for the longest distance
according to its trajectory. Once the handover begins, the MN will try to connect to the
first AP in the list. If it is not reachable it will go on with the second, and so on (see
Section 5.3.4). As the selection of the next AP consumes resources on the AR, we try
to maintain the AP list as long as possible. If a context is already set for the current
association of the MN, the AR would check if the first AP of the list is still a valid target
for the pending handover. If this is no longer the case, the AR has to select a new one
as described previously.

Once the context is calculated, the AR would send it to the MN using a PrRtAdv
message. We have also defined a new option for PrRtAdv, that we call the Access
Point Information Option. It allows transporting the ESSID and the radio channel of
an AP. Do notice that FMIPv6 already defines options to provide in PrRtAdv all other
parameters necessary for the handover (link layer address of AP, new IPv6 prefix, new
AR’s link layer and IP address). The way options are ordered in PrRtAdv-s has to follow
the AP order in the list (i.e. the first options are related to the first AP of the list). Upon
reception, the MN will save the context until it starts a handover or until a new context
is received.

5.3.4 Handover management

This section describes the handover process when initiated by MNs. Note that FMIPv6
also defines a mechanism for an AR to initiate a handover - a network-initiated handover
[70], initially previewed for purposes like load sharing. We have defined a second sig-
nal quality threshold Sw, which corresponds to the lowest acceptable signal level. Once
the signal quality drops under Sw, the MN would start the handover process. Layer 3
handover is carried out exactly as described in FMIPv6. If a context is set, the MN
begins an FMIPv6 predictive handover by sending an FBU to its current AR including
the parameters related to the first AP of the context. Once the MN receives the corre-
sponding FBACK, it starts the layer 2 handover by switching its radio channel to that of
the new AP and sends a Probe Request its ESSID. Upon reception of a Probe Response
from the destination AP (identified by its link layer address), the MN moves directly to
the authentication stage. If the authentication is successful, the MN goes through the
association stage and completes the layer 2 handover. As a result, in case of a successful
anticipation the delay of the layer 2 handover is significantly reduced , as the MN does

108

not have to scan several channels to discover its next AP and neither does it have to wait
for MinChannelTime or MaxChannelTime before completing the handover process.

The rest of the handover follows the FMIPv6 specifications. During the layer 2
handover, the data packets sent to the MN are forwarded by the Previous AR (PAR) to
the Next AR (NAR) which buffers them. After associating with its new AP, the MN
sends an FNA to the NAR so that it would deliver all buffered packets and start routing
the New CoA (NCoA) of the MN. Finally, the MN sends a BU to update its binding
with the HA. Figure 5.16 illustrates the entire procedure.

Figure 5.16: Protocol overview when the anticipation is successful

If the MN does not receive a Probe Response from the targeted AP, this could either
mean that there was a collision on the wireless link, or that the AP was out of range.
The latter may occur as a result of a wrongful projection of the MN trajectory (e.g. due
to positioning errors or change of the direction of the MN). As the probability for an
AP to fall out of range is quite high, we have decided to limit the time the MN waits
for a Probe Response from an AP to 5ms. After 5ms, the MN considers that the target
AP is not reachable and tries the next one in the AP list and so on. When a layer 2
handover completes, and the AP that the MN has attached to was the second one it
tried (i.e. the attempt to connect to the first one has failed) two cases may occur. If
the new AP is connected to the same IPv6 subnet as the first one it tried, no further

109

considerations are necessary and the MN can pursue the handover process as defined in
the case of a successful anticipation. Otherwise, the MN would find itself in a situation
where its packets are being tunneled to and buffered by a different router (referred to
as AAR for Anticipated Access Router in) and not the NAR. In this case the MN
would perform a specific reactive handover by sending to AAR an FNA which contains
the FBU corresponding to its current location. As a result, two tunnels will be set up
simultaneously, the first one from PAR to AAR, and the second one from AAR to the
actual NAR. Upon reception of data packets addressed to the MN, the NAR delivers
them directly to the MN. Finally, the MN updates its binding to the HA. This case is
referred to as enhanced reactive mode.

5.3.5 Experimentation

The testbed

In order to evaluate the performance of our proposal, we implemented it and set up a
testbed composed of two APs, one HA, two ARs, one MN and one correspondent node.
The testbed contains three IPv6 subnets. The top AR provides IPv6 Internet connectivity
to the rest of the testbed and is also configured as a HA. Each AP is connected to a
different IPv6 subnet and AR. Figure 5.17 illustrates the testbed.

All network entities are running the GNU/Linux operating system, except for the
APs which are 802.11b Cisco AP 1200 devices. The HA is running the new MIPv6 dae-
mon for the GNU/Linux operating system (MIPL [143]). The MN and the ARs are run-
ning a modified version of the FMIPv6 Open Source Implementation Suite (fmipv6.org
[66]). The modifications are related to our protocol specifics. In order to modify the be-
havior of the MN’s wireless LAN device, we have used a 3com 802.11 a/b/g PCMCIA
wireless card managed by the MADWiFi driver [44].

Concerning the geolocation system, the MN is equipped with a GPS device. We
have chosen GPS for its ease of use and installation. Other systems with similar (or bet-
ter) characteristics, such as [72], could also be used. As the experiments take place in
an indoor environment, we first recorded GPS output generated by a moving MN in an
open area. We then used the recorded GPS positions while performing the real experi-
ments inside. The position and range of the APs are derived from indoor measurements
conducted separately and are configured statically in all ARs.

110

Figure 5.17: Testbed used in the geolocation experiments

Evaluation scenario

For the evaluation of our proposal we have defined the following scenario: the MN
would move from AP1 to AP2 (see Figure 5.17). While the MN is moving, a correspon-
dent node sends a video stream to it using the well known VideoLAN application [42].
Data is encapsulated and sent in Real-time Transport Protocol (RTP) [178] packets, with
an average length of approximately 1336 bytes and sent every 30ms.

111

Evaluation results

Results presented in this section are obtained by running the network analyzer tool Wire-
shark [46] on the MN. Additional wireless sniffers are also used to collect the results.
The evaluation scenario was run 10 times.

Figure 5.18 presents one significant run illustrating the entire handover procedure.
When the signal quality of the MN is below the Sa threshold, it starts sending periodic
RtSolPr messages to its AR in order to update its status and position. Upon reception of
the fourth RtSolPr, the AR detects that the distance between the MN and its current AP
is greater than the R threshold. Therefore, the AR calculates a new context and sends
it to the MN using PrRtAdv. The reception of a new RtSolPr request (e.g. between
seconds 9.5 and 12) does not initiate the calculation of a new context because the pre-
vious one remains valid until the actual handover occurs. Once the signal quality of the
MN drops below Sw, the MN starts a predictive handover as described in the FMIPv6
specifications. The MN has thus obtained the parameters of the candidate APs (i.e. the
context) without loosing a single data packet. Executing the standard scanning proce-
dure [130] MN would have been scanning several 802.11 channels in order to discover
candidate APs, which, as we have already mentioned , would have caused significant
loss of data packets. In addition, regarding the time at which the scanning occurs, there
is no guarantee that the set of candidate APs discovered during the last scan would still
be pertinent (i.e. still in the radio coverage of the MN) when the MN actually begin-
sits handover. Furthermore, by sorting the list of candidate APs according to the length
of the trajectory segment that they are expected to cover, our solution also reduces the
number of performed handovers.

Figure 5.19 presents the complete handover procedure. Each dot represents the re-
ception or the transmission of a packet by the MN at the time indicated on the X-axis. As
previously mentioned, the MN moves while receiving a video stream (data packets are
sent every 30ms). Once its signal quality drops below the Sw threshold, the MN starts
the FMIPv6 procedure by sending a FBU to its current AR including the parameters of
the NAR, i.e. the AR related to the first AP of the context. Then, it takes approximately
25.8ms for the current AR to get handover confirmation from the NAR (HI/HACK ex-
change) and to send the FBACK back to both MN and NAR. Upon reception of FBACK,
the current AR starts tunneling data packets to the NAR while the MN starts the layer 2
handover procedure. As we can see, the MN completes the layer 2 handover in 20.4ms
on average. This time is significantly reduced in comparison to the standard layer 2
handover latency which may vary between 58.7ms and 396.7ms according to the re-
sults described in [133]. Compared to the method defined in the IEEE 802.11 standard
[17] in which MNs have to spend at least several hundred milliseconds scanning 802.11
channels to detect surrounding APs, our scheme allows the MN to directly send Probe

112

Figure 5.18: Candidate access points discovery followed by an FMIPv6 predictive han-
dover

Requests over the radio channel of the pre-selected AP. When a Probe Response is re-
ceived from the pre-selected AP, the MN proceeds with authentication and completes
the layer 2 handover with the association stage. Do notice that the size of the NAR’s
buffer is limited and therefore such layer 2 optimization is necessary to avoid buffer
overflow and packet loss. Simply augmenting the buffer size would not resolve this
problem as real-time communications would still suffer the delays accumulated while
packets were being in buffered.

Once the layer 2 handover is complete, the MN sends an FNA to the NAR. After
receiving it, the NAR , delivers all buffered packets, and starts routing the NCoA. As
we can see from Fig. 9, the NAR has only buffered two data packets during the entire
procedure. Although there is a delay in the reception of buffered packets, this delay
remains imperceptible to the application user and the handover is completely seamless
with no packet lost and no perceptible delays.

While the MN does not update its binding with the HA, the data packets are still
sent to the Previous CoA (PCoA) of the MN and are therefore forwarded through the
FMIPv6 tunnel between the PAR and the NAR. The lifetime of this tunnel is specified
by the MN at the transmission of the FBU. During our experiments, we configured the
MN to request the minimal allowed tunnel lifetime, i.e. 4 seconds according to [70]. As
shown in 5.19, the data packets are sent to PCoA until the time 310.6ms at which the
MN sends a BU to the HA. After receiving it, the HA updates the tunnel endpoints with

113

the NCoA and sends back to the MN a BACK message with a successful status code
which completes the MIPv6 signaling. Then, the following data packets are directly
sent to the NCoA and thus do not use the FMIPv6 tunnel. 4 seconds later, the FMIPv6
tunnel between the PAR and NAR is removed.

Note that the procedure defined for the enhanced reactive mode (i.e. when the an-
ticipation is not successful) is still being implemented and thus we can not yet provide
results for this particular case.

Figure 5.19: Impact of the Predictive FMIPv6 handovers on a video stream

5.4 Conclusion

The results presented in Section 5.3.5 have shown that our scheme allows the entire
FMIPv6 procedure to remain imperceptible to users, from the discovery of candidate
APs to the completion of the handover. Based on the trajectory of an MN access routers
are able to select its next APs and provide the related parameters. The proposed method
allows the MNs to avoid scanning prior to a handover and thus does not disturb com-
munications. Moreover, use of our various thresholds on signal quality or geographical
distance reduces the signaling overhead introduced by our additional mechanisms. The
actual handover is also seamless due to the optimized layer 2 handover and the buffering

114

of data packets defined by the FMIPv6 specification. As a result, the quality of the video
stream transmission is not affected by the movement of the MN.

115

116

Chapter 6

Concluding our work on mobility ...
and moving on

In the previous sections we have presented our work on improving the handover proce-
dure for Wi-Fi equipped mobile nodes, primarily in terms of rapidity, packet loss, and
user experience. In Chapter 3 we have first presented our efforts to do so by only op-
erating at the application layer of the OSI model. Our goal back then was to come up
with a way for users that do not have control on the configuration of their network topol-
ogy to still be able to benefit from acceptable handover performance. The SIP protocol
defines a way for a node to re-initialize active communications sessions at any given
time of a call. This mechanism is commonly used for adding new streams, modifying
existing ones, or simple redirecting media flows to a new location. Knowing, however,
that most SIP applications would react to movement only after detecting that the IP ad-
dress has changed, SIP mobility often involves unacceptable delays that make it almost
unusable in real-world conditions. We have therefore decided to evaluate the behavior
of a SIP application where movement detection is also assisted by information obtained
from lower layers (like for example a notification implying the end of the 802.11 asso-
ciation process). Such mechanisms are often referred to as link layer triggers. In the
same Chapter 3 we have also described the results of our evaluation. They clearly show
that it is possible to implement and deploy application layer mobility with acceptable
quality without necessarily modifying the configuration of network topologies. Never-
theless, handover performance in all scenarios is far from being optimal, and users of
such solutions would still experiences cuts and quality degradation during handovers.

Taking this into account, in chapter 4 we have shifted our attention to one of the
most popular network layer mobility optimizations - the Fast Handovers for Mobile
IPv6 protocol. Our work on the network layer has started with the first open source

117

implementation of this protocol - the fmipv6.org suite. Using it, we have been able to
complete a comprehensive set of evaluation tests and determine that the protocol does
indeed offer the possibility to completely eliminate packet loss and handover latency.
However, being a generic layer three solution, the protocol does nothing to improve the
Wi-Fi scanning process and as a result no improvement is visible to the user whatsoever.
As indicated in Chapter 2 this comes from the fact that the IEEE 802.11 scanning is a
blocking process that contrary to other solutions, devices are not capable of transmitting
and/or receiving data on more than one channel at a time.

We have tried to come around this problem and implemented a procedure often
referred to as a “soft handover” through the use of a secondary wireless interface. Fol-
lowing an implementation and an evaluation of this solution with the SimulX wireless
simulator. The results that we obtained have shown that one could easily achieve com-
pletely seamless handovers through this technique, which is why we have tried to adapt
the use of multiple interfaces to the standardized protocols existing at the time, or in
other words, integrate it into our fmipv6.org implementation in order to resolve its scan-
ning issues. After completing the implementation and the evaluation of this “combined”
method, we have concluded that the use of multiple interfaces with the FMIPv6 protocol
is indeed a solution that can be used to achieve 100% transparent handovers.

It is clear however, that few of today’s mobile devices come equipped with two
distinct Wi-Fi interfaces. Our next step has therefore been to work on a solution that
allows mobile nodes aware of their geographic position to use it in retrieving a list of
neighbor access points from the FMIPv6 access routers. The implementation and the
experimental evaluation of this solution has shown that using positioning information
could be quite beneficial when trying to improve the MIPv6 handover procedure.

6.0.1 Possible further improvement

Throughout the work that we describe in this part of the thesis, we have shown that
implementation and experimental evaluations are something that we consider in impor-
tant aspect of research in the field of IP mobility. Yet, adoption of any of the solutions
proposed here would require completing even more tests in real-world scenarios. This
is especially important for our geolocation proposal, which would require precise fine
tuning depending on the deployment that it is being used for. Using it in order to pro-
vide Internet access for vehicles on a highway, for example, would require a completely
different configuration from the one that would be used in a commercial center where
users would primarily consist of pedestrians with erratic trajectories.

118

From an optimization point of view, we are convinced that we could improve the
FMIPv6 protocol even further, and completely remove dependencies on an extra device
(whether it is a GPS or a secondary Wi-Fi card). The MIMO technology for example,
has made it possible for wireless interfaces to use two antennae. It might therefore be
logical to try and use such a device rather than the two interfaces that we use in our
multi interface version of FMIPv6.

Another possible direction that might be worth exploring is that of adapting the
Cisco WDS solution (see Section 2.6.4) to FMIPv6. When studying WDS we noticed
that most of the information that was being used by this solution was also exchanged
between FMIPv6 mobile nodes and access routers. An FMIPv6 PAR, for example, is
completely aware of the next point of attachment that a mobile node has moved to, just
as a WDS access point is. During our evaluation of the WDS system we were impressed
by its performance in link layer handovers, which makes us think that merging both
technologies would probably be an idea worth working on.

6.0.2 Where to now ...

The worked that we have described in this part presents all our efforts in the field of IP
mobility. We have shown numerous solutions that bring handover latency and packet
loss down to an acceptable minimum. More importantly, we have implemented as many
as three distinct optimizations and shown that they have quality which is completely
satisfactory for industrial carriers. With some exceptions, we therefore consider fur-
ther work in this field to belong to the world of the telecom industry and production
implementations, and not really the research domain.

This is the reason why at that point we decided to focus on other problems that
real-time communications are suffering today. An omnipresent issue that most Internet
users are aware of, is that of how unreliable IP real-time communication are. Due to the
Network Address Translation gateways, deployed everywhere today, it is almost impos-
sible to use VoIP protocols the way they were originally defined. There is indeed a host
of existing algorithms that describe various techniques for NAT and firewall traversal.
However, very few of them are generic enough to work behind any NAT implementa-
tion and in most cases VoIP providers are obliged to relay most of the media that users
exchange. This is obviously unacceptable since it brings to Internet communication the
same constraints as those associated with conventional telephony providers such as high
cost and difficulty of deployment.

Many expect IPv6 to resolve this issue, but we consider this to be an overly opti-
mistic vision for several reasons. First of all, even though IPv6 is gaining more and

119

more popularity, IPv4 is quite unlikely to completely disappear in the following one or
two decades. There are hundreds of millions of IPv4 devices, such as hardware phones,
home gateways, set top boxes, and PCs equipped with older versions of popular operat-
ing systems, that have been already deployed and that users expect to be able to use for
several more years. As a result, application developers of any non-research application
would have to make sure it is IPv4 compatible for more than several years.

The situation is becoming even more complicated when trying the resolve the in-
terconnection problems between IPv4 only and IPv6 only hosts where, once again, we
are brought to relaying media through the network of the provider. Besides that, the
fact that negotiating media sessions in popular signalling protocols such as SIP is not
adapted to selecting between two distinct IP versions makes the problem valid even in
cases where one of the nodes supports both IPv4 and IPv6.

All of the above, combined with the simple fact that we were interested in this
domain, have made us continue our work in the field of Peer-to-Peer technologies and
their applicability to real-time communications. With P2P one could hope to be able and
implement NAT traversal algorithms and IPv4-IPv6 relaying while completely keeping
a distributed network in accordance with the Internet “philosophy”.

120

Part II

Real-time communications using
peer-to-peer overlays

121

Chapter 7

Introduction: Using peer-to-peer
methods in real-time communications

During the last few years the use of Internet as a transport medium for real-time commu-
nications has become very popular. Thousands of providers are offering VoIP services
and PSTN access, and the number of their users is constantly increasing. Yet, despite
the migration toward the Internet we are still far from the liberty of usage and the prices
that we see with other Internet technologies such as E-Mail and instant messaging. The
services proposed by the new VoIP providers are not more or even much different than
those that we have been proposed by conventional telecoms for the last twenty years.
In this article we would first talk about VoIP today. We will describe what we believe
to be the most common topologies and use cases that are deployed nowadays. We will
then enumerate a set of problems associated with today’s VoIP, such as NAT and firewall
traversal, the high cost of the infrastructure necessary to deploy new services and others.
Finally we explain why we believe that peer-to-peer overlays would help resolve these
problems and why should devise ways for standard protocols to use and benefit from
them.

Acknowledgement: Work described in this section has been completed in a joint ef-
fort with Telecom Italia Labs, Turin, represented by Enrico Marocco, and with Columbia
University, NYC USA, represented by Dhruv Chopra and Henning Schulzrinne.

123

7.1 Common architectures

In this section we describe what we believe to be some of the most common ways
that VoIP is used today. Depending on the users that the services are targetting we
have decided to roughly split the various types of VoIP deployment into two different
groups: relatively large scale providers targeting all users over the Internet (these are
often referred to as hosted providers), and private installations meant for use by one
specific company or organization.

We find this classification quite suitable for our needs since according to the users
targeted by a VoIP deployment one would encounter support for different sets services
and configurations.

It is probably worth mentioning that the same separation could be applied to deploy-
ments of other Internet technologies. With e-mail, for example, we have company mail
servers on one hand and services like Hotmail, Yahoo!, and GMail on the other. We are
also beginning to see the same situation with instant messaging where in addition to the
large networks maintained by AOL, Microsoft, and Yahoo!, more and more companies
are beginning to run their own instant messaging servers using Jabber, IRC or other
protocols.

7.1.1 Hosted providers

Instant messaging networks such as AOL’s ICQ, MSN and Yahoo! were among the
first to offer VoIP near the end of 1990s. Back then the only service made available
was one to one voice communication also referred to as voice chat. In almost all cases,
establishing communication sessions was only possible between subscribers of the same
network or a subscriber and the PSTN. Most of the above providers did not provide the
possibility to communicate with users of other networks, but that was to be expected
as almost all of them were using custom proprietary protocols without any possible
interoperability.

A few years later, in the beginning of the 2000s, a new kind of providers began to
emerge. That is when companies like Vonage, SIPphone and others started entering the
scene. What was new about them was their use of standardized telephony protocols
such as SIP. In addition to one-to-one communication, most of them were also offering
common telephony services such as voicemail, conference bridges etc.. Still, despite the
usage of a standard protocol the vast majority would continue working in a standalone
manner without really trying to achieve, or even explicitly prohibiting interconnections.

124

Up to this date, users of different VoIP providers still need to cross the PSTN net-
work in order to communicate with each other.

7.1.2 Private installations

Installing IP PBX servers in companies and organizations is arguably one of the first
and the most widely deployed use cases for today’s telephony protocols. After their
appearance in the late 90s, many companies have adopted them instead of the more
expensive conventional solutions.

With a typical private installation, an organization would install and maintain a VoIP
server, or Application Layer Gateway (ALG) within its premises. All telephony equip-
ment inside the company would then consist in hardware and software telephone clients.
The VoIP server would typically have a single outward interface connecting it with the
PSTN. The ALG is mainly used by clients within the company with some very rare
exceptions.

In the rare occasions where conversations are routed over the Internet, it would rarely
be to an arbitrary destination: In most cases inter-domain connections happen through
preconfigured channels and are only allowed for a limited set of predefined locations.
A widespread way of setting up such channels consists in configuring IAX connections
between asterisk installations (e.g., between distant branches of one company).

7.2 Problems with existing topologies

In this section we try to present a number of problems characteristic of the deployments
described in Section 7.1.

7.2.1 Difficult scalability and limited flexibility

Without a doubt one of the most recurring concerns associated with centralized sys-
tems is the relatively high cost that scalability comes for. Support for large numbers of
users requires a heavy infrastructure, and large bandwidth which are both expensive and
complex to setup and maintain.

125

NAT traversal issues

Some specific scalability problems are brought about by NAT traversal techniques. De-
ployment of Network Address Translation (NAT) devices has reached a point where
almost all of the packages offered by internet service providers to home, as well as
small and medium enterprise users rely heavily on it. There have been numerous reports
explaining what kind of difficulties this represents for VoIP applications techniques to
handle the issue. One of the implications coming with NAT, that remains despite the
different traversal techniques is the fact that VoIP providers still need to install and
maintain media relays capable of handling relatively high loads of traffic for clients that
have been unable to establish direct connections. While this may be relatively trivial for
existing operators, it still represents a significant entry barrier to the VoIP market. Any
kind of media relays (regardless of the number of expected clients) require a dedicated
infrastructure with guaranteed bandwidth which automatically excludes most of the ex-
isting adsl users for example and adds an expensive constraint to the establishment to
any new VoIP based service.

Another consequence of common NAT traversal techniques is the increase of sig-
nalling traffic in the cases where signalling is based on UDP. In order to keep NAT
bindings for signalling sockets alive, many solutions such as [37] increase traffic over
them. Depending on the solution the increase might be with STUN, SIP OPTIONS,
empty UDP or other messages but with either of these techniques, a standard registra-
tion exchange that occurs approximately once per hour [167] is augmented up to several
hundred times. Needless to say this implies that a service provider would have to come
up with even more bandwidth and resources in genereal.

7.2.2 Repetitive services

The fact that the infrastructure behind a service is expensive makes it obligatory to only
use it for services that would be potentially interesting to a very large number of users
(millions). As a result we keep seeing a relatively limited set of services such as voice-
mail, conference bridges, etc.. Most of them already existed with conventional telecom
operators and even though some new ones such as the ring back tone have occurred
lately we are still far from having the abundance typical for the Web for example.

Once again, the reason for this is primarily the fact that given their mastodon nature,
telephony operators cannot address (at least not with reasonable prices) smaller com-
munities with customized solutions based on professional needs or geographic location
and offer services to them.

126

Let’s take professional collaborative services as an example. The only collaborative
tool that most of the small and medium enterprises have at their disposal today is phone
or, generally speaking, voice, as well as mail, and instant messaging. Most of them
would therefore tend to communicate in a rudimentary manner without any use of real-
time collaborative services.

One of the reasons they don’t use such services is because most of the time they
don’t exist, and when they do they often come at a price that is only affordable for big
companies that can be regarded as isolated cases. Again this is because they represent a
big community and they could justify the investment in the infrastructure necessary to
provide customized collaborative tools.

7.2.3 Federation

Strangely enough, for a number of reasons, usage of SIP in particular and VoIP in gen-
eral has so far failed to achieve the level of interoperability that we have with similar
protocols like SMTP and XMPP. As mentioned in section 7.1 users subscribed for a
particular VoIP provider are rarely able to make outgoing VoIP calls to other domains
without first crossing the PSTN. This is valid for both hosted providers and (even more
so) for the small private installations. The reason is most certainly not entirely tech-
nical because protocols like SIP use interdomain routing mechanisms very similar to
those employed by SMTP. In section 7.2.1 we mentioned at least one reason that makes
the VoIP market only accessible to enterprises with a structure similar to the traditional
telecom operators, where the main service being offered, and billed to users, is the time
spent communicating. In the case of VoIP, Internet conversations are often expected to
be free of charge, but the “minutes“ model applies to all conversations made through the
PSTN. These calls are in most cases the major revenue source for the service providers
which is in the least discouraging regarding an open interdomain call routing policy.

7.2.4 IP layer mobility

Work on IP mobility has been going on for a relatively long time today and there are
already a number of existing solution that can be considered mature [103]. Still, apart
from a number of research deployments, the only type of mobility we see in daily life
today is the one provided by mobile phone operators with GPRS and 3G, with all the
bandwidth and cost constraints that this implies. There are numerous reasons for this,
and a major one is that almost all viable solutions require dedicated network entities

127

or system/kernel level modifications (i.e. home agents, mobility kernel patches, etc.)
which are hard and costly to deploy.

7.3 The Peer-to-Peer Promise

In this section we address problems described in section 7.2 and describe ways of how
each one of them could be resolved by P2P networks.

7.3.1 Scalability

One of the main advantages of peer to peer networks comes from the fact that resources
are (in the common case) provided by the users themselves. This implies that a large
number of users of a particular p2p based service would not automatically result in a
need for the service provider to increase the capacity of a centralized infrastructure: the
resources necessary to serve these users would be provided by the users themselves.

Apart from the cost of the infrastructure itself, this also decreases the expenses for
maintenance and configuration that are necessary with centralized equipment.

Another important scalability advantage of P2P networks comes from the fact that
they allow to gracefully handle usage peaks. In many cases when using real-time com-
munications, service providers are required to handle usage peaks. Typical examples
include morning hours - when many users get to work and turn on their VoIP clients
for example, or during the hours after particular events such as New Year’s Eve, where
many users try to get in touch with each other at the same time.

It is particularly difficult to handle such scenarios in centralized environments as
deploying the infrastructure necessary to resolve the issue is not feasible once it has
been detected. P2P solutions on the other hand, could in theory help to gracefully
handle such problems as, once again, the more users turn up, the more peers would be
available, and the more they would provide resources.

NAT and firewall traversal

The primary advantage of using Peer-to-Peer overlays to assist NAT and firewalltraver-
sal comes from the fact that it allows to reuse existing algorithms such as STUN [164],
TURN [101], and ICE [163] in a distributed manner.

128

This is particularly advantageous for solutions based on TURN principle since re-
laying media from all conversations in a given network is often very expensive and a
factor generally leading to severe quality degradation. One example of how this could
be achieved is presented in [30]

7.3.2 Abundance of new, custom services

Generic Peer-to-Peer networks are expected to offer all the resources necessary for avail-
able users to benefit from all proposed services. This means that in order for a particular
provider to offer a new service, all they would need to do before being able to propose
it (if anything) would be to develop custom software if such is necessary to support the
service. In other words, they would not have to also deploy their own infrastructure.

We expect this to instigate the provision of a large number of new services, such as
real-time collaborative applications, targeting smaller groups of users based on profes-
sion or geographic location.

7.3.3 Federation

As mentioned in 7.3.2 we believe that P2P technologies would probably make the PSTN
based business model obsolete and shift the accent to the diversity, quality, and number
of other services being offered by a provider. We expect this to remove the incentive
that providers currently have to try and funnel traffic over the PSTN.

The general opinion for P2P networks seems to be that the network operator of a
particular overlay (if there is such an operator) would not necessarily be offering ser-
vices to end users on that overlay. It is expected that one P2P overlay would probably
host numerous service providers. Such providers are likely to strive to also make their
services available outside of one particular domain which would be an extra incentive
for network operators to open up and allow interdomain connectivity.

7.3.4 IP layer mobility

As we mentioned in Section 7.2.4, existing mobility solutions are relatively hard to de-
ploy because of their low level. P2P overlays, on the other hand, are mostly application
layer solutions, which gives them a great ease of deployment. We expect that generic

129

overlays would offer the possibility for devising and deploying new, higher level ways
of handling mobility.

7.3.5 IPv4/IPv6 interoperability

P2P overlays could also help in the deployment of the new version of the Internet Pro-
tocol - IPv6. Just as peers in an overlay could be used for relaying media, they could
also serve as IPv4 - IPv6 gateways. This would allow single stack, IPv4 users to access
services provided on IPv6 only.

7.3.6 Sharing more than CPU and bandwidth

P2P networks today are commonly regarded as a means of sharing resources such as
CPU, bandwidth, or data storage space. In the previous sections we have explained why
we believe these to be very important features.

However, we believe that it is reasonable to expect that P2P overlays could also be
very useful when sharing other resources. [123], for example, describes how a P2P
technology could be used for sharing PSTN access.

130

Chapter 8

State of the art in the field of
peer-to-peer overlays

8.1 Basic concepts of P2P architectures

Overlay networks provide an abstract view of a network environment. They are often
designed for specific needs that do not require precise knowledge of the underlying in-
frastructure [87, 97]. In overlay architectures, a set of nodes (servers, services, end-user
equipment etc.) and virtual links that do not directly match those of the underlying
topology, are involved in specific applications. Data in such applications is routed ac-
cording to these virtual links and an overlay network can therefore be viewed as a middle
layer between them and the underlying topologies. Peer-to-peer overlays are a common
implementation of overlay networks and as such they have received a lot of attention
over the past several years [172].

Early work on P2P overlays (e.g., Gnutella [162] and GIA [43] has mainly focused
on unstructured networks through the use of broadcasting as the primary means of prop-
agation. Problems often associated with this approach include non-optimal resource
consumption and lack of flexibility in policy management [121]. In order to address
them .Solutions, such as CAN [86], Chord [186], and Pastry [170], have introduced
the so called structured overlay networks. One of their key features is the fact they
define and implement algorithms for self-organization and self-healing in specific net-
work topologies which greatly facilitates navigation in the overlay. This allows for easy
deployment of service components (e.g., content services, CDN - Content Distribution
Networks [52]) in a flexible, scalable and decentralized way. Another key aspect of
structured overlays is the fact that most of them employ distributed hash tables (DHT)

131

[57], which greatly optimize propagation of information through all clients. DHT based
architectures have a flexibility that has made it possible to successfully implement them
over grid networks [104] and not only Internet-like structures.

Overlay routing can also be used for obtaining better resilience, stronger security, or
extra features like support for multicast. One such example is the usage of intermediate
peers for improving firewall and NAT traversal when establishing end to end communi-
cation sessions between peers [171]. Such a technique is often used in VoIP peer-to-peer
communication networks [13]. Another example is the usage of infrastructure overlay
networks to enhance network routing. In these overlay networks, an overlay service
provider places a number of overlay servers at strategic points in the network [24, 26]
and these servers form a virtual network that can be used to provide alternative routes
when errors occur in the network [23] and that can offer overlay multicasting support
[25]. In addition to these components that are located in the network itself, these over-
lay networks can also contain proxy components at the edge of the network [122, 27].
These proxies are able to take both application and network information into account to
perform high level services like trans-coding and bandwidth management.

Service discovery is another problem that occurs in several domains, especially web
services. While the lookup service can be provided through a central UDDI server, new
trends also suggest implementing it with peer-to-peer networks [73]. Overlay networks
can also offer extra resilience. This has been shown in projects like RO [54] where
the overlay network is used for the discovery of alternative routing paths. Other work in
this domain includes [200], where paths are selected according to QoS metrics and over-
lay multicasting [199]. The rigid topology of structured overlay approaches, however,
hardly fits the needs of modern networks with highly dynamic usage patterns. There-
fore, some recent proposals suggest the adoption of overlays with adaptive topologies,
in which the very structure of the network is determined at run-time, and based on the
patterns of activity that occur inside it. Overlays could, for example, arrange nodes in
way that places nodes with related patterns of data close to each other [55]; another
option, suggested by [48] involves grouping reliable nodes into clusters and moving un-
reliable once towards the outside bounds of the network. What makes these techniques
very interesting is their high adaptability, and the fact that they allow building robust
and extremely scalable structures [96].

Adaptive structures together with the possibility of adopting gossip-based [20, 118]
and probabilistic multicast methods [147] have recently brought research focus back
to unstructured overlays based on random graphs [155]. Even though the lack of any
deterministic structure is making search operations less efficient, the low diameter char-
acteristic of such overlays could be successfully employed in the implementation of
multicast/broadcast systems with low message propagation latency. Another important

132

property of these systems is their ability to provide a uniform peer sampling service
[120]; this service can be leveraged to easily implement, very complex and large scale
services like size estimation, publish/subscribe operations, or even structured topology
bootstrap and management [119]. While providing powerful mechanisms to handle
decentralized and self-organizing networks of services, P2P networks are very often
designed for specific applications and their choice of architecture (e.g., structured vs.
unstructured) strongly depends on the kinds of services that are meant to be supported
by the overlay. GO, being aimed at using a P2P network as a generic substrate for
general-purpose Telco services, requires a more flexible approach and the possibility
of instantiating a ”generic overlay“ properly combining needed different solutions for
different services. Foundational studies on overlay networks that have already been per-
formed in the context of European projects such as DELIS and EVERGROW will be
carefully analyzed.

It is now generally accepted that different applications may require different P2P
overlay structures, and currently there are several proposals on instantiation and param-
eterization for specific overlays, as they are needed. One way to create multiple overlays
is by inheritance, i.e., instances are generated from a parent virtual network by inher-
iting signalling protocols and communication services, as proposed in Genesis [39].
Overlays based on declarative logic, and that define their structure in a very compact
and reusable manner, have been proposed in [36]. The proposed system, P2, is capable
of directly parsing and executing specification from this language thus constructing and
maintaining overlays. However, these works only focus on the issue of defining over-
lays, not on that (which is of interested to GO) to instantiating and integrating different
overlays, and to make them dynamically parameterizable. A number of projects funded
by the Global Computing II FP6 FET Initiative (e.g., SENSORIA, MOEBIUS and AE-
OLUS), focus on issues of formal theories and software engineering for large-scale
distributed applications relying on global overlay network. In recent years we have also
seen frameworks that define and instantiate parameterizable overlay networks, such as
Opus [156], and JXTA [187]. Opus represents a large-scale overlay utility service that
provides general abstractions and allows simultaneously hosting multiple distributed
applications. It allocates individual nodes to competing applications and offers a high
quality of services by using Service Level Agreements to dynamically distribute re-
sources. The JXTA technology is a set of open, generalized peer-to-peer protocols that
allows any connected device to communicate and collaborate. It has been introduced by
Sun Microsystems and the high level vision it has been designed on, aims to increase
interoperability among devices and networks. The IRIS project [5], supported by the
US “National Science Foundation”, proposes a framework that makes available a set of
APIs abstracting the basic services of structured P2P overlays (i.e., key-based routing).
On top of these a number of higher-level P2P service can be identified. Unfortunately,

133

these solutions do not efficiently address network and application dynamics, and mostly
rely on rather static super-peer network structures [30].

8.2 Peer-to-peer Security

8.2.1 Introduction

Peer to Peer (P2P) overlays have become quite popular with the advent of file-sharing
applications such as Napster [10], KaZaa [7] and Bittorrent [1]. After their success in
file-sharing, P2P networks are now also being used for applications such as Voice over
IP (VoIP) [13, 182] and television [6, 3]. However most of these systems are not purely
P2P and have centralized components like the login server in Skype [30] or moderators
and trackers in Bittorrent [153]. Securing pure P2P networks is therefore still a field of
very active research. P2P overlays can be broadly classified as structured and unstruc-
tured. Unstructured overlays are often relatively simple but search operations in them
tend to be inefficient. Structured P2P overlays use distributed hash tables (DHT) to per-
form directed searches which make lookups more efficient in locating data. Throughout
this paper we will mostly focus on DHT-based P2P overlays.

Admission control is an important first step towards security [109]. It is important
to restrict the number of malicious nodes in the overlay as most solutions rely on the
assumption that they represent a small fraction of the overall number of peers. This also
suggests the importance of identifying malicious nodes and disseminating this informa-
tion. To understand the different attacks possible on a P2P system, it is important to
know the motivation of the attackers and the resources (i.e. computation power, access
to different IP subnets) that they would have to dispose with.

Other P2P specific security problems include attacks on the routing of queries, denial
of service attacks and attacks on data integrity.

In this paper, after discussing main issues and proposed solutions for P2P systems in
general, we focus on a particular application, real-time communication. The idea behind
P2P real-time communication is using a DHT for services such as registration, location
lookup, and NAT traversal assistance. We discuss how the above security aspects apply
in this application and the solutions that seem appropriate.

The rest of this chapter is organized as follows. In section 8.2.2, we discuss admis-
sion control problems. In section 8.2.3, we identify the problem of where a node joins
in the overlay. In section 8.2.4, we describe the problem of identification of malicious

134

nodes and the dissemination of this information. In section 8.2.5, we describe the issues
of routing and data integrity in P2P networks. In section 8.2.6, we discuss the attackers.
Specifically we discuss their motivation, the resources available to them, their victims
and the attack timing. In section 8.2.7 we discuss how issues and solutions previously
presented apply in P2P overlays for real-time communication, and in section 8.2.9 we
conclude the paper and enumerate topics that would require future work.

8.2.2 Admission control

Admission control depends on who decides whether or not to admit a node and how this
permission is granted. Kim et. al [109] answer these questions independently of any
particular environment or application. They define two basic elements for admission in
a peer group, a group charter, which is an electronic document that specifies the pro-
cedure of admission into the overlay, and a group authority, which is an entity that can
certify group admission. A prospective member first gets a copy of the group charter,
satisfies the requirements and approaches the group authority. The group authority then
verifies the admission request and grants a group membership certificate.

The group charter and authority verification can be provided by a centralized certifi-
cate authority or a trusted third party, or it could be provided by the peers themselves
(by voting). The former is more practical and tends to make the certification process
simpler although it is in violation of the pure P2P model. The latter, the group authority
could either be a fixed number of peers or it could be a dynamic number based on the
total membership of the group. The authors argue that even if the group charter requires
a prospective member to get votes from peers, the group membership certificate must
be issued by a distinct entity. The reason for this is that voters need to accompany their
votes with a certificate that proves their own membership. Possible signature schemes
that could be used in voting such as plain digital signature, threshold signature and ac-
countable subgroup multisignature are also described. Saxena et. al [176] performed
experiments with the different signature schemes and suggest the use of plain signa-
tures for groups of moderate size and where bandwidth is not a concern. For larger
groups and where bandwidth is a concern, they suggest threshold signature [110] and
multisignature schemes [144].

Another way of handling admission would be to use mechanisms based on trust
and recommendation where each new applicant has to be known and vouched for by at
least N existing members. The difficulties that such models represent include identity
assertion and preventing bot/worm attacks. A compromised node could have a valid
certificate, identifying a trustworthy peer and it would be difficult to detect this. Possible
solutions include versions of CAPTCHA or sending simple logic puzzles [19].

135

8.2.3 Determining the position in the overlay

For ring based DHT overlays such as Chord [186], Kademlia [129] and Pastry [170],
when a node joins the overlay, it uses a numeric identifier (ID) to determine its posi-
tion in the ring. The positioning of a node determines what information it stores and
which nodes it serves. To provide a degree of robustness, content and services are often
replicated across multiple nodes. However it is possible for an adversary with sufficient
resources to undermine the redundancy deployed in the overlay by representing multi-
ple identities. Such an attack is called a sybil attack [63]. This makes the assignment
of IDs very important. One possible scheme to tackle such attacks on the ID mapping
is to have a temporal mechanism in which nodes need to re-join the network after some
time [47, 177]. Such temporal solutions, however have the drawback that they increase
the maintenance traffic and possibly deteriorate the efficiency of caching. Danezis et. al
[59] suggest mechanisms to mitigate the effect of sybil attacks by reducing the amount
of information received from malicious nodes. Their idea is to vary the nodes used for
routing with time and thus avoid a trust bottleneck. Other solutions suggest making the
joining process harder by introducing cryptographic puzzles as suggested by Rowaihy
et. al [169]. The assumption is that the adversary has limited computational resources
which may not be true if the adversary has control over a botnet. Another drawback of
such methods is that non-malicious nodes would also have to perform the extra compu-
tations before they can join the overlay.

A possible heuristic to hamper sybil attacks is to employ redundancy at nodes with
diametrically opposite IDs (in the DHT ID space) instead of successive IDs as in Chord.
The idea behind choosing diametrically opposite nodes is based on the fact that a ma-
licious peer can grant admission to others as its successor without them actually pos-
sessing the required IP address (whose hash is adjacent to the former’s), and then they
can cooperate to control access to that part of the ring. If however admission decisions
and redundant content (for robustness), also involve nodes which are the furthest away
(diametrically opposite) from a given position, then the adversary would require dou-
ble resources (IP addresses) to attack. This happens because the adversary would need
presence in the overlay at two independent positions in the ring.

It is also worth mentioning that in DHT overlays using different geometric concepts,
(e.g., hypercubes instead of rings), peer positions are usually not related to identifiers. In
the content addressable network (CAN) [159], for example, the position of an entering
node may be either selected by the node itself, or, with little modification to the original
algorithm, assigned by peers already in the overlay. However, even when malicious
nodes do not know their position before joining, the overlay is still vulnerable to sybil
attacks.

136

8.2.4 Identification and dissemination

Making overlays robust against even a small percentage of malicious nodes is difficult
[41]. It is therefore important for other peers to identify such nodes and keep track of
their number. There are two aspects to this problem. One is the identification itself
and the second is the dissemination of this information amongst the peers. Different
metrics need to be defined depending on the peer group for the former and reputation
management systems are needed for the latter.

Identification

For identifying a node as malicious, malicious activity has to be observed first. This
could be done in either a proactive way, or a reactive way.

• Proactive identification - When acting proactively, peers perform periodic oper-
ations with the purpose of detecting malicious activity. A malicious node could
prevent access to content it is responsible for (e.g., by claiming the object doesn’t
exist), or return references to content that does not match the original queries
[183]. With this approach, publishers of content can later perform lookups for it
at periodic intervals and verify the integrity of whatever is returned. Any incon-
sistencies could then be interpreted as malicious activity.

• Reactive identification - In a reactive strategy, the peers perform normal opera-
tions and if they happen to detect some malicious activity, then they can label
the responsible node as malicious. In a file-sharing application for example, after
downloading content from a node, if the peer observes that data does not match
its original query it can identify the corresponding node as malicious. Poon et. al
[150] suggest a strategy based on the forwarding of queries. If routing is done in
an iterative way, then dropping of packets, forwarding to an incorrect node and
delay in forwarding arouse suspicion and the corresponding peer is identified as
malicious.

Reputation management systems

Reputation management systems are used to allow peers to share information about
other peers based on their own experience and thus help in making better judgments.
Most reputation management systems proposed in the literature [194, 58, 112, 105]
are for file-sharing applications. In reputation systems, it should not be possible for a

137

misbehaving peer with low reputation to simply rejoin the network with a different ID
and therefore start from a clean slate. To counter this, Kwon et. al [112] store not only
the reputation of a peer but also the reputation of files based on file name and content to
avoid spreading of a bad file. Another method is to make the reputation of a new peer
the minimum possible [105]. Kamvar et. al [105] define five design considerations for
reputation management systems;

• Self policing.

• Anonymity.

• No profit to new comers.

• Minimal overhead.

• Robustness to malicious peers.

• Unstructured reputation management - Unstructured reputation management sys-
tems have been proposed by Aydin et. al [194] and Milano et. al [58]. The basic
idea of these is that each peer maintains information about its own experience
with other peers and resources, and shares it with others on demand. In the sys-
tem proposed by Aydin et. al [194], each node maintains trust and distrust vectors
for every other node that it has interacted with. When reputation information
about a peer is required, a node first checks its local database, and if insufficient
information is present, it sends a query to its neighbors just as it would when
looking up content.

• Structured reputation management - One of the problems with unstructured repu-
tation management systems is that they either take the feedback from few peers,
or if they do from all, then they incur large traffic overhead. Systems such as those
proposed by [112, 105] try to resolve it in a structured manner. The idea of the
eigen trust algorithm [105] for example, is transitivity of trust. If a node trusts
peer X then it would also trust the feedback it gives about other peers. A node
builds such information in an iterative way. The algorithm has fast convergence
properties [81]. For maintaining this information in a structured way, the authors
use a content addressable network (CAN) DHT [159]. The information of each
peer is stored and replicated on different peers to provide robustness against ma-
licious nodes. They also suggest favoring peers probabilistically with high trust
values instead of doing it deterministically, to allow new peers to slowly develop
a reputation. Eventually, they suggest the use of incentives for peers with high
reputation values.

138

8.2.5 Integrity in P2P networks

Preserving integrity of routing and data, or, in other words, preventing peers from re-
turning corrupt responses to queries and routing through malicious peers, is an important
security issue in P2P networks. The data stored on a P2P overlay depends on the appli-
cations that are using it. For file-sharing, this data would be the files themselves, their
location, and owner information. For real-time communication, this would include user
location bindings and other routing information. We describe such data integrity issues
separately in Section 7.

Data integrity

For file-sharing applications, pollution with corrupt or bogus files is a problem. Bit-
Torrent uses voluntary moderators to weed out bogus files and the SHA-1 algorithm to
determine the hash of each piece of a file to allow verification of integrity. If a peer
detects a bad chunk, it can download that chunk from another peer. With this strategy,
different peers download different pieces of a file before the original peer disappears
from the network. However, if a malicious peer modifies the pieces that are only avail-
able on it and the original peer disappears, then the object distribution will fail [201].
An analysis of Bittorrent in terms of integrity and performance can be found in the work
of Pouwelse et. al [153].

Routing integrity

To enhance the integrity of routing, it is important to reduce the number of queries
forwarded to malicious nodes. Marti et. al [128] developed a system that uses social
network information to route queries over trusted nodes. Their algorithm uses trusted
nodes to forward queries (if one exists and is closer to the required ID in the ID space).
Otherwise they use the regular Chord routing table to forward queries. While their
results indicate good average performance, it can not guarantee logN hops for all cases.
Danezis et. al [59] suggest a method for routing in the presence of a large number of
sybil nodes. Their method is to ensure that a peer queries a diverse set of nodes and does
not place too much trust in a node. Both the above works have been described based on
Chord. However, unlike Chord, in DHTs like Pastry and Kademlia there is flexibility
in selecting nodes for any row in a peer’s routing table. Potentially many nodes have
a common ID prefix of a given length and are candidates for routing a given query.
To exploit the social network information and still guarantee logN hops, a peer should

139

select its friends to route a query, but only when they are present in the appropriate row
selected by the DHT algorithm.

8.2.6 The attackers

Incentive of the attacker

Attacks on networks happen for a variety of reasons such as monetary gain, personal
enmity or even for fame in the hacker community. There are quite a few well known
cases of denial of service attacks for extortion in the client-server model [131]. One of
the salient points of the P2P model is that the services it provides have higher robustness
against failure. However, such attacks are still possible against individuals within the
overlay if the attackers possess sufficient resources. For instance a botnet of malicious
nodes could simultaneously bombard lookup queries for a particular ID in the DHT. The
peer responsible for this ID would then come under a lot of load and could crash [183].
However with replication of key-value pairs at multiple locations, such threats can be
mitigated.

Attackers may also have other incentives apart from money. With the growth of
illegal usage of sharing files with copyrights, record companies have been known to
attempt polluting content in the overlays by putting up nodes with corrupt chunks of
data but with correct file names to degrade the service [114] and in hope that users
would get frustrated and stop using the service. Attacks can also be launched by novice
attackers who are there attacking the overlay for fun or fame in a community. These are
perhaps less likely to be successful or cause damage, since their resources tend to be
relatively limited.

Resources available to the attacker

Resource constraints play an important role in determining the nature of the attack. An
attacker who controls a botnet can use an Internet relay channel and launch distributed
denial of service attacks against another node. With respect to the sybil attack, IP ad-
dresses are also an important resource for the attacker since in DHTs such as Chord
[186], the ID is determined by using a base hash function such as SHA-1 [16] on the
node’s IP address. The cryptographic puzzles [169] that are sometimes suggested as a
way to deter sybil attacks by making the join process harder are futile against an attacker
with a botnet and virtually unlimited computation power. Doucer [63] proves that even

140

with the assumption that attackers only have minimum resources at their disposal, it is
not possible to defend against them in a pure P2P system.

Victim of the attack

The victim of an attack could be an individual node, a particular content or the entire
overlay service. If malicious nodes are strategically placed in the overlay, they can
block a node from using its services. Attacks could also be launched against specific
content [183] or even the entire overlay service. For example, if the malicious nodes are
randomly placed in the overlay and drop packets or upload malcontent, then the quality
of the overlay would deteriorate.

Time of attack

A malicious node could start misbehaving as soon as it enters the overlay or it could
follow the rules of the overlay for a finite amount of time and then attack. The latter
could prove to be more harmful if the overlay design suggests accumulating trust in
peers based on the amount of time they have been present and/or not misbehaving. In
Kademlia, for instance [129], the routing tables are populated with nodes that have been
up for a certain amount of time. While this provides some robustness from attacks in
which the malicious nodes start dropping routing requests from the moment they enter,
it would take time for the algorithm to adapt to nodes which start misbehaving in a later
stage (i.e., after they have been recorded in routing tables). Similarly for reputation
management systems, it is important that they adapt to the current behavior of a peer.

8.2.7 P2P in Real-Time Communication

The idea of using P2P in real-time communication boils down to distributing centralized
entities from conventional architectures over peer-to-peer overlays and thus reducing the
costs of deployment and increasing reliability of the different services. Initiatives such
as the P2PSIP working group in IETF [12] are working on achieving this by using a
DHT for services such as registration, location lookup, and support for NAT traversal,
which are normally performed by dedicated servers. Solutions that currently emerge in
the working group try to achieve such a distribution adopting three different approaches:
P2PP [31] and XPP-PCAN [127] use the overlay only for storing and retrieving user
locations (or location of the peers acting as proxies for them), RELOAD [35] and HIP-
HOP [49] route SIP signaling over the mesh of connections between peers, while in

141

ASP [102] peers tunnel both SIP and media flows in end-to-end encrypted connections
established with ICE [163] and often relayed by other peers.

Even if based on the same technology, overlays used for real-time communication
differ from those used for file sharing in at least two aspects:

• Resource consumption. Contrary to file sharing systems where the DHT is used
to store huge amounts of data (even if the distributed database is used only for
storing file locations, each user usually indexes hundreds or thousands of files),
real-time communication overlays only require a subset of the resources available
at any given time as users only register a limited number of locations (rarely more
than one).

• Confidentiality. While in file sharing applications, where shared files are supposed
to be made publicly available, eavesdropping and identity theft do not consti-
tute real threats, in real-time communication, since exchanges of data are usually
meant to happen privately, it is essential to have mechanisms to assert identities
and to guarantee confidentiality.

In this section we go over the admission issues, and security problems discussed in
previous sections, and discuss solutions that would be applicable to real-time commu-
nication in P2P.

Admission

In order to keep as much compatibility with existing user agents as possible, nodes in
P2P communication architectures would probably have to participate as either peers or
clients. If a node participates as a client, then it would use the overlay network by simply
attaching to a peer or a proxy instead of registering with a server. In most cases users
would be able to benefit from the overlay by only acting as clients. However, in order
to keep the solution scalable, at some point clients would have to be promoted to peers
(admission to the DHT). This requires addressing the following issues:

Active vs. passive promotions

Most existing P2P networks [7, 1, 6], would generally make it the responsibility of
clients to determine if and when they would apply for becoming peers. A well known
exception to this trend is the Skype network [13], arguably one of the most popular

142

overlay networks used for real-time communications today. Instances of the Skype
application are supposed to operate as either super-nodes or ordinary-nodes and the
“promotions” are decided by the higher levels of the hierarchy [30]. Even if there is
not much difference for a client whether it has to actively ask for authorization to join
an overlay, or passively wait for an invitation, the latter approach has some advantages
which fit well in overlays where only a subset of the peers is required to provide the
service (as in real-time communication):

• An attacker cannot estimate in advance when and if it would be invited to join the
overlay as a peer.

• Allows peers to perform long-lasting measurements on sets of candidates, in order
to accurately select the most appropriate for upgrading and only invite it when
they are “ready” to do so. The opposite approach, that is when clients initiate
the join themselves, adds an extra constraint for the peer that has to act upon the
request since it doesn’t know if and when the peer would attempt to join again.

• Discourages malicious peers from attempting sybil and, more generally, brute
force attacks, as only a small ratio of clients has chances to join the overlay (pos-
sibly after an extensive examination).

When to upgrade

In order to answer this question one would have to define some criteria that would allow
to determine the load on a peer and a reasonable threshold. When the load exceeds
this threshold, a client is invited to become a peer and share the load. The criteria for
determining load can be:

• Number of clients attached.

• Bandwidth usage for DHT maintenance, forwarding requests and responses to
and from peers and from the attached clients.

• Memory usage for DHT routing table, DHT neighborhood table, application spe-
cific data and information about the attached clients.

Which clients to upgrade

Selecting which clients to upgrade would require defining and keeping track of new
metrics. The exact set of metrics and how they influence decisions should be the sub-

143

ject of serious analysis and experimentation. These could be based on the following
observations:

• Uptime. A peer could easily record the amount of time that it has been maintain-
ing a connection with a client and take it into account when trying to determine
whether or not to upgrade it.

• Level of activity. It is reasonable to assume that the more a client uses the service
(e.g. making phone calls), the less they would be willing to degrade it.

• Keeping track of history. Peers could record history of the clients they invite and
the way they contribute to the overlay.

Other metrics such as public vs. private IP addresses, computation power, and band-
width should also be taken into account even though they do not necessarily have a
direct impact on security.

Incentives for clients

Clients need to have incentives for accepting upgrades in order to prevent excessive
burden on existing peers. One way to handle this would be to maintain separate incentive
management through the use of currency or credits. Another option would involve
embedding these incentives inside the protocol itself:

• Peers share with clients only a fraction of their bandwidth (uplink and downlink).
This would result in higher latency when using the services of the overlay as a
client and better service quality for peers.

• Peers could restrict the number or types of calls that they allow clients to make.

Introducing such incentives, however, may turn out to be somewhat risky. Differences
in quality would probably be perceptible for end users who would not always be able
to understand the difference between the roles that their user agent is playing in the
overlay. Such behavior may therefore be interpreted as arbitrary and make the service
look unreliable.

144

Figure 8.1: Node join in an XPP-PCAN [127] overlay: neighbors of the new peer are
notified by the admitting peer.

8.2.8 Security

Denial of Service

In addition to bombardment with queries as described in section 8.2.6, the denial of
service attack against an individual node can be conducted in DHTs used for real-time
communications if the peers which surround a particular ID are compromised. These
peers which act as proxy servers for the victim, can fake the responses from the victim
by sending fictitious error messages back to peers trying to establish a session. Danezis
et al’s [59] solution can also provide protection against such attacks as in their solution
peers vary the nodes used in queries.

Man in the middle attack

The man in the middle attack described by Seedorf [180] is an attack that exploits the
lack of integrity when routing information in P2PSIP. A malicious node could return
IP addresses of other malicious nodes when queried for a particular ID. The requesting
peer would then establish a session with a second malicious node which would again
return a “poisoned” reply. This could go on until the TTL expires and the requester
gives up the “wild goose chase” [59]. A simple way for entities to verify the correctness
of the routing lookup is to employ iterative routing and to check the node-ID of every
routing hop that it is returned and it should get closer to the desired ID with every hop.
However, this is not a strong check and can be defeated [180].

145

Trust between peers

The effect of malicious peers could be mitigated by introducing the concept of trust
within an overlay. This can be done in different ways:

• Using certificates assigned by an external authority. The drawback with this ap-
proach is that it requires a centralized element.

• Using certificates reciprocally signed by peers. This mechanism is quite similar
to PGP [202]; every peer signs certificates of “friend” peers and trusts any other
peer with a certificate signed by one of its friends. However even though it might
be theoretically possible, in reality it is extremely difficult to obtain long enough
trust chains.

• Spreading the information of each trusted peer to its future neighbors, as shown
in Figure 8.1. This approach, described in [127], works well with some DHTs
like CAN, when it is possible to base the trust on some sort of mutual relationship
(e.g., neighborhood in CAN [159]).

Routing call signaling

One way for implementing real-time communication overlays (as we have mentioned in
earlier sections) would be to simply replace centralized entities in signalling protocols
like SIP [167] with distributed services. In some cases this might imply reusing existing
protocol mechanisms for routing signalling messages. In the case of SIP this would
imply regarding peers as SIP proxies. However the design of SIP supposes that such
proxies are trusted, and makes it possible for them to fork requests or change their des-
tination, add or remove header fields, act as the remote party, and generally manipulate
message content and semantics

However, in a P2P environment where messages may be routed through numerous
successive peers, some of which might be compromised, it is important not to treat them
as trusted proxies. One way to limit what peers can do is by protecting signalling with
some kind of end-to-end encryption, as proposed in ASP [102].

Another option would be to extend existing signalling protocols and modify the way
they route messages in order to guarantee secure end-to-end transmission. Gurbani et
al. define a similar mechanism for SIP called SIPSEC [77]. It allows nodes to establish
a secure channel by sending a CONNECT SIP request, and then tunnel all SIP messages
through it.

146

Integrity of location bindings

It is important to ensure that the (URI, IP) pair that a node registers with is what is
returned to a requester. Or the entities that issue the lookup request must be able to verify
the integrity of this pair. A pure P2P approach to allow verification of the integrity of
location binding information is presented in [181]. The idea is for an entity to choose an
asymmetric key pair and hash its public key to generate its URI. The entity then signs its
present location with its private key and registers with the quadruple (URI, IP, signature,
public key). Any entity which looks up for the URI and receives such a quadruple can
then verify its integrity by using the public key and the certificate. Another possible
merit of such an approach could be that it is possible to identify the malicious nodes
and maintain a black list. However, the resulting SIP URIs are not easy to remember
and associate with entities. Discovering these URIs and associating them with entities
would therefore require some sort of a directory service. The authors suggest using
existing authentication infrastructure for this such as a certified web service using SSL
which can publish an “online phone book” mapping users to SIP-URIs.

Encrypting content

Using P2P overlays for real-time communication implies that content is likely to tra-
verse numerous intermediate peers before reaching its destination. A typical example
could be the use of peers as media relays as a way of traversing NATs in VoIP calls.

Contrary to publicly shared files, communication sessions are in most cases expected
to be private. It is therefore very important to make sure that no media leaves the client
application without being encrypted and securely transported through a protocol like
SRTP [32].

Other issues

Identifying more specific threats related to the P2P real-time communications, would
require a clearly defined economic model. Answers to the following questions would
be helpful.

• To whom do the users pay?

• Do the users only pay for services across the PSTN gateway?

• Is the billing done per call or is it fixed?

147

For instance, the implications of an attack such as taking control over another’s user
agent or its identity and using it for outbound calls would depend on whether or not this
would be economically advantageous for the attacker. Baumann et. al [33] suggests that
to prevent unwanted communication costs, the PSTN gateway should only be accessible
via an authenticated server and dialing authorizations should be enforced. Also it seems
that it would be difficult to do billing in a pure P2P manner as it would mean keeping
the billing details with untrusted peers.

8.2.9 Conclusion and future work

We have discussed problems in peer to peer security and some solutions at the state of
the art, mentioning the suitability and drawbacks of the different schemes. We looked
at security keeping the attackers into perspective, their motivation, their restrictions and
their targets. Existing security solutions do not seem mature enough to be deployed
in pure peer to peer networks. Specifically secure ID assignment and entity-identity
association seem the most challenging of problems. Future work on the subject would
therefore need to analyze emerging implementations and the way the suggested security
solutions perform with them.

Throughout the document we have been insisting that in P2P overlays both signaling
and content would have to be encrypted in an end-to-end manner. Further research
on the topic would have to investigate possible ways to distribute/exchange the keys
necessary for such encryption.

148

Chapter 9

The Extensible Peer Protocol

9.1 Introduction

In this chapter we define the Extensible Peer Protocol (XPP), which provides end-to-
end delivery services for data among peers in distributed overlay networks. The work
described in here has been completed in the context of a collaboration between the Louis
Pasteur University and Telecom Italia Labs, Turin, represented by Enrico Marocco.

Given the popularity and wide use of firewalls and NATs in most existing network
configurations, one of the main goals of this protocol is to provide support for them.
XPP is therefore using UDP as a transport protocol following guidelines provided in
[71], and defines a way for sessions to be simultaneously initiated by both endpoints in
pretty much the same way that standard media sessions are negotiated with SIP [167]
or XMPP [174]. This makes possible the establishment of direct connections between
peers even if both endpoints are located behind RFC 4787 [22] compliant NATs.

The semantics that XPP uses for session initiation and their resemblance with stan-
dard call negotiation allow the use of tools like ICE [163] and STUN [168] that further
facilitate session establishment.

We also define rudimentary mechanisms for fragmentation and reliability. They are,
however, not well suited for large amounts of data and may require further work like for
example the definition of ACK rolling windows.

XPP is a simple protocol designed in a way that makes it easy to implement and
extend; it is explicitly meant to be used as the P2PSIP peer protocol described in [56].

149

Acknowledgement: Work described in this chapter has been completed in a joint
effort with Telecom Italia Labs, Turin, represented by Enrico Marocco. The XPP proto-
col specification has also been contributed to the P2PSIP working group of the Internet
Engineering Task Force.

9.1.1 Why UDP

The main reason for the choice of UDP as a transport protocol is related to NAT traver-
sal. When two peers behind different NAT devices want to establish a connection and
exchange data flows, they have to start sending packets simultaneously, as opposed to
waiting for one of the peers to initiate the session. This way, when their NATs receive
such packets, they would eventually match them to previous outgoing packets belonging
to the same session and forward them to the corresponding peer.

It is true that the definition of three-way TCP [152] handshake, also provides se-
mantics that could be used for simultaneous connection establishment; however, this
mechanism is defined for resolving race conditions and is not meant for use as a com-
mon practice.

In fact, Berkeley sockets, the standard interface applications use to access network
functionalities exposed by the operating system, are designed around a client/server
model and do not natively allow to initiate connections simultaneously.

Furthermore, other than requiring a correct implementation of the full TCP state
machine on both endpoints, for the simultaneous establishment to succeed it is neces-
sary that all traversed network elements (especially NATs and firewalls) are compliant
with the best practices specified in [76]. Such requirements, at the time of writing, are
certainly much less likely to be satisfied by common devices than those necessary for
UDP NAT traversal [22].

Another weakness of TCP is its inability to handle address changes within estab-
lished connections. While in normal environments it is possible to handle mobility at
the network layer, in some scenarios specifically addressed by P2PSIP maintaining the
same IP address after a handover or a NAT reboot is often not an option.

Using TCP would thus make mandatory the usage of ICE-TCP [100], at least for
handling of simultaneous session establishment and mobility. Given the higher level of
complexity inherent to ICE-TCP compared to ICE Lite and even standard ICE, using it
would make XPP a lot more difficult to implement.

150

On the other hand, using UDP as the transport protocol would also give us the pos-
sibility to "switch off" reliability if necessary. This is sometimes necessary when using
DHT algorithms based on frequent optional routing table updates.

9.1.2 Relation with other Proposals

Since we started specifying and implementing XPP there have been two other proposals
for peer protocols: dSIP [51] and P2PP [29].

While dSIP – a textual protocol substantially based on SIP – is pretty different,
P2PP has many things in common with XPP; mainly, it is binary and uses a very similar
encoding for parameters based on type-length-value (TLV) fields. However, it misses a
mechanism for simultaneously initiating sessions, which is one of XPP’s most important
features.

9.2 Terminology

• XPP Session : a logical relationship between two peers required for transmitting
XPP Messages.

• XPP Message : either an XPP Operation Request or a XPP Operation Response.
An XPP Message can be transmitted as one or more XPP Fragments.

• XPP Fragment: a segment or a whole of an XPP Message not exceeding the path
maximum transmission unit (MTU).

• XPP Operation : a logical relationship between an XPP Operation Request and
zero or more XPP Operation Responses.

• XPP Operation Request : an XPP Message requesting the execution of a given
operation.

• XPP Operation Response : an XPP Message reporting the result of an operation.

151

9.3 Overview

9.3.1 XPP Sessions

XPP sessions are logical end-to-end relationships between pairs of peers. A session is
identified by a pair of tags univocally generated by the peers and encoded in Local ID
and Remote ID fields of each fragment.

For example, an XPP session between Alice and Bob, where Alice’s generated tag
is LA and Bob’s generated tag is LB, will be identified by the pair <LA, LB> by Alice
and by <LB, LA> by Bob.

Peers must discard fragments with values in Local ID and Remote ID fields not
matching an active session, correctly established as described in Section 9.4.1.

It is important to note that received fragments will have inverted Local ID and Re-
mote ID depending on whether they are sent by one side or the other.

9.3.2 XPP Operations

An XPP operation contains one operation request and zero or more operation responses.
Requests and responses of the same operation must be sent in opposite directions. That
is, if one side has sent the operation request, it cannot send responses in the same op-
eration. Similarly, if a side has received a request it can only send responses for the
corresponding operation and any new request must be sent in a new operation.

Every XPP operation has a sequence number and an operation type that serve as a
way to identify and order operations. The operation number and type for all operation
responses must match those of the corresponding request.

We do not define any specific operation type. Such types are to be defined by exten-
sions of the XPP protocol according to their needs.

The lifetime of an operation (i.e. the amount of time that the sender of a request must
keep the context associated with it) is also left to documents extending this specification
as it may vary according to the operation type and the purpose it serves.

152

9.3.3 Requests and Responses

Requests and responses can be distinguished by the value of the Operation Type field.
Senders must set this value to the to 0x00000000 for all outgoing responses. Operation
type values for requests must be registered with IANA.

Requests and responses may have any number of parameters as specified in exten-
sion documents.

9.4 Use Cases

9.4.1 Session Establishment

Currently XPP only supports a single mode for session initiation which we refer to as
simultaneous session establishment. Prior to the establishment, all parameters of the
session need to be negotiated using external rendezvous and negotiation mechanisms
such as those provided by SIP [167] and SDP [79] as defined in RFC 3264 [165].

9.4.2 A Sample XPP Operation Scenario

XPP Operations are initiated by an Operation Request that can be followed by an arbi-
trary number of responses. In the scenario presented in Figure 9.2 Alice is the sender of
the operation request. Bob ACKs receipt of the request as soon as he gets it. At some
point Bob would send an Operation response that in this case would get lost before
reaching Alice. According to the XPP retransmission mechanisms described in Sec-
tion 9.6.2, Bob would resend the response upon expiration of the corresponding timer
and Alice would acknowledge reception as soon as the response has reached her.

9.4.3 Message fragmentation

When storing data in an overlay, or when simply exchanging information on neigh-
boring zones, P2P applications are likely to have to exchange data chunks exceeding
the path MTU. XPP therefore defines mechanisms for fragmentation that allow sending
long XPP messages over multiple XPP fragments (see Section 9.6.1).

153

Figure 9.1: Simultaneous establishment of an XPP Session.
UDP packets are sent between endpoints 10.0.0.10:1234 and 10.0.0.20:4321. Session
is identified by ID pairs (0xAAAA, 0xBBBB) and (0xBBBB, 0xAAAA) on Alice and

Bob respectively.

Figure 9.3 describes a scenario where Alice is sending to Bob an XPP operation
request with a size greater than that of the path MTU.

9.5 Protocol Details

All XPP messages are encoded using binary fields. All integer fields are carried in net-
work byte order, that is, most significant byte (octet) first. This byte order is commonly
known as big-endian. The transmission order is described in detail in Appendix B of
RFC 791 [151].

154

Figure 9.2: A sample XPP operation.
Alice sends an Operation request to Bob. Bob confirms reception and later sends a

response. The response does not reach Alice, so Bob retransmits until the
corresponding ACK is received.

9.5.1 XPP Fragment Header

All XPP messages start with an 8 byte message header represented on the following
figure (Figure 9.4):

Fields:

• Ver : 3-bit XPP version number = 1.

• Reserved : Flags reserved for use by future versions or extensions of the protocol.
must be set to zero by the sender and ignored by the receiver.

• SYN : Session synchronization flag. Set to 1 if this is the first message in a session
and 0 otherwise.

• ACK : Fragment acknowledgment flag. Set to 1 if this message is sent to ac-
knowledge receipt of a previously sent fragment or 0 otherwise.

• FIN : Session close flag. Set to 1 if no more non-ACK messages will be sent in
this direction.

• REL : Fragment reliable flag. Set to 1 if the remote party is to send an acknowl-
edgment upon receipt of this fragment and 0 otherwise.

155

Figure 9.3: Fragmentation
Alice is sending to Bob a message larger than the current path MTU. Fragments are

transmitted one by one, and every time Alice sends a packet, she would wait for Bob to
respond with an ACK before proceeding. In a case when no ACK is received, Alice

would resend the last packet.

• LFR : Last fragment flag. Indicates whether this is the last of a series of fragments
(1 or more). If a message only consists in a single fragment this flag is to be set
to 1.

• KPA : Keep alive flag. Set to 1 if this is a keep alive packet sent with the sole
purpose of maintaining session state in intermediate routing devices.

• Sequence Number : Contains the sequence number of reliable fragment. Set
to a random integer between 0 and 65535 (inclusive) for a first fragment and
incremented by 1 for every next fragment.

• Local ID : The local identifier of an XPP session.

• Remote ID : The remote identifier of an XPP session.

156

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
		S	A	F	R	L	K	
Ver	Reserved	Y	C	I	E	F	P	Sequence Number
		N	K	N	L	R	A	
+-+								
Local ID	Remote ID							
+-+								
XPP Message Fragment (Optional) ...								
+-

Figure 9.4: XPP fragment header.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Operation Number |
+-+
| Operation Type |
+-+
| Parameters ...
+-+-+-+-+-+-+-+-+-+-+-+-

Figure 9.5: XPP Message.

9.5.2 XPP Message

Depending on their size, XPP messages can be transmitted in one or more XPP frag-
ments, one fragment per UDP packet. Every XPP fragment would start with an XPP
fragment header, but only the first one would also contain the XPP Message Header
specifying the operation number.

• Operation Number : The number identifying an operation within a session.

• Operation Type : A token identifying the operation type. The field is to be set to
0x00000000 for operation responses and to the corresponding value for operation
requests.

• Parameters : A concatenation of parameters, as defined below (Section 9.5.3).

157

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Length |
+-+
| Value ...
+-+

Figure 9.6: Parameter.

9.5.3 Parameters

• Type : A token identifying the parameter type.

• Length : The length of the value element, expressed as an unsigned integral num-
ber of bytes.

• Value : The value of the parameter. If the length reported in the Length field is not
a multiple of 4, a padding is added so that total parameter length would always be
a multiple of 4 bytes.

9.5.4 Session Establishment

Currently XPP only supports a single mode for session initiation which we refer to as
simultaneous session establishment. Prior to the establishment, all parameters of the
session need to be negotiated using external rendezvous and negotiation mechanisms
such as those provided by SIP [167] and SDP [79] as defined in RFC 3264 [165].

Figure 9.7 shows the session establishment process in detail.

9.5.5 Session Teardown

Teardown of a particular session must be initiated by the signalling protocol used for
the establishment of the session (a BYE request in the case of SIP) and is then followed
by acknowledged transmission of two XPP messages with the FIN bit set by the two
endpoints.

The transmission of a message with the FIN bit set explicitly indicates that the sender
is not going to send any more messages and, from that point in time on, it will only

158

Figure 9.7: Simultaneous establishment of an XPP Session.
UDP packets are sent between endpoints 10.0.0.10:1234 and 10.0.0.20:4321. Session
is identified by ID pairs (0xAAAA, 0xBBBB) and (0xBBBB, 0xAAAA) on Alice and

Bob respectively.

ACK received fragments. Such a mechanism is required to let both endpoints to finish
transmitting messages already scheduled for sending before the session is definitively
destroyed.

After communicating her intention to close the session, Alice sends a fragment with
the FIN bit set and stops sending non-ACK messages. On his side Bob agrees to the
session teardown and sends the last message he had in his local queue (consisting of
two fragments with sequence number 600 and 601) and then closes the session sending
a fragment with the FIN bit set.

The complete session teardown process is displayed on figure 9.8

159

Figure 9.8: Session teardown
.

9.5.6 Session Failure

Session failure must be reported to the application by the XPP protocol stack when
detected. The stack may detect such failure upon expiration of a keep alive timeout, or
loss of network connectivity.

Once failure has been detected, an XPP protocol stack should stop keeping informa-
tion about the state of the session and ignore any incoming XPP fragment belonging to
that session (just as it would do for non-existing ones).

9.5.7 Managing XPP Operations

It is the responsibility of the XPP protocol stack to keep track of currently active XPP
operations. An operation is created when the first request that belongs to it has been sent.

160

Implementations should provide to the application a means of specifying an expiration
delay ("D") for every request being sent.

The protocol stack would consider an operation terminated "D" ms after the last re-
sponse for that operation has been received. The stack should also provide the applica-
tion with a means of manually ending an operation (e.g. an end Operation(operationID
) method).

Once an operation has been ended, the protocol stack may either ignore all incoming
responses belonging to the operation, or pass them to the application without a context
associated.

9.6 Transport

All XPP messages are transported in UDP datagrams. Depending on its size a single
XPP message may be transported in one or more datagrams using the XPP fragmenta-
tion mechanisms defined in Section 9.6.1.

Depending on their purpose XPP messages can be transported in both a reliable and
unreliable way. Senders must set the REL bit (Section 9.5.1) of the fragment header to
1 and apply the retransmission mechanisms described in section Section 9.6.2.

Unreliable messages must be transmitted in a single fragment and any attempt from
the application to send data exceeding the size of the current path MTU must result in
an error.

9.6.1 Fragmentation

If a reliable message cannot fit the path MTU (fragment header included), it must be
split in as many fragments as necessary. Each fragment must have the REL bit set to 1
(see Section 9.5.1). The value of the Sequence Number in the fragment header must be
incremented for every following fragment.

The LFR bit (see Section 9.5.1) must be set to 1 for only in the last fragment of a
message as well as for messages that are not fragmented. It must be set to 0 in all other
cases.

161

9.6.2 Retransmissions

XPP fragments are transmitted one at a time. Using UDP as a transport implies that
some fragments may be dropped by intermediate devices. Reliability is therefore ac-
complished through XPP fragment retransmissions. Sending party should retransmit
the request as soon as timer T1 fires. Values for T1 would vary across retransmissions
starting with an interval of t0 for the first one. t0 is an estimate of the round-trip time
(RTT), and it defaults to 100 ms. The interval would double every retransmit until it
reaches t1 (1.6s by default), and retransmissions would then continue with intervals of
t1 until an XPP ACK with the matching sequence number is received, or a total of r (9
by default) fragment retransmissions have been sent. If no response is received by t1
seconds after the last fragment retransmission has been sent, the sending party should
consider the transmission unsuccessful and report failure to the application.

In other words, when using default values (i.e. t0=100ms, t1=1.6s and r=9) frag-
ments would be sent at times 0ms, 100ms, 300ms, 700ms, 1500ms, 3100ms, 4700ms,
6300ms, 7900ms, and 9500ms. At 11100ms, the sender considers the transaction to
have failed.

Note that the retransmission mechanisms that we’ve just described must be used for
all messages that require reliability (i.e. those with the REL bit set to 1 in the fragment
header) and must not be applied to those that do not.

9.6.3 Keep-alive

In order to guarantee session persistence XPP uses periodically sent keep-alive mes-
sages.

Every time a fragment is received within a session, timer T2 for that session is set to
t2 (default: t2 = 5 sec). When T2 fires, a keep- alive message is sent. The message only
contains the XPP fragment header with both the REL and KPA bits Section 9.5.1 set to
1. The Sequence Number for keep alive messages must be incremented just as it would
for any other request.

When a keep-alive fragment is received, it is acked as usual, but, since it doesn’t
carry any data, it is not reported to the application. If a keep-alive fragment transmis-
sion fails (i.e. if no ack is received after applying the retransmission mechanisms from
section Section 9.6.2) the corresponding session is to be considered inactive and a ses-
sion failure is to be reported to the application.

162

9.7 Conclusion

In this chapter we have presented the specification of the eXtensible Peer Protocol
(XPP). The purpose of this protocol is to provide a transport mechanism for data that
needs to be exchanged during the maintenance of a distributed hash table.

During the design of XPP we have strived to make it as friendly as possible to exist-
ing Network Address Translation devices and firewalls. We have therefore implemented
the possibility for simultaneous session establishment and used UDP as a transport pro-
tocol.

Another important feature of this protocol is the fact that it’s design does not make
any assumptions whatsoever about the nature of the DHT that it will be used with. As a
result, in addition to classic ring based algorithms like Chord, Kademlia, or Pastry, XPP
is also compatible with others, like CAN, using hypercube models. In the following
chapter we would show one possible XPP extension, called XPP-PCAN, which allows
creating and maintaining CAN-like overlays.

163

Chapter 10

XPP-PCAN: XPP Extensions for CAN
DHT overlays

10.1 Introduction

This chapter describes a possible solution for a P2PSIP Overlay Network [56] currently
implemented in the SIPDHT [125] open source project. The work described in here has
been completed in the context of a collaboration between the Louis Pasteur University
and Telecom Italia Labs, Turin, represented by Enrico Marocco.

The passive approach that the solution adopts is relatively uncommon in related
work. Yet it seems to be well-suited for addressing issues arising from the wide spread
deployment of NAT devices, high churn rate and possible participation of malicious
peers. This solution is intended to:

• easily support deployments where many peers are located behind NAT boxes,
adopting NAT traversal mechanisms such as STUN [164] and ICE [163];

• provide mechanisms for keeping overlay size to an optimal minimum. Allowing
peers located behind NAT devices to become members of the overlay network
implies frequent exchange of keep alive messages. XPP-PCAN addresses this is-
sue by only allowing the best available clients (i.e. those offering most significant
resources) and doing so only when their participation is really necessary.

• provide mechanisms for limiting the effects of malicious nodes attempting to de-
grade the service.

165

XPP-PCAN is based on the following key points:

1. the overlay is organized as a distributed database or hash table based on the CAN
[158] algorithm and it only offers functionalities for storing and retrieving data
and for routing SIP [167] messages;

2. the P2P overlay is transparent to clients. A client can maintain SIP outbound
flows [37] and register its location with any peer (causing the insertion of a routing
record on the peer authoritative for its address);

It would also be possible for clients, not participating in the overlay, to allow
others to maintain outbound flows with them, as this would significantly lighten
the load of the overlay. At the moment such an option has been put aside for
simplicity, but is listed as an open issue.

3. Peers use XPP [126] for performing maintenance operations;

4. Peers use SIP (and possibly ICE) for establishing XPP sessions;

5. For every client using the overlay there is at least one registrar peer that the client
uses as point of attachment to the overlay, and one authoritative peer (the one
keeping location and routing information for the client (in some cases the two
may coincide).

6. A peer can invite any client it is authoritative for to join the overlay.

Once again, one of the main characteristics of XPP-PCAN is the fact that it is not
possible for a node to decide whether it would simply use the overlay network as a
client or become a part of it as a peer. One could therefore imagine the network as a free
service which, in some cases, could invite any of its clients to provide resources for use
by others. Answering positively to an invitation is the only way for a client to become a
peer.

It is worth noting that points 1 and 4 allow peers and clients to use the SIP routing
functionality provided by the overlay for establishing XPP sessions, which, in turn, are
needed for maintaining the overlay itself.

The remainder of this document, after giving a short overview of the CAN-based
algorithm, specifies XPP extensions and defines operations each peer must perform in
order to consistently maintain the overlay. However, it does not specify how a peer
decides to invite a client to join the overlay; implementations must apply their own
criteria for deciding both when and which node to invite.

166

Acknowledgement: Work described in this chapter has been completed in a joint
effort with Telecom Italia Labs, Turin, represented by Enrico Marocco. The XPP-PCAN
protocol specification has also been contributed to the P2PSIP working group of the
Internet Engineering Task Force.

10.1.1 The Passive Approach

Networks using XPP-PCAN would manage joins in a "passive" way, and only allow
nodes to become members of the overlay once they have been invited by existing peers.
Overlays, used by file-sharing applications, would generally adopt the opposite ap-
proach and let clients decide whether or not to become peers. A well known excep-
tion to this trend is the Skype network [30], arguably one of the most popular overlay
networks used for real-time communications today. Instances of the Skype application
may operate as super-nodes or ordinary-nodes and the "promotions" are decided by the
higher levels of the hierarchy.

The passive approach seems appropriate for P2PSIP because:

• all peer candidates are actually clients that have already registered with the service
and are therefore known to the overlay.

• the overlay only needs to provide a limited amount of functionalities to clients
and these could be handled by a relatively small subset of the nodes that actually
use them.

• providing SIP connectivity to clients, storing their location, routing messages,in
addition to maintaining tens or even hundreds of connections with neighbor peers
could be very resource consuming. It is therefore important to confirm availability
of such resources prior to inviting a client to join the overlay as a peer.

An additional advantage of passive joins is the fact that they allow the overlay to
select peers among candidates based virtually any kind of performance and security
characteristics.

It is possible, for example, to limit the effects of malicious peers by only inviting
trusted nodes to join the overlay. Assessing the level of trust could be handled in many
different ways like provider maintained white-lists or social networks.

167

10.1.2 Why CAN?

The choice of the distributed hash table algorithm has been heavily influenced by our
goal to have robust overlay networks even in cases when many peers are behind a NAT.
This requires maintaining persistent connections between peers and CAN fits this re-
quirement quite well, because:

1. It is symmetric [29] unlike Chord [186]. Without such a property, each connection
is efficiently used by only one of the endpoints;

2. Peers maintain a stable routing table with a limited number of entries (which is
not the case with Pastry [170] and Kademlia [129]).

A possible drawback when using the CAN algorithm is its relatively low perfor-
mance. While other popular algorithms claim to always be logarithmic in complexity,
overlays based on CAN cannot scale indefinitely. CAN based overlays need to be con-
figured during deployment with parameters (e.g the number of dimensions for the hash
space) depending on the size of the intended network.

However, in the case of P2PSIP, the service could be provided by a subset of inter-
ested nodes. This and the possibility to use delay measurements between peers when
selecting best routes within the overlay, could help achieving acceptable performance
even with a limited number of peers.

10.2 Algorithm Overview

The algorithm implemented by the overlay is a version of CAN [158] slightly cus-
tomized to fit the "passive" approach. This section briefly describes the overall design
and the procedures for routing, joining the overlay and recovery after failures. [34] and
Section 10.4 will then define how clients and peers establish and use XPP sessions for
implementing these procedures.

10.2.1 General Design

The functionality on which the overlay is based, like all other distributed hash table
algorithms, is the mapping of keys over the peers. Such a functionality, unlike in algo-
rithms based on the concept of consistent hashing [186], [170], [129], is implemented
in a virtual d-dimensional Cartesian coordinate space on a d-torus.

168

The d-torus is the generalization of the Chord ring in d dimensions. In fact, while in
Chord keys are uni-dimensional and can be represented on a ring (i.e. a circular line),
in CAN – and so in the algorithm described here – they are at least bi- dimensional and
thus require a torus (i.e. a circular plane).

A d-dimensional key can easily be obtained by splitting in d parts a uni-dimensional
value returned by a common hash function.

Any peer is assigned a distinct zone of the overall space and is authoritative for
all the keys falling in it. Zones are always defined by the coordinates of their lower
left and top right corner, and contain the area locked between the borders including the
bottom and left edges (thus excluding the right and top edges). At any point in time,
the overlay is consistent if the whole space is completely covered. Figure 10.1 shows a
bi-dimensional space partitioned among 5 peers.

A peer maintains XPP sessions with all its immediate neighbors, along with infor-
mation about the zones they are authoritative for. When a peer receives an operation
request for a key which falls out of its zone, it routes the request to the most appropriate
neighbor.

The most appropriate neighbor is generally the one whose center of mass is closer
to the requested key; however, an implementation may also take into account link speed
and so select not just according to geometric distance. In any case, in order to avoid
loops, peers must not route messages to neighbors which are not geometrically closer to
the targeted key.

10.2.2 Peer Join

The decision when to invite a client to join the overlay is always taken by existing peers.
After choosing the best candidate to "promote", the inviting peer would either select a
fragment recovered from a dead neighbor (see Section 10.2.3) or obtain a new one by
splitting its zone through the longest edge into two equal parts. It would then assign the
new fragment to the entering peer.

The selection process of the candidate to invite may be based on the evaluation
of parameters like bandwidth, connectivity, uptime and trust; such a process strongly
depends on the deployment and is outside the scope of this document.

It is worth noting that, in the case of P2PSIP, a peer may choose the most appropriate
node to invite among the clients it stores a registration for, that is the client whose
address fall under its authority.

169

Figure 10.1: A bi-dimensional space with 5 peers.
For simplicity, the space is shown in two dimensions. In reality the figure is actually a

torus.

After identifying the zone and the node to invite, the inviting peer sends a SIP IN-
VITE request to the new peer and establishes an XPP session. Once the XPP session
established, the join is completed in the following six steps:

1. The inviting peer transfers to the new peer all data bound to keys located in the
new zone;

2. The inviting peer notifies all the neighbors of the zone being transferred that a
peer is about to join, and that they should be ready to establish XPP sessions with
their new neighbor;

3. If the zone of the inviting peer has been split, it notifies all its current neighbors
of its new coordinates;

170

4. The inviting peer sends to the invitee the list of all neighbors it will have after
joining the overlay;

5. The entering peer establishes XPP sessions with all its new neighbors using SIP;

6. The inviting peer updates its neighbor list and ends all XPP sessions with peers
which are no longer its neighbors.

10.2.3 Failure Recovery

When a peer fails, one or more zones of the overlay need to be recovered through a
distributed election. Elections are run by peers neighboring orphaned zones. The exact
algorithm is describe in Section 10.4.2.

When a peer loses connectivity with one of is neighbors, it starts a timer waiting
for other neighbors to also detect the failure. The exact value of the timer depends on
XPP timers and must therefore be greater than the maximum allowed interval between
two subsequent keep alive responses plus the time necessary for neighbors to complete
retransmissions of their last keep alive message. When the timer fires, the peers would
start the election algorithm.

At this point all neighbors of the failed peer start exchanging messages for electing
the one to take over the orphaned zone. Every one of them would store the identity of
the most appropriate candidate it sees and, after a stabilization interval Section 10.4.2,
consider it authoritative on that zone.

When a peer is elected for taking over a zone, it is likely that it does not know all
of its new neighbors; if this is the case, it must query the neighbors it knows in order to
discover new ones and establish XPP connections with them.

10.2.4 Stabilization

Race conditions, temporary transport failures and misbehaving peers may cause incon-
sistencies in the topology of the network. Such inconsistencies most often result in
neighbor peers have different representations of the geometry of a certain number of
bordering zones.

A simple yet efficient stabilization procedure to realign the internal state of a peer
with that of its neighbors is accomplished querying all peers in the neighborhood and
checking that their geometrical view is consistent with that of the querying peer. Any

171

time an inconsistency is detected (i.e. the querying peer discovers a zone whose owner
differs from the one it had recorded or whose coordinates overlap with some zones it
is aware of), it is resolved on a popularity basis, aligning the internal state with the
information reported by the highest number of peers.

10.2.5 Data Replication

Persistence of data against peer failures is achieved by making each peer replicate its
local hash table on an arbitrary number of neighbors. Upon a peer failure, right after the
recovery procedure described in Section 10.2.3 has completed, all peers which where
neighbor of the failed peer check in their replica tables if they have records which are
under the authority of the peer elected as the new owner of the recovered zone; if they
find any, they immediately send records back to the new peer.

As long as peers consistently choose their replica holders (i.e. they send records
bound to the same keys always to the same peers whenever this is possible), such a
mechanism can recover the data stored by a failed peer unless all its neighbors storing a
replica of that data fail at the same time.

10.3 Client Behavior

The overlay is intended to be transparent to conventional SIP user agents. Once such a
client has discovered the location of one or more peers (how exactly it has done so is out-
side the scope of this document), it may set any of them as its outbound proxy. It should
then register using the peer as a registrar and following the registration procedures de-
scribed in RFC3261 [167] and, if needed, the SIP client may direct SIP outbound flows
[37] to this peer in order to allow NAT traversal for SIP messages.

If the client wants to be able to join the overlay, it must use a SIP contact that is
routable from any point in the overlay (e.g. a global scope IP address); if it does not
have such a contact, it may request a public GRUU [99] from the peer (or peers) that it
is currently registered with.

When additional resources are necessary for the maintenance of the overlay, a client
may receive a SIP INVITE request asking to join the overlay, as described in Sec-
tion 10.4.6. Since such a request must list the ’pcan’ tag in the ’Require’ header field,
clients not implementing this specification, will answer with a 420 (Bad Extension)
error message, as specified in RFC3261 [167].

172

10.4 Peer Behavior

10.4.1 Key-Point Mapping

At any point in time, every peer is authoritative for one or more geometric zones, which
means that it is responsible for storing all data bound to keys that correspond to points
in these zones.

In order to obtain the coordinates of a d-dimensional point, one has to split into ’d’
equal components the 20 byte-long hash string returned by applying the SHA-1 [68]
function on the key stripped of any URI parameters (i.e. all characters up to the first
occurrence of a semi-colon - ’;’).

The number of components must be equal to the number of dimensions indicated in
the initial JOIN request; allowed values are 2, 4, 5 and 10.

10.4.2 Internal State

The state of a peer participating in an overlay can be represented as a list of zones the
local peer is authoritative for or which border on zones the local peer is authoritative
for. For each zone, a peer must store the SIP address-of-record and contact of the
responsible peer, the coordinates of the geometric area and a state variable which can
be set according to the state diagram in Figure 10.2. When keeping track of the states
of all neighbor zones (explained in the following paragraphs), a peer may assign each
one of them one of three timers – timer TC1, timer TC2 or timer TC3.

Timers are named TC1, TC2 and TC3 for differentiating from XPP timers T1, T2
and T3.

At any point in time a peer should have active XPP sessions with all its neighbors. It
must handle failures occurring in such sessions as explained in the following paragraphs.

Zone States

Every peer maintains a list of all zones bordering on its own. Every such zone may be
in one of the following states.

The states have the following meaning:

173

Figure 10.2: Zone state diagram.

• BORDERING: a neighbor peer is authoritative for the zone and the XPP session
with this peer is active.

• SYNCHRONIZING: the neighbor authoritative for the zone is unreachable. The
peer waits until all neighbors detect the failure.

• STABILIZING: a neighbor has been elected to take over the orphan zone. The
local peer is waiting to make sure that no one else claims ownership of this zone.

• ACQUIRING: the local peer is about to take over a zone but it is still waiting in
case a more appropriate neighbor would claim it.

• OWN: the local peer is authoritative for the zone.

In most cases, zones would be in either an OWN or a BORDERING state. States like
SYNCHRONIZING, STABILIZING and ACQUIRING are only entered when a failure
is detected and a zone needs to be taken over by another peer. The recovery algorithm

174

uses three timers – TC1, TC2, and TC3 – and is completed through several exchanges
of TAKEOVER messages. A peer must therefore be able to handle five different events
for each of its neighbor zones, as defined in the remainder of this section. The transition
from state OWN to BORDERING, which occurs only when a new peer joins the overlay,
is separately described in Section 10.4.6.

A complete description of all state transitions defined by this protocols is provided
in section 11.12

Neighbor Evaluation for Takeover

In order to determine whether one peer is more appropriate than another for taking over
a zone, a list of conditions need to be taken into account in the following order:

1. If one of the peers is the current owner (e.g. the failure was temporary or just
limited to some connections), it wins the election;

2. If only one of the peers can merge the uncovered zone with its own, it wins the
election. Note: two zones can be merged if they share a border component (an
edge for 2d, a surface for 3d and so on);

3. If the sums of the zone volumes are different for the two peers, the one with the
smallest value wins the election;

4. If none of the above produces a winner, the peer with the first identity in lexico-
graphic order wins the election.

Stabilization Procedure

Since misbehaving peers, race conditions and temporary network failures may cause
inconsistencies in their internal state, peers should periodically execute the following
procedure in order to be sure it is coherent with that of their neighbors:

1. Send a QUERY operation request targeted to each zone bordering on any of its
own zones;

2. On reception of a QUERY operation response, update a temporary list for each of
the reported zones:

175

if an equivalent zone with the same owner cannot be found in the list, insert
it and assign a default initial score value;

if an equivalent zone with the same owner can be found in the list, increase
its score value;

3. When QUERY operation responses have been received for all sent requests, re-
solve conflicting zones (i.e. zones with equal coordinates but different owners or
zones with overlapping coordinates) keeping in the temporary list the one with
the higher score value and dropping the other;

4. Remove from the temporary list all zones conflicting with any zone in the effective
list whose state is not BORDERING;

5. Update the internal state replacing in the effective zone list all zones in BORDER-
ING state with those in the temporary list.

10.4.3 Routing XPP Messages

When a peer receives a GET, a PUT or a QUERY operation request for a key or a
target which is not contained in any of its zones, it must route it to the most appropriate
neighbor.

The most appropriate neighbor is generally the one whose center of mass is closest
to the target; however, an implementation may also take in account link speed and so
select not just according to geometric distance. In any case, in order to avoid loops,
peers must not route messages to neighbors which are not geometrically closer than
them to the destination zone.

XPP responses must be returned through the path that the originating request came
through. When routing an XPP request, a peer must therefore locally store information
for routing responses back on the same session it was received. Neither the XPP spec-
ification [126] nor this document currently define for how long peers should keep state
information about routed requests (at the moment this is still an open issue). However,
it is still worth noting that as GET and PUT operations are supposed to be used for
handling SIP transactions, it is recommended that such an interval is not shorter than 32
seconds.

176

10.4.4 Handling SIP Registrations

All peers must be able to process SIP REGISTER requests sent directly by clients or
routed by other peers in the overlay’s domain, and update routing records in the dis-
tributed database with XPP PUT operations (see Section 10.4.7). Moreover, to over-
come issues related to connectivity restrictions, such as NAT devices, peers must sup-
port the SIP outbound [37] and GRUU [99] extensions.

If the Contact header field in the incoming REGISTER contains the ’reg-id’ param-
eter, the connection from which it was received must be kept alive as described in [37]
and the routing record must consist of a path where the first element is the URI identi-
fying the peer (a SIP contact or a GRUU), the last element is the value in the Contact
header field, and the elements in between are copied from those read in the Path header
field [198], if one is set. Otherwise, if the registration does not require outbound support,
the record must only contain the first value in the Contact header field.

If the REGISTER request has a Supported or Require header field containing the
’gruu’ tag, the peer must generate a GRUU appending a ’gr’ parameter with a value
equal to the instance ID (reported in the ’+sip.instance’ parameter in the Contact header
field) to the address-of-record of the registering peer. In such cases, the peer must insert
records for both the address-of-record and the GRUU into the distributed database, and
return the GRUU in the SIP response as specified in [99].

It is worth mentioning that, according to mapping rules in Section 10.4.1, the same
peer will be authoritative on both the GRUU and the address-of-record.

In general, a peer handling a REGISTER request is not necessarily the one storing
the corresponding routing record; A registrar peer must send an XPP PUT operation
request as described in Section 10.4.7 and wait for the XPP response to generate the
SIP response. Since the XPP request could silently fail, if a response is not received after
a "reasonable" time, it should close the SIP transaction with a 504 "Server Time-out"
error code.

The "reasonable" time period depends on several parameters, such as the overlay
size and the transport protocol used for the SIP registration. It is recommended that, if
the REGISTER request was sent over UDP, such period is shorter than SIP’s Timer F
value (default: 32 seconds) [167]. The matter is still considered an open issue (Section
8).

177

10.4.5 Routing SIP Requests

When a peer receives a SIP request not addressed to itself and with no Route header
field set, it must first determine if the target (the request URI) belongs to the overlay
domain. If not, it should route it according to rules defined in [166]. Otherwise, if the
target of the request is a SIP URI in the overlay domain, it must retrieve the routing
record bound to the URI in the request line, generating an XPP GET operation request
as defined in Section 10.4.9.

The corresponding GET operation response, returned by the peer authoritative for
the destination URI, must contain the path SIP requests need to follow to reach the
target. After receiving the GET operation response, the peer must recursively resolve all
path components that are represented as URIs belonging to the overlay domain. Next, it
must add Route header fields reflecting the resolved path and use it to route the request.

If the peer does not receive a GET response after a "reasonable" amount of time, it
should close the SIP transaction with a 504 "Server Time-out" error code. As already
mentioned , this "reasonable" amount of time is currently considered an open issue
(Section 11).

As noted in Section 10.4.4, the "reasonable" time interval depends on several pa-
rameters, such as the overlay size and the transport protocol used for sending the SIP
message. It is recommended that, if the SIP request was sent over UDP, such period is
shorter than 32 seconds.

10.4.6 Inviting a Client to Join

When a peer needs to invite a new client to join the overlay it first needs to select the
"best" available among those it stores an active SIP registration for. This document does
not specify how it could be done; implementations will apply their own criteria.

After identifying the client to invite and a zone to transfer (either one recovered
from a dead peer or one obtained by splitting its own), the inviting peer must send a SIP
INVITE request to the joining client in order to establish an XPP session with it. The
INVITE request must have a Require header field containing the ’pcan’ extension tag
and will be routed as specified in Section 10.4.5.

In network environments where it is expected that peers might be located behind
NAT devices, the session negotiation should be completed using the ICE [163] mecha-
nism.

178

If the client answers positively and after the XPP session has been correctly estab-
lished as described in [126], the join procedure would continue through the following
steps:

1. The inviting peer sends a PUT request generated as described in Section 10.4.7
to the entering peer for transferring all the data bound to keys located in the new
zone;

2. The inviting peer sends an UPDATE request to all its neighbors. Generated UP-
DATE requests is described in Section 10.4.15. This request would report all
zones of authority of the inviting peer as well as the one transferred to the enter-
ing peer. Peers receiving an UPDATE request must take into account any changes
of the overlay topology and, in case they are also going to be neighbors of the new
peer, prepare to establish XPP sessions with it.

3. The inviting peer then sends a JOIN request generated as described in section
10.4.17 to the entering peer. The request contains coordinates of the zone being
transfered and the list of its neighbors;

4. The entering peer establishes XPP sessions with all its new neighbors using SIP;

5. The inviting peer updates its zone list and closes sessions with peers that, as a
result of the transfer, are no longer its neighbors.

10.4.7 Generating PUT Operation Requests

PUT operations insert key-value pairs in the distributed database. In general, such re-
quests would be used when storing SIP registrations. Every such request is composed
of one or more tuples containing:

• KEY: a SIP URI, usually an address-of-record or a GRUU [99];

• VALUE: the route-path SIP messages addressed to the user should follow;

• BINDING-ID: the token identifying the key-value pair instance. Two subse-
quent PUT operations with same KEY and same BINDING-ID overwrite the
same record; two PUT operations with same KEY and a different BINDING-ID
would cause the insertion of two different records. For PUT requests generated
upon SIP registrations, the BINDING-ID should contain the value of the Call-ID
header field in the REGISTER request;

179

• EXPIRES: the amount of time (in seconds) that the record needs to be kept.

• It is recommended that requests containing more than one tuple are generated
only if all tuples fall under the authority of the same peer; this could be the case,
for example, during a join (Section 4.6) or when handling a registration requesting
a GRUU (Section 10.4.4).

10.4.8 Handling PUT Operation Requests

Upon reception of a PUT operation request, a peer must first check if it is responsible
for the KEY parameter contained in the first tuple. If it is not, it must route the request
as defined in Section 10.4.3; otherwise, for each tuple in the request it is responsible for,
it must update or insert a record in its local table, respectively if one with same KEY
and BINDING-ID previously existed or not.

Once stored records it is responsible for, the peer must return in a PUT operation
response, all records in its local table bound to keys matching one of those contained
in the initial request. PUT operation responses are thus syntactically identical to PUT
requests (see Section 10.4.7).

In general, according to replication policies, after storing data a peer peer should
replicate it on some of its neighbor peers generating a REPLICA operation request as
described in Section 10.4.11.

Even if the selection of the neighbor peers to send REPLICA requests to is not
important per se, it needs to be consistent in a way that, whenever possible, REPLICA
operation requests for records bound to the same keys are sent to the same peers.

10.4.9 Generating GET Operation Requests

GET operation requests retrieve data in the distributed database. Most often, GET re-
quests would be used when querying the location of clients and peers for routing SIP
messages. Such requests contain one or more KEY parameters, typically a SIP address-
of-record or a GRUU [99].

It is recommended that requests containing more than one KEY parameter be gen-
erated only when all keys fall under the authority of the same peer.

180

10.4.10 Handling GET Operation Requests

Upon reception of a GET operation request, a peer must first check if it is responsible for
the first KEY parameter. If it is not, it must route the request as defined in Section 10.4.3;
otherwise, it must return in a GET operation response, all records in its local table bound
to keys matching one of those contained in the initial request.

GET operation responses are syntactically identical to PUT responses (see Sec-
tion 10.4.8).

10.4.11 Generating REPLICA Operation Requests

REPLICA operations insert key-value pairs in the local replica table of a neighbor peer.
In general, such requests would be generated as a result of handling PUT operation
requests. Every such request is composed of one or more tuples containing:

• KEY: a SIP URI, usually an address-of-record or a GRUU [99];

• VALUE: the route-path SIP messages addressed to the user should follow;

• BINDING-ID: the token identifying the key-value pair instance. Two subsequent
REPLICA operations with same KEY and same BINDING-ID overwrite the same
record; two REPLICA operations with same KEY and a different BINDING-ID
would cause the insertion of two different records.

• EXPIRES: the amount of time (in seconds) that the record needs to be kept.

10.4.12 Handling REPLICA Operation Requests

Upon reception of a REPLICA operation request, a peer must update or insert a record in
its local replica table, respectively if one with same KEY and BINDING-ID previously
existed or not.

An entry in the local replica table is stored until either it expires or a new neighbor
peer becomes responsible for it. In the latter case, other than removing from its replica
table all entries the new neighbor is responsible for, the local peer must send a PUT
operation request for all the purged entries, as described in Section 10.4.7.

181

10.4.13 Generating QUERY Operation Requests

QUERY operations are used by peers to gather information about the overlay topology,
for example, for discovering new neighbors after a recovery. QUERY requests consist
of one TARGET parameter used for routing the operation.

10.4.14 Handling QUERY Operation Requests

Upon reception of a QUERY operation request, a peer must first check if the TARGET
parameter belongs to one of the zones it is authoritative for. If not, it must route the
request as explained in Section 10.4.3; otherwise, it must return a representation of the
zones it is aware of in a QUERY response containing:

• A list describing zones the answering peer is authoritative for, each one contain-
ing:

OWN-CONTACT: contact of the answering peer;

OWN-AOR: address-of-record the answering peer is registered for;

OWN-ZONE: coordinates of the zone;

• A list describing zones neighboring those of the answering peer. Every list entry
contains:

PEER-CONTACT: contact of the neighbor peer;

PEER-AOR: address-of-record the neighbor peer is registered for;

PEER-ZONE: coordinates of the zone.

10.4.15 Generating UPDATE Operation Requests

UPDATE operations are used for advertising changes in the overlay topology, such as
joins, recoveries or zone merges. UPDATE requests must report information related to
zones the sending peer is authoritative for or is currently transferring. They contain the
following parameters:

• a list describing zones the sending peer is currently authoritative for, each one
containing:

OWN-CONTACT: contact of the sending peer;

182

OWN-AOR: address-of-record the sending peer is registered with;

OWN-ZONE: coordinates of the zone;

• a list containing all zones neighboring those of the sending peer. The list may
also contain zones that used to be under the authority of the sending peer but
have just been transfered to a joining node. List tuples must contain the following
parameters:

PEER-CONTACT: contact of the neighbor peer;

PEER-AOR: address-of-record the neighbor peer is registered for;

PEER-ZONE: coordinates of the zone.

Contrary to QUERY responses, UPDATE requests must only report details that the
sending peer is authoritative for, or zones that it is in the process of transfer to a joining
peer after inviting it.

10.4.16 Handling UPDATE Operation Requests

Upon reception of an UPDATE operation request, a peer must first remove from its zone
list all zones overlapping with any of those reported in the request. It must then insert
all zones from the UPDATE request that border zones it is authoritative for. UPDATE
is a responseless request and must not be routed.

10.4.17 Generating JOIN Operation Requests

JOIN operations are used to pass the data that a client needs in order to join the overlay
and become a peer. JOIN requests are generated by the inviting peer as described in
Section 10.4.6 and contain the following parameters:

• SPACE: coordinates of the whole space;

• YOUR-ZONE: coordinates of the zone the entering peer will be authoritative for;

• a list describing zones the inviting peer is authoritative for, each one containing:

OWN-CONTACT: contact of the inviting peer;

OWN-AOR: address-of-record the inviting peer is registered for;

OWN-ZONE: coordinates of the zone;

183

• a list describing zones bordering on the one the entering peer will be authoritative
for, each one containing:

PEER-CONTACT: contact of the neighbor peer;

PEER-AOR: address-of-record the neighbor peer is registered for;

PEER-ZONE: coordinates of the zone.

10.4.18 Handling JOIN Operation Requests

JOIN operation requests can only be received during the join phase, as described in
Section 10.4.6. JOIN is a responseless end-to-end operation and must not be routed; a
peer receiving an unexpected JOIN request must ignore it.

10.4.19 Generating TAKEOVER Operation Requests

TAKEOVER operations are used for electing the most appropriate peer to take over a
zone left by a peer that has become unreachable. TAKEOVER requests are generated
and exchanged by neighbors of the dead peer and contain the following parameters:

• DEAD-CONTACT : contact of the dead peer;

• DEAD-AOR : the address-of-record the dead peer was registered with;

• DEAD-ZONE : coordinates of the dead zone;

• PEER-CONTACT : contact of the peer candidate to take over the dead zone;

• PEER-AOR : address-of-record the peer candidate to take over the zone is regis-
tered for;

• PEER-ZONE : coordinates of a zone the peer candidate to take over the zone is
authoritative for. If one or more of the zones the candidate peer is authoritative
for is mergeable with the dead one, it should be reported in this parameter as it
would increase the probability for the peer to be elected (see Section 10.4.2);

• PEER-VOLUME : the total volume of the zones the candidate peer is authoritative
for.

184

10.4.20 Handling TAKEOVER Operation Requests

TAKEOVER operation requests are received only when recovering from failures and
are handled according to the state diagram defined in Section 10.4.2.

Unexpected TAKEOVER requests, for example referring to non-bordering zones,
must be ignored.

10.5 XPP Extensions

As mentioned earlier in this chapter, the XPP-PCAN protocol extends the XPP specifi-
cation [126]. The exact syntax of all message extensions, XPP parameters and opera-
tions is provided in an annex in section 11.16.

10.6 Security Considerations

It is possible to identify (at least) four different categories of security issues:

• XPP transport issues, that can be addressed by securing the transport channels
using a mechanism like DTLS [160];

• Eavesdropping and message forgery of SIP and media traffic by seemingly benign
peers. While media can be encrypted using SRTP [32], SIP end-to-end security is
still an open issue;

• Unsolicited XPP session establishments - Procedures for join and recovery are
defined so that any peer needs to allow session establishments to peers whose
identity have already been presented by one of its neighbors. Such a mecha-
nism builds a sort of "overlay trust", which requires further investigation, because,
while it seems one of the most powerful techniques for managing authorization
in peer-to-peer environments, it could be exploited by malicious peers that have
entered the overlay through an error or deceit;

• Overlay damages caused by malicious peers - This kind of issue is characteristic
for peer-to-peer systems and, in general, is the hardest to deal with. However, with
the "passive" approach, a malicious node cannot determine when it will become
peer, which zone of the overlay it will be assigned and can only cause damages

185

proportional to the area under its authority; moreover, implementations can apply
their own methods, possibly based on both performance and social information,
to filter malicious nodes and select the best ones to upgrade.

186

Chapter 11

P2P Conclusion and future work

In the this part we have presented our work on the adaptation of Peer-to-Peer overlay
networks to real-time communications. The reason to head in this direction consists
mainly in the fact that services such as VoIP, VOD, etc, generally require substantial
resources in terms of bandwidth and processing power. We have also considered inter-
esting the opportunity of distributing NAT and firewall traversal algorithms so that they
would allow for a larger number of providers and a innovative collaboration possibili-
ties.

In the last two chapters we have described our work on two protocols meant for
creating and maintaining Peer-to-Peer overlays - XPP and XPP-PCAN.

The eXtensible Peer Protocol (XPP) is a transport protocol that was especially de-
signed for use with distributed hash table maintenance algorithms. It contains a number
of features, such as simultaneous session establishment and UDP transport, that make
it particularly friendly to existing algorithms for traversal of Network Address Trans-
lation gateways and firewalls. Another important characteristic of this protocol is the
fact that it would work with any DHT algorithm regardless of its nature, including ring-
based ones like, Chord, Kademlia, and Pastry, but also algorithms like CAN based on
hypercubes.

The second protocol, called “XPP Extensions for Implementing a Passive P2PSIP
Overlay Network based on the CAN Distributed Hash Table” is an extension of XPP
that specifies its use with the CAN DHT algorithm. One of its most important char-
actersistics is the fact that the decisions of which clients would be joining the network
as contributing peers, belong to the overlay itself. As a result, XPP-PCAN allows for
creating overlay networks where any peer, at any given time has trust based relations
with all its neighbors.

187

11.1 Future work

An implementation of our work on Peer-to-peer is already available under an open
source license [125], however as of today we have not yet completed a comprehen-
sive evaluation in real world scenarios. Our future work would therefore most certainly
start with a second implementation in the Java programming language, its integration in
the SIP Communicator communications client and the evaluation of the whole solution
by standard users and a relatively large scale.

Other points that also require future work include the definition of mechanisms to
select peers that are most suitable for joining an overlay. Some of the directions that
first come to mind include exchange of peer processing and bandwidth characteristics.

In addition to this we need to devise ways for peers to announce authentication
credentials upon the join of new neighbor in addition to simply broadcasting its identity
to all future neighbors.

We also need to determine whether it is a good idea for clients to allow other clients
to establish SIP outbound flows with them. In such a case, they would probably need to
implement the mechanisms for registering non-adjacent contacts defined in RFC3327
[198].

Finally, the current version of this protocol does not define the amount of time that
peers should keep state information about routed requests, and whether this should be
indicated in the requests. We would need to determine whether they have to do so and
if yes how.

188

Part III

Overall conclusions and future work

189

Overall conclusions and future work

The work described in this thesis has been completed with the purpose of optimizing
two different aspects of real-time communication over the Internet protocol. In Part I we
have focused on solutions for achieving seamless terminal mobility. Part II then presents
our research on the subject of using Peer-to-Peer networks in real-time communications.

11.2 Seamless mobility

When a mobile node disconnects from one Wi-Fi network and connects to a new one, the
resulting handover may have an impact on different layers of the ISO OSI model. De-
pending on the network configuration the transition could span through the link, network
and application layers. Work on managing and optimizing mobility could therefore be
done on each of these layers.

Our work has started at the application layer in an effort to provide a solution that
offers reasonable handover performance and that could be easily deployed over most
existing network topologies without modifying them. The IETF Session Initiation Pro-
tocol provides mechanisms for handling terminal mobility at the application layer. After
moving to a new network a node can reinitialize its ongoing SIP sessions by sending
reINVITE SIP requests to all its correspondents. However a standard implementation
of these mechanisms would react to movement only after detecting change in the IP
address through the socket APIs exported by the network layer. In most cases, this
detection, would suffer delay accumulated by lower layers which would result in de-
graded quality when rendering media flows and hence a poor user experience. We have
therefore designed, implemented, and evaluated a solution that uses link layer triggers
to assist movement detection and hence speed up the handover process. The results
of the evaluation have shown that it is possible to achieve satisfactory, though not ex-
ceptional, performance of application layer mobility, suitable for an interim solution in
cases where modifying the network topology is impossible.

191

We have therefore switched our focus to the network layer with the goal of achieving
an optimal solution that allows for 100% transparent mobility. After a comprehensive
study of existing mobility optimizations our attention has been drawn by the Fast Han-
dovers for Mobile IPv6 protocol (FMIPv6). We have created one of its first implemen-
tations (now available under an open source license on http://fmipv6.org) and used it to
evaluate the protocol in real world scenarios (as opposed to the simulational evaluations
existing at the time). Our analysis have shown that even though the protocol allows
for a very smooth transition between networks, it does little to improve the discovery
process of Wi-Fi access points that a node can use to connect to. As a result, even if
handovers themselves are completely seamless, user experience is still suffering during
the scanning procedure performed by the wireless interface.

The main reason for these problems come from the blocking nature of the scanning
procedure and the fact that contrary to other technologies, Wi-Fi devices are only able
to transmit and receive data on one frequency at a time. In order to resolve this problem
we have devised a mechanism that allows WLAN nodes to use a secondary wireless
interface when switching from one access point to the next. This kind of handovers are
often referred to as “soft handovers”. We have evaluated the solution using the SimulX
wireless simulator and the results were quite encouraging. Using soft handovers allows
to completely eliminate packet loss when moving between access points.

Our next step has been to try and adapt the use of multiple interfaces to something
which would better match mechanisms being worked on by standardization bodies such
as the IETF. We have already mentioned that the most problematic point in FMIPv6
was the fact that it did nothing to assist the mobile in avoiding the loss of connectivity
during a wireless scan. In the same time, our evaluation of the multi interface soft
handovers approach had clearly qualified it as a good way to address this same issue and
finding a way to integrate it inside the FMIPv6 platform was definitely worth the effort.
Following an implementation and its very complete evaluation we have concluded that
the combination is indeed quite efficient.

There is of course one aspect of the above solution that could be considered “un-
comfortable” in certain cases and it is the fact that few of today’s mobile devices have
more than one wireless interface. It was therefore important for us to work on an al-
ternative way of providing non-disruptive discovery of surrounding access points that
does not have that constraint. We have therefore also worked on a solution which al-
lows a mobile to use a geographic positioning device in order to obtain its coordinates,
feed them through the FMIPv6 protocol to a geographically aware system and receive
in return the access points available in the surroundings. After evaluating the solution,
we have obtained results which are quite similar to those in the multi interface solution,
or in other words one could easily replace the constraint of a second interface with that

192

of a GPS device - something which is more commonly found in most handheld devices
currently available on the market.

11.2.1 Future work

Given the nature of the problems associated with IP mobility, we are convinced that any
solution proposing improvement of existing techniques should be evaluated primarily
through implementation and experimentation. We have kept this in mind during the last
several years and tried to apply it to most of our work. Yet, bringing it to a stage close to
that necessary for production deployment would require even more experimentation and
evaluation of other aspects such as scalability and its behavior in different use cases. A
GPS assisted mechanism, for example, would behave differently when used from within
vehicles on a highway or pedestrians in the city.

We also believe that we could further improve IP mobility solutions described in
this thesis by completely removing the need of having an extra device assisting the
handover. Porting the multi interface extension of FMIPv6 to a single IEEE 802.11n
(a.k.a. MIMO) card, for example, should be a fairly straightforward process. Such
an improvement would make the solution a lot more realistic since most new wireless
devices come with network cards with integrated support for this protocol.

Concerning, our GPS assisted FMIPv6 extension, we plan on studying alternative
geographic positioning systems that allow a node to discover its position by only using
its wireless interface.

Finally, in Section 2.6.4 we have described a proprietary mobility solution that al-
lows the optimization of the handover process by enabling access points to keep track
of the movement of mobile nodes and use it to assist them in choosing their next point
of attachment to the network. The FMIPv6 protocol is actually equipped with most of
the mechanics which are necessary for the implementation of the same solution with the
advantage that it would also be able to operate over multiple domains and be based on
open standards.

11.3 P2P networks in real-time communications

In the second part of this thesis we have been concentrating on the possibility of us-
ing Peer-to-Peer networks in order to improve certain aspects of services such as voice
over IP, videoconferencing, and real-time collaboration. The benefits of this association

193

come from the fact that quality real-time services require significant resources, mostly
in terms of bandwidth. Furthermore, distributing registration services algorithms for
traversal of Network Address Translation devices should significantly lower the require-
ments for their support and allow for a larger number of providers and a richer set of
services.

We have presented our work on the design of two new protocols that would allow
to build and maintain peer-to-peer overlay networks. The first of these, the eXtensible
Peer Protocol (XPP), offers a transport mechanism suitable for the maintenance of any
Distributed Hash Table (DHT) algorithm. It uses standard mechanisms for session es-
tablishment through the Session Initiation Protocol. This makes it particularly friendly
to existing Network Address Translation algorithms such as STUN, TURN, and ICE,
that can be reused without modification. Another advantage of the protocol comes from
the fact that it makes no assumptions on the nature of the DHT and can be used with
anything starting from classic ring based ones like Chord to hypercube based like CAN
in our case.

The second protocol is an extension of XPP defining its use with the CAN DHT al-
gorithm, called “XPP Extensions for Implementing a Passive P2PSIP Overlay Network
based on the CAN Distributed Hash Table”. One of the most interesting and original
points in this suggestion is the fact that it is up to the network to select the users that
would contribute to it as peers, and to decide when exactly this is going to happen. This
allows for establishing an overlay network where any peer, at any given time has trust
based relations with all its neighbors.

11.3.1 Future work

Our work on using Peer-to-Peer networks in real-time communication has started only
recently. An open source implementation of the protocols that we have defined is al-
ready available on the SourceForge hosting site [125]. Yet, we have not had the oppor-
tunity to fully evaluate its behavior and determine points that need further work. This is
where we are heading.

We are planning on creating a second implementation of the protocols in the Java
programming language and integrate them into the SIP Communicator communications
client. Next we will concentrate on a complete evaluation in real-world conditions and
determine points that need further work.

Apart from this we would also have to devise algorithms that allow existing peers
to determine which overlay clients should join the overlay network and contribute to

194

it, without compromising network security at any point. Possibilities for doing this
include exchanging peer processing and bandwidth characteristics and, in order to do
so securely, providing centralized lists of pre-authorized clients possibly established
through a process with human participation.

We also have to work on mechanisms that would allow peers to communicate to all
neighbors the authentication credentials of a newly joining peer in addition to simply
informing them of its identity.

Determining whether clients should allow other clients to establish SIP outbound
flows with them is another important task. If we do decide to allow this, we would
also have to choose the mechanism for doing it. One possible option is support for
standardized registration of non-adjacent contacts defined in RFC3327 [198].

Finally, the current version of the XPP-PCAN protocol does not define for how
long peers should preserve state information about the requests they route. One way of
resolving this would be to indicate time in the requests themselves.

195

Part IV

Annex: The SIP Communicator VoIP
and instant messaging client

197

SIP Communicator (http://sip-communicator.org) is a free/open source application
(distributed under the LGPL license), whose development was started at the University
Louis Pasteur, Strasbourg, and is now maintained by a thriving community of over 800
members throughout the world. The application allows users to establish audio and
video conversations through the Internet via the SIP protocol. It also supports the ex-
change of instant messages by using some of the most popular IM protocols such as
Jabber, AIM/ICQ, MSN, Yahoo! Messenger, Hello or IRC.

In this chapter we describe the history, the features, and the architecture of SIP
Communicator. We also enumerate some of its advantages, which according to us make
it an excellent tool for both deployment in real-world environments (such as research
labs and universities) as well as a very useful tool for the evaluation and testing of
solutions produced by research in the field of networking.

11.4 Introduction

Today, an ever growing number of research labs and universities are planning the migra-
tion of their communication services over solutions using IP architectures. In addition to
the extensibility and ease of configuration that such a migration would give to telephony,
it would also make it possible to support new services such as video conversations and
real-time collaboration, which are being increasingly demanded in the research commu-
nity.

Apart from the infrastructure which must be deployed in order to support IP tele-
phony, it is also necessary to select a set of real-time communication applications to
use. Quite obviously, conventional services such as voice can be supported almost ex-
clusively by dedicated devices such as hardware phones or VoIP adapters for example.
However, in order to fully benefit from all possibilities that come with VoIP and in order
to be able to use all available services, it is very important to also deploy and maintain
a set of software applications.

Currently SIP Communicator has the complete set of characteristics features that are
necessary for a viable communications application. Among others it supports audio and
video conversations with SIP [167], most of the widely used communications protocols,
and it runs on all operating systems that a Java virtual machine is available for. It is also
developed under an free/open source licence. SIP Communicator is also among the very
few such applications that support the IPv6 protocol and uses an architecture that allows
for a great ease of deployment, update and development of new extensions.

199

The rest of this chapter is organized as follows: Section 11.5 briefly presents the his-
tory of SIP Communicator. Sections 11.6 and 11.7 describe its existing functionalities
as those which are under development. Section 11.8 described the software architec-
ture. Section 11.9 exposes the points which, according to us, make SIP Communicator,
a client adapted to the universities and research laboratories. Section 11.10 finishes the
article by a short conclusion.

11.5 A short history

Work on SIP Communicator started out in the context of my master thesis at the Louis
Pasteur University in Strasbourg. I had been interested in IP telephony for several years
already so I jumped at the occasion and started working on a VoIP client application.

At the end of my master thesis, encouraged by my advisor at the time - Thomas Noel,
professor at the ULP, I decided to continue work on the project and we released it as free
software (Open Source) under the LGPL licence. This is how the SIP Communicator
project was created on the Java.NET hosting site. Several months later it was also made
available through its own domain name: www.sip-communicator.org.

This happened more than four years ago and today it is relatively known and used by
many. Some of it users are for example universities and companies such as France Tele-
com, British Telecom, Alcatel-Lucent, etc.. In the beginning SIP Communicator was
mostly a proof-of-concept application and it was therefore mainly used by researchers
and developers. Back at the time, very few of its users were non-professional.

In November 2005 we started work on a new version, in order to make the appli-
cation stabler, more flexible and easily extensible. Work on this version changed both
the architecture and the features of the application, as well as its graphic interface and
usability.

SIP Communicator is no longer the work of a single person, today a community of
developers is thriving around it. The open source model that we have selected has made
it possible to rapidly extend the application with many functionalities essential for it
success with both business and home users.

The human and hardware resources provided by the Louis Pasteur University have
also given us a great liberty and a solid development team working full time on the
implementation.

200

After a little more than a year of intensive development (based on a new modular
architecture, also used by large commercial companies such as Mercedes), SIP Com-
municator now supports most of the instant messaging and telephony protocols in use
today, like for example Jabber, ICQ, AIM, GoogleTalk, MSN, Yahoo! Messenger, Bon-
jour, IRC, RSS and SIP. The application also includes a large number of important
features such as the possibility to manage all the contacts of a user (regardless of their
protocol), make audio and video calls and record history of calls and messages.

Furthermore, SIP Communicator is much more than a simple application with a set
of commonly used services. It is also a modular software architecture developed with
the idea of supporting many new services. Such new extensions could be added without
the necessity of a complex and heavy development. Finally, SIP Communicator can be
regarded as a dynamic plugin architecture, capable of integrating new services on the
fly.

As I have already mentioned, a thriving community has developed around the project
and an ever growing number of people contribute to it different ways. Over the 800
members of the java.net project, some parts intervene as observers, participate in the
discussions suggested on the mailing lists, and share opinions on the design, the devel-
opment or the planning of the project. Other people contribute in a more specific way by
submitting bug reports or fixes. Finally certain members go even further and regularly
contribute code and documentation to the project.

During 2007, SIP Communicator was selected as one of the projects allowed to
take part in the "Google Summer of Code" program [4]. Needless to say, for us this
was a great success and a true recognition by the Open Source community given the
other projects that accepted in the program (e.g. Apache, Firefox, OpenOffice, Gimp or
Gaim).

11.6 Existing features

After two years of active development, SIP Communicator has reached a level of matu-
rity that is completely sufficient for every day use as a default communications client.
Regardless of its experimental stage (alpha version) it already integrates the majority of
the features which a user expects to find in this kind of application.

201

Figure 11.1: SIP Communicator screen shots

11.6.1 Audio video conversations

Since its very beginning in 2003, SIP Communicator has always provided support for
audio and video conversations via the SIP protocol. The protocol has now become the de
facto standard for voice over IP communication. Nowadays a large variety of products
(ex: software phones) and commercial services are using it. Through its support for
the SIP protocol, SIP Communicator (as its name indicates it) is compatible with all of
these products and is hence usable with the majority of the existing hardware devices.

Recently, in addition to the SIP protocol, SIP Communicator has also integrated,
support for audio calls through the XMPP/Jabber extension - Jingle [116].

11.6.2 Instant Messaging

In spite of its popularity for telephony, the SIP protocol is not very popular for instant
messaging. Therefore, in addition to the SIP protocol SIP Communicator also supports
instant messaging through the following protocols:

• Jabber/GoogleTalk

• AIM

202

Figure 11.2: A video conversation with SIP Communicator

• ICQ

• MSN

• Bonjour

• Yahoo! Messenger

It allows users to simultaneously access all their instant messaging accounts through
the same graphic environment and without losing the functionalities of any of them.

11.6.3 Multiplatform support

SIP Communicator is entirely written in JAVA and can work on most of the major oper-
ating systems such as : Linux, BSD, Windows and Mac OS X. Native installers for all
of them are available on http://sip-communicator.org

11.6.4 Multichat support with Jabber and IRC

Multichat is, arguably, one of the most popular applications on the Internet since its
early age. Today it represents much more than simple entertainment and it is used in
remote educational systems or collaborative applications.

203

Today SIP Communicator allows its users to take part multichat sessions (or chat-
rooms) through the Jabber and IRC protocols.

11.6.5 Plugin management

SIP Communicator is built on a modular architecture which makes it possible to acti-
vate or disable certain features as well as add new ones, not-provided with the original
version or produced by third parties. The current application interface allows the man-
agement of all existing modules as well as the installation of new features.

Figure 11.3: Plugin management interface

11.6.6 And other goodies ...

The architecture of SIP Communicator allows the development and the integration of
services which are not directly related to interactive communications.

It is for example possible to subscribe for RSS flows and to manage them as if they
were contacts. Every new item in this flow is then presented to the user as a new instant
message.

204

Another functionality implemented during Google Summer of Code 2007 makes it
possible to add machines in the contact list. The messages which they send and receive
are interpreted as SSH commands.

SIP Communicator also supports a so called Meta Contact List. It allows users to
gather under the same contact all the addresses that they know a person to use over
various transport protocols or accounts.

11.7 Features currently in development

The community of SIP Communicator is increasingly active, which enables us to con-
centrate on a greater number of functionalities. Here are some, currently developed by
the various contributors.

11.7.1 Shared white boards

This functionality proposes to users a shared drawing environment or white board that
can simultaneously and interactively modified by several people. It was developed in the
context of a student project in the 2007 edition of the Google Summer of Code program.
It is currently in the stage of integration and testing.

The shard whiteboards are based on an XMPP extension [90] which is used to trans-
port the contents of the whiteboard using an SVG derived format.

11.7.2 Peer-to-peer communication

Communication services such as audio and video calls, collaboratives applications and
multiparty conferences are in general particularly expensive in terms of resources nec-
essary for their deployment. For this reason the SIP Communicator team is currently
investigating the possibilities of developing mechanisms that would allow the distribu-
tion of these services over overlay peer-to-peer networks.

Such an architecture would make it possible to reduce the costs necessary for the
deployment of IP telephony services by using in a distributed way the resources of all
participating users.

205

11.7.3 Secure communication

In most cases, the telephone conversations are intended to remain confidential and their
content is supposed to be protected. Security and confidentiality is a feature that is not
always offered by IP telephony solutions.

During the summer of 2007 we therefore started the integration of the SRTP protocol
in SIP Communicator. Its use will make it possible for users to have the same level of
security at the time of the calls with SIP Communicator as the one they are used to with
traditional telephony.

The role of SRTP is even more important in a peer-to-peer environment where media
flows could be forwarded to third party users, not participating in the call. The lack of
encoding in such cases would very seriously compromise the confidentiality of the calls.

11.7.4 Reliable and robust connectivity with the ICE protocol

In the early days of Internet telephony, signalling protocols and their first implemen-
tations had to handle much less constraints than today. Network Address Translation
devices (NATs) were not common and the machines of the users had in most cases only
one IP address (generally public).

Today there are almost no users with public IPv4 addresses, and NATs are present
in most network environments. It is increasingly common for a machine to have several
IP addresses: IPv4 and IPv6 addresses, VPN addresses or Mobile IPv6 tunnels etc..

This is why the Interactive Connectivity Establishment (ICE) [163] protocol was
created. It provides communications clients with a reliable way to negotiate the ad-
dresses that will be selected for the exchange of media flows and also allows for a
transparent transition towards IPv6.

The development of an ICE stack (the protocol being rather recent, there are cur-
rently no Java implementations) and its support in SIP Communicator is one of our
priorities.

11.7.5 Support for new communication protocols

In addition to the protocols currently supported by SIP Communicator we are actively
working on adding new ones. The Inter-Asterisk eXchange (IAX2) [117] protocol for

206

example is becoming more and more popular in the world of internet telephony mainly
due to its simplicity and its capacity to be adapted to NAT-ed environments. This proto-
col is intended for client server communication as well as server to server connections
(hence its name). It was conceived for the control and transmission of multi-media
flows, contrary to the SIP protocol which only handles signaling. Having this double
functionality IAX allows for a relatively easy deployment in NATed networks.

Regardless of its youth and current lack of standardization by the IETF, IAX is
becoming more and more popular which makes it an excellent candidate for support in
SIP Communicator.

11.7.6 Exchanging geographic location

The integration of the geographic location support will allow users of SIP Communica-
tor to visualize the geographical position of the members of their contact lists.

The implementation of this functionality is developed according to the XMPP ex-
tension - XEP-0080 [82].

11.7.7 Centralized bundle repositories

As we already mentioned, SIP Communicator allows for fine grained management of
the features currently in use as well as the installation and the updates of new plug-ins.
We currently work on the installation and the maintenance of an official bundle/plug-in
repository which will allow for automatic updates and checks for new versions of the
software in the same way as other applications like Firefox or Debian do it.

This repository would also be used to store and distribute modules developed by
third parties and not included in the main SIP Communicator version.

11.7.8 The architecture

The main idea behind the architecture of SIP Communicator is allowing for a maximum
level of extensibility. For this purpose we have based its development on the modularity
concepts developed by the Open Services Gateway initiative (OSGi Alliance) [145]
and we use one of its most popular open source implementations, known as Felix [78]
created by Richard S. Hall and now maintained by the Apache Software Foundation.

207

The various modules in the OSGi architecture are called bundles. A bundle can ex-
port services (Java interfaces) and thus make them available to the rest of the application
modules.

In SIP Communicator, most of the existing features are integrated in the application
in the form of OSGi bundles.

This segmentation brings a great flexibility and allows for inexpensive branding
and creation of SIP Communicator versions customized for a particular deployment. It
is possible to imagine for example that the installation of the software in a particular
laboratory only requires support of the Jabber and SIP protocols. Site administrators
would thus be able to easily remove the parts not related to these protocols, such as
Yahoo! Messenger or MSN, in order not to present users with an overloaded graphic
interface.

The rest of this section describes in a more technical detail the various concepts and
services in the SIP Communicator architecture.

Figure 11.4: Simplified representation of the SIP Communicator architecture.

208

11.8 The different services

An OSGi service represents a set of functionalities provided by a bundle and available
to the rest of the modules in the application. SIP Communicator defines many such
services some of which are:

• ProtocolProviderService
Provides an interface to the functionalities of a communications protocol such as,
for example, sending and receiving instant messages, subscribing for notifications
upon a change in the presence status of other users, initiate, accept or refuse phone
calls, etc.. This service is used by the graphic interface, the modules that handle
message and call history, and many other plugins.

• ConfigurationService
Gives the possibility to the other parts of the application to record in a persistent
way configuration data such as, for example, the size of the various windows of
the user interface, the accounts of the user, and other preferences.

• FileAccessService
This service gives the possibility to the other modules of the application and exter-
nal plug-ins to create temporary, public or private files following the SIP Commu-
nicator file storage policy. This makes it possible for example to make sure that
different plug-ins which will need to create files that would store details specific
to a particular user, would place this files in

/home/username/.sip − communicator

on Linux like systems and in

C : \DocumentsandSettings\username\.sip − communicator

on Windows boxes, without the developer having to handle the 2 cases separately.

• NotificationService
Manages the configuration and the execution of all the notifications following
events that occur in SIP Communicator. The service gives users the possibility to
personalize the way they are being notified for the arrival of new messages, calls
or other events as well as to choose between a sound notification, a pop-up box in
the system notification tray or by the execution of a shell command.

209

• MetaContactListService
Gives access to a joint list of all the contacts available in all the protocols currently
configured by the application user. By using this service, the graphic interface or
other modules, can easily show to users all their contacts and to modify their
properties independently of the underlying protocol.

• VersionService
Allows modules like the startup splash screen the dialog shown by the Help-
>About menu to query and display the current version of SIP Communicator.

• GeolocationService
Provides information on the current geographical position of the user. According
to implementations of this service, this position can be recovered from a configu-
ration file, a GPS device or another means of geographical positioning.

• MediaService
Gives access to the management of the sound and video capture devices and al-
lows for initiation, reception and control of the media flows that are sent or re-
ceived during a call.

• MessageHistoryService et CallHistoryService
These services provide interfaces which allow other modules to recover the his-
tory of the messages sent or received by SIP Communicator as well as that of
the incoming and outgoing audio/video calls. These services also allow to exe-
cute search queries over the message and call logs, based on key words or time
periods.

• UIService
This service represents a means for external plugins to integrate their graphical
components into the main user interface of SIP Communicator. It also gives the
possibility to subscribe for and receive notifications for certain events triggered
by the user such as opening a chat window with a contact, modifying the main
contact list window, etc..

The design and implementation of an OSGi service happens through the following
two phases:

• the definition of the service. The service itself is quite abstract and quite often a
service contains only Java interfaces or abstract classes;

210

Figure 11.5: A representation of the notion of services and service implementations in
SIP Communicator.

• one or more implementations of the service.

A service can have several implementations that could run in a parallel or exclusive
manner. The ProtocolProviderService for example is implemented for each protocol
supported by SIP Communicator. This way, once the application has been launched,
this service will be instantiated once per every protocol account configured by the user.

Other services such as for example the GeolocationService, it is possible to consider
different implementations based on alternative positioning systems like GPS, Galileo,
or Wi-Fi. According to the devices available on a user station one or the other will be
used.

In addition to services and their implementations, one can also have bundles which
do nothing but use the existing services without defining new ones. In SIP Communi-
cator, we are using such bundles for all account creation and configuration wizards, the
splash screen or the utility that allows to visualize the history of the calls.

11.9 Advantages for research labs and universities

As we already mentioned, SIP Communicator is entirely written in JAVA and is based
on a modular architecture (OSGi) which is easy to extend and enrich with new function-
alities. This architecture facilitates the evolution of the software and its customization
for the specific needs of a research experiment, a lab, or a university deployment. SIP
Communicator is developed as an open source project which further guarantees com-

211

plete freedom in usage and modifications, and also answers common security concerns
because it does not have the obscurity often associated to alternative softphones such as
Skype and X-Lite. The project is maintained by an ever growing community of devel-
opers which reacts quickly to important bug reports and which continuously improves
the application.

These and other characteristics make it an ideal candidate for use in research ex-
periments and deployment in universities or laboratories. Following are some more in
details on its various advantages:

11.9.1 Support for heterogeneous platform envorinments

As we have mentioned previously, native fitters of SIP Communicator are available for
multiple operating systems. Currently we maintain native installers for:

• Debian

• Fedora

• Generic Linux installers

• Mac OS X ;

• Windows ;

• A Java jar installer for any operating system that supports the Java virtual ma-
chine.

11.9.2 Cost free use

SIP Communicator is developed and distributed under the open licence source GNU
Lesser General Public Licence (LGPL) [113]. This implies that any use of this applica-
tion in a commercial or research context, is subject to no cost whatsoever.

11.9.3 An open development process

Nowadays most of us know, if only by name, the Skype communications application.
Among its numerous advantages one counts the almost no-cost phone calls, a very good

212

audio quality during conversations and, above all, a very high resilience and tolerance
to the various kinds of network infrastructures, which enables the application to work
in most of the existing network configurations and in particular from within subnets
located behind a Network Address Translation (NAT). However, the creators of Skype
have never expressed any will of revealing the code of their application or the mechanics
of the network protocol that it uses, thus making its use incompatible with most of the
official security policies. Its use has therefore been completely forbidden within most
government organizations in both Europe and the United States.

SIP Communicator is completely open source and it is developed under the LGPL
licence [113]. With its source code available for everyone to query, its use does not
suffer the same black box effects as Skype. Its operation is transparent and secure.
It thus answers the security requirements of most institutions and its use is entirely
compatible with most of the security policies in use today.

11.9.4 Ease of deployment and maintenance

The deployment of a communications solution based on SIP Communicator only re-
quires a minimal amount of effort for its installation and maintenance. It is enough to
install a SIP server in order to handle audio video calls.

Furthermore, with an advanced support for OSGi repositories (currently being de-
veloped), an administration team would be able to make all updates automatic by sim-
ply installing one such repository on the local network. This would allow for very low
intervention delays in urgent situations (e.g., the installation of security updates).

11.9.5 Compliance with existing standards

Within the SIP Communicator community, we strive to achieve a maximum level of
compliance with standards for the various functionalities of the application. Our sup-
port and development processes give priority to protocols such as Jabber and SIP, that
are strictly defined by organizations such the IETF or The XMPP Standards Foundation.
This guarantees a significant level of independence for universities or research labora-
tories, compared to proprietary protocol and gives freedom to network administrators to
decide and constantly their usage policies.

213

11.9.6 Support for a large number of protocols

Today SIP Communicator supports most of the popular communications protocols (the
complete list is described in section 11.6.2). It is therefore unlikely for any conflicts to
arise when trying to impose and deploy a communications policy in a particular com-
pany or institution. In other words, the employees of this company will be able to benefit
from the services suggested by the local infrastructure and in the same time continue us-
ing their private accounts without having to use two different applications.

11.9.7 Easy to customize and extend

Thanks to the extension mechanisms provided by the OSGi architecture (described in
section 11.8), it is particularly easy to modify SIP Communicator in order to adapt it to
a particular use case or simply add new features.

A company, an university, or some other institution which wishes to offer tighter
integration of their communications application with its existing services can add the
missing modules for a negligible development cost.

For example, if the network administrators of a university would like the employees
and the students in that university to be able to benefit from the IP voice services and
have access to an LDAP directory server (SIP Communicator does not currently support
the LDAP protocol), they could develop a lightweight plug-in which is able to handle
LDAP research queries and would give users the possibility to use the results returned
by these queries for making calls. This plug-in would require a minimal amount of
development efforts and would be easily achievable within the scope of a simple student
project.

11.9.8 Support for IPv6

SIP Communicator could be deployed in both IPv4 and IPv6 networks. It is therefore
compatible with the deployment in most existing research laboratories and universities
that are currently migrating to the next generation Internet.

Furthermore, the efforts which are currently being invested in the implementation of
the ICE protocol and its integration in SIP Communicator, would guarantee a transpar-
ent migration for the user between these two protocols.

214

11.10 Conclusion

In a context of limited resources typical for the world of research laboratories and uni-
versities, IP telephony is drawing more and more interest of the publicly-owned com-
panies and institutions. Most of these organizations and bodies are making short term
plans for a migration towards this type of communications solutions.

Taking into account the importance of communication, the set of the tools that are
to be deployed in the various installations will have to be maturely considered. They
would have to be selected with a number of constraints and in accordance with existing
security policies for computer and information systems.

Their deployment and maintenance will have to guarantee the same quality and ease
of use as the one offered by conventional telephony. Moreover the migration to this
new technology should offer new services in the fields of real-time communication and
on-line collaboration.

As an open source project SIP Communicator guarantees a perfect transparency of
its operation and thus allows to control the security of all information exchange.

The simplicity of its architecture facilitates the development of extensions and gives
the possibility to all kinds of institutions (i.e., companies, universities, and organiza-
tions) to easily adapt it to their needs.

The open source community, supporting the project has already proved its reactivity
and is thus guaranteeing a follow-up and a continuous evolution of the project.

The usability and the functionalities of the software also make it very attractive for
the end-user.

SIP Communicator thus constitutes with our direction a serious candidate as cus-
tomer of communication within the framework of a deployment of an architecture of
voice on IP.

11.11 Acknowledgements

I would personally like to thank all members of the SIP Communicator community for
their continuing efforts and for allowing it to become the mature application that it is
today.

215

Since the early days of SIP Communicator, many people have assisted us in many
different ways. I would therefore also like to express my gratitude towards Thomas
Noel of the Network Research Team in the Louis Pasteur university, and the members
of the Center Reseaux Communication in the Osiris network for their constant support.

216

Part V

Annex: XPP-PCAN details

217

11.12 Zone state transitions

This section provides a complete description of all zone state transitions that XPP-
PCAN peers are expected to implement.

11.12.1 Failure Detection Event

The event is fired when an XPP session between the local peer and one of its neighbors
has failed. Upon According to the state that the neighbor zone had in the local zone list
the local peer would do one of the following:

State: BORDERING

Set the zone state to SYNCHRONIZING; Start Timer TC1 for this zone and set it to
’tc1’. The ’tc1’ value is proportional to the total volume of the zones under the authority
of the local peer and always greater than the maximum time required for detecting a
failure. Such a value must be calculated using the following formula (where r, t0, t1 and
t2 are values used for handling retransmissions and keep alive in XPP [126], v is the
total volume under the authority authority of the local peer and V is the volume of the
whole hash space):

r′ = min(ceil(log2(t1/t0)), r)

tc0 = t0 ∗ 2powr′ + (r − r′) ∗ t1 + t2

tc1 = tc0 ∗ (1 + v/V)

State: SYNCHRONIZING, STABILIZING, ACQUIRING or OWN

Not possible.

11.12.2 Timer TC1 Event

State: SYNCHRONIZING

Set the zone state to ACQUIRING; start Timer TC2 with value tc2 (default: 6 seconds)
and send a TAKEOVER operation request to all neighbors which are also neighbors

219

of the zone to recover. The Takeover request must be generated as defined in Sec-
tion 10.4.19.

State: BORDERING, STABILIZING, ACQUIRING or OWN

Not possible.

11.12.3 Timer TC2 Event

State: ACQUIRING

Set the zone state to OWN; the local peer is authoritative for the orphaned zone and
the recovery algorithm is terminated. All neighbors are aware of the new owner, but
the local peer may need to discover and establish XPP sessions with new neighbors
acquired as a result of the recovery, and to notify its neighbors about possible changes
in the geometry due to one or more merges between its previous zones and the recovered
one.

New neighbors must be discovered sending QUERY operation requests to known
neighbors, as defined in Section 10.4.13. The local peer must establish XPP sessions
with all discovered neighbors using SIP.

A peer must not establish XPP sessions with peers it does not know; however, after
the recovery process, all neighbors of the dead zone will know the identity of the new
peer and must accept incoming SIP requests from it.

If the recovered zone is mergeable with any of the zones previously owned by the
local peer (i.e. they share an edge in 2-dimensional spaces, a plane in 3-dimensional
ones and so on), all the neighbors must be notified of the merge through an UPDATE
operation requests, as defined in Section 10.4.15.

State: BORDERING, SYNCHRONIZING, STABILIZING or OWN

Not possible.

220

11.12.4 TAKEOVER Operation Request Event

State: BORDERING

Leave the zone in a BORDERING state; send back a TAKEOVER operation request
on behalf of the peer authoritative for the zone. The TAKEOVER request must be
generated as defined in Section 10.4.19.

This event would only occur when the failure is only detected by some of the neigh-
bors, while others are still able to communicate with the peer.

State: SYNCHRONIZING

If, according to the rules defined in Section 10.4.2, the local peer is more appropriate
than the one sending the TAKEOVER request, set the zone state to ACQUIRING; cancel
Timer TC1, set Timer TC2 with value tc2 (default: 6 seconds) and send a TAKEOVER
operation request to all neighbors that are also neighbors of the zone to recover. The
TAKEOVER request must be generated as defined in Section 10.4.19.

Otherwise, if the local peer is less appropriate than the one sending the TAKEOVER
request, set the zone state to STABILIZING; cancel Timer TC1, set Timer TC3 with
value tc3 (default: 4 seconds), temporary store the identity of the peer candidate to take
over the zone and send a TAKEOVER operation request to all neighbors which are also
neighbors of the zone to recover on behalf of such peer. The TAKEOVER must be
generated as defined in Section 10.4.19.

State: ACQUIRING

If, according to the rules defined in Section 10.4.2, the local peer is more appropriate
than the one reported in the TAKEOVER request, keep the zone state as ACQUIRING;
reset Timer TC2 to value tc2 (default: 6 seconds) and send a TAKEOVER operation
request to all neighbors that are also neighbors of the zone to recover. The TAKEOVER
request must be generated as defined in Section 10.4.19.

Otherwise, if the local peer is less appropriate than the one reported in the TAKE-
OVER request, set the zone state to STABILIZING; cancel Timer TC2, start Timer TC3
for a period of tc3 (default: 4 seconds), store the identity of the peer as the best candidate
to take over the zone and send a TAKEOVER operation request to all neighbors which

221

are also neighbors of the zone to recover on behalf of such peer. The TAKEOVER must
be generated as defined in Section 10.4.19.

State: STABILIZING

If, according to rules defined in Section 10.4.2, the peer previously stored as the best
candidate is more appropriate than the one reported in the TAKEOVER request, keep
the zone in a STABILIZING state; reset Timer TC3 to tc3 (default: 4 seconds) and,
on behalf of the old candidate, send TAKEOVER requests to all neighbors that are also
neighbors of the zone to recover. The TAKEOVER request must be generated as defined
in Section 10.4.19.

If the peer previously stored as the best candidate is less appropriate than the one
reported in the TAKEOVER request, stay in STABILIZING; reset Timer TC3 with value
tc3 (default: 4 seconds), store the identity of the latter as the best candidate and send a
TAKEOVER operation request to all neighbors which are also neighbors of the zone to
recover on behalf of such peer.

Otherwise, if the peer previously stored as the best candidate is the same as the one
reported in the TAKEOVER request, keep the zone in a STABILIZING state and do
nothing further.

State: OWN

Not possible.

11.12.5 Timer TC3 Event

State: BORDERING, SYNCHRONIZING, ACQUIRING or OWN

Not possible.

STABILIZING

Set the zone state to BORDERING; set the peer that has qualified as the best candidate
as the new owner of the zone.

222

The local peer may or may not have a connection with the new neighbor; in case it
doesn’t, it must be ready to accept a request for establishing one.

11.13 XPP Extensions

11.14 Parameters

This section describes the exact encoding, based on the use of XPP TLV options, of all
parameters used in the XPP-PCAN protocol.

KEY

Code: 0x8001.

Format: String (Section 11.16.2).

Semantic: the key identifying a record to insert or to retrieve.

VALUE

Code: 0x8002.

Format: String list (Section 11.16.3).

Semantic: the set of peer URIs to traverse for reaching a client or a peer, as described
in RFC 3327 [198]. Every URI must be encoding according to the rules defined in [34].

BINDING-ID

Code: 0x8003.

Format: string (Section 11.16.2).

Semantic: the token identifying a key-value pair.

223

EXPIRES

Code: 0x8004.

Format: integer (Section 11.16.1).

Semantic: the expiration time of a key-value pair, in seconds.

TARGET

Code: 0x8005.

Format: point (Section 11.16.4).

Semantic: the point in the overlay that a request is addressed to.

SPACE

Code: 0x8006.

Format: zone (Section 11.16.5).

Semantic: the bounds of the space used in the current overlay.

OWN-AOR

Code: 0x8007.

Format: String (Section 11.16.2).

Semantic: the SIP URI identifying the user who owns the sending peer, as defined
in RFC 3261 [167] and RFC 3986 [34].

OWN-CONTACT

Code: 0x8008.

Format: String (Section 11.16.2).

224

Semantic: the SIP URI identifying the sending peer.

It is worth noting that, when the peer has restricted connectivity (e.g. it is located in
a NAT-ted network), the value of this parameter should be a GRUU [99].

OWN-ZONE

Code: 0x8009.

Format: zone (Section 11.16.5).

Semantic: a zone the sending peer is authoritative for.

YOUR-ZONE

Code: 0x800A.

Format: zone (Section 11.16.5).

Semantic: a zone the receiving peer is going to be authoritative for (usually sent to
joining peers).

PEER-AOR

Code: 0x800B.

Format: String (Section 11.16.2).

Semantic: the SIP URI identifying a user whose peer is known by the sending peer,
as defined in RFC 3261 [167] and RFC3986 [34].

PEER-CONTACT

Code: 0x800C.

Format: String (Section 11.16.2).

Semantic: the SIP URI identifying a peer known by the sending peer.

225

It is worth noting that, when the peer has restricted connectivity, the value will be a
GRUU [99]. URI values must be encoded as specified in RFC3986 [34]

PEER-ZONE

Code: 0x800D.

Format: zone (Section 11.16.5).

Semantic: a zone a peer known by the sending peer is authoritative for.

PEER-VOLUME

Code: 0x800E.

Format: integer (Section 11.16.1).

Semantic: the total volume owned by a peer known by the sending peer.

DEAD-AOR

Code: 0x800F.

Format: String (Section 11.16.2).

Semantic: the SIP URI identifying a user whose peer is known by the sending peer,
as defined in RFC 3261 [167]. URI values must be encoded as specified in RFC3986
[34]

DEAD-CONTACT

Code: 0x8010.

Format: String (Section 11.16.2).

Semantic: the SIP URI identifying a peer known by the sending peer.

226

It is worth noting that, when the peer has restricted connectivity, the value will be a
GRUU [99]. URI values must be encoded as specified in RFC3986 [34]

DEAD-ZONE

Code: 0x8011.

Format: zone (Section 11.16.5).

Semantic: a zone a peer known by the sending peer is authoritative for.

11.15 Operations

This section describes the exact encoding, based on the use of XPP TLV options and
the parameters presented in Section 11.14, of all operations used in the XPP-PCAN
protocol.

PUT

Code: 0x80000001.

Request parameters:

+[KEY VALUE BINDING-ID EXPIRES

Response parameters:

+[KEY VALUE BINDING-ID EXPIRES

Semantic: insert one or more records in the distributed database.

Routing: requests must be routed to the peer responsible for the first key; responses
must follow the reverse path of requests.

GET

Code: 0x80000002.

227

Request parameters:

+[KEY

Response parameters:

*[KEY VALUE BINDING-ID EXPIRES

Semantic: retrieve one or more records in the distributed database.

Routing: requests must be routed to the peer responsible for the first key; responses
must follow the reverse path of requests.

REPLICA

Code: 0x80000003.

Request parameters:

+[KEY VALUE BINDING-ID EXPIRES

Response parameters:

+[KEY VALUE BINDING-ID EXPIRES

Semantic: insert one or more records in the local replica table.

Routing: end-to-end, must NOT be routed.

Query

Code: 0x80000004.

Request parameters:

[TARGET

Response parameters:

+[OWN-CONTACT OWN-AOR OWN-ZONE

*[PEER-CONTACT PEER-AOR PEER-ZONE

228

Semantic: query the status of the peer authoritative for the zone a given point falls
in.

Routing: requests must be routed to the peer authoritative on the zone which include
the point encoded in TARGET parameter; responses must follow the reverse path of
requests.

Update

Code: 0x80000005.

Request parameters:

+[OWN-CONTACT OWN-AOR OWN-ZONE

*[PEER-CONTACT PEER-AOR PEER-ZONE

Semantic: status update upon a change.

Routing: end-to-end, must NOT be routed.

Join

Code: 0x80000006.

Request parameters:

[SPACE YOUR-ZONE

+[OWN-CONTACT OWN-AOR OWN-ZONE

*[PEER-CONTACT PEER-AOR PEER-ZONE

Semantic: join the overlay becoming authoritative on a given zone.

Routing: end-to-end, must NOT be routed.

Takeover

Code: 0x80000007.

229

Request parameters:

[DEAD-CONTACT DEAD-AOR DEAD-ZONE

[PEER-CONTACT PEER-AOR PEER-ZONE PEER-VOLUME

Semantic: candidate a peer for taking over a zone.

Routing: end-to-end, must NOT be routed.

11.16 Parameter Formats

For convenience purposes we define a non-exclusive set of formats that we later use
when defining PCAN related XPP parameters.

11.16.1 Integer

Length: the total number of bytes transported in the value. The length must always be
divisible by 4.

Value: numeric, encoded in network byte order.

Example:

+--+--+--+--+
Type/Length: |XX XX|00 08|

+--+--+--+--+
Value: |00 00 00 AA|

+--+--+--+--+
|BB CC DD EE|
+--+--+--+--+

Encoding of an integer parameter with value 0xAABBCCDDEE.

11.16.2 String

Length: the total number of characters. If the length is not divisible by 4; the value field
must be padded as defined in [126].

230

Value: a sequence of ASCII characters.

Example:

+--+--+--+--+
Type/Length: |XX XX|00 0A|

+--+--+--+--+
Value: |61 61 62 62|

+--+--+--+--+
|63 63 64 64|
+--+--+--+--+
|65 65 00 00|
+--+--+--+--+

Encoding of a string parameter with value "AABBCCDDEE".

11.16.3 String List

Value: a list of ASCII strings terminated by a byte with value zero.

Length: the total number of characters, including the terminator bytes. If the length
is not divisible by 4 it must be padded as defined in [126].

Example:

+--+--+--+--+
Type/Length: |XX XX|00 0F|

+--+--+--+--+
Value: |73 69 70 3A|

+--+--+--+--+
|6D 65 00 73|
+--+--+--+--+
|69 70 3A 79|
+--+--+--+--+
|6F 75 00 00|
+--+--+--+--+

Encoding of a URI list parameter with value "sip:me", "sip:you".

231

+--+--+--+--+
Type/Length: |XX XX|00 14|

+--+--+--+--+
Value: |00 00 00 08|

+--+--+--+--+
|00 00 00 AA|
+--+--+--+--+
|BB CC DD EE|
+--+--+--+--+
|00 00 00 01|
+--+--+--+--+
|02 03 04 05|
+--+--+--+--+

Figure 11.6: Encoding of a point parameter with components 0xAABBCCDDEE and
0x0102030405

11.16.4 Point

Value:

• One 4 byte-long numeric value encoded in network byte order, representing the
number of bytes used for encoding each one of the following components. The
value of this field must always be divisible by 4.

• A sequence of numeric values representing the components of a multidimensional
point, each one encoded in network byte order and taking the number of bytes
reported as the the first value of the parameter.

Length: the total number of bytes occupied by the length value and by the compo-
nents. Such a value must be divisible by 4.

Example:

11.16.5 Zone

Value:

232

• One 4 byte-long numeric value encoded in network byte order, representing the
number of bytes used for encoding each one of the following components. The
value of this field must always be divisible by 4;

• A sequence of numeric values representing the components of two multidimen-
sional points, each one encoded in network byte order and taking the number of
bytes reported as the the first value of the parameter. The point defined by the first
half of values represents the start vertex (the bottom-left corner of a rectangular
zone in a bi-dimensional space) and the other defines the end vertex (the top-right
corner, in a bi- dimensional zone).

Length: the total length of the Value field. Values of the length field must always be
divisible by 4.

Example:

233

+--+--+--+--+
Type/Length: |XX XX|00 24|

+--+--+--+--+
Value: |00 00 00 08|

+--+--+--+--+
|00 00 00 AA|
+--+--+--+--+
|BB CC DD EE|
+--+--+--+--+
|00 00 00 01|
+--+--+--+--+
|02 03 04 05|
+--+--+--+--+
|00 00 00 FF|
+--+--+--+--+
|FF FF FF FF|
+--+--+--+--+
|00 00 00 FF|
+--+--+--+--+
|FF FF FF FF|
+--+--+--+--+

Figure 11.7: Encoding of a zone parameter
The parameter is represented by points (0xAABBCCDDEE, 0x0102030405) and
(0xFFFFFFFFFF, 0xFFFFFFFFFF).

234

Bibliography

[1] Bittorrent–what is a tracker? http://support.bittorrent.com/.

[2] Cisco Aironet 350 Series Access Points Data Sheet (http://www.cisco.com).

[3] Coolstreaming. http://www.coolstreaming.us.

[4] Google Summer of Code (TM), http://code.google.com/soc.

[5] The iris web project. http://project-iris.net/.

[6] Joost. http://www.joost.com.

[7] Kazaa. http://www.kazaa.com/.

[8] Manual on Uniform Traffic Control Devices - US Department of transportation.
"Federal Highway Administration".

[9] Mobile IPv6 for Linux. http://mobile-ipv6.org.

[10] Napster. http://www.napster.com/.

[11] One Step Closer to IPv6. http://it.slashdot.org/article.pl?
sid=08/02/05/1740221. Slashdot.

[12] Peer-to-peer session initiation protocol (P2PSIP) IETF working group.

[13] Skype. http://www.skype.com/.

[14] The Network Simulator ns-2. http://www.isi.edu/nsnam.

[15] The SIP Communicator Project http://sip-communicator.org.

[16] FIPS 180-1. Secure hash standard. US Department of Commerce / NIST, National
Technical Information Service, Apr 1995.

235

[17] IEEE Std. 802.11. 1999 Edition (R2003) (ISO/IEC 8802-11), IEEE Standard for
Information Technology - Telecommunications and Information Exchange be-
tween Systems - Local and Metropolitan Area Networks - Specific Requirements
- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, 1999.

[18] IEEE Std. 802.1X-2004. IEEE Standard for Local and Metropolitan Area Net-
works - Port-Based Network Access Control, 2004.

[19] L. Ahn, M. Blum, and J. Langford. Telling humans and computers apart auto-
matically. In Commun. ACM, volume 47, pages 56–60, New York, NY, USA,
2004. ACM Press.

[20] A. Allavena, A. Demers, and J. Hopcroft. Correctness of a gossip based mem-
bership protocol. In PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, pages 292–301, New York,
NY, USA, 2005. ACM.

[21] J. Arkko, V. Devarapalli, and F. Dupont. Using IPsec to Protect Mobile IPv6
Signaling Beteween Mobile Nodes and Home Agents, Internet Engineering Task
Force Request for Comments (RFC) 3776, June 2004.

[22] F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral Re-
quirements for Unicast UDP. RFC 4787 (Best Current Practice), January 2007.

[23] B. De Vleeschauwer and F. De Turck and B. Dhoedt and P. Demeester. Dynamic
algorithms to provide a robust and scalable overlay routing service. Lecture Notes
in Computer Science 3961, Proceedings (on CD-ROM) of ICOIN 2006, the In-
ternational Conference on Information Networking 2006, Vol. LNCS 3961, pp.
945-954.

[24] B. De Vleeschauwer and F. De Turck and B. Dhoedt and P. Demeester. On
the construction of QoS enabled overlay networks. Lecture Notes in Computer
Science (LNCS 3266), Fifth International Workshop on Quality of Future Internet
Services, QofIS 2004, ISSN 0302-9743, ISBN 3-540-23238-9, Springer-Verlag
Berlin Heidelberg 2004, J. Sole-Pareta et al (Ed) Vol. LNCS 3266, pp. 164-173.

[25] B. De Vleeschauwer and F. De Turck and B. Dhoedt and P. Demeester. Online
management of QoS enabled overlay multicast services. In IEEE GLOBECOM
2006, the Global Telecommunications Conference, San Francisco, CA, USA, De-
cember 2006.

236

[26] B. De Vleeschauwer and F. De Turck and B. Dhoedt and P. Demeester. Server
Placement and Path Selection for QoS Enabled Overlay Networks. European
Transactions on Telecommunications, 2007.

[27] B. De Vleeschauwer and F. De Turck and B. Dhoedt and P. Demeester and M.
Wijnants and W. Lamotte. End-to-end QoE Optimization Through Overlay Net-
work Deployment. International Conference on Information Networking ICOIN
2008.

[28] B. Pentland and G. Daley and J. Choi. Router Advertisement Link Identification
for Mobile IPv6 Movement Detection - Internet Draft - Work in Progress, Internet
Engineering Task Force, draft-pentland-mobileip-linkid-03, October 2004.

[29] S. Baset. A Protocol for Implementing Various DHT Algorithms, Work
in Progress, Internet Engineering Task Force, draft-baset-sipping-p2pcommon,
June 2006.

[30] S. Baset and H. Schulzrinne. An analysis of the skype peer-to-peer internet tele-
phony protocol. April 2006.

[31] S. Baset and H. Schulzrinne. Peer-to-peer protocol (P2PP). Internet-Draft draft-
baset-p2psip-p2pp-00 (Work in Progress), July 2007.

[32] M. Baugher, D. McGrew, M. Naslund, , E. Carrara, and K. Norrman. The secure
real-time transport protocol (SRTP). RFC 3711 (Draft Standard), March 2004.

[33] R. Baumann, S. Cavin, and S. Schmid. Voice over IP - security and SPIT. Swiss
Army, FU Br 41, KryptDet Report, University of Berne, Sept 2006.

[34] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (Standard), January 2005.

[35] D. Bryan, M. Zangrilli, and B. Lowekamp. Resource location and discovery.
Internet-Draft draft-bryan-p2psip-reload-01 (Work in Progress), July 2007.

[36] B.T. Loo and T. Condie and J. M. Hellerstein and P. Maniatis and T. Roscoe
and I. Stoica. Implementing Declarative Overlays. 20th ACM Symposium on
Operating Systems Principles (SOSP).

[37] C. Jennings and R. Mahy. Managing Client Initiated Connections in the Ses-
sion Initiation Protocol (SIP) Work in Progress, Internet Engineering Task Force,
draft-ietf-sip-outbound, January 2007.

237

[38] P. Calhoun, B. O’Hara, R. Suri, N. Cam Winget, S. Kelly, M. Williams, and
S. Hares. Light Weight Access Point Protocol, Work in Progress, Internet Engi-
neering Task Force draft-ohara-capwap-lwapp-03.txt, June 2005.

[39] A. T. Campbell and et al. The genesis kernel: A virtual network operating system
for spawning network architectures. In Open Architectures and Network Pro-
gramming Proceedings, 1999. OPENARCH ’99. 1999 IEEE Second Conference,
New York, USA, March 1999.

[40] C. Castelluccia. HMIPv6: A hierarchical mobile IPv6 proposal. In ACM Mobile
Computing and Communication Review (MC2R), April 2000.

[41] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure
routing for structured peer-to-peer overlay networks. 5th Usenix Symposium on
Operating Systems Design and Implementation, Dec 2002.

[42] A. Cellerier and Al. VideoLAN - VLC media player. http://www.
videolan.org.

[43] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott
Shenker. Making gnutella-like p2p systems scalable. In SIGCOMM ’03: Pro-
ceedings of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 407–418, New York, NY, USA,
2003. ACM.

[44] G. Chesson, M. Renzmann, and Sam Leffler. Multiband Atheros Driver for Wi-Fi
(MADWIFI), http://madwifi.org.

[45] G. Combs and al. The Network Protocol Analyser Ethereal,
http://www.ethereal.com.

[46] G. Combs and al. Wireshark Network Protocol Analyzer,
http://www.wireshark.org.

[47] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein, and P. Maniatis.
Maelstorm: Churn as shelter. University of California Berkeley, Technical report
UCB/EECS-2005-11, Nov 2005.

[48] T. Condie, S. Kamvar, and H. Garcia-Molina. Adaptive peer-to-peer topologies.
In International Conference on Peer-to-Peer Computing (P2P), Zurich, Switzer-
land, 2004.

[49] E. Cooper, A. Johnston, and P. Matthews. A distributed transport function in
P2PSIP using HIP for multi-hop overlay routing. Internet-Draft draft-matthews-
p2psip-hip-hop-00 (Work in Progress), June 2007.

238

[50] S. Corner. Verizon business plans 18 month transition to IPv6. IT Wire,
http://www.itwire.com/content/view/14635/127/.

[51] D. Bryan and B. Lowekamp and C. Jennings. dSIP: A P2P Approach to SIP
Registration and Resource Location, Work in Progress, Internet Engineering Task
Force, draft-bryan-p2psip-dsip-00, 2007.

[52] D. C. Verma. Content Distribution Networks: An Engineering Approach. John
Wiley & Sons, Inc.

[53] D. Chopra and H. Schulzrinne and E. Marocco and E. Ivov. Security Issues and
Solutions in P2P Networks and Their Applicability in Communication Overlays.
In submission for IEEE Surveys and Tutorials, 2008.

[54] D. G. Andersen and H. Balakrishnan and M. Frans Kaashoek and R. Mor-
ris. Resilient overlay networks. Symposium on operating Systems Principles
(SPECTS), pages 131-145.

[55] D. Hales and S. Arteconi. SLACER: A Self-Organizing Protocol for Coordina-
tion in P2P Networks. IEEE Intelligent Systems, Vol. 22, No. 2.

[56] D. Willis and D. Bryan and P. Matthews and E. Shim, Work in Progress, Internet
Engineering Task Force, draft-willis-p2psip-concepts-01. Concepts and Termi-
nology for Peer to Peer SIP, 2006.

[57] F. Dabek, M. Frans Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada,
October 2001.

[58] E. Damiani, D. C. Vimercati, S. Paraboschi, P. Samarati, and F. Violante. A
reputation-based approach for choosing reliable resources in peer-to-peer net-
works. Conference on Computer and Communications Security, Nov 2002.

[59] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. Anderson. Sybil-
resistant DHT routing. Tenth European Symposium on Research in Computer
Security, 3679, Sep 2005.

[60] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard), December 1998. Updated by RFC 5095.

[61] Free deploie l’IPv6. http://www.iliad.fr/presse/2007/CP_IPv6_
121207.pdf. www.iliad.fr.

239

[62] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert. Network Mobility
(NEMO) Basic Support Protocol, Internet Engineering Task Force Request for
Comments (RFC) 3963, January 2005.

[63] J. R. Douceur. The sybil attack. Revised paper, 1st International Workshop.
Peer-to-Peer Systems, Lecture Notes in Computer Science, 2429, Mar 2002.

[64] R. Droms. Dynamic host configuration protocol. RFC 2131 (DRAFT STAN-
DARD), March 1997.

[65] E. Ivov and J. Montavont and T. Noel. Thorough Empirical Analysis of the IETF
FMIPv6 protocol over IEEE 802.11 networks. IEEE Wireless Communications
Magazine, Special issue on “Architectures and Protocols for Mobility Manage-
ment in All-IP Mobile Networks”, April 2008.

[66] E. Ivov and M. Andre. The FMIPv6 Open Source Implementation Suite.
http://www.fmipv6.org, 2005.

[67] E. Ivov and T. Noel. Optimizing SIP Application Layer Mobility over IPv6 Using
Layer 2 Triggers. IEEE Vehicular Technology Conference VTC’04, September
2004.

[68] D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174
(Informational), September 2001. Updated by RFC 4634.

[69] C. Perkins (éditeur). IP Mobility Support for IPv4, Internet Engineering Task
Force Request for Comments (RFC) 3344, August 2002.

[70] R. Koodli (éditeur). Fast Handovers for Mobile IPv6, Internet Engineering Task
Force Request for Comments (RFC) 4068, June 2005.

[71] L. Eggert and G. Fairhurst. UDP Usage Guidelines for Application Design-
ers, Work in Progress, Internet Engineering Task Force, draft-ietf-tsvwg-udp-
guidelines-01, 2007.

[72] Ekahau. Ekahau Positioning Engine for WLAN based navigation,
http://www.ekahau.com.

[73] F. Forster and H. DeMeer. Discovery of Web Services with a P2P Network.
Computational Science - ICCS 2004, 4th International Conference.

[74] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic Routing Encap-
sulation (GRE), Internet Engineering Task Force Request for Comments (RFC)
2784, March 2000.

240

[75] G. Daley and R. Nelson. Duplicate Address Detection Optimization using IPv6
Multicast Listener Discovery - Internet Draf - work in progress - draft-daley-
ipv6-mcast-dad-02.txt, February 2003.

[76] S. Guha. NAT Behavioral Requirements for TCP, Work in Progress, Internet
Engineering Task Force, draft-ietf-behave-tcp-06, 2007.

[77] V. Gurbani, F. Audet, and D. Willis. The SIPSEC uniform resource identifier
(URI). Internet-Draft draft-gurbani-sip-sipsec-01 (Work in Progress), June 2007.

[78] R. S. Hall. Apache felix http://felix.apache.org. Apache Software
Foundation.

[79] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol.
RFC 4566 (Proposed Standard), July 2006.

[80] H. Hartenstein, M. Liebsch, X. Perez-Costa, and R. Schmitz. A MIPv6, FMIPv6
and HMIPv6 handover latency study: analytical approach. In IST Mobile &
Wireless Telecommunications Summit, Thessaloniki, Greece, 2002.

[81] T. H. Haveliwala and S. D. Kamvar. The second value eigenvalue of the google
matrix. Technical Report, Stanford University, 2003.

[82] J. Hildebrand and P. Saint-Andre. XEP-0080: User Location. XMPP Standards
Foundation.

[83] HostAP. Host ap - linux driver for prism2/2.5/3. http://hostap.epitest.fi/.

[84] R. Hsieh, A. Seneviratne, H. Soliman, and K. El-Malki. Performance analysis on
hierarchical mobile IPv6 with fast-handoff over end-to-end tcp. In GLOBECOM,
Taipei, Taiwan, 2002.

[85] R. Hsieh, Z.G. Zhou, and A. Seneviratne. S-MIP: A Seamless Handoff Archi-
tecture for Mobile IP. In Proceedings of the the 22nd Annual Joint Conference
of the IEEE Computer and Communications Societies (Infocomm’03), San Fran-
cisco, USA, April 2003.

[86] I. Abraham and B. Awerbuch and Y. Azar, Y. Bartal, D. Malkhi and E. Pavlov. A
Generic Scheme for Building Overlay Networks in Adversarial Scenarios. Pro-
ceedings of the 17th International Symposium on Parallel and Distributed Pro-
cessing.

[87] I. Clarke and O. Sandberg and B.Wiley and T.W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. Workshop on Design
Issues in Anonymity and Unobservability, pages 311-320.

241

[88] IEEE. Draft 5 Recommended Practice for Multi-Vendor Access Point Interoper-
ability via an Inter-Access Point Protocol Across Distribution Systems Support-
ing IEEE 802.11 Operation. IEEE Draft 802.1f/D5, January 2003.

[89] The Internet Engineering Task Force. http://www.ietf.org.

[90] H.J. Imbens. XEP-0113: Simple Whiteboarding. XMPP Standards Foundation.

[91] International Communications Union (ITU). Transmission Systems and Media,
Digital Systems and Networks, Recommendation G.711: Pulse Code Modulation
(PCM) of Voice Frequencies, 1988.

[92] E. Ivov and T. Noel. Soft Handovers over 802.11b with Multiple Interfaces.
In Proceedings of the 2nd International Symposium on Wireless Communication
Systems (ISWCS’05), pages 549–554, Siena, Italy, September 2005.

[93] E. Ivov and T. Noel. An Experimental Performance Evaluation of the IETF
FMIPv6 Protocol over IEEE 802.11 WLANs. In Proceedings of the IEEE Con-
ference on Wireless Communications and Networking (WCNC’06), Las Vegas,
USA, April 2006.

[94] E. Ivov and T. Noel. An Experimental Performance Evaluation of the IETF
FMIPv6 Protocol over IEEE 802.11 WLANS. In Proceedings of the IEEE Wire-
less Communications and Networking Conference (WCNC’06), volume 1, pages
568–574, April 2006.

[95] J. Choi and D. Shin. Fast Router Discovery with RA Caching in AP - Internet
Draft - work in progress. draft-jinchoi-mobileip-frd-01.txt, February 2003.

[96] J. Doyle and et al. The Robust Yet Fragile Nature of the Internet. Proceedings of
the National Academy of Science, Vol.102, No. 41.

[97] J. Gao and P. Steenkiste. Design and evaluation of a distributed scalable content
discovery system. IEEE Journal on Selected Areas in Communications, Vol. 22,
No. 1, pp. 54-56.

[98] J. Montavont and E. Ivov and T. Noel and K. Guillouard. Analysis of a
Geolocation-based FMIPv6 Extension for Next Generation Wireless LANs.
Ubiquitous Computing And Communication Journal [ISSN 1992-8424], Volume
2, Number 5, October 2007.

[99] J. Rosenberg. Obtaining and Using Globally Routable User Agent (UA) URIs
(GRUU) in the Session Initiation Protocol (SIP), Work in Progress, Internet En-
gineering Task Force, draft-ietf-sip-gruu-12, March 2007.

242

[100] J. Rosenberg. TCP Candidates with Interactive Connectivity Establishment
(ICE), Work in Progress, Internet Engineering Task Force, draft-ietf-mmusic-
ice-tcp-05, 2007.

[101] J. Rosenberg and R. Mahy and P. Matthews. Traversal Using Relays around
NAT (TURN): Relay Extensions to “Session Traversal Utilities for NAT (STUN),
Work in Progress, Internet Engineering Task Force, draft-ietf-behave-turn-06,
January 2008.

[102] C. Jennings, J. Rosenberg, and E. Rescorla. Address settlement by peer to peer.
Internet-Draft draft-jennings-p2psip-asp-00 (Work in Progress), July 2007.

[103] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6, Internet Engi-
neering Task Force Request for Comments (RFC) 3775, June 2004.

[104] K. Keahey. Computational Grids in Action: The National Fusion Collaboratory.
Future Generation Computer Systems, Vol. 18, No. 8, pp. 1005-1015.

[105] S. D. Kamvar, H. Garcia-Molina, and M. T. Schlosser. The eigentrust algorithm
for reputation management in P2P networks. 12th international conference on
World Wide Web, May 2003.

[106] G. Karlsson. Quality Requirements for Multimedia Network Services. Lulea,
Sweden, June 1996.

[107] J. Kempf, M. M Khalil, and B. Pentland.
IPv6 Fast Router Advertisement - Internet Draft - work in progress, Internet Engi-
neering Task Force, draft-mkhalil-ipv6-fastra-05.txt. http://tools.ietf.
org/html/draft-mkhalil-ipv6-fastra-05, 2004.

[108] J. Kempf, J. Wood, and G. Fu. Fast Mobile IPv6 Handover Packet Loss Per-
formance: Measurement for Emulated Real Time Traffic. In Proceedings of
the IEEE Conference on Wireless Communications and Networking (WCNC’03),
March 2003.

[109] Y. Kim, D. Mazzocchi, and G. Tsudik. Admission control in peer groups. Second
IEEE International Symposium on Network Computing and Applications, Apr
2003.

[110] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing robust and ubiquitous
security support for MANET. International Conference on Network Protocols,
Nov 2001.

[111] Rajeev Koodli and Charles E. Perkins. Fast handovers and context transfers in
mobile networks. SIGCOMM Comput. Commun. Rev., 31(5):37–47, 2001.

243

[112] S. Y. Lee, O-H. Kwon, J. Kim, and S. J. Hong. A reputation management system
in structured peer-to-peer networks. Proceedings of the 14th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prise, 2005.

[113] GNU Lesser General Public License (LGPL). http://www.gnu.org/
licenses/lgpl.html. Free Software Foundation.

[114] J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in P2P File Sharing Systems.
In IEEE Infocom, Miami, FL, USA, March 2005.

[115] J. Lorchat and T. Noel. Power Performance Comparison of Heterogeneous Wire-
less Network Interfaces. VTC 2003 Fall, 2003.

[116] S. Ludwig, J. Beda, P. Saint-Andre, R. McQueen, S. Egan, and J. Hildebrand.
XEP-0166: Jingle. XMPP Standards Foundation.

[117] M. A. Spencer and B. Capouch and E. Guy and F. Miller and K. C. Shumard.
IAX2: Inter-Asterisk eXchange Version 2. (Internet Draft) Internet Engineering
Task Force.

[118] M. Jelasity and A. Montresor and O. Babaoglu. Gossip-based Aggregation
in Large Dynamic Networks. In ACM Transactions on Computer Systems,
23(3):219-252, August 2005.

[119] M. Jelasity and O. Babaoglu. T-Man: Gossip-based Overlay Topology Manage-
ment. In Proceedings of Engineering Self-Organising Applications, 2005.

[120] M. Jelasity and R. Guerraoui and A.-M. Kermarrec and M. van Steen. The peer
sampling service: experimental evaluation of unstructured gossip-based imple-
mentations. In Proceedings of the 5th ACM/IFIP/USENIX international confer-
ence on Middleware, 79-98, 2004.

[121] M. Stokes. Gnutella2 specification document - first draft, Gnutella2 Web site
http://www.gnutella2.com/gnutella2_draft.htm, 2003.

[122] M. Wijnants and B. Cornelissen and W. Lamotte and B. De Vleeschauwer. An
Overlay Network Providing Application-Aware Multimedia Services. 2nd In-
ternational Workshop on Advanced Architectures and Algorithms for Internet
Delivery and Applications (AAA-IDEA 2006).

[123] O. Malik. Ooma wants voice to be free. http://gigaom.com/2007/07/19/ooma/,
July 2007.

244

[124] K. El Malki and H. Soliman. Simultaneous Bindings for Mobile IPv6 Fast
Handovers, Work in Progress, Internet Engineering Task Force draft-elmalki-
mobileip-bicasting-v6-06.txt, July 2005.

[125] E. Marocco. Sipdht: A sip-based distributed hash-table.
http://sipdht.sourceforge.net.

[126] E. Marocco and E. Ivov. XPP: Extensible peer protocol. Internet-Draft draft-
marocco-p2psip-xpp-01 (Work in Progress), December 2007.

[127] E. Marocco and E. Ivov. XPP extensions for implementing a passive P2PSIP
overlay network based on the CAN distributed hash table. Internet-Draft draft-
marocco-p2psip-xpp-pcan-01 (Work in Progress), June 2007.

[128] S. Marti, P. Ganesan, and H. Garcia-Molina. SPROUT: P2P routing with social
networks. First International Workshop on Peer-to-Peer and Databases, Mar
2004.

[129] P. Maymounkov and D. Mazi. Kademlia: A peer-to-peer information system
based on the xor metric. First International Workshop on Peer-to-Peer Systems,
Mar 2002.

[130] P. McCann. Mobile IPv6 Fast Handovers for 802.11 Networks. RFC 4260 (In-
formational), November 2005.

[131] A. McCue. Bookie reveals 100,000 cost of denial-of-service extortion attacks.
silicon.com, june 2004.

[132] D. L. Mills. Network Time Protocol (Version 3), Specification, Implementation
and Analysis, Internet Engineering Task Force Request for Comments (RFC)
1305, March 1992.

[133] A. Mishra, M. Shin, and W. Arbaugh. An Empirical Analysis of the IEEE 802.11
MAC Layer Handoff Process. SIGCOMM Comput. Commun. Rev., 33(2):93–
102, 2003.

[134] J. Montavont, E. Ivov, and T. Noel. Analysis of Mobile IPv6 Handover Opti-
mizations and their Impact on Real-Time Communication. In Proceedings of
the IEEE Conference on Wireless Communications and Networking (WCNC’07),
Honk Kong, China, March 2007.

[135] J. Montavont, J. Lorchat, and T. Noel. Deploying NEMO: A Practical Approach.
In Proceedings of the 6th International Conference on ITS Telecommunications
(ITST’06), Chengdu, China, June 2006.

245

[136] N. Montavont and T. Noel. Handover Management for Mobile Nodes in IPv6
Networks. IEEE Communication Magazine, 40(8):38–43, August 2002.

[137] N. Montavont and T. Noel. Analysis and Evaluation of Mobile IPv6 Handovers
over Wireless LAN. Mobile Networking and Applications (MONET), special is-
sue on Mobile Networking through IPv6 or IPv4, 8(6):643–653, November 2003.

[138] N. Montavont and T. Noel. Anticipated Handover over IEEE 802.11 Networks.
In Proceedings of the IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob’2005), Montreal, Canada,
August 2005.

[139] N. Moore. Optimistic Duplicate Address Detection (DAD) for IPv6, Internet
Engineering Task Force Request for Comments (RFC) 4429, April 2006.

[140] N. Nakajima, A. Dutta, S. Das, and H. Schulzrinne. Handoff Delay Analysis and
Measurement for SIP based mobility in IPv6. In IEEE International Conference
on Communications, ICC’03, volume 2, pages 1085–1089, May 2002.

[141] T. Narten, E. Nordmark, and W. Simpson. Neighbor Discovery for IP Version 6
(IPv6). RFC 2461 (Draft Standard), December 1998.

[142] T. Narten, E. Nordmark, and W. Simpson. Neighbor Discovery for IP Version
6 (IPv6), Internet Engineering Task Force Request for Comments (RFC) 2461,
December 1998.

[143] V. Nuorvala, H. Petander, and A. Tuominen. Mobile IP for Linux (MIPL),
http://mobile-ipv6.org.

[144] K. Ohta, S. Micali, and L. Reyzin. Accountable subgroup multisignatures. ACM
conference on Computer and Communications Security, Nov 2001.

[145] Open services gateway initiative (osgi alliance). http://www.osgi.org.

[146] P. Prasithsangaree and P. Krishnamurthy and P. Chrysanthis. On indoor position
location with wireless LANs, 2001.

[147] P. T. Eugster and R. Guerraoui and S. B. Handurukande and P. Kouznetsov and
A. M. Kermarrec. Lightweight Probabilistic Broadcast. ACM Transanctions on
Computer Systems, 21(4): 341-374, 2003.

[148] S. Pack and Y. Choi. Fast inter-ap handoff using predictive-authentication scheme
in a public wireless lan. In IEEE Networks, (Joint ICN 2002 and ICWLHN 2002),
pages 15–26, Atlanta, USA, August 2002.

246

[149] S. Pack and Y. Choi. Performance Analysis of Fast Handover in Mobile IPv6
Networks. In The Eighth International Conference on Personal Wireless Com-
munications (IFIP PWC 2003), Venice, Italy, 2003.

[150] W-K. Poon and R. K. C. Chang. Robust forwarding in structured peer-to-peer
overlay networks. SIGCOMM, August 2004.

[151] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by
RFC 1349.

[152] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.
Updated by RFC 3168.

[153] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The bittorent P2P
file-sharing system: Measurements and analysis. 4th International Workshop on
Peer-to-Peer Systems, February 2005.

[154] QUAGGA. Quagga routing software suite, http://www.quagga.net.

[155] R. Albert and A. Barabasi. Statistical Mechanics of Complex Networks. Reviews
of. Modern. Physics, 74(47).

[156] R. Braynard and D. Kostic and A. Rodriguez and J. Chase and A. Vahdat. Opus:
an Overlay Peer Utility Service. Proceedings of the 5th International Conference
on Open Architectures and Network Programming (OPENARCH).

[157] I. Ramani and S. Savage. SyncScan: Practical Fast Handoff for 802.11 Infrastruc-
ture Networks. In Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’05), pages 675–684, Mi-
ami, USA, March 2005.

[158] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content addressable network. Technical Report TR-00-010, Berkeley, CA, 2000.

[159] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. SIGCOMM, 2001.

[160] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 4347
(Proposed Standard), April 2006.

[161] RIPE Network Coordination Centre. RIPE Community Resolution on IPv4 De-
pletion and Deployment of IPv6. RIPE 55 Meeting, October 2007.

[162] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. Technical
Report, University of Chicago, 2001.

247

[163] J. Rosenberg. Interactive connectivity establishment (ICE): A protocol for net-
work address translator (NAT) traversal for offer/answer protocols. Internet-Draft
draft-ietf-mmusic-ice-18 (Work in Progress), September 2007.

[164] J. Rosenberg. STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs). draft-ietf-behave-rfc3489bis
(Work in Progress), 2007.

[165] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session Descrip-
tion Protocol (SDP). RFC 3264 (Proposed Standard), June 2002.

[166] J. Rosenberg and H. Schulzrinne. Session Initiation Protocol (SIP): Locating SIP
Servers. RFC 3263 (Proposed Standard), June 2002.

[167] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session initiation protocol. RFC 3261 (Draft
Standard), June 2002.

[168] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN - Simple Traver-
sal of User Datagram Protocol (UDP) Through Network Address Translators
(NATs). RFC 3489 (Proposed Standard), March 2003.

[169] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta. Limiting sybil attacks in
structured peer-to-peer networks. Technical Report NAS-TR-0017-2005, Network
and Security Research Center, Department of Computer Science and Engineer-
ing, Jul 2005.

[170] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2001), pages 329–
350, Heidelberg, Germany, 2001.

[171] S. A. Baset and H. Schulzrinne. An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol, 2004.

[172] S. Androutsellis-Theotokis and D. Spinellis. A Survey of P2P Content Distribu-
tion Techniques. ACM Computing Surveys, 36(4):335-371.

[173] S. Shin and A. Forte and A. Singh Rawat and H. Schulzrinne. Reducing MAC
layer handoff latency in IEEE 802.11 wireless LANs. In Proceedings of the 2nd
International Workshop on Mobility Management & Wireless Access Protocols
(MobiWac’04), pages 19–26, Philadelphia, USA, 2004. ACM Press.

[174] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
RFC 3920 (Proposed Standard), October 2004.

248

[175] D. Sandras and Al. Gnomemeeting: an open source VoIP and video conferencing
application for GNOME, http://www.gnomemeeting.org.

[176] N. Saxena, G. Tsudik, and J. H. Yi. Admission control in peer-to-peer: Design
and performance evaluation. Security of Ad Hoc and Sensor Networks, 2003.

[177] C. Scheideler. How to spread adversarial nodes?: Rotate! Thirty-Seventh Annual
ACM Symposium on Theory of Computing, May 2005.

[178] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications, Internet Engineering Task Force Request
for Comments (RFC) 3550, July 2003.

[179] H. Schulzrinne and E. Wedlund. Application-layer mobility using SIP. ACM
SIGMOBILE Mobile Computing and Communications Review, 1(2), Feb 2001.

[180] J. Seedorf. Security challenges for peer-to-peer SIP. IEEE Network, 20, 2006.

[181] J. Seedorf. Using cryptographically generated SIP-URIs to protect the integrity
of content in P2P-SIP. VoIP Security Workshop, June 2006.

[182] K. Singh and H. Schulzrinne. Peer-to-peer internet telephony using SIP. Interna-
tional Workshop, Network and Operating System support for Digital Audio and
Video, June 2005.

[183] E. Sit and R. Morris. Security considerations for peer-to-peer distributed hash
tables. 1st International Workshop on Peer-to-Peer Systems, March 2002.

[184] H. Soliman, C. Catelluccia, K. El Malki, and L. Bellier. Hierarchical Mobile
IPv6 Mobility Management (HMIPv6), Internet Engineering Task Force Request
for Comments (RFC) 4140, August 2005.

[185] S. S. Soliman and C. E. Wheatley. Geolocation Technologies and Applications
for Third Generation Wireless. Wireless Communications and Mobile Comput-
ing, Vol. 2, No. 3, pp. 229-251, 2002.

[186] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In SIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies, architec-
tures, and protocols for computer communications, pages 149–160, New York,
NY, USA, 2001. ACM.

[187] SUN Microsystems. JXTA Technology
http://www.sun.com/software/jxta/, March 2005.

249

[188] Cisco Systems. Cisco Catalyst 6500 Series Wireless LAN Services Module:
White Paper, http://cisco.com.

[189] Cisco Systems. Cisco Fast Secure Roaming Application Note,
http://cisco.com.

[190] Cisco Systems. Configuring WDS, Fast Secure Roaming and Radio Manage-
ment, http://cisco.com.

[191] F. Teraoka, K. Gogo, K. Mitsuya, R. Shibui, and K. Mitani. Unified L2 Abstrac-
tions for L3-Driven Fast Handover, Work in Progress, Internet Engineering Task
Force, draft-koki-mobopts-l2-abstractions-05.txt, June 2006.

[192] S. Thomson and T. Narten. IPv6 Stateless Address Autoconfiguration, Internet
Engineering Task Force Request for Comments (RFC) 2462, December 1998.

[193] J. Tourrilhes. The Linux Wireless Extensions and Wireless Tools.
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux, 2003.

[194] E. Uzun, M. R. Pariente, and A. A. Selpk. A reputation-based trust management
system for P2P networks. International Symposium on Cluster Computing and
the Grid, Apr 2004.

[195] J. Vatn. An Experimental study of IEEE 802.11b Handover performance and
its Effect on Voice Traffic. In Technical Report TRITA-IMIT-TSLAB R 03:01,
Telecommunication Systems Laboratory, Department of Microelectronics and In-
formation Technology, KTH, Royal Institute of Technology, Stockholm, Sweden,
July 2003.

[196] H. Velayos and G. Karlsson. Techniques to Reduce the IEEE 802.11b Handoff
Time. In Proceedings of the IEEE International Conference on Communications
(ICC’04), volume 7, pages 3844–3848, Paris, France, June 2004.

[197] R. Vida and L. Costa. Multicast Listener Discovery Version 2 (MLDv2) for IPv6.
RFC 3810 (Proposed Standard), June 2004. Updated by RFC 4604.

[198] D. Willis and B. Hoeneisen. Session Initiation Protocol (SIP) Extension Header
Field for Registering Non-Adjacent Contacts. RFC 3327 (Proposed Standard),
December 2002.

[199] Y. Chu and S. Rao and H. Zhang. A case for end system multicast. SIGMETRICS
2000: Proceedings of the 2000 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, 2000, pp. 1-12.

250

[200] Z. Li and P. Mohapatra. QRON: QoS-aware routing in overlay networks. IEEE
Journal on Selected Areas in Communications 22 (2004) 29-40.

[201] X. Zhang, S. Chen, and R. Sandhu. Enhancing data authenticity and integrity in
P2P systems. Internet Computing, September 2005.

[202] P. Zimmermann. Pretty good privacy: public key encryption for the masses. In
Building in big brother: the cryptographic policy debate, pages 93–107, New
York, NY, USA, 1995. Springer-Verlag New York, Inc.

251

252

Chapter 12

List of publications

International journals

[1] Security Issues and Solutions in P2P Networks and Their Applicability in
Communication Overlays, Dhruv Chopra, Henning Schulzrinne, Enrico
Marocco, Emil Ivov, In submission for IEEE Surveys and Tutorials, 2008

[2] Thorough Empirical Analysis of the IETF FMIPv6 protocol over IEEE
802.11 networks, Emil Ivov, Julien Montavont, Thomas Noel, Accepted for pub-
lication in IEEE Wireless Communications Magazine, Special issue on "Architec-
tures and Protocols for Mobility Management in All-IP Mobile Networks", April
2008

[3] Analysis of a Geolocation-based FMIPv6 Extension for Next Generation
Wireless LANs, Julien Montavont, Emil Ivov, Thomas Noel and Karine Guil-
louard, Ubiquitous Computing And Communication Journal [ISSN 1992-8424],
Volume 2, Number 5, October 2007.

International Conferences

[4] Analysis of Mobile IPv6 Handover Optimizations and their Impact on Real-
Time Communications, Julien Montavont, Emil Ivov and Thomas Noel, IEEE
Conference on Wireless Communications and Networking (WCNC’07), Honk
Kong, Chine, 11-15 Mars 2007.

[5] An Experimental Performance Evaluation of the IETF FMIPv6 Protocol
over IEEE 802.11 WLANs, Emil Ivov and Thomas Noel, Wireless Communica-
tions and Networking Conference.(WCNC’06), Las Vegas, USA, April 2006.

253

[6] Soft Handovers over 802.11 with Multiple Interfaces, Emil Ivov and Thomas
Noel,2nd International Symposium on Wireless Communication Systems 2005
(ISWCS2005) Siena, Italy, September 2005.

[7] Optimizing SIP Application Layer Mobility over IPv6 Using Layer 2
Triggers, Emil Ivov and Thomas Noel, IEEE Vehicular Technology Conference
VTC’04 Los Angeles, USA, September 2004.

National Conferences

[8] SIP Communicator - Un outil open source de communication sur IP adapte
a nos laboratoires et a nos universites, Emil Ivov, Jean-Marc Muller, Journees
Reseaux, Novembre, 2007, Strasbourg.

Internet Drafts

[9] XPP Extensions for Implementing a Passive P2PSIP Overlay Network based
on the CAN Distributed Hash Table, Enrico Marocco and Emil Ivov, Work in
Progress, Internet Engineering Task Force, draft-marocco-p2psip-xpp-pcan-01,
December 2007.

[10] Extensible Peer Protocol (XPP), Enrico Marocco and Emil Ivov, Work in
Progress, Internet Engineering Task Force, draft-marocco-p2psip-xpp-01, De-
cember 2007.

Internal Reports

[11] Current Optimization Techniques of the Mobile IPv6
Handover Process, Emil Ivov and Thomas Noel, August 2004.

[12] Dossier d’Experimentation Fast Mobile IPv6, Emil Ivov, and Thomas Noel,
August 2006.

[13] Fast IPv6 Handovers for Multimedia Terminals, Project Closure Report,
Emil Ivov, and Thomas Noel, August 2006.

254

