
UNIVERSITÉ DE STRASBOURG

LABORATOIRE DE PHYSIQUE THÉORIQUE

THÈSE

présentée pour obtenir le grade de

DOCTEUR EN SCIENCES

SPÉCIALITÉ PHYSIQUE THÉORIQUE

Effects of lattice distortions on low-dimensional

strongly correlated systems

par

Marion MOLINER

Soutenue le 3 février 2009 devant la commision d’examen:

M. Rodolfo JALABERT

M. Peter HOLDSWORTH

M. Didier POILBLANC

M. Andreas HONECKER

M. Daniel C. CABRA

M. Pierre PUJOL

IPCMS, Strasbourg

ENS, Lyon

IRSAMC, Toulouse

Georg-August Universität, Göttingen

IPCMS, Strasbourg et UNLP, La Plata

IRSAMC, Toulouse

Rapporteur

Rapporteur

Rapporteur

Examinateur

Directeur de thèse

Co-directeur de thèse









Acknowledgments

« So Long, and Thanks for All the Fish »

Douglas N. Adams, “The Hitchhiker’s Guide to the Galaxy”.

Mes premiers remerciements vont à Vincent qui m’a soutenue avec beaucoup de patience
tout au long de cette thèse. Il m’aurait été bien plus difficile de terminer sans ses encourage-
ments permanents.
Je remercie Daniel Cabra pour m’avoir permis de travailler sur les systèmes de basse dimensio-
nalité fortement corrélés et pour les opportunités de collaboration qu’il m’a proposées.
Un immense merci à Pierre Pujol pour avoir accepté de co-diriger cette thèse en court de route.
Sa gentillesse et sa disponibilité (téléphonique en particulier) m’ont été d’une grande aide.
Merci aussi pour m’avoir montré la beauté de la physique des systèmes de spins classiques.
Je remercie chaleureusement Andreas Honecker pour ses précieux conseils et encouragements
ainsi que pour sa grande disponibilité, autant lors de mes visites à Goettingen qu’en ligne.
Je suis très reconnaissante envers Rodolfo Jalabert, Peter Holdsworth et Didier Poilblanc pour
avoir accepté le rôle de rapporteur et pour leurs remarques constructives.
Je remercie mon ancien camarade de bureau, Franck Stauffer, avec qui j’ai eu beaucoup de
plaisir à travailler et à parler de physique (et pas que).
Je suis très reconnaissante envers Claudine Lacroix qui m’a plusieurs fois apporté un soutien
matériel très précieux.
Je remercie les étudiants strasbourgeois, Raoul Dillenschneider pour ses conseils avisés et
mes collègues étudiants Ala Siwek et Mathieu Planat ainsi que les non-étudiants, Véronique
Bernard, Michel Rausch et Jean-Yves Fortin.
Je tiens à remercier les membres du Laboratoire de Physique Théorique de Toulouse et de
l’Institut de Physique Théorique de Goettingen pour leur accueil chaleureux lors des mes
visites que j’ai vraiment beaucoup appréciées.
Finalement, je remercie le soutien financier de l’European Science Foundation (ESF) qui a
rendu matériellement possible mon travail à l’Institut de Physique Théorique de Goettingen.� �� Ceci est le manuscrit de la dernière thèse soutenue au
Laboratoire de Physique Théorique de Strasbourg.

i



ii



Preamble and outline

The work carried out in this thesis lies within the general framework of condensed matter
physics and, more precisely, it deals with strongly correlated systems whose spatial dimension
is below three.
So-called strongly correlated systems are electronic systems in which the interaction cannot be
neglected compared with other degrees of freedom. As a consequence those systems are true
manybody systems and one often needs to call upon both analytical and numerical methods so
as to tackle with their study. Moreover the effects of the interaction are dramatically enhanced
as the dimension of a system is reduced, which makes the study of systems in one and two
spatial dimensions particularly relevant.
Strongly correlated systems have been attracting much interest over the last decades since they
are expected to bring understanding of "exotic" phenomena such as high critical temperature
superconductivity.

In this thesis, we focus on the effects of phonons on low-dimensional strongly correlated
systems. The phonons are considered only in the adiabatic limit in which their frequencies
are much lower than the ones of other degrees of freedom. Consequently, they are treated as
classical variables related to small displacements of the lattice sites. Previous works on the
pyrochlore lattice with classical spins as well as various works on low-dimensional quantum
systems showed that spin-lattice couplings can lead to the appearance of magnetization
plateaux. Most of the work presented in the following is related to the effects of lattice distor-
tions on the magnetic properties of low-dimensional strongly correlated systems.

In this thesis, both classical and quantum systems are considered. The first chapter is a
summary of the whole thesis in French. In the second chapter, we lay the theoretical and
experimental foundations for both classical and quantum systems. We first introduce models
for strongly correlated electrons systems. In particular, we present the Hubbard model and
some of its limits cases such as the Heisenberg Hamiltonian. A couple of experimental
low-dimensional strongly correlated systems that exhibit exciting properties such as supercon-
ducting phases are then discussed. We also underline the particular interest of low dimension
and review both the Fermi and Luttinger liquid models.
We then address frustrated classical spins systems and discuss the geometrical origin of
frustration as well as competing magnetic couplings. We end this chapter by presenting briefly
the Monte-Carlo algorithms that are widely used in the following studies on classical spin
systems.
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The third chapter is dedicated to the work performed on classical spin systems in one and
two dimensions. We first discuss the origin of magnetization plateaux in classical systems.
Then a section tackles the issue of thermal fluctuations and presents the Order by Disorder ef-
fect that selects particular spin configurations for entropic reasons.
The first work presented deals with the classical spin chain with nearest and next-to-nearest
neighbors couplings and adiabatic phonons. Both analytical and numerical (Monte Carlo)
treatments are used to show that the spin-lattice coupling stabilizes a magnetization plateau
at one third of the saturated magnetization. We obtain a phase diagram as a function of the
magnetic couplings ratio and spin-lattice coupling.
We then move to a two-dimensional frustrated lattice, the Shastry-Sutherland lattice, and
study its magnetization process. We show, through classical spin-waves and Monte Carlo
simulations, that thermal fluctuations stabilize a collinear phase by the Order by Disorder effect
and hence allow a pseudo-magnetization plateau to appear at one third of the magnetization.
By mean of Monte Carlo simulations, we obtain a phase diagram as a function of temperature
and applied magnetic field.

Finally, the fourth chapter reviews the work done on the one-dimensional Hubbard chain
at quarter filling. For this particular filling, the Hubbard chain in the presence of distortions
is known to be a good model for organic compounds such as the Bechgaard and Fabre salts.
Two kinds of lattice couplings are considered: the on-site Holstein distortions and the Peierls
distortions that couple two nearest-neighbor sites. We perform the study in the low-energy
limit through a field theory approach and bosonize the Hamiltonian before studying its ground-
state. Both kinds of lattice distortions induce particular ground states with both charge density
waves and bond order waves. By this method, we qualitatively recover tetramerized and dimer-
ized phases that were previously obtained by numerical and analytical studies.
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Chapter I

Résumé en Français

This chapter is a summary of the thesis, in French, as required by the university. I chose to intro-
duce the concepts used in the thesis in a qualitative way rather than actually summarizing the
work done. I left the precise description and the technical discussions for the forthcoming chap-
ters. Moreover the references cited in this chapter are, in most cases, reviews and books, instead of
precise articles.

1 Systèmes de basses dimensionalité fortement corrélés

Les travaux effectués dans cette thèse s’inscrivent dans le très large cadre de la matière
condensée, et plus particulièrement portent sur la physique des systèmes de basse dimensio-
nalité (à une ou deux dimensions d’espace) fortement corrélés.
On parle de systèmes fortement corrélés, lorsque les corrélations ne peuvent pas être négligées.
Dans ce cas, la matière ne peut plus être modélisée par un ensemble de particules libres ou
quasi-libres (atomes, molécules, électrons . . .) et on doit traiter des problèmes à N corps.
L’étude des systèmes fortement corrélés a été grandement motivée par la découverte des su-
praconducteurs à haute température critique, notamment chez les oxydes cuivre, les cuprates
[1, 2]. Cette vaste famille de composés présente des plans CuO2 séparés par des plans d’autres
atomes. Même s’il est aujourd’hui établi que la supraconductivité prend son origine dans
des processus complexes d’appariement dans les plans CuO2, les mécanismes ne sont pas
encore complètement compris. Notamment, on sait que les plans d’autres atomes servent de
réservoirs de porteurs de charges et que seulement une certaine densité de porteurs permet
l’apparition d’une phase superconductrice, mais le lien entre la densité de porteurs et la
température critique n’est pas encore bien établi.
La basse dimensionalité (dimension d’espace strictement inférieure à trois), augmente de
façon spectaculaire les effets des interactions. Elle permet l’apparition d’états électroniques
nouveaux qui n’apparaissent pas dans des systèmes à trois dimensions d’espace. Notamment,
à une dimension le modèle du liquide de Fermi ne s’applique plus. En effet, un système
unidimensionnel ne présente que des excitations collectives, ce qui requiert une description
théorique particulière : le liquide de Luttinger [3, 4].
On peut trouver une justification expérimentale à l’étude de systèmes de basse dimensionalité
dans le fait que chez certains composés chimiques, les couplages selon certaines directions
sont suffisamment faibles pour que leurs propriétés physiques puissent être décrites en les
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traitant comme des systèmes uni ou bidimensionnels.

Cette thèse aborde deux grandes thématiques relatives aux systèmes de basse dimensiona-
lité fortement corrélés. Dans la première, on s’intéresse à des modèles de spins classiques sur
réseaux. C’est à dire qu’à chaque site du réseau, au lieu de placer une particule, atome ou élec-
tron, sera placé seulement le degré de liberté de spin. De cette façon, l’étude est concentrée sur
les propriétés magnétiques de la matière.
De plus, on se place dans la limite classique pour les spins (approximation grand S). Les spins
classiques sont représentés par de simples vecteurs à trois composantes Sj (spins de Heisen-
berg), dont les normes sont fixées à 1. Cette partie se décompose en deux projets. Le premier
traite le cas d’une chaîne de spins frustrés par deux couplages antiferromagnétiques et cou-
plée à des phonons [5]. Dans le second, on considère un réseau bidimensionnel, le réseau de
Shastry-Sutherland [6, 7].
La seconde partie de cette thèse est dédiée à l’étude d’une chaîne de fermions à un quart de
remplissage et couplée à des phonons via deux types de couplages [8]. Dans ce cas on étudie un
système quantique où non seulement le degré de liberté de spin joue un rôle mais aussi celui
de charge, ce qui permet d’appréhender également les propriétés de conduction du système.

2 Systèmes de spins classiques

Cette première partie aborde des systèmes de spins classiques à une et deux dimensions d’es-
pace. Tout d’abord, nous présentons brièvement la notion de frustration et l’effet, sur ces sys-
tèmes, de fluctuations thermiques qui peuvent se traduire par l’effet d’Ordre par le Désordre.

2.1 Systèmes de spins classiques frustrés

Les systèmes classiques étudiés dans cette thèse sont des systèmes antiferromagnétiques
frustrés. La particularité d’un réseau frustré est que chaque interaction entre deux spins ne peut
pas être minimisée indépendamment des autres interactions du réseau. La frustration peut in-
duire une très grande dégénérescence de l’état fondamental, ce qui rend ces systèmes très sen-
sibles à des perturbations (comme par exemple des fluctuations thermiques). La frustration
peut avoir deux origines : une compétition entre des couplages magnétiques différents ou la
géométrie du réseau [9].
La chaîne de spins classiques J1 − J2 avec des couplages antiferromagnétiques entre premiers
en seconds voisins est un exemple très simple pour illustrer la frustration induite par des cou-
plages magnétiques différents. Lorsque le couplage J2 est nul, la chaîne s’ordonne selon un
ordre de Néel, qui est maintenu jusqu’à J2/J1 = 1/4. Au-delà, les spins sont, d’un coté tentés de
suivre un ordre de Néel entre premiers voisins (et donc un ordre ferromagnétique entre seconds
voisins), mais d’un autre côté le couplage J2 tend aussi à les aligner antiparallèlement. On parle
alors de frustration et pour tenter de satisfaire aux deux couplages en même temps, les spins
forment une spirale qui s’enroule tout au long de la chaîne et dont l’enroulement est fonction
du rapport entre les deux couplages magnétiques.
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2. Systèmes de spins classiques

La frustration géométrique peut être illustrée simplement en considérant un triangle dont
chaque côté porte un couplage antiferromagnétique. On peut facilement placer deux spins ;
en revanche le troisième sera forcément parallèle à un deux premiers, ce qui est extrêmement
défavorable. Là encore, ce système frustré s’adapte en ne satisfaisant pleinement aucune des
interactions et, dans la configuration résultante, chaque paire de spins formera un angle de
120 ◦.
Dans les deux cas, on voit bien qu’un système frustré minimise son énergie en réalisant des
configurations qui ne seraient pas idéales pour des paires spins isolées.

2.2 Fluctuations thermiques et phénomène d’Ordre par le Désordre

Généralement, on s’attend à ce que des fluctuations thermiques détruisent l’ordre présent
à température nulle. Dans certains systèmes frustrés, les fluctuations thermiques peuvent au
contraire, sélectionner une configuration ou un sous-ensemble de configurations parmi un
large ensemble de configurations fondamentales dégénérées à température nulle. On parle
alors d’Ordre par le Désordre [10].
Par exemple, le réseau de Kagomé s’est avéré être un systèmes dans lequel l’Ordre par le
Désordre joue un rôle très important [11] (voir chapitre III). L’énergie fondamentale "classique"
est extrêmement dégénérée, mais, parmi les configurations qui lui correspondent, on peut
montrer qu’il en existe certaines qui peuvent supporter la présence de lignes de défauts sans
que leur création ne coûte d’énergie dans l’approximation quadratique. On dit que ces confi-
gurations ont des modes mous et on peut montrer que ces modes contribuent moitié moins
à l’énergie libre que les modes non-mous. En conséquence, en présence de fluctuations ther-
miques, ces configurations vont être favorisées pour des raisons entropiques.
Afin d’étudier la présence de modes mous, on applique, à une configuration donnée, des ondes
de spins classiques. On développe le Hamiltonien jusqu’à l’ordre quadratique en ordres sur les
déviations des positions des spins. Si la configuration étudiée a des modes mous, le spectre
dans l’espace de Fourier de sa partie quadratique doit présenter autant de valeurs propres
nulles que de modes mous. Nous avons utilisé cette méthode pour l’étude du réseau de Shastry-
Sutherland.

2.3 Phonons dans la limite adiabatique

Dans cette thèse sont étudiés les effets de distorsions du réseau sur des systèmes de basse
dimensionalité fortement corrélés.
Les modes normaux de vibration d’un réseau cristallin sont quantifiés et les quanta d’énergie
associés sont les phonons. Dans le cadre de cette thèse, on se place dans la limite où la dy-
namique des phonons peut être négligée (limite adiabatique) et on ne traite plus directement
les phonons mais les distorsions du réseau qui en résultent. Ces dernières sont des variables
classiques qui traduisent les déplacements des sites du réseau. On se placera toujours dans
l’hypothèse où les déplacements des sites sont petits devant les distances inter sites initiales.
Des travaux récents, portant en particulier sur le réseau pyrochlore avec des spins classiques
[12] et sur la chaîne de spin S = 1/2 frustrée J1 − J2 [13], ont montrés que le couplage entre les
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+z +z z z

FIG. I.1: De gauche à droite : représentation des configurations "parapluie", "Y ", UU D et de
"l’état plié".

spins et le réseau peut être à l’origine de phases exotiques et notamment, en présence d’un
champ magnétique, générer des plateaux dans la courbe d’aimantation.

2.4 Effets des distorsions du réseau sur une châıne de spins classiques

frustrés

Nous avons étudié une chaîne de spins classiques frustrée par deux couplages magnétiques
J1 et J2, respectivement entre sites premiers et second voisins [5]. Pour une zone de l’espace
des phase, paramétrée par le couplage spins-réseau et le rapport des couplages J1 et J2, des
plateaux apparaissent à un tiers de l’aimantation de saturation.
Nous considérons un Hamiltonien effectif dont la dérivation est détaillée dans le Chapitre III. La
chaîne J1 − J2 (avec α≡ J2/J1) est couplée à des déformations des liens δi par une constante de
couplage spins-réseau A1. La constante de raideur des phonons a été absorbée dans les autres
constantes.

Heff =
∑

i

(
Si ·Si+1 +αSi ·Si+2 −

A2
1

2
(Si ·Si+1)2

)
−h

∑

i
Sz

i (I.1)

Lorsque A1 <
p

4α−1, la configuration de plus basse énergie est une spirale coplanaire. Sous
un champ magnétique, avant d’atteindre l’état saturé, cette spirale passe par une succession de
configurations avec deux spins sur trois au dessus du plan de la spirale et un en dessous : "Y ",
la configuration colinéaire "Up-Up-Down" (UU D) et l’état plié (voir Figure I.1). L’état UU D est
une condition nécessaire pour avoir un plateau à 1/3 de l’aimantation de saturation.
Nous avons étudié ce système analytiquement et numériquement au moyen d’algorithmes
Monte Carlo classiques (Métropolis). Cette étude est détaillée dans le chapitre III. En l’absence
de couplage avec le réseau, lorsqu’on applique un champ magnétique, la chaîne de spins clas-
siques frustrée présente des plateaux dans sa courbe d’aimantation à un tiers de l’aimantation
de saturation, pour une gamme de valeurs du rapport J2/J1.
Nous avons montré que pour une plage de valeurs du couplage spins-réseau, les plateaux d’ai-
mantation sont stabilisés (voir Figure I.2, à gauche). En étudiant l’énergie, nous avons égale-
ment déterminé la nature de la configuration de plus basse énergie dans le plateau (UU D), en
champ faible ("Y ") et en champ fort (état plié avec le spin sous le plan remontant jusqu’à l’état
saturé).
De plus on avons établi un diagramme de phase, en fonction du rapport des couplages ma-
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FIG. I.2: À gauche : Plateau à 1/3 de l’aimantation de saturation dans la chaîne de spins clas-
siques J1 − J2 pour différentes valeurs du couplage spins-réseau (α = J2/J1 = 0.5). À
droite : Diagramme de phase qualitatif en fonction de α et du couplage spins-réseau
A1. Le plateau 1/3 existe dans la région en gris. Dans la région hachurée, notre approche
n’est plus valable.

gnétiques α et du couplage spins-réseau A1, montrant la zone d’existence de ces plateaux (voir
Figure I.2, à droite). Par ailleurs, nous avons déterminé la nature de la transition de phase pour
arriver à l’aimantation de saturation. En fonction des valeurs des différents couplages, elle peut
être du premier ou du second ordre.

2.5 Étude de l’aimantation du réseau de Shastry-Sutherland classique

Une deuxième partie de cette thèse est consacrée à l’étude de spins classiques sur un réseau
bidimensionnel, le réseau de Shastry-Sutherland [6, 7]. Il s’agit d’un réseau carré avec des
couplages antiferromagnétiques J ′ et des couplages diagonaux additionnels J dans un carré
sur deux (Figure I.3, à gauche). Nous avons montré que, à température non-nulle, le réseau de
Shastry-Sutherland avec des spins classiques de Heisenberg présente des pseudo-plateaux à
un tiers de l’aimantation de saturation.

Il est connu depuis quelques années que, dans certains plans atomiques du composé chi-
mique SrCu2(BO3)2, les atomes de cuivres sont placés selon un réseau topologiquement équi-
valent au réseau de Shastry-Sutherland (Figure I.3, à droite). Ce composé de spin S = 1/2 pré-
sente un diagramme de phase très riche, comme par exemple des phases à plateaux à diffé-
rentes valeurs rationnelles de l’aimantation de saturation, et il a déjà fait l’objet de nombreux
travaux, autant théoriques qu’expérimentaux [14].
Récemment, de nombreux travaux expérimentaux ont rapportés que des composés de la fa-
mille des tétraborides de terre rares RB4 (où R représente l’atome de terre rare) présentent des
plateaux dans leurs courbes d’aimantation. Dans ces composés, les atomes de terres rares sont
placés selon un réseau topologiquement équivalent au réseau de Shastry-Sutherland. Une ca-
ractéristique importante de ces composés est également leurs grands moments angulaires to-
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FIG. I.3: Le réseau de Shastry-Sutherland (gauche) et le réseau topologiquement équivalent réa-
lisé dans les plan (001) de SrCu2(BO3)2 et des tétraborides de terres rares RB4. J ′ sont les
couplages selon les côtés des carrés et J les couplages des dimères orthogonaux.

taux qui justifient une modélisation par un modèle de spins classiques [15–22].

2.5.1 Réseau de Shastry-Sutherland classique sous champ magnétique

Le Hamiltonien du réseau de Shastry-Sutherland avec des spins de Heisenberg classiques est
donné par :

H =
J ′

J

N∑

côtés
Si ·Sj +

N∑

diagonales

Si ·Sj −
h

J

N∑

i
Sz

i . (I.2)

Ce Hamiltonien peut être réécrit simplement comme une somme sur des triangles dans le cas
particulier J ′/J = 1/2. Les détails sont donnés dans le chapitre III. En minimisant l’énergie sur
un triangle, on obtient que le champ magnétique à appliquer pour être à aimantation 1/3 est
h1/3 = 3J ′.
À température nulle et à aimantation 1/3, les configurations "parapluie" et UU D (voir Figure
I.1) ont la même énergie. La courbe d’aimantation ne présente aucune inflexion.
Cependant en présence de fluctuations thermiques nous avons montré que le réseau de
Shastry-Sutherland avec des spins classiques de Heisenberg, présente le même type de com-
portement que le réseau triangulaire [23, 24] et les fluctuations thermiques vont favoriser l’état
UU D et donc permettre l’apparition d’un pseudo-plateau.

2.5.2 Fluctuations thermiques et pseudo-plateaux d’aimantation

Nous avons effectué un calcul d’ondes de spins classiques à partir de la configuration UU D.
Le réseau de Shastry-Sutherland avec des spins classiques ne présente pas de branches de
modes mous. Cependant, il est possible de trouver des lignes dans l’espace de Fourier pour
lesquelles les fluctuations harmoniques ne coûtent pas d’énergie.
Cette sélection entropique permet à la configuration UU D d’être favorisée par rapport à la
configuration parapluie, ce qui permet ainsi l’apparition d’un plateau dans la courbe d’aiman-
tation.
Nous avons effectué des simulations Monte Carlo (Métropolis) afin d’obtenir les courbes

d’aimantation, de susceptibilité et de chaleur spécifique pour des systèmes dont la taille est
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FIG. I.4: Rapport de couplage J ′/J = 1/2. À gauche : Susceptibilité en fonction du champ ma-
gnétique appliqué et courbe d’aimantation (cadre) à T = 0.02. À droite : Diagramme de
phase (simulations sur des systèmes de taille L = 12). Les triangles correspondent aux
balayages en température et les carrés aux balayages en champ magnétique.

commensurable à la maille unitaire à 12 spins de la configuration UU D. La courbe d’aimanta-
tion présente un pseudo-plateau dont la taille augmente avec la taille du système (Figure I.4, à
gauche). La susceptibilité et la chaleur spécifique présentent des pics indiquant des transitions
de phases.
Nous avons effectué des balayages en champ magnétique et en température et utilisé ces pics
afin de tracer un diagramme de phase qualitatif dans l’espace champ magnétique appliqué en
fonction de la température (Figure I.4, à droite). Ce diagramme de phase est similaire à celui des
réseaux triangulaire [24] et Kagomé [25] avec des spins de Heisenberg classiques. On obtient
trois phases dans lesquelles la symétrie du réseau est brisée. Dans la région en bas champ, on
obtient la configuration "Y ", puis la configuration UU D au-dessous et jusqu’à aimantation
1/3 et finalement l’état plié entre l’aimantation 1/3 et la saturation. Dans le chapitre III nous
argumentons que la configuration UU D est la seule à présenter un l’ordre à longue portée, car,
de part sa colinéarité elle ne brise pas la symétrie U (1). Dans les configurations "Y " et l’état
plié, l’ordre à longue portée n’est possible que sous un seul sous-réseau.

Nous avons également effectué des simulations numériques en Monte Carlo qui ont mon-
trées que pour d’autres valeurs du rapport de couplages magnétiques ces plateaux survivent
(Figure I.5, à gauche). Le calcul des ondes de spins classiques indique que dans les gammes de
températures accessibles par une approximation harmonique en déviation des positions des
spins, la configuration qui minimise l’énergie n’est plus UU D. En effet, pour un rapport de
couplages J ′/J 6= 1/2, l’état fondamental classique n’est plus une spirale commensurée. Sous
l’application d’un champ magnétique, cette spirale incommensurée remonte en configuration
parapluie, qui est maintenue même pour une température non-nulle. En revanche il existe une
gamme de température qui restaure la commensurabilité en position moyenne des spins. Dans
cette gamme de température, on retrouve donc les même phases que pour le rapport J ′/J = 1/2 :
"Y " puis UU D puis l’état plié (Figure I.5, droite). La présence d’une phase UU D se traduit par
des pseudo-plateaux à 1/3 de l’aimantation de saturation.
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respondent aux balayages en température et les carrés aux balayages en champ magné-
tique.

3 Châıne de Hubbard à quart-remplissage en présence de

distorsions du réseau

La seconde partie de cette thèse est consacrée à l’étude d’une chaîne de fermions (de spin S =
1/2) couplée à des déformations du réseau [8]. On étudie un Hamiltonien de Hubbard quart-
rempli que l’on couple à des phonons adiabatiques de Holstein (sur sites) et de Peierls.

3.1 La châıne de Hubbard

Le Hamiltonien étendu de la chaîne de Hubbard prenant en compte la répulsion sur site U
et entre premiers voisins V (U > 0 et V > 0) est donné par :

H =−t
∑

j ,σ
(c+σ, j+1cσ, j +h.c.)+U

∑

j
n↑, j n↓, j +V

∑

i
ni ni+1 +µ

∑

σ, j
nσ, j (I.3)

L’intégrale de saut t couple les sites avec leurs premiers voisins et le potentiel chimique µ

permet de fixer le remplissage du système. Ce Hamiltonien est étudié dans la limite basse
énergie dans laquelle on linéarise la relation de dispersion au voisinage des points de Fermi.
Les champs fermioniques sont écrit comme des sommes d’opérateurs de vertex bosoniques
par la méthode de bosonisation [26, 27]. Les degrés de liberté de charge et de spin des fermions
sont, en l’absence de champ magnétique, découplés et on obtient un liquide de Luttinger avec
des vitesses de Fermi et paramètres de Luttinger différents dans les deux secteurs.
Les produits de quatre opérateurs fermioniques qui apparaissent avec les interactions en-
gendrent des perturbations à la théorie gaussienne qui peuvent ouvrir un gap. Le secteur
de spin est représenté par un modèle de sine-Gordon qui peut présenter un gap ou pas, en
fonction des valeurs relatives des répulsions U et V 1. En revanche, le secteur de charge n’a de

1Si V = 0, le secteur de spin n’a pas de gap.
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perturbation pertinente que lorsque le système est demi-rempli (n = 1). Nous allons voir que
les distorsions du réseau ajoutent des termes dans le Hamiltonien qui ont un effet drastique
sur ces résultats.

Nous nous concentrons sur le remplissage un quart (n = 1/2). En effet, une très vaste classe
de composé chimiques présentant, à très basses températures, des phases exotiques, notam-
ment une phase superconductrice, est décrite par ce modèle. Il s’agit des sels de Bechgaard
(TMTSF)2X et leur analogues sulfurés, les sels de Fabre (TMTTF)2X, où X est le contre-ion [28].
D’un point de vue théorique, ces composés ont déjà fait l’objet de nombreux travaux numé-
riques [29–32] et analytiques par la méthode de g-ologie [33, 34]. On cherche à reproduire analy-
tiquement par la méthode de bosonisation les diagrammes de phases obtenus numériquement
par Poilblanc et Riera [29, 30].

3.2 Hamiltonien de Hubbard quart-rempli en présence de distorsions

du réseau

Deux types de distorsions du réseau sont considérées séparément : des distorsions "sur site",
qui se traduisent par une modulation du potentiel chimique du site (phonons de Holstein) et
des distorsions des liens inter sites (phonons de Peierls). Dans les deux cas on reste dans la
limite adiabatique.
Les phonons sur site de Holstein peuvent être interprétés comme des vibrations du cortège
électronique autour de l’ion localisé sur le site. Le Hamiltonien est donné par :

HHolstein =−t
∑

j ,σ

(
c+σ, j+1cσ, j +h.c.

)
+

K H

2

∑

j
(δH

j )2+t AH
∑

σ, j
δH

j nσ, j +U
∑

j
n↑, j n↓, j +V

∑

j
n j n j+1

(I.4)

Les phonons de Peierls correspondent à des vibrations des ions (c’est à dire des sites), et en-
traînent donc une modulation des liens inter sites :

HPeierls =−t
∑

j ,σ
(1− APδP

j )
(
c+σ, j+1cσ, j +h.c.

)
+

K P

2

∑

j
(δP

j )2+U
∑

j
n↑, j n↓, j +V

∑

j
n j n j+1 (I.5)

Comme mentionné plus haut, à remplissage un quart et sans distorsion, le modèle de Hubbard
est décrit par un modèle de Luttinger dans le secteur de charge, et par un modèle de sine-
Gordon avec ou sans masse en fonction de la valeur de V dans le secteur de spin. Le couplage
avec les distorsions du réseau va rendre commensurables de nouveaux termes et en consé-
quence ouvrir des gaps. D’une part il faut ajouter des termes dans l’expression bosonisée des
opérateurs fermioniques afin d’introduire les interactions et d’autre part il faut considérer une
déformation générique avec suffisamment d’harmoniques pour que tous les termes pertinents
du développement précédents survivent.
En ce qui concerne le premier point, nous utilisons les règles de bosonisation qui ont été déve-
loppées précédemment par Cabra et al. [35, 36] à partir du calcul des fonctions de corrélation
du modèle de Hubbard effectué par Frahm et Korepin [37, 38] en utilisant l’ansatz de Bethe.
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fonction de la répulsion sur site U et de la constante de raideur K . À gauche : Couplage
avec des phonons de Holstein. Figure d’après Poilblanc et Riera [29]. À droite : Couplage
avec des phonons de Peierls. Les régions hachurées ne sont pas physiques. Figure d’après
Poilblanc et Riera [30].

Ces règles de bosonisation prennent en compte le couplage entre les secteurs ’Up’ et ’Down’ (et
donc spin et charge) due à l’interaction (voir annexe C). Elles donnent un développement des
opérateurs fermioniques en somme de produits d’opérateurs de vertex qui couplent les deux
secteurs avec des coefficients qui dépendent de l’interaction.
Par ailleurs, on montre qu’afin de garder dans le Hamiltonien bosonisé tous les termes per-
tinents obtenus à partir de ce développement, la déformation générique du réseau doit avoir
deux harmoniques 2.

δ(x) = δ2 cos(2kF x +β2)+ δ̃4 cos(4kF x +β4) = δ2 cos(
π

2
x +β)+δ4(−1)x (I.6)

Le premier terme correspond à une modulation à 2kF = π/2 3 et tend à tétramériser la densité
électronique (ce qui induit une déformation du réseau en conséquence). Le deuxième terme
est une modulation à 4kF =π et crée une dimérisation.
Les détails de la bosonisation du Hamiltonien avec distorsions sont donnés dans le chapitre
IV. La présence du couplage fermions-réseau couple les secteurs de charge et de spin et ajoute
également une masse au secteur de charge qui n’en avait pas pour le remplissage un quart.

On étudie ensuite l’énergie semi-classique du fondamental du Hamiltonien bosonisé. On
établit le diagramme de phase dans l’espace répulsion sur site U en fonction du couplage avec
le réseau, pour une répulsion inter-sites V donnée. On étudie d’une part la modulation de la

2Il n’est pas utile d’en ajouter d’avantage car elles seraient couplées avec des opérateurs non-pertinents
3Au quart-remplissage et sans champ magnétique appliqué, le vecteur de Fermi, défini par kF = nπ/2, vaut π/4.
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4. Conclusion et perspectives

position des sites qui ont été déplacés par des déformations périodiques du réseau et d’autre
part la densité électronique qui a également été modulée afin de s’adapter aux nouvelles po-
sitions des sites. Cette approche n’est rigoureusement valable que pour des faibles valeurs de
la répulsion sur site U , mais elle permet néanmoins d’avoir une image qualitative des phases
qui apparaissent. On obtient ainsi plusieurs phases caractérisées par des modulations de la po-
sitions des sites, ou ondes de densité de lien, et par des modulations de la densité de charge,
ou ondes de densité de charge en complet accord avec les résultats numériques existants (voir
Figures I.6).
Pour des phonons de Holstein (Figures I.6, à gauche), on trouve pour U petit une phase pré-
sentant une onde de densité de charge tétramérisée et centrée sur les sites du réseau. Lorsque
U augmente, on continue à avoir un motif tétramérisé, mais cette fois-ci, l’onde de densité
de charge présente une phase qui la délocalise hors des sites du réseau. Dans cette phase les
deux harmoniques de la déformation générique Eq. I.6 cohabitent. Enfin, à forte répulsion, la
seconde harmonique de la déformation générique (4kF ) prend le dessus et on obtient une di-
mérisation. L’ajout de la répulsion inter-sites V supprime la phase tétramérisée avec maximum
de densité délocalisée entre les sites.
Dans le cas de phonons de Peierls (Figures I.6, à droite), on obtient une onde de densité de lien
similaire à celle obtenue numériquement. Lorsque la répulsion sur site est faible, une onde de
densité de lien tétramérisée avec une phase coexiste avec une onde de densité de charge tétra-
mérisée sans phase. À plus forte répulsion, les deux harmoniques de la déformation générique
coexistent.
Dans le chapitre IV, nous détaillons davantage ces phases et effectuons une comparaison avec
les résultats numériques.
Pour l’instant notre approche par la bosonisation a permis de reproduire qualitativement les ré-
sultats numériques. Nous obtenons un Hamiltonien similaire à celui donné par la g-ologie, qui
est une méthode basée sur une décomposition en processus de différents types des excitations
du liquide de Luttinger. Pour continuer cette étude, nous allons étudier l’effet de phonons de
Holstein et Peierls combinés. L’ajout d’un champ magnétique à ce modèle devrait aussi s’avérer
très intéressant.

4 Conclusion et perspectives

Dans ce chapitre de résumé, nous avons survolé l’ensemble des travaux présentés dans cette
thèse de façon qualitative.
Nous avons tout d’abord passé en revue le travail effectué sur deux systèmes de spins de Hei-
senberg classiques. En premier, nous avons présenté le travail effectué sur la chaîne de spins
classiques frustrée J1 − J2 en présence de phonons adiabatiques. Ces derniers stabilisent des
plateaux à un tiers de l’aimantation de saturation dans une vaste région de l’espace des phases.
Nous avons ensuite discuté la présence de pseudo-plateaux à un tiers de l’aimantation dans le
réseau de Shastry-Sutherland avec des spins classique à température non-nulle. Au moyen de
simulations Monte-Carlo, nous avons obtenu un diagramme des phases similaire à celui des
réseaux triangulaire et Kagomé.
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Chapter I. Résumé en Français

Nous avons ensuite abordé le travail effectué sur le Hamiltonien de Hubbard, dans lequel l’ef-
fet des distorsions de réseau permet l’apparition de nouvelles phases. Notre méthode retrouve
correctement les résultats de la g-ologie et reproduit qualitativement les diagrammes de phases
obtenus numériquement.
Le cadre théorique et expérimental, ainsi que les détails techniques des travaux mentionnés
ci-dessus, sont présentés dans les chapitres suivants.
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Chapter II

Theoretical and experimental

background

This chapter lays the theoretical foundations for the work on low-dimensional strongly corre-
lated systems coupled with lattice distortions that we present in the next chapters.
In a first part, we introduce the models that are used to describe strongly correlated systems.
This will lead to the Hubbard Hamiltonian and some of its limits such as the Heisenberg Hamil-
tonian. We then address electronic liquids and discuss the effects of correlations as a function
of the dimension of the system. On the one hand, we review the Fermi liquid model that de-
scribes two and three-dimensional systems and on the other hand, we present the Luttinger
liquid for one-dimensional systems. Indeed, in one-dimension, the effects of correlation are ex-
tremely enhanced and all excitations become collective, which cannot be described by a Fermi
liquid. We then justify the theoretical study of low-dimensional strongly correlated systems by
presenting experimental results. We briefly present superconductors with high critical temper-
ature and systems that can be treated as one-dimensional systems such as particular organic
compounds and nanotubes. We introduce the concept of frustration that we widely use in the
study of classical spin systems. We review the two possible origins of frustration that can be
either the geometry of the lattice or competing interactions. Finally, the last section introduces
the Monte Carlo algorithms. We focus on the Metropolis algorithm which is widely used for the
study of classical spin systems.
All the notations are summarized in Appendix A.

1 Strongly correlated systems

This section introduces the Hubbard model and some of its limits that are the starting point
of the work presented in the next chapters. We briefly review how this model arises from the
description of interacting electrons in solids.

1.1 Models of strongly correlated systems

This section reviews how condensed matter is represented and how interactions are taken into
account. We will start with uncorrelated electrons on a lattice, add the coulombian interaction
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Chapter II. Theoretical and experimental background

and finally obtain the one-band Hubbard model that will be widely discussed in Chapter IV. We
briefly present what are the hypotheses that are stated in this model.

1.1.1 Uncorrelated electronic systems

We first start with the case in which correlations are switched off. We consider Ne electrons
in a N sites periodic lattice of volume V = Lx ·L y ·Lz that represents the crystal structure of
matter. The Schrödinger equation in a periodic potential Vi on(r), taking into account a chemical
potential µ, is given by:

[
−

~
2

2m
∇2 +Vi on(r)−µ

]
ϕα,k(r) = Eα(k)ϕα,k(r) (II.1)

The solutions are the Bloch functions ϕα,k, where α stands for the energy band index and k is
a wave vector belonging to the first Brillouin zone (FBZ ). The Fermi surface is defined by
Eα(k) = EF , where EF is the Fermi energy. A Bloch function is the product of the plane wave
function describing a free electron times a function uα,k(r) that has the translational symmetry
of the lattice [39–41]. The Bloch function reads:

ϕα,k(r) = uα,k(r) ·e i k·r (II.2)

Taking into account all the energy bands, the electron field operator with spin σ can be ex-
panded as a sum of Bloch functions multiplied by creation c+

α,k,σ (or annihilation cα,k,σ) opera-
tors:

ψ+
σ(r) =

∑

α,k
ϕ∗
α,k(r)c+α,k,σ (II.3)

We can rewrite the Hamiltonian from Eq. II.1 in terms of creation and annihilation as:

Hkinetic =
∑

α,k,σ

(
Eα(k)−µ

)
c+α,k,σcα,k,σ (II.4)

This term corresponds to a kinetic energy term. The chemical potential fixes the filling of the
system. In systems were electrons are highly mobile, such as metals, the Hamiltonian Eq. II.4
captures quite well the physics 1.

We will not continue with nearly free electron systems. On the contrary, we are interested in
strongly correlated systems in which the interaction has the same order of magnitude with the
kinetic term.

1.1.2 Correlated electronic systems

In this section we introduce correlated electronic systems in the framework of the tight binding
approximation for the lattice of atoms. It is assumed that the wave functions solution of the
Schrödinger equation Eq. II.1 can be described by the restricted Hilbert space spanned by

1Note that considering free electrons is equivalent with setting uα,k(r)= 1 , ∀r in Eq. II.2
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1. Strongly correlated systems

atomic-like orbitals centred at each lattice site.

Let us add to the hopping kinetic Hamiltonian Eq. II.4 the coulombian interaction:

HCoul omb =
∫

drdr′ψ+
σ(r)ψ+

σ′(r′)
e2

|r−r′|
ψσ′(r′)ψσ(r) (II.5)

The main problem lies in the fact that it is a long-range interaction and the Hamiltonian can no
longer be treated as a sum of independent terms. Simplifications are possible without losing
the most interesting properties of those systems. Describing those methods is beyond the
scope of the chapter and more details can be found for example in Ref. [41].

The residual interaction V is obtained by a dynamical process called screening that is related
to the mobility of the charge carriers (electrons) in the lattice. Starting now and in the Hubbard
model, we consider electrons interacting through this screened interaction. One can rewrite
Eq. II.5 as:

HV =
∫

drdr′ψ+
σ(r)ψ+

σ′(r′)V (r,r′)ψσ′(r′)ψσ(r) (II.6)

In the tight-binding approximation, the overlap between two nearest-neighbor lattice sites is
very weak and instead of working with the Bloch functions that are widely spread in real space,
one defines a new set of functions, the Wannier functions, that are localized around the lattice
sites j ( j = 1 . . . N ). They are defined in terms of the Bloch functions as 2:

ϕr j ,α(r) =
1

p
N

∑

k∈FBZ

e−i k·r j ϕk,α(r) (II.7)

The electron field operator is given, in terms of the Wannier operators, by:

ψ+
σ(r) =

∑

α, j
ϕ∗

r j ,α(r)c+α, j ,σ (II.8)

We also make another assumption that consists in considering that only one band α con-
tributes to the conduction. This approximation would not apply to systems such as f −orbitals
where more sophisticated Hamiltonians are needed such as the Anderson [42] or the Kondo
Hamiltonians.

From now, we stay in this approximation and the model obtained is called the single-band
Hubbard model. Moreover we focus on the one-dimensional Hubbard model (i.e. each site has
only two nearest-neighbors).
Under these approximations, we will no longer use the indices α. Let us rewrite the full Hamil-
tonian (both kinetic and interaction terms) as a function of creation and annihilation Wannier

2For the sake of clear notation, we write ϕα(r−r j ) ≡ϕr j ,α(r)
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Chapter II. Theoretical and experimental background

operators:

HW anni er = −
∑

ti j
(
c+iσc jσ+h.c.

)
+

∑
Ui j kl c+iσc+jσ′ckσ′clσ (II.9)

tαi j =
1

N

∑

k∈FBZ

e−i (r j−ri )·kEα(k) (II.10)

Ui j kl ≈
∫

drdr′ϕ∗
ri

(r)ϕ∗
r j

(r′)V (r,r′)ϕrk (r′)ϕrl (r) (II.11)

ti j are called hopping matrix elements and Ui j kl are the interactions parameters. The screened
potential interaction V (r,r′) is a short-range interaction and decreases rapidly as the separating
distance |r − r′| increases. Therefore it is reasonable to consider that the one-site repulsion
Ui i i i ≡ U will be the strongest and the second largest, if taken into account, will take place
between nearest-neighbors sites.

1.2 The Hubbard model

Let us study more carefully the one-band Hubbard model [43–45]. It is based on the Hamil-
tonian defined by Eq. II.9 in the tight-binding approximation. We consider that electrons can
only hop from one site to its nearest neighbors. Therefore the hopping integral ti j (Eq. II.10)
becomes: ti j = t if the sites i and j are nearest neighbors, otherwise ti j = 0.
More details on the Hubbard Hamiltonian can be found in Ref. [41, 46] and in particular, Ref.
[47] gives a state of the art description of the one-dimensional Hubbard model.

Using the second quantization language, the one-dimensional, one-band Hubbard Hamilto-
nian is given by:

HHubbard =−t
∑

j ,σ
(c+j ,σc j+1,σ+h.c.)+U

∑

j
n j ,↑n j ,↓+µ

∑

j ,σ
n j ,σ (II.12)

We introduced the density operators:

n j ,σ = c+j ,σc j ,σ (II.13)

The first term is a kinetic term that corresponds to the hopping of particles located on sites j
( j = 1 . . . N ) and with spins σ. We will only consider electrons; hence S = 1/2 and σ takes the
values σ=↑,↓. The second term describes the on-site repulsion. In this thesis, we focus on the
repulsive Hubbard model (U > 0). Finally, the last term gives the filling of the system n which is
adjusted by the chemical potential µ. Let Ne be the number of electrons, the filling is defined
by n = Ne/N (0 ≤ n ≤ 2). In Chapter IV we will discuss the particular case of half-filling (n = 1)
and then study quarter-filled systems (n = 1/2) coupled with lattice distortions.

So far, the analytical methods to solve the Hubbard model in two and three dimensions are all
approximate. On the other hand, the one-dimensional case was completely solved by Lieb and
Wu [48] using an extension of the Bethe ansatz technique [49] to fermions. Integrable systems
in one dimension are often solved by the Bethe ansatz technique. For example, this is also the
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1. Strongly correlated systems

case of the X X Z spin chain.
Moreover there exists ground states theorems for the Hubbard model and some of its limits that
give information on the total magnetization in particular situations such as bipartite lattices or
attractive models (for a summary see for example Ref. [41, 47]).

1.2.1 Symmetries of the Hubbard model

Apart of the translation invariance, the Hubbard model has various symmetries:

• The charge sector is invariant under a U (1) transformation. This corresponds to applying
an arbitrary phase θ:

c̃ j ,σ = e iθc j ,σ (II.14)

The U (1) symmetry is actually the expression of the charge conservation.

• The spin sector has a SU (2) invariance that indicates that the Hubbard model should not
change under a rotation of the spin quantization axis.

• In case of a bipartite lattice, the sign of the hopping can be changed and there is a particle-
hole symmetry. Let us call A and B the two sublattices. The transformation:

cσ,i → +cσ,i if i ∈ A

cσ,i → −cσ,i if i ∈B (II.15)

does not affect the potential term, but changes the sign of the kinetic term:

tc+σ,i cσ, j →−tc+σ,i cσ, j , i ∈ A , j ∈ B (II.16)

This transformation leaves the spectrum unchanged.

1.2.2 Particular limits of the Hubbard model

Let us review a couple of models that arise as particular limits of the Hubbard model:

• In the limit of strong repulsion (U /t ≫ 1), doubly occupied sites are disfavored and sites
will contain a hole, a ↑ or a ↓ spin 3. The Pauli principle prevents an electron to hop on one
of its neighboring sites unless the electron on the neighboring site has the opposite spin
value. Therefore strong repulsion tends to order the system antiferromagnetically and we
obtain a system in which electrons can still hop while the repulsion becomes an effective
spin-spin antiferromagnetic interaction J . This is the t − J model:

Ht−J = t
∑

σ, j
(c+j c j+1 +h.c.)+ J

∑

j
ŝ j ŝ j+1 (II.17)

J =
4t 2

U
(II.18)

3The attractive Hubbard model would lead to the opposite: U < 0 favors local singlets S = 0 which are either
empty or doubly occupied sites.
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where the spin operator on site j is:

ŝ j =
~

2

∑

ss′
c+s, jσss′cs′, j (II.19)

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(II.20)

where σi are the Pauli matrices.

• The t − J model has a particular behavior at half-filling. Due to the strong repulsion,
the system has exactly one electron per site. The model is reduced to a pure spin model
known as the Heisenberg model:

HHeisenberg = J
∑

j
ŝ j ŝ j+1 = J

∑

j

(1

2
(ŝ+j ŝ−j+1 + ŝ−j ŝ+j+1)+ ŝz

j ŝz
j+1

)
(II.21)

At half-filling the system undergoes a transition from a conducting state to the Mott in-
sulator state. The charge degree of freedom is frozen and a gap opens at the Fermi level
while the spin degree of freedom remains gapless. We will recover this behavior in Chap-
ter IV with the bosonization technique. We will use the Heisenberg model in Chapter III
and study classical spin systems in one and two dimensions.

• For some systems, such as organic conductors, one also has to take into account repul-
sion with nearest-neighbors sites V (V > 0). We obtain the so-called extended Hubbard
Hamiltonian:

Hextended = HHubbard+HV (II.22)

HV = V
∑

j
n j n j+1 (II.23)

1.3 Phonons

One of the main ingredient that will be added in both the Hubbard model and the Heisenberg
model in the forthcoming chapters is adiabatic phonons. In particular, we will see in Chapter
III that phonons can act as a mechanism for the appearance of magnetization plateaux in
classical spins systems. In Chapter IV, we show that phonons on a Hubbard chain lead to
dimerization and/or tetramerization of the electronic density.
In this section let us do a short summary on phonons and introduce the adiabatic limit.

The phonon Hamiltonian reads:

Hph =
∑

j
[

1

2m
p2

j +
m

2
w 2

0δ
2
j ] (II.24)

δ j = u(r j+1)−u(r j ) , Acoustic phonons (II.25)

δ j = u(r j ) , Optical phonons (II.26)

18



2. Why are low dimensional systems so exciting?

Here ui are the displacements of the magnetic ions from their equilibrium positions.
The dispersion relation of acoustic phonons is gapless. Acoustic phonons are the Goldstone
bosons generated by the breaking of the translational symmetry due to the creation of the
lattice.

The adiabatic limit consists in considering that the phonon degrees of liberty are frozen.
Their pulsations tends towards zero and their masses towards infinity:

{
ω0 → 0 , m →∞

}
⇒ K ≡ mω2

0 = constant (II.27)

Hence, the elastic energy term Eq. II.25 becomes:

Helas =
K

2

∑

j
δ2

i (II.28)

The fermion-phonon coupling is given by:

H i nt =−t A
∑

j
δ j

(
c+σ,i cσ,i+1 +h.c.

)
(II.29)

Phonons can lead to very interesting phenomena, such as the spin-Peierls transition.
Peierls showed in the fifties that the electron-phonon coupling prevents the existence of one-
dimensional metal [50]. A half-filled metal is unstable towards a lattice dimerization (Peierls
instability). A gap opens and the system undergoes a metal-insulator transition. Similarly,
the spin-Peierls transition takes place in one-dimensional antiferromagnet: the lattice sites
dimerizes and the antiferromagnetic quasi-long-range order is replaced by a gapped singlet
state.
A couple of experimental realization of the spin-Peierls transition were identified in organic
charge transfer systems and later in the inorganic compound CuGeO3 (see Chapter III). More
recently a spin-Peierls transition was found in the TiOX (X = Cl, Br) compounds.

To conclude, in this section we have introduced the models that will be used for the study of
low-dimensional strongly correlated systems. In particular, we described the Hubbard model
on some of its limits, which will we studied in the next chapter.

2 Why are low dimensional systems so exciting?

The effects of interactions in two and three-dimensional systems were explained by Landau’s
theory on Fermi liquids. These systems have properties very similar with the ones of the gas of
free fermions. They can be described in terms of free electrons dressed with density fluctua-
tions. We briefly review this model in a first part.
In one dimension, the Fermi liquid model is no longer accurate. Instead, the system is described
by spin and charge collective modes. This electronic state is called a Luttinger liquid.
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Chapter II. Theoretical and experimental background

Figure II.1: Particle distribution as a function of momenta k (upper panel) and spectral function
(lower panel) of a free electron gas (left panel) and of a Fermi liquid (right panel).
Figure from Giamarchi [52].

2.1 The Fermi liquid

Before discussing the particular case of one-dimensional systems, let us briefly review the two
and three dimensional cases. A detailed presentation of the Fermi liquid can be found in text-
books such as Ref. [3, 51–53].
Landau developed in the late fifties the Fermi liquid theory that describes the effects of interac-
tions in two and three-dimensional solids [54–56]. In these systems, the interaction is neither
dominant nor negligible compared to the kinetic energy. Thus perturbation theory cannot be
used. Landau showed that the macroscopic properties of metals in two and three dimensions
are very similar with the ones of a free electrons gas. In this model, the presence of interactions
does not lead to drastic changes in the system’s properties. Instead of considering electrons,
that are still strongly interacting, the Fermi liquid deals with fermionic particles that corre-
sponds to electrons dressed with density fluctuations. This particles are referred to as quasi-
particles and part of the interaction is absorbed in the definition of their parameters (such as
their effective mass m∗). A residual interaction still remains between the quasi-particles and it
is described by the Landau parameters, which we do not detail here.

In a gas of free electrons at zero temperature, all the states within the Fermi surface (i.e. states
with energies ǫ(k) < ǫ(kF ) 4) are occupied while all the states outside it are unoccupied. The
distribution n(k) of free fermions with momenta k obeys a Fermi-Dirac statistics: at zero tem-
perature it presents a discontinuity at the Fermi level k = kF with n(k) = 1 if k < kF and n(k) = 0

4We use Giamarchi’s notation: ǫ(k) stand for the energy of a free particle, ξ(k) is the energy relative to the chemical
potential µ and interacting particles have energy E (k).
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2. Why are low dimensional systems so exciting?

otherwise (see left upper panel in Fig. II.1). An elementary low-energy excitation can create
(resp. annihilate) a particle with a well-defined momentum k in a state just above (resp. below)
the Fermi level. Such excitations are called particle (resp. hole) excitations. They are eigenstates
of the Hamiltonian and their lifetime is infinite.
The spectral function is related to the Green function as:

A(k,ω) =−
1

π
ImG0(k,ω) (II.30)

For free fermions the Green function is given by:

I mG0(k,ω) = Im
1

ω−ξk + iη
=−πδ(ω−ξk ) , ξK = ǫ(k)−µ (II.31)

where µ is the chemical potential. Hence the spectral function for the free fermions is a
Dirac distribution (see left lower panel in Fig. II.1) which indicates that free electrons have
well-defined frequency-momentum relation ω= ξ(k).

In the interacting case, we can absorb a part of the interaction in the definition of the quasi-
particles. They are treated like free elementary particles that interact through a residual inter-
action described by the Landau parameters.
The distribution still has a discontinuity at the Fermi surface. However, the amplitude of this
discontinuity is no longer 1 but a number Z . The discontinuity becomes smaller as the interac-
tion increases (see right upper panel in Fig. II.1). The excitations, in a Fermi liquid, are electrons
dressed by density fluctuations. Since excitations will have wave-vectors close to kF , one can
linearize the dispersion and the energy of a quasi-particle is:

E (k)≈ E (kF )+
kF

m∗ (k−kF ) (II.32)

The spectral functions for the quasi particles still exhibits peaks but no longer correspond
to a Dirac distribution (see Fig. II.1). Instead, they obey a Lorentzian distribution centered
on ω = E (k) and with a width 1/τ, where τ is the lifetime of the quasi particles. These peaks
become sharper for particles whose momenta are closer to the Fermi level. The total weight
in these quasi particles corresponds to the amplitude of the discontinuity Z in the particle
distribution.

The Green function for an interacting fermion is:

G(k,ω) =
1

ǫ(k)−ω−Σ(k,ω)
(II.33)

where Σ(k,ω) is the self-energy containing the many-body effects. The existence of quasi-
particles involves that the self-energy is smooth enough so as to be expanded in the vicinity
of the Fermi surface. The Green function is then rewritten close to the Fermi surface, which
allows to compute the exact value of Z . Giving qualitative details on the Fermi liquid is beyond
the scope of this section and more details can be found, for example, in Ref. [57].
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Let us go back to the systems we are interested in, fermions in 1+1 dimension. Electrons in a
one-dimensional motion will have to "push" their neighbors and hence any excitation becomes
a collective one. The concept of quasi particle no longer applies and the Fermi liquid theory
breaks. One-dimensional systems are described by a new electronic state: the Luttinger liquid.

2.2 The Luttinger liquid

In one dimension, since only collective excitations exist, the single fermionic excitations
"break" into two collective excitations, carrying two different degrees of freedom: the charge
and the spin. These excitations can have different velocities. The Luttinger was introduced by
Tomonaga [58] and Luttinger [59] to describe the behavior of one-dimensional systems. The
main idea of the Luttinger model is to linearize the dispersion relation in the vicinity of the
Fermi points±kF . This approximation is correct as long as the momenta considered stay within
a cut-off. We will not give more details on the Luttinger liquid since it will be derived with the
bosonization technique in Chapter IV and App. C.
For more detail on the Luttinger liquid one can refer to Ref. [3, 52, 57].

3 Experimental context

In this section we briefly present the major experimental motivations for the study of strongly
correlated low dimensional systems.
The main field of application is understanding the high critical temperature superconductivity.
Compounds of the cuprates family were found to exhibit a superconducting phase with crit-
ical temperature half way between zero and room temperature. Even though many theories
were proposed to explain the complex pairing mechanisms leading to this behavior they still
remain not fully understood. The possible technological applications for superconductivity at
high temperature add supplementary motivation for understanding these systems.
In a second part we focus on quasi-one-dimensional organic conductors such as the Bechgaard
salts. Those compounds have a very rich phase diagram that includes superconducting phases.
The existence of Luttinger liquid phases justifies a description through a one-dimensional Hub-
bard model.
Finally the last part reviews other, more recent, experimental realizations of one dimensional
systems such as nanowires and nanotubes.

3.1 High Tc superconductivity

Bednorz and Müller reported in 1986 [1] superconductivity at about 30 K in the BaLaCuO
ceramic copper oxides. This discovery marked the start of intensive research of new com-
pounds with even higher critical temperature Tc . For example, the mercury based compounds
HgBaCaCuO were found to have Tc ∼ 133 K [60]. For a review on the high-Tc superconductors,
one can refer to Ref. [2].
High Tc superconductors generally crystallize in the tetragonal system (see Fig. II.2, upper
panel) and have in their structure at least one copper oxide (CuO2) plane which make them

22



3. Experimental context

belong to the cuprate compounds family. In fact it was observed that the critical temperature
increases with the number of CuO2 layers. Those planes are separated by layers of atoms such
as La, Ba and Hg (for example, see the upper panel of Fig. II.2).

Most works in the field of High-Tc superconductors agree that superconductivity is related
with processes such as pairing occurring in the CuO2 layers. The planes of other atoms play
the role of carrier reservoirs. However the strong anisotropy of the structure, as well as the
presence of phonons and defects complicate the interpretation of the experimental results.
At very low temperature, these materials have the common feature to present antiferromag-
netic order in the undoped regime (i.e. when the carriers from the layers of other atoms are
not in the CuO2 planes). They remain Mott insulators until a critical value of the hole/electron
doping (see Fig. II.2, lower panel). The value of the doping that removes the long-range
spin order depends on the cuprate considered. A "pseudo-gapped" phase exists between
the antiferromagnetic and the superconducting phases. The dome-shaped superconducting
phase shows that the highest critical temperature is obtained for a precise optimal value of the
doping.
Particular behaviors of the cuprates suggest that the Fermi-liquid model is not accurate to
describe those compounds. In particular, a non-Fermi liquid phase can appear at higher
temperature above the superconducting phase. As for the pairing in the CuO2 layers, the
Bardeen-Cooper-Shieffer (BCS) pairing model is believed not to work in the cuprates [42, 61].
In the BCS theory the order parameter of the s orbitals has an isotropic gap which is not in
agreement with the superconducting gap of the cuprates. Shen et al. [62] measured a large gap
anisotropy in the a − b planes of Bi2Sr2CaCu2O8+δ and established that the order parameter
should be ∆(k) ∼ coskx a − cosky a which is consistent with the order parameter of the dx2−y2

orbitals of the copper atoms.
Various theories have been proposed to describe the cuprates, such as one and three band
Hubbard models. Due to the very strong bonds in the CuO2 planes, a first approximation
consists in studying a two-dimensional Hubbard Hamiltonian on a square lattice in order to
describe the electrons moving in the CuO2 planes. The coupling with the other atom planes
can eventually be added later.
A three-band Hubbard model with one p band for the oxygen and two dx2−y2 bands for the
copper atoms was considered (see Ref. [2] and references therein). Using a hole notation, it
takes into account the hybridization between the nearest-neighbor copper and oxygen atoms,
a direct hopping between oxygen atoms, and three types of repulsions between the holes
belonging to the same d or p band and between the adjacent copper and oxygen holes. In
this model the first hole added by the doping energetically prefers the d copper orbital while
supplementary holes will prefer the oxygen orbitals (as long as the repulsion between holes of
the same d orbitals is strong enough).
Zhang and Rice [63] showed that from this three-band model it is possible to extract an effective
simpler model through a one-band Hubbard model in the t − J limit. Let us consider one
copper ion surrounded by four oxygens (see pyramid in Fig. II.2). The hole of the oxygen can
combine with the copper hole and create spin singlet or triplet states. Zhang and Rice used a
perturbative approach to show that the spin singlet has lower energy and assumed that it is
possible to work in this singlet subspace without losing the main features of the system. In their
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Chapter II. Theoretical and experimental background

Figure II.2: Upper panel: Left: Example of crystal structure of a cuprate. It consists of layers of
copper oxide interleaved with layers of other atoms. Right: The oxygen atoms form a
pyramid with a copper atom at the center of the base. Figure from Cornell Chronicle
Online (http://www.news.cornell.edu/stories/May08/Davis.distances.ws.html). Lower
panel: Schematic phase diagram of the cuprates as a function of electrons and hole
dopings. In the low doping region antiferromagnetic order (AFM) is obtained. Both
kinds of doping can lead to superconducting states (SC). Figure from the Research
Unit FOR538, Doping Dependence of Phase Transitions and Ordering Phenomena in
Copper-Oxygen Superconductors (http://www.wmi.badw-muenchen.de).
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3. Experimental context

model the hole of the oxygen is replaced by a spin singlet on the copper which is equivalent
with removing one copper spin from a square lattice of copper spins. Hence they converted
the three band model into a simpler spins and holes model.

On top of its fundamental interest, the discovery of compounds with superconduct-
ing temperature above liquid nitrogen temperature opened high-Tc superconductor thin
films technological applications. For example high-Tc cuprates were used in superconduct-
ing quantum interference device (SQUID) magnometers and Josephson integrated circuits [64].

To conclude this part, it is widely believed that understanding the underlying mechanisms
of superconductivity in high-Tc cuprates should open a path toward even higher critical tem-
peratures. Hence a tremendous experimental and theoretical effort was made in this field of
investigation, and even though it has led to considerable progress much remains to be done. In
particular, the pairing mechanism is still not understood, as well as the impurity scattering and
some features of the phase diagram.

3.2 One dimensional organic systems

In this section, we introduce chemical compounds for which a one-dimensional Hubbard
model is justified due to the strong anisotropy of magnetic couplings.
The first organic compounds to exhibit superconductivity are the Bechgaard salts [65]. Besides

of a superconducting phase, their phase diagram presents many interesting phases such as
non-Fermi liquid or spin-Peierls states [3, 28].
The Bechgaard salts are a series of organic salts (TMTSF)2X where X is the counter ion that
insure the electronic neutrality and TMTSF a flat molecule that donates electrons easily.
Bechgaard salts are isostructural with the sulfur series5 (TMTTF)2X, also called Fabre salts.
Both (TMTSF)2X and (TMTTF)2X crystallize as stacks of TM molecules (TM = TMTSF or
TMTTF) separated by the counter ions X. Fig. II.3, left panel shows the crystal structure of those
compounds. Example of X are symmetric molecules such as PF6 or AsF6 or asymmetric such as
ClO4, ReO4 and NO3.
The TM molecules have double bonds between the carbon atoms and the π orbital of the
selenium/sulfur atoms. As one can see in Fig. II.3, there is only one ion for two TM molecule
and the chain is quarter-filled. We will come back on that particular filling in Chapter IV and
study in particular the influence of lattice distortions on such systems.

The stacking direction suggests that these compounds may be well described through a one
or at least quasi-one-dimensional model. Moreover a high mobility of the electrons along the
stacking direction is made possible thanks to the overlap of the π orbitals of the selenium/sulfur
atoms. However one has to compare the hopping integrals along the stacking direction with
the one in the perpendicular directions. Roughly, the values of the integrals along the stacking
directions are tstack ≈ 1000 K, while the ones along the axis pointing towards neighboring

5TMTSF stands for tetramethyltetraselenafulvalene and TMTTF stands for tretramethylthiafulvalene. The latter
contains sulfur atoms instead of selenium.
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Figure II.3: Left panel: Structure of the Bechgaard salt (TMTSF)2X and their sulfur analog, the
Fabre salts (TMTTF)2X. A stack of flat TM organic molecules with their orbitals is rep-
resented between the smaller counter ions. In this figure the stack axis is the z−axis.
Right panel: Schematic phase diagram for the TM compounds as a function of tem-
perature and pressure (∼ 1/U ). Increasing the pressure is equivalent with going from
the TMTTF to the TMTSF family and changing the counter ion X (see detail of the
phases in the text). Figures from Bourbonnais and Jérôme [28].

stacks are tstack−stack ≈ 100 K and finally the ones along the axis pointing towards the counter
ions are ti ons ≈ 30 K [3]. Therefore one can describe these materials as one-dimensional chains
with hopping tstack eventually coupled by small inter chain couplings tstack−stack .

It is quite easy to vary experimentally the parameters that govern the properties of the
(TM)2X by changing the nature of the counter ion X, applying a magnetic field or varying the
pressure. The nature of TM molecule (TMTSF or TMTTF) and of the counter ion X changes
the hopping ti ons which leads to a very rich phase diagram. A schematic phase diagram as a
function of pressure or ion substitution and temperature for both (TMTSF)2X and (TMTTF)2X
families is shown in Fig. II.3, left panel.
One notes that in the phase diagram the pressure and chemical changes (see x−axis in Fig.
II.3) have similar effects. At low pressure, some compounds of the sulfur series can develop
spin-Peierls (SP) or commensurate-localized antiferromagnetic long-range order (AF) while
either itinerant antiferromagnetism or superconductivity (SC) are found in the selenide series.
At very low temperature these systems exhibit various ordered phases as the pressure varies:
spin-Peierls (SP), antiferromagnetic (AF), spin-density-wave and superconducting (SC).
At intermediate temperature the sulfur compounds (TMTTF)2X can be described as a Luttinger
liquid (LL) that becomes gapped in the charge sector (LLσ) below Tρ . Under pressure, the
properties of the sulfur family evolve toward those of the selenides (Bechgaard salts) which ex-
hibit, at intermediate temperature, a progressive restoration of a Fermi liquid (FL, represented
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3. Experimental context

in dark in the phase diagram).
At ambient pressure some of the (TM)2X compounds, such as the (TMTTF)2PF6, present an
insulating behavior. As the pressure increases it undergoes a transition to a metallic phase and
the properties of this (TMTTF)2X compound evolves towards those of Bechgaard salts family
which are good conductors [66].

The scenario for the appearance of the superconducting phase in these systems has not
been studied as much as for the two-dimensional high-Tc discussed in the previous section.
The superconducting transition was found to be more sensitive to impurities than it would be
expected in a regular superconductor. Various scenarios are proposed such as a spin-triplet
pairing with the possibility of reentrant superconductivity at very high magnetic fields applied
along the axis pointing towards neighboring stacks. At the optimum pressure value, the critical
temperature is Tc ∼ 1 K. Even if theoretical predictions [67] support the existence of an "exotic"
pairing via the inter chain exchange, experimental evidences are still missing.

3.3 Nanowires and nanotubes

Advances in technology over the past few decades, such as molecular beam epitaxy, made it
possible to create and study experimentally low-dimensional systems in which electrons are
strongly confined in one or two dimensions. Nanowires and nanotubes are examples of exper-
imental realizations of one-dimensional systems.
Nanowires (see upper panel in Fig. II.4) seem to be the closest experimental realization of an
atomic chain. However they are very sensitive to disorder and thus are not the best candidates
for studying transport in one dimension.

On the other hand, nanotubes were recently found to be an experimental realization of the
Tomonaga-Luttinger liquid. Let us briefly review what a nanotube is.
The first carbon nanotubes were observed by transmission electron microscopy in 1991 [68].
They were multi-walled carbon nanotubes with an outer diameter ∼ 2 − 20 nm (see lower
panel of Fig. II.4). The first single-walled nanotubes were realized two years after [69, 70]
and present a much smaller diameter ∼ 1 nm. A single-wall nanotube is basically a single
layer of graphite (i.e. a graphene sheet) rolled into a tube. Individual carbon nanotubes are
predicted to be either semi conducting or conducting, depending on the chirality and diameter
of the nanotube. Detailed explanations on how to synthesize nanotubes and how to perform
transport measurements on them can be found in Ref. [71].

Since these systems are very "one-dimensional-like", early experiments on one-dimensional
semiconductor nanowires were interpreted using the Luttinger-liquid theory [72, 73] without
real agreement with theoretical predictions.
Bockrath et al. [74] first reported measurements of the conductance of conducting "ropes"
made with single-wall carbon nanotubes (see lower panel of Fig. II.4) that agreed with pre-
dictions for tunneling into a Luttinger liquid. The Luttinger parameter for single-wall carbon
nanotubes was predicted to be smaller than unity [75, 76]. Using previous experimental results,

27



Chapter II. Theoretical and experimental background

Figure II.4: Upper panel, left: Transmission Electron Microscopy (TEM) picture of a cobalt
nanowire (thickness 80 nm). The dark zone is cobalt, the clear sheath is cobalt ox-
ide. Enlarging = ×60000. Picture from MSc lab work on a Philips CM300 TEM. Up-
per panel, right: Scanning Electron Microscopy (SEM) picture of a "ball" of carbon
nanowires. Enlarging =×6500. Picture from MSc lab work. Lower panel: Schematic
pictures of carbon nanotube structures, including single-walled, multi-walled and
"ropes" nanotubes. Figure from Korea University (http://nanotube.korea.ac.kr).
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4. Frustrated systems

the predicted Luttinger parameter for a "rope" should be ∼ 0.28 [77, 78]. Bockrath et al. mea-
sured the conductance G of single-wall carbon nanotubes as a function of temperature and
voltage V and compared these results with the theoretical power laws:

G(T ) ∝ T α , (E v ≪ kB T ) (II.34)

d I /dV ∝ V α , (E v ≫ kB T ) (II.35)

The exponent α of these power laws depends on the number of one-dimensional channels in
the "rope". The Luttinger parameter can be calculated from the exponent α [75, 76] and the
experimental value was found to be in good agreement with the theoretical prediction.

The nature of the electronic liquid in carbon nanotubes still remains a very active field
of research. Rauf et al. [79] recently reported a transition from a Tomonaga-Luttinger liquid
to a Fermi liquid behavior in single-wall carbon nanotubes. They displaced the Fermi level
by adding doping. For low dopant concentration, these nanotubes behave as a Tomonaga-
Luttinger liquid while they become a Fermi liquid when the concentration is high enough so as
to fill the conduction band.

To conclude this section, we have presented a couple of experimental realizations of low-
dimensional systems. Due to technological progress in the field of nanotechnologies, the study
of low-dimensional is becoming even more relevant. The quasi-one dimensional organic con-
ductors are studied in Chapter IV through a quarter-filled Hubbard model.

4 Frustrated systems

Frustrated systems were first investigated at the beginning of the fifties after it was noticed that
Ising spins on the triangular lattice exhibit very particular properties [80]. However, the concept
of frustration was defined by Villian [81] and Toulouse [82] in the late seventies in the context
of spin glasses, which marked the beginning of extensive investigation on frustrated systems.
A spin system is called frustrated when it cannot satisfy simultaneously all its interactions be-
tween every pair of spins. The resulting configurations minimize the energy of the whole sys-
tem, but not all the energies of interaction between one spin and its neighbors.
Frustrated systems exhibit very rich behaviors such as a very large ground state degeneracy. Par-
ticular interest in those magnetic systems stems from the fact that they were found to present
new phases such as Resonating Valence Bonds (RVB) spin liquids [83], super solids [84–87] and
spin ices [88–92].
Frustration has two possible origins: it can arise either from competing magnetic interactions,
such as in the J1 − J2 spin chain, or from geometry. Geometric frustration will be illustrated
through a couple of example among the family of corner-sharing lattices [93].
The exploration of frustrated systems is a wide and expanding field of condensed matter
physics. The purpose of this section is only to gives a brief overview on frustrated systems and
we will focus on classical spin systems, which are the subject of Chapter III. Reviews on frus-
trated quantum magnets can be found in Ref. [94–96]. For more details on frustrated systems,
one can refer Ref. [9] and Ref. [97, 98] for supplementary experimental details.
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Figure II.5: Examples of corner-sharing frustrated lattices. Upper panel, left: the pyrochlore lat-
tice which consists in corner-sharing tetrahedra. Upper panel, right: the Gadolinium
Gallium Garnet (GGG). Lower panel, right: the Kagomé lattice. Lower panel, left:
the SCGO lattice, which consists in layers of Kagomé lattices separated by tetrahedra.
Figure from Moessner [93].

4.1 Frustration from competing interactions

Let us first discus the frustration that arises from competing interactions. The first non-
collinear spin configurations due to competing interactions were studied by Kaplan [99], Villian
[100] and Yoshimori [101] in 1959.
We consider a pair of two nearest-neighbor classical spins (i.e. vectors) interacting through an
antiferromagnetic coupling J1. The energy of this pair is minimized if the spins are anti parallel
(Néel order). Let us add a next-nearest-neighbor antiferromagnetic interaction J2

6. If J2 is "low
enough", each nearest-neighbor pair (Si,Si+1) still tends to align anti-parallel. However, above
a certain value of J2, the pairs of next-nearest-neighbors (Si,Si+2) will also try to lie anti-parallel,
which is impossible due to the J1 coupling. As a consequence, for a range of values of the ra-
tio J1/J2, the interplay between the two antiferromagnetic couplings will lead to non-collinear
configuration, a spiral state, that does not fully satisfy any of the interactions 7. In such case the
system is frustrated by the competition between the J1 and J2 couplings.
We will come back and give more quantitative details on the J1− J2 classical spin chain in Chap-
ter III. We will also consider the effects of lattice distortions on this system.

6Frustration can also arise if one, and only one, of the couplings is ferromagnetic (i.e. Ji < 0). Ferromagnetic
systems cannot be frustrated by competing interactions.

7Of course, the pitch angle of this spiral depends on the ratio J1/J2 (see Chapter III).
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4. Frustrated systems

4.2 Geometrical frustration

The simplest example to illustrate systems frustrated by the geometry of the lattice is to consider
a triangle with antiferromagnetic couplings J on all edges. In order to satisfy independently all
interactions, spins should align anti-parallel along each edge, which is not possible. Instead,
spins will realize a 120 ◦ coplanar configuration in order to minimize the energy of the whole
triangle.
Let us generalize this to lattices containing elementary plaquettes (triangles, squares . . . ).
Toulouse [82] proposed a criterion on the product of the bonds of a plaquette P :

P =
∏

〈i , j 〉
sign(Ji j ) (II.36)

If P < 0, the plaquette is geometrically frustrated. For example, if we consider only antifer-
romagnetic couplings, examples of geometrically frustrated two-dimensional systems are the
triangular lattice, the Kagomé lattice (see Fig. II.5), the checkerboard lattice 8, the Shastry-
Sutherland lattice. The square lattice, with an even number of antiferromagnetic couplings
per plaquette, fails Toulouse’s criterion. However, a square plaquette with three ferromagnetic
bonds and one antiferromagnetic bond becomes frustrated.
Let us extend this discussion to a whole lattice of N spins. Minimizing the energy on the whole
lattice may be problematic, however, in some cases it is possible to rewrite the Hamiltonian as
a sum on independent elementary plaquettes (e.g. triangles):

∑

bonds

Si ·Sj =
J

2

∑

plaquettes

L2 +constant (II.37)

L =
q∑

i=1
Si (II.38)

where L is the total spin of a plaquette. The number of degrees of freedom increases with the
number of bonds q in a single plaquette (for example, q = 3 if the plaquette is a triangle). The
classical ground states satisfy L = 0 in each plaquette. This condition leads to n = 3 constrains
for Heisenberg spins. The dimension of ground state grows with q and n. If we call F the num-
ber of degrees of freedom and K the number of constrains, the dimension of the ground state
D is [93, 102]:

D = F −K =
N

(
n(q −2)−q

)

2
(II.39)

Hence the ground state of geometrically frustrated systems is highly degenerated and its
dimension increases with the number of bonds per plaquette and the number of spin compo-
nents. Quantum or thermal fluctuations can partially lift this degeneracy, which is called the
Order by Disorder effect. We will come back on that point in Chapter III, Section 2.
Let us give a couple of example of corner-sharing lattices whose Hamiltonians can be rewritten
as a sum on elementary plaquettes (see Chapter III). This is the case of the Kagomé lattice (Fig.
II.5) and, for a precise value of the diagonal couplings, of the checkerboard lattice, frustrated

8The checkerboard lattice is a square lattice with two diagonal couplings in one square out of two.
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Chapter II. Theoretical and experimental background
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Figure II.6: Schematic curve of the inverse of the susceptibility χ as a function of temperature

showing the signature of geometrical frustration. ΘCW is the Curie-Weiss temperature
and TF , the temperature of deviation (see text).

square lattice and Shastry-Sutherland lattice (Chapter III, Section 4).
Example if three-dimensional geometrically frustrated lattices are shown in Fig. II.5.
Geometrical frustration does not require antiferromagnetic couplings. Let us briefly discuss
the case of the pyrochlore lattice (corner-sharing tetrahedra). Antiferromagnetic couplings do
not frustrate the pyrochlore lattice. On the other hand, ferromagnetic couplings, which tend
to maximize the total spin per tetrahedra, lead to a highly degenerated classical ground state.
In this configuration, each tetrahedron has two spins pointing in and two pointing out. This
configuration is called spin ice. This name is comes from the fact that this configuration is
compared with the arrangement of the protons in the tetrahedra of the solid water structure
[103]. Spin ice is the subject of expanding investigation, both theoretical [91, 92] and experi-
mental. It is realized experimentally in Ho2Ti2O7 [103] and Dy2Ti2O7 [104] and in an increasing
number of chemical compounds [105].

Experimentally, strong frustration can be identified from the behavior of the inverse of the
susceptibility χ−1. Figure II.6 shows a schematic curve of a strongly frustrated magnet. The
usual paramagnetic regime takes place above the Curie-Weiss temperature ΘCW . Between
ΘCW and TF , strongly frustrated systems then present a phase in which correlations are
weak (cooperative paramagnet region). A deviation takes place at a temperature TF ≪ ΘCW

indicating a transition to a non-generic state which varies from one compound to another
[93, 102]. The ratio TF /ΘCW ≪ 1 is considered as a characteristic of strong frustration.

To conclude, this sections reviews the two types of frustration mechanism, from compet-
ing interactions and from the lattice geometry. In Chapter III we will consider first a one-
dimensional system frustrated by competing interactions and then the Shastry-Sutherland lat-
tice.

32



5. A short introduction to classical Monte-Carlo algorithms

5 A short introduction to classical Monte-Carlo algorithms

Monte Carlo algorithms are powerful numerical tools used to study large systems. They can be
applied to various systems, such as for example spin systems, and they are especially useful to
study those with a large number of coupled degrees of freedom.
The term Monte Carlo encompasses a broad family of algorithms that can treat either classical
or quantum systems. We are interested in classical spin systems and we only consider one of
these algorithms: the Metropolis algorithm [106]. A detailed presentation of the Monte Carlo
algorithms can be found for example in the textbooks Ref. [107–109].
The main idea of Monte Carlo is to perform stochastic moves (i.e. non deterministic) to repro-
duce the statistical distribution of the configurations of the system. However, one does not
sample phase space randomly but rather use importance sampling. Indeed, these stochastic
moves are based on a Markov chain which depends on the use of random numbers 9 that are
generated during the simulation. As a consequence, if one runs a couple of simulations on the
same system, the values of the physical quantities will not be exactly the same, but they should
agree up to a statistical error.
We first discuss how a configuration is constructed from a Markov chain, then we explain
how we move from one configuration to the next one, and finally we review how the physical
quantities we are interested in are computed.

Let us consider a system that has a finite set of possible states {Si } (i = 1 . . . N ). So far we
consider a discrete stochastic evolution of the system with time labeled (t = 1 . . . N ). At each
moment t , we call X t the state of the system. We consider the conditional probabilities so that
the system configuration at the time t = j , X t= j , is the j th state Si= j ( j = 1 . . . N ):

P (X t= j = Si= j |X t= j−1 = Si= j−1, . . . , X t=1 = Si=1) (II.40)

If we were using a true random chain, the probability of occurrence of the j th state would be
independent from the occurrence of the previous states:

P (X t= j = Si= j |X t= j−1 = Si= j−1, . . . , X t=1 = Si=1) =
k= j∏

k=1

P (X t=k = Si=k ) (II.41)

In Monte Carlo algorithms, the conditional probabilities Eq. II.40 are not independent: they are
constructed through a Markov chain in which each configuration is generated with a probabil-
ity that depends only on the previous configuration. The probability of occurrence of the j th

state then becomes:

P (X t= j = Si= j |X t= j−1 = Si= j−1, . . . , X t=1 = Si=1) = P (X t=k = Si=k )
k= j∏

k=1

Tk,k−1P (X t=k−1 = Si=k−1)

(II.42)

9Computer generated random numbers are not completely random. We will mention random numbers keeping
in mind that they are actually pseudo-random numbers. We discuss later under what conditions we can safely
consider them as true random numbers.
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Chapter II. Theoretical and experimental background

where Tk,k−1 is the transition probability between X t=k = Si=k and X t=k−1 = Si=k−1 :

Ti , j ≡ T (Si → S j ) = P (X t=n = Si |X t=n−1 = S j ) (II.43)

The transition probabilities Ti , j (i = 1 . . . N and j = 1 . . . N ) are positive and normalized:

Ti , j ≤ 0 (II.44)
∑

Ti , j = 1 (II.45)

One can see in Eq. II.42 that in a Markov process, having the configuration S j−1 at t = j −1
determines the probability to have S j at t = j , which is the future of the system. On the other
hand, this probability does not depend on the history of the system (i.e. the configurations
of the system before t = j ) and a Markovian system can eventually come back, after a certain
amount of time, to a configuration that it has already visited.

The transition probabilities Ti , j are chosen so as to generate a Markov chain of system con-
figurations with the Boltzmann distribution. This distribution has to be independent of the
position in the chain and of the initial configuration. This conditions are fulfilled if:

• Every configuration among {Si} (i = 1 . . . N ) can be reached from every other configuration
within a finite number of steps. This is the condition of connectedness.

• The Markov chain is not periodic: the system cannot come back in a given configuration
except after a "long time".

If these conditions are fulfilled, the Markov chain becomes ergodic.

Let us rewrite the probability to obtain a given state as a function of time:

P (X t=n = Si= j ) ≡ P (S j , t ) (II.46)

We now consider the function P which gives the probability to have the system in the state S j

at the time t 10. Two processes govern the changes in the function P :

• P (S j , t ) decreases if the systems moves from a configuration Si at time t to S j at time t+1.

• P (S j , t ) increases if the systems moves from a configuration S j at time t to Si at time t +1.

These mechanisms are described by the master equation:

∂P (S j , t )

∂t
=−

∑

i
T j ,i P (S j , t )+

∑

i
Ti , j P (Si , t ) (II.47)

In order to reach the stationary state, one has to let the system thermalize. This is achieved by
relaxation from an arbitrary configuration.

10We now consider a continuous time dependence. In an ergodic chain, the time dependence actually disappears
after "a long time".

34



5. A short introduction to classical Monte-Carlo algorithms

The Boltzmann distribution will arise from the stationary solutions which contains the Boltz-
mann weights of the configurations. The stationary solutions are given by:

∂P (S j , t )

∂t
= 0 ⇔

∑

i
T j ,i Peq (S j , t ) =

∑

i
Ti , j Peq (Si , t ) (II.48)

The particular solution for T j ,i , in which the terms of both sums and for all pairs of configura-
tion (S j ,Si ) are equal, is called the detailed balance:

T j ,i Peq (S j ) = Ti , j Peq (Si ) (II.49)

The equilibrium probability is proportional to the Boltzmann distribution:

Peq (S j , t ) =
e−βE(S j )

Z
(II.50)

where β = 1/kB T , Z is the partition function and E (Si ) is the energy associated to the Si con-
figuration. In practice, one studies the ratio of the probability between two consecutive config-
urations Si and S j

11 in order to get rid of the partition function. Therefore the transition rate
between these configurations depends on their energy difference:

∆E = Ei −E j (II.51)

As long as a transition rate from the state Si to the state S j satisfies the detailed balance Eq.
II.49, it can be used 12. However let us focus on Metropolis’ choice [106]. At each step (i.e.
at each discrete value of t ), one spin is flipped, if we have Ising spins, or "tilted" if we have
Heisenberg spins. For example, in the Monte Carlo codes used to study the Shastry-Sutherland
lattice (see Section 4) we consider Heisenberg classical spins, with norms fixed to unity, that
are parameterized with the spherical coordinates θ and φ. These coordinates are updated
independently with φ ∈ [0,2π] and θ so that cos(θ) ∈ [−1;1].

The Metropolis’ rate is independent of Z and satisfies the detailed balance Eq. II.49. It is
defined as:

Ti , j = τ−1
0 e−∆E/kB T if ∆E > 0

Ti , j = τ−1
0 if ∆E < 0

where τ0 is the time required to perform the spin movement (spin-flip or other movement). In
practice, τ= 1.

We consider a lattice with N sites. Then the Metropolis algorithm consists in performing the
following steps:

1. Choose an initial state (for example S j ). Then X t=0 = Si= j .

11Configurations that are reached consecutively in time.
12This choice depends on the system studied. For example, at high temperatures the Metropolis algorithm be-

comes non-ergodic, and instead one can use the Glauber dynamics [110].
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Chapter II. Theoretical and experimental background

2. Choose a site k, k = 1 . . . N and perform a change on it (flipping or tilting).

3. Compute the energy change ∆E which results if the spin at site k is flipped or tilted.

4. Generate a random number r uniformly within [0;1].

5. If r < e−β∆E , flip (or tilt) the spin. The resulting configuration is kept so as to compute the
physical quantities, such as magnetization or specific heat, averaged by a number Nc of
collects that is fixed as an input.

6. Go to the next site and restart from step 3, until the right number of accepted configura-
tions is achieved.

Let us come back to the problem of random numbers. The number of tries to do so that every
site of the system as been considered once is called a Monte Carlo step. Its value increases
with the system size, and also, the lower the temperature is, the higher it is. It also depends
on the value of ∆E and we come back on this point later. The fact that computers are actually
using pseudo-random numbers will not be a problem as long as the periodicity of the random
number generator is large enough, compared with the Monte Carlo step. One also has to make
sure that random numbers are not correlated.

One can force the algorithm to accept more tries by taking into account, in the computation
of ∆E , a "local field" hi that is generated by the spins surrounding the site i that is considered:

hi =
∑

j
Ji , j Sj (II.52)

E =
∑

i , j
Ji , j Si ·Sj =

∑

i
hi ·Si (II.53)

Then when we move to the next site i ′ (step 3 in the algorithm), we simply have to compute:

∆E = hi · (Si
′−Si) (II.54)

By keeping track of hi, the energy difference is computed much faster than a difference of total
energies.

Let us now discuss what are the physical quantities we extract from the Monte Carlo sim-
ulations. In order to simplify the notation, let us define x = {Si}. The thermal average of an
observable A(x) is defined as:

〈A(x)〉T =
1

Z

∫
dxe−βH (x) A(x) (II.55)

Z =
∫

dxe−βH (x) (II.56)

In our case, it is estimated as:

〈A(x)〉T =
1

Nc

Nc∑

i=1
A(x) (II.57)

P (x) ∝ e−βH (x) (II.58)
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where Nc is the number of collects (number of measurements).

For a N spin system, the energy and the normalized magnetization are:

E =
〈H 〉T

N
(II.59)

Mn =
〈
∑N

i Si〉T

N
(II.60)

In the above equations, the data are thermally averaged and spatially averaged by dividing by
the number of spins N . We are interested in the magnetization (that is measured along the
z−axis), the susceptibility and the specific heat. These physical quantities are then averaged by
the number of collects Nc :

Collect average magnetization: M =
Mn

Nc
(II.61)

Susceptibility: χ= Nβ
[M2

n

Nc
−

(Mn

Nc

)2
]

(II.62)

Specific heat: Ch = Nβ2
[E 2

Nc
−

( E

Nc

)2
]

(II.63)

Finally, these physical values are collected for a couple of simulations (∼ 5 simulations) , which
should tally up to some statistical errors. We compute their standard deviation σ so as to add
errors bars in the curves (see Chapter III):

σ=
√

< X 2 >−< X >2 , (X = M ,χ,Ch) (II.64)

To conclude, in this section we briefly laid the foundations of the Metropolis algorithm that
is used next for the study of classical spin systems. Results of Monte Carlo simulations are pre-
sented in Chapter III, for both the study of the frustrated J1 − J2 spin chain with lattice distor-
tions (Sec. 3) and the Shastry-Sutherland lattice (Sec. 4).

6 Background: summary and outlook

For many years, the main experimental motivation for the study of low-dimensional systems
was the existence of superconducting phases with high critical temperature in compounds
whose anisotropic magnetic couplings allow a description trough one or two-dimensional
models. The most famous are the cuprate family which are widely studied through various Hub-
bard models and organic compounds such as the Bechgaard salts which can be described by
Hubbard chains or ladders. More recently, an experimental realization of the Luttinger model
was found in carbon nanotubes. This opens a broader field of new applications for the study
on one-dimensional systems.
In two and three dimensions, correlated systems can be described by the Fermi liquid model
in which interaction can be included in the definition of quasi particles. In one dimension,
the effect of interaction is extremely enhanced and all excitations become collective. This phe-
nomenon is described by the Luttinger model.
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Chapter II. Theoretical and experimental background

In this chapter, we reviewed how correlated systems can be described and in particular we in-
troduced the Hubbard and the Heisenberg models.
In the next chapter we are going to focus on the Heisenberg model with classical spins. We will
study frustrated systems, first with frustration due to competing interactions and then with ge-
ometric frustration. Lattice distortions will be introduced as an ingredient capable of stabilizing
magnetization plateaux in a frustrated lattice.
The Hubbard model will be used in the last chapter. We will see that the coupling with lattice
distortions can lead to charge-density-waves.
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Chapter III

Classical spins systems

This chapter reviews the work done on one and two-dimensional classical spin systems.
We first explain what is a classical configuration in a magnetization plateau in classical spin
systems. Then we discuss the effect of non zero temperature on frustrated classical spin sys-
tems. Frustrated systems have the particularity to present large degeneracy in their ground
states. Thermal fluctuations can lift, or at least partially, this degeneracy by selecting a state or
a submanifold of states. This effect is known as Order by Disorder and we will illustrate it in the
Kagomé lattice.
A third part is dedicated to the study of a frustrated J1 − J2 classical Heisenberg spins chain un-
der an external magnetic field and in presence of lattice distortions. The classical J1 − J2 chain
exhibits plateaux at 1/3 of the saturation magnetization Msat . We show that in presence of
adiabatic phonons those plateaux become broader and survive for a wider range of magnetic
couplings ratios. We obtain a phase diagram as a function of the magnetic couplings ratios and
spin-lattice coupling.
Finally the last section reviews the work done on the two-dimensional Shastry-Sutherland lat-
tice with classical Heisenberg spins. Under a magnetic field this system exhibits magnetization
pseudo-plateaux at M/Msat = 1/3 at finite temperature. We show that thermal fluctuations se-
lect a collinear spin configuration and hence allow the appearance of a magnetization pseudo-
plateau. We present a phase diagram as a function of temperature, magnetic field and and also
discuss what happens for different magnetic coupling ratios.

1 Magnetization plateaux in classical spin systems

In the following work, we focus on Heisenberg spins (i.e. spins with three components). The
quantum spin operators that were defined in Section 1.2.2 obey:

[ŝ j , ŝk] = i~ǫ j kl ŝ l , where { j ,k, l } = {x, y, z} (III.1)

ŝ2 = S(S +1) (III.2)

Classical spins correspond to the limit S → ∞. The commutators O (S) can be neglected if
compared with O (S2) and hence classical spins commute. They are represented by vectors S of
fixed norm, which is arbitrarily set to 1.
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Chapter III. Classical spins systems

Let us briefly review what we call a magnetization plateau classical state and what types of
configurations are possible in the plateaux phases of classical spin systems.

For classical spin systems, Misguish and Lhuillier [95] showed under the assumption that the
classical energy is a continuous and differentiable function of the spins directions, that the spin
configurations in the plateaux must be collinear with the magnetic field direction. Let us call n
the number of spins in the unit cell and p is an integer. The possible configurations are:

U n−p Dp (III.3)

where n −p is the number of spin ’Up’ (U ) and p of spins ’Down’ (D). The corresponding mag-
netization plateaux arise at:

M

Msat
= 1−2

p

n
(III.4)

For example, the spin configuration in plateaux at 1/3 of the saturation magnetization Msat

is the collinear "Up-Up-Down" state (UU D), in which two out of three spins are pointing up
along the z−axis and the last one is pointing down.

Classical plateau states can sometimes survive in quantum spin systems. Affleck and Hida
[111] studied the competition of two possible states in the 1/3 magnetization plateau of a S =
1/2 frustrated Heisenberg spin chain using bosonization, renormalization group and numerical
diagonalization methods. Depending on the exchange modulation, the M/Msat = 1/3 classical
or quantum plateau state is favored.
The classical 1/3 plateau state, which appears in the conventional S = 1/2 frustrated Heisenberg
chain

Hδ = J
L∑

i
ŝi ŝi+1 +δŝi ŝi+2 (III.5)

consists in a 3−fold degenerate ↑↓↑ structure (i.e. the quantum analog of the classical collinear
UU D configuration) accompanied by the spontaneous Z3 translational symmetry breakdown.
The quantum case corresponds to •−• ↑ (where •−• is a singlet dimer). This state is favored by a
period−3 exchange modulation:

Hα = J
L/3∑

i

[
(1−α)(ŝ3l−1 ŝ3l + ŝ3l ŝ3l+1)+ (1+α)ŝ3l+1 ŝ3l+2

]
(III.6)

This state is also the exact ground-state of the translationally invariant Valence Bond Solid
model with 4−spin and third neighbor interactions:

H ∝
L∑

i
T̂ 2

i (T̂ 2
i −2)

T̂i = ŝi + ŝi+1 + ŝi+2 + ŝi+3 ,
(
T̂ 2 = T (T +1)

)
(III.7)
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2. Order by Disorder

However Affleck and Hida found that the classical 1/3 plateau state ↑↓↑ can also be the ground
state of Hamiltonians Eq. III.6 and Eq. III.7. In particular they showed that two classical
configurations (| ↓↑↑↓↑↑ . . .〉 and | ↑↓↑↑↓↑ . . .〉) survive up to a critical value of the period−3
exchange modulation α> 0, while the last one (| ↑↑↓↑↑↓ . . .〉) only survives for α< 0.
They established the phase diagrams for the existence of the classical state in both cases and
also analyzed the nature of the phase transitions.

To conclude, this section reviewed a very important result for the forthcoming discussions: in
classical spin systems, the spin configurations in magnetization plateaux are collinear. Quan-
tum systems can also exhibit classical configurations in the plateaux phases. As we will see later,
these classical plateaux are the most likely to survive in the classical limit for spins.

2 Order by Disorder

One generally expects an ordered state to be destroyed by thermal (or quantum) fluctuations.
In this section, let us review the Order by Disorder effect which consists precisely in the
opposite: order is induced by fluctuations.
The Order by Disorder effect was first introduced by Villain et al. [112] and Shender [113].
Villain et al. considered the "domino model", which has the particularity to be disordered at
zero temperature whereas low temperature allows the appearance of long range order. The
"domino model" consists in Ising spins lying on a square lattice with frustration induced
by ferromagnetic couplings in the x−direction and in the y−direction in one line over two.
The remaining lines in the y−direction present antiferromagnetic couplings. This system is
paramagnetic at zero temperature. Villain et al. showed that at finite temperature the i th anti-
ferromagnetic line have lower excitations if the surrounding i − 1th and i + 1th ferromagnetic
lines have parallel spins (in state of anti-parallel). The ferrimagnetic ordered states have a
larger Boltzmann weight and as a consequence ferrimagnetic order is induced by low but finite
temperature.

The Order by Disorder effect attracted much attention as it was found to explain the selection
of particular coplanar ground states of the Kagomé antiferromagnets [11, 114, 115], which
will be discussed later. The concept of Order by Disorder was later extended to quantum
fluctuations. We focus the discussion on classical systems with thermal fluctuations. Thermal
or quantum fluctuations can sometimes select a particular long range ordered state within a
large manifold of states that have the same classical energy. The case of frustrated systems may
therefore be particularly relevant due to the large degeneracy of their ground states (Section
4). The manifold of continuously degenerated states of classical Heisenberg spins systems is
referred as the "ground state manifold" [10, 93]. Its topology is particularly interesting because
it addresses the question whether the system can wander within the ground state manifold
("connected ground state") or whether it may encounter energy barriers. The answer to that
question is known in particular cases, such as the pyrochlore lattice. For this three-dimensional
lattice, Moessner and Chalker [116, 117] showed that any ground state can be transformed
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Chapter III. Classical spins systems

into another ground state by a continuous deformation that costs no energy. Is this case the
ground-state is connected.
At finite temperature the quantity that is minimized is the free energy. States belonging to
the ground state manifold can have lower free energy thanks to thermal fluctuations which
increase their entropic weight relatively to other states of the ground state manifold. A
deformation that costs no energy is called a zero mode. If it cost no energy only in the harmonic
approximation (but eventually costs energy at higher orders) it is called a soft mode. For
convenience we will only refer to soft modes in the following discussion 1. Hence a ground
state with more soft modes accesses a larger region of the parameter space under thermal
fluctuations than a state with no or less soft modes. If such a state exists then the system may
spend more time fluctuating around it. In the extreme case in which the entropy of a state is
higher than the sum of the entropies of the other states, the system can actually spend all its
time fluctuating around this state.

In the next two sections let us detail more quantitatively the Order by Disorder . The next
section presents the classical spin-wave approach and after that the Order by Disorder will be
illustrated on the Kagomé lattice with classical Heisenberg spins. We briefly review what are the
consequences of Order by Disorder on the thermodynamic quantities.

2.1 The spin-waves approach

The spin-wave theory applies to both quantum and classical systems. The main idea of
spin-waves is that, in an ordered phase, the average positions of the spins operators are
non-zero in at least one direction. In the spin-wave approach one describes quantum or
thermal fluctuations with small deviations of the spins coordinates around their average value.

In the quantum case, the spin-waves approach consists in dealing with quantum effects as
time dependent fluctuations around the classical ground-state. In systems with large degen-
eracy, such as frustrated systems, one can select a particular classical ground state within the
ground state manifold and expand the partition function in a saddle point expansion controlled
by the spins norm [41, 118]. In the harmonic approximation the spin-waves are non-interacting
bosons. The spins operators are rewritten through the Holstein-Primakov transformations in-
cluding bosonic operators on top of the classical ground state:

H =H0 +
S

2

(
H2 +O (

1
p

S
)
)

(III.8)

where H2 is a quadratic Hamiltonian of magnon creation and annihilation operators. The
O ( 1p

S
) part contains higher order terms in these operators.

In the classical case, one starts from a particular classical ground-state and assume that at
low-temperature the spin directions vary smoothly from site to site. We can approximate the
spin coordinates at "very low temperature" by the two first term of a Taylor expansion on the

1What will be said for soft modes is also true for zero modes since zero modes are actually soft modes.
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SA SB SC SA SC

SB

Figure III.1: Two possible coplanar configurations for the Kagomé lattice with classical Heisen-
berg spins. The three types of spin orientations SA, SB, and SC are represented with
different colors. Left panel:

p
3×

p
3 configuration. Right panel: q = 0 configuration.

spin deviations.
Let us have a more technical look on how to proceed. For a given spin configuration let us con-
sider that each spin is aligned in one direction in its own referential as in Eq. III.9 (let us choose
arbitrarily the z−axis). Under thermal fluctuations, the spin will deviate from this position by
small deviations (ǫu , u = x, y) and its new coordinates are given by Eq. III.10 and III.11:

T = 0: Si = (0,0,1) , ||Si|| = 1 (III.9)

T 6= 0: Si =
(
ǫx ,ǫy ,1−αi

)
(III.10)

αi =
1

2

(
(ǫx )2 + (ǫy )2) (III.11)

αi is chosen so as to conserve the norm of the spins up to quadratic order in thermal fluctu-
ations. Of course, one may have to apply rotations on particular sublattices in order to bring
all the spins in the same referential before calculating the Hamiltonian. Once this is done, the
Hamiltonian is rewritten as an expansion on the spins deviations in a form that reminds Eq.
III.8:

H = E0 +
∑

n
Hn , Hn =O (ǫn) (III.12)

In the next section we apply this on an example of classical spin-waves in a two-dimensional
classical Heisenberg spin system.

2.2 Example of Order by Disorder in the Kagomé lattice

In this part we briefly review the Order by Disorder effect on the Kagomé lattice with classical
Heisenberg spins as a well-known example of Order by Disorder [10, 11, 119, 120].
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The Hamiltonian can be rewritten as a sum on triangles (up to a constant term):

H = J
∑

<i , j>
Si.Sj =

J

2

N∆∑

∆

S2
∆

(III.13)

Where S∆ =
∑

i∈∆ Si is the total spin of one triangle and N∆ is the number of triangles. The
lowest energy configuration is reached when S∆ = 0 in all triangles, which corresponds to
coplanar 120 ◦ configurations with three sublattices SA, SB, and SC. Different coplanar ordered
configurations (i.e. tilings) satisfy this conditions. The classical ground state of the Kagomé
lattice has an infinite degeneracy. Among this infinite set one can cite the

p
3×

p
3 and the

q = 0 coplanar configurations with respectively nine and three sublattices (see Fig III.1). Both
of those configurations present lines of defects. For example, in the

p
3×

p
3, the rotation of the

spin sequence inside an hexagon, let us say SA −SB −SA −SB −SA −SB, costs no energy. This is
called the weather vane defect.

Chalker et al. [11] showed that in the Kagomé lattice thermal fluctuations select a subset of
states in the ground state manifold via Order by Disorder . Using a classical spin-wave approach
(Section 2.1), they computed the Hamiltonian up to second order in spin deviations:

H2 =
J

2

[
(3δi j −mi j )ǫx

i ǫ
x
j +2mi j )ǫy

i ǫ
y
j

]
(III.14)

A very important result is that the coefficients mi j of the matrix M are exactly the same for all
coplanar configurations (

p
3×

p
3, q = 0, . . . ) [114]. In fact, whatever the tilling is, one can al-

ways find a transformation so that Eq. III.14 is true up to quadratic order. The coefficients mi j

are non zero only if i and j are nearest neighbors sites else they are defined by: mi i = 1 and
mi j = 1/2. What changes is the dimension of the matrix: M is a n ×n matrix where n is the
number of sublattices which varies with the tilling that is considered.
One of the eigenvalues of M is zero, meaning that the deviations up to second order in the
y−direction presents a full branch of soft modes, whatever the considered coplanar state is2.
Chalker et al. [11] suggested that non-coplanar states may have less soft modes and as a conse-
quence are disfavored by thermal fluctuations.
They also estimated the statistical weight of different states in the phase space, which tells if
the system actually spends more time in states favored by thermal fluctuations. As discussed
in Section 2, soft modes cost no energy in the harmonic approximation and if one takes into
account higher order correction, those modes are found to bring a quartic contribution to the
partition function (T /J )1/4. On this other hand, "Normal modes" contribute to (T /J )1/2. More
precisely, let us consider a state with classical energy E0 that has N4 soft modes and N2 = N −N4

"normal" modes. The free energy is given by:

F ∼ E0 −T

(
N2

2
+

N4

4

)
ln

(T

J

)
(III.15)

2However this is no longer true at higher order in fluctuations: beyond the harmonic approximation, the spectra
of the different tilings differ.
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3. Effects of lattice distortions on a J1 − J2 chain

It is clear that the free energy is minimized if, in state of wandering in the whole phase space,
the system stays in the region that has the largest number of soft modes. Chalker et al. [11] also
confirmed this by Monte Carlo simulations. A signature of entropic selection also appears in
the specific heat. In a system with no soft mode each degree of freedom brings a contribution
of kB /2 to the specific heat while the quartic contribution of each soft mode only adds kB /4. As
an example, the specific heat per spin of the Kagomé lattice presents as fall of 1/12 from unity
which can be calculated as (in units of kB ):

Cv =
1

3

(
(6−1)︸ ︷︷ ︸

N2

.
1

2
+ 1︸︷︷︸

N4

.
1

4

)
=

11

12
(III.16)

Hence thermal fluctuations favor the submanifold of coplanar configurations among the
ground state manifold.
Those coplanar configurations do not have the same statistical weight and one can address
the question whether another selection takes place within this submanifold. The

p
3 ×

p
3

configuration appears to have the largest weight [119]. However a competition takes place
between the temperature that favors the creation of

p
3×

p
3 domains and the energy required

to create domain walls. Monte Carlo simulations show that the spins texture, under thermal
fluctuations, present domains in the

p
3×

p
3 configuration [119]. Therefore one cannot talk of

a rigorous selection of a particular state since the system fluctuates a lot within the subset of
coplanar states. More details on Order by Disorder in the Kagomé lattice can be found in Ref.
[10].

Other examples of Order by Disorder in classical spin systems will be presented in Section
4.4.1, such as the triangular lattice and the frustrated square lattice. In Section. 4.4.2 we perform
in the Shastry-Sutherland lattice with classical Heisenberg spins the same kinds of calculations
as detailed in this section on the Kagomé lattice.

3 Effects of lattice distortions on a J1 − J2 chain

This section reviews the work done on the J1 − J2 frustrated classical spin chain coupled to
adiabatic phonons [5].
One-dimensional frustrated quantum spin systems are in general well under control, mainly
thanks to the availability of powerful techniques like bosonization [26] and DMRG [121–123].
As briefly discuss in Section 2.1, a standard way to study quantum spin systems is to start from
the analysis of the classical limit and then try to include the effects of quantum fluctuations
with the spin-wave approach [41]. In certain cases, this procedure can lead to a reasonable
description of an otherwise intractable problem.
Previously, the interplay between frustration and classical phonons has been shown to
lead to interesting features even for classical spin systems. Penc et al. [12] studied the
three-dimensional pyrochlore lattice and showed that spin-lattice coupling can stabilize
a magnetization plateau at 1/2 of the saturation magnetization. Tchernyshyov et al. [124]
studied the effects of magnetoelastic couplings in the pyrochlore lattice with classical spins
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Si

Si+1

Si+2
J2

J1

J1

J2 J2/J1 > 1/4: Spiral
Si Si+1 Si+2

Figure III.2: Frustrated J1 − J2 classical spin chain without lattice distortions. Upper panel: the
J1− J2 spin chain represented as the zig-zag chain for a ratio J2/J1 < 1/4: the classical
spins are Néel ordered. Lower panel: for J2/J1 > 1/4, the classical ground-state is a
spiral.

as a mechanism to lift the ground state degeneracy. They showed that lattice distortions
induce various types of spin ordering such as collinear, coplanar and mixed spin patterns and
predicted that the collinear state should support large numbers of spin waves.

In this section we focus on a one-dimensional J1 − J2 model coupled to adiabatic phonons,
where both the quantum and classical situations can be analyzed and compared.
The quantum version of this model has been studied by Vekua et al. [13], where it has been
shown that the effects of lattice distortions coupled to a given frustrated quantum spin system
can lead to new phases, in particular to plateaux and jumps in the magnetization curve.
Although plateaux phases are also present in the pure spin system [125, 126], it has been shown
that lattice effects can lead to the enhancement of these phases under certain circumstances.
Then, a natural question that arises is whether the classical limit could be generally a good
starting point to tackle the issue of the interplay between frustration and lattice deformations
and its incidence on the appearance of magnetization plateaux.

The J1 − J2 model appears to be a good model to describe inorganic compounds such as
CuGeO3 [127] and LiVi2O5 [128, 129], rendering its study both theoretically and experimentally
relevant. Values for the exchange integrals, such as J1 ≈ 160K and the ratio J2/J1 ≈ 0.36, have
also been proposed for copper germanate [130].

3.1 Spin-lattice coupling in the J1 − J2 spin chain

We shall address the question of whether the effects of lattice deformations in the J1 − J2

Heisenberg spin chain can already lead to interesting magnetization properties at the classical
level. The main motivation for the present study is to analyze the origin of such plateaux in
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3. Effects of lattice distortions on a J1 − J2 chain

the particular case of a classical zig-zag chain (See Fig. III.2). Although this case is particularly
simple and the quantum model can be treated using bosonization (for S = 1/2), understanding
the role of lattice deformations for classical spins could lead to a way to study more involved
situations, such as two dimensional frustrated systems, where analytical techniques are not as
powerful as in one dimension.

Without lattice distortions, the lowest energy configuration of the is J1−J2 classical spin chain
is Néel ordered for J2/J1 < 1/4, else it is a spiral with a pitch angle:

θ0 = arccos
(
−

1

4.J2/J1

)
, lim

J1→0
θ0 =

π

2
(III.17)

Of course, in the limit J1 → 0, which corresponds to the limit of two separated chains, one
recovers Néel order in each chain.
The effect of frustration on the J1− J2 chain with classical spins have been studied long time ago
[131–133], as well as its thermodynamic properties. Quantum phonons on the J1 − J2 classical
spins chain without an applied magnetic field were considered by Oguchi and Tsuchida [134].
They obtained a phase diagram as a function of the magnetic couplings and phonon pulsations.

The Hamiltonian of the J1 − J2 classical spins frustrated chain coupled to adiabatic phonons
is:

H =
K̃

2

∑

i
δ2

i + J1

∑

i
(1− Ã1δi )Si ·Si+1 + J2

∑

i
Si ·Si+2 −H

∑

i
Sz

i . (III.18)

In the previous Hamiltonian, we chose to modulate only the nearest neighbor interaction term,
and to consider there is no effect on the next nearest neighbor coupling. This minimizes the
number of parameters in the Hamiltonian. We have however checked that the inclusion of
such a modulation on the next nearest neighbor couplings does not belie our main conclusions.

In the classical system phonons can be integrated out [135], leading to an extra quartic in-
teraction among the spins. In order to do so, let us define the following reduced quantities:

K =
K̃

J1
, α=

J2

J1
, A1 =

Ã1

K̃ 1/2
, h =

H

J1
(III.19)

The Hamiltonian reads:

H =
K

2

∑

i
(δi −

A1p
K

Si.Si+1)2 −
A2

1

2

∑

i
(Si.Si+1)2 +

∑

i
Si.Si+1 +α

∑

i
Si.Si+2 −h

∑

i
Sz

i (III.20)

The partition function is given by:

Z (h) =
∫

dSidδi e−βH (δi ,Si,h)

=
∫

dSidδi e
−βK

2

∑
i (δi−

A1p
K

Si.Si+1)2

e−βHe f f (Si,h)

=
∫

dSidδi e−βK
2

∑
i δ̃i

2

e−βHe f f (Si,h)

∼
∫

dSie
−βHe f f (Si,h) (III.21)
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Figure III.3: Magnetization curves M(h) for N = 30 spins with α = 0.5 and A1 = 0.0, · · · ,0.8 in
steps of 0.2. Periodic boundary conditions are applied on the chain. The system is
gradually cooled to T ≈ 0 over 3×106 Monte Carlo sweeps.

Where we defined δ̃i ≡ δi − A1p
K

Si.Si+1 (and d δ̃i = dδi ). The effective Hamiltonian, written in
units of J1, reads:

Heff =
∑

i

(
Si ·Si+1 +αSi ·Si+2 −

A2
1

2
(Si ·Si+1)2

)
−h

∑

i
Sz

i (III.22)

Even though one ought to study the effect of the elastic constant K and Ã1 separately, we will
focus on the reduced coupling A1 whenever possible, reducing the number of parameters to a
manageable size.

In the next section, we study the magnetic phase diagram using analytical and numerical
(Monte Carlo) techniques. We pinpoint a region in the parameter space where a plateau ap-
pears at Mz = 1/3 only. This should be contrasted with the quantum model, which shows in ad-
dition a clear Mz = 0 plateau in a wide region of the parameter space, and another at Mz = 1/2
in a narrower region. Looking into the detailed structure of the ground state at these plateaux,
one can understand this discrepancy in the following way: the structure at Mz = 1/3 is of the
"Up-Up-Down" (UU D) type, indicating a classical plateau [111], while in the Mz = 0 case the
singlet structure can be identified with a quantum one.
In Section 3.3 we discuss the transition to saturation, which is found to be either of first or sec-
ond order depending on the ratio between frustration and effective lattice coupling.
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3.2 Study of the 1/3 magnetization plateau

Let us analyze the magnetic phase diagram of the model Eq. III.22 in the absence of an external
magnetic field.
When A1 <

p
4α−1, the ground state is a spiral with a pitch angle θ given by cosθ = 1/(A2

1−4α).
Its energy is:

Espiral =
1

2
cosθ−α. (III.23)

When A1 >
p

4α−1 the ground state is Néel ordered.

Before embarking on a quantitative discussion, let us first take a look at a numerical results
obtained by classical Monte Carlo (Metropolis algorithm, see Section 5 for details). The
magnetization curves of this system show interesting features, which vary depending on the
relation between α and A1, as we discuss below.
In Figure III.3 we represent the magnetization M for a fixed value of the frustration α= 1/2 and
different values of the spin-phonon coupling A1. Starting at high-temperatures we perform
several thousands of Monte Carlo sweeps, and then cool down the system to a fraction of
the initial temperature. This procedure is then repeated, slowly annealing the system to zero
temperature. We observe that a steady magnetization plateau at 1/3 appears as soon as the
coupling to the lattice is slightly turned on, whose length increases with A1. One can notice
that the way the system enters the plateau from the low-field side and eventually saturates
differs depending on the effective lattice coupling A1, which is detailed next. For A1 & 0.6 the
two are first order transitions.
Another interesting characteristic seen in Fig. III.3, is that all curves represented (except one)
cross at the same field h× ≈ 3.35 for which M× = M(h×) ≈ 0.745. We shall discuss this point
at the end of Section 3.3. This brief overview suggests that the coupling with the phonons
stabilizes the state at Mz = 1/3. Since the plateaux are observed at zero temperature, we can
fairly assume that this effect is energy driven.

After this numerical preamble, let us now derive some analytical predictions on the char-
acteristics of the magnetization plateau. For this purpose, we need to find out which states
describe the system in the low and high-field regions around Mz = 1/3. We expect the plateau
phase to correspond to "Up-Up-Down" (UU D) configuration (see Section 1). In this state, the
spins are aligned along the z-axis, two up spins alternating with one down spin which is pre-
cisely the structure seen at the 1/3 plateau in the quantum model [13].

In the next sections, we will explain how the critical fields at the entrance and exit of the
plateau are calculated, which allows to determine the width of the plateau. We will also estab-
lish a phase diagram showing the domain of existence of the plateau and finally we study the
nature of the lattice deformation in the plateau phase.
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Figure III.4: Configurations observed in the low-field ("Y " configuration), the 1/3 magnetization
plateau (UU D) and high-field regions (canted state). The chain is viewed in the (x, y)
plane. The arrows denote the projection of the spins in this plane, whereas the circles
represent the Sz component (red for Sz > 0, yellow otherwise and radius proportional
to |Sz |). The parameterization of the states is given for each configuration.

3.2.1 Critical field hc1 to enter the plateau phase

The classical Monte Carlo data indicates that the situation in the low-field region may present
two different scenarios. On the one hand, the transition to the UU D state can occur at a very
low field, where the system is not far from its zero field classical ground state. Then, there is
no small unit cell structure providing a good description of the system, since the zero field con-
figuration is a spiral. On the other hand, when the transition is smooth in the low-field region,
a plausible assumption is to consider that the system adopts a coplanar "Y" configuration pa-
rameterized by a single angular degree of freedom θ (see Fig. III.4). The unit cell energy for this
state reads:

EY (θ) = (1+α) (2 cosθ(cosθ−1)−1)−
A2

1

2

(
2 cos2θ+

(
2 cos2θ−1

)2
)
−h(2 cosθ−1) (III.24)

This expression can be minimized for any set of the parameters h,α and A1. As the magnetic
field increases, the solution will eventually yield θ = 0 corresponding to the UU D state. This
configuration is always a solution of ∂θEY (θ) = 0, but it is only a minimum of the energy when:

h ≥ hY = 1+α−3A1
2 (III.25)

We should emphasize that this discussion only makes sense whenever hY is positive. For a
given value of the magnetic field, there can be other solutions satisfying:

h = (1+α)
(
2
√

1−X 2 −1
)
− A1

2 (
3−4X 2)√1−X 2 (III.26)

X = sinθ , assuming cosθ > 0 (III.27)
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The study of Eq. III.27 boils down to finding the sign of a polynomial expression. Introducing
∆ = 2(1+α)−11A1

2, we can show that when ∆ ≥ 0 there is exactly one more extremum of the
energy for h ≤ hY and that it is always a minimum. This solution becomes precisely the UU D
state at h = hY . Under these assumptions, we can conclude that the critical field for which we
recover Mz = 1/3 from the low field regime is:

hc1 = 1+α−3A1
2, ∆≥ 0. (III.28)

This can be compared to our Monte Carlo results. For instance, the data for α= 0.5 and A1 = 0.4
(solid pink curve in Fig. III.3 ) allows us to obtain a precise estimate for hc1 at T ≈ 0. We get
hc1 = 1.02±0.01. For this set of parameters, ∆ is positive so that we are ruled by the previous
assumptions. The analytical expression Eq. III.28 yields hc1 = 1.02, which is in excellent
agreement with the simulations. This is also the case for all the other curves in Fig. III.3
corresponding to smaller values of A1.

For ∆< 0 there can be up to two extra solutions when h ≥ hY . As there is always one solution
that never turns out to become UU D for a certain value of the magnetic field, we ought to
perform a detailed comparison of the two solutions’ energies in order to conclude. We shall not
step further into this discussion, which can nevertheless be conducted numerically using the
previous analytical expressions. For instance we performed it when α = 1/2, A1 = 0.6, leading
to hc1 ≈ 0.46. This is in good agreement with the Monte Carlo data which gives hc1 ≈ 0.47±0.01
(dotted curve in Fig.III.3 ). It can be understood from the previous discussion that hY is always
a lower boundary of the critical field:

hc1 ≥ 1+α−3A1
2, ∆< 0. (III.29)

If we increase A1 while keeping α fixed, hY eventually becomes negative (as it is the case for
A1 = 0.8, dash-dotted blue curve in Fig. III.3) and we can generally not conclude using this
small unit cell configuration. We should keep in mind that the regime where A1 becomes large
is not well described by our initial Hamiltonian since in that case one should include the effects
of the lattice also in the next-nearest neighbor interactions.

3.2.2 Critical field hc2 to exit from the plateau phase

We shall now focus on the state observed in the high-field region to find the corresponding
upper critical field hc2 above which the plateau disappears. By comparing hc1 to hc2, we should
be able to conclude on the existence of the 1/3 magnetization plateau.
In the upper critical region, the situation is far more under control. The system can be seen
to be well described by a 3-spins coplanar "canted" configuration with two degrees of freedom
(see Fig. III.4). The energy of such a configuration is given by

Ecanted(θ1,θ2) = (1+α) (1−2U (θ1,θ2))−
A2

1

2

(
1+2U (θ1,θ2)2)−h(2 cosθ1 −cosθ2) (III.30)

where U (θ1,θ2) = sinθ1 sinθ2 +cosθ1 cosθ2.
The configuration UU D, which corresponds to θ1 = θ2 = 0, is always a critical point of the func-
tion Ecanted(θ1,θ2). A closer look at the second order derivatives with respect to θ1 and θ2 shows
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Figure III.5: Magnetization curves M(h) for N = 30 spins with A1 = 0.3 and α = 0.0,0.4,0.6,0.8.
Periodic boundary conditions are applied on the chain. The system is gradually
cooled to T ≈ 0 over 3×106 Monte Carlo sweeps.

that it is a local minimum only for 0 ≤ h ≤ 1+α+ A1
2. The other critical points satisfy the fol-

lowing set of equations

Y = 2X (III.31)

h =
(
1+α+ A2

1

(
2X 2 +

√
1−X 2

√
1−4X 2σ1σ2

))(
2
√

1−X 2 −
√

1−4X 2σ1σ2

)
(III.32)

where

sinθ1 = X ,cosθ1 =σ1

√(
1−X 2

)
(III.33)

sinθ2 = Y ,cosθ2 =σ2

√(
1−Y 2

)
(III.34)

The quantities σ1,σ2 = ±1 account for all the possible signs of both cosines. We see from Eq.
III.31 that there is a strong constraint on (θ1,θ2) verified regardless of the values of the couplings.
At h = 1+α+ A1

2, Eq. III.32 admits only one solution which turns out to be UU D. For larger
value of h, UU D can no longer be a critical point, which implies

hc2 = 1+α+ A1
2, (III.35)

corresponding to the exit of the plateau in the high-field region.

3.2.3 Domain of existence of the plateau

From this discussion it can be concluded that whenever our assumptions are correct, there is
a plateau at Mz = 1/3 of length ∆h1/3 = 4A2

1 starting at hc1. This result has been checked to
be consistent with the Monte Carlo computations and the analytical value of hc2 matches the
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Figure III.6: Qualitative (A1,α) phase diagram. The filled area between the two full curves corre-
sponds to the region of the parameters space where the Mz = 1/3 plateau is observed.
The hatched region between the two dashed curves is the region of the parameter
space for which our approach is no longer observed to be fully valid. Also represented
the limit between Néel and Spiral ground states at h = 0 (blue dash-dotted line) and
the region where 1+α−3A2

1 < 0 (dotted orange line).

value estimated from all the curves in Fig. III.3. There is one more question we need to address:
for which set of parameters (A1,α) can we observe this plateau?
Under the previous assumptions regarding the states observed in the low and high-field regions,
we can conclude it exists for any A1 > 0. Yet the system can not be described in such a manner
for all values of α and A1. Working at a fixed lattice coupling A1 = 0.3, we were able to obtain
some magnetization curves varying the frustration α. Some of those curves are plotted in Fig.
III.5, which clearly shows that there is only a narrow region in α where the plateau is observed.
A precise answer to the previous question is rather challenging, and we shall first try to discuss
this point in a more qualitative manner before adopting a more precise strategy.

At Mz = 1/3, we can of course expect to see a lot of different configurations, depending on the
values of the couplings. However, the Monte Carlo simulations suggest that the plateau always
corresponds to the UU D configuration. This state is perfectly collinear, minimizing the quartic
contribution to the effective Hamiltonian Eq. III.22. For instance, it can be seen numerically
that for α = 1/2 with no coupling to the lattice, the system reaches 1/3 magnetization in the
UU D configuration. Even a small positive value of A1 will then stabilize the UU D state enough
for it to be stable when the field is slightly increased. On the opposite, if one antiferromagnetic
coupling dominates the other, the system will be in a different state at Mz = 1/3. In the extreme
case where α≈ 0 for instance, the system will favor Néel order in the x y plane, each spin having
the same z-axis projection Sz = 1/3. This layout already trades off some collinearity in favor of
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magnetic field alignment. There is no surprise that this trade-off will be further enhanced as
the magnetic field is increased, so that no plateau should be observed.

A more accurate way to tackle this issue is to start from the h = 0 spiral ground state and pon-
der over the state adopted by the system when the magnetic field increases. We have already
performed part of this task earlier, suggesting that the system slowly moves to a "Y" configura-
tion, whose out of plane components make it a "precursor" of the UU D configuration. Another
plausible solution is that the spins, while keeping their spiral structure in the x y-plane, all ac-
quire the same Sz projection. In this case, the nth spin reads

Sn =
(√

1− z2 cos(nθ),
√

1− z2 sin(nθ), z
)

, (III.36)

with cosθ = 1/(A2
1 −4α). The energy per site,

Esz(z) = z2 +
(
1− z2)cosθ+α

(
z2 +

(
1− z2)cos2θ

)
−

A2
1

2

(
z2 +

(
1− z2)cosθ

)2 −hz, (III.37)

can be minimized with respect to z to find the lowest energy configuration at a given magnetic
field. Our idea is to perform this minimization at h = hc1, and to see if the corresponding
configuration is of lower energy than UU D at the same field. If so, the system will not enter
the plateau at hc1, and of course as mentioned the previous paragraph no plateau should be
observed.
For a fixed value of A1, we can determine the range in α leading to UU D at hc1. The roots of
the polynomial equation are evaluated numerically, from which we sketch the phase diagram
represented in Fig. III.6. This approach only makes sense when we have a precise value for hc1,
which we saw is the case if A1 is not too large (A1 . 0.5 from the Monte Carlo data). We notice
that the diagram is in agreement with the situation depicted in Fig. III.5, as well as the one in
Fig. III.3 when A1 is not too large. The most remarkable feature is that for an arbitrary small yet
strictly positive A1, one can find a value of α for which the plateau phase is observed.

The effect of temperature on the magnetization plateau is potentially important as an Order
by Disorder effect [10, 112] could further stabilize the plateau. We calculated the fluctuation
matrix (see Section 2.2) up to second order in spin deviations, but no full branch of soft modes
was obtained. We investigated the effect of thermal fluctuations by performing Monte Carlo
simulations at different temperatures, without annealing the system. A sample is given in Fig.
III.7, and in general we observed no remarkable features. The increasing thermal fluctuations
quickly destroy the plateau. We should also mention that we observed no strong finite size
effects in the numerical simulations, which is why we were always able to work on systems with
less than a hundred spins.

3.2.4 Deformation of the lattice in the plateau phase

We conclude this section by focusing on the lattice deformations so as to get more insight on
the structure of the lattice deformation inside the plateau phase.
For that matter, we modified our Monte Carlo algorithm to take into account the lattice degrees
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Figure III.7: Magnetization curves M(h) for N = 30 spins with A1 = 0.3 and α = 0.4 around
Mz = 1/3 for different temperatures T = 0,0.04,0.08 in units of J1. Averages are com-
puted on 222 sweeps through the lattice after an initial 218 sweeps of thermalization.
Increasing the temperature quickly destroys the plateau observed at Mz = 1/3.

of freedom as well. Starting from the Hamiltonian Eq. III.18, we used the Metropolis algorithm
for both the spin positions and orientations, applying periodic boundary conditions on the
chain. We studied the normalized histograms of the displacements δi at finite temperature.
We fixed α = 0.4 and A1 = 0.3, the same values used in Fig. III.7 to allow a direct comparison
between the two figures, and selected the magnetic field so that the system is at Mz ≈ 1/3.
Besides the value of A1 = Ã1/

p
K , we need to give K , the spring constant in III.18, a sensible

value. We took K = 103 J1, large enough to make sure the displacements remain small. This
corresponds to Ã1 ≈ 9.5. We mention that both K and A1 are of the same order of magnitude as
the one for a more complex two dimensional material such as SrCu2(BO3)2 [136] and that they
can be considered at least as "realistic" for copper germanate or lithium vanadate [137]. The
results are given in Fig. III.8.

We see that the lattice deformations are not uniform and that their histogram presents two
peaks at T = 0.01J1. They are centered around a negative and positive value of the displacement
δi . This suggests that the underlying deformation consists of U DU trimers (Up-Down-Up) on
the chain. Let us introduce δ+ the displacement between two consecutive trimers and δ− the
displacement between the down spin and its two nearest neighbors inside the trimer. The en-
ergy of this unit cell is given by:

E = 3Kδ2
−+4J1 Ã1δ−− J1 + J2 −H , (III.38)

where the periodic boundary conditions imply δ+ = −2δ−. Minimizing the energy, the defor-
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Figure III.8: Normalized lattice displacement histograms for N = 30 spins with α = 0.5, A1 = 0.4
(K = 103 J1) and h = 1.5 at different temperatures. 300 points were used in the inter-
val [−0.1,0.1]. The two dotted vertical lines correspond to the T = 0 limit calculated
in the text. The data was obtained using a direct classical Monte Carlo for the Hamil-
tonian.

mation should become

δ+ =−2δ− =
4Ã1 J1

3K
(III.39)

at T = 0K . Going back to Fig. III.8, at T = 0.01J1 the distribution clearly exhibits two peaks
and we can see that they are almost centered around δ+ and δ− respectively. The ratio between
the height of the two peaks is about 2, a consequence of the fact there are twice as many up
spins than down spins in the UU D state. Those results seem to validate the trimer scenario
at low temperature. When the temperature increases to T = 0.04J1, the peaks start to overlap,
betraying the gradual destruction of the plateau already seen in Fig. III.8. Finally at T = 0.08J1,
we end up with a single peaked, almost gaussian, distribution: the plateau eventually disap-
peared. We end up by stating that expectation value of the displacement is always zero as the
periodic boundary conditions applied ensure the length of the chain remains fixed throughout
the simulation.

3.3 Transition to saturation

The study of the upper critical magnetic field yields another interesting result: we can get a
precise picture of how the system eventually reaches saturation.
This result can be foreseen using classical Monte Carlo, which shows that the canted state
describes the system quite well even for h > hc2. A close look at Fig. III.3 shows that two
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Figure III.9: "Low magnetization" (dashed line) and "high magnetization" (plain line) curves as
a functions of X = sinθ1 for α = 0.5, A1 = 0.5 (green) and α = 0.5, A1 = 0.8 (black).
The typical shape of the minima’s unit cell along the green curves are depicted in the
different magnetic field regions. The intersections (crosses) with the line h = h0 (red)
gives the competing critical point at this magnetic field. The colored dots correspond
to the minimal configuration with one spin in the x y-plane.

different behaviors of the magnetization between hc2 and the saturation value are observed.
For different values of spin-phonon coupling, the system can undergo a first or second order
transition to reach saturation. We are going to demonstrate that this result can be derived from
energetic considerations on the canted state.

From Eq. III.30, we see that the saturated state, reached for θ1 = 0 and θ2 = π, minimizes the
energy for a magnetic field greater than:

hc3 = 3(1+α− A1
2) (III.40)

This imposes a lower boundary on the saturation field hU . We assume that the couplings A1

and α are such that hc2 < hc3, a situation where the previous discussion on the existence of the
1/3 magnetization plateau still holds. To be consistent with the state of system for h > hc2, we
set σ1 = 1 and let σ2 =−σ take the values ±1 so as to be able to move from UU D to saturation
continuously. At a given magnetic field, one can obtain the corresponding critical configura-
tions by finding the roots of Eq. III.32. This task reduces to the study of the two functions hσ:

hσ(X ) =
(
1+α+ A2

1

(
2X 2 −

√
1−X 2

√
1−4X 2σ

))(
2
√

1−X 2 +
√

1−4X 2σ
)

. (III.41)

Their roots can be determined graphically for a fixed field h0 as they are the values of X for
which the line h = h0 intersects hσ(X ). The "low magnetization" function h− will give us solu-
tions with one spin still pointing down, whereas the "high magnetization" function h+ will give
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us states where all the spins have a positive Sz component.
Fig. III.9 is a plot of both functions for two sets of values α, A1. In both cases, the curves for h+
and h− join at:

hc4 =
p

3(1+α+ A1/2) (III.42)

This point is represented with filled colored dots in Fig. III.9 (where the plain and dashed
lines join). For this value of the magnetic field, the root of hσ corresponds to a configuration
in which one of the three spins lies precisely in the x y-plane. Two possible behaviors are
observed. For instance when α = A1 = 0.5 (green curves in Fig. III.9), we see that for a fixed
magnetic field h ∈ [hc2,hc3] there is only one critical point of the energy, which can be shown to
be a minimum. We are able to follow easily the state of system as the magnetic field increases.
The two up spins first slightly tilt to let the down spin reach the x y-plane and then they all
progressively align along the z-axis while still satisfying Eq. III.31. The three-spins unit cell
configuration smoothly goes from UU D to saturation.

For A1 = 0.8 (black curves in Fig. III.9), the "high magnetization" function h+ (plain line)
presents a maximum. In this case, three states are potentially competing for h between hc3

and its maximum value: the saturated state and the two roots of h+. We ought to compare their
energies to conclude, but it is not surprising that the outcome can be a first order transition to
saturation. We numerically solved the analytical equations involved to get the magnetization
curve from the exit of the plateau to saturation for A1 = 0.8. The saturation field we obtain is
hU ≈ 3.17063, for which the system jumps from Mz ≈ 0.58434 to saturation. The comparison
between this minimization and the Monte Carlo data is given in Fig. III.10 and shows the
excellent agreement achieved.

A more in-depth study of the hσ functions’ extrema allows to work out the range in (α, A1) for
which the transition to saturation is of first or of second order.
A second order transition, which are related to the existence of a non trivial maximum in h+,
occur only if:

1≤ (1+α)/A2
1 ≤

11

2
(III.43)

which in agreement with our numerical observations.

Finally, it can be pointed out from Eq. III.41 that for X = 1/
p

5 the function h+ does no longer
depend on the coupling A1. If this state is reached, it will be the minimum of the canted con-
figuration energy for a magnetic field:

h× =
5
p

5
(1+α). (III.44)

At this field the magnetization is Mz = M× = 5/(3
p

5). This explains why for our selection of
parameters, all the curves except one in Fig. III.3 cross at a field whose estimate, given in Section
3.2, coincides with h×. Regardless the value of A1, if the system is not saturated at h× then its
magnetization will always be M×.
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Figure III.10: Upper region of the magnetization curve for α = 0.5 and A1 = 0.8 at T = 0. The
full line represents the results obtained using the analytical minimization of the
"canted" state energy, crosses the data obtained by Monte Carlo.

3.4 Summary and Conclusion

The effects of lattice deformations at the classical level in a frustrated spin system has been
illustrated working on a simple J1 − J2 classical spin chain coupled to adiabatic phonons.
Using both analytical and numerical (Monte Carlo) methods, we provided an overall picture of
the magnetization properties for a large set of the parameters α, A1 introduced in our model.
We have found that a plateau at Mz = 1/3 is present in certain region of the parameters space,
while no other plateaux are observed. We found conditions on the existence of these plateaux:

• Frustration is a necessary ingredient, as the plateaux can only arise when the zero field
ground state is a spiral.

• The coupling to lattice deformations, is such that for an arbitrary small yet strictly positive
A1, one can find a value of α for which the plateau phase is beheld. Further increasing A1

will broaden the region in the parameter space for which the plateau occurs, until the
effective coupling is no longer mild enough for our analytical approach to be valid, even
if a numerical approach is still achievable.

It should be emphasized that the stabilization mechanism is purely energy driven and triggered
by the quartic interaction induced by the lattice coupling in the effective Hamiltonian Eq. III.22.
The underlying lattice deformation shows the chain is made of "U DU " trimers inside the
plateau phase.
We also analyzed the transition to saturation and obtained a condition on the parameters of the
Hamiltonian which allows us to determine whether this transition is of first or second order.
The absence of plateaux at Mz = 0 and Mz = 1/2 in the classical model as compared to the
quantum case can be understood by analyzing the ground state structure of the plateaux in the
quantum case. It is only for Mz = 1/3 that one observes a classical type of spin configuration, of
the UU D type, while in the other cases a quantum state is apparent.
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JJ' J' [010℄ [100℄
JJ' J'

Figure III.11: Left panel: The Shastry-Sutherland lattice. Right panel: The topologically identical
structure realized in the (001) plane of SrCu2(BO3)2 and rare-earth tetraborides. J ′

bonds are the magnetic couplings along the edges of the squares (clear dashed lines)
and J (black bold lines) the diagonal dimers couplings.

4 Classical Heisenberg spins on the Shastry-Sutherland

lattice

This section reviews the work done on the magnetization process of the Shastry-Sutherland
lattice with classical Heisenberg spins [6, 7].
The Shastry-Sutherland lattice was considered more than twenty years ago as an interesting
example of a frustrated quantum spin system with an exact orthogonal dimer singlet ground
state [136, 138]. This model was later found to present extremely interesting physical properties
such as a very rich phase diagram as the ratio between the magnetic couplings varies and
plateaux in its magnetization curve.
This lattice was originally studied by Shastry and Sutherland as a toy model, however a first ex-
perimental realization was obtained in the beginning of the nineties by Smith and Keszler [139]
with the SrCu2(BO3)2 compound. Today other chemical compounds, such as the rare-earth
tetraborides, are known to present plans of atoms that realize a lattice topologically equivalent
to the Shastry-Sutherland lattice.

The Shastry-Sutherland lattice can be described as a square lattice with J ′ antiferromag-
netic couplings between nearest neighbors and additional J antiferromagnetic couplings
between next nearest neighbors in one square over two (see Fig. III.11 left panel). However
it has been experimentally observed that in chemical compounds the J diagonal couplings
are often stronger or almost equal with the J ′ couplings. Therefore the plans of atoms do
not exactly realize the lattice showed in Fig. III.11 but a topologically equivalent lattice in
which the frustrated squares are distorted into rhombi (see Fig. III.11 right panel). The diago-
nal J couplings order as orthogonal dimers whose length is shorter that the edges couplings J ′. 3

The Hamiltonian of the Shastry-Sutherland lattice under an external magnetic field h applied

3Therefore one cannot talk about nearest or next nearest neighbors in the Shastry-Sutherland lattice without
specifying which configuration of the lattice is considered.
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4. Classical Heisenberg spins on the Shastry-Sutherland lattice

Figure III.12: Left panel: Schematic view of the layers of CuBO3 and Sr layers in the SrCu2(BO3)2

compound. The Shastry-Sutherland lattice (plain J dimer bonds and dashed J ′

bonds) has been depicted on top to show how it is realized by Cu atoms (figure
based on Kodama et al. [141]). Right panel: Experimental magnetization curve
of SrCu2(BO3)2 (figure from Onizuka et al. [142]).

along the z−axis is given by:

H = J ′
N∑

edges

ŝi .ŝ j + J
N∑

di agonal

ŝi .ŝ j −h
N∑

i
ŝi

z (III.45)

4.1 A brief summary of the quantum Shastry-Sutherland lattice

The quantum Shastry-Sutherland lattice has been widely studied both theoretically and
experimentally [14].
As the ratio J ′/J varies, it presents a rich phase diagram with quantum phase transitions
between the gaped dimer singlet ground state (J ′/J < 0.68) that was originally discussed by
Shastry and Sutherland [136], a plaquette resonating valence bond state (J ′/J < 0.86) and a
gapless magnetic state [140].

The first experimental realization of the Shastry-Sutherland lattice, the SrCu2(BO3)2 com-
pound [139], crystallizes in the tetragonal structure and it has a layer structure of Cu(BO3)
planes separated by magnetically inert Sr atoms (see Fig. III.12 left panel). The Cu2+ ions carry
a spin S = 1/2 and are located on a lattice topologically equivalent to the Shastry-Sutherland
lattice in which dimer J bonds have stronger magnetic couplings than J ′ bonds (J ′/J ≈ 0.65).
The magnetic susceptibility of SrCu2(BO3)2 exhibits a Curie-Weiss behavior at high tempera-
tures (T ∼ 20 K), followed by an abrupt decrease and zero spin susceptibility at T = 0 which are
characteristics for spin gap system. Theoretical and experimental activities have revealed that
SrCu2(BO3)2 is actually located in the vicinity of an antiferromagnetic state and a resonating va-
lence bond plaquette singlet state. Its realizes the exact dimer singlets ground state [136, 143].
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Ueda and Miyahara showed that this is maintained even if interlayer couplings are added [144].
The application of a magnetic field creates polarized triplets on the dimer bonds. The orthog-
onality of the dimer ground state leads to a particular behavior for the elementary excitations:
triplets excitations are almost localized [145]. The finite gap in the magnetic excitations was
estimated by different methods (magnetic susceptibility, nuclear magnetic resonance, nuclear
quadrupole resonance and electron spin resonance) and it was found to be ∆≈ 35 K [143, 146–
148].
Since the hopping of the triplet is extremely restricted they can easily form regular lattices for
various rational of the saturated magnetization M/Msat (see Fig. III.13). At M/Msat = 1/8, 1/4,
1/3 and 1/2, the triplets form superstructures and magnetization plateaux appear [149] (see Fig
III.12 left panel and Fig III.13). The M/Msat = 1/2 and 1/8 present respectively a square and a
rhomboid cells while the M/Msat = 1/3 and 1/4 have a magnetic superstructure of stripe. The
SrCu2(BO3)2 compound is known as the first example of a system in which the appearance of
magnetization plateaux is accompanied by a lowering of the translational symmetry (excepted
for the M/Msat = 1/2 plateau) [150]. In particular nuclear magnetic resonance experiments re-
ported 16 different Cu sites in the M/Msat = 1/8 plateau [141, 151] (see Fig. III.13 right panel).
Momoi and Totsuka derived a Hamiltonian up to third order in J ′/J and reproduced the
M/Msat = 1/2 and 1/3 plateaux [150, 152] (see phase diagram in Fig. III.13 left panel). They
explained these plateaux with insulator-supersolid transitions. However their analysis could
not reproduce the M/Msat = 1/4 and 1/8 plateaux.
From an experimental point of view, due to accessible magnetic fields, magnetization plateaux
were only observed for M/Msat = 1/8, 1/4 and 1/3 in high-magnetic fields experiments
[142, 143, 153] (Fig. III.12 right panel).
Recently Sebastian et al. [154] reported additional magnetization plateaux at M/Msat = 1/9,
1/7, 1/6, 1/5 and 2/15. Although presence of those new plateaux is still debated [155], recent
studies reproduced them [156? ].

Apart of SrCu2(BO3)2, very few compounds are currently known to realize the Shastry-
Sutherland lattice. One can cite:

• Nd2BaZnO5: this compound crystallizes in the tetragonal space group I 4/mcm. The
existence of an antiferromagnetic ordered phase was confirmed by the study of the
magnetization at different temperatures. The Nd3+ ions present large total momenta and
form a Shastry-Sutherland lattice with magnetic couplings evaluated J ′/J ≈ 1 [153].

• Yb2Pt2Pb: this compound was recently synthesized by Kim et al. [157] who showed that
its strong magnetic frustration arises from the underlying Shastry-Sutherland lattice.
This compound also crystallizes in the tetragonal structure and presents a layered
magnetic structure. Below 2.07 K, Yb2Pt2Pb orders antiferromagnetically. Magnetization
measurements at low temperatures showed a strong magnetic anisotropy which indi-
cates that the magnetic moments of the Yb ions are confined to planes. In each plane the
moments lie on isosceles triangles which can be mapped onto the Shastry-Sutherland
lattice. The structure of Yb2Pt2Pb can be described as layers of Yb ions localized on the
Shastry-Sutherland lattice separated by layers of platinum and lead. Two different types
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4. Classical Heisenberg spins on the Shastry-Sutherland lattice

Figure III.13: Left panel: Structures in the magnetization plateaux of SrCu2(BO3)2. The full circles
correspond to the triplet excitations and the empty circles to the singlets. Figure
from Miyahara and Ueda [149]. Right panel: Phase diagram of SrCu2(BO3)2 as a
function of the ratio J ′/J and the magnetic field at T = 0. Figure from Momoi and
Totsuka [152]

of Yb layers were identified.

• The rare-earth tetraborides compounds RB4 also realize the Shastry-Sutherland lattice
and some of them exhibit plateaux in their magnetization curves. This will be discussed
in detail in the next section.

4.2 Experimental motivation for the classical Shastry-Sutherland

lattice

Recently rare-earth tetraborides RB4 have been attracting new interest on the Shastry-
Sutherland lattice. RB4 crystallize in the tetragonal structure with space group P4/mbm. R ions
are placed on a sublattice in the (001) plane which consists of R-R dimers that are alternatively
orthogonal along the [110] axis. This sublattice is topologically equivalent to the SSL (see Fig.
III.11 right panel). The bond length between the nearest neighbors and next nearest neighbors
rare-earth atoms is very close. Hence one can expect the edges magnetic couplings J ′ to be
close from the diagonal couplings J and the frustration to be very strong.
Recent experiments showed that a couple of rare-earth tetraborides present magnetization
plateaux for various rational values of the saturated magnetization. Those compounds present
large total angular momenta J > 1 (see Fig. III.14), which justifies the relevance of a classical
model.

Fig.III.14 briefly summarizes experimental data on the RB4 compounds that have been found
to exhibit plateaux in their magnetization curves. More details and references are given in the
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RB4 Total moment J Structure at h = 0 Magnetization plateaux (h//z)
GdB4 J ′/J ≪ 1, spiral. no plateau
TbB4 6 Magnetization process

suggests an helicoidal
structure (J ′/J < 1).

9 jumps in the magnetization
curve. Plateaux identified at
M/Msat = 1/4,1/3 and 1/2

DyB4 15/2 M/Msat = 1/2
ErB4 15/2 Thought to be a

collinear spiral with
J ′/J < 1.

M/Msat = 1/2

TmB4 6 Neél ordered: one can
expects J ′/J ≥ 1.

M/Msat = 1/2 and M/Msat = 1/8
(only in the descending field pro-
cess). M/Msat = 1/7 and 1/9 re-
cently reported.

Figure III.14: Brief summary of the recent experimental data on magnetization plateaux in RB4.

text below.

• TbB4: This compound is described as a classical system due to its large total angular
momenta J = 6. Two antiferromagnetic transitions occur at TN1 = 44 K and TN2 = 24.
Neutron scattering indicates that between TN1 and TN2 the moments are confined in
the (x, y) plane with a strong anisotropy along the dimers axis ([110]) [158]. At TN1 a
structural transition takes place and the moments rotates in the (x, y) plane. Yoshii et
al. [19] studied TbB4 below TN1 in high magnetic fields up to 54 T. In such (x, y) systems,
under h//z, one could expect a linear magnetization process with moments raising as
the field increases. However, under a magnetic field applied according to the z−axis,
the magnetization curve curve presents a nine-step-field-induced jumps (see Fig. III.15,
right panel) and magnetization plateaux are observed at M/Msat = 1/4,1/3 and 1/2. On
the other hand the magnetization curve present one jump at h = 6 T for h//x and at
h = 12 T for h along the dimers axis [110].
The magnetic structure of TbB4 under no magnetic field is not known yet. However the
similarities between its magnetization process with h//x and the one of a helimagnetic
system suggests that J ′/J < 1 (spiral configuration).

• DyB4: has a large total momentum J = 15/2. Watakuni et al. [159] studied the frustration
of the orbital degrees of freedom of the 4 f electrons and called it the first example of
geometrically quadrupolar (orbital) frustrated system. DyB4 undergoes phase transitions
at T1 = 20.3 K and T2 = 12.7 K which are characterized by the ordering of the z and x, y
components of the magnetic moments [159].
Watanuki et al. recently reported the presence of a M/Msat = 1/2 magnetization plateau
for h//z at T < T1[160].
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4. Classical Heisenberg spins on the Shastry-Sutherland lattice

Figure III.15: Left panel: Magnetization of TmB4 for h//z (z−axis ≡ c) and h in the (x, y) plane
(x− or y−axis ≡ a) at 1.3 K. Inset is the low-field data for h//z at 2 K. Figure from
Iga et al. [16]. Right panel: Magnetization of TbB4 at at 4.2 K (< TN1) along the
directions: [100] (x− or z− axis), [1 1 0] (along the dimers axis) and [0 0 1] (z−axis).
Inset: Tb atoms (circles) on the Shastry-Sutherland in the (001) plane. Figure from
Yoshii et al. [19].

• ErB4: Magnetization and neutron measurements revealed that ErB4 orders antiferromag-
netically below T = 15.4K [21]. It presents highly anisotropic magnetic susceptibility
which is much larger along the z−axis than in the (x, y) plane. ErB4 exhibits succes-
sive metamagnetic transitions with a plateau at 1/2 of the saturated magnetization for
both h//z and h//x. Moreover a first-order transition due to strong multipole interac-
tions takes place for h//x [22]. Mishimura et al. mention that the 1/2 plateau with h//z
could be understood as a competition of the Zeeman energy with the frustration due to
the Shastry-Sutherland lattice with J ′/J < 1. Since ErB4 has a total momentum J = 15/2 a
classical approach is relevant and the configuration in zero field may be a collinear spiral.

• TmB4: TmB3+ ions have a total moment J = 6 which allows a classical treatment.
According to Siemensmeyer et al. [17] at low temperature (T < 9.8 K) the zero field
structure is Neél ordered with a strong Ising type anisotropy (moments aligned according
to the z−axis). The ratio of the magnetic couplings is expected to be J ′/J ≈ 1. High field
measurements up to 54 T showed that TmB4 presents an extremely anisotropic behavior.
For h//x and h along the dimers axes saturation takes place at 30 T and the system
exhibits magnetization plateaux M/Msat = 1/2. One the other hand for h//z the system
reaches saturation at 4 T and the magnetization plateaux at M/Msat = 1/2 remain. At
M/Msat = 1/2 the Tm moments seem to present a strong Ising type single-ion anisotropy
leading to a collinear structure along the z−axis in which three out of four spins point
in the field direction (UUU D configuration) [15]. An additional plateau appears at
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M/Msat = 1/8 only in the descending field process [15, 16]. Those plateau are destroyed
by a temperature T > 8 K (see magnetization curve in Fig. III.15, left panel). Recently
additional plateaux at M/Msat = 1/9 and 1/7 were reported for h//z arising from a stripe
structure [17, 18].

On the other hand GdB4 does not present plateaux of jumps in its magnetization curve [161].
Its magnetic coupling constants were evaluated as J ′/J ≪ 1 which suggests a spiral structure at
h = 0.

To conclude, the recent discovery of chemical compounds that present planes of atoms with
large total momenta localized on a lattice topologically equivalent to the Shastry-Sutherland
lattice motivates a study through a classical approach. The existence of those magnetization
plateaux at various rational values ofM/Msat within a classical model is still not understood
yet.
Inami et al. [158] proposed a model for the M/Msat = 1/2 plateau in TmB4. They included
anisotropy in the (x, y) plane and suggested that the exited states can be described by Ising
spins. This model reproduces the M/Msat = 1/2 plateau in the limit of infinite anisotropy by
allowing moments perpendicular to the field axis (z−axis). In this model the structure in the
plateau is not the collinear UUU D structure that is indicated by neutron scattering in some
RB4.

4.3 Spin configuration and magnetization process at zero temperature

We studied the Shastry-Sutherland lattice in the classical limit in order to understand the ap-
pearance of the M/Msat = 1/3 plateaux. At zero temperature, the magnetization process of the
Shastry-Sutherland lattice present similarities with the classical triangular lattice.
We performed preliminaries Monte Carlo simulations in which magnetization curves exhibit
pseudo-plateaux at M/Msat = 1/3 for non zero temperature. In order to understand the pres-
ence of these pseudo-plateaux, we carried out an analytical study by means of classical spin-
waves (see Section 2.1 ) and showed that thermal fluctuations select of a particular collinear
configuration which allows the pseudo-plateaux to exist. The spectrum of the thermal fluc-
tuations matrix allows a comparison with other frustrated systems. By means of Monte Carlo
simulations we obtained the phase diagram of the classical Shastry-Sutherland lattice as a func-
tion of magnetic field and temperature. We started from the particular ratio of the magnetic
coupling J ′/J = 1/2 and discussed how the phase diagram is modified away from this ratio.

4.3.1 The Model

We study classical Heisenberg spins on the Shastry-Sutherland lattice. Heisenberg spins are
represented by simple vectors Si = ||Si||

(
cosθi sinφi , sinθi sinφi ,cosφi

)
with ||Si|| = 1. The mag-

netic field is applied along the z−axis, h = hez . This corresponds to h//[001] in the experiments
carried out on RB4.
The sums are taken over nearest neighbors pairs according to the edges of the squares with
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4. Classical Heisenberg spins on the Shastry-Sutherland lattice

Figure III.16: Spin configuration of the Shastry-Sutherland lattice for the ratio J ′/J = 1/2. The 3
sublattices, SA, SB, and SC, are represented by red, yellow and green circles. The 12
spin unit cell is depicted in bold lines.

magnetic coupling J ′ and over the diagonals with diagonal couplings J . The Hamiltonian Eq.
III.45 is rewritten with classical spins as:

H =
J ′

J

N∑

edges
Si ·Sj +

N∑

diagonal
Si ·Sj −

h

J

N∑

i
Sz

i . (III.46)

Under no magnetic field, Shastry and Sutherland showed that the lowest energy configura-
tion is coplanar [136]. It is Néel ordered for J ′/J ≥ 1 else it is a spiral state with an angle
ϕ = π± arccos

( J ′

J

)
between nearest-neighbor spins. The two possible optimum values for ϕ

give a discrete chiral degeneracy to each triangle. The choice of the angles ϕ in two neighbor-
ing triangles determines the direction of the helix. Four helices are possible which creates a
supplementary four-fold discrete degeneracy in addition to the continuous one [136].

In Section 2.2, the Hamiltonian for the Kagomé lattice was rewritten as a sum on trian-
gles. For particular ratio of the magnetic couplings, the Hamiltonian of a frustrated system
can sometimes be rewritten as a sum on elementary plaquettes. For instance it is the case
for the frustrated square lattice with Jedges /Jdi agonal = 2 [162] or for the checkerboard lattice
with Jedges /Jdi agonal = 1 [163]. In the Shastry-Sutherland lattice these plaquettes are triangles
which share edges along the diagonal dimer bonds and otherwise corners. When the diagonal
couplings are twice as big as the edge couplings (i.e. J ′/J = 1/2) the Hamiltonian Eq. III.46 can
be written as a sum over triangles up to a constant term:

H∆ =
1

J

N∆∑

∆

(
J ′

2
S2
∆
−

h

3
S∆

)
, (J ′/J = 1/2) , (III.47)

where S∆ =
∑

i∈∆ Si is the total spin of one triangle and N∆ is the number of triangles (N∆ = N ).
The classical ground state at zero temperature and in the absence of a magnetic field is a copla-
nar configuration with an angle ϕ = ±2π/3 between two nearest-neighbor spins. There are
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+z +z z z

Figure III.17: Spin configurations in a triangle: the umbrella (stable at T = 0), from low to high
magnetic field: "Y -state", UU D state and canted state

three possible spin orientations SA, SB, and SC and the unit cell contains 12 sublattices (see Fig.
III.16 left panel). Minimizing the energy on a single triangle, one obtains the constraint:

S∆ =
h

3J ′
, (J ′/J = 1/2) . (III.48)

The classical ground state is obtained when this constraint is satisfied in every triangle. The
saturation field hsat is determined by the condition Sz

∆
= 3 which gives hsat = 9J ′. At this value

all the spins are aligned with the z−axis ("UUU state"). We focus on the field range 0 ≤ h ≤ hsat .
According to the classical constraint Eq. III.48 the classical ground state has only the typical
global rotation as a degeneracy.

Let us have a closer look at the particular value M/Msat = 1/3. The magnetic field to apply is:

h1/3 = 3J ′ , (J ′/J = 1/2) . (III.49)

Stable configurations at h = h1/3 must verify S∆ = ez . Very different spin configurations satisfy
this requirement: the "umbrella configuration" and the "Up-Up-Down" state (see Fig. III.17).
In the umbrella configuration the three kinds of spins raise as the field increases and they
always have the same projection on the z−axis (at M/Msat = 1/3, Sz

A = Sz
B = Sz

C = 1/3). In this
case, the picture of the classical ground state with three kinds of spin orientations remains
until saturation (see Fig. III.16 left panel). On the other hand the "Up-Up-Down" state (UU D
state) is a collinear state in which each triangle contains two spins Up and one spin Down (see
left panel of Fig. III.19). As discussed in Section 1, this classical ground state is required in order
to have a classical plateau at M/Msat = 1/3 [111].
One can easily show that at zero temperature and M/Msat = 1/3, both configurations, umbrella
and UU D, have the same classical energy. Since energetic considerations do not favor the
UU D state its existence is restricted to the field value h1/3. Hence no magnetization plateau
can appear at zero temperature.

Minimizing the energy on triangles naturally leads to a comparison with the classical triangu-
lar lattice, with magnetic coupling J∆ between nearest neighbors. This lattice was the subject of
many theoretical studies [23, 24, 164]. Kawamura and Miyashita [24] studied classical Heisen-
berg spins on the triangular lattice in the presence of a magnetic field along the z−axis. They
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obtained classical constraints that are strictly equivalent to Eq. III.48 for the Shastry-Sutherland
lattice. Minimizing the energy of a single triangle they showed that the classical ground state is
completely specified by the conditions:

||SA|| = ||SB|| = ||SC|| = 1 ,

SA +SB +SC =
h

3J∆
, (h < hsat) . (III.50)

These constraints give information on the magnetization process of the classical triangular and
Shastry-Sutherland lattices at zero temperature. Under the application of the magnetic field,
the global symmetry of the Hamiltonian, O(3), is reduced to U (1). In other terms, at zero tem-
perature and under a magnetic field, the 120 ◦ structure raises in the umbrella configuration
that closes as the field increases and reaches the UUU configuration at saturation.

4.4 Effects of thermal fluctuations

For non-zero temperature the scenario of the magnetization process is completely different. In
the case of the triangular lattice with classical Heisenberg spins, Kawamura [23] showed that the
non-trivial degeneracy no longer persists. Even in the low-temperature limit, the most favorable
spin configuration is determined not only by its energy but also by the density of states just
above the ground state. This entropic selection is responsible for the appearance of new phases.
We expect the same scenario to take place in the Shastry-Sutherland lattice and in this section
we treat in details how thermal fluctuations affect the magnetization process. But first let us
review how thermal fluctuations affect other two-dimensional classical spin systems.

4.4.1 Thermal fluctuations in a couple of two-dimensional classical spins systems

The Kagomé lattice with classical Heisenberg spins was discussed without an applied magnetic
field in Section 2.2 as an example of a system presenting Order by Disorder . This system
presents one full branch of soft modes which favor coplanar spin configurations. Zhitomirsky
[25] showed that Order by Disorder also takes place under an applied magnetic field. As
h → h1/3, the system reaches the UU D state. This configuration has zero modes and is
therefore selected by thermal fluctuations. As a consequence a pseudo-plateau is observed at
M/Msat = 1/3. A phase diagram was obtained as a function of magnetic field and temperature
showing the region of existence of those pseudo-plateaux.
Cabra et al. [165] added to that model anisotropy along the z−axis. They showed that it extends
the UU D region for energetic (and not entropic) reasons and the soft modes are removed. On
the other hand quantum fluctuations seem to stabilize the 1/3 plateau.

However a full branch of soft modes is not a necessary condition in order to have entropic
selection. In this section we review the effect of thermal fluctuations on the classical triangular
and frustrated square lattices. The details of the calculations are given in App. B.

• Triangular lattice: The triangular lattice with classical spins exhibits a magnetization
pseudo-plateau at M/Msat = 1/3 at non-zero temperature. Kawamura and Miyashita [24]
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Figure III.18: Spectra of fluctuation matrices in Fourier space (kx ,ky ) over a couple of Brillouin
zones. The darkest zones correspond to the cancellation of the eigenvalues. Left
panel: "soft points" above the UU D state in the triangular lattice with Heisenberg
spins. Left panel: Lines of soft modes above the UUU D state in the frustrated square
lattice with Heisenberg spins.

showed that at zero temperature, under an applied magnetic field the spins raise in the
umbrella configuration. Using Monte Carlo simulations they obtained a phase diagram
as a function of the applied magnetic field and temperature. At non zero temperature,
below and until h1/3, the spins lie in the collinear UU D state. This phase is sandwiched
between a Y configuration (see Fig. III.17) in the low field region and the canted state (see
Fig. III.17) in the high field region, before saturation. The matrix of thermal fluctuations
up to second order is given in App. B. One can find a set of points in Fourier space that
cancel the determinant. Hence this system only has punctual soft modes. The spectrum
of the thermal fluctuations matrix obtained by exact diagonalization in the Fourier space
is presented in Fig. III.18 (left panel). The dark spot corresponds to the "soft point". In
this system, the UU D state is favored by thermal fluctuations even though it only has
"soft points".
Classical spins on the triangular lattice were also the subject of many studies with the
plane rotator model (X Y model) with in-plane magnetic field [166–168]. Kawamura [23]
performed classical spin-waves and showed that in this model as well the collinear UU D
is selected.
Quantum fluctuations on the X Y model on the triangular lattice were considered by
Chubukov and Golosov [167] and it also confirms the selection if the UU D state. However
the main difference in the phase diagram is that the UU D state survives even at zero
temperature. Experimental confirmation of this phase diagram was given by Tsujii et
al. [169] with the compound Cs2CuBr4.

• Frustrated square lattice: The frustrated square lattice with classical Heisenberg spins
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and for the particular ratio Jedges /Jdi agonal = 2 exhibits a magnetization plateau at
M/Msat = 1/2 [162]. At M/Msat = 1/2 the system lies in a collinear configuration in which
each square contains three spins Up and and spin Down (UUU D configuration). Lines of
Up spins (UUU . . .UUU ) alternate with lines of Up and Down spins (U DU . . .DU D). The
matrix of the thermal fluctuations up to second order is detailed in App. B. This system
does not have any full branch of soft modes but one can find lines of soft modes defined
by relations between kx and ky so that the determinant of the matrix cancels. The spec-
trum of the thermal fluctuations matrix obtained by exact diagonalization is presented
in Fig. III.18 (right panel). These soft modes correspond to a continuous rotation of the
spins of the Up-Down lines which costs no energy in the harmonic approximation.
On the other hand quantum fluctuations in this system also seem to favor collinear states.
The magnon spectrum of the q = 0 UUU D configuration is gaped and quantum fluctua-
tions allow the appearance of a real magnetization plateau at M/Msat = 1/2.

4.4.2 Thermal fluctuations in the Shastry-Sutherland lattice

The Monte Carlo simulations reported in the forthcoming Section 4.5 indicate that, at finite
temperature, the UU D state is the favored configuration for a magnetic field range below
and until h = h1/3. This is possible if thermal fluctuations raise the entropy of the UU D state
relatively to adjacent states. Kawamura and Miyashita [23, 24] showed that in the case of the
triangular lattice non-zero temperature lifts the degeneracy of the classical ground state in the
presence of a magnetic field. Also on the Shastry-Sutherland lattice only a discrete degeneracy
due to the possible chiralities of the triangles remains.

Following the same steps as described in Section 2.1 for the Kagomé lattice, we calculated the
spectrum of the UU D state in the quadratic approximation in thermal fluctuations by applying
small deviations on the spin coordinates from the collinear UU D state [120]. At zero tempera-
ture the 12 sublattices of the unit cell presented in Fig. III.19 (left panel) are collinear with the
z−axis. Under non-zero temperature their new coordinates are expressed in their own frame
as:

Si(ri ) =
(
ǫx

i (ri ),ǫy
i (ri ),1−αi (ri )

)
, (III.51)

where αi = 1/2
(
(ǫx

i )2 + (ǫy
i )2

)
is verifying the condition ||Si|| = 1 up to quadratic order.

Following Ref. [11] the Hamiltonian is expanded in spin deviations from the UU D state:

H = EUU D +
∑

n≥2
Hn , (III.52)

where EUU D is the classical energy and Hn ∼ O (ǫn). Up to second order in those fluctuations
the Hamiltonian becomes, in Fourier space:

H2 =
∑

k,v=x,y

V t
v (−k)MVv (k) . (III.53)

Fluctuations are applied on the 12 sublattices of the unit cell and the vectors V t
v (−k) (v = x, y)

read:

V t
v (−k) =

(
ǫ̃v

1 (−k), . . . , ǫ̃v
12(−k)

)
(III.54)
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Figure III.19: Left panel: Spin texture of the Shastry-Sutherland lattice in the UU D state at
M/Msat = 1/3. Each triangle contains two spins Up (red) and one spin down (yel-
low) The 12 spin unit cell is depicted in bold lines. Right panel: Spectrum of the
fluctuation matrix above the UU D state in Fourier space (kx , ky ) obtained by ex-
act diagonalization. In the darkest regions, the black lines represent the lines of soft
modes whose analytical expressions are given in the text.

M is a 12× 12 matrix which exact expression is given in App. B. Fluctuations act exactly the
same way on the x- and y-components and as a consequence the matrices are the same for
fluctuations in the x- and y-directions. Eigenvalues should be determined by solving an order
12 polynomial which cannot be done analytically. However, we can determine the soft modes
from the zeros of the determinant which reads:

det(M ) ∝
(
−2+3 coskx −3 cos2kx +cos3kx +cosky

)2 (III.55)

This result shows that we have lines of soft modes, but no full branch.

We further performed numerical diagonalization of M at each point in the Fourier space
(kx ,ky ). For each point the smallest eigenvalue was selected in order to obtain a picture of the
ground state. Fig. III.19 shows the picture obtained over a couple of Brillouin zones. The darkest
regions correspond to the lowest points and we indeed observe lines of soft modes correspond-
ing to a cancellation of the quadratic energy. The height of the barriers between those lines is
∆E ≈= 0.1 meaning that low-temperature behavior is expected to appear only for T . 0.1. The
analytical expression of the lines of soft modes can be found by finding relations between kx

and ky so that the determinant Eq. III.55 vanishes:

kx =±arccos

(
1

2
−

(1± i
p

3)(1−u(ky ))

4u(ky)

)
, (III.56)

where u(ky ) = (
√

cos2 ky −1−cos ky )−1/3.
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Champion and Holdsworth [170] considered the pyrochlore lattice with a planar constraint.
They obtained planes in reciprocal space in which at least one eigenvalue cancels. Using the
counting arguments developed by Chalker et al. [11], they showed that the expression of the
specific heat per spin should be:

Ch

NkB T
=

1

2
−C .

1

L
(III.57)

where L is the system size (N = L2) and C is a constant related with the number of soft modes.
Then they computed with Monte Carlo the specific heat at very low temperature (T /J = 0.0001)
for various system size L. They obtained a straight line when plotting 1/2 −Ch/NkB T as a
function of 1/L, meaning that the Order by Disorder scenario was correct.

Following the calculations performed by Champion and Holdsworth in the pyrochlore lattice,
the specific heat Ch per spin of the Shastry-Sutherland lattice is given by:

Ch

NkB T
= 1−γ

1

L
, (III.58)

where γ is a constant related with the number of lines of soft modes.
The manifold of soft modes for the Shastry-Sutherland lattice with magnetic couplings verifying
J ′/J = 1/2 scales like L in a L2 Fourier space. Eq. III.58 clearly shows that the drop in the specific
heat, or in other terms the effect of the soft modes, will disappear in the thermodynamic limit.
The lines of soft modes are reminiscent of the q = 0 UUU D state in the frustrated square lattice
[162]. However, the precise mechanism is somewhat different in the Shastry-Sutherland lattice
since here the soft modes do not correspond to continuous deformations of the ground state.
Nevertheless, the UU D state is still selected for entropic reasons, like in the triangular lattice
[23, 24]: the soft modes simply result in a free energy which is lower for the UU D state than
for non-collinear phases. The triangular lattice with classical Heisenberg spins does not have
full branches of soft modes either, but the manifold of soft modes consists of points in Fourier
space. Still, the triangular lattice exhibits pseudo-plateaux at finite temperature.

4.5 Monte Carlo simulations on the Shastry-Sutherland lattice

We performed Monte Carlo simulations using a standard single-spin flip Metropolis algo-
rithm [108]. As a small refinement, we propose changes of the spin projection along and
perpendicular to the field direction independently. Pseudo random numbers were gener-
ated by the Mersenne-Twister random number generator [171]. We studied square samples
(Lx = L y = L =

p
N ) with periodic boundary conditions. Their sizes are chosen so as to be com-

mensurate with the 12 sublattice unit cell represented in Fig. III.19 (left panel): L = 6,12,18,24,
and 30. In the simulations the diagonal coupling J is set to 1. Monte Carlo simulations
computed in particular the magnetization, the susceptibility χ = d M/dh and the specific
heat Ch . All physical quantities are normalized per spin. After reaching thermal equilibrium,
data was collected with up to ∼ 107 Monte Carlo steps per point depending on the size and
temperature considered. Error bars are determined from independent Monte Carlo runs (the
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Figure III.20: Susceptibility (upper panel) and magnetization (lower panel) as a function of the
magnetic field of the Shastry-Sutherland lattice for various system sizes (J ′/J = 1/2
and T=0.02). The inset shows a zoom on the magnetization pseudo-plateaux.
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Figure III.21: Susceptibility (upper panel) and magnetization (lower panel) as a function of the
magnetic field of the Shastry-Sutherland lattice at different temperatures (J ′/J =
1/2 and L = 18). The inset gives a zoom on the magnetization pseudo-plateaux.
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Figure III.22: Specific heat of the Shastry-Sutherland lattice with J ′/J = 1/2 at T = 0.02 and for
various system sizes.

average number of simulations per point is five).

Fig. III.20 shows the susceptibility and the magnetization as a function of the system
size at J ′/J = 1/2 for T = 0.02. A pseudo-plateau is observed in the magnetization curve
at M/Msat = 1/3 (see inset in the magnetization curve). Following the previous analytical
discussion this means that the UU D configuration is thermally selected at this temperature.
Its existence in no longer strictly limited to one single point at h = h1/3, but it exists for a range
of magnetic field values below and until h1/3. The width of those pseudo-plateaux increases
with system size. Moreover the peaks in the susceptibility become sharper and higher as the
system size increases. This indicates the presence of phase transitions to the UU D state.

The stability of the susceptibility peak positions and height for L ≥ 18 show that L = 18
captures reasonably well the behavior of the plateau region in the thermodynamic limit. Fig.
III.21 shows the effect of the temperature on the susceptibility and magnetization for a L = 18
system. The magnetization curve should tend to a straight line as the temperature decreases.
This is confirmed by the Monte Carlo simulations: at very low temperature (see T = 0.01
in Fig. III.21) the pseudo-plateau is extremely small. The susceptibility presents two very
sharp peaks around h1/3. As the temperature increases the pseudo-plateau becomes broader,
which confirms the entropic selection of the UU D state in the plateau phase. Finally higher
temperature (see T = 0.1 in Fig. III.21) destroys it. The peaks in the susceptibility curve become
rounded and then completely disappear.

The specific heat Ch (Fig. III.22) exhibits a first peak attributed to the transition from the
collinear UU D state to a low magnetic field state that will be detailed in Section 4.6. Monte
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4. Classical Heisenberg spins on the Shastry-Sutherland lattice

Carlo simulations on system sizes L = 6− 42 showed that the height of this peak scales with
increasing system size as ∼ Lα/ν with α/ν≪ 1 which suggests a continuous phase transition.

4.6 Phase diagram for J ′/J = 1/2

Next we discuss the domain of existence of the UU D collinear phase in the (h,T ) plane. Up
to 5 Monte Carlo simulations per point were performed on a L = 12 (N = 144) system which
gives a good qualitative picture of the position and nature of the phases. Both temperature
and magnetic field scans were performed. The boundaries of the phases are determined
by the positions of the peaks in the susceptibility χ. Fig. III.24 shows this schematic phase
diagram in the plane (h,T ). Numbers are attributed to the susceptibility peaks from low to high
magnetic field in magnetic field scans (curves with circles) and from low to high temperature
in temperature scans (curves with triangles).

We simulated by means of Monte Carlo the spin texture for L = 18 systems in order to obtain
a qualitative picture of the spin configuration in the phases below and above the UU D phase
(see UU D in Fig. III.23, left panel). Like in the classical triangular lattice the magnetization
process at finite temperature is very different from the one at zero temperature. The phase in
the low-field region is the "Y configuration" (see Fig. III.17). In this configuration each triangle
contains two spins above the (x, y) plane while the last one is pointing down and is almost
collinear with the z−axis. This state is characterized by a single angle between the two spins
pointing in the positive z−direction. The Y configuration breaks the rotational symmetry
around the z−axis and as a consequence of the Mermin-Wagner theorem [172] cannot be
long-range ordered for T > 0. The spins above the (x, y) plane are at most quasi-long-range-
ordered with correlation functions that decay algebraically. On the other hand one can expect
long-range order on the remaining down spin sublattices.

Then in a magnetic field range below and until h1/3 the collinear UU D state is the lowest
energy configuration. As the temperature goes to zero, the width of this phase converges to
a single point at exactly h = h1/3 = 3/2 which is in complete agreement with the analytical
prediction. This phase does not break the U (1) symmetry and hence true long-range order is
realized.

In the high-field region the ground state is the "canted state" (see Fig. III.17). In this state the
spins down are raising as the magnetic field increases while the spins up are no longer collinear
with the z−axis. This state is characterized by two angles: one between the z−axis and the
two spins above the (x, y) plane and one between the z−axis and the single spin below the
(x, y) plane. As in the Y phase, at most quasi-long-range order is expected at finite temperature.

In the higher field region the system reaches saturation and all spins are pointing up
collinearly with the z−axis (UUU state). The zero-temperature limit of the saturation field is
hsat = 9/2, as derived in Section 4.3. At higher temperature the system enters the disordered
paramagnetic phase. The highest temperature were the UU D state still exists T ∗ is estimated
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Figure III.23: Spin texture at M/Msat = 1/3 given by Monte Carlo. The Shastry-Sutherland lattice
is viewed in the (x, y) plane. The arrows denote the projection of the spins in this
plane, whereas the circles represent their z−component (red for Sz > 0, blue other-
wise and radius proportional to |Sz |). Left panel: UU D configuration for J ′/J = 1/2.
Right panel: J ′/J = 0.4, umbrella with Sz = 1/3 for all spins.
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Figure III.24: Phase diagram of the classical Shastry-Sutherland lattice for the ratio of the mag-
netic couplings J ′/J = 1/2.
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as T ∗ ≈ 0.17. Note that the classical spin-wave spectrum contains energy barriers between
lines of soft modes of the same order of magnitude. Hence this temperature agrees with the
range of temperatures in which we expected the low-temperature behavior to appear.

The phase diagram of the Shastry-Sutherland lattice with the particular coupling ratio J ′/J =
1/2 presents similarities with the one of the classical triangular [24] and Kagomé [25] lattices.
Watarai et al. [173] suggested that in the classical triangular lattice with Heisenberg spins these
transitions could be of the second order. The scaling of the specific heat shown in Fig. III.22 is
in agreement with a continuous transition. We propose that a Berezinskĭı-Kosterlitz-Thouless
transition [174–176] takes place as the system enters the UU D phase. Following what was ob-
tained in the case the triangular lattice, the transition from the collinear UU D state to the dis-
ordered phase should belong to the universality class of the three-state Potts model [177, 178].

4.7 Study of ratios J ′/J = 1/2±ǫ

In this section we consider now a small deviation ǫ from the ratio J ′/J = 1/2. In the following
discussion we use Monte Carlo results for J ′/J = 0.4 (i.e. ǫ = −0.1). We observed that qualita-
tively similar behavior also appears for the other sign of ǫ.
We performed Monte Carlo simulations on systems sizes L = 6,12,18,24, and 30. Data were
collected with up to 107 Monte Carlo steps per point. Figure III.25 shows the susceptibility and
the magnetization as a function of the magnetic field at the same temperature as in Fig. III.20
for the ratio J ′/J = 1/2. The susceptibility still presents two peaks around M/Msat = 1/3 and a
pseudo-plateau is observed in the magnetization curve. Therefore one can expect UU D to be
the selected configuration at T = 0.02 even for ratios J ′/J = 1/2+ ǫ. According to the position
of the peaks of the susceptibility, the width of the pseudo-plateau increases as the system size
increases.

Following exactly the same calculations as the ones presented in Section 4.4.2 for J ′/J = 1/2,
we applied thermal fluctuations on top of the UU D state for the ratio J ′/J = 0.4. We found
that UU D is no longer the favored configuration in the quadratic approximation for the
spin deviations. In other words, the collinear UU D state is no longer selected at "very low
temperatures" for J ′/J 6= 1/2. We used Monte Carlo simulations in order to obtain a picture
of the spin configuration in the temperature range T < 0.001. It turns out that the favored
configuration is an umbrella that is closing until saturation as the magnetic field increases (see
Fig. III.23, right panel). At "higher temperature" (T ≥ 0.01) we observed that for h ≈ h1/3 the
system enters the UU D phase. This "high temperature" regime is not analytically accessible
with lowest-order thermal fluctuations.

We performed magnetic field and temperature scans in order to determine the region
in which the UU D state survives. Figure III.26 shows a schematic phase diagram for the
Shastry-Sutherland lattice at J ′/J = 1/2+ǫ= 0.4 in the (h,T ) plane.
Five separate simulations per point were performed on L = 12 systems. Monte Carlo data were
collected up to 107 Monte Carlo steps per point. Temperature (circles) and field (triangles)
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Figure III.25: Susceptibility (upper panel) and magnetization (lower panel) as a function of the
magnetic field of the Shastry-Sutherland lattice for various system sizes (J ′/J = 0.4
and T=0.02). The inset gives a zoom on the magnetization pseudo-plateaux.
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Figure III.26: Phase diagram of the classical Shastry-Sutherland lattice for the ratio of the mag-
netic couplings J ′/J = 1/2±ǫ.

scans were performed with the same ordering of the susceptibility peaks as in Section 4.6.
As one expects from the analytical arguments, the resulting phase diagram differs from the
case J ′/J = 1/2. In the lowest temperature region, the system undergoes the same kind of
magnetization process as at zero temperature: the coplanar spiral becomes an umbrella
configuration as the magnetic field increases. The angle between two nearest-neighbor spins
is π±arccos(1/2+ǫ). Hence, the spiral at zero temperature is not exactly commensurate with
a 12 spin unit cell. However, as the temperature increases the spin positions fluctuate and a
12 sublattice unit cell is recovered in average on the spin positions. Hence we suggest that the
transition from the umbrella to the phases with 12 sublattices (black square in Fig. III.26) is an
incommensurate-commensurate phase transition.

At higher temperature we recover the three phases that were obtained for J ′/J = 1/2 in dif-
ferent magnetic field regions. In the low-field region we still obtain the "Y configuration" and
in the high-field region, before saturation, the "canted state". The long-range-ordered UU D
collinear state still survives in a small region between the two aforementioned phases. For
T < 0.01 the UU D phase is expected to become narrower as the temperature decreases (dashed
bold lines). A precise determination how the four phases merge (black circle) is beyond the
scope of this work.
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4.8 Influence of lattice distortions on the Shastry-Sutherland lattice

In the previous section we discussed the presence of magnetization pseudo-plateaux in the
Shastry-Sutherland lattice at M/Msat = 1/3. We showed that since they are due to the entropic
selection of the collinear UU D state they no longer exist at zero temperature. Following the
study done on the J1 − J2 frustrated classical spin chain (see Sec. 3), we started to study the
influence of lattice distortions on the Shastry-Sutherland lattice with classical Heisenberg
spins. The aim is to determine if lattice distortions can induce a magnetization plateau at
M/Msat = 1/3 even at zero temperature by stabilizing the UU D state.

A model for the quantum Shastry-Sutherland lattice with lattice distortions was previously
considered by Miyahara et al. [179]. They studied the effect of adiabatic phonons on the
S = 1/2 dimer model by means of self-consistent Lanczos diagonalization of small clusters.
They showed that spin-lattice coupling can stabilize particular spin textures in the plateaux
at M/Msat = 1/2,1/3,1/4 and 1/8 plateau of SrCu2(BO3)2. In particular they recovered in the
1/8 plateau the spins patterns previously suggested by the hard-core boson approach [180] and
that is in agreement with the NMR experimental results [141].
Once the lattice distortions are added, the Shastry-Sutherland lattice depicted in the left panel
of Fig. III.11 is no longer equivalent to the one in the right panel. In order to stick with the real
compound SrCu2(BO3)2 Miyahara et al. focused on the latter. Their Hamiltonian is the follow-
ing:

HqSSL =
∑

di mer s

{
J (di j )ŝi .ŝ j +

K

2

( ||δri −δr j ||
d 0

i j

)2}

+
∑

NNN

{
J ′(di j )ŝi .ŝ j +

K ′

2

( ||δri −δr j ||
d 0

i j

)2}
(III.59)

where ŝi is the spin−1/2 operator at the site i , K and K ′ are elastic constants. d 0
i j = ||r0

i − r0
j ||

is the equilibrium distance between the copper sites i and j with coordinates r0
i and r0

j . di j

is the relative distance between sites i and j : di j = ||r0
i +δri − r0

j −δr j ||. δdi j = di j −d 0
i j is the

displacement of the sites. It is assumed to be small enough (i.e. δdi j ≈ (r0
i − r0

j )(δri −δr j )) so

that the antiferromagnetic couplings J (di j ) and J ′(di j ) can be linearized:

J (di j ) = J
(di j

d 0
i j

)α ≈ J
(
1−α

δdi j

d 0
i j

)
(III.60)

We performed preliminary Monte Carlo simulations on the Shastry-Sutherland lattice with
classical Heisenberg spins and lattice distortions, using Eq. III.59 as an ansatz. We conserved
J ′/J = 1/2 since we know that, for this ratio, a pseudo-plateau exists at M/Msat = 1/3 for non
zero temperature. In order to stick with the results of Miyahara et al. for the quantum case, we
used α′ = 1.75α and K = K ′ = 1000. Figure III.27 shows a result of a simulation for α = 10 (red
curve) and for the undistorted system (black curve). On the one hand, the temperature is low
enough so that the case without phonons presents no plateau (T ∼ 10−8 J ). This means that it is
low enough so as to capture the behavior in the zero temperature limit. On the other hand, the
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Figure III.27: Left panel: Magnetization curve of the Shastry-Sutherland lattice (J ′/J = 1/2) with
(red) and without (black) lattice distortions (α′ = 1.75α, K = K ′ = 1000, T ∼ 0).
Right panel: Monte Carlo simulation of the spin texture in the M/Msat = 1/3
plateau. It show that the UU D configuration survives for T → 0 (Up spins in red,
Down in blue). Monte Carlo simulations by F. Stauffer.

red curve exhibits a plateau at M/Msat = 1/3. Moreover, snapshots of the spin texture in the
plateau were performed on 72 spins systems (commensurate with the 12 spins unit cell) and it
clearly appear that the spins configuration is the UU D state (see Fig. III.27, right panel).
To summarize, Monte Carlo simulations indicate that lattice distortions stabilize the collinear
UU D state even in the limit T → 0. A real plateau at M/Msat = 1/3 is observed and it is much
wider than what was observed at non zero-temperature in the undistorted case.

Following the work done analytically on the J1− J2 chain, let us rewrite the Hamiltonian with
classical Heisenberg spins taking into account the previous approximations. The Hamiltonian
of the Shastry-Sutherland lattice with classical spins, coupled with lattice distortions and under
an applied magnetic field reads:

HcSSL =
K

2

∑

di mer s
δi j +

K ′

2

∑

NNN
δi j

+ J
∑

di mer s

(1−αδi j )Si.Sj + J ′
∑

NNN
(1−α′δi j )Si.Sj −h

∑

i
Sz

i (III.61)

In this two-dimensional lattice, distortions are coupled and cannot be integrated as in the J1−J2

chain. In order to obtain a simpler model, we made a couple of assumptions on the deforma-
tions of the lattice:

• Deformations are applied on the J bonds only and as a consequence, J ′ bonds also are
distorted.

• J ′ bonds are the edges of isosceles triangles. Using experimental results as an input we
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consider that those triangles remain isosceles after applying the deformations. As a con-
sequence, the J bonds can elongate but not rotate.

Even under these approximations, to many degrees of freedom were left in the Hamiltonian
and an analytical treatments such as in the J1 − J2 chain is not possible.

However these approximations give informations on the stability of the spin structure in the
M/Msat = 1/3 plateau. We consider the UU D spins structure of Fig.III.27, left panel. Due to
antiferromagnetic couplings, the lattice distortions should tend to increase the Up-Up bonds’
length and the decrease Up-Down’s. We consider three kinds of deformations: δ1 and δ3 on
Up-Up J bonds 4 and δ2 on Up-Down J bonds.
The classical energy for this deformed UU D state can be calculated:

E = E0 +2δ2
1[2K +K ′(λ2

b +λ2
s + (λs +λb)2)]+4Aδ1(J + J ′λs )

+4δ2
2[K +K ′(λ2

b +λ2
s )]+4Aδ2(−J +2J ′λb)

+2δ2
3[2K +K ′(λ2

b +λ2
s + (λs +λb)2)]+4Aδ3(J + J ′λs )

+8K ′λbλsδ2(δ1 +δ3)

= E0 +β1δ
2
1 +β2δ1 +β3δ

2
2 +β4δ2 +β5δ

2
3 +β6δ3 +β7δ2(δ1 +δ3) (III.62)

Here E0 stands for the energy of the undistorted UU D state. λb and λs are constants that de-
pend on the values of the base and edges of the triangles. This energy can be minimized for the
distortions δi :

δ1 = δ3 = δ+ =
−2β6β7β2 −β2

7β1 +4β6β5β1 +β2
7β3

2(β6β
2
7 −4β6β5β4 +β2

7β4)
(III.63)

δ2 = δ− =
β1β6β7 −2β4β6β2 +β3β7β4

−β6β
2
7 +4β6β5β4 −β2

7β4
(III.64)

The energy is minimized for non-zero lattice distortions meaning that we have a Peierls
distortion. Therefore, even under strong hypothesis on the lattice deformations, analytical
prediction also agrees with a stabilization of the UU D configuration due to lattice distortions.

To conclude, the Shastry-Sutherland lattice coupled to adiabatic phonons may exhibits very
interesting properties also in the case of classical Heisenberg spins. Monte Carlo simulations
indicate that at M/Msat = 1/3 a real plateau appears, even for T → 0. Under strong approxi-
mations on the deformations of the lattice, one can show that a Peierls distortions exists in the
UU D state.

Recently Wang and Vishwanath [181, 182] considered the effect of spin-lattice coupling on
the triangular and Kagomé lattices with classical Heisenberg spins. They argue that the "bond
model" for phonons as used by Penc et al. [12] that consider independent bonds displacements
may be oversimplified for those two-dimensional lattices. In state, they used the model of

4Of course we expect δ1 and δ3 to be equal. This is verified since they play the same role in the expression of the
energy.
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Bergman et al. [183] which takes into account the bonds correlation. They showed that even
moderate couplings can act as a mechanism to stabilize collinear states and predicted the ap-
pearance of magnetization plateaux at various rational values of the saturated magnetization.
The Bergman model for adiabatic phonons may hence be a good lead to pursue the analytical
study of the Shastry-Sutherland lattice.

5 Classical spin systems: conclusion and outlook

In this chapter we reviewed the work done on two classical spin systems: the frustrated J1 − J2

chain coupled with lattice distortions and the Shastry-Sutherland lattice.
Before presenting the work done, we first evoked the nature of the spin configurations in the
magnetization plateaux of classical spin systems, which should be collinear configurations.
In the particular case of a 1/3 magnetization plateau, the configuration is the UU D state. We
also discussed the effect of thermal fluctuations on frustrated classical spin systems, which can
partially lift the large degeneracy of those systems. This effect is called Order by Disorder and
can stabilize a particular state for entropic reasons.

We studied the frustrated J1 − J2 chain with classical Heisenberg spins coupled to lattice
distortions and found magnetization plateaux at 1/3 of the saturation magnetization. The same
study was previously carried on in the quantum case with S = 1/2 spins and other plateaux
were observed at M/Msat = 0 and 1/2. However the study of the ground state structures in the
plateau phases revealed that the only classical plateau is the one at 1/3 of the magnetization,
which explains why is the only one to survive in the classical limit.
Both analytical and numerical (Monte Carlo) methods were used to establish a phase diagram,
in the plane magnetic coupling ratio α versus spin-lattice coupling A1, showing the domain of
existence of these plateaux. We obtained an analytical expression of the critical magnetic field
values at the entrance and exit of the plateau, as well as conditions so that the plateaux exist.
Moreover, we investigated the nature of the lattice deformation in the plateau phase which was
found to be U DU trimers.
We furthermore determined the nature of the phase transition to the saturated state UUU
which can be either first or second order depending on the values of α and A1.

We then moved to a two-dimensional case and studied the magnetization process of the
Shastry-Sutherland lattice in the classical limit. We found a pseudo-plateau at 1/3 of the
saturated magnetization at non-zero temperature which corresponds to a collinear UU D state.
We investigated the Order by Disorder scenario and found that the spectrum of spin waves
above this state has lines of soft modes, like the q = 0 UUU D state on the frustrated square
lattice. However, in contrast to the frustrated square lattice, the M/Msat = 1/3 ground state of
the Shastry-Sutherland lattice has no local continuous degeneracies. Therefore, the selection
mechanism of the UU D state in the Shastry-Sutherland lattice is more similar to the triangular
lattice.
Furthermore, we performed Monte Carlo simulations and obtained a phase diagram in the
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(h,T ) plane for the particular magnetic coupling ratio J ′/J = 1/2. It was found to be similar
with the one for the triangular and Kagomé lattices with classical spins and it presents two
quasi-long-range-ordered phase below and above the long-ranged-ordered UU D phase. We
also showed that the pseudo-plateau survives for a small variation ǫ of the magnetic coupling
ratio around J ′/J = 1/2. The phase diagram was found to present a new incommensurate
umbrella phase in the low-temperature region, at least for J ′/J = 0.4.

Furthermore, we performed preliminary Monte Carlo simulations that indicate that spin-
lattice coupling can stabilize the UU D state in the T → 0 limit and create real magnetization
plateaux. Calculations with a very simplified model for distortions show a Peierls instability.
This model could be improved using correlated distortions, which were already shown to lead
to magnetization plateaux in the triangular and Kagomé lattices.

In the future, it would also be interesting to include magnetic anisotropies in the Shastry-
Sutherland lattice which are expected to be important for the rare-earth tetraborides. It may
be interesting to note that also the magnetization curve of the Ising model on the Shastry-
Sutherland lattice exhibits exactly one plateau with M/Msat = 1/3 [184, 185].
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Chapter IV

Hubbard chain coupled with adiabatic

phonons

In this chapter we study one-dimensional quantum systems in the low-energy limit and we fo-
cus on systems with no magnetic field applied.
We first review the low energy effective theory of the Hubbard model without lattice coupling.
The low energy limit is obtained by linearizing the dispersion relation in the vicinity of the Fermi
points. We bosonize the effective Hamiltonian and show that, even in the interacting case, the
spin and charge sectors are decoupled.
We then discuss the particular case of quarter-filled systems in presence of lattice distortions.
Two kinds of lattice distortions are considered: the Holstein lattice coupling that modifies the
chemical potential and the Peierls lattice coupling that modulates the bond lengths. Without
phonons, both the spin and charge sectors are gapless at quarter-filling. We show that this is no
longer true once the system is coupled with lattice distortions. We discuss the appearance of
different charge-density-wave phases as the repulsion increases and compare them with previ-
ously obtained numerical results.

1 Low energy effective field theory of the Hubbard chain

In this section, we derive a low energy effective theory from the Hubbard model that was dis-
cussed in Chapter II, Sec. 1.2:

H =−t
∑

j ,σ
(c+j ,σc j+1,σ+h.c.)+U

∑

j
n j ,↑n j ,↓+µ

∑

j ,σ
n j ,σ (IV.1)

Where j is the site index (i = 1 . . . N ), the spin values are σ =↑,↓ and t is the hopping constant
which will be used as an energy scale (t ≡ 1). µ is the chemical potential that fixes the number
of electrons Ne . U is the on-site interaction. We only consider repulsive interaction U > 0.
Since we are dealing with fermions, we will have to consider two degrees of freedom: spin
(S = 1/2) and charge. However, this case is technically not much more difficult than the X X Z
spin chain which only has the spin degree of freedom.
In the X X Z spin chain, a supplementary step is required: the spin operators are first mapped
into spinless fermionic operators through the Jordan-Wigner transformations (see for exam-
ple Ref. [3]). The collective excitations are therefore charge-density-waves. The Dirac spin-
less fermions are rewritten through the bosonization procedure in terms of compactified

87



Chapter IV. Hubbard chain coupled with adiabatic phonons

bosons that have the U (1) symmetry. Since U (1) is an abelian group, this bosonization is
called abelian bosonization. More details on the bosonization technique can be found in Ref.
[3, 26, 27, 46, 118, 186].
In the Hubbard chain, we consider fermions and we will have too branches of excitations: the
charge-density-wave discussed above and a spin-density-wave that describes "chargeless" par-
ticles with a spin S = 1/2. The charge sector exhibits the U (1) symmetry while the spin sector
has a SU (2) symmetry. After the bosonization process, this model is described by one boson for
each sector. Since the resulting spin and charge bosons both have U (1) symmetry, the SU (2)
symmetry is somehow hidden 1.

1.1 Free fermions

Let us first focus on the gas of free fermions on a one-dimensional lattice, described by a tight-
binding Hamiltonian with a chemical potential:

Ht−µ =−t
∑

j ,σ
(c+j ,σc j+1,σ+h.c.)+µ

∑

j ,σ
n j ,σ (IV.2)

The Fourier transform of the free Hamiltonian is given by:

Ht =
1

2π

∑

σ

∫kF

−kF

dkε(k)c+σ (k)cσ(k) (IV.3)

ε(k) = 2t cos(ka) (IV.4)

cσ(k) =
1

p
N

N∑

j=1
cσ, j e i a j k (IV.5)

{
cσ(k),c+σ′(k ′)

}
= 2πδσ,σ′δ(k −k ′) (IV.6)

where c+σ (k) (resp. cσ(k)) creates (resp. annihilates) a fermion with spin σ and wave vector k.

We are interested in the low-energy limit, or in other terms, what happens in the vicinity of
the Fermi points ±kF . The low-energy excitations create electrons above the Fermi points and
holes below. One replaces the band curvature of the dispersion relation by a linear spectrum.
In order to keep only the momenta close to |kF |, we later introduce a cut-off. This procedure
defines a left and a right sector respectively in the vicinity of −kF and +kF . A picture of the
linearization of the dispersion relation is given in Fig. IV.1.

Under an external magnetic field, the Fermi vector is kF = nπ/2(1+M), where M is the nor-
malized magnetization per spin and n = Ne /N , the filling of the system. The magnetic field
acts on the ↑ and ↓ spin populations similarly with a chemical potential on the charges. We are
interested in systems with no magnetic field and the Fermi wave vector only depends on the
filling. The ↑ and ↓ spin populations have the same Fermi vector:

kF↑ = kF,↓ = kF = n
π

2
(no magnetic field) (IV.7)

1In case the spin sector symmetry needs to be treated more carefully, another method would be considering
one boson and a Wess-Zumino-Witten model. This method is called non-abelian bosonization. It is not only
restricted to the SU (2) group and also allows considering S > 1/2.

88



1. Low energy effective field theory of the Hubbard chain

ǫǫ

−kF kF

kk

L R
0

Figure IV.1: Dispersion relation for the free fermion (bold line) and linearization in the vicinity
of the Fermi points (dashed line). The left and right sectors correspond to the −kF

and +kF Fermi points. The gray area corresponds to the energy levels filled at zero
temperature. For simplicity only one band with spin σ (σ=↑,↓) is represented.

The chemical potential at zero temperature is equal to the Fermi energy:

µ= ε(kF ) = 2t cos(kF a) (IV.8)

In order to describe the excitations, let us define the a(k) and b(k) annihilation’s operators
that respectively annihilate electrons and holes around the "left Fermi point" −kF (k < 0) and
around the "right Fermi point" kF (k > 0):

aσ(−k) = cσ(−kF −k) , aσ(k) = cσ(kF +k)
bσ(−k) = c+σ (k −kF ) , bσ(k) = c+σ (kF −k)

(IV.9)

We will restrict the integration to momenta around the Fermi points by adding an ultraviolet
cutoff Λ that depends on the lattice spacing a (Λ≪ kF i.e. Λ≪nπ/2a):

|k ±kF | ≤Λ (IV.10)

We define the Fermi velocity vF
2:

∂ε(k)

∂k

∣∣∣
k=kF

= 2t a sin(akF ) = vF (IV.11)

We now move to the continuum limit and define the left and right chiral fields corresponding
to the +kF and −kF Fermi points in terms of the electron and hole operators 3:

ψL,σ(x, t ) =
1

p
2π

∫0

−∞
dk

[
e−i k(t+x)aσ(k)+e i k(t+x)b+

σ(k)
]

(IV.12)

ψR,σ(x, t ) =
1

p
2π

∫∞

0
dk

[
e i k(t−x)aσ(k)+e−i k(t−x)b+

σ(k)
]

(IV.13)

2Since the Fermi vectors for ↑ and ↓ spins are equal (no magnetic field), the Fermi velocity does not depend on σ

and can be pulled out of the sums.
3We use the notation of Affleck [118].
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Chapter IV. Hubbard chain coupled with adiabatic phonons

We consider systems in 1+1 dimension. However we are only interested in the spatial depen-
dence with coordinates x = j ·a, where a is the lattice spacing and j a discrete position index.
We see later that calculations are much easier if we take the time dependence into account, at
least implicitly, by introducing complex variables.

The chiral fermionic fields satisfy the anti-commutation relations (at equal time):
{
ψv,σ(x),ψ+

u,σ′ (x′)
}

= 0 if u 6= v or σ 6=σ′ , (u, v = R ,L and σ,σ′ =↑,↓)
{
ψv,σ(x),ψ+

u,σ′ (x′)
}

= δ(x −x′) if u = v and σ=σ′ (IV.14)

The fermionic annihilation operator (and field in the continuum limit) can be rewritten in terms
of the left and right chiral fields:

lim
a→0

cσ, jp
a

=ψσ(x) = e i kF,σxψσ,L(x)+e−i kF,σxψσ,R (x)+ . . . (IV.15)

The dots stand for higher order terms that are needed to reproduce the Bethe ansatz result for
the correlation functions.

Calculations are detailed in App. C. In particular we see that the chemical potential term
cancels part of the free term. In the continuum limit, we can rewrite the non-interacting Hamil-
tonian Eq. IV.2 in terms of fermionic fields as:

Ht−µ = i vF

∑

σ

∫
d x

[
ψ+

R,σ(x)∂xψR,σ(x)−ψ+
L,σ(x)∂xψL,σ(x)

]
(IV.16)

Note that this Hamiltonian is actually an effective Hamiltonian due to the integration around
the Fermi points. We obtain in both ↑ and ↓ sector a Dirac Hamiltonian. The chiral fields play
the role of the components of the Dirac spinor and the Fermi velocity corresponds to the light
velocity.

1.2 Interacting fermions

Let us now consider the on-site interaction term:

HU =U
∑

j
n↑, j n↓, j (IV.17)

1.2.1 Low energy limit

We show (see details in App. C) that in the continuum limit this terms is rewritten as:

HU = a2U
∫

d x(JR,↑+ JL,↑)(JL,↓+ JR,↓) (IV.18)

+ a2U
∫

d x
(
e i 2xk+ψ+

R,↑ψL,↑ψ
+
R,↓ψL,↓+h.c.

)
(IV.19)

+ a2U
∫

d x
(
e i 2xk−ψ+

R,↑ψL,↑ψ
+
L,↓ψR,↓+h.c.

)
(IV.20)
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1. Low energy effective field theory of the Hubbard chain

where we defined the following quantities:

k+ = kF,↑+kF,↓ , k+ = 2kF at h=0 (IV.21)

k− = kF,↑−kF,↓ , k− = 0 at h=0 (IV.22)

The terms Jσ,r (r = L,R) are the left and right currents. These are fluctuations of the left and
right densities:

Jσ,r (x) ≡ψ+
σ,rψσ,r (x) (IV.23)

The terms ∝ e i 4xkF are incommensurate and will disappear in the large scale physics, unless
kF = π/2, which corresponds to half-filling. We come back to this point later. The interacting
part of the Hamiltonian becomes:

HU = a2U
∫

d x
[

(JR,↑+ JL,↑)(JL,↓+ JR,↓)+
(
ψ+

R,↑ψL,↑ψ
+
L,↓ψR,↓+h.c.

)]
(IV.24)

We will see next that the second term leads to a cosine interaction in the spin sector which is
hence described by a sine-Gordon model. However this interaction is marginally irrelevant and
the spin sector remains gapless.

1.2.2 The umklapp scattering

At half-filling (n = 1), the terms ∝ e i 4xkF are commensurate. They correspond to the scattering
of particles from one side of the Fermi surface to the other (i.e. two left electrons become right,
or vice-versa). This scattering process is called umklapp:

Humklapp = a2U
∫

d x
(
e i 4xkF ψ+

R,↑ψL,↑ψ
+
R,↓ψL,↓+h.c.

)
(IV.25)

We see later that the umklapp leads to a cosine term and the charge sector is described by a
sine-Gordon model. This time, the interaction term is relevant. Hence the umklapp opens a
gap in the charge sector at half-filling. The system becomes a Mott insulator.

1.2.3 The g-ology approach

Another approach for treating the interaction consists in splitting it in various scattering pro-
cesses. The method is called g-ology due to the labeling gi of the couplings’ strengths in front
of each term. In the present work we will not use this method, however we later compare our
results for the Hubbard model coupled with lattice distortions with results obtained previously
with the g-ology approach. More details on g-ology can be found in Ref. [3, 27, 187].
The Hamiltonian of interaction Eq. IV.17 can be split in four scattering processes restricted to
the vicinity of the Fermi points. These four processes are represented in Fig. IV.2.

• The g1 backscattering couples fermions on one side of the Fermi surface with fermions
of the other side. Fermions exchange side after the interaction but keep their spins. This
term corresponds to Eq. IV.20
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g1 g2

g3 g4

backward dispersion

forwardUmklapp

Figure IV.2: The low-energy sector of the interaction can be decomposed in four scattering pro-
cesses. Right moving (resp. left moving) electrons are represented in continuous (resp.
dashed) lines. Figure from Sénéchal [27].

• The g2 dispersion scattering also couples fermions on one side of the Fermi surface with
fermions of the other side. However, in this case each species stays on the same side after
the interaction.

• The g3 scattering corresponds to the umklapp scattering and takes place only at half-
filling (Eq. IV.19).

• The g4 forward scattering couples fermions of the same side.

Now that we have obtained an effective Hamiltonian in terms of fermionic fields, we will
rewrite it with bosonic fields thanks to the bosonization rules.

2 Bosonization

In this section we present the bosonization technique and apply it to the Hubbard chain. The
technical details of the bosonization calculations are presented in Appendix C. We show that
part of this interaction contributes to the Luttinger liquid and the remaining part creates cosine
terms whose relevance is discussed later. We rewrite the Hamiltonian in terms of spin and
charge sectors, which are decoupled as long as non magnetic field is applied.

2.1 Bosonization rules

The chiral fermionic fields Eq. IV.15 are rewritten as a function of the chiral bosonic fields φR,σ

and φL,σ according to the bosonic rules [3, 26, 27, 46, 118, 186]:

ψR,σ(x) = ηR,σ
1

p
2πa

: e i
p

4πφR,σ : (IV.26)

ψL,σ(x) = ηL,σ
1

p
2πa

: e−i
p

4πφL,σ : (IV.27)
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2. Bosonization

Let us also define the bosonic field φσ and its dual field θσ:

φσ = φR,σ+φL,σ (IV.28)

θσ = φR,σ−φL,σ (IV.29)

The factors ησ,r (r = R ,L) are called Klein factors. They obey a Clifford algebra and insure the
anti-commutation relations of the fermionic fields rewritten in terms of bosonic fields. Since
we have four species of bosons ({↑ L,↑ R ,↓ L,↓ R}), we need four species of Klein factors and the
minimal dimension of the Clifford algebra is 4. The representation that is used is detailed in
App. C. The Klein factors act on a Hilbert space that differs from the space generated by the
bosonic modes. Therefore once the product of Klein factor is diagonalized, we simply have to
pick one eigenstate and replace the product of Klein value by the corresponding eigenvalue
(±1, see App. C). This is somehow equivalent with doing a gauge choice.

The notation : e iαφ : for the vertex operator e iαφ stands for normal ordering. It consists in
putting all creation operators to the left of annihilation operators while performing a mode
expansion. The products of fermionic fields become, after bosonization, products of normal
ordered vertex operators. If the bosonic fields have different degrees or freedom (i.e. σ 6= σ′ or
r 6= r ′) these products are simple exponential products.
Otherwise, due to normal ordering, one has to take into account the value of the boson correla-
tor:

: e iαφσ,r (z) :: e iβφσ,r (w) := |z −w |
αβ
4π : e i

(
αφσ,r (z)+βφσ,r (w)

)
: (IV.30)

Normal ordered products defined "at the same point" are calculated by the point-splitting
method:

: ψ+
σ,r (z)ψσ,r (z) := lim

ǫ→0

[
ψ+

σ,r (z +ǫ)ψσ,r (z)−〈ψ+
σ,r (z +ǫ)ψσ,r (z)〉

]
(IV.31)

Using this limit, on can show (see App. C) that the left and right currents defined in Eq. IV.23
read:

Jσ,L(z) =
i

p
π
∂z̄φσ,L(z̄) (IV.32)

Jσ,R(z̄) = −
i

p
π
∂zφσ,R(z) (IV.33)

(IV.34)

The left and right currents are actually the conserved currents through a translation of the lat-
tice spacing a, φσ(x) →φσ(x +a) in the action of the free scalar boson.

2.2 Bosonization of the Hubbard chain

Let us now come back to the low-energy effective Hamiltonian define by Eq. IV.16 and Eq. IV.24
and apply the bosonization rules on it. We also study the umklapp term Eq. IV.25. We then
rewrite it in terms of charge and spin bosons and discuss the appearance of gaps in each sector,
which is found to depend on the filling.
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2.2.1 Bosonization of interacting Hubbard model

Using the bosonization rules and point-splitting (details in App. C), the free Hamiltonian Eq.
IV.16 reads:

Ht−µ =
vF

2

∑

σ=↑,↓

∫
d x

(
(∂xφσ)2 + (∂xθσ)2

)
(IV.35)

We obtain a free boson Hamiltonian in both ↑ and ↓ sectors. Since no magnetic field is applied,
the "light velocity" (Fermi velocity) is the same in each sector.

The interaction is bosonized as:

HU =−
aU

π

∫
d x∂xθ↑∂xθ↓+

U

2π2

∫
d x cos

(p
4π(φ↓−φ↑)

)
(IV.36)

The umklapp term present only at half-filling is:

Humklapp =
U

2π2

∫
d x cos

(p
4π(φ↓+φ↑)

)
(IV.37)

Instead of continuing with ↑ and ↓ bosons, we will now rewrite the bosonized Hubbard model
in a more meaningful base: in terms of spin and charge bosons.

2.2.2 Spin and charge sectors in the Hubbard Hamiltonian

The ↑ and ↓ bosons and the spin and charge bosons are related through the dressed-charge
matrix Z . Its matrix elements are determined by a set of coupled integral equations that were
calculated by Frahm and Korepin [37, 38, 47] starting from the Bethe ansatz solution of the
Hubbard model [48]. The dressed charge matrix is:

Z =
(

Zcc Zcs

Zsc Zss

)
(IV.38)

The coefficients Zi j depend on the repulsion U , on filling n of the system (i.e. on the chemical
potential) and on the magnetic field h.
The dressed charge matrix relates the spins and charge boson to the ↑ and ↓ bosons as:

(
φc

φs

)
=

1

det Z

(
Zss Zss −Zcs

Zsc Zsc −Zcc

)(
φ↑
φ↓

)
(IV.39)

And the spin and charge dual bosons are given by:
(
θc

θs

)
=

(
Zcc −Zsc Zsc

Zss −Zcs −Zss

)(
θ↑
θ↓

)
(IV.40)

However we are interested in systems with no magnetic field applied. In this case, the expres-
sion of the dressed charge matrix becomes simpler. Below half-filling (i.e. n ≤ 1) and for all
value of U , the dressed-charge matrix is:

Zh=0 =
(

ξ 0
ξ/2 1/

p
2

)
(IV.41)
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Frahm and Korepin gave a numerical solution of the evolution of the coefficient ξ for a density
0 < n < 1 using the Bethe ansatz integral equations. Figure 1 in Ref. [37] shows the lines of
constant ξ(k) in the density n versus repulsion n plane. The exact value is known exactly for
limit cases:

lim
U→0

ξ =
p

2 (IV.42)

lim
U→∞

ξ = 1 (IV.43)

Hence, with no magnetic field the charge and spin bosons φc and φs read:

φc =
1

ξ

(
φ↑+φ↓

)
(IV.44)

φs =
1
p

2

(
φ↑−φ↓

)
(IV.45)

Let us rewrite the Hamiltonian for h = 0. The spin and charge sectors are separated:

H =Hs +Hc (IV.46)

We will just give a general idea on how to proceed, and do not detail the value of the coupling
constants. In the forthcoming calculations we do not use a perturbative treatment of the
Hubbard chain but the solution from the Bethe ansatz.

The free part of the Hamiltonian becomes:

H free =
vF

2

∑

σ=↑,↓

∫
d x

(
(∂xφσ)2 + (∂xθσ)2

)
(IV.47)

The charge sector is corresponds to a Luttinger Hamiltonian with a Luttinger parameter Kc =
ξ2/2 which is used to renormalize the spin boson and its dual. The bosonized form is:

Hc =
vc

2

∫
d x

[
(∂xφs)2 + (∂xθs)2] (IV.48)

The situation is different at half-filling. The model is expected to become an insulator for large
repulsion U , since any excitation is will cost U . At half-filling the umklapp adds a cosine inter-
action:

Humklapp =
U

2aπ2

∫
d x cos(2k+x −ξ

p
4πφc ) (IV.49)

and the charge sector is described by a sine-Gordon model.

One can perform the same treatment in the spin sector (with Ks = 1). However, part of the
interaction (the backscattering in g-ology language g1 ≡ gs ) remains in an extra cosine term.
Hence the spin sector is described by a sine-Gordon model:

Hs =
vs

2

∫
d x

[
(∂xφs)2 + (∂xθs )2]+ gs

∫
d x cos

(p
2πφs

)
(IV.50)
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Figure IV.3: Renormalization group flow of the sine-Gordon model in the spin sector (g1 = gs).
Figure from Sénéchal [27].

The spin sector and the charge sector at half-filling are described by a sine-Gordon model in
which the first term corresponds to a Luttinger liquid, while the cosine interaction tends to
minimize the energy for a given value of the bosonic filed. According to the relative values
of the Luttinger parameter K and of the couplings g , the system will lie in one of these two
possible configurations. This transition is studied by the renormalization group analysis. We
will just give a qualitative explanation to justify that in our case the Hubbard chain with no
lattice distortion is described by a Luttinger liquid. The renormalization group flow of the
sine-Gordon model can be found in many textbooks such as Ref. [27, 188]. Figure IV.3 shows
the renormalization group flow of the sine-Gordon model.
The Luttinger liquid is a fixed point theory and in the spin sector and in the charge sector at

half-filling (umklapp), a cosine interaction defines a sine-Gordon model (gapped region in Fig.
IV.3). These interactions will be kept only if they grow algebraically under renormalization.
Such perturbations are called relevant. If it decreases it is called irrelevant and is not taken
into account (ungaped region in Fig. IV.3). If it evolves logarithmically it is called marginal
(separatrix in Fig. IV.3) and logarithmic corrections sometimes need to be taken into account
in the calculations of correlations functions. It two dimension (1 + 1 in our case) a relevant
operator has a scaling dimension ∆ < 2, a marginal operator ∆ = 2 and an irrelevant operator
∆> 2.
Due to the SU (2) symmetry of the spin sector, unless a magnetic field is applied, the Luttinger
parameter is Ks = 1. This interaction is marginal and the spin sector remains gapless. One can
apply the same treatment to the umklapp term at half-filling.

In the following, we will be working at quarter-filling in order to describe the Bechgaard and
Fabre salts. Hence the charge sector is gapless. Moreover, since we do not apply any magnetic
field, the spin sector is also gapless. Therefore the bosonized Hubbard Hamiltonian we are
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3. Charge ordering in molecular conductors

using is:

H =
∑

j=s,c

v j

2

∫
d x

[
(∂xφ j )2 + (∂xθ j )2

]
(IV.51)

In the next section, after reviewing the experimental motivation for the quarter-filled chain, we
will add lattice distortions which open gaps and couple the spin and charge sectors.

3 Charge ordering in molecular conductors

Organic conductors such as for the Bechgaard salts (TMTSF)2X, the Fabre salts (TMTTF)2X (see
Sec. 3.2), the BEDT-TTF and more recently the (EDO-TTF)2X [189] (Fig. IV.4) can be described
with low-dimensional models such as chain, ladders and trellis. These compounds exhibit
very rich phase diagrams and the charge ordering phenomenon has been widely studied since
it plays a key role in their physical properties, such as metal-insulator transitions. The main
issue in the study of these compounds is to determine the nature of the charge ordering in
the insulating phases and this has been the subject of a considerable numerous amount of
experimental and theoretical works. Many experimental techniques such as X-ray scattering,
NMR experiments, Muon Spin Rotations (µsr) measurements, magnetic susceptibility and
and angle-dependent magnetoresistance oscillations agree on the fact that the TM family
of compounds exhibits phases with a 4kF instability in addition to the usual 2kF Peierls
instability. Since these systems are quarter-filled, the Fermi wave vector is kF = π/4 (under no
magnetic field). Therefore a 4kF distortion corresponds to a dimerization and a 2kF one to a
tetramerization.
In the study of the charge ordering, one has to consider that on the one hand, there is a periodic
modulation of the inter site distance which is called Bond Order Wave (BOW) and on the other
hand the charge density adapts itself to this distortion. The resulting modulation of the intra
site charge density is called Charge Density Wave (CDW). Experimental results indicate that
both CDW and BOW can have 2kF and 4kF periodicity. Moreover, charge-transfer solids also
exhibit broken symmetry phase with spin ordering such as Spin Density Wave (SDW) and
spin-Peierls (SP) states.
As explained in Section 3.2, changing the nature of the counter ion is equivalent with varying
the repulsion. Hence the different phases observed experimentally in organic conductors
should appear in a phase diagram as a function of the repulsion. Hirsch and Scalapino
[190–192] showed in the eighties that the 4kF and 2kF CDW do not coexist and thereafter
quarter-filled Hubbard chain coupled with adiabatic phonons have been the subject of an
increasing numbers of work. Various techniques both numerical and analytical were used such
as: exact diagonalization [29, 30], Density Matrix Renormalization Group (DMRG) [33], mean-
field [193] g-ology and renormalization group analysis [33, 34, 189, 194, 195]. The quarter-filled
extended t − J model was also investigated by Bissola et al. [196]. A all-comprehensive
presentation of the rich physics of the charge transfer solids is far beyond the scope of this
manuscript and for a review on on both theoretical and experimental aspect of charge ordering
in molecular conductors one can refer to Ref. [197] and references therein.

97



Chapter IV. Hubbard chain coupled with adiabatic phonons

Figure IV.4: Crystal structure of the (EDO-TTF)2PF6 compound at room temperature (left) and at
260 K (right). At room temperature there is a very weak almost uniform dimerization
along the stacking axis while at 260 K there is a strong variation among the overlap
integral (S1, S2 and S3). Figure from Tsuchiizu and Suzumura [189].

In Section 3.2 we recalled that many organic compounds can be described as stacks of flat
molecules. The particularity of the TM Bechgaard and Fabre salts is to exhibit as small dimer-
ization in the stacking. This suggests that lattice distortion may play a major role in the appari-
tion of the charge ordering.
The opening of gaps due to inter sites phonons were studied by Rice [198, 199] and later Su,
Schrieffer and Heeger developed the SSH model to describe soliton excitations in quasi-one
dimensional conducting polymers such as polyacetylene (CH)n [200–202]. Ung et al. [203] con-
sidered both inter site phonons and intra molecular vibration in quarter and third-filled Hub-
bard chains and showed that both types of interactions can cooperate.
Let us now see more precisely what are these types of distortions:

• The Holstein coupling corresponds to electron-molecular vibrations and modifies the
chemical potential on the sites 4. We also refer to it as on-site coupling. The Hubbard-
Holstein Hamiltonian in the adiabatic limit for the phonons reads:

HHolstein =
K H

2

∑

j
δ2

j − t
∑

j ,σ
(c+j ,σc j+1,σ+h.c.)+U

∑

j
n j ,↑n j ,↓+ t AH

∑

j ,σ
δ j n j ,σ (IV.52)

We will discuss the effect of the Holstein coupling in the NaV2O5 quarter-filled compound
[29]. As represented in Figure IV.5, its trellis lattice can be described as a two-legs ladders
coupled by zig-zag chains.

• The Peierls coupling corresponds to modulation of the inter sites bonds. It acts on the
nearest-neighbors couplings. The Hubbard-Peierls Hamiltonian in the adiabatic limit for
phonons reads:

HPeierls =
K P

2

∑

j
δ2

j − t
∑

j ,σ
(1− APδ j )(c+j ,σc j+1,σ+h.c.)+U

∑

j
n j ,↑n j ,↓+µ

∑

j ,σ
n j ,σ (IV.53)

4We absorb the chemical potential in the definition of the Holstein fermion-lattice coupling (µ− A) → A.
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(a)                              (b)               (c)

Figure IV.5: The structure of the quarter-filled NaV2O5 compound is a trellis lattice (a) which can
be decomposed as a ladder (b) and a zig-zag chain (c). Our bosonization study focus
on the latter. Figure from Poilblanc and Riera [29].

In the following we will study the Peierls couplings in relation with the Bechgaard and
Fabre TM salts.

We study the quarter-filled Hubbard model (n = 1/2) coupled with adiabatic phonons. Hol-
stein and Peierls couplings will be considered separately. Moreover, since the nearest-neighbor
repulsion V (V > 0) was found to play a major role in organic charge-transfer molecular con-
ductors we should consider an extended Hubbard model.
Our goal is to reproduce the phase diagrams as a function of elastic coupling and on-site repul-
sion that were obtained by Poilblanc and Riera both for the Hubbard-Holstein chain Eq. IV.52
[29] and for the Hubbard-Peierls chain Eq. IV.53 [30].
In the next sections we first review the numerical results, then present the analytical results
obtained by means of g-ology and renormalization group analysis and finally we detail our
method and compare our results with the previous ones.

4 Review of the numerical results to reproduce with

bosonization

As mentioned above, many studies were carried out with various numerical methods (Exact
diagonalization, DMRG, mean-field). We chose to focus on the phase diagrams that were ob-
tained by Poilblanc and Riera for the quarter-filled Hubbard-Peierls [30] and Hubbard-Holstein
Hamiltonians [29]. In this section we do a quick review of the phases they obtained before start-
ing the bosonization analysis to reproduce them.
This work was performed by exact diagonalization and self-consistent procedure. The lowest
energy equilibrium lattice configuration is obtained self-consistently without making any as-
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Figure IV.6: Phase diagram for the Hubbard-Peierls chain. Details on the D1 and D2 insulating
phases are given in the text. Hashed regions are unphysical. Figure from Poilblanc
and Riera [30].

sumption on the broken symmetry ground state. The total energy functional E
(
{δi }

)
is mini-

mized with respect to the sets of distortions {δi } by solving non-linear coupled equations with
a regular iterative procedure:

K u{δu
i }+ t〈c+σ,i cσ,i+1 +h.c.〉 = 0 (IV.54)

Here u = H ,P for Holstein or Peierls distortions and 〈. . .〉 is the ground state mean value ob-
tained by exact diagonalization using the Lanczos algorithm of Hamiltonians Eq. IV.53 for
Peierls coupling (and Eq. IV.52 for Holstein) on cyclic L−site rings.

4.1 Peierls distortions

In this section, we present the insulating phases obtained by Poilblanc and Riera in Ref. [30].
The Peierls-Hubbard Hamiltonian Eq. IV.53 was studied with a general distortion given by:

∆ni

n̄
= ρ4kF cos(2π

ri

2a
)+ρ2kF cos(2π

ri

4a
+Φ2kF ) (IV.55)

where ∆ni = 〈ni 〉− n̄.
The quarter-filled Hubbard chain coupled with Peierls distortions exhibits coexisting CDW and
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Figure IV.7: Upper panel: amplitudes of the CDW (open symbols) ρ2kF and ρ4kF and of the BOW
(filled symbols) δ2 and δ4 components versus U /t for 1/K = 1.25 and V = 2, com-
puted on a 16-site ring. Note that, although identical symbols have been used, the
2kF orders are in fact different, i.e. have different phases Φ2kF and Φ

B
2kF

in the D1

and D2 phases. The crosses indicate the energy difference (in absolute value) between
the states with these two patterns. Lower panel: charge (∆c ) and spin (∆s ) gaps in
unit of t versus U /t computed on 12− and 16−site rings (∆s on L = 12 and L = 16 are
indistinguishable). Figure from Poilblanc and Riera [30].

BOW. The BOW is given by:

δB (x) = cte +δB
2kF

cos(
π

2
x +ϕB

2kF
)+δB

4kF
cos(πx) (IV.56)

Figure IV.6 shows the phase diagrams that were obtained as a function of the repulsion U versus
the elastic constant K P without next-nearest-neighbor repulsion (V = 0, upper panel) and with
V = 2 (lower panel). Two insulating phases with coexisting CDW and BOW are obtained:

1. Weak repulsion region, U < 3: the "D1 Phase".
The BOW has a 2kF modulation with a phase ϕB

2kF
=π/4:

δB (x) ∼ δB
2kF

cos(
π

2
x +π/4) (IV.57)

The CDW has weaker amplitude and it is the combination of site centered 2kF modulation
with a 4kF modulation:

ρ(x) ∼ A2kF cos(
π

2
x)+ A4kF cos(πx) (IV.58)

The relative amplitudes of the CDW harmonics are A4kF ≪ A2kF . Therefore, CDW is
tetramerized.
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Chapter IV. Hubbard chain coupled with adiabatic phonons

2. Large repulsion region: the "D2 Phase".
This time the BOW is a combination of a 2kF with a 4kF harmonics with equivalent am-
plitudes.

δB (x) ∼ δB
2kF

cos(
π

2
x)+δB

4kF
cos(πx) (IV.59)

One every two bonds of the dimerized state becomes weaker so that electrons become
weakly bound in singlet pairs on next-nearest-neighbor bond. The "D2 phase" is a real-
ization of the spin-Peierls phase.
The CDW is a single 2kF harmonic with a phase:

ρ(x) ∼ A2kF cos(
π

2
x +π/4) (IV.60)

Hence, again the CDW is tetramerized.

The amplitude of the CDW and BOW are represented in Fig. IV.7, upper panel. The left side
corresponds to the D1 phase, the right side to the D2 phase. Furthermore, the boundary
between the D1 and D2 phases is a first order transition.

The lower panel of Figure IV.7 shows the evolution of the spin and charge gaps ∆s and ∆c :

• The spin gap ∆s follows the magnitude of the 2kF CDW-BOW. In the large repulsion re-
gion (D2 phase), the systems behaves like a S = 1/2 antiferromagnet (the electrons are
localized on strong bonds) and ∆s is expected to vanish in this limit. In D1 electrons are
strongly localized in pairs on two adjacent strong bonds (i.e. on 3 sites) so that ∆s ∼ t .

• The charge gap ∆c has a minimum in the large repulsion D2 phase in the region corre-
sponding to the crossover from dominant 2kF to 4kF BOW-CDW.

• Both spin and charge gaps ∆s and ∆c are discontinuous at the first order transition be-
tween D1 and D2.

4.2 Holstein distortions

In this section, we present the insulating phases obtained by Poilblanc and Riera in Ref. [29] on
the Holstein-Hubbard Hamiltonian. The charge density is given by:

ρ(x) = cte + A2kF cos(
π

2
x +ϕ2kF )+ A4kF cos(πx +ϕ4kF ) (IV.61)

Figure IV.8 shows the phase diagrams that were obtained as a function of the repulsion U versus
the elastic constant K P without next-nearest-neighbor repulsion (V = 0, upper panel) and with
V = 0.5 (lower panel). Three insulating phases are obtained:

1. Weak repulsion region: the "P1 Phase".
The CDW has a single 2kF harmonic centered on the sites:

ρ(x) ∼ A2kF cos(
π

2
x) (IV.62)
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Figure IV.8: Phase diagram for the Hubbard-Holstein chain. Upper panel, from weak to large
repulsion U : the 2kF site-centered P1 phase, 2kF bond-centered P1 phase and the 4kF

site-centered P3 phase. Figure from Poilblanc and Riera [29].

2. Intermediate repulsion, 4 ≤U ≤ 8: the "P2 Phase".
The CDW still has 2kF harmonic. However the density is centered on the bonds and has
a π/4 phase:

ρ(x) ∼ A2kF cos(
π

2
x +π/4) (IV.63)

3. Large repulsion: the "P3 Phase".
In this region, the CDW is dimerized and the density is centered on the sites:

ρ(x) ∼ A4kF cos(πx) (IV.64)

The lower panel of Figure IV.8 shows th effect of a small nearest-neighbors repulsion (V = 0.5).
The P2 phase disappear and the dimerized P4 phase is stabilized.
No information about the spin gap is given. However, the P3 dimerized 4kF phase is expected
to be anti-ferromagnetic and the 2kF phases should have a gap (at least the P2 phase with the
π/4 phase) [204].

In this section we have reviewed the phases that we should recover analytically. In the next
section we will derive a bosonized Hamiltonian both for the Holstein-Hubbard and Peierls-
Hubbard models.
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Chapter IV. Hubbard chain coupled with adiabatic phonons

5 Bosonization of the Hubbard chain coupled to lattice

distortions

In this section we present the work carried out with the bosonization technique on the quarter-
filled Hubbard chain coupled with Holstein and Peierls lattice distortions. We first introduce
bosonization rules with more harmonics and derive the Hamiltonian. An analytical study was
previously carried out on these systems by means of g-ology. We will first present our results
and then show that we actually recover a Hamiltonian similar with the one obtained by the
g-ology.

5.1 Bosonization rules with more Harmonics

Using the Bethe-ansatz and conformal field theory, Frahm and Korepin [37, 38] calculated the
correlation function of the Hubbard chain for all fillings, for all interaction U and under an
external magnetic field. The correlation function are given by:

〈φ(x, t )φ(0,0)〉 ∼
∑

Dc ,Ds

a(Dc ,Ds )e−2i Dc kF,↑x e−2i (Dc+Ds )kF,↓x

(x −uc t )2∆+
c (x +uc t )2∆−

c (x −us t )2∆+
s (x +us t )2∆−

s
(IV.65)

The Hubbard model was known to belong to the class of universality of the Luttinger model.
However the relationships between the parameters of the models were only known in the weak
coupling limit where they could be calculated by the g-ology. Penc and Sólyom [205] later used
the exact expression of th correlation functions to find the mapping between the Hubbard and
the Luttinger models for arbitrary repulsion U , filling n and under a magnetic field.

Cabra et al. [35, 36] used the expression of these correlation functions to add more harmonics
in the bosonization rules Eq. IV.27 by comparing the critical exponents of the terms in the
sum of Eq. IV.65. This result was used in Ref. [35, 36] in order to study a p-merized Hubbard
chain. We will use these bosonization rules in order to have all the commensurate terms of the
Hamiltonian with lattice distortions. These rules are defined by:

ψ↓(x) = r1e−i kF,↓xψR,↓(x)

+ r2e−i (k++kF,↑)xψR,↓(x)ψ+
L,↑(x)ψR,↑(x)

+ r3e i (k−+kF,↑)xψR,↓(x)ψ+
R,↑(x)ψL,↑(x)+ . . .

+ l1e i kF,↓xψL,↓(x)

+ l2e i (k++kF,↑)xψL,↓(x)ψ+
R,↑(x)ψL,↑(x)

+ l3e−i (k−+kF,↑)xψL,↓(x)ψ+
L,↑(x)ψR,↑(x)+ . . . (IV.66)

The dots stand for higher order harmonic that lead to irrelevant terms. ψ↑ is obtained by
converting ↓ into ↑ in the previous expression. More details are given in App. C and in
particular we explain how to take care of the Klein factors products.
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We consider the quarter-filled Hubbard chain coupled to lattice distortions. The general
Hamiltonian for Holstein or Peierls coupling of is given by:

H =−t
∑

j ,σ
(c+j ,σc j+1,σ+h.c.)+U

∑

j
n j ,↑n j ,↓+

K

2

∑

j
δ2

i +t A
∑

j ,σ
δ j (c+j ,σc j+m,σ+h.c.)+V

∑

j
n j n j+1

(IV.67)

The parameter m fixes the kind of adiabatic phonons we consider. It takes the value m = 0 for
Holstein (on-site) phonons, m = 1 for Peierls phonons. The lattice spacing fixed to a = 1.
In further calculations, in order to reduce the number of parameters use t as the energy scale
and define the parameters:

δ → (K /t )1/2δ (IV.68)

A → (t/K )1/2 A (IV.69)

U → U /t (IV.70)

In the continuum limit, and taking into account the bosonized Hubbard chain Eq. IV.51, this
Hamiltonian reads:

H = H0 +Helas +H int +HV (IV.71)

H0 =
∑

j=s,c

v j

2

∫
d x

[
(∂xφ j )2 + (∂xθ j )2

]
(IV.72)

Helas =
K

2

∫
d xδ(x)2 (IV.73)

H int = t A
∫

d xδ(x)Om (x) (IV.74)

HV = V
∫

d xO0(x)O0(x +1) (IV.75)

Here we defined the bosonized operator:

Om(x) =ψ+
↑ (x +m)ψ↑(x)+ψ+

↓ (x +m)ψ↓(x)+h.c. (IV.76)

The details of the calculations are given in App. C. Using the bosonization rules Eq. IV.66, one
obtains the bosonized operator at quarter-filling (kF =π/4):

Om(x) = −λ11 sin
(π

2
x +

π

4
m −ξ

p
πφc

)
cos(

p
2πφs)

−λ12 cos
(
πx +

π

2
m −2ξ

p
πφc

)
(IV.77)

Here we defined:

• λ11 = 8r1l11⊗σ3

• λ12 = 8(r1l2 + r2l1)cos
(
π
4 m

)
1⊗σ3
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• Dependence on the repulsion U of the constants ri and li : in the U = 0 limit we should
recover that all coefficients ri and li should be zero excepted r1 = l1 = 1/

p
2πa = constant.

We also know that at lowest order, the coefficients r2 and l2 are linear in U . For higher
values of U the behaviors of these coefficients is not known.

Eq. IV.77 clearly shows that:

• Coupling with the lattice (both Holstein and Peierls mechanisms) couples the spin and
charge degrees of freedom. This term as a coupling constant ∝ r1l1. From the depen-
dence in U explained above, this term should be dominating in the weak coupling region.
Once coupled with a suitable harmonic, this term will favor a 2kF CDW (i.e. a tetramer-
ized pattern).

• The product of the two first harmonics of the bosonization rules opens a charge gap. This
term is ∝U (A+B ·U ) (A and B are constants) and it is expected to dominate in the region
of higher repulsion.
Once coupled with the lattice distortion, this term will favor a 4kF CDW (i.e. a dimeriza-
tion).

The generic lattice distortion that adapts to the relevant terms so as to make them commensu-
rate is:

δ(x) = δ2 cos(2kF x +β2)+δ4 cos(4kF x) (IV.78)

= δ2 cos(
π

2
x +β2)+δ4(−1)x (IV.79)

The elastic energy reads:

Helas =
N

2

(1

2
δ2

2 +δ2
4

)
(IV.80)

Let us now study separately what we obtain for the Holstein and Peierls couplings and compare
it with the numerical results.

5.2 Results for the Holstein case

The bosonized Holstein operator becomes commensurate by multiplying with the lattice dis-
tortion:

δ(x)O0(x) =
δ2λ11

2
sin(ξ

p
πφc +β2)cos(

p
2πφs)−δ4λ12 cos(2ξ

p
πφc ) (IV.81)

Hence the Holstein-Hubbard Hamiltonian is:

H = H0

+
N

2

(1

2
δ2

2 +δ2
4

)

+ A
δ2λ11

2

∫
d x sin(ξ

p
πφc +β2)cos(

p
2πφs )

− Aδ4λ12

∫
d x cos(2ξ

p
πφc)

+ V
λ2

12

2

∫
d x cos(4ξ

p
πφc) (IV.82)
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Figure IV.9: CDW (ρ, squares) and BOW (δ, triangles) in the quarter-filled Holstein-Hubbard
model. The x−axis stands for the sites indices j . Upper panel: weak repulsion limit,
tetramerized on-site centered "P1 phase". Center panel: tetramerized bond-centered
"P2 phase". Lower panel: larger repulsion, dimerized "P3 phase".
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Within the semi-classical approximation, the energy per site depends on five parameters: δ2,
δ4, φc , φs and β. We obtain different degenerated configurations 5. It is important to keep in
mind that we are using an ansatz on the dependence on U of the coefficients ri and li that is
valid only in the weak coupling region U /t ≪ 1. Therefore, a quantitative study of the energies
and especially of the crossings is meaningless since we do not know the behavior of the energies
as a function of U . We will simply give a qualitative picture of what happens.
We recover three insulating phases, as U increases in our ansatz we have:

• A δ4 = 0, δ2 6= 0 and β2 = 0 phase, i.e. a tetramerized site-centered phase. Its CDW and
BOW are represented in the upper panel of Fig. IV.10. The CDW pattern has to be com-
pared with the CDW depicted in the P1 phase of Fig. IV.8. The gray (resp. black, empty)
circles correspond to our zero (resp. +2, −2) line.

• A δ4 6= 0, δ2 6= 0 and β2 = π/4 phase. We have δ4 < δ2 and we obtain a tetramerized bond-
centered phase with the same π/4 phase as in the numerical results. The CDW and BOW
are represented in the center panel of Fig. IV.10. The CDW pattern (••oo) is similar with
the one of the P2 phase of Fig. IV.8.

• Finally we obtain a δ4 6= 0, δ2 = 0 and β2 = 0 phase that is dimerized. The CDW and BOW
are represented in the lower panel of Fig. IV.10. It matches with the CDW pattern of the
P3 phase of Fig. IV.8.

To conclude, we qualitatively recover the three phases of the quarter-filled Holstein-Hubbard
of Ref. [29] and the CDW patterns are in agreement.

However the behavior with next-nearest-neighbor repulsion V is still problematic. Indeed we
expect the energy of the P2 phase to increase since it consists in two consecutive occupied sites
followed by two consecutive unoccupied sites. And as observed in Fig. IV.8 this phase actually
disappeared for V = 0.5 (lower panel). Also the energy of the P3 phase should not be affected
by adding the repulsion V and the energy of the P1 phase should increase. Our bosonized next-
nearest-neighbor repulsion term does not work in this scenario and for example tends to lower
the energy of the P2 phase, which is not possible. We are not able to explain this discrepancy so
far.

5.3 Results for the Peierls case

The bosonized Peierls operator becomes commensurate by multiplying with the lattice distor-
tion:

δ(x)O1(x) = −
δ2λ11

2
sin(

π

4
−ξ

p
πφc −β2)cos(

p
2πφs)−

δ4λ12
p

2

2
sin(2ξ

p
πφc ) (IV.83)

5We will not mention the solutions corresponding to the undistorted case δ2 = δ4 = 0.
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Figure IV.10: CDW (ρ, squares) and BOW (δ, triangles) in the quarter-filled Peierls-Hubbard
model. The x−axis stands for the sites indices j . Upper panel: weak repulsion limit,
"D1 phase". Lower panel: larger repulsion, "D2 phase".

The quarter-filled Peierls-Hubbard Hamiltonian is:

H = H0

+
N

2

(1

2
δ2

2 +δ2
4

)

− A
δ2λ11

2

∫
d x sin(

π

4
−ξ

p
πφc −β2)cos(

p
2πφs )

− Aδ4λ12

p
2

2

∫
d x sin(2ξ

p
πφc)

+ V
λ2

12

2

∫
d x cos(4ξ

p
πφc) (IV.84)

We proceed like previously in the Holstein case and obtain again three phases. However, the
dimerized (δ2 = 0) phase has higher energy and hence the ground state is always tetramerized.
We obtain:

• A 2kF BOW (δ4 = 0). The BOW and CDW are represented in the upper panel of Fig. IV.10:
the BOW has a ••oo pattern and the CDW a A −B − Ā −B pattern (B corresponds to the
0.5 line). Both are in agreement with Ref. [30].
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Chapter IV. Hubbard chain coupled with adiabatic phonons

• A tetramerized BOW two harmonics δ2 6= 0 and δ4 6= 0. The BOW and CDW are repre-
sented in the lower panel of Fig. IV.10. They are in agreement with Ref. [30]

To conclude, the Peierls coupling also give qualitative results that are in agreement with the
phase diagram presented in Ref. [30]. In the next section we compare our result on the Peierls-
Hubbard quarter-filled chain with the results obtained with the bosonization.

6 Comparison with the g-ology results

Let us do a short review of the analytical results that were obtained by the g-ology. Kuwabara et
al. [33] studied the Hubbard-Peierls chain at quarter-filling using the higher order perturbations
that were calculated by Yoshioka et al. [34] in the quarter-filled extended Hubbard chain.

H =Hel as +Hρ +Hσ+H1/4 +Hd +H t (IV.85)

where

Hel as =
K

2

∑

i
u2

i

Hρ =
vρ

4π

∫
d x

[ 1

Kρ
(∂xφρ)2 +Kρ(∂xθρ)2

]

Hσ =
vσ

4π

∫
d x

[ 1

Kσ
(∂xφσ)2 +Kσ(∂xθσ)2

]

H1/4 = g1/4

∫
d x cos(4φρ)

Hd = −gd ud

∫
d x sin(2φρ)

H t = −g t ut

∫
d x cos(φρ−χt −π/4)cos(φσ) (IV.86)

• Hσ and Hρ describe the Tomonaga-Luttinger liquid with parameters Kσ and Kρ and
Fermi velocities vρ and vσ. The SU (2) symmetry of the undistorted limit (ui = 0) requires
Kσ = 1.

• H1/4 is the quarter-filled umklapp scattering. It favors a charge-ordered state coexist-
ing with a spin-Peierls tetramerization (see the schematic ground-state (b) in Fig. IV.11).
Kuwabara et al. consider it favors the appearance of a new phase in the large repulsion
on-site and between nearest-neighborsU an V region, that we will refer a the "D ′

2 phase".
They also mention that this phase is very sensitive to the cluster size. According to Ref.
[33] the size effects are negligible in the L = 36 systems used for the DMRG study. This
"D ′

2 phase" was not obtained by exact diagonalization by Poilblanc and Riera on L-site
rings with L up to 16. According to Fig. IV.7, under strong repulsion the BOW should tend
to a dimerization. Indeed the amplitudes of the 2kF harmonic becomes smaller than the
one of the 4kF for U > 5 (at V = 2). Either the nearest neighbor repulsion V is not strong
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(a)

(b)

(c)

Figure IV.11: Schematic ground states obtained by the g-ology: the arrow represent the ordered
spins, the gray area the density localization, the ellipses the spin-single formation
and the BOW is represented by the thickness of the bonds. (a) Charge ordering and
Neél ordering, not obtained in one-dimensional models. (b) Charge-ordering and
spin-Peierls lattice distortion ("D ′

2 phase") and (c) Mott insulating state and spin-
Peierls lattice distortion ("D2 phase"). Note that the grey areas indicate that the den-
sity is bond-centered, but since the two-sites of the strong bonds are not equivalent
the do not have the same density. Figure from Kuwabara et al. [33].

enough (the "D ′
2 phase" is expected for V > 4), or size effects prevent its appearance.

However we shall not focus on this phase since bosonization cannot give precise answers
for strong nearest-neighbor repulsion.

• Hd is the half-filled umklapp scattering. It favors a dimer Mott insulating state with a
spin-Peierls dimerization (see the schematic ground-state (c) in Fig. IV.11). This state
corresponds to the "D2 phase" described by Poilblanc and Riera (see Fig. IV.6).

• The term H t is derived from the kinetic energy in presence of the lattice tetramerization
ut . This term was firstly neglected by Yoshioka et al. [34] in their renormalization group
calculations. According to Kuwabara et al. [33], in the low U and V region, his term pro-
duces the 2kF state due to Peierls instability and fixes: φρ = π/4, φσ = 0 and χt = 0 (i.e. a
tetramerized CDW centered on the sites). This is in agreement with Poilblanc and Riera’s
results and this corresponds to the "D1 phase".

The indices d stands for dimerization and t for tetramerization. The generic lattice distortion
is the same with our model:

ui = ud cos(πxi )+ut cos(xiπ/2+χt ) (IV.87)

The coupling constants were computed perturbatively by Yoshioka et al. [34] from the weak
coupling regime:

g1/4 ∝
U 2(U −4V )

t 2 (IV.88)

gd ∝ U −
AU (U −2V )

t
where A in a constant (IV.89)

g t ∝ t (IV.90)
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Chapter IV. Hubbard chain coupled with adiabatic phonons

From those couplings’ expressions one clearly see that, for small on-site repulsion U and be-
tween nearest-neighbors V , the tetramerizing term ∝ g t is leading. For larger U and V this
coupling between the spin and charge sectors can be neglected in comparison with the cou-
plings that increase with the repulsion. Hence there is a competition between H1/4 and Hd .
Kuwabara et al. [33] then explained that to compare the relative stability of these states, the
above bosonization is not appropriate. Indeed, on the one hand the coupling constants are
obtained perturbatively from the weak coupling regime and of the other hand the treatment of
the three non-linear terms together with the lattice degree of freedom may become problem-
atic. Finally they continued the study numerically by means of DMRG. We will not detail their
study but compare our results with the g-ology:

• Our Hamiltonian for the Peierls case is very similar with the one obtained with the g-ology.

• Phase diagram: Our situation is similar and we cannot obtain more information than
the g-ology from our bosonized Hamiltonian. Even though the bosonization rules we
are using are much stronger in the sense that they do not require to stay in the weak
coupling limit, we do not know the analytical expression of the coefficients ri and li as a
function of the repulsion U . In the weak repulsion limit (U /t ≪ 1), we recover coupling
constants that are in the line with the ones obtained by the g-ology. Hence we cannot
study quantitatively the positions of the energy crossings and establish a phase diagram
to compare with the results of Poilblanc and Riera [29, 30].

• Phases of the operators: the spin operators obtained by the g-ology in the interaction
term does not have the same phases with our bosonized operators (i.e. cosine instead of
sine). So far we do no explain this discrepancy.

7 Quarter-filled Hubbard model: conclusion and outlook

The one-dimensional Hubbard model at the commensurate quarter-filling (n = 1/2) is a good
model for describing the organics charge-transfer salts like the Bechgaard and the Fabre salts.
These systems exhibit very rich phase diagrams, including various types of charge-density-
waves.
The quarter-filled Hubbard chain coupled with Holstein or Peierls distortions has been widely
studied by means of various numerical methods such as exact diagonalization and DMRG.
In the weak repulsion limit (i.e. U /t ≪ 1), the g-ology gives a qualitative prediction of the
appearance of the different phases.

We obtained, by means of bosonization with supplementary harmonics, a Hamiltonian
similar with the one obtained by the g-ology. We recover qualitatively the tetramerized and
dimerized phases that were previously obtained. However our method is not capable to give
more information than the g-ology, or in other terms, we cannot determine quantitatively the
crossings between the different phases. Indeed we are using bosonization rules based on a
comparison with the critical exponents of the correlation functions that were calculated by
Frahm and Korepin [37, 38] from the Bethe ansatz solution. Hence the terms we are adding can
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7. Quarter-filled Hubbard model: conclusion and outlook

be used for any repulsion U . However, establishing a precise phase diagram as a function of the
repulsion U implies knowing the analytical expression of the coefficients that appear in front
of our bosonization harmonics as a function of the repulsion U . Calculating these functions
implies coming back to the Bethe ansatz solution which is far beyond the scope of this project.
To conclude, our approach can be seen as an alternative to the g-ology method but it cannot
give a quantitative description of the phase transitions for U /t ≫ 1.

To continue, we will study both types of lattice distortions simultaneously and study the in-
terplay between Holstein and Peierls phonons. This study was partly done [31, 32, 206]. We will
add a magnetic field as a new ingredient. We expect magnetization plateaux to arise such as in
the frustrated spin chain coupled with lattice distortions [13].
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Chapter V

Conclusion and outlook

Low dimensional systems coupled with phonons can exhibit very interesting behaviors such
as charge-density waves, bond-order waves and magnetization plateaux at rational value of
the saturation magnetization. We studied the influence of phonons in the adiabatic limit on a
couple of classical and quantum spin systems in one and two dimensions.

After introducing the basic knowledges for the study of low-dimensional strongly correlated
systems in a Chapter II, we first studied in Sec. 3 of Chapter III the frustrated classical spin
chain with competing interactions between nearest and next-to-nearest neighbors coupled
with adiabatic phonons. The motivation is twofold: on the one hand, magnetization plateaux
were shown to arise at 1/2 of the saturation magnetization in the pyrochlore lattice with
classical spins coupled with adiabatic phonons [12]. And on the other hand, adiabatic phonons
were previously found to be a mechanism for the appearance of magnetization plateaux in the
S = 1/2 frustrated spin chain [13]. We showed that the 1/3 plateau, which exhibits a classical
structure in the quantum case can survive in the frustrated classical spin chain. The spin
configuration in the plateau phase is the collinear ’Up-Up-Down’ configuration, which is
deformed in ’Up-Down-Up’ trimers due to the spin-lattice coupling.
We carried out a study analytically and numerically by means of Monte Carlo simulations.
We showed that frustration is a necessary ingredient for the appearance of a magnetization
plateau while the lattice coupling widens its domain of existence. The latter was determined
as a function of the spin-lattice coupling and the magnetic coupling ratio, which characterizes
the frustration. We obtained the analytical values of the critical fields at the entrance and exit
of the plateau and hence determined the width of the plateau. Furthermore we showed that
the nature of the phase transition to saturation can be either of the first or of the second or-
der depending of the values of the the magnetic coupling ratios and of the spin-lattice coupling.

In Sec. 4 of Chapter III, we continued the study of classical spin systems with the two-
dimensional Shastry-Sutherland lattice. The quantum version of this lattice has been the
subject of many experimental and theoretical work in relation with the SrCu2(BO3)2 com-
pound [14]. Recently the observation of plateaux in the magnetization curves of rare-earth
tetraborides RB4 motivated a study of the classical version of this lattice, due to the large total
momenta of those compounds.
We showed that for non-zero temperature the magnetization curve of the Shastry-Sutherland
lattice exhibits pseudo-plateaux at 1/3 of the saturation magnetization. We carried out a study
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Chapter V. Conclusion and outlook

by means of classical spin-waves and Monte Carlo simulations and established a phase diagram
in the plane magnetic field versus temperature a the particular ratio of the magnetic couplings.
The latter is very similar with the phase diagrams of the triangular [24] and Kagomé lattices
[25] with classical spins, in which the collinear ’Up-Up-Down’ state is sandwiched between
two quasi-long-range-ordered phases. In these lattices, the existence of the pseudo-plateaux
is due to the entropic selection of the ’Up-Up-Down’ state relatively to adjacent states. In the
Kagomé lattice, a full branch of soft modes in the spectrum of the spin deviations on top of
the ’Up-Up-Down’ state (Order by Disorder effect) stabilizes a 1/3 pseudo-plateau, while in the
triangular lattice, the spectrum only exhibits a couple of soft points. We found that the Shastry-
Sutherland lattice presents lines of soft modes, like the q = 0 ’Up-Up-Up-Down’ state on the
frustrated square lattice [162]. However, the classical ground state of the Shastry-Sutherland
lattice in the pseudo-plateau has no local continuous degeneracies, which makes the selection
mechanism of the ’Up-Up-Down’ state in the Shastry-Sutherland lattice is more similar to the
triangular lattice.
We furthermore studied the behavior of the pseudo-plateaux away from the particular ratio
of magnetic couplings and showed that a pseudo-plateau phase still exists. However, its
domain of existence is restricted to higher temperature since the spin configuration in the low
temperature region is an incommensurate spiral.
Finally, we started investigating the Shastry-Sutherland lattice in the presence of adiabatic
phonons and found that a 1/3 plateau arises at zero temperature. Using a very simple model
for the lattice distortions, we found a Peierls distortion. The model could be improved by using
correlated distortions, as previously done in the triangular and Kagomé lattices [181].

The last chapter, Chapter IV, of this thesis is dedicated to the study of a quantum system cou-
pled with adiabatic phonons. We studied the quarter-filled Hubbard chain in the presence of
Holstein phonons, which modulate the chemical potentials of the sites, and Peierls phonons,
which act on the bonds. This system has been previously widely studied as a model for the
organic charge-transfer salts like the Bechgaard and Fabre salts. Numerical studies predicted
a very rich phase diagram including tetramerized and dimerized phases [29, 30]. The low re-
pulsion region was also studied with the g-ology method and renormalization group analysis
[33, 34].
In order to take into account all commensurate relevant terms, we used bosonization rules in-
cluding more harmonics [36]. These rules were previously constructed from the analysis of the
critical exponents of the correlation functions of the Hubbard model obtained from the Bethe
ansatz solution [37, 38, 205]. We obtained an effective bosonic Hamiltonian that is in the line
with the results of g-ology. The fermion-lattice coupling couples the spin and charge sectors,
which become gapped. The ground state is a charge-density wave whose periodicity depends
on the strength of the repulsion.
Our method allows to recover qualitatively the sequence of charge-density wave phases that
were obtained numerically [29, 30] but the lack of information on the dependence in repulsion
does not allow a quantitative study away from the weak repulsion limit. Hence this method is
an alternative to the g-ology but it does not bring more information.
However it is a good start to continue the study of the interplay between Holstein and Peierls
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phonons and also add an applied magnetic field. The latter is expected to lead to plateaux at
rational values of the magnetization like in the frustrated S = 1/2 spin chain [13].
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Appendix A

Convention for the notation

The notations that were used in the whole manuscript are explained here. In general, bold
letters in mathematical fonts indicate vectors. Then we used:

A : Spin-lattice coupling constant
α : Chap. II: Index for an energy band
α : Chap. III: Ratio of the magnetic couplings (α= J1/J2)
β : β= 1/kB T , where kB is the Boltzmann constant
c j ,σ : Annihilation operator, annihilates a fermion on site j with spin σ

c+j ,σ : Creation operator, creates a fermion on site j with spin σ

δ j : Displacement of the site j
δi j : Elongation (δi j >0)/contraction (δi j <0) of the bond between the sites i and j
δ2 : Amplitude of the 2KF harmonic of the generic lattice distortion
δ4 : Amplitude of the 4KF harmonic of the generic lattice distortion
δH

j : Lattice distortions on site j for the Holstein coupling

δP
j : Lattice distortions on site j for the Peierls coupling

ǫ(k) : Energy of a free particle with momentum k
E (k) : Energy of an interacting particle with momentum k
φσ : Bosonic field with spin σ

φσ,L : Chiral bosonic field for left movers with spin σ

φσ,R : Chiral bosonic field for right movers with spin σ

φc : Boson for the charge degree of freedom
φs : Boson for the spin degree of freedom
ϕk,α : Bloch function in the band α and with wave wavevector k
ϕr j ,α : Wannier function in the band α and around site j
FBZ : First Brillouin Zone
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k : Scalar k. If in one dimension, k = kx

kF : Fermi wavevector, kF = nπ/2(1−M)
k : Wavevector k with coordinates kx , ky and kz if in three dimensions
K : Spring constant
K H : Spring constant for the Holstein coupling
K P : Spring constant for the Peierls coupling
µ : Chemical potential
M : Magnetization
Msat : Saturation magnetization
n : Filling of the system: n = Ne /N (0≤ n ≤ 2)
N : Number of lattice sites
Ne : Number of electrons in the lattice
nσ, j : Density operator: n j ,σ = c+j ,σc j ,σ

ψσ : Fermionic field with spin σ

ψσ,L : Chiral fermionic field for left movers with spin σ

ψσ,R : Chiral fermionic field for right movers with spin σ

σ : Spin index. We consider electrons, thus: σ=↑,↓
S : Norm of a spin, ex: S = 1/2
Sj : Classical spin (vector) on site j
S j : Norm of the classical spin Sj (then set to 1)
ŝ j : Spin operator on site j
t : Hopping integral. We take ti j = t (i , j are NN in the tight-binding approximation)
U : On-site repulsion (U > 0)
V : Repulsion between nearest-neighbor sites (V > 0)
Z : Amplitude of the discontinuity in the particule distribution of a Fermi liquid (Sec 2.1)
Z : Partition function
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Appendix B

Thermal fluctuations matrices of a

couple of two-dimensional systems

In this appendix we give the thermal fluctuations matrices of a couple of two-dimensional lat-
tices with classical Heisenberg spins that are discussed in Sec. 4.4. We consider the triangular
lattice, the frustrated square lattice and the Shastry-Sutherland lattice. In all these systems ther-
mal fluctuations act the same way on the x− and y− components. Hence the matrices M are
the same for fluctuations in the x− and y− directions.

1 Classical Heisenberg spins on the triangular lattice

We consider the triangular lattice with J magnetic couplings. For non-zero temperature and
at M/Msat = 1/3 the system is in the UU D state in which each triangle contains two spins Up
and one spin Down [24]. One has to consider 3 sublattices. The magnetic field to apply is
h = h1/3 = J .
The matrix of thermal fluctuations up to 2nd order on top of the UU D state is:

MUU D,∆ =




−3J − h
2 − J

2

(
1+e−i (−kx+ky ) +e i kx

)
− J

2

(
1+e−i (−kx+ky ) +e−i ky

)

− J
2

(
1+e i (−kx+ky ) +e−i kx

) h
2

J
2

(
1+e−i ky +e−i kx

)

− J
2

(
1+e i (−kx+ky ) +e i ky

) J
2

(
1+e i ky +e i kx

) h
2




2 Classical Heisenberg spins on the frustrated square

lattice

We consider the square lattice with J edge couplings and additional diagonal couplings J ′. We
focus on th ratio J ′ = J/2 [162]. At M/Msat = 1/2 the system lies in the colinear UUU D state.
Line of Up spins (↑↑ . . . ↑↑↑) alternate with lines of Upand Down spins (↑↓ . . . ↓↑↓). The unit cell
contains 4 spins. The magnetic field is h = h1/2 = 4J .
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S
D1 (i,j) S

U2 (i,j)
S

U3 (i,j) S
U4 (i,j)

S
U5 (i,j) S

D6 (i,j)
S

D7 (i,j) S
U8 (i,j)

S
U9 (i,j) S

U10 (i,j)
S

U11 (i,j) S
D12 (i,j)

S
D1(i+1,j)

S
U3(i+1,j)

S
U5(i+1,j)

S
D7(i+1,j)

S
U9(i+1,j)

S
U11(i+1,j)

S
D1(i+1,j+1)S

U2 (i,j+1)S
D1 (i,j+1)

Figure B.1: Unit cell of the Shastry-Sutherland lattice at M = 1/3 (black lines). It contains 12 spins
labelled (i , j ): Up in red, Down in blue, circles with a black line for the spins belonging
to the cell.

The matrix of thermal fluctuations up to 2nd order on top of the UUU D state is:

MUUU D =




2J +2J′ − h
2 − J

2 (1+e−i ky ) − J′
2 (1+ei kx +e−i ky +ei (kx−ky )) − J

2 (1+ei kx )

− J
2 (1+ei ky ) −2J′ + h

2
J
2 (1+ei kx ) J′

2 (1+ei (kx+ky ) +ei ky +ei kx )

− J′
2 (1+e−i kx +ei ky +ei (−kx+ky )) J

2 (1+e−i kx ) −2J +2J′ + h
2

J
2 (1+ei ky )

− J
2 (1+e−i kx ) J′

2 (1+e−i (kx+ky ) +e−i ky +e−i kx ) J
2 (1+e−i ky ) −2J′ + h

2




3 Classical Heisenberg spins on the Shastry-Sutherland

lattice

We consider the Shastry-Sutherland lattice with J ′ edge couplings and J diagonal couplings. We
focus on the ratio J ′/J = 1/2. For non-zero temperature and at M/Msat = 1/3 the system lies in
the UU D state. The magnetic field is h = h1/3 = 3J ′. We have to consider the 12 sublattices
depicted in Fig. B.1.
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The matrix of thermal fluctuations up to 2nd order on top of the UU D state is:

MUU D,SSL =




3J′ − h
2 − J′

2 (1+e−i kx ) − J′
2 −J′e−i kx 0 0 0 0 0 0 − J′

2 e−i ky 0

− J′
2 (1+ei kx ) h

2 0 J′
2 0 0 0 0 0 0 J′e−i ky − J′

2 e−i ky

− J′
2 0 h

2
J′
2 (1+e−i kx ) J′

2 −J′ 0 0 0 0 0 0

−J′ei kx J′
2

J′
2 (1+ei kx ) h

2 0 − J′
2 0 0 0 0 0 0

0 0 J′
2 0 h

2 − J′
2 (1+e−i kx ) − J′

2 J′e−i kx 0 0 0 0

0 0 −J′ − J′
2 − J′

2 (1+ei kx ) 3J′ − h
2 0 − J′

2 0 0 0 0

0 0 0 0 − J′
2 0 3J′ − h

2 − J′
2 (1+e−i kx ) − J′

2 −J′ 0 0

0 0 0 0 J′ei kx − J′
2 − J′

2 (1+ei kx ) h
2 0 J′

2 0 0

0 0 0 0 0 0 − J′
2 0 h

2
J′
2 (1+e−i kx ) J′

2 −J′e−i kx

0 0 0 0 0 0 −J′ J′
2

J′
2 (1+ei kx ) h

2 0 − J′
2

− J′
2 ei ky J′ei ky 0 0 0 0 0 0 J′

2 0 h
2 − J′

2 (1+e−i kx )

0 − J′
2 ei ky 0 0 0 0 0 0 −J′ei kx − J′

2 − J′
2 (1+ei kx ) 3J′ − h

2
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Appendix C

Bosonization

This appendix gives more details on the computations of the bosonized operators from Chap-
ter IV. The conventions used for the signs in the expression of the fermionic fields change from
one textbook to another. We use the bosonization rules used in Ref. [26, 118].
In the first section we rewrite the Hubbard Hamiltonian in the continuum limit, in term of
fermionic fields. The second section is dedicated to the bosonization of the Hubbard Hamilto-
nian. Finally, in the third section, we add the lattice coupling terms, which requires a bosoniza-
tion with more harmonics [35–38, 205].

1 Low energy effective field theory of the Hubbard model

We are considering the Hubbard Hamiltonian:

H =−t
∑

σ, j
(c+σ, j cσ, j+1 +h.c.)+U

∑

j
n↑, j n↓, j +µ

∑

σ, j
nσ, j (C.1)

The ground state of the free part is obtained by filling all the single particles states in the interval
[−kF ,kF ]. Since the low-lying excitations are constructed by taking into account the modes with
wavevectors close to the Fermi points ±kF , we will decompose the fermionic field in left (−kF )
and right (kF ) components.

1.1 Continuum limit of Fermi operators

We consider fermionic fields with spin σ (σ =↑,↓) in 1+ 1 dimension that correspond to the
continuum limit of the discret fermionic creation/annihilation operators:

lim
a→0

cσ, jp
a

=ψσ(x) = e i kF,σxψσ,L(x)+e−i kF,σxψσ,R (x)+ . . . (C.2)

The dots stand for higher order terms that are needed to reproduce the Bethe ansatz result for
the correlation functions. We will introduce more terms when we include the lattice coupling.

As discussed in Chapter IV, one can write the mode expansion of the left and right fermionic
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fields in terms of the electrons and holes operators a(k) and b(k) around the Fermi point:

ψL,σ =
1

p
2π

∫0

−∞
dk

[
e−i k(t+x)aσ(k)+e−i k(t+x)b+

σ(k)
]

(C.3)

ψR,σ =
1

p
2π

∫∞

0
dk

[
e i k(t−x)aσ(k)+e−i k(t−x)b+

σ(k)
]

(C.4)

We are interested in t = 0 1 and the fields only depend on a space variable x = m · a, where
m ∈Z and a is the lattice spacing (a > 1/Λ, Λ is the cutoff discussed in Chapter IV).

Let us rewrite the products of creation/annihilation operators from the hopping term in
terms of fields:

1

a
c+σ, j cσ, j+1 = ψ+

σ(x)ψσ(x +a)

= e i kF,σa Jσ,L(x)+e−i kF,σa Jσ,R (x)

+ae i kF,σaψ+
σ,L(x)∂xψσ,L(x)+ae−i kF,σaψ+

σ,R (x)∂xψσ,R (x)

+e−i kF,σ(2x+a)ψ+
σ,L(x)ψσ,R (x)+e i kF,σ(2x+a)ψ+

σ,R (x)ψσ,L(x)

+ae i kF,σ(2x+a)ψ+
σ,R (x)∂xψσ,L(x)+ae−i kF,σ(2x+a)ψ+

σ,L(x)∂xψσ,R (x) (C.5)

The left and right currents Jσ,r (r = L,R) are fluctuations of the densities of the chiral fields:

Jσ,r (x) =ψ+
σ,r (x)ψσ,r (x) (C.6)

The number operators in the continuum limit reads:

1

a
nσ, j = ψ+

σ(x)ψσ(x)

= Jσ,L(x)+ Jσ,R (x)+e−i 2kF,σxψ+
σ,L(x)ψσ,R (x)+e i 2kF,σxψ+

σ,R (x)ψσ,L(x) (C.7)

1.2 Wave vectors

Under an applied magnetic field, the fermions from the ↑ and ↓ bands do not have the same
Fermi wave-vectors and one can define:

k+ = kF,↑+kF,↓ =πn

k− = kF,↑−kF,↓ =π〈M〉 (C.8)

Where n is the density n = Ne/N , and 〈M〉 the magnetization.
We will focus on systems with no magnetic field applied. The wave vectors simply become:

kF,↑ = kF,↓ = kF = n
π

2
(C.9)

k− = 0 (C.10)

k+ = nπ (C.11)

1We come back to this point later by introducing complex coordinates.
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1. Low energy effective field theory of the Hubbard model

1.3 Non-interacting model (U = 0)

We first focus on the gas of free fermions on a one-dimensional lattice with N sites with a chem-
ical potential µ that fixes the number of electrons Ne .

Htµ =−t
∑

σ, j
(c+σ,cσ, j+1 +h.c.)+µ

∑

σ, j
nσ, j (C.12)

In the following results, the terms that are oscillating are directly thrown away since they are
incommensurate and will disappear in thet large scale physics.

The Hamiltonian in continuum limit reads:

Htµ = −t
∑

σ

∫
d x

[
e i kF,σa Jσ,L(x)+e−i kF,σa Jσ,R (x)

+a
(
e i kF,σaψ+

σ,L(x)∂xψσ,L(x)+e−i kF,σaψ+
σ,R (x)∂xψσ,R (x)

)
+h.c.

]

+µ
∑

σ

∫
d x

[
Jσ,L(x)+ Jσ,R (x)

]
(C.13)

The chemical potential at zero temperature is equal to the Fermi energy:

µ= 2t cos(kF a) (C.14)

Therefore while summing the free fermions term with the chemical potential term, the currents
Jr cancel and we get:

Htµ =−t a
∑

σ

∫
d x

[
e i kF,σaψ+

σ,L(x)∂xψσ,L(x)+e−i kF,σaψ+
σ,R (x)∂xψσ,R(x)+h.c.

]
(C.15)

After integration we obtain in each spin sectors a massless Dirac Hamiltonian:

Htµ = i vF

∑

σ

∫
d x

[
ψ+

σ,R (x)∂xψσ,R (x)−ψ+
σ,L (x)∂xψσ,L(x)

]
(C.16)

The Fermi velocity vF plays the role of the velocity of light 2:

∂ε(k)

∂k

∣∣∣
k=kF

= 2t a sin(akF ) = vF (C.17)

1.4 With interaction (U 6= 0)

Let us now consider the interaction term:

HU =U
∑

j
n↑, j n↓, j (C.18)

2One notes that if a magnetic field was applied we would have different Fermi velocities vF,↑ and vF,↓ in each spin
sector.
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Appendix C. Bosonization

We use the expression of the number operators Eq. C.7 in order to rewrite the four fermions
products in terms of fermionic fields. After removing oscillatory terms we have:

HU = aU
∫

d x
[

(JR,↑+ JL,↑)(JL,↓+ JR,↓)

+
(
e i 2xk+ψ+

R,↑ψL,↑ψ
+
R,↓ψL,↓+h.c.

)
+

(
e i 2xk−ψ+

R,↑ψL,↑ψ
+
L,↓ψR,↓+h.c.

)]

= aU
∫

d x
[

(JR,↑+ JL,↑)(JL,↓+ JR,↓)

+
(
e i 4xkF ψ+

R,↑ψL,↑ψ
+
R,↓ψL,↓+h.c.

)
+

(
ψ+

R,↑ψL,↑ψ
+
L,↓ψR,↓+h.c.

)]
(C.19)

As long as the system is not half-filled (i.e. n 6= 1), the terms ∝ e i 4xkF are oscillating and can be
removed. The Hamiltonian becomes:

HU = aU
∫

d x
[

(JR,↑+ JL,↑)(JL,↓+ JR,↓)+
(
ψ+

R,↑ψL,↑ψ
+
L,↓ψR,↓+h.c.

)]
(C.20)

As detailed next, the spin sector is described by a sine-Gordon model. However the intercation
term is marginally irrelevant and the spin sector remains gapless.

At half-filling (n = 1), the terms ∝ e i 4xkF are commensurate. They correspond to the scatter-
ing of particles from one side of the Fermi surface to the other (i.e. two left electrons become
right, or vice-versa). This scattering process is called umklapp:

Humklapp = aU
∫

d x
(
e i 4xkF ψ+

R,↑ψL,↑ψ
+
R,↓ψL,↓+h.c.

)
(C.21)

After the bosonization a relevant interaction term remains in the charge sector due to the umk-
lapp and a charge gap appears at half-filling (Mott insulator).

2 Bosonization

2.1 Complex coordinates

We consider fields in 1+1 dimension with the complex coordinates:

z = t + i x

z̄ = t − i x (C.22)

The bosonic field φσ and its dual θσ are defined in terms of chiral left and right bosonic fields
that are respectively analytic and anti-analytic functions:

φσ(x, t ) =φσ(z, z̄) =φσ,R(z)+φσ,L(z̄) (C.23)

θσ(x, t ) = θσ(z, z̄) =φσ,R(z)−φσ,L(z̄) (C.24)

The derivatives with respect to z and z̄ are :

∂z =
1

2
(∂t − i∂x ) (C.25)

∂z̄ =
1

2
(∂t + i∂x ) (C.26)
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2. Bosonization

Using Eq. C.24, C.25 and C.26 we have:

∂zφσ(z, z̄) = ∂zφσ,R(z) (C.27)

∂z̄φσ(z, z̄) = ∂z̄φσ,L(z̄) (C.28)

2.2 Bosonization dictionnary

The left and right components of the fermionic fields ψσ,R and ψσ,L are given as a function of
the left and right bosonic fields φσ,R and φσ,L :

ψσ,R (z) =
1

p
2πa

ησ,R : e i
p

4πφσ,R (z) : (C.29)

ψσ,L(z̄) =
1

p
2πa

ησ,L : e−i
p

4πφσ,L(z̄) : (C.30)

The operators e iαφσ,r are called vertex operators.
The notation : e iαφσ,r : stands for normal ordering. It consists in putting all annihilation oper-
ators on the right of the creation operators in the expansion of the vertex operator. This pre-
scription allows to have a zero average value.
ησ,r (r = L,R) are the Klein factors that guaranty the anti-commutation of the bosonized
fermionic fields. We detail how to treat them in Section 2.3.

2.2.1 Correlation functions of bosonic fields

Let us remind the value of the correlators that are useful for the forthcoming calculations.
Chiral left and right bosons:

〈φσ,L(z̄)φσ,L(w̄)〉 = −
1

4π
ln(z̄ − w̄) (C.31)

〈φσ,R(z)φσ,R (w)〉 = −
1

4π
ln(z −w) (C.32)

Free bosonic field:

〈φσ(z, z̄)φσ(w, w̄)〉 =−
1

2π
ln |z −w | (C.33)

2.2.2 Normal ordered products of vertex operators

The products of fermionic fields become, after bosonization, products of vertex operators. If
the bosonic fields have different degrees or freedom (i.e. σ 6= σ′ or r 6= r ′) these products are
simple exponential products.
Otherwise, due to normal ordering, one has to take into account the value of the boson correla-
tor:

: e iαφσ,r (z) :: e iβφσ,r (w) : = : e i
(
αφσ,r (z)+βφσ,r (w)

)
: e−αβ〈φσ,r (z)φσ,r (w)〉 (C.34)

〈φσ,r (z)φσ′,r ′(w)〉 = −
1

4π
δσ,σ′δr,r ′ ln(z −w) (C.35)
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Appendix C. Bosonization

We are working with field operators O (z, z̄) that belong to a conformal field theory. Such oper-
ators scale as:

O (αz, ᾱz̄) = α−hᾱ−h̄O (z, z̄) (C.36)

∆ = h + h̄ (C.37)

s = h − h̄ (C.38)

h and h̄ are the left and right conformal dimensions. We will discuss later how important it is to
know the value of the operators dimensions.
If we apply to the operator O (z, z̄) a dilation (i.e. α= ᾱ), it scales as the sum of the left and right
dimensions, which is called the ordinary scaling dimension of the operator ∆:

O (αz,αz̄) =α−∆O (z, z̄) (C.39)

If we apply a rotation (i.e. α= e iθ and ᾱ= e−iθ), the operator scales as the difference of the right
and left dimensions, which is called the conformal spin of th operator, s:

O (e iθz,e−iθ z̄) = e i sθO (z, z̄) (C.40)

The value of the conformal dimensions can be obtained by calculating the two-points correla-
tion function of an operator:

〈O (z, z̄)O (w, w̄ )〉 =
1

(z −w)2h

1

(z̄ − w̄)2h̄
(C.41)

Since the vertex operators are scaling fields, one can compute their conformal dimension from
the exponents of the bosons Green function:

〈: e iβφσ(z,z̄) :
(

: e iβφσ(w,w̄ ) :
)†〉 = e−β2/(4π) ln |z−w |2

= |z −w |−β
2/(2π) (C.42)

=
1

|z −w |2h+2h̄
(C.43)

After identification, the dimensions of the chiral bosonic fields are:
h h̄ ∆

Right-moving boson φσ,R(z) β2/8π 0 β2/8π
Left-moving boson φσ,L(z̄) 0 β2/8π β2/8π

Free boson φσ(z, z̄) β2/8π β2/8π β2/4π

2.2.3 Bosonization of the currents

In order to calculate the currents Jσ,r , the normal ordering is achieved by using point-splitting:

Jσ,r (z) =: ψ+
σ,r (z)ψσ,r (z) := lim

ǫ→0

[
ψ+

σ,r (z +ǫ)ψσ,r (z)−〈ψ+
σ,r (z +ǫ)ψσ,r (z)〉

]
(C.44)
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2. Bosonization

For example, the right current is:

Jσ,R (z) =
η+σ,Rησ,R

2πa
lim
ǫ→0

(
: e−i

p
4πφσ,R (z+ǫ) :: e i

p
4πφσ,R (z) : −〈e i

p
4πφσ,R (z+ǫ)e i

p
4πφσ,R (z)〉

)

=
1

2πa
lim
ǫ→0

(
: e−i

p
4π

(
φσ,R (z+ǫ)−φσ,R (z)

)
: e4π〈φσ,R (z+ǫ)φσ,R (z)〉−〈e i

p
4πφσ,R (z+ǫ)e i

p
4πφσ,R (z)〉

)

=
1

2πa
lim
ǫ→0

(
: e−i

p
4π

(
ǫ∂zφσ,R+O (ǫ2)

)
: e− 4π

4π lnǫ−ǫ
−4π
4π

)

=
1

2πa
lim
ǫ→0

(1

ǫ

(
1− i

p
4π

(
ǫ∂zφσ,R +O (ǫ2)

)
−

1

ǫ

)

= −
i

p
π
∂zφσ,R (z) (C.45)

Similarly, the left currents reads:

Jσ,L(z̄) =
i

p
π
∂z̄φσ,L(z̄) (C.46)

The left and right currents are actually the conserved currents through a translation of the
lattice spacing a, φσ(x) →φσ(x +a) in the action of the free scalar boson.

The free part of the Hamiltonian (Eq. C.16) is also bosonized using the point-splitting:

: ψ+
σ,R (z)∂xψσ,R (z) : = lim

ǫ→0

[
ψ+

σ,R (z +ǫ)∂zψσ,R (z)−〈ψ+
σ,R (z +ǫ)∂zψσ,R (z)〉

]

∝
(
∂zφσ,R

)2 (C.47)

Similarity, one obtains:

: ψ+
σ,L(z̄)∂xψσ,L(z̄) :∝ (∂xφL)2 (C.48)

2.3 Klein factors

In order to preserve the anti-commutation relations of the bosonized fermionic fields, one adds
in front of the vertex operators Klein factors. We need four species of Klein factors since we have
four species of fermions. Klein factors present the following properties:

• Klein factors are real: η∗σ,r = ησ,r .

• Klein factors obey a Clifford algebra:

{
ησ,r ,ησ′,r ′

}
= 2δσ,σ′δr,r ′ (C.49)

As a consequence, we have (for simplicity, let us call {i , j ,k, l } = {↑ R ,↑ L,↓ R ,↓ L}):

ηiη j = −η jηi (C.50)

η∗i ηi = 1 (C.51)
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Appendix C. Bosonization

• Klein factor act on a Hilbert space that differs from the boson Hilbert space. The idea is to
diagonalize the Klein factors products, select one eigenstate and work in it. The products
of Klein factor hence simply become a constant. For example, the products of four Klein
factors the appear in the interaction terms have two possible eigenvalues: ±1. One has to
make sure to select the same Klein eigenstate in each term and then simply replace it by
±1.

• Representation: Since the minimal dimension of the Klein factors Clifford algebra is four
like Dirac matrices in 3+1 dimensions, one can use a representation in terms of tensor
products of Pauli matrices σi . Let us use the same representation of the Clifford algebra
as Sénéchal [27]:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(C.52)

ηR,↑ = σ1 ⊗σ1 =
(

0 σ1

σ1 0

)
=




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (C.53)

ηL,↑ = σ2 ⊗σ1 = i

(
0 −σ1

σ1 0

)
= i




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 (C.54)

ηR,↓ = σ3 ⊗σ1 =
(
σ1 0
0 −σ1

)
=




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 (C.55)

ηL,↓ = 1⊗σ2 =
(
σ2 0
0 σ2

)
= i




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 (C.56)

2.4 Charge and spin sectors

So far we gave bosonization rules terms of ↑ and ↓ bosons. Before rewriting the Hamiltonian,
let us define a more meaningful base, in terms of charge and spin bosons. For this we use the
expression of the dressed charge matrix proposed by Frahm and Korepin [37, 38].

2.4.1 The dressed charge matrix

The dressed charge matrix Z is given by:

Z =
(

Zcc Zcs

Zsc Zss

)
(C.57)
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2. Bosonization

The coefficients are function of the repulsion U , the filling n and eventually the magnetic field:
Zi j = Zi j (U ,n,h).

The spins and charge boson are related to the ↑ and ↓ bosons as:

(
φc

φs

)
=

1

det Z

(
Zss Zss −Zcs

Zsc Zsc −Zcc

)(
φ↑
φ↓

)
(C.58)

The same with the dual bosons:
(
θc

θs

)
=

(
Zcc −Zsc Zsc

Zss −Zcs −Zss

)(
θ↑
θ↓

)
(C.59)

Let us focus on systems with no magnetic field applied. The dressed charge matrix is simpler:

Zh=0 =
(

ξ 0
ξ/2 1/

p
2

)
(C.60)

The coefficients only depends on the repulsion and filling: ξ= ξ(U ,n).

The spin and charge bosons and their duals are defined as:

φc =
1

ξ
(φ↑+φ↓) , θc =

ξ

2
(θ↓+θ↑) (C.61)

φs =
1
p

2
(φ↑−φ↓) , θs =

1
p

2
(θ↑−θ↓) (C.62)

These bosonic fields need to obey the symmetries of the charge and spin sectors. In the spin
sector, the SU (2) symmetry imposes:

φs =φs +m2πRs , m ∈Z , Rs = 1/
p

2π (C.63)

Where Rs is the compactification radius of the spin sector. Since we consider systems with no
magnetic field we have a Luttinger parameter Ks = 1 in the spins sector.
The charge sector is more complicated since it depends on the dressed charge matrix coefficient
ξ(U ,n). The Luttinger parameter is Kc = ξ2/2 and the compactification radius Rc =

p
π/|ξ|.

2.4.2 Hamiltonian in term of spin and charge boson

Let us rewrite the bosonized Hamiltonian in term of the spins and charge bosons. We just give
a general form and do not detail the calculations nor the values of the coupling constant since
we will actually use the exact solution from the Bethe ansazt[37, 38, 205].

Using the expressions of the bosonized currents, the free Hamiltonian Eq.IV.35 can be rewrit-
ten:

H free =
vF

4

∑

j=s,c

∫(
(∂xφ j )2 + (∂xθ j )2

)
(C.64)
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Including the interaction, one rewrites the charge sector as:

Hc =
vF

2

∫
d x

[ξ2

2
(∂xφc)2 +

2

ξ2 (1−
aU

vπ
)(∂xθc )2] (C.65)

This is then simplified by defining rescaled fields:

Hc =
vc

2

∫
d x

[
(∂x φ̃c)2 + (∂x θ̃c )2] (C.66)

φ̃c =
√

Kcφc (C.67)

θ̃c =
√

1

Kc
θc (C.68)

Kc =
2

ξ2

(
1−

aU

πvF

)1/2 (C.69)

vc = vF
ξ2

2
Kc (C.70)

where Kc is the Luttinger parameter and vc the velocity of the charge sector. Note that this
perturbative solution gives a different value of Kc than the value obtained from the exact
solution Kc = ξ2/2.

One can perform the same treatent in the spin sector:

Hs =
vs

2

∫
d x

[ 1

Ks
(∂xφs)2 +Ks (∂xθs )2]+ gs

∫
d x cos

(p
8πφs

)
(C.71)

Ks = 1 (C.72)

(C.73)

The spin sector a described by a sine-Gordon model. However the cosine term in not relevant.
As a consequence, as long as no magnetic field is applied, the spin sector remains gapless and
is simply described by a free boson.

The charge sector is gapless excepted at half-filling where the umklapp adds a cosine term:

Humklapp = gc

∫
d x cos

(
ξ
p

4πφc
)

(C.74)

The charge sector is gapless as long as the filling differs from one-half. At one half, it corre-
sponds to a sine-Gordon model with a relevant cosine term.

One also notes that the velocities in the different sectors, vs and vc , are not the same.

3 Fermion-lattice interaction: bosonization with more

harmonics

We focus on quarter-filled systems (n = 1/2) that are good models for quasi-one-dimensional
organic conductors. Adiabatic phonons couple the fermions to the lattice. We consider two
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3. Fermion-lattice interaction: bosonization with more harmonics

kinds of phonons: Holstein on-site phonons that act as a modulation of the chemical potential
and Peierls phonons that modulate the bonds lengths. The lattice coupling induce new relevant
terms that we will recover using bosonization rules with more harmonics.

3.1 New bosonic expansion of the fermionic fields

We use the bosonization rules that were used by Cabra et al. [36]. This rules were built from the
expression of the correlations functions of the Hubbard model [37, 38]. It consists in including
subleading terms to the expression of the bosonized fermionic fields Eq. C.29 and C.30. The
bosonized fermions operators are given by:

ψ↓(x) = r1e−i kF,↓xψR,↓(x)

+ r2e−i (k++kF,↑)xψR,↓(x)ψ+
L,↑(x)ψR,↑(x)

+ r3e i (k−+kF,↑)xψR,↓(x)ψ+
R,↑(x)ψL,↑(x)+ . . .

+ l1e i kF,↓xψL,↓(x)

+ l2e i (k++kF,↑)xψL,↓(x)ψ+
R,↑(x)ψL,↑(x)

+ l3e−i (k−+kF,↑)xψL,↓(x)ψ+
L,↑(x)ψR,↑(x)+ . . . (C.75)

Using:

ψR,σ(x) = ηR,σe i
p

4πφR,σ(x)

ψL,σ(x) = ηL,σe−i
p

4πφL,σ(x) (C.76)

it becomes:

ψ↓(x) = e−i kF,↓x e i
p

4πφ↓,R (x)(r1ηR,↓+ r2ηR,↓ηL,↑ηR,↑e−i 2kF,↑x e i
p

4πφ↑(x)

+ r3ηR,↓ηR,↑ηL,↑e i 2kF,↑x e−i
p

4πφ↑(x) + . . .
)

e i kF,↓x e−i
p

4πφ↓,L(x)(l1ηL,↓+ l2ηL,↓ηR,↑ηL,↑e i 2kF,↑x e−i
p

4πφ↑(x)

+ l3ηL,↓ηL,↑ηR,↑e−i 2kF,↑x e i
p

4πφ↑(x) + . . .
)

(C.77)

The dots stand for higher order harmonic that lead to irrelevant terms. ψ↑ is obtained by
converting ↓ into ↑ in the previous expression.

The constant ri and li are unknown numerical constants which were not studied explicitly
from the Bethe ansatz results [37, 38, 205]. At lowest order, ri and li (i = 2,3) are linear in U , and
only r1 = l1 = 1/

p
2πa remains, which is in agreement with the bosonization with one harmonic

described in the previous section.

137



Appendix C. Bosonization

3.1.1 Terms r1l1

Let us detail the calculation of the first term, that corresponds to the product of the first har-
monics together. We call b the product of Klein factors in front, here b = 1⊗σ3:

{ψ+
↓ (x +m)ψ↓(x)}r1l1 = ibr1l1

[
e i (kF,↓(2x+m))e−i

p
4πφR,↓(x+m)e−i

p
4πφL,↓(x)

−e−i kF,↓(2x+m)e i
p

4πφL,↓(x+m)e i
p

4πφR,↓(x)]

= ibr1l1
[
e i (kF,↓(2x+m))e−i [

p
4πφ↓+m

p
4π∂zφR,↓] −e−i kF,↓(2x+m)e i [

p
4πφ↓+m

p
4π∂z̄φL,↓]]

= ibr1l1
[
e i (kF,↓(2x+m))e−i

p
4πφ↓(1+ ...)−e−i kF,↓(2x+m)e i

p
4πφ↓(1+ ...)

]

∼ −2br1l1 sin
(
kF,↓(2x +m)−

p
4πφ↓

)

{ψ+
↓ (x)ψ↓(x +m)}r1l1 = ibr1l1

[
e i kF,↓(2x+m)e−i

p
4πφR,↓(x)e−i

p
4πφL,↓(x+m)

−e−i kF,↓(2x+m)e i
p

4πφL,↓(x)e i
p

4πφR,↓(x+m)]

∼ ibr1l1
[
e i kF,↓(2x+m)e−i

p
4πφ↓ −e−i kF,↓(2x+m)e i

p
4πφ↓

]

= −2br1l1 sin
(
kF,↓(2x +m)−

p
4πφ↓

)

Adding the complex conjugates we get:

{ψ+
↓ (x +m)ψ↓(x) +h.c.}r1l1 = −4br1l1 sin

(
kF,↓(2x +m)−

p
4πφ↓

)

{ψ+
↑ (x +m)ψ↑(x) +h.c.}r1l1 = −4br1l1 sin

(
kF,↑(2x +m)−

p
4πφ↑

)

We finally obtain in term of ↑ and ↓ bosons:

Om,r1l1(x) = {ψ+
↓ (x +m)ψ↓(x) +ψ+

↑ (x +m)ψ↑(x) +h.c.}r1l1

= −8br1l1 sin
(
k+(x +

m

2
)−

p
π[φ↑+φ↓]

)
cos

(
k−(x +

m

2
)−

p
π[φ↑−φ↓]

)
(C.78)

Since no magnetic field is applied, k− = 0 and we obtain in term of spin and charge boson:

Om,r1l1(x) =−8br1l1 sin
(
kF (2x +m)−ξ

p
πφc

)
cos

(p
2πφs

)
(C.79)
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3.1.2 Terms r1l2 + r2l1

Let us detail the calculation of the second term, that corresponds to the product of the first with
the second harmonics. Again, we call b the product of Klein factors in front, here b = 1⊗σ3:

{ψ+
↓ (x +m)ψ↓(x)}r1l2+r2l1 = ibr1l2

[
e i (2k+x+kF,↓m)e−i

p
4πφR,↓(x+m)e−i

p
4πφL,↓(x)e−i

p
4πφ↑(x)

−e−i (k+(2x+m)+kF,↑m)e i
p

4πφL,↓(x+m)e i
p

4πφ↑(x+m)e i
p

4πφR,↓(x)]

+ibr2l1
[
e i (k+(2x+m)+kF,↑m)e−i

p
4πφR,↓(x+m)e−i

p
4πφ↑(x+m)e−i

p
4πφL,↓(x)

−e−i (2k+x+kF,↓m)e i
p

4πφL,↓(x+m)e i
p

4πφR,↓(x)e i
p

4πφ↑(x)]

= ibr1l2
[
e i (2k+x+kF,↓m)e−i

p
4π[φ↓+φ↑+m∂zφR,↓]

−e−i (k+(2x+m)+kF,↑m)e i
p

4π[φ↓+φ↑+m∂z̄φL,↓+m∂zφR,↑+m∂z̄φL,↑]]

+ibr2l1
[
e i (k+(2x+m)+kF,↑m)e−i

p
4π[φ↓+φ↑+m∂zφR,↓+m∂z̄φL,↑+m∂zφR,↑]

−e−i (2k+x+kF,↓m)e i
p

4π[φ↓+φ↑+m∂z̄φL,↓]]

= ibr1l2
[
e i (2k+x+kF,↓m)e−i

p
4π[φ↓+φ↑] −e−i (k+(2x+m)+kF,↑m)e i

p
4π[φ↓+φ↑]]

+ibr2l1
[
e i (k+(2x+m)+kF,↑m)e−i

p
4π[φ↓+φ↑] −e−i (2k+x+kF,↓m)e i

p
4π[φ↓+φ↑]]

{ψ+
↓ (x)ψ↓(x +m)}r1l2+r2l1 = ibr1l2

[
e i (k+(2x+m)+kF,↑m)e−i

p
4πφR,↓(x)e−i

p
4πφL,↓(x+m)e−i

p
4πφ↑(x+m)

−e−i (2k+x+kF,↓m)e i
p

4πφL,↓(x)e i
p

4πφ↑(x)e i
p

4πφR,↓(x+m)]

+ibr2l1
[
e i (2k+x+kF,↓m)e−i

p
4πφR,↓(x)e−i

p
4πφ↑(x)e−i

p
4πφL,↓(x+m)

−e−i (k+(2x+m)+kF,↑m)e i
p

4πφL,↓(x)e i
p

4πφR,↓(x+m)e i
p

4πφ↑(x+m)]

= ibr1l2
[
e i (k+(2x+m)+kF,↑m)e−i

p
4π[φ↓+φ↑] −e−i (2k+x+kF,↓m)e i

p
4π[φ↓+φ↑]]

+ibr2l1
[
e i (2k+x+kF,↓m)e−i

p
4π[φ↓+φ↑] −e−i (k+(2x+m)+kF,↑m)e i

p
4π[φ↓+φ↑]]

Adding the complex conjugates:

{ψ+
↓ (x +m)ψ↓(x)+h.c.}r1l2+r2l1 = −2b(r1l2 + r2l1)

[
sin

(
2k+x +mkF,↓−

p
4π[φ↓+φ↑]

)

+sin
(
k+(2x +m)+mkF,↑−

p
4π[φ↓+φ↑]

)]

{ψ+
↑ (x +m)ψ↑(x)+h.c.}r1l2+r2l1 = −2b(r1l2 + r2l1)

[
sin

(
2k+x +mkF,↑−

p
4π[φ↓+φ↑]

)

+sin
(
k+(2x +m)+mkF,↓−

p
4π[φ↓+φ↑]

)]

We finally obtain in term of ↑ and ↓ bosons:

Om,(r1l2+r2l1)(x) =−8b(r1l2+r2l1)cos
(m

2
k−

)
cos

(m

2
k+

)
sin

(
k+(2x+m)−2

p
π[φ↓+φ↑]

)
(C.80)

Since no magnetic field is applied, k− = 0 and we obtain in term of spin and charge boson:

Om,(r1l2+r2l1)(x) =−8b(r1l2 + r2l1)cos
(
mkF

)
sin

(
2kF (2x +m)−2ξ

p
πφc

)
(C.81)
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3.1.3 Terms r1l3 + r3l1

The products of the first with the third harmonics may be marginal and hence needs to be
calculated. This term is found to be:

Om,(r1l3+l1r3)(x) ∝ (r1l3 + l1r3)sin
(m

2
k−

)
sin

(m

2
k+

)
sin

(
k−(2x +m)−2

p
π[φ↑−φ↓]

)
(C.82)

This term is proportional to sin(k0) = 0. Therefore, as long as no magnetic field is applied, this
term cancels. Otherwise it is marginally irrelevant.

3.2 Fermion-lattice coupling term

We are interested in quarter-filled systems (n = 1/2) whose Fermi wavevector is kF = π/4 (no
magnetic field applied). The fermion-lattice operator is the sum of the terms Eq. C.79 and C.81.
We use a parameter m that takes the values m = 0 for Holstein couplings and m = 1 for Peierls
couplings. It reads:

O1/2
m (x) =−λ11 sin

(π
2
·x+m ·

π

4
−ξ

p
πφc

)
cos

(p
2πφs

)
−λ12 sin

(
π·x+m ·

π

2
−2ξ

p
πφc

)
(C.83)

Where

λ11 = 8r1l1 ·1⊗σ3 (C.84)

λ12 = 8(r1l2 + r2l1) ·cos
(
m

π

4

)
·1⊗σ3 (C.85)

The Klein factor products for these two terms are given by 1⊗σ3. We are sure to work in the
same eigenstate for both terms and we are free to pick one eigenvalue between ±1 so as to
replace the product.

The scaling dimensions of these two terms depend on the dressed charge matrix coefficient
ξ. The value of ξ as a function of the repulsion and filling was studied by Frahm and Korepin
[37, 38]:

U =∞ U = 0
1 ≤ ξ(U ,n) ≤

p
2

3/4 ≤ ∆11 = ξ2/4+1/2 ≤ 1
1 ≤ ∆12 = ξ2 ≤ 2

(C.86)

Note that ∆11 <∆12 is equivalent to ξ <
p

2/3, which is never reached. Though the first term is
always more relevant.

Under a magnetic field, one should also take into account a radiatively generated term
coming from the normal-ordered product of the λ11 and λ12 terms. However for vanishing
magnetic field, this term becomes ∼ λ3 cos

(
2
p

2πφs
)
. Its dimension is ∆λ3 = 2 for all fillings.

This term is marginally irrelevant [36] and will not be treated.
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3. Fermion-lattice interaction: bosonization with more harmonics

The lattice distortion is such that is avoid these two relevant terms to be cancelled by fluctu-
ations. Therefore it exhibits two harmonics, one in 2kF and one in 4kF :

δ(x) = δ2 cos(2kF x +β2)+δ4 cos(4kF x)

= δ2 cos(
π

2
x +β2)+δ4(−1)x (C.87)

The elastic energy that corresponds to this distortion is:

Helas =
K

2

∫
d x

(
δ(x)

)2 =
NK

2

(1

2
δ2

2 +δ2
4

)
(C.88)

To simplify the notation, we perform the following changes 3:

φs ≡
p

2πφs (C.89)

φc ≡
p
πξφc (C.90)

For Holstein on-site (m = 0) lattice coupling, we obtain:

O1/2
0 δ(x) =

δ2λ11

2

∫
d x sin(φc +β2)cos(φs)−δ4λ12

∫
d x cos(2φc ) (C.91)

For Peierls (m = 1) lattice coupling, we obtain:

O1/2
1 δ(x) =−

δ2λ11

2

∫
d x sin(

π

4
−φc −β2)cos(φs )−

δ4λ12
p

2

2

∫
d x cos(2φc) (C.92)

These operators are used in Chapter IV. One can see that the effect of lattice distortions is to
couple the spin and charge sector, even with no magnetic field applied.

3This is equivalent with changing the spin and charge compactification radii.
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ABSTRACT
This thesis deals with the effects of phonons, in the adiabatic limit, on low-dimensional
strongly-correlated systems. In a first part, we focus on spin systems in the classical limit (large
S). We study the frustrated J1 − J2 chain coupled with lattice distortions and under an applied
magnetic field. By means of analytical and numerical (Monte-Carlo) methods, we show that,
for a wide range of the spin-lattice coupling, a magnetization plateau at 1/3 of the saturated
magnetization is stabilized. We then study the two-dimensional frustrated Shastry-Sutherland
lattice. A magnetization pseudo-plateau is found at 1/3 of the saturated magnetization for non-
zero temperature. Classical spin-waves and Monte-Carlo simulations show that this pseudo-
plateau is due to the entropic selection of a particular collinear configuration through the Or-
der by Disorder effect. By means of Monte-Carlo simulations, we obtain a phase diagram in
the plane magnetic field versus temperature. The second part is dedicated to the quarter-filled
Hubbard chain. Both Holstein (on-site) and Peierls distortions are considered. We derive a
bosonic Hamiltonian in the low-energy limit by means of the bosonization technique. We in-
clude more harmonics in the bosonic expansion of the fermionic fields and show that the lattice
coupling couples the spin and charge degrees of freedom. We qualitatively recover tetramerized
and dimerized phases that were obtained in previous numerical works.
Keywords: Low-dimensional strongly correlated systems, frustrated systems, adabatic
phonons, Order by Disorder , Hubbard model, bosonization, organic conductors.

RÉSUMÉ
Cette thèse porte sur l’effet de phonons, dans la limite adiabatique, sur des systèmes de basse

dimensionalité fortement corrélés. Dans une première partie, nous considérons uniquement
des systèmes de spins classiques (limite grand S). Nous étudions la chaîne de spins frustrés
J1 − J2 couplée avec des distorsions du réseau et en présence d’un champ magnétique. Par
des méthodes analytiques et numériques (Monte-Carlo), nous montrons que pour une large
gamme de couplage spin-réseau un plateau d’aimantation est stabilisé à 1/3 de l’aimantation
de saturation. Nous étudions ensuite un réseau frustré à deux dimensions, le réseau de Shastry-
Sutherland. Nous trouvons un pseudo-plateau d’aimantation à 1/3 de l’aimantation de satura-
tion à température non-nulle. Nous montrons, via des ondes de spins classiques et des simu-
lations Monte-Carlo, que ce pseudo-plateau est dû à une sélection entropique d’une configu-
ration colinéaire à travers l’effet d’Ordre par le Désordre. Nous obtenons par des simulations
Monte-Carlo un diagramme de phase en fonction de la température et du champ appliqué. La
seconde partie passe en revue le travail effectué sur la chaîne de Hubbard quart-remplie. Nous
considérons des distorsions de Holstein (sur site) et de Peierls. Nous dérivons un Hamiltonien
bosonique dans la limite basse énergie en incluant davantage d’harmoniques aux champs fer-
mioniques et montrons que le couplage avec le réseau couple les degrés de liberté de charge
et de spin. Nous retrouvons qualitativement les phases tétra et dimérisées qui ont été obtenues
dans des travaux numériques antérieurs.
Mots-clés : Systèmes de basse dimensionalité fortement corrélés, systèmes frustrés, phonons
adiabatiques, Ordre par le Désordre, modèle de Hubbard, bosonisation, conducteurs orga-
niques.
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