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ACTIVE TECTONICS AND PALEOSEISMOLOGY OF THE GANOS 
FAULT SEGMENT AND SEISMIC CHARACTERISTICS OF THE 9 
AUGUST 1912 MÜREFTE EARTHQUAKE OF THE NORTH ANATOLIAN 
FAULT (WESTERN TURKEY) 
 
SUMMARY 

The North Anatolian Fault generated 9 large earthquakes (M>7) in Turkey 
during the last 100 years. We investigate the Ganos fault, the westernmost segment 
of the North Anatolian Fault that was responsible for the 9 August 1912 Mürefte 
earthquake (M 7.3). The Ganos fault is exposed onland for 45 km while the rest is 
covered up by the Aegean and Marmara seas, to the west and east respectively. The 
Ganos fault forms the western section of a large step-over area that corresponds to 
the Marmara pull-apart and experienced the 1999 Kocaeli earthquake on its east. The 
two ends of the 1912 and 1999 earthquake ruptures define the seismic gap in the Sea 
of Marmara.  

Geomorphic analysis along the 45-km-long onland section of the Ganos fault 
allowed documenting typical structures of strike-slip faulting; i.e. step-overs, pull-
aparts, bends, pressure ridges, sag-ponds, offset ridges, shutter ridges and stream 
displacement. The onland section of the Ganos fault is expressed as ~N68°E striking 
linear geometry, segmented by two extensional step-overs at Gölcük and Kavak. The 
combined analysis of offshore and onland fault morphology suggests a minimum of 
4 sub-segments limited by geometrical complexities which are from east to west, the 
Central Marmara basin, Ganos bend, Gölcük step-over, Kavak step-over and Saros 
Trough. The Saros Trough and the Central Marmara basin are the largest structural 
complexities along the Ganos fault and may serve as barriers to earthquake rupture 
propagation. 

Cumulative displacements determined at 69 localities and tectonic 
reconstructions provide insights on the long-term and short-term deformation 
characteristic of the Ganos fault segment. Measurements of displaced streams, ridges 
and partly ancient roads yield right lateral offsets ranging from 8 to 575 m. 
Furthermore, we suggest larger offsets from 200 to 9000 m based on reconstructions 
of the present-day drainage system. A classification of the stream offsets shows 8 
distinct classes of cumulative slip. We used sea level fluctuation curves of the Black 
Sea in order to constrain the timing of high precipitations periods which can trigger 
channel incisions. Consecutive 5 cumulative slip groups (from 70 to 300 m) show 
well correlations with subsequent sea level rise periods at 4 ka, 10.2 ka, 12.5 ka, 14.5 
ka and 17.5 ka. Slip rate estimations yield a constant slip rate of 17.9 mm/yr for the 
last 20.000 years and a variable slip rate of 17.7 mm/yr, 17.7 mm/yr, 17.9 mm/yr and 
18.9 mm/yr for the last 10.2 ka, 12.5 ka, 14.5 ka and 17.5 ka, respectively. 

Paleoseismology at three sites (Güzelköy, Yeniköy and Yörgüç) showed 
evidence of 8 faulting events, 5 of which post-date 1043 – 835 BC and 1500 – 830 
BC at Güzelköy site and Yeniköy site, respectively. A better timing was constrained 
for the last three events at Güzelköy which are most probably the earthquakes in (1) 
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1344 or 1354 (2) 1659 or 1766b and (3) 1912. We suggest two earthquake recurrence 
scenarios for the last historical earthquakes attributed to the Ganos fault. Scenario 1 
yields an average recurrence interval of 285 ± 36 years and encompasses the 1912, 
1659, 1354/1344, 824, 484 events, whereas Scenario 2 gives an average recurrence 
interval of 285 ± 93 years and includes the 1912, 1766, 1354/1344, 824, 484 events. 
Considering that earthquakes occur periodic the suitable seismic history corresponds 
to Scenario 1. However scenario 2 is also valid if a non-periodic earthquake 
occurrence is accepted. The combination of geomorphic analysis and trenching 
results provides slip rates for the North Anatolian Fault at the Ganos region. At 
Güzelköy two paleo-channels offset for 16 m and 21 m yield 22.3 ± 0.5 mm/yr for 
the last ~700 years and 26.9 mm/yr for the last 781 years, respectively. At Yeniköy 
dating from the lowermost units of the 46 ± 1 m offset stream provided a maximum 
17 mm/yr slip rate for the last 2840 years. 

The 9 August 1912 Mürefte earthquake (Ms=7.3) struck along the Ganos fault 
causing severe destruction (Io = X) between Tekirdağ and Çanakkale. A second large 
shock occurred on 13 September 1912 (Ms = 6.8) with an epicentral region to the 
west of the first main shock, giving rise to Io = VII damage west of Gaziköy and 
along the Gallipoli peninsula. Surface breaks have been recorded along the entire 45-
km-long onland section. We determined a maximum slip of 5.5 m that was 
previously suggested as 3 m (Ambraseys & Finkel et al, 1987). We extend the slip 
measurements of Altunel et al., (2004) from 31 localities to 45 with a better 
distribution along the fault. The offset distribution indicates that a certain length of 
the rupture is offshore, i.e., in the Saros bay and Sea of Marmara. 

73 historical seismograms have been collected for the 9 August, 10 August 
and 13 September 1912 shocks. Comparable pairs have been digitized using TESEO 
software. The modelling and deconvolution of seismic waveforms allowed retrieving 
a relative source time function using the 13 September and 9 August shocks and 
provided a source duration of 40 seconds for the 9 August earthquake. Considering a 
unilateral rupture propagation of 3 km/s, this duration implies rupture length of 120 
km, consistent with the earthquake size (Mw 7.4). P-wave polarities at 5 stations and 
field based N68°E fault strike allow us to construct the focal mechanism solution for 
the 9 August shock. 

The size of the 13 September shock requires 30 ± 10 km of surface faulting 
and constrains the western limit for the 120 ± 20 km long 9 August rupture. Taking 
into account the two events, an epicentre location in the Saros bay for the 13 
September shock, the 150 ± 20 km long total rupture length would extend from Saros 
Trough towards east and reach the Central Marmara Basin, consistent with major 
geometric complexities along this section of the North Anatolian Fault. Therefore, 
the eastern termination of the 9 August 1912 rupture and the western termination of 
the 1999 earthquake rupture imply a minimum 100-km-long seismic gap in the Sea 
of Marmara. This fault length suggests an earthquake size M>7 that should be taken 
into account in any seismic hazard assessment for the Istanbul region. 

The results of this study will be published in four articles which are in 
preparation. 

Aksoy, M.E., Meghraoui, M., Vallee, M., Çakır, Z, 2009, Rupture Characteristics of 
the 1912 Mürefte (Ganos) Earthquake Segment of the North Anatolian Fault 
(Western Turkey); submitted to Geology 
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TECTONIQUE ACTIVE ET PALÉOSISMOLOGIE DU SEGMENT DE 
GANOS. PARAMÈTRES SISMIQUES DU SÉISME DE MÜREFTE DE LA 
FAILLE NORD NATOLIENNE (OUEST DE LA TURQUIE) 
 
RESUME 

Au cours de la dernière centaine d’années, la faille nord-anatolienne (FNA) a 
déjà généré 9 séismes de magnitude supérieure à 7 en Turquie. Dans cette thèse nous 
investiguons la faille de Ganos qui est le segment occidental de la FNA. Cette faille 
fût responsable du séisme de  Mürefte du 9 août 1912 (M 7.3). la faille de Ganos est 
visible en surface sur 45-km alors que le reste est en mers Egée à l’est et Marmara à 
l’ouest. Cette faille de Ganos forme la section occidentale d’une large zone en « step-
over » qui correspond au bassin losangique (pull-apart) de Marmara où le séisme de 
Kocaeli de 1999 fût localisé dans sa partie est. Les deux extrémités des ruptures de 
1912 et de 1999 définissent une lacune sismique dans la mer de Marmara.  

Des analyses géomorphologiques sur les 45-km à terre de la faille de Ganos 
ont permis de décrire des structures typiques des failles en décrochement (ex : pull-
apparts, bombements, step-over, rides de compression et décalage de rivières). La 
section à terre de la faille de Ganos est d’azimut ~N68°E, segmentée en deux step-
over extensifs au niveau de  Gölcük and Kavak. La combinaison entre les analyses 
morphologiques à terre et en mer suggèrent un minimum de 04 sous-segments 
limités par des complexités géométriques qui est de l’est à l’ouest comme suit : Le 
bassin central de Marmara, le coude de Ganos, step-over de Gölcük, step-over de 
Kavak and la dépression Saros. La dépression de Saros et le basin central de 
Marmara sont les plus importantes complexités structurales le long de la faille de 
Ganos et peuvent as ir comme barrière à la propagation de la rupture. 

Le déplacement cumulé calculé sur 69 localités, de la reconstruction 
tectonique permettent d’avoir un aperçu sur les caractéristiques de déformation du 
segment  de Ganos à long terme et à court terme. Les mesures des déplacements de 
chenaux, des crêtes et une partie d’ancienne routes nous conduisent à évaluer un 
décalage entre 8 et 575m. Par ailleurs, nous suggérons un décalage (offset) plus 
important de 200m à 9000m basé sur la reconstruction du système hydrologique 
actuel. Une classification des décalages de chenaux montre 8 classes distinctes 
d’offset de glissement cumulée. Nous avons aussi utilisé les courbes de fluctuations 
du niveau de la mer noire afin de contraindre les période de fortes précipitations qui 
peuvent générer des incisions de chenaux. 5 groupes de glissement cumulé (de 70 à 
300m) montrent une bonne corrélation avec un rehaussement du niveau de la mer 
conséquent à 4 ka, 10.2 ka, 12.5 ka, 14.5 ka et 17.5 ka. Les estimations du taux de 
glissement conduisent à un taux de glissement  constant de of 17.9 mm/an pour les 
dernières  20.000 années et un taux de glissement variable de 17.7 mm/an, 17.7 
mm/an, 17.9 mm/an et 18.9 mm/an pour les dernières 10.2 ka, 12.5 ka, 14.5 ka et 
17.5 ka, respectivement. 

La paléosismologie a montré sur 03 sites (Güzelköy, Yeniköy and Yörgüç) 
des évidences de 8 événements sismiques, 5 datés entre 1043 – 835 BC et 1500 – 830 
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BC à Güzelköy et Yeniköy respectivement. Une meilleure datation a été contrainte 
pour les trois derniers événements à Güzelköy qui sont vraisemblablement des 
séismes en (1) 1343 ou 1344 (2) 1659 ou 1766b and (3) 1912. Nous suggérons deux 
scénarios de récurrence de séismes pour les derniers séismes en relation avec la faille 
de Ganos. Le scénario (1) conduit à une moyenne de récurrence de 285 ± 36 ans et 
englobe les événements de 1912, 1659, 1354/1344, 824, 484 alors que le scénario (2) 
est aussi valable si une récurrence non périodique des séismes est acceptée.  La 
combinaison entre les analyses géomorphologiques et des résultats des tranchées 
conduit à un taux de glissement de la faille nord anatolienne au niveau de la région 
de Ganos. A Güzelköy deux paleo-chenaux présentement un décalage de 16 m et 21 
m et conduit à un taux de  22.3 ± 0.5 mm/an pour ce dernier ~700 années et 26.9 
mm/an pour les 781 dernières années respectivement. A Yeniköy des datations des 
couches les plus profondes montre de 46 ± 1 m de décalage de chenal  et donnant 
ainsi un maximum de 17 mm/an de taux de glissement. 

Le 9 août 1912 la région de Mürefte a été secouée par un séisme (M = 7,3) a 
frappé le long de la faille de Ganos et a provoqué de graves dégâts (Io = X) entre 
Tekirdag et de Çanakkale. Un deuxième grand choc s'est produit le 13 Septembre 
1912 (M = 6,8) avec une zone épicentrale à l'ouest du choc principal, causant des 
destruction  Io = VII à l'ouest de dommages Gaziköy et le long de la péninsule de 
Gallipoli. Des rupture en surface ont été enregistrées le long de la totalité des 45-km 
de la section en surface. Nous avons déterminé un glissement maximum de 5,5 m qui 
a été précédemment suggéré à 3 m par Ambraseys & Finkel et al. (1987). Nous 
prolongeons les mesures de glissement de Altunel et al. (2004) à partir de 31 localités 
à 45 avec une meilleure répartition le long de la faille. La distribution d’offsets 
indique qu'une certaine partie de la rupture est au large, c'est à dire dans la baie de 
Saros et Mer de Marmara. 

73 enregistrement de sismogrammes historiques ont été collectés pour les 
événements du 9 août, 10 août et le 13 Septembre 1912. Des paires comparables ont 
été numérisées à l'aide du logiciels TESEO. La modélisation et deconvolution de la 
forme d'ondes sismiques a permis la récupération d'une fonction temps source en 
utilisant les événements du 13 Septembre et du 9 Août et fourni une fonction temps 
source de 40 secondes pendant le tremblement de terre du 9 août. Considérant une 
propagation unilatérale de la rupture de 3 km/s, cette durée implique longueur de 
rupture de 120 km, cohérente avec la dimension du séisme (Mw 7.4). Les polarités P 
des ondes à 5 stations et des N68°E d’azimut de faille  nous permet de déduire un 
mécanisme au foyer pour l’événement du 9 aout.  

L'ampleur du choc Septembre 13 exige 30 ± 10 km de rupture de surface et 
des contraint la terminaison ouest pour les 120 ± 20km de longueur de la rupture du 
9 Août. Prenant en compte les deux événements, une position de l'épicentre dans la 
baie de Saros pour le choc du 13 septembre de 150 ± 20 km de longueur totale de 
rupture et s'étendrait de Saros en propageant vers l’est et rejoignant ainsi le bassin de 
Marmara central, en accord avec la complexité géométriques importantes le long de 
cette section de la faille nord-anatolienne. Par conséquent, la terminaison est de la 
rupture du 09 aout 1912 et la terminaison ouest de la rupture de 1999 impliquent un 
minimum de 100-km de lacune sismique dans la mer de Marmara. Cette longueur de 
faille suggère un séisme de magnitude M>7 qui devra être pris en compte dans 
l’évaluation du risque sismique de la région d’Istanbul. 
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KUZEY ANADOLU FAYI GANOS SEGMENTİNİN AKTİF TEKTONİĞİ VE 
PALEOSİSMOLOJİSİ VE 9 AĞUSTOS 1912 MÜREFTE DEPREMİNİN 
SİSMİK KARAKTERİSTİKLERİ (BATI TÜRKİYE) 
 
ÖZET 

Son 100 yılda, Kuzey Anadolu Fayı üzerinde 9 adet büyük deprem (M>7) 
meydana gelmiştir. Bu çalışmada en son 9 Ağustos 1912’de kırılan ve Kuzey 
Anadolu Fayı’nın en batı parçasını oluşturan Ganos fayı çalışılmıştır. Ganos Fayı’nın 
karada görülen kısmı 45 km uzunluğundadır, geri kalanı Ege ve Marmara denizleri 
tarafından örtülmüştür. Bu fay büyük bir açılmalı sıçramanın batı kolunu 
oluşturmaktadır. Marmara çek-ayır havzasını oluşturan bu sıçramanın doğu kesimi 
ise 1999 Kocaeli depremi sırasında kırılmıştır. 1912 ve 1999’da kırılan parçaların 
karşılıklı iki ucu Marmara denizindeki sismik boşluğu oluşturmaktadır. 

Ganos fayının karada görünen 45 km’lik kesiminde yapılan jeomorfik 
incelemeler neticesinde, doğrultu atımlı faylara has birçok morfolojik yapı tespit 
edilmiştir; ör. fay sıçramaları, çek-ayır havzalar, fay büklümleri, basınç sırtları, sırt 
ve dere ötelenmeleri, sürgü sırtları ve çöküntü gölleri. Fayın karada görülen parçası 
yaklaşık K68°D doğrultulu bir geometriye sahip ve Gölcük ve Kavak gerilmeli 
sıçramalarla bölünmüştür. Fayın kara ve deniz içindeki morfolojisi incelendiğinde 
fayın en az 4 parçadan oluştuğu ve bu parçaların doğudan batıya, Orta Marmara 
Havzası, Ganos büklümü, Gölcük sıçraması, Kavak sıçraması ve Saroz çukuru 
sınırlandığı gözlenmiştir. Saroz çukuru ve Orta Marmara Havzası Ganos fayı 
üzerinde yer alan en büyük geometrik engellerdir ve bir deprem kırığının ilerlemesini 
durdurma potansiyelini taşımaktadır. 

69 adet birikimli ötelenme ve tektonik geri kurulumlar Ganos fayının kısa ve 
uzun dönem deformasyon niteliği hakkında bilgi sunmaktadır. Dere, sırt ve kısmen 
antik yollar üzerinden alınan atım ölçümleri 8 ila 575 m arasında değişmektedir. 
Bununla birlikte güncel drenaj sistemi üzerinden gerçekleştirilen geri kurulumlarla 
200 m’den 9000 m’ye kadar ötelenmeler önerilmiştir. Dere ötelenmelerinin 
sınıflandırması sonucunda 8 adet birikimli atım grubu tespit edilmiştir. Karadeniz 
deniz seviyesi salınım eğrilerinden faydalanarak yeni dere yatakları oluşturabilecek 
yoğun yağış dönemleri belirlenmiştir. Ardışık 5 birikimli atım grubu (70 ila 300 m 
arası) birbirini izleyen deniz seviyesi yükselim dönemleriyle deneştirilmiştir. 4 bin, 
10.2 bin, 12.5 bin, 14.5 bin ve 17.5 bin yıl öncesi zaman dilimlerine denk gelen bu 
atımlar sırasıyla 17.7 mm/yıl, 17.7 mm/yıl, 17.9 mm/yıl, ve 18.9 mm/yıl değişken fay 
hızı vermiştir. Fay hızı sabit kabul edildiği takdirde bu değerler 17.9 mm/yıl’lık bir 
hıza karşılık gelmektedir. 

3 ayrı yerde (Güzelköy, Yörgüç, Yeniköy) gerçekleştirilen paleosismoloji 
çalışmalarında 8 adet faylanma olayı belirlenmiştir. Bu olaylardan son 5 tanesi 
Güzelköy’deki sahada M.Ö. 1043 – 835, Yeniköy’deki sahada da M.Ö. 1500 – 830 
yıllarında meydana gelmiştir. Güzelköy hendek sahasındaki son 3 faylanma olayı iyi 
bir şekilde yaşlandırılabilmiştir ve bu olayların (1) 1344 veya 1354, (2) 1659 veya 
1766 ve (3) 1912 depremlerine karşılık geldiği düşünülmektedir. Ganos fayı üzerinde 
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olduğu düşünülen son 6 tarihsel deprem için 2 farklı deprem tekrarlanma senaryosu 
önermekteyiz. Birinci senaryo da 1912, 1659, 1354/1344, 824 ve 484 depremlerinin 
Ganos üzerinde gerçekleştiği kabul edilmiş ve 285 ± 36 yıllık bir tekrarlanma aralığı 
hesaplanmıştır. İkinci senaryo 1912, 1766 1344/1354, 824 ve 484 depremlerini 
kapsamakta ve 285 ± 93 yıllık bir tekrarlanma aralığı vermektedir. Ganos fayının 
düzenli aralıklarla deprem ürettiği kabul edilecek olursa uygun deprem tarihçesi 
birinci senaryodaki gibidir. Ancak depremlerin düzensiz olarak meydana gelmesi 
halinde ikinci senaryodaki deprem tarihçesi kabul edilebilir hale gelmektedir. 
Hendek çalışmalarına paralel olarak gerçekleştirilen jeomorfik incelemeler Kuzey 
Anadolu Fay’ının bu kesimi için fay hızı hesaplamayı mümkün kılmıştır. 
Güzelköy’de yaşlandırılan 16 m ve 21 m’lik dere atımları sırasıyla son 700 yıl için 
22.3 mm/yıl ve son 781 yıl için 26.9 mm/yıl’lık fay hızı vermiştir. Yeniköy’de ise 46 
± 1 m ötelenmiş bulunan bir dere yatağının en alt çökellerinden elde edilen yaşlarla 
son 2840 yıl için 17 mm/yıl’lık bir fay hızı elde edilmiştir. 

9 Ağustos 1912 Mürefte depremi (Ms=7.3) Ganos fayı üzerinde meydana 
gelmiştir ve Tekirdağ’dan Çanakkale’ye kadar uzanan bir bölgede ciddi hasara neden 
olmuştur (Io=X). 13 Eylül 1912’de merkezi ilk sarsıntıya göre daha batıda yer alan 
ikinci büyük bir deprem (Ms=6.8) meydana gelmiştir. Bu deprem Gaziköy’den 
Gelibolu'ya kadar uzanan bir alanda Io=VII şiddetinde hasar meydana getirmiştir. 
Karada görülen 45-km’lik kesim boyunca yüzey kırıkları gözlenmiştir. Daha önceleri 
3 m olarak önerilen (Ambraseys & Finkel, 1987) azami atımın 5.5 m olduğunu tespit 
edilmiştir. Altunel vd. (2004) tarafından ölçülen 31 adet atım gözlemi sayısı 45’e 
yükseltilmiştir. Atım dağılımı meydana gelen yüzey kırığının önemli bir bölümünün 
Saroz körfezi ve Marmara denizine doğru devam ettiğini göstermektedir. 

Bu çalışmada, 9 Ağustos, 10 Ağustos ve 13 Eylül 1912 depremlerine ait 73 
adet tarihi deprem kaydı toplanmıştır. Karşılaştırılabilir kayıt çiftleri TESEO 
programı aracılığıyla sayısallaştırılmıştır. Elde edilen deprem sinyallerinin 
modellenmesi ve ters çözümlenmesi sonucunda 9 Ağustos ve 13 Eylül depremleri 
için göreceli kaynak zaman denklemi elde edilmiş ve 9 Ağustos depreminin kaynak 
süresinin 40 saniye olduğu tespit edilmiştir. 3 km/sn’lik, tek yönlü doğrusal bir kırık 
ilerlemesi kabul edildiğinde bu süre 120 ± 20 km’lik bir fay uzunluğunda karşılık 
gelmektedir ki bu değer depremin büyüklüğüyle (Mw=7.4) uyumludur. 5 istasyona 
ait P-dalgası ilk varış analizi ve saha çalışmalarından elde edilen K68°D’luk ortalama 
doğrultu kullanılarak 9 Ağustos 1912 depremi için ilk olarak bir odak mekanizması 
çözümü önerilmiştir. 

13 Eylül 1912 depreminin büyüklüğü 30 ± 10 km’lik bir kırığı gerekli 
kılmaktadır. Ayrıca, bu deprem 9 Ağustos yüzey kırığı için bir batı sınır teşkil 
etmektedir. Her iki depremi ve ikinci şok için önerilen merkez üstünü dikkate 
aldığımızda, toplamda 150 ± 20 km olan kırık uzunluğu batıdan Saroz çukurundan 
başlayarak Orta Marmara Havzasına kadar uzanmaktadır. Bu iki havza aynı zamanda 
fay üzerindeki en büyük geometrik engellere karşılık gelir. Bu durumda, Marmara 
denizi içindeki 9 Ağustos 1912 depreminin doğu ucuyla 1999 depreminin batı ucu 
arasında en az 100 km’lik bir sismik boşluk olduğunu söylemek mümkündür. Bu 
boyuttaki bir sismik boşluk en az 7 büyüklüğünde bir deprem üretme potansiyeline 
sahiptir. İstanbul için yapılan deprem risk analizlerinde bu asgari değer dikkate 
alınmalıdır. 
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1. INTRODUCTION 

Large continental faults generate large earthquakes that produce significant 

surface ruptures and coseismic displacement. The North Anatolian Fault is one of the 

most remarkable strike slip fault systems in the world which generated 8 large 

earthquakes (M > 7) in the last 70 years. The seismic sequence from 1939 to 1999 

ruptured nearly 1100 km of the fault system and showed a westward migration 

pattern from Erzincan towards the Sea of Marmara. Each earthquake was associated 

with large surface ruptures and co-seismic displacement exposing evidently the 

segmentation and slip characteristic of the fault system. This recent seismic activity 

revealed invaluable information about large continental strike-slip fault system and 

turned the North Anatolian Fault to an open-air laboratory for active tectonic studies. 

Detailed field investigations incorporating quantitative geomorphology, earthquake 

geology and paleoseismology along the exposed fault segments can provide access to 

seismic parameters and the size of the earthquakes. Furthermore, an integration of 

seismology to field based results can widen our understanding of fault behaviour and 

earthquake occurrence. These methods have been widely applied along major fault 

systems within different tectonic domains (McCalpin, 1996; Keller & Pinter, 1996; 

Yeats et al., 1997). 

The North Anatolian Fault is one of best rupture zones to study earthquake 

geology and paleoseismology because the rupture morphology and co-seismic slip of 

the 1939-1999 seismic sequence is still accessible. In addition, the historical 

seismicity is well documented within the long archaeological history of Anatolia 

(Ambraseys, 1970, Ambraseys & Jackson, 1998) and allows constraining the timing 

of faulting events identified in paleoseismic trenches. Trenching studies have been 

conducted to constrain the timing of past events and estimate recurrence intervals for 

several segments of the North Anatolian (Rockwell et al., 2001 & 2009; Hartleb et 

al., 2003; Puchi, 2006; Pantosti et al., 2008; Palyvos et al., 2007). Additionally, the 

rupture segments of the seismic sequence have been documented through several 

field investigations (Ketin, 1969; Ambraseys & Zatopek, 1969; Barka, 1996; Kondo 

et al., 2005) 
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Quantitative geomorphology analysis revealed systematic offset along the 

entire section of the North Anatolian Fault. Together with Quaternary dating 

methods slip rates ranging from 15 to 21 mm/yr have been constrained for some 

sections of the North Anatolian Fault (Puchi et al., 2008, Kozaci et al., 2007 & 2009, 

Hubert-Ferrari et al., 2002). 

Continuous geodetic measurements through GPS networks along the North 

Anatolian Fault quantified the westwards movement of the Anatolian block and yield 

velocities from 17 to 26 mm/yr (Kahle et al., 1998; Straub et al., 1997; McClusky et 

al., 2000; Reilinger et al., 1997 & 2006).  

Following the 1999 earthquakes, studies on the active tectonics of the North 

Anatolian Fault increased drastically. A large number of studies presented the 17 

August Izmit and the 12 November Düzce earthquake source characteristics and 

related ruptures (Bouchon et al., 2000 & 2002; Barka et al., 2002; Akyüz et al., 2002, 

Lettis et al., 2002, Langridge et al., 2002, Hartleb et al., 2002, Pınar et al., 2001; Tibi 

et al., 2001; Aydın et al., 2002; Ergintav et al., 2002; Gülen et al., 2002; Sekiguchi et 

al., 2002; Rockwell et al., 2002). The Sea of Marmara has been intensively 

investigated during several cruises and a wealth of multi-beam bathymetry data and 

seismic reflection data have been collected in these cruises (Armijo et al., 2002 & 

2005; Le Pichon et al., 2001 & 2003; Imren et al., 2001; Gazioğlu et al., 2002). The 

offshore extension of the North Anatolian Fault in the Sea of Marmara is know well 

documented and exhibits complex fault geometry associated with several segments 

and branches. Studies on the offshore extension of the 1999 earthquake in the Sea of 

Marmara allowed locating the western termination of the related rupture (Uçarkuş et 

al., 2006 & 2008) 

A large earthquake postdating the seismic sequence occurred on 9 August 

1912 (M 7.3) and ruptured the westernmost 45-km-long onland section of the North 

Anatolian Fault (Ambraseys & Finkel, 1987; Altunel et al., 2004; Altınok et al., 

2003). Historical documents on the 1912 event report significant surface ruptures 

along the entire onland section (Macovei, 1912, Sadi, 1912, Mihailovic, 1927, 1933). 

However many parameters such as the rupture length, total slip, fault geometry and 

source characteristics remain poorly known. The 1912 and the 1999 earthquake 

ruptures limit a seismic gap, which is expected to produce a large earthquake near the 

metropolis Istanbul and surrounding area (Hubert-Ferrari et al., 2000). Hence, the 
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seismic parameters of the 1912 Mürefte earthquake are essential to evaluate the 

hazard in the Marmara region. During this study we used quantitative 

geomorphology, earthquake geology, paleoseismology and seismology in order to 

constrain the characteristics of the 1912 event and the related fault section; the Ganos 

fault. 

The Ganos fault segment experienced several destructive earthquakes during 

its history. Successive earthquakes left behind significant traces in morphology and 

geology. These traces indicate the long term and short term deformation of the Ganos 

fault. This study aimed to investigate the structural and tectonomorphic 

characteristics of the Ganos fault and documented the co-seismic deformation related 

to the 9 August 1912 Mürefte earthquake; as well as its source characteristics. The 

entire onland fault zone has been mapped at a 1/25.000 scale using field observation 

and remote sensing software and data. Step-overs, pull-aparts, bends, and pressure 

ridges, which are typical structures of right lateral strike slip faulting have been 

documented all along the fault. We measured co-seismic and cumulative 

displacement at several localities. In addition we used paleoseismic trenching to 

constrain the timing of past faulting events and correlated events with historical 

seismic catalogues. Finally we collected historical seismograms of the 1912 

earthquakes in order to apply modelling and deconvolution of seismic waveforms 

and retrieve earthquake rupture properties, focal mechanism and related seismic 

moment for the 9 August 1912 shock, which are parameters either incomplete or 

inconsistent among prior studies. 

This thesis consists of eight (8) chapters: 

Chapter 1 explains the objective of the study and gives reasons why the 

Ganos fault and the 1912 earthquake has been chosen as the research area and event. 

Some basic information of the region, such as the general geological setting and the 

geographical properties are shortly given within this part. The final part of the 

chapter summarizes the structure of the manuscript. 

Chapter 2 focuses on the methods applied during this study. The theoretical 

aspects of active tectonic studies and principles of seismotectonics, tectonic 

geomorphology and earthquake geology are given with example studies. 

Paleoseismology, as a tool to investigate past earthquakes is briefly explained within 
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this chapter. The use of historical seismograms to constrain source characteristics of 

past earthquakes is given with proper examples.  

Chapter 3 describes the tectonic setting and seismotectonic properties of the 

study area. The setting of the study area in relation to the North Anatolian Fault is 

clearly expressed in this part. An analysis of the historical seismicity provides an 

insight to the locations and affects of the major earthquakes of the Marmara region. 

The present day seismicity is given in this chapter to show the spatial distribution of 

the active deformation. Prior studies concerning GPS, paleoseismology and geology 

of the Ganos fault segment are summarized as well in this section.  

Chapter 4 gives information about the tectonic geomorphology of the onland 

section of the Ganos fault. Descriptions of morpho-tectonic structures from large 

scale to small scale are given within this section. Studies concerning the long- and 

short-term deformation characteristics of the site are explained in detail. Mapping, 

drainage analysis, cumulative offset measurements, tectonic reconstructions, fault 

structures and segmentation characteristics are explained in this chapter. Determined 

cumulative offset have been dated using climatic fluctuations and yield a slip rate for 

the last 20 ka for the westernmost part of the North Anatolian Fault. 

Chapter 5 presents our findings about the 9 August 1912 Mürefte earthquake. 

The collected historical documents are briefly described. The seismic activity and 

related damage distribution is briefly given. Details of the earthquake rupture, its 

geometry and related co-seismic slip are summarized within this chapter. The 

segmentation characteristics, potential fault barriers along strike and estimations for 

possible rupture length are discussed as well in this part. 

Chapter 6 summarizes the paleoseismic investigation along the Ganos fault 

segment. Three sites, Güzelköy, Yeniköy, and Yörgüç have been excavated to 

determine the historical earthquakes of the Ganos fault. The stratigraphy and 

earthquakes determined in the trenches are given in detail. Measurements of offsets 

by micro-topographic surveys are included in this chapter. A comparison of 

trenching results and the seismic history of the region underlines the possible 

recurrence intervals of the Ganos fault.  

Chapter 7 explains the historical seismogram study. The purpose of such an 

analysis, the procedure of seismogram collection, digitization and necessary 



 5

corrections on the signals are explained in this part. The results of the signal 

processing are given at the end of the chapter.  

Chapter 8 summarizes all results obtained for the Ganos fault section and the 

1912 earthquake. The new inputs of the study with regard to active tectonic studies 

along the North Anatolian Fault are emphasized. The proposed dimensions for the 

1912 event are considered in relation to the earthquake hazard in the Marmara 

region. Problems encountered during the study and possible solutions are discussed 

for better perspectives for future investigations. 

The present thesis was carried out in the frame of the co-supervisor program 

between Istanbul Technical University – Eurasia Institute of Earth Sciences (ITU) 

and University of Strasbourg - Institute de Physique du Globe Strasbourg (UMR 

7516) with the support of the French Embassy in Ankara and the CROUS in France. 

In addition the study was founded by the European Union project “Large Earthquake 

Faulting and Implications for the Seismic Hazard Assessment in Europe” - RELIEF 

(Contract EVG1-2002-00069) and the ITU Scientific Research Program. 
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2. METHODOLOGY 

The North Anatolian Fault is a major seismic source generating large 

disruptive earthquakes in Turkey. Identifying the characteristics of such a seismic 

source is a critical task in defining the earthquake risk in Turkey. A seismic source is 

usually defined in terms of displacement, rupture length, deformation mechanism 

(strike-slip, normal, reverse, or a combination of these), geometry and kinematics of 

associated fault segments, and slip rate (Meghraoui, 2001). The large earthquakes in 

Turkey are related particularly to strike-slip faults. Therefore, understanding features 

of strike-slip faulting and how they produce earthquakes is important. 

2.1. The Physics of Earthquakes 

2.1.1. The rupture process 

The elastic-rebound theory is the first satisfactory explanation build by Reid 

(1910) on the occurrence of earthquakes. The idea is simply based on that 

earthquakes are a sudden release of elastic strain energy in the rocks on either side of 

the fault which is stored during a interseismic period. The energy is stored while 

plates (blocks) move relative to each other but are actually locked by roughness and 

asperities along a fault (Fig 2.1). The continuous far field plate motions cause the 

rocks in the region of the locked fault to accumulate elastic deformation and induce a 

sigmoidal bend perpendicular to the fault (Fig 2.1-Time 2). When the accumulated 

strain exceeds the strength of the rocks an earthquake occurs and near-field 

coseismic deformation catches up the far-field interseismic deformation within a few 

seconds (Fig 2.1-Time 3). The stored energy is released during the rupture as heat, 

rock damage and elastic waves. The Reid model supposes that plate movement in 

other words deformation is constant from event to event and suggests that 

earthquakes occur periodically with similar magnitude. 
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Figure  2.1 : The elastic-rebound theory explains how the elastic strain energy is 
accumulated in rocks on the two sides of a fault (Reid, 1910; see text 
for detail). 

2.1.2. Earthquake occurrence 

The Reid’s model puts forward a perfectly periodic model whereby the stress 

drop and magnitude of each event are the same, and the stress build-up in time is 

constant. Two other models suggested by Shimazaki & Nakata (1980), predict an 

earthquake based on the stress threshold at which failure either occurs or stops. In the 

time-predictable model the stress threshold at which failure occurs is constant and a 

prediction is possible when the slip of the previous event is known. Assuming a 

constant slip rate and using the co-seismic slip of the previous earthquake the timing 

of when the stress threshold will be achieved can be calculated, but not its slip or 

magnitude. In the slip-predictable model the stress threshold which failure stops is 

known and constant, but the stress level where earthquakes occur is variable. 

Therefore the time of the earthquake can not be calculated, but its slip (using the 

elapsed time since the previous earthquake and a constant slip rate). The most 

important difference between Reid’s and Shimazaki & Nakata’s models lies on the 

characteristics of each event within a sequence of earthquakes. The Reid model 

suggest that earthquake along a fault segment occur perfectly periodic with similar 

slip and magnitude, whereas the Shimazaki & Nakata’s models consider that 

earthquake occur non-periodic and can be at different size (and different co-seismic 

slip) along the same fault segment. 
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2.1.3. The characteristic earthquake concept 

Models considering the slip variation along the fault length were discussed by 

Schwartz and Coppersmith (1984). They suggested three possible models for co-

seismic slip along a fault segment. The first model, called Variable Slip model 

considers variable earthquake segments length and slip (Fig 2.2a). Earthquakes may 

occur at different magnitudes, but the cumulative slip deficit is always completed by 

subsequent events. The second model is the Uniform Slip Model, where large 

earthquakes are uniform in size, co-seismic slip and rupture length  and the 

cumulative slip is levelled by moderate earthquakes (5.5 < M < 6.5; Fig. 2.2b). The 

third model is the Characteristic Slip Model in which earthquake size is constant 

producing a uniform slip pattern along definite rupture length. It should be noted that 

the characteristic earthquake model impose a variable cumulative slip rate along the 

fault (Fig. 2.2c). Therefore it is suggested that ruptures on adjacent fault segment 

may overlap (dashed lines in Fig. 2.2c) to fill the slip deficit. Another model, the 

Patch Model was introduced by Sieh (1996) whereby large earthquake are also of 

characteristic type, but differently the variable total displacement is levelled by 

moderate earthquakes producing local fault segments (or patches) with limited co-

seismic slip (Fig. 2.2d) 

The significance of the models b, c and d is that they allow predicting the 

approximate time and size of future earthquakes under constant slip rates, if detailed 

data of the previous large event is available. Therefore any significant earthquake 

should be studied in great detail in terms of earthquake geology and seismology. 

Such a dataset would also test suggested models and will improve our understanding 

of fault behaviour and earthquake occurrence. 

2.1.4. The size of an earthquake; Seismic Moment and Magnitude 

The seismic moment is a physical measure to quantify the size of an 

earthquake. It is defined by the equation  

M0 = μ S U dyne cm  (Aki 1966)                (2.1) 
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Figure 2.2 : Suggested models considering the variation of slip along a certain fault 
segment. Models a to c are from Schwartz & Coppersmith (1984), while 
model d is taken from Sieh (1996).  

where μ is the shear modulus of the rocks involved in the earthquake (a constant ~ 3 

x 1011 dyne/cm2), S is the area of the rupture along the geologic fault, and U is the 

average displacement of the ruptured area S. The seismic moment is calculated from 

seismograms using long-period seismic waves. However, comprehensive field data 

may also allow constraining the moment using rupture length, the depth of 
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aftershocks (which define the depth of the seismogenic zone) and the average 

displacement observed on the surface. The critical part in this estimation is to 

consider that surface slip distribution is not equal to the distribution in the depth, but 

connected. 

As mentioned before, earthquakes are a sudden release of stored strain energy 

in the rocks. The measure of the released energy is defined as the moment 

magnitude, symbolize as Mw meaning “mechanical work accomplished”. The 

moment magnitude is dimensionless and defined as 

Mw = 
3

2
 log Mo – 10.73 (Kanamori, 1977)                (2.2) 

where M0 is the seismic moment. The moment magnitude is the most accurate 

measure of energy release and is therefore worldwide used to define the size of an 

earthquake. The Richter (or Local) magnitude, the body wave magnitude (mb), the 

surface magnitude (Ms) and duration magnitude (MD) are also other measures of 

earthquake magnitude. However these magnitudes are based on one aspect of the 

related seismogram and do not capture the overall size of the source. 

2.2. Faulting Behaviour, Fault Geometry and Segmentation 

The concept of faulting behaviour involves the fact that the coseismic 

displacement along a fault evolves with time both locally and regionally, which 

concerns both temporal and spatial aspects. The characteristic earthquake model 

assumes the rupture geometry to be fixed in order to produce equivalent earthquakes 

through time. In deed, earthquake segments are limited by boundaries that 

correspond to major geometric complexities along the strike of a fault (Schwartz & 

Sibson, 1989, Barka, 1996). These obstacles arrest the rupture propagation and limit 

the size of an earthquake along a certain section of an active fault (Aki, 1989; 

Schwartz & Simpson, 1989; Zhang et al., 1999 Wesnousky, 2006). Thus it can be 

assumed that a fault behaves characteristically for some period in which its general 

geometry is preserved. As a result, the detailed study of fault geometry and structure 

of active fault will allow determining its segments capable of producing large 

earthquakes. The dimension of the segments will also provide a measure to estimate 

the size of the expected earthquake. 
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2.2.1. Fault geometry and segmentation 

The geometry of an active faults trace at the surface is an expression of the 

fault’s nature at depth. Hence, it indicates changes in geology or structure along the 

fault zone. Such asperities break up the fault plane into sub-planes (segments). These 

sub-planes or sections of a fault are called segments. However, the term segment is 

used at a variety of scales. A segment can define the total length of a historical 

rupture along a large fault zone, nevertheless a sections of a surface rupture with 

individual characteristics. Alternatively were no historical earthquake rupture is 

evident, segments can be defined based on static geologic or structural criteria 

McCalpin, (1996). To avoid any ambiguity it is essential to follow a consistent 

terminology. Therefore we follow the terminology suggested by McCalpin (1996) for 

fault segments (Table 2.1). In addition, we use the term sub-segment to define 

sections along an earthquake segment (rupture), which shows distinct differences in 

geometry, slip and orientation. 

Table 2.1 : Types of Fault segments and the characteristics used to define them 
(McCalpin, 1996) 

Type of segment Characteristics used to define the segment 
Likelihood of being 

an earthquake 
segment 

1. Earthquake Historic rupture limits By definition 100% 

1) Prehistoric rupture limits defined by multiple, well-dated 
paleoearthquakes. 

High 

2. Behavioural 2) Segment bounded by changes in slip rates, recurrence 
intervals, elapsed times, sense of displacement, creeping versus 
locked behaviour, fault complexity.  

Mod (26%) 

3. Structural 
Segment bounded by fault branches, or intersections with other 
faults, folds, or cross-structures. 

Mod.-High (31%) 

1) Bounded by Quaternary basins or volcanic fields. Variable (39%) 

2) Restricted to a single basement or rheologic terrain.  

3) Bounded by geophysical anomalies.  
4. Geologic 

4) Geomorphic indicators such as range-front morphology, crest 
elevation. 

 

5. Geometric 
Segments defined by changes in fault orientation, step-overs, 
separations, or gaps in faulting. 

Low-Mod. (18%) 

 

The segmentation of faults, particularly strike-slip faults occur through 

discontinuities called step-overs and bends along strike. A step-over consists of two 

fault planes (segments) which are not directly connected to each other. On the other 
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hand, a fault bending is a continuous fault plane with significant change in 

orientation; in other words strike. Along a right lateral strike slip fault left stepping 

bends of step-overs form restraining structures, whereas right stepping geometries 

produce releasing structures. The releasing or restraining nature of these changes 

forms several structures and morphologies at various scales; i.e. pull-apart basins, 

releasing basins, sagponds, relay ramps, mountains, pressure ridges and mole tracks. 

Some large scale tectonic structures related to releasing and restraining geometries 

are illustrated in Figure 2.3 (Cummingham & Mann, 2007). 

 

Figure 2.3 : Tectonics feature along strike slip restraining and releasing bend and 
step-overs (Cummingham & Mann, 2007). 
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3. SEISMOTECTONIC BACKGROUND OF THE MARMARA REGION 

The Ganos fault is a segment of the North Anatolian Fault (NAF) and is 

located between the Marmara Sea and the Aegean Sea. Only about a 45-km-long 

section of the Ganos fault is onland, the rest being offshore in the Marmara Sea and 

Aegean Sea. The segment is situated next to a transition zone between pure right-

lateral tectonics and Aegean N-S extensional tectonics. The structural and tectonic 

characteristics of this segment play a significant role to evaluate the existence of an 

interaction between the two tectonic regimes in that region. The GF ruptured in 1912 

causing considerable damage and surface faulting. This section determines an 

important earthquake segment of the 1500-km-long transform fault of Anatolia. 

Hence, the attitude of this segment signifies the seismic hazard in the Ganos-

Tekirdağ region. 

This chapter addresses the geologic evolution, present day tectonics and 

seismicity of the main land where the NAF and Ganos fault are located (from 

regional scale to local scale, respectively). The seismic and geologic characteristics 

of the major earthquakes along the NAF will be discussed for comparison in the 

Ganos region. Finally, an introduction to the regional geology, morphology, 

paleoseismology and seismology of the Marmara region and particularly the Ganos 

site will be provided. 

3.1. Tectonic Setting 

The Ganos fault is the westernmost section of the North Anatolian Fault Zone 

(NAFZ), one of the most active and large strike-slip fault systems in the world. The 

1500-km-long, arcuate fault system forms a major continental plate boundary 

between the Anatolian plate and the Eurasian plate and takes up the relative motion 

among the two plates (Fig. 3.1). The NAF extends from the Karlıova triple junction 

in East Anatolia to the Aegean Sea in the West and its right lateral movement occurs 

predominantly through a fault zone of few hundred meters to 120 km width. Several 

large earthquakes have been recorded since historic time causing severe damage to 

the urban areas along this fault. 
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Figure 3.1 : Tectonic setting of Eastern Mediterranean and Middle East where the 
Arabian, African, Eurasian and Anatolian plates meet. The northward 
movement of the Arabian plate along the Dead Sea Fault (DSF) 
causes the Anatolian plate to escape westwards via the right-lateral 
North Anatolian Fault (NAF) and the left-lateral East Anatolian Fault 
(EAF). 

3.1.1. Tectonic evolution of Anatolia 

The NAF forms the northern boundary of the Anatolian block, which exposes 

a composite geology and signifies a complex geologic history. The Anatolian plate 

experienced a series of continental collisions starting in the Late Palaeozoic. Two 

oceans, the Palaeo-Tethys and Neo-Tethys, were demised between the two large 

continents of Gondwana to the south and Laurasia to the north (Fig. 3.2; Şengör and 

Yılmaz, 1981; Okay and Tüysüz, 1999). A N-S convergence caused the closure of 

the Palaeo-Tethys and amalgamated the surrounding continental fractures to a main 

land. Together with relics of oceans, different continental fragments joined together 

to form the primordial Anatolian block. Nevertheless, until the end of Oligocene the 

Neo-Tethyan Ocean existed partly as a narrow strait between the Arabian platform 

and southeast Anatolia (Okay, 2008). The Neo-Tethys entirely disappeared in 

Miocene, when the Arabian and the Anatolian plates finally collided along the 
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Assyrian-Zagros suture (Fig. 3.2). The closure initiated a new tectonic regime in the 

eastern Mediterranean, particularly for Anatolia. The continent-continent orogeny 

caused crustal thickening and uplift in eastern Anatolia. By early Pliocene the 

contractional tectonic regime evolved into the westward extrusion of the Anatolian 

block. The westward movement was and is still accompanied by two intracontinental 

transform faults; the right-lateral NAF and the left lateral EAF (Fig. 3.1; Hempton, 

1987; Şengör and Kidd, 1979; Şengör et al., 1985; Yılmaz, 1993; Barka, 1992; 

Bozkurt 2001). 

 

Figure 3.2 : Paleotectonic maps of Turkey and surrounding regions (Okay, 2008). a) 
The location of the Anatolian plate with regard to the large contintents 
Laurasia and Gondwana. The location of the Anatolian plate is in the 
central part of the Alpide-Gondwana Land (dark blue) south of the 
Black Sea. b) The Anatolian plate consists of several continental 
fragments (e.g. Pontides, Istanbul Zone, Kırşehir Massif, Anatolide-
Tauride block) surrounded by continuous suture zones (e.g. Intra-Pontid 
suture, Izmir-Ankara-Erzincan suture). 

The complex tectonic background of Turkey is exposed inland as suture 

zones (representing the abducted oceanic lithospheres) and several continental 

fragments between these sutures. Six main tectonic units and suture zones constitute 

the fundamental geology of the Anatolian plate; the Pontides, the Anatolides-

Taurides, the Arabian Platform and the Bitlis-Zagros suture, Izmir-Ankara-Erzincan 
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suture and the Intra-Pontid suture (Fig. 3.2; Ketin, 1966). In the Marmara region the 

Intra-Pontid suture constitutes the boundary between two continental domains; the 

northern Istanbul Zone (Western Pontides) and the southern Sakarya Zones. Towards 

east, the Izmir-Ankara-Erzincan suture forms the boundary between the Sakarya 

zone and the Anatolide-Tauride domains (Şengör and Yılmaz, 1981, Okay and 

Tüysüz 1999, Okay 2008).  This geologic background affects the setting of the two 

major fault systems in Anatolia; the North Anatolian Fault System and the East 

Anatolian Fault System. 

3.2. The North Anatolian Fault Zone 

The NAFZ starts at the Karlıova triple junction in the east, and runs roughly 

NW direction to Vezirköprü, where it makes a bend and continuous WSW until 

Bolu. West of Bolu, the NAF splays into two major strands: 1) The northern strand 

strikes through the major basins in Marmara Sea, runs westwards crossing the Ganos 

Mountain and diminishes west in the Aegean Sea. This section is the most active 

strand and experienced three earthquakes M>7 in the 20th century (including the 

1912 Mürefte shock). 2) The southern strand runs WSW direction west of Bolu, 

crosses the south of the Iznik bay and the Marmara Sea, makes another left bend near 

Erdek and runs in SW direction into the Aegean Sea. The southern branch lacks 

evidence of a significant earthquake history. The only well known event is the 18 

March 1953 Yenice-Gönen earthquake (Mw 7.2) causing surface faulting of about 70 

km along this branch (Pınar, 1953; Kürçer et al., 2008).  

The location of the NAF is close to the boundary of the aforementioned 

Pontides and Anatolides. However, the largest section of the NAFZ does not follow 

the sutures zone. It is rather semi parallel to the Ankara-Erzincan suture and Intra-

Pontid sutures and cuts the sutures twice; at Erzincan and Suşehri (Şengör, 1979; 

Barka, 1992). 

3.2.1. The Onset and Offset of the North Anatolian Fault 

The onset and total offset of the NAF is controversial because the total 

amount of slip along the fault and the ages of the related structures are not well 

constrained. The reason for the uncertainty comes from the geologic configuration 

described above, which comprises the Pontides and the Anatolide-Tauride blocks and 
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is quite complex. Therefore, correlations of older geologic units can easily mislead 

and demand comprehensive mapping. Nevertheless, many studies yield comparable 

results on the onset and the total offset of the NAF. 

The discrepancy concerning the age of NAF is fairly low compared to the 

total displacement. The onset of the fault is mostly in agreement, which is sometime 

between the late Miocene and the early Pliocene, following the collision between the 

Arabian and Anatolian plates. Ketin (1948), providing one of the first comprehensive 

studies of the NAFZ, wrote that the NAF disrupted orogenic structures of Turkey, 

and concluded that the fault must have begun in the Neogene (15-20 Ma ago; Ketin, 

1957). In a later study he pointed that, the basins fills along the fault are no older 

than Middle Miocene, indicating the NAF did not create a distinct morphology prior 

to this time (Ketin, 1976). Erinç (1973) suggested that the original drainage network 

around the fault zone was formed by Late Miocene and shows a distinct influence of 

fault activity. Therefore, he concluded that the network necessarily predates the 

formation of the NAF. Seymen (1975) showed that the NAF displaces the Ankara-

Erzincan suture and consequently it has to post-date the suture of Burdigalian age. 

Koçyiğit (1989) studied the Suşehri basin and pointed out that the Pliocene basin fills 

rest unconformably on Burdigalian age deposits and concluded that this would imply 

that the basin was formed during a new tectonic regime, post dating Burdigalian 

(Late Miocene). Şengör (1979) stated that the Arabian-Eurasian collision started in 

Late Miocene, right after the closure of the Bitlis Ocean. Considering the well fit 

with the models of McKenzie (1972) and Dewey & Şengör (1979) he deduced and 

that the NAF initiated right after the collision (Late-Middle Miocene). Hempton 

(1987) suggested a broader time frame, sometime between Early Miocene and Early 

Pliocene, for the commencement of the fault zone.  

Other studies proposed a younger age for the NAF where they considered that 

a wide shear zone evolved first in Late Miocene (Barka and Hancock 1984, Barka 

1985, Barka and Gülen 1988, 1989) and developed afterwards into a main fault plane 

in the early Pliocene (Barka 1992). Barka & Hancock (1984) suggest 25 km right 

lateral displacement since Tortonien based on a sedimentary facies boundary in the 

Havza-Ladik Basin. Studying the Tosya and Kargı basins, Andrieux et al. (1995) 

concluded that the deformation along this section of the NAF was widely distributed 
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during the Upper Neogene-Pleistocene and that a more localized fault zone was 

developed only after Late Neogene. 

Fault propagation theories were also proposed for the evolution of the NAF. 

Gautier (1999) suggested that the fault zone developed first in the east 16 Ma ago, 

propagated westwards and reached the Marmara after 3 Ma. According to Şengör et 

al (2005) the NAF formed in Serravallian (13-11 Ma ago) in the east, propagated 

westward and reached the Marmara no earlier than 200 ka ago. This inference is 

based on the observation that on the east basin fills are as old as late Miocene, 

whereas in the Sea of Marmara, basins are younger than Pleistocene. However, the 

Pleistocene age for the 2 to 3-km-thick Marmara basin fills (Carton et al 2007) is 

extrapolated from sedimentation rates obtained from one 40-m-long shallow drilling, 

which yield a rate of 40 ka (1 m/ka). 

Slip measurements along the NAF yield a wide range of results, such as 7.5 

km to 300 to 400 km (Hece and Akay, 2001). The largest total slip proposed is about 

350 to 400 km, which is actually based on an erroneous correlation of volcanic units 

of different age and origin (Cretaceous-Eocene and Mio-Pliocene volcanics; Pavoni, 

1962). The first well defined total displacement was measured by Seymen (1975), 

where he proposed ~85 km right-lateral displacement along the Ankara-Erzincan 

suture near Erzincan. This is the same result measured by Bergougnan (1975) along 

the suture. Barka et al (2000) calculate a comparable offset of ~80 km based on the 

total lengths of the Taşova–Erbaa and Niksar basins along the North Anatolian fault. 

Lower values of slip were measured by Barka & Hancock (1984). They measured 25 

± 5 km of right-lateral displacement on the Miocene sediments in the Havza-Ladik 

basin. A re-evaluation of the displacement of some geologic and geomorphic 

markers yield comparable results on three structures (Hubert-Ferrari, 2002); 1) large 

river valleys (80 ±15 km), 2) the Pontide suture 85 ± 25.3) Tosya-Vezirköprü basin 

(80 ± 15 km). Şengör et al. (2005) outlined a number of offsets, which he considered 

to be the most reliable measurements and draw attention to the decrease in total slip 

towards west. The estimations ranged from 4 km to 75 km (Armijo et al. 2002; Barka 

& Gülen, 1989; Gaudemer et al., 1989; Herece & Akay, 2003; Hubert-Ferrari et al 

2002; LePichon et al, 2003; Şengör et al., 2005). Barka (1992) observed the same 

characteristic and wrote that offsets decrease from east to west, from 40 ± 5 km to 25 

± 5 km respectively and increase again in the Marmara region. However, these 
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observations are contradictory with the 70-km-long dextral offset proposed by 

Armijo et al, (1999) for the westernmost section of the NAF. Armijo et al. (1999) 

indicated the presence of two truncated anticlines (Ganos Mountain and Gelibolu 

peninsula) apart for ~70 km and covered unconformably by flat lying deposits of 5 

Ma age in the south. Accordingly he inferred that these units post-date the 

deformation, hence the offset. However the age and structural constrains of this 

observation are disputed by Yaltırak et al. (2000). 

As summarized above, the age and total offset of the NAF are still not well 

constrained and require further investigation. However, it can be deduced that the 

maximum slip along the NAF is about 80 km and is probably decreasing towards 

west. In addition the initiation of a main fault zone started most probably at Late 

Pliocene following the Arabian-Eurasian collision.  

3.2.2. Present Day Kinematics of the NAF 

The NAF is the largest and most active strike slip fault in the eastern 

Mediterranean region. The right lateral motion of the fault is actually interrelated 

with the present-day tectonics of a large region, encompassing the Eurasia, Africa, 

Arabia, Anatolia and Aegean region (Fig. 3.1). The African and Arabian plates move 

northwards in a complex tectonic system accompanied with the Red Sea Oceanic 

Rift System and cause a continent-continent collision between the Arabian and 

Anatolian plates along the Bitlis-Zagros Mountain Chains (Şengör, 1979). This 

tectonic setting forms three major fault systems in eastern Mediterranean. The Dead 

Sea Fault (DSF), EAF and NAF. Together with the EAF, the NAF forms the plate 

boundaries of the Anatolian block. The two fault systems accomplish the lateral 

escape of the block to the west (Ketin 1948). In addition, the subduction of the 

eastern Mediterranean oceanic lithosphere along the Hellenic trench results in 

widespread extension the Aegean and western Turkey (McKenzie, 1970, 1972). 

GPS measurements in the eastern Mediterranean region indicates an 

anticlockwise rotation of large region comprising the Aegean, Arabian and the 

Anatolian plates about an Euler Pole near to the Nile Delta (McClusky et al., 2000). 

The rotation of the Anatolian block occurs along a small circle of that pole, which 

conforms the NAF (Fig. 3.3, Le Pichon et al, 1995; McClusky et al., 2000, Reilinger 

et al, 2006). The mean motion along the NAF is measured as ~ 24 mm/yr (Straub et 
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al 1997; Reilinger et al, 1997; McClusky, 2000). However the slip rates show an 

increase  

 

Figure 3.3 : The GPS velocity field relative to Eurasian reference frame in the 
eastern Mediterranean region shows an anticlockwise rotation of a 
large region, compromising the Arabian, Zagros, Anatolian and 
Aegean regions (GPS data from Reilinger et al., 2006). GPS velocities 
along the NAF present also an increase from east to west. 

from east to the west, from 20.6 ± 0.8 mm/yr to 24.6 ± 1.0 mm/yr (Reilinger et al, 

2006). The increase is thought to be due to the slab suction along the Hellenic 

subduction zone in the Aegean Sea (Reilinger et al, 2006). 

The westwards movement of the Anatolian block is accomplished by 

successive earthquakes along the North Anatolian Transform Fault. The long history 

of the region documents a good seismic history since the antiquity with more than 50 

disastrous earthquakes. Since 1912 the NAF alone produced 9 destructive 

earthquakes M>7, which occurred in a time interval between 3 months to 32 years 

(Fig. 3.4). The earthquake sequence since 1939 shows a significant westward 

migration along the fault (Toksöz et al., 1979; Barka, 1996; Barka et al., 2002). The 

17 August 1999 Kocaeli (Mw 7.4) and the 12 November 1999 Düzce (Mw 7.2) 

earthquake are the most recent two shocks along the western section of the NAF 
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(east of Marmara Sea). The historical seismicity of the Marmara Sea region is 

summarized in Appendix A.1. 

 

Figure 3.4: The seismic sequence between 1939 and 1999, ruptured ~63% of the 
North Anatolian Fault. 

The 1939-1999 earthquake sequence ruptured in total about 1100 km long 

portion of the 1500-km-long NAF. If we include the 9 August 1912 earthquake (Ms 

7.3) rupture (Ambraseys, 2002), the length of the broken section reaches over 1200 

km. This means that almost 80% of the NAF has been reactivated during earthquakes 

in a very short time, i.e., in about one century. Such behaviour has not been 

documented on any other strike-slip fault elsewhere in the world. Hence, studies on 

fault interactions, rupture geometry, segmentation, geometrical complexities and 

related earthquake activity of these events provide unique and invaluable information 

to estimate rupture nucleation and termination points along major strike-slip fault of 

the world. 

3.2.3. The Earthquake Fault Segments of North Anatolian Fault 

Below is a summary of the rupture characteristics of the 1939-1999 

earthquakes that provides crucial hints in understanding the rupture characteristics of 

the NAF and evaluating the 9 August 1912 earthquake. 

The 26 December 1939 Erzincan earthquake (Ms 7.8) is the first and the largest 

event in the sequence, and gave rise to the longest surface rupture (i.e., ~360 km) 

ever recorded along the NAF (Fig. 3.5). Surface faulting produced right lateral 

offsets as much as 7.5 m. The epicentre was located west of the Erzincan Basin at a 

restraining bend of 10-20° (Dewey, 1976). The rupture initiated there and propagated 

bilaterally about 330 km to the west and 30 km to the east. The surface rupture was 

mostly confined to narrow valleys along continuous linear segments. Barka (1996) 
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divided the 1939 rupture into 5 sub-segments with lengths from 50 to 100 km. The 

linear geometry is interrupted by 10° to 20° bends and the 2 to 4 km wide basins; 

Suşehri and Gölova basins respectively along the Kelkit Valley. The eastern 

termination is at the 15-km-wide Erzincan pull-apart basin. To the west, the rupture 

runs along southern margin of the Niksar pull-apart basin and, instead of following 

the plate boundary northwest, it veers the west propagating in to the Anatolian block 

(Barka & Kandinsky-Cade, 1988; Barka, 1996, Yoshioka, 1996). 

 

Figure 3.5 : The 1939 Erzincan earthquake produced nearly 360 km of surface 
rupture limited by the Erzincan basin on the east and by a restraining 
bend on the west. The 1942 earthquake ruptured along the northern 
limit of the Erbaa-Niksar basin. 

The 20 December 1942 Erbaa-Niksar earthquake (Ms 7.1) took place west of the 

1939 event and caused a 50-km-long surface rupture, significantly shorter than the 

1939 rupture (Fig. 3.5). The rupture took place along the northern boundary fault of 

the Niksar-Erbaa basin regarded as a lazy “Z” type pull-apart basin (Barka & 

Kandinsky-Cade, 1988; Barka et al., 2000; Mann, 2007). The maximum lateral 

displacement is measured to be 1.7 m. The extension of the surface rupture is not 

well constrained however it is known that it ruptured the northern margin of the 

Niksar-Erbaa basins consisting of 3 sub-parallel strands (Barka, 1996). The fault 

forms an 11° restraining bend on the east which may correspond to the eastern tip. 

The western tip disappears westwards within the 7-km-wide Erbaa basin. The 

earthquake is located north of the western bend of the 1939 rupture. The bend caused 

some stress localization along this section (Stein et al., 1997) that was subsequently 

released during this event. 

The 26 November 1943 Tosya earthquake (Ms 7.6) broke a 260 km long section of 

the NAF, with an epicentre near Bayramören-Kurşunlu (Fig. 3.6). The maximum 
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right-lateral slip measured is about 4.5 m. The rupture initiated on the west and 

ruptured towards east. The morphology along this earthquake segment is similar to 

that along the 1939 segment. The fault lies in a narrow fault zone with continuous 

linear segments running trough a narrow valley. Having ~1.5-km-wide releasing 

steps, the Kargı and Ladik basins are the two largest basins along the rupture zone. In 

addition, the whole rupture forms a large smooth bend by changing its strike from 

NW to WSW towards the west. The eastern and western tips of the rupture are 

located within the Erbaa Basin and the Bayramören-Kurşunlu releasing step-overs 

(2-km-wide), respectively. These observations show that the 1943 segment contains 

more structural complexities along strike compared to the 1939 segment. 

 

Figure 3.6 : The 1943 Tosya earthquake produced ~260 km surface rupture and 4.5 
m right lateral slip. The rupture was limited by the Erbaa pull-apart 
basin on the east and by a minor step over on the west. 

The 1 February 1944 Bolu-Gerede earthquake (Ms 7.3) has an epicentre close to 

the 1944 shock at the eastern end of the rupture (Fig. 3.7). The total rupture length is 

given as 180 km (Ms 7.3) with a maximum displacement of 3.5 m (Ketin, 1969; 

Kondo et al., 2005). The fault trace is well expressed in morphology with a narrow 

valley slightly wider than that observed east of the NAF. The fault is associated with 

basins 1 to 5 km-wide located at releasing step-overs or bends. The eastern tip of the 

surface breaks are located in the 2-km-wide Bayramören-Kurşunlu releasing step-

over, while the western tip is at Abant Lake, where the fault forms 11° restraining 

bend (Barka & Kandinsky-Cade, 1988). 

The 26 May 1957 Abant earthquake (Ms 7.0) broke a 50-km-long section of the 

southern margin of the Almacık block (Fig. 3.7). The epicentre is given on the 

western end of the rupture (Dewey, 1976). The observed maximum right-lateral slip 

is 1.65 m. The fault consists of a continuous narrow zone. The rupture is limited on 
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its east with the 11° bend at Abant Lake. The western termination is determined by a 

1.5-km-long step-over. The westernmost 10 km of the rupture overlaps with the 1967 

rupture. 

 

Figure 3.7 : Towards west the geometry of the North Anatolian Fault becomes more 
complex consisting of several shorter segments. Five earthquakes 
occurred from 1944 to 1999 exposed the dimension of these segments. 

The 22 July 1967 Mudurnu Valley earthquake (Ms 7.1) has an 80 km of surface 

rupture, with a maximum slip of 2.6 m (Fig. 3.7). The epicentre is located on the 

central part of the rupture, southeast of Akyazı. While to the east, the rupture is 

determined by the step-over with the 1957 rupture, to the west, the rupture 

diminishes within the Adapazarı basin. The fault forms a ~45° angle with August 

1999 surface rupture. 

The 17 August 1999 Izmit earthquake (Mw 7.4) caused about 150-km-long surface 

faulting onshore and offshore (Fig. 3.7; Çakır et al., 2003; Wright et al., 2001). The 

epicentre was located near Gölcük, on the central part of the earthquake segment 

(Özalaybey et al., 2002). The maximum offset of 5.5 m was measured west of the 

epicentre Near the Lake of Sapanca. The rupture consists of 5 sub-segments, each 

20-30 km in length (Akyüz et al., 2002; Barka et al., 2002). The sub-segments are 

divided by significant step-overs or bends (e.g., Sapanca Lake). Rupture termination 

of the 1999 earthquake coincides well with major geometrical complexities. After an 

abrupt change (~20°) in strike, the rupture trends NE-SW to the east of Akyazı and 

terminates at the entrance of the Düzce basin where the fault yet to be broken by the 

Düzce earthquake trends EW. Similarly, to the west, the rupture terminates at the 

entrance of the Çınarcık basin where the main fault makes a sharp turn towards the 

north following the northern boundary of the basin and forming a 40 km-wide 

releasing step-over in the Marmara Sea (Armijo et al., 2002, Uçarkuş et al., 2006). 
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The 12 November 1999 Düzce earthquake (Mw 7.1) occurred to the west and about 

3 month after the 17 August event (Fig. 3.7). The epicentre location is 5 km north of 

the surface rupture; ~5 km southeast from the town Düzce (Utkucu, 2003). The event 

caused 60-km-long surface faulting, with a maximum displacement of 5 m (Akyüz et 

al., 2002; Konca et al., 2009) along the northern boundary of the Almacık block. The 

rupture overlapped 9 km with the August surface rupture near the Eften Lake. The 

eastern end terminates in the Bolu Mountains. The rupture was associated with minor 

complexities (e.g., two restraining step-over areas of 200 m and 500 m wide (Akyüz 

et al., 2002, Pucci, 2006). 

Characteristics of the Earthquakes along the North Anatolian Fault 

The earthquakes described above broke a total of 1100 km of the NAF. Each 

event was associated with significant surface breaks showing remarkable 

complexities which determine the segment boundaries and termination points of the 

earthquake fault segments. Almost all of the rupture termination points coincide with 

geometric complexities. A comparison of geometrical characteristics of these surface 

rupture show that geometrical complexity increases towards west (Fig. 3.5, Fig. 3.6, 

Fig. 3.7, Table 3.1). The 1939, 1943 and 1944 ruptures have continuous long 

segments (> 150 km) located in a very narrow fault zone. Basin along the fault zone 

are usually elongated, sub-parallel to the fault. The size of the fault jogs is usually 

less 3 km, except for fault termination points (Table 3.1). East of Bolu, the 

earthquake segments (1957 to 1999) have rupture lengths ranging from 40 to 150 km 

with discontinuous patches of 20-30 km long. In this region, the NAF strikes through 

or adjacent to large basin such as Düzce basin, Adapazarı basin and Izmit bay. 

In summary, the geometry of the NAF is simpler at its east, and more 

complex to the west. The number, size and complexity of discontinuities increase in 

relation to the simplicity of the fault (the simpler the less complex). It seems that the 

geometrical simplicity allows larger earthquake ruptures, such as observed in 1939 

and 1944 (360 and 260 km, respectively). However ruptures in the west are usually 

less than 150 km long. 



 28

Table 3.1 : Characteristics of the earthquake segments along the NAF. Rls - 

releasing step-over, Rts - restraining step-over, Rlb - releasing basin, 

Rtb – restraining basin. Values taken from Barka, 1996; 1Barka et al., 

2002; 2Konca et al., 2009, 3Akyüz et al., 2002. 

EQ Ms RL 
Max Ū 

(H) 
Max Ū 

(V) 
Western 

Termination 
Eastern 

Termination 

1939 
Dec. 26 

7.8 360 7.5 3.5 
Amasya 

Rstb - 24° 
Erzincan B. 
Rls - 4-5 km 

1942 
Dec. 20 

7.1 40 1.7 0.66 
Erbaa Basin 
7-km-wide 

Rtb 11° 

1943 
 Nov. 26 

7.6 280 4.5 1.0 
Bayramören 

Rls – 1.5-2 km 
Erbaa Basin 
7-km-wide 

1944 
 Feb. 1 

7.3 180 3.5 1.0 
Abant Lake 

11° Rstb 
Bayramören 

Rls – 1.5-2 km 
1957 

 May 26 
7.0 40 1.7 0.55 Rls ? 

1967 
 Jul. 22 

7.1 80 2.6 0.9 
Sapanca Lake 
Fault junction 

Rls 

1999 
 Aug. 17 

7.4 1501 5.21 2.31 
Çınarcık B. 
Halfgraben 

Eften Lake 
Rls 

1999 
 Nov. 12 

7.1 652 5.03 3.53 
Eften Lake 

Rls  
Rtb 

3.3. The Sea of Marmara Region 

The Ganos region is located on the west of the Marmara region. A thorough 

comprehension of the regional tectonic/geologic evolution is essential in order to 

better understand the characteristics of the Ganos fault. The knowledge of the 

Marmara region will serve as a base for our study here and thus, a summary of the 

characteristics of the region will be given. 

3.3.1. Geology of the Marmara region 

The Marmara region has a complex geology consisting of several 

paleotectonic units. The units are separated by major structural elements such as 

suture zones or transform faults, and each of the units record a different geological 

history. They are overlain by Cenozoic deposits. To simplify the description, the 

geology may be divided into two sections; the lower basement units and the upper 

assemblage. The lower units consist of paleotectonic entities which represent the 

Tethyan closure. From north to south they are: the Strandja massif, the Istanbul 

Zone, the Intra-Pontid suture and the Sakarya zone. These entities consist of 

metamorphic to non-metamorphic Palaeozoic rocks at the base and Mesozoic rocks 
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on the top. The upper assemblage is formed by Cenozoic rocks deposited after the 

closure of the Tethyan Ocean and is composed mainly of marine to terrestrial 

sedimentary and volcanic rocks. In addition, the Sea of Marmara coasts, particularly 

those located south of the NAF embody an abundance of uplifted Late Pleistocene 

marine terraces (Sakınç & Bargu, 1989; Yaltırak et al., 2002). 

3.3.2. Paleogeographic evolution of the Marmara Region 

As described in the Anatolia’s paleo-tectonic evolution, following the closure 

of the Intra-Pontid suture, the intracontinental convergence continued during the 

Miocene and caused both uplift and erosion in the region. Fluvio-lacustrine 

conditions were dominant following this time in the Biga Peninsula and Thrace 

Basin (Görür et al., 1997). The Marmara region experience two stages of extension 

since the middle Eocene. The first stage corresponds to the opening of the Thrace 

basin; the second stage is related to the NAF. 

3.3.3. Regional Morphology 

The terrain around the Sea of Marmara displays a clear difference in elevation 

comparing the regions in the north and south (Fig. 3.8). The south and southeast parts 

show high topography with elevations from 700 to 1600 m in the Armutlu-Almacık 

highland and the Biga regions. Whereas, in the north at Thrace and the Kocaeli 

peneplain, the overall topography is fairly low, flat, particularly smoothed and the 

highest mountain reach only 950 m (Ganos Mtn.). On both terrains the highest 

regions are localized adjacent to the NAF (e.g. Ganos Mtn., Armutlu Peninsula). The 

drainage system shows similar disparity; while the northern systems are mainly 

characterized by typical dentritic drainage system with only short small streams 

discharging into the Sea of Marmara, in the south at least three large river systems 

outflow into the Sea of Marmara (e.g. Gönen and Kocasu rivers). 

3.3.4. The Sea of Marmara basin floor 

Following the 1999 earthquakes, the seismic gap in the Sea of Marmara 

experienced additional stress and the possibility of a large earthquake in the vicinity 

became dramatically larger. However, the poorly known bathymetry obstructed 

determination of the length and structure of the submarine fault segments. Hence, a 

large number of researches have been conducted recently in the Sea of Marmara. The 
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Sea of Marmara has been intensively investigated during several cruises and a wealth 

of multi-beam bathymetry data and seismic reflection data have been collected in 

these cruises. The Sea of Marmara turned from a poorly known sea into one of the 

World’s best-studied seas. Below is an introduction to the main characteristics of the 

Sea of Marmara and submarine fault geometry of the NAF. 

 

Figure 3.8 : Main morphologic structures in the Marmara region. TB: Thrace Basin, 
KP: Kocaeli Peneplain, UM: Uludağ Mountain, GM: Ganos Mountain, 
ÇB: Çınarcık Basin, CB: Central Basin, TB: Tekirdağ Basin: CH: 
Central High, WH: Western High, ST: Saros Trough (modified from 
Schindler et al., 2007). 

The acquirement of high-resolution bathymetric data by several cruise campaigns 

exposed tremendously the detailed morphology within the Sea of Marmara (Fig. 3.9; 

Armijo et al., 1999, 2002, and 2005). 

 

Figure 3.9 : The Sea of Marmara pull-apart basin along the North Anatolian Fault 
(Armijo et al., 2005) 
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The Sea of Marmara is the largest basin along the NAF, composed of several 

sub-basins, slopes, ridges and shelves. Canyons and submarine landslides accompany 

to these morphological elements. The shelves are significantly more developed at the 

southern shores and show a noteworthy break at 100 m depth. The northern part has 

also a slope-break at the same depth however slopes are fairly steeper all along the 

coast and are associated with several landslides. The steepest slopes are located 

offshore of Tekirdağ and Istanbul regions (15° to 30°). The most prominent elements 

in the Sea of Marmara are the three large basins which reach a depth of  1200 m; 

from east to west, the Çınarcık basin (-1270 m), Central basin (-1250 m) and the 

Tekirdağ basin (-1120 m). The basins are isolated by two ridges which rise about 700 

m from the mean basin floor. The highest point of the Central High is at -330 m 

depth, while on the Western High it is at -550 m. 

The morphology is an arrangement of a major transtensional system along the 

NAF. Mainly three different views are put forward to describe the active faulting 

system in the Marmara region. One class of interpretations ascribes the extensional 

pattern in the region to the prevalent extension in the Aegean rather than a localized 

pull-apart stretching (Parke et al., 2002). Regional scale GPS results do not support 

that the substantial Aegean extension is significant in the finite deformation of the 

Marmara region (Flerit et al., 2003). Another view argues that the pull-apart 

structures in the Marmara basins formed prior to the NAF as a part of an extensional 

regime and the present basins are now cut by a single throughgoing strike-slip fault; 

the NAF (Le Pichon et al., 2001), Imren et al., 2001). However, this model ignores 

the highly segmented structure of the NAF within the Sea of Marmara. A pull-apart 

model was first proposed by Barka and Kadinsky-Cade, (1988) despite the meagrely 

known bathymetry of the Sea of Marmara. Armijo et al., (2002; 2005) illustrated the 

complex fault system in the Sea of Marmara and corroborated the model of a 

dominant pull-apart system in the Sea of Marmara. The following paragraphs give a 

comprehensive outline on the morphology, structure and geology of the above 

mentioned complexities because their overall characteristics determine their 

significance in fault segmentation. 

The largest basin in the Sea of Marmara is the Çınarcık basin, with a 

maximum depth of -1270 m and located 10 km east of Istanbul. Its wedge shaped 

geometry strikes NW-SE direction and is characterized with a linear steep slope on 
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its northern margin. The basin floor is flat and slightly inclines to the east (Okay et 

al., 2000). The northern escarpment is interpreted as representing the principle 

displacement zone of a dominant right-lateral fault by Le Pichon et al., (2001). The 

purely dextral motion is considered to occur along the young scarps at the foot of the 

northern escarpment. However, the entire 1000-m-high steepness of the northern 

slope and the scarps at the foot indicates a significant component of vertical 

displacement. Hence this fault is thought by Armijo et al. (2002) to be a composite 

normal and strike-slip fault, which is concomitant to strike-slip faults in a step-over 

geometry. 

The Central basin is about 1250 m deep and bounded by the Central and 

Western High. The large basin is marked by linear boundary strike-slip faults. A 

smaller basin with distinct rhombohedral shape is nested within the basin. The basin 

floor is flat and inclines gently to the NNW. The long axis of the inner basin trends 

almost E-W. The margins of the nested basin are associated with left stepping, en-

echelon small fault segments. Le Pichon et al., (2001) illustrate the en-echelon array 

in the inner basin as antithetic faults. However Armijo et al., (2002) considers them 

as normal faults in correspondence to the NE-SW extension direction. The SW 

boundary is formed by a 50-km-high cumulative scarp representing recent successive 

earthquake faulting. In the seismic profiles, the subsidence of the basin appears to be 

faster than the sedimentation rate (Armijo et al., 2005). The Central basin when its 

size is taken into account is a critical obstacle along the NAF in the Sea of Marmara 

in terms of rupture segmentation. 

The 1120-m-deep Tekirdağ Basin is located to the west of the Sea of 

Marmara. It has a SW-NE stretched rhombohedral shape and is bounded by two 

ridges on its east and west; the Western High (-550 m) and Ganos Mtn. (924 m), 

respectively. The basin floor lies at about -1150 m depth and is nearly structureless 

(Okay et al., 1999). The Basin is connected to the Ganos Mountain (945 m) on its 

NW with a ~1000 m high steep slope below the sea level. The southern margin is 

limited by fresh fault scarps, which signifies the principle displacement zone of the 

NAF (Okay et al., 1999). To the west, this escarpment veers to the SW and forms a 

restraining band before connecting to the inland fault section. The Tekirdağ basin 

and the bend are critical complexities of the Ganos fault.  
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3.3.5. Neo-tectonic setting of the Marmara region 

Early studies in the Marmara region consider the Sea of Marmara as a large 

graben system (Pfannenstiel 1944, Crampin & Evans, 1986). The poor resolution of 

available bathymetry was hampering proper observations. The models put forward 

were highly linked to the onland fault structures around the sea. Consequently, the 

extensional pattern in the region was related to the distinct Aegean extensional 

tectonics rather than the NAF (Allen, 1969, Ambraseys 1970).  It was first Barka & 

Kadinsky-Cade, (1988) and Barka, (1992) who pointed out that the NAF consisted of 

three continuous strands and interpreted the Marmara basin as a pull-apart structure 

along the northern strand. They suggested that several large extensional step-overs 

are forming the tree basins in the Sea of Marmara; Çınarcık, Central and Tekirdağ 

basins. 

Onshore, the NAF splays into two strands west of Bolu. Additionally, the 

southern strand splits farther west again into two branches, near Iznik Lake. The 

northernmost branch strikes through the Adapazarı basin and the Sapanca Lake. It 

continuous towards the Gulf of Izmit in an EW direction and crosses three large 

basins in the Sea of Marmara before appearing again onshore. This fault section is 

seismically the most active one among the three branches. Most of the motion of the 

Anatolian plate occurs along this part of the NAF (Flerit et al., 2003). The middle 

branch is sub-parallel to the northern strand and runs along the southern coast of the 

Iznik bay and Sea of Marmara. At Çınarcık it veers to the SW and continuous to the 

Aegean Sea. The southernmost branch strikes WSW crossing the Bursa and Edremit 

regions before entering the Aegean Sea. 

The northern strand, which is the main concern in this work experienced 

significant earthquakes in the 20th century; the 9 August 1912 Mürefte earthquake 

(Mw7.4), the 17 August 1999 Izmit earthquake (Mw7.4) and the 12 November 1999 

Düzce earthquake (Mw7.1) (Ambraseys & Finkel, 1987; Barka et al., 2002; Akyüz et 

al., 2002). The Izmit and Mürefte earthquakes caused considerable amount of stress 

accumulation on the submarine faults in the Sea of Marmara and determine the limits 

of the Marmara seismic gap. Although located offshore, the consequences of an 

earthquake in this region embraces a highly populated, industrial region.  
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3.3.6. Seismicity 

3.3.6.1. Historical Seismicity 

The history of the Marmara region is rich in earthquakes, which many of 

them caused considerable damage to the cities in the region. Destructive shocks 

occurred often within a few years of intervals. The complex geometry of the NAF in 

the Marmara region reflects as a dense, as much as puzzling earthquake history. 

The existence of numerous historical documents provides useful information 

about the seismic activity since the 5th century B.C. There are two main historical 

earthquake catalogues where information of earthquakes for the Marmara region is 

available. The historical earthquakes described in appendix A1 are mainly based on 

these two catalogues. The earthquakes up to the 15th century are primarily based on 

Guidoboni et al., (1994) and Guidoboni et al., (2005). The events after the 15th 

century derive from Ambraseys and Finkel, (1995). Additional information, when 

available, was obtained from Ambraseys & Finkel, (1991), Ambraseys, (2002a, 

2002b, 2006) or other sources. 

For each event, the following information has been provided, when possible: 

The date and its precision, number of accounts, damage distribution, loss of live and 

the seismotectonic significance of the available information. I aimed to determine the 

ruptured segments of NAF for the related earthquakes in relation to the damage 

distribution and note this in the interpretation sections. The difficulty in such an 

analysis is strongly depending on available information, which was very limited for 

events prior to the 10th century. 

It should be considered that the information; provided by the historical 

accounts, is mostly local and its presence depends on the distribution of the 

settlements at the time of the earthquake. There are cases where a large event is 

recorded very poorly due to the lack of habitants in the region. On the other hand, a 

relatively smaller shock can be overestimated because of the abundance of records. 

The social level and culture of the societies play also an important role in the 

abundance of records. In cultures, where writing is not promoted it can lead to 

absence of any record. Through history, Istanbul has almost always been the capital 

city of the region. Consequently all earthquakes in Marmara; regardless of their 

distance to the city, contain records originating from Istanbul, which easily can cause 
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to misleading, if no other source is available. Hence, while evaluating historical 

earthquakes, the abundance and quality of the records should be considered in 

relation to the demographic and cultural state of the region. 

3.3.6.2. Historical earthquakes 

Historical catalogues note more than 150 earthquakes, for the Marmara 

region, since the 5th century B.C. A selection and detailed description of these 

earthquakes is available in Appendix A1. The selection is based on which segments 

of the NAF might have been ruptured during the event. Only earthquakes which link 

to either to the Ganos fault, or to its neighbouring segments have been taken into 

consideration. Here we summarize our analysis of the above mentioned catalogues 

and provide a list of all selected events and their regional effects (Table 3.2). 

The table grid correspond regions along the NAF in the Marmara region. The 

shaded boxes define the level of damage and/or quality of information for the related 

event. If damage is reported in the catalogues for a certain site, the corresponding 

region (grid) is highlighted with corresponding colour. The damage distribution of 

the 1912 earthquake is the best defined among other events, thus it can serve as a key 

to evaluate the significance of the damage information of older events.  

The damage of the 1912a event is localized in Tekirdağ grids which comprise 

a region roughly from Tekirdağ to Gölcük on the west. A comparable localized 

damage is available for the 1766b, 1659, 1354, 1344, and 1063 historical 

earthquakes. As can be noticed in the table 3.2, some ambiguity is present for prior 

events. For the 477/484 and the 447 events damage is reported in Istanbul and in 

Saros and Gelibolu, whereas in between at the Tekirdağ no damage is mentioned. 

Several explanations may be valid for such cases. The earthquake might have caused 

damage in Tekirdağ, but it was not recorded or the record is lost. The reliability of 

the original accounts might be also questioned. The source or the date of the event 

may be wrong, too. The location of the 447 event is refined in recent studies and 

considered to have occurred near the Izmit region (Sapanca Lake; Ambraseys, 2006). 

While for the 477/484 some accounts report two large shocks (Guidoboni, 194). If 

the 477/484 earthquake consisted of two shocks then we may consider that one of 

these events occurred nearby the Ganos fault. Considering the uncertainty of 

available accounts and that some of the records might be missing we can even 
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speculate that it occurred on the Ganos fault. Another event, although poorly defined 

is the 824 earthquake. A castle in Tekirdağ is reported to have been damaged by an 

earthquake in this year. Therefore we also attribute this event to the Ganos fault. As a 

result, we consider that the 1912a, 1912b, 1766b, 1659, 1354, 1344 and 1063 might 

have occurred on the Ganos fault. In addition we conclude that among events prior to 

the 10th century the 824 and 477/484 are most likely earthquakes to have occurred on 

the Ganos fault. 

3.3.6.3. Present day Seismicity 

The Marmara region is one of the most seismically active regions in Turkey. 

Only in the last century, the region was affected by 9 earthquakes M > 6.8, causing 

severe damage in their epicentral areas. In the Marmara region, instrumental seismic 

observations date back to 1912, but limited with only two stations in Istanbul. The 

first standard seismograph was established in 1962, after the World Wide 

Standardized Seismographs Network (WWSSN) program. Seismic data collection in 

Turkey has been mainly managed by the Kandilli Observatory and Earthquake 

Research Institute (KOERI)1. The coverage and standard of the seismic network 

improved post 1980’s, but the breakthrough occurred following the 1999 devastating 

earthquakes of Kocaeli (Izmit) and Düzce. The seismicity presented here relies 

primarily on a catalogue of 8456 events, downloaded from the KOERI – National 

Earthquake Observation Centre’s online homogenized database. The catalogue 

covers a time frame from 1900 to 2009 (Fig. 3.10, 3.11, 3.12, 3.13). I classified the 

catalogue into time frames based on the standards of the network (e.g. prior/post to 

WWSSN and 1999 EQ’s). The horizontal and vertical uncertainties may vary among 

the time frames and better hypocenter estimations are expected in more recent 

events. The W-E cross sections of hypocenters are filtered and correspond only to 

events located within the deformation zone of the northern strand of NAF. It is worth 

to note that we recognize two fixed hypocenter depths at 10 and 5 km within the 

catalogue. 

 

                                                 
1 Today in Turkey, earthquake monitoring is performed manly by three centres, KOERI, TUBITAK - 
Marmara Research Centre (MAM) and the General Directorate of Disaster Affairs. 
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Table 3.2 : The distribution from west to east of earthquakes occurred in the Marmara region. The shaded boxes show the affected regions by 
each event. Indications of colours are given in the legend. 
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The figures 3.10, 3.11, 3.12, 3.13 illustrate the seismicity of the Marmara region for 

four time intervals: 

1) 1900 to 1964 (prior to WWSSN) 

2) 1964 to 1999 (WWSSN until 1999 events) 

3) 1999 - 2003 (The 1999 earthquake sequence) 

4) 2003 - 2008. (post 1999 earthquake sequence) 

Between 1900 and 1964 there are only 114 events, however 4 significantly 

large earthquakes occur in this time frame (Fig. 3.10). The 9 August 1912 Mw 7.4 

and 13 September 1912 Mw 6.8 earthquakes occurred west to the Sea of Marmara 

and are the main interest of this study. The two events are associated with some large 

aftershocks at the epicentral area. A similarly large event occurred at the Tekirdağ 

basin; however it is apart from the 1912 sequence (M5.6 - 16.06.1942). The other 

two main shocks are the 18 March 1953 Yenice-Gönen Ms 7.2 and the 26 May 1957 

Bolu-Abant Ms 7.1 earthquakes, which occurred southwest and east respectively, to 

the Sea of Marmara. The E-W cross section illustrates are fixed between 10 to 20 

km, therefore we think hypocenter estimations are not reliable for this period. 

The number of earthquakes between 1964 and 1999 increases drastically to 

2125 events and show a nearly full coverage of the Marmara region (Fig. 3.11). The 

epicentres demonstrate notably a better distribution in relation to fault strands. North 

of the Sea of Marmara, earthquakes are clustered linearly along the northern strand 

of NAF. Two dense clouds of earthquakes can be identified on the east and on the 

west along the NAF main branch. The earthquake swarm on the east is the aftershock 

activity of the 22 July 1967 Adapazarı earthquake Ms 7.2. Considerable large events 

are located here at a depth of 20 to 30 km, which is significantly deeper than the 

1999 earthquakes; particularly than the Düzce event which occurred only a few ten 

kilometres north. These estimations might be wrong, because the network and 

instrumental standards of that time was primitive. Other two large shocks are the 6 

October Manyas earthquake (Ms 7.0) located at 40.30°N/28.23°E and the 27 March 

1975 Saros earthquake (Ms 6.7). The latter occurred within the Saros bay and has an 

almost pure strike-slip mechanism (Fig. 3.14). The region illustrates high earthquake 

activity and events are concentrated within the Saros Trough. A similar but less 

dense activity is present in the western Marmara basins (Tekirdağ and Central 



 39

basins). The swarm shows a clear linearity located at the southern margin of the 

basins. The swarm augments towards the west, where the NAF forms a 17° bend. 

These two earthquake clouds in the Saros and in the Sea of Marmara limit a distinct 

aseismic zone along the northern branch of NAF. Similar but shorter sections can be 

observed on the Central High, Gulf of Izmit and Düzce basin. Hypocentres are 

mostly located within the upper 15 km of the crust. However their reliability is 

unclear since some events are clearly fixed to 10 km depth. 

Earthquakes of the period from 1999 to 2002 are separately plotted to cover 

only the seismicity of the 17 August 1999 Kocaeli (Izmit) earthquake (Mw 7.4) and 

the 12 November 1999 Düzce earthquake (Mw 7.2) (Fig. 3.12). During this 2.5 year 

period most of the earthquakes were monitored reasonably in the related epicentral 

region (1255 shocks in total). The dense seismic activity extends on the west until the 

eastern margin of the Çınarcık basin. The E-W cross section points out a gap of 

seismicity between the latitude 29.5°. Initially, the rupture of the 17 August shock 

was considered to terminate east of Hersek at this locality (Barka et al., 2002). 

However interferometry data analysis illustrated that east of Hersek, the coseismic 

slip started to decrease from 4.5 to 2 m and tapered towards west of Hersek (Çakır et 

al., 2003). The termination point of the rupture corresponds to the eastern entrance of 

the Çınarcık basin, where the simple linear fault transforms into more complex 

geometry (Çakır et al., 2003; Bouchon et al, 2003; Uçarkuş et al., 2006 & 2008). 

Hence the high seismicity in that location corresponds to post-seismic deformation 

and the gap does not determine the termination of the 17 August 1999 earthquake 

rupture. Additional observation towards west is a high activity at the Ganos bend and 

the southern limits of the Tekirdağ and Central basins. The Central High shows poor 

seismic activity with small magnitude shocks. Further west, the Ganos inland section 

is again aseismic. Some activity is again present within the Saros Trough. 
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Figure 3.10 : From 1900 to 1964, 114 earthquakes were recorded at seismological 
stations. 4 large events occurred during this time period. Western 
upper star corresponds to epicentre of 1912 Mürefte earthquake (M 
7.3), western lower star is the 1953 Yenice-Gönen earthquake (M 7.2). 
The star on the east corresponds to the 1957 Bolu earthquake (M 7.2). 

 

Figure 3.11 : The number of registered earthquakes increased after the establishment 
of the WWSSN. Three large events (M > 6.7) were recorded during 
this period (Karabulut et al., 2006; see text for detail). 
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Figure 3.12 : After 1999, a large seismic activity was recorded on the eastern part of 
the Marmara region due to the 1999 earthquakes and aftershocks 
(Karabulut et al., 2006).  

 

Figure 3.13 : Recent improvements on the seismic network showed the presence of a 
high earthquake activity towards west with a distinct aseismic zone 
between the Sea of Marmara and Saros bay, which may be related to 
the 1912 earthquake segment (Karabulut et al., 2006). 
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To illustrate the seismicity post to the 1999 sequence I selected a time 

interval beginning from 2003 until present (March 2009) comprising 3541 events 

(Fig. 3.13). This time interval shows no significant large earthquake. However, it is 

noticeable that the number of earthquakes increases from east to west. The region, 

where the 1999 earthquakes occurred, show significantly lower seismicity than the 

1999-2002 time frame. The epicentres here, are linearly clustered along the northern 

branch of NAF. They follow the northern margin of the Çınarcık basin and the 

southern margins of the Central and Tekirdağ basins with relatively larger shocks 

compared to the south of Marmara region. The high activity at east of the Çınarcık 

basin is still present. However the Gulf of Izmit and partly the Sapanca region show 

poor activity. Further east, the two tips of the Düzce earthquake rupture show also 

high seismicity, but the ruptured section is aseismic. At Saros we recognize small to 

moderate size events, which epicentres are aligned within the Saros Trough. The 

seismicity clusters along the northern basin margin. Most of the moderate size 

earthquakes are also located at this margin, while the smaller size shocks diffuse to 

the south, see also Karabulut et al., (2006). This is related to an asymmetric basin 

structure, as observed in the Marmara basins (Karabulut et al., 2006). An E-W cross 

section demonstrates that hypocenters are deeper on the west than on the east. The 

aseismic zones of the Ganos and the Gulf of Izmit are distinct. The area which 

corresponds to the Central High (Lat: 28°/29°) has also a significantly poor activity. 

The seismicity at Tekirdağ and Saros is distributed to a similar depth of 15 to 18 km. 

Karabulut et al, (2006), shows that earthquake activity is concentrated to the upper 

20 km in the Saros bay and that all shocks occur along a very narrow vertical zone 

indicating a pure vertical fault plane. 

Focal mechanism solutions of some earthquakes of the region are illustrated 

in Figure 3.14 and listed in Table 3.3. The majority of the solutions, particularly the 

ones on the NNAF yield pure right lateral strike slip faulting, especially large shocks. 

A few normal faulting mechanisms are located at Gölcük and at the Çınarcık basin. 

These observations are in accordance with regional morphology and tectonics. 

Normal co-seismic slip was observed during the 17 August rupture in the Gölcük 

area, where steep slope limit the southern margin of the gulf. The Çınarcık basin is 

also limited on its north with a nearly 1000 m high steep slope, which indicates a 

substantial amount of normal faulting mechanism. The NNAF forms a restraining 
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bend west of the Çınarcık before it strikes through the Central High. Here, some 

focal mechanisms have a dominant compression component. At the Tekirdağ basin 

some shocks give normal faulting solution with minor strike-slip component. This 

might be related to minor normal faults sections within the pull-apart system. A 

remarkable feature is the solutions in the Saros Trough which illustrate pure strike-

slip faulting (see also Karabulut et al., 2006). This can be interpreted that the 

influence of the Aegean back-ark, N-S extension is not observed in this region and 

that the NNAF is the superior cause of deformation in this region. 

 

Figure 3.14: Focal mechanism solution for the Sea of Marmara region assembled 
from various (see Table 3.3 for details). The solutions show a 
dominant strike-slip character along the NNAF, including the Saros 
bay area. Some thrust faulting is located at the bend of Ganos. 

The above described seismicity allows defining the most active areas, 

consequently the most dynamic fault strands and their characteristic. We observe that 

the majority of the earthquakes, especially large ones occur on the NNAF with 

mainly strike-slip mechanism. Earthquakes to the south of the Sea of Marmara are 

smaller and diffused.  

Offshore some clustering may be recognized at the south-eastern boundary 

fault of the Çınarcık basin and the Iznik gulf. Although apart from the study area, we 

note a sharply linear seismicity west-southwest of the Uludağ Mt. (Bursa) trending 

NW-SE direction. Time frames post 1964 allowed to localize aseismic zones along 

the NNAF. The seismicity along the 1999 ruptures has significantly reduced in the 

following years. While aftershocks of the first two years were distributed in the 

upper ~15 km of the crust, hypocentres post 2003 are concentrated in the upper 10 

km (excluding the fixed hypocentres at 5 km depth). The ruptured segments of the 
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1999a and 1999b events are clearly zones of poor seismicity. On the other hand, the 

seismicity is still continuous at the rupture termination points; however with 

decreasing character after 10 years (Fig. 3.12, 3.13). A similar pattern is observed 

along the 1912 earthquake segment, where a nearly 70 km long aseismic zone is 

limited by two dense earthquake swarms (Saros and West Marmara). Other studies 

related this distribution to the extend of the 9 August 1912 earthquake rupture 

(Karabulut et al., 2006). However interpreting this activity as post-seismic 

deformation is arising a question: How long do aftershocks at termination points 

continue? The Mürefte earthquake struck 97 years ago. One would expect that the 

post-seismic deformation would have reached equilibrium during that time interval. 

Consequently, we should not see dense seismicity at the two tips of the 

rupture. This is the case for the eastern large earthquakes along the NAF. We do not 

observe significant seismicity at the rupture termination points for the 1939 to 1967 

sequence; but for the 1999 events since 10 years. We consider that this kind of 

seismicity is related to the complex structure of the NAF in the Sea of Marmara and 

Saros bay. 

3.3.7. GPS studies and crustal deformation 

As illustrated from the seismicity most of the earthquakes, hence the 

deformation occurs along the northern branch of the NAF. Geodetic measurements in 

the Sea of Marmara region yield the same result, showing that the northern branch 

accommodates 3-4 times more motion than the southern branch. GPS data give 20 to 

25 mm/yr slip rate along the northern branch relative to Eurasia (Meade et al., 2000, 

Straub et al., 1997; Mc McClusky, et al., 2000, Reilinger et al., 2006). Meade (2002) 

derived 24 ± 2 mm/yr right lateral motion on the northern branch, where they 

assumed the Marmara region to be of two main branches with nearly linear geometry 

. Using a similar fault pattern Reilinger et al., 2006 obtained higher slip rates of 27 ± 

0.5 mm/yr. 
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Table 3.3 : List of earthquake parameters for event given in Figure 3.14. 

Date Lat Lon M Strike Dip Rake Source 
18.03.1953 40.07 27.39 7.4 59 76 174.00 Gurbuz et al 2000 

06.10.1964 40.30 28.20 6.7 302 36 -90.00 Gurbuz et al 2000 

23.08.1965 40.50 26.02 5.6 261 70 -132.00 Gurbuz et al 2000 

03.03.1969 40.12 27.43 5.8 107 50 147.00 Gurbuz et al 2000 

27.03.1975 40.42 26.14 6.6 41 60 -128.00 Gurbuz et al 2000 

05.07.1983 40.33 27.23 6.1 218 32 71.00 Gurbuz et al 2000 

05.07.1983 40.33 27.23 6.1 254 49 -173.00 Gurbuz et al 2000 

24.04.1988 40.90 28.11 5.0 356 71 -11.00 Gurbuz et al 2000 

08.02.1995 40.82 27.77 4.5 33 42 -137.00 Pinar et al 2003 

13.04.1995 40.86 27.67 5.0 92 46 -137.00 Pinar et al 2003 

18.04.1995 40.80 27.84 4.5 20 70 133.00 Pinar et al 2003 

14.04.1996 40.70 27.20 4.6 274 61 -112.00 Pinar et al 2003 

29.05.1999 40.79 28.71 3.1 341 22 72.00 Pinar et al 2003 

17.08.1999 40.38 28.71 3.8 255 59 -169.00 Pinar et al 2003 

17.08.1999 40.44 28.76 3.7 248 60 177.00 Pinar et al 2003 

21.08.1999 40.83 28.81 3.2 5 72 -40.00 Pinar et al 2003 

21.08.1999 40.84 28.77 3.1 293 58 -143.00 Pinar et al 2003 

23.08.1999 40.57 28.10 3.7 270 67 162.00 Pinar et al 2003 

03.09.1999 40.83 28.74 3.2 353 70 19.00 Pinar et al 2003 

20.09.1999 40.71 27.59 3.6 238 42 166.00 Pinar et al 2003 

20.09.1999 40.70 27.57 3.3 246 51 156.00 Pinar et al 2003 

20.09.1999 40.70 27.59 3.2 211 50 138.00 Pinar et al 2003 

20.09.1999 40.72 27.60 3.2 209 77 160.00 Pinar et al 2003 

20.09.1999 40.69 27.57 4.0 245 40 166.00 Pinar et al 2003 

21.09.1999 40.71 27.56 3.4 224 75 168.00 Pinar et al 2003 

21.09.1999 40.70 27.57 3.4 208 34 -42.00 Pinar et al 2003 

21.09.1999 40.72 27.59 3.3 273 46 -168.00 Pinar et al 2003 

22.09.1999 40.62 27.82 3.0 89 79 -163.00 Pinar et al 2003 

24.09.1999 40.74 27.54 3.1 195 39 135.00 Pinar et al 2003 

02.10.1999 40.76 27.51 3.0 272 75 170.00 Pinar et al 2003 

06.10.1999 40.72 27.60 3.2 208 46 139.00 Pinar et al 2003 

07.10.1999 40.71 27.59 3.0 214 74 142.00 Pinar et al 2003 

16.11.1999 40.61 27.06 3.4 79 79 172.00 Pinar et al 2003 

17.11.1999 40.83 27.97 3.4 276 82 132.00 Pinar et al 2003 

03.12.1999 40.71 27.58 3.8 237 22 -139.00 Pinar et al 2003 

20.12.1999 40.79 27.48 3.6 99 65 -96.00 Pinar et al 2003 

29.12.1999 40.83 28.58 3.4 98 27 132.00 Pinar et al 2003 

07.01.2000 40.79 28.41 3.2 283 77 -165.00 Pinar et al 2003 

14.03.2001 40.85 27.64 3.7 75 79 147.00 Pinar et al 2003 

24.03.2001 40.86 28.88 4.0 105 78 -170.00 Ozalaybey. 2002 

24.03.2001 40.84 28.83 3.7 106 87 -160.00 Pinar et al 2003 

10.06.2003 40.24 25.64 4.0 51 81 152.00 Karabulut 2006. 

05.07.2003 40.43 26.08 4.3 78 73 171.00 Karabulut 2006. 

06.07.2003 40.43 26.10 5.7 257 89 179.00 Karabulut 2006. 

06.07.2003 40.44 26.11 5.3 253 89 175.00 Karabulut 2006. 

06.07.2003 40.41 26.01 4.7 252 85 178.00 Karabulut 2006. 

06.07.2003 40.41 26.00 4.2 89 53 173.00 Karabulut 2006. 

09.07.2003 40.39 25.91 4.7 71 78 178.00 Karabulut 2006. 

09.07.2003 40.39 25.90 4.1 75 87 174.00 Karabulut 2006. 

09.07.2003 40.39 25.91 3.8 74 89 173.00 Karabulut 2006. 

13.07.2003 40.39 25.92 4.0 69 83 165.00 Karabulut 2006. 

18.07.2003 40.39 25.96 3.8 244 87 176.00 Karabulut 2006. 

15.07.2004 40.37 25.90 5.1 74 82 178.00 Karabulut 2006. 
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Figure 3.15 : GPS velocities for the Marmara region (Reilinger et al., 2006) 

Locking depth estimations derived from GPS data is a well know method. 

The locking depth determines the width of the fault and plays an important role to 

calculate the possible moment release in a future earthquake in the region. There 

have been several studies where locking depths were estimated for the Sea of 

Marmara region; however with widely different results. Meade et al., (2002) 

calculated a regional locking depth of 17 km for the Marmara region. However, for 

the northern section of NAF they used a single through going fault model with an 

average slip of 24 mm/yr and concluded that a local locking depth of 6-7 km gives 

the best fit to the GPS velocities. 

An even lower value is used in the models of Flerit et al., 2003, where they 

test a pull-apart geometry for the northern branch. Their model yields the best fit in 

velocity for a locking depth of 5 km. Le Pichon et al., 2003 derived locking depths 

ranging from 10-14 km for several GPS profiles across the northern branch. Using a 

10- year period of GPS observation in the Izmit area (before the 1999 earthquakes), 

Reilinger et al., (2006) obtained a locking depth of 20-21 km for this region. 
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Figure 3.16 : GPS profile across the western part of the Ganos fault. Locking depth 
estimation shows the best fit for a locking depth at 16 km. 

Variations at such scale have great influences on seismic hazard assessments. 

The moment release during an earthquake is connected to several parameters 

including the locking depth. Hence, the rupture length may double for shallow depth 

or the moment magnitude may decrease significantly taking into account the 

segmented fault structure in the Sea of Marmara. The problem lies in the offshore 

location of the northern fault branch of NAF. The sea hinders measurements close to 

the fault. Therefore GPS stations lack of an appropriate distribution across the fault. 

Inferences on locking depth are then fairly varying. Our locking depth estimations 

yield 16 km depth (Fig. 3.16). A proper estimation on locking depth should taken 

into account the seismicity and related thickness of the seismogenic zone. For the 

Sea of Marmara region an average fault width (in other words locking depth) of 16 

km is reasonable and comparable with the Izmit region and the 1999 earthquakes 

seismicity. 
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4. ACTIVE TECTONICS, GEOMORPHOLOGY AND SLIP RATE ON THE 
WESTERNMOST SEGMENT OF THE NORTH ANATOLIAN FAULT 
ZONE 

4.1. Introduction 

One of the main targets in this work is to investigate the long-term and short-

term fault behaviour and the segmentation characteristics of the Ganos section of the 

North Anatolian Fault. We studied the geomorphology and fault related deformations 

with the hope of estimating long-term and short-term slip-rates and use this 

information to understand the manner of earthquake occurrence along this part of the 

North Anatolian Fault. In addition, we examined its structural and geometrical fault 

complexities to evaluate the segmentation character, which would help estimating 

possible rupture length for individual earthquakes in the region. 

The study relies on two approaches of observation; remote sensing and field 

investigations. The former was accomplished using 1:25,000 scale topographic maps, 

SPOT5 images at 5 m resolution, Landsat TM images at 30 m resolution, 1:12.000 

and 1.35.000 scale aerial photographs, paraglide-aerial (ultra-light aircraft) 

photography and partly Google Earth images (0.5 m resolution). The analyses were 

performed by the software ENVI, ERMapper and ArcGIS. In addition we used 

Digital Elevation Model (DEM) and SRTM data. 10-m-equidistance, digital contour 

lines of 1:25.000 scale topography maps were interpolated to obtain a 20-m-

resolution DEM. Consequently the DEM was used to produce standard 

morphometric derivatives such as hillshade-, slope-, aspect-, density-plot- and sun-

angle-maps for topographic analyses. Following the remote mapping of geomorphic 

and tectonic structures, intensive field investigations were carried out to establish a 

detailed geomorphology and fault map at 1:25.000 scale. At certain sites, we 

performed micro-topographic surveys to obtain a detailed morphology. 

This chapter firstly presents the geologic and geomorphic setting of the study 

area. Subsequently, we focus on the fault zone and define tectono-morphic features 

at several scales. After a description of the main fault zone characteristics, short-term 

offsets and long-term offsets are examined and compared to analyse the fault 
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behaviour. Finally we study the cumulative slip distribution, compare groups of 

offsets with climatic fluctuations and provide a slip-rate for the westernmost segment 

of the North Anatolian Fault. 

4.2. Geology of the Ganos Region 

The Ganos Mt. is the most prominent and isolated topographic high of the 

eastern Thrace. The Ganos region is characterized by well exposed Tertiary to 

Quaternary sedimentary deposits of the southern part of the Thrace basin. The 

hydrocarbon-bearing sedimentary fill is mostly composed of Middle Eocene to 

Miocene aged units. The formations are truncated by the Ganos fault, which is 

thought to be a right lateral strike-slip fault pre-dating the North Anatolian Fault 

(Yaltırak, 1996; Zattin et al., 2005; Kaymakcı 2007, Tüysüz et al., 1998). The region 

consists of two different basements on each side of the fault. Both sections are well 

exposed in the region, particularly along the Ganos fault. The two stratigraphic 

sequences are described here as the Northern section and the Southern section (Fig. 

4.1). 

Northern section 

The north of the Ganos fault is composed by a sedimentary pile of Lower 

Eocene to Lower Oligocene deposits, unconformably lying on top of a fluvial 

sequence (Middle Eocene). The fluvial base is not exposed in the study area. The 

sequence starts with the Lower to Middle Eocene Gaziköy formation. This unit 

consist of a siltstone – shale intercalation (Sümengen, 1987; Turgut et al., 1983) and 

is well exposed at the village Gaziköy. The Gaziköy formation is overlain by the 

Upper Eocene Keşan formation made of sandstone with sparse intercalations of shale 

(Sümengen, 1987). It covers most of the northern area and to some extent the south 

of the study area (Plate 1). Shale deposits with some marl sequences are overlain on 

top of the Keşan formation. This unit is named the Mezardere formation and is of 

Upper Eocene to Lower Oligocene age (Ünal, 1967; Gerhard, 1987). These three 

formations represent the northern section of the Ganos fault including the Ganos Mt. 

They signify a regressive sedimentary assemblage from a submarine outer fan 

environment to prodelta fan facies.  

The Gaziköy and Keşan, formations are well exposed on slopes north of the 

Ganos fault. They are well consolidated and built a distinct uniform morphology, 
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where high steep slopes are deeply incised by mainly 2 km-long, N-S flowing stream 

segments. Quaternary deposition occurs where slopes are lower than 10°. We 

observe slope debris at the lower parts of the hills between Gaziköy and Mursallı. 

They are composed of poorly sorted and rounded coarse material within a loose sand 

matrix. On the section between Gaziköy and Yörgüç alluvial fans are formed on sites 

where large stream beds reach a surface lower than 10° dip. Yörgüç, Gölcük, and 

Yeniköy are fault related basins and serve as deposition centres of Quaternary 

sediments. The largest basin in the study area is the Evreşe plain.  

Southern section 

The southern section has a relatively more composite geology than the North. 

Upper Cretaceous to Upper Pleistocene units comprises the southern highs of the 

Ganos area. The Çetmi formation, Maastrichtian of age is an ophiolitic melange 

representing the basement of the southern sequence (Okay et al., 1991, Şentürk and 

Okay 1984). The base is visible south of Gölcük and South of Yeniköy along the 

ridge of the Helva Hill. The Çetmi formation is unconformably overlain by the 

Upper Eocene limestone named as the Soğucak formation (Holmes, 1966; Sümengen 

& Terlemez 1991). The limestone is mainly exposed on the highest parts of the 

Doluca Hill. The Ceylan formation overlays conformably the Çetmi formation; it 

consists of sandstone – shale intercalation, Middle-Upper Eocene of age (Ünal, 

1967). The Ceylan formation is a deltaic deposit overlain unconformably by a 

Miocene sequence (Yaltırak, 1995). The lowest part the Miocene sequence is 

represented by the Gazhanedere formation, which is mainly exposed on the lower 

slopes of the Kirazlı stream and west of Şarköy. The Gazhanedere formation 

represents a transgressive deposition from fluvial to lacustrine and partly shore 

deposits (Yaltırak, 1995). The age of the unit is constrained to Lower to Middle 

Miocene (Gutzwiller, 1923, Izdar, 1959). Gazhanedere continues transitionally to the 

Kirazlı formation, which is Upper Miocene of age and widely distributed on the 

southern part of the study area (Saltık, 1974; Yaltırak, 1995). The unit consists 

mainly of fine sandstone representing a beach environment with some sequences of 

conglomerates. The Gazhanedere and Kirazlı formations consist of unconsolidated 

clastics, which are very sensitive to erosion. At localities where groundwater is 

substantial landslides are common in these units. The Kirazlı formation is overlain by 

the Alçıtepe formation, which is an oolitic limestone, exposed at a few localities next 
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to Hoşköy. The formation represents brackish conditions. The age of the unit is 

contradiction; the unit is considered to be conformable with the Kirazlı Formation is 

of Upper Miocene age (Yaltırak, 1995, 1996, Yaltırak et al., 2000). However other 

studies suggest that the Alçıtepe formation is above an unconformable contact and is 

of Pliocene age (Armijo et al., 1999; Melinte et al., 2009) 

 

Figure 4.1 : The stratigraphy of the northern and southern part of the Ganos fault 
(from Yaltırak, 1996). 

At Gaziköy, Pleistocene coastal deposits (Marmara Formation) on top of the 

Gaziköy Hill characterize a series of transgressive and regressive events. The 

Marmara formation is composed here, of a 36-m-thick sedimentary package made of 

aragonite-cemented coarse gravels with abundant shells, tilted 17° to the southwest 

and resting with an angular unconformity over Middle-Upper Miocene sandstones. 

The base of the succession lies at 21.5 m and 14.0 m elevations in the north and 
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south, respectively and confirms the active post-depositional tectonic movements 

near the Ganos Fault (Yaltırak et al., 2002). 

Quaternary deposits along the fault show different geology at the east and 

west. On the east, at Gaziköy alluvial fans form 10 to 15 m thick deposits constituted 

of coarse gravels with sand matrix. Gravels are poorly sorted and rounded and show 

imbrications south-southeast. Between Gaziköy and Mursallı the Quaternary is 

mainly represented by debris deriving from the steep slopes of the Ganos Mtn. that is 

made of Eocene turbitides. Poorly sorted and rounded coarse gravel with coarse sand 

matrix form colluvial packages up to 10 m thickness along the southern limp of 

Ganos Mtn. (Plate 1). West of Mursallı, the fault forms small step-over basins field 

with reworked sediments from the Miocene sandstones (Kirazlı formation). The 

medium consolidated sandstone are easily eroded and deposit as fine grained 

material (sand to clay) along the depressions and streams beds between Mursallı and 

Yörgüç. At Gölcük, a step-over basin is filled with coarse to fine sediments deriving 

from several sources; ophiolites, turbidites, and fine grained beach rocks. The basin 

is filled with coarse alluvial units on its north, while finer sediments deposit along 

the linear depression on the south (Plate 1). The Quaternary deposits on the western 

part of the Ganos fault are sediments of the Evreşe basin. The basin is filled with 

alluvial and fluvial deposits mainly of the Kavak River. However, at outcrops next to 

some hills in the basin, marine sediments and shells are observed. 

4.3. Morphologic Framework of the Ganos Region 

The most prominent geomorphic structures in the Ganos area are the two 

topographic highs (white areas in Fig. 4.2) separated by a distinct linear narrow 

valley (Fig. 4.2, 4.3). In The northern high area, the Ganos Mt forms a 35-km-long 

elliptical-shape smooth high topography with an average 7-8 km width. The broad 

morphology of the mountain suggests that uplift occurred within a uniformly 

distributed deformation. The southern limb of the ridge is truncated by the Ganos 

fault, which is the origin of the linear narrow valley. The ridge axis of the Ganos Mt. 

is sub-parallel (~N65°E) to the Ganos Fault (N70°E). 
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Figure 4.2 : Classified elevation map of the Ganos region. The linear valley marks 
the N70°E trending Ganos fault, which is expressed in between two 
topographic highs; Ganos Mt. and Doluca H. The uniform structure of 
the Ganos Mt. and the drastic decrease in elevation from 924 to -1125 
m on its eastern part is distinct (see text for detail). 

The highest point of the Ganos Mt. (924 m) is located at the eastern part, 

nonetheless a few kilometre farther east the elevation decreases drastically about 

2000 m. Steep slopes of 40-50° on the east plunge into the Marmara Sea where a 

depth of -1125 m is reached; at the Tekirdağ Basin (Fig. 4.2). The top of the Ganos 

Mt. is flat and the surface is slightly tilted to the SW. This plateau is a relic surface 

now uplifted to > 600 m. The western termination of the Ganos Mt is smoother, 

where it dies out in the ~100 m high Evreşe plain (Fig. 4.2). The topography south of 

the fault is significantly lower and more composite (Fig. 4.2). Three linear ridges are 

identical, which highest points are the Doluca Hill (689 m) on the east, Helva Hill 

(446 m) in the centre and Tahta Hill (280 m) on the west. The ridge axis of these 

three highs are oblique (N40-50°E) to the Ganos Fault. The northern limbs of the 

eastern two hills are truncated by the Ganos fault, too. Armijo et al., (1999) notes the 

difference in morphology among the three folds. The highest anticline is to the 

northeast (669 m), is very well preserved; has a nearly intact domal shape. The 

middle anticline is less elevated (444 m) and clearly more eroded. 
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Figure 4.3 : Topographic profiles taken sub-parallel to the Ganos fault on each side 
and along the fault itself. Grey line illustrates the topography of the 
northern highest points, whereas the black line corresponds to the 
southern highs. The filled area shows the elevation of the Ganos fault. 
The depression formed by the fault is significant. The elevation on each 
side of the fault shows similar fluctuations. Comparable elevation 
changes are about 15-17 km apart on the NE, while they are parallel 
located on the SW. See Fig 4.2 for location of profiles. 

The third anticline to the southwest, where the envelope of Miocene strata is 

the most eroded and almost entirely blanketed by younger alluvium and colluvium, is 

the lowest (280 m). Based on these observation Armijo et al., (1999) propose that the 

less eroded anticline (Helva Hill) is the youngest and currently the most active. For 

that reason south of the Ganos fault, folding activity decays south-westward along 

the trace of the North Anatolian Fault. As a result the oldest anticline located 70 km 

southwest on the Gelibolu peninsula represents the total offset of the North Anatolian 

Fault since the last 5 Ma (Armijo et al., 1999). The suggested age for the North 

Anatolian Fault in this region is disputed by Yaltırak et al., (2000). The 5 Ma age is 

constrained by an angular conformity between the Alçıtepe and Kirazlı formations 

that dates back to the Messinian crisis. However, Yaltırak et al., point out that the 

related units are conformably overlain and the correct age of the NAF is 3.7-3.4 Ma. 

The debate still continues since recent investigation of calcareous nannoplankton 

content of the related showed that the Alçıtepe formation is a Pliocene unit 

postdating the Messinian crisis and that the Kirazlı formation is a Late Miocene unit 

predating the crisis (Melinte-Dobrinescu et al., 2009). 

The southern land is formed of several smaller hills intersected by deep and 

wide incisions, which suggests that the southern landscape experienced more erosion 
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than the north of the Ganos fault. The advanced erosion may be a result of two 

reasons: 1) a longer period of erosion or 2) due to the difference in lithology. Both 

interpretations may be valid. Zattin et al, (2005) applied apatite fission track analyses 

on sandstone samples on both sides of the Ganos fault and concluded that 

exhumation took place ~10 Ma earlier (Late Oligocene) on the southern part; hence 

erosion started at an earlier stage. Additionally, it also implies that a pre-existing 

structural discontinuity was present between the highs in Late Oligocene (Zattin et 

al; 2005; Yaltırak; 1996; Yaltırak & Alpar, 2002). As mentioned in the previous 

section the geology on two sides is also different. Lower Eocene to Lower Oligocene 

turbitides on the North are more resistive to erosion, while the Miocene fluvial and 

coastal deposits on the south are unconsolidated and erode easily. Hills in this region 

are associated with several landslides (Plate 1). For instance, the valley slopes of the 

Hoşköy river are regions were intense land sliding occurs. The south-eastern slopes 

of the Palamut H., Armutluk H., Bayrak H., and Panayır H. are also other areas were 

land-slides can be observed. Documents of the 1912 earthquake report land-slides 

triggered by tremor in these regions (Mihailovic, 1927). 

The topography on both sides of the fault is highest on the east and decreases 

significantly down to sea level on their west with an important dissimilarity. The 

change in elevation is not proportional on the two sides. The decrease on the north is 

more drastic than on the south. In addition, the highest point along the fault and on 

the south is reached west of Yörgüç; after this locality the elevation is continuously 

higher on the south. The difference in elevation between the North and South is ~200 

m. The Ganos fault shows also dissimilarity east and west of Yörgüç. On the east it 

runs along the southern limb of the Ganos Mt with an average trend of N70°E, while 

west of Yörgüç it strikes along the northern limb of Doluca Hill trending N67°E. The 

change occurs where the fault reaches its maximum elevation. The 3° anticlockwise 

rotation necessarily yields further compression in the region. Offshore and onland 

studies suggest that the Ganos fault dips to the north (85° - 50°) between the 

Tekirdağ basin and Mursallı (Yaltırak, 1996; Yaltırak & Alpar, 2002; Okay et al., 

2004). West of this area, alterations of structure, geometry and dip may be 

associated. The morphology suggests that west of Yörgüç the compressional 

deformation is not anymore localized on the south. This is also consistent with 

geodetic observations where the GPS vectors strike parallel to the fault (see p. 44). 
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4.4. Morpho-tectonic Expression of the Ganos Fault Zone (onland) 

The North Anatolian Fault is apparent as a linear narrow valley, trending 

approximately N70°E in the Ganos region. This valley is in general less than 1.5 km 

wide between the two topographic highs. Most of the deformation of the North 

Anatolian Fault is localized in this narrow zone. The dominant strike slip motion is 

well expressed by abundant morphologic structures along the entire onland section, 

(e.g. pressure ridges, shutter ridges, stream offsets, step-overs with right or left 

stepping jogs, releasing and restraining bends,  back-tilted slopes and sagponds). 

Rectilinear valleys and pressure ridges reach a length up to 4 km with cumulative 

displacements of streams that vary from 10 to 1000 meters. The following 

paragraphs describe from east to west the main tectono-morphic features of the 

onland section of the Ganos fault. 

The eastern most section of the Ganos fault is at Gaziköy, located close to the 

restraining Ganos bend (~17°) and uplift is evident in the region (Yaltırak et al., 

2002). The Gaziköy village rests on a topographic high, south of the Ganos fault 

(Figure 4.4, Figure 4.5). This small hill (~58 m) consists of Upper Pleistocene coastal 

marine deposits tilted ~17° the southwest (Yaltırak et al, 2002).  

 

Figure 4.4 : Slope map of the eastern Ganos region. Slopes north of the Ganos fault 
are steeper, particularly to the east. The top of the Ganos Mt. is flat and 
slightly tilted to SW. Letters (A – A’) and related lines indicate 
locations of topographic profiles in Fig 4.5 
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Figure 4.5 : Topographic profiles perpendicular to the Ganos fault. See Fig 3 for the 
location of profiles. Black arrow heads show the location of the Ganos 
fault. a) A profile near the Gaziköy coast. The uplift on the southern 
part is identical. b) A profile near Güzelköy. Two branches form scarps 
on the two sides of the depression. Most of the motion occurs on the 
northern branch; therefore its scarp is more identical. See Fig 4.4 for 
location of profiles. 

The present day location of these deposits (at 40 m) and U/Th dating of 

marine shells suggest sustained uplift since 225 ka and an uplift-rate of 0.4 mm/yr for 

the Gaziköy region. The Ganos fault is located north of the hill. Here, SE trending 

linear channels and ridges are truncated by the Ganos Fault (Fig. 4.5). 1 to 5 m right-

lateral offsets related to the 1912 earthquake were documented at this part of the fault 

(Yaltırak, 1996). The southern ends of the ridges are right laterally displaced by 

successive strike-slip faulting and act therefore as shutter ridges. Other drainages are 

merged into a tectonic linear depression between Gaziköy and Güzelköy (Fig. 4.6). 

Streams join along this depression and flow towards the coasts of Gaziköy or 

Hoşköy. At Güzelköy, south of the village the fault forms minor releasing step-overs. 

This geometry creates a saddle-like linear depression. Towards west of the village, 

cumulatively displaced structures are abundant and their slip ranges from a few to 

several hundred meters. Along the whole section between Güzelköy and Yayaköy, 

the Ganos fault is associated with southward branching (Fig. 4.4, 4.7). The branches 

are mainly 1-2 km long and show minor deflections on streams. Most of the slip 

occurs significantly along the northern main portion. This is evident by steep scarps 

forming a single deep narrow valley and cumulative displacements (Fig. 4.6, 4.7). 

The southern branches express minor slip and fault morphology. 

The main fault branch shapes the southern slopes of the Ganos Mt. by 

creating steep slope breaks and successive stream offsets until Mursallı. Fault splays 

are noticeable until Yayaköy. West of this village, branching is no more significant. 



 59

The fault is localized in a relatively narrow zone. Tectonic movement, associated 

with rapid erosion of poorly consolidated Miocene sedimentary deposits creates a 

deep and narrow valley east of Yörgüç. The valley is bounded with steep walls, 

particularly the northern wall. Scarps of 1 to tens of meters signify the Ganos fault on 

the northern valley side (Fig. 4.7, 4.8). The fault geometry is composed of several 

right-steps which control the formation of the linear depression. 

At the western end of the valley the fault climbs up to the plain land of 

Yörgüç. Here, the fault is apparent by sagponds and saddles. At a larger scale, the 

Yörgüç area is a Quaternary basin consisting mainly of reworked Miocene 

sandstones. The basin is formed by a 200-m-wide releasing bend. The Ganos fault 

reaches its maximum elevation west of Yörgüç and looses continuously elevation 

farther west. 

 

Figure 4.6 : Oblique aerial photo of the Mursallı – Gaziköy region shows the linear 
fault morphology (red arrows) that truncates several streams and ridges 
and forms shutter ridges and offsets. White arrows show streams. A 
trenching study conducted at this locality exposed evidence of recent 
faulting.(Aerial photo from S. Pucci). 
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Figure 4.7 : Shaded relief map of the eastern part of the Ganos fault. Blue lines 
indicate streams, yellow numbers are cumulative offsets in meters. 
The fault is characterized here with short southward branches. 
Between Gaziköy and Yörgüç the North Anatolian Fault strikes along 
the southern slope of the Ganos Mt (Northern High). 

West of the village the fault enters again an NE-SW trending linear valley. 

This valley is wider than the eastern one but here the width is established with 

significant erosion of the Gölcük River’s drainage system. The bedrock on the north 

and south of the fault are deeply incised by SW and NW flowing short streams, 

respectively. The fault runs along the northern wall, where 10 - 30° slopes are 

interrupted by flat surfaces (Fig. 4.9, 4.10). This surfaces lie on the southern slope of 

the Doluca H. valley (Fig. 4.10). They are distinct and from east to west at an 

elevation of 40 to 20 m respectively (relative to the valley floor). They consist of 

basement rocks and bear no fluvial deposits, hence are not terrace risers. 
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Figure 4.8 : Topographic profiles from Güzelköy, Mursallı, Yayaköy and Yörgüç 
regions; taken orthogonal to the fault direction. On both profiles the 
valley formed by the North Anatolian Fault is clearly visible. The 
northern slopes show scarps representing recent earthquake faulting, 
while southern slopes are relatively smoother. Black arrows indicate 
the main active branch, grey arrows point secondary branches (Scales 
are various among profiles; see axes for reference). 

Consequently, we consider that they are formed by back-tilting along a strike-

slip fault, which encompasses a significant amount of vertical component on the 

northern block. For instance, near Gölcük we observe alluvial fans at a height of 20 - 

30 m to the basin bottom; they are developed on these surfaces and signify the uplift 

in the region (Fig. 4.11b). These surfaces experience less erosion and bear good 

indicators of recent earthquake faulting. For example, ~100 m on the east of the 

alluvial fans the Ganos fault forms two sagponds on such a tilted surface (Fig. 4.11c). 

The first pond is ~10-m-wide, ~30-m-long and shows subsidence of about 1.5 m, 

while the second is smaller in size (~3x6 m with ~30 cm subsidence). Both sagponds 
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show a linear northern margin, while their southern limit is convex. The surface 

where the sagpond are located is dipping southward, due to back-tilting. This type of 

sagpond is abundant at various scales along the Ganos fault. A similar large sagpond 

is visible at Kavak, which is described in the following lines. 

 

Figure 4.9 : Slope map of the western part of the Ganos fault. The Evreşe plain is 
prominent with low slope values. The near field of the Ganos fault is 
comprised by steep areas. Another distinct feature along the fault is the 
Gölcük basin, where the fault is associated with right steps. 

The drainage in this area shows a specific character. Southern streams flow 

almost perpendicular to the fault and exhibit cumulative displacement. The northern 

streams however are all NE-SW oriented. The streams on both sides join in the 

valley to a single main river, which flows westward to Gölcük. Bedding on the north 

is sub-parallel to the Ganos fault and layers dip north with high angles (Fig. 4.12). 

The distinct NE orientation of the streams may be either related to the local geology 

or due to continuous rotation within the strike-slip system. 

Between Yörgüç and Gölcük the geology shows also a fault contact relation 

among the north and south. The north of the valley consists of Eocene turbitides, 

while the south is made of Palaeocene metamorphic and Miocene sedimentary units, 

limited by a fault contact (Plate 1). 
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Figure 4.10 : Topographic profiles west of Yörgüç. Here the fault strikes along the 
southern margin of the valley. The elevation of the fault decreases 
westwards and back-tilted slopes become distinguishable. Profiles are 
at various scales; see axes for reference. Location of the profiles is 
given in figure 4.9. 

From Yayaköy to Gölcük the Ganos Fault runs as a single linear fault section. 

We observe no branching along this section like on the east. All short-term 

displacements are on the southern streams and ridges limited in a zone of < 30 m. 

This shows that slip of the Ganos fault is localized here on a very narrow zone and 

all offsets illustrate the concentrated displacement of the NAF. 
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Figure 4.11 : Figure a, b, and c illustrate the prominent morphology of the Ganos 
fault east of Gölcük. The fault forms back-tilted surfaces on the 
northern limb of the Doluca Hill (a, b). Alluvial fans at 20-30 m 
above alluvial plane signify uplift in the region. c) East of these fans 
the fault forms two sagponds; sagpond 1 is about 10 x 30 m in 
dimension and a subsidence of ~1,5 m, whereas sagpond 2 is about 3 
x 6 m and shows subsidence of ~30 cm. The sagponds have a straight 
northern boundary; however their southern limit is convex. Note that 
the surface is tilted against the main slope direction. West of Gölcük 
the fault strikes along the southern margin of a pressure ridge and 
smoothes the slope with several releasing step-overs. Description of 
en-echelon strike-slip faulting was reported here, after the 9 August 
1912 earthquake (Mihailovic, 1927). 

At Gölcük the topography is fairly low (100 - 200 m). Hills are highly eroded 

and the land is flat, but slightly tilted (1 - 5°) to the NW (Fig. 4.9). At Gölcük two 

relatively large streams (the Gölcük river and the Koca river) join and flow towards 

east. Both rivers deposit significant amount of sediment in this area; however the 

shape of the basin is nearly rhombus, which points to a tectonic origin (Plate 1). In 

deed, at Gölcük the Ganos fault makes a 300-m-wide releasing step-over, hence pull-

apart tectonics is dominant in the basin formation. Just west of Gölcük the fault 

forms a 6-km-long linear ridge, bounded by strike-slip faults on its two sides. The 
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eastern tip of the ridge is exposed at a road cut (Fig. 4.13). The units in the exposure 

are highly sheared and faulted. We determined several faults striking to the top of the 

hill and capped by the soil part. The outcrop represents a part of~12 m of the ridge; 

however the maximum width of the ridge reaches 600 m and is asymmetric in NS 

direction. The southern slopes of the ridge are < 10°, whereas the northern slopes 

range from 10° - 30° (Fig. 4.9). In addition, the elevation south of the ridge is ~50 m 

higher than on the north (Fig. 3.15a). The significant difference in elevation indicates 

that the linear ridge is not formed dominantly as a push-up structure. The formation 

is associated with continuous back-tilting and right-lateral slip. The western ridge is 

oriented ~18° oblique to the strike of the Ganos fault (N65°E). It is also bounded by 

strike-slip faults on its two sides. Sagponds on top of the ridge suggest a complex 

uplift such as observed on positive flower structure. The orientation of the fault 

results in compression and the ridge is pushed-up in form of positive flower 

structure. Sagponds form between two lifted blocks. 

 

Figure 4.12 : Shaded relief map of the western part of the Ganos fault. Blue lines 
indicate streams, yellow numbers are cumulative offsets in meters. 
The fault is characterized with continuous linear strands between 
Yörgüç and Gölcük. Further west the structure becomes more 
complex. The fault runs mainly along the northern slope of the 
southern high land. A very linear narrow fault section is visible North 
of Kavak where the fault runs into the Evreşe plain and from there to 
the Saros bay. 
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Figure 4.13 : Road-cut south of Gölcük exposing the eastern tip of the linear ridge 
west. Intense faulting is exposed in the outcrop indicating that the 
ridge is of tectonic origin 

 

Figure 4.14 : Topographic profiles from west of Gölcük. a) Correspond to the linear 
ridge located just west of Gölcük. The ridge is formed by continues 
strike-slip faulting and back-tilting associated with uplift. b) is a ridge 
oriented oblique to the Ganos fault. It is bounded by strike-slip fault 
and is formed as pressure-ridge. 

 

Figure 4.15 : A linear pressure-ridge west of Gölcük oriented 18° oblique to the 
Ganos fault. It is bounded by strike-slip faults and rises as a push-up 
structure. 
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. 

Figure 4.16 : An outcrop of the North Anatolian Fault zone on the road between Sofuköy and Yeniköy. b) The detailed mapping of the out-crop 
shows that Oligocene to Quaternary deposit are limited by fault contacts 
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The area between Gölcük and Yeniköy is associated with several parallel 

fault segments. At a large scale the Ganos fault forms here a ~350 m-wide restraining 

bend (Plate 1). This structure is coupled with minor releasing and restraining step-

overs. We observe sagponds and linear depressions on the top of the ridges (Fig. 

4.14b). 

At Sofuköy the fault zone is again exposed on a 60 m long road-cut. Figure 

4.16 illustrates the mapped section of the out-crop. Four main units have been 

identified; Gazhanedere Fm. Kirazlı Fm. Fluvial deposits and lacustrine deposits. 

They are limited by faults. The sense of motion could not be clearly identified, no 

vertical component was evident. We consider that the main sense of slip is right 

lateral strike-slip faulting. Right lateral displacement is evident in the region, where 

we observe several prominent right-lateral co-seismic offsets of field limits; a 

hundred meter east of the road-cut. West of the road-cut a depression is significant. 

The northern margin of the pond is limited by a ~70 cm high scarp. This structure is 

formed as a tectonic depression. To the west the northern branch, the fault runs along 

a 2-3 m high scarp. An abandoned valley is right-laterally offset a few tens of meters. 

Further west, the fault is evident by further offsets, with shutter ridges which are 

cumulatively displaced. West of Yeniköy the fault runs through a fairly low and 

smooth land. The landscape is highly eroded. Agricultural facilities are dominant and 

the fault runs through fields. Tectonic movement is evident by distinct slope breaks 

on the slopes of linear ridges. The fault strikes as a nearly single linear strand forms 

linear depressions on the slope breaks (Fig. 4.17). This pattern is continuous until the 

Kavak Lake. 

 

Figure 4.17 : West of Yeniköy the fault runs through a fairly low and smooth land. 
The fault can be observed along linear ridges, where slopes are 
apparently interrupted by back-tilted surfaces. 
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Figure 4.18 : A lake east of Kavak located on the Ganos fault. The spot image shows 
the modified shores of the lake. A barrage is located on its northern 
part, built in 1989. The barrage is filled into a valley from which the 
fluvial water input was discharged. b) the aerial photo shows the site 
prior to the construction of the dam. A depression of tectonic origin is 
apparent. See text for detail. 

Kavak Lake is an elongated dam lake built on the Ganos fault in 1989 (Fig. 

4.18). The size and morphology suggested a tectonic origin. However, landscape 

modifications in the surrounding of the lake are hindering proper interpretation. 

Aerial photos prior to its construction provide an insight into this problem (Fig. 

4.18b). The apparent original morphology designates a typical sagpond structure. 

The pear like shape, and two convexities on the south points to an origin of probably 

two sagponds of which the western one was larger. Progressive faulting and 

subsidence may have joined the adjacently situated two ponds to a single pond 

(comparable with ponds in figure 4.11c). The pond rests ~20 m above the floor of the 

Evreşe plain. This surface is a part of the hill slope on the south, which is also back-

tilted. Therefore, the geometry and location of the ponds are identical to the sagponds 

illustrated in Fig. 4.11, 4.17. The barrage was built by filling a valley north of the 

lake. This valley was formed by streams which flew into the depression. At stages of 

high water level the discharge occurred through this valley. It is important to note 

that the depression is of tectonic origin and served as a collector for the streams on 

the south. Such configuration of streams and sagponds lying on a slope break are 
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visible along the Ganos fault. However, they represent a younger stage; while the 

Kavak lake is a mature sagpond. 

West of the Kavak Lake the fault enters a flat plain, the Evreşe plain. 

Evidence of the location of the fault is poor. The linear drainage parallel to the strike 

of the Ganos fault rests most probably in the tectonic depression. Clear evidence is 

available on the coast of Kavak where a large sagpond; 300 m x1400 m in dimension 

is visible (Fig. 4.19). The shape of the sagpond is elongated. However the northern 

boundary is clearly sharper and linear, while the south shows a smooth convex shape. 

Although this pond is one of the largest along the Ganos fault, it shows minor 

subsidence; less than 70 cm. A few hundred meters east of the pond paleoseismic 

studies exposed evidence of successive earthquake faulting (Rockwell et al.; 2001, 

2009) 

 

Figure 4.19 : The sagpond represents the westernmost fault morphology of North 
Anatolian Fault . The site is located closely to the paleoseismic trench 
site of Rockwell et al (2001, 2009) where historical earthquakes are 
identified in the Holocene stratigraphy and a co-seismic slip is 
measured for the last two events. 

The pond is the westernmost onland morphologic feature and an evidence of 

the NAF. West of this point the fault runs into the Aegean Sea through the Saros bay. 

Recent offshore studies provide detailed bathymetric data and exposed the offshore 

continuation of the NAF in the Saros bay (Ustaömer et al. 2008) 
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4.4.1. Offset measurements along the Ganos fault  

Cumulative offset are prominent markers of the short- and long-term 

deformation of a fault system. We investigated the 45-km-long onland section of the 

Ganos fault in order to establish the long term behaviour of the NAF on its western 

most part. The observed offsets are mainly on streams; in addition significant 

displacement was recorded on ridges, paleo-channels and man made structures (e.g. 

roads). Measurements were carried out using various remote sensing methods. 

Digital Elevation Model (DEM) data was used as a base to determine significant 

slips. The DEM’s were processed in multiple ways to enhance structures along the 

strike; e.g. hill-shading, sun angle maps, slope maps, density plots and 3D 

visualization. Aside we used SPOT 5 images (5 m resolution), regular aerial photos, 

paraglide aerial photos and partly Google Earth images to document offsets. Remote 

observations were afterwards verified by field investigations. At some sites we used 

total station or DGPS system to obtain more precise measurements. 

The analysis of the entire onland fault section allowed to document 69 right-

lateral cumulative displacements. Most of our measurements resulted in slip values 

less than 100 m; nonetheless even if sparse higher measurements were present. Table 

4.1 lists the long- and short-term slip distribution of the Ganos fault. The detailed 

locations of offsets are given in Fig. 4.7, 4.12; indicated with yellow numbers. The 

offsets values range from tens to thousands of meters and signify the slip of different 

time intervals. Therefore, we classify these values into two main groups; long-term 

offsets and short-term offset. 

4.4.1.1. Long-term-offsets 

Large scale offset bear the slip record of a fairly long time interval depending 

on the slip-rate of the fault system. We investigated the large slips along the Ganos 

fault to establish the long-term behaviour of the westernmost segment of NAF. We 

determined 31 right-lateral offsets larger than 50 m, along the whole onland fault 

section (Table 4.1). The following paragraph describes some of the prominent 

displacements starting from the east towards west. 

The steep slopes between Güzelköy and Mursallı form streams and ridges 

trending almost orthogonal to the fault. The NAF truncates and displaces these 

structures at various scales. Displacements larger than 50 m are displayed in figure 
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4.20, where two offset streams and shutter-ridges are significant. We measured 8 

offsets (> 50 m) in this region. The most distinct features in the area are the Palamut 

Hill (306 m) and the Armutlu Hill (212 m). Both hills are intersected by large deep 

incisions on their SW and NE sides. The size of their channels is not comparable 

with the incisions and size of their present day drainage catchment. The incisions 

must be a remnant of other drainage basins which are now disconnected by 

successive right-lateral motion. We made correlations between channels to estimate 

the amount of slip in the drainage system. Individual measurement of comparable 

size of channels yield right-lateral offsets of ~250 m, ~1000 m, and ~4500 m. 

Reconstructions at these rates of slip showed good matching with other catchment 

systems (Fig. 4.12). 

 
 

Figure 4.20 : The fault section between Güzelköy and Mursallı. Streams on the steep 
slopes of the Ganos Mt. form deep incisions orthogonal to the fault 
strike. This orientation allows a good correlation of displaced 
structures on each side of the fault. At some localities streams are 
highly deflected because shutter-ridges blocked their initial flow 
direction. For exact locations of the offsets see the map on Figure 4.12 
and 4.21 
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Table 4.1 : List of measured cumulative offsets See Appendix A2 for locations. 

Id Offset Error Location Structure Dist. Along fault (km) 

1 7.0 0.3 Güzelköy Tree limit 0.30 
2 8.0 - Güzelköy Stream 0.42 
3 8.0 2.0 Sofuköy Lok 495 Stream 3.44 
4 9.0 1.0 Kavak Paleo-channel 42.74 
5 10.6 0.5 Sofuköy Stream 4.00 
6 11.0 0.5 Güzelköy Paleo-channel 4.03 
7 11.0 0.3 Güzelköy Stream 4.11 
8 11.0 1.0 Yayaköy Stream 4.60 
9 12.1 0.3 Güzelköy Stream 5.04 

10 12.6 0.2 Güzelköy Ridge 5.05 
11 12.7 0.5 Gaziköy Road 5.32 
12 12.9 2.0 Yörgüç Stream 5.35 
13 15.0 0.5 Yayaköy Road 5.61 
14 17.1 0.5 Sofuköy Stream 5.91 
15 18.0 0.5 Güzelköy Stream 5.92 
16 19.0 2.0 Yörgüç stream 5.96 
17 20.0 - Mursalli Stream 5.98 
18 21.0 0.5 Güzelköy Paleo-channel 7.16 
19 21.0 1.0 Mursalli Ridge 7.16 
20 22.0 1.0 Mursalli Stream 7.37 
21 25.0 2.0 Yörgüç stream 9.43 
22 25.5 2.0 Yörgüç west Stream 9.52 
23 26.0 2.0 Güzelköy west Stream 9.56 
24 29.0 0.5 Güzelköy Stream 9.82 
25 30.0 1.0 Yeniköy Stream 10.24 
26 31.0 2.0 Yörgüç Stream 10.86 
27 35.0 0.5 Sofuköy Stream 11.14 
28 36.0 1.0 Güzelköy Stream 11.18 
29 36.0 3.0 Gölcük east Ridge 12.23 
30 38.0 4.0 Gölcük east Ridge 12.27 
31 40.0 5.0 Sofuköy east Stream 12.95 
32 43.0 2.0 Yeniköy ridge 14.50 
33 45.0 5.0 Mursalli west Ridge 14.52 
34 45.0 1.0 Yeniköy Ridge 15.25 
35 46.0 5.0 Yayaköy east Stream 15.58 
36 47.0 2.0 Yeniköy stream 16.12 
37 48.0 5.0 Sofuköy east Ridge 16.86 
38 58.0 2.0 Yörgüç Stream 17.34 
39 59.0 5.0 Gölcük east Stream 17.95 
40 61.0 5.0 Sofuköy east stream 17.96 
41 61.0 5.0 Sofuköy east Ridge 18.02 
42 67.0 5.0 Yayaköy east Stream 18.32 
43 70.0 10.0 Yayaköy Stream 18.37 
44 72.0 5.0 Yörgüç stream 18.52 
45 78.0 10.0 Mursalli east Stream 18.61 
46 84.0 10.0 Güzelköy east Stream 21.5 
47 84.0 5.0 Yayaköy east Stream 21.59 
48 87.0 5.0 Yörgüç Ridge 22.16 
49 150.0 5.0 Gölcük Ridge 22.17 
50 181.0 10.0 Gölcük Stream 23.85 
51 185.0 10.0 Yeniköy west Stream 25.34 
521 188.0 10.0 Yeniköy West Stream 27.11 
53 200.0 10.0 Yörgüç west Stream 28.07 
54 200.0 20.0 Yörgüç west stream 28.10 
55 221.0 - Gaziköy Terrace 28.42 
56 250.0 15.0 Alibey west Stream 28.47 
57 251.0 10.0 Güzelköy west Stream 28.62 
58 259.0 15.0 Güzelköy west Stream 28.65 
59 323.0 10.0 Gölcük east Stream 28.67 
60 575.0 15.0 Yeniköy West Stream 29.70 
61 575.0 15.0 Yeniköy West Ridge 29.77 
62 583.0 10.0 Yeniköy west stream 29.93 
63 725.0 15.0 Güzelköy west Stream 30.46 
64 750.0 - Gölcük west Stream 30.96 
65 1570.0 20.0 Güzelköy west Stream 31.00 
66 1766.0 10.0 Gölcük Stream 31.18 
67 2270.0 50.0 Gölcük Stream 31.18 
68 4500.0 50.0 Güzelköy west Stream 31.18 
69 9000.0 100.0 Gölcük Stream 31.53 
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Figure 4.21 : a) DEM map showing morphology, streams, fault orientation and offsets of the area between Güzelköy and Mursallı. The largest 
offset are about 250, 750, 1000 and 4500 m b) Show the reconstruction of 250 m of right-lateral slip. 7 catchments on the north of 
the fault show a well match with channels on the south. The larger channels indicate that they relatively existed for a longer period 
than the small ones, hence experienced more slip. A reconstruction of 1000 m (c) and 4500 m (d) shows also a well fit among 
catchments on the north and southern stream beds. 
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The section between Mursallı and Gölcük is comprised with 15 localities of 

significant right-lateral slip (> 50 m). The offsets range from 50 to 2000 m. Most of 

the displacements are stream deflections; however ridges provided also well markers 

for slip measurement. Figure 4.22 illustrates a site west of Yörgüç where a stream 

and related channel walls are apparently displaced. The slip of the stream bed was 

constrained from Spot5 images and 1/25.000 scaled topographic maps and yield an 

offset of 72 ± 5 m. Additional measurement were performed using slope map and 3D 

visualization. The slope of eastern wall is less than 20° and although its right-lateral 

offset is noticeable, clear markers to quantify the offset is not present (Fig. 4.22). The 

western wall on the other hand is steeper (~ 30°) and significantly larger. A slope 

map makes the structure and offset apparent (Fig. 4.22b). Measurements yield a slip 

of 87 ± 5 m of the slope which is not far from the stream offset. The eastern valley 

wall is more resistive to atmospheric conditions rather the stream bed and gives 

better markers to measure the displacement; therefore we consider the cumulative 

slip at this site is closer to the higher value and can be considered as ~80 ± 5 m. 

 

Figure 4.22 : Exhibits the right-lateral offset on a stream and related ridges west of 
Yörgüç. The stream yield a offset of 72 m a) Illustrates a wireframe 
3D view of the site were the deflections of the channel walls becomes 
clearly visible. b) Show the slope map of the site. The offset of 87 m 
of the western wall is obvious. 
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Figure 4.23 : The site is located between Yörgüç and Gölcük. The V shaped valley 
south of the fault is apparent. Towards the north the stream is 
deflected to NE and flows oblique to the fault. However the 3D view 
(b) exposes the northern continuation of the valley. We measure 59 m 
of right-lateral offset between the two valley sections. Other displaced 
ridges are evident on the image, which are less than 50 m. They will 
be described in the short-term offset section. 

Another prominent displacement is available 4 km west of Yörgüç, where a 

large stream valley is significantly displaced by the fault (Fig. 4.23). North of the 

fault the stream flows orthogonal to the fault, however on the south it forms a lower 

angle with the fault strike, which obstructs measuring the displacement. We use GIS 

tools to obtain a better view of the site. The 3D wireframe image illustrates clearly 

the southern continuation of the valley (Fig. 4.23b). In addition, other offsets of 

stream beds and ridges are apparent. For instance, on the westernmost part we notice 

an abandoned stream bed, which shoulders are comparably displaced. On the 

easternmost part another small channel offset is apparent. The adjacent ridges are 

similarly displaced by the southern fault-branch. The image noticeably illustrates that 

the fault is constituted by branches, which is also confident with field observation. 

This offset represents cumulative offsets of single branches however they do not 
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signify the total cumulative offset in the region. Between Gölcük and Kavak we 

determined 11 cumulative offsets larger than 50 m. These measurements range from 

50 – 2000 m. Stream offsets are dominant along this section of the valleys, which are 

mostly orthogonal to the fault and provide good markers for measurement. A distinct 

valley offset is observed 2 km southwest of Gölcük. The SPOT5 image shows the 

location of the fault in respect to the Valley (Fig. 4.24a). Recent faulting is evident as 

linear depressions; marshy fields next to Gölcük. A 20-40 m deep incision on a fairly 

plain surface is significantly deflected by the fault (Fig. 4.24b). We used DEM data, 

aerial photos and 3D imaging to demonstrate and measure the displacement, which 

yield a total right-lateral slip of 181 ± 10 m. 

We compare the southern part of this valley with other incision on the 2-km-

long linear ridge (Fig. 4.25). These incisions are apparently disconnected from their 

initial catchments. There is no comparable stream on the south of the fault which 

could drive such an amount of erosion. The only comparable drainage is the southern 

part of the ~181 m offset stream. We speculate that these incisions might be related 

to this stream and are currently offset by the NAF by 1690 ± 50 m and 2080 ± 50 m. 

 

Figure 4.24 : a) This is a SPOT5 image of the site. Recent faulting is expressed as 
linear ponds northwest of Gölcük. Northward flowing streams are 
truncated and displaced by the fault. b) Illustrates a ~181 ± 10 m right-
lateral offset of a well incised linear valley. The offset is also shown in 
the 3D image (Fig. c). 

Another good example of offset is visible North of Yeniköy. The location of the fault 

is well constrained by prominent fault morphology and several displacements from 5 

m to a few hundred meters. A linear stream segment, located west of Yeniköy is 

flowing across to the Ganos fault and incises the land considerably forming a V 

shaped valley (Fig. 4.26). A similar incision is located to the northeast. 
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Figure 4.25 : Streams located south of the fault show systematic offset. The linear 
ridge between Gölcük and Sofuköy is cut by several incisions. Two 
incisions are not connected to any stream and may be abandoned 
stream channels. The reconstruction of 1690 ± 50 m shows the 6 
matches of southern streams with incisions on the north of the fault. If 
the reconstruction is applied for 2080 ± 50 m the match increases to 8. 
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This well incised, V shaped valley is lacking of an analogous drainage catchment 

like the prior stream. Therefore we consider that this valley was initially connected to 

the south-western valley and was truncated and successively displaced by the fault. 

DEM data and reconstructions allowed determining a cumulative offset of 575 m ± 

15 m. 

 

Figure 4.26 : The linear stream west of Yeniköy flows across the Ganos fault. The 
stream forms relatively deep V shaped valley almost along its entire 
length. A similar incision exists northeast of this stream. However the 
is incision lacks of a comparable stream source. We consider that the 
north-eastern valley was once connected to the south-western stream 
and was offset by the NAF. b) A reconstruction of 575 m 
demonstrates an earlier stage of the drainage system. Two streams 
show well correlation with other drainage catchments and the 
reconstructed morphology. 

Two large scale valleys and their offset possibility 

The 45-km-long onland fault section is in general composed of 2 to 3-km-

long streams. However a considerably large valley is located on the top of the Ganos 

Mt (Fig. 4.27). The valley is oriented parallel to the fault, veers southwards near 

Gölcük and terminates abruptly in the Gölcük basin. The related stream flows from 

Gölcük for 5 km, along the fault and turns northwards to join the Koca River (Fig. 

4.26). The morphology west of Gölcük however is not comparable with the eastern 

part of the valley. Ridges are significantly smaller and the size of the valley is not 

analogous to the North. The size of the northern valley indicates necessarily a 

continuation on the southern part of the basin. We investigate the south of the fault 

and notice another large valley, located south of Kavak. This stream flows 

southwards into the Marmara Sea and has a length of ~7 km. The valley floor on the 

lowest parts is ~500 m wide indicating significant erosion and deposition. The 

drainage basin is fairly small to support such erosion. All tributaries are shorter than 
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3 km, except one which is ~9-km-long and has a very linear channel striking SW. 

This abnormal tributary is bounded on its east with a very linear SW-NE trending 

ridge. The western boundary ridge is highly eroded but has a similar orientation. 

We propose that the two valleys north and south of the fault are identical and 

they were once connected. They formed a drainage flowing into the Marmara. Such a 

relation implies a cumulative offset of 9 ± 1 km. A reconstruction of related offset is 

shown in Figure 4.26. The significance of the large slip is that it implies an older age 

for the western part of the NAF than suggested by Şengör et al, (2005) and Le Pichon 

et al., (2001). A 200 ka age is proposed for the NAF in the Marmara region using a 

constant slip-rate of 19 mm/yr and a right-lateral offset of 4 ± 1 km on the eastern 

margin of Central Basin, which they assume to represent the total offset of NAF in 

the Sea of Marmara. A substantiation of a 9 ± 1 km offset along the Ganos fault 

would imply necessarily an older age for the North Anatolian Fault such as suggested 

by Armijo et al (1999). 

 

Figure 4.27 : North of the Ganos fault we observed a large and deep incised valley 
which terminates abruptly at Gölcük. The morphology shows 
necessarily a continuation of the valley. The nearest valley on the 
south of the Ganos fault is on the southwest of Gölcük. The 
morphology indicates the possibility of a 9 km offset along the Ganos 
fault. 

4.4.1.2. Short-term offsets 

Beside large offsets, we determined 37 right-lateral displacements shorter 

than 50 m. These offset are measured almost along the entire fault. We were limited 

only between Gölcük and Sofuköy to determine short-term offset because of dense 

vegetation and hilly topography. Most of the short-term cumulative displacements 

are streams, ridges and road offsets. Below are some examples of such offsets. 
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Field investigation between Gaziköy and Yörgüç yield 22 offsets. The eastern 

most are determined at Gaziköy. Altunel et al., (2004) measured 22 ± 1 m cumulative 

offset on the coast of Gaziköy. Altınok et al., (2003) suggest a 3.5 m co-seismic 

offset for the same site (Fig. 4.28). The coast line here is significantly deflected but 

evidence of fault morphology is poorly available at Gaziköy. The smooth topography 

is covered by large alluvial fans and cultivation modified the landscape. The related 

deflection of the coast line coincides with an outflow of a 20-m-wide stream bed. 

Successive sediment accumulation on the coast may increase the deflection and may 

cause to over estimations of right-lateral offset. The offshore sediment accumulation 

is also visible in the Landsat image. Discharged sediments are transported southward 

after reaching the Marmara Sea. A lob like feature is visible just southwest of the 22 

m deflection. This structure indicates a shallower shelf rather than the north. 

However, successive right-lateral faulting would yield opposite offshore topography 

(where the north of the fault would be shallower rather than the south). Detailed field 

investigations at the site yield more evidence that the main branch of the Ganos fault 

is probably located near to the northern slope of the Gaziköy hill. Here, the hill slope 

consists of highly southward tilted coarse conglomerates, while on the north 

comparable sediments are nearly flat. This indicates likely a fault contact. In 

addition, the offshore sediments show a linearity trending southward along the coast. 

The linearity corresponds possibly to the former shoreline. The paleo-shoreline is 

deflected on the south for 30 m, which can be related to faulting.  On the other hand 

we observe co-seismic and cumulative displacements on two roads along the general 

strike of the fault. Therefore we conclude that the main branch of the Ganos fault is 

located closer to the village than suggested by Altınok et al., (2003) and Altunel et 

al., (2004). However it is possible that the fault might be constituted of several 

branches at Gaziköy; such as illustrated by Mihailovic (1927) (see p. 114, Fig. 5.6). 

Our constrained fault orientation is also consistent with the offshore bathymetry data 

where a small pull-apart basin is determined 2 km offshore of Gaziköy (Seeber et al., 

2004; McHugh, 2006). 
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Figure 4.28 : The Ganos fault enters the Sea of Marmara at Gaziköy (a). A 22-m-
long prominent deflection along the coastline is suggested as a 
cumulative offset of the Ganos fault (Altunel et al., 2004). The offset 
is located south of a 20-m-wide channel discharge (b). The SPOT5 
image (a) shows the offshore sediment accumulation that may 
contribute to an eastward progression of the shoreline and result as an 
overestimated offset measurement. We determined co-seismic and 
cumulative displacement on roads. In addition, we noticed a linear 
paleo-shore line east of Gaziköy that is deflected ~30 ±1 m. 
Combined with the onland geology and offshore fault geometry we 
suggest a location farther south and consider that the 22 m deflection 
may be associated with a secondary fault branch. Surface breaks were 
widely spread at this site during the 1912 earthquake as documented 
by Mihailovic (1927), (see also Fig. 5.6). 

Other cumulative displacements were determined west of Güzelköy. A 

number of shutter ridges and stream offset are present along the fault section between 

Güzelköy and Gaziköy (Fig. 4.7, 4.20). At a site 2.5 km west of Güzelköy we 

determined a prominent offset of a ridge and a stream (Fig. 4.29). The site was also 

chosen for paleoseismic trenching. Therefore we conducted a detailed topographic 

survey to document the cumulative offsets of the structure. A survey of nearly 9000 

levelled points cumulative yield 11 ± 0.5 m and 29 ± 0.5 m right-lateral slip of a 

stream and a shutter ridge, respectively. 
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Figure 4.29 : a) The right-lateral offsets are distinct in the aerial photograph (Photo 
by Pucci). Figure b) illustrates the contour map obtained by 9000 
levelled points at the site. We measure 11 ± 0.5 m and 29 ± 0.5 m 
lateral offset on the stream and shutter ridge, respectively (Fig. c).  

A second topographic survey has been performed at Mursallı. We determined 

significant displacements on streams and ridges west of the village (Fig. 4.30). A 

topographic survey yield an offset 21 m and 22 m of two streams and 20 m of a 

shutter ridge. Other offset measurements have been performed near Yayaköy and a 

cumulative displacement of 15 m has been identified on an ancient road south of 

Yayaköy. The offset for the 1912 has been estimated as 5 m. The remaining 10 m 

displacement is due to two previous events. 

 

Figure 4.30 : Shutter ridges and displaced streams at Mursallı measured with total 
station yield ~21 m right-lateral displacement. 
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Figure 4.31 : Shutter ridges and a displaced stream west of Yeniköy. We conducted 
paleoseismic investigations along this site and documented co-seismic 
faulting. Detailed DGPS measurements yield a total slip of 30 m along 
the shutter 

We determined 14 short-term cumulative offsets on the segment between 

Yörgüç and Kavak. A site near Yeniköy shows a stream offset and a shutter ridge 

(Fig. 4.31). We conducted topographic survey using DGPS system and collected 

~2000 topographic points to establish the total offset of the related structures. 

Measurements yield a right-lateral offset of 96 ± 1 m and 46 ± 1 m, on the shutter 

ridge and the stream, respectively. In the Evreşe plain only few evidence are 

available to locate the fault. Near the Saros bay, Rockwell et al. (2001) opened 

several trenches and determined a channel offset. Measurements yield 9 m of right-

lateral displacement. 

4.4.2. Slip history of the Ganos fault using offset classification and correlation 

with climatic fluctuations 

4.4.2.1. Cumulative slip distribution and classification 

A detailed study on the morphology of the Ganos fault yield 37 short-term 

and 32 long-term lateral displacements. These offsets are measured from streams, 

ridges, man-made structures, shore-lines and paleo-channels. All measurements 

correspond to nearly pure right-lateral slip. Vertical displacements were documented 

particularly for the 1912 earthquake displacements. However, observations yield 

uplift for both blocks. For example, Altınok et al., (2003) reports 1.5 m uplift on the 
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northern block west of Güzelköy. However they also measure 0.5 m uplift for the 

southern block near Gaziköy. Similar observations are available in contemporary 

accounts (Mihailovic, 1927, Macovei, 1912). We consider that these measurements 

do not signify the real uplift and are related mostly to a topographic effect due to 

lateral movement. Uplift is evident in the region by the marine terraces at Gaziköy, 

and by the prominent morphology of the Ganos Mt. and the Doluca Hill. However 

individual offset measurements mostly express pure right-lateral slip along this 

section of the NAF. The compressional deformation caused by the Ganos bend is 

probably diffused to a large area and is therefore not significant along the main fault 

branch. 

Figure 4.32 illustrated the long-term and short-term cumulative displacements 

along the onland section. Most of our measurements cluster between 100 m and 10 

m. Determined offsets are in general well distributed along the fault. Minor 

displacements lack only in the area between Gölcük and Sofuköy (20 - 27 km). The 

hilly and forestry landscape limited our observations in this region. The western most 

section (> 30 km) corresponds to the Evreşe plain, where fault morphology is mostly 

eroded or modified by cultivation. No offset are preserved in this area. 

Some statistical analysis on the lateral offset measurements showed 3 main 

groups among offsets with distinct gaps in between. Most of the offsets (68%) are 

smaller than ~87 m. We have no measurements between 87 to 150 m. A second 

group is apparent between 150 – 750 m; 16 sites represent 24% of the total 

measurements. Another gap exists between 750 m and 1570 m. The remaining 

offsets (7%) are larger than 1570 m. We also determined two fairly large offset of 

4500 m and 9000 m on large valley systems. From the largest to the smallest offsets, 

they indicate a continuous right-lateral deformation of westernmost part of the NAF. 
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Figure 4.32 : Slip distribution and fault geometry along the Ganos fault. 67 
cumulative offsets illustrate the short-term and long term slip along 
the westernmost section of the NAF. Measured structures are 
streams, ridges, paleo-channels and man-made structures. 

 

Figure 4.33 : A pie chart illustrating the presence of classes within the offset 
measurements. Our measurements show 3 main groups in which the 
smallest offsets corresponds to 69% of all measurements 

Most of the measurement, 69% correspond to stream channel offsets. Stream 

offsets are important because in the Ganos region stream channels are dominantly 

formed by periods of high rainfall, when surface water incises the steep slopes North 

and South of the Ganos fault. Hence streams are indicator of climatic events. Streams 
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flowing across a fault are like counters that record the co-seismic slips. Each new 

channel would start recording cumulatively the displacement. On the other hand, 

during arid periods new streams would not be formed and slip would be recorded 

cumulatively on existing channels. This process would lead to gaps within the slip 

record. A detailed analysis of stream offset may allow differentiating periods of high 

rainfall and aridity. 

We measured 48 stream offsets along the Ganos fault. Figure 4.33 shows the 

slip measurements as column graphics. Right-lateral displacements, particularly 

between 8 to 750 m show 7 distinct gaps and 8 groups of offset (Fig. 4.33). As 

mentioned above the gaps and groups signify periods of dryness and high rainfall, 

respectively. 
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Figure 4.34 : 48 right-lateral stream offset are presented as a column graphic. The 
graphic allows identifying 8 groups of offsets limited by distinct gaps 
of slip measurement. Groups are displayed as different shades of grey. 
The gaps signify periods where new stream incisions do not occur due 
to dry climatic conditions. We correlate these periods with climatic 
fluctuations. Numbers in coloured boxes correspond to time intervals 
of high rainfall determined from the sea-level changes of the Black 
Sea (see Fig 4.36). The 260 m gap represents the Last Glacial 
Maximum when cold and arid conditions were dominant in the 
Marmara region. 
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4.4.2.2. The link between sea (lake) level changes, climatic fluctuations and. 

offset groups 

The idea is based on the simple observation that streams form only during 

periods of high water discharge, here rainfall. Accordingly, a period of high rainfall 

in a certain region will form new incision (streams). Each new stream running across 

a fault is a new counter ready to record co-seismic slip. During intervals of arid 

climate, new counters are not formed and slip is cumulatively recorded on existing 

stream segments. The duration of arid condition determines the length of the gap. 

The groups of slip represent a series of periods of counter occurrence and absence, in 

other words rainfall and aridity. Other markers representing climatic fluctuation, 

such as sea-level curves, can therefore be correlated with offset. 

 

Figure 4.35 : Drainage development model for wet and arid climatic conditions. 
During a high precipitation period (1. to 10. earthquakes-EQ) new 
incisions form continuously and start recording displacement. When 
arid conditions are dominant new incisions are not created and 
existing channels continue recording slip (11. to 25.EQ). As soon as 
the climate turns again to wet conditions (high precipitation) new 
channels start forming and recording offsets. The arid period appears 
as a gap in a group of offsets. 

Such a study is performed along the left lateral Dead Sea fault. Ferry et al., 

(2007) shows how climatic changes in the Jordan Valley affect offset accumulation 

on streams along the Dead Sea Fault. They measure a number of gully offset along 

the Dead Sea fault and classify them into 6 groups. The gullies form during periods 

of high rainfall in the Jordan Valley. These periods reflect as sea level rise in the 
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Dead Sea (Lake Lisan). Sea level fluctuations are dominantly controlled by 

precipitation at Lake Lisan, which allows a unique correlation with stream formation 

and sea level changes. Lake Lisan level fluctuations are well constrained covering a 

period of nearly 50 ka. This permits a correlation with offsets for a long time 

interval. Ferry et al., (2007) determined a well correlation with Lake Lisan sea level 

increases and the determined classes of offsets and calculated a slip-rate of the Dead 

Sea Fault for the last ~50 ka. 

The Ganos region is surrounded by open seas; Aegean Sea, Sea of Marmara 

and Black Sea. However, Lake Lisan was a closed system in which sea-level 

fluctuations were controlled dominantly by high rainfall or arid periods. In such a 

setting, lake-level rise necessarily implies stages of high precipitation; subsequently 

period of new stream formations. Paleo-climatic studies documented that the Black 

Sea and the Sea of Marmara were once isolated from the Mediterranean Sea and 

were lacustrine waters (Aksu et al, 2002, Çağatay et al. 2000; Bahr et al., 2005, 

2006). At low stages of the global sea level, access of Mediterranean water was 

blocked to enter the Sea of Marmara by the -70 m sill depth in the Strait of 

Dardanelles and by the -40 m sill depth of the Strait of Bosphorus to the Black Sea 

(Aksu et al., 2002). The Quaternary water-mass exchanges of the Sea of Marmara 

and the Black Sea have been extensively studied and their sea-level fluctuation is 

well documented. In general it is agreed that the Marmara Lake existed between 

75ka and 12 ka and the Black Sea until 8.4 ka until marine waters breached the Strait 

of Dardanelles and the Strait of Bosphorus, respectively (Çağatay et al; 2009; Smith 

et al., 1995; Aksu et al., 1999; 2002b; Çağatay et al., 2003; Hiscott et al., 2007; Eriş 

et al., 2007 & 2008; McHugh et al., 2008, Ryan et al., 2003, & 2007; Major et al., 

2006; Bahr et al., 2005, & 2006). 

Climatically the western Black Sea is situated in the transition between the 

humid climatic regime of the mid-latitudes in SE Europe, a more continental climate 

in the northern part of the Black Sea and the eastern Danube lowlands and third, the 

Mediterranean climate region in the south towards the Sea of Marmara (Bahr et al., 

2006, Mudie et al., 2002). Cyclones carrying precipitation to this region follow 

mainly 3 paths (Fig. 4.36); Path 1) which originates from north of Turkey over the 

south-western parts of Russia and passes from the Black Sea region, Path 2) which 

originates from the Balkans and affects Marmara and the Black Sea region, and also 
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partly affects inner parts of Anatolia, Path 3) which is generated in the Genoa Gulf 

and divides in two routes, Path 3a) which moves to the northeast direction and affects 

the northern Aegean region, all the Marmara region and western and middle Black 

Sea region, Path 3b) which moves towards the east and affects western Turkey and 

passes over middle Anatolia (Karaca et al., 2000). The Quaternary fresh water input 

into the Black sea has two sources; precipitation and riverine input. The latter occurs 

dominantly through large drainage systems of Europe and Russia (e.g. Danube River, 

Dnieper River, Kızılırmak River). Two reasons increase the water discharge of these 

rivers, higher precipitation and increase in melt-water during warmer periods (this is 

particularly the case for the northern rivers of the Black Sea). Following the Last 

Glacial Maximum considerable amount melt-water contributed into the fluvial 

systems of Eastern Europe and increased precipitation rates in the vicinities (Issar, 

2003; Huhmann, et al., 2004). This shows that both reasons for sea-level rises favour 

precipitation in their vicinity. Therefore we can consider that periods of sea-level 

rising of the Black Sea corresponds to periods of high precipitation. 

A very detailed curve showing the sea-level changes for the last 20.000 years 

of the Black Sea is illustrated in Figure 4.37 (Dolukhanov & Arslanov 2009; 

Izmailov, 2005). The data is based on recently summarized palaeo-oceanological, 

geological, seismic and radiometric evidence (Yanko-Hombach et al., 2007). The 

curve shows periods of major rise and falls after the Last Glacial Maximum (30 ka – 

19 ka BP). Four main periods of sea-level rises at 17.5 ka, 14.5 ka, 12.5 ka and 10.2 

ka are distinct in the graphic. All indicate significant increase of fresh-water input 

mainly by precipitation (as described afore). However post 9 ka the rise is associated 

with marine water input from the Marmara Sea over the Bosphorus sill, which 

continuous until ~5.5 ka. Post 5.5 ka the sea level seems to reach an equilibrium (Fig. 

4.37). Therefore, we may speculate the existence of another period of high 

precipitation between 4.1 to 3.9 ka.  

The last Glacial Maximum was a period of dry climate in the eastern 

Mediterranean and lasted for ~11 ka (Aksu et al., 2002; Peyron et al., 1998; Ramrath 

et al., 1999). Considering that stream formations were absent or reduced during that 

interval, one would expect a large gap within the offset records. Although with little 

evidence, such a gap is present between two groups of measurements; offsets around 

580 m and 323 m (Fig. 4.34). We postulate that this gap correspond to the period of 
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the Last Glacial Maximum and correlate the younger offset groups to the periods of 4 

main sea-level rises and the period between 4.1 – 3.9 ka, mentioned above (Fig. 

4.37). 

 

Figure 4.36 : The paths of atmospheric cyclones over Turkey. Path 1, 2 and 3 are the 
main cyclones responsible of rainfall in the catchments of the Black 
sea. Path 2 and 3a have major influence in rainfall over the Marmara 
region (Karaca et al, 2000). 

4.4.2.3. Slip rate estimations 

We use the average displacement of the each group and the average age of the 

related time period and calculate collective slip rate and individual slip rates for the 

western most part of the NAF. The calculations for each offset group yields 17.5 

mm/yr, 18.3 mm/yr, 17 mm/yr, 18.4 mm/yr and 20.5 mm/yr slip rate for the last 4 ka, 

10.2 ka, 12.5 ka, 14.5 ka and 17.5 ka, respectively. This implies a constant slip rate 

of 17.9 mm/yr for the last 20.000 years and a variable slip rate of 17.7 mm/yr, 17.7 

mm/yr, 17.9 mm/yr and 18.9 mm/yr for the last 10.2 ka, 12.5 ka, 14.5 ka and 17.5 ka 

respectively (Fig. 4.38). 
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Figure 4.37 : Sea-level fluctuations of the Black Sea for the last 20.000 years. We 
determine 4 major periods of like rise at 17.5 ka, 14.5 ka, 12.5 ka and 
10.2 ka. These periods are considered to represent stages of high 
rainfall. Post 9 ka marine waters of the Sea of Marmara start flowing 
into the Black Sea and sea level changes occur within a more complex 
system. However, we may consider another rainfall period at 4 ka, 
after the sea level reaches an equilibrium (dashed line; Izmailov, 
2005; Dolukhanov, 2009). 

50

80

110

140

170

200

230

260

290

320

350

3 6 9 12 15 18

Age (ka BP) 

(0.97)

17.7

(0.97)

17.7

(0.98)

17.9
(0.99)

17.9

(0.99)

18.9

O
ffs

et
 (

m
)

 

Figure 4.38 : Plot of cumulative slip of groups of stream offset versus their age 
inferred from climatic events. A standard model of constant slip-rate 
(black line and numbers) we calculate a mean value of 17.9 mm/yr 
for the last 20 ka. A variable slip-rate model revealed very 
comparable results (grey dashed lines and numbers), where values 
fluctuate between 17.7 to 18.9 mm/yr. 
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4.5. Morpho-tectonic Results along the Ganos Segment 

1 - Major morphological structures comprising the Ganos region are from east to 

west, the offshore Tekirdağ Basin (-1125 m), the Ganos High (924 m), the Doluca 

Hill (689 m), the Evreşe plain (0-100 m) and the Saros bay (-50 to -600 m). The 

morphology suggests a change from compressional structures on the east to 

extensional structures towards the west. 

2 - The geology along the Ganos fault is different on its two sides; north and south. 

The north is composed by a sedimentary pile of Lower Eocene to Lower Oligocene 

age deposits, unconformably lain on top of a fluvial sequence (Middle Eocene). The 

southern section has a relatively more composite geology composed of Upper 

Cretaceous to Upper Pleistocene units. Quaternary deposits lie unconformably on top 

of these sequences. They develop as slope debris, alluvial fans, fluvial deposits and 

basin fills, mostly in control of the Ganos fault. Apatite fission-track analysis showed 

that the exhumation of the southern Ganos region was about ~10 Ma earlier (Late 

Oligocene) than the northern region (Zattin et al., 2005). Therefore an earlier right-

lateral strike-slip fault was present in the region prior to the NAF (Zattin et al; 2005; 

Yaltırak; 1996; Yaltırak and Alpar, 2002). 

3 - We documented the detailed geometry of the 45-km-long onland section of the 

Ganos fault at a 25.000 scale. Right-lateral strike slip faulting was dominantly 

observed along the onland section. Prominent strike-slip morphology was evident by 

lateral stream and ridge offset, shutter ridges, linear depressions (saddle), sagpond 

and pressure ridges. The morphology provides us valuable information about the 

fault characteristics. Several lateral offsets documented the dominant right-lateral 

fault movement. On the other hand, the Ganos Mountain and the uplifted coastal 

terraces at Gaziköy indicate the existence of a compressional component on the 

eastern section of the right-lateral Ganos fault. The central segment of the Ganos 

fault is forming more linear structures like linear valleys or elongated ridges. The 2-4 

km long pressure ridges indicate a more pure strike slip faulting. The western part of 

the fault represents different morphology than the east. The large Evreşe plain, 

Kavak Lake pull-apart and the Saros bay indicate transtension on the western 

segment of the Ganos fault. 
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4 – 69 cumulative offset measurements exposed the long-term and short-term fault 

behaviour of the western most section of the North Anatolian Fault. We analyzed 

stream offset and determined 8 classes off comparable slip limited by distinct gaps of 

slip record. A correlation of stream displacements and climatic fluctuations allowed 

calculating slip rates for 5 of the classes. The calculations yield a constant slip rate of 

17.9 mm/yr for the last 20.000 years and a variable slip rate of 17.7 mm/yr, 17.7 

mm/yr, 17.9 mm/yr and 18.9 mm/yr for the last 10.2 ka, 12.5 ka, 14.5 ka and 17.5 ka 

respectively. The variable rates are very comparable with the mean slip rate. Slip rate 

estimations for offset smaller than 60 m is limited by the resolution of the sea level 

curve of the Black Sea. A more detailed curve would allow a better constrain for 

climatic events post 4 ka and their related influence on the geomorphology 

5 – We suggest a large valley offset of 9 km using morphologic and partly geologic 

evidence along the Ganos fault. This offset may have major implications on the age 

of the western part of the NAF .Şengör et al, (2005) and Le Pichon et al., (2001) 

suggest an age of 200 ka for the NAF in the Marmara region. They extrapolate the 

age using a constant slip-rate of 19 mm/yr and a right-lateral offset of 4 ± 1 km on 

the eastern margin of Central Basin, which they assume to represent the total offset 

of NAF in the Sea of Marmara. A substantiation of an 9 ± 1 km offset along the 

Ganos fault would suggest necessarily an older age for the NAF. Armijo et al (199) 

suggested a total slip of 80 km for this section of the large strike slip fault. 

6 – The analysis of structural complexities yield that the onland section of the Ganos 

fault is composed of 3 sub-segments. From east to west, the Güzelköy segment, 

Yeniköy segment, and Saros segment. 
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5. THE 9 AUGUST 1912 MÜREFTE EARTHQUAKE (Mw 7.4); EVIDENCE 
OF SURFACE FAULTING AND CO-SEISMIC SLIP FROM 
HISTORICAL DOCUMENTS AND FIELD OBSERVATIONS 

The 9 August 1912 Mürefte earthquake is the most recent large earthquake 

occurred on the westernmost section of the NAF. The large moment magnitude of 

Mw 7.4 indicates a surface rupture length of minimum 100 km comparable to the 17 

August 1999 Izmit earthquake (Mw 7.4) that took place on the eastern side of the Sea 

of Marmara. The length of the Mürefte earthquake rupture plays a significant role in 

evaluating the seismic hazard in the Marmara region. We know that the surface 

rupture broke the 45-km-long onland section of the Ganos fault (Ambraseys & 

Finkel, 1987). Therefore, we applied a detailed investigation on the onland section, 

to document the surface rupture characteristics and related co-seismic slip 

distribution. The field data were collected during several field campaigns, starting 

from 2004, 92 years after the event. We traced the onland section of the rupture to 

prepare a fault map at a scale of 1/25.0000 and document the related co-seismic slip. 

The rupture morphology was partly preserved in the region, despite the high 

agricultural activities. Localities with minor landscape alteration allowed mapping 

out the 1912 surface rupture. At other sites where the surface breaks are not evident, 

we used the main fault morphology and the preserved 1912 co-seismic displacements 

to locate the rupture. The rupture is mainly expressed by scarps, sagponds, and co-

seismic offsets on various structures (e.g. streams, field limits and roads). The main 

course of the rupture follows the fault line described previously in Chapter 4. 

Therefore, we only describe sites where clear evidence is present for the 9 August 

1912 earthquake surface breaks. 

The following section presents some introductory information about the 9 

August 1912 Mürefte earthquake and related studies and a summary of the damage 

distribution and co-seismic ground deformations apart from faulting. Consequently, 

we document the surface rupture and co-seismic offsets. Finally, we evaluate our 

observations and propose a fault segmentation pattern, focal mechanism and a 

possible rupture length for the 1912 earthquake sequence. 
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The 9 August 1912 Mürefte earthquake (Mw 7.4) 

The 9 August 1912 Mürefte earthquake (Mw 7.4) occurred with an epicentre 

near the Mürefte village according to Ambraseys and Finkel (1987). The earthquake 

was accompanied with major surface faulting and co-seismic slip all along the 

onland section. In addition, some considerable amount of land-sliding occurred off 

the fault. The earthquake attracted interest of several scientists of that time and field 

investigations were carried out within a few days and weeks after the shock. The 

tremor was considered to be similar in size to the 28 December 1908 Messina- Italy 

earthquake (M 7.5) (Mihailovic 1918, 1923, 1927). Three key contemporaneous 

reports (i.e. Macovei, 1913; Mihailovic 1927; Sadi, 1912) provide ample descriptions 

of surface faulting and right-lateral offsets, landslides and detailed accounts of 

damage distribution. It is important to note that coeval documents describe any co-

seismic surface deformation as “cracks” and surface ruptures were not distinguished 

from other phenomena like landslides, spreading or other surface deformation types. 

Nevertheless the descriptions and given locations permit identifying the origin and 

the type of the structures. They are mainly localized in four regions; Mursallı, 

Ormanlı, Kirazlı and Saros. Additional information is available for Gaziköy, 

Güzelköy, and Gölcük areas. Surface faulting is evident at Gaziköy, Güzelköy, 

Mursallı, Gölcük and Saros, other localities experiencing land slides or lateral 

spreading. Photographs are available for some part of the fault and express typical 

strike-slip surface faulting morphology. We will refer to these documents and 

describe the surface rupture with more detail in the following section. Aside of 

historical documents, we made interviews with local people, who had either own 

memories or information from their elders about the surface rupture. 

5.1. Historical and Recent Studies on the 9 August 1912 Mürefte Earthquake 

There are a number of dissertations about the 9 August 1912 Mürefte 

earthquake. Some of them rely on field observation collected right after the event. 

The seismograms, building damage and partly the surface breaks were studied within 

a few months by scientist of that time (Agamennone 1912; Macovei, 1912; 1913; 

Mihailovic 1918, 1923, 1927; Sadi, 1912; Hecker, 1920; Sidgreaves, 1912, Walker, 

1912, see Table 5.1). The number of contemporary studies may seem rich, but they 

lack of well descriptions on the seismic characteristics and particularly the related 
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surface faulting. We present here the previous studies on 1912 earthquake in two 

categories; 1) Contemporary studies, and 2) Recent studies. The following 

paragraphs contain brief descriptions of the related publications. Further details are 

available in the related text, with the corresponding citations. 

5.1.1. Contemporary Studies  

We aimed to collect the originals or digital copies of any coeval document 

related to the 1912 earthquake event. Our searches yield thirteen articles, some of 

which were poorly known or unpublished –unknown articles (Table 5.1). We provide 

here a short description of the articles we managed to collect. 

Table 5.1 : The list shows collected publications of contemporary authors of the 
event. Language abbreviations: eng: English, fra: French, deu: German, 
ota: Ottoman, ron: Romanian, tur: Turkish, srp: Serbian. 

 Author Title Year 
Document

type 
Lang. 

1 
Macovei 
Gheorghe 

Sur La Tremblement De Terre De La Mer De Marmara Le 9 
Aout 1912 

1912 Article fra 

2 
Doc. Yüzbaşı 
Sadi 

Marmara Havzasının 26-27 Temmuz Hareket-i Arzı 15 Eylül 
1328 

1912 Article ota, tur 

3 Sidgreaves, W. The earthquake in Turkey on August 1912 1912 Article eng 

4 
Walker, W. 
George 

Turkish Earthquake of September 13 1912 Article eng 

5 
Macovei 
Gheorghe 

Aspura Cutremurului de Pamant dela Mare de Marmara dela 9 
August 1912 

1913 Article ron 

6 Allen C.G. 
Agamennone, G. - 1912, Il disastroso terremoto nel bacino 
occi-dentale del Mar di Marmara 

1913 Review eng 

7 Bigourdan M. 
Note de Michailovic Jelenko - Resultats des études sur le 
tremblement de terre d’aout et de septembre 1912 sur la mer de 
Marmara - 1918 

1918 Review fra 

8 Hecker, Oskar Mitteilungen über Erdbeben im Jahre 1912 1920 Report deu 

9 
Michailovic 
Jelenko 

Mehanizam Trusvih pokreta ha Mramornom Moru 1923 Booklet srp, fra 

10 Gutzwiller Otto 
Beitraege zur Geologie der Umgebung von Merfete am 
Marmara-Meere 

1923 Article deu 

11 
Michailovic 
Jelenko 

Trusne katastrofe na Mramornome moru 1927 Report srp,fra 

12 
Michailovic 
Jelenko 

La séismicite de la Thrace, de mer de Marmara et de l'Asie 
Mineur 

1933 Article fra 

13 
Mâmâcânyam, 
Edvâd 

Mürefte civarı büyük zelzele ve yangını garib destanı 19?? Epic ota 

 



 98

Macovei, (1912) - Bull. Sect. Sci. Acad. Rumanie 

This is a 10 page report in French, published in the Bulletin of the Rumanian 

Science Academy. It presents preliminary field observations of the earthquake. The 

author was in Istanbul when the event occurred and went immediately after to the 

epicentre region. The earthquake is briefly described including timing, duration, 

damage, casualties and partly faulting. A Rossi-Forel isoseismal map provides the 

damage distribution. The earthquake is evaluated in the context of the tectonic and 

geologic setting of the area, which is given in detail. The North Anatolian Fault is 

mentioned as a E-W trending tectonic boundary starting from the Gulf of Izmit, 

crossing the Marmara little south of Tekirdağ, passing the Gulf of Saros between the 

Gökçeada (Imbros) and Semadirek (Samothrace) islands. 

Sadi (1912) - Report 

This is a 39 page article written in Ottoman Turkish and includes photographs 

and two maps. Sadi, who was a surgeon of the Ottoman army, prepared a report after 

he visited the earthquake area. A summary on the geology and tectonic setting of the 

region is given, but on a very basic level to enable the reader understanding the 

earthquake phenomena. As a physician his observations are concentrated on the 

damage and the living conditions of the sufferers. However, geologic and 

seismologic characteristics of the event are not neglected. Several information on the 

pre- and aftershocks and the duration of the main shock are available in the text. 

Descriptions on the surface deformation are given based on secondary sources. 

Beside, we read a short evaluation on the tsunami effect of the tremor. This work is 

one of the unique studies which contain a fault map; although very large scaled. A 

sociologic and economic review of the Ganos region helps us also to understand the 

percentage of loss, especially for Şarköy, Mürefte and Gelibolu. 

Sidgreaves (1912) - Nature 

This a one paragraph text published in Nature and presents preliminary 

results of a Milne seismogram reading from the Stonyhurst College Observatory 

(England). They give the timing of the 9 August 1912 earthquake as 01:45 (LT) and 

interpret the epicentre as west of the Sea of Marmara. 
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Walker (1912) - Nature 

This is also a one paragraph text published in Nature and presents results of 

seismogram readings from the Eskdalemuir Observatory (England) and the Pulkovo 

Astronomical Observatory (Russia) for the 13 September 1912 earthquake. They 

calculate the earthquake epicentre as 40.7° N / 26.5°.  

Macovei, (1913) – Publ. Fond. Vasile Adamachi Acad. Românâ 

This is a more detailed work of the author than the 1912 publication. It is a 13 

page report supported with 10 photographs, one figure and an isoseismic map; 

written in Romanian for the Rumanian Science Academy. Macovei was in Istanbul 

when the earthquake occurred and experienced the shock heavily. His notes are 

based on a one-week field investigation in the region after the event. The document 

provides information on aftershocks and the damage in the earthquake vicinity 

mostly obtained by field observations between Gelibolu and Tekirdağ. We obtain 

also evidence of the co-seismic surface deformation along the fault and the regions 

around. The report ends with a geologic and tectonic review and interpretation of the 

Marmara region. 

Allen C.G ( 1913; review of Agamemon 1912) – BSSA 

G. Agamennone published a paper about the 9 August 1912 earthquake in 

Italian in the journal “Rivista di Astronomiae Scienze affini”. We were able to access 

a review of the paper by Allen C. published in the Bulletin of the Seismological 

Society of America. Allen notes that Agamennone’s work is based on articles from 

the newspapers “La Reforma” and “La Tribuna”. Severe damage is described at 

Dardanelles (Gelibolu) using eye-witnesses. Ground deformation is also given along 

a part of the city. Agamennone (1912) summarizes the damage distribution and gives 

an earthquake intensity for the region. 

Bigourdan (1918; review of Mihailovic 19??) – Acad. Scien. France 

This is a review prepared by Mr. Bigourdan about one of the publications by 

Mihailovic (reference not known). The review is two pages in French. It describes 

preliminary results of a 5-week field work in the earthquake vicinity. Mihailovic 

published the detailed results in 1927. This review bears the summary of the 

earthquake activity before and after the main shock. The epicentre area of the 9 Aug 

earthquake is given as the Ganos region, however with notes that the movement 
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caused autonomous shocks in the Manyas region and in the Dardanelles. Surface 

faulting, landslides and damage in the Ganos region are also briefly described. The 

conclusion part presents an appraisal of the tectonics of the region. 

Hecker (1920) – Seism. Bull. Jena 

Another report in German was prepared and published by the Head Office of 

Seismological Research in Germany. It is a section of a monthly publication, which 

was revised by A. Sieberg. The report gives information on the damage distribution 

and loss of live. An isoseismal map prepared by A. Sieberg, is inserted. The detailed 

list of earthquakes for the whole year of 1912 provides information on the for- and 

after-shock activity of the region. We read some evidence on the tsunami caused by 

the main shock 

Mihailovic, (1923) – Srb. Kralj. Akad. 

This is a 48 page booklet describing the geology, seismicity and tectonics of 

the Marmara region with an analysis of the 1912 earthquake. The text is written in 

Serbian with an 11 page insert of a summary in French and published in the Serbian 

Royal Academy. It bears 3 maps, 2 figures and one seismogram. The geology section 

is a general evaluation of tectonic components in the region, noting that the region 

consists of two main blocks; Anatolia and Thrace. In the seismology section the 1912 

earthquake sequence is described with its pre and aftershocks. A comparison of the 

characteristics of the 1894 and the 1912 earthquakes are also presented in the study, 

with isoseismic maps for both events. Six large aftershocks are given with location 

and time. An image of the seismogram recorded at St. Beniot Licee in Istanbul is 

given and analyzed in this work. The co-seismic surface deformation such as 

ruptures, landslides and cracks are described with approximate locations. The last 

section is an appraisal of the active tectonic forces in the region, where the Marmara 

region is divided into several zones, which are considered to represent different 

seismic characteristics. 

Gutzwiller (1921, 1923) – PhD Thesis (Univ. Basel) 

This is a dissertation written in German, by a Swiss geologist who visited the 

site in 1914 (May – June) and studied the oil reserve potential around Mürefte. The 

geology of the region is given in detail and the tectonics is also discussed. The report 

contains 6 figures and a map. The map is noteworthy because the fault has been 
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drawn with a distinct detail and geometry, which is unusual for a regular geology 

map of that time. The detail derives most probably because the author traced the 

1912 surface rupture, which was likely still visible after two years. In contrast, the 

1912 earthquake is mentioned only in one sentence noting its significant damage in 

the region. Nevertheless, the possibility that this map is the only rupture map 

available for this earthquake makes this report remarkable (The dissertation was 

reprinted in 1923, hence different reference are present in the literature). 

Mihailovic, (1927) – Srb. Kralj. Akad. 

This is a 300 page report giving the most detailed information among the 

other contemporary documents. It is based on Mihailovic’s personal field 

observations from 15 August to 26 September 1912. During his field study, he was 

forced to turn back owing to the breakout of the Balkan Wars (8 Oct. 1912 - 29 Sept. 

1913). The report is written in Serbian, with a 24 page French summary and consists 

of 78 photographs 46 figures, 6 diagrams and one map. The damage and its 

characteristics are given in detail, supported with photographs and drawings for 

several buildings. Personal observations on damage extend to a wide area; from 

Rodosto (Tekirdağ) to Dardanelles (Çanakkale). The co-seismic surface deformation 

is also documented by numerous descriptions, photographs and drawings. Evidence 

of ruptures, land slides and other phenomena’s are given for several locations like 

Mursallı, Yörgüç, Gölcük, Kirazlı, Ormanlı and other location away from the fault; 

Dardanelles, Appollonia, Heraklica. We obtain also some information on tsunami 

effects within the Marmara Sea. He remarks the historical and instrumental 

seismicity of the region; presents an extensive list of fore- and after-shocks with 

intensity for several locations. A list of 68 stations where the earthquake and related 

aftershocks were recorded is placed in the report, including arrival time of different 

phases of waves. The last section of the reports is a general tectonic evaluation of the 

region. The drawback of this study is that it does not include any detailed map of the 

fault. 

Mamaçyan (19??) – Sukâyân Publ. Istanbul 

This is an epic about the earthquake disaster written in Ottoman-Turkish. The 

text is one page and is most probably published in the same year of the event. We 

were not able to translate the text for now. 
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Newspapers 

We collected articles from newspapers and journals of that time, where short 

descriptions of the earthquake and its affects were available. We managed to access 

articles from the newspaper Freiburger Nachrichten (Germany), La Liberte, Le 

Croix, Le Temps and Le Figaro (France), as well an article with photographs in the 

journal La Illustration (France) (See Appendix A3). 

5.1.2. Recent studies: 

There have been recent attempts to investigate the 9 August 1912 earthquake. 

Here we provide a summary of these studies and note their significance. 

Table 5.2 : List of recent studies on the 9 August 1912 earthquake. 

 

Tabban and Ateş (1976) is the earliest recent work on the 1912 earthquake. They 

visited the epicentre area and investigated traces of the surface rupture. Their study 

aimed to collected preliminary data to launch an extensive project on the event. 

Therefore, the detail of the introductory report is minor. Valuable information is eye-

 Author Title Year 
Document 

type 
Lang. 

1 
Tabban A. and 
Ateş A. 

9 August 1912 Şarköy-Mürefte Earthquake studies 
– Preliminary report 

1976 Report tur 

2 
Ambraseys, 
N.N., and 
Finkel, C.F. 

The Saros-Marmara earthquake of 9 August 1912 1987 Article eng 

3 Öztin, F., 9 Ağustos 1912 Şarköy-Mürefte depremi 1987 Article tur 

4 Altunel et al., 
Slip distribution along the 1912 Mürefte-Şarköy 
earthquake, the North Anatolian Fault, Western 
Marmara, 

2000 Article eng 

5 Rockwell et al 
Paleoseismology of the Gaziköy-Saros segment of 
the North Anatolia fault, north-western Turkey 

2001 Article eng 

6 Altınok et al,  
Şarköy - Mürefte 1912 Earthquake's Tsunami, 
extension of the associated faulting in the Marmara 
Sea, Turkey 

2003 Article eng 

7 Altınok et al,  
Tsunami of Şarköy-Mürefte 1912 earthquake: 
Western Marmara, Turkey 

2003 Article deu 

8 Altunel et al., 
Characteristics of the 1912 co-seismic rupture along 
the North Anatolian Fault Zone 

2004 Article srp,fra 

9 
Rockwell et 
al., 

Paleoseismology of the North Anatolian Fault near 
the Marmara Sea: Implications for Fault 
Segmentation and Seismic Hazard 

2009 Article eng 
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witness interviews with locals, where some description of faulting is available at 

Güzelköy and Kavak. 

Öztin (1987): This study is only a translation of Sadi (1912) from Ottoman Turkish 

to Modern Turkish. 

Ambraseys and Finkel (1987) is one of the most comprehensive recent studies, in 

which descriptions of surface faulting and co-seismic slip is available. In addition, 

the damage distribution is investigated in detail and summarized in an intensity map. 

Milne seismogram readings were used to calculate an empirical magnitude of Ms 

7.4. 

Rockwell et al., (2001, 2009) provide evidence of surface faulting and a co-seismic 

slip of 4.5 m at Kavak from trench results. 

Altınok et al., (2003) measured right lateral co-seismic offsets at three localities 

ranging from 3.5 to 4.5 m between Gaziköy and Gölcük. They calculate a moment 

magnitude of 7.3 for the 9 August shock derived from 4.5 m average slip, 15 km of 

rupture width and 56 km of rupture length. Hence, they propose a rupture extending 

from the Kavak region to the bend offshore of Gaziköy; 56 km in total. Aside, using 

multibeam bathymetry and seismic profiles they determine a landslide and note the 

potential of tsunamis. Based on the GPS shear velocity of 17 mm/yr for the region, 

they consider that the 1766 can not be the penultimate event and suggest the 1659 

earthquake must have ruptured this segment. 

Altunel et al. (2004) measured right lateral displacement on 24 new sites and 

compiled a slip distribution with 31 measurements. The co-seismic offsets range 

from 1.4 to 5.5 with cumulative slips reaching up to 35 m. The co-seismic slip 

distribution shows clustering near  villages nested along the fault but lacks especially 

towards west. They determined three sub-segments along the 1912 Mürefte 

earthquake rupture and consider a total rupture length of 100-150 km; 50 km inland, 

30 km in Marmara, 20 km in Saros. 

Mc Hugh et al., (2006) used 1-2 m drillings from the offshore Ganos (Gaziköy) 

basin and analyzed their homogenite content. Interpretation combined with 

multibeam bathymetry and seismic profiles yield that the 1912 Mürefte earthquake 

caused deposition of a ~3 m thick homogenite sequence within the basin floor of the 

Gaziköy basin. The homogenites overlay disrupted reflectors; hence they interpreted 
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this as the related earthquake rupture. In addition, cores from Tekirdağ and Central 

basins showed some sharp discontinuity of short lived radioisotopes and 

sedimentation of ~30 cm which they attribute to the 1912 event. 

They determine also some historical events of the region, such as 740, 1063 and 

1343. They observe the 1063 in two cores only from the Tekirdağ Basin and the 740 

and 1343 events in two and one cores respectively in the Central Basin. In the Ganos 

basin they determine a mass-wasting event prior to the 1912 earthquake and relate it 

to an older rupture. The cores on the west of the Sea of Marmara shows also 

homogenites related to earthquakes in the Saros (e.g. 1859, 1965). McHugh states 

that homogenites of events located far from cores show distinguishable stratigraphic 

characteristics from homogenites located next to ruptures. 

Ustaömer et al., (2008) collected multibeam bathymetric data and high resolution 

seismic data from the Saros bay and exposed the poorly known morphology of the 

Saros bay. They show fresh fault scarps located on the Saros shelf and along the 

inner parts of the Saros Trough. They divided these scarps into 3 main fault segments 

and associated the eastern most segments to surface breaks of the 1912 Mürefte 

earthquake. However they also note that, some sediment covers this scarp at some 

localities along the segment, where they also observe landslides. These are either 

depositions post-dating the Mürefte earthquake or the scarps belong to an older 

event. The length of this segment is about 40 km. It appears as a vertical fault in 

seismic sections however shows northwards dipping at a high angle in the 

morphology, along the eastern slopes of the basin. They interpret this as a result of a 

slight reverse component. 

Armijo et al., (2005) used multibeam bathymetric data, high resolution seismic data 

and ROV (Remotely Operated underwater Vehicle) to document the structure and 

morphology of the Marmara basins.  

They define a large component of normal slip along the southern margin of the 

Tekirdağ basin, connected with the adjacent strike-slip fault system to the east and 

west. They use topographic profiles across the fault to determine vertical component 

of slip. A vertical slip of 1-1.5 m is documented on the eastern part of the Tekirdağ 

basin. The total offset of 2-3 m of this scarp is interpreted as a cumulative 

displacement of two events. At the same site a scarp shows slickensides with a rake 
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of 15° in accordance to the right-lateral motion. A total of 4-6 m oblique slip is 

determined from this free face. The geometry at the Ganos bend is also well 

illustrated showing a combination of strike-slip and thrust scarps. The fault scarps are 

in a right-stepping en-echelon array. Micro-bathymetry profiles show a steep 

escarpment up to 10-m-high that incorporates the 1912 event. 

The narrow linear fault section along the Central High also exposes typical structures 

of strike-slip faulting (e.g. sagponds and pressure ridges). Armijo et al. (2005) 

measures a 6 ± 1 m right-lateral offset on a sea-bottom landform and relates it to the 

most recent one or two events. Additionally they determine a set of scarps with < 0.5 

m height that are also attributed to the 1912 earthquake. 

The high resolution bathymetry of the Central Basin documents an array of small-

scale, steep scarps which lacerate the larger cumulative scarps. Profiles from these 

scarps yield vertical displacements of 0.5 to 2 m for each scarp and give an 

incremental throw of 2-4 m which can be ascribed to one or two events. This set of 

scarps is continuous all along the south-western basin boundary and probably 

indicate rupturing during the 1912 Mürefte event. They conclude that the 1912 

earthquake rupture terminated within the Central Basin. 

5.2. Seismic Activity Before and After the Mürefte Earthquake and Their 
Possible Locations 

The Mürefte earthquake occurred at a time when only primitive instrumental 

seismograms were present at several seismological and meteorological stations 

around the world. In the year of 1912, seismic activities were recorded at 198 

stations located all around the world; in Africa, Asia, Australia, Europe and America 

(IASPEI). The 9 August 1912 earthquake was recorded at more than 56 seismic 

stations (Appendix 2). The seismic activity was studied by seismologist of that time 

(Mihailovic, 1923, 1927, Sidgreaves, 1912, Walker, 1912, Hecker, 1920). Between 

July and October 314 small sized earthquakes took place in the Ganos region, 

foreshocks being recorded by instruments starting 15 days before the main shock 

(Fig 5.1; Mihailovic 1923, 1927). 28 shocks were registered on 9 August, and 24 the 

day after. Three major shocks are reported to have occurred on 9 August, 10 August 

and 13 September. However, historical catalogues document additional events (Table 

5.2, Tan et al., 2008). Aftershocks continued to occur at least for three months. The 
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given fore- and aftershock distribution is limited to four months (15 July to 18 

October) and is likely that aftershocks continued for some more time. Here, we are 

limited to the comprehensiveness of contemporary documents, particularly the report 

of Mihailovic, (1927). 

A comparison of historical catalogues and contemporary documents for the 

seismic activity showed some slight difference among the events (Tan et al., 2008; 

Mihailovic, 1918, 1927, Macovei, 1913). Two tables present the events registered in 

catalogues and in coeval studies (Table 5.2 and 5.3). Catalogues report 6 large 

events; on the other hand historical documents described 7 destructive shocks (see 

Table 5.3; Mihailovic, 1927, 1923). 

 

Figure 5.1 : Plot of earthquakes per day during the 1912 earthquake sequence 
(Mihailovic, 1927). A total of 314 earthquakes occurred between July 
and October, which the largest stroke on 9 August (M 7.4), 10 August 
(5.7, 6.2) and 13 September (M 6.8). Mihailovic (1927) reports 28 
shocks on 9 August and 24 on 10 August. 
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Table 5.3 : Mainshocks (bold) and major aftershocks of the earthquake sequence 
(Tan et al., 2008). See Figure 5.2 for epicentre locations. 

 Date Time Lat Lon Magn. Reference 
1) 1912.08.09 01:28 40.7 27.2 Ms 7.3 Ambraseys & Jackson (2000) 
2) 1912.08.10 09:23 40.8 27.5 Ms 6.2 Ambraseys & Jackson (2000) 
3) 1912.08.10 18:30 40.6 27.1 Mw 5.7 Kondorskaya & Ulomov (1999) 
4) 1912.09.13 23:31 40.7 27.0 Ms 6.8 Ambraseys & Jackson (2000) 
5) 1912.10.21 09:31 40.5 27.1 Mw 5.1 Kondorskaya & Ulomov (1999) 
6) 1912.10.21 23:40 40.5 27.1 Mw 5.3 Kondorskaya & Ulomov (1999) 

Table 5.4 : List of earthquakes compiled from historical documents. Times are 
Greenwich time. The location column corresponds to areas noted as the 
source of the shock in related document. Bursa, Keşan, Malkara, Lake 
Manyas and Lake Ulubat are sites apart from the fault and correspond 
to wrong interpretations of the authors. 

Date Time Location Ref 

09.08.1912 
01:28:46a,c 
01:32:16b 

Ganos, Dardanelles,  Mihailovic 1918b, 1923 c 1927a, 

09.08.1912 05:25:01 Keşan, Tekirdağ, Malkara Mihailovic 1918, 1923c, 1927 

09.08.1912 06:10:02 Ganos Mihailovic 1918, 

09.08.1912 09:50:10 Ganos, Mihailovic 1918, 

09.08.1912 13:58:05 Ganos Mihailovic 1918, 

09.08.1912 18:58:20 Ganos,  Mihailovic 1918, 

09.08.1912 22:11:15 Ganos Mihailovic 1918, 

10.08.1912 01:22:28 Ganos Mihailovic 1918, 

10.08.1912 09:23:46 
Hoşköy, Lake Manyas Lake 
Ulubat, and Bursa 

Mihailovic, 1923, 1927, Macovei 
1918 

10.08.1912 14:13:10 Ganos Mihailovic 1918, 

10.08.1912 18:30:16 
Dardanelles, Lake Manyas 
Lake Ulubat, and Bursa 

Mihailovic 1923, 1927, Macovei 
1918 

11.08.1912 
07:20:43a 
07:22:07b 

South of Marmara, Marmara 
islands 

Mihailovic 1918b, 1927a, 

13.09.1912 
23:32:15a,c 
23:34:45b 

Hoşköy, Gulf of Saros Mihailovic 1918b, 1923c, 1927 a 

14.09.1912 05:55:12 Hoşköy, Gulf of Saros Mihailovic 1918, 

16.09.1912 
21:05:37a 
21:08:12b 

Gulf of Saros Mihailovic 1918b, 1927a 

17:09:1912 01:14:18  Mihailovic 1918, 
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The main shock occurred on 9 August 1912 at 03:28:46 (LT). Macovei 

(1918) notes a source duration of 22 to 23 seconds; based on seismogram readings at 

the St. Benoit station (Istanbul) and Bucharest. A longer duration of 45 seconds is 

calculated from seismic recordings at the station of Jena (Hauptstation für 

Erbebenforschung, Jena). Ambraseys & Finkel (1987) notes a source duration of 40 

seconds. Sadi (1912) reports also a duration of 30 to 40 seconds. It is notable that in 

several sources, the 9 August earthquake is described as three subsequent shocks 

with increasing quake and the last as the largest (Mihailovic, 1923, 1927, Macovei 

1913, Sadi 1912). This might be related to arrival times of different types of waves 

(P, S and surface waves), or it may be associated to sub-events in a similar way that 

observed during the 17 August 1999 earthquake (Gülen et al., 2002). The main shock 

was followed by 4 large events on the day after. Two of them were estimated as M 

6.20 and M 5.7 (Table 5.2). A second large shock occurred on 13 September 1912 at 

23:31. The event is calculated as Ms 6.8 and caused also significant damage in the 

region (Ambraseys & Jackson, 2000). The size of this event implies that it is a 

separate large earthquake rather an aftershock and may have caused about ~30 km of 

surface rupture. Therefore, special attention has been given to bring out the 

characteristics of this event. 

Epicentre estimations 

The epicentres of the above mentioned shocks are not well constrained. Some 

estimations from seismologist of that time are available through historical documents 

(Mihailovic, 1919, 1927; Sidgreaves, 1912; Walker, 1912; Table 5.4). However, 

assessments are very rough and cluster within a radius of nearly 250 km. Most 

definitions give just an epicentral distance to the station or name a city located 

nearby. Although imprecise, better epicentre locations calculated by recent studies, 

which consider the fault setting are given in Table 5.2 (Fig 5.2). The epicentre of the 

9 August shock is thought to be near Yörgüç. The aftershocks are located 10 to 30 

km SW and NE of the main shock. The second main shock on 13 September is 

located north of Yeniköy. It is noteworthy that both types of sources (historical and 

recent) locate the 13 September shock to the east of the 9 August earthquake. This is 

a very important observation because the second shock constrains the western end 

for the 9 August fault rupture, which will be discussed at the end of this chapter. 
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Table 5.5 : Epicentre estimations of the 9 August and 13 September shocks from 
some seismic stations of that time ( Mihailovic, 1927, Walker, 1912). 
For locations of the station see Fig 5.2 

9 August 1912 13 September 1912 Station Names 
Lat Lon Lat Lon 

Tiflis 41,8 27,8 42 27,4 
Pulkovo 41 26,6 41,1 26,3 
Irkutsk 41,5 28,5 39,3 28,1 
Jugendheim 42,2 26 -- -- 
Strasbourg 40,06 27,4 -- -- 

5.3. Damage Distribution of the 9 August 1912 and 13 September 1912 
Earthquakes 

The destruction and loss of life is described in many sources (Sadi, 1912; 

Macovei, 1912, 1913; Mihailovic, 1918, 1927, Agamennone, 1912, Mâmâcânyam, 

19??). However estimations of the loss vary widely from one and other. The most 

reliable source is considered to be Mihailovic, (1927). The damage and its 

distribution described and discussed by Ambraseys & Finkel (1987) relay primarily 

on the observations of  Mihailovic (1927). Here, we summarize important parts of 

the damage and casualties caused by the two largest events; the 9 August and 13 

September shocks based on Ambraseys & Finkel (1987) and Hecker (1920) (Fig. 

5.2). No estimates are available of the total losses for the whole earthquake sequence 

in 1912. Therefore, the available damage descriptions are mainly related to the 9 

August shock. The 13 September event is however described to a lesser extend, by 

minor sources (Hecker 1920). 

The 9 August 1912 shock damage 

The Mürefte tremor was felt not only in the eastern Balkans, but also felt in 

Bucharest and Vienna (Macovei, 1912; Mihailovic, 1927;  Ambraseys & Finkel, 

1987). The damage was centred between Çanakkale (Dardanelles) and Tekirdağ, but 

also reached all the way to Istanbul, Edirne, Enez, Adapazarı, Ayvalık and Bursa 

(Ambraseys & Finkel, 1987; Mihailovic 1927). Heavy damage was recorded at 

Gaziköy, Hoşköy, Mürefte, Şarköy, Güzelköy, Mursallı, Yayaköy, Kavak, Gelibolu 

and Çanakkale (Fig 5.3). The maximum damage was localized between Tekirdağ and 

Mürefte which allowed to assigning a IX-X MSK maximum intensity near the 

Mürefte village. The earthquake struck at 03:30 a.m. local time and affected an area 
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containing 565,8000 people living in 122,400 houses (excluding Istanbul, Ambraseys 

& Finkel, 1987). The devastation of the shake killed 2800 and injured 7000 people. It 

totally destroyed 12600 houses, damaged 12100 beyond repair and caused serious 

damage to another 15,400 (Ambraseys & Finkel, 1987). The damage distribution is 

given in MSK scale in figure 5.2 and corresponds almost entirely to the 9 Aug. shock 

associated to a lesser degree to several fires which broke in the town and villages in 

the epicentral area. 

 

Figure 5.2 : The epicentre locations of the earthquakes in table 5.2 are indicated as 
red and yellow stars. Locations are in a rough estimate, particularly for 
the September shock, which was probably further west in the gulf. 
Numbers correspond to events in table 5.2,”&” stands for event 5 and 
6. Intensity map of the August shock is given in the inset (after 
Ambraseys & Finkel, 1987), which indicates that the maximum 
damage is localized between Tekirdağ and Gelibolu peninsula. The 
damage distribution of the September shock, on the other hand, shows 
that maximum damage occurred near Mürefte (Roman numbers; 
Hecker, 1920). The damage distribution narrows the possible epicentre 
location of the September shock and implies that the shock should be in 
the shelf of the Gulf of Saros. Major fault complexities of the North 
Anatolian Fault on the offshore section are also visible (e.g. Central 
Basin, Tekirdağ basin, Ganos bend and the Saros basin. 

The 13 September shock damage 

Another large tremor occurred on 14 September 1912 (01:32). The event was  

recorded in at least 17 worldwide seismic stations and affected mainly the south-

western part of the epicentral area of the 9 August event. Buildings that resisted to 
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the first shock with considerable damage were reduced to ruins while others suffered 

heavily between Tekirdağ and Çanakkale. The intensity is given for several localities 

with the maximum damage being assigned as VII MSK (Hecker, 1920). Figure 5.2 

illustrates the damage distribution of the related source. There are no clear 

estimations on the total loss of the event and further information about damage is not 

available for this event. Most of the damage statistics were obtained before 13 

September 1912, thus excluding the effects of the larger aftershock which were 

rather serious in the Gallipoli peninsula but not significant elsewhere (Ambraseys & 

Finkel, 1987). 

 

Figure 5.3 : Photographs showing the earthquake damage due to the 9 August shock. 
(a) minaret of a collapsed and burned mosque of Mürefte. (b) A view 
from Hoşköy showing total destruction. 

5.4. Landslides, Liquefaction and other Co-seismic Phenomena 

Surface faulting of the Mürefte earthquake was associated with remarkable 

amount of landslides. The sizes of the slides were considerably large and attracted 

the predominant interest of researchers among structures related to ground 

deformation (Sadi, 1912; Macovei 1913; Mihailovic, 1927). Several photographs 

document landslides mainly at two localities, at Ormanlı on northern slope of the 

Ganos Mt. and on the eastern slopes of the Kirazlı village (also partly on the slopes 

of the Kirazlı river). Other ground deformations are reported across a large area north 

east from Naibköy, Işıklar, Yenice, Barbaros and Yazı villages and another series of 

cracks are mentioned along the northwest of Esindik, Palamut, Isaklı and Yüllüce, 

Kadıköy and Saros (Mihailovic, 1923). The best documented landslides are at 

Ormanlı and Kirazlı. 
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Figure 5.4 : a) A photograph showing a large landslide north of Ormanlı, which was 
reported by many sources (Sadi, 1912, Macovei, 1913; Mihailovic, 
1927). b) A smaller landslide located close to Ormanlı 

Ormanlı is a small village located 9 km north of the Ganos fault on the 

northern foothill of the Ganos Mt. One of the largest slides occurred close to this 

village and attracted interest of several researches. We read from Macovei (1913) 

that a large crack with a length of ~300m was located north of Ormanlı. The crack 

had an N-S orientation and an opening of 5-6 m decreasing towards south. He notes a 

second fracture in the same vicinity with an ellipsoidal structure of about 50 m. The 

cracks had N-S orientation too and the inner section of the structure sunk for 1-2 m. 

Both structures are documented with photographs (Fig. 5.4). The large cracks have 

also been documented and depicted in detail by Mihailovic (1927). He describes a 

series of cracks up to 347 m in length with a depth of 12 m and a gape of 6 m. Same 
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photographs are also given in his report. The geology of the southern limb of Ganos 

Mt. consists of Late Eocene–Early Oligocene shale of the Mezardere Formation, 

which are poorly consolidated sediments. The topography of this region expresses 

distinct characteristics of landslide morphology.  

Kirazlı is a small village located 3 km south of the Ganos fault on the Panayir 

Hill. Mihailovic (1927) documents a 960-m-long large crack with an opening of 1.2 

m and a depth of 7.5 m. Further descriptions are not available on the structure. This 

area consists of Upper Miocene massive and poorly consolidated sandstones of the 

Kirazlı Formation. Lower altitudes of region expose the Gazhanedere formation 

which is also poorly consolidated. These units experience landslides at stages of high 

ground water level. The 9 August shock triggered also landslides at these localities. 

Ambraseys & Finkel (1987) report additional landslides triggered by the 13 

September shock. Extensive sliding occurred on the central part of the Gelibolu 

(Gallipoli) peninsula; at Galata (Sütlüce) and Baberi (?). Landslides and rock falls 

due to the 13 September event aggravated much of the damage in this region. 

Liquefaction has been reported at many parts of the Ganos and Gelibolu 

region. Widespread liquefaction occurred in the Saros bay, near Kavak, and along the 

Marmara coasts (Şarköy, Mürefte, Hoşköy and Gaziköy). The 13 September shock 

caused also some liquefaction in the Kavak river area and along the Saros coast and 

as well as in the valley of Ganos (Ambraseys & Finkel, 1987; Mihailovic, 1923). 

Other events such as sudden dry outs of springs, or formations of new springs 

are also documented in the Ganos area (Macovei 1912). In Çanakkale (Dardanelles) 

hot water gushed out along the road between the Austrian and English consulates, 

where the earth is described to be opened (Agamennone, 1912, reviewed in Allen 

1913). Beside, outflow of oil and formation of a crater like hole on the coast of 

Eriklice is reported by Macovei (1912, 1913) and Mihailovic (1927). 

5.5. Coseismic Surface Faulting of the 9 August 1912 Earthquake 

Extending from Gaziköy to the Saros bay , the onland section of the 1912 

earthquake rupture has a length of 45 km with an average strike of N69°E. Detailed 

mapping shows that the rupture was nearly pure strike-slip, consisting of splays with 

variable lengths < 2 km, incorporated with step-overs, bends and mole tracks. Similar 
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descriptions were accessible in historical documents describing 50 m to 2 km of 

crack series with an orientation NE-SW, parallel to the mountain chain (Macovei, 

1912). Measurements of co-seismic displacements ranged from 1.2 to 5.5 m. 

Contemporary documents indicate that the rupture zone was generally narrow (< 10 

m), however in flat areas like the Gölcük and Kavak regions, the deformation zone 

was much larger, exceeding several hundred meters. Detailed mapping yield at least 

3 sub-segments on the onland section. These segments are from east to west, the 

Güzelköy, Yeniköy and Saros segments. They range in length from 15-40 km and are 

bounded by right step-over basins. 

5.5.1. The Güzelköy sub-segment: 

The Güzelköy sub-segment is the easternmost onland rupture segment and is 

approximately 29 km long. Its eastern limit is determined by the Ganos bend; located 

15 km offshore of Gaziköy. The western tip of the sub-segment is the Yörgüç basin 

that formed as a ~300-m-wide releasing bend. The mean orientation of the segment 

is N71°E and consists of 3 to 8-km-long sections which are sub-divided into shorter 

sections by right or left stepping jogs. Together with our slip measurements and 

those of Altunel et al. (2004), 30 sites allowed documenting the rupture geometry 

and co-seismic slip of the Güzelköy sub-segment (Fig. 5.5). The maximum slip along 

this segment is 5.5 m and is measured at Güzelköy and Yörgüç. 

The segment is visible on the east at Gaziköy, where the land is densely 

inhabited and modified. As a result, a clear trace of the rupture is not preserved. 

However, contemporary studies illustrate several breaks distributed along the plain 

land and on northern slopes (Fig. 5.6, Mihailovic, 1927). Three groups of breaks are 

distinct in the sketch map. The first group consists of parallel SW-NE striking 

breaks. The second group includes fractures trending NW-SE and forming a 

significant angle to the prior. The last group of breaks are arc-like cracks located at 

the higher parts of the slopes. The SW-NE striking breaks are close and parallel to 

the Ganos fault suggesting that they represent the principle displacement zone. The 

second group are angular to the principle rupture zone and likely to be Riedel shear 

fractures. 



 115

27,33° E

27,33° E

27,3° E27,27° E27,24° E27,21° E27,18° E

40
,7

7°
 N

40
,7

4°
 N

40
,7

1°
 N

0 1km

Gaziköy

Gaziköy

Güzelköy
Mursallı

Yörgüç

Yayaköy

Yörgüç

4.04.6 2.0
5.5

5.0

3.2
5.0

4.04.5 2.4
5.0

5.24.7
3.3

3.34.5

2.2
5.0 3.5

4.1
3.8

1.4
5.0

4.0 2.5
3.9

4.2
4.0

2.65.5

±

compressional
step-over

dilitational
step-over

Shutter ridge
depressions
alluvial fans

Offset No (FigXX)01

Güzelköy segment: strike slip morpholgy and offsets

Armutlu H.

Hoşköy R.

 

Figure 5.5 : The Güzelköy segment is located on the southern limb of Ganos Mountain and follows pre-existing topographic breaks at the base 
of the mountain. It generates shutter ridges, pressure ridge, stream offsets and sagpond. The N71°E average orientation of the fault 
varies ± 5°.  
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Figure 5.6 : Earthquake surface ruptures of the 9 August event in Gaziköy. a) A 
photo-mosaic of north side of Gaziköy. The Ganos fault runs sub-
parallel the large channel following the margin of the alluvial fan. 
Detail on the road offset is given in Figure 5.7. (b)  A map showing 
the north of Gaziköy; prepared right after the earthquake with a 
topographic cross-section to the right (from Mihailovic 1927). Surface 
ruptures and co-seismic deformation are drawn as thick black lines in 
the map. (c) A sketch from Mihailovic (1927) showing earthquake 
damage in a monastery. The arrow in the centre points to North. (d)  
Diagram illustrating the main and secondary faults and fractures in a 
shear zone. We consider the lines oblique to the principle rupture 
direction correspond to Riedel shears and secondary deformations (see 
text for detail). 

A closer view to these structures is illustrated around a monastery at Gaziköy, 

where we see that their orientation resembles noticeably to R and R’ shear fractures 

(Fig. 5.6); we note here that the sense of motion along these fractures is not 
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mentioned in the reports). The arc shaped breaks located on the slope of Ganos 

signify most probably secondary structures like tension cracks or slope failures. 

Mihailovic (1927) reports a 2.5-km-long crack at Gaziköy consisting of short 

sections, which longest is 840 m with an opening of 50-60 cm and a depth of 1.80 m. 

He notes that the south-eastern block of this crack has subsided for 40 cm. The 

descriptions are confident with offshore observations along the western margin of the 

Tekirdağ basin. Similar section lengths and vertical offsets have been measured and 

described for the offshore section of the 1912 earthquake rupture (Armijo et al., 

2005). 

Two road displacements of 3.3 m and 5 m have been documented at Gaziköy 

300 and 1200 m west from the coastline, respectively (Fig. 5.7). The former is on an 

old pavement road, most probably ancient. It displays a cumulative slip of ~12.7 m 

(The history of the Gaziköy village spans prior to the 1st c. B.C.; thus man-made 

structures may record multiple offsets). 

 

Figure 5.7 : Two road offset near Gaziköy. Location of a) is given in Figure 5.5. The 
road appears to be an ancient pavement. We measured 3.3 m of right-
lateral co-seismic and 12.7 m cumulative displacement on this road. The 
inset illustrates the offset in map view. b) Another offset road (~ 5 m) 
located ~1 km to the west. 

The Güzelköy segment bifurcates at a point about 2 km west from the coast 

line. The secondary branch strikes SW from the main branch and runs along the 

southern flank of a stream bed. NNW facing scarps are still well preserved in 
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morphology at this site (Fig. 5.8). The scarps have a left stepping patterns and climb 

towards the higher part of the valley side. We measure a vertical component of~ 0.5 

m. However the total height of the scarp is 2-3 m and indicates successive earthquake 

faulting. The lateral movement has been extracted on a field limit and a stream as 2.2 

m and 2.5 m respectively. This branch is visible for 2 km with a mean strike of 

N60°E before it crosses rural land and disappears. The main northern strand is 

morphologically better pronounced, forming steeper slopes on the northern valley 

wall. The fault trends about N72°E and is associated with several right steps. The 

slight subsidence in this area may be related to a shallow negative flower structure, 

since significant vertical component is not available all along the fault. 

 

Figure 5.8 : A view of the southern branch of the 1912 earthquake rupture near the 
shore of Marmara Sea. Fault morphology and scarps associated with the 
event are still preserved between Gaziköy and Güzelköy. Here we 
measure a total scarp height of 2-3 m, 0.5 m being related to the 1912 
event. 

Contemporary documents note that breaks near Güzelköy extend for 7 to 8 

km (Mihailovic, 1927). They consist of small section 500 to 600-m-long with an 

opening of 30 to 120 cm, and 1.3 to 2.8 m depth. A photograph of a crack near 

Güzelköy illustrates a strike-slip structure (Fig. 5.9). Descriptions on the location 

indicate that the image is taken south of the village, where the rupture crosses a 200-

m-wide saddle. Villagers point this location for surface breaks. Here, the rupture 

constitutes several short right steps revealing a linear depression. Eleven adjacent 

cracks, reaching a total length of 2.5 km are reported by Mihailovic (1927) in this 

region. The cracks are 15-m-wide and have openings from 80 to 130 cm. The 
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descriptions point towards an en-echelon fault pattern diffused in a large zone, which 

is confident with the general fault geometry in the region. 

Twelve co-seismic right lateral displacements have been measured by Altunel et al., 

(2004) at Güzelköy. The measurements correspond to field limits, walls, tree limits 

and streams. They display slips between 1.4 to 5 m (Fig 5.5, Table 5.5). 

 

Figure 5.9 : a) a photograph showing cracks at Güzelköy (from Mihailovic, 1927). A 
sub-linear fracture is accompanied with other oblique openings. A 40 
cm of uplift on one block is mentioned. We note that the uplift is not 
continuous all along the crack. b) map-view sketch of the structure. 
From the lower right, the main principle crack first curves to the right, 
then to the left; respectively the structure shows extensional and 
compressional character. Such deformation is typical on faults with 
right-lateral sense of slip. In addition, the orientation of the cracks on 
the lower part of image is in harmony with Riedel shears. 

West of Güzelköy the rupture strikes N65°E and crosses several streams and 

ridges causing right lateral displacements between 2 – 5 m (Fig. 5.5). The 1912 

rupture has been determined in trenches 2.3 km west of Güzelköy and by offsets of 

5.5 m and 5 m on two paleo-streams (see p.134). Towards west, north of the Armutlu 

H., the fault runs along the edge of an alluvial fan. Here, an east facing slope is 

bounded by two parallel fault scarps accompanied by NW-SE striking minor scarps 

in between (Fig. 5.10). The geometry resembles a relay ramp revealed by right-

stepping of the fault (Woodcock and Fischer, 1986). 

Farther west, Altunel et al., (2000) measures 4 m of lateral displacement on a 

ridge. The rupture strikes N73°E near Mursallı and crosses the village on its south, 

where a ~300-m-long linear depression (saddle) is constituted due to right stepping 

of 50 m. Villagers point a ~0.7-m-high and 200-m-long scarp as the location of the 

1912 rupture, (Fig. 5.11). The total height of the scarp is 1.5 - 2 m. Contemporary 
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photographs are also available for this site. Mihailovic (1927) describes 8-km-long 

and SW-NE oriented surface ruptures at Mursallı (Fig. 5.11). He mentions a saddle 

like structure with a height of 1.7 m as the location of the ruptures. The descriptions 

are identical and most probably correspond to the same locality. The rupture 

geometry, extracted from the photograph illustrates an en-echelon pattern with a 

clear principle deformation zone and a series of obliquely trending fractures, 

consistent with a right stepping faulting. Their orientation indicates that they are 

most probably R shear fractures and/or opening cracks. Similar rupture geometries 

were documented at several localities along the 1999 Kocaeli earthquake (Mw=7.4) 

rupture (Lettis et al., 2002).  

 

Figure 5.10 : Partly preserved traces of the 1912 surface rupture are available east of 
Mursallı. The SW-NE trending fault constitutes a releasing step over. 
The inner part of the step is comprised by small NW-SE scarps. Such 
fault geometry is observed along strike-slip fault systems and are 
called relay ramps (after Woodcock and Fischer, 1986). 

Altunel et al. (2004) and Altınok et al. (2003) report a co-seismic offset on 

the Mursallı road as 3.8 and 4.5 m, respectively (Fig. 5.12c). Using aerial photos 

(from the 1970’s), a larger deflection of 16.5 ± 1 m is visible between two strait road 

sections. We may speculate that this may correspond to a cumulative movement of 

probably 4 events (This is possible since Mursallı is a village older than 800 years. 

On the western part of the saddle, a second road offset of 2.3 ± 0.5 m has been 

measured. The location corresponds to the tip of the southern segment, before it steps 

to the right, and therefore less slip is measured. After the step, farther southwest we 
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determined two stream offsets again with ~4.5 m of right lateral displacement (Fig. 

5.13).  

The rupture veers southward for ~12° where vegetation and hilly topography 

hides the trace of the rupture farther west between Mursallı and Yayaköy. Therefore, 

we rely on cumulative displacements and fault morphology to locate the rupture in 

this region. Offsets at Yayaköy, range between 4 and 5 m (Fig. 5.5) where we 

measure two road offset of 3.5 and 5 m, the latter showing also a cumulative 

displacement of 15 m (Fig. 5.12; Altunel et al., 2004)  

 

Figure 5.11 : Photographs showing the 1912 surface rupture and fault morphology 
around Mursallı. a) Coseismic surface faulting (from Mihailovic, 
1927). The sketch map on the right is extracted from the photograph 
and illustrates the principle displacement zone and the Riedel 
fractures. b) Oblique aerial photo of the village (courtesy of S. Pucci). 
The rupture follows the linear depression located south of the village. 
Numbers show the amount of offsets measured. c) A fault scarp 
located between the two road offset. The 1.5-m-high cumulative scarp 
is constituted of a step of 0.7 m marking individual faulting events. 
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Figure 5.12 : Photographs showing coseismic offsets on roads. a) Güzelköy b) 
Mursallı: Measurements from the aerial photos of 1970’s yield a 
cumulative displacement of 16.0 for the east-side and 16.9 m for the 
west-side of the road. c, d) Yayaköy  e) Yörgüç. The roads show in 
general a deflection along a straight route and they are located on the 
fault. Although the offset parts are partly modified today, they 
general course of the road represent the co-seismic slip. Similar 
offsets and modifications can be observed along the 1999 earthquake 
road offsets (Emre et al., 2003). 

 

Figure 5.13 : A photo-mosaic showing a well preserved co-seismic displacement on 
a stream segment; west of Mursallı. The linear stream bed is right-
laterally shift for about 4.5 m. 
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Between Yayaköy and Yörgüç, the fault trends N75°E with a smooth bend, 

running along the northern flank of a valley where we observe a 0.5-m-high linear 

south facing scarp. We determined a prominent fresh depression at Yörgüç; a 

sagpond of 6 m wide and 15 m long which is most probably constituted by a single 

earthquake event. Villagers claim that this structure is what is left from the 1912 

earthquake. The Güzelköy segment continues for a few hundred meters to the west 

until the releasing bend at Yörgüç. 

5.5.2. The Yeniköy sub-segment 

The Yeniköy sub-segment is 21 km long and bounded by the Yörgüç 

releasing bend on to the east and the Kavak step-over to the west. It displays minor 

branching and consists of discontinuous fault traces, noticeably longer than those 

along the Güzelköy segment. The length of the sections ranges between 4 and 6 km. 

The mean strike is N66°E, but it is associated with several left and right step-overs 

and a bend of nearly 10°. We measure 15 co-seismic displacements across streams, 

roads and field limits, ranging from 1.5 to 5.4 m. Contemporary reports document 

less evidence on surface faulting along this segment and information is mainly 

available through descriptions. 

The segment displays a fairly straight linear geometry between Yörgüç and 

Gölcük. Evidence of recent surface faulting is small sagponds located on the back-

tilted surfaces on northern slope of the Kocadüz Hill (503 m; see p. 61). The hilly 

and forestry topography of this region hinders clear evidence of surface ruptures on 

the morphology. The only coseismic displacement along this part was observed on a 

dirt road at Yörgüç (Fig. 5.12) where Altunel et al., (2004) measured an offset of 5 m 

at this locality. The most prominent geomorphologic  feature associated with surface 

faulting along this fault section are two sag-ponds located 2.4 km east of Gölcük (see 

p. 61). Altınok et al. (2003) report a co-seismic offset of 4.5 m across a stream bed 

on the large valley floor between Yörgüç and Gölcük. Field observations suggest 

however that this apparent offset is most likely due to a landslide on the nearby 

alluvial fan.   

Near Gölcük two contemporary photographs illustrate well a co-seismic scarp 

(Fig. 5.14). They show smooth warping on the ground instead of a mole track pattern 

typical of strike slip surface rupture, implying that here the slip has significant dip 
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slip component. Villagers claimed that prior to the earthquake the scarp was at a 

lower level and reached a 1.80 m height after the event (Mihailovic, 1927). Similar 

morphology was also observed along the 1999 Düzce earthquake rupture, where 

individual scarps with free faces 20–50 cm high lacerate obliquely a cumulative 

normal fault scarp 4 m high, as well with a 1.5 m lateral slip (Armijo et. al., 2005, 

see their figure 6). The scarp in Gölcük was probably generated with comparable 

rupture dynamics. The photograph in Figure 5.14b is taken on the plain land NE of 

Gölcük with a NE view towards the Gölcük stream. 

 

Figure 5.14 : Two contemporary photographs showing the earthquake scarp at 
Gölcük (from Mihailovic, 1927). The height of the scarp is reported 
as 1.8 m. The structures represent a warping rather than clear 
oblique faulting, but similar features were observed along the 1999 
earthquake ruptures (see figure 6b in Armijo, et al., 2005) 

The surface rupture creates a 200-m-wide pull-apart basin as a result of 

several extensional step-overs at Gölcük where Mihailovic (1927) reports cracks 

oriented NE-SW, SSW-NNE and NW- SE in series or as single cracks. He describes 

a 6-km-long surface break with minor divisions is reported at this locality. Indeed, 

the fault runs here, along the northern margin of a saddle parallel to the 5-km-long 

linear ridge (see p 61 & 63). Mihailovic describes another fracture of 1700-m-long 

with an opening of 2.3 m and a depth of 12 m. The breaks are accompanied with 

parallel WNW- ESE striking fractures spread over a wide area. These descriptions 

suggest an en-echelon surface break pattern due to step-over geometry. A subsidence 

of 80 cm is reported for the southern part of the ridge in the inner part of the step-

over. A second group of cracks were reported within the valley floor of the Kavak 

River. They are oriented primarily SSW-NNE, but descriptions are insufficient to 

infer the origin of these fractures. 
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Towards west around Gölcük, the surface rupture shows runs through the 

fault zone that has a complex geometry comprising restraining and releasing bends 

and step-overs. The fault continues towards west with a strike of N61°E and crosses 

a valley that displays a cumulative offset of 181 m (see p 74). The area between 

Gölcük and Yeniköy has a dense vegetation cover and is a highly hilly region. As a 

result, the trace of the rupture is hardly preserved on this section, along which there 

are several deeply incised valleys and fault-parallel steep ridges. We observe three 

sagponds located 3 km east of Yeniköy that are aligned along an 80 m section, with 

increasing size towards west. The smallest pond most probably occurred during the 

1912 event. We measured an offset of 2.5 m on a ridge next to the ponds (Fig. 5.15). 

Farther west the rupture forms a 10° restraining bend with a step of ~500 m. 

Numerous coseismic offsets with significant amount of slip have been 

observed across the farm fields and streams between Sofuköy and Yeniköy. For 

example, Altunel et al. (2004) reported six coseismic displacements ranging between 

4 and 5.5 m (Fig. 5.16). Mihailovic mentions distributed?? fractures orientated NE-

SW parallel to the fault (i.e. N73°E) within the plain land between Sofuköy and 

Yeniköy. On the other hand, villagers claim two locations for surface breaks, one on 

the hill slope south of Sofuköy where we see the field limit offsets (Fig. 5.15) and 

one to the west and southwest of the village. They also claim a surface break running 

along the SW-NE striking linear crest of the Sofuköy ridge that continues into the 

valley located on the SW. Field observations yield that the fault consists of several 

branches at this vicinity. The 1912 surface rupture probably splayed into at least 2 

branches. Altunel et al., (2004) measured a road offset of 5.2 m at Yeniköy and a 

stream offset of 4 m one kilometre further west that are located on separate branches. 

Detailed mapping shows that the fault forms a 200-m-wide releasing bend within 900 

m. The orientation of the fault changes to N53°E and than back to N70°N gradually. 

Farther west of Yeniköy, the rupture can be hardly traced since the topography is 

smooth and lateral displacements are less distinct. We measured a minimum of 1.5 m 

displacement on a field limit. A small sagpond of 5 m x 2 m in size implies recent 

earthquake faulting. We determined a significant deflection on a linear road section 

about 300 m west of this sagpond. Altunel et al (2004) report a co-seismic slip of 4 m 

on a road adjacent to a large depression bounded by a 1.5-m-high fault scarp (Fig. 

5.16) where we also measured a total slip of 15 m.  
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Figure 5.15 : The Yeniköy segment runs mostly along the northern limb of the Doluca Hill. Recent faulting is evident by stream, road and field 
offsets and sagponds. The mean strike is N66°E comprising bends of 10°.
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Figure 5.16 : The top figure shows well preserved offset field limits south of Sofuköy. A break in the hill slope is significantly, representing the 
1912 earthquake scarp. Additional offsets have been documented west of Yeniköy. b) illustrates a fresh shutter ridge penetrating 
for 5 m into the stream bed. c) A poorly preserved field limit offset of 1.5 m. Although the offset is minor, faulting is evident by 
the sharp contact in the lithology adjacent to the fault. Note the difference in soil colour north and south of the fault. d) A road 
offset determined 2.5 km west of Yeniköy. The road shows a co-seismic offset of 4 m (Altunel et al, 2004) and a cumulative slip 
of 15 m. 
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The rupture runs further west crossing obliquely the Yeniköy-Kavak road. 

The topography towards west is fairly smooth and altered by agricultural activities 

and thus the presence of the fault is indicated by long linear saddles. The Yeniköy 

sub-segment reaches to the Kavak Lake where the fault makes a large step-over and 

jumps to the Saros sub-segment. 

5.5.3. The Saros sub-segment 

The onland portion of the Saros sub-segment is about 8 km-long and strikes 

approximately N66°E, running along the northern margin of a SW flowing stream on 

the flat land of the Evreşe plain. The fault appears to have a linear geometry and be 

localized in a narrow zone. The most obvious morphologic feature indicative of an 

active fault is a large sagpond located at the coast of Saros only (Fig. 4.19, p. 67). 

Traces of the 1912 rupture could not be observed since the marshy land is occupied 

with heavy vegetation. Here in this area, the 1912 earthquake faulting is only 

documented in trenches at Kavak and reported to be about 4.5 m by Rockwell et al, 

(2001, 2009; see p 176 for detail). Surface breaks at Kavak and close to the coast are 

reported in several historical accounts (Mihailovic, 1927; Sadi, 1912; Macovei 

1912). Mihailovic (1927) describes large holes opened in the entire plain. Series of 

parallel cracks occurred in orientation SW-NE in the same orientation as the fault.  

In conclusion, although the field support for the presence of the fault is rather 

weak, paleoseismic trenching and historical documents provide strong evidence that 

the 1912 earthquake ruptured the Evreşe plain at the Kavak region and continued for 

some distance into the Gulf of Saros. 

5.6. Slip Distribution, Focal Mechanism, Fault Segmentation, and Rupture 
Dimension and Geometry 

Slip Distribution: Ambraseys and Finkel (1987) suggest that surface ruptures 

during the 9 August 1912 earthquake present a maximum of 3 m right-lateral slip 

with a significant normal component. The offsets measurements of Altunel et al. 

(2004) are not evenly distributed all along the Ganos Fault since they cluster at some 

localities with gaps at the two tips around the Marmara and Saros coasts. In this 

study we provide additional slip measurements and fill these gaps by raising the 

number of measured sites from 31 to 45 along the fault (Fig. 5.17).  
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Table 5.6 : List of 44 co-seismic offsets measurements of the 9 August 1912 rupture. 
See appendix A2 for locations. 

Name Km 1912 Error Quality Cumulative Error REFERENCE 

Gaziköy – road 2 0.33 3.30 0.30 2 12.70 1.00 This study 

Gaziköy – road 1 1.22 5.00 0.50 3   This study 

Gaziköy - creek/field 1 1.90 2.50 0.30 2   This study 

Gaziköy - field 2 1.93 2.20 0.30 3   This study 

Güzel - Lstream East 3.47 3.18 0.50  17.80 0.50 Altunel et al., (2004) 

Güzel - pavement 3.88 2.60 0.10    Altunel et al., (2004) 

Güzel - Chanel 3.94 1.40 0.12    Altunel et al., (2004) 

Güzel - wall 3.97 3.28 0.15    Altunel et al., (2004) 

Güzel - Champ 4.00 4.22 0.30    Altunel et al., (2004) 

Güzel - tree limit 4.03 4.05 0.20  7.04 0.30 Altunel et al., (2004) 

Güzel - Stream West 4.04 4.00   8.00  Altunel et al., (2004) 

Güzel - Lstream West 4.13 4.00   12.60 0.20 Altunel et al., (2004) 

Güzel - Stream bed1 4.41 2.00 0.30    Altunel et al., (2000) 

Güzel -Stream bed2 4.48 2.40 0.30    Altunel et al., (2000) 

Güzel - Stream bed3 4.55 5.20 0.30    Altunel et al., (2000) 

Güzel - Stream 8 4.67 4.70 0.30  12.10 0.30 Altunel et al., (2004) 

Güzel - paleostr - East 5.64 5.51 0.50  20.00 0.50 Altunel et al., (2004) 

Güzel - paleostr - West 5.67 5.00 0.50  8.40 0.50 Altunel et al., (2004) 

Mursalli - ridge 8.17 4.00   26.00 1.00 Altunel et al., (2000) 

Mursalli - road 8.56 3.80 0.20    Altunel et al., (2004) 

Mursallı – stream 9.06 4.60 0.40 1   This study 

Mursallı – stream 9.07 4.50 0.40 1   This study 

Yayaköy – road East 11.25 3.50 0.50 1   This study 

Yayaköy - Lstream 12.40 4.00   12.50 0.50 Altunel et al., (2004) 

Yayaköy - Stream 12.25 3.90 0.30    Altunel et al., (2004) 

Yayaköy - road 12.26 5.00   15.00 0.50 Altunel et al., (2004) 

Yaya W field 12.79 5.00 0.50 1   This study 

Yayaköy stream 13.10 4.50 0.50 1   This study 

Yörgüç - ridge 13.77 5.50   11.00 0.50 Altunel et al., (2000) 

Yörgüç - road 14.31 5.00 0.20    Altunel et al., (2000) 

Sofuköy E sagpond 27.28 2.50 0.30 2   This study 

Yeniköy - Field house 29.80 5.40 0.20    Altunel et al., (2004) 

Yeniköy - Field East 29.82 5.30   10.60 0.50 Altunel et al., (2004) 

Yeniköy - Stream East 29.87 3.57 0.20  17.10 0.50 Altunel et al., (2004) 

Yeniköy - Field StrEast 29.88 4.08 0.20    Altunel et al., (2004) 

Yeniköy – tree 29.93 3.90 0.10    Altunel et al., (2004) 

Yeniköy - Stream West 29.95 4.28 0.10  35.00 0.50 Altunel et al., (2004) 

Yeniköy – road 30.70 5.20 0.30    Altunel et al., (2004) 

Yeniköy NNW 31.63 4.00 0.20  30.00 0.50 Altunel et al., (2004) 

W-Yeniköy field 32.34 1.50  1   This study 

W-Yeniköy road 33.04 4.00 0.50 2 15.00 1.00 This study 

W-Yeniköy 34.50 4.50 0.20    Altunel et al., (2004) 

Kavak lake east2 34.84 3.20  2   This study 

Kavak lake east1 35.12 1.50  2   This study 

Kavak - trench 42.91 4.50 0.20  9.00 0.20 Rockwell_etal_2002 
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Although the right-lateral offsets range from 1.4 to 5.5 m, most of them are 

greater than 3 m simply because only the large offsets are better preserved about 100 

years after the earthquake. Offsets larger than 5 m were measured along the 

Güzelköy sub-segment where we also observe the maximum slip of 5.5 m. Large 

displacements reach to 5.4 m of right-lateral slip on the eastern tip of the Yörgüç 

sub-segment and at Yeniköy (Altunel et al., 2004). 

Based on paleoseismic trenching studies on the Saros sub-segment near the 

coast, Rockwell et al., (2009) estimate a right-lateral offset of 4.5 m due to the 1912 

earthquake. The overall slip distribution shows an average of 3 m with two peaks of 

4.5 and 5 m at the western and eastern fault tips of Saros and Gaziköy, respectively. 

This implies that the 1912 rupture necessarily continued offshore into the Saros bay 

and Marmara Sea (Fig. 5.17). 

Armijo et al. (2005) observe 6 ± 1 m right-lateral slip on a displaced ridge in 

the centre of the Tekirdağ sub-segment on the sea floor and attribute this to the 1912 

earthquake. However, both the ridge and the scarp may as well include the 

penultimate faulting event at this location. Ustaömer et al. (2008) present an 

impressive fresh fault scarp that cuts the Saros shelf and the Saros basin further west 

showing ridges and stream channels with clear cumulative right-lateral offset that 

likely includes the 1912 event. 

 

Figure 5.17 : Fault pattern of the Ganos segment and slip distribution of the 1912 
earthquake sequence. Sub-segments along the fault zone indicate 
geometrical complexities. The 140 ± 20 km total fault length includes 
the 9 August and the 13 September earthquake ruptures. Offshore slip 
values (green triangles) in the Marmara Sea are from Armijo et al. 
(2005) which appear larger than the onland measurements as they may 
include a prior coseismic slip. 
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Focal Mechanism: We collected 73 historical seismic records from institutions 

worldwide in order to determine the seismic characteristics of the 9 August and 13 

September 1912 earthquakes. P-wave polarities at 5 stations and field based N68°E 

fault strike allow us to construct the focal mechanism solution shown in Fig 5.3. The 

pure strike slip solution we obtained is in agreement with the known fault kinematics 

and slip measurements that do not show a significant vertical component. 

Geometrical complexities of the 1912 rupture: Our detailed study on the onland 

fault geometry allows determining the segments of the Ganos fault. Here, we only 

summarize this pattern and use the fault geometry and related complexities in order 

to estimate a total length for the 1912 earthquake ruptures. 

The N68°E trending fault onland is made of three sub-segments; from east to 

west, Güzelköy, Yeniköy and Saros that are separated by pull-aparts smaller than 1 

km in width (Fig. 5.17). The Güzelköy sub-segment is about 30 km long and 

bounded to the east by the Tekirdağ bend and to the west by the Yörgüç releasing 

bend. West of the Yörgüç basin, the ~22-km-long Yeniköy sub-segment continues as 

a straight single fault forming a restraining bend west of the Gölcük pull-apart basin. 

The segment is limited to the west by the Kavak Lake (i.e., 550-m-wide pull-apart) at 

its western tip. West of Kavak Lake the fault runs into the Gulf of Saros where a 40-

km-long submarine fault segment is observed. 

The offshore fault scarps mapped by Armijo et al., (2005) and Ustaömer et al. 

(2008) suggest that the 1912 rupture extends offshore at both ends on submarine fault 

segments (Fig. 5.2, 5.17). Having a significant normal component, the Central Basin 

fault section is ~11 km long and trends N77°W.  Trending N88°E the Western High 

sub-segment is about 20 km long and shows nearly pure strike-slip fault morphology. 

To the west of the Western High sub-segment is the 16-km-long Tekirdağ Basin sub-

segment that runs along the southern boundary of the basin with a strike of N78°E 

and terminates at the Tekirdağ bend. The Saros sub-segment continues offshore as a 

fairly linear fresh scarp for about 30 km in the shelf, and terminates to the west at a 

~50-km-long and 5-km-wide half-graben named the Saros Basin (Ustaömer et al., 

2008; Fig. 5.2, 5.17). 

The analysis of the onshore and offshore fault geometry indicates that the 

only major barriers to the earthquake rupture propagation are the Saros and Central 
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pull-apart basins (cf. Wesnousky, 2006). These barriers are comparable to the 

Çınarcık and Düzce basins that stopped the 1999 Izmit earthquake rupture 

propagation (Barka et al., 2002). On the contrary, Le Pichon et al. (2003) and Altinok 

et al. (2003) suggest the 9 August rupture stops at the Tekirdağ restraining bend. 

The total rupture length: The size of the earthquake is given as Ms = 7.3-7.4 in 

previous studies (Ambraseys & Finkel, 1987; Ambraseys, 2001) which corresponds 

to a seismic moment 1.6 x1019 Nm (Ekström & Dziewonski, 1988). Using 2.5 m 

average slip, a fault width of 15-16 km and a shear modulus of 3  1011 dyne/cm2 

the seismic moment yields 120 ±20 m rupture length (Aki, 1966, Kanamori, 1977). 

Similarly using the Ms 6.8 magnitude for the 13 September we deduce a 30 ± 10 km 

of rupture length for this event. 

In addition, using seismic records of the 9 August and 13 September shocks 

we perform a deconvolution modelling and obtain a ~40 seconds source duration for 

the first shock (see p. 200 for detail). This implies a 120 ± 20 km-long rupture taking 

into account an average rupture velocity of 3 km/s. This is consistent with the 

earthquake size (Mw 7.4) and confirms that a significant portion of the earthquake 

rupture must be offshore (Fig. 5.17). 

The total rupture length assessment should include both events and sums up 

to 150 ± 20 km. A rupture length of 120 km and the suggested eastern termination 

point from LePichon et al. (2003) and Altınok et al. (2003) for the 9 August shock 

requires the 13 September earthquake epicentre be located far west beyond the 

Dardanelles. However, such a scenario fails to explain the damage distribution given 

by Hecker (1920) and the epicentral location estimated by Ambraseys and Finkel 

(1987). Therefore, rather than towards the Saros Bay, the 9 August rupture must have 

propagated mostly into the Sea of Marmara and, once crossed the restraining bend, 

necessarily reached the Central Basin in agreement with Armijo et al. (2005) study. 

This implies a 150 ± 20 km total rupture length including (i) the three sub-segments 

in the Sea of Marmara (~ 65 km) beginning from the Central basin, (ii) the onland 

fault section (~ 45 km) and (iii) the Saros Bay sub –segment (~ 40) limited by the 

Saros pull-apart basin. 
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Figure 5.18 : We provide a focal mechanism for the 9 August 1912 Mürefte 
earthquake constrained by P-wave polarities at 5 stations and field 
based azimuth of N68°E for a pure strike-slip fault. The suggested 
mechanism is consistent with other strike-slip solutions for the eastern 
and western part of the Ganos fault. The red and yellow lines indicates 
the suggested 9 August and 13 September surface ruptures, 
respectively. 

Therefore, the eastern termination of the 9 August 1912 rupture and the 

western termination of the 1999 earthquake rupture (Cakir et al., 2003) imply a 

minimum 100-km-long seismic gap in the Sea of Marmara (Fig 5.3). This fault 

length suggests an earthquake size M>7 that should be taken into account in any 

seismic hazard assessment for the Istanbul region. 
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6. PALEOSEISMOLOGY ALONG THE GANOS FAULT 

Paleoseismology is a relatively young earth science branch in active tectonic 

studies that investigates past earthquakes in geological deposits (Wallace, 1999; 

McCalpin 1996). Surface rupture of significantly large earthquakes can be buried and 

preserved at sites where depositional conditions are present. Trenching at appropriate 

sites may expose past surface ruptures and will allow establishing the faulting event 

chronology for a fault section. Paleoseismological studies are better constrained if 

correlated with a completed historical catalogue that allows the calibration of past 

faulting events identified in trenches. Historical documents clearly note that many 

urban places, in and around the Ganos region, were struck several times by large 

earthquakes (M>7). The evidences are based mainly on coseismic damage and lack 

of any geological evidence. Hence the precise earthquake locations are approximate 

and in consequence the related fault sections can not be well identified. This is 

particularly difficult in regions where faults are offshore; such as the Sea of Marmara 

region. However, the damage and descriptions of those large earthquakes imply that 

they were associated with surface ruptures and significant amount of co-seismic slip 

(Ū>0.5 m). 

The historical seismicity section (p. 34) outlined that at least 16 earthquakes have 

considerably affected the study area since BC 360. 
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The epicentral areas for most of these events are not well established. The 

best determined event is the 1912 Mürefte earthquake, which surface ruptures are 

evident along the inland section of the Ganos fault. However the locations of the 

earlier events are not well constrained and require further investigation. 
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In this work, we use paleoseismic trenching in order to document faulting 

events of past earthquakes in the Ganos region. Intensive mapping along the Ganos 

fault allow us constraining the earthquake rupture of 9 August 1912 Mürefte 

earthquake. The earthquake fault geomorphology is critical for paleoseismic site 

selection in order to determine the timing and co-seismic slip of past faulting events. 

We selected three sites (Güzelköy, Yeniköy and Yörgüç), where we expected to 

observe evidence of past surface faulting within a continuous late Pleistocene and 

Holocene stratigraphy. The trench sites were chosen in order to obtain an evenly 

distributed location along the 45 km inland fault section. The easternmost trenching 

study was conducted at Güzelköy. Towards west, two sites were investigated, at 

Yörgüç and Yeniköy located in the central section of the Ganos fault (Fig. 6.1). Our 

paleoseismic investigations complement prior paleoseismic studies conducted at 

Saros site located on the westernmost fault section (Rockwell et al., 2001, 2009). 

Each trench site and related analysis is presented separately in the following 

paragraphs. 

 

Figure 6.1 : The 1912 earthquake caused significant surfaces ruptures along the 
inland section, which allowed determining suitable sites for 
paleoseismic trenching. Trench sites are indicated with green boxes. 
Number next to the fault correspond to right lateral coseismic offsets 
of the 1912 event. 
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6.1. The Güzelköy Trench Site 

The Güzelköy paleoseismic site located ~5.8 km west of the Marmara 

coastline belongs to the eastern Ganos fault section. Between Gaziköy – Güzelköy 

several markers document the active deformation of the North Anatolian Fault by 

shutter-ridges, streams offsets and scarps (Fig. 6.2, 6.3). Here, the fault zone is 

approximately 200 m wide and splays into three strands; ~1 km east of the trench 

site. Cumulative displacements of stream beds and ridges indicate that the slip occurs 

dominantly on the northern most strand. Detailed mapping enabled to determine 

evidence of recent earthquake faulting, such as continuous fresh fault scarps and co-

seismic offsets of the 1912 earthquake rupture. Offset measurements at the trench 

site yield 5.5 m maximum coseismic displacement. 

 

Figure 6.2 : Fault map of Güzelköy region showing the fault splays, co-seismic slip 
(white boxes, meter) of the 1912 earthquake and the location of the 
trench site (dashed black line). Offset measurements of Altunel et al., 
are given as green boxes, yellow boxes correspond to measurements 
from this study. 

6.1.1. Earthquake geomorphology and paleoseismic site selection 

The selected site consists of two main parallel and sporadic stream channels 

flowing nearly north-south on ~ 20° slope upstream and ~ 10° downstream (Fig. 5 a). 

The geology of the site consists mainly of Oligocene - Eocene flyschs and turbidites 
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of the southern limbs of the Ganos Mountain. The streams and related eroded 

material (mainly alluvial deposits and slope debris) are deflected and dammed by a ~ 

150-m-long and ENE-WSW trending shutter ridge made of flyschs. The western 

stream shows a small deflection and incision on the flat lying alluvial units. The 

eastern stream channel presents a significant incision of nearby hills with an alluvial 

fan and a larger deflection than the western stream. Although the alluvial fan buries 

all geomorphic structures, the fault zone is here precisely traced from the two 

deviated streams and a displaced substratum ridge block of the crest in between 

streams (Figure 6.3).  

 

Figure 6.3 : Aerial photo of the Gaziköy-Güzelköy section of the NAF. The Ganos 
fault (white arrows) offsets several streams and ridges in the region. 
The trench site is given in the inset, where the stream offsets (dashed 
lines) and the ridge offsets (ellipses) are indicated. The two streams 
west of T2 show a good example of how stream bed capturing may 
occur by successive right-lateral motion. Additional lateral slip will 
connect the eastern stream to the southern channel, as observed south 
to the fault. (Aerial photo by Puchi, S.) 

A micro-topographic survey with up to 9000 levelled points (of channel 

edges and centres, hill crests, flat and slope areas, and shutter ridge) was conducted 

at the site using a Wild TC1800 total station (Fig. 6.5). Data was collected with an 
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array of ~ 0.5 m to document all the morphological characteristics associated with 

past fault movements. The channel boundaries that are well preserved in the 

morphology allows to measure 10.5 ±0.5 m and 19 ±1.5 m of cumulative right-lateral 

offset for the western and eastern streams, respectively. In addition, the displaced 

basement block ridge provides 29 ±1.5 m of right-lateral cumulative slip. Taking into 

account the fault zone and the shutter ridge position, the eastern stream alluvial fan 

deposits indicate the potential for recording past channel successive offsets and well 

preserved paleoseismic data. The present-day erosional and depositional conditions 

of the site determine the three dimensional trenching scheme that enables the 

documentation of successive earthquake faulting and related offset. 

6.1.2. Paleoseismic trenching 

We have excavated 7 trenches near the eastern stream of the Güzelköy site 

and in between the hill slope (to the north) and the shutter ridge to the south (Fig. 

6.4). Each trench-wall grid was also levelled in order to correlate the stream offset 

with the buried offset features and to obtain a 3D view of trench-walls with respect to 

the fault zone and associated geomorphology. Trenches T1, T2 and T4 are north-

south trending and dug across the fault (Fig. 6.4) in order to pinpoint the fault 

location in relation with the micro-topography and stream deviations, and study the 

repeated fault movements and their relation to colluvial wedges. Trenches T3, T5, T6 

and T7 are ENE-WSW to E-W trending and dug parallel to the fault zone in order to 

study the stream channel deposits and deflection as a function of the successive fault 

movements. All trenches display coarse to fine alluvial sedimentary units and slope 

debris material that provide the potential for recording the successive earthquake 

faulting. We present below the stratigraphic layers of alluvial and slope deposits for 

both the cross-cutting and parallel trenches (Table 6.1). 

Stratigraphic succession: 

Trench 1 was dug on the left bank of the eastern stream and across a small 

scarp that may correspond to a remnant of the 1912 rupture. The trench is 35-m-long 

and deep enough to reveal a ~ 5-m thick succession of alluvial coarse, fine gravels 

and sandy silty units. Trench 1 revealed a complex fault zone with several rupture 

branches and associated colluvial deposits. We logged in detail the northern trench 

section close to the fault. 
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Figure 6.4 : The image on the left shows the topographic map of the area obtained by micro-topo survey with 9000 points. A cumulative offset 
of 10.5 ± 05 m and 29 ± 1.5 m is measured on the stream and ridge, respectively. The image to the right gives a closer view to the 
trench site, where fault and trench locations and related offset of determined structures are given. 
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Figure 6.5 : The eastern trench wall of T1 
showed clear evidence of past 
earthquake faulting and 
related colluvial sediments. 

A massive red sandy-silt deposit with 

clasts lying on a white sandy clay 

(unit w in figure 6.7) is visible at the 

trench bottom and north to the fault 

zone (Fig. 6.6, 6.7). South of the fault 

zone, unit g made of clasts in reddish 

sandy-silt covers unit s and 

corresponds to a minimum 1-m-thick 

colluvial deposits with the matrix 

probably resulting from a re-worked 

unit s. Units a, c, and d correspond to 

an accumulation of colluvial wedges 

with less than 0.5 m thickness near 

the fault zone and may result from 

fault scarp degradation. Units b, e 

and f are colluvial deposits made of 

sandy gravel mixed with alluvial 

deposit (small channels) and with 0.2 

to 0.5-m constant thickness across 

the fault zone. Unit e which is a light 

colluvial unit with clay layers 

overlain by sandy clay deposits shows some materials within the fault zone. Unit f is 

made of mixed colluvial deposits with sandy-silty layers with alluvial fine gravel and 

channel structures down-slope. The succession of colluvial units that appears next to 

the fault zone illustrates the previous faulting episodes. 

Trench T2 is ~25-m-long and located across the fault in between the 

displaced basement block and the hill slope (Fig. 6.2, 6.3). The trench log shows 

north of the fault zone mainly unit s (massive red sandy-silt similar facies of the unit 

in trench T1) and south of the fault zone a 1.5-m-thick lacustrine deposits (fine and 

laminated silty-clay layers, unit x3) overlaying unit x2 made of laminated sandy-clay 

with intercalated coarse gravels and unit x1 with well stratified coarse alluvial 

deposits (Figure 6.7). Unit x3 is overlain by unit d, a ~ 0.1 m-thick laminated light 

clay that ends the lacustrine sedimentation. The lacustrine deposits rapidly wedge-out 
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near the main fault zone and further south across a secondary fault which suggest a 

tectonic control of sedimentation on a small pull-apart basin. The stratigraphic 

succession continues with unit c made of stratified fine gravel laying conformably on 

unit x3 and they both show a significant tilt (~ 20°) towards the nearby main fault 

zone fault (fz in Figure 6.7). Unit b consists in loose sandy gravel with small 

channels and  

 

Figure 6.6 : Trench log of the eastern wall of T1 showing the fault zone, earthquake 
ruptures and related colluvial wedges. 

 

Figure 6.7 : The western trench wall of T2 showed a larger fault zone compared to 
the one in T1. Several faulting events are evident in this trench, 
however contamination in the charcoal samples did not allow 
obtaining proper radiocarbon dating results. 
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covers with unconformity units x3, 

d and c. The fault zone is here ~ 4 

m wide and consists in the main 

fault zone fz and several branches 

that affect alluvial and lacustrine 

deposits (unit x3). 

Trenches T3 to T7 display channel 

structures. Trench T3 is ~40-m-long 

parallel and close (~ 2 m) to the 

fault, connects T4 with T2 and 

displays a sharp unconformity of a 

buried channel on the massive red 

sandy-silt (unit s). The paleo-

channel is asymmetric (deepest 

units close to the east) and shows a 

succession of coarse gravel at the 

base (unit l, Fig. 6.8) overlain by 

well-sorted fine and coarse gravel 

layers (unit k) and fine gravels 

mixed with sandy layers of 

overlapping small channels (unit j Fig. 6.8). Trench T4 is ~20-m-long also dug 

across the fault and shows a ~ 2-m-thick well-sorted fine and coarse gravel deposits 

mixed with sandy layers of small channels (unit j) overlapping the massive red 

sandy-silt (unit s). The fault sharply limits colluvial deposits to the north from ~ 1.5-

m-thick fine gravel deposits (unit j) to the south (also visible in trench T6). Fault 

branches visible at the trench base are overlain by unit j. At the top of trench wall, 

the fault zone is buried by young channel deposits. 

Trench T5 is ~ 13-m-long, parallel and the only excavation located in the 

northern fault compartment (Fig. 6.5). Field observations on the left bank alluvial 

terrace and related coarse pebble and gravel leaded us to infer the existence of a 

buried channel east of the stream. In fact, the trench log of Figure 6.10 shows a 

paleo-channel with coarse gravels at the base (unit l) and stratified and well-sorted 

fine and coarse gravels (unit k) and fine gravels mixed with sandy layers of small 

Figure 6.8 : The asymmetric channel 
geometry is clearly visible 
in T3. The light coloured 
unit s is truncated by the 
reddish units l and k. 
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channels (unit j) overlapping with colluvial deposits. The channel incised in the 

massive red sandy-silt deposit with clasts (unit s) and is overlain by a succession of 

colluvial deposits that also cover a remnant alluvial terrace. Trench T6 is also 

parallel to the fault but dug immediately south (~ 1 to 2 m) of the fault as traced from 

T1, T2 and T4 (Fig. 6.5). The trench exhibits a succession of ~ 1.5-m-thick paleo-

channel deposits incising the massive red sandy-silt deposit with clasts (unit s, Fig. 

6.11). Within the channel, the lowermost deposit is made of coarse gravel and pebble 

(unit l) overlain by well-sorted fine and coarse gravels (unit k). On the top, unit j 

made of fine gravels mixed with sandy layers of small channels truncates 

considerably unit s. Trench T6 is ~ 10-m-long nearly orthogonal to and cutting T4 

with unit j having a similar texture and structure in both trenches.  

 

Figure 6.9 : Log of trench T3 illustrating the asymmetric channel geometry. See 
figure 6.4 for location.  

 

Figure 6.10 : T5 is located to the north of the fault and exposes a buried channel 
comparable with channel observed in T3, T4, T6 and suggests 11 ±1 
m right-lateral offset. 
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Figure 6.11 : T6 is located south to the fault and shows the offset part of the buried 
channel. 

 

Figure 6.12 : T7 is the southernmost fault parallel trench. The trench walls exposed 
an asymmetric channel geometry and eastward migrating channel 
deposits. Several samples were collected and dated from to determine 
the age of the channel. 

T6 was also dug proceeding eastward beginning from T4 in order to meet the edge of 

alluvial deposits and channel and related unit s below (Fig. 6.5, 6.11). The geometry 

of channels as deduced from both walls of trenches T3, T4 and T6 suggests the 

existence of two parallel channels and related alluvial fans also indicated by units l, k 

overlapped by unit j. The objective was also here to compare channel deposits and 

related offset of eastern edges between channels in T5, T6 and T3 (Fig. 6.9, 6.10, 

6.11).
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Table 6.1 : List of units observed in the trenches and their descriptions. 

Unit Description 

a Soil 

b colluvial unit, light, loose, sandy gravel; alluvial deposit (small channels) 

c Reddish colluvial wedge and stratified fine gravel 

d sandy gravel with mixed light silty layers 

e1 Light colluvial unit with clay layers 

e2 Sandy clay 

f Mixed sandy-silty unit alluvial fine gravel (channel) 

g clasts in reddish sandy-silt 

s Massive red sandy-silt with clasts 

fz Fault zone with shear fabric (oriented clasts and gravel) 

j Well-sorted fine and coarse gravel unit (uppermost channel deposit) 

k Stratified alluvial deposit (with channels) 

l lowermost channel unit (coarse gravel) 

oc Old channel unit (coarse gravels) 

col Colluvial deposit (clast in sandy-silt) in trench 5 

s Massive red sandy-silt with clasts 

 

Paleoearthquake analysis and faulting events 

The paleoseismic study aimed here to correlate the successive earthquake 

faulting in cross-cutting trenches with the right-lateral offset as observed from 

deflected stream channels. The timing of successive faulting episodes is constrained 

using 25 dated samples of charcoal fragments pieces and organic-rich sediment. 

Table 6.2 shows the analytical characteristics of 39 samples, their corresponding unit 

in Figures 6.5-6.11, and the radiocarbon dating. All radiocarbon dating (Table 6.2) 

are calibrated using 2σ age-range and 95.4% probability density using Oxcal v4.0 
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(Bronk Ramsey, 2001) programme and INTCAL98 calibration curve of Stuiver and 

Rymer (1998). 

Trench T1 

Trench T1 shows near the surface the most recent faulting event and fault 

scarp that may likely correspond to surface rupture of the 9 August 1912 earthquake. 

The shear zone is ~ 0.5-m-thick and appears as several fault branches that show a 

positive flower structure and reverse faulting geometry. The trench log reveals the 

succession of colluvial wedge units d and c next to the fault zone resulting from past 

surface rupturing events, similarly to unit a that postdate the 1912 earthquake. 

Colluvial unit b made of light loose sandy gravel mixed down-slope with alluvial 

deposit (small channels) truncates previous deposits and shows ~ 0.25 m vertical 

separation on the fault which can be correlated with event Z (1912 earthquake). Unit 

c is a reddish colluvial wedge with sorted fine gravels faulted by event Y and buried 

by unit b. The timing of event Y is difficult to infer because of the probably 

reworked detrital charcoal present in sample TG1-E11 and related old age (BC 1057 

– AD 401, Table 6.2).Unit c probably results from the erosion of a previous fault 

scarp and the faulting event that affects colluvial wedge d corresponds to event X.  

Unit d made of well stratified sandy gravels mixed with colluvium and light 

silty layers provides two consistent radiocarbon ages AD 1271-1404 and AD 1279-

1679 that predate events X, Y and Z. Unit d which has a distinct texture and colour 

may result from fault scarp degradation and faulting event W. Colluvial units f and e 

are comparable to unit b and their constant thickness across the fault indicates that 

they do not result from fault scarp degradation. However, colluvial units e and f are 

faulted by event V and buried by unit d. 

The uppermost layers of e (unit e2) provide two consistent C14 ages AD 79-

230 and AD 83-428 and AD 653-769 that predate faulting event V. Near the fault 

zone, the gap in sedimentation of e2 may correspond to a lack of earthquake record. 

Although the erosional surface between units f and g may also indicate the probable 

occurrence of a significant sedimentary truncation and erase of earthquake record, 

the uppermost layers of unit g provides the radiocarbon age BC 1042-835 that also 

predates past faulting events indentified in trench T1. 
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Table 6.2 : List of collected samples and related radiocarbon dating results. 

Sample Name 
Trench 

Unit 

Amount of 
Carbon 

(mg) 

d13C 
(%) 

Radio-
carbon age 

(BP) 

Uncertainty  
( ± years) 

Calibrated age 
(+=AD) 2 range 

TG1-E03 g 3,77 -24,72 2802 39 -1042 -835 

TG1-E07 e 0,24 -24,18 1760 75 83 428 

TG1-E08 d 0,3 -32,75 660 55 1271 1404 

TG1-E09 e 1,34 -24,09 1330 25 653 769 

TG1-E10 d 0,1 -34,88 450 +140/-130 1279 1679 

TG1-E11 c 0,05 -30,51 2290 +310/-300 -1057 401 

TG1-E12 e 3,47 -24,9 1865 30 79 230 

TG2-W01 x1 1,26 -22,56 29840 +470/-440 - - 

TG2-W06  0,96 -23,83 2395 40 -759 -390 

TG2-W15 b 0,13 -24,57 5550 200 -4805 -3963 

TG2-W16 c 0,08 -24,33 1770 +1580/-1320 -23261 -15435 

TG3-S100 l 0,32 -25,35 235 60 1481 1898 

TG3-S102  0,19 -25,99 >1954    

TG4-E02  0,3 -29,69 535 45 1304 1443 

TG4-W01  5,7 -24,79 345 20 1480 1635 

TG4-W01  3,5 22,45 340 20   

TG4-W03  0,69 -24,59 1720 70 130 524 

TG5-S01 oc 0,27 -29,74 17960 +440/-420 -20635 -18198 

TG5-S02 oc 0,58 -25,03 28430 +790/-720   

TG5-S03 j 0,24 -25,95 180 60 1521 1955 

TG6-N01 k 1,3 -22,87 155 30 1666 1783 

TG6-N02  0,1 -31,30 >1955    

TG6-N03  0,45 -29,55 >1954    

TG6-N04  1,6 -27,63 >1954    

TG6-S01  3,0 -25,50 >1955    

TG6-S06  3,5 -24,99 >1954    

TG6-S06  0,87 -25,28 >1954    

TG6-S07  1,9 -26,76 >1954    

TG7-S02b  0,1 -30,75 >1955    

TG7-S02b  1,3 -24,14 390 35   

TG7-S03  3,27 -28,91 345 25 1483 1636 

TG7-S03  0,73 -27,03 640 45 1483 1636 

TG7-S04 ? 5,0 -25,13 765 20 1223 1285 

TG7-S05  0,3 -28,67 2080 80 -357 76 

TG7-S05  0,2 -26,71 2360 90 -357 76 

TG7-S06  0,1 -26,95 1130 +160-150 641 1211 

TG7-S07  0,3 -31,02 620 55 1286 1413 

TG7-S08 j 2,68 -25,27 200 25 1654 1955 

TG7-S09  0,11 -29,71 25310 +3160/-2260   
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A more satisfactory result of paleo-earthquake timing from trench T1 is the 

occurrence of most recent three faulting events X, Y and Z and related faulted 

colluvial deposits d, c and a, respectively. The dating of young colluvial deposits in 

trench T1 suggests the occurrence of three faulting events since AD 1271-1404 

(sample TG1-E08, Table 6.2).  

The uppermost layers of e (unit e2) provide two consistent C14 ages AD 79-

230 and AD 83-428 and AD 653-769 that predate faulting event V. Near the fault 

zone, the gap in sedimentation of e2 may correspond to a lack of earthquake record. 

Although the erosional surface between units f and g may also indicate the probable 

occurrence of a significant sedimentary truncation and erase of earthquake record, 

the uppermost layers of unit g provides the radiocarbon age BC 1042-835 that also 

predates past faulting events indentified in trench T1. A more satisfactory result of 

paleo-earthquake timing from trench T1 is the occurrence of most recent three 

faulting events X, Y and Z and related faulted colluvial deposits d, c and a, 

respectively. The dating of young colluvial deposits in trench T1 suggests the 

occurrence of three faulting events since AD 1271-1404 (sample TG1-E08, Table 

6.2).  

Trench T2 

Trench T2 exposes an impressive set of fault branches next to the main fault 

made of a ~ 0.5-m-thick shear zone with oriented gravels and pebbles, breccias and 

gouge zone that indicate several episodes of faulting activity. South to the main fault 

zone, a graben like structure filled with the lacustrine unit x3 displays several fault 

branches is buried below unit d. Near the main fault zone, another fault branch 

affects north dipping layers of unit d and c which are buried below unit b. At the 

surface, unit b is faulted by the main fault zone. Although trench T2 exhibits a thick 

stratigraphic succession with different fault branches all collected samples provide 

old ages (see Table 6.2 & Figure 6.7) and unfortunately do not allow us to determine 

the timing of successive faulting events. 

Channel offset and right-lateral faulting events: 

An old channel geometry can be traced across the fault zone and southward 

using the precise location of the channel edges throughout the alluvial fan deposits 

(Fig. 6). From north to south, trenches T5, T6 and T4, T3 and T7 show a buried 
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channel that represents an abandoned stream incision due to the successive fault 

movements. When matching the eastern edges of buried channels in trenches T5 and 

T6 located on both sides and close to the fault, total station measurements indicate a 

cumulative right-lateral offset of ~ 11 m which includes the 1912 displacement at 

this site. This cumulative amount of slip is very comparable to the 10.5 ±0.5 m 

measured on the nearby western stream (Fig 6.5). Both trenches provide radiocarbon 

ages of channels with AD 1521-1955 for T5 and 1666-1783 for T6 and suggest that 

the cumulative slip took place from AD 1666 to AD 1912. Assuming a maximum 5.5 

m slip par event as a characteristic displacement as observed during the 1912 

earthquake at this site, we infer that last two earthquakes Z and Y occurred since AD 

1666 and may be correlated with the 1659 or 1766 and 1912 large events of the 

historical catalogue (Ambraseys, 2002). 

 

Figure 6.13 : Calibrated radiocarbon age of samples and probability density of 
events determined in the trenches. 
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Furthermore, the eastern edge of channel in trench T3 is located ~ 5 m west 

of the channel in trench T6 (Fig. 6.5). Taking into account that sample TG3-S100 

collected in unit l of channel in trench T3 provides an age AD 1481-1898 and that 

sample TG4-E02 yields an age AD 1304-1443, it suggests that the additional ~ 5 m 

slip between channels T6 and T3 took place after AD 1304 and may correspond to 

the earthquake event X which may be correlated with the 1343 large event of the 

historical catalogue (Ambraseys, 2002). The total cumulative right-lateral offset of ~ 

16 m between T5 and T3 may correspond to faulting events X, Y and Z that took 

place since AD 1304 and imply 22.9 mm/yr slip rate (for the last 700 years).  

Trench T5 and T7 exhibit paleo-channels that mark the maximum cumulative 

right-lateral offset along the fault. The total right-lateral offset estimated from the 

eastern edge, central position and western edge of each channel section yields an 

average 21 ±1.5 m (Fig. 6.3). The oldest age BC 357 – AD 76 of sample TG7-S05 

collected within the lower channel deposits in Trench 7 that may be correlated with 

the ~ 29 m of cumulative right-lateral offset of the basement block ridge yield 12.5 

mm/yr. Taking into account that the age AD 1223 – 1285 of sample TG7-S04 

collected within the channel deposits in Trench 7 may predate the total ~ 21 m 

cumulative right-lateral offset, we obtain a maximum 26.9 mm/yr slip rate (for the 

last 781 years). However, if we combine with the results of trench T1 and the dating 

of the last three events X, Y and Z taking place after AD 1271 and related cumulative 

right-lateral displacement from paleo-channel of trenches T5, T4 and T3 we obtain 

an average 21.8 mm/yr slip rate (for the last 733 years). 

6.1.3. Results of the Güzelköy site 

The combined study of geomorphology with micro-topography and 

paleoseismic trenching provides some constraints on the timing of successive 

faulting and related past earthquakes along the eastern section of the Ganos fault. 

The Güzelköy paleoseismic site is located on a fault section where the maximum 

coseismic slip reaching 5.5 m is collocated with a well preserved 29 ±1.5 m 

cumulative fault offset of the basement ridge block outcrop and two stream incisions. 

Using total station the measured offsets on stream incisions indicate 10.5 ±0.5 m and 

21 ±1.5 m for the western stream and eastern paleo-channels, respectively. The ±1.5 

m uncertainty is estimated from the eastern paleo-channel edges and centres, and 
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basement ridge block. The error bar of the western stream offset is better constrained 

because the stream incision is sharp and edges are linear due to the stream 

entrenchment on a slope morphology (Fig. 6.3, 6.5). 

The paleoseismic results from trenches indicate the occurrence of five 

faulting events (V, W, X, Y and Z) identified mainly from buried ruptures and the 

successive colluvial wedge deposits d, c and a in trench T1 and from the right-lateral 

offset of buried paleo-channel visible in trenches T5, T6, T4, T3 and T7. Faulting 

events X, Y and Z in trench T1 dated post AD 1271 – 1404 (from colluvial wedge d) 

can be well correlated with the 16 ±1.5 m lateral offset of paleo-channel dated post 

AD 1304 – 1443 measured in parallel trenches T5, T6 and T3 located immediately 

north and south to the fault. This correlation reflects the consistency between the 5 to 

5.5 m coseismic characteristic slip (as measured for the 1912 event at this site) 

obtained from the cumulative offset of paleo-channel from trenches T5 and T3 

reaching three times the 1912 slip and the three faulting events X, Y and Z identified 

in trench T1. A noteworthy observation is the similar ~ 10 m right-lateral offset 

measured from the paleo-channel in T5 and T6 and the western stream deflection that 

amounts two characteristic slip events. The occurrence of five paleo-earthquakes 

predated by unit e (AD 79 – 230 and AD 83 – 428) can be correlated with the 21 

±1.5 m total offset of paleo-channels in trenches T5, T6, T4, T3 and T7. Taking into 

account the ~ 16 m cumulative offset of paleo-channel of trenches T5 and T3 and 

related maximum age AD 1304 from trench T4 we obtain an average 22.9 mm/yr 

right-lateral slip rate along the fault. If the maximum age AD 1271 of unit d in trench 

T1 predates faulting events X, Y and Z and related ~ 16 m characteristic slip events 

we obtain an average 21.8 mm/yr slip rate. These slip rate estimates are to be related 

with the maximum characteristic slip comparable to the 5 to 5.5 m right-lateral slip 

of the 1912 earthquake at the Güzelköy site. Using trench results near Saros Bay and 

assuming 4.5 m average characteristic slip for historical earthquakes of the past 1600 

years, Rockwell et al. (2009) calculate 15.8 (+7.3/-3.8) mm/yr. However, the 

cumulative slip is inferred from a list of historical large events that may not be 

correct for the Saros Bay site. Our estimated slip rates from paleo-earthquakes (and 

related characteristic slip) in trenches and measured paleo-channel offset are 

consistent with the 22 – 26 mm/yr right-lateral slip obtained from ~ 17 years GPS 

measurements (McClusky et al., 2000; Reilinger et al., 2006). 
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Faulting events V, W, X, Y, Z identified from trench T1 may well be 

correlated with the historical large earthquakes reported in the seismicity catalogue 

of the Marmara Sea region (Ambraseys, 2002). Except for the 1912 event, the 

difficulty is to assign the rupturing event Y to either the 1659 or 1766 earthquakes, 

and event X to either the 1343 or 1354 earthquakes. Furthermore, the uncertainty in 

dating related to the poor organic and charcoal content of samples probably due to 

the fast alluvial accumulation in channels and the slope environment that favour 

detrital charcoal, prevented us to resolve the age of paleo-earthquakes at the 

Güzelköy site. The dating of event W from unit e2 of trench T1 (AD 79-230, AD 83-

428 and AD 653-769) and from the earlier fault offset younger than BC 357 – AD 76 

can possibly be correlated with the damaging 484 earthquake in Gelibolu (Table 3; 

Ambraseys and Finkel, 1987). If the record of faulting event is complete in our 

paleoseismic trenches for the last 2000 years it implies that a period of quiescence 

may have taken place from 484 to 1343-1354 earthquake events, and that the 1063 

earthquake took place along another fault segment of the NAF.  

6.2. The Yeniköy Site 

6.2.1. Earthquake geomorphology and site selection 

The Yeniköy trench site is on the western part of the Ganos fault at 1 km 

northwest from the Yeniköy village (Figure 6.1 & Figure 6.14). The site corresponds 

to the western section of the 1912 Yeniköy sub-segment (see p. 124). Here, the fault 

zone corresponds to a ~300-m-wide step-over with minimum three branches showing 

offsets of ridges and valleys. The trench site is on the northernmost and youngest 

branch. This fault strand shows steep slopes, clear-cut offsets of young streams, 

sagponds, and distinct fault scarps indicating recent earthquake faulting. In addition, 

the 1912 earthquake rupture has been well indentified along this section with several 

right lateral offsets of 4-5 ± 0.7 m and an apparent fault scarp. At this location we 

observed cumulative right lateral displacements of a shutter ridge and an S-N 

flowing stream (Fig. 6.14). The 1912 rupture crosses the Köy creek and the northern 

limit of its depositional bank between the stream and the shutter ridge (Figure 6.15) 
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Figure 6.14 : The Yeniköy trench site (dashed black line) is located at a step-over of 
the Ganos fault (red lines). The Ganos fault and the 1912 earthquake 
rupture is well documented in that region. Co-seismic offsets range 
from 4-5 m (white boxes) between Yeniköy and Sofuköy. 

Some preliminary observations yielded to classify this place as a potential 

trench site: (1) The 1912 earthquake rupture is well mapped along this section and 

shows evidence of 4 to 5 m co-seismic displacements. (2) The shutter ridge, the 

cumulative young stream offset and a fresh fault scarp indicate recent successive 

earthquake faulting and testify that the northernmost branch bears the most recent 

faulting events. (3) The alluvial terrace deposits that cumulate against the fault scarp 

may bury and preserve past earthquake ruptures. We assume that for each co-seismic 

offset the stream would be dammed and give rise to temporary flooding events and 

deposition on the bank; and (5) The terrace riser limited to the south by the fault may 

be preserved north of the fault on the left bank. 

In order to strengthen our site selection, we conducted a GPR survey. We 

investigated the fault zone and search for buried structures which could help 

resolving the precise fault location. 3 of 4 profiles were taken orthogonal and 1 

parallel to the fault trend (Figure 6.16). Preliminary analysis of the GPR profiles 

yield to determine two pairs of discontinuities parallel to the fault trend and were 

interpreted as two fault splays (indicated in red Fig. 6.16). The absence of prominent 

fault morphology within the terrace has been related to agriculture. However, the 

northern part of profiles crossing the fault shows ruptured units (reflectors) and 

confirms the fault mapping (Figure 6.17). 
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Figure 6.15 : The Yeniköy trench site is located ~2 km southwest of the Yeniköy 
village. Here, two right-lateral cumulative offsets of 46 ± 1 m and 96 
± 1 which show the long-term activity of the NAF. White arrows 
indicate the displacement, red arrows shows the orientation of the 
fault. At the east of the shutter ridge sediments of the stream bank 
deposit against the fault scarp and show the potential to bury surface 
ruptures. 

Before trenching, we performed micro-topographic survey using Trimble 

Differential GPS to establish a detailed relief map (0.5 to 1.0 m resolution) of the site 

and estimate cumulative right-lateral offset of the shutter-ridge and the stream. A 

total of 5500 topographic points have been collected to build the topographic map 

given in Figure 6.16. The survey allowed measuring 46 ± 1 m right lateral 

cumulative displacement on the Köy creek segment and 96 ± 1 m for the ridge offset. 

As shown in Figure 6.16 the smaller offset was taken using the straight stream 

segment and related incision south of the fault and the preserved linear part of the 

stream valley to the North. The ridge offset is estimated using the eastern slope of the 

shutter ridge north to the fault (which corresponds to the same stream incision) with 

the eastern slope of the ridge west of the stream and south of the fault. 
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Figure 6.16 : Digital elevation model has been obtained from 5500 DGPS data 
points. The map shows the 96 ± 1 m and 46 ± 1 m ridge and stream 
offset, respectively. Black dots represent GPR profile locations. The 
faults identified from GPR profiles (prior to excavation) are in Fig 
6.17. 
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Figure 6.17: The processed GPR profile (a) and the interpreted profile (b) show on 
the top continuous reflectors (yellow line). Structures interpreted as 
faults are indicated as red solid lines to the north of the profile below 
the yellow line. The profile corresponds to the western N-S profile in 
Fig 6.16. 

6.2.2. Paleoseismic trenching 

We excavated 5 trenches within the alluvial terrace and the western bank of 

the Köy creek; 3 trenches T1, T2 and T4 are across and 2 others T3 and T5 are 

parallel to the fault (Figure 6.18). Orthogonal trenches were dug to investigate fault 

location and past faulting events, whereas the two parallel trenches were opened to 

locate the spatial distribution of the terrace riser north and south from the fault. 

Each trench wall was logged using a 1 m wall grid; near the fault zone a grid 

of 0.5 m has been used for more accuracy. Nearly 1800 photographs were taken with 

a Nikon D50 digital camera using 28 mm focal length. Canon Photostich Software 

was used to construct the photo-mosaics for each trench wall. All tectonic and 

sedimentary structures on the walls were mapped using these photo-mosaics. 

Subsequent to the logging procedure 120 samples mainly of charcoal and organic 

matter were collected for isotopic (radiocarbon) dating of the sedimentary deposits. 
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Finally before closing the trenches, we levelled the trench margins, the fault 

zones exposed in trenches, the terrace riser and the related channels exposed in the 

trenches with total station in order to constrain a 3D view of the site. We also 

collected additional topographic points to improve the earlier previous micro-

topographic map. 

 

Figure 6.18 : Closer view of the paleoseismic site and trench locations. T1, T2 and 
T4 allowed locating the fault zone and past faulting events. T3 and T5 
were dug to check the spatial distribution of the channel deposits and 
also allowed to drain the high ground water in T1. 

All trenches show sedimentary deposits with comparable stratigraphy made 

of colluviums, massive clays and alluvial deposits (Table 6.3). Trenches across the 

fault scarp display different lithology with a clear contact that corresponds to shear 

zone. In general, the northern part exhibits successive colluvial deposits, whereas the 

southern part shows thick massive clay layer as bottom unit. Both units are reworked 

sediments from the Oligocene shale and sandstones whereas the well stratified and 

overlaying alluvial deposits derive from the Miocene beach facies deposits. In the 
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following section we present the stratigraphy of 6 main depositional units (Table 6.3) 

as logged in trenches. 

Stratigraphic succession: 

Trench T1 is 50-m-long on the alluvial terrace and across the fault scarp 

(Figure 6.18). The average depth of the trench was limited to 1.5 m due to high 

ground water level. However, the trench depth was sufficient to expose the 

stratigraphic succession including the stream channel deposits. In Figure 6.19 and 

Figure 6.20, we observe a ~ 1-m-wide fault zone with several rupture branches 

affecting colluvial wedges and a paleosol. We logged the fault zone of the western 

wall of T1 in detail to document the stratigraphy of the site and faulting events. The 

trench bottom is a colluvium (Co) made of silty clay deposits with clasts that show 

minor difference on the two fault compartments. North of the fault, the Co is layered 

and shows ~ 20° to 30° southward tilting (Fig. 6.19, 6.20). The 1.5-m-thick Co is 

overlain by a reddish clay unit (Rp2) whereas south of the fault Co is massive and 

shows no stratigraphy. Close to the fault zone a bluish clayey silt unit (Bc) is located 

within Co and exposes liquefaction features (intercalated sand blows). Southward, 

Co is interfingering with alluvial deposits (Flv in Fig. 6.19) visible all along the 

trench walls. At the trench bottom, the alluvial deposits interfinger with Co and 

moving to the top they overlay the Co and show well stratified sedimentary units 

with channels and northward migrating sequence. The top units are Sl1 and Sl2, 

which correspond to the soil development. Sl1 is deposited on a smooth slope and 

thickens towards south where it interfingers with Sl2, indicating that they deposited at 

the same time. Two reddish shear zones are distinct on the western wall (Fc, Fd and 

Fe). 

Trench T2 dug across the fault is ~2-m-deep and 22-m-long., located ~ 20 m 

west of T1 (Figure 6.21, 6.22, 6.23). We logged the northern first 9 m of the two 

trench walls, which expose several fault branches and related sedimentary deposits. 

Both walls show similar stratigraphy and a clear contact along a shear zone and 

faulted units with different stratigraphic characteristics. The trench bottom on the 

north consists of a light-brown massif clay unit (Brc), which shows several fault 

branches. Brc contains sparsely scattered clasts of sandstones with alternating size of 

1-20 cm. The unit hold no organic matter which prevented us to collect any sample 

for 14C dating. Brc is at least 90 cm thick and is capped by Bc, which is a southward 
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tilted 10-cm-thick bluish clayey-silt layer comparable to Bc in T1. Bc pinches out 

towards south but is faulted into several pieces. Unit Co is deposited conformably on 

top of Bc and is also faulted. Both, Co and Brc are overlain by unit Rp, which is a 

10-cm-thick reddish, oxidized, clay layer, deposited on top of an erosional surface. 

Table 6.3 : List of stratigraphic units exposed on the trench walls and their lithologic 
descriptions. 

Unit Description 

Sl1 Soil 

Sl2 Soil 

Sl3 Grey-yellow silt and clay with scattered clasts 

Rc Reddish-brown clay 

Sc Brown-grey clayey silt 

Scl Stratified grey clayey silt 

Bsc Dark brown-grey silty clay 

Flv 
Coarse to fine, well sorted medium rounded clasts forming a typical sequence of fluvial 
stratigraphy with horizontal- and cross-bedding and channels 

Fss Unconsolidated grey-yellow stratified sand 

Fgs Grey massive cemented silt with thin clay layer and some gravels 

Fbc 
Coarse to fine, well sorted medium rounded consolidated clasts with horizontal- and 
cross-bedding and channels 

Fsc Reddish massive silty clay with increasing silt content towards east 

Ysc light yellow, clayey silt with scattered gravels content and some bioturbations 

Rp dark red, oxidized massive clay, well consolidated, with pockets of caliche 

Rp2 reddish oxidized clayey silt  

Bc Bluish-grey silty clay with scattered  gravel content 

Co silty clay deposits with coarse gravels 

Brsc Brown massive clay with very few medium rounded poorly sorted gravel content 

Brc Light brown massive clay with poorly rounded medium sorted scattered gravels. 
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Figure 6.19 : The trench log of T1 illustrates a main fault zone with several rupture branches. Additional branches are observed towards south 
(Fh & Fg). The trench exposed a colluvial stratigraphy overlain by a alluvial sequence. The 1912 earthquake rupture is indicated 
as Event Z. 
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The unit comprises some small size gravels and patches of caliche. On top of 

Rp lies a massif wedge shaped sand deposit (Ysc) with 1 m maximum thickness. Ysc 

consists partly of sand and some pebbles and includes some bioturbation. The unit is 

most probably deposited on a slope adjacent to a small basin margin. Ysc derives 

most probably from the Miocene beach sand formation which represents the southern 

geology of the Ganos fault. Ysc is visible on both trench walls of T2 but it is not 

observed in the other trenches. South of the fault, a minimum 1.5 m thick massif clay 

unit (Brsc) forms the basement (Fig. 6.22, 6.23). It consists mainly of clay with 

gravels of sandstones ranging from 1-20 cm in size, infrequently distributed. The 

gravel content indicates that the unit is deriving from the Oligocene formation. Brsc 

is rich in organic matter and allowed us to collect 35 charcoal samples. The unit is 

overlain unconformably by a clayey silt deposit, which probably correspond to a 

little pond. At the southern end of T2 we notice a fluvial channel which is 

comparable to unit Flv in T1. The uppermost unit is Sl2 which is 20- 40-cm-thick and 

covers all units within the trench. 

Trench T3 is 24-m-long and was dug parallel to the fault. It exposes the 

eastward sedimentation of Flv in T1 and allows tracing the spatial distribution of the 

terrace riser. In parallel, the trench served as an outlet channel to drain the high 

ground water in T1. We have not logged T3 however the margins of the terrace riser 

and the trench were levelled with a total station. 

Trench T4 is 8-m-long and 1 m deep located ~15 m east of T1 and across the 

fault (Fig. 6.24). T4 exposed some part of the terrace riser and the fault zone. We 

logged in detail the northern 7 m of the west wall. The stratigraphy was similar to T1 

and T2. The bottom unit is Brc, which is covered by a sequence of colluvial deposits 

(Col1-5). The alluvial deposit Flv interfingers with Col4 and shows a northward 

migrating sequence as observed in T1. The stratigraphy of T4 is very comparable 

with T1. We determined two fault branches that mainly cut unit Brc and Col1&2. 

T5 is 10-m-long and nearly 2-m-deep and located on the northern part, 

parallel to the fault (Fig. 6.18). We opened the trench to expose the northern part of 

the stream channel corresponding to the terrace riser. We logged the southern and 

northern walls of the trenches (Fig. 6.25, 6.26). The trench walls expose a colluvial 

basement Col overlain by a westward migrating channel sequence. 
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Figure 6.20 : The photograph of the western wall of T1 showing the fault zone 
(Vertical reddish strips that correspond to shear zones). The trench 
wall exposes intensely faulted colluvial (Co and Bc) and paleosol 
units (RP2; see text for details). 

 

Figure 6.21 : Photographs showing the western wall of trench T2. The fault zone 
limits two different basement deposits. The south is composed of clay 
deposits (Brsc) and the north of the fault is made of colluvial deposits 
(Brc and Co). 
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Figure 6.22 : Eastern trench log of T2 showing seven faulting events. The correlation with the western wall showed that event W3and X3 are not present on the western 
wall. 
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Paleoearthquake analysis and faulting events 

The trench walls display fault zones and provide evidence of several faulting events. 

The sedimentary deposits indicate the successive faulting consistent with the fault 

scarp location, stream and ridge offsets. In order to characterize the timing of past 

earthquakes, we dated 14 charcoal fragments out of 120 samples from trenches T2 

and T5. Figure 6.24 shows the C14 dating results calibrated using Oxcal v4.0 with 2σ 

age-range and 95.4% probability density (Reimer et al., 2004; Bronk Ramsey, 2005). 

Trench T1 

T1 exposes on the south facing slope of the shutter-ridge a ~1-m-wide main fault 

zone that can be interpreted as a result of successive faulting events.  

Event Z: The uppermost faulted unit is Rp2. In figure 6.19 the fault branch Fa 

truncates, Co1, Co2, Bc and Rp2 and is buried by the soil Sl1, which corresponds to 

the most recent deposit. Therefore, we consider that this event may be related with 

the 1912 earthquake rupture. 

Event Y1: Unit Rp2 buries Fb, Fc and Fd, and postdates the corresponding faulting 

events. Unit Co1 and Co2 are faulted by Fb, Fc and Fd. In addition Fb offsets the 

reddish shear zone of Fc for 3-5 cm, hence necessarily postdates Fc. Co3 faulted by 

Fb and not by Fc confirms that Co3 may postdate Fc. Hence, it can be suggested that 

Fb may correspond to a prior event or to the penultimate event of the 1912 rupture. 

However, we cannot confirm this concluding remark because we have no dating of 

Rp2 and Co3. 

Event X1: Fc and Fd buried by Rp2 affect Co1 and Co2 but not Co3. Hence, Fc and Fd 

characterize a faulting event prior to Co3 and event Y1. 

In addition, we observe two fault branches within the colluvium Coa south of the 

main fault zone (Fig. 6.19). Fg and Fh cut into younger units of Coa below the well 

stratified Scl. Fh that offsets the contact between Co and Coa and is buried by Scl 

may correspond to another event older than event Z. Furthermore, Fg that also affects 

Co and Coa limits to the north Co and shows an upper termination below Scl but 

coincident with the interfingering between Scl and Coa. The northern limit of Co by 

Fg and coincidence with the interfingering may correspond to another faulting event 

older than Z but younger than the event observed on Fh. Based on this stratigraphic 

relationship we may conclude that Fg and Fh occurred after event Ff and correspond  
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Figure 6.23 : Western trench log of T2 showing six faulting events. The correlation with the western wall showed that event V2and U2 are not 
present on the western wall. C14 dating of unit Brsc that postdates all events yield and calibrated age of 1500 – 830 BC. Event Z 
corresponds to the 1912 rupture 
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.  

Figure 6.24 : Logs of T4 shows the channel stratigraphy and its relations to the fault. 
Logs of T5 illustrate the stratigraphy north of fault. Dating of channel 
deposits yield and minimum age of 840–590 BC for the oldest unit. 

 

Figure 6.25 : The logs of T5 illustrate the channels deposits of the Köy creek. The 
fluvial unit (Fsc) represents almost the lowermost deposits of the 
creek. A combined calibration of the two charcoal samples from the 
top of Fsc yield an date of 120 AD - 250 AD. Hence a minimum age 
of ~2000 years can be estimated for the creek (see text for detail). 
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to one or two events. Ff offsets unit Bc and postdates these units. However, the main 

erosional limit between Scl and units Coa-Co shows that an important truncation of 

sedimentary units which may contain faulting events took place after deposition of 

Coa. 

 

Figure 6.26 : A photograph showing the southern trench wall of T5. The reddish 
units (Fgs, Fbc, and Fsc) are channel deposits overlaying on top of a 
colluvium indicated as Co. Fsc represents the oldest deposits of the 
Köy creek. Radiocarbon dating of charcoal samples from T5 allowed 
determining a minimum age for the channel deposits (see text for 
detail). 

Bc shows a clear liquefaction characteristics and closely located to the fault 

zone. It was not possible to determine if this liquefaction was tectonically or 

gravitationally induced. If it occurred by tremor of near by faulting it may represent 

the oldest event in T1. 

We collected 17 charcoal samples from trench T1 but we did not analyze any unit. 

Trench T2 

Event Z: The faulting event is observed on both trench walls. On the western 

wall three fault splays marked as F1, F2 and F3 rupture all units, but Sl2. The same is 

observed n the eastern wall with branches Fz3, Fz3 and Fz5. The base of Sl2 buries 

the faults and corresponds to the event horizon. The faulting event is therefore 
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bracketed between Sl2 and Sc. C14 dating of Sc that yield a youngest calibrated age 

1310 – 1440 AD and 1480 – 1960 A.D. (sample 55-W and 58-E, Fig. 6.22, 6.23) 

provide a maximum age for Event Z. 

Table 6.4 : 15 samples were collected from the Yeniköy trenches. Radiocarbon 
dating results are given below. 

Sample 
Name 

Trench 
unit 

Nature 
Radiocarbon 

age (BP) 
Uncertainty ± 

years 
Calibrated age 

(+=AD) 2s range 

YK-T2-W55 Sc charcoal 540 30 1325 1440 

YK-T2-W28 Sc charcoal 1060 30 900 1030 

YK-T2-E08 Flv charcoal 190 30 1660 1960 

YK-T2-W46 Ysc charcoal 9250 60 -8570 -8300 

YK-T2-W04 Brsc charcoal 3130 50 -1490 -1260 

YK-T2-W31 Brsc charcoal 2150 60 -360 -40 

YK-T2-W61 Brsc charcoal 2985 30 -1290 -1120 

YK-T2-W05 Brsc charcoal 1015 30 985 1150 

YK-T2-W34 Brsc charcoal 2770 35 -980 -830 

YK-T2-E59 Brsc charcoal 250 50 1520 1960 

YK-T5-N18 Bc charcoal 115 30 1690 1940 

YK-T5-N09 Bc charcoal 150 30 1670 1960 

YK-T5-S01 Rsc charcoal 2600 35 -810 -590 

YK-T5-N20 Rsc charcoal 1060 30 900 1030 

 

Taking into account the analysis of historical catalogues three large 

earthquakes (1343 or 1344 or 1354, 1659 or 1766 and 1912) occurred in this time 

frame. If we consider that the two samples are from the middle part of the 25 cm 

thick Sc it is likely that the event horizon is much younger than the sample date. 

Since we know that the most recent surface faulting affected this site, Event Z in 

trench may be correlated with the 1912 earthquake. However, the base of Sl2 is an 

erosional surface that truncates all previous sedimentary units and related fault splays 

and removed the earthquake record. 

Prior events: Faults F4, F5 and F6 cut through Brsc, are covered by Sc and 

correspond to Event Y2. Here again, F4, F5, and F6 are splay ruptures predating Sc 

and postdating Brsc. This can be compared with branch Fz3 and event Y3 on the 

eastern trench wall. The unconformable contact between Brsc and Sc indicates that 
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the faults may be related to one or more faulting event. Other faulting events are 

older and recorded within the colluvial part of T2. We can suggest a relative order of 

occurrence among the ruptures for both trench walls. Rupture F10 on the west-wall, 

affects Ysc and all units below while it is buried by Ysc2 and characterizes Event X2 

which is not observed on the eastern wall. Fz3 on the east wall ruptures Brc, Ysc, 

Rp2, affects younger sediments of Brsc and corresponds to Event X3. A branch of 

Fz3 affects Brc, Ysc and older deposits of Brsc. Therefore it is interpreted as a 

separate event (Event W3).  F7 displaces Brc, Bc, Co and the tip of unit Rp. This 

event (W2) can be correlated with the rupture branches Fz8 or Fz9 that affect the 

same units and the related Event U3 or V3 on the eastern wall. Another rupture 

branch is F8 which cuts unit Brc, Bc and Co, and is buried by Rp and indicates 

faulting Event V2. The rupture splays F9 show faulting of units Brc, Bc, and the base 

of colluvial unit Co. Faulting Event U2 took place after deposition of Brc and Bc but 

also during the deposition of the first layers of Co. 

Trench T4 

Trench T4 exposed two fault branches indicated as Fx and Fy. Fy is faulting 

Brc and Co2, while Fx cuts Brc and Co1. This implies that Fx occurred prior to Fy. 

Both events are within basement units; therefore we did do any dating to determine 

the timing of the events. 

Channel offset and right-lateral faulting events: 

Trench T5 was excavated parallel to the fault, on its North. The purpose was 

to expose the northern continuation of the terrace riser located south to the fault. The 

stratigraphy in T5 showed buried channels below 1 m of the surface. The northern 

part of the terrace riser was not observed in the trench. However, we exposed the 

base and nearly the lowest sediments of the 46 ± 1 m offset Köy creek. Radiocarbon 

dating from unit Fbc (sample 20-S) and Fsc (sample 01-S) yield calibrated calendar 

ages 890 – 1030 AD and 840 – 590 BC, respectively. Sample 20-S is taken nearly 

from the top of unit Fsc and corresponds to the minimum age of the channel. Taking 

into account the 46 ±1 m right-lateral offset and the age of the channel, we may 

deduce a maximum 17 ± 0.7 mm/yr slip rate for last 2700 years of the Ganos fault. 
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Summary of Yeniköy trench results: 

The Yeniköy site was selected as a potential trench location based on 

geomorphological investigations. At a large scale the fault zone is well identified 

thanks to clearly visible scarps, stream offsets and shutter-ridges. 1912 co-seismic 

offsets are evident along strike, at close distances to site (Figure 6.14). GPR profiles 

showed shallow fault like structures fitting with the 1912 surface ruptures. We 

determined 5 events in trench T1, a minimum of 6 events in trench T2 and 2 in T4. 

The 1912 earthquake is inferred in T1 and T2. Although, prior events could not all be 

dated we deduce that a total of 10 events occurred at this site. Indeed, prior to 1912 

and after 1310 (lower bracket of calibrated age of sample 55-W, Table 6.4) the 

historical catalogue reports the occurrence of two earthquakes which may correspond 

to 1343 or 1344 or 1354 and 1659 or 1766. The comparison between east and west 

walls of trench T2 shows that additional two faulting events that occurred prior to 

Event Y2/Y3 and after Event V2 affecting colluvium Ysc and Brsc on the east wall, 

are not observed on the west wall. The 10 faulting events identified in trenches post-

date the oldest units (Brsc and Brc) and corresponding youngest radiocarbon age 

1010 BC – 830 BC.  

The excavation of channel deposits of the Köy creek allowed constraining an 

age for the stream and obtain a slip rate for this section of the NAF. The oldest age of 

the lowermost unit of channel deposits yield a calendar date 840 – 590 BC (Rsc 

sample 01-S) and gives a minimum age for the channel. Taking this minimum age 

and the 46 ± 1 m right-lateral stream offset we obtain 17 ± 0.7 mm/yr slip rate for the 

last 2840 years. Co-seismic offset measurements along the 1912 rupture showed that 

the earthquake caused 4-5 m right-lateral displacements at Yeniköy. If a 

characteristic offset behaviour of 4-5 m is applied to the 46 ± 1 m stream offset we 

can deduce that this cumulative offset corresponds to 10 ± 1 events, which is similar 

to the number of events determined in our trenches. 

6.3. The Yörgüç Site 

6.3.1. Earthquake geomorphology and site selection 

The Yörgüç trench site located on the central part of the Ganos fault, ~1 km 

east from the Yörgüç village corresponds to the Güzelköy sub-segment of the 1912 

earthquake rupture (Fig. 6.1). The fault zone is localized in this region within a 
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narrow valley, 10 to 50 m in width. The 1912 rupture is visible in this area where we 

clearly observe fault scarps, stream offset, road offsets, and sag-ponds. Co-seismic 

displacements were measured along this fault and reaches 4.5 m. Two sites were 

excavated at Yörgüç. The first is located in a releasing bend area, (Trench T2 & T1 

in figure 6.27) and the second site is located farther west, where the fault zone is 

getting narrower (Trench T3 in figure 6.27). 

 

Figure 6.27 : The Yörgüç trench sites are located east of Yörgüç. The Ganos fault 
forms a small releasing bend at this locality. Streams sub-parallel and 
perpendicular to the fault carry fine to medium clasts into the basin 
(yellow), which deposit on top of the fault. 

The nearby streams erode Miocene sandstones and carry fine to medium size 

sediments into the basin and burry the fault located at the northern margin. This 

condition allows co-seismic ruptures to be preserved within the geologic record. 

6.3.2. Paleoseismic trenching 

Trench 1 & 2 

Trench T1 is 15 m long and 1.5 m deep and dug from the northern basin 

margin towards south and exposed the contact between basement units and basin 

deposits (Fig. 6.27, 6.28). The ground water level was nearly at 1 m depth and 

caused stability problems (the wall collapsed), when trench depth reached 1.5 m. The 

fault zone consists of very loose fine material causing instant collapse and prevented 

us to do any observation within the fault zone. 
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Figure 6.28 : View of the location of T1 at the eastern end of the basin. Red lines 
indicate the most-possible location of the fault zone. The presence of 
unconsolidated units and high ground-water level caused instability 
within the trench and walls collapsed when reached the fault zone. 

We opened a second trench towards west were we expected lower ground-water 

level and more compact sedimentation. T2 is ~50-m-long and 1.7-m-deep showing a 

cross-cut of the basin sediments (Fig. 6.27). Trench walls were stabilized using 

hydraulic shores.  

Stratigraphic succession and paleoearthquake analysis 

Trenches T1 and T2 exposed comparable stratigraphy. All units are reworked 

material of the Miocene Kirazlı formation, which is composed of a beach facies 

deposit. The stratigraphy in T2 points towards a regressive sequence of fine 

sediments representing probably a lacustrine to marsh environment. The base of T2 

(at 1.5 m depth) is made of three units; a, b and c (Fig 6.28). Unit a is a yellow-grey 

massif silty sand deposit and is unconsolidated. It interfingers laterally to a greenish-

yellow sandy-silty clay unit (b). Unit b interfingers towards south with unit c which 

consists of greenish massif clay. units a to c, probably correspond pond sediments 

from the basin margin to the centre, respectively. A brown silty clay deposit (d) 

conformly overlays a, b and c. The contact between unit d and unit e is erosional. 

Unit e is brownish-grey clay overlain on the top by the soil unit. This stratigraphy is 

nearly continuous all along the trench. Towards south, we found a piece of cloth 

within unit e at ~60 cm depth which designate a modern age of maximum 30 years. 

This indicates a young and rapid sedimentation that do not include past earthquakes. 

In contrast, the northern part of the trench shows less sedimentation accompanied by 

fault related structures. 
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Figure 6.29 : View to the south of trench T2. Red lines indicate the most-possible 
location of the fault zone. The trench exposed an intercalation of fine 
to medium coarse sediments showing well stratification. At the 
southern end of the trench we determined a piece of textile buried 
nearly 60 cm below surface. The printings of the textile indicate a 
very recent age (probably no more than 30 years). This implies a 
minimum 2 cm/yr sedimentation rate for the central part of the basin 
and requires a trench-depth of 1-2 m for the most recent event (1912 
earthquake). 

 

Figure 6.30 : The analysis of the eastern trench wall of T2 yield evidence for one 
faulting event associated with liquefaction structures, most possibly 
due to the 1912 earthquake. 

Trench 3 

In order to obtain a succession of older events we decided to open a third 

trench further west, apart from the releasing basin. Here, we dug a 15-m-long, 3-m-

deep trench, where sediment accumulation occurs mostly by wash out from the 
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adjacent valley slope during high rainfall and a stream flowing parallel to the valley 

(Fig. 6.29). 

 

Figure 6.31 : The photo-mosaic of east wall of T2 shows flame structures along the 
contact between the light unit a and dark unit d. 

 

Figure 6.32 : View of trench location T1. The fault zone is localized here in a very 
narrow valley with steeps slopes. During high rainfalls sediments are 
washed out from the slopes and accumulate within the valley. Small 
streams may associate from time to time within this process, as 
observed in the trench wall. 

T3 exposed a well stratified sedimentation (Fig 6.30) where the sequence 

starts with unit a at the base made of scattered coarse gravels within a massive 

yellow clayey silt matrix. Unit b that overlays unit a has a similar lithology but with 

abundant amount of muscovite. The lower unit b which shows an erosional surface 

on the top, is overlain by a well stratified sequence of clay, silt, and fine sand 

intercalation. Unit c is composed of silty clay and unit d is made of silt with mica 

content. The upper units (e and f) show intercalation with seasonal variation in 

deposition, where medium to fine sand (f) deposit in summer by abrupt small 

flooding events and silty clay (e) material deposits in winter time when wet 

conditions are more dominant in the area. Unit e and f are organic rich material and 

bear bioturbation. Close to the top the sequence is truncated by channel deposits and 
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colluvial units (g1 and g2). The uppermost unit is composed of fine to medium 

grained soil. 

Table 6.5 : List of units and description of sediments determined in trench 3. 

Unit Description 

s Fine grained soil 

g Light brown clayey silt, consolidated 

f Yellow silty fine sand 

e Greenish-brown clay with mica and silt, consolidated 

d Yellow silt with mica content 

c Brownish, dark grey silty clay 

b Yellow clayey silt with a few scattered gravels. Clasts contain mica 

a Yellow clayey silt with abundant scattered coarse gravels. 

 

 

Figure 6.33 : The photo-mosaic shows the stratigraphy of the western wall of T3. 
Horizontally stratified sediments deposited on top of a clayey 
basement indicate a regressive sequence (a). We determined one 
faulting event cutting through unit a, b, c, and d and showing a 
negative flower structure (b). This event is overlain by unit f. The 
stratigraphy allowed collecting several charcoal samples for C14 
dating (see Table 6.6). 
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Figure 6.34 : Trench log of T3 illustrate a successive basin stratigraphy deposited on 
top of basement units a and b. We determined a faulting event, most 
probably related to the rupture of the 1912 earthquake. White and grey 
boxes correspond to C14 dating results. Samples indicated with grey 
boxes yield modern age, and are labelled with the percentage of 
modern carbon (C14/C, pMc). 

Paleoearthquake analysis 

Since trench T1 had instability problems we could not observe and describe 

any faulting event. 

Two structures are distinct in trench T2. The southern and northern edges of 

unit a1 have a vertical sharp contact with the southern limit most likely due to 

faulting. The vertical structure of gravel deposits and the undulated top unit suggest 

an injection of coarse gravels within a matrix made of unit a. The contact between 

the lower most units a, b and c, and the marsh unit d shows distinct flame structures, 

typical of liquefaction processes (McCalpin, 1996). Since the flame structures and 

injected unit a1 affects unit d overlain very recent deposit unit e, we may consider 

the injection as a liquefaction structure associated with the 1912 earthquake. 

In trench T3 we identified one faulting event close to the bottom of the trench 

(Fig. 6.31). A rupture branch with one splay that affect unit a, b, c, d and e are 

overlain by unit f. The fault limits unit a to the south and shows ~10 cm vertical 

separation affecting unit c, d and e. The relationships between the fault and 
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successive units indicate that two faulting events occurred at this site after deposition 

of unit a and b. Indeed the thickness of unit next to the fault and the different 

thickness of unit b suggest the occurrence of a faulting event probably before the 

erosional surface of unit b. The second faulting event affects the erosional surface, 

unit c, d and e. Calibrated C14 dating from units b, c and e1 provide 1660-1950 AD, 

1680-1940 AD and 1680 – 1950 AD, respectively. The first faulting event occurred 

before unit b. The second faulting event affects unit e1 and is buried by unit f. Both 

events are younger than 1660AD. 

6.3.3. Results of Yörgüç trench site: 

The trenches opened at Yörgüç were located nearly at the central onland part 

of the Ganos fault. The excavated basin is a depo-centre fed by several streams and 

located at a small releasing bend. Three trenches allowed documenting the site 

stratigraphy and one faulting event. 

In trench T1, stability problems caused the trench walls to collapse and 

obstructed us to document faulting events. 

Trench T2 allowed us to expose a 1.7 m deep section of the stratigraphy. One 

faulting event associated with liquefaction structures is determined in T2. On the 

southern part of the trench we determined a fabric with printings nearly at 60 cm 

depth. The age of cloth piece is most probably modern, maximum 30 years, which 

indicates sedimentation is very rapid in this basin with a rate of ~2 cm/yr. Older 

events than the 1912 must be buried located fairly deeper than was excavated. To 

manage with the shallow ground water level and instability problems requires better 

equipment, preparation and a larger budget, which was not present in this campaign. 

Trench 3 was opened at a locality were we expected lower sedimentation 

rates. A 3-m-deep trench showed a well stratified geologic record. We determined 

one faulting event at nearly 2.5 m depth. C14 dating yield modern dates indicating 

also rapid sedimentation, hence we consider the event observed in the trench 

corresponds most probably to the 1912 earthquake rupture. 

The Yörgüç restraining basin, where we opened T1 and T2 is a suitable site 

for trenching were we observed evident for faulting, tremor induced liquefaction and 

good continuous stratigraphy. We consider this site has the potential to expose 
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several historical faulting events if can be excavated deeper up to 5-6 m with 

sufficient equipment for draining the ground water and stabilizing the trench walls. 

6.4. The Saros Site (Rockwell et al., 2001 & 2009) 

6.4.1. Earthquake geomorphology and site selection 

The Saros site is located within the Evreşe plain, at the westernmost onland 

section of the Ganos fault. The fault strikes here through highly cultivated flat area. 

The fault morphology, particularly the 1912 rupture is poorly preserved in this area. 

Two large linear depressions are most evident structures along the strike of the fault; 

the Kavak Lake and a large sagpond at the coast of Kavak (Fig. 6.33). The fault cuts 

the Kavak river bank deposits, which potentially have a good geologic record. 

 

Figure 6.35 : The SPOT5 image of the Evreşe plain shows the location of trench 
sties with respect to the fault (red line). Prominent fault morphologies 
are two linear depression, the Kavak Lake and the sagpond at the 
coast. The trenches are located between these two structures within 
the bank deposits of the Kavak River (blue line). White boxes 
indicate trenches of Rockwell et al., (2001) and yellow box Rockwell 
et al., (2009). 

6.4.2. Trench results of Rockwell et al., (2001) 

Rockwell et al., (2001) opened 5 trenches at several sites along this section of 

the fault and identified 5 historical earthquake ruptures (Fig. 6.33). Their trench T-1 

is located on the western bank of the Kavak River and exposed well-bedded 
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stratigraphy on both sides of the fault (Fig. 6.34). The comparison of individual units 

presented a mismatch across the fault which has been interpreted due to lateral slip. 

They identified four main units in T-1 showing evidence of 2 faulting events. The 

highest event in the stratigraphy truncates units 4, 3 and partly 2 and is capped by a 

thin layer of unit 2. A second event truncates the same stratigraphy as event 1, 

however it breaks only up to the middle portion of unit 2 (Fig. 6.34). Both events 

occurred during the deposition of unit 2, however at different times. C14 dating of 

unit 2 yield a calibrated age of A.D. 1446 (2σ age range: A.D. 1405-1634). Other 

two samples from unit 3 provided inconsistent ages; the upper sample dated to 2000 

BC, while the lower yield a calibrated date of A.D. 1415. Based on these dating 

results Rockwell et al (2001), concluded that the two faulting events in T-1 post-date 

A.D. 1446 and may correspond to the earthquakes of 1509/1766 and 1912. 

 

Figure 6.36 : Log of trench T-1 where two faulting events were determined 
(Rockwell et. al., 2001). 

Trenches T2 and T5 were excavated east of the Kavak river within a year 

interval. They exposed a well-stratified section of sediments that record multiple 

earthquake rupture events and showed thicker sediment accumulation on the 

southern, down-throw side of the fault (Fig. 6.35 & 6.36). Five earthquake ruptures 

have been recognized in the upper 1.5 m of T-2 and T-5. Event 1 shears up to the 

base of the modern A horizon in trench T-2, but not in T-5. This events is 

unconstraint by radiocarbon dates, but has been correlated with the 1912 earthquakes 

because it penetrates into the uppermost soil part. Event 2 is considered to be 

occurred after the deposition of units G1 and F and is observed in both trenches. Unit 
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D overlays the fault scarps and is the event horizon. The age of this event is 

constrained with a comparison of events in T-1, because unit G5 was dated to A.D. 

1020 which is considered to be too old for the event. Subsequently event 2 has been 

interpreted as one of the earthquakes of 1766 or 1509. Event 3 is also determined in 

both trenches. It truncates unit G4 but is overlain by unit G3. Radiocarbon dating of 

unit G4 and G2 yield older ages, therefore the age of event 3 is constrained to be 

younger than A.D. 1020 (unit G5).  

 

Figure 6.37 : Log of trench T-2 where three faulting events were determined 
(Rockwell et. al., 2001). 

 

Figure 6.38 : Log of trench T-5 where four faulting events were determined 
(Rockwell et. al., 2001). 
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This event is interpreted as either the 1509 earthquake or one of the events of 

the 1343, 1344 and 1354 sequence. Event 4 is determined in T-5 and displaces unit 

H, but is overlain by unit G5. Unit H is dated to be younger than A.D. 791 and 

maybe as young as A.D. 1003. Unit G5 yield ages no older than A.D. 965 – 1163. 

Two possibilities are proposed for the age of this event. Taking the maximum age of 

unit H the event is considered to correspond to the earthquake in A.D. 824. However 

the mean age of H yield A.D. 894, in this case all four events post-date A.D. 900 and 

may correspond to earthquakes ca. 1350, 1509, 1766 and 1912. 

Trench results of Rockwell et al., (2009) 

Rockwell et al., (2009) opened 26 trenches east of the sagpond, where they 

identified an abandoned channel to the Kavak River that crosses the fault at a high 

angle. The site is known to have ruptured during the 1912 earthquake associated with 

lateral spreading and liquefaction (Ambraseys & Finkel, 1987; Mihailovic, 1927; 

Macovei, 1913).  

Trenching at this site allowed documenting historical ruptures and resolving 

slip on the channel-fan complex. The trenches exposed a succession of young 

sediments. A distinctively clean, well-sorted channelized sand unit (Unit 200) is used 

as an offset marker. Dating results for units from 10-190 ranged from A.D. 600-

1955, with no order in the section. Therefore, the entire section from unit 200 to 

surface is considered to be deposited in the past 350 years. Dating for unit 200 made 

from several samples constrain a larger uncertainty from about 1490-1530. This 

results that all samples constrain the sand to the past 500 years. Sample T6-43 from 

the channel is said to be no older than A.D. 1655. Therefore its age is constrained as 

A.D. 1655.  

Two large surface ruptures were observed in T6, represented by liquefaction, 

brittle faulting, tilting, fissures and a narrow trough filled with sediments. Fractures 

extending to the base of unit 190 indicate a faulting event, which is overlain by well 

bedded stratigraphy of units 160-190. A massive fine sand unit, which is affected by 

liquefaction derived from a base unit, is overlain by unit 190. A depression is filled 

by units 160-190. The depression is interpreted as a direct result of surface rupture 

prior to 1912. The 1912 is represented by rupture and liquefaction of units 190 up to 
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160, to the base of 150. Units 110-150 accumulated within a trough along the fault. 

Unit 50 fills against scarp and 10-30 deposited after scarp.  

Other trenches opened east of the highway exposed evidence for two 

earthquake ruptures (located 10 m next to Rockwell et al., (2001) trench T-1). 

Fractures extending up to unit 200 are overlain by ejecta 191 that derived from 200. 

Massive clean sand fills the main fault zone. The timing of the faulting is interpreted 

when unit 200 was on surface. Second event is represented by fractures displacing all 

units up through 160, including 191. Other liquefactions have been related with this 

event. Unit 100-130 fill against the scarp. Unit10-50 bury the scarp. The two events 

have been related with 1766 and 1912. 

The fan represented by unit 200 is deflected downstream. The reconstruction 

of the fan apex and the deepest part of the channel resolved an offset of 9 ±1 m. A 

secondary smaller channel also reconstruct to a secondary fan apex and the margins 

of the channel. This amount of displacement is considered to represent two 

earthquake faulting events, which are interpreted to be the 1766 and 1912 event. 

Each event is estimated to have a slip of 4-5 m. 

 

Figure 6.39 : Log of the eastern trench wall of T-6. The coloured lines represent the 
1912 and 1766 event horizons. The unit 200 sand is the yellow shaded 
unit in the top diagram. 



 184

 

Figure 6.40 : Log of the eastern trench wall of T-25 

The Saros trenches may not show clear evidence of 1912 related faulting 

however the 9 m laterally displaced channel deposits are younger than A.D. 1600. 

Two are known for this time The penultimate event of 1912 is either the 1659 or the 

1766 and no other earthquake is known for that region. Co-seismic slip 

measurements of the 1912 earthquake yield offset ranging from 3 to 5.5. Considering 

a characteristic slip behaviour of 4.5 m for the Saros region, the 9 m. 

6.5. Trenching Results along the Ganos Segment 

The combined study of geomorphology with micro-topography and 

paleoseismic trenching provides some constraints on the timing of successive 

faulting and related past earthquakes of the westernmost segment of the North 

Anatolian Fault. Together with the studies of Rockwell et al., (2001 & 2009), four 

sites showed evidence of five earthquake events associated with significant amount 

of lateral slip along on the eastern, central and western parts of the Ganos fault for 

the last 2000 years. Historical earthquakes corresponding to that time frame are given 

in (Table 6.6). The listed events caused substantial damage in and around the Ganos 

region and may have caused surface faulting along the 45 km inland section of the 

Ganos fault. 
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Table 6.6 : List of historical earthquakes that affected the Ganos region. 

 

6.5.1. Historical Seismicity 

The analysis of past earthquakes in trenches at Güzelköy, Yörgüç, Yeniköy 

and Saros (site 1 & 2), yield comparable results (Table 6.7). The maximum number 

of events is observed at Güzelköy and Yeniköy, 5 and 6 respectively. Two trenches 

at Saros (2001) show 3 to 4 faulting events. The trenches at Yörgüç and Saros (2009) 

exposed 2 events. The difference is related to the time span of the exposed geologic 

records in the trenches. The 5 faulting events at Güzelköy postdate 1043 – 835 BC, 

which is very comparable with the 6 faulting events identified at Yeniköy postdating 

1500 – 830 BC. The events may be younger because ages correspond to a maximum 

value. The ages of the 4 events recognized in the Saros trenches (Rockwell et al., 

2001) are no older than A.D. 791 and may include the events observed at Güzelköy 

and Yeniköy. Similarly, the two events at Yörgüç and trenches in Saros (Rockwell et 

al., 2009) which postdate A.D. 1600 can be incorporated in the 6 events. 

The timing of some events are well constrained by event horizons and units 

lain conformably above and below the event horizon that are dated with radiocarbon 

dating. The correlation of age constrained faulting events with the historical seismic 

catalogue is given in Table 6.7. The 1912 earthquake is observed at all trench sites 

with significant amount of faulting and related lateral slip. The penultimate event is 

identified at Güzelköy and at Saros (Trench T6). At Saros, the related dating puts the 

event post A.D. 1600 (unit 200), while at Güzelköy it dates post A.D. 1271 (unit d). 

Date (y, 
m, d) 

Ms Io Localities with heavy damage Lat Lon Ref. 

477.08.25/
484.09.00 

7.2 IX* Çanakkale, Gelibolu, Saros 40.8 29.5 1 

1063.09.23 7.4 IX** Saros, Mürefte, Tekirdağ, İstanbul 41.0 29.0 2 

1343.10.18 7 VIII** İstanbul 41.0 29.0 2 

1344.11.06 ? IX** Tekirdağ, İstanbul, 40.7 27.4 2 

1354.03.01 7.4 X** Çanakkale, Gelibolu, Saros, Tekirdağ 40.6 26.9 2 

1659.02.17 7.2  Tekirdağ 40.5 26.4 2 

1766.05.22 7.4  
Istanbul, Bosphorus, Gulf of Mundaya, 
Bursa, Izmit, Tekirdağ 

41.0 29.0 2 

1766.08.05 7.4  
Bozcaada, Çanakkale, Gelibolu, Saros, 
Tekirdağ 

40.6 27.0 2 

1912.08.09 7.3 X Gelibolu, Saros, Tekirdağ 40.7 27.2 4 

1912.09.13 6.9 VII Gelibolu, Saros, Mürefte 40.7 27.0 5 
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Table 6.7 : A comparison of trenches, observed number of events and their 
correlation with historical earthquakes at 4 sites (*Rockwell et al., 
2001; **Rockwell et al., 2009) 

Site 
Güzel-

köy 
Yeniköy Yörgüç Saros* (2001) 

Saros** 
(2009) 

Trenches T1 T1 T2 T2 T3 T-1 T-2 T-5 T-6 T-25 

Number of observ. EQ’s 5 6 6-8 1 2 2 3 4 2 2 

Historical EQ’s Ms Io Comparable EQ’s 

477.08.25/484.09.00 7.2 IX  9?                   

824.05.05  VIII           

1063.09.23 7.4 IX                     

1344.11.06 ? IX                   

1354.03.01 7.4 X 
9 

                  

1659.02.17 7.2                   

1766.08.05 7.4   
9 

              
9 

  

1912.08.09 7.3 X 9 9  9 9 9 9 9  ? 9 9 

 

Two historical events are known after 17th century affecting the Ganos-Saros 

region, the 1659 and 1766 earthquake. This event is either the 1659 or the 1766. The 

uncertainty in radiocarbon dating did not allow determining the corresponding 

historical earthquake. At Güzelköy unit d postdates actually two events prior to 1912. 

Therefore the second faulting event occurred pre 15-16th century and post 1271 (unit 

d). Here again the time frame coincides with two historical earthquakes, the 1344 and 

1354 which we are not able to distinguish with the present C14 results. Another 

faulting event identified at Güzelköy (T1) is no older 79 A.D. Considering the 

stratigraphy the event is inferred to be the 484. The geologic record of 1063 is either 

eroded or the earthquake did not rupture this section of the Ganos fault. 

6.5.2. Slip rate estimations from paleo-channels and other offset streams 

The combination of geomorphic analysis and trenching results provides 

constrains on estimating the slip rate of the North Anatolian Fault at the Ganos 

region. Using paleo-channel and stream offsets and dated units from trenches we 

calculated slip rates for the Güzelköy and Yeniköy sites. At Güzelköy two paleo-

channels offset for 16 m and 21 m yield 22.3 ± 0.5 mm/yr for the last ~700 years and 

26.9 mm/yr for the last 781 years, respectively.  In addition, dating from the 

lowermost units of the 46 ± 1 m offset stream at Yeniköy provided a maximum 17 

mm/yr slip rate for the last 2840 years. From the trenches at Saros, Rockwell et al., 
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(2009), calculated 15.8 mm/yr slip rate assuming a characteristic 4.5 m co-seismic 

slip for the last 6 events. 

GPS velocities for this region reach 20 to 26 mm/yr (Mc Clusky et al, 2000; 

Reilinger et al., 2006). This value however is higher than geologic rates estimated at 

Yeniköy and Saros, but similar to the rate at Güzelköy. The slip rate estimations 

from Yeniköy and Saros sites are comparable (16-17 mm/yr) and are 5 to 10 mm/yr 

lower than Güzelköy. Bearing in mind the co-seismic slip distribution of the 1912 

surface rupture it may be noticed that the co-seismic displacement was also 

significantly larger at Güzelköy than at Yeniköy and Saros. The co-seismic slip was 

measured as maximum (5.5 m) at Güzelköy, while near Yeniköy and at Saros the slip 

was 4.5 m. This observation suggests the idea of characteristic fault behaviour during 

earthquakes and may explain the discrepancy between geodetic velocity 

measurements and geologic slip rates. In addition, the 1912 slip distribution showed 

that the fault geometry plays a significant role in displacement. This was also 

observed along the 1999 earthquake rupture where the slip significantly decreased at 

step-over areas (Barka et al., 2002). The fault structure near Yeniköy shows a 

releasing step-over geometry, which would also explain the relatively low slip rate. 

6.5.3. Recurrence interval of earthquakes in the Ganos region 

Paleoseismic trenching revealed the presence of at least 8 faulting events 

along the Ganos fault. Eight historical earthquakes causing damage in the Ganos-

Saros region are given in Table 6.6. Although with limited age constrain, the last 

three events are well documented in trenches at Güzelköy (T1) and Saros (T-6) 

which correspond to the 1912, 1766 or 1659 and 1344 or 1354 earthquakes. The 

uncertainty for the latter two events derives from the ambiguity of source estimations 

for historical earthquakes, which rely mostly on damage distribution. The 1766 and 

1659 caused damage in the Ganos region, but the damage of the prior event extents 

eastwards towards Istanbul and the damage of the 1659 extends towards the Saros 

bay. Therefore they may correspond to rupture events situated next to each other. 

The same situation is present for the 1344 and 1354 earthquake, of which the 1354 

affected the Ganos and Saros and the 1344 the Ganos and Tekirdağ regions. Such 

earthquake sequences are likely to occur along the North Anatolian Fault, as was 

experienced in 1999 (Barka et al., 2002; Akyüz et al., 2002). However, trenching 
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along the Ganos fault shows that the two earthquakes of each sequence did not occur 

on the same fault section (at Güzelköy and Saros). 

Two earthquake scenarios for the last six events which are thought to have 

ruptured the Ganos fault are given in Table 6.8. Scenario 1 yields five intervals 

ranging from 239 to 340 years with an average recurrence interval of 285 ± 36 years, 

whereas the five intervals in Scenario 2 range from 146 to 422 years and give an 

average recurrence interval of 285 ± 93 years. The last three faulting events at 

Güzelköy and the last ten events at Yeniköy are constrained by a lower boundary of 

1271 A.D and 900 B.C, respectively. These results are in accordance with the 

obtained recurrence interval. In addition, at Saros Rockwell et al. (2009) suggests a 

280 ±110 year interval. 

The 1766 earthquake is attributed to the Ganos fault (Ambraseys, 2002), 

however other studies suggest and offshore location in the Sea of Marmara (Altınok 

et al., 2003; Yaltırak, 2009). In Scenario 2 the interval between 1766 and 1912 is 

nearly %50 shorter than the suggested recurrence interval. Taking into account the 

~24 mm/yr GPS velocity for the western part of the North Anatolian Fault (Reilinger 

et al., 2006), and the 16 to 22 mm/yr geologic slip rates for the Ganos region 

(Rockwell et al., 2009 and this study) the 146 year time interval would allow a stress 

concentration of 2.5 to 3.5 m (Table 6.9). The arguments for an offshore location for 

the 1766 are mainly based on the inference that this value is nearly the half of the 

maximum offset of the 1912 (5.5 m; Altınok et al., 2003; Yaltırak, 2009). It should 

be noted that this may be possible if the earthquakes along the Ganos fault are not 

characteristic and co-seismic slip varies among subsequent events. However we 

know from the trenches at Güzelköy and Saros that each of the last two events 

produced 4 to 5 m displacement. Therefore we have more evidence to consider a 

characteristic slip model. 
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Table 6.8 : Two earthquake recurrence scenarios are suggested from the trenching 
and historical catalogue analysis. 

Scenario 1 Scenario 2 
Earthquakes (date) Interval (years) Earthquakes (date) Interval (years)

484  484  
824 340 824 340 
1063 239 1063 239 

1344/1354 286 ±5 1344/1354 286 ±5 
1659 305 1766 422 
1912 253 1912 146 

Mean recurrence: 285 Mean recurrence: 285 
Standard Dev.: 36 Standard Dev.: 93 

 

Another critical assumption is whether the accumulated strain energy is 

totally released during an earthquake or if some of the energy may be preserved. In 

Scenario 2 the interval between the 1354, 1766 and 1912 is 422 and 146 years 

respectively. 422 years imply ~8 m of strain accumulation, while 146 years store 2.5 

m slip (Table 6.9). If the characteristic slip behaviour is preserved the 1766 event 

would have released only 5.5 m o slip and 2.5 m would be retained for the next 

event. During the following 146 years 2-3 m slip would be added and the 1912 

maximum co-seismic would be achieved. 

Table 6.9 : Considering two average slip rates we calculate the slip accumulation for 
the suggested recurrence interval. Similarly we calculate the required 
time to accumulate the average and maximum slip value of the 1912 
earthquake that we assume to represent the characteristic behaviour of 
the Ganos fault. 

Recurrence interv. Accumulated slip for 17 mm/yr Accumulated slip for 24 mm/yr 

285 years 4,8 m 6,8 m 

Characteristic  
co-seismic slip 

Geologic slip rate (17 mm/yr) Geodetic velocity (24 mm/yr) 

5.5 m (max) 324 years 229 years 

2.5 m (mean) 146 years 104 years 

2.0 m (mean) 118 years 83 years 

 

A simpler and preferred solution is considering characteristic and periodic fault 

behaviour. Then the 285 years earthquake recurrence implies 5 to 6 m of slip 

accumulation per event, which is comparable with the 1912 slip distribution and the 

offsets measured for the last two events. 
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As a result it is essential to enlarge the current paleoseismic data along the 

Ganos fault with new sites where precise dating of the above mentioned events is 

possible; particularly to refine the relation and location between the 1344, 1354, 

1659, 1766 and 1912 events. In addition a longer detailed event chronology would 

allow the confirm the result for more recent events. 
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7. HISTORICAL SEISMOGRAM ANALYSIS OF THE 1912 EARTHQUAKE 
SEQUENCE 

7.1. Introduction 

The 1912 Mürefte earthquake occurred at an early stage of seismological 

research. At that time, earthquake recording was accomplished by primitive 

seismographs which were continuously experimented and developed. Different from 

today’s standardized seismometers, stations were operating with various types of 

seismographs; i.e. Milne-, Ewing-, Omori-, Bosch-Omori-, Imamura-, Vasca 

sismica-, Rebeur-Ehlert-, Agamennone-, Galitzin-, Wiechert-, Vincentini-, 

Grablovitz-, Mainka-instruments. All were functioning with different characteristics 

but were recording seismic waves. The value of these recordings can not be ignored 

because they are the only source for the seismic parameters of earthquakes of that 

time. The 1912 earthquakes were also registered by several of these instruments. The 

contemporary analyses of old seismograms predate fundamental developments in 

quantitative seismology and are therefore very primitive. However, present 

techniques and methods in modern seismology allow comprehensive analysis of the 

earthquake phenomena (Kanamori, 1988; Kanamori and Brodsky, 2004). A 

reanalysis of old seismograms, integrated with modern methods may provide key 

information for kinematics and seismic parameters of the 1912 earthquakes (Batllo et 

al., 2008). Therefore we collected seismograms of the largest shocks of the 1912 

earthquake sequence. 

7.2. The Collection Procedure of Historical Seismograms 

As an essential and initial step to collect the historical seismograms we 

investigated the number and location of seismic stations active in 1912. The 

Seismological Archives Working Group of the International Association of 

Seismology and Physics of Earth Interior (IASPEI) provide a list of stations around 

the world operating between 1889 and 1920. The list shows that 143 stations were 

active with at least one seismograph in 1912. Figure 7.1 illustrates the distribution of 

the stations. It is noticeable that most stations were located in Europe and United 
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States. The stations cluster mostly towards northwest and west of the epicentre. 

However several stations are also present on the east and southeast. We contacted 

several seismological institutions and observatories and requested historical 

seismograms for the events given in Table 7.1. We collected 73 seismic records of 

the 9 August and 13 September shocks. The majority of the records are from 

European stations located northwest and west of the epicentre. However, we also 

received recordings from Japan, Australia and Russia which correspond to the East, 

Southeast and North of the epicentre. Most of the records were obtained from the 

SISMOS database established by the Istituto Nazionale di Geofisica e Vulcanologia 

INGV. The database is a unique free online archive where historical seismograms 

were available in raster format with a minimum resolution of 600 dpi. 

 

Figure 7.1 : Distribution of the 143 stations (blue triangles) that were operating in 
year 1912. The red star indicates the epicentre area for 1912 events. 

Table 7.1 : List of earthquakes of the 1912 sequence for which seismograms were 
requested (see also Fig 7.3). 

Date Time (GMT) Ms Lat Lon 

1912.08.09 01:29 7.4 40.70 27.20 

1912.08.10 09:23/23:31 6.2 40.80 27.50 

1912.08.10 18:30 5.3 40.60 27.10 

1912.09.13 09:23 6.8 40.70 27.00 
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From the SISMOS database we downloaded more than 100 seismograms that 

cover the recording period of the events given in Table 7.1. We noticed that some 

seismographs did not register the events, while another nearby station or even 

adjacent instrument had a significant record. We consider that this is related to 

different instrument characteristics or adjustments. Together with direct requests we 

obtained 56 and 17 registrations of the 9 August and 13 September shocks, 

respectively (Table 7.2 & 7.3). 

 

Figure 7.2 : Location of earthquakes given in Table 7.1 (after Ambraseys, 2002) 

7.3. Record Selection and Instrument Characteristics 

As mentioned previously, different types of instruments were present at the 

time of the earthquake and recording characteristics varied not only among different 

types of instruments but also among the same seismograph. Basically all instrument 

record seismic oscillations using an arm as a pendulum and record on a paper media 

(i.e. smoked paper, photometric paper). The paper media is usually attached on drum 

which turns with a constant velocity (Fig 7.2). In parallel, the recording arm/needle 

moves laterally (perpendicular to the drum turn direction) allowing a continuous 

helicoidally. registration from one edge to the other of the paper media. However 

several parts and parameters of the described system vary among instruments. 
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Table 7.2 : List of seismograms for the 9 August 1912 earthquake. 

No Country City Station Code Component Seismograph 

1 Australia Sydney RIV E-W Wiechert 

2 Australia Sydney RIV N-S Wiechert 

3 Australia Sydney RIV E-W Mainka 

4 Australia Sydney RIV N-S Mainka 

5 Georgia Tbilisi TIF N-S Galitzin 

6 Georgia Tbilisi TIF E-W Galitzin 

7 Germany Göttingen GTT E-W Wiechert 

8 Germany Göttingen GTT N-S Wiechert 

9 Germany Göttingen GTT Z Wiechert 

10 Germany Jena JEN E-W Wiechert 

11 Germany Potsdam POT E-W Wiechert 

12 Germany Potsdam POT N-S Wiechert 

13 Italy Chiavari CHV E-W ? 

14 Italy Chiavari CHV N-S ? 

15 Italy Chiavari CHV E-W ? 

16 Italy Chiavari CHV N-S ? 

17 Italy Firenze FIR E-W ? 

18 Italy Firenze FIR N-S ? 

19 Italy Ischia IC1H N-S Vasca sismica 

20 Italy Ischia IC1H E-W Vasca sismica 

21 Italy Ischia IS1H N-S Vasca sismica 

22 Italy Ischia IS1H E-W Vasca sismica 

23 Italy Taranto TA1H E-W Wiechert 

24 Italy Taranto TA1H N-S Wiechert 

25 Japan Tokyo HGJ E-W Omori 

26 Japan Tokyo HGJ E-W Omori 

27 Japan Tokyo HGJ E-W Omori 

28 Japan Tokyo HGJ N-S Omori 

29 Japan Tokyo HGJ E-W Ewing 

30 Japan Tokyo HGJ Z Imamura 

31 Japan Tokyo HGJ E-W Imamura 

32 Japan Tokyo HGJ N-S Imamura 

33 Netherlands de Bilt DBN N-S Galitzin, Wiechert, Bosch 

34 Netherlands de Bilt DBN E-W Galitzin, Wiechert, Bosch 

35 Norway Bergen BER Hor. Bosch-Omori 

36 Norway Bergen BER Hor. Bosch-Omori 

37 Russia Irkutsk IRK E-W ? 

38 Russia Irkutsk IRK N-S ? 
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Table 7.2 : (continued) List of seismograms for the 9 August 1912 earthquake. 

39 Russia Pulkovo PUL E-W ? 

40 Russia Pulkovo PUL N-S ? 

41 Russia Pulkovo PUL Z ? 

42 Spain Ebro EBR NW-SE Grablovitz 

43 Spain Ebro EBR NE-SW Grablovitz 

44 Spain Ebro EBR N-S Vincentini 

45 Spain Ebro EBR E-W Vincentini 

46 Spain Ebro EBR Z Vincentini 

47 Spain Toledo TOL E-W Bosch 

48 Spain Toledo TOL N-S Bosch 

49 Spain Toledo TOL E-W Agamennone 

50 Spain Toledo TOL N-S Agamennone 

51 Spain Toledo TOL Z Agamennone 

52 Spain Toledo TOL E-W Milne 

53 Spain Toledo TOL E-W Rebeur-Ehlert 

54 Sweden Uppsala UPP E-W  

55 Sweden Uppsala UPP N-S  

56 United Kingdom Paisley PAI Hor. Milne 

 

Table 7.3 : List of seismograms for the 13 September 1912 earthquake. 

No Country City Station Component Seismograph 

1 Italy Chiavari CHV E-W ?A 

2 Italy Chiavari CHV N-S ?A 

3 Italy Ischia IC1H N-S Vasca sismica 

4 Italy Ischia IC1H E-W Vasca sismica 

5 Italy Ischia IC1H N-S ? 

6 Italy Ischia IC1H E-W ? 

7 Italy Ischia IS1H N-S Vasca sismica 

8 Italy Ischia IS1H E-W Vasca sismica 

9 Italy Ischia IS1H N-S ? 

10 Italy Ischia IS1H E-W ? 

11 Italy Taranto TA1H E-W Wiechert? 

12 Italy Taranto TA1H N-S Wiechert? 

13 Italy Taranto TA1H E-W Wiechert? 

14 Italy Taranto TA1H N-S Wiechert? 

15 Norway Bergen BER Hor.? Bosch-Omori 

16 Spain Ebro EBR NW-SE Grablovitz 

17 Spain Ebro EBR NE-SW Grablovitz 
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A proper analysis of historical seismograms requires knowing certain instrument 

parameters: 

 To = natural period of the pendulum in seconds 
 V = amplification 
 ε = damping coefficient 
 r = solid friction of the registering needle given in millimetres 
 Turning speed of the seismogram (drum). 
 Lateral velocity of the recording arm. 
 Others 

These parameters are available in the bulletins of seismological stations or are 

enclosed to seismograms. However, in most cases the essential parameters are not 

accessible, because they are not registered, lost or insufficiently noted. To avoid 

complications due to missing instrument information we decide to apply the 

Empirical Green Function (EGF) approach by Vallee (2004); suggested by Bouchon 

M. (personal communication, 2005). Therefore we selected stations from which we 

could obtain registrations of at least two events; the 9 August , the 13 September 

and/or other events on 10 August (Fig. 7.3). Among 73 seismograms only records 

from Bergen (BER), Ebro (EBR), Ischia (IC1H), Chiavari (CHV) and Taranto 

(TA1H) contained comparable signal pairs (Appendix 3A). 

Bergen (BER) – Norway 

Three seismograms recorded by a Bosch instrument were collected from the 

Bergen station. Two of the records are the East and North horizontal components of 

the 9 August shock (exact components information of records are missing). The third 

record corresponds to the 13 September shock. It is also a horizontal component, but 

if east or north is not known. All registrations have a clearly visible signal which can 

be followed from start point until the end. The minute marks of the instrument are 

also distinct. 

Ebro (EBR) – Spain 

Two different instruments, Grablovitz and Vincentini recorded the 9 August 

and 13 September shock at Ebro station. The Grablovitz seismograph registered the 

northwest and northeast horizontal components. The signal is apparent for both 

events. The 9 August shock was recorded fully by both components with only a 

small missing part towards the end. However the 13 September shock is only 

noticeable on the northwest component with minor amplitudes. The minute marks 
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are clear to read. The Vincentini seismograph registers three components; east, north 

and vertical component. The east and west components show a apparent signal for 

the 9 August shock, however the vertical component shows only a minor oscillation. 

The signal of the 13 September is readable for the east and north components, but the 

vertical component did not register any movement. Minute marks are easily 

accessible on for both events.  

Taranto (TA1H) – Italy 

The seismograms of the Taranto station are from a Wiechert instrument. 

Three earthquake registration were obtained from this station; 9 August, 10 August 

and 13 September. All seismograms have a clear signal with a complete record of all 

events. The 9 August record is clipped at high amplitudes because the oscillating arm 

reached the registration limits of the instrument when surface waves arrive. However 

the bodies waves are well recorded in the signal and may be of use. 

Chiavari (CHV) – Italy 

When the Chiavari station was established in 1909 four seismographs were 

operating in the observatory; two Agamennone seismographs, a vertical pendulum 

built by Bianchi and an Alfani seismograph (Ansaloni, 2006). The seismograms we 

collected are from the SISMOS database and instrument information are missing on 

the records. Therefore we could not identify to which instrument these recordings 

belong. Based on the presence of two components (most probably horizontal) we 

consider that the registrations belong to a Agamennone instrument. Two 

seismograms for the 9 August and 13 September shocks were available. The signals 

for both events are clear visible. The signal of the 9 August shock is shifted on one 

component, while the other component and the signals for 13 September are well 

registered. 

Porto d‘Ischia (IS1HD) – Italy 

The Ischia records belong to the 9 August and 13 September shocks, 

registered by a horizontal pendulum. The 9 August signal is incomplete for both 

components. The signal breaks when the first high amplitude is registered. This 

occurs when the recording arm is displaced over its maximum amplitude, which is in 

this record caused most probably by surface waves. The first wave train however is 
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well recorded on at least one component which could be of use. The signal of the 13 

September shock is complete and readable for both components.  

Important note: The Ischia and Chiavari records were very recently obtained and 

could not be included into the digitization and modelling process. 

7.4. Characteristics of Recording System, Signal Deformation and Correction 
Procedure 

The standard mechanism of primitive seismographs is based on an oscillating 

arm with a needle at the end that registers seismic movements on a smoked paper 

placed on a turning cylinder. The needle is fixed at the extremity of an arm and the 

needle movement corresponds to the intersection between a cylinder and a sphere. 

This geometry induces a curved deformation of the signal (Fig 7.3, Schlupp, 1996). 

The curvature is worst in case of great amplitude signal and occurs due to the finite 

arm length and finite radius of the cylinder bearing the smoked paper (Pintora & 

Quintiliani, 2007). Furthermore, the equilibrium position of the arm is usually not 

aligned with the seismogram trace. This adds an inclination to the signal (Fig. 7.3, 

Schlupp, 1996). To correct the finite distortion we use Teseo2 software which offers 

a function that creates a corrected path from a curved one. The algorithm in Teseo2 

is from Cadek, (1987), while the code was originally written in FORTRAN by 

Schlupp (1996). The algorithm needs some parameters, while a few of them are 

suggested. Some of these parameters can be measured or calculated directly from the 

seismogram. The drum speed and lateral velocity can be retrieved by measuring the 

distance between the minute marks on the signal and the distance between two 

parallel signals, respectively. The drum speed range is fixed by the type of the 

instrument, therefore measurements should not exceed the common range for the 

instrument. For instance, Wiechert seismographs turn speed range from 10 to 30 

mm/min, while the lateral speed is constant at 4.5 mm/min. The radius of the drum 

(r), the arm length (R), and the distance from the rotating arm axe to the driving 

cylinder axe (a) depends on the type of instruments and can be retrieved from 

manufacturer catalogues. In cases where arm length (R) is not available, an 

approximate value can be deduced from signals where high amplitudes show distinct 

curvature; best in high frequency signals. If we simplify the recording system, the 

curve represents basically an arc of a circle. Using tangents to the circle the point of 

rotation of the arm can be recovered (Fig. 7.3). 
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Figure 7.3 : The mechanical recording schema of old seismograph and important 
parameters of components used for signal corrections (Schlupp, 1996). 

 R = length of the writing arm, from its rotating axis to the tip of the needle 
 r = radius of the drive cylinder bearing the smoked paper 
 a = distance from the rotating arm axis to the driving cylinder axis 
 b = shift of the arm axis, in millimetres, to the base line on the smoked paper 
 d = minute length on the original record in millimetres 
 x(i) = coordinate to transform in seconds for time axis 
 y(i) = coordinate to transform in millimetres for amplitude axis 

 

Figure 7.4 : Illustration showing how curvature occurs during recording and which 
parameters are important for correction (Schlupp, 1996) 
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In cases where the recording arm is not aligned to the signal, the shift of the 

arm can be deduced with the same geometric approach. As the first step of the 

digitization procedure we scanned all obtained seismograms with 600 to 1200 dpi 

resolution and saved in TIFF format. Seismograms downloaded from the SISMOS 

database are also at 1200 dpi resolution and in TIFF file format. During scanning a 

common rotation occurs while placing the seismogram into the scanner. Therefore 

we aligned all signals by rotating them to a fixed horizontal reference line using 

graphic software Photoshop. To digitize the signal we use Teseo2 software that is a 

plug-in designed for the free graphic software GIMP. The signal is redrawn as a path 

(vector). Afterwards we initiate the Curvature Correction function and input the 

following parameters for the related seismograms; paper speed, lateral speed, arm 

length, arm shift and cylinder radius. 

Geometric corrections were essential particularly for the Bergen and Taranto 

records. Figure 7.5, 7.6 and 7.6 show the original and corrected records for seismic 

signals of the 9 August and 13 September from both stations. The corrected signals 

are exported as sac formats for signal modelling. 

 

Figure 7.5 : The original and corrected seismogram of the 9 August 1912 earthquake 
recorded at Taranto station – Spain. 
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Figure 7.6 : The original and corrected seismogram of the 13 September 1912 
earthquake recorded at Taranto station – Spain. 

As a result we established digitized and corrected seismic signal for 3 

stations; Ebro, Taranto and Bergen (seismograms of Ischia and Chiavari were not 

retrieved at that time). The number of corrected digital signals for the 9 August, 10 

August and 13 September shocks are 9, 6 and 7, respectively; 22 in total. 

7.5. Signal Processing and modelling 

The modelling of historical seismic signals require additional parameters to be input 

in the process. Some necessary parameters are: 

To = natural period of the pendulum in seconds 

V = amplification 

ε = damping coefficient 
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These parameters can be obtained from bulletins or are sometimes indicated 

on the seismogram it’s self. In most cases this information is difficult to access 

because the bulletins of the time of the event are missing or not indicated in related 

documents. Two avoid complications due to missing instrument information we 

apply the Empirical Green Function (EGF) approach by Vallee (2004) as suggested 

by Bouchon M. (personal communication, 2005). This technique uses the signal of a 

smaller event to model the Green function of the main earthquake. The request for 

the smaller event is to be at least one degree in magnitude smaller than the 

mainshock and to have a similar location and focal mechanism (Valleé & Di Luccio, 

2005). In addition, since the events are recorded by old fashioned seismographs other 

prerequisites are identical instruments, recording component and device adjustments 

for any chosen pairs. The technique described by Valleé (2004), stabilizes the 

classical deconvolution between the mainshock and the EGF in order to obtain more 

reliable Relative Source Time Functions (RSTFs). If these RSTFs, are obtained at 

various azimuths they can give information on the source process itself. With this 

objective we digitized seismograms for the 1912 earthquake sequence. 

The processing step was accomplished with the contribution of Martin 

Valleé, who kindly applied his method on the corrected 22 signals in sac format.  

7.6. Results on the Seismogram Analysis 

Due to limitations by the applied method and majorly because of limitations 

(insufficiency) of signal corrections our modelling revealed reliable results only for 

the Taranto station. 

The signals of the 9 August and 13 September shocks of Taranto station 

provides a relative source time function (Fig. 7.7). The modelling indicate that the 

moment ration between the 9 August and 13 September shocks is about 30 which 

corresponds to 1 degree difference in magnitude (i.e., Mw 6.4 for the second shock) 

and infer 40 sec. for the 9 August source duration (7.7). 

The 40 second source duration obtained from the relative source time 

function implies ~ 120 km coseismic rupture length if an unilateral rupture 

propagation at 3 km/sec is attributed to the 9 August earthquake. The source duration 

and suggested rupture length is comparable with the size of the shock (Mw = 7.4). 
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Figure 7.7 : Results of the signal processing using 13 September shock to model the 
Green Function of the 9 August shock. a) comparison of real and 
modelled signal of the 9 August shock, b) Relative Source Time 
Function of the two earthquakes indicating 40 second rupture duration 
for the 9 August event. 

In addition to the modelling, we use P-wave polarities at 5 stations to 

construct a focal mechanism for the 9 August 1912 earthquake. The vertical 

component seismograms from Göttingen (GTT), Toledo (TOL), Ebro (EBR), 

Pulkovo (PUL) and Hongo (HGJ) and field based N68°E fault strike allow us to 

construct the focal mechanism solution shown in figure 5.18. The pure strike slip 

solution we obtained is in agreement with the known fault kinematics and slip 

measurements. 
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8. CONCLUSION AND RECOMMENDATIONS 

We investigated the structural and tectonomorphic characteristics of the 

Ganos fault and the co-seismic deformation related to the 9 August 1912 Mürefte 

earthquake; as well as its source characteristics. For that purpose, the entire onland 

fault zone has been mapped at a 1/25.000 scale using field observation and remote 

sensing software and data. The surface rupture and related co-seismic displacements 

of the 9 August 1912 Mürefte earthquake are documented at several localities. In 

addition the instrumental recordings of the 1912 earthquake sequence are collected in 

order to extract source characteristics of the largest shocks. We applied paleoseismic 

trenching at 3 sites in order to document the 1912 earthquake and prior events along 

the Ganos fault. Here, we summarize results of the related chapters and provide an 

overall conclusion on the characteristics of the westernmost onland extension of the 

North Anatolian Fault. 

1a - Geomorphic analysis along the 45-km-long onland section of the Ganos fault 

allowed documenting typical structures of right lateral strike slip faulting; i.e. step-

overs, pull-aparts, bends, pressure ridges, offset ridges, shutter ridges and stream 

displacements. Cumulative displacements determined at 69 localities and tectonic 

reconstructions provide insight of the long term and short term deformation 

characteristic of the Ganos fault segment. A classification of the stream offsets and 

correlations with climatic events deduced from Black Sea sea level curves showed 

well correlations of consecutive 5 cumulative slip groups (from 70 to 300 m) with 

subsequent sea level rise periods at 4 ka, 10.2 ka, 12.5 ka, 14.5 ka and 17.5 ka. Slip 

rate estimations yield a constant slip rate of 17.9 mm/yr for the last 20.000 years and 

a variable slip rate of 17.7 mm/yr, 17.7 mm/yr, 17.9 mm/yr and 18.9 mm/yr for the 

last 10.2 ka, 12.5 ka, 14.5 ka and 17.5 ka respectively. The results are similar with 

slip rates obtained from the paleoseismic trenching sites in this study (18 - 27 

mm/yr). Although indirectly dated, these values provide for the first time a slip rate 

for the Ganos fault; the westernmost section of the North Anatolian Fault. Studies 

along the eastern parts of the North Anatolian Fault yield rates 15 to 25 mm/yr that 
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are comparable with our estimations (Puchi et al., 2008, Kozaci et al., 2007 & 2009, 

Hubert-Ferrari et al., 2002). Furthermore, over the short period, geodetic 

measurements suggest 17 to 26 mm/yr strain accumulation along the North Anatolian 

Fault that are in the same range as the geologic rates (Kahle et al., 1998; Straub et al., 

1997; McClusky et al., 2000; Reilinger et al., 1997 & 2006). 

1b - The suggested 9 km valley offset based on morphologic analysis has important 

implications on the age of the western part of the North Anatolian Fault. Şengör et al, 

(2005) and Le Pichon et al., (2001) show an 4 ±1 m offset feature in the Sea of 

Marmara which they assume to be the total offset of North Anatolian Fault in this 

area. Using an average constant slip rate of 19 mm/yr they extract a 200 ka age for 

the North Anatolian Fault in the Sea of Marmara. A substantiation of a 9 ± 1 km 

offset along the Ganos fault would suggest necessarily an older age for the North 

Anatolian Fault as also proposed by Armijo et al (1999). 

2 a – We provide detailed field and seismological data for the 9 August 1912 

Mürefte earthquake (Ms=7.3) and emphasize the presence of a second large shock on 

13 September 1912 (Ms=6.8) with an epicentral region to the west of the first main 

shock. The 9 August shock was responsible of severe destruction (Io = X) between 

Tekirdag and Çanakkale, while the 13 September caused Io = VII damage west of 

Gaziköy and along the Gallipoli peninsula. Surface breaks have been recorded along 

the entire 45-km-long onland section of the Ganos fault. Co-seismic offsets at 45 

sites provide a maximum slip of 5.5 m which was previously suggested as 3 m 

(Ambraseys & Finkel et al, 1987). 5 m right-lateral displacement was measured on 

the eastern coast and 4.5 m on the western coast (Rockwell et al., 2009). We extend 

the slip measurements of Altunel et al., (2004) from 31 localities to 45 with a better 

distribution along the fault. The offset distribution indicates that a certain length of 

the rupture is offshore; in the Saros bay and Sea of Marmara. Combined with 

submarine fresh fault scarps and offsets (Armijo et al., 2005; Ustaömer et al., 2008) 

we suggest a 150-km-long earthquake segment that consist of minimum of 4 sub-

segments limited by geometrical complexities in which the Saros Trough and the 

Central Marmara basin are the largest and may serve as barriers to arrest rupture 

propagation. 
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2b) The magnitude and related seismic moment suggests 120 ± 20 km and 30 ± 10 

km rupture length for the 9 August and 13 September shocks, respectively (Aki, 

1966, Kanamori, 1977). In addition, the 40 second source duration obtained from 

relative source time function for the 9 August event implies 120 km rupture length 

considering 3 km/s unilateral rupture propagation, which consistent with the 

earthquake size (Mw 7.4). The total 150 ± 20 km rupture length deduced from the 

earthquake magnitude is equivalent to the size of the earthquake segment determined 

from onland and offshore morpho-tectonic analysis. 

2c) Based on prior epicentre estimations, damage distribution, field observation, 

seismological data and contemporary document we locate the 13 September 

epicentre between the Saros Trough and Kavak and think it ruptured the adjacent 

fault section of the 9 August rupture. Considering a rupture length of 120 km and the 

suggested eastern termination point from Le Pichon et al. (2003) and Altınok et al. 

(2003) for the first shock requires the 13 September earthquake epicentre be located 

far west beyond the Dardanelles. However, such a scenario fails to explain the 

damage distribution given by Hecker (1920) and the epicentral location estimated by 

Ambraseys and Finkel (1987). Therefore, rather than towards the Saros Bay, the 120-

km-long 9 August rupture must have propagated mostly into the Sea of Marmara and 

necessarily reached the Central Basin in agreement with Armijo et al. (2005) study. 

This implies a 150±20 km total rupture length including (i) the three sub-segments in 

the Sea of Marmara (~ 65 km) beginning from the Central basin, (ii) the onland fault 

section (~ 45 km) and (iii) the Saros Bay sub –segment (~ 40) limited by the Saros 

pull-apart basin. Therefore, the eastern termination of the 9 August 1912 rupture and 

the western termination of the 1999 earthquake rupture (Cakir et al., 2003) imply a 

minimum 100-km-long seismic gap in the Sea of Marmara (Fig 5.3). This fault 

length suggests an earthquake size M>7 that should be taken into account in any 

seismic hazard assessment for the Istanbul region. 

3a - The combined study of geomorphology with micro-topography and 

paleoseismic trenching provides some constraints on the timing of successive 

faulting and related past earthquakes. We identified a total of 8 faulting events in 

trenches at Güzelköy, Yörgüç and Yeniköy. Together with the studies of Rockwell et 

al., (2001 & 2009), the four sites show comparable evidence of five earthquake 
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events associated with significant amount of lateral slip along on the eastern, central 

and western parts of the Ganos fault for the last 2000 years. The 5 faulting events at 

Güzelköy postdate 1043 – 835 BC, which are very comparable with the 6 faulting 

events identified at Yeniköy postdating 1500 – 830 BC. The ages correspond to a 

maximum value hence events are necessarily younger. The ages of the 4 events 

recognized in the Saros trenches (Rockwell et al., 2001) are no older than A.D. 791 

and may include the events observed at Güzelköy and Yeniköy. Similarly, the two 

events at Yörgüç and trenches in Saros (Rockwell et al., 2009) which postdate A.D. 

1600 can be incorporated in the 5 events. 

3b) The comparison of constrained event ages with the historical catalogue allows 

restricting the timing of the earthquakes. Seven large shocks are known to affect this 

region after A.D.; i.e. 1912, 1766, 1659, 1354, 1344, 1063, and the 484 earthquakes. 

The 1912 earthquake is observed at all trench sites with significant amount of 

faulting and related lateral slip. The penultimate event is identified at Güzelköy and 

at Saros (Trench T6) which is related either the 1659 or the 1766 earthquakes. Prior 

events were only observed at Güzelköy site. A faulting event dated as pre 15-16th 

century and post 1271 coincides with two historical earthquakes., which is either the 

1344 or 1354 earthquake. The last two faulting events no older than 79 A.D, which 

may be related to the 1063 and 484 earthquakes. Since we observed 5 events in all 

trenches with some age constrain for the last 2000 years we suppose that all above 

mentioned faulting events ruptured the entire onland section. 

3c) The combination of geomorphic analysis and trenching results provides 

constrains on estimating the slip rate of the North Anatolian Fault at the Ganos 

region. At Güzelköy two paleo-channels offset for 16 m and 21 m yield 22.3 ± 0.5 

mm/yr for the last ~700 years and 26.9 mm/yr for the last 781 years, respectively. At 

Yeniköy dating from the lowermost units of the 46 ± 1 m offset stream provided a 

maximum 17 mm/yr slip rate. From the trenches at Saros, Rockwell et al., (2009), 

calculated 15.8 mm/yr slip rate assuming a characteristic 4.5 m co-seismic slip for 

the last 6 events. 

3d) A combined study of historical catalogues and paleoseismic trenching may allow 

constraining the earthquake recurrence interval for the Ganos region. Eight historical 

earthquakes causing damage in the Ganos-Saros region are the. 1912, 1766, 1659, 
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1354, 1344, 1063, 824 and 484 events. The uncertainty for the earthquakes from 12th 

to 16th century derives from the ambiguity of source estimations for historical 

earthquakes. The 1766 and 1659 may correspond to rupture events situated next to 

each other. The same may be valid for the 1344 and 1354 earthquakes. Such 

earthquake sequences are recently observed along the North Anatolian Fault (i.e. 

1999 earthquakes Barka et al., 2002; Akyüz et al., 2002). Important here is that, if the 

event pairs would rupture the same segments we would observe them in the trenches, 

which is not the case. Therefore they must have ruptured at adjacent segments of the 

Ganos fault. 

We suggest two earthquake recurrence scenarios for the last six events. 

Scenario 1 yields five intervals ranging from 239 to 340 years with an average 

recurrence interval of 285 ± 36 years and encompasses the 1912, 1659, 1354/1344, 

824, 484 events. Whereas the five intervals in Scenario 2 range from 146 to 422 

years and give an average recurrence interval of 285 ± 93 years and includes the 

1912, 1766, 1354/1344, 824, 484 events. These results are in accordance with the 

280 ±110 year recurrence intervals suggested by Rockwell et al. (2009). The decision 

if the 1766 or the 1659 is the penultimate event of the 1912 earthquake is critical, but 

difficult to resolve. The 280 years recurrence interval is sufficient to accumulate 5.5 

m lateral slip considering a 19 mm/yr constant slip rate (which are values consistent 

with our slip rate estimations from paleoseismology and geomorphology and 

maximum co-seismic slip observations for the 1912 earthquake). An evaluation for 

the last 6 events along the Ganos fault should prefer Scenario1 if a characteristic 

earthquake behaviour and periodic recurrence interval is considered (Schwartz and 

Coppersmith, 1984). On the other hand Scenario 2 could be valid if a non-periodic 

recurrence interval is attributed for this section of the North Anatolian Fault. In this 

scenario it should be noted that the periods between the earthquakes before and after 

the 1766 are 422 and 146 years respectively. A 19 mm/yr constant slip rate would 

cause 8 m of strain accumulation pre 1766, and 2.7 m post 1766. If each earthquake 

along the Ganos fault causes similar size of events the maximum slip should be 

comparable and correspond to 5.5 m. If we consider that 5.5 m slip occurred during 

the 1766 earthquake 3 m of slip would have remained. Therefore, the following 

period of 146 years is sufficient to complete the slip to 5 m and may have triggered 

the 1912 
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4a) 61 historical seismogram recordings have been collected for the 9 August, 10 

August and 13 September 1912. Comparable pairs have been digitized using TESEO 

software and analyzed to extract information for rupture duration and propagation, 

focal mechanism and epicentre. 

4b) We collected 73 historical seismic records from institutions worldwide in order 

to determine the seismic characteristics of the 9 August and 13 September 1912 

earthquakes. P-wave polarities at 5 stations and field based N68°E fault strike allow 

us to construct the focal mechanism solution shown in Fig 5.3,. The pure strike slip 

solution we obtained is in agreement with the known fault kinematics and slip 

measurements that do not show a significant vertical component. 

The Ganos fault; although short and limited by two seas at it two ends shows 

typical features of right lateral strike slip faulting that may allow improving our 

understanding of fault mechanism in short and long term. Offsets are evident at 

various scales (10 to 9000 m). We were able to date some of the small displacements 

(> 50 m) and obtained comparable slip rates. However the larger offsets are 

indirectly dated and should be confirmed with absolute dating methods. Particularly, 

if the suggested offset groups are dated the obtained slip rates would yield an average 

rate independent of fault geometry and related cumulative slip distribution. 

The complex seismic history, if carefully studied with more paleoseismic 

trenching can shed more light to our understanding on the behaviour of earthquake 

segments and their periodicy of earthquake production. 

The available seismic parameters of the 1912 earthquake will play a key role 

in evaluating paleoseismic results and the slip rate estimations. 
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APPENDIX A1 – HISTORICAL SEISMICITY 

Historical catalogs note more than 150 earthquakes, for the Marmara region, since 

the 5th century B.C.  This section contains a selection of these earthquakes. The 

selection is based on which segments of the NAF might have been ruptured during 

the event. Only earthquakes which link to either to the Ganos fault, or to its 

neighboring segments have been taken into consideration. Please refer to Guidoboni 

et al (1994, 2005) and Ambraseys and Finkel (1995) for further information. 

B.C 427 Dec : Marmara Ereğlisi ( ) 

This is an earthquake thought to be at Perinthus (Marmara Ereğlisi). It is mentioned 

in the fourth book of Hippocrates’ Epidemics: 

”4.21. During the winter solstice, a large star. On the fifth and sixth following, 
earthquake. When we were in Perinthus the asthmatic woman, Antigenes’ wife, who 
did not know whether she was pregnant. She had red patches on her skin…” 

There is a disagreement of the date of the earthquake. Capelle, (1924) dates it to B.C. 

427, whereas Deichgraber, (1933) relates it with the epidemic in Perinthus at B.C. 

399-5. Though an astronomical event is mentioned, a more precise date has not been 

established up to date. 

The lack of further detail, such as descriptions of damage or loss of live might be 

because the event was not destructive. However, an earthquake which causes many 

losses can be a good reason for an epidemic in the region. The poor information 

available, does not allow us to make any interpretation about the event.  

  

B.C. 360: (≥ VIII ≤ X) Çanakkale, Ereğli (1) 

This is an event related to Ophryneum (near Çanakkale) and Heraclia Pontica 

(Ereğli, Black Sea). Information is based on two accounts. The first is mentioned in a 

trial by Demosthenes; the Greek rhetorician. Demosthenes wrote in Contra 

Apaturium: 
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“…After these events, then, a terrible tragedy struck Parmenion, O judges. For while 
he was living at Ophryneum, having fled from his country, there was an earthquake 
in Chersonese, so his house collapsed and his wife and children were killed…” 

The earthquake mentioned here caused a house (and probably more) to collapse in 

Ophryneum. Aristotle makes in Meteorologica general remarks about earthquakes 

and mentions probably the same earthquake. 

“…Furthermore, the most violent earthquake take place where the sea is subjected to 
currents and the land is of a porous and cavernous kind. That is why they also occur 
in the Hellespont. Examples of such events have occurred in our lifetime. Thus an 
earthquake which occurred in certain places only ceased when the clouds broke and 
the wind which had driven them moved away, as happened recently near Heraclea 
Pontica…” 

Heraclea Pontica is an ancient city located at Ereğli on the Black Sea cost. The date 

of Aristotle’s remark is unclear and the adverb “recently” makes the date more 

arguable. However his remark of the fire in Ephesus (B.C. 356) allows constructing 

an approximate date. 

B.C 287: (≥ IX ≤ XI) Ortaköy (Saroz) (1) 

An earthquake occurred at Lysimachia (Ortaköy-Saros). The event affected the 

Gelibolu region and is described by the Latin historian Justin. Though Justin is 

thought to have lived in the 2nd-3rd century (AD) the date he provided for the 

earthquake can be well established. 

”…At about this time, there was an earthquake in the region of the Hellespont in the 
Chersonese, but it was the city of Lysimachia, founded by the king Lysimachus 
twenty-two years earlier, which was worst, affected, being reduced to ruins. This was 
a bad omen for Lysimachus and his house, for it not only caused havoc in the regions 
where it was felt, but was also a portent of his own fall from power.” 

The foundation of Lysimachia is in 309 B.C. and Justin is mentioning that the 

earthquake occurred 22 years after the foundation, which gives us 287 B.C. The 

description designates an extensively destructive event, which causes a city to ruin 

totally. 

This earthquake could be most probably either in the Saros bay, or on the western 

part of the Ganos fault.  

c.50 : Dardanelles (1) 
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Flavius Philostratus, who is a Greek sophist, lived between 172 and 250 mentions the 

event in his book “The Life of Apollonius” He states an earthquake affected 

Hellespont (Dardanelles). 

”At one time the cities on the north side of the Hellespont were struck by earthquakes 
and Egytpians and Chaldeans (in this context wizards) went begging abouth through 
them to collect money, pretending that they needed ten talents to offer sacrifices to 
Earth and Poseidon. And the cities began to contribute under the stress of fear, 
partly out of their common funds and partly out of private. But the imposters refused 
to offer the sacrifices in behalf of their dupes unless the money was deposited in the 
banks. 

Now the sage determined not to allow the peoples of the Hellespont to be imposed 
upon; so he visited their cities, and drove out the quacks who were making money 
out of the misfortunes of others, and when he divined the causes of the supernatural 
wrath, and by making such offerings as suited each case averted the visitation at 
small cost, and the land was at rest.…” 

No evidence of destruction is available, however the description of the fear of 

habitants indicate presumably a large shock. The earthquake might have occurred in 

the Saros bay. 

447 Jan 26: (≥ IX ≤ XI), Ms = 7.2; Istanbul, Thrace, Dardanelles, Gelibolu, 

Iznik, Kocaeli (1) 

A very destructive earthquake ruined many places in and around Constantinople 

(Istanbul), Nicomedia (Iznik), and Bithynia (Thrace). Information about the event is 

available by several sources; therefore the date is also well established. Ambraseys 

and Finkel, (1991) indicate that this shock was preceded by another damaging shock 

on Jan 26, which caused the main destruction in Constantinople. 

Damage and distribution: Marcellinus records damage in Istanbul: “…many recently 

rebuild walls…collapsed together with fifty-seven towers… …huge blocks of stones 

in a building and a number of status collapsed in the Forum Tauri……many cities 

were reduced to ruins” 

Evagrius verifies the causes of the earthquake around Istanbul and extends it’s 

affects to Bithynia (Thrace), Hellespont (Dardanelles) and Phrygia. He remarks a 

collapsed long wall in Chersonese (Gelibolu) and states that many villages were 

reduced to ruins. Though his descriptions are in an exaggerated mode, he is pointing 

events which could be linked to surface rupture, cracks, landslide and tsunami. 

However he is not giving locations for these phenomena’s. 
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Malalas signifies an earthquake caused destruction in Constantinople (Istanbul) but 

also in Nicomedia (Kocaeli). He specifies that Nicomedia was almost ruined and was 

flooded by the sea. 

In the Chronicon Paschale walls are reported to be collapsed in Constantinople 

(Istanbul). 

The destruction explained in the accounts expands to a very wide region; from 

Hellespont to Nicomedia, which is not very credible. The size of the event seems to 

be open to question. 

Loss of live: Marcellinus portrays a high number of death: ”…starvation and noxious 

smell killed thousands of people and cattle…” However the Chronicon Paschale 

counters this information partly. “…For amidst such great peril he did not kill 

anyone.” Though Marcellinus points on thousands of death he does not say they died 

because of the destruction, moreover due to after affects of the earthquake. 

Seismotectonic interpretation: Considering the damage distribution and that most of 

the damage is centered in Istanbul, the earthquake appears to have occurred within 

the Sea of Marmara; presumably in the central part of the sea. Ambraseys and Finkel, 

(1991), relates the destruction in Constantinople to the shock on Jan 26. They 

indicate damage in Hellespont and Bithynia and propose an epicentral area in the 

central basin. However in more recent studies Ambraseys revises its location, and 

puts the 447 shock next to the Sapanca lake (Ambraseys, 2002a, 2006). For such a 

wide damage distribution it is hard to argue about which segment of the NAF has 

ruptured. 

460 : (≥ VIII ≤ IX) Erdek, Thrace, Dardanelles (1) 

An earthquake which affected mainly Cyzicus (near Erdek), but also Thrace and 

Hellespont (Dardanelles). The event is based on two accounts; Marcellinus and 

Evagrius. 

Damage and distribution: Marcellinus reports that Cyzicus was destroyed partly. 

Evagrius expands the destruction to Thrace and Hellespont and records that Cyzicus 

was ruined completely. However his information is lacking of further description of 

the damage.  
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The presence of insufficient information to damage and a number of deaths and 

injuries, it is not possible to infer any size of the earthquake. However existing data 

indicate the earthquake may have occurred on the southern branch of the North 

Anatolian Fault. 

477/478/480 Sep 24/25/26: (IX), Ms = 7.3; Dardanelles, Thrace, Istanbul, 

Kocaeli,  Gölcük (1) 

Several accounts exist for this event, providing damage information over a wide area 

(Marcellinus, Malalas, Chronicon Paschale, Theophanes, Cedrenus, Great 

Chronographer). Ambraseys, (2002a, (2006; Ambraseys and Finkel, (1991) dates the 

event to 26 Sep. 478. The exact date of the event is not clearly identified; however it 

can be placed in 26 Sep 477 or 478. 

Damage and distribution: Marcellinus reports that some gates, churches and the 

statue of Theodosius collapsed in Constantinople (Istanbul). A similar destruction at 

Constantinople is expressed by the Great Chronographer. However he is making a 

more devastated picture, writing that all the towers were collapsed and many houses 

were destroyed after a 30 day period with shocks. The Anonymous Ecclestical 

History affirms such a level of destruction too, as do Cedrenus and Theophanes. 

The Great Chronographer refers a rise of the sea, which causes damage to some 

houses, in Constantinople. He is also pointing extensive damage at the Dardanelles 

region: 

"…The earthquake continued for 30 days… …Also in the reign of Zeno, a strong 
earthquake occurred, causing substantial damage. For in the Hellespont area it 
damaged most of the cities of Abydus and Lampsacus, and in Thrace it reduced 
Callipolis and Sestus to ruins, as well as most of Ttenedos; and 50 towers of the 
Long Walls were also demolished, and all those who had fled there were buried in 
them. In the area around Sestus a sort of mud welled up from the earth and 
immediately became stiff and solid". 

Malalas writes that beside Constantinople, Nicomedia (Kocaeli) and Helenopolis 

(Karamürsel-Gölcük) suffered from the earthquake. Ambraseys and Finkel, (1991) 

point out that the major destruction was in Nicomedia and Helenopolis.  

Loss of live: Many accounts point that a high number of people have died, so that 

Constantinople started to stink and caused noxious exhalations. Many people were 

buried under their houses. Nevertheless a clear number can not be obtained. 
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Seismotectonic interpretation: Based on the catalog of Guidoboni et al., (1994), the 

most affected city is to be Constantinople, hence the epicenter could be within the 

central part of the Sea of Marmara. On the other hand Ambraseys, 2002a, 2006; 

Ambraseys and Finkel, 1991 consider that the major destruction was in Nicomedia 

and Helenopolis and place the shock near Gölcük. In the text of the Great 

Chronographer it is not clear whether the earthquake affecting Dardanelles is the 

same, which struck Istanbul or it is a separate event occurred within the 30 day 

period of aftershocks. Theophanes says this is the second shock hitting 

Constantinople. Hermann, (1962) considers there were two events and places the 

second to 488. The damage distribution covering a wide area from Nicomedia to 

Hellespont can be due to 2 main shocks, similar as in 1766. 

543 Sep 6 : (IX); Erdek (1) 

Cyzicus was struck by a destructive earthquake. The date of the event is not very 

well obtained. The earthquake demolished half of Cyzicus (near Erdek), (Malalas). 

This might be an event occurred on the southern branch of North Anatolian Fault. 

557 Dec 14/23: (IX-X), Ms = 6.9; Istanbul (1) 

This is an earthquake which is described to have demolished Constantinople 

(Istanbul). Panic and heavy damage is described by several accounts (Agathias, 

Malalas, Theophanes and others). 

Damage and distribution: The two main walls of Constantinople have been 

collapsed. Several churches suffered extensive damage, like St. Samuel, Theotocos at 

Perala, St. Vicentus and St. Sophia. The dome of St. Sophia was badly damaged and 

resisted only for one year before it collapsed (The Great Chronographer, Pseudo-

Dionysius, Theophanes and Cedrenus). Several column and statues were overturned 

(Malalas, Theophanes). Rhegium (Küçükçekmece) was reduced to ruins and almost 

no building remained safe. 

Most authors record the damage only in Constantinople. They provide no 

information about the surrounding of the city. Information is only available in the 

Life of St. Symen the Stylite the Younger, where Nicomedia (Izmit), Nicea (Iznik) 

and others cities of Illyria is written to be damaged. 

Loss of live: Aghiatas says “large number of people perished in the disaster”. On the 

other hand, other authors mention only fear and panic of people, who have 
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apparently survived. Some point that others were rescued even after two-three days 

under the ruins. They either discard the deaths or don’t bother because their number 

is not very high. 

Seismotectonic interpretation: The aftershocks continued for 10 days, which 

relatively short for a large earthquake which caused so much damage in Istanbul. 

Beside, the distribution of damage is unclear. There is evidence of destruction in 

Constantinople and Rhegium. However the damage in Nicomedia, Nicea and other 

cities of Illyria is mentioned only in one account and is not described. Beside, the 

same account placed the event to 554, which causes uncertainty. Considering that the 

evident damage is centered in Constantinople, the earthquake could be a similar 

event like the 1894-Istanbul earthquake. Ambraseys, 2002a, 2006; describes the 

same damage based on the same sources but places the event off shore of 

Küçükçekmece.  

740 Oct 26: (≥ IX ≤ XI), Ms = 7.1; Istanbul, Kocaeli, Iznik (1) 

Constantinople, Nicomedia and Nicea were affected by this earthquake. The date of 

the event is well obtained. The accounts Theophanse, Georgius Monachus and 

Nicephorus provide information on the damage mainly in Istanbul. 

Damage distribution: The main walls collapsed in Constantinople. St Irene is 

mentioned among many churches which were damaged; some were destroyed to 

their foundations. Nicomedia (Izmit) and Praenetus (Karamürsel) suffered heavily; 

only one church survived in Nicea (İznik). The sea invaded some of the land. 

In Thrace some villages were destructed, but further information about the western 

extension of the damage is not available.  

Loss of life: Many people were killed by the disaster and the ones who survived had 

to move out of the city. 

Seismotectonic interpretation: The aftershocks continued for 12 moths, which may 

be because the event was large. The damage occurred in Istanbul and on the East and 

South of the city (Niceomedia and Nicea). Ambraseys and Finkel, 1991; puts the 

shock in the Izmit bay. Ambraseys, 2002a, 2006; revises the location of the event and 

places it southwest of the Çınarcık basin. Since Iznik was heavily damaged, one can 

interpret that the shock was on the southern fault segment of the Çınarcık basin. 
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824 May 5: (VIII); Tekirdağ (1) 

Two accounts cite this event. It caused damage in Panion (Tekirdağ). 

The city walls were collapsed due the large shock, so that the Emperor Micheal could 

easily conquer the city. 

926: (≥ VIII ≤ X); Thrace (1) 

This is a large earthquake which affected the villages in Thrace. “At that time there 

was a terrible earthquake in the Theme of the Thracians. It made a huge chasm, 

which swallowed up many villages and churches” (Theophanes Continuatus). The 

earthquake is said to have swallowed up buildings which presumably indicates 

surface faulting. 

989 Oct 26: (VIII), Ms = 7.2; Istanbul, Kocaeli (1) 

A destructive earthquake caused damage at St. Sophia and in Nicomedia. Many 

houses were ruined in Nicomedia and villages near the city were almost completely 

destroyed. Third of St. Sophia collapsed and was repaired afterwards. This event is 

not mentioned in Ambraseys and Finkel, (1991), but in Ambraseys, 2002a, 2006, 

where the epicentral area was placed on the western edge of the Çınarcık basin. 

1010 Jan and March 9: (VII); Istanbul, Gelibolu 

Two shocks occurred within a 40 day of period, which the second caused destruction 

in Istanbul (Constantinople). The event is described by several non-contemporary 

accounts. 11th-12th century historians describe damage in Istanbul (Scylitzes, 

Cedrenus, Glycas, Atteliates). Galanopoulos (1955 p.101) maintains that the 

earthquake occurred in Gallipoli (Gelibolu). Ambraseys and Finkel (1991) date the 

event as 1011 based on Cedrenus.  

Damage distribution: Scylitzes mentions that the churches of Forty Martyrs and All 

Saints collapsed during the shock on 9 March. All damage records are limited to 

Constantinople.  

Loss of live: No information available in Guideboni (2005). In contrast Ambraseys 

and Finkel, 1991 report a great loss of live in Bithynia.  

Seismotectonic interpretation: The aftershocks lasted for two years (Attaliates), 

which indicates a very large shock. Since the damage is limited to Istanbul the 
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earthquake occurred presumably on the central segments of the North Anatolian 

Fault within the Sea of Marmara. 

1026 Dec 4: (; Istanbul 

This earthquake is not well known. Information is based only on the Arab historian 

al-Antaki. Byzantine sources do not mention this event. Al-Antaki notes: 

"In the second year of the reign of Constantine, there was a tremendous earthquake 
at Constantinople on the 4th day of the month of Canun I in the year 417 [4 
December 1026]. Many buildings collapsed” 

The limited amount of information of the earthquake hinders us to do any 

interpretation on its existence and location. 

1032 Aug. 13: X ; Istanbul 

Byzantien historians report that a strong earthquake hit Constantinople (Scylitzes, 

Zonaras). Damage on some major buildings are given in these sources. 

Damage distribution: where the hospital of St.Zoticus (Galata), the aqueduct of 

Valens, and the eastern arcade of St.Sophia was collapsed. 

Although some major buildings were collapsed during this event the information is 

poor to constrain the dimensions of the shock. This is probably an intermediate size 

earthquake located close to Istanbul. 

1063 Sep 23: (VIII-IX), Ms = 7.4; Tekirdağ, Barbaros, Mürefte, Erdek, Istanbul 

A strong earthquake struck the western coasts of the Sea of Marmara. The main 

source for this event is Attaliates, following several other accounts. The date of the 

event is well obtained. 

Damage distribution: There are no certain buildings mentioned to have experienced 

damage in Constantinople or in its surrounding. Many houses and some churches are 

written to been demolished almost entirely. The desctruction in Rhaedestus 

(Tekirdağ), Panium (Barbaros) and Myriophytus (Mütrefte) is described in general. 

Almost all houses are written to be ruined to the ground. Cyzicus (near Erdek) 

suffered as well from the shock.  Many houses were turned to ruins and the Greek 

temple collapsed almost entirely. Hellespont is also reported to have suffered from 

the event. 



 238

Loss of live: There is no clear number given, however a large number of people have 

died (Attaliates). 

Seismotectonic interpretation: The main shock was followed immediately by three 

other shocks, which were strong but not like the former. Ten to twelve aftershocks 

occurred during the following night of the event. The aftershocks continued for 2 

years (Guideboni p.48). The main damage is centered on the western part of the Sea 

of Marmara. Istanbul as a capital suffered as well of the event however Rhaedestus, 

Panium, Myriophytus and Cyzicus were more affected. Therefore the events seems 

to have occurred along some part of the fault within the Tekirdağ basin or the Ganos 

fault on land. This interpretation is in accord with Ambraseys, 2002a, 2006; and 

Ambraseys and Finkel, 1991. 

1090 Dec 6: (VIII-IX); Istanbul 

This is a shock which caused great destruction in Istanbul. The event is mentioned by 

Glycas and Zonaras. Other authors date this event to years between 1081-1088. This 

event is not taken into account in Ambraseys, 2002a, 2006; Ambraseys and Finkel, 

1991. 

Damage distribution and loss of live: Glycas and Zonaras report damage in 

Constantinople where many houses, arcades and churches were collapsed and many 

people were also killed. 

Seismotectonic interpretation: The destruction is limited to Constantinople there the 

earthquake was presumably in the central part or in the Çınarcık basin of the Sea of 

Marmara. 

1296 June 1 and 13: (VII-VIII), Ms = 7.0 Istanbul 

Two shocks, the first on June 1 and the second on Jun 13 demolished many buildings 

in Constantinople. In general most accounts report damage related to the first shock. 

Ambraseys and Finkel (1991) dates this earthquake to 1st Jun.  

Damage distribution: Pachymeres describes that the former shock ruined many 

ancient buildings and several new buildings. The city walls, the roof of church of All 

Saints collapsed, as well some other parts. A bronze statue of the Archangel Michael 

fell down, too. The first shock is described by other accounts to have affected many 

houses, the city walls and to caused the churches to be split open (Athos Vatopediou 

290 and Paris Supplementum gr. 682. I.). 
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Loss of live: No indication. 

Seismotectonic interpretation: The event caused damage only in Constantinople. 

Therefore the shock must have occurred on the fault near to Istanbul within the Sea 

of Marmara. On the contrary, the event on 1st Jun is placed by Ambraseys, 2002a, 

2006 on the southern branch of the NAF, near Bolu-Kaynaşlı.  

1343 Oct 14,18 and Nov 20: (VIII), Ms = 7.0; Istanbul, Gelibolu, Ortaköy, 

Beylerbeyi 

A foreshock on the 14th Oct was followed by violent shocks on the 18th October 

1343. It caused destruction mainly in Constantinople. The event was felt as far as 

Lysimachia and Gallipoli, but less. On the 20 November another shock caused fear 

among people. 

Damage distribution: Information on damage is only available for Constantinople. 

The walls of Theodosian are reported to have collapsed, however the walls of 

Constantine remained undamaged. Many Towers, palaces and churches collapsed, 

the east side of the apse of St. Sophia was damaged, and houses as well as vineyard 

and garden walls were ruined. The damage towards the western regions of 

Constantinople is unnamed. 

Tsunami: The shock on the 18th was followed by a tsunami. The sea is described to 

have penetrated 1.8 km inland. Locations for the flooding is not given, expect one 

account which writes that the sea rose up as far as Stauros (Beylerbey) (Schreiner 

1975, no.s). In a manuscript the height of the waves a described to be one to three 

men size (~2-5 m) (Athenagoras 1935) 

Seismotectonic interpretation: The aftershocks lasted for one year, which indicates a 

large shock. The earthquake presumably occurred on the central and western part of 

the NAF within the Sea of Marmara; along the faults in the central basin and towards 

the Tekirdağ basin. 

1344 Nov 6: (IX); Gaziköy, Hoşköy, Istanbul  

This is a destructive shock, which affected mostly the western region of 

Constantinople. The shock occurred following the earthquake sequence of 1343. This 

event is excluded in Ambraseys, 2002a, 2006; but not in Ambraseys and Finkel, 

1991, where he describes damage in the Ganos region. 
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Damage distribution: The fortresses of Ganos (Gaziköy) and Chora (Hoşköy) were 

completely destroyed. A citadel at Chora collapsed; more than half of the houses in 

the village were ruined to the ground (Schreiner 1975).  

The St. Sophia at Constantinople had already suffered from the previous event 

(1343). This shock increased the split on the apse of the east side and caused many 

bricks and mosaics to fell down. A few days after, the east apse and the third of the 

dome collapsed entirely.  

The bronze statue of St. Micheal was damaged again. The damaged related to 

Istanbul is not mentioned in detail which indicates is suffered less than other regions 

to the west. A fortress is also reported to be totally collapsed on the Marmara island. 

Loss of live:  An account indicated that more than three hundred people were buried 

under the ruins of the buildings at Chora (Schreiner 1975). 

Seismotectonic interpretation: This event is a shock following the earthquake 

sequence in 1343. The earthquake of 1343 triggered most probably the fault to its 

west. The 1344 shocks seems to have occurred in some extend of the Tekirdağ basin 

and the Ganos fault. Ambraseys and Finkel, (1991) consider this earthquake to have 

occurred on the western part of the Ganos fault. 

1354 Mar 1: (VII-X), Ms = 7.4; Gelibolu, Eceabat, Tekirdağ, Bozcaada, Istanbul 

A devastating earthquake caused damage all along the western coast of the Sea of 

Marmara. Tenedos (Bozcaada) was also struck by the event. Information is available 

by several contemporary accounts like, Nicephorus Gregoras, Emperor John VI 

Cantacuzenus and Matteo Villani. The date of the event is precisely defined. The 

earthquake caused to collapse many fortress, which allowed the Turks to occupy 

Gelibolu.  

Damage distribution: The earthquake was strongly felt at Constantinople and caused 

damage to large buildings and part of the city walls. Cantacuzenus records that 

almost all costal towns of Thrace were demolished; houses were reduced to ruins and 

walls were destroyed to their foundations. The castle of Gallipoli (Gelibolu) ruined 

so the people could not resist against the attacks of the Achaemenids (Turks). 

Villages between Madytus (Eceabat) and Rhaedestus (Tekirdağ) are reported to be 

ruined to its foundation (Schreiner 1975). Tenedos was also struck by the earthquake 

and Turks occupied the island. 
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Loss of live: Several accounts mentioned that many people died under the ruins, in 

Gallipoli, Madytus and Rhaedestus. However they also report that some were killed 

by the Achaemenids or were frozen while trying to flee from Gallipoli. 

Seismotectonic interpretation: The event has affected the western cities of the Sea of 

Marmara. The damage indicates that the size of the event was very large. Therefore it 

can be considered that the earthquake occurred along the Ganos fault or on its 

western extension towards the Saros bay. The event is located inland on the Ganos 

fault by Ambraseys, (2002a, 2006) and offshore in the Saroz bay by Ambraseys and 

Finkel (1991) 

1509 Sep 10: ()Ms = 7.2; Istanbul,  

This event is the best studied historical earthquake along the North Anatolian Fault. 

First studies described this event as the largest and most destructive earthquake in the 

last five centuries in the Eastern Mediterranean and allege it is felt in a wide area; 

from Bolu to Edirne (Ambraseys and Finkel, (1995)). The earthquake occurred on 10 

September 1509 (Gregorian Calendar) at around 22:00. Information about the event 

is based on contemporary and modern Turkish and occidental sources. Although 

some sources express damage within the vicinities of Bolu, Edirne and Gelibolu, 

detailed and reliable descriptions of damage exist only for Istanbul. 

Damage and distribution: Istanbul suffered intensively from this event. 1 

contemporary records indicate a destruction of 1070 – 1500 houses, where the 

household of Istanbul is estimated to be 54,000 at that time. 

Among the many churches in Istanbul only the St. John Theologos church near the 

hippodrome is known to have collapsed. Mosques suffered as well from the 

earthquake. The newly built Beyazid mosque (of Sultan Beyazid-II) was damaged. 

(woodcut Coecke, Koysan mi?). Ottoman sources report some damage and a repair 

on some part of the aqueducts. The earthquake caused considerable damage chiefly 

to the vulnerable segments of the outer land walls. However the robust parts, which 

constituted the majority, remained preserved. The Galata tower did not collapse 

however the cantilevering parts or the structure fell off. 

There is no evidence that the earthquake caused any destruction in Tekirdağ, 

Gelibolu and Bolu; though it was mentioned to be effected in some sources. 
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Loss of Live: The loss of life is estimated to be between 1500 – 5000; among a 

population of  250,000 at that time in Istanbul. This corresponds to 0.4 – 2% of the 

city population. 

Seismotectonic interpretation: Previous studies defined the 1509 earthquake as a 

Little Apocalypse (Ambraseys and Finkel, (1990)). Further studies of the earthquake 

yielded to a Ms : 7.25. It is most probably that the earthquake occurred in central part 

of NAF within the Sea of Marmara. (Ambraseys, (2001)) 

1542 June 12: () ; Istanbul, Edirne, Gelibolu 

The event is described as a destructive earthquake in Thrace, which caused extensive 

damage and much loss of life. Information relies on a dispatch and letter. However 

the event appears more to be spurious. 

Damage and distribution: Many nobles and important buildings and the half of the 

Palace of the Sultan are reported to be felled down. Beside 1700 houses (Schmidt, 

(1879)) no certain structures are named to be destructed . It is written that the shock 

effected Edirne and Gelibolu however with no further explanation of damage.   

Loss of life: A loss of 120.000 people is reported within Istanbul, Edirne and 

Gelibolu and their vicinity (Anonymous, (1542), Bataillon, (1966)) . The loss in 

Istanbul is described as 4500 and (Schmidt, (1879)). However in Anonymous, (1542) 

a loss of 2000 people is given inside the Palace of Sultan which means that 44% of 

the dead are within the palace. Ottoman sources provide no record for such an event. 

Later writers report this earthquake with an earthquake which occurred on 13 June 

1542 in Tuscia – Italy. Therefore this event is most possibly fabricated. 

1556 May 10: Ms = 7.1; Edincik, Bursa, Istanbul 

At the dawn of this day, a large shock in the Sea of Marmara ruined many places like 

Edincik (Bandırma), Bursa and Istanbul. 

Damage and distribution: Eyewitness sources report damage at Istanbul. The St. 

Sophia, Edirne gate, city walls at the Golden Horn and some domes in the Topkapı 

Palace have suffered damage. Beside Istanbul damage is also reported in Bursa. The 

Minearet of the Ertuğrul Mosque was collapsed and the Sultan Mehmet II mosque 

was repaired. 
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Loss of life: No clear number of human losses is available; expect that thousand of 

men perished in Edincik and Hamid-ili (?).  

Seismotectonic interpretation: Beside Istanbul, all of the damage heap together in the 

southern part of the Sea of Marmara in the vicinity of Bandırma. This indicates that 

this event most possibly occurred on the second strand of the NAF. 

1659 Feb. 17: Ms = 7.2; Gelibolu, Tekirdağ, Istanbul 

A damaging earthquake occured in the West of the Marmara region. The shock came 

in the early evening and caused damage in Istanbul, Gelibolu and Tekirdağ. The 

event was also felt in Izmir, Manisa and in Skiathos (island east of Greece). 

Damage and distribution: Old buildings, dwellings and many chimneys collapsed in 

Istanbul. The mosque of Sultan Süleyman was damaged as were others in the city. 

Mosques and churches in Tekirdağ suffered from the event. The namazgah in 

Gelibolu was partly ruined. Some damage to the domes of mosques in Manisa is also 

reported. 

Loss of Live: No information available 

Seismotectonic interpretation: The damage clusters mainly on the West of the 

Marmara region. The damage in Istanbul is restricted with weak structures, which 

indicates that the location of the shock is far to the city. Gelibolu and Tekirdağ are 

the main cities which suffered from the event. This implies that the earthquake 

occurred most probably either on the western part of the Ganos fault or in the Saros 

bay. Ambraseys, 2002a considers that the event was located in the Saros bay. 

1730 Jun 10: ; Saros, Evreşe 

Information about this event is poor, however there is some information that a shock 

caused destruction in the southern parts of Thrace. 

Damage and distribution: Some villages along the road from Istanbul to Thessalonica 

were damaged of an event which was felt in Athos and Istanbul. 

A castle in the Golf of Saros (Muarız) needed repair. This castle was possible the 

castle of Evreşe (Kadıköy). 

Loss of life: No information available. 
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Seismotectonic interpretation: This event was most probably located in the bay of 

Saros. 

1752 Jul 29: ;Edirne, Havsa, Hasköy, Ipsala, Enez, Ezine, Evreşe, Bozcaada 

An earthquake shock in Thrace, preceded by foreshock caused damage from Ezine to 

Edirne. There are two contemporary narrative accounts, which one is a eyewitness. 

They are written by the 19th century historian Ahmet Badi from Edirne. Other 

sources are the notes of the English ambassador of Istanbul, and several references of 

repairs. All in all they provide wide information about the effects of the event. 

The earthquake occurred Saturday evening 29 July 1752 and was followed by 

aftershock all night long (İzzi,????). 

Damage and distribution: Edirne suffered great damage. All minarets were 

demolished or leaned expect that of Sultan Selim, Defterdar (Mustafa Paşa) and 

İbrahim Paşa mosques, domes collapsed, houses, shops and walls. For instance, 7 

domes and 4 minarets of the Üç Şerefli mosque were ruined. The Taşlık, Ayşe hatun, 

and Şeyh Şüca mosques were also badly damaged. Numerous other names are 

mentioned in Ottoman records. On a note about estimates of damage, the city walls 

and the gates of Edirne are described devastated. As well military installations did 

not escape from destruction. Havsa, a village 30 km southeast Edirne was totally 

ruined. There were many deaths and injuries at Hasköy. Further south the destruction 

was increasing. Some walls of the Sultan Murad I mosque in Ispala collapsed and its 

minaret leaned. At Enez the castle suffered much more than the 1730 earthquake. 

Many parts, like its gate, domes, mosque and mihrap collapsed totally. 

The earthquake was felt in Istanbul strongly, however damage occurred only on a 

few old buildings. The English ambassador Porter reported vertical ground motions 

following 3-4 strong shocks from NW to SE. The shock was also felt in Izmir, but no 

damage occurred. Some repair at the castles at Evreşe (Kadıköy), Bozcada and 

Molivo were recorded however reason of damage is not available. 

Loss of live: A number of few thousand people were killed is given by European 

sources; however this seems to be exaggerated. There is no clear account on the 

number of deaths, except that a “considerable number” of people were killed in the 

Havsa-Zerna region. 
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Seismotectonic interpretation: The earthquakes continued for 3 month in Edirne and 

1 year for the region (Dizer and İzgi 1987). As well as the damage and the aftershock 

indicate a large scale for the event. The damage clusters on an N-S trending line, 

between Enez and Edirne. The destruction at Istanbul was limited with only one old 

house and there is description of demolition along the western coasts of the Sea of 

Marmara. Therefore it is most possible that the earthquake occurred on the western 

extension of the NAF in the Saros bay.  

1756 Nov 26: ;Evreşe, Istanbul, Edirne 

Facts about this event is very limited. The shock was heavily felt in Edirne and in 

Istanbul. However, clear evidence about damage is restricted. Repairs of the castle in 

Evreşe castle may be related to this event rather than the 1752 shocks.  

1762 Jun 13: A strong shock was felt in Adrianople (Edirne). The damage was 

limited and only local. The shock was not reported in Istanbul. Some repair of the Üç 

Şerefli mosque and complex in Edirne is dating 1762/63. 

1766 May 22: Ms = 7.1; Istanbul, Kemerburgaz, Çatalca, Çekmece, Çorlu 

Edirne, Bursa,  

A damaging earthquake in the Sea of Marmara. The destruction extended to a wide 

area, from İzmit to Tekirdağ (E-W) and from Edirne to Bursa (N-S). Sources are 

plentiful; this event is one of the best recorded events. Ottoman records are by the 

contemporary official court historian Hakim and contemporary chroniclers 

Çeşmizade, Şemdanizade and Vasıf. Ottoman archives provide information for 

Istanbul and Izmit, whereas Greek sources provide for outer regions. There are as 

well European eyewitness accounts giving information about the destruction. 

Timing: The date is well established. The earthquake occurred half an hour after 

sunrise, on Thursday; 12 Zilhice 1179 a. H., which corresponds to 22 May 1766.  

Damage and distribution: The majority of damage records are related to the 

structures within Istanbul. A high number of mosques were destructed, where some 

of them escaped serious damage. Their minarets were mostly overturned and the 

domes collapsed of some of them. Damage was reported at Galata, Pera, Üsküdar 

and some localities north along the Bosphorus. The land walls were ruined along 

most of their length. The imperial kitchenette, towers, and some walls collapsed at 

the Topkapı Palace, causing the Sultan to live under tents for several days. Damage 
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occurred at a number of churches, which names are unidentified. Many hans and the 

Grand Bazaar suffered as well from the earthquake. The damage extended to Çatalca 

and Çekmece, where houses and walls were strongly demolished. The Effect 

expanded further into the Thrace causing loss at Kemerburgaz, Çorlu and Karışdıran. 

Edirne escaped only with slight damages. 

The effects further west at Tekirdağ, Ganos, Gelibolu and Çanakkale are not firm. 

Though there are accounts on some damage, this may be the result of the earthquake 

in Agust 1766. 

To the east the damage was much stronger. Izmit was badly effected, the mosques 

Fevziye (Mehmet Bey) and Çalık Ahmet? (yapım 1907) were partly demolished. A 

seismic sea-wave caused heavy damage at the dockyards. 

South of the Marmara, there is damage near Karamürsel, where a mosque is reported 

to be collapsed seriously. At Bursa, the Emir Sultan mosque suffered much so that is 

was unusable for praying until repair. 

Sea wave intrusions were reported near Galata, Bosphorus and at Mudanya causing 

flooding at villages.  

Loss of life: In Istanbul 4-500 people died mostly under the ruins of their houses. A 

number for other region in Marmara is unavailable. 

Seismoectonic Interpretation: A S-N running shock lasted for 2 minutes as reported 

from Istanbul, which was felt as well for 2 minutes from Izmit. 

1766 Aug 5: Ms = 7.4; Tekirdağ, Gaziköy, Gölcük, Mürefte, Gelibolu, Biga, 

Bozcaada 

Another major shock further west of the Sea of Marmara ruined all damaged 

structures caused by the shock of May 1766. The distribution of damage enlarged 

further west to Tekirdağ, Ganos, Gelibolu, Biga and Edirne. 

Timing: The earthquake occurred on 5 Aug (NS) at 12:30 AM. 

Damage distribution: The destruction was mostly between Tekirdağ and Mürefte. At 

Gaziköy only one of ten houses remained. Though there is no detail of damage, the 

following places sustained destruction; Avdin, Ganos, Gaziköy, Gölcük, Hoşköy, 

Inceköy, Eriklice, Kalamış, Kestambol, Loupida, Güzelköy, Mürefte, Yeniköy, 

Palamut, Şarköy, Çınarlı, Senduk, and Sternaköy. In Hoşköy 800 houses were ruined 
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and most of the population died under the wrecks. Şarköy was destroyed mostly. 

Some accounts report that all stone houses and bread ovens were demolished at 

Silivri, Tekirdağ and Gelibolu. Several mosque have been destroyed totally or partly 

at Gelibolu. Two-thirds of the castle at Evreşe (Muarız Gulf) was ruined. Damage is 

reported at Enez; the castle and mosque Mehmet II needed repair. The castles 

Seddülbahir and Kilidülbahir at Dardanelles collapsed extensively. Sultanhisar, south 

of Dardanelles suffered badly; all pottery kilns, houses, minarets and chimneys 

collapsed entirely. 28 windmills were ruined as well. The castle at Bozcaada needed 

extensive repair. Though affected many buildings the damage in Istanbul was less 

according to the May event. Some hans, Edirne kapusu, mosques and masonry 

buildings were ruined. There is also few information of destruction in Edirne, Izmit, 

Yalova, Karamürsel and Bursa. 

Loss of life: Much loss in mentioned in several places, however non of them ends up 

with a clear number. Available numbers are 30 people in Istanbul, 4 people in 

Karamürsel. 

Seismotectonic Interpretation: The shock lasted less than 1 minute as reported by the 

Ambassador Murray from Istanbul. Some cracks on the ground and liquefaction was 

reported around Tekirdağ and Gelibolu. 
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APPENDIX A2 – CO-SEISMIC AND CUMULATIVE OFFSET 

MEASUREMENTS 

Table A2.1 : Cumulative offset measurements. Coordinates are in UTM ED50. 

Id Offset Error Location Structure X Y 
1 7.0 0.3 Güzelköy Tree limit 524504 4510059 
2 8.0 - Güzelköy Stream 524476 4510052 
3 8.0 2.0 Sofuköy Lok 495 Stream 501564 4500978 
4 9.0 1.0 Kavak Paleo-channel 488530 4495658 
5 10.6 0.5 Sofuköy Stream 500605 4500590 
6 11.0 0.5 Güzelköy Paleo-channel 522761 4509216 
7 11.0 0.3 Güzelköy Stream 522709 4509189 
8 11.0 1.0 Yayaköy Stream 516833 4507080 
9 12.1 0.3 Güzelköy Stream 523316 4509465 

10 12.6 0.2 Güzelköy Ridge 524400 4510024 
11 12.7 0.5 Gaziköy Road 528042 4511147 
12 12.9 2.0 Yörgüç Stream 511982 4505469 
13 15.0 0.5 Yayaköy Road 516791 4507070 
14 17.1 0.5 Sofuköy Stream 500538 4500572 
15 18.0 0.5 Güzelköy Stream 525052 4510201 
16 19.0 2.0 Yörgüç stream 513609 4506152 
17 20.0 - Mursalli Stream 519436 4508116 
18 21.0 0.5 Güzelköy Paleo-channel 522775 4509223 
19 21.0 1.0 Mursalli Ridge 519353 4508081 
20 22.0 1.0 Mursalli Stream 519311 4508063 
21 25.0 2.0 Yörgüç stream 513919 4506265 
22 25.5 2.0 Yörgüç west Stream 511002 4505126 
23 26.0 2.0 Güzelköy west Stream 523948 4509830 
24 29.0 0.5 Güzelköy Stream 522726 4509198 
25 30.0 1.0 Yeniköy Stream 499366 4500295 
26 31.0 2.0 Yörgüç Stream 511380 4505289 
27 35.0 0.5 Sofuköy Stream 500390 4500505 
28 36.0 1.0 Güzelköy Stream 523285 4509450 
29 36.0 3.0 Gölcük east Ridge 510859 4505082 
30 38.0 4.0 Gölcük east Ridge 511327 4505264 
31 40.0 5.0 Sofuköy east Stream 502039 4501391 
32 43.0 2.0 Yeniköy ridge 501653 4500790 
33 45.0 5.0 Mursalli west Ridge 518724 4507686 
34 45.0 1.0 Yeniköy Ridge 499333 4500288 
35 46.0 5.0 Yayaköy east Stream 518134 4507490 
36 47.0 2.0 Yeniköy stream 501681 4500804 
37 48.0 5.0 Sofuköy east Ridge 502018 4501379 
38 58.0 2.0 Yörgüç Stream 511383 4505313 
39 59.0 5.0 Gölcük east Stream 511052 4505141 
40 61.0 5.0 Sofuköy east stream 501784 4501083 
41 61.0 5.0 Sofuköy east Ridge 501743 4501060 
42 67.0 5.0 Yayaköy east Stream 517829 4507408 
43 70.0 10.0 Yayaköy Stream 516143 4506871 
44 72.0 5.0 Yörgüç stream 514651 4506436 
45 78.0 10.0 Mursalli east Stream 521357 4508847 
46 84.0 10.0 Güzelköy east Stream 517869 4507408 
47 84.0 5.0 Yayaköy east Stream 523551 4509621 
48 87.0 5.0 Yörgüç Ridge 514626 4506444 
49 150.0 5.0 Gölcük Ridge 507440 4503849 
50 181.0 10.0 Gölcük Stream 505908 4503120 
51 185.0 10.0 Yeniköy west Stream 498842 4500064 
521 188.0 10.0 Yeniköy West Stream 499148 4500253 
53 200.0 10.0 Yörgüç west Stream 513103 4505960 
54 200.0 20.0 Yörgüç west stream 512418 4505670 
55 221.0 - Gaziköy Terrace 528146 4510851 
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Table A2.1 : (continued) Cumulative offset measurements. Coordinates are in UTM 

ED50. 

Id Offset Error Location Structure X Y 
56 250.0 15.0 Alibey west Stream 502902 4501824 
57 251.0 10.0 Güzelköy west Stream 523550 4509631 
58 259.0 15.0 Güzelköy west Stream 523053 4509341 
59 323.0 10.0 Gölcük east Stream 510775 4505054 
60 575.0 15.0 Yeniköy West Stream 499148 4500253 
61 575.0 15.0 Yeniköy West Ridge 499148 4500253 
62 583.0 10.0 Yeniköy west stream 499760 4500678 
63 725.0 15.0 Güzelköy west Stream 521659 4508646 
64 750.0 15.0 Gölcük west Stream 504518 4502586 
65 1570.0 20.0 Güzelköy west Stream 521656 4508649 
66 1766.0 10.0 Gölcük Stream 507386 4503962 
67 2270.0 50.0 Gölcük Stream 508202 4504188 
68 4500.0 50.0 Güzelköy west Stream 519255 4507487 
69 9000.0 100.0 Gölcük Stream  

 

Table A2.2 : 1912 Mürefte earthquake co-seismic slip measurements. Coordinates 

are in UTM ED50 

Name 1912 Error Cumul. Error Lon Lat REFERENCE 

Gaziköy – road 2 3.30 0.30 12.70 1.00 528038 4511141 This study 

Gaziköy – road 1 5.00 0.50   527199 4510836 This study 

Gaziköy - creek/field 1 2.50 0.30   526672 4510412 This study 

Gaziköy - field 2 2.20 0.30   526632 4510395 This study 

Güzel - Lstream East 3.18 0.50 17.80 0.50 525065 4510172 Altunel et al., (2004) 

Güzel - pavement 2.60 0.10   524784 4510128 Altunel et al., (2004) 

Güzel - Chanel 1.40 0.12   524713 4510095 Altunel et al., (2004) 

Güzel - wall 3.28 0.15   524659 4510074 Altunel et al., (2004) 

Güzel - Champ 4.22 0.30   524613 4510084 Altunel et al., (2004) 

Güzel - tree limit 4.05 0.20 7.04 0.30 524503 4510062 Altunel et al., (2004) 

Güzel - Stream West 4.00  8.00  524476 4510050 Altunel et al., (2004) 

Güzel - Lstream West 4.00  12.60 0.20 524395 4510033 Altunel et al., (2004) 

Güzel - Stream bed1 2.00 0.30   524134 4509875 Altunel et al., (2000) 

Güzel -Stream bed2 2.40 0.30   524114 4509864 Altunel et al., (2000) 

Güzel - Stream bed3 5.20 0.30   523966 4509797 Altunel et al., (2000) 

Güzel - Stream 8 4.70 0.30 12.10 0.30 523319 4509464 Altunel et al., (2004) 

Güzel - paleostr - East 5.51 0.50 20.00 0.50 522772 4509220 Altunel et al., (2004) 

Güzel - paleostr - West 5.00 0.50 8.40 0.50 522762 4509215 Altunel et al., (2004) 

Mursalli - ridge 4.00  26.00 1.00 520699 4508468 Altunel et al., (2000) 

Mursalli - road 3.80 0.20   520318 4508378 Altunel et al., (2004) 

Mursallı – stream 4.60 0.40   519832 4508266 This study 

Mursallı – stream 4.50 0.40   519818 4508262 This study 

Yayaköy – road East 3.50 0.50   517831 4507364 This study 

Yayaköy - Lstream 4.00  12.50 0.50 516828 4507078 Altunel et al., (2004) 

Yayaköy - Stream 3.90 0.30   516801 4507072 Altunel et al., (2004) 

Yayaköy - road 5.00  15.00 0.50 516793 4507071 Altunel et al., (2004) 

Yaya W field 5.00 0.50   516354 4506938 This study 

Yayaköy stream 4.50 0.50   516155 4506866 This study 

Yörgüç - ridge 5.50  11.00 0.50 515409 4506694 Altunel et al., (2000) 
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Table A2.2 : (continued) 1912 Mürefte earthquake co-seismic slip measurements. 

Coordinates are in UTM ED50. 

Name 1912 Error Cumul. Error X Y REFERENCE 

Yörgüç - road 5.00 0.20   514864 4506627 Altunel et al., (2000) 

Sofuköy E sagpond 2.50 0.30   502795 4501911 This study 

Yeniköy - Field house 5.40 0.20   500630 4500600 Altunel et al., (2004) 

Yeniköy - Field East 5.30  10.60 0.50 500602 4500591 Altunel et al., (2004) 

Yeniköy - Stream East 3.57 0.20 17.10 0.50 500537 4500568 Altunel et al., (2004) 

Yeniköy-Field StrEast 4.08 0.20   500515 4500566 Altunel et al., (2004) 

Yeniköy – tree 3.90 0.10   500454 4500547 Altunel et al., (2004) 

Yeniköy - Stream West 4.28 0.10 35.00 0.50 500381 4500514 Altunel et al., (2004) 

Yeniköy – road 5.20 0.30   499791 4500286 Altunel et al., (2004) 

Yeniköy NNW 4.00 0.20 30.00 0.50 498881 4500104 Altunel et al., (2004) 

W-Yeniköy field 1.50    498203 4499882 This study 

W-Yeniköy road 4.00 0.50 15.00 1.00 497592 4499540 This study 

W-Yeniköy 4.50 0.20   497142 4499297 Altunel et al., (2004) 

Kavak lake east2 3.20    495891 4498955 This study 

Kavak lake east1 1.50    495620 4498922 This study 

Kavak - trench 4.50 0.20 9.00 0.20 488564 4495659 Rockwell_etal_2002 
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