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Résumé - Summary  

 

Le travail décrit dans cette thèse porte sur le développement d’une nouvelle approche 

informatique favorisant l’intégration d’algorithmes complémentaires, de données biologiques 

ainsi que l’expertise humaine dans le but de la découverte de connaissances. En dépit des 

analyses bioinformatique traditionnelles qui ont largement contribué à l’extraction 

d’informations pertinentes, le contexte actuel, caractérisé d’une part par une variété de 

données tant quantitativement que qualitativement, et d’autre part par l’impossibilité  

d’automatiser l’expertise humaine pour les traiter, rend l’exploitation de ces données très 

difficile et complexe. Dans ce travail, on introduit la notion de système expert basé sur la 

connaissance et son application en Bioinformatique appliqué au problème des alignements 

multiples de séquences protéiques, à travers le développement d’une application AlexSys. 

La société de l’information et la dynamique de la découverte de connaissance 

Le 21ème siècle nous a donné accès à un large éventail de données résultant de 

technologies à haut débit dans des domaines tels que la génomique, transcriptomique, 

protéomique, interactomique, etc .. Cette large gamme de données constitue une source 

importante pour élucider, au niveau des systèmes, des réseaux moléculaires complexes 

impliqués dans des processus fondamentaux de la vie. Un facteur essentiel pour bien mener 

ces études réside en la faculté à organiser et valider ces données brutes, extraire  les 

informations les plus importantes, inférer de nouvelles hypothèses et théories ainsi que 

présenter ces connaissances aux biologistes de manière fluide et intuitive. 
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Pour ce faire, nous devons clairement définir les différences qui existent entre données, 

informations et connaissances, qui sont trois concepts différents mais souvent employés d’une 

manière confuse. Les données peuvent être définies comme une liste de faits ou 

d’observations sans contexte ni sens. Nous devons définir le contexte ainsi que les relations 

qui existent entre ces données afin d’en extraire des informations utiles. Ainsi, l’information 

peut être définie comme étant des données organisées qui donnent un sens à travers la 

définition de leurs connexions. A un niveau plus évolué, la connaissance représente notre 

capacité à intégrer et à assimiler ces informations. 

Notre aptitude à acquérir de la connaissance afin de contribuer à de nouvelles 

découvertes biologiques dépend de notre prédisposition à combiner et à corréler des données à 

des proportions et échelles différentes. A titre d’exemple, les séquences biologiques doivent 

être intégrées à des données structurales et informationnelles, mais également des données 

d’expression, des réseaux d’interactions, des données phénotypiques et cliniques, etc .. Il est 

donc clair que de nouvelles approches bioinformatiques sont nécessaires pour  régir ces 

concepts dans un contexte de biologie systémique et intégrative.   

Des données à la connaissance : l’intelligence artificielle en bioinformatique 

Le chemin vers la connaissance à travers l'exploration de données, l'intégration et 

l'extraction d'information est un modèle commun dans de nombreux domaines, allant du 

monde des affaires et de la culture, vers la recherche scientifique. Récemment, des méthodes 

d'intelligence artificielle ont été appliquées dans ces domaines, afin de reconnaître 

automatiquement les modèles et d'apprendre des concepts et des règles à partir de données, en 

utilisant par exemple des méthodes d'inférence, d'ajustement du modèle, ou d’acquérir des 

connaissances à travers des exemples. Ces méthodes constituent une approche 

complémentaire aux méthodes informatiques classiques. Ces systèmes «intelligents» diffèrent 
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de la programmation classique par le fait qu'ils adaptent leur comportement en réaction aux 

données qu'ils reçoivent comme entrée. L'entrée peut être par exemple, des données de bases 

de données relationnelles (apprentissage supervisé / non supervisé), ou une série de données 

d’apprentissage dont les résultats sont connus (apprentissage par renforcement). 

Les systèmes experts (souvent connus sous le nom de systèmes basés sur la 

connaissance) peuvent être construits par l’intégration d’une expertise humaine, représentée 

par une combinaison de connaissances théoriques dans un domaine donné et une collection de 

règles heuristiques de résolution de problèmes dont l’efficacité a été démontrée d’une manière 

expérimentale. La connaissance est alors transformée en un format que l'ordinateur peut 

utiliser pour résoudre des problèmes similaires. Ainsi, un système expert peut être décrit 

comme étant un programme informatique qui simule le jugement et le comportement des 

experts dans un domaine particulier et utilise leurs connaissances pour analyser et résoudre 

automatiquement les problèmes. 

Développement d’un système expert pour les alignements multiples des séquences 

Grâce au travail réalisé dans cette thèse, un système expert basé sur la connaissance a 

été élaboré et appliqué à la construction et l'analyse des alignements multiples de séquences 

protéiques. L’analyse des protéines représente un cas d'étude idéal pour un certain nombre de 

raisons dont les suivant : 

• Les protéines sont des composants essentiels et incontournables en biologie 

moléculaire, à l’origine d'une gamme impressionnante de fonctions essentielles, comme la 

catalyse, le transport des nutriments, la reconnaissance et la transmission des signaux, etc 

Disposant d’une protéine non encore caractérisée ou annotée, l'analyse de sa séquence 
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d'acides aminés, par l'intermédiaire d’alignements multiples, peut révéler des informations 

importantes sur sa structure 3D et de son rôle fonctionnel dans la cellule. 

• Les bases de données de séquences de protéines sont en croissance exponentielle et 

représentent désormais une source importante de données brutes. Néanmoins, un certain 

nombre de problèmes ont été identifiés. Les séquences ne sont pas équitablement réparties, 

par exemple, certains organismes modèles et des familles de protéines fonctionnellement 

importantes sont plus largement étudiés que d’autres. Les bases de données contiennent 

également un grand nombre d'artefacts, tels que les fragments de séquences ou des séquences 

mal prédites. 

• l'analyse de séquences protéiques est l'un des domaines les plus étudiés en 

bioinformatique. De nombreux algorithmes d'alignement ont été développés en réponse aux 

défis posés par les nouvelles collections de données à grande échelle. Une comparaison de 

plusieurs de ces méthodes, basée sur un ensemble d’alignements de référence, a mis en 

exergue le fait qu'aucun algorithme, utilisé seul, n’a pas été capable de construire des 

alignements de qualité pour tous les cas proposés par les données. 

Ainsi, l'alignement multiple des protéines est une étape essentielle, rendue complexe par 

la taille et la qualité des données disponibles et la grande variété d’algorithmes qui ont été 

développés. Toutefois, nous avons acquis, durant ces années, une expertise importante dans ce 

domaine qui est maintenant suffisamment mature pour le développement d’applications 

orientées système expert. Les objectifs de cette thèse sont de mettre au point un système 

expert pour tester, évaluer et optimiser toutes les étapes de la construction et l'analyse d'un 

alignement multiple. Ceci a été réalisé par une combinaison de différentes approches 

algorithmiques complémentaires et l'intégration de séquences hétérogènes, de données 

structurales et fonctionnelles. 
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L’architecture utilisée pour le développement du système expert : UIMA 

La première étape dans la conception de notre système expert a été le choix d'une 

architecture de développement appropriée. Une première étude des systèmes disponibles a 

permis d’identifier un certain nombre de possibilités, y compris (i) les "shells" par exemple C 

Language Integrated Production System (CLIPS) ou le Java Expert System Shell (JESS), (ii) 

la construction d'un système expert personnalisé en utilisant C ou Prolog. Nous avons choisi 

UIMA (Unstructured Information Management Architecture), initialement développé par 

IBM, qui fournit un système approprié pour la gestion dynamique de l'information par 

l'intégration d'outils d'analyse spécifiques. Les outils à utiliser dans une situation donnée sont 

choisis par des modules spéciaux qui décident du choix des algorithmes les plus appropriés à 

utiliser selon le type d'informations traitées (processus dirigé par les données et non par les 

algorithmes). 

En utilisant cette architecture, un prototype de système expert a été conçu avec une 

organisation à trois couches: (i) la collecte de données (ii) l'annotation de données et 

l'extraction de l’information et (iii) la construction de l’alignement. Le prototype a fourni une 

preuve de concept pour démontrer la pertinence de l’utilisation de UIMA pour la construction 

de systèmes experts. 

Construction de la base de connaissance 

Une étape capitale dans tout système expert consiste en  la construction de la base de 

connaissances. Dans le cas d’AlexSys, nous avons exploité l'expertise acquise au sein de notre  

groupe, concernant l'évaluation et la comparaison des algorithmes d'alignement. La base de 

connaissances est donc élaborée en utilisant des ensembles de séquences qui ont servi à la 

construction d’alignements de référence (BaliBase, OxBench) qui ont été construits par des 
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programmes d’alignement multiple et corrigés manuellement par des experts du domaine. En 

outre, un nouvel ensemble de 230 alignements de référence a été ajouté qui introduit plus de 

cas de figures difficile, ce qui représente des problèmes typiques rencontrés lors de 

l'alignement de séquences à grande échelle. Une fonction objective a été définie pour mesurer 

la qualité des alignements générés par rapport aux alignements de référence, et pour 

déterminer les ensembles de données servant à  l'algorithme d'apprentissage décrit ci-dessous. 

En ce basant sur des connaissances antérieures, un certain nombre d'attributs a été 

identifié qui caractérise les séquences utilisées pour l’apprentissage au sein d’AlexSys, 

comme à titre d’exemple le nombre des séquences dans un ensemble, la longueur des 

séquences, le nombre de structures / domaines fonctionnels, l'hydrophobicité, etc 

L’apprentissage automatique 

Un de nos principaux objectifs lors du développement d’AlexSys était d'améliorer 

l'efficacité de la construction d'alignement multiple, en sélectionnant les programmes les plus 

appropriés à utiliser le plus tôt possible dans le processus d'alignement. Pour ce faire, un 

«moteur d'inférence intelligente» a été construit pour prédire a priori les performances de 6 

programmes différents. Les programmes ont été sélectionnés connaissant leur capacité à bien 

aligner des séquences et du fait de la complémentarité de leurs algorithmes. Les règles 

utilisées dans le moteur d'inférence ont été élaborées en utilisant 348 cas de test d'alignement 

dans la base de connaissances. Basée uniquement sur les attributs prédéfinis de l'ensemble des 

séquences à aligner, nous identifions les programmes d’alignement les plus appropriés et qui 

sont les plus susceptible de produire un alignement de qualité, en utilisant un algorithme 

d'apprentissage automatique. La performance de certains algorithmes d'apprentissage 

automatique a été évaluée dans une série d'expériences, aboutissant à la définition d'un 
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problème de classification binaire et le choix d'un arbre de décision comme méthode finale à 

implémenter dans AlexSys 

Evaluation du système expert 

La précision de prédiction du moteur d’inférence implémenté dans AlexSys a été 

évaluée dans un essai à grande échelle, en utilisant des alignements multiples construits dans 

le cadre d’une nouvelle version du benchmark BaliBase. Deux approches différentes ont été 

testées, une fondée sur des probabilités et une fondée sur des règles, pour identifier les 

algorithmes d’alignement les plus appropriés à utiliser pour chaque ensemble de séquences. 

Le moteur d'inférence basé sur la probabilité a donné lieu à une plus grande précision que le 

système fondé sur des règles. La différence au niveau de la qualité de l'alignement entre ces 

deux méthodes peut être expliquée par les connaissances de base construite dans les règles, ce 

qui favorise en premier lieu les programmes d’alignement plus rapides au dépend des 

programmes d’alignement plus précis. 

L'efficacité et la précision du processus de construction d'alignement multiple ont 

ensuite été évaluées en utilisant les alignements de référence en comparaisons avec les 

programmes d’alignements utilisés seuls pour traiter les séquences. En termes de précision 

d'alignement, les deux méthodes mises en œuvre dans AlexSys (probabilité et règles) 

permettent d’aboutir à des alignements ayant des scores significativement plus élevés que la 

plupart des programmes existants. Un seul programme donne lieu à des scores d’alignements 

significativement plus élevés que AlexSys, mais qui nécessité près de 3 fois plus de temps  

par rapport à AlexSys. Nos résultats sont donc très prometteurs et le système peut être utilisé 

pour construire des alignements multiples de qualité supérieure en un temps «acceptable» 

pour les projets à haut débit apportant ainsi un réel compromis entre qualité et rapidité 

d’exécution. 
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Conclusions et perspectives  

L'objectif de ce projet de thèse a été le développement d'un système expert afin de 

tester, évaluer et d'optimiser toutes les étapes de la construction et l'analyse d'un alignement 

multiple de séquences. Le nouveau système a été validé en utilisant des alignements de 

référence et apporte une nouvelle vision pour le développement de logiciels en 

bioinformatique: les systèmes experts basés sur la connaissance. 

L'architecture utilisée pour construire le système expert est très modulaire et flexible, 

permettant à AlexSys d'évoluer en même temps que de nouveaux algorithmes seront mis à 

disposition. Ultérieurement, AlexSys sera utilisé pour optimiser davantage chaque étape du 

processus d'alignement, par exemple en optimisant les paramètres des différents programmes 

d’alignement. Le moteur d'inférence pourrait également être étendu à identification des 

combinaisons d'algorithmes qui pourraient fournir des informations complémentaires sur les 

séquences. Par exemple, les régions bien alignées par différents algorithmes pourraient être 

identifiées et regroupées en un alignement consensus unique. Des informations structurales et 

fonctionnelles supplémentaires peuvent également être utilisées pour améliorer la précision de 

l’alignement final. Enfin, un aspect crucial de tout outil bioinformatique consiste en son 

accessibilité et la convivialité d’utilisation. Par conséquent, nous sommes en train de 

développer un serveur web, et un service web, nous allons également concevoir un nouveau 

module de visualisation qui fournira une interface intuitive et conviviale pour toutes les 

informations récupérées et construites par AlexSys. 
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Summary 

The work described in this thesis concerns the development of a new vision of software 

in bioinformatics, emphasizing the exploitation of complementary computer algorithms, 

biological data and human expertise, for the purposes of knowledge discovery. Although 

traditional bioinformatics analyses have provided the basis for the extraction of much useful 

information, today’s data-rich context means that the knowledge discovery process is 

complicated on the one hand, by the huge amount of heterogeneous data available, and on the 

other hand, by the next-to-impossible automation of the human expertise required. Here, we 

describe the development of a new knowledge-based expert system, AlexSys, for complex 

bioinformatics analyses and its subsequent application to a crucial task: Multiple Sequence 

Alignment.  

Information revolution and the dynamics of knowledge discovery  

The 21st century has given us access to vast amounts of data resulting from high 

throughput technologies in fields such as genomics, transcriptomics, proteomics, 

interactomics, etc. This wealth of data provides an important resource for system-level studies 

of the complex molecular networks implicated in the fundamental processes of life. 

Nevertheless, the success of such studies will depend on our ability to organize and validate 

the raw data, to extract previously unknown information, to infer new hypotheses and to 

present the results in a user-friendly way to the biologist.  

In this context, the concepts of data, information and knowledge need to be clearly 

distinguished. Data can be defined as a list of simple facts or observations without any context 

or meaning. The context and the associations or relations between data are needed before the 

data can be transformed into useful information. Thus, information can be considered as being 

organized data that has been given meaning by way of the relationships between pieces of 

data. For example, single entries in a database are data, whereas reports created from 

intelligent database queries result in information. At a higher level, knowledge refers to the 

facts and ideas that the human mind has learned. Thus acquiring knowledge can be defined as 

assimilating information. 

Our capability to acquire knowledge and make novel biological discoveries will depend 

on our ability to combine and correlate diverse data sets of multiple proportions and scales. 
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For example, sequence data must be integrated with structure and function data, but also gene 

expression data, pathways data, phenotypic and clinical data, and so on. Novel bioinformatics 

approaches are clearly needed to handle these issues in integrative systems biology. 

From data to knowledge: computational intelligence in bioinformatics 

The road to knowledge through data exploration, integration and information extraction 

is a common pattern in many areas from business and culture, to scientific research. Recently, 

artificial intelligence methods have been applied in these fields, in order to automatically 

recognize patterns and learn concept and rules from the data, using for example inference 

methods, model fitting, or gaining knowledge through examples. Such methods constitute a 

practical complementary approach to traditional computational analyses. These “intelligent” 

systems differ from simple programmed ones by the fact that they adopt their behavior in 

response to the input they get from the outer world. The input can be for example, data in 

relational databases (supervised/unsupervised learning), or a training set of examples with 

known outputs (reinforcement learning). 

Computer-based expert systems (also known as knowledge-based systems) can be 

constructed by obtaining human expert knowledge, represented by a combination of a 

theoretical understanding in a given domain and a collection of heuristic problem-solving 

rules that experience has shown to be effective. The knowledge is then transformed into a 

form that a computer may use to solve similar problems. Thus, an expert system can be 

described as a computer program that simulates the judgment and behavior of experts in a 

particular field and uses their knowledge to provide automatic problem analysis to users of the 

software. 

Development of an expert system approach for multiple sequence alignment 

During this thesis, a new knowledge-based expert system has been developed and 

applied to the construction and analysis of multiple alignments of protein sequences. Protein 

sequence analysis represents an ideal case study for a number of reasons:  

 Proteins are the molecular workhorses of biology, responsible for carrying out 

a tremendous range of essential functions, such as catalysis, transportation of nutrients, 

recognition and transmission of signals, etc. Given an uncharacterized protein, the 

analysis of its amino acid sequence, via multiple alignment, can reveal important 

information about its 3D structure and its functional role in the cell.  
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 The protein sequence databases are growing exponentially and now represent 

an important source of raw data. However, a number of problems have been identified. 

The sequences are not equally distributed, e.g. some model organisms and functionally 

important protein families are more widely studied. The databases also contain a large 

number of artifacts, such as sequence fragments or badly predicted sequences. 

 Protein sequence analysis is one of the most widely studied fields in 

bioinformatics.  Numerous different alignment algorithms have been developed in 

response to the challenges posed by the new large scale datasets. A comparison of many 

of these methods, based on a widely used alignment benchmark dataset, highlighted the 

fact that no single algorithm was capable of constructing high quality alignments for all 

test cases.  

Thus, protein multiple alignment is an essential task that is complicated by the size and 

the quality of the available data and the wide variety of computational methods that have been 

developed. Nevertheless, we have gained a significant amount of human expertise and the 

field is now mature enough for expert system applications. The specific objectives of this 

thesis were to develop an expert system to test, evaluate and optimise all the steps involved in 

the construction and analysis of a multiple alignment. This has been achieved by a 

combination of different, complementary methods and the integration of heterogeneous 

sequence, structural and functional data.   

Choice of development architecture: UIMA 

The first step in the design of our expert system was the choice of a suitable 

development architecture. An initial study of available systems identified a number of 

possibilities including (i) existing ‘shells’ e.g. the C Language Integrated Production System 

(CLIPS) or the Java Expert System Shell (JESS), (ii) the construction of a customized expert 

system using C or Prolog. We chose the UIMA (Unstructured Information Management 

Architecture), originally developed by IBM, which provides a suitable framework to manage 

information dynamically by the integration of dedicated analysis tools. The tools to be used in 

any particular situation are chosen by special modules that reason about the most suitable 

algorithms to use depending on the information type and features. 

Using this architecture, a prototype expert system was designed with a three layer 

organization: (i) data collection (ii) data annotation and information extraction and (iii) 



 

 

 

17 

 

alignment construction and analysis. The prototype provided a proof-of-concept test case for 

the suitability of UIMA for building expert systems. 

Construction of the knowledge base 

An important factor in any expert system is the construction of the knowledge base. In 

the case of AlexSys, we exploited the expertise gained in the group, concerning the evaluation 

and comparison of alignment algorithms. The knowledge base thus consists of sets of 

sequences from standard benchmarks (BAliBASE, OxBench) and the corresponding multiple 

alignments built either by automatic alignment programs or human experts. In addition, a new 

set of 230 benchmark alignments was constructed that contained more difficult test cases, 

representing typical problems encountered when aligning large-scale data sets. An objective 

function was defined to measure the quality of the automatic alignments compared to the 

benchmarks, and to determine positive and negative training sets for the learning algorithm 

described below. 

Again based on previous knowledge, a number of attributes were identified that 

characterize the benchmark sequence sets used for training AlexSys, including the number 

and length of the sequences, the number of structural/functional domains, the hydrophobicity, 

etc. 

Machine learning 

One of our main objectives in developing AlexSys was to improve the efficiency of the 

multiple alignment construction, by selecting the most suitable programs to use as early as 

possible in the alignment process. To achieve this, an ‘intelligent’ inference engine was built 

to predict a priori the performance of 6 different programs. The programs were selected 

because they are known to perform well and because they represent different complementary 

algorithms. The rules used in the inference engine were trained on 348 alignment test cases in 

the knowledge base. Based only on the predefined attributes of the set of sequences to be 

aligned, we identify the most suitable aligner that is most likely to produce a high quality 

alignment, using a machine learning algorithm. The performance of various machine learning 

algorithms was assessed in a series of experiments, resulting in the definition of a binary 

classification problem and the selection of a random forest decision tree learning algorithm. 
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Evaluation of the expert system 

The prediction accuracy of the inference engine in AlexSys was evaluated in a large-

scale test, using multiple alignments built in the context of a new version of BaliBase 

benchmark. Two alternative approaches were tested, based on probability- and rule-based 

methods, for identifying the most suitable aligner to use for each alignment set. The 

probability-based inference engine resulted in higher accuracy than the rule-based system. 

The difference in alignment accuracy could be explained by the background knowledge built 

into the rules, which favors a shorter running time when more than one aligner is predicted to 

give a strong performance. 

The efficiency and accuracy of the multiple alignment construction process were then 

evaluated using the standard benchmarks and compared to some of the most widely used 

alignment programs.  In terms of alignment accuracy, both methods implemented in AlexSys 

(probability- and rule-based) achieved significantly higher scores than most of the existing 

programs. Only one program scored significantly higher than AlexSys, but required almost 3 

times as much CPU time compared to AlexSys. Our results are thus very promising and the 

system can be used to construct high quality multiple alignment in an “acceptable time” for 

high throughput projects. 

Conclusions and Perspectives 

The objective of this PhD project was the development of an integrated expert system to 

test, evaluate and optimize all the stages of the construction and the analysis of a multiple 

sequence alignment. The new system was validated using standard benchmark cases and 

brings a new vision to software development in Bioinformatics: knowledge-guided systems. 

The architecture used to build the expert system is highly modular and flexible, 

allowing AlexSys to evolve as new algorithms are made available. In the future, AlexSys will 

be used to further optimize each stage of the alignment process, for example by optimizing 

the input parameters of the different algorithms. The inference engine could also be extended 

to identify combinations of algorithms that could potentially provide complementary 

information about the input sequences. For example, well aligned regions from different 

aligners could be identified and combined into a single consensus alignment. Additional 

structural and functional information could also be exploited to improve the final alignment 

accuracy. Finally, a crucial aspect of any bioinformatics tool is its accessibility and usability. 
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Therefore, we are currently developing a web server, and a web services based distributed 

system. We will also design a novel visualization module that will provide an intuitive, user-

friendly interface to all the information retrieved and constructed by AlexSys. 
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Chapter 1  

1. Infosphere, Infoglut and Knowledge Discovery:  

When the Information Age meets the Postgenomic Era 

 

 

Among the jungle of terms experts use to qualify  the world we live in, like the atomic 

age, the postindustrial era, the space age, to cite a few, the “information age” has become a 

standard expression. Today, we are all surrounded by gadgets, tools and devices that allow us 

to be informed and stay connected to anyone, anywhere and anytime. Accessing media of all 

kinds has become a human reflex that some scientists qualify as dangerous [1], because we 

are not in control and it is the new technologies that shape our lives. To quote some examples, 

hundreds to thousands of television channels are transmitting both correct and incorrect 

information, social networks and information superhighways are linking people around the 

world and bringing down geographical frontiers (Facebook, Myspace, Twitter and thousands 

of others), and more recently, virtual reality is bringing sight, sound, and other senses to the 

electronic experience.  

Today, software companies and suppliers have dethroned computer makers, while audio 

and video equipment industries are turning into entertainment companies. We are living in a 

world where hundreds of products come from the information sector instead of manufacturing 

since we work with computers and we entertain ourselves with electronic devices.  

Human beings are thus surrounded with various forms of information sources, from 

books, magazines, newspapers to CDs, DVDs, websites, docuramas, databases, etc. to the 

point where, in the wealthier countries, new topics of discussion are arising, for example the 

future of newspapers in the internet age. While the format with which the information is 
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provided is certainly an interesting subject, it might be more important to consider what to do 

with all the information: do we really need this amount of data, how we can manage it, how to 

transform it, how to benefit from it, who is actually undergoing these data and who is 

profiting from it, what does it bring to humanity and how? All these questions are now 

occupying more and more scientists, from philosophers, to linguists, to biologists … One 

recurring theme is the need to conceptualize and to distinguish between data, information and 

knowledge. 

In this chapter we will introduce and relate two distinct, but at the same time, analogous 

historical changes. First, we will describe the infosphere in which we live, introducing the 

information age, and how it impacts our everyday life (section 1.1). We will try then to map 

these concepts in the biological field, where the postgenomic era constitutes a good “case 

study” for the information revolution. Indeed, the emergence of omics science, based on high 

throughput technologies, has led to a torrent of new data, and new challenges in terms of data 

integration and analysis (section 1.2).  

1.1. The Infosphere and the information age 

1.1.1. Introduction 

The data that now flows around the world does not generally come in raw format but is 

encrypted and the information it contains is often hidden and needs decryption. In this lock 

and keys information context, even if the data is made public and thus freely available, only 

those that hold the keys can benefit from the knowledge underneath the information stack.  

Data, information and knowledge are different concepts that need to be understood, so 

that we can correctly place ourselves in this informational hierarchy. The terms that define 

these concepts are often misused: data, information and knowledge are often employed to talk 

about the same thing, despite the fact that they are distinct. When acquiring a data message, if 

we do not have enough contextual background to decrypt it, we may not be “informationally” 

armed to react in a suitable manner. The French poet Eugène Emile Paul Grindel known as 

Paul Eluard, in his famous diction “La Terre est bleue comme une orange” which means 

literally “The earth is blue like an orange” was neither blind nor ignorant about the color of an 

orange or the earth’s size. Understanding the sentence is not directly related to its simple 

decryption, prior knowledge is needed, and the message, as a result can then generate 
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information that will change that knowledge. It is therefore important to distinguish between 

the concepts of data, information and knowledge (Figure 1).  

 

Figure 1 : Data, Information and Knowledge. Data generates information (that could be 
considered as additional data), information generates knowledge (that could be either generated 
information or generated data). 

 

Data can be defined as a list of simple facts or observations without any context or 

meaning. The context and the associations or relations between data are needed before the 

data can be transformed into useful information. Thus, information can be considered as being 

organized data that has been given meaning by way of the relationships between pieces of 

data. For example, single entries in a database are data, whereas reports created from 

intelligent database queries result in information. Scientists in general and mathematicians in 

particular have defined information as a reduction of uncertainty in a communication system 

[2]. Thus, any element or matter in nature contains information. Despite the fact that 

information and knowledge are different, they do overlap. Knowledge refers to facts and ideas 

that the human mind has learned, thus acquiring knowledge is defined as absorbing 

information. This information absorption is different depending on the context, sometimes it 

is done spontaneously (learning a foreign language for example) and sometimes it is a slow 

and difficult process that requires in-depth studies.  

1.1.2. Information Systems 

Despite the fact that the amount of knowledge a human being can acquire is huge, it is 

not infinite, and the mind by itself cannot reliably manage everything. Although memory 

works well in many situations, our society is becoming increasingly complex. As a result, a 
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single person’s memory is now too unreliable, since the known facts are generally too random 

to satisfy the requirements of many situations. Easy and rapid access to external information 

is thus playing an increasingly important role in society and knowing the answer is strongly 

related to our ability to acquire the pertinent information.  

As a consequence, the discipline of Information Systems (IS) has developed recently to 

study the methods that people employ to organize, manage, and share information. It was 

initially conceived to complement people’s mental functions, memory or even speech. A vast 

array of techniques has been employed that can be divided into a number of different classes 

[3]: 

The first class covers the numerous techniques used to gather information, including 

those used by journalists, researchers, and spies; and, much more elaborately, the activities of 

research organizations, laboratories, surveys, and censuses, to name only a few. 

The second class consists of techniques for naming, classifying, and organizing pieces 

of information to make them comparable and accessible in an effective way. The need to 

classify grows in proportion to the quantity of information, so classification techniques are 

normally connected with corporations that manage vast quantities of information, for example 

the police, the patent office, or even phone businesses.  

Because information can take numerous forms, the third class consists of all of the 

techniques used to transform information from one form into another one and to screen it in a 

new way. Examples include turning narrative descriptions into lists, lists into statistical tables, 

statistics into graphs, or graphs into three-dimensional objects. There are numerous techniques 

that transform and output information, from engineering drawing to polling to mapmaking, 

and numerous corporations that do this sort of function.  

The fourth class covers techniques created for storing and retrieving information, from 

historical artifacts such as dictionaries and encyclopedias, schedules and calendars, phone 

publications and directories, via corporations such as museums, archives, libraries, to the 

more recent electronic storage in databases. 

Finally, the fifth class consists of techniques for communicating information. In this 

class, some methods, for example the postal system, messengers, the telegraph, the phone, or 

electronic mail, transmit information from individual to individual, while others, e.g. 

newspapers, radio, television, or the world wide web, broadcast information to a wider public. 
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This classification is only one example, and is certainly not the only one. Many 

information systems are dedicated to more than one function at a time, for example, 

newspapers are at the same time a means of communicating information and an information 

system that stores old news. In this sense, it is important to distinguish the form the 

information takes within the systems that handle it. What makes the complexity of the 

information age is the amount of data generated and the increasing number of systems 

required for its management, as well as the objectives that organizations employ these 

systems for. 

1.1.3. The information revolution  

The dynamic, evolutionary nature of data and information prompts us to ask questions 

about how everything started, what was the start point of this incredible information explosion 

and how individuals caused and managed this phenomenon?  According to Michael Riordan 

and Lillian Hoddeson, two historians, today’s information age started with the invention of 

transistors in the beginning of the fifties. Even this may be too recent a timeline to explain the 

significant changes in our culture brought about by the information revolution. Others have 

suggested for more ancient origins and each historian has a different date in mind. Many link 

the information age to the late nineteenth century, with the evolution of railroads and other 

large business enterprises spread across a continent. Others focus on the printing press or the 

introduction of, telegraphs and steam powered newspaper presses in the first half of the 

nineteenth century. 

Since there seems to be little agreement about the beginning of the information age, a 

possible question that we can ask is: did the information age really begin or is it only a means 

that humans have invented to label what they cannot really explain? Although our current 

vision of the information sphere is largely influenced by what we hear or see via new 

technologies, such as the internet and other media, the data stream is rooted in ancient 

civilizations. Consider for example, the Egyptian or Maya hieroglyphics that continue to 

fascinate scientists today, providing new information and knowledge about their life styles, 

beliefs and traditions. Thus, we might conclude that the information age had no beginning, for 

it is as old as humankind. 

Nevertheless, there have been periods in history that witnessed rapid accelerations or 

revolutions, related to the amount of information that people had access to and the creation of 
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new information systems to handle it. For example, the development of the written alphabet 

certainly contributed to the acceleration of information accumulation. Today, we live in what 

has been called the Information Age, also known as the Computer Age or the Information Era, 

characterized by the ability of individuals to transfer information freely, and to have instant 

access to knowledge that would have been difficult or impossible to find previously. 

1.1.4. The road to Knowledge is paved with Data that generates 

Information 

There are a huge number of diverse purposes for which individuals extract and use 

information. One of these is simply possession and the satisfaction it procures, for example, 

extensive libraries, collections, maps or even computer programs. In addition, having the 

information procures prestige; learning and especially initiation into impenetrable knowledge 

spheres of a given sector’s secrets have conferred prestige and impressed the badly informed 

individuals throughout history, and even created international challenges between nations 

running after prestigious scientific discoveries. A good example is the famous challenge that 

opposed Russians and Americans while competing to be the forerunners of space exploration, 

and the millions of people sitting in front of their TVs watching Neil Armstrong stepping onto 

the moon for the first time. 

Time is also an important factor in the equation. Most information is employed at a 

given point in time within a dynamic situation, for example in business, law, medicine, war 

etc., and generally results in some sort of decision making. The time required to extract and 

use the information depends on the quality of the raw data and the efficiency with which it 

was planned. 

An efficient use of information involves processing, classification, storage, extraction 

and broadcasting of information rapidly and with minimal cost and effort. To achieve this, the 

information must be condensed, codified and structured in a methodical manner. Descriptive 

information has to be converted into data which can be represented in several formats such as 

words, numbers, alphanumeric codes, symbols, graphics, maps, scientific illustrations etc. The 

process is an iterative one: every time we use or generate data, and when we consume data, 

we produce new information that could be used by others and transformed into additional 
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data. Thus, the path to the creation of knowledge can be considered to be a conceptual 

labyrinth, as shown in Figure 2. 

 

Figure 2 : Conceptual hierarchy of data, information and knowledge (Inspired from 
“Information: a Very Short Introduction”, [4]) 

 

At the beginning of the knowledge discovery process, the data is generally unstructured. 

Although when we talk about data, many people think automatically of data stored in 

databases, the fact is that data, at least in its raw format, is often represented in many different 

ways. Structuring of the data allows an easy and reliable access and by adding semantic 

meaning, we begin to transform the data into information. Each time we modify the data, we 

generate a different type of information, which is more and more precise, ranging from 

descriptions of the general aspect of the data to descriptions of the mined knowledge. The 

different kinds of information can be grouped into five classes:  

 The primary information is the information we first discover about data stored in 

databases for example, such as arrays of numbers, strings, graphs etc.  
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 The secondary information is the inverse of the primary information, characterized 

by its absence. As Carl Sagan said “Absence of Evidence is not Evidence of Absence”  

(“The Fine Art of Baloney Detection “, Chapter 12, page 221). The absence of data 

describing a problem, does not mean that we don’t have information about it, since the 

absence itself could be sometimes much more informative.  

 The meta-information refers to a set of indications about the nature of some other 

information; it generally describes properties such as location, format, updates, 

availability, etc.   

 The operational information describes operations of the whole data system and the 

system’s performance (the dynamics of the information).  

 The derivative information is extracted from the other types of information, either 

directly or indirectly. It is generally what we obtain as inferential evidence or as a 

result of a comparative or quantitative analysis. 

The final concept of knowledge is more difficult to define. Knowledge is defined by the 

Oxford English Dictionary as (i) expertise and skills acquired by a person through experience 

or education; the theoretical or practical understanding of a subject; (ii) what is known in a 

particular field or in total; facts and information; or (iii) awareness or familiarity gained by 

experience of a fact or situation.  

1.1.5. Knowledge Discovery via Artificial Intelligence 

The knowledge discovery process is often a very time consuming task, depending on the 

domain in which we evolve and the amount of the raw data available. As a consequence, 

scientists have tried to emulate human intelligence using sophisticated algorithms generally 

referred to as Artificial Intelligence approaches, in order to automatically achieve either 

everyday tasks or more specific missions such as: 

 Making decisions, diagnosing, scheduling and planning using expert systems or neural 

networks 

 Evolving solutions to very complex problems using genetic algorithms 

 Learning from a single previous example, where this is particularly relevant and using it 

to solve a current problem using case-based reasoning 
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 Recognizing hand writing or understanding sensory data, simulated by artificial neural 

networks 

 Identifying cause and effect relationships using data mining 

Artificial intelligence technologies will be discussed in more detail in chapters 2-4. 

1.2. The Biological infosphere: the genomic revolution  

Since the beginning of this century, the biological data landscape has been transformed 

by the rapid development of new high throughput genome technologies, including genome 

sequencing, gene expression analysis, proteomics, interactomics, etc. As a consequence, 

bioinformatics is playing an increasing active role in the analysis of modern biology. It is now 

impossible to develop research initiatives or studies without having a preceding search or 

consultation of several bioinformatics resources. The reason is that the large-scale data 

produced by today’s genome technologies can only be used efficiently with various kinds of 

computerized analysis workflows. As a consequence, new computational strategies are being 

developed to handle the information, as well as mathematical or statistical strategies, in order 

to discover the biological knowledge hidden in the data.  

Bioinformatics can therefore be defined as the application of computational as well as 

analytical techniques to solve biological issues. More specifically, bioinformatics describes 

the search for and usage of patterns or inherent structure in biological data such as genome 

sequences, and the development of novel methods for database access and querying. The 

closely related term, computational biology, is more frequently used to talk about the physical 

or mathematical simulation of biological processes. 

In this chapter, we will review the recent evolution of the bioinformatics field, from the 

pre-genomic era, when most studies involved a single biological entity (gene, RNA, protein, 

etc…), to the post-genomic era and the development of bioinformatics to become a more 

integrative and complex discipline involving the management and characterization of large 

amounts of heterogeneous data.  

1.2.1. Bioinformatics in the pre-genomic era 

Bioinformatics has been used since the early 1960s to organize information and to 

answer fundamental questions in the life sciences [5]. At that time, an expanding collection of 
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molecular sequences provided both a source of data and a set of interesting problems that 

were infeasible to solve without the power of computers. The idea that macromolecules carry 

information became a central part of the conceptual framework of molecular biology and 

numerous methods were developed to analyze the information flow between the raw DNA 

sequence and the structure, function and evolution of the encoded molecules.  

1.2.1.1 DNA sequence analysis 

The DNA sequence contains the blueprint for the potential development and activity of 

an organism, but the implementation of this information depends on the functions of the 

encoded gene products (nucleic acids and proteins). Thus, the identification/characterization 

of non-coding RNA and protein-coding genes is one of the first objectives of numerous 

bioinformatics approaches.  

The most powerful computational methods for predicting RNA genes, such as transfer 

RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), or microRNA, 

make use of the fact that many gene families are conserved in evolutionarily related genomes. 

This comparative approach is the best way to detect sequence and structure features that have 

been conserved during evolution and that are therefore likely to play a functional role. 

Examples of such methods include for example DYNALIGN and FOLDALIGN. Ab initio 

methods exist, which aim to predict locally stable RNA structures for example [6], but these 

are more rarely used. RNA prediction methods are reviewed in more detail in 2007 by Meyer. 

[7] 

Protein coding regions of a genome can be identified by searching for Open Reading 

Frames (ORFs), defined as long sequences of codons (triplets of nucleotides) limited by a 

start codon and a stop codon. The coding regions can be distinguished from non coding ones 

since they have different statistical properties, such as their codon usage, defined by a matrix 

of 64 possible codons. Among the first mathematicians interested in characterizing biological 

molecules, there are those who established the so called Hidden Markov Models (HMMs), 

that use species-specific parameters related to coding and non-coding regions [8]. Such 

approaches have been used to successfully predicting the coding regions of prokaryotic 

organisms [9]. Locating the coding regions in eukaryotic genomes is less evident, since they 

are scattered as small DNA fragments throughout the genome and represent a small 

percentage of the total sequence. Furthermore, they are not continuous in the genome, but are 
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split into regions, known as exons, separated by non-coding regions, known as introns. The 

separate exons are then joined during transcription in the cell by a specific process called 

splicing. The junctions between the exons and introns contain splicing signals, which 

combined with the specific properties of the coding regions, are used in many gene finding 

programs e.g. Genscan [10], in addition to statistical models such as HMMs [11]. 

In addition to these ab initio statistical methods to reveal gene structures and predict 

their existence inside a genomic sequence, other approaches such as sequence similarity 

searches can be used to find genes. As more and more genomes are sequenced, existing 

methods for gene annotation tend to use more than one genomic sequence to predict gene 

structures [12]. These comparative methods are based on the assumption that, due to selection 

pressure, coding regions are more conserved than non-coding regions. They have the benefit 

of providing more accurate gene identification, especially if multiple genomes across a variety 

of evolutionary distances are  available [13]. As an example, a modified version of the 

dynamic programming algorithm, known as spliced alignment, has been developed to detect a 

set of exons that is similar to a known protein sequence [14] or expressed sequence tag (EST, 

sequenced fragments from mRNAs) [15].  

Today, the statistical and sequence similarity based approaches are often used in a 

cooperative manner in large software systems dedicated to gene prediction and annotation 

[16] and have lead to significant progress. Nevertheless, gene annotation remains a crucial 

research area in bioinformatics, that will continue to evolve as long as large amounts of new 

sequences need to be characterized. 

1.2.1.2 Protein function analysis 

Once a gene and its functional transcript have been identified, the next step is the 

prediction of its function. Bioinformaticians and computational biologists have developed 

hundreds to thousands of different methods and techniques to analyse gene sequences and 

extract information about the mechanisms by which they function.  

One of the most widely used approaches is to transfer functional information from an 

annotated gene, generally obtained from a well documented model-organism, to an 

unannotated one, based on the assumption that two sequences with a high degree of similarity 

have most likely evolved from a common ancestor (i.e. the sequences are homologous) and 
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that they are therefore likely to share the same functions. Protein functional annotations are 

stored in a wide variety of resources ranging from general sequence databases, such as 

Uniprot or Refseq to more specialized databases, dedicated to a specific organism, or genetic 

disease for example. Functional information can also be found in protein family databases, 

such as the InterPro database [17] the CDD Conserved Domain Database [18], or the COG 

database [19].  
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Given the number and diversity of these resources, the task of protein function 

prediction has become a complex one (Figure 3).  

 

Figure 3 :  Protein function annotation typical workflow [20]  

 

The process generally begins with a database search for similar sequences using a 

dedicated tool, such as BLAST (Basic Local Alignment Search Tool) [21], although this 

approach has a number of drawbacks. For example, Rost and collaborators [22] showed that 

with the growth of the sequence databases, the number of proteins that have no annotated 
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reference is expanding exponentially. They estimated the number of proteins that could be 

annotated automatically by BLAST-based methods to be under 30% of all proteins (with an 

error rate of 5%). They added that even if we allow an error rate of more than 40%, there is no 

existing annotation for more than 30% of all proteins. Furthermore, errors can be introduced 

by the fact that homologous sequences do not always share the same function. For example, 

[23] showed that even with a high degree of sequence similarity, enzymatic function could be 

different and not conserved.  

Such annotation errors from automatic function prediction methods often find their way 

into the public databases and are further propagated by subsequent genome annotation 

projects [24, 25]. One of the solutions to this problem has been the use of multiple sequence 

comparisons or alignments, where the annotation from a set of related sequences is cross-

validated to ensure its high quality before being transferred to the unannotated sequence [26]. 

When homology-based methods are not applicable, for example when no similar 

sequences are found, other approaches can be used to characterize the unknown sequence that 

rely on finding matches to known functional motifs. For example, within a functional domain 

in a protein sequence, that could be several hundred amino acids long, less than 10% of the 

residues are directly involved in the protein's active site [27]. Instead of considering the entire 

sequence, the presence of a specific signature can therefore give some functional clues. 

Signatures may be located at a single position or may cover several positions, known as a 

fingerprint or pattern. Some specific databases offer the possibility to search for known 

functional motifs. For example, PROSITE [28] contains manually curated biologically 

important motifs, corresponding to three types of signature: patterns, rules and profiles. 

Additional well-known motif databases include BLOCKS [29] and PRINTS [30].  

  

1.2.1.3 Protein Structure Prediction 

The biological activity of a protein sequence is determined by its 3D-structure, which 

differs from one protein sequence to another. Many small proteins are organized in a single 

unit, known as a domain, whereas many others are formed by the combination of several 

structural domains, motifs or repeats. These basic building blocks, their modular presentation 

and organization contribute to the functional diversity in proteins. One of the largest examples 

is the protein titin which is a 34350 residue long scaffold protein. A number of databases exist 
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that organize the known protein 3D structures, the most widely known structure database 

being the Protein Data Bank (PDB) [31]. Other resources, such as CATH [32] and SCOP [33] 

store protein structures by splitting them into domains and classifying them in a hierarchical 

fashion. The first uses the topology, architecture and class to classify proteins, whereas the 

latter relies on classes, folds, superfamilies and families.  

Some methods have been developed to predict the 3D structure of a protein based only 

on its primary sequence [34], known as ab initio methods. Nevertheless, the most accurate in 

silico method for determining the structure of an unknown protein is homology structure 

modeling. This approach assumes that sequence similarity between proteins usually indicates 

a structural resemblance and relies on the availability of a related protein with known 3D 

structure in the public databases.    

1.2.1.4 Phylogenetic analysis 

Phylogenetics can be defined as the estimation of evolutionary relationships and 

describes the classification of organisms according to their evolutionary history. It is an 

integral part of the science of systematics that aims to establish the phylogeny of all 

organisms based on their characteristics. Phylogenetics is also central to evolutionary biology 

as a whole as it is the condensation of the overall paradigm of how life arose and developed 

on earth. 

A phylogenetic history is generally represented as a graph-like diagram or tree-like 

representation. The main idea behind phylogenetics is that members of the same group or 

clade share the same evolutionary history, and compared to members of other clades, they are 

more likely to be more closely related. During evolution, some features disappear and others 

appear, which means that for a given group, its members share unique features that are not 

present in the common ancestor. These features (or characters) could be anything observable 

or "describable", from two organisms that have developed a spinal column to two sequences 

that have mutations located at the same position. 

Gene sequences have now replaced anatomical features to become the standard 

“characters” used to investigate organismal phylogenies. Phylogenies are generally built using 

homologous sequences i.e. sequences that share a common ancestor, but that may or may not 

have common structure and function. Homologs can be divided into orthologs and paralogs 
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(Fitch). Orthologs are genes in different species that evolved from a common ancestral gene 

by speciation. Normally, orthologs retain the same function in the course of evolution. 

Identification of orthologs is therefore critical for reliable prediction of gene function in newly 

sequenced genomes. Paralogs are genes related by duplication within a genome. In contrast to 

orthologs, paralogs often evolve new functions, even if these are related to the original one. 

A typical phylogenetic analysis based on molecular sequences consists of five steps:  

 Homologous sequences are identified by database searches and selected according to a 

certain confidence threshold. 

 The sequences are then compared to identify similarities and differences between them. 

 “Informative” positions in the sequences are identified. 

 The phylogenetic tree is then constructed, based on the similarities observed in the 

sequences and a specific evolutionary model. 

 The tree is then evaluated to determine a reliable tree topology. 

Each step is fundamental for the analysis and ought to be treated appropriately. For 

instance, trees are only as good as the initial sequence comparisons they are determined from. 

When carrying out a phylogenetic analysis, it is therefore frequently informative to construct 

trees based on various adjustments of the parameters used at each step to observe how they 

affect the tree. 

Recently, a number of databases have been developed to store phylogenetic trees, for 

example: 

 TreeFam (www.treefam.org) is a database of phylogenetic trees of animal genes. 

It aims at developing a curated resource that gives reliable information about 

ortholog and paralog assignments, and evolutionary history of various gene 

families [35, 36]. 

 PhylomeDB (phylomedb.org) is a public database for complete collections of 

gene phylogenies (phylomes) that allows users to interactively explore the 

evolutionary history of genes through the visualization of phylogenetic trees and 

multiple sequence alignments [37].  

 TreeBASE (www.treebase.org) stores phylogenetic trees and the multiple 

sequence alignments used to generate them from published research papers [38]. 
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1.2.2. Genome sequencing projects and biological data growth 

Biology in the 21st century has been revolutionized by the development of high 

throughput genome sequencing and the availability of complete genome sequences for 

numerous organisms. The first free-living organism to be sequenced was that of Haemophilus 

influenzae (1.8Mb) in 1995, and it was only a matter of time before a draft of the first human 

genome Erreur ! Source du renvoi introuvable.was published in 2001 [39]. In 2008, the 

Genome Online Database (GOLD) archived 1100 completed genome projects, which 

represented approximately 2-fold growth over two years [40]. The genomes were distributed 

as follows: 914 bacterial, 68 archeal and 118 eukaryotic genomes. There were also many 

more ongoing sequencing projects, representing 4543 initiatives, including 3271 bacteria, 110 

archaea and 1162 eukaryotes.  

 

Figure 4 : Human genome project timeline  
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Many of these genomes, when completely sequenced, are submitted to publicly 

available databases such as Genbank [41], EMBL [42] or DDBJ [43]. Unfortunately, this is 

not systematic. In fact, due to the rapid increase in the number of sequencing projects, some 

of them do not have an associated publication in the literature. The problem concerns a 

considerable fraction: 408 of the 1100 genomes available in GOLD.  

Other large-scale data resources are also emerging from high-throughput experimental 

technologies such as microarrays for systematically analyzing gene expression profiles or 

yeast two-hybrid systems and mass spectroscopy for detecting protein-protein interactions. 

The impact of the genome projects is thus not simply an increased amount of sequence data, 

but the diversification of molecular biology data. Table 1 lists some examples of these data 

resources, which have been denoted with the suffix ‘-ome’ (from the Greek for ‘all’, ‘every’ 

or ‘complete’) to indicate studies undertaken on a large or genome-wide scale. 

 
Transcriptome the mRNA complement of an entire organism, tissue 

type, or cell 
Proteome the entire complement of proteins in a given biological 

organism or system at a given time 
Metabolome the population of metabolites in an organism 
Secretome the population of gene products that are secreted from 

the cell 
Lipidome the totality of lipids in an organism 
Interactome the complete list of interactions between all 

macromlecules in a cell 
Spliceosome the totality of the alternative splicing protein isoforms 
Kinome The totality of protein kinases in a cell 
Neurome The complete neural makeup of an organism 
ORFeome the totality of protein-encoding open reading frames 

(ORFs) 
Unknome The totality of genes of unknown function 
Textome The body of scientific literature which text mining can 

analyse 

Resourceome The full set of bioinformatics resources 

Table 1 :  Some examples of ‘-omics’ data resources 

 

The availability of numerous complete genome sequences and other large datasets has 

led to a paradigm shift in biological research. Traditionally, biologists accumulated 
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knowledge based on a starting hypothesis concerning a particular biological issue, and then 

proceeded to experimental assays to confirm the strength or weakness of their theories. This 

hypothesis-driven research approach can now be complemented by new technology-based or 

data-based approaches. 

In comparison to the traditional hypothesis-based research, the new models have many 

novel aspects, such as a high throughput platform, a torrent of data collection, and a free data 

exchange among the entire scientific community. As a consequence, computational analysis 

of the large amounts of data produced by genomics has partially replaced wet lab 

experiments, introducing new possibilities for generating biological knowledge. The field of 

bioinformatics, combining life sciences with computer and physical sciences, offers an 

exciting playground for the creation and deployment of new technologies for data mining and 

analysis, with the ultimate goal of answering biological and medical questions. 

In the rest of this chapter, we will discuss the new challenges and problems posed by the 

high throughput genomics data.  

1.2.2. Bioinformatics in the post-genomic era  

Since the emergence of high throughput technologies and their application to the 

elucidation of molecular biology systems, a new era of biological and biomedical research has 

begun. The emphasis in biology and bioinformatics is shifting from studying individual 

components, such as genes, RNA or proteins in isolation, to the study of the vast networks 

that biological molecules create, which regulate and control life. 
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Figure 5 : The Omix matrix and Integromics ; Bioresource and materials are utilized by 
biotechnology and the resultant data can be organized by the Omics matrix. Inside omics 
matrix, numerous integration occurs. The whole set of components and and integration 
programs often called as pipelines can be named as integromics. The integromics finally 
produces higher dimentional data, information and knowledge. (Source : omics.org) 

 

Such system-level studies (Figure 5) are aimed at the elucidation, design or 

modification of complex structures, such as macromolecular complexes, regulatory pathways, 

cells, tissues or even complete organisms. Systems biology aims to explain such complex 

biological systems by using a combination of experimental, theoretical and computational 

approaches. The goal is not simply to produce a catalogue of the individual components or 

even interactions, but to understand how the system components fit together, the effect of 

each individual part on its neighbors, and how various parameters such as concentrations, 

interactions, and mechanics change over time [44, 45]. The new outlook is characterized by 

the basic idea of “emergent” properties, i.e. it considers global behavior not explicable in 

terms of the individual, single components of the system [46].  

An integrated systems approach to understanding biology can be described as an 

iterative process that includes (1) data collection and integration of all available information 
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(ideally all components and their relationships in the organism), (2) mathematical modelling 

of the system, (3) generation of new hypotheses and (4) experimentation at a global level. In 

this new approach, global sets of biological data are integrated from as many hierarchical 

levels of information as possible. This is the initiation point for the formulation of detailed 

graphical or mathematical models, which are then refined by hypothesis-driven, iterative 

systems perturbations and new data integration. Cycles of iteration will result in a formal 

working model of how the systems function dynamically in the growth, development and 

maintenance of the organism in the context of its environment. Ultimately, these models will 

explain the systems or emergent properties of the biological system of interest. Once the 

model is sufficiently accurate and detailed, it will allow biologists to accomplish two tasks not 

possible before: (i) to predict the behavior of the system given any perturbation and (ii) 

redesign or perturb the gene regulatory networks to create completely new emergent systems 

properties.  

The rest of this section will describe in more detail some of the new “omics” data 

resources and the computational approaches that have been developed recently to analyze 

them. 

1.2.3.1 Comparative genomics 

Due to the fact that a variety of distinct genomes have been sequenced it is now 

conceivable to tackle comparative studies of genomes, giving rise to a new research field 

known as comparative genomics. By comparing genomes from related species we can identify 

functional regions, such as genes or regulatory elements that are conserved among species, as 

well as the regions that give each organism its unique characteristics. Comparative genomics 

also provides a powerful tool for studying evolutionary changes among organisms, helping to 

begin to understand some of the fundamental mechanisms by which genes and genomes 

evolve.  

In order for researchers to use an organism's genome efficiently in comparative studies, 

data about its DNA must be in large, contiguous segments, anchored to chromosomes and, 

ideally, fully sequenced. Furthermore, the data needs to be organized to allow easy access for 

researchers using sophisticated computer software to conduct high-speed analyses. A number 

of resources have been developed specifically to store and make available the complete 



Chapter 1 : Infosphere, Infoglut and Knowledge Discovery 

 

 

49 

 

genomes, e.g. the UCSC Genome browser (genome.ucsc.edu), NCBI complete genomes 

(www.ncbi.nlm.nih.gov/sites/genome) or Ensembl genomes (www.ensembl.org). 

1.2.3.2 Transcriptomics 

The study of transcriptomics, also referred to as expression profiling, examines the 

expression level of mRNAs in a given cell population, for example in a given tissue and at a 

specific time during the development of an organism. Because it includes all mRNA 

transcripts in the cell, the transcriptome reflects the genes that are being actively expressed at 

any given time. Common technologies for genome-wide or high-throughput analysis of gene 

expression are cDNA microarrays and oligo-microarrays, cDNA-AFLP and SAGE. By 

comparing the transcriptomes of different cell populations, e.g. healthy versus diseased 

individuals, or normal versus cancer cells, genes that are under-expressed or over-expressed 

can be identified.  

In addition to the various transcriptome databases dedicated to a specific organism, cell 

line, cancer, stem cells, etc., a number of more general databases have been developed, 

including the Gene Expression Omnibus GEO) [47] at the NCBI 

(www.ncbi.nlm.nih.gov/geo/) or the ArrayExpress database [48] at the EBI 

(www.ebi.ac.uk/microarray-as/ae/).  

The analysis of transcriptomes can be complicated by the large-scale nature of data, a 

high level of noise and the variability and low reproducibility of expression microarrays. Key 

areas in data analysis include experimental design, the assessment of significance of 

differential expression, discriminant analysis and clustering. These require efficient data 

acquisition and storage, normalization between different data sets and visualization [49-51] .  

1.2.3.3 Proteomics 

As the emerging field of proteomics continues to expand at an extremely rapid rate, the 

relative quantification of proteins, targeted by their function, has become its greatest 

challenge. Complex analytical strategies have been designed that allow comparative analysis 

of large proteomes, as well as in depth detection of the core proteome or the interaction 

network of a given protein of interest. The protocols being developed address many of the 

problems encountered in high-throughput proteomics projects, from the experimental design 

to the methods used for the interpretation of the mass spectrometry data and the search 
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engines used for the identification of the proteins in the different types of sequence data banks 

available. Dedicated databases include: 

The PRIDE PRoteomics IDEntifications database (www.ebi.ac.uk/pride/) [52] is a 

centralized, standards compliant, public data repository for proteomics data. It has been 

developed to provide the proteomics community with a public repository for protein and 

peptide identifications together with the evidence supporting these identifications. 

The PeptideAtlas (www.peptideatlas.org/) [53] is a multi-organism, publicly accessible 

compendium of peptides identified in a large set of tandem mass spectrometry proteomics 

experiments. Mass spectrometer output files are collected for human, mouse, yeast, and 

several other organisms, and searched using the latest search engines and protein sequences. 

The ExPASy (www.expasy.org) [54] proteomics server of the Swiss Institute of 

Bioinformatics (SIB) is dedicated to the analysis of protein sequences and structures as well 

as 2-D PAGE. 

1.2.3.4 Interactomics: protein-protein interactions 

In order to understand the structure and the function of an integrated cellular network, 

ideally, we have to identify all functional protein-protein interactions in the different cells and 

tissues at any developmental stages and in any given physiological status [55]. Several 

interaction maps on a genome-scale have been established, based on experimental yeast two-

hybrid [56] and co-affinity purification in conjunction with mass-spectrometry techniques. In 

addition, computational approaches have been developed that predict protein–protein 

interactions by relying upon shared characteristics of known interacting proteins [57] or 

phylogenetic evolutionary information [58]. 

Today, protein–protein interaction networks have been established for bacteria 

(Escherichia coli [59] and Helicobacter pylori [60]), the malarial pathogen Plasmodium 

falciparum [61], Saccharomyces. cerevisiae [62], the fruitfly Drosophila melanogaster [63],  

Caenorhabditis elegans  [64] and human [65]. Many follow-up studies have analyzed the 

patterns of interacting components, or topological properties, which are revealed by the 

resulting networks [66] and have argued the potential fundamental biological implications. 

A number of dedicated resources have been developed, such as BIND [67], IntAct [68] 

and STRING [69]. While BIND and IntAct contain only reliable, experimentally determined 
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protein-protein interactions, STRING has a wider coverage. It contains both known and 

predicted protein interactions, including both direct (physical) and indirect (functional) 

associations. They are derived from four sources: genomic context, high-throughput 

experiments, (conserved) coexpression and the scientific literature. 

1.2.3.5 Metabolomics 

Metabolomics is dedicated to identifying the complete set of metabolites, or the 

metabolome, of the cell. The metabolome is thus complementary to the transcriptomes and 

proteomes described above. As one of the most recent elements of omics data types, work is 

still ongoing toward the improvement of the methods that generate these data, but generally 

they rely on mass spectrometry, NMR spectroscopy and vibrational spectroscopy  [70] to 

analyse the metabolite contents that are extracted from isolated cells or tissues. Given the 

extremely varied collection of biomolecules and the significant dynamic range of metabolite 

concentrations that need detection, current strategies must find hundreds of different chemical 

entities. Even with these challenges and the resultant restrictions, metabolomics is rapidly 

turning into a common tool for exploring the cellular state of many systems, such as plants, 

the human red blood cell and microbes , and also in pharmacology and toxicology, in 

metabolic-engineering applications and in human nutritional research [71]. 

1.3 Conclusion 

The life sciences have entered a new information age characterized by a flood of 

complex, heterogeneous data and a vast array of computational algorithms designed to 

analyze and extract the knowledge buried in the data.  Novel bioinformatics solutions are now 

needed that will provide a conceptual framework for representing, integrating and modeling 

the data as well as deciphering complex patterns and systems to generate new knowledge. 

Chapter 2 will discuss the database infrastructures developed to collect, process and store 

biological data. Chapters 3 and 4 will then discuss algorithms developed in the context of 

artificial intelligence for knowledge extraction, focusing on machine learning and knowledge 

based expert systems. 
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Chapter 2  

2. Biological databases:  

Data storage and warehousing is great, data quality is 

better 

 

 

The first biological databases (actually flat files), established in the early 1980s, 

represented nucleotide sequences, and contained several million bases. Today, over 106 

billion nucleotide bases from more than 108 million individual sequences and 300,000 

organisms are currently contained in the databases of the International Nucleotide Sequence 

Database Collaboration (INSDC) represented jointly by EMBL, Genbank and DDBJ. The 

combined data represents a fundamental bioinformatics resource since most of the other 

bioinformatics data is more or less dependent on inference from nucleotide sequences. 

Unfortunately the information stored within the archives is not consistently well 

annotated. A large majority of the sequences and the associated annotations are themselves 

the result of computational predictions, with their inherent inaccuracy [72]. As an example, a 

recent study of a specific enzyme family, the ribonucleotide reductases [73], showed that only 

23% of the sequences were correctly annotated in Genbank.  Furthermore, when submitting 

sequences to databases, scientists generally choose which sequence annotations they want to 

publish, considering that these annotations are more pertinent than others. Consequently, 

nothing can be inferred from the absence of information in the databases. To make things 

worse, the errors in the databases are often propagated when new sequences are predicted. 

Most of the gene prediction methods rely on the existing information stored in the databases. 

This means that prediction models rely on the information that is defined at a given time and 
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when the information is upgraded, the established models may not be accurate and in some 

cases are obsolete.  

More recently, the whole genome sequencing technologies have given rise to a new 

generation of specialist databases storing data from specific species that have the particularity 

to hold the sequence and its automatically generated annotation made available in advance. 

Generally the content of such resources are frequently revised, especially when the genome 

has been recently deciphered. The Ensembl database of metazoan genome annotation is a 

good example of such a resource [74]. 

In addition to nucleotide databases, protein sequence databases are also of great interest 

in the biological informational context. While the automatically annotated databases, such as 

TrEMBL [75] or Refseq [76], represent a rich source of data, the most reliable store of 

functional information today is probably Swiss-Prot, a subsection of the Uniprot Knowledge 

base (UniprotKB) [75] is the annotations in Swiss-Prot are manually curated from scientific 

literature, and although they are less complete than the automatic databases, they are 

frequently used to infer information about proteins not yet subjected to specific experimental 

study.   

Nucleotide and protein sequence databases are cited here as examples of biological 

databases, since they are considered as the "ancestors" of database types. Today, several 

hundred bioinformatics databases exist in total, with many resources concentrating on a 

particular taxonomic or methodological field. As an example, a lot of databases are dedicated 

to model organisms such as yeasts [77, 78], mouse [79] etc. These specialized databases 

generally represent more detailed information sources about gene and protein functions within 

their taxonomic scope. As mentioned in Chapter 1, other databases are dedicated to different 

types of data, including transcriptomic, proteomic, interactomic, phenotypic resources. 

In parallel with biological component databases, the scientific literature describing them 

is also an invaluable source of information. MEDLINE, frequently accessed as part of 

PubMed, is the largest database containing biological literature with its 10 million citations. 

Bioinformatics and literature databases are linked through cross-references. As an example, 

UniprotKB cross-references hundreds of other resources (including MEDLINE and PubMed) 
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which give scientists direct access to more detailed information on a particular biological 

component. 

In this dynamic heterogeneous environment consisting of numerous different data 

resources, including both generalist and specialist databases, the entries stored in the different 

databases are often strongly related and mutually dependent on each other. For example, the 

function of a gene depends on its biological context: its interactions with other genes, the 

pathways they are involved in, their expression under certain conditions, etc. Similarly, the 

function of an interaction depends on the function of the interacting partners. To retrieve the 

broader view of an entity, a biologist usually has to search multiple databases. This poses a 

number of problems. Most public databases have their own format and querying system. 

Links between databases are not always available and are not always coordinated between the 

different resources, giving rise to problems of consistency, redundancy, connectivity and 

synchronization. Even on a small scale, for example for a single protein or complex, data 

integration becomes a daunting task. To overcome these problems, new data integration 

systems have been developed that read data from multiple sources, perform simple 

transformations of data into a unified format and provide access to the data. 

2.1  Data collection  

 To obtain an integrated view of a biological system, an essential perquisite is the 

collection of data from different databases, which are generally distributed over various 

geographical sites. Two main approaches have been developed to address this task: data 

warehouses and distributed databases.  

2.1.1. Data warehouses 

Data warehousing first emerged in the nineties as a solution to the information 

explosion in the business domain. A data warehouse solution is a structured repository of a 

large amount of data collected from various sources to support an analytical process. In the 

Business Intelligence field, sales and client data distributed across the company are integrated 

within a data warehouse framework.  Concepts such as customer buying behavior can then be 

mined from such a system to prepare targeted marketing campaigns and strategies. Data 

warehousing in bioinformatics, as in other fields, involves collecting data from the different 
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databases, integrating the data and resolving conflicts and transforming it in order to discover 

the hidden knowledge. This being said, the nature of biological information and the systems 

that generate these data dictates some specific requirements for biological data warehousing.  

The two most widely used data warehousing systems in bioinformatics are SRS and 

Entrez. SRS is maintained by the European Bioinformatics Institute (EBI) and represents a 

gateway to over 100 bioinformatics databases [80]. It is powerful but complex, allowing the 

construction of inter-database queries in a generic manner. Entrez is maintained by the NCBI  

and offers a simpler interface with less support for structured queries, but data retrieval is 

more rapid. Both data warehouses allow literature mining by the incorporation of PubMed for 

example. 

EnsMart [81] is another warehouse-based system that is distinguished by its user-

friendly query front end that allows users to compose complex queries interactively. EnsMart 

runs on Oracle and MySQL. Data types currently supported by EnsMart are genes, SNP data, 

and controlled vocabularies. The Atlas system [82] provides a data warehouse based on 

relational data models, which locally stores and integrates biological sequences, molecular 

interactions, homology information and functional annotations of genes. First, Atlas stores 

data of similar types using common data models and second, integration is achieved through a 

combination of APIs, ontology and tools to perform common sequence and feature retrieval 

tasks. Because the databases are installed locally, data retrieval is direct, efficient and 

relatively simple. Warehousing guarantees that the data needed are always available. Also 

users have control over the databases installed, which versions are used and when they are 

updated. The disadvantage of this approach is that the overhead costs can be very heavy in 

terms of the hardware required for database installation and maintenance. 

2.1.2. Distributed databases 

Distributed systems provide an alternative to data warehousing approaches. Here, 

software is implemented to access heterogeneous databases that are dispersed over the 

internet and to provide a query facility to access the data. Many examples have been 

developed. OPM (Object Protocol Model) [83] uses an entity model and generic servers that 

retrofit the data and unify data sources, and provides a query language OPM-MQL to query 

the distributed data. The integrated data can be output in XML format. IBM’s DiscoveryLink 
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[84] uses a relational model and the SQL language for modelling and accessing distributed 

data. TAMBIS [85] is a semantic-based system utilising ontologies and a services model to 

support user queries. BioMOBY [86] like TAMBIS, is also ontology-based and service-model 

driven. SEMEDA [87] is an ontology based semantic metadatabase and is implemented as a 3 

tiered architecture consisting of a relational database (backend) and jsp 1.1 (java server pages) 

as the middle tier, which dynamically generates the html frontend. Using this architecture has 

several advantages: data (ontologies and database metainformation) can be consistently stored 

independently from the application and can also be retrieved or imported by using the various 

built in interfaces and tools of the DBMS. These implementations do not house the data 

locally, but instead query the original data resource for available services before sending 

queries. These systems are powerful for interrogating disparate data sources. However, a 

disadvantage is that large queries may take a long time to return or may not be returned at all. 

Thus, remote access requires complex systems to manage communication between the server 

and the client, particularly when errors occur because remote systems are not available. 

A number of solutions have been developed recently to address these problems. For 

example, the Distributed Sequence Annotation System (DAS) [88] allows sequence 

annotations to be decentralized among multiple third-party annotators and integrated on an as-

needed basis by client-side software. The communication between client and servers in DAS 

is defined by the DAS XML specification. A more general solution is the SOAP (Simple 

Object Access Protocol) for access to distributed webservices. SOAP uses XML requests and 

responses for the transport of information between different nodes. An alternative is the REST 

(Representational State Transfer) approach for getting information content from a web site by 

reading a designated web page containing an XML (Extensible Markup Language) file that 

describes and includes the desired content. 

2.2. Data integration and validation 

One of the major benefits of both data warehouses and distributed databases is the 

possibility to integrate data from the different resources. This is achieved via cross-

referencing of entries from different databases, as well as data enrichment with information 

from the literature, although this is not void of problems or limitations. Accurate cross-

references are crucial to obtaining relevant results, but the current data volume exceeds the 
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ability for manual curation of almost all bioinformatics resources. As an illustration, about 

220,000 records in the UniProtKB are manually curated, but despite this high volume of data, 

this represents only 7% of the total records. To tackle this problem, cross-referencing has to 

be done automatically by means of identifier tracking or by comparison of the properties of 

entities to establish their equivalence. This is not a simple task since the identifiers used in the 

different databases are generally not the same. The problem is even more complex when 

searching the literature, due to the widespread use of synonyms and homonyms for genes, 

proteins and other biological entities and the lack of well-established standards. Another 

important problem when searching for cross-referenced information is related to the data 

quality in bioinformatics databases. Data conflicts, occurring when the "same" object is 

described by different properties in different resources, need to be resolved, or at least 

signaled to the user. . 

The problems cited above are just some examples showing that badly cross-referenced 

information could be considered as a brake to knowledge discovery in bioinformatics. But, 

what about well annotated and cross-referenced information? There is no evidence that no 

problems exist in this case and here are some examples of possible deficiencies that could 

occur: 

1. The lack of naming standardization between resources  means that records with the 

same name in different databases may be conceptually dissimilar 

2. The content could be different depending on the bioinformatics repository and the 

data included in databases describing the same biological object could be different 

3. There are no rules or guidelines concerning database updates and each resource 

follows its own policy concerning either the update frequency or the update protocols 

(automatic, manually curated, etc.). This results in a lack of synchronization between 

bioinformatics databases leading to, on the one hand, the existence of out-of-date 

information, and on the other hand, incoherence between data describing the same 

biological object in two or more repositories. It is then difficult to determine which 

one is more accurate or true. 

It is clear that the usefulness of a warehouse or distributed database system is dependent 

on the coherence of the data it contains. Efforts are now underway to improve the reliability 
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of the shared bioinformatics data resources, for example by the standardization of 

vocabularies using ontologies such as the Gene Ontology [89] or the development of 

standards for data representation in emerging research areas such as transcriptomics and 

proteomics.  

2.3. Data Extraction and Querying:  The more we 

formalize, the better we learn! 

Traditionally, knowledge was extracted from biological databases by searching for 

specific information concerning the object of interest. This was generally achieved using 

dedicated data analysis software. To illustrate this, we can consider the typical case where the 

object of interest is a gene, identified by a protein name or identifier that, once submitted as a 

query to one of the resources cited above (UniprotKB, Ensembl, etc.), returns a database 

record containing more or less relevant information known about that entity. The data of 

interest could also be a raw sequence and in this case, several tools exist to compare the new 

sequence with existing annotated sequences, such as BLAST  or FASTA [90]. For protein 

sequences, with their modular domain organization, the new sequence can also be compared 

to known domains in databases such as InterPro  or CDD . Other examples of traditional data 

analyses were described in Chapter 1. 

Bioinformatics data is a very generic term, generally employed to describe information 

that is contained in databases, or data that we use as input to several tools and programs. 

Furthermore, most bioinformatics data is represented in textual format: records in databases, 

flat files, the battery of bioinformatics formats (Genbank, EMBL, Fasta,  PDB, ..), in addition 

to program outputs from sequence database searches,  multiple sequence alignments, 

biological feature predictions etc. All these information resources contain biological 

knowledge that is more or less structured, sometimes containing the same information but 

presented differently, and sometimes providing extra information that is not integrated or 

taken into account during a specific analysis process.  

Despite the numerous efforts to facilitate data exchange in bioinformatics, a true 

standardized format for all is not expected for tomorrow. Even for the same data type, we can 

find lots of differences, for example, GenBank developed the ASN.1 format (Abstract Syntax 
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Notation One) for sequence data, while Swiss-Prot designed a different one. Another example 

is the introduction of XML (Extensible markup Language) as a generic data exchange format 

which then gave rise to a battery of bioinformatics XML representations: GBSeq XML for 

GenBank, SPTr-XML for SwissProt, XEMBL for EMBL, GEML for Gene Expression 

Markup Language, MAGE-ML for MicroArray and Gene Markup Language, and many 

others. The existence of so many data formats represents a major problem in bioinformatics 

data management, In this context, important progress have been achieved in computer science 

concerning the standardization of machine readable vocabularies or ontologies, which provide 

explicit specifications of commonly used abstract models [91]. In addition to concept 

definitions, ontologies provide a basis for the development of software able to reason and 

infer properties and relationships in a given domain. With the emergence of ontologies, one 

important task was to make the concepts persistant and communicable, and as a consequence, 

standard formats such as RDF (Resource Description Framework) and OWL (Web Onltology 

Langage) were developed. As an illustration, RDF allows the establishment of statements 

concerning a particular domain using the Subject-Predicate-Object model. Here, the Subject 

and the Object refer to concepts, while the Predicate refers to the relationship between them. 

Despite the problems described above, the standardization of data has facilitated the 

recent introduction of Knowledge Discovery approaches in bioinformatics, employing various 

techniques and methods such as data and text mining or machine learning described in the 

next chapter. 
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Chapter 3 

3. From Data Integration to Knowledge Discovery 

The role of Computational Intelligence in Bioinformatics 

 

During the last few years, bioinformatics and computational biology have relied mainly 

on statistical algorithms to formalize, extract and analyze efficiently the vast amount of 

information available in databases. However, the recent explosion of the volumes of data 

available, combined with the growing complexity and heterogeneity in terms of data types 

and data quality, means that biologists now need tools that can represent their data in a 

comprehensible fashion, annotated with contextual information, estimates of accuracy and 

intuitive explanations. As a consequence, combining bioinformatics / computational biology 

with computational intelligence methodologies has become an important area of research in 

intelligent information processing. Computational intelligence combines elements of data 

mining and machine learning approaches to create systems that are, in some sense, intelligent. 

Section 3.1 describes the data mining approaches used to explore large data sets and to 

discover hidden patterns. The main goal of these methods is to understand relationships, 

validate models or identify unexpected relationships. Section 3.2 discusses more specific 

algorithms designed to automatically extract information from the literature. Finally, section 

3.3 introduces machine learning algorithms that allow the computer to learn from data. The 

learning process involves data mining to extract the patterns but the end goal is to use the 

knowledge to do prediction on new data, 

3.1. Data mining in bioinformatics 
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Humans have "manually" extracted patterns from data for centuries, but the increasing 

volume of data in modern times has called for more automated approaches. As data sets  have 

grown in size and complexity, data analysis has increasingly been augmented with automatic 

data processing. Data mining is the process of selecting, exploring and modeling data in order 

to extract hidden patterns and to produce new, meaningful and useful information. It has been 

defined as “The non trivial extraction of implicit, previously unknown, and potentially useful 

information from data" [92]. In bioinformatics this process could refer to finding motifs in 

sequences, to discovering expression profiles shared by different genes, to identifying specific 

features in cellular images, and so on.  

Technically, data mining software allows users to analyze data from many different 

dimensions or angles, categorize it, and summarize the relationships identified. Thus, data 

mining can be defined as the process of finding correlations or patterns among dozens of 

fields in large relational databases. Generally, four types of relationships are sought: 

 Clusters: Data items are grouped according to specific features. For example, genes 

can be grouped into clusters sharing similar gene expression profiles.  

 Classes: New data is assigned to one of a set of predetermined groups or clusters. For 

example, a protein sequence can be assigned to a predefined family group. The class 

can then be used to infer structural or functional information. 

 Associations: Data can be mined to identify associations. The discovery of genotype-

phenotype relationships is an example of associative mining.  

 Sequential patterns: Data is mined to anticipate behavior patterns and trends. For 

example, gene regulation could be predicted based on the presence of specific 

promoter motifs and proteins, such as transcription factors. 

In order to discover these relationships, statistics methods, such as 

clustering/classification, or machine learning methods such as decision trees, artificial neural 

networks and support vector machines (SVM) and pattern recognition are used. The most 

appropriate method will depend on the nature of the input data and the specific requirements 

of the user. Some examples of data mining in bioinformatics are discussed in the following 

sections. 
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3.1.1. Classification 

Classification is used to predict the group (or class) a given object belongs to. 

Classification techniques are widely used to mine health.care data, for example, to generate 

diagnostics from breast cancer data [93] or to diagnosis pigmented skin lesions  [94]. In the 

latter example, they compared several classification methods and concluded that, for their 

data, logistic regression, artificial neural networks  and SVM outperformed K-nearest 

neighbor classification and decisions trees. 

3.1.2. Clustering 

Clustering might be considered today as the most used data mining technique for biological 

data. Clustering can be defined as the process of grouping a set of objects into classes of 

similar objects. For example, in order to target groups of genes sharing similar expression 

profiles, Eisen used hierarchical clustering on the Saccharomyces cerevisiae gene expression 

data and produced very promising results that were later validated experimentally [95, 96]. 

More recently, other clustering techniques have been developed, including k-means 

clustering, used by [97] amongst many other, back propagation neural networks [98], fuzzy 

clustering [99] and many more.  

3.1.3. Association rules 

Association rule learning is a popular and well researched method for discovering 

interesting relations between variables in large databases. A simple example taken from the 

analysis of data recorded by point-of-sale (POS) systems in supermarkets would be the rule: 

{onions, potatoes}=>{beef} which indicates that if a customer buys onions and potatoes 

together, he or she is likely to also buy beef. 

In the past few years, association rules have been used to find knowledge patterns 

hidden in various biological datasets. Many of the early applications used the Apriori 

algorithm [100] that was developed for mining sparse and weakly correlated data. However, 

when mining dense or correlated data, like most biological data, the efficiency of this 

algorithm drastically decreases [101]. Moreover, with such data, a huge number of rules are 

extracted and many of them are redundant, thus complicating their interpretation [102]. 

GenMiner [103] is a generic tool designed for association rule discovery in biological data. It 
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allows the analysis of datasets integrating multiple sources of biological data represented as 

both discrete values, such as gene annotations, and continuous values, such as gene 

expression measures. 

3.1.4. Sequential patterns 

Sequential pattern mining is used to find the relationships between occurrences of 

sequential events, to search for specific order of the occurrences. To quote a simple example, 

if we consider data from a book seller database, we could mine the following pattern: 80% 

customers who bought the book Database Management typically bought the book Data 

Warehousing at the same time, and then later bought the book Knowledge Discovery in 

Databases after a certain time interval. In bioinformatics, this has obvious applications in the 

analysis of DNA or protein sequences, but it can also be used to search for patterns in time-

associated data, for example, data in relational databases which are time-stamped, or time-

series gene expression profiles.  

Tan and Gilbert compared three types of data mining techniques on E. coli, yeast, 

promoters and HIV data sets [104]. They compared rule-based learning systems (rules, 

decision trees ...), ensemble methods (stacking, bagging, boosting) and statistics based 

learning systems (naive Bayes, SVM, artificial neural networks, etc ...) and concluded that no 

single algorithm used alone were able to achieve a good classification of the biological data 

used. In the same way, they proved that when combining different methods, the classifications 

were most accurate. This observation was confirmed a year later by Katsuri and Acharya 

[105] who used this time unsupervised techniques to find gene clusters using a mixture of data 

(promoter sequences, DNA binding motifs, gene ontologies, data location, etc.) and showed 

that  collaborative methods identified correlated genes more accurately. 

3.2. Text mining in Bioinformatics: focus on 

literature  

Literature mining is probably the most studied problem in bioinformatics textual 

analysis today. Most, if not all, existing applications are based on the processing and analysis 

of literature and other scientific publications; despite the fact that nearly all biological data 
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could be considered to be textual. In the rest of this section, we will give an overview of some 

developments in the field, although this is far from being an exhaustive list. 

3.2.1 Functional annotation 

Basic computational applications in bioinformatics rely on protein sequence similarity 

and database annotation. The EUCLID system [106] is one illustration of the use of text 

mining in bioinformatics, classifying proteins into functional groups based on Swissprot 

database keywords. Other examples are based on rules for transferring database information 

based on the relationship between proteins in families. Information Extraction (IE) 

methodologies have also been deployed to mine information that is not automatically 

available from biological databases. As an example Andrade et al, created one of the first 

programs in this field by detecting terms in the scientific papers that are statistically correlated 

to literature associated with protein families [107]. 

Other methodologies that rely on ontologies such as the Gene Ontology (GO), are more 

efficient than keyword based methodologies in structuring knowledge. Thus, Raychaudhuri et 

al, explored the deployment of different document-classification approaches for this task 

[108], while Xie et al, combined textual information with sequence similarity scores to 

enhance functional annotation using GO [109]. 

3.2.2 Cellular localization 

Determining the subcellular localization of a protein is generally achieved based on 

experimental studies. Several studies have also addressed this problem using information 

extraction from literature. For example, Nair and Rost in 2002 used lexical information 

accessible through annotation database records to predict protein location [110], while Stapley 

et al developed an SVM-based system to classify proteins depending on their subcellular 

localization from PubMed abstracts [111]. 

3.2.3 DNA-expression arrays 

Text mining techniques applied to scientific papers provide an alternative insight into 

expression array experiments by the statistical analysis of the words cited in abstracts that are 

linked to genes displaying similar expression patterns. Blaschke et al. in 2001 created a 

method called GEISHA using this type of statistical methodology [112].  Other approaches 
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use manually curated keywords or concepts (from GO for example). As an example, FatiGO 

system [113] detects relevant GO terms for a gene cluster, with respect to the reference set of 

genes. The PubGene system  [114] is another approach where the analysis of microarray data 

relies on already constructed literature networks for human genes linked to MeSH and GO 

terms. 

3.2.4 Protein interactions 

Most of genome sequencing projects such as Drosophila genome has generated large 

scale protein interaction networks gathered into maps. This constitutes a valuable new source 

of information concerning  protein function and possible new drug targets. Text mining could 

help a lot in that sense by connecting the new experiments to the already archived information 

in the literature, which provides a complementary analysis for bioinformatics predictions of 

protein interactions [115]. 

3.2.5 Molecular medicine 

Biomedical domain is full of cases where text mining, NLP (Natural language 

processing) and knowledge-discovery solutions have been employed. Among these solutions, 

some are dedicated to the discovery of the relationship between relevant entities like chemical 

substances and diseases, some others are used to extract and structure information contained 

in clinical records and finally some others are focused on molecules of interest interaction 

visualization.  

Automatic textual research to find out new, so-called ‘undiscovered’, public knowledge 

and to check suggested hypotheses had been primary carried out by Swanson and co-workers. 

They achieved an indirect relationship between dietary fish oil and the blood circulation 

dysfunction often known as Raynaud’s disease [116]. A series of papers on both topics was 

accessible at the time, but no thoughts about using dietary fish oil to cure this illness had been 

suggested before. This theory was likewise followed by other scientists to get indirect 

relationships between estrogen and Alzheimer’s disease [117] . These kind of methods have 

been employed not just to suggest new therapeutic approaches but also to get potentially 

negative drug outcomes or also animal models for particular human disorders. NLP methods 

have also been built to assist the processing of medical information included in healthcare 

documents. As an example MedLEE  [118] is a structure that treat medical records to extract 
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and structure scientific facts, and has been used for a long time by the New York Presbyterian 

Hospital Clinical Information System. Other illustrations consists on for example the GENIES 

approach, within the integrated GeneWays system [119], carries out automated analysis, and 

extraction of molecular-interaction information and pathways from full-text journals. 

3.3. The role of Machine Learning in modern 

bioinformatics 

Machine learning is a subfield of artificial intelligence concerned with the design and 

development of algorithms for intelligent problem solving and decision making. Although 

data mining and machine learning exploit similar algorithms, the goals of the two approaches 

are different. While the goal of data mining is to discover interesting patterns or associations 

in large datasets, machine learning aims to use such patterns to make predictions or inferences 

and to generate new knowledge. Machine learning has a wide spectrum of applications 

including natural language processing, speech and handwriting recognition, object recognition 

in computer vision, game playing and robot locomotion, as well as bioinformatics. The 

general framework for machine learning is as follows: The learning system aims to determine 

a description of a given concept from a set of concept examples. Concept examples can be 

positive (iron, when teaching the concept of metals) or negative (marble). The learning 

algorithm then builds on the type of examples to develop algorithms for making decisions. 

For example, a chess computer game uses previous games to learn winning strategies. Some 

machine learning systems attempt to eliminate the need for human intervention (unsupervised 

learning), while others adopt a collaborative approach between human and machine 

(supervised learning). In most cases, human intervention cannot, however, be entirely 

eliminated, since the system's designer must specify how the input data is to be represented 

and what learning mechanisms will be used.  

3.1.1. Supervised learning 

Supervised learning is a machine learning technique for deducing a function from 

training data. The training data consist of pairs of input objects and desired outputs. The 

output of the function can be a continuous value (called regression), or can predict a class of 

the input object (called classification). The task of the supervised learner is to predict the 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Training_set
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Classification_%28machine_learning%29
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value of the function for any valid input object after having seen a number of training 

examples (i.e. pairs of input and target output). To achieve this, the learner has to generalize 

from the presented data to unseen situations in a "reasonable" way. Supervised learning thus 

generates a function that maps inputs to desired outputs, for example, using genetic 

algorithms, artificial neural networks, Bayesian networks, decision trees or inductive logic 

programming.   

3.1.2. Unsupervised learning 

Unsupervised learning attempts to determine how the data are organized. Many of the 

methods are based on the data mining methods that are used to preprocess data. In contrast to 

supervised learning, the learner is given only input examples: the corresponding outputs are 

unknown. 

The most widely used forms of unsupervised learning are clustering and dimensionality 

reduction approaches, such as Principal Components Analysis (PCA) or Independent 

Components Analysis (ICA). In this type of learning, the goal is not to develop a mapping 

function, but simply to find similarities in the training data. For instance, clustering 

individuals based on demographics might result in a clustering of the wealthy in one group 

and the poor in another. Although the algorithm cannot assign labels to the clusters, it can 

produce them and then use the clusters to assign new objects into one or the other of the 

clusters. This is a data-driven approach that can work well when there is sufficient data; for 

instance, social information filtering algorithms, such as those that Amazon.com use to 

recommend books, are based on the principle of finding similar groups of people and then 

assigning new users to groups.  

 

http://en.wikipedia.org/wiki/Supervised_learning
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Figure 6 : Some of the most well known Machine learning algorithms applied in Bioinformatics. 

  

Machine learning techniques have been widely used in bioinformatics (Figure 6). For 

example, Rocco and Critchlow developed a method for finding classes of bioinformatics data 

sources and integrating them in a unified interface, with the aim of reducing the human effort 

required for the maintenance of data repositories [120, 121] and [122] used artificial neural 

networks to develop a tool for the prediction of breast cancer. Tang suggested a model for 

exploring both empirical and hidden phenotype structures through gene expression data [123]. 

Bioinformatics applications of machine learning in the specific context of expert systems will 

be discussed in more detail in the next chapter. 
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Chapter 4   

4. Knowledge based expert systems in Bioinformatics 

 

The field of bioinformatics has reached the end of its first phase, where it was mainly 

inspired by computer science and computational statistics. The motivation behind this chapter 

is to characterize the principles that may underlie the second phase of bioinformatics, 

incorporating artificial intelligence techniques in novel systems that attempt to learn, reason 

and provide answers to problems that until now required the intervention of a human expert.  

Such ‘expert’ systems must first capture the knowledge pertinent to a specific problem. 

Techniques exist for helping to extract knowledge from human experts. One such method is 

the induction of rules from expert generated examples of problem solutions. This approach 

differs from data mining in that the examples used to train the system are selected by experts. 

They are designed to cover the important real-world cases and as a consequence, the 

‘knowledge base’ is generally of much higher quality. In contrast, data in databases often 

contain redundant, irrelevant, noisy data. Furthermore, experts are available to confirm the 

validity and usefulness of the discovered patterns. Thus, expert systems represent an ideal tool 

for the new field of integrative systems biology. In the rest of this chapter, we will first 

discuss the requirements for expert systems in systems-level biology (section 4.1). We will 

then enumerate some real world applications of expert systems in the biological field (section 

4.2) before making a focus on one type of expert system: Knowledge Based Expert Systems 

(section 4.3). 

4.1. Expert systems for systems-level biology  

The development of high-throughput biotechniques and the subsequent omics studies is 

leading the way to exciting new routes of scientific exploration. Instead of being restricted to 

the analysis of a handful of genes or proteins per experiment, whole genomes and proteomes 

can be analyzed today. This allows biologists, with the help of bioinformaticians, to explore 
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more complicated processes than were possible before [124-127]. This task is not easy to 

achieve. The more new data we have, the harder their exploitation is. The human genome 

project [128] provides a good illustration: once the technological limitations were overcome 

and the DNA sequence was obtained, the goals rapidly moved to its annotation, i.e. the 

identification of the genes encoded by the genome and their functions. Hence, like the 

biotechniques, large projects have been started, with research groups collaborating to find 

solutions to complex bioinformatics problems. 

As a consequence, new layers of bioinformatics annotations, predictions and analysis 

results are being added to the experimental omics data. The new data is then made 

progressively available through public web-accessible data resources such as Ensembl or the 

UCSC Genome Browser. Because the data is broadcast via the web, this results in new 

problems of data management, maintenance and usage. Easy access is clearly necessary to 

allow biologists to use these data as a source of information for in silico data integration 

experiments.  

Nevertheless, integrating these heterogeneous data sets across different databases is 

technically quite difficult, because one must find a way to extract information from a variety 

of search interfaces, web pages and APIs. To complicate matters, some databases periodically 

change their export formats, effectively breaking the tools that allow access to their data. At 

the same time, most omics databases do not yet provide computer-readable metadata and, 

when they do, it is not in a standard format. Hence, expert domain-specific knowledge is 

needed to understand what the data actually represents, before it can be used in integration 

experiments. This limits the practical scale and breadth of integration, given the variety and 

amount of data obtainable from distributed resources. 

Today’s bioinformatics analyses require a combination of experimental, theoretical and 

computational approaches and a crucial factor for their success will be the efficient 

exploitation of the mass of heterogeneous data resources that include genomic sequences, 3D 

structures, cellular localisations, phenotype and other types of biologically pertinent data. 

However, several restrictions of these ‘omics’ data have been highlighted. For example, data 

emerging from ‘omic’ approaches are noisy (data can be missing due to false negatives, and 

data can be misleading due to false positives) and it has been proposed that some of these 
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limitations can be overcome by integrating data obtained from two or more distinct 

approaches [129].  

In this context, scientists from different spheres must collaborate in order to provide the 

expert knowledge for their specific domain. As the application of an ‘intelligent’ expert 

system depends on the biological data available, we now have a "vicious circle" in the sense 

that we need computational intelligence to treat biological data, but the choice of the 

computational intelligence approach is data driven, which sometimes makes it difficult to 

choose between different algorithms. Nevertheless, expert systems have been used in biology 

for several years now, and the next section presents a non exhaustive list of some of the most 

important applications. 

4.2. Expert systems: real-world applications  

4.2.1 Medical diagnostics 

One of the first direct applications of expert systems in a biological discipline was in the 

medical domain. This is a very data-rich domain and the use of knowledge based systems has 

become essential. 

Knowledge-based expert systems are popular in areas where knowledge is much more 

widespread than data, which then requires heuristics as well as reasoning logic to discover 

brand new knowledge. Ackoff described data as a raw entity that just exists, while knowledge 

is understood to be an accumulation of relevant, useful information [130]. In the healthcare 

industry, a balanced mixture of domain knowledge and data are employed for the detection, 

diagnosis, (interpretation) and treatment of diseases. Depending on the specific problem, the 

balance between data and knowledge may differ and appropriate systems are selected and 

deployed, such as rule-based arguing (RBR), model-based arguing (MBR) or case-based 

reasoning (CBR). 

RBR, MBR and CBR are complementary approaches with different advantages and 

disadvantages. Consequently, some systems make use of a mixed strategy, for example (i) 

BOLERO [131] enhances rule-based diagnoses according to the information available 

concerning the patient, (ii) MIKAS [132] combines RBR and CBR to automatically produce a 

menu designed for a specific patient, (iii) PROTOS [133] is essentially used in medical 

audiology and incorporatees knowledge acquisition for heuristic classifications, (iv) CASEY 
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[134] combines CBR and MBR in order to resolve the problem of Causal models based on 

previously observed cases and, at the same time, computing the similarity between behaviors 

to extend possible solutions, (v) T-IDDM [135] is a multi-modal reasoning system that helps 

physicians by providing an accurate decision support tool for the diagnosis of type 1 diabetes 

by integrating RBR, CBR and MBR. 

The transformation of implicit knowledge into explicit rules often leads to a change of 

data content. An alternative to this type of inference is statistical inference using methods 

such as Bayes theorem, which models a probabilistic value for every suggested result (e.g. 

disease in medical domain). Two examples of this are the diagnosis and management of 

pacemaker-related troubles using an interactive expert system [136] and expert systems for 

healthcare forecasts [137]. Such expert systems may be effectively employed for reciprocally 

exclusive diseases and independent symptoms, but fail whenever several symptoms have a 

similar factor  and a patient may suffer from more than one disease. Consequently, there are 

many situations where knowledge-based expert systems are not suitable. For this kind of 

scenario, artificial neural networks have been developed. Artificial neural networks (ANN) 

are extensively employed for diagnosis when a large amount of data is available, for example 

in cardiology [138]. An alternative approach is the use of a Genetic Algorithm (GA), for 

example [139] who used GA to find the number of neurons of the hidden level. 

4.2.2. DNA sequence analysis: Forensic science 

An interesting application of expert systems is the analysis of DNA sequences in 

forensic science. We have all heard about forensic science thanks to Hollywood movies and 

TV series, where a scientist simply inserts a tube into a machine and immediately recognizes 

the suspect. A lot of us think that this is somewhat exaggerated and untrue. Well this is not the 

case. Forensic Science is a very developed science and due to its importance, governments 

devote large budgets to research in this domain. 

The control of forensic biological materials and the decryption of DNA profile data is 

complicated and needs significant resources both in terms of equipment and of experienced 

staff. However the development of automatic equipment to speed up the extraction of DNA 

from forensic samples, to evaluate and amplify the samples, along with multi-capillary 

electrophoresis instrumentation has shifted the importance towards the information analysis 

level. Typically, the analysis and decryption of DNA profile data was carried out by hand by 
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at least two independent experienced, knowledgeable human researchers. Nevertheless, this 

can be a time-consuming procedure and recently, DNA profiling interpretation has been 

automated by exchanging the human staff with bioinformatics software and notably, expert 

systems. 

Knowledge based expert systems have been developed as a way to speed up the DNA 

analysis, therefore decreasing the time required to analyse a significant quantity of DNA 

profiles, for example, GeneMapper ID (Applied Biosystems, Foster City, CA, USA), FaSTR 

DNA [140] or FSS-i3 (The Forensic Science Service DNA Expert System Suite FSS-i3). 

In each one of these expert systems, rules are activated each time a DNA profile is not 

from a unique source or when the standard of the profile is substandard. The expert system 

then requests the analyst to manually re-examine the information and accept or reject the 

assignment made. The combined usage of such automated systems has been shown to offer 

impartial “expert” analyses, which improve consistency and save analysis time in comparison 

to manual processing. 

4.2.3. Protein sequence analysis 

The sequencing of complete genomes for numerous organisms has resulted in the 

classification of a large number of new proteins of unknown biological function. In order to 

investigate the biological activity of the proteins, the first step is to determine its primary 

structure, i.e. the ordered sequence of amino acids making up the protein. Knowledge of the 

amino acid sequence then allows predictions to be made about protein structure and the 

relationships between different proteins. Expert systems have been used to solve a number of 

different problems in protein sequence analysis. 

The precise determination of amino acid sequences in proteins is a very important 

analytical task in biochemistry, and the most common type of instrumentation used for this 

employs Edman degradation [141]. In this method, N-terminal amino acid residues are 

repeatedly labelled and cleaved from the protein. The amino acids are then identified as their 

phenylthiohydantoin (PTH) derivatives by high performance liquid chromatography (HPLC is 

a form of column chromatography used frequently in biochemistry and analytical chemistry to 

separate, identify, and quantify compounds).  
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In this context [142] developed an expert system that uses heuristic rules built by human 

experts in protein sequencing. The system is used to the chromatographic data of 

phenylthiohydantoin-amino acids acquired from an automated sequencer. The peak intensities 

in the current cycle are compared with those in the previous cycle, while the calibration and 

succeeding cycles are used as ancillary recognition criteria when necessary. The retention 

time for each chromatographic peak in each cycle is corrected by the corresponding peak in 

the calibration cycle at the same run.  

As another case study of an ES application, [143] reported an expert system for rapid 

recognition of metallothionein (MT) proteins. MT proteins are responsible for regulating the 

intracellular supply of biologically essential zinc and copper ions and play a role in protecting 

cells from the deleterious effects of high concentration metal ions.  MT is generally induced 

when the organism experiences certain stress conditions and therefore, recognition of MT 

from tissues or from animal models is very important. 

In order to develop an expert system for this task, the physical and chemical 

characteristics of MT proteins were derived based on a set of experiments conducted using 

animal models. The derived characteristics were broken into a set of rules, including (1) 

proteins with low molecular weight versus high molecular weight, (2) proteins with metal 

content versus no metal content, (3) the presence or absence of aromatic amino acids and (4) 

sulphur content versus no sulphur content. The derived rules (consisting of a series of 

attributes and value pairs, followed by a single conclusion that contains the class and the 

corresponding class value) were produced using the ID3 algorithm [144], and a minimum 

number of rules were selected using human expertise to maximize true positive recognition. 

The rules were then formulated into an IF – THEN – ELSE algorithm. 

ProFound [145] is another example of a protein recognition expert system. Developed 

in the Rockfeller University, this expert system is a search engine which employs a Bayesian 

algorithm to identify proteins from protein databases using mass spectrometric peptide 

mapping data. The algorithm ranks protein candidates by taking into account individual 

properties of each protein in the database as well as other data relevant to the peptide mapping 

experiment. The program consistently identifies the correct protein(s) even when the data 

quality is relatively low or when the sample consists of a simple mixture of proteins. 
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Mass spectrometry is an analytical technique for the identification of the basic 

composition of a sample or molecule. It is also used for the determination of the chemical 

structures of molecules, such as peptides (parts of protein sequences) and other chemical 

compounds. 

The rapid growth of protein and DNA sequence databases together with technological 

improvements in biological mass spectrometry (MS) has made the association of mass 

spectrometric peptide mapping with database searching a good method for the rapid 

identification of peptides. The principle of this traditional technique involves degradation of 

proteins with an enzyme having high specificity (usually trypsin), the resulting peptides are 

subject to analysis by either matrix-assisted laser desorption/ionization mass spectrometry 

(MALDI-MS) or electrospray ionization mass spectrometry (ESI-MS). Employing an 

appropriate computer algorithm, the masses established for the resulting peptides are 

compared with masses calculated for theoretically possible enzymatic degradation products 

for every sequence in a protein/DNA sequence database. This technique suffers from several 

small problems that taken together cause errors and inaccuracies. Nevertheless, the method is 

relatively insensitive to unspecified modifications and/or sequence errors in the database 

because high-confidence identifications can be made even when the mapping experiment 

yields data on only a small percentage of the sequence. 

Protein recognition by the described approach requires a strategy for determining the 

best match between the studied biological entity and a sequence in the database. Known 

systems for finding the best match include ranking by number of matches and a scoring 

scheme based on the observed frequency of peptides from all proteins in a database in a given 

molecular weight range (the so-called “MOWSE score”). When the mass spectral data are 

partial (i.e., only a few peaks in the spectrum) and/or of low mass accuracy, the “number-of 

matches” approach may be deficient to make a useful recognition. While the MOWSE scoring 

scheme is much superior to the number-of-matches approach, it does not take into account the 

individual properties of any given protein. An optimal scoring system requires that individual 

properties of each protein in the database be considered. 

Thus, the ProFound team developed an expert system for identifying proteins using MS 

peptide mapping data. The system ranks protein candidates using a Bayesian algorithm that 

takes into account individual properties of each protein in the database as well as other 
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information pertinent to the experiment. Bayesian probability theory has been widely used to 

make scientific inference from incomplete information in distinct fields, including biopolymer 

sequence alignment, NMR spectral analysis, and radar target recognition. When the system 

under study is modeled properly, the Bayesian approach is believed to be always among the 

most coherent, consistent, and efficient statistical methods. Bayesian probability theory was 

used to make logical inference about the identity of an unknown protein sample against a 

protein sequence database.  

4.2.4. Genome annotation 

Discovering genes, their organization, structure and function is a significant problem in 

the genomic and post-genomic era. Two areas of genomic biology are specialized in this 

process, structural and functional annotation. Structural annotation describes the task of 

discovering genes, their location over a biological sequence, their exon/intron structure and 

predicting the protein sequences that they encode. Functional annotation aspires to predict the 

biological function of genes and proteins. 

Both structural and functional annotation generally call for the composite chaining of 

different algorithms, software and procedures each using its own distinct group of input 

parameters and output format. At important steps of these "pipelines", expert biologists are 

required in many cases to make crucial decisions, alter the dataset, evaluate intermediate 

outcomes, manually handle as well as change different files, etc. which can be laborious and 

may end up being error prone. With regard to the management of large volumes of data 

published by sequencing projects, automation of these workflows is critical. Several groups 

have developed annotation systems to automate these pipelines, especially in the area of 

structural annotation (e.g. Ensembl pipeline).  

In terms of functional annotation, several systems automate pairwise similarity based 

methods, and much less have automated the more complicated phylogenomic inference 

techniques. Gouret et al addressed this problem by developing Figenix, which is an expert 

system that allow much more automation of the annotation process [146]. The system mimics 

the biologist’s expertise at each step of the annotation process and currently has 8 different 

workflows of structural and functional annotation. 
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4.3. Expert System Design: focus on knowledge-based 

systems 

Human expert knowledge is a combination of a theoretical understanding in a given 

domain and a collection of heuristic problem-solving rules that experience has shown to be 

effective. Knowledge-based expert systems can be constructed by obtaining this knowledge 

from a human expert and transforming it into a form that a computer may use to solve similar 

problems. The 'expert' program does not know what it knows through the raw volume of facts 

in the computer's memory, but by virtue of a reasoning-like process of applying a set of rules 

to the knowledge. It chooses among alternatives, not through brute-force calculation, but by 

using some of the same rules-of-thumb that human experts use. 

Thus, an expert system can be described as a computer program that simulates the 

judgment and behavior of experts in a particular field and uses their knowledge to provide 

problem analysis to users of the software. There are several forms of expert systems that have 

been classified according to the methodology used [147], including: 

 rule-based systems use a set of rules to analyze information about a specific class of 

problems and recommend one or more possible solutions 

 case-based reasoning systems adapt solutions that were used to solve previous 

problems and use them to solve new problems 

 neural networks implement software simulations of massively parallel processes 

involving the processing of elements that are interconnected in a network architecture 

 fuzzy expert systems use the method of fuzzy logic, which deals with uncertainty and 

is used in areas where the results are not always binary (true or false), but involve grey 

areas  and the term “may be”. 

Expert systems were first used in the mid-1960s when a few AI researchers, who grew 

tired of searching for the illusive general-purpose reasoning machine, turned their attention 

toward well-defined problems where human expertise was the cornerstone for solving the 

problems [148]. But expert systems really took off with the development of the internet in the 

1990’s, which facilitated access to data and deployment of applications. Today, thousands of 

systems are in routine use world-wide, particularly in business, industry and government. 
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The major components of a typical knowledge-based expert system [149] are shown in 

Figure 7, and are described below: 

 The knowledge base contains domain expertise in the form of facts that the expert 

system will use to make determinations. Dynamic knowledge bases, known as truth 

maintenance systems, may be used, where missing or incorrect values can be updated 

as other values are entered 

 The working storage is a database containing data specific to a problem being solved  

 The inference engine is the code at the core of the system which derives 

recommendations from the knowledge base and problem-specific data in the working 

storage 

 The knowledge acquisition module is used to update or expand dynamic knowledge 

bases, in order to include information gained during the expert system experiments  

 The user interface controls the dialog between the user and the system. 

 

 
 Figure 7 : Typical expert system architecture, components and human interface. Experts 
usually use Working Storage techniques (Databases) and Knowledge Bases as a start point for 
an expert system. These bases serve to learn the (Inference Engine which is accessible to the user 
through a User Interface depending on the application. Each time the system is used, the 
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Knowledge Base is enriched through Knowledge Acquisition modules that catch new 
information generated by the user who might also be an expert. 

 

In this context, we can define an expert system as a framework that manages 

information dynamically by the integration of dedicated analysis tools. The tools to be used in 

any particular situation are chosen by special modules that reason about the best algorithms to 

use according to the information type and features. The reasoning part may be created using 

current Artificial Intelligence concepts and subsequently incorporated in the expert system 

which may also include workflows as an elementary module. 

The following general points about expert systems and their architecture have been 

demonstrated [150]: 

 The sequence of steps used to analysis a particular problem is not explicitly 

programmed, but is defined dynamically for each new case 

 Expert systems allow more than one line of reasoning to be pursued and the results of 

incomplete (not fully determined) reasoning to be presented 

 Problem solving is accomplished by applying specific knowledge rather than a 

specific technique. This is a key idea in expert systems technology. Thus, when the 

expert system does not produce the desired results, the solution is to expand the 

knowledge base rather than to re-program the procedures. 

As expert system techniques have matured into a standard information technology, the 

most important recent trend is the increasing integration of this technology with conventional 

information processing, such as data processing or management information systems. These 

capabilities reduce the amount of human intervention required during processing of large-

scale data, such as genome-scale biological data. 
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Chapter 5 

5. Multiple Alignment of Protein Sequences: 

a case study for Expert Systems in Bioinformatics 

 

5.1. Introduction 

Protein multiple alignment represents an ideal case study for the development of 

knowledge-based expert systems in bioinformatics, for a number of reasons. First, proteins are 

the molecular workhorses of biology, responsible for carrying out a tremendous range of 

essential functions, such as catalysis, transportation of nutrients, and recognition and 

transmission of signals. Second, the genome sequencing projects are providing huge amounts 

of raw data, in the form of protein sequences. The sequences are not equally distributed, since 

some evolutionary branches are much more widely studied than others and some important 

protein families more widely studied than others. Furthermore, the new sequences are mostly 

predicted by automatic methods and thus, contain a significant number of sequence errors. 

The problem has been exacerbated by the next generation sequencing technologies that can 

sequence up to one billion bases in a single day at low cost. However, these new technologies 

produce read lengths as short as 35–40 nucleotides, resulting in fragmentary protein 

sequences [151]. Third,  protein sequence analysis has a long history and is one of the most 

widely studied fields in bioinformatics. In particular, hundreds of methods have been 

developed for multiple alignment construction and analysis. Some of the most important of 

these methods will be discussed in detail in chapter 6.  

This chapter begins with a brief discussion of protein function and evolution (section 

5.1). Protein multiple alignment is then discussed in more detail. Section 5.2 describes the 

fundamental role of multiple alignments in many bioinformatics applications. Section 5.3 then 

describes the most widely used methods for multiple alignment construction and analysis. 
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5.2. The protein world 

5.2.1. Protein sequence, structure and function 

Classified by biological function, proteins include the enzymes, which are responsible 

for catalyzing the thousands of chemical reactions of the living cell; structural proteins, such 

as tubulin, keratin or collagen; transport proteins, such as hemoglobin; regulatory proteins, 

such as transcription factors or cyclins that regulate the cell cycle; signaling molecules such as 

some hormones and their receptors; defensive proteins, such as antibodies which are part of 

the immune system; and proteins that perform mechanical work, such as actin and myosin, the 

contractile muscle proteins.    

Every protein molecule has a characteristic three-dimensional shape or conformation, 

known as its native state. Fibrous proteins, such as collagen and keratin, consist of 

polypeptide chains arranged in roughly parallel fashion along a single linear axis, thus 

forming tough, usually water-insoluble, fibres or sheets. Globular proteins, e.g., many of the 

known enzymes, show a tightly folded structural geometry approximating the shape of an 

ellipsoid or sphere. The precise 3D structure of a protein molecule is generally required for 

proper biological function, since the specific conformation is needed that cell factors can 

recognise and interact with. If the tertiary structure is altered, e.g., by such physical factors as 

extremes of temperature, changes in pH, or variations in salt concentration, the molecule is 

said to be denatured; it usually exhibits reduction or loss of biological activity.  

The process by which a protein sequence assumes its functional shape or conformation 

is known as folding. Protein folding can be considered as a hierarchical process, in which 

sequence defines secondary structure, which in turn defines the tertiary structure (Figure 8). 

Other molecules, such as chaperones, may also direct the folding of large newly synthesized 

proteins into their native 3D structure. 
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Figure 8 : Different levels of protein structure (from Principles of biochemistry, Horton, 
Moran, Ochs, Rawn, Scrimgeour). The ribbons represent examples of the four levels of 
protein structure. (a) The linear sequence of amino acid residues defines the primary 
structure. (b) Secondary structure consists of regions of regularly repeating 
conformations of the peptide chain, such as alpha helices and beta sheets. (c) Tertiary 
structure describes the shape of the fully folded polypeptide chain. The example shown 
has two domains. (d) Quaternary structure refers to the arrangement of two or more 
polypeptide chains into a multi-subunit molecule.  

 

Although most protein sequences have a unique 3D confirmation, the inverse is not 

true. A 3D structure does not have a unique sequence, i.e. the size of the structure space is 

much smaller than the size of the sequence space. It is commonly assumed that there are 

around 1000 different protein folds, covering 10,000 different protein sequence families 

[152]. A direct relationship has been clearly established between protein sequence similarity 

and conservation of 3D structure [153-155].  

Although exceptions exist, it is generally believed that when two proteins share 50% 

or higher sequence identity; they will generally share the same structural fold. However, in 

the so-called "twilight zone" of 20–30% sequence identity, it is no longer possible to reliably 

infer structural similarity [156]. High sequence identity, but low structural similarity can 

occur due to conformational plasticity, solvent effects or ligand binding. Conversely, proteins 
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in the ‘twilight zone’ of sequence similarity (<25% identity) can share surprisingly similar 3D 

folds [157].  

The relation between 3D fold and function is much more complex [158, 159] and the 

same fold is often seen to have different functions. After translation, the posttranslational 

modification (PTM) of amino acids can extend the range of functions of the protein by 

attaching to it other biochemical functional groups such as acetate, phosphate, various lipids 

and carbohydrates, by changing the chemical nature of an amino acid (e.g. citrullination) or 

by making structural changes, such as the formation of disulfide bridges [160]. With respect 

to enzymes, local active-site mutations, variations in surface loops and recruitment of 

additional domains accommodate the diverse substrate specificities and catalytic activities 

observed within several superfamilies. Conversely, different folds can perform the same 

function, sometimes with the same catalytic cluster and mechanism (for example, trypsin and 

subtilisin proteinases). General rules seem to be that for pairs of domains that share the same 

fold, precise function appears to be conserved down to ~ 40 % sequence identity, whereas 

broad functional class is conserved to ~ 25 % [161]. These results highlight the need to look 

beyond simple evolutionary relationships, at the details of a molecule's active site, to assign a 

specific function. 

5.2.2. Protein evolution 

During evolution, random mutagenesis events take place, which change the gene 

sequences that encode RNA and proteins. There are several different types of mutation that 

can occur. Point mutations substitute a single nucleic or amino acid residue for another one. 

Residue insertions and deletions also occur, involving a single residue up to several hundred 

residues. Other evolutionary mechanisms at work in nature include genetic recombination, 

where DNA strands are broken and rejoined to form new combinations of genes. Some of 

these evolutionary changes will make a protein non-functional, e.g. most mutations of active 

site residues in an enzyme, or mutations that prevent the protein from folding correctly. If this 

happens to a protein that carries out an essential process, the cell (or organism) containing the 

mutation will die. As a result, residues that are essential for a protein's function, or that are 

needed for the protein to fold correctly, are conserved over time. Occasionally, mutations 
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occur that give rise to new functions. This is one of the ways that new traits and eventually 

species may come about during evolution.  

5.2.3. Protein comparative analysis 

By comparing related sequences and looking for those residues that remain the same in 

all of the members in the family, we can learn a lot about which residues are essential for 

function [162]. Thus, multiple sequence comparison or alignment has become a fundamental 

tool in many different domains in modern molecular biology, from evolutionary studies to 

prediction of 2D/3D structure, molecular function and inter-molecular interactions etc. By 

placing the sequence in the framework of the overall family, multiple alignments not only 

identify important structural or functional motifs that have been conserved through evolution, 

but can also highlight particular non-conserved features resulting from specific events or 

perturbations [163, 164]. 

5.3. Multiple sequence alignment 

There exist two main categories of sequence alignment: pairwise alignment (or the 

alignment of two sequences) and multiple alignment. Pairwise alignments are most commonly 

used in database search programs such as Blast and Fasta in order to detect homologues of a 

novel sequence. Multiple alignments, containing from three to several hundred sequences, are 

more computationally complex than pairwise alignments and in general simultaneous 

alignment of more than a few sequences is rarely attempted. Instead a series of pairwise 

alignments are performed and amalgamated into a multiple alignment. Nevertheless, multiple 

alignments have the advantage of providing an overall view of the family, thus helping to 

decipher the evolutionary history of the protein family. Multiple sequence alignments are 

useful in identifying conserved patterns in protein families, which may not be evident from 

pairwise alignments. They are also used in the determination of domain organisation, to help 

predict protein secondary/tertiary structure and in phylogenetic studies.  

The purpose of any sequence alignment, whether pairwise or multiple, is to show how a 

set of sequences may be related, in terms of conserved residues, substitutions, insertion and 

deletion events (indels). In the most general terms, an alignment represents a set of sequences 

using a single-letter code for each amino acid (for protein sequences) or nucleotide (for 
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DNA/RNA sequences). Structurally / functionally equivalent residues are aligned either in 

rows, or more usually in columns (Figure 9). When the sequences are of different lengths, 

insertion-deletion events are postulated to explain the variation and gap characters are 

introduced into the alignment.  

 

Figure 9 : Example alignment of a set of 7 hemoglobin domain sequences 

The alignment shows the 7 helical structure (PDB:1a00) and the conserved residues forming the 
heme pocket of the beta subunit (green triangles). The symbols below the alignment indicate 
conserved positions: * = fully conserved identical residue, : = fully conserved ‘similar’ residue, . 
= partially conserved ‘similar’ residue.   

 

Sequence alignments can be further divided into global alignments that align the 

complete sequences and local alignments that identify only the most similar segments or 

sequence patterns (motifs). In local alignments, the conserved motifs are identified and the 

rest of the sequences are included for information only. Thus, only a subset of the residues is 

actually aligned. In global alignments, all the residues in both sequences participate in the 

alignment.  

In order to allow the maximum integration of biological information in the context of 

the complete protein family, a multiple alignment of the full length of the sequences is 

essential. Global Multiple Alignments of Complete Sequences (MACS) provide an ideal basis 

for more in-depth analyses of protein family relationships. By placing the sequence in the 

context of the overall family, the MACS permit not only a horizontal analysis of the sequence 

over its entire length, but also a vertical view of the evolution of the protein. The MACS thus 

represents a powerful integrative tool that addresses a variety of biological problems, ranging 
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from key functional residue detection to the evolution of a protein family. The MACS now 

plays a fundamental role in most areas of modern molecular biology, from shaping our basic 

conceptions of life and its evolutionary processes, to providing the foundation for the new 

biotechnology industry.  

5.4. Multiple alignment applications 

5.4.1. Phylogenetic studies 

One of the earliest applications of multiple sequence alignments was in phylogenetic 

studies. Phylogenetics is the science of estimating the evolutionary past, in the case of 

molecular phylogeny, based on the comparison of DNA or protein sequences. For example, 

the accepted universal tree of life, in which the living world is divided into three domains 

(bacteria, archaea, and eucarya), was constructed from comparative analyses of ribosomal 

RNA sequences (Figure 10).  

 

Figure 10 : Alternative hypotheses for the rooting of the tree of life 

In b), i indicates informational proteins and o indicates operational proteins. 

 

According to this rRNA-based tree, billions of years ago a universal common 

prokaryotic-like ancestor gave rise to the two microbial branches, the archaea and bacteria 

(collectively called prokarya) and later, the archaea gave rise to the eukarya [165] (Figure 

10a). More recently, analyses based on whole-genome comparisons have suggested that the 

eukaryotic lineage arose from metabolic symbiosis between eubacteria and methanogenic 

archaea [166] (Figure 10b). In this case, early eukaryotes would be a chimera of eubacterial 

and archaeal genes, in which the operational genes were primarily from the eubacteria, and 

the informational genes from the archaea. But some important eukaryotic genes have no 
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obvious predecessors in either the archaeal or the bacterial lines, and an alternative has been 

suggested where prokaryotes would have evolved by simplification of an ancestral 

eukaryotic-like genome [167, 168] (Figure 10c). In a comprehensive study of ribosomal genes 

in complete genomes from 66 different species, the archaeal ribosome appeared to be a small-

scale model of the eukaryotic one in terms of protein composition [169], which would support 

the eukaryotic-rooting tree.  

The methods for calculating phylogenetic trees fall into two general categories [170]. 

These are distance-matrix methods, also known as clustering or algorithmic methods (e.g. 

UPGMA or neighbour-joining), and discrete data methods, also known as tree searching 

methods (e.g. parsimony, maximum likelihood, Bayesian methods). All of these methods use 

distance measures based on the multiple sequence alignment and the strategy used to 

construct the alignment can have a large influence on the resulting phylogeny [171].  

5.4.2. Comparative genomics 

Of course, in the current era of complete genome sequences, it is now possible to 

perform comparative multiple sequence analysis at the genome level [172]. As genomes 

evolve, large-scale evolutionary processes, such as recombination, deletion or horizontal 

transfer, cause frequent genome rearrangements [173]. Comparative analyses of complete 

genomes present a comprehensive view of the level of conservation of gene order, or synteny, 

between different genomes, and thus provide a measure of organism relatedness at the 

genome scale [174-176]. Examples of such analyses include comparisons among enteric 

bacteria [177] and between mouse and human [178]. Comparative genomics is thus an 

attempt to take advantage of the information provided by the signatures of selection to 

understand the function and evolutionary processes that act on genomes. 

But comparative genomics can also take a medium-resolution view. By identifying all 

the known genes from one genome and finding their matching genes, if they exist, in another 

genome, we can determine which genes have been conserved between species and which are 

unique. The DNA sequences encoding the proteins and RNA responsible for the functions 

shared between distantly related organisms, as well as the DNA sequences for controlling the 

expression of such genes, should be preserved in their genome sequences. Conversely, 

sequences that encode proteins or RNAs responsible for differences between species will 
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themselves be divergent. For example, a comparison of the genomes of yeast, worms and flies 

revealed that these eukaryotes encode many of the same proteins, but different gene families 

are expanded in each genome [179]. A similar observation was made in a comparison of 

sixteen complete archaeal genomes, where comparative genomics revealed a core of 313 

genes that are represented in all sequenced archaeal genomes, plus a variable ‘shell’ that is 

prone to lineage-specific gene loss and horizontal gene exchange [180]. 

A number of software tools have been developed for use in comparative genomics, in 

order to explore the similarities and differences between genomes at different levels. Because 

of the volume and nature of the data involved, almost all the visualization tools in this field 

use a web interface to access large databases of pre-computed sequence comparisons and 

annotations, e.g. Vista [181], Ensembl [182], UCSC [183]. For example, Figure 11 shows an 

8 Mb region of the human chromosome 12, together with homologous regions of other 

vertebrate genomes, displayed using the UCSC genome browser. This particular region was 

identified by genome-wide SNP-based mapping in families with mutations involved in 

Bardet-Biedl Syndrome (BBS), a genetically heterogeneous ciliopathy [184].   
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Figure 11 : UCSC genome browser display 

The display shows a 12Mb region of homozygosity that segregated with the disease 
phenotype in different sibships in families with Bardet-Biedl Syndrome (BBS) 
mutations. The region contains 23 known genes, including the BBS10 gene, a major 
locus for BBS. Syntenic regions from chimp, dog, mouse and other organisms are shown 
at the bottom of the display. 

 

5.4.3. Gene prediction and validation 

One important aspect in biotechnology is gene discovery and target validation for drug 

discovery. At the time of writing, over 1000 genomes (from bacteria, archaea and eukaryota, 

as well as many viruses and organelles) [40] are either complete or being determined, but 

biological interpretation, i.e. annotation, is not keeping pace with this avalanche of raw 

sequence data. There is still a real need for accurate and fast tools to analyze these sequences 

and, especially, to find genes and determine their functions. Unfortunately, finding genes in a 

genomic sequence is far from being a trivial problem. It has been estimated that 44% of the 

protein sequences predicted from eukaryotic genomes and 31% of the HTC (High-throughput 

cDNA) sequences contain suspicious regions [72]. 

The most widely used approach consists of employing heterogeneous information from 

different methods, including the detection of a bias in codon usage between coding and non-

coding regions and ab initio prediction of functional sites in the DNA sequence, such as splice 

sites, promoters, or start and stop codons. Most current methods of detection of a signal that 

may represent the presence of a functional site use position-weight matrices (PWM), 

consensus sequences or HMM's. The reliability and accuracy of these methods depends 

critically on the quality of the underlying multiple alignments [8]. For prokaryotic genomes, 

these combined methods are highly successful, identifying over 95% of the genes (e.g. [185]), 

although the exact determination of the start site location remains more problematic because 

of the absence of relatively strong sequence patterns. The process of predicting genes in 

higher eukaryotic genomes is complicated by several factors, including complex gene 

organization, the presence of large numbers of introns and repetitive elements, and the sheer 

size of the genomic sequence [186]. It has been shown that comparison of the ab initio 

predicted exons with protein, EST or cDNA databases can improve the sensitivity and 

specificity of the overall prediction. For example, in the re-annotation of the Mycoplasma 
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pneumoniae genome [187], sequence alignments were used in the prediction of N/C-terminal 

extensions to the original protein reading frame. This approach has also been implemented in 

a web server, vALId, developed in our group for automatic protein quality control [72].  

 

Figure 12 : vALId display of a multiple alignment of plant alcohol dehydrogenases 

a) Multiple alignment display showing reliable sequence segments in green and potential errors 
in orange. Grey shading represents regions that have been validated by vALId. b) Validation of 
the predicted error in Q41767_MAIZE  by comparison of a chimeric sequence with the original 
genome sequence.  

 

Taking advantage of high quality MACS, vALId first warns about the presence of 

suspicious insertions/deletions (indels) and divergent segments, and second, proposes 

corrections based on transcripts and genome contigs. For example, figure 5.5 shows the 

vALId analysis of a multiple alignment of plant alcohol dehydrogenases, highlighting a very 

divergent region in the N-terminal region of the sequence Q41767_MAIZE. Divergent 

regions are validated by constructing a chimeric sequence, where the suspicious region in the 

predicted sequence is replaced by the corresponding segment from the closest neighbour in 

the MACS. A TBlastN search with the chimeric sequence (Figure 12) identified an exon 

encoding residues that matched the conserved positions in the MACS.  
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5.4.4. Protein function characterization 

In most genome annotation projects, the standard strategy to determine the function of a 

novel protein is to search the sequence databases for homologues and to propagate the 

structural/functional annotation from the known to the unknown protein. Recent 

developments in database search methods have exploited multiple sequence alignments to 

detect more and more distant homologues e.g. [21, 188, 189]. However, most automatic 

genome projects only use information from the top best hits in the database search, as 

sequence hits with higher expect values are considered unreliable. This has lead to a certain 

number of errors in genome annotations. Two types of error have already been identified: 

those of under- and over-prediction. Under-prediction implies that functional information is 

not transferred because the chain of propagation is broken, for example, because the top-

scoring hits in the database search are all uncharacterised. Over-prediction is perhaps more 

serious because it introduces incorrect annotations into the sequence databases. Subsequent 

searches against these databases then cause the errors to propagate to future functional 

assignments. 
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Figure 13: Multiple alignment of the BBS10 protein and homologs found in in-depth database 
searches 

a) Overview of complete protein, showing global organisation, including 3 insertions specific to 
BBS10 and the N-terminal deletion due to an error in the exon prediction of the gene. The red 
box indicates the region shown in b).Residues are coloured according to the colourrng scheme 
used in ClustalX [190]. b) N-terminal region of the BBS10 alignment. The black boxes indicate 
the positions of ATP binding site motifs, as defined in the ProSite database. 

 

Another approach is to look for similarities to known domains in pre-compiled 

databases, such as Interpro [191]. These databases contain representations such as profiles or 

HMM's of individual protein domains based on multiple alignments of known sequences. 

Genome annotation systems such as Magpie [192], Imagene [193], GeneQuiz [194], Alfresco 

[195] now use multiple alignments to reliably incorporate information from more distant 

homologues and provide a more detailed description of protein function. As an illustration, 

shows a MACS of the BBS10 protein (Figure 13). The BBS10 sequence shows some 

similarity (approx. 11% residue identity) to several chaperonin-like proteins which are found 
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only in vertebrates, although the MACS revealed three BBS10-specific insertions. A 3D 

homology model based on the crystal structure of the chaperonin from Thermococcus 

(PDB:1q2vA) showed that the 3 insertions are spatially close, suggesting potential 

interactions and the existence of a new functional domain. 

5.4.5. Protein 2D/3D structure prediction 

Multiple alignments play an important role in a number of aspects of the 

characterisation of the 3-dimensional structure of a protein. The most accurate in silico 

method for determining the structure of an unknown protein is homology structure modeling. 

Sequence similarity between proteins usually indicates a structural resemblance, and accurate 

sequence alignments provide a practical approach for structure modeling, when a 3D 

structural prototype is available. For models based on distant evolutionary relationships, it has 

been shown that multiple sequence alignments often improve the accuracy of the structural 

prediction [196]. Multiple sequence alignments are also used to significantly increase the 

accuracy of ab initio prediction methods for both 2D (e.g. [197]) and 3D [198] structures, by 

taking into account the overall consistency of putative features. Similarly, multiple alignments 

are also used to improve the reliability of other predictions, such as transmembrane helices 

[199]. More detailed structural analyses also exploit the information in multiple alignments. 

For example, binding surfaces common to protein families were defined on the basis of 

sequence conservation patterns and knowledge of the shared fold [200].  

More recently, multiple sequence alignments have been used to identify communication 

pathways through protein folds [201]. Figure 14 shows part of a multiple alignment of nuclear 

receptor (NR) proteins used in this study. Nuclear receptors (NRs) are ligand-dependent 

transcription factors that control a large number of physiological events through the regulation 

of gene transcription. Two classes of NRs were identified on the basis of the distribution of 

differentially conserved residues in the multiple sequence alignment. Differentially conserved 

residues are defined as those residues that are conserved in one sub-family and that are strictly 

absent in all the other sequences in the alignment. The two classes of NRs were found to 

correspond to experimentally verified homodimers and heterodimers. Furthermore, site 

directed mutagenesis revealed that the differentially conserved residues contribute class-
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specific communication pathways of salt bridges, confirming the functional importance of 

these residues for the dimerization process and/or transcriptional activity. 

 

 

Figure 14 : Multiple sequence alignment of NR ligand binding domains and class-specific 
features 

The differentially conserved residues are highlighted in blue and green for class I and II, 
respectively. Conserved residues are indicated as follows: 100%, white against black; >80%, 
white against grey; >60%, black against grey. NR LBD secondary structure elements are 
indicated. b) Secondary structure diagram showing NR class-specific features. Conserved but 
not strictly class-specific residues are in black. Arrows indicate the salt bridges in the 3D 
structures. c) Views of the class-specific residues including the salt bridges forming the class I 
(blue) and class II (green) communication pathway [201]. 

 

5.4.6. RNA structure and function 

While proteins have been the traditional candidates for detailed structural and functional 

analyses, RNA secondary and tertiary structure studies remain crucial to the understanding of 
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complex biological systems. Structure and structural transitions are important in many areas, 

such as post-transcriptional regulation of gene expression, intermolecular interaction and 

dimerization, splice site recognition and ribosomal frame-shifting. The function of an RNA 

molecule depends mostly on its tertiary structure and this structure is generally more 

conserved than the primary sequence. The determination of RNA 3D structure is a limiting 

step in the study of RNA structure-function relationships because it is very difficult to 

crystallize and/or get nuclear magnetic resonance spectrum data for large RNA molecules. 

Currently, a reliable prediction of RNA secondary and tertiary structure from its primary 

sequence is mainly derived from multiple alignments, searching among members of a family 

for compensatory base changes that would maintain base-pairedness in equivalent regions. 

For example, the Sequence to Structure (S2S) tool [202] proposes a framework in which a 

user can display, manipulate and interconnect RNA multiple sequence alignments, secondary 

and tertiary structures (Figure 15). 

 

 

Figure 15: S2S display of a multiple alignment of the RNA element conserved in the SARS virus 
genome 

Multiple sequence alignment, secondary and tertiary structure. Inside the multiple alignment, 
the bracket notation is such that the regular parentheses ‘(‘and’)’ denote the helical Watson–
Crick pairs and the ‘<’ and ‘>’ characters specify non-Watson–Crick base-pairs typical of RNA 
motifs. 
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These methods have been demonstrated by successful predictions of RNA structures for 

tRNAs, 5S and 16S rRNAs, RNase P RNAs, small nuclear RNAs (snRNAs) and other RNAs, 

such as group I introns.  

The phylogenetic comparative methods are often supported by complementary, 

theoretical structure calculations. The most widely used methods are derived from dynamic 

programming algorithms, such as MFOLD [203] which predicts on average about 70% of 

known base-pairs. However, the search for the equilibrium structure by optimization of the 

global free energy is often insufficient. The biologically functional state of a given molecule 

may not be the optimal state and moreover, a structured RNA molecule is not a static object. 

A molecule may pass through a variety of active and inactive states due to the kinetics of 

folding, to the simultaneity of folding with transcription, or to interactions with extra-

molecular factors. To address these problems, integrated systems have been developed that 

combine traditional thermodynamic calculations with experimental data, e.g. 

STRUCTURELAB [204]. Such systems permit the use of a broad array of approaches for the 

analysis of the structure of RNA and provide the capability of analysing the data set from a 

number of different perspectives. 

5.4.7. Interaction networks 

In the post-genomic view of cellular function, each biological entity is seen in the 

context of a complex network of interactions. New and powerful experimental techniques, 

such as the yeast two-hybrid system or tandem-affinity purification and mass spectrometry, 

are used to determine protein-protein interactions systematically. In parallel with these 

developments, a number of computational techniques have been designed for predicting 

protein interactions. The performance of the Rosetta method, which relies on the observation 

that some interacting proteins have homologues in another organism fused into a single 

protein chain, has recently been improved using multiple sequence alignment information and 

global measures of hydrophobic core formation [205]. A measure of the similarity between 

phylogenetic trees of protein families has also been used to predict pairs of interacting 

proteins [206]. This method was adapted to consider the multi-domain nature of proteins by 

breaking the sequence into a set of segments of predetermined size and constructing a 

separate profile for each segment [207]. Another approach involves quantifying the degree of 
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co-variation between residues from pairs of interacting proteins (correlated mutations), known 

as the "in silico two-hybrid" method. For certain proteins that are known to interact, 

correlated mutations have been demonstrated to be able to select the correct structural 

arrangement of two proteins based on the accumulation of signals in the proximity of 

interacting surfaces [208]. This relationship between correlated residues and interacting 

surfaces has been extended to the prediction of interacting protein pairs based on the 

differential accumulation of correlated mutations between the interacting partners 

(interprotein correlated mutations) and within the individual proteins (intraprotein correlated 

mutations) [209]. 

5.4.8. Genetics 

A considerable effort is now underway to relate human phenotypes to variation at the 

DNA level. Most human genetic variation is represented by single nucleotide polymorphisms 

(SNPs) and many of them are believed to cause phenotypic differences between individuals 

[210]. One of the main goals of SNP research is therefore to understand the genetics of human 

phenotype variation and especially the genetic basis of complex diseases, thus providing a 

basis for assessing susceptibility to diseases and designing individual therapy. Whereas a 

large number of SNPs may be functionally neutral, others may have deleterious effects on the 

regulation or the functional activity of specific gene products. Non-synonymous single-

nucleotide polymorphisms (nsSNPs) that lead to an amino acid change in the protein product 

are of particular interest because they account for nearly half of the known genetic variations 

related to human inherited disease [211]. With more and more data available, it has become 

imperative to predict the phenotype of a nsSNP in silico. Computational tools are therefore 

being developed, which use structural information or evolutionary information from multiple 

sequence alignments to predict a nsSNP’s phenotypic effect and to identify disease-associated 

nsSNPs, e.g. [212]. 

5.4.9. Drug discovery, design 

The structural and functional analyses described above provide an opportunity to 

identify the proteins associated with a particular disease that are therefore potential drug 

targets. Rational drug design strategies can then be directed to accelerate and optimize the 

drug discovery process using experimental and virtual (computer-aided drug discovery) 
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methods. Recent advances in the computational analyses of enzyme structures and functions 

have improved the strategies used to modify enzyme specificities and mechanisms by site-

directed mutagenesis, and to engineer biocatalysts through molecular reassembly. 

For example, vitamin D analogs have been proposed for the treatment of severe rickets 

caused by mutations in the vitamin D receptor (VDR) gene [213]. The known mutations in the 

coding regions of the human VDR gene can be divided into two classes, representing two 

different phenotypes. Mutations in the VDR DNA-binding domain (DBD) prevent the 

receptor from activating gene transcription, although vitamin D binding is normal. Patients 

with this DNA binding-defective phenotype do not respond to vitamin D treatment. In 

contrast, some patients with mutations in the ligand binding domain (LBD) that cause reduced 

or complete hormone insensitivity have been partially responsive to high doses of calcium and 

vitamin D, although this often necessitates long term intravenous infusion therapy. For these 

patients, an alternative treatment using vitamin D analogs was proposed. Knowledge of the 

3D structure of the hormone-occupied VDR LBD [214] and the nature of the amino acid 

residues that contribute to the functional surface of the receptor allowed the selection of 3 

candidate VDR mutations with the potential to interact with the receptor at amino acid contact 

points that differ from those utilized by the natural ligand, thus restoring the function of 

mutant VDRs [213]. This example clearly illustrates the importance of polymorphism data 

that, combined with structural and evolutionary information, can form the basis for 

biochemical and cellular studies which may eventually lead to new drug therapies. 
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Chapter 6 

6.  Multiple sequence alignment algorithms 

 

In the face of the growing number of alignment applications, a vast array of diverse 

algorithms has been developed in an attempt to construct reliable, high-quality multiple 

alignments within a reasonable time limit that will allow high-throughput processing of large 

sequence sets. The first formal algorithm for multiple sequence alignment [215] was a direct 

extension of the dynamic programming algorithm for the alignment of two sequences 

developed by Needleman and Wunsch [216]. However, the optimal multiple alignment of 

more than a few sequences (more than 10) remains impractical due to the intensive computer 

resources required, despite some space and time improvements [217]. Therefore, in order to 

multiply align larger sets of sequences, most programs in use today employ some kind of 

heuristic approach to reduce the problem to a reasonable size.  

6.1. Multiple alignment construction 

6.1.1  Progressive multiple alignment 

Traditionally the most popular method has been the progressive alignment procedure 

[218], which exploits the fact that homologous sequences are evolutionarily related. A 

multiple sequence alignment is built up gradually using a series of pairwise alignments, 

following the branching order in a phylogenetic tree. An example using five immunoglobulin-

like domains is shown in Figure 16. 
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Figure 16: The basic progressive alignment procedure 

The algorithm is  illustrated using a set of five immunoglobulin-like domains. The sequence 
names are from the Swissprot or PDB databases: 1HNF: human cell adhesion (CD2) protein, 
CD2_HORSE: horse cell adhesion protein, CD2_RAT: rat cell adhesion protein, 
MYPS_HUMAN: human myosin-binding protein, 1WIT: nematode twitchin muscle protein. 
The secondary structure elements of the immunoglobulin-like domains from the human CD2 
(1HNF) and the nematode twitchin (1WIT) proteins are shown above and below the alignment 
(right arrow = beta sheet, coil = alpha helix). 

 

The first step involves aligning all possible pairs of sequences in order to determine the 

distances between them. A guide tree is then created and is used to determine the order of the 

multiple alignment. The two closest sequences are aligned first and then larger and larger sets 

of sequences are merged, until all the sequences are included in the multiple alignment. In the 

example, the human and horse CD2 sequences are aligned first. These two sequences are then 

aligned with the rat CD2 sequence. Finally, the myosin-binding protein sequence is aligned 
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with the twitchin sequence, before being merged with the alignment of the three CD2 

sequences. This procedure works well when the sequences to be aligned are of different 

degrees of divergence. Pairwise alignment of closely related sequences can be performed very 

accurately. By the time the more distantly related sequences are aligned, important 

information about the variability at each position is available from those sequences already 

aligned. A number of different alignment programs based on this method exist, using either a 

global alignment method to construct an alignment of the complete sequences, or a local 

algorithm to align only the most conserved subsegments of the sequences (Figure 17). For 

example, Multalign [219], Multal [220], Pileup (Wisconsin Package, Genetics Computer 

Group, Madison, WI), ClustalW/X [190, 221] are all based on the global Needleman-Wunsch 

algorithm. The main difference between these programs lies in the algorithm used to 

determine the final order of alignment. For example, Multal uses a sequential branching 

algorithm to identify the two closest sequences first and subsequently align the next closest 

sequence to those already aligned. Multalign and Pileup use a simple bottom-up data 

clustering method, known as the Unweighted Pair Grouping Method with Arithmetic means 

(UPGMA) [222], to construct a phylogenetic tree that is then used to guide the progressive 

alignment step. ClustalW/X uses another phylogenetic tree construction method, called 

neighbour-joining (NJ) [223]. Although the NJ method is less efficient than the UPGMA, it 

has been extensively tested and usually finds a tree that is quite close to the optimal tree. In 

contrast to the global alignment methods, the Pima program [224] uses the Smith-Waterman 

algorithm to find a local multiple alignment.  
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Figure 17 : Overview of different progressive alignment algorithms  

SB=sequential branching, ML=maximum likelihood, NJ=neighbour joining, 
UPGMA=Unweighted Pair Grouping Method with Arithmetic mean. 

 

 

Since then, the sensitivity of the progressive multiple sequence alignment method has 

been somewhat improved with the introduction of several important enhancements to the 

basic method. For example, Treealign [225] extends the progressive alignment process by 

adding a parsimony step: an initial alignment is constructed and used to build a parsimony 

tree which in turn is used to direct the final alignment algorithm. ClustalX [190] reduces the 

problem of the over-representation of certain sequences by incorporating a sequence 

weighting scheme that downweights near-duplicate sequences and upweights the most 

divergent ones. In addition, position-specific gap penalties encourage the alignment of new 

gaps on existing gaps introduced earlier in the multiple alignments. Most of the alignment 

programs mentioned above use one residue scoring matrix and two gap penalties (one for 

opening a new gap and one for extending an existing gap). When identities dominate an 

alignment, almost any set of parameters will find approximately the correct solution. With 

very divergent sequences, however, the scores given to non-identical residues will become 

critically important. Also, the exact values of the gap penalties become important for success. 
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Thus, the choice of alignment parameters remains a decisive factor affecting the quality of the 

final alignment. 

 6.1.2  Iterative strategies 

The next generation of multiple alignment algorithms used iterative strategies to refine 

and improve the initial alignment. The PSI-Blast program builds multiple alignments by 

aligning the homologous segments detected by a Blast database search to the query sequence. 

Hidden Markov Models (HMM’s) have been used in a number of programs HMMT [226] or 

SAM [188] to build multiple alignments and have been employed notably to create large 

reference databases of sequence alignments such as Pfam and ProSite. The flexibility and 

efficiency of stochastic techniques such as Gibbs Sampling [227] and Genetic Algorithms 

[228] have also been exploited in the search for more accurate alignments. Iteration 

techniques have also been used to refine an initial multiple alignment built using the 

traditional progressive alignment algorithm in PRRP [229]. An alternative to the global 

alignment approach is the ‘segment-to-segment’ alignment method used in Dialign [230]. 

Segments consisting of locally conserved residue patterns or motifs, rather than individual 

residues, are detected and then combined to construct a local multiple alignment of only the 

most conserved regions of the sequences. 

 6.1.3  Co-operative strategies 

The complexity of the multiple alignment problem has lead to the combination of 

different alignment algorithms and the incorporation of biological information other than the 

sequence itself. A comparison of a number of local and global protein alignment methods 

based on the BAliBASE benchmark [231] showed that no single algorithm was capable of 

constructing accurate alignments for all test cases. A similar observation was made in another 

study of RNA alignment programs [232], where algorithms incorporating structural 

information outperformed pure sequence-based methods for divergent sequences. Therefore, 

recent developments in multiple alignment methods have tended towards an integrated system 

bringing together knowledge-based or text-mining systems and prediction methods with their 

inherent unreliability. For example, methods were introduced that combined both global and 

local information in a single alignment program, such as DbClustal [233], T-Coffee [234], 

MAFFT [235], Muscle [236] or Probcons [237]. Other authors introduced different kinds of 

information in the sequence alignment, such as or 3D structure [238] or domain organisation 
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(REFINER). A number of methods were also developed to address specific problems, such as 

the accurate alignment of closely related sequences (PRANK) or the alignment of sequences 

with different domain organisations (POA). 

6.2. Alignment parameters 

Most of the alignment methods mentioned above try to optimize a score for the multiple 

alignment based on scores for matching similar residues, together with penalties for 

introducing indels into the sequences.  

6.2.1   Scoring matrices 

Most alignment programs make comparisons between pairs of bases or amino acids by 

looking up a value in a scoring matrix. The matrix contains a score for the match quality of 

every possible pair of residues (Figure 18).  

 

Figure 18 : PAM-250 matrix.  

Substitution scores for amino acids. 

 

The simplest way to score an alignment is to count the number of identical residues that 

are aligned. When the sequences to be aligned are closely related, this will usually find 

approximately the correct solution. For more divergent sequences sharing less than 25-30 

percent identity, however, the scores given to non-identical residues becomes critically 

important. More sophisticated scoring schemes exist for both DNA and protein sequences and 

generally take the form of a matrix defining the score for aligning each pair of residues. For 

alignments of nucleotide sequences, the simplest scoring matrix would assign the same score 

 

104 

 



Chapter 6 : Multiple sequence alignment algorithms 

 

105 

 

to a match of the four classes of bases, ACGT, and 0 for any mismatch. However, transitions 

(substitution of A-G or C-T) happen much more frequently than transversions (substitution of 

A-T or G-C) and it is often desirable to score these substitutions differently. More complex 

matrices also exist in which matches between ambiguous nucleotides are given values 

whenever there is any overlap in the sets of nucleotides represented by the two symbols being 

compared. For protein sequence comparisons, scoring matrices generally take into account the 

biochemical similarities between residues and/or the relative frequencies with which each 

amino acid is substituted by another. The most widely used scoring matrices are known as the 

PAM (point accepted mutation) matrices [239]. The original PAM1 matrix was constructed 

based on the mutations observed in a large number of alignments of closely related sequences. 

A series of matrices was then extrapolated from the PAM1. The matrices range from strict 

ones, useful for comparing very closely related sequences to very 'soft' ones that are used to 

compare very divergent sequences. For example, the PAM250 matrix corresponds to an 

evolutionary distance of 250%, or approximately 80% residue divergence. Other matrices 

have been derived directly from either sequence-based or structure-based alignments. For 

example, the Blosum matrices are based on the observed residue substitutions in aligned 

sequence segments from the Blocks database. The proteins in the database are clustered at 

different percent identities to produce a series of matrices. For example, the Blosum-62 matrix 

is based on alignment blocks in which all the sequences share at least 62% residue identity. 

Other more specialized matrices have been developed e.g. for specific secondary structure 

elements [240] or for the comparison of particular types of proteins such as transmembrane 

proteins [241].  

6.2.2  Gap schemes 

As well as assigning scores for residue matches and mismatches, most alignment 

scoring schemes in use today calculate a cost for the insertion of gaps in the sequences. One 

of the first gap scoring schemes for the alignment of two sequences charged a fixed penalty 

for each residue in either sequence aligned with a gap in the other. Under this system, the cost 

of a gap is proportional to its length. Alignment algorithms implementing such length-

proportional gap penalties are efficient, however the resulting alignments often contain a large 

number of short indels that are not biologically meaningful. To address this problem, linear or 

‘affine’ gap costs are used that define a gap insertion or ‘gap opening’ penalty in addition to 

the length-dependent or ‘gap extension’ penalty. Thus, a smaller number of long gaps is 
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favoured over many short ones. Fortunately, algorithms using affine gap costs are only 

slightly more complex than those using length-proportional gap penalties, requiring only a 

constant factor more space and time. Again, more complex schemes have been developed, 

such as 'concave' gap costs [242] or position-specific gap penalties [243]. Most of these are 

attempts to mimic the biological processes or constraints that are thought to regulate the 

evolution of DNA or protein sequences. 

6.2.3  Alignment statistics 

An important aspect of sequence alignment is to establish how meaningful a given 

alignment is. It is always possible to construct an alignment between a set of sequences, even 

if they are unrelated. The problem is to determine the level of similarity required to infer that 

the sequences are homologous, i.e. that they descend from a common ancestor. A simple rule-

of-thumb for protein sequences states that if two sequences share more than 25% identity over 

more than 100 residues, then the two sequences can be assumed to be homologous. However, 

many proteins sharing less than 25% residue identity, said to be in the 'twilight zone' [244], do 

still have very similar structures. The measure of the percent identity or similarity of the 

sequences is generally not sensitive enough to distinguish between alignments of related and 

unrelated sequences. Much work has been done on the significance of both ungapped and 

gapped pairwise local alignments [245, 246], although the statistics of global alignments or 

alignments of more than two sequences are far less well understood. The aim of the statistical 

analysis is to estimate the probability of finding by 'chance' at least one alignment that scores 

as high as or greater than the given alignment. For ungapped local alignments, these 

probabilities or P-values may be derived analytically. For alignments with gaps, empirical 

estimates are used based on the scores obtained during a database search, or from randomly 

generated sequences. For database search programs, the significance of an alignment between 

the query sequence and a database sequence is often expressed in terms of Expect- or E-

values. The E-value specifies the number of matches with a given score that are expected to 

occur by chance in a search of a database. An Expect-value of zero, with a given score, would 

indicate that no matches with this score are expected purely by chance. 
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6.3. Multiple alignment quality 

 

In the search for more accurate alignments, most state of the art methods now often use 

a combination of complementary techniques, such as local/global alignments or 

sequence/structure information. Although much progress has been achieved, the latest 

methods are not perfect and misalignments can still occur. If these misalignments are not 

detected, they will lead to further errors in the subsequent applications that are based on the 

multiple alignment. The assessment of the quality and significance of a multiple alignment 

has therefore become a critical task, particularly in high-throughput data processing systems, 

where a manual verification of the results is no longer possible.  

A number of quality issues can be distinguished. First, given a set of sequences, how to 

evaluate the quality of a multiple alignment of those sequences. The most reliable is probably 

to compare the alignment to a reference alignment, e.g. 3D structural superposition. In the 

absence of a known reference, a score is calculated, known as an objective function that 

estimates how close the alignment is to the correct or optimal solution. Objective scoring 

functions are discussed in section 6.3.1. In general though, most multiple alignments contain 

regions that are well aligned and regions that contain errors. Section 6.3.2 describes methods 

that can distinguish reliable from unreliable regions. Even if the alignment is optimal, this 

does not mean that the sequences are actually homologous. Most multiple alignment methods 

available today will produce an alignment even if the sequences are unrelated. Finally, section 

6.3.3 describes the most widely used benchmarks that are used to compare multiple alignment 

methods and evaluate the improvements obtained by the new methods. 

6.3.1. Multiple alignment objective scoring functions 

Given a particular set of sequences, an objective score is needed that describes the 

optimal or "biologically correct" multiple alignment. Sub-optimal or incorrect alignments 

would then score less than this maximal score. Such measures, also known as objective 

functions, are currently used to evaluate and compare multiple alignments from different 

sources and to detect low-quality alignments. They are also used in iterative alignment 

methods to improve the alignment by seeking to maximize the objective function.  



Chapter 6 : Multiple sequence alignment algorithms 

 

108 

 

   



Njji

jismS
,

,

 

One of the first scoring systems was the Sum-of-Pairs score (Carrillo and Lipman, 

1988). For each pair of sequences in the multiple alignment a score is calculated based on the 

percent identity or the similarity between the sequences. (Pairwise alignment scores are 

discussed in detail in Chapter 6). The score for the multiple alignment, S(m), is then taken to 

be the sum of all the pairwise scores:  

  

where s(i, j) is the score of the pairwise alignment between sequences i and j and N is the total 

number of sequences in the alignment. 

Pairwise scores are also used in the COFFEE objective function [247], which reflects 

the level of consistency between a multiple sequence alignment and a library containing 

pairwise alignments of the same sequences. This method was shown to be a good estimation 

of the accuracy of the multiple alignment when high quality pairwise alignments, such as 3D 

structural superpositions, are available as reference. One problem with multiple alignment 

scores based on pairwise sequence comparisons is that they assume that substitution 

probabilities are uniform and time-invariant at all positions in the alignment. This is 

unrealistic as the variability may range from total invariance at some positions to complete 

variability at others, depending on the functional or structural constraints of the protein. 

For this reason, more recent work has concentrated on column statistics. One approach 

uses an Information Content statistic, assuming that the most interesting alignments are those 

where the frequencies of the residues found in each column are significantly different from a 

predefined set of a priori residue probabilities [248]. The Information Content of a multiple 

alignment is defined as: 
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,   is the frequency that letter i occurs at position j 

 A is the total number of letters in the alphabet 

 L is the total number of positions in the alignment 
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 N is the total number of sequences in the alignment 

 pi is the a priori probability of letter i 

    ni,j is the frequency that letter i occurs at position j 

One disadvantage of this measure is that it considers only the frequencies of identical 

residues in each column and does not take into account similarities between residues. For this 

reason, another column-based measure, norMD, was introduced [249], based on the Mean 

Distance (MD) column scores implemented in ClustalX [190]. The MD scores are summed 

over the full-length of the alignment and the total score is then normalized to take into 

account the number, length and similarity of the sequences in the alignment, and the presence 

of gaps. The norMD score can be used to estimate the quality of the alignment even when the 

optimal alignment score is unknown. It was shown that most alignments scoring higher than 

the threshold score of 0.5 are correct, while alignments scoring less than 0.3 are generally of 

poor quality. Nevertheless, a twilight zone still exists for norMD scores between 0.3 and 0.5, 

where no distinction can be made between good and bad alignments. 

6.3.2.   Determination of reliable regions 

The objective functions described above calculate a global score that estimates the 

overall quality of a multiple alignment. However, even when misalignments occur, it is not 

necessarily true that all of the alignment is incorrect. Useful information could still be 

extracted if the reliable regions in the alignment could be distinguished from the unreliable 

regions. The prediction of the reliability of specific alignment positions has therefore been an 

area of much interest. One of the first automatic methods for the analysis of position 

conservation was the AMAS program [250], which was based on a set-based description of 

amino acid properties. Since then, a large number of different methods have been proposed. 

For example, Al2Co [251] calculates a conservation index at each position in a multiple 

sequence alignment using weighted amino acid frequencies at each position. The DIVAA 

method [252] is based on a statistical measure of the diversity at a given position. The 

diversity measures the proportion of the 20 possible amino acids that are observed. If the 

position is completely conserved (i.e. only one amino acid is observed in all sequences 

analyzed), the diversity is 0.05 (1/20); if it is populated by equal proportions of all amino 

acids, the diversity is 1.0 (20/20). Diversity is inversely and non-linearly related to the 

measure of sequence information content described above, with a highly conserved position 
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exhibiting relatively low diversity and high information content. For nucleic acid sequences, 

the ConFind program [253] identifies regions of conservation in multiple sequence alignments 

that can serve as diagnostic targets and is designed to work with a large number of highly 

mutable target sequences such as viral genomes. 

An alternative approach has been implemented in the MUMSA program [254], based on 

the comparison of several alignments of the same sequences. The idea here is to search for 

regions which are identically aligned in many alignments, assuming that these are more 

reliable than regions differently aligned in many alignments. The method also results in a 

score for a given alignment. A high quality alignment in this case, is one that shares more 

aligned residues with other alignments. The choice of multiple alignment methods used as 

input is therefore crucial, in order to avoid a bias towards one particular algorithm. Ideally, 

different algorithms should be used, such as local and global methods, algorithms designed 

for transmembrane sequences, repeats, etc. In tests on BAliBASE, the MUMSA scores 

correlate higher with true alignment quality than the norMD scores. However, a major 

drawback of the MUMSA method is that several multiple alignments of the same set of 

sequences have to be constructed for the purpose of comparison, which is not always 

computationally feasible. 

6.3.2. Benchmarking 
In computer science, the quality of an algorithm is often estimated by comparing the 

results obtained with a pre-defined benchmark or ‘gold standard’. Clearly, the tests need to be 

of high-quality. Errors in the benchmark will lead to biased or erroneous results. The tests in 

the benchmark need not be comprehensive, but must be representative of ones that the system 

is reasonably expected to handle in a natural (meaning not artificial) setting and the 

performance measure used must be pertinent to the comparisons being made. Enough tests 

need to be included in order to obtain statistical differences between programs tested. It 

should be possible to complete the task domain sample and to produce a good solution. A task 

that is too difficult for all or most tools yields little data to support comparisons. A task that is 

achievable, but not trivial, provides an opportunity for systems to show their capabilities and 

their shortcomings [255].  

One of the first studies to compare the quality of different methods for protein sequence 

alignment was performed in 1994, when McClure et al. compared several progressive 
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alignment methods, including both global and local algorithms [256]. They concluded that 

global methods generally performed better. However, the number of suitable test sets 

available at that time was somewhat limited and this was therefore not a comprehensive test.  

BAliBASE 

One of the first large scale benchmarks specifically designed for multiple sequence 

alignment was BAliBASE [231, 257]. The alignment test cases in BAliBASE are based on 3D 

structural superpositions that are manually refined to ensure the correct alignment of 

conserved residues. The alignments are organised into reference sets that are designed to 

represent real multiple alignment problems. The first version of BAliBASE consisted of 5 

reference sets representing many of the problems encountered by multiple alignment methods 

at that time, from a small number of divergent sequences, to sequences with large N/C-

terminal extensions or internal insertions (see figure 7.3). In version 2 [257], three new 

Reference sets were included, devoted to the particular problems posed by sequences with 

transmembrane regions, repeats and inverted domains. In each reference alignment, core 

blocks are defined that exclude the regions for which the 3D structure superpositions are 

unreliable, for example, the borders of secondary structure elements or in loop regions. In the 

latest version 3, a semi-automatic update protocol was introduced to facilitate the construction 

of larger alignments, particularly for reference sets 1-5. In addition, full-length sequences 

were provided for all test cases, which thus represent difficult cases for both global and local 

alignment programs. 

In order to assess the accuracy of a multiple alignment program, the alignment produced 

by the program for each BAliBASE test case is compared to the reference alignment. Two 

scores are used to evaluate the alignment:  

 the SP (sum of pairs) score calculates the percentage of pairwise residues aligned the 

same in both alignments 

 the CS (column score) calculates the percentage of complete columns aligned the 

same. These scores are calculated in the core block regions only.  
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OxBench 

The OXBench benchmark suite from the Barton group [258], provides multiple 

alignments of protein domains that are built automatically using structure and sequence 

alignment methods. The automatic construction means that a large number of tests can be 

included, however the benchmark results will be biased towards sequence alignment 

programs using the same methodology as that used to construct the reference. The benchmark 

is divided into three data sets. The master set currently consists of 218 alignments of 

sequences of known 3D structure, with from 2 to 122 sequences in each alignment. The 

extended data set is constructed from the master set by including sequences of unknown 

structure. Finally, the full-length data set includes the full-length sequences for the domains in 

the master data set.  

A number of different scores are included in the benchmark suite, in order to evaluate 

the accuracy of multiple alignment. The average number of correctly aligned positions is 

similar to the column score used in BAliBASE. This can be calculated over the full alignment 

or over Structurally Conserved Regions (SCR). The Position Shift Error measures the average 

magnitude of error, so that misalignments that cause a small shift between two sequences are 

penalized less than large shifts. Two other measures are also provided that are independent of 

the reference alignment, and are calculated from the structure superposition implied by the 

test alignment. 

The OxBench suite was used to compare 8 different alignment programs, including 

many of those in the BAliBASE study, together with the AMPS program [219]. The MSA 

[217] and T-COFFEE [234] programs were also tested, although the tests were restricted to a 

smaller data set because these methods were unable to align the largest test sets due to 

prohibitive space and time requirements. The AMPS program was shown to perform as well 

or better than the other progressive alignment methods in most tests. The T-COFFEE method 

which incorporates both local and global pairwise alignment algorithms was shown to 

outperform the other methods on the smaller data set. Another important result was that the 

rigorous dynamic programming method used in the MSA program did not perform better than 
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the heuristic progressive methods in this study, supporting the hypothesis that the optimal 

sum-of-pairs score does not always correspond to the biologically correct alignment. 

PREFAB 

The PREFAB [236] benchmark was constructed using a fully automatic protocol and 

currently contains 1932 multiple alignments. Pairs of sequences with known 3D structures 

were selected and aligned using two different 3D structure superposition methods. A multiple 

alignment was constructed for each pair of structures, by including 50 homologous sequences 

detected by sequence database searches.  

The accuracy of an alignment program is estimated by comparing the alignment of the 

structure pair in the test multiple alignment with the reference superposition in each test case. 

Only positions that are aligned the same by the two different superposition methods are 

considered. The PREFAB benchmark was used to compare the MUSCLE program [236] with 

MAFFT [235], T-COFFEE and ClustalW and showed that the MUSCLE program performed 

significantly better than the other methods. The programs were also compared with the 

BAliBASE benchmark, where a similar ranking of programs was obtained although the 

difference between MUSCLE and T-COFFEE was not significant in this case. 

SABmark 

SABmark [259] contains reference sets of sequences derived from the SCOP protein 

structure classification, divided into 2 sets, twilight zone (Blast E-value>=1) and 

superfamilies (residue identity<=50%). Pairs of sequences in each reference set are then 

aligned based on 3D structure superpositions. To evaluate the quality of a multiple alignment 

program, multiple alignments of each reference set are constructed. Pairwise alignments are 

then extracted from the multiple alignment and compared to the structure superpositions. 

Although the benchmark covers most of the known protein fold space, the major disadvantage 

of this benchmark is that only pairwise reference alignments are considered and no multiple 

alignment solution is provided.  

In a comparison of 4 different alignment methods using SABmark, two different scores 

were used. The first, fD is similar to the SP score and is defined as the ratio of the number of 

correctly aligned residues divided by the length of the reference alignment, and may be 

thought of as a measure of sensitivity. The fM score measures the specificity and is defined as 



Chapter 6 : Multiple sequence alignment algorithms 

 

114 

 

the ratio of the number of correctly aligned residues divided by the length of the test 

alignment. At the SCOP family level, T-COFFEE and ClustalW were shown to perform 

better, while Align-m [260] was more successful at constructing pairwise alignments at the 

SCOP superfamily level.  

Homstrad 

HOMSTRAD [261] is a database of protein families, clustered on the basis of sequence 

and structural similarity. It was not specifically designed as a benchmark database, although it 

has been employed as such by a number of authors. 

Comparison of multiple alignment benchmarks 

A comparison of a number of benchmarks for protein sequence alignment algorithms, 

including those described above, has been performed [262]. They concluded that, although 

SABmark boasts full coverage of the known fold space, there are only pairwise references for 

each group, so multiple alignment assessment becomes complicated depending on how the 

results are treated. The importance of core region annotation was also stressed by the authors. 

HOMSTRAD is often used as a benchmark though it lacks this annotation. Finally, they 

recommended that several benchmarks be used for program comparison, although this can 

become time-consuming and confusing. Oxbench, PREFAB and BAliBASE all contain 

difficult cases containing full-length sequences of low sequence identity. The authors noted 

that BAliBASE has the advantage that several distinct problem areas are explicitly addressed. 

It is smaller than the other test sets, but nevertheless has a large enough range of 

representative examples from the known fold-space to evaluate relative performance. 

6.3.3. Comparison of multiple alignment programs 

 The objective evaluation of alignment quality and the introduction of large-scale 

alignment benchmarks have clearly had a positive effect on the development of multiple 

alignment methods. From their beginnings in 1975, until 1994 when McClure first compared 

different methods systematically, the main innovation was the introduction of the heuristic 

progressive method that allowed the multiple alignment of larger sets of sequences within a 

practical time limit.  
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A comparison of some of the alignment methods described above [263], based on 

BAliBASE (version 1.0) showed that there was no single algorithm that was consistently 

better than the others. The study revealed a number of specificities in the different algorithms. 

For example, while most of the programs successfully aligned sequences sharing >40% 

residue identity, an important loss of accuracy was observed for more divergent sequences 

with <20% identity. Another important discovery was the fact that global alignment methods 

in general performed better for sets of sequences that were of similar length, although local 

algorithms were more successful at identifying the most conserved motifs in sequences 

containing large extensions and insertions. Of the local methods, Dialign [230] was the most 

successful. The iterative methods, such as PRRP [229] or SAGA [228] were generally more 

accurate than the traditional progressive methods, although at the expense of a large time 

penalty. 

Soon after this initial comparison, various new methods were introduced that exploited 

novel algorithms, such as Iterative refinement, Hidden Markov Models or Genetic algorithms. 

These new approaches significantly improved alignment quality, as shown in the comparison 

of these methods by Thompson et al. [263]. Nevertheless, this study highlighted the fact that 

no single algorithm was capable of constructing high quality alignments for all test cases. In 

particular, global methods (e.g. ClustalW) were shown to perform well when the sequences 

were homologous over their entire lengths, while local methods (e.g. DiAlign) were shown to 

perform better when the sequence set contained large insertions or N/C terminal extensions.  

As a consequence, the first methods were introduced that combined both global and 

local information in a single alignment program, such as DBClustal, T-Coffee, MAFFT, 

MUSCLE or ProbCons. Table 2 shows the scores obtained using most of these new methods 

for the different multiple alignment benchmarks described above. 
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Table 2 : Current state of the art for multiple sequence alignment methods 

All scores shown are column scores. For PREFAB, the score is calculated in the superposable 
regions. For OxBench, the full alignments were used and the scores were calculated in 
structurally conserved regions only. For BAliBASE, the scores are for core block regions only. 

 

The new combined strategies certainly improve alignment quality for a wide range of 

alignment problems. However, using the existing multiple alignment benchmarks it is 

becoming more and more difficult to make clear distinctions between the more recent 

methods. Therefore, the benchmarks must now evolve if they are to keep pace with the 

multiple alignment revolution. Hopefully, new benchmarks with larger, more complex test 

sets will stimulate the development of new alignment algorithms and vice versa. 
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Chapter 7 

The expert system for multiple alignment construction, evaluation and analysis 

described in the results section of this thesis were developed using the existing infrastructure 

and computer resources of the Laboratoire de Biologie et Genomique Integratives (LBGI) and 

the Plate-forme Bio-informatique de Strasbourg (BIPS). The BIPS is a high-throughput 

platform for comparative and structural genomics, which was identified in 2003 as a national 

inter-organisational technology platform (Plate-forme Nationale RIO). The BIPS obtained the 

ISO 9001:2000 certification in 2007. 

7.1 Computing resources 

7.1.1 Servers 
Three central servers are currently available for program development and computational 

data analyses: 

(i) Interactive and web services: Sun Enterprise 450 (Solaris 9). 4 processors with 1 

Gb shared memory. 

(ii) Computational servers:  

 6 Compaq ES40 cluster (Tru64 UNIX). 6 x 4 EV67 processors. Of the 6 

machines in this cluster, 5 have 4 Gb memory each, and the sixth has 16 Gb. 

 6 Sun Enterprise V40z server (2 x Solaris 10 and 4 x RedHat Enterprise Linux 

4). 6 x 4 Opteron processors with 2 x 32 Gb and 4 x 16 Gb memory. 

(iii) Disk server: Sun V480 (Solaris 9) providing 8 Tera-bytes on Raid5 disks shared 

with other servers using NFS. 

7.1.2  Databases 
A number of general as well as some more specialist databases are installed and updated 

regularly on the LBGI servers. These databases are available in GCG format [264] and can 

also be queried using the SRS (Sequence Retrieval Software) [265].  
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Generalist databases: 

The main public sequence and structure databases have been installed locally on the 

IGBMC servers. The protein sequence database Uniprot [266], consists of both SwissProt and 

SpTrEMBL databases [75]. The SpTrEMBL sequences are produced by automatic translation 

of the coding sequences from the EMBL nucleotide sequence database. After validation and 

annotation by experts, the sequences in SpTrEMBL are incorporated in the SwissProt 

database. The protein 3D structure database PDB (Protein Data Bank) [267], includes 

structures determined by X-ray crystallography or by NMR. The amino acid sequences of the 

proteins or domains in PDB are also available. 

Specialist databases: 

In addition to these generalist databases, a number of specialist databases are 

maintained locally. In particular, the InterPro database [191] contains information on protein 

families, protein domains and functional sites. InterPro is a collaboration between a number of 

different protein signature databases, including the protein domain databases: Pfam [268], 

Prodom [269], Smart [270] and the protein pattern databases: Prints [30] and Prosite [28]. 

Protein signatures are manually integrated into InterPro database entries and are then curated 

to provide reliable biological and functional information. InterPro also provides links to other 

specialised databases, including the Gene Ontology [89]. The Interpro database contains 

signature information for many of the sequences in the generalist databases. Other sequences, 

that have not yet been integrated, can be used as queries to search the database using the 

Interproscan software. 

7.1.3 Data retrieval  

Structural and functional information was retrieved from the public databases using the 

Bird system developed in-house. The BIRD System (Nguyen et al, CORIA 2008, Hermes 

Edition) was designed to manage large collections of biological data and to perform intensive 

computation and simulation A generic configurable data model has been designed and allows 

the simultaneous integration of genomics, transcriptomics and ontology datasets using a 

limited number of product mapping rules provided by the user (operator or system 
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administrator). The integration rules allow the easy creation of a database according to 

semantic topics and real requirements. BIRD is driven by a high level query engine (BIRD-

QL), based on SQL and a full text engine allowing the biologist to quickly extract knowledge 

without programming. Thus, the system is capable of generating sub-databases in accordance 

with the real requirements of a given project. The hosted data can then be accessed by the 

wider community using various methods such as a Web interface, Http Service, an API Java 

or a BIRD-QL Engine Query. 

The BIRD System is developed using the Java technology and uses the IBM DB2 as the 

data server, as well as the Websphere Federation Server for virtual databases. The web 

application is hosted either by a Tomcat Server or by a WebSphere Application Server. 

7.2 MSA programs  

Comparative analyses of the diverse algorithms used to align protein sequences have 

identified many of their strengths and weaknesses and have led to significant progress in the 

field recently. Today, there are hundreds of different programs available for the construction 

of multiple sequence alignments and it is clearly impossible to incorporate all of these in 

AlexSys. We therefore selected a small number of aligners, representing different alignment 

approaches. ClustalW is a global alignment method, while Dialign uses a local alignment 

algorithm. Mafft and Muscle were developed more recently and use both local and global 

information to construct the alignment. Kalign and Mafft are very fast aligners, while 

ProbCons is less efficient but often produces a higher quality final alignment.  

ClustalW (version 2.0) performs a traditional progressive alignment, by first comparing 

all pairs of sequences, then building a guide tree using the Neighbour Joining approach, and 

finally aligning all the sequences according to the branch order in the guide tree. For 

sequences that are globally related, ClustalW often provides accurate alignments, while in 

more complex cases it can be used as a good starting point for further refinement. 

Dialign [271] (version 2.2.1) constructs multiple alignments by comparing segments of 

the sequences, rather than single residues. The main difference between Dialign and the other 

alignment approaches is the underlying scoring scheme or objective function. Instead of 

summing up substitution scores for aligned residues and subtracting gap penalties, the score 

of an alignment is based on P-values of local sequence similarities. Only those parts of the 
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sequences are aligned that share some statistically significant similarity, unrelated parts of the 

sequences remain unaligned. This approach is particularly successful in situations where 

sequences share only local homologies. 

Mafft (version 6.240) (Multiple sequence alignment based on Fast Fourier Transform) 

(option FFT-NS-i) is a fast aligner that builds an initial progressive alignment using an 

approximate measure based on shared 6-tuples to estimate the distance between pairs of 

sequences. A guide tree is then generated using the UPGMA algorithm with modified linkage 

and sequences are aligned following the branch order of the tree. The initial MSA is then 

improved by recalculating the distance matrix and repeating the progressive alignment steps. 

The final phase involves an iterative refinement to optimise a weighted sum of pairs (WSP) 

[272] score, using a group-to-group alignment and a tree-dependent restricted partitioning 

technique.  

Muscle (version 3.7) (Multiple sequence comparison by log-expectation) uses a three 

phase approach similar to the one implemented in Mafft. In the initial alignment phase, a k-

mer distance is used to estimate the pairwise distances and the guide tree is built using the 

UPGMA algorithm. The initial MSA is then improved by calculating a more accurate Kimura 

distance [273] for aligned pairs, again repeating the progressive alignment steps. The final 

iterative refinement stage employs a variant of the tree dependent restricted partitioning 

algorithm.  

Kalign (version 2.03) also uses a progressive alignment approach, the main difference 

being that it employs the Wu-Manber approximate string matching algorithm [274] when 

calculating the distances among sequences. This methodology allows for a fast, yet accurate 

distance estimation. As in Mafft and Muscle, the UPGMA algorithm is used to build the guide 

tree. In addition, the program performs a consistency check in order to define the largest set of 

sequence matches that can be inserted in the alignment, using a modified version of the 

Needleman-Wunsch algorithm [216] to find the most consistent path through the dynamic 

programming matrix.  

ProbCons (version 1.12) (Probabilistic Consistency-based MSA) incorporates a pair-

hidden Markov model-based progressive alignment algorithm. The alignment procedure is 

divided into four steps, starting with a computation of posterior-probability matrices for every 

pair of sequences, followed by a dynamic programming calculation of the expected accuracy 
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of every pairwise alignment. A probabilistic consistency transformation is then used to re-

estimate the match accuracy scores. A guide tree is calculated with hierarchical clustering and 

the sequences are aligned using a progressive approach. In a post-processing phase, random 

bi-partitions of the generated alignment are realigned in order to check for better alignment 

regions.  

7.3 Other bioinformatics programs and utilities 

7.3.1 MACSIMS 

MACSIMS [275] (Multiple Alignment of Complete Sequences Information 

Management System) is a multiple alignment-based information management system that 

combines the advantages of both knowledge-based and ab initio sequence analysis methods. 

Structural and functional information is mined automatically from the public databases. In the 

MACS, homologous regions are identified and the mined data is evaluated and propagated 

from known to unknown sequences with these reliable regions (Figure 19). MACSIMS thus 

provides a unique tool for the integration of heterogeneous information in the context of the 

multiple alignment and the presentation of the most pertinent information to the biologist.  
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Figure 19 : Schematic view of the MACSIMS alignment annotation system. 

 

7.3.2 Biojava 

Biojava [276] is an open-source project dedicated to providing a Java framework for 

processing biological data. It provides analytical and statistical routines, parsers for common 

file formats and allows the manipulation of sequences and 3D structures. The goal of the 

biojava project is to facilitate rapid application development for bioinformatics. Biojava API 

was used in AlexSys to handle several tasks such as sequence data accession, parsing and 

pairwise alignment generation. 

7.4 Alignment benchmarks 

Multiple alignment benchmarks are used to evaluate and compare the accuracy of the 

results obtained from alternative software tools. The benchmarks generally consist of two 

components: (i) a set of reference alignments that are assumed to be “correct”, referred to as 

the gold standard, and (ii) some means of evaluating the quality of the alignments obtained by 

the different software tools. The evaluation of a given tool can be based on independent 

quality scores; more often, though, the output of the program is compared to the correct 

solution specified by the benchmark.  

In this work we used two benchmarks that are widely used for multiple sequence 

alignment assessment, BAliBASE and OXBench. 

7.4.1 BAliBASE 

The alignment test cases in the BAliBASE benchmark are based on 3D structural 

superpositions that are manually refined to ensure the correct alignment of conserved 

residues. The alignments are organised into reference sets that are designed to represent real 

multiple alignment problems. The first version of BAliBASE consisted of 5 reference sets 

representing many of the problems encountered by multiple alignment methods at that time. 

Thus, Reference 1 contains alignments of equidistant sequences and is divided into six 

subsets, according to three different sequence lengths and two levels of sequence variability. 

Reference 2 contains families aligned with one or more highly divergent “orphan” sequences, 

Reference 3 contains divergent subfamilies, Reference 4 contains sequences with large N/C-

terminal extensions, and Reference 5 contains sequences with large internal insertions. The 
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three Reference sets (6-8) devoted to the particular problems posed by sequences with 

transmembrane regions, repeats and inverted domains, were not used in this work. Table 3 

shows the size of the latest version of the benchmark used for evaluating AlexSys. 

Small number of equi-distant sequences  Reference 1 

 short medium long sub-total

V1 (<20% identity) 14 12 12 38 

V2 (20-40% identity 14 16 15 45 

Reference 2 Family with one or more ‘orphan’ sequences 41 

Reference 3 Divergent subfamilies 30 

Reference 4 Large N/C terminal extensions 48 

Reference 5 Large internal insertions 16 

Total  217

Table 3 : Number of test cases in version 3 of the BAliBASE alignment benchmark 

 

In each reference alignment, core blocks are defined that exclude the regions for which 

the 3D structure superpositions are unreliable, for example, the borders of secondary structure 

elements or in loop regions. Alignment programs were then compared using only the reliable 

core blocks. 

7.4.2 OXBench 

This benchmark provides multiple alignments of proteins that are built automatically using 

structure and sequence alignment methods. The benchmark is divided into three data sets. The 

master set currently consists of 673 alignments of protein domains of known 3D structure, 

with from 2 to 122 sequences in each alignment. The extended data set is constructed from the 

master set by including sequences of unknown structure. Finally, the full-length data set 

includes the full-length sequences for the domains in the master data set.  

7.5 Weka machine learning package 

The Weka (Waikato Environment for Knowledge Analysis) workbench is a selection of 

state-of-the-art data preprocessing tools and machine learning methods, including clustering, 

classification, regression and feature selection. Weka is freely available 

(sourceforge.net/projects/weka/) under the GNU General Public License. It is implemented in 
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the Java programming language and thus runs on almost any modern computing platform. It 

was developed to enable scientists to rapidly check out existing approaches on new datasets in 

versatile ways. It offers considerable support for the entire procedure for experimental data 

mining, such as preparing the input data, analyzing learning schemes statistically, and 

visualizing the input data and the end result of learning. This diverse and complete toolkit is 

used via a common user interface so that users can evaluate various methods easily and 

determine the ones that are most suitable for the problem at hand. 

7.6 UIMA: Unstructured Information Management 

Architecture 

UIMA was originally developed by IBM as a platform for creating, integrating and 

deploying unstructured information management solutions from powerful text or multi-modal 

analysis and search components. The Apache UIMA project is an implementation of the Java 

UIMA framework available under the Apache License, providing a common foundation for 

industry and academia to collaborate and accelerate the world-wide development of 

technologies critical for discovering vital knowledge present in the fastest growing sources of 

information today. 

An unstructured information management (UIM) application may be generally 

characterized as a software system that analyzes large volumes of unstructured information 

(text, audio, video, images, etc.) to discover, organize and deliver relevant knowledge to the 

client or application end-user. An example is an application that processes millions of medical 

abstracts to discover critical drug interactions. Although UIMA was originally designed to 

manage unstructured information, it can also accept structured data, for example, from 

formatted flat files or relational databases.  

This section presents an overview of the basic architectural philosophy of UIMA and 

the essential components for expert system construction. 

7.6.1 The Architecture, the Framework and the SDK 

UIMA is a software architecture which specifies component interfaces, data 

representations, design patterns and development roles for creating, describing, discovering, 

composing and deploying multi-modal analysis capabilities. The UIMA framework then 
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provides a run-time environment in which developers can plug in their UIMA component 

implementations and with which they can build and deploy UIM applications. The framework 

is not specific to any IDE or platform. Apache hosts a Java and (soon) a C++ implementation 

of the UIMA Framework. The UIMA Software Development Kit (SDK) includes the UIMA 

framework, plus tools and utilities for using UIMA. Some of the tools support an Eclipse-

based (www.eclipse.org/) development environment.  

Many UIM applications analyze entire collections of Input data. They connect to 

different data sources and do different things with the results.  

UIMA supports UIM application development for this general type of processing 

through its Collection Processing Architecture. As part of the collection processing 

architecture UIMA introduces two primary components in addition to the annotator and 

analysis engine.  

These are the Collection Reader and the CAS Consumer. The complete flow from 

source, through input analysis, and to CAS Consumers supported by UIMA is illustrated in 

Figure 20. The Collection Reader's job is to connect to and iterate through a source collection, 

acquiring inputs and initializing CASes for analysis. 

CAS Consumers, as the name suggests, function at the end of the flow. Their job is to 

do the final CAS processing. A CAS Consumer may be implemented, for example, to index 

CAS contents in a search engine, extract elements of interest and populate a relational 

database or serialize and store analysis results to disk for subsequent and further analysis. 

A UIMA Collection Processing Engine (CPE) is an aggregate component that specifies 

a “source to sink” flow from a Collection Reader though a set of analysis engines and then to 

a set of CAS Consumers. CPEs are specified by XML files called CPE Descriptors. These are 

declarative specifications that point to their contained components (Collection Readers, 

Analysis Engines and CAS Consumers) and indicate a flow among them. The flow 

specification allows for filtering capabilities, for example, to skip over AEs based on CAS 

contents.  
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Figure 20 : UIMA Component Architecture  

 

7.6.2 Analysis Engines, Annotators and Results 

The basic building blocks of a UIMA application are called Analysis Engines (AEs). 

One way to think about AEs is as software agents that automatically discover and record 

meta-data about original raw data. At the heart of AEs are the analysis algorithms that do all 

the work to analyze raw data and record Analysis Results. UIMA provides a basic component 

type, called an Annotator, to house these core analysis algorithms. The developer's primary 

concern therefore is the development of annotators. At the most primitive level, an AE wraps 

an Annotator, adding the necessary APIs and infrastructure for the composition and 

deployment of Annotators within the UIMA framework.  

7.6.3 Representing Analysis Results in the CAS 

How annotators represent and share their results is an important part of the UIMA 

architecture. UIMA defines a Common Analysis Structure (CAS) precisely for this purpose. 

The CAS is an object-based data structure that allows the representation of objects, properties 

and values. The CAS thus manages the organization, access and storage of all typed objects 

associated with the subject of analysis. For example, in a human resources system, Person 

may be defined as a type. Types have properties or features. So for example, Age and 

Occupation may be defined as features of the Person type. The object types are defined in a 
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hierarchically organized annotation Type System (TS). Thus, we can think of a TS as the 

equivalent of an object schema for a relational database. 

7.6.4 Component Descriptors 

For every component specified in UIMA, such as Annotators and Analysis Engines, 

there are two parts required for its implementation: the declarative part and the code part. The 

code part implements the algorithm, for example a program in Java. The declarative part 

contains metadata describing the component, its identity, structure and behavior and is called 

the Component Descriptor. In addition to these standard fields, a component descriptor 

identifies the Type System the component uses and the types it requires in an input CAS and 

the types it produces in an output CAS. Component descriptors are represented in XML, 

however the UIMA SDK provides tools for easily creating and maintaining the component 

descriptors that relieve the developer from editing XML directly.  

7.6.5 Aggregate Analysis Engines 

A simple or primitive UIMA Analysis Engine (AE) contains a single annotator. 

Annotators tend to perform fairly granular functions, for example language detection, 

tokenization or part of speech detection. These functions typically address just part of an 

overall analysis task. More complex AEs may also be defined to contain other AEs organized 

in a workflow. These are called Aggregate Analysis Engines (AAE). 

AAEs are designed to encapsulate potentially complex internal structure and insulate it 

from users of the AE. The AAE developer acquires the internal components, defines the 

necessary flow between them in a Flow Controller, and publishes the resulting AE. The Flow 

Controller is responsible for determining the order in which the AE's will process the CAS.  

Users of this AAE need not know how it is constructed internally, but only need its name and 

its published input requirements and output types. These must be declared in the AAE's 

descriptor. The AAE's descriptor also declares the components it contains and a flow 

specification. The flow specification defines the order in which the internal component AEs 

should be run.  

The UIMA framework is equipped to handle different deployments where the AEs, for 

example, are tightly-coupled (running in the same process) or loosely-coupled (running in 

separate processes or even on different machines). The framework supports a number of 
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remote protocols for loose coupling deployments of aggregate analysis engines, including 

SOAP (Simple Object Access Protocol) a standard Web Services communications protocol. 

The UIMA framework facilitates the deployment of AEs as remote services by using an 

adapter layer that automatically creates the necessary infrastructure in response to a 

declaration in the component's descriptor.  

7.6.6 Application building and Collection Processing 

As mentioned above, the basic AE interface may be thought of as simply CAS in/CAS 

out. The application is responsible for interacting with the UIMA framework to instantiate an 

AE, create or acquire an input CAS, initialize the input CAS with a document and then pass it 

to the AE through the process method. The UIMA AE Factory takes the declarative 

information from the Component Descriptor and the class files implementing the annotator, 

and instantiates the AE instance, setting up the CAS and the UIMA Context. 

The AE, possibly calling many delegate AEs internally, performs the overall analysis 

and its process method returns the CAS containing new analysis results. 

The application then decides what to do with the returned CAS. There are many 

possibilities. For instance the application could: display the results, store the CAS to disk for 

post processing, extract and index analysis results as part of a search or database application 

etc. 
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Preamble: AlexSys Design, Implementation and 

Evaluation 

AlexSys stands for Alignment expert System. It is a knowledge based expert system, 

whose first objective is to establish a relationship between the nature of the protein sequences 

to be aligned and the strengths and weaknesses of different alignment algorithms. A more 

general objective for the development of AlexSys is the introduction of data-driven intelligent 

systems, rather than fixed, predefined workflows or pipelines. A data-driven platform allows 

more flexibility and can take into account the context of the analysis, by dynamically 

modifying the workflow depending on the analysis scenario and the specific features of the 

input data. The multiple sequence alignment (MSA) problem reported in this work is an ideal 

case study to address such issues. MSA plays a key role in modern biological research and is 

used differently depending on the analysis context. For example, a phylogenetic study might 

have different expectations from a MSA than a functional annotation or 3D structure 

homology modeling study. By ‘different expectations’, we implicitly mean MSA accuracy 

and efficiency.  

The work described in this thesis provides some answers to the MSA problem and goes 

beyond making a simple decision concerning the most suitable algorithm for a given situation. 

We consider some open questions such as whether today’s alignment algorithms can still be 

considered pertinent, in a context where the sequence space is evolving rapidly and data 

volumes continue to grow exponentially. Should we control the data to match the algorithms?  

Or should we allow the data to drive the analysis process, in such a way that the data decides, 

as a scientist would, which computational methodology is more suited to information 

extraction and knowledge discovery? In the latter case, we are faced with the problem of how 

to reuse human expertise in order to learn from the past and to treat as yet unseen cases, thus 

inferring new knowledge from the data itself. Using cutting-edge technologies, we can now 

hope to develop novel ‘expert’ systems that are data driven, incorporating machine learning 

algorithms, artificial intelligence, and rules learned from the past.   

    In the following chapters, we will describe how we designed and implemented 

AlexSys to efficiently drive a multiple alignment construction process. We will list some of 
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the problems that we faced during the development, and will argue our choices of some 

specific methodologies rather than others. Chapter 8 will discuss the creation of the 

knowledge base, used as input for the machine learning algorithm, described in Chapter 9. In 

Chapter 10, we will discuss the alternative solutions considered for the construction of the 

expert system itself. Finally, in Chapter 11, we present the evaluation process designed to 

measure the efficiency and accuracy of the multiple alignment process. 
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Chapter 8 

8. Creation of the AlexSys knowledge base  

A crucial element in any computer-based expert system is the knowledge base used to 

store the theoretical understanding and heuristic problem-solving rules gained from human 

experts. But first, this knowledge has to be transformed into a form that the computer can use. 

Section 8.1 describes the most widely used forms of knowledge representation, designed for 

supervised machine learning algorithms. The remaining sections then describe in more detail 

some of the specific issues involved in collecting and formatting the necessary background 

information for the AlexSys machine learning algorithm, that will ‘learn’ the rules necessary 

for selecting the most appropriate aligner(s), based on the input data. 

8.1 Machine Learning Input 

A supervised machine learning algorithm uses a set of well understood examples to 

‘learn’ the rules required to classify these examples. This learning process is known as 

training. The rules learnt can then be used to predict the outcome (known as a concept or 

class) of a new unknown example.  

The information that the learner is provided usually takes the form of a collection of 

instances. Each instance is an individual, independent example of the concept to be learnt. It 

is characterized by the values of attributes that determine different facets of the instance. The 

following sections provide more detailed definitions of the terms: class, instance and attribute.  

8.1.1 What is a concept (Class)? 

Four fundamentally different types of learning are widely used (described in more detail 

in chapter 3): classification learning, association learning, clustering and numeric prediction. 

Regardless of the type of learning used, we call the fact to be learned the concept and the 

output created by the learning system the concept description. 

In the contact lens example (Figure 21 (a)), the learning problem is to discover ways to 

determine a lens prescription for any new individual. Thus, the concept is the lens prescription 

and the concept description is the method learnt to predict it. The weather data (Figure 21(b) 
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and Figure 21(c)) shows some days along with a decision to play games or not. Here, the 

concept (class) to be predicted for each day is play or don’t play. For the irises (Figure 21(d)), 

the issue is to discover ways to decide whether a new iris flower is setosa, versicolor, or 

virginica, given its sepal measurements and petal ones.  

 

Figure 21 : Input data examples for machine learning algorithms 

Lines corresponds to instances, columns to attributes, and the last column generally serves as 
Class 

  

8.1.2 What is an example (Instance)? 

The examples input to the machine learning system are known as instances. Most of 

these instances tend to be things that should be classified, associated, or clustered. Although 

we have referred to them as examples so far, henceforth we will make use of the more 

specific name ‘instances’ to refer to the input. Every instance is an individual, independent 

example associated with the class to be learned. For example, in the weather data shown 

above, each represents one instance. Each instance is described by the values of some 
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established attributes. In the case of the weather example, days are characterized by outlook, 

temperature, humidity and wind conditions. A dataset is then represented by a matrix of 

instances versus attributes, which in database terminology is usually a single relation, or a flat 

file. Providing the input information as separate instances is probably the most frequent 

scenario for useful machine learning. 

8.1.3 What is an attribute? 

Every unique, independent instance that is used as input to machine learning is 

described by a fixed, predetermined group of characteristics or attributes. The instances are 

the rows of the tables shown above for the weather, contact lens, and iris examples, and the 

attributes are the columns Figure 21.  The application of a predetermined list of features 

imposes an additional limitation on machine learning. What if different instances possess 

different attributes? If the instances were transport vehicles, then number of tires is an 

attribute that relates to several vehicles although not to boats, for example, while number of 

masts could be a feature that relates to ships although not to land vehicles. The conventional 

workaround would be to make every possible feature an attribute and to employ a special 

“irrelevant value” flag in order to specify that a specific attribute is not designed for a 

particular situation. The value of an attribute for any specific case is often a measurement of 

the quantity to which the attribute relates. Attributes can be defined as numeric, nominal or 

ordinal:  

 Numeric attributes, often referred to as continuous attributes, determine numbers - 

both real and integer values. It should be noted that the word continuous is 

sometimes misused in this context: integer-valued attributes are generally not 

continuous from the mathematical point of view.  

 Nominal attributes refer to values that are restricted to a pre-specified, limited 

group of possibilities and therefore are often called categorical attributes. But there 

are other possibilities. Nominal quantities have values that are distinct symbols. 

The values themselves serve just as labels or names—hence the term nominal, 

which comes from the Latin word for name. For example, in the weather data the 

attribute outlook has values: sunny, overcast, and rainy. No relation is implied 

among these three—no ordering or distance measure. It certainly does not make 
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sense to add the values together, multiply them, or even compare their size. A rule 

using such an attribute can only test for equality or inequality, as follows: 

 

 Ordinal quantities are ones that make it possible to rank order the categories. 

However, although there is a notion of ordering, there is no notion of distance. For 

example, in the weather data the attribute temperature has values hot, mild, and 

cool. These are ordered. Whether we say 

 

is a matter of convention—it does not matter which is used as long as consistency is 

maintained. What is important is that mild lies between the other two. Although it 

makes sense to compare two values, it does not make sense to add or subtract 

them—the difference between hot and mild cannot be compared with the difference 

between mild and cool. A rule using such an attribute might involve a comparison, 

as follows: 

 

8.2 AlexSys Instance Selection  

Preparing the input for a machine learning algorithm usually represents the most 

significant portion of the effort invested in the entire process. Bitter experience shows that 

real data is often of disappointingly low in quality, and careful checking—a process that has 

become known as data cleaning—pays off many times over. In the case of Alexsys, the 

Instances for the learning process correspond to multiple sequence alignments. In order to 

predict how alignment algorithms will perform in real world situations, it is crucial to select 

alignments that represent real problems. Based on previous comparisons of alignment 

benchmarks, we initially chose to use alignments from the BAliBASE and OXBench 

benchmarks. We thus used the 218 alignments in BAliBASE References 1-5, corresponding 

to (i) equidistant sequences with various levels of conservation, (ii) families aligned with a 

highly divergent ‘orphan’ sequence, (iii) subgroups with <25% residue identity between 
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groups, (iv) sequences with N/C-terminal extensions and (v) internal insertions. These 218 

alignments contain a total of 6222 protein sequences, including both full length sequences and 

fragmentary sequences from the PDB database. In addition to the alignments from 

BAliBASE, we used the set of 672 extended alignments from OXBench, containing a total of 

66742 protein sequences. These alignments contain sequences corresponding to isolated 

structural domains. The combined data set was then divided into a training set of 712 

alignments (80% of the alignments were selected at random) used to create the rules in the 

inference engine and a test set of 178 alignments (the remaining 20%) used for evaluation 

purposes.  

8.3 AlexSys attribute selection 

The majority of machine learning algorithms are designed to determine which attributes 

are the most pertinent to use for generating their decisions for a given problem. For instance, 

decision tree methods (described in chapter 9) select the most discriminating attribute at each 

level and, in theory, should not choose irrelevant or unhelpful attributes. Therefore, again in 

theory, using more attributes to describe the set of instances, should result in better 

discrimination and better prediction accuracy.  

Nevertheless, tests using a decision tree learner (C4.5) and standard datasets have 

established that incorporating a random binary attribute leads to a decrease in the overall 

classification performance (typically by 5% to 10% in the situations tested). This happens 

simply because at some point in the training process, the irrelevant attribute is selected, 

leading to random errors in the subsequent predictions.  

Decision tree classifiers have problems with this effect since they inflexibly reduce the 

quantity of data on which they base decision taking. Instance-based learners are prone to 

irrelevant attributes since they usually operate in local neighborhoods, getting a few training 

instances into consideration for each decision. Indeed, the amount of training instances 

required to make a predetermined degree of efficiency for instance-based learning often 

increases significantly with the number of unimportant attributes present. Naïve Bayes, by 

comparison, does not fragment the instance space and robustly disregards unimportant 

attributes. It assumes that most attributes are separate from one another, a supposition which 

is good for random “distracter” attributes. But through this very same supposition, Naïve 
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Bayes pays a huge cost in other ways since its procedure is harmed by the addition of 

redundant attributes.  

The fact that irrelevant attributes lower the performance of state-of-the art decision tree 

and rule learners is, initially, surprising. Much more surprising is the fact that relevant 

attributes may also be harmful. For instance, suppose that in a two-class dataset a new 

attribute is added that has the same value as the class to be predicted most of the time (65%) 

and the opposite value the rest of the time, randomly distributed among the instances. 

Experiments with standard datasets have shown that this can cause classification accuracy to 

deteriorate (by 1% to 5% in the situations tested). The problem is that the new attribute is 

(naturally) chosen for splitting high up in the tree. This has the effect of fragmenting the set of 

instances available at the nodes below, so that subsequent choices are based on sparser data. 

Because of the negative effect of irrelevant attributes on most machine learning 

algorithms, the learning process is often preceded by an attribute selection stage to try to 

eliminate all but the most relevant attributes. The best way to select relevant attributes is 

manually, based on a deep understanding of the learning problem and what the attributes 

actually mean. However, automatic methods can also be useful. Reducing the dimensionality 

of the data by removing unsuitable attributes improves the accuracy of learning algorithms. It 

also speeds them up, although this may be outweighed by the computation involved in 

attribute selection. More importantly, dimensionality reduction yields a more compact, more 

easily interpretable representation of the rules, focusing the user’s attention on the most 

relevant attributes. 

In the case of AlexSys, the selection of pertinent features or ‘attributes’, that adequately 

describe the input sequences, posed particular problems. There are two possibilities that could 

make of this task either efficient or long and difficult. If we choose the appropriate features 

that have an effect on the quality of the alignments obtained by the different algorithms, the 

problem is simply one of optimization of these features. In contrast, a random choice of 

features could lead to a long, iterative process of attribute evaluation and testing. Based on our 

previous knowledge acquired working on multiple sequence alignments, we identified the 

following relevant attributes: 

 The number of sequences in the dataset has been shown to be determinant for the 

running time of an alignment program or its accuracy. In the high throughput context, 
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this feature plays an important role in the alignment process. Thus it is important to 

consider this attribute when making a decision on which algorithm to use. 

 The sequence length has also been shown to affect the efficiency and accuracy of 

alignment programs. In order to fully describe the variability observed within a set of 

sequences to be aligned, we defined a number of attributes, namely the minimal and 

maximal lengths, the mean and the standard deviation.  

 The similarity of the sequences to be aligned clearly has an effect on alignment 

quality. More similar sequences are generally aligned better than more divergent ones. 

Here, we use the residue percent identity to measure the similarity of the sequences, 

based on pairwise alignments of all the sequences in the dataset. As for sequence 

length, a number of attributes are defined (minimum, maximum, mean and standard 

deviation) to describe the variability observed in the dataset. 

 To investigate the impact of protein structural information on the alignment strategy, 

the following attributes were defined: the number of sequences with known 3D 

structure (as defined in the PDB database), the average number of residues found in α-

helices in each sequence, and the average number of residues found in β-strands in 

each sequence. These attributes are mined using our in-house programs that connect to 

the PDB via Bird (described in the Materials and Methods).  

 The presence of multi-domain proteins, where each domain may have a different 

evolutionary history, poses problems for multiple alignment construction. Here, we 

use the average number of functional domains per sequence, according to the Pfam 

database to estimate this effect. 

 Most alignment algorithms are optimized to align globular protein domains. Therefore, 

we included measures of low complexity, or non-globular regions, namely; the 

number of sequences with low complexity regions and the average number of regions 

with low complexity per sequence. 

 In order to investigate the effects of amino acid composition, we defined a number of 

features including average hydrophobicity of the sequences, average number of 

predicted transmembrane segments per sequence and average amino acid composition 

based on the six groups: [PAGST], [DEQN], [KRH], [LIVM], [FWY] and [C]. 
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These attributes are then used to establish potential relationships between the input 

sequences and the performance of the individual aligners. Table 4 classifies the selected 

features into physical, structural, functional and physico-chemical attributes. 

Physical properties Structural properties Functional properties Physico-chemical 

properties 

* number of 
sequences 

 

* sequence length 

 

* pairwise residue 
percent identity 

 

 

* sequences with 
known 3D structure 

 

* number of residues 
found in -helices 
per sequence 

 

* number of residues 
found in β-strands 
per sequence 

 

* number of 
functional domains 
per sequence 

* number of 
sequences with low 
complexity regions 

* number of regions 
with low complexity 
per sequence 

* number of 
predicted 
transmembrane 
segments per 
sequence, 

 

* hydrophobicity of the 
sequences 

 

* amino acid 
composition based on 
the six groups: 
[PAGST], [DEQN], 

[KRH], [LIVM], 
[FWY] and [C] 

Table 4 : Attributes used to describe the input data in AlexSys 

The attributes are categorized in four division; physical, physicochemical, structural and 
Functional. 

 

It is important to note that all these attributes can be determined based on the unaligned 

sequences. Therefore, they can be calculated before the multiple alignment process begins. In 

this way, we can select ‘ab initio’ the most suitable alignment program to use. 

Although these attributes are known to significantly affect alignment quality, it is clear 

that they do not completely explain the differences observed in the alignment programs 

performance.  The full optimisation of the most useful attributes is ongoing and will be 

discussed in more detail in the perspectives section of this thesis. 
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8.4 ARFF format 

There exists a standard file format for representing datasets which include independent, 

unordered instances and do not contain relationships between instances, known as ARFF 

(Attribute-Relation File Format). Figure 22 illustrates an ARFF file for the weather data in 

Figure 21(c). Lines starting with a % character are comments. These are followed by the 

relation (weather) and a block listing the attributes (outlook, temperature, humidity, windy, 

play?). Nominal attributes are accompanied by the list of values they can accept, surrounded 

by curly braces. Values may contain spaces, in which case, they should be placed inside 

quotation marks. Numeric values are followed by the keyword numeric. 

 

 

Figure 22 : Example ARFF files.  

a) A typical ARFF file corresponding to the weather data example and b) the ARFF file used in 
the context of AlexSys, representing the different attributes as well as the first line of the data 
itself (file truncated). 
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Although the weather issue is to estimate the class value ‘play?’ from the values of the 

different attributes, the class concept is not defined in this format. Indeed, the ARFF format 

does not designate which of the attributes is to be predicted. This means that the same file 

may be used for example, to investigate how effectively each attribute can be predicted from 

the others, or to discover association rules, or for clustering. In addition to nominal and 

numeric attributes, shown in the weather data for example, the ARFF format has two 

additional attribute types, string and date attributes. String attributes have values that are 

textual. After the attribute definitions, the @data line indicates the beginning of the instances 

in the dataset. Instances are written one per line, with the values for each attribute in turn, 

separated by commas. If a value is missing, it is represented by a single question mark (there 

are no missing values in these datasets). The attribute specifications in ARFF files allow 

validation of the dataset to make sure that it includes legal values for all attributes, and 

applications that read ARFF files generally do this automatically.  



Chapter 9 : Machine learning in AlexSys 

 

143 

 

 

Chapter 9 

9. Machine learning in AlexSys 

The goal of the machine learning stage in AlexSys is to determine the most appropriate 

alignment program to use, given a specific set of sequences to align. In the previous chapter, 

we discussed the input to this learning step, in terms of training instances, and their associated 

attributes. More specifically, the input to the AlexSys machine learning process is a set of 

training alignments, and a number of pre-calculated characteristics which describe the 

sequence set to be aligned. The goal of the learning process is to use these training alignments 

in order to determine a set of rules that can be used to select a suitable alignment program, i.e. 

given a set of sequences, can we predict which alignment program will produce the best 

multiple alignment? 

The definition of the machine learning model in AlexSys is described in Section 9.1. 

We chose to base our model on a decision tree algorithm (i) because we needed a method that 

clearly describe our input attributes in relation with our classes, and (ii) because of the wide 

use of decision trees in bioinformatics, they have proved to be effective. In section 9.2, we 

discuss the general issues involved in building an accurate decision tree and the remaining 

sections then describe in more detail the decision tree algorithm used in AlexSys and its initial 

evaluation. 

9.1 Defining a suitable model 

Before starting the model creation, we need to pose the pertinent question that fits our 

problem. We initially attempted to predict the most suitable multiple sequence alignment 

algorithm (aligner) for a set of sequences. We therefore created a single model containing the 

alignment instances, the attributes, and as a class (the decision) a nominal value (label) 

corresponding to the name of the highest scoring aligner. For the benchmark alignments used 

here, the sum-of-pairs (SP) scores obtained by each aligner are calculated with reference to 

the ‘correct’ alignment. Thus, we defined six classes corresponding to the six multiple 

sequence alignment programs. After testing the model using the facilities in the Weka 
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package (decision trees and cross validation), we obtained a classification performance that 

did not exceed 40%. In the context of AlexSys, this was not satisfactory, since the model 

resulted in an error rate of 60% when trying to attribute an aligner to a given instance. Two 

explanations were possible for this poor performance. First, the scores obtained by different 

aligners were identical or very similar for a certain number of the instances. For example, for 

a given instance, Mafft obtained a score of 0.845, while ClustalW obtained a score of 0.832. It 

is then difficult to distinguish between the two aligners. Second, the number of instances may 

not have been sufficient to resolve this multi-class problem. 

This led us to redesign the question so that we could reduce the problem to a binary 

classification one. Thus, we divided our original model into 6 separate ones, each 

corresponding to a single aligner. In each model, the performance (class) of the aligner is 

defined as ‘strong’ or ‘weak’ for the instance. The problem was then the quantification of the 

strength or weakness of each aligner. We chose to specify a critical threshold that makes an 

alignment acceptable or not, based on the SP score of the alignment. Above a threshold of 0.5, 

an aligner is considered to be Strong, and below this value, an aligner is considered to be 

Weak. The final model is shown in Figure 23. 
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Figure 23 : Input data representation in Weka.  

Instances, attributes and classes are presented in a Matrix. Several tools exists within the 
package for preprocessing of the input before classification, such as filters that are used for a 
better prediction (selection of the best attributes, normalization, instances resampling ...). 

 

The performance of several machine learning algorithms based this model will be 

discussed below. Here, we would like to point out another advantage of this binary 

classification system. By creating separate models for each aligner. we have the possibility to 

choose several aligners that are likely to perform well, rather than a single ‘best’ one. In the 

future, this will allow us to construct alternative alignments for the same set of sequences, for 

example to “merge” them into a single consensus alignment. Thus, our model is very flexible 

and can be easily adapted to the future evolution of alignment algorithms. 
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9.2 Constructing a Decision Tree 

The challenge of building a decision tree can be stated recursively. First, choose an 

attribute to position at the root node and create one branch for every possible value. This splits 

up the example group into subsets, one for each value of the attribute. At this point, the 

process can be repeated recursively for every branch, using only those instances that are 

grouped on the branch. If at any time most cases in a node have the same classification, we 

stop building that part of the tree. 

The remaining problem concerns how to determine which attribute to split on, given a 

set of examples with various classes. Let's consider the weather data used in chapter 8. There 

are four choices for every split, and at the first level they produce trees like those in Figure 24. 

Which is the best option? The number of yes and no classes are shown at the leaves. Any leaf 

with just one class - yes or no - will not need to be divided further, and the recursive 

procedure down that branch will end. 

 

Figure 24 : Tree construction for the weather data introduced in chapter 8 (from Witten and 
Frank, 2005).  

At a given step in the tree construction process, one of four possible attributes has to be selected 
to split the set of training instances. Attributes are shown in circles and their associated values 
are indicated on the arrows. The classes of the training instances (yes or no) are shown in grey 
boxes.  
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Since we are looking for small trees (i.e. trees with a small number of levels), we would 

like this to take place as quickly as possible. If we had a way of measuring the purity of every 

node, we could select the attribute that generates the best child nodes. The measure of purity 

that is used in general is known as the information and it is calculated in units called bits. 

Related to a node of the tree, it represents the expected amount of information that could be 

required to decide whether a new instance should be classified yes or no, considering the fact 

that the example attained that node. In contrast to the bits in computer memory, the expected 

amount of information usually requires fractions of a bit, and is usually lower than 1. We 

determine it depending on the amount of yes and no classes at the node; we will consider the 

details of the calculation shortly. However let us observe how it’s used. When looking for the 

initial tree in Figure 25, the number of yes and no classes at the leaf nodes are [2,3], [4,0], and 

[3,2], respectively, and the information values of these nodes are: 

 

We can calculate the average information value of these, taking into account the number 

of instances that are grouped at each branch, five at the first and third and four at the second: 

 

This kind of mean signifies the amount of information that we think could be required 

to identify the class of a new instance, given the tree structure in Figure 25(a). Before the 

creation of any of the nascent tree structures in Figure 25, the training examples at the root 

consisted on nine yes and five no nodes, corresponding to an information value of 

 

Thus the tree in Figure 25(a) is responsible for an information gain of 

  

and this can be viewed as the informational value of making a branch on the outlook 

attribute. The way forward is clear. We determine the information gain for every attribute and 

select the one which gets probably the most information to split on. In the situation of Figure 

25 

 

147 

 



Chapter 9 : Machine Learning in AlexSys 

 

 

Figure 25 : Expanded tree stumps for the weather data (from Witten and Frank, 2005). 

 

therefore we choose outlook as being the splitting attribute at the root of the tree.  It is 

the only selection for which one daughter node is totally pure, which gives it a substantial 

advantage over the different attributes. Humidity is the next best option since it produces a 

larger daughter node which is nearly completely pure. Next we continue, recursively. Figure 

26 shows the number of choices for a further branch at the node attained when outlook is 

sunny. Obviously, an additional split on outlook will generate nothing new, so we just take 

into account the other three attributes. The information gain regarding each turns out to be 
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so we select humidity as the splitting attribute at this point. There is no need to split 

these nodes any further, so this branch is finished. Continued application of the same idea 

leads to the decision tree of Figure 26 for the weather data. Ideally, the process terminates 

when all leaf nodes are pure, that is, when they contain instances that all have the same 

classification. However, it might not be possible to reach this happy situation because there is 

nothing to stop the training set containing two examples with identical sets of attributes but 

different classes. Consequently, we stop when the data cannot be split any further. 

 

Figure 26 : Final Decision tree (from Witten and Frank, 2005). 

 

9.2.1  AlexSys decision tree algorithm 

For the construction of the decision tree in AlexSys, we used the Weka machine 

learning software (see Materials and Methods). We tested three widely used decision tree 

algorithms implemented in this package: 

The C4.5  (known in Weka as J48) [277]algorithm generates a classification or decision 

tree by recursive partitioning of the dataset. At each node of the tree, C4.5 chooses one 

attribute of the data that most effectively splits the samples into subsets enriched in one class 

or the other, based on a normalized information gain score.  

The Random Tree algorithm [278] is a fast decision tree learner that constructs a tree 

from random permutations. With k random features at each node, a tree is drawn at random 

from a set of possible trees and again, information gain is used as a selection criterion. 

The Random Forest algorithm [279] combines an ensemble classifier and the random 

selection of features, in order to construct a collection of decision trees with controlled 
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variation. Each tree defines a classification, and is said to "vote" for that classification. The 

forest algorithm then chooses the classification having the most votes (over all the trees in the 

forest).  

9.3 Model and Machine Learning Evaluation 

Evaluation is paramount to making genuine improvement in machine learning. Given 

the training set, we could simply measure how effectively different methods perform on this 

data. However, efficiency on the training set may be a bad indicator of performance on other 

unknown test sets. We therefore need methods for predicting the true performance in blind 

tests. When various sets of data are available this is no problem, we simply train a model on a 

sizable training set, and evaluate it on a separate large test set. However, it is often the case 

that data, at least quality data, is rare.  

Based on restricted data, comparing the efficiency of various machine learning 

techniques is not as simple as it might seem and reliable, statistical tests are needed. One 

solution to this is cross-validation. One of the simplest approaches, given a single source of 

quality data, is the holdout method, which reserves a certain amount for testing and uses the 

remainder for training. In practical terms, it is common to hold out one-third of the data for 

testing and use the remaining two-thirds for training.  

In this case, it is important that the samples used for training and testing are 

representative. In general, it is difficult to tell whether a sample is representative or not, 

however random sampling can be used to ensure that each class is represented in similar 

proportions in the training and testing sets. Another solution is to repeat the whole training 

and testing process several times with different random samples.  In each iteration, a certain 

proportion, e.g. two-thirds of the data, is randomly selected for training and the remainder 

used for testing. The performances on the different iterations are averaged to give an overall 

performance estimate.  

A variant of the holdout method is cross-validation. Here, the data is divided into a 

fixed number of approximately equal parts, usually 10. Each part is held out in turn and the 

remainder is used for training. Thus the learning procedure is executed a total of 10 times on 

different training sets (each of which have a lot in common). Finally, the 10 performance 

estimates are averaged to yield an overall estimate. This 10-fold cross-validation has become 
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the standard method for evaluating learning algorithms. Nevertheless, a single 10-fold cross-

validation might not be enough to get a reliable performance estimate. Different 10-fold 

cross-validation experiments with the same learning method and dataset often produce 

different results, because of the effect of random variation in choosing the parts themselves. 

Random selection reduces the variation, but it does not eliminate it entirely. More accurate 

estimates can be obtained by repeating the cross-validation process 10 times, called 10 times 

10-fold cross-validation, and average the results. This involves invoking the learning 

algorithm 100 times on datasets that are all nine-tenths the size of the original. Obtaining a 

good measure of performance is thus a computation-intensive undertaking. 

9.3.1  AlexSys Performance and Evaluation 

We compared the predictive performance of three different decision tree algorithms, 

namely Random Tree, Random Forest and J48 with default parameters. Table 5 shows the 

accuracy of each method, estimated using 10-fold cross validation, which reduces the 

problems of overfitting. Cross-validation is one of several approaches that can be used to 

estimate how well the model will perform on future as-yet-unseen data. The Random Forest 

algorithm is the most accurate predictor for all aligners, except Mafft and Muscle where the 

Random Tree method performs slightly better. With an average correct classification rate of 

94%, this algorithm seems to be the most appropriate for our purposes. Nevertheless, Random 

Tree and J48 also performed well, with an average correct classification rate of around 92% 

and 93.2% respectively. 

 

 

Table 5 : Correctly and incorrectly classified instances for each aligner 

CCI, correctly classified instances; ICI, incorrectly classified instances; ACCI, average CCI; 
AICI, average ICI. Numbers shown in bold indicate the best scores for each aligner. 
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A more detailed study of the performance of the Random Forest algorithm is shown in 

Figure 27. The results confirm that the classification is highly accurate for all five aligners 

used here. The true positive (TP) rates range from 0.97 to 0.99 for high scoring multiple 

alignments (class=Strong), whereas for low scoring alignments (class=Weak) the TP rates 

range from 0.72 to 0.87. The F-Measure, defined as: 

FPFNTP

TP

precisionrecall

precisionrecall
MeasureF








2

22

   

is a widely used score in the information retrieval and natural language processing 

communities and combines measures of precision (also called positive predictive value = 

TP/TP+FP) and recall (also called sensitivity =TP/TP+FN). The F-measure score ranges from 

0.0 to 1.0, with 0.0 indicating the poorest result and 1.0 a perfect retrieval. In these tests, the 

F-measures for the Random Forest algorithm range from 0.96 to 0.98 for Strong class 

alignments and from 0.77 to 0.90 for Weak class alignments. 

Based on these results, we concluded that the Random Forest approach was the most 

appropriate for our purposes. This was then used to build the inference engine used by the 

AlexSys to select the most appropriate aligner for a given set of sequences. 
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Figure 27 : Evaluation of the Random Forest algorithm for the classification of aligner 
performance as S=strong or W=weak. 

For each aligner, the TP (True Positive rate = proportion of correctly classified instances), FP 
(False Positive rate = proportion of wrongly classified instances), Precision (=TP/TP+FP), Recall 
(=TP/TP+FN), F-measure (combines recall and precision scores into a single measure of 
performance) and ROC area (or the area under the receiver operating characteristic (ROC) 
curve = the probability that when we randomly pick one positive and one negative example, the 
classifier will assign a higher score to the positive example than to the negative) are indicated. 

 

9.4 Model creation and access through java API 

The Weka package offers the possibility to use their Java API to implement certain 

functions in other software or pipelines. The rich API and the large Weka community allowed 

us to test our models outside the AlexSys core implementation and then to reproduce the 

results programmatically through the API. 

This feature is well adapted to our case and in the next section we will show how we 

linked the Weka API to other components in AlexSys. Figure 28 shows a simple case of 

model building and testing.  
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Figure 28 : Simple Java code showing how to implement a classifier, using a training set and test 
set and output the classification results and performance.  

 

The code implemented in AlexSys to connect the knowledge base and the model was verified 

to ensure that we obtain the same results as in the Weka implementation. 
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Chapter 10 

10. Expert system construction 

10.1  Expert system architecture 

Several expert systems are created using solutions or architectures known as expert 

system shells. The shell is a part of software which supplies a development framework, made 

up of the user interface, a structure for declarative knowledge in the knowledge base as well 

as an inference engine. Two popular illustrations are CLIPS (clipsrules.sourceforge.net) and 

JESS (herzberg.ca.sandia.gov/jess/). The usage of a shell or some other particular resources 

can optimize development time by decreasing maintenance and increasing reusability and 

versatility of the application. The drawbacks of specialized tools are that the software will 

likely not match the exact requirements, resulting in workarounds. The various and to some 

degree unusual needs of an expert system may considerably worsen this problem. A different 

option is to develop a customized ES using traditional languages, C etc. or specialized 

languages such as, LISP or the newer Prolog. There exists a small semantic gap between 

Prolog code along with the reasonable specification of a program. What this means is that the 

description of a section of code, and the code are relatively similar. Due to the small semantic 

gap, the code examples are reduced and more concise than they are often with another 

language. Using conventional languages, leads to higher portability and efficiency, however 

this has to be offset with the expanded development and maintenance time required. In 

conclusion, it is often advised to use a tool when we know the system and problem space are 

small or when we are planning to throw the prototype away after it has been used for 

requirements definition. A programming language should be used when enough is known 

about the scale and extent of the expert system or when performance becomes a major issue. 

The UIMA (Unstructured Information Management Architecture) provides an ideal 

framework for the development of expert systems in bioinformatics. It offers a number of 

advantages. First, although it is oriented towards text mining tasks, and is considered as a 
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“langageware” as described by its developers at IBM [280], UIMA allows the user to develop 

highly modular and easily pluggable applications that can then address complex problems and 

tasks. The text mining tasks in UIMA have already been used for knowledge extraction from 

biomedical literature [281]. Second, it offers a java programming environment as well as C++ 

programming environment, which makes it easy to incorporate already developed 

bioinformatics programs. In this way, UIMA can be used for the creation of more advanced 

applications such as the work described in this thesis, which brings together within the same 

application an unstructured information framework, bioinformatics computational analyses 

and machine learning algorithms, as shown in Figure 29. 

 

Figure 29 : Interaction between UIMA and public available APIs 

UIMA allows to create modules that use external public available APIs, and gather their 
analysis outputs transforming it into CASes and thus make each output available through the 
metadata layer to any possible Analysis Engine that may use them. 

 

10.2  UIMA module creation 

Before the creation of any primitive or advanced component in UIMA, there are three 

important mandatory steps to consider: (i) the definition of a Type System, (ii) the 

development of the Analysis Engine Descriptor file (XML) and finally (iii) the development 

of the Analysis Engine Annotator (Java code) where all calculations and analyses are 

implemented. 

10.2.1 AlexSys Type System 

A Type System (TS) in UIMA is the equivalent of a structure or object in a traditional 

programming language. It is developed using a wizard that allows the creation of a CAS 
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structure for the TS, as well as the definition of the TS characteristics. An example is shown 

in Figure 30. 

 

Figure 30 : An example of a Type System (TS) in AlexSys 

ProteinSequenceTS is an object composed of the protein sequence name as well as the sequence 
itself. UIMA allows the creation of more complex TS, depending on the complexity of the task 
studied. The TS is stored in XML format and will be used to generate the metadata that will 
drive the analysis process in AlexSys. 

 

10.2.2 AlexSys Analysis Engine Descriptor 

UIMA requires that descriptive information about an Analysis Engine be represented in 

an XML file and provided along with the annotator class file(s) to the UIMA framework at 

run time. This XML file is called an Analysis Engine Descriptor. The descriptor includes: 

 The name, description, version, and vendor (Developer) of the annotator 

 The annotator's inputs and outputs, defined in terms of the types in a Type System 

Descriptor 

 Declaration of the configuration parameters that the annotator accepts  
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The Component Descriptor Editor plugin (Figure 31), which we previously used to edit 

the Type System Descriptor, can also be used to edit Analysis Engine Descriptors. The 

Component Descriptor Editor consists of several tabbed pages. The initial page of the 

Component Descriptor Editor is the Overview page, the other pages are dedicated to the 

specification of the TS used for the Analysis Engine (AE), the parameters that will be needed, 

and the capabilities page which provides an interface for the specification of the Input and 

Output TS for the developed AE. 

Commentaire [MSOffice19] :
s this the wizard? 

Commentaire [MSOffice20] :
hat’s this? You didn’t mention it 
above

Commentaire [MSOffice21] :
? annotator 

 

Figure 31 Analysis Engine Descriptor  Editor.  

The pages in the editor facilitate the specification of the Analysis Engine (AE) properties. Here, 
(a) the Protein Sequence AE will update the CAS and (b) the Type System will be used as the AE 
Output. 

10.2.3 AlexSys Analysis Engine Annotator 

The annotator is the part where we implement code. Depending on the task to be 

treated, the modular organization of different Analysis Engines is a perfect representation of 
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the Object Oriented programming spirit. After designing a model, UML generally, that 

describes the whole system picture, when using UIMA, the annotator (core of an Analysis 

Engine) allow us to write the code that will take as input CASes generated by other Analysis 

Engines so that to generate new CASes whithout carrying about who will use them after, and 

this is the real concept behind a data-driven system. 

10.3  Metadata layer 

The metadata layer in AlexSys contains the “on-the-fly” data that will drive the multiple 

alignment construction process. It consists of a set of UIMA Type Systems (TS). There are 

currently six TS designed to represent the major data structures used:  

• the Protein Sequence TS contains the basic sequence information 

• the Model Attributes TS stores the attribute data associated with the alignment 

models 

• the Pfam TS and Prosite Pattern TS contain information about function 

domains mapped on the sequences, obtained from the InterPro database ( 

Separated from Model Attributes TS to enhance the capability of UIMA to gatjer 

unstructured information from different sources) 

• the Arff Analyzed TS contains information about the sequence attributes in 

Arff (Attribute-Relation File Format)  

• the Aligner Predictor TS collects information concerning the aligners, such as 

the predicted strengths and weaknesses for each aligner and the final choice of an 

aligner 

10.4  AlexSys computational core 

10.4.1  Input data handling (IDH) 

When a set of sequences is input to AlexSys, they are transferred to the metadata layer 

(Protein Sequence TS), using the Protein Sequence AE. This AE uses the framework of the 

Biojava sequence input/output API  to provide access to sequences from a number of common 

file formats such as FASTA, GenBank and EMBL. Thus, regardless of the input format used, 

sequences can be simply transformed into UIMA TS, making them easily available to the 

other AE.  

Commentaire [MSOffice22] :
ou mention this above, but don’t 
describe it.
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10.4.2  Annotation and Information Extraction (AIE) 

This Aggregate Analysis Engine (AAE) contains a number of AE that are used to obtain 

pertinent information associated with the set of input sequences. When new data is stored in 

the Protein Sequence TS, the Model Attributes AE calculates the sequence attributes required 

for the selection of an appropriate aligner and stores the information in the Model Attributes 

TS. The attributes are also read by the Arff Writer AE, which transforms them into a special 

format called Arff (Attribute-Relation File Format) used by the Aligner Predictor AE to select 

one or more appropriate aligners for the input sequences. 

In addition to the attributes that can be calculated directly from the sequence data, two 

AE have been defined that extract additional information from external databases. The Pfam 

AE uses the WSInterProScan web service to retrieve the associated Pfam domains from the 

InterPro database and maps them to the sequences. The additional information generated is 

then stored in the Pfam TS. In a similar way, the Prosite Pattern AE maps patterns from the 

Prosite database to the input sequences.  

10.4.3  Multiple Alignment Construction (MAC) 

The first task in the multiple alignment process is the selection of an appropriate aligner 

to use. This is performed by the Aligner Predictor AE, which represents the AlexSys 

inference engine. Based on the attributes associated with the input sequences, the inference 

engine uses the alignment models in the knowledge base to predict the class (Strong or Weak) 

of each aligner. Two alternative methods have been developed to make the final selection of 

the most suitable aligner: 

• The first method is based on the probability scores (provided by the Weka software. 

For each of the five aligners, the probability associated with a Strong prediction is 

obtained and the aligner with the highest probability is then selected.  

• The second method builds a set of IF-THEN rules. Each of the five aligners 

incorporated in AlexSys is classified as either Strong or Weak. In the case where 

more than one aligner is classified as Strong, we select the one that requires the 

least CPU time.  

Once an aligner has been selected, a UIMA Flow Controller is used to call the 

appropriate alignment AE. These AE encapsulate the actual alignment program, accessible via 
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JNI (Java Native Interface). AlexSys requires that these programs are already installed on the 

user’s platform. 

The final architecture is show in Figure 32 
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Figure 32 : Flat and Layered representation of AlexSys 

AlexSys is data driven, thus representing the system as a workflow (A) may alter the concept of data-driven architecture. There are three 
interconnected layers, the knowledge base layer (B-up), the AlexSys core (B-middle) and the Metadata Layer (B-down) 
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10.5  AlexSys Installation and Usage 

AlexSys binaries and source code are available through AlexSys website 

(http://alnitak.u-strasbg.fr/~aniba/alexsys ). 

To install and use AlexSys one should follow these instructions (the Ubuntu operating 

system is used here as an example) 

1 Download AlexSys 

2 The installation is done by double clicking on Alignment_Expert_System-1.0-Linux-

x86-Install 

3 Install some necessary external tools : 

4 Run these command to install software from appropriate repositories 

sudo apt-get install clustalw 

sudo apt-get install mafft 

sudo apt-get install kalign 

sudo apt-get install probcons 

sudo apt-get install muscle 

sudo apt-get install curl 

sudo apt-get install tcsh 

5 Prepare the directory that will contain all protein sequences to align and the directory 

for the generated multiple alignments (example /home/Input and /home/Output) 

6 To run AlexSys, use this command with the appropriate options : Java –jar AlexSys-1-

1.jar  INPUTFOLDER  OUTPUTFOLDER  OPTIONS  OUTFILE 

where OPTIONS represents two possible arguments:  

 “doalignment“ performs a multiple alignment 

 “noalignment” only predict aligner accuracies 

OUTFILE is the file that will contain all the alignment construction 

results, including the features extracted as well as the prediction scores. 

Example: java –jar AlexSys-1-1.jar  /home/Input  /home/Output  doalignment  

/home/log.txt 

http://alnitak.u-strasbg.fr/%7Eaniba/alexsys
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Chapter 11 

11. AlexSys Evaluation 

 

The efficiency and accuracy of the multiple alignment construction process in AlexSys 

were first evaluated using a test set of 178 multiple alignments (see Materials and Methods). 

The results of this study are described in detail in Publication No. 2, included in appendix. 

Alignment accuracy was estimated by comparing the results obtained with AlexSys to the 

reference alignments in both BAliBASE and OXBench benchmarks. Two alternative 

approaches, using probability- and rule-based methods, for selecting the most suitable aligner 

in the AlexSys inference engine were tested here. The probability-based inference engine 

resulted in higher accuracy, with an average score of 0.891, compared to a score of 0.888 

obtained by the rule-based system.  

The difference in alignment accuracy can be explained by the background knowledge 

built into the rules, which favors a shorter running time when more than one aligner is 

predicted to give a strong performance. In contrast, the probability-based implementation 

systematically selects the aligner with the highest probability of a strong performance. The 

performance of these alternative methods was also compared to the five existing aligners run 

independently. To assess the performance of the aligners used in this study, we used the sum-

of-pairs score (SP) to compare the alignments produced by the aligner with the reference 

alignments. The SP score corresponds to the proportion of pairs of residues aligned the same 

in both alignments.  

The results presented above were obtained using, as mentioned above, training and test 

alignments from the BAliBASE (version 3.0) and OXBench benchmarks. There are two 

major concerns here that need to be discussed. When we develop a system based on a 

machine learning approach we should i) supply as many training instances as possible as input 

to the machine learning algorithm, in order to obtain accurate results and ii) make sure that the 

input offers a wide range of complex cases covering most classification possibilities. In this 
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way, the training phase is more likely to result in classifications and predictions that are closer 

to reality and thus, better mimic the human expert decisions. 

11.1  Constructing new training and test sets 

In our original study, we noticed that the different alignment programs integrated in 

AlexSys obtained similar SP scores for many of the benchmark alignments, particularly those 

from the OXBench benchmark. This lead us to think about the accuracy of the decision trees 

learned. Even if the results shown before clearly demonstrates that we avoid the problem of 

learning overfitting, we are unable at this point to say whether AlexSys will perform better for 

more complicated protein alignment cases or not. To address this problem, we decided to 

enrich the BAliBASE benchmark with larger and more complex reference alignments, in 

order to observe how AlexSys behaves. The new ‘gold standard’ alignments were designed to 

represent some of the new problems resulting from the widespread application of genome 

sequencing and next generation sequencing technologies. Some of the issues involved in 

building the benchmark are discussed in Publication No. 3 included in the appendix. 

We thus constructed a new BAliBASE reference set (manuscript in preparation) 

composed of 230 reference alignments, containing a total of 17813 protein sequences. For 

each family, the reference alignment was constructed using a semi-automatic protocol similar 

to the one developed for the construction of the BAliBASE (version) alignments. Briefly, 

potential sequence homologs were detected by PSI-BLAST  searches in the Uniprot  and PDB  

databases using a given query sequence. Sequences with known 3D structure were aligned 

using the SAP 3D superposition program. Sequences with no known 3D structure were 

initially aligned by (i) identifying the most conserved segments in the PSI-BLAST HSP 

alignments with the Ballast [282] program and (ii) using these conserved segments as anchors 

for the progressive multiple alignment strategy implemented in DbClustal [233]. Unrelated 

sequences were removed from the multiple alignment using the LEON [283] program and the 

quality of the alignment was evaluated using the NorMD [249] objective function. Finally, 

structural and functional annotations (including known domains from the Interpro database: 

www.ebi.ac.uk/interpro/) were added using the multiple alignment information management 

system (MACSIMS) [275]. The automatic alignment was then manually verified and refined 

to correct any badly aligned sequences or locally misaligned regions. 
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 For each benchmark alignment, we identified the conserved regions, or ‘blocks’, using 

an automatic method. This led to the definition of 7985 blocks, covering on average 46% of 

the total multiple alignment (general statistics are shown in Figure 33).  

 

 

Figure 33 : General statistics computed for the benchmark alignments.  

In the box-and-whisker plots, boxes indicate lower and upper quartiles, and whiskers represent 
minimum and maximum values 

 

The benchmark alignments reflect some of the problems specific to aligning large sets 

of complex sequences. For example, many of the protein families (>64% of the alignments) 

have multi-domain architectures and their members often share only a single domain. In 

addition, the alignments have a high proportion of partial sequences, corresponding either to 

naturally occurring variants, or to artifacts, including PDB sequences (typically covering a 

single structural domain) and proteins translated from partially sequenced genomes or ESTs. 

The alignment of the highly studied P53/P63/P73 family (Figure 34A) illustrates this notion 

with 45% of the aligned sequences (61 out of 134) being partial. Further difficulties arise due 

to the presence of potential gene prediction errors, resulting in erroneous protein sequences 

with spurious, artificial insertions or deletions. Another important feature of today’s multiple 

alignment task is linked to the distribution of the conserved blocks. In Figure 34A, only 18% 

of the blocks are present in most (>90%) of the aligned sequences, while 30% are found in 

 

166 

 



Chapter 11 : AlexSys Evaluation 

less than 10%. These ‘rare’ segments or patterns are often characteristic of functional sub-

families. 

 

Figure 34 : (A) Reference alignment of representative sequences of the p53/p63/p73 family, with 
the domain organization shown above the alignment (AD: activation domain, Oligo: 
oligomerization, SAM: sterile alpha motif). Colored blocks indicate conserved regions. The grey 
regions correspond to sequence segments that could not be reliably aligned and white regions 
indicate gaps in the alignment. (B) Different MSA programs produce different alignments, 
especially in the N-terminal region (boxed in red in A) containing rare motifs and a disordered 
proline-rich domain. 

 

For each of the 230 reference alignments in the benchmark, we tested the six alignment 

programs incorporated in AlexSys, resulting in a total of 1380 automatically constructed 

MSAs. Analysis of the overall alignment quality confirmed previous results, in terms of 
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program ranking (Figure 35). Probcons achieves the highest scores on average (78.6%), 

although a large time penalty was incurred. Mafft obtained the next highest average scores 

(77.7%), with a significant reduction in the time required to produce the alignments.. As 

expected, the methods incorporating both local and global information were generally more 

accurate than global (ClustalW: 63.1%) or local (Dialign: 72.9%) algorithms alone. These 

results showed that our new benchmark alignment tests were capable of distinguishing 

between the existing alignment methods, in terms of alignment accuracy and the CPU time 

required to perform the texts. Nevertheless, alignment accuracy was observed to be highly 

variable even for the best programs (with a standard deviation of 18.9 and 19.8 for Mafft and 

Probcons respectively). We hypothesize that this is due to the greater complexity of the large 

alignments, resulting from an increased number of multi-domain proteins, as well as the 

presence of many partial and erroneous sequences.  

 

Figure 35 : Overall alignment performance for each of the MSA programs tested.  

(A) Overall alignment quality measured using CS. (B) Total run time for constructing all 
alignments (a log10 scale is used for display purposes). 
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We then used the extended BAliBASE benchmark to construct new training and test 

sets for AlexSys. The new dataset in AlexSys was thus composed of 218 reference alignments 

from BAliBASE reference sets 1-5, together with the 230 new reference alignments described 

here. The complete dataset was then divided randomly into 80% for training and 20% for 

testing the prediction accuracy.  

11.2  Evaluation of MSA quality and efficiency 

After training Random Forest trees for each of the aligners (as described in chapter 9), 

we then used AlexSys to construct multiple alignments for each test set and compared the 

results in terms of SP scores and CPU time, with five alignment programs run separately 

(Dialign was excluded from these tests, as it is time-consuming and the quality of the 

alignments in previous tests was relatively low). The results are shown in Figure 36 

 

Figure 36 : Evaluation of alignment accuracy and efficiency for AlexSys and the six existing 
aligners. (A) Average alignment accuracy for the test set, measured using the SP score. (B) The 
total CPU time required to construct all multiple alignments. 

 

 

169 

 



Chapter 11 : AlexSys Evaluation 

In terms of accuracy, AlexSys (using the probability based implementation), performs 

better than four out of the five alignment programs run separately, with an SP score of 0.832. 

Although ProbCons outperforms all the other aligners, aligning the test set requires 5746 

minutes, whereas with a slightly lower SP score, AlexSys required only 86 minutes (this time 

includes the time used to calculate the input sequence attributes and not only the alignment 

time itself). These results show that AlexSys is capable of automatically choosing an 

appropriate aligner depending on the informational content of the input data. 

To further investigate how AlexSys obtained these results, we compared the SP scores 

achieved by AlexSys with each separate aligner and represented the results in a set of back-to-

back barplots (Figure 37). This representation highlights the distribution of test sets by SP 

scores (from 0 to 1). It can be seen from these comparisons that AlexSys results in less low 

quality alignments (with SP scores less than the threshold of 0.5).  

 

Figure 37 : Back-To-Back comparison of AlexSys and other MSA programs 
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These results, together with the results shown in Figure 36, confirm that AlexSys is 

capable of producing reliable alignments in a time-scale suitable for projects requiring high 

throughput processing. 

The results obtained here confirm the effectiveness of cooperative alignment approaches 

that can exploit different methods to obtain more accurate, reliable multiple alignments. 

Integration of these different algorithmic approaches with new data types, other than the 

sequence itself, in knowledge-enabled, dynamic systems will facilitate and improve the 

complete MSA construction and analysis process; from the selection of a suitable set of 

sequences, via data cleaning and preprocessing, data mining and the evaluation of results, to 

the final knowledge presentation and visualization. Such systems could then be used to fully 

exploit the potential of MSAs as models of the underlying evolutionary processes that have 

created and fashioned extant protein sequences and fine-tuned their structure, function and 

regulation.  
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In this work, we have studied a new paradigm to address the problems of data 

integration and analysis, from their initial collection and transformation to valuable 

information to the final generation of new knowledge. With the current data torrent resulting 

from the high throughput genomics technologies, scientists in the field of bioinformatics are 

facing, not only an increasing volume of data, but the nature and quality of the data are also 

changing. This introduces additional difficulties for the exploitation of this knowledge in 

terms of new discoveries and the validation of what we learned in the past. 

In the era of systems biology, the combination of the heterogeneous data from many 

different resources, coupled with comparative and predictive analyses, has become a crucial 

element for the analysis and comprehension of complex biological networks. In this context, 

gene sequences can no longer be considered in isolation, but must be integrated with other 

genomics data to provide more detailed descriptions of their functions, not only at the 

molecular level, but also at the higher levels of their macromolecular complexes and cellular 

processes. 

In the face of these challenges, we need novel approaches that introduce additional 

capabilities in the diverse traditional algorithms we already possess, to bring a kind of 

“artificial life” to these applications. Fortunately, new technologies in the machine learning 

and artificial intelligence fields have been developed recently to allow this. Many of these 

techniques have been inspired by biology (e.g. neural networks, genetic algorithms) and vice 

versa (e.g. data mining, cluster analysis, pattern recognition, knowledge representation). This 

crossing over is giving rise to new cutting edge technologies that are used today as standards 

in the process of knowledge discovery in a wide variety of fields. Bioinformaticians are now 

taking into consideration these novel aspects, by creating tools that mimic human intelligence 

in order to deal with the data torrents both accurately and efficiently. 

Here, we have studied the applicability of a knowledge based expert system approach, 

that emphasizes the modeling and integration of human expertise in computational systems 

that can thus act as additional “problem solvers”, together with scientists. The goal is not the 

development of “yet another program”, but the creation of a system that can take into account 

the strengths and weaknesses of different, complementary bioinformatics applications. Such 

an expert system would not follow a predefined analysis pipeline, but would include the 
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nature of the data (more precisely meta-data) in the choice of a specific analysis process. This 

data driven architecture has the advantage of allowing the deployment of different analysis 

scenarios, depending on the input data and the analysis problem. 

In this thesis, after describing in detail the fundamentals of knowledge based expert 

systems, we introduced AlexSys, a novel application of knowledge discovery through 

knowledge based expert systems applied to bioinformatics. My previous experience as a 

bioinformatician and my interest in knowledge discovery in the biology field led me to 

discover a new generation of bioinformatics software with an incredible range of potential 

applications.  In particular, I was interested in the application of such technologies to the 

multiple sequence alignment problem, because of its important central role in most 

bioinformatics applications today, and the challenges that this field faces, from a developer 

point of view more than a user’s. 

What was more exciting during this thesis, and what I will try to describe in this section, 

is the fascinating idea of extrapolation and scaling in science. I was engaged in discussions 

that by far exceed the specific problems and solutions discussed here. When we applied 

knowledge based expert systems to the multiple sequence alignment problem, we also treated 

lots of fundamental questions in bioinformatics and we “blackboarded” the limits and the 

strengths of such methodologies. In this section I will try to resume what we learnt during this 

thesis, in order to provide some directions for future developments and perspectives. 

Framework choice for the development of the 

Knowledge Based System  

 In order to build the AlexSys expert system, we used the UIMA (Unstructured 

Information Management Architecture). UIMA represents an ideal framework for the 

integration of both structured and unstructured data. It also provides unique facilities for the 

creation of highly modular computational systems capable of performing complex analysis 

applications. In the future, this will allow us to combine information from complementary 

alignment methods, for example to produce a single consensus alignment. The system will 

also allow the integration of structural and functional data, such as gene expression, cellular 

localization, interactions, etc., to guide the construction of the multiple alignment and to 

facilitate the interpretation of the results for the biologist.   
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The use of UIMA as a framework for the development of our knowledge based system 

opens the way for the integration of new methods dedicated to the analysis of biological 

literature and the extraction of the knowledge in a format that can be exploited by the 

computer. A growing number of groups, such as BioNLP (bionlp.sourceforge.net) and 

BioCreative (www.biocreative.org), are developing and using text mining applications on 

biological literature, in order to complement existing studies or to establish entirely new 

analysis based on knowledge discovery in texts.  

Taking into account the alignment context: knowledge 

enhancement  

Although the knowledge currently selected and implemented in AlexSys provides 

accurate results in many cases, we have to keep in mind the alignment context and the final 

purpose of the user. For example, constructing a multiple sequence alignment for annotation 

purposes is different from constructing one for 3D structure homology modeling. In some 

cases we can accept an alignment that is “approximate” with many badly placed gaps for 

example. In other cases this type of alignment might not be helpful, nor meaningful. A 

question then arises concerning the objective functions used in the MSA context. Are they as 

objective as they seem to be? With the rapid growth of the known protein universe, and thus 

the expected low coverage of multiple alignment benchmarks, we can question the accuracy 

of existing multiple sequence alignment algorithms and approaches, not in a critical way, but 

in order to anticipate solutions and reduce the complexity of aligning protein sequences. Such 

MSA algorithm studies provide lots of information about the factors that affect alignment 

quality. Some of this prior knowledge has already been quantified and incorporated in the 

AlexSys inference engine. Some examples of other information that could be incorporated in 

the future are given below. 

The accuracy of multiple sequence alignment programs is closely linked to sequence 

conservation. It has been widely established that alignment accuracy dramatically decreases 

for sequences sharing less than 30% identity [263]. Other factors affecting the accuracy have 

been less well studied. Here, we have described a number of sequence attributes that have an 

effect on the quality of one or more of the alignment programs tested, including the number of 

sequences, their lengths and their structural and amino acid compositions. 
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The multiple alignment of multi-domain proteins is a particularly difficult task. 

Evolutionary events that alter the domain organization of the input protein sequences 

represent significant problems for alignment algorithms. In particular, global approaches 

cannot cope with permuted domain orders and normally use strict gap penalties that make it 

difficult to insert long gaps equivalent to the length of more than one protein domain. Local 

multiple alignment methods, such as the Dialign approach, can be useful in such cases. 

MSA accuracy could also be seriously affected by the presence of repeats in protein 

sequences. Sammeth and Heringa,  developed an MSA technique that keeps track of various 

types of repeat regions, using specific algorithms for the detection of these repeats. The 

alignment accuracy can be significantly improved by this method, although it is strongly 

correlated to the repeat information provided [284]. 

Another problematic class of proteins is the membrane-associated proteins. The specific 

regions in these proteins which are inserted in the cell membrane present a significantly 

different hydrophobicity pattern compared to soluble proteins. Since the scoring matrices 

(e.g., PAM or BLOSUM) generally employed in MSA approaches are produced from 

alignments of sequences of soluble proteins, the general alignment methods are in theory 

unsuitable for the alignment of membrane bound protein regions. Fortunately, transmembrane 

(TM) regions can be reliably identified using prediction strategies such as TMHMM [285] or 

Phobius [286]. These methods could be incorporated in an alignment expert system, to locate 

the putative TM regions in the sequences and to align them separately from the remainder of 

the sequence. 

Alignment algorithm integration 

The current version of AlexSys includes some of the most widely used multiple 

alignment programs representing different, complementary alignment strategies. However, 

this is clearly not an exhaustive list of the hundreds of alignment programs currently 

available. The modular design of AlexSys allows developers to create additional plugins for 

the integration of additional alignment algorithms. The inclusion of new algorithms however 

requires the revision of the included prediction models in order to take into account the newly 

added algorithm. As described in the Results section, adding an aligner is quite easy using 

UIMA, all we have to do is to create the appropriate Analysis Engine and to slightly modify 

the inference engine. Including additional aligners is expected to improve the accuracy of the 
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alignment in respect to the input attributes.  Furthermore, the MSA field is constantly 

evolving, with new methods being developed in response to new alignment applications and 

changing user requirements. 

 Multiple Alignment Program parameters 

Prior to this thesis work, I was involved in a study aimed at the optimization of the 

ClustalW progressive algorithm. However, as far as we know, there has been no 

comprehensive study of other multiple sequence alignment programs to try to establish a 

relationship between the nature of the sequences to be aligned and the optimal program 

parameters. A trial was made during the development of AlexSys (not yet fully implemented), 

and it was shown that optimizing a program’s parameters based on a benchmark covering a 

wide range of protein families, could improve the accuracy of the final alignment compared to 

the parameter values used by default.  

One important parameter is the substitution matrix used to define the scores for 

matching and mismatching residues in the alignment. The PAM [239] and Blosum [287] 

matrices are amongst the most widely used for protein alignments. A general rule states that 

high PAM values or low Blosum values are advised for sequences with increasingly divergent 

sequences, whereas the opposite case is recommended for more related sequences. Similarly, 

the penalties associated with introducing gaps are an important component of algorithms for 

protein sequence alignment: the larger the gap penalties, the smaller the number of gaps that 

can be inserted in the alignment. Sequences that have evolved over long periods of time tend 

to have more insertions and deletions and as a consequence, it can be beneficial to reduce the 

gap penalty values for more divergent sequence sets. Nevertheless, attention should be paid 

not to deviate too far from the advised configuration. Too large gap penalty values may 

impose a gap-less alignment, while too low gap penalties may result in alignments with too 

many gaps. In both cases, the final alignment will probably be biologically inaccurate.  

An expert system should be able to detect automatically which program parameters to 

use depending on the input sequences.  Including this information as prior knowledge in an 

expert system, e.g. in the form of Inductive Logic rules, decision trees, etc., is expected to 

improve the final alignment results. At the current stage of AlexSys development, this kind of 

parameter optimization could be achieved in two ways. First, we could consider the aligner 

parameters (at least the common ones) as new classes in the existing model, in order to predict 
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the most appropriate aligner and parameters at the same time. Second, we could build a 

separate inference engine that would be exploited after the initial choice of the appropriate 

aligner, in order to subsequently predict which parameters should be used for the input 

sequence set. In this case, we could prediction models that are specific to each aligner.   

AlexSys additional features 

 

 

Figure 38 : AlexSys future infrastructure enhancement 

 

The core of AlexSys currently consists of 3 layers: the input data handling, the 

annotation and information extraction, and the multiple alignment construction. In the future, 

more complex analysis protocols could be devised, such as the one shown in Figure 38.  

In its current version, AlexSys systematically produces a multiple alignment, regardless 

of whether the input sequences are actually related and can be aligned meaningfully. 

However, the rules implemented in the inference engine could be used as a preliminary filter 

that would provide a failure prediction before the alignment process is started in the AlexSys 

core. If the sequences given to the system are considered to be “alignable” then the expert 

system can be used to select an appropriate alignment methodology and to construct an initial 

alignment.  

Further improvement could be obtained by iteratively refining this initial alignment, 

using either existing alignment refinement strategies or by implementing new modules based, 

for example, on the metadata generated during the analysis. The long term objective is the 

 

178 

 



Conclusions and perspectives 

 

179 

 

development of more robust versions of AlexSys. This could be achieved by enriching the 

knowledge base with new data that could be exploited by complementary algorithms in 

AlexSys. Nevertheless, manual curation of the raw data by experts will be crucial in order to 

eliminate erroneous or noisy data. 

AlexSys in the Clouds 

During the development of AlexSys, when our ideas were confronted with the reality of 

biological datasets, we sometimes felt frustrated that we could not reach our ideals. However, 

this is often the case when dealing with high throughput data. We need a lot of CPU and 

memory resources to run our programs in an acceptable time frame. Fortunately a number of 

alternatives exist to overcome these problems. During the initial development of AlexSys, we 

applied the system, as described in the Results section, on benchmark sequences from 

BaliBase or Oxbench, for training and for testing. The sequence sets from these benchmarks 

are relatively small and can be handled in a reasonable time. A validation phase using larger 

sequence sets (the next version of BAliBASE and other sequences from genome-scale 

projects in the laboratory) highlighted some limitations of AlexSys. The time required to 

extract features and attributes, as well as the alignment itself was acceptable. The only 

problem that we faced during this validation phase was the calculation of the mean pairwise 

identity attribute, since this still relies on dynamic programming and the computation time 

increases exponentially with the number of sequences to be aligned. That said, the tools used 

for AlexSys development provide a key answer to the problem. The use of UIMA makes it 

easy to parallelize any analysis process, and thanks to the modular design we can assign each 

analysis engine to a dedicated node in a parallel computer system, Grid system or Cloud 

Computing system.  

The LBGI is currently implicated in the development of original data management and 

analysis systems for the Décrypthon Grid infrastructure: a joint project of the French 

Muscular Dystophy Association (AFM), the CNRS and IBM. We therefore plan to implement 

AlexSys on this Grid system in the near future. 

One of the most widely used Cloud Computing systems in biology is the Amazon EC2 

cloud. Many common biological databases are already uploaded onto Amazon, making it 

simpler and less expensive to use this service. For example, the entire BioLinux suite of tools 

is available as an image, which means that users can get up and running quickly. Recently, 
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some methods for sequence alignment have also been made available for “aligning in the 

clouds” (Cloud-Coffee [288], XMPP [289])  

Through the appropriate selection of acceleration technology the demanding job of 

keeping up with the analysis of data from high throughput projects can be accomplished at a 

reasonable cost and without requiring enormous in-house resources. Hopefully, the 

development of new faster, more accurate sequence alignment and analysis tools will also 

have significant consequences for more wide-reaching areas, such as protein engineering, 

metabolic modelling, genetic studies of human disease susceptibility, and the development of 

new drug discovery strategies.  
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