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Estimation de l’évapotranspiration de surface 
terrestre à partir des données satellitaires 

( Résumé ) 

Au début du 21ème siècle, le réel problème écologique est le changement climatique global.. Le 
réchauffement global de la terre, les catastrophes naturelles comme les extinctions d'espèces en sont 
les conséquences surtout si le changement climatique se produit trop rapidement. Le pannel 
intergouvernemental sur le changement climatique (PICC) a été établi par l'organisation 
météorologique mondial (WMO) ainsi que par le programme d'environnement des Nations Unies 
(UNEP) en 1988 pour évaluer le risque du changement climatique provoqué par les activités humaines. 
L’évapotranspiration (ET) joue un rôle important en hydrologie, météorologie et agriculture, comme 
dans la prévision et l'estimation de ruissellement de l'eau à l’échelle régionale, dans la simulation de la 
circulation atmosphérique à grande échelle et du changement climatique global ainsi que dans 
l'établissement des programmes d’irrigations. 

Globalement, l’ET moyenne de la surface terrestre explique 60% de la précipitation moyenne. Il 
est donc nécessaire d’avoir une information fiable de l’ET de la surface terrestre pour prévoir les 
catastrophes naturelles telles que les inondations et les sécheresses. Cependant, l’ET de surface 
terrestre, qui est aussi importante que la précipitation et l'écoulement dans la modélisation du cycle 
d’eau, est l'une des composantes la moins renseignée du cycle hydrologique. L’estimation précise de 
l’ET régionale dans la modélisation du bilan hydrologique et du bilan énergétique à différentes 
échelles temporelles et spatiales est essentielle dans l'hydrologie, la climatologie et l'agriculture. 

La technologie de la télédétection est identifiée comme le seul moyen viable de cartographier l’ET 
de la surface terrestre à l’échelle régionale de façon globale, cohérente et économiquement raisonnable. 
La combinaison des paramètres de surface dérivés des données satellitaires avec des variables 
météorologiques de surface et des caractéristiques de végétation permet d’estimer l’ET à l’échelle 
régionale et globale. La télédétection peut fournir la distribution spatiale et l'évolution temporelle des 
paramètres de surface tels que NDVI, LAI (Leaf Area Index), Albédo dérivés des données visibles et 
proche infrarouges et la température et l’émissivité de surface restituées à partir des données 
infrarouge thermiques. La plupart de ces paramètres est indispensable aux méthodes et aux modèles 
utilisés pour estimer l’ET de surface.  

La potentialité d'utilisation des données infrarouges thermiques à partir de l'espace pour estimer 
l’ET à l’échelle locale et régionale a été intensivement étudiée pendant les 30 dernières années et des 
progrès substantiels ont été accomplis. Les méthodes varient dans leurs complexités, de la régression 
empirique simplifiée aux modèles physiquement basés sur du bilan énergétique, sur le triangle 
construit par la température de surface (Ts) et l’indice de végétation (VI), et aux techniques 
d'assimilation de données à un modèle numérique. Cependant, la télédétection satellite ne peut pas 
fournir des variables proches de la surface telles que la vitesse du vent, la température de l'air, 
l'humidité, etc., ce qui limite les applications de l'équation du bilan énergétique aux surfaces 
homogènes. De plus, les approches pour déterminer l’ET de surface terrestre diffèrent 
considérablement dans la complexité de la structure des modèles, dans les entrées et sorties des 

 I



modèles et dans les avantages et les inconvénients de chaque modèle. Par conséquent, en considérant 
les caractéristiques des diverses méthodes de détermination de l’ET développées pendant les décennies 
passées et l’'importance de l’ET pour les hydrologistes, les études de ressource en eau et les ingénieurs 
en irrigation,  la façon de calculer ou d’estimer avec précision l’ET à l’échelle régionale, en se basant 
sur la technologie de la télédétection, est devenu une question cruciale. 

Ce travail porte donc sur l’élaboration et la mise au point de méthodes permettant de déterminer 
l’évapotranspiration régionale de surface terrestre à partir des données de l’instrument MODIS 
embarqué sur les satellites polaires Terra et Aqua. Il s’inscrit dans le projet EAGLE (Exploitation of 
AnGular effects in Land surfacE observations from satellites) retenu et financé par la Commission 
Européenne dans le cadre du programme FP6 pour une période de 3 ans et demi à partir du 1er  février 2004. 
et dans le projet  « Estimation des paramètres de surface à partir des données satellitaires » retenu et 
financé par le Ministère de la Science et de la Technologie Chinois pour une période de 3 ans à partir 
du 1er décembre 2006. 

Cette thèse comprend 6 chapitres. 

Dans le premier chapitre, nous présentons l’état de l’art sur l’estimation de l’évapotranspiration  
régionale à partir des données satellitaires. Une vue d'ensemble des modèles utilisant des données 
satellitaires est décrite pour en permettre l’analyse et la critique dans l'estimation de l’ET régionale à 
partir des données de l’espace. Généralement, ces modèles varient considérablement dans leurs entrées, 
dans leurs hypothèses principales et l'exactitude de leurs résultats. Sans compter l’utilisation des 
données satellitaires multispectrales du visible au infrarouge thermique, la plupart des modèles  doit 
avoir recours dans une certaine mesure à des mesures auxiliaires au sol afin d’estimer les flux de 
chaleur turbulentes à l’échelle régionale. Nous discutons en détail les entrées, les hypothèses, la 
théorie, les avantages et les inconvénients principaux de chaque modèle dans ce chapitre. De plus, les 
approches de l'extrapolation de valeur instantanée ET aux valeurs quotidiennes sont également 
brièvement présentées. A la fin de ce chapitre, nous analysons les problèmes et perspectives associés 
aux modèles d’ET afin de  montrer objectivement leurs limitations et les aspects prometteurs de 
l'estimation de  l’ET régionale et nous décrivons brièvement la structure de cette thèse.  

Le deuxième chapitre de cette thèse est consacré à la détermination de la température de surface 
terrestre (LST) à partir des données du satellite Chinois de type géostationnaire – FengYun 2C (FY-
2C). La température de surface est en effet un paramètre commun à plusieurs thématiques et sa 
connaissance donne des informations sur les variations spatio-temporelles de l’état d’équilibre de 
surface. De ce fait, elle est reconnue comme un des paramètres prioritaires et fait l'objet d'attentions 
particulières dans l'étude de notre environnement et dans l’estimation de l’ET. Pour obtenir une 
analyse régionale et globale, la télédétection infrarouge thermique est donc un outil extrêmement 
intéressant. La télédétection IRT a essentiellement pour objectif la mesure de la température et de 
l’émissivité de surface. En se basant sur la théorie du transfert radiatif, ce chapitre adresse l'estimation 
de la température de surface terrestre à partir des données dans les deux canaux infrarouges 
thermiques (IR1, 10.3-11.3μm et IR2, 11.5-12.5μm) embarqués sur le satellite météorologique 
Chinois de type géostationnaire – FengYun 2C et en utilisant l'algorithme de type split-window 
généralisé (GSW). Les coefficients de l'algorithme de GSW correspondant à une série de variation de 
l'émissivité moyenne, du contenu de vapeur d'eau atmosphérique et de la température de surface ont 
été dérivés par une méthode statistique de régression en utilisant les valeurs numériques simulées avec 
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un modèle de transfert radiatif atmosphérique précis (MODTRAN 4) sur une grande variation de 
conditions atmosphériques et des surfaces. Ce chapitre est décomposé en 3 parties. La première décrit 
la théorie liée à la détermination de la température de surface par l'algorithme de type GSW et 
présente le développement de l’algorithme pour les données de FY-2C. La seconde donne les résultats 
et les valeurs numériques des coefficients de l'algorithme de GSW. L’erreur sur la température de 
surface produite par l'incertitude des émissivités de surface, du contenu de vapeur d'eau dans 
l'atmosphère et du bruit instrumental est également présentée dans cette partie. En outre, afin de 
comparer les différentes formulations d’algorithmes de type split-window, les températures de surface 
estimées par plusieurs algorithmes récemment proposés dans la littérature sont comparées et analysées. 
La troisième partie présente les principaux résultats obtenus de ce travail et montre que la température 
de surface pourrait être estimée par l'algorithme de GSW avec écart type de l'erreur (RMSE) de moins 
de 1 K pour l'angle de visée zénithal (VZA) < 30 degré ou pour les conditions dans lesquelles le VZA 
et le contenu de vapeur d'eau atmosphérique sont respectivement inférieures de 60 degré et de 3.5 
g/cm2 à condition que les émissivités de surface soient connues. Le résultat de l'intercomparaison a 
prouvé que la plupart des algorithmes donnent des résultats comparables. 

Nous abordons dans le troisième chapitre la restitution de l’émissivité directionnelle de surface à 
partir d’une combinaison des données infrarouge thermique (TIR) et infrarouge moyenne (MIR) de 
MODIS en mettant l’accent sur la modélisation de la réflectivité bidirectionnelle de surface terrestre 
dans le canal MIR. Jusqu’à ici, de nombreuses fonctions de distribution de réflectivité 
bidirectionnelles (BRDF) ont été développées pour décrire la réflectivité bidirectionnelle dans des 
canaux visible et proche infrarouge en fonction des géométries d'illumination et d’observation. Les 
modèles semi empiriques à noyaux ont été appliqués avec succès avec les instruments AVHRR, 
MODIS et MISR. Très peu de  travaux se sont concentrés sur le développement du modèle BRDF 
dans la région MIR, mais tous ont visé à estimer l'émissivité dans MIR à partir de la réflectivité 
bidirectionnelle dérivée des données AVHRR et MSG/SEVIRI. Notre travail est ici consacré à estimer 
l'émissivité directionnelle de surface terrestre dans les canaux TIR et MIR à partir de la réflectivité 
bidirectionnelle dérivée des données de MODIS dans les deux canaux adjacents de MIR de MODIS. 
La première partie de ce chapitre décrit la méthodologie pour déterminer l'émissivité directionnelle et 
le développement du modèle BRDF dans la région MIR. La seconde partie décrit la zone d'étude, les 
données MODIS et la procédure pour avoir l’estimation de l’émissivité directionnelle à partir des 
données MODIS. La troisième partie présente certains résultats préliminaires et la validation indirecte 
de ces résultats avec le produit de la température et de l’émissivité de surface de MODIS (MYD11B1). 
Dans ce travail, dix jours de données MODIS entre le 12 Juillet et le 30 Juillet de 2005 en condition 
du ciel clair au moment du passage de satellite sur la région étudiée ont été sélectionnés pour 
déterminer les coefficients de trois paramètres du modèle BRDF développé. Les émissivités 
directionnelles dans le canal MIR ont été déterminées sur une région de l'Egypte et de l'Israël avec la 
latitude variant de 28.0N à 32.0N et la longitude de 30.0E à 36.0E. Les résultats de la comparaison 
entre les émissivités dans le canal MIR obtenues de notre modèle avec celles de produit MODIS 
(MYD11B1) ont montré que, au moins pour notre cas d’étude, la méthode proposée pour estimer 
l'émissivité directionnelle donne des résultats comparables à ceux du produit MODIS (MYD11B1) 
avec une erreur moyenne de -0.007 et un écart type de 0.024. 

Le quatrième chapitre se rapporte à l’étude de l’impact de l’'hétérogénéité spatiale de LAI sur 
l'estimation de la fraction directionnelle d'espace (directional gap fraction). La probabilité 
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directionnelle d'espace ou la fraction d'espace est un paramètre de base dans la modélisation du 
transfert radiatif dans le couvet végétal. Bien qu'on ait proposé quelques approches pour estimer cette 
probabilité d'espace à partir des mesures satellitaires, peu d'efforts ont été mis sur l’étude des effets de 
changement d’échelle sur ce paramètre. De ce fait, nous analysons dans ce chapitre l'effet de 
changement d’échelle sur ce paramètre en agrégeant la probabilité directionnelle d’espace estimée à 
partir de LAI dérivé du satellite à haute résolution spatiale à l’aide de la loi Beer et nous avons 
introduit un nouveau paramètre Ĉ pour compenser l’effet de changement d’échelle de ce paramètre. La 
première partie de ce chapitre fournit le cadre théorique pour estimer l'effet de changement d’échelle 
de la probabilité directionnelle d'espace introduit par deux différents schémas d'agrégation, de 
l’échelle locale à la plus grande échelle. Dans la deuxième partie, nous présentons les différents types 
d'images de LAI obtenues à partir des données satellitaires de haute résolution spatiale de la base de 
données de la campagne-VALERI et dans la troisième partie, nous donnons l'effet de changement 
d’échelle lié à la non linéarité entre LAI et la probabilité d'espace sur plusieurs types de paysage et 
proposons un nouveau paramètre Ĉ pour compenser l’effet de changement d’échelle.  

Les résultats obtenus de ce travail montrent que l'effet de changement d’échelle dépend non 
seulement de l'hétérogénéité de surface et aussi du degré de non linéarité de la fonction qui relie le 
paramètre recherché aux mesures (paramètres connus). Des expressions analytiques pour compenser 
l’effet de changement d’échelle de la probabilité d'espace sont établies en fonction de la variance de 
LAI et de la valeur moyenne de LAI dans un grand pixel. Avec l'ensemble des données de VALERI, 
l'étude dans ce chapitre prouve que l’effet de changement d’échelle de la probabilité d'espace 
augmente avec la résolution spatiale décroissante pour la plupart de types d’occupation du sol. Un 
effet relatif important est trouvé pour la plupart des sites de récoltes et pour un site mixte de forêt dû à 
leur grande variabilité vis-à-vis LAI, alors qu’un effet plus réduit se produit sur des sites de prairie et 
d'arbustes. Quant au nouveau paramètre Ĉ, il varie lentement dans les sites de forêt, de prairie et 
d'arbustes, et de manière significative dans les sites de récoltes et de forêt mixte. 

Le cinquième chapitre est consacré à l’estimation de l’ET régionale à partir des données MODIS 
sur des régions arides et semi-arides. Les objectifs de ce travail sont doubles: (1) développement d’un 
algorithme opérationnel pour déterminer quantitativement les limites sèche et humide dans l'espace 
triangulaire construit par la température de surface (Ts) et l’indice de végétation (VI) sur des régions 
arides et semi-arides où des pixel humides généralement ne sont pas facilement identifiés, (2) 
validation de l’ET dérivé des produits de MODIS/TERRA avec l’ET mesurée par l’instrument LAS 
(Large Aperture Scintillometer). La première partie de ce chapitre rappelle le principe de la méthode 
de triangle Ts-VI et met en avant les hypothèses impliquées dans l'élaboration méthodologique ainsi 
que les avantages et les inconvénients de la méthode de triangle Ts-VI. La seconde partie est 
consacrée au développement d’un algorithme pratique pour la détermination quantitative des limites 
sèche et humide dans le triangle Ts-VI. Cet algorithme peut fournir une estimation du rayonnement net, 
du flux dans le sol, de la fraction évaporative et de l’ET à l’échelle régionale à partir uniquement des 
données et des produits de MODIS. La troisième partie décrit la région d’étude et les données utilisées 
dans cette étude et donne une validation préliminaire de flux de chaleur sensible dérivé des données 
MODIS avec les mesures sur le terrain faites par l’instrument LAS pendant l'expérience sur le terrain 
de Heihe du 20 mai au 21 août 2008. Les résultats montrent que les flux de chaleur sensible dérivés 
des données MODIS par notre méthode sont en bon accord avec ceux mesurés à partir du LAS. L'écart 
type de cette comparaison est de 25.07 W/m2. 
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Le sixième chapitre est la conclusion de cette thèse. Ce travail a permis de montrer l’avantage de la 
méthode de triangle Ts-VI par rapport aux autres méthodes traditionnellement utilisées pour la 
détermination de l’évapotranspiration régionale et de proposer des méthodes permettant de calculer la 
température de surface et l’émissivité de surface à partir des luminances mesurées par les satellites. Ce 
travail a aussi montré qu’il était possible d’estimer l’ET sur des régions arides et semi-arides à partir 
uniquement des données satellitaires avec une précision acceptable.  

Ce travail ouvre des perspectives intéressantes. Dans la restitution de l’ET régionale, l'exactitude 
de cette restitution dépend principalement de l'exactitude de la détermination quantitative des limites 
sèche et humide dans le triangle Ts-VI et de la performance du modèle d'interpolation impliqué dans 
l'évaluation de la fraction évaporative dans le modèle de l’estimation de l’ET. Les performances du 
modèle et du nouveau algorithme développé dans cette étude devront donc être évaluées de façon 
précise et attentive. 

La détermination des limites sèche et humide dans l'espace de triangle Ts-VI implique 
généralement un grand degré de subjectivité et d'incertitude. Les règles et l'algorithme proposés dans 
cette thèse proposent un outil réaliste pour estimer la température de surface la plus élevée à chaque 
intervalle de la fraction du couvert végétal et de déterminer ensuite les limites sèche et humide dans 
l'espace de triangle Ts-VI sur des régions arides et semi-arides. Bien que l’hypothèse d'interpolation 
linéaire en deux étapes impliquée dans l'estimation de la fraction évaporative soit encore incertaine et 
non encore vérifiée directement, un très bon accord est trouvé quand le flux de chaleur sensible 
déterminé à partir des données MODIS est comparé à celui mesuré par l'instrument LAS. Pour réduire 
l'incertitude dans l'estimation des flux de chaleur turbulents par la méthode Ts-VI, d'autres travaux 
doivent être menés à bien pour vérifier les paramètres/variables appropriés étape par étape à condition 
que les données nécessaires soient alors disponibles. De plus un travail de validation doit être effectué 
dans d'autres régions climatiques pour l'algorithme proposé. 
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地表蒸散发遥感估算  

（ 摘 要 ）  

 

全球气候变化是当今人们最为关注的环境问题之一。随着全球气候变暖，冰川消

融、海平面上升、飓风、海啸、洪涝、干旱、物种灭绝等自然灾害在世界各地时有发

生。早在 1988 年，联合国环境规划小组（United Nations Environment Programme，

UNEP）与世界气候组织（World Meteorological Organization，WMO）就成立了联合国

政府间气候变化专家委员会（ Intergovernmental Panel on Climate Change， IPCC）

(http://www.ipcc.ch/about/index.htm)，主要评价人类活动所导致的气候变化的风险性。

蒸散发（EvapoTranspiration，ET）作为生物圈、大气圈、土壤圈和水圈之间水分循环

和能量传输的控制因素，在水文学、气象学、农学、地学等学科研究中，如区域尺度

的地表水和地下水预测和估算、大尺度的大气环流和全球气候变化模拟、田间尺度的

农田灌溉和耕作管理等等方面，都发挥着重要的作用。 

从全球来看，地表 ET 约占平均降水量的 60％。因此，在开展水灾、旱灾等自然灾

害预测、气象预报和气候变化建模等各项工作过程中，十分有必要掌握可靠的地表 ET

信息。然而，地表 ET 作为水循环模型的必要组分，与降水、径流居于同等重要的地

位，但却在水循环研究中较少被人认识。综合考虑过去数十年 ET 估算方法研究的局限

性及其在水文学、水资源研究、灌溉工程学和气象学等方面所具有的重要作用，如何

开展区域尺度 ET 估算和如何开展基于遥感技术的 ET 精确估算，已经成为 ET 应用和

研究领域的热点问题。 

本论文共有六章，主要倾注于区域 ET 遥感估算方法的研究。 论文首先对区域 ET

遥感进行了综合评述，继而在此基础上，根据区域 ET 研究的现实需要及其存在的主要

问题，着重开展了四个方面的研究，包括地表温度（Land Surface Temperature, LST）

反演研究、地表方向比辐射率遥感反演研究、叶面积指数（Leaf Area Index , LAI）空

间异质性对方向性空隙度遥感估算影响研究、区域 ET 全遥感估算模型研究。最后是本

论文的基本结论和区域 ET 遥感研究的发展展望。 
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论文第一章为区域 ET 遥感研究综述。本章对区域 ET 遥感研究进展尤其是模型发

展进行了全面回顾，并对现有区域 ET 遥感估算模型的主要特征及其优缺点进行了系统

的比较分析和综合评述。文章指出：要制作全球系统的、区域尺度和中尺度的 ET 分布

图，遥感技术被认为唯一可行的手段。相比常规的“点”测量，遥感技术有几个显著的

优势：1)可在几分钟内提供范围的空间覆盖信息；2) 获得同等空间信息的成本较低；3)

可实现难以开展人工作业的区域测量。利用遥感手段，在可见光和近红外波段可获取

不同空间和不同时间的植被指数(Normalized Difference Vegetation Index，NDVI)、

LAI、地表反照率(Surface Albedo)等，在中红外（Middle InfreRed，MIR）和热红外

（Thermal InfraRed，TIR）波段可获取相应的地表比辐射率(Land Surface Emissivity，

LSE)和地表辐射温度(Radiometric Surface Temperature，RST)等。一方面，地面温度等

参数遥感反演，有助于直接建立地表辐射与地表能量平衡各组分之间的关系；另一方

面，把遥感反演的地面参数与地面气象数据、植被特征等有关数据结合起来，可有效

地开展区域性到全球性 ET 的评估。也就是说，为了利用模型把有效能量区分为显热通

量和潜热通量，上述参数在模型中往往是必不可少的。 

在过去 30 年中，已经开展大量的利用空间 TIR 数据进行区域和局域 ET 估算的研

究，并取得重大研究进展。总体而言，普遍应用的遥感 ET 方法主要有两种，即（半）

经验方法和分析方法。利用各种方法对土壤－植被－大气系统的热传导和水传输进行

模拟，从简单的经验回归方程到基于地表能量平衡的物理模型、 地表温度－植被指数

(surface Temperature - Vegetation Index，Ts-VI)三角形/梯形特征空间法，再到数据同化

技术，最后到 ET 的时空尺度转换，其复杂程度、假设条件、数据输入以及估算结果的

精确性等方面都大不相同，而且通常与某些数字模型结合在一起应用。地表能量平衡

控制着土壤-植物-大气系统中水分交换和地表湍流通量在感热和潜热两个方面的分配。

地表能量平衡残差法是在不同时空条件下绘制 ET 图时最广泛应用的方法，主要由两大

类模型即单源模型和双源模型构成。就单源模型而言，地表能量平衡残差法各类模型

的主要区别在于怎样估算感热通量 H，相应的模型主要有“地表能量平衡指数”

（Surface Energy Balance Index，SEBI)模型、“地表能量平衡系统”（Surface Energy 

Balance System，SEBS）模型、“简化 SEBI”（Simplified Surface Energy Balance 

Index，S-SEBI）模型、“陆面能量平衡算法”（Surface Energy Balance Algorithm for 

Land，SEBAL）模型、“内化校准高分辨率 ET 制图” (Mapping EvapoTranspiration at 

high Resolution with Internalized Calibration，METRIC)模型和 VI-Ts 三角形/梯形特征空
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间法等。ALEXI (Atmosphere-Land Exchange Inverse) 模型是双源能量平衡模型的代表，在

空间分辨率 5-10km 的陆地尺度下该模型被认为是一种切实可行的地表通量估算方法。

数据同化技术已经成为提高遥感数据利用价值的有效手段。遥感 ET 模型所得到的结果

大多数为瞬时 ET 值，在水文学和水资源管理应用中，需要将其转化为每天或更长时间

的 ET 值。ET 时间尺度转换的方法主要有正弦函数法、恒定蒸发比 (Evaporaion 

Fraction，EF)法、恒定参考 ET 比值(reference ET Fraction，ETrF)法。 

在综合评述的基础上，本章对现有区域 ET 遥感估算模型所存在的共性问题进行了

总结分析：一是模型的适用性问题。在过去 30 年中，已经开发了各种各样的 ET 遥感

模型来估算从田间尺度（简化经验方程）到区域尺度（单源模型和双源模型），再到

陆地尺度（如 ALEXI 模型）的 ET 空间分布。然而，每一种模型都有其各自的局限

性，没有一个模型无需经过改进，而适用于全球任何地方的 ET 遥感估算。在 ET 遥感

模型应用研究上，最大的挑战就是如何直接或间接利用遥感的地表变量和参数，进行

各种地表类型的 ET 参数化估算。二是尺度转换问题。遥感模型给出的是瞬时 ET，需

要进行时间尺度转换，即将瞬时空间 ET 转换为一天或更长时间的空间 ET。由于地表

异质性和模型的非线性，一般而言适用于局部尺度的 ET 模型有可能不适用于更大的尺

度；反之亦然。遥感 ET 尺度问题的解决主要与尺度理论的发展和多尺度遥感数据 的

整合有关。三是缺少近地气象观测数据和卫星像元尺度的地表 ET 真实性检验数据。由

于研究区域存在很大的区域差异，加之气象站点分布不均衡和代表性不足，以及气象

服务的不到位，在 ET 建模过程中时常缺少 PBL 高度、近地表高度和卫星像元尺度的

气象数据。另外，将遥感模型估算的 ET 与定点测量的相关数据进行对比，以便确认

ET 遥感模型的可靠性和精确性是必不可少的。尽管利用传统测量的、均质区域的

“点”尺度数据验证遥感像元的平均通量是可行且合理的，但是这一做法在地表复杂

的区域就会时常产生问题。而且，几种常规的地表 ET 测量技术都存在一定的局限性。

四是地表变量/参数反演精度有待进一步提高。目前，基于遥感数据定量反演陆面变量/

参数的研究已经取得了很大进展，但在 ET 遥感模型中需要的一些变量/参数如地表温

度、LAI、植被覆盖度、植物高度等，其反演精度仍需不断提高。五是全遥感模型的构

建问题。在现有 ET 遥感模型中，大多数需要一定的辅助测量数据，从而限制了模型的

灵活应用。构建完全依赖遥感数据/产品（部分参数可进行无差别或有限差别的设定）

的模型是区域 ET 遥感估算的重要研究方向。 
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本章最后给出了该论文的总体框架。 

论文第二章为LST遥感反演研究。LST可为地表能量平衡时空变化提供重要信息，

它不仅是地表能量平衡和温室效应的重要指标，而且是剖析土壤圈、大气圈、水圈相

互之间能量转换的关键变量，是许多相关重大课题研究如蒸散发建模、土壤湿度估算

等需要考虑的因素。能够在大的空间尺度下对地表温度进行可靠的遥感估算具有重要

的意义。本章从辐射传输理论出发，以中国首次业务化运行的静止气象卫星风云-2 号C

星（Feng Yun-2C，FY-2C）两个相邻TIR通道即IR1 (10.3-11.3μm)和IR2 (11.5-12.5μm)

的遥感信息为数据源，运用Wan和Dozier（1996）提出的广义分裂窗（Generalized 

Split-Window, GSW）算法，对地表温度进行了估算。本章主要由四部分组成。第一部

分为基本理论。主要阐述了利用GSW算法反演LST的相关理论即大气辐射传输理论，

并对适用于FY-2C数据的GSW算法发展现状作了介绍。第二部分为估算结果分析。给

出了 GSW 算法系数以及 LST 估算结果，指出了地表比辐射率（ Land Surface 

Emissivity，LSE)和大气水蒸汽含量（Water Vapor Content，WVC）的给定方法，并对

LSE、大气WVC以及仪器噪音的敏感性和不确定性误差进行了分析。考虑到FY-2C搭

载的S-VISSR（Stretched-Visible and Infrared Spin-Scan Radiometer) 传感器没有大气探测

通道，缺少可资利用的同步地表大气温度，GSW算法所需要的系数是通过如下方式得

到的：首先把平均LSE、大气WVC和LST细划为不同的等级（亚级，而且各亚级之间

有部分数值重叠），然后利用模拟数据，并采用统计回归方法，对这些参数值进行再

计算而得。统计回归过程中所用模拟数据，是由精确的大气辐射传输模型MODTRAN 

(MODerate spectral resolution atmospheric TRANsmittance algorithm and computer model) 

4 在广适的大气和地表环境条件下模拟生成的。模拟分析表明：在LSE已知的条件下，

LST可以通过GSW算法来估算，当观测天顶角（Viewing Zenith Angle，VZA）小于 30

°时，或VZA小于 60°、大气WVC小于 3.5g/cm2时，LST估算值的均方根误差（Root 

Mean Square Error，RMSE）不高于 1K。由于GSW算法需要WVC和LSE作为模型输入

数据，当传感器MODIS（MODerate resolution Imaging Spectroradiometer）与S-VISSR的

扫描时间彼此接近时，MODIS水汽总量产品MOD05 所提供的大气水汽柱高被应用作

（代替）WVC数据。对于S-VISSR其它扫描时间的大气WVC可利用Li等（2003）提出

的方法来计算。对于LSE，MODIS/Terra的LST产品MOD11B1 提供了热红外第 31 和 32

通道分辨率为 5km的LSE数据，可分别用于替代S-VISSR IR1 和IR2 的LSE。敏感性分

析结果表明：当NEΔT（噪音等效温差Noise Equivalent Temperature Difference）=0.1K
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时，LST反演结果受影响的程度为 3%；当NEΔT=0.2 K时，受影响的程度为 16%；当

NEΔT=0.5K时，受影响的程度为 81%，所对应的分级数据条件为 ε [0.94,1.0], ∈

WVC [1.0,2.5], and Ts [290K,310K]∈ ∈ 。假定(1-ε)/ε和Δε/ε2的不确定性为 1%左右，在干

燥大气状况下，LST误差为[1.3K, 1.5K]，均值为 1.4K；在湿润大气状况下，LST误差

为[0.2K, 0.8K]，均值为 0.5K。WVC的不确定性对LST反演结果的影响为 0.3K左右。为

了进行交叉验证，该部分还选择了几种新近提出的GSW算法，用相同的FY-2C模拟数

据分别进行了LST估算，结果表明，大多数GSW算法的估算结果具有一致性。由此说

明，GSW算法能够成功地应用于FY-2C数据的LST反演。第三部分为实际应用。利用

FY-2C数据和GSW算法分别估算出了耕地、裸地和海洋的LST，但由于缺少实测数据，

没有进行真实性检验。第四部分为该章的主要结论。该章主要研究内容已于 2008 年在

期刊Sensors上发表。 

论文第三章为地表方向比辐射率遥感反演研究。本章所依据的遥感资料包括

MODIS TIR数据和MIR数据，并借用了地表双向反射率遥感模型。迄今为止，在灯光

照明和观测几何两个领域，已有开发出许多双向反射率分布函数（Bidirectional 

Reflectance Distribution Function，BRDF），并应用于可见光和近红外（Near Infrared，

NIR）波段的双向反射率研究。半经验核驱动模型已经成功运用到AVHRR（Advanced 

Very High Resolution Radiometer）、地面反射的极化作用和方向性 (Polarization and 

Directionality of Earth Reflectance，POLDER波谱仪) 确定、MODIS、多角度图像光谱辐

射计(Multi-angle Imaging Spectra-Radiometer，MISR)、实验室分析和多角度反射数据野

外测量，并与BRDF观测数据有良好的一致性。目前，只有少量研究关注于MIR波段的

BRDF 建 模 ， 而 且 主 要 集 中 于 利 用 AVHRR 和 MSG/SEVIRI （ Meteosat Second 

Generation/Spinning Enhanced Visible and Infrared Imager）双向反射率数据来估算MIR

波段的比辐射率。本章第一部分论述了基于MODIS中红外波段（约 4.0μm）数据的地

表方向比辐射率估算方法。该方法分两步实现：第一步，利用MODIS两个相邻的中红

外通道即 22 通道（3.97μm）和 23 通道（4.06μm）的数据，结合Tang和Li[2008a]建立

的模型计算双向反射率；第二步利用MIR波段的双向反射率数据和Jiang和Li[2008]建立

的模型估算方向比辐射率。第二部分系统介绍了本研究开展方向比辐射率遥感估算所

选定的研究区域、MODIS数据源和数据加工过程。在确定BRDF模型的三个参数

（kiso、kvol、kgeo）时，所采用的共计 10 天的遥感数据为卫星过境时完全无云的MODIS

数据，选自 2005 年 7 月 12 日至 30 日。研究区域地处埃及与以色列交界处，纬度为
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28.0°N到 32.0° N，经度为 30.0°E到 36.0°E；为了进行分地类研究，特制作了该区域的

方向比辐射率分布图。第三部分给出了一些初步估算成果，并利用MODIS地表温度/比

辐射率产品MYD11B1 对其进行了交叉验证。交叉验证结果表明：至少在本个案中，根

据本研究给出的方法直接反演的MODIS MIR波段的方向比辐射率，与MODIS产品

MYD11B1 中的比辐射率相比，两者有很好的一致性，平均误差 =-0.007 ，

RMSE=0.024。第四部分为该章的主要结论。该部分研究内容已于 2009 年在期刊Optics 

Express上公开发表。 

论文第四章致力于叶面积指数（LAI）空间异质性对方向性空隙度遥感估算影响的

研究。方向性空隙率或空隙度是光学遥感建模的基本参数之一。在孔隙度遥感估算方

面，尽管有些方法已经被人们提出，但很少有人致力于考察尺度效应对该参数的影

响。方向性空隙度与LAI往往存在高度的非线性，这就不可避免地在应用一个大的像元

时产生尺度偏差。分析方向性空隙度的尺度效应，提高方向性空隙度反演的精确性，

并进而提高依靠多光谱、多角度卫星数据反演地表组分温带的精确性等等，皆是十分

必须的。基于此，本章通过整合高分辨率(像元尺寸为 20m)方向孔隙率，对该参数的尺

度效应进行了分析，所采用的高分辨率方向孔隙率数据根据VALERI (Validation of 

Land European Remote sensing Instruments) 数据库中的LAI图像资料以及Beer法则估

算，并引进了拓展丛生指数Ĉ对尺度偏差进行修正。本章第一部分阐述了方向孔隙率尺

度效应估算的理论框架，提出了由局域尺度到大尺度两种不同的参数/变量整合方案。

第二部分介绍了本研究所采用的源自VALERI数据库的各类数据的详细信息。第三部分

为计算结果分析，通过对空隙率相对尺度偏差的模拟和来自VALERI数据库的空隙率空

间尺度偏差、VALERI样点拓展丛生指数Ĉ的计算，在几种景观类型情况下，对与LAI

和孔隙率之间非线性关系相关联的尺度效应进行了量化，并用Ĉ对其进行了修正。第四

部分为该章的主要结论。公式推导表明：1）相对尺度偏差仅决定于Ap（垂直于阳光的

叶片投影面积）函数和LAI的空间异质性，与LAI值本身无关；2）在给定Ap函数和方

向的情况下，拓展丛生指数Ĉ与LAI平均值成正比，与LAI的空间异质性成反比。以

VALERI为数据源的研究结果表明：对于大多数的土地覆盖类型，随着空间分辨率的下

降，孔隙率相对尺度偏差不断增加。由于农作物和森林的LAI方差相对较大，因此大多

数农作物样点和混交林样点存在相对较大的偏差，而草地样点和灌丛样点一般有很小

的偏差。就拓展丛生指数Ĉ而言，对于纯林、草地和灌丛样点其变化很小，而对于农作

物和混交林其变化显著。本文引入的拓展丛生指数Ĉ与传统丛生指数相比赋予了新的含
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义，并为以LAI为变量的空隙率估算方法改进和丛生指数应用提供了证据。计算结果展

示了（拓展）丛生指数在Beer尺度效应定律和代表空间异质性方面的性能，也说明了

利用遥感数据进行空隙率反演的可行性。同时，本研究提出的拓展丛生指数计算方法

不仅简单易行，而且可把遥感数据作为数据源，这为全球植被（拓展）丛生指数的制

图提供了有力的支持。该部分研究内容已于 2008 年在期刊Sensors上公开发表。 

论文第五章给出了一种区域ET全遥感估算方法，即Ts-VI三角形特征空间法。尽管

区域ET遥感估算研究已经取得重大进展，但由于在获得大尺度地表实测数据上的困难

或缺少行之有效的方法，例如大气温度、风速、水汽压差、植被高度等有关数据仅能

从有限的地面观测站（点）获得，因此，大多数现行的ET模型无法开展大尺度ET制图

的业务化运行。为了解决上述问题，建立完全依靠遥感数据的模型或有限依赖地面实

测数据的参数体系模型（以遥感数据为主要输入）久已成为区域ET研究的重中之重。

本研究即借助Ts-VI三角形特征空间探索了一种完全依赖遥感数据的区域ET估算方法。

本章第一部分阐述了Ts-VI三角形特征空间法的基本原理，并对该方法的主要假设条

件、发展历程和优缺点等进行了简要介绍。该部分经过公式推导，把ET或EF的估算问

题，转换为Φ（空气动力学阻抗综合效用系数）的估算问题。第二部分介绍了利用Ts-

VI三角形特征空间法进行区域ET全遥感估算的具体步骤：遥感数据下载→剔除有云像

元→估算每个像元的植被覆盖率（Fr）→构建Ts-VI三角形特征空间→确定Ts-VI三角形

特征空间的干、湿边→计算每个像元的Φ值→利用Φ值计算每个像元的EF→直接利用

MODIS数据和产品估算地表净辐射（Rn）和土壤热通量（G）→利用EF、Rn、G估算

LE和ET。该方法可同时实现对地表净辐射、土壤热通量、EF和ET在区域尺度上的全

遥感估算。Ts-VI三角形特征空间法对ET的成功估算，主要依赖于对三角形空间干、湿

边的正确确定。本研究假定湿边为一水平直线。干边采用离差（δ）判定法自动确定：

针对任一的Fr值确定相应的Ts,max→利用线性回归分析得出Ts,max的回归线→计算任一

Ts,max点与回归线之间的距离，并剔除距离大于 2δ的点→把剩余的Ts,max的回归线作为干

边。准确估算Φ是本方法提高区域ET估算精度的关键。当干、湿边确定后，即可利用

两步插值法计算每个像元的Φ。第三部分为估算结果和真实性检验。该部分论述了研

究区域、遥感数据源，并利用 2008 年 5 月 20 日到 8 月 21 日LAS在黑河试验场定点实

测的田间显热通量数据，对本研究利用Ts-VI三角形特征空间法全遥感反演的同类数据

进行了真实性检验。黑河盆地地处中国西北黑河流域中游，植被类型为草地，利用该

地区MODIS数据反演得到显热通量，与LAS测量的结果有很好的一致性，两者之间的

 XIII



均方根误差为 25.07W/m2。此说明，利用本研究提出的方法确定Ts-VI三角形特征空间

的干湿边，并用其进行区域ET估算，至少在本个案中具有足够的精准度。研究表明，

Ts-VI三角形特征空间法与传统的区域ET估算法和源自辐射量卫星遥感数据的地表温度

/比辐射率计算法相比有其独特的优势，在干旱半干旱气候条件下，该方法不仅可实现

区域ET的全遥感估算，而且可取得令人满意的精确度。第四部分为该章的主要结论。

Ts-VI三角形特征空间法开辟了一个令人充满希望的研究领域。在区域ET反演研究中，

区域ET的反演精度主要取决于Ts-VI三角形特征空间干湿边确定的准确与否以及EF插值

估算的准确与否。该方法的精确性及其实用价值还需要进一步经受实践的检验。Ts-VI

三角形特征空间干湿边的确定通常有很大的主观性和盲目性，本论文提出的有关法

则，通过对植被覆盖度各区间最高地表温度的估算，为干旱半干旱地区Ts-VI三角形特

征空间干湿边的确定给出了一种合理且可行的方法。尽管综合效用系数Φ和EF估算的

两步插值法仍有不少问题有待进一步研究，但通过LAS数据的真实性检验表明，Ts-VI

三角形特征空间法是进行显热通量全遥感估算比较可行的方法。为了降低Ts-VI三角形

特征空间法在湍流热通量估算上的不确定性，需要获取更多资料对相关参数/变量进行

验证，并在不同类型区的实际应用中对该方法进行逐步的修正和改进。 

论文第六章为上述各章的研究结论和对未来区域 ET 遥感估算研究发展前景的展

望。未来区域 ET 遥感估算研究的主要发展方向为：1）区域尺度下土壤圈-生物圈-大

气圈交界面陆面过程模型研究；2）高精度地表变量（参数）遥感反演研究；3）大气

对流对区域 ET 估算影响的深入研究；4）陆面过程遥感模型校准及 ET 制图研究；5）

像元尺度 ET 和地表变量（参数）的真实性检验。 

本论文得到欧盟第六框架（FP6）研究项目 EAGLE(卫星对地观测角度效应研究，

合同文号：SST3 CT2003 502057)和国家自然科学基金项目（批准文号：40425012 和

40871169）的支持。 
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Generally speaking, EvapoTranspiration (ET) is a term used to describe the loss of water from the 
earth’s surface to the atmosphere by the combined process of both evaporation from the open water 
bodies, bare soil and plant surfaces, etc. and transpiration from vegetation or any other moisture living 
surface. Water in an entity or over an interface and energy needed to convert liquid water to the vapor 
form, along with a mechanism to transport water from the land surface to the atmosphere, are 
prerequisites to ensure the occurrence of ET. Other factors affecting ET rates mainly include solar 
radiation, wind speed, vapor pressure deficit and air temperature, etc.. 

At the beginning of 21st century, there may be no other environmental problems than global 
climate change that can be the issue of the most concern for humans. Global warming, natural hazards 
and species extinctions, etc., are several dangerous situations that might happen if the climate change 
occurs too rapidly. The Intergovernmental Panel on Climate Chang (IPCC) was established by the 
World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP) in 
1988 (http://www.ipcc.ch/about/index.htm) to evaluate the risk of climate change caused by human 
activity. ET, which governs the water cycle and energy transport among the biosphere, atmosphere and 
hydrosphere as a controlling factor, plays an important role in hydrology, meteorology, and agriculture, 
such as in prediction and estimation of regional-scale surface runoff and underground water, in 
simulation of large-scale atmospheric circulation and global climate change, in the scheduling of field-
scale field irrigations and tillage [Idso et al., 1975a; Su, 2002]. On the global basis, the mean ET from 
the land surface accounts for approximately 60% of the mean precipitation. It is therefore 
indispensable to have reliable information on the land surface ET when natural hazards such as floods 
and droughts are predicted and weather forecasting and climate change modeling are performed 
[Brutsaert, 1986]. However, land surface ET, which is as important as precipitation and runoff in the 
water cycle modeling, is one of the least understood components of the hydrological cycle. In recent 
years, except for a few industrialized countries, most countries have undergone an increase of water 
use due to the population and economic growth and expended water supply systems while irrigation 
water use accounts for about 70% of water withdrawals worldwide and for more than 90% of the 
consumptive water use and irrigation water use has been believed to be the most important cause to the 
increase of water use in most countries [Bates et al., 2008]. Estimation of consumptive use of water 
based on ET models using remotely sensed data has become one of the hot topics in water resources 
planning and management over watersheds due to the competition for water between trans-boundary 
water users [Bastiaanssen et al., 2005]. In climate dynamics, continuous progress has been made to 
describe the general circulation of the atmosphere and Brutsaert [1986] has shown that the general 
circulation models appeared to be quite sensitive to the land surface ET information. For vegetated 
land surfaces, ET rates are closely related to the assimilation rates of plants and can be used as an 
indicator of plant water stress [Jackon et al., 1981]. Therefore, accurate estimates of regional ET in the 
land surface water and energy budget modeling at different temporal and spatial scales are essential in 
hydrology, climatology and agriculture.  

In various practical applications, there are still no specific ways to directly measure the actual ET 
over a watershed [Brutsaert, 1986]. Conventional techniques of ET estimation (i.e., Pan-measurement, 
Bowen ratio, Eddy correlation system, and Weighing lysimeter, Scintillometer, Sap flow) are mainly 
based on site (field)-measurement and many of those techniques are dependent on the variety of model 
complexities. Though they can provide relatively accurate estimates of ET over an homogeneous area, 
conventional techniques are of rather limited use because they need a variety of surface accessory 
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measurements and land parameters such as air temperature, wind speed, vapor pressure at a reference 
height, surface roughness, etc., which are difficult to obtain over large-scale terrain areas and have to 
be extrapolated/interpolated to various temporal and spatial scales with limited accuracy in order to 
initialize/force those models [Idso et al., 1975a]. Remote sensing technology is recognized as the only 
viable means to map regional- and meso-scale patterns of ET at the earth’s surface in a globally 
consistent and economically feasible manner and surface temperature helps to establish the direct link 
between surface radiances and the components of surface energy balance [Weigand and Bartholic, 
1970; Idso et al.,1975b; Idso et al., 1975c; Jackson, 1985; Moran et al., 1989; Caselles et al., 1992; 
McCabe and Wood, 2006]. Remote sensing technology has several marked advantages over 
conventional “point” measurements: 1) it can provide large and continuous spatial coverage within a 
few minutes, 2) it costs less when same spatial information is required, 3) it is particularly conducive 
to ungauged areas where man-made measurements are difficult to be conducted or unavailable 
[Engman and Gurney, 1991; Rango, 1994]. Remotely sensed surface temperature can provide a 
measure of surface from a resolution of a few cm2 from a hand-held thermometer to about several km2 
from certain satellites [Hatfield, 1983]. Combining surface parameters derived from remote sensing 
data with surface meteorological variables and vegetation characteristics allows the evaluation of ET 
at local, regional and global-scales. Remote sensing information can provide spatial distribution and 
temporal evolution of NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index), 
surface Albedo from visible and near-infrared bands and surface emissivity and radiometric surface 
temperature from MIR (Mid-InfraRed) and TIR (Thermal InfraRed) bands, many of which are 
indispensable to most of the methods and models that partition the available energy into sensible and 
latent fluxes components [Mauser and Stephan, 1998]. The possibility and ability of using remote 
sensing technology to evaluate ET have been recognized and verified since the year 1970 with the help 
of hand-held and airborne thermometer. But it was not until 1978 with the launch of HCMM (Heat 
Capacity Mapping Mission) and polar orbiting weather satellites-TIROS-N that were data available for 
such surface fluxes studies from the spacecrafts [Price, 1980]. 

The potentiality of using MIR data from space to infer regional and local scale ET has been 
extensively studied during the past 30 years and substantial progress has been made [Seguin and Itier, 
1983]. The methods vary in complexity from simplified empirical regression to physically based 
surface energy balance models, the vegetation index-surface temperature triangle/trapezoid methods, 
and finally to data assimilation techniques usually coupled with a numerical model that incorporates 
all sources of available information to simulate the flow of heat and water transfer through the soil-
vegetation-atmosphere continuum [Kustas and Norman, 1996]. In 1970s when split-window technique 
for surface temperature retrieval was not developed, ET evaluation was often accomplished by 
regressing thermal radiances from remote sensors and certain surface meteorological measurement 
variables (solar radiation, air temperature) to in-situ ET observations or by simulating a numerical 
model of a planetary boundary layer to continuously match the thermal radiances from satellites [Idso 
et al., 1975a; Idso et al., 1977; Jackson et al., 1977; Price, 1980]. These methods and the refinements 
have been successfully used in mapping ET over local areas.  

However, satellite remote sensing cannot provide near-surface variables such as wind speed, air 
temperature, humidity, etc., which has to a great extent limited the applications of the energy balance 
equation to the homogeneous areas with uniform vegetation, soil moisture and topography [Kustas et 
al., 1994]. Moreover, approaches to deriving land surface ET differ greatly in model-structure 

 4



complexity, in model input and output and in the advantages and drawbacks when compared to each 
other. Therefore, with the consideration of the characteristics of the various ET methods developed 
over the past decades and of the significance of land surface ET to hydrologists, water resources and 
irrigation engineers, and climatologists, etc., how to calculate the ET over a regional scale or how to 
estimate ET precisely based on the remote sensing technology has become a critical question in 
various ET-related applications and studies. Summaries and comparisons of different remote sensing-
based ET approaches are urgently required and indispensable for us to better understand the 
mechanisms of interactions among the hydrosphere, atmosphere and biosphere of the earth.   

This introduction provides an overview of a variety of methods and models that have been 
developed to estimate land surface ET on field, regional and large scales based mainly on remotely 
sensed data. For each method or model, we shall detail the main theory and assumptions involved in 
the model development, and highlight its advantages, drawbacks and potentiality. In latter part, 
methods of how to convert instantaneous ET to daily values, the problems and issues are addressed, 
and main research contents and organization of this thesis are given. 

1.1 Overviews of remote sensing-based ET models in the past decades 

Generally, the commonly applied ET models using remote sensing data can be categorized into 
two types: (semi-) empirical method and analytical method. (Semi-) empirical method is often 
accomplished by employing empirical relationships and making use of data mainly derived from 
remote sensing observations with minimum ground-based measurements while analytical method 
involves the establishment of the physical processes at the scale of interest with varying complexity 
and requires a variety of direct and indirect measurements from the remote sensing technology and 
ground-based instruments. 

1.1.1 Simplified empirical regression method 

The main theory of the simplified empirical regression method firstly proposed by Jackson et al. 
[1977] over irrigated wheat at Phoenix, Arizona (U.S.A.) directly relates the daily ET to the difference 
between instantaneous surface temperature (Ts) and air temperature (Ta) measured near midday at 
about 13h30 to 14h00 local time over diverse surfaces with variable vegetation cover [Courault et al., 
2003]. The most general form of the simplified regression method can be expressed mathematically as: 

( n
d nd s aLE R B T T= − − )                                                            (1.1) 

where LEd is daily ET and Rnd is daily surface net radiation. B and n are site-specific regression 
coefficients dependent on surface roughness, wind speed and atmospheric stability, etc. [Seguin and 
Itier, 1983] , which are determined either by linear least squares fit to data or by simulations based on 
a SVAT (Soil-Vegetation-Atmosphere Transfer) model [Carlson et al., 1995a] or on a boundary layer 
model [Carlson and Buffum, 1989]. 

The simplified regression method proposed by Jackson et al. [1977] and its refinements have 
attracted great attentions in the subsequent operational applications of ET mapping. For example, 
Jackson et al. [1977] firstly have demonstrated parameter B was 0.064 and n was unity by regressing 
daily ET from a lysimeter to the daily net radiation and one-time measurement of (Ts-Ta) while Seguin 
et al. [1982] regressed data over large homogeneous areas in France with regression coefficients of 
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B=0.025 and n=1. Seguin and Itier [1983] discussed the theoretical basis and applications of the 
simplified regression method proposed by Jackson et al. [1977], and showed that surface roughness, 
wind speed and atmospheric stability were the main contributing factors to the regression coefficients 
and finally recommended different sets of parameters of B and n applicable to ‘medium rough’ 
surfaces for stable and unstable cases respectively. Thus, the imposition of a single value of B and n 
may be unacceptable and specific values should be adjusted according to the broad range of surface 
roughness, wind speed and atmospheric stability [Caselles et al., 1992]. Carlson et al. [1995a] 
theoretically analyzed the implications of the regression coefficients in the simplified equation. They 
defined B as an average bulk conductance for the daily integrated sensible heat flux and n as a 
correction for non-neutral static stability. A SVAT model was utilized to simulate the relationships 
between the coefficients B, n and the fractional vegetation cover (Fr) under variable circumstances 
with surface roughness and geostrophic wind speed respectively ranging from 2 to 30 cm and 1 to 8.5 
m/s [Carlson et al., 1995a]. The resultant formulae are expressed as: 

0.0175 0.05B Fr= +    (±0.002)                                                       (1.2) 

1.004 0.335n = − Fr    (±0.053)                                                        (1.3) 

This relationship is generally valid at a time period between 12h00 and 14h00 when temperature 
varies slowly with time [Carlson et al., 1995a]. 

The height of measurement of Ta in the simplified equation is also not specially specified. 
Consequently, Jackson et al. [1977] have used the height of 1.5 m as the measurement level of Ta 
while Seguin and Itier [1983] utilized 2 m instead. Carlson and Buffum [1989] found that the 
simplified equation might be more applicable to regional-scale ET estimations if the air temperature 
and wind speed were measured or evaluated at a level of 50 m because at this level the meteorological 
variables are insensitive to the surface characteristics. They also suggested that a surface temperature 
rise (e.g., between 08h00 and 10h00 local time) in the morning obtained from Meteosat or GOES 
(Geostationary Operational Environmental Satellites) could replace the difference between surface and 
air temperature, in which the regression coefficients were highly sensitive to wind speed and surface 
roughness.  

Two implicit assumptions in the simplified equation are that daily soil heat flux can be assumed 
to be negligible and instantaneous midday value of sensible heat flux can adequately express the 
influence of partitioning daily available energy into turbulent fluxes [Courault et al., 2003; Kairu, 
1991]. Several papers have tested and verified this simple procedure to estimate daily ET under 
diverse atmospheric conditions and variable vegetation covers [Jackson et al., 1977; Seguin and Itier, 
1983; Nieuwenhuis et al., 1985; Carlson and Buffum, 1989; Thunnissen and Nieuwenhuis, 1990; 
Caselles et al., 1992; Carlson et al., 1995a]. All the contributions to this work have shown that the 
error of the calculated daily ET is about 1 mm/day, which is sufficient to give reliable information to 
the water availability over a regional level [Seguin et al., 1994].  

The main advantage of this procedure is its simplicity, whose inputs include only one-time 
measurements of Ts and Ta near midday and the daily net radiation. Thus, it is very convenient for the 
simplified empirical equation to be applied so long as these ground-based near midday meteorological 
measurements and one-time remotely sensed radiometric surface temperature are available. However, 
the site-specific parameters B and n have more or less limited the applications of the simplified 
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equation method over regional scales with variable surface conditions.  

1.1.2 Residual method of surface energy balance  

Surface energy balance governs the water exchange and partition of the surface turbulent fluxes 
into sensible and latent heat fluxes in the soil-vegetation-atmosphere continuum. Residual method of 
surface energy balance is one of the most widely applied approaches to mapping ET at different 
temporal and spatial scales. When heat storage of photosynthetic vegetation and surface residuals and 
horizontal advective heat flow are not taken into account, the one-dimensional form of surface energy 
balance equation at instantaneous time scale can be expressed numerically as: 

nLE R G H= − −                                                                    (1.4) 

Each of the three components of the energy balance equation, including surface net radiation (Rn), 
soil heat flux (G) and sensible heat flux (H), can be estimated by combining remote sensing based 
parameters of surface radiometric temperature and shortwave albedo from visible, near infrared and 
thermal infrared wavebands with a set of ground-based meteorological variables of air temperature, 
wind speed and humidity and other ancillary surface measurements (see Fig.1-1). 

 

Fig.1-1 Flowchart for estimating ET based on energy balance theory 
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The residual method of surface energy balance between land and atmosphere can be divided into 
two categories: 1) single-source model [Brown and Rosenberg, 1973; Bastiaanssen et al., 1998; 
Roerink et al., 2000a; Boni et al., 2001; Su, 2002; Allen et al., 2007], 2) dual-source model [Norman et 
al., 1995; Anderson et al., 1997; Kustas and Norman, 1997; Kustas and Norman, 1999; Kustas and 
Norman, 2000; Chen et al., 2005] and will be addressed in the following parts. 

1.1.2.1 Single-source model 

Single-source model, also called as big-leaf model, widely used in the simulation of climatology 
and plays an important role on the continent pattern, is the earliest one to quantitatively depict the 
conversion process of surface radiation, heat, material etc.. As its name implies, single-source model 
just regards the earth surface covered with vegetation as a big leaf, ignoring all the secondary structure 
and characteristics. The physical quantities of leaf such as temperature, water content, radiation etc. 
represent the corresponding physical quantities of the whole land surface which will constantly 
exchange energy, heat and moisture with outside atmosphere. 

Single-source model is one of the most simplified one in simulating the land surface process and 
the most widely used one in practice. Three components of the energy balance equation used in 
equation (1.4) to estimate ET are addressed below. 

1.1.2.1.1  Surface net radiation flux (Rn) 

Surface net radiation (Rn) represents the total heat energy that is partitioned into G, H and LE. It 
can be estimated from the sum of the difference between the incoming (Rs) and the reflected outgoing 
shortwave solar radiation (0.15 to 5µm), and the difference between the downwelling atmospheric and 
the surface emitted and reflected longwave radiation (3 to 100µm), which can be expressed as 
[Jackson, 1985; Kustas and Norman, 1996]: 

4(1 )n s s s a a s
4

sR R T Tα ε ε σ ε σ= − + −                                                   (1.5) 

where sα  is surface shortwave albedo, usually calculated as a combination of narrow band spectral 

reflectance values in the bands used in the remote sensing [Liang, 2004], sR  is determined by a 

combined factors of solar constant, solar inclination angle, geographical location and time of year, 
atmospheric transmissivity, ground elevation, etc. [Allen et al., 2007], sε  is surface emissivity 

evaluated either as a weighted average between bare soil and vegetation [Li and Lyons, 1999] or as a 
function of NDVI [Bastiaanssen et al., 1998], aε  is atmospheric emissivity estimated as a function of 

vapor pressure and air temperature [Brutsaert, 1975]. 

Kustas and Norman [1996] reviewed the uncertainties of various methods in estimating the net 
shortwave and longwave radiation fluxes and found that a variety of remote sensing methods of 
surface net radiation estimation had an uncertainty of 5-10% from comparisons with ground-based 
observations at meteorologically temporal scales. Bisht et al. [2005] proposed a simple scheme to 
calculate the instantaneous net radiation over large heterogeneous surfaces for clear sky days using 
only land and atmospheric products obtained using remote sensing data from MODIS-Terra satellite 
over Southern Great Plain (SGP). Allen et al. [2007] detailed an internalized calibration model for 
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calculating ET as a residual of the surface energy balance from remotely sensed data when surface 
slope and aspect information derived from a Digital Elevation Model (DEM) were taken into account. 

1.1.2.1.2  Soil heat flux (G) 

Soil heat flux (G) is the heat energy used for warming or cooling substrate soil volume. It is 
traditionally measured with sensors buried beneath the surface soil and is directly proportional to the 
thermal conductivity and the temperature gradient with depth of the topsoil. The one used in SEBAL 
(Surface Energy Balance Algorithm for Land) [Bastiaanssen et al., 1998] to estimate the regional-scale 
G is expressed as follows 

40.30(1 0.98 ) nG ND= − VI R

/ r

                                                       (1.6) 

As G varies considerably from dry bare soil to highly well watered vegetated areas, it is 
inappropriate to extrapolate ground-based measurements to values of areal areas. Under current 
circumstance, it is still impossible to directly measure G from remote sensing satellite platforms. 
Fortunately, the magnitude of G is relatively small compared to Rn at the daytime overpass time of 
satellites. Estimation error of G will thus have a small effect on the calculated latent heat flux. Many 
papers have found the ratio of G to Rn ranges from 0.05 for full vegetation cover or wet bare soil to 0.5 
for dry bare soil [Price, 1982; Jackson, 1985; Reginato et al., 1985; Daughtry et al., 1990; Choudhury, 
1990; Kustas and Norman, 1996; Li and Lyons, 1999] and this ratio is simply related in an exponential 
form to LAI [Choudhury, 1989], NDVI [Moran et al., 1989; Bastiaanssen et al., 1998; Allen et al., 
2007], Ts [Bastiaanssen, 2000; Allen et al., 2007] and solar zenith angle [Gao et al., 1998] based on 
field observations. The value of G has been shown to be variable in both diurnal and yearly cycle over 
diverse surface conditions [Kustas and Daughtry, 1990]. However, the assumption that daily value of 
G is equal to 0 and can be negligible in the daily energy balance is generally regarded as a good 
approximation [Price, 1982]. Comparisons of G between results from these simplified techniques and 
observations at micrometeorological scales showed an uncertainty of 20-30% [Kustas and Norman, 
1996]. 

1.1.2.1.3  Sensible heat flux (H) 

The sensible heat flux (H) is the heat transfer between ground and atmosphere and is the driving 
force to warm/cool the air above the surface. In the single-source energy balance model, it can be 
calculated by combining the difference of aerodynamic and air temperatures (Taero-Ta) with the 
aerodynamic resistance (ra) from: 

( )p aero a aH c T Tρ= −                                                                (1.7) 

where ρ is the air density and cp is the specific heat of air at constant pressure. 

Aerodynamic resistance ra is affected by a combined factors of surface roughness (vegetation 
height, vegetation structure), wind speed and atmospheric stability, etc. Therefore aerodynamic 
resistance to heat transfer must be adjusted according to different surface characteristics except when 
the water is freely available [Seguin, 1984]. Hatfield et al. [1983] have shown that ra decreased as the 
wind speed increased regardless of whether the surface was warmer or cooler than air, and ra 
decreased if the surface become rougher. Various methods for calculating ra have been developed 
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ranging from extremely elementary (a function of wind speed only) to quite rigorous ones (accounting 
for atmospheric stability, wind speed, surface “aerodynamic” roughness, etc.) [Monteith, 1973; Seguin 
et al., 1982; Hatfield,1983; Choudhury et al., 1986; Moran et al., 1994], with the commonly applied 
one being [Brutsaert, 1982]: 

1
2

ln[( ) / ]ln[( ) / ]a om a oh
a

z d z z d zr
k u

2ψ ψ− − − −
=                                         (1.8) 

where za is the measurement height of air temperature and wind speed, zom and zoh are surface 
roughness length for momentum transfer and heat transfer respectively, d is zero plan displacement 
height, k is Von Karman constant, u is the wind speed. 1ψ  and 2ψ  are stability correction function for 

momentum transfer and heat transfer respectively, with neutral stability, 1ψ = 2ψ =0. 

Jackson et al. [1983] found that Ts-Ta varied from -10 to +5 oC under medium to low atmospheric 
humidity, which shows that neutral stability cannot prevail under a wide range of vegetation cover and 
soil moisture conditions. Under stable and unstable atmospheric stability conditions, the Monin-
Obukhov length ( ) [Monin and Obukhov, 1954] was introduced to measure the stability and it needs 
to be solved with H iteratively [Choudhury, 1990]: 

Λ

3* p au c T
kgH

ρ
Λ =                                                                                           (1.9) 

where u* is friction velocity and g is the acceleration due to gravity of the earth. if , unstable 
stability; , stable stability. 

0Λ <
0Λ >

For unstable conditions (usually prevailing at daytime) with no predominant free convection, 1ψ  

and 2ψ can be expressed as [Paulson, 1970]: 

2

1
1 12ln( ) ln( ) 2arctan( )

2 2
x x x

2
πψ + +

= + − +                                         (1.10) 

2

2
12ln( )

2
xψ +

=                                                                                      (1.11) 

with 

0.25(1 16 )az dx −
= −

Λ
                                                                               (1.12) 

For stable conditions (usually prevailing at night-time), the formula proposed by Webb [1970] 
and Businger et al. [1971] was adopted to account for the effects of atmospheric stability on ra : 

1 2 5 az dψ ψ −
= = −

Λ
                                                                                (1.13) 

Hatfield et al. [1983] have shown that ET rates could be over-estimated when the canopy-air 
temperature difference is greater than about ±2oC if the aerodynamic resistance is not corrected for 
atmospheric stability.  
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The surface roughness plays a significant role in the determination of sensible heat flux and it 
changes apparently with leaf size and the flexibility of petioles and plant stems [Jackson, 1985]. The 
effective roughness for momentum zom is considered to be some unspecified distance above a zero 
plane displacement height where the wind speed is assumed to be zero when log-profile wind speed is 
extrapolated downward, rather than at true ground surface [Carlson et al., 1981]. Some papers have 
specified zom is equal to zoh and can be either a function of vegetation height [Soer, 1980; Gurney and 
Camillo, 1984], in which zom is typically 5 to 15 percent of vegetation height depending on vegetation 
characteristics [Monteith and Unsworth, 1990], or estimated from wind profiles, using an extrapolation 
of the standard log-linear wind relationship to zero wind speed [Gurney and Camillo, 1984]. Brutsaert 
[1982] showed that the heat transfer was mainly driven by molecular diffusion while the momentum 
transfer near the surface was controlled by both viscous shear and pressure forces. Because of the 
differences between heat and momentum transfer mechanisms, there is a distinction between zom and 
zoh, which has caused an additional resistance (often expressed as aerodynamic definition of kB-1（kB-

1=ln(zom/zoh)） [Li and Lyons, 1999]) to heat transfer [Garratt and Hicks, 1973] or an excess (extra) 
resistance [Norman and Becker, 1995]. Kustas et al. [1989] related the kB-1 (radiometric definition [Li 
and Lyons, 1999]) to the combined factors of wind speed and the difference between Ts and Ta in the 
following form: 

1 (kB s akB S u T T− = − )                                                                   (1.14) 

where SkB is an empirical coefficient, ranging from 0.05 to 0.25 [Li and Lyons, 1999].  

Verhoef et al. [1997] showed that kB-1 was sensitive to the measuring errors both in the 
micrometeorological variables and in the roughness length for momentum and its value over bare soil 
could be less than zero. Massman [1999] used a physically based “localized near-field” Lagrangian 
theory to evaluate the effects of kB-1 on the vegetative components in the two-source energy balance 
models and on the combined effects of soil and vegetation in a single-source model. Su et al. [2001] 
proposed a quadratic weighting based on the fractional coverage of soil and vegetation to calculate the 
kB-1 in order to take into account of any situation from full vegetation to bare soil conditions. What 
should be noted is that the determination of the surface roughness still remains a challenging issue for 
large scale retrieval of the turbulent fluxes in spite of the efforts made in the past.  

Klaassen and van den Berg [1985] showed that the measurement (or reference) height should be 
set at 50 m instead of 2 m at the bottom of the mixed layer and calculation of ET of crops over rough 
surfaces could be improved with increasing reference height. 

Taero, the temperature at level of d+zoh, which is the average temperature of all the canopy 
elements weighted by the relative contribution of each element to the overall aerodynamic 
conductance [Moran et al., 1989], may be estimated from extrapolation of temperature profile down to 
z=d+zoh and is recognized as the temperature of the apparent sources or sinks of sensible heat [Kalma 
and Jupp, 1990]. A number of papers have utilized remotely sensed surface temperature Ts instead of 
Taero in Eq. (1.7) to calculate H over a wide range of vegetated surfaces because Taero is very difficult 
to measure [Blad and Rosenberg, 1976; Seguin et al., 1982; Moran et al., 1989; Kalma and Jupp, 
1990;]. However, there are problems associated with the assumption that measured Ts is identical to 
Taero [Kalma and Jupp, 1990]. Taero is found to be lower (higher) than Ts under stable (unstable) 
atmospheric conditions and they are nearly the same only under neutral conditions [Choudhury et al., 
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1986; Kalma and Jupp, 1990]. Kustas and Norman [1996] concluded that the differences between Taero 
and Ts could range from 2 oC over uniform vegetation cover to 10 oC for partially vegetated areas. 
Subsequently dual-source (two-source) models have been developed to account for the differences 
between Taero and Ts, and thus avoid the needs for adding excess resistance in Eq. (1.7) [Norman et al., 
1995]. 

The bulk transfer equation (resistance-based model) expressed in Eq.(1.7) has been 
predominately applied since 1970s over a local/regional scale with various vegetation covers [Blad 
and Rosenberg,1976; Hatfield, 1983; Moran and Jackson,1991]. The average difference of H 
estimated by different authors based on the bulk transfer equation is about 15-20%, which is around 
the magnitude of uncertainty in eddy correlation and Bowen ratio techniques for determining the 
surface fluxes in heterogeneous terrain [Seguin, 1984; Kustas and Norman, 1996]. 

Generally speaking, energy balance models are theoretically verified and physically based. Single 
source models are usually computationally timesaving and require less ground-based measurements 
compared to dual-source models. Over homogeneous areas, single-source models can evaluate ET 
with a relatively high accuracy. But over partially vegetated areas, there is a strong need to develop a 
dual-source model to model separately the heat and water exchange and interaction between soil and 
atmosphere and between vegetation and atmosphere, which often deals with a decomposition of 
radiometric surface temperature to soil and vegetation component temperatures either from multi-
angular remotely sensed thermal data or from an iteration of respective solution of soil and vegetation 
energy balance combined with a Priestly-Taylor equation. A major dilemma with both the physics-
based single and dual-source models lies in the requirements for sufficiently detailed parameterization 
of surface soil and vegetation properties and ground-based measurements, such as air temperature, 
wind speed, surface roughness, vegetation height, etc., as model inputs. 

1.1.2.1.4 Discription of typical Single-source Models for Estimating Sensible Heat Flux (H)  

In the single-source surface energy balance models, the main distinction of various methods is 
how to estimate the sensible heat flux. Some of them are based on the spatial context information 
(emergence of representative dry and wet pixels) of land surface characteristics in the area of interest. 
Some of them are not. Below we will review several representative single-source energy balance 
models. 

(1) SEBI (Surface Energy Balance Index) and SEBS (Surface Energy Balance System) 

SEBI, firstly proposed by Menenti and Choudhury [1993], along with its derivatives like SEBAL, 
S-SEBI (Simplified-SEBI), SEBS, METRIC (Mapping ET at high Resolution with Internalized 
Calibration) etc., is typically a single-source energy balance model based on the contrast between dry 
and wet limits to derive pixel by pixel ET and EF from the relative evaporative fraction when 
combined with surface parameters derived from remote sensing data and a certain amount of ground-
based variables over local/regional scale surfaces [Gowda et al., 2007]. The dry (wet) limit, no matter 
how it was specifically defined, often has the following characteristics: 1) generally maximum 
(minimum) surface temperature, 2) usually low or no (high or maximum) ET. 

In SEBI method, the dry limit is assumed to have a zero surface ET (latent heat flux) for a given 
set of boundary layer characteristics (potential temperature Tpbl, wind speed and humidity, etc.). So the 
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sensible heat flux is then equal to the surface available energy, with the  inverted from the bulk 

transfer equation being expressed as [Van den Hurk, 2001]: 
,maxsT

,max ,maxs pbl a
p

HT T r
cρ

= +                                                                     (1.15) 

Correspondingly, the minimum surface temperature can be evaluated from the wet limit, where 
the surface is regarded as to evaporate potentially and the potential ET (LEp) is calculated from 
Penman-Monteith equation with a zero internal-resistance. The is expressed as [Van den Hurk, 

2001]: 
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                                                (1.16) 

where VPD represents Vapor Pressure Deficit, γ is Psychrometric constant.  

The relative evaporation fraction can then be calculated by interpolating the observed surface 
temperature within the maximum and minimum surface temperature in the following form [Van den 
Hurk, 2001]: 

1 1
,min ,min

1 1
,max ,max ,min ,min

( ) ( )
1

( ) (
a s pbl a s pbl

p a s pbl a s pbl

r T T r T TLE
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− −

− −

− − −
= −

− − − )
                         (1.17) 

where the second part of the right hand side of Eq.(1.17) is the so-called SEBI which varies between 0 
(actual=potential ET) and 1 (no ET). 

Parameterization of SEBI approach was first proposed by defining theoretical pixel-wise ranges 
for LE and Ts to account for spatial variability of actual evaporation due to albedo and aerodynamic 
roughness [Menenti and Choudhury, 1993]. This parameterization was essentially a modification from 
CWSI (Crop Water Stress Index) proposed by Idso et al. [1981] and Jackson et al. [1981; 1988]. The 
theoretical CWSI accounted for the effects of the net radiation and wind speed in addition to the 
temperature and vapor pressure required by the empirical CWSI. Taking into account the dependence 
of external resistance on the atmospheric stratification, Menenti and Choudhury [1993] proposed an 
approach to calculate the pixel-wise maximum and minimum surface temperature and redefined CWSI 
as a pixel-wise SEBI at given surface reflectance and roughness to derive the regional ET from the 
relative evaporative fraction. The CWSI was based on surface meteorological scaling while the SEBI 
used Planetary Boundary Layer (PBL) scaling. Subsequently the SEBAL, SEBS and S-SEBI models 
have been developed from this conception of SEBI. The main distinction between each of these 
models and other commonly applied single-source models is the difference of how to calculate the 
sensible heat flux or precisely how to define the dry (maximum sensible heat and minimum latent heat) 
and wet (maximum latent heat and minimum sensible heat) limits and how to interpolate between the 
defined upper and lower limits to calculate the sensible heat for a given set of boundary layer 
parameters of both remotely sensed Ts, Albedo, NDVI, LAI, Fr and ground-based air temperature, 
wind speed, humidity, vegetation height, etc.. Assumptions in SEBI, SEBAL, S-SEBI, SEBS models 
are that there are few or no changes in atmospheric conditions (mainly the surface available energy) in 
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space and sufficient surface horizontal variations are required to ensure dry and wet limits exist in the 
study region. 

The Surface Energy Balance System (SEBS), detailed by Su [2001; 2002; 2005], Su et al. [2003] 
with a dynamic model for the thermal roughness and the Bulk Atmospheric Similarity (BAS) theory 
for PBL scaling and the Monin-Obukhov Atmospheric Surface Layer (ASL) similarity for surface 
layer scaling, is an extension from the concept of SEBI for the estimation of land surface energy 
balance using remotely sensed data in a more complex framework. SEBS consists of 1) a set of tools 
for the calculations of land surface physical parameters, 2) calculation of roughness length for heat 
transfer, 3) estimation of the evaporative fraction based on energy balance at limiting cases [Su, 2002]. 
In SEBS, at the dry limit, latent heat flux is assumed to be zero due to the limitation of soil moisture 
which means sensible heat flux reaches its maximum value (i.e., Hdry=Rn-G). At the wet limit, ET takes 
place at potential rate (LEwet), (i.e. ET is limited only by the energy available under the given surface 
and atmospheric conditions, which can be calculated by a combination equation similar to the 
Penman-Monteith combination equation [Monteith, 1965] assuming that the bulk internal resistance is 
zero), the sensible heat flux reaches its minimum value, Hwet. The sensible heat flux at dry and wet 
limits can be expressed as: 

dry nH R= − G                                                                                      (1.18) 

(( ) ) /(1 )p
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a
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= − − +                                               (1.19) 

where ra is dependent on the Obukhov length, which in turn is a function of the friction velocity and 
sensible heat flux. 

The  and then can be expressed as: rEF EF
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H can be solved using a combination of a dynamic model for thermal roughness [Su, 2001] and 
the BAS theory of Brutsaert [1999] for PBL scaling and the Monin-Obukhov ASL similarity for 
surface layer scaling [Monin and Obukhov, 1954]. 

In SEBS, distinction is made between the ABL (Atmospheric Boundary Layer) or PBL (Planetary 
Boundary Layer) and the ASL similarity. Inputs to the SEBS include remote sensing data-derived land 
parameters and ground-based meteorological measurements, such as land surface temperature, LAI, 
fractional vegetation cover, albedo, wind speed, humidity, air temperature. Jia et al. [2003] described a 
modified version of SEBS using remote sensing data from ATSR (Along Track Scanning Radiometer) 
and ground data from a Numerical Weather Prediction model and validated the estimated sensible heat 
flux with large aperture scintillometers located at three sites in Spain. With the surface meteorology 
derived from the Eta Data Assimilation System (EDAS), Wood et al. [2003] applied SEBS to the SGP 
region of the United States where the ARM (Atmospheric Radiation Measurement) program had been 
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carried out by the U.S. Department of Energy. Derived latent heat fluxes were compared with the 
measurements from the EBBR (Energy Balance Bowen Ration) sites and results indicated that the 
SEBS approach had promise in estimating surface heat flux from space for data assimilation purposes. 
SEBS has been used to estimate daily, monthly and annual evaporation in a semi-arid environment [Su 
et al., 2003]. Su [2002] showed that SEBS could be used for both local scaling and regional scaling 
under all atmospheric stability regimes. 

Advantages of the SEBS are that 1) uncertainty from the surface temperature or meteorological 
variables in SEBS can be limited with consideration of the energy balance at the limiting cases, 2) new 
formulation of the roughness height for heat transfer is developed in SEBS instead of using fixed 
values, 3) a priori knowledge of the actual turbulent heat fluxes is not required. However, too many 
required parameters and relatively complex solution of the turbulent heat fluxes in SEBS have brought 
more or less inconveniences when data are not readily available. 

(2) S-SEBI 

A new method, called the S-SEBI developed by Roerink et al. [2000a] to derive the surface 
energy balance, has been tested and validated with data from a small field campaign conducted during 
August 1997. The main theory of S-SEBI is based on the contrast between a reflectance (albedo) 
dependent maximum surface temperature for dry limit and a reflectance (albedo) dependent minimum 
surface temperature for wet limit to partition available energy into sensible and latent heat fluxes.  

A theoretical explanation to S-SEBI, when a wide range of surface characteristics changing from 
dry/dark soil to wet/bright pixels exist, can be given: 1) at low reflectance (albedo), surface 
temperature keeps almost unchangeable because of the sufficient water available under these 
conditions, such as over open water or irrigated lands, 2) at higher reflectance (albedo), surface 
temperature increases to a certain point with the increases of reflectance due to the decrease of ET 
resulting from the less water availability, which is termed as “evaporation controlled”, 3) after the 
inflexion, the surface temperature will decrease with the increases of surface reflectance (albedo), 
which is called the “radiation controlled” (see Fig.1-2). 
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Fig.1-2  Theoretically schematic relationship between surface temperature 
 and alebdo in the S-SEBI (after [Roerink et al., 2000a]) 

 

In S-SEBI, the evaporative fraction is bounded by the dry and wet limits and formulated by 
interpolating the reflectance (albedo) dependent surface temperature between the reflectance (albedo) 
dependent maximum surface temperature and the reflectance (albedo) dependent minimum surface 
temperature, which can be expressed as: 

,max

,max ,min

s

s s

T T
EF

T T
s−
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−

                                                                (1.22) 

where Ts,max corresponds to the minimum latent heat flux (LEdry=0) and maximum sensible heat flux 
(Hdry=Rn-G) (the upper decreasing envelope when Ts is plotted against surface reflectance (albedo)), 
Ts,min is indicative of the maximum latent heat flux (LEwet=Rn-G) and minimum sensible heat flux 
(Hwet=0) (the lower increasing envelope when Ts is plotted against surface reflectance). Ts,max and Ts,min 
are regressed to the surface reflectance (albedo): 

,max max maxs sT a b α= +                                                              (1.23) 

,min min mins sT a b α= +                                                              (1.24) 

where amax, bmax, amin and bmin are empirical coefficients estimated from the scatter plot of Ts and αs 
over study area. 

Inserting Eqs.(1.23-1.24) into Eq.(1.22), EF can be derived by 
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If the atmospheric conditions over the study area can be regarded as constant and sufficient 
variations in surface hydrological conditions are present, the turbulent fluxes then can be calculated 
with S-SEBI without any further information than the remote sensing image itself. Results from 
Roerink et al. [2000a] have shown that measured and estimated evaporative fraction values had a 
maximum relative difference of 8% when measurements obtained from a small field campaign during 
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1997 in Italy were compared with the S-SEBI derived outputs. 

The major advantage of this S-SEBI is that 1) besides the parameters of the surface temperature 
and reflectance (albedo) derived from remote sensing data no additional ground-based measurement is 
needed to derive the EF if the surface extremes are present in the remotely sensed imagery, 2) the 
extreme temperatures in the S-SEBI for the wet and dry conditions vary with changing reflectance 
(albedo) values, whereas other methods like SEBAL try to determine a fixed temperature for wet and 
dry conditions. However, it should be noted that atmospheric corrections to retrieve Ts and αs from 
satellite data and determination of the extreme temperatures for the wet and dry conditions are 
location-specific when atmospheric conditions over larger areas are not constant any more. 

(3) SEBAL and METRIC 

SEBAL, developed by Bastiaanssen [1995] and Bastiaanssen et al. [1998] with minimum ground-
based measurements to evaluate ET, has been tested at both field and catchments scales under several 
climatic conditions in more than 30 countries worldwide, with the typical accuracy at field scale being 
85% and 95% at daily and seasonal scales respectively [Bastiaanssen et al., 1998; Bastiaanssen, 2000; 
Allen et al., 2001; Bastiaanssen et al., 2005]. 

One of the main considerations in SEBAL, when evaluating pixel by pixel sensible and latent 
heat fluxes, is to establish the linear relationships between Ts and the surface-air temperature 
difference dT (dT=Ts-Ta) on each pixel with the coefficients of the linear expressions determined from 
the extremely dry (hot) and wet (cold) points. The dT can be approximated as a relatively simple linear 
relation of Ts expressed as: 

sdT a bT= +                                                                           (1.26) 

where a and b are empirical coefficients derived from two anchor points (dry and wet points). 

At the dry (hot) pixel, latent heat flux is assumed to be zero and the surface-air temperature 
difference at this pixel is obtained by inverting the single-source bulk aerodynamic transfer equation: 

dry a
dry

p

H r
dT

Cρ
×

=                                                                    (1.27) 

where Hdry is equal to Rn-G.  

At the wet (cold) pixel, latent heat flux is assigned a value of Rn-G (or a reference ET), which 
means sensible heat flux under this condition is equal to zero (when reference ET is applied, both H 
and  at this pixel will not equal zero any more). Obviously, the surface-air temperature difference 

at this point is also zero ( =0).  

dT

wetdT

After calculating surface-air temperature differences at both dry (hot) and wet (cold) points, 
coefficients a and b in Eq. (1.26) can be obtained. Providing that a and b are known, the surface-air 
temperature difference dT at each pixel over the study area is estimated with Ts using Eq. (1.26). 
Finally, H can be obtained iteratively with ra corrected for stability using Eq. (1.7). This procedure 
requires wind speed measured at ground to be extrapolated to a blending height of about 100 to 200 m 
where wind speed at this level is assumed to be not affected by surface variations. 

SEBAL has been applied for ET estimation, calculation of crop coefficients and evaluation of 
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basin wide irrigation performance under various agro-climatic conditions in several countries 
including Spain, Sri Lanka, China, and the United States, etc. [Bastiaanssen et al., 2005; Singh et al., 
2008]. Timmermans et al. [2007] compared the spatially distributed surface energy fluxes derived 
from SEBAL with a dual-source energy balance model using data from two large scale field 
experiments covering sub-humid grassland (Southern Great Plains '97) and semi-arid rangeland 
(Monsoon '90). Norman et al. [2005] showed that the assumption of linearity between surface 
temperature and the air temperature gradient used in defining the sensible heat fluxes did not generally 
hold true for strongly heterogeneous landscape. The selection of dry pixel and wet pixel can have a 
significant impact on the heat flux distribution from SEBAL. 

One of the assumptions made in SEBAL model is that full hydrological contrast (i.e., wet and dry 
pixels) is present in the area of interest. The most key aspect in the SEBAL is to identify the dry pixel 
while wet pixel is often determined over a relatively large calm water surface or at a location of well-
watered areas. The advantages of the SEBAL over previous approaches to estimate land surface fluxes 
from thermal remote sensing data are: 1) it requires minimum ancillary ground-based data, 2) it does 
not require a strict correction of atmospheric effects on surface temperature thanks to its automatic 
internal calibration, and 3) internal calibration can be done within each analyzed image. However, 
SEBAL has several drawbacks: 1) it requires subjective specifications of representative hot/dry and 
wet/cool pixels within the scene to determine model parameters a and b, 2) it is often applied over flat 
surfaces. When SEBAL is applied over mountainous areas, adjustments based on a DEM need to be 
made to Ts and u to account for the lapse rate, 3) errors in surface temperatures or surface-air 
temperature differences have great impacts on H estimate, 4) radiometer viewing angle effects, which 
can cause variation in Ts of several degrees for some scenes, have not been taken into account. 

To avoid the limitations of the SEBAL in mapping regional ET over more complicated surfaces, 
Allen et al. [2005a; 2005b; 2007] highlighted a similar SEBAL-based approach, named as METRIC, 
to derive ET from remotely sensed data in the visible, near-infrared and thermal infrared spectral 
regions along with ground-based wind speed and near surface dew point temperature. In METRIC, an 
automatic internal calibration method similar to SEBAL (linearly relating Ts to the surface-air 
temperature difference) is used to calculate the sensible and latent heat fluxes.  

Main distinctions between METRIC and SEBAL are: 1) METRIC does not assume Hwet=0 or 
LEwet=Rn-G at the wet pixel, instead a daily surface soil water balance is run to confirm that for the hot 
pixel, ET is equal to zero, and for the wet pixel, ET is set to 1.05ETr, where ETr is the hourly (or 
shorter time interval) tall reference (like alfalfa) ET calculated using the standardized ASCE 
(American Society of Civil Engineers) Penman-Monteith equation, 2) wet pixel in METRIC is 
selected in an agricultural setting where the cold pixel should have biophysical characteristics similar 
to the reference crop (alfalfa), 3) the interpolation (extrapolation) of instantaneous ET to daily value is 
based on the alfalfa ETrF (defined as the ratio of instantaneous ET to the reference ETr that is 
computed from meteorological station data at satellite overpass time) instead of the actual evaporative 
fraction, which can better account for the impacts of advection and changing wind and humidity 
conditions during the day. 

(4) VI-Ts Triangle/Trapezoidal feature space 

VI-Ts triangle feature space, derived from the contextual information of remotely sensed surface 
temperature Ts and Vegetation Index (VI), was firstly proposed by Goward et al. [1985], and 
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subsequently was utilized to study the soil water content, surface resistance, land use and land cover 
change, drought monitoring and regional ET [Nemani and Running, 1989; Nemani et al., 1993; 
Lambin and Ehrlich, 1996; Jiang and Islam, 1999; Jiang and Islam, 2001; Jiang and Islam, 2003] while 
the trapezoidal space was derived from a simple CWSI [Jackson et al., 1981; Idso et al., 1981].  

The Ts-VI triangle/trapezoidal feature space established under the conditions of full ranges of soil 
moisture content and vegetation is characteristic of being bounded with an upper decreasing envelope 
(dry edge, defined as the locus of the highest surface temperatures under differing amounts of 
vegetation cover at a given atmospheric forcing, which is assumed to represent pixels of unavailability 
of soil moisture content) and a lower nearly horizontal envelope (wet edge, defined as the locus of the 
lowest surface temperatures under differing amounts of vegetation cover, which is regarded to describe 
pixels in the potential ET at the given atmospheric forcing) with increasing vegetation cover and the 
two envelopes ultimately intersect at a (truncated) point at full vegetation cover (see Fig.1-3).  

 

 

 

 

 

 

 

 

 

 

Fig.1-3  The simplified VI-Ts triangular space (after [Lambin and Ehrlich, 1996]) 

 

The principal rationale of the Ts-VI triangle and trapezoid to be applied to evaluate ET at regional 
scale will be addressed respectively as follows. 

i) Triangle method  

A simplicity of Priestley-Taylor formulation with fully remotely sensed data proposed by Jiang 
and Islam [1999; 2001; 2003] representatively based on the interpretations of the remotely sensed Ts-
NDVI triangle feature space, has been employed to estimate regional EF and ET, which can be 
expressed as: 

γ+Δ
Δ

−Φ= )[( GRLE n                                                           (1.28) 

where Φ ranges from 0 to 1.26, ∆ is slope of saturated vapor pressure as function of Ta. In Eq.(1.28), 
all terms in the right-hand side can be calculated using remotely sensed data [Jiang and Islam1999]. 

Solution of parameter Φ in Eq.(1.28) generally involves a certain degree of simplicity and some 
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assumptions, including 1) a complete range of soil moisture and vegetation coverage at satellite pixel 
scale should be ensured, 2) contaminations of clouds and atmospheric effects have to be removed, 3) 
two-step linear interpolation scheme [Jiang and Islam, 1999; Carlson, 2007; Stisen et al., 2008] is used 
to get the value of Φ in Eq. (1.28) based on the Ts-NDVI triangle feature space as displayed in Fig.1-3. 
This two-step linear interpolation is realized in the following manner: 1) a global minimum and 
maximum Φ are respectively set to =0 on the driest bare soil pixel and minΦ maxΦ =1.26 on the pixel 

with largest NDVI and lowest Ts, and imin,Φ  for each NDVI interval (i) is linearly interpolated with 

NDVI between  and , and  for each NDVI (i) is calculated using the lowest surface 

temperature within that NDVI interval (generally, one assumes that 

minΦ maxΦ imax,Φ

26.1maxmax, =Φ=Φ i ), 2) iΦ  

within each NDVI interval is linearly increased with the decrease of Ts between  and . imin,Φ imax,Φ

The triangular (trapezoidal) feature space (Ts-VI) constructed by plotting the remotely sensed 
surface temperature (or temperature difference, or a scaled surface temperature) against the vegetation 
indices (e.g., NDVI, SAVI - Soil-Adjusted Vegetation Index, a scaled NDVI, or Fr  - fractional 
vegetation cover) for a full range of variability in surface soil moisture and fractional vegetation cover 
has been found in a series of papers to derive surface soil moisture, and surface fluxes [Goward et al., 
1985; Hope, 1988; Nemani and Running, 1989; Price, 1990; Nemani et al., 1993; Choudhury, 1994; 
Moran et al., 1994; Carlson et al., 1995a; Gillies and Carlson, 1995; Moran et al., 1996; Jiang and 
Islam, 1999; Jiang and Islam, 2001; Jiang and Islam, 2003; Venturini et al., 2004; Batra et al., 2006; 
Wang et al., 2006; Carlson, 2007; Stisen et al., 2008] and has been verified using measurements 
collected during the MONSOON 90 [Kustas et al., 1991] and FIFE 1987 and 1989  field programs 
[Sellers et al., 1992]. Jiang and Islam [1999] proposed the NDVI-Ts triangle scheme to estimate 
surface ET over large heterogeneous areas from AVHRR data over the Southern Great Plain. The 
proposed approach appeared to be more reliable and easily applicable for operational estimate of ET 
over large areas. Gillies and Carlson [1995] and Carlson [2007] have examined the triangular patterns 
of Ts plotted against VI using the simulated surface temperature and NDVI with a SVAT model on a 
theoretical basis and analyzed the spatial distributions of surface soil moisture availability and EF in 
the triangle feature space. Batra et al. [2006] have analyzed the effects of spatial resolution of different 
remote sensing data on the VI-Ts triangle with MODIS，NOAA16 and NOAA14 data in the Southern 
Great Plain in USA. Wang et al. [2006] combined the advantages of both the thermal inertia method 
and the Ts-NDVI spatial variation method to develop a day-night Ts difference-NDVI approach and 
satisfactory results have been obtained at the Southern Great Plain of the United States from April 
2001 to May 2005 when compared with the ground-based observations collected by Energy Balance 
Bowen Ratio Systems. The triangle method, proposed by Jiang and Islam [1999], was modified by 
Stisen et al. [2008] to take into account of the non-linear interpolation between Φ and the surface 
temperature to estimate surface fluxes based entirely on remotely sensed data from MSG/SEVIRI  
(Meteosat Second Generation / Spinning Enhanced Visible and Infrared Imager) sensor. Carlson et al. 
[1995a] have showed that the emergence of the triangle shape when the scatter plots of Ts versus VI 
were plotted under the same coordinate system seemed to depend more on the number of pixels rather 
than just the spatial resolutions. Thus the triangle/trapezoid can be found from Ts and VI data derived 
from satellites/sensors of different scales, such as the higher-resolution TM and the lower-resolution 
GOES data [Diak et al., 1995]. 
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Implications in the so-called triangle/trapezoidal method are that 1）the sensitivity of surface 
temperature to canopy and soil differs and canopy temperature is insensitive to surface/deep-layer soil 
moisture content, which contributes to the (truncated) vertex at full vegetation cover, 2）variations in 
the VI-Ts triangle space are not primarily caused by differences in atmospheric conditions but by the 
variations in available soil water content.  

The major assets of the remotely sensed VI-Ts triangle method are that 1) it allows for accurate 
estimate of regional ET with no ancillary atmospheric or ground data besides the remotely sensed 
surface temperature and vegetation indices, 2) it is relatively insensitive to the correction of 
atmospheric effects. The limitations are that 1) determination of the dry and wet edges requires a 
certain degree of subjectivity, 2) a large number of pixels over a flat area with a wide range of soil 
wetness and fractional vegetation cover are required to make sure that the dry and wet limits exist in 
the VI-Ts triangle space.  

ii) Trapezoid method 

On the basis of CWSI [Jackson et al., 1981], Moran et al. [1994] introduced a Water Deficit 
Index (WDI, defined as 1 minus the ratio of actual to potential ET) for ET estimate based on the 
Vegetation Index/Temperature (VIT) trapezoid to extend the application of CWSI over fully to 
partially vegetated surface areas. The ground-based inputs to the trapezoid method include vapor 
pressure, air temperature, wind speed, maximum and minimum stomatal resistances, etc.. One of the 
assumptions in the trapezoid approach is that values of Ts-Ta vary linearly with vegetation cover along 
crop extreme conditions edges while all the intermediary conditions relating Ts-Ta to a vegetation 
index are included within the constructed trapezoid. In order to calculate the WDI value of pixels of 
intermediate vegetation cover and soil moisture content for a specific time, four vertices of the 
trapezoid, corresponding to (1) well watered full-cover vegetation, (2) water-stress full-cover 
vegetation, (3) saturated bare soil, and (4) dry bare soil, should be computed firstly combined with the 
CWSI theory and Penman-Monteith equation (see Fig.1-4). 

 

 

 

 

 

 

 

 

 

 

Fig.1-4  The hypothetical trapezoidal space between Ts-Ta and Fr (after [Moran et al., 1994]) 
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Moran et al. [1994] defined/assumed the dry edge and wet edge respectively as the linear line 
connecting vertex (2) with vertex (4) and the linear line linking vertices between vertex (1) and vertex 
(3), as displayed in Fig.1-4. WDI within each VI from bare soil to full vegetation cover in the 
trapezoid is linearly related to the maximum and minimum temperature differences (Ts-Ta) and values 
of WDI equal to 0 and 1 respectively correspond to minimum and maximum temperature differences. 
Therefore, for a partially vegetated surface, WDI can be defined as: 

min min max1 / [( ) ( ) ] /[( ) ( )P s a s a i s a s aWDI LE LE T T T T T T T T= − = − − − − − − ]                (1.29) 

The trapezoid method is in essence an extension of CWSI developed by Idso et al. [1981] and 
Jackson et al. [1981]. CWSI is a commonly used index for detection of plant water stress based on the 
difference between canopy and air temperature and is only appropriate to apply for full-cover 
vegetated areas and bare soils at local and regional scales [Moran et al., 1994]. Idso et al. [1981] 
proposed an empirical CWSI to quantify canopy stress by determining ‘non-water-stressed baselines’ 
for crops, in which the baselines represented the lower limit of the difference of canopy to air 
temperature when the plants are transpiring at the potential rate. Shortly, Jackson et al. [1981; 1988] 
defined the theoretical CWSI by ratioing the difference between the measured canopy temperature and 
the lower limit (corresponding to canopy transpiring potentially) to the difference between the upper 
(corresponding to non-transpiring canopy) and lower limits. The trapezoid method ((Ts-Ta)-SAVI) is a 
method to measure the surface water stress based on the formed trapezoid given a full range of surface 
vegetation cover and soil moisture content when the difference between surface and air temperature is 
plotted against a vegetation index [Moran et al., 1994; 1996]. Kustas and Norman [1996] have found 
that this trapezoid method permitted the concept of CWSI applicable to both heterogeneous and 
uniform areas and did not require the range of VI and surface temperature in the scene of interest as 
that proposed by Carlson et al. [1990] and Price [1990]. Luquet et al. [2004] evaluated the impact of 
complex thermal infrared directional effects on the application of WDI using multidirectional crop 
surface temperatures and reflectance data acquired on a row-cotton crop with different water and cover 
conditions in Montpellier (France). Results from the work of Moran et al. [1994] showed that the WDI 
provided accurate estimates of field ET rates and relative field water deficit for both full cover and 
partially vegetated sites.  

One of the advantages in the VI-Ts trapezoidal space over the triangular space is that the VI-Ts 
trapezoidal space does not require as large number of pixels to be existent as that in the triangular 
space. Instead, the intermediate values in the trapezoidal space are determined by the four limiting 
vertices. However, the relatively more ground-based parameters in the VI-Ts trapezoidal space than 
that in the triangular space have constrained the broad applications of the trapezoidal space. Some 
limitations have also emerged in WDI although this new index offers large opportunity than CWSI 
[Luquet et al., 2004], including that 1) there are no consideration of heat exchanges between soil and 
vegetation, which may be not valid when soil and vegetation are at different temperatures, 2) water 
stress does not have instantaneous effect on vegetation cover, 3) WDI method does not separate plant 
transpiration from soil evaporation. 

1.1.2.2 Dual-source model 

Dual-source model is also called Two-source model. 
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Although single-source energy balance models may provide reliable estimates of turbulent heat 
fluxes, they often need field calibration and hence may be unable to be applied over diverse range of 
surface conditions. Kustas and Daughtry [1990] have shown that single-source models had serious 
limitations over partially vegetative surfaces though some adjustments to ra can be made but such 
adjustments are not generally applicable to all circumstances. Errors in sensor calibration, atmospheric 
corrections, and the specification of the surface emissivity have been detrimental to methods that rely 
on absolute surface temperature or surface-air temperature difference to derive regional surface energy 
balance [Mecikalski et al., 1999]. Furthermore, air temperature measured at a shelter-level as an upper 
boundary condition suffers significantly from the interpolations over large heterogeneous areas 
[Mecikalski et al., 1999]. Dual-source models require no a priori calibration and do not need additional 
ground-based information as that required in a single-source model and therefore have a wider range 
of applicability without resorting to any additional input data. Anderson et al. [1997] showed that 
dual-source models represented an advance over single-source surface models that treated the earth’s 
surface as a single, uniform layer. However, assumptions on and solution of dual-source energy 
balance models generally involve an estimation of the divergence of surface energy balance inside the 
canopy and the way to account for the clumped vegetation, which affects both the wind speed profile 
and radiation penetration and radiative surface temperature partitioning between soil and vegetation 
[Kustas and Norman, 2000].  

Generally speaking, the solution of a dual-source energy balance model is to implement the 
decomposition of the soil and canopy component temperatures either by iterating latent heat fluxes 
with the assumption that the vegetation is unstressed and transpiring at the potential rate or by 
acquiring remote sensing data of surface temperatures at multiple angles for the calculation of the 
component energy balance of soil and vegetation respectively. 

The ensemble directional radiometric surface temperature (TRAD(θ)) is determined by the 
respective fraction of soil and vegetation viewed by a radiometer, which can be expressed as: 

MMM
cRAD TfTfT /1

0 ]))(1()([)( θθθ −+=                                                          (1.30) 

where M is usually set to 4 for 8-14 μm and 10-12 μm wavelength bands. f(θ) is vegetation fraction 
viewed at angle θ, Tc and T0 are component of vegetation and soil temperature respectively.  

If the surface emissivity and sky conditions are known, the directional radiometric temperature 
can be calculated from the brightness temperature (TB(θ)) from the following formula: B

1/( ) [ ( )( ( )) (1 ( )) ]M M
B RAD ST T Tθ ε θ θ ε θ= + − KY                                     (1.31) 

With the assumption that the flux of soil surface is in parallel with the flux of leaves of canopy, and 
with a first-guess estimate of canopy transpiration (LEc) using Priestly-Taylor equation, which often 
leads an over-prediction in semiarid and arid ecosystems, H in a two source model can be divided into 
two parts of energy component of soil and vegetation: 
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Inputs to dual-source energy balance models generally include directional brightness temperature, 
viewing angle, fractional vegetation cover or leaf area index, vegetation height and approximate leaf 
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size, net radiation, air temperature and wind speed. If measurements of Ta, u, measurement heights, 
TRAD(θ) measured simultaneously at two viewing angles (e.g., data available from ATSR), canopy 
height (h), approximate leaf size, and fraction of vegetative cover (Fr) or LAI are given, Tc, T0, Hc, Hs, 
LEc and LEs can then be solved directly with the dual-source surface energy balance models without 
resorting to empirically determined ‘adjustment’ factors for “excess” resistance [Kustas and Norman, 
1997; 1999]. 

A series of papers have concentrated on the respective temperature and radiation components of 
both soil and vegetation through a set of applications, validations and modifications to the dual-source 
energy balance models over various landscapes over the past years [Shuttleworth and Wallace, 1985; 
Shuttleworth and Gurney, 1990; Norman et al., 1995; Kustas and  Norman, 1997; 1999;  Norman et al., 
2000; Norman et al., 2003; Anderson et al., 2004; Mecikalski et al., 2005; Anderson et al., 2005; Li et 
al., 2005; Sánchez et al., 2008]. The increase of surface temperature in the morning was also found to 
be highly sensitive to the change of surface soil moisture (and thus ET) [Idso et al., 1975c; Price, 1980; 
Carlson and Buffum, 1989; Carlson et al., 1981, Wetzel et al., 1984; Diak, 1990; Franks and Beven, 
1997] and an utilization of rate of surface temperature rise in the form of simplified equation has also 
been shown by Carlson and Buffum [1989] to estimate daily ET with the advantages of no need for 
absolute surface temperature retrievals from satellite data. Wetzel et al. [1984] and Diak [1990] have 
attempted to compute surface energy balance by using the rate of rise of Ts from a geostationary 
satellite with an atmospheric boundary layer model. Norman et al. [1995] developed a TSM (Two-
Source (soil+canopy) Model) to accommodate the difference between radiometric surface and 
aerodynamic temperatures to partition surface energy balance into energy components of both soil and 
vegetation using data either from a single view angle or from multiple view angles. Subsequently, on 
the basis of that work, Anderson et al. [1997] examined and tested the TSTIM (Two-Source Time 
Integrated Model, subsequently was named as ALEXI: Atmosphere-Land Exchange Inverse 
[Mecikalski et al., 1999]) relating the morning rise of surface temperature acquired at 1.5 and 5.5 
hours past sunrise to the growth of a planetary boundary layer through an estimate of sensible heat 
using data collected during ISLSCP (the International Satellite Land-Surface Climatology Project) and 
Monsoon ‘90 experiments. Lhomme and Elguero [1999] have commented on the assumption on the 
parallel transfer of heat from canopy and soil and assumed the scale to be a determinant of whether a 
dual-source model should be coupled or not. Since 1999, ALEXI has been applicable over a wide 
variety of landscape, agricultural and land-surface-atmosphere interactions [Mecikalski et al., 2005]. It 
removes the need for the measurements of near-surface air temperature and is relatively insensitive to 
uncertainties in surface emissivity and atmospheric corrections on the remotely sensed surface 
temperatures. Kustas and Norman [2000] made four modifications, which had largest impacts on dual-
source flux predictions under sparse canopy-covered conditions to the TSM developed by Norman et 
al. [1995], involving: 1) the estimation of the divergence of net radiation with a more physically-based 
algorithm, 2) use of a simple model to account for the effects of clumped vegetation, 3) application of 
an adjusted Priestley-Taylor [Priestley and Taylor, 1972] coefficient, 4) computation of soil resistance 
to sensible heat flux transfer with a new formulation. Norman et al. [2000] developed a variation of 
TSM called DTD (Dual-temperature-difference) method using time rate of change in Ts and Ta to 
derive surface turbulent fluxes and this DTD method is simpler than other modifications of TSM in 
that it requires minimal ground-based data and does not require modeling boundary layer development. 
On the basis of TSTIM, a two-step approach called DISALEXI (Disaggregated ALEXI) model has 
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been proposed to estimate surface ET with the combination of low- and high-resolution remotely 
sensed data without a need for local observations [Norman et al., 2000; Kustas et al., 2003]. Anderson 
et al. [2005] have found that consideration of vegetation clumping within the thermal model could 
significantly improve the estimates of turbulent heat fluxes at both local and watershed scales when 
observations from eddy covariance data collected by aircraft and a ground-based tower network are 
compared. Li et al. [2005] compared two resistance network formulations that are used in a dual-
source model for parameterizing soil and canopy energy exchanges over a wide range of soybean and 
corn crop cover and soil moisture conditions during the Soil Moisture–Atmosphere Coupling 
Experiment. In the two resistance formulations, the parallel resistance formulation does not consider 
interaction between the soil and canopy fluxes while the series resistance algorithms provide 
interaction via the computation of a within-air canopy temperature. Results from Li et al. [2005] 
showed that both the parallel and series resistance formulations produced basically similar estimates 
compared with the tower-based flux observations while the parallel resistance formulation was more 
able to achieve the balance of the component temperature and heat fluxes of soil and canopy. 

Compared to other types of remote sensing ET formulations, dual-source energy balance models 
have been shown to be robust for a wide range of landscape and hydro-meteorological conditions 
[Kustas and Norman, 1997]. The ALEXI approach is believed to be a practical means to operational 
estimates of surface fluxes over continental scales with the spatial resolution of 5- to 10-km. 

The main advantages of the dual-source models over single-source models are that 1) they avoids 
the need for precise atmospheric corrections, emissivity estimations and high accuracy in sensor 
calibration, 2) ground-based measurement of Ta is not indispensable when dual-source models are 
coupled with a PBL [Kustas and Norman, 1996] and thus is much better suitable to applications over 
large-scale regions than single-source models and other algorithms [Anderson et al. 1997], 3) they 
generally incorporate effects of view geometry, 4) they avoid empirical corrections for the ‘excess 
resistance’. However, applications of the aforementioned models of both directly relating surface 
turbulent fluxes to temperature difference measured at two times and imbedding the morning 
temperature rise into a dual-source energy balance coupled with a PBL (Planetary Boundary Layer) 
generally require a geo-stationary satellite, which is less suitable for high latitudes due to the 
suboptimal viewing orientation and coarse spatial resolution to provide a series of cloud-free images 
[Van den Hurk, 2001]. The new MSG/SEVIRI sensor has provided a good promise with its relatively 
small pixel size and high observation frequency for applications in Europe and Africa. 

1.1.3  Data assimilation 

Results from remote sensing ET models are generally either instantaneous (daily) values using 
data from polar-orbiting satellites or coarse spatial resolution values from geostationary satellites, 
which can not provide temporally continuous values and thus can not meet the requirements in most 
hydrological and numerical prediction models. One possible means to overcome this dilemma is to use 
data assimilation technique to map ET, which can take advantage of the synergy of multisensor/ 
multiplatform observations [Boni et al., 2001; Reichle, 2008]. 

Data assimilation has been firstly used by meteorologist to construct daily weather maps, 
displaying variations of environmental variables such as pressure and wind velocity over space and 
time [McLaughlin, 1995]. Simply speaking, data assimilation technique is the process in which all 
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available information is used in order to estimate objective variables as accurately as possible 
[Talagrand, 1997; Bouttier and Courtier, 1999]. A data assimilation system is generally consisted of 
three components: a set of observations, a dynamic model and a data assimilation technique [Robinson 
and Lermusiaux, 2000]. All existing assimilation algorithms can be described as more or less an 
approximate of statistical linear estimation [Rabier et al., 1993]. Data assimilation schemes are often 
statistically optimal by minimizing the errors in estimates derived from merging noisy observations 
and uncertainty of models in a statistical sense. 

Data assimilation techniques for ET estimate can assimilate all available information but it 
generally has to rely on a numerical model which may need a lot of atmospheric forcing and is 
relatively computationally demanding than remote sensing ET models [Mclaughlin et al., 2006; Kumar 
et al., 2008]. Selection of a data assimilation technique is essentially to achieve a balance between 
making the best use of all available information (optimality) and computational efficiency, flexibility, 
and robustness. However, compromises have to be made to adapt to specific goals because these 
evaluation criteria often conflict [Margulis et al., 2002]. The principle of any data assimilation scheme 
is to minimize the mismatch between the observations and models by adjusting components under the 
fundamental physical constraints. 

Nowadays, data assimilation techniques are generally put into two categories, including 
sequential assimilation (e.g., Ensemble Kalman Filter and optimal interpolation) [Anderson, 2001; 
Reichle et al., 2002; Reichle, 2002; Caparrini et al., 2004; Crow and Kustas, 2005; Margulis et al., 
2005; Huang et al., 2008] and un-sequential/variational/retrospective assimilation (e.g., 4-dimentional 
variational assimilation) [Županski and Mesinger, 1995; Courtier et al., 1998; Margulis and Entekhabi, 
2003; Seo et al., 2003; Caparrini and Castelli, 2004]. One of the distinctions between sequential and 
variational assimilations is that in sequential assimilation each individual observation influences the 
estimated state of the flow only at later times and not at previous times while variational assimilation 
aims at adjusting the model solution globally to all the observations available over the assimilation 
period [Talagrand, 1997]. Several papers have attempted to use data assimilation techniques combined 
with a numerical model to estimate regional surface turbulent heat fluxes [Boni et al., 2001; Caparrini 
et al., 2004; Crow and Kustas, 2005; Margulis et al., 2005; Pipunic et al., 2008]. Boni et al. [2001] 
developed a land data assimilation system to estimate latent heat flux and surface control on 
evaporation with the dynamic equations for surface temperature as the constraint. In this assimilation 
system, satellite remotely sensed surface temperatures are assimilated within the Southern Great Plain 
1997 hydrology field experiment. Factors characterizing land surface influences on evaporation and 
surface heat fluxes are estimated through assimilation of radiometric surface temperature sequences 
with a land surface energy balance as a constraint and this approach has been tested using data from 
the ISLSCP FIFE (International Satellite Land Surface Climatology Project) [Caparrini et al., 2004]. 
Caparrini et al. [2003] proposed a land data assimilation scheme with sequences of multi-satellite 
remotely sensed surface temperature measurements and data from surface micrometeorological 
stations to estimate the surface energy balance components in a basin with varying surface conditions. 
Margulis et al. [2005] compared the VI-Ts triangle method to variational data assimilation method for 
estimating surface turbulent fluxes from radiometric surface temperature observations. Results from a 
set of synthetic experiments and an application of data from ISLSCP FIFE site have shown that the 
assimilation approach performs slightly better than the VI-Ts triangle method. 

Data assimilation approach to map surface energy fluxes often has some advantages over 
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traditional retrieval methods, including 1) assimilation procedure estimates not only latent heat flux 
but also the various intermediate variables related to the turbulent heat fluxes in a numerical model, 2) 
estimates of the turbulent heat fluxes are continuous in time and space since the dynamic models used 
in the assimilation procedure interpolate the measurements taken at discrete sampling times, 3) the 
data assimilation procedure can produce estimates at a much finer resolution, 4) data assimilation 
scheme can merge spatially distributed information obtained from many data sources with different 
resolutions, coverage, and uncertainties [Margulis et al., 2002]. The main drawback of data 
assimilation technique to retrieve regional ET with a numerical model is that it is relatively 
computationally demanding than the remote sensing ET models. 

Above mentioned sub-sections detail the theory, advantages and weaknesses of the various 
remote sensing ET models from the simplified empirical regression method applied over a field scale 
to the relatively complex dual-source surface energy balance models employed at both regional and 
continental scales. Data assimilation approaches can assimilate all available data sources to provide the 
spatially and temporally continuous surface turbulent heat fluxes. Comparisons of the different remote 
sensing ET models reviewed above are recapitulated in Table 1-1. 

 



Table 1-1. Comparisons of a variety of commonly applied remote sensing ET methods 

METHODS REFS. EQS. MAIN 
INPUTS MAIN ASSUMPTIONS ADVANTAGES DISADVANTAGES 

Simplified 
Equation 

[Seguin and 
Itier, 1983] 
[Jackson et al., 
1977] 

Eq.(1.1) Rnd, Ts, Ta

1) Daily soil heat flux is 
negligible; 
2) Instantaneous H at midday can 
express the influence of 
partitioning daily available 
energy into turbulent fluxes. 

Simplicity Site-specific 

VI-Ts 
Triangle 

[Jiang and 
Islam, 1999] Eq.(1.28) Rn, G, Ts, 

VI 

1) Complete range of both soil 
moisture and vegetation coverage 
exists within the study area at 
satellite pixel scale; 
2) cloud contaminations are 
discarded and atmospheric effects 
are removed; 
3) EF varies linearly with Ts for a 
given VI 

No ground-based 
measurements are needed 

1) Difficult to determine the dry 
and wet edges; 
2) VI-Ts triangle form is not easy 
recognized with coarse spatial 
resolution data 

VI-Ts 
Trapezoid 

[Moran et al., 
1994] Eq.(1.29) 

Ta,VPD, u, 
Ts,VI, Rn, 
G 

1) Dry and wet edges are linear 
lines and vary linearly with VI 
2) EF varies linearly with Ts for a 
given VI. 

Whole range of VI and soil 
moisture in the scene of 
interest is not required; 

1) Uncertainty in the determination 
of dry and wet edges; 
2) lot of ground - based 
measurements are needed. 

SEBI 
[Menenti and 
Choudhury, 
1993] 

Eq.(1.17) Tpbl, hpbl, u, 
Ts, Rn, G 

1) Dry limit has a zero surface 
ET; 
2) Wet limit evaporates 
potentially. 

Directly relating the effects of 
Ts and ra on LE. 

Ground-based measurements are 
needed. 

SEBAL [Bastiaanssen et 
al., 1998] Eq.(1.26) 

u, za, 
Ts, VI, Rn, 
G 

1) Linear relationship between Ts 
and dT; 
2) ET of the driest pixel is 0; 
3) ETwet is set to the surface 
available energy. 

1) Minimum ground 
measurements 
2) Automatic internal 
calibration; 
3) Accurate atmospheric 
corrections are not needed 

1) Applied over flat surfaces; 
2) Uncertainty in the determination 
of anchor pixels. 

S-SEBI [Roerink et al., 
2000a] Eq.(1.25) Ts, αs, Rn, 

G 
1) EF varies linearly with Ts for a 
given surface albedo. 

No ground-based 
measurements are needed 

Extreme temperatures have to be 
location specific. 
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METHODS REFS. EQS. MAIN 
INPUTS MAIN ASSUMPTIONS ADVANTAGES DISADVANTAGES 

2) Ts,max corresponds to the 
minimum LE. 
3) Ts,min corresponds to the 
maximum LE. 

 

SEBS [Su, 2002] Eq.(1.20) Ta, za u, 
Ts, Rn, G 

1) At the dry limit, ET is set to 0; 
2) At the wet limit, ET takes 
place at potential rate. 

1) Uncertainty in SEBS from 
Ts and meteorological 
variables can be limited and 
reduced; 
2) Computing explicitly the 
roughness height for heat 
transfer instead of using fixed 
values. 

1) Too many parameters are 
required 
2) Solution of the turbulent heat 
fluxes is relatively complex. 

METRIC 

[Allen et al., 
2007] 
[Allen et al., 
2005] 

Eq.(1.26) 
u, za, 
Ts, VI, Rn, 
G, 

1) For the hot pixel, ET is equal 
to zero 
2) For the wet pixel, LE is set to 
1.05ETr. 

Same as SEBAL but surface 
slope and aspect can be 
considered. 

Uncertainty in the determination of 
anchor pixels. 

TSM [Norman et al., 
1995] 

Soil and 
canopy 
energy 
budgets 

u, za Ta, 
Ts, Tc, Fr or 
LAI, Rn, G

1) Fluxes of soil surfaces are in 
parallel or in series with fluxes of 
canopy leaves; 
2) Priestly-Taylor Eq. is 
employed to give the first-guess 
of canopy transpiration 

1) Effects of view geometry 
are taken into account; 
2) Empirical corrections for 
the ‘excess resistance’ are not 
needed; 

1) Many ground measurements are 
needed. 
2) Component temperatures of soil 
and vegetation are required. 

 
TSTIM/ 
ALEXI 
 

[Mecikalski et 
al., 1999] 

Soil and 
canopy 
energy 
budgets 

u, za
dTs, Fr or 
LAI, Rn, 
G. 

Surface temperature changes 
linearly with the time during the 
morning hours of the sensible 
heating 

Errors due to atmospheric 
corrections and surface 
emissivity specification are 
significantly reduced; 

Determination of an optimal pair of 
thermal observation times for the 
linear rise in sensible heating is 
needed. 



1.2 Scaling from instantaneous ET to daytime integrated value 

Most of the aforementioned ET models using remotely sensed data produce only instantaneous 
ET values. Obviously, it is necessary to convert essentially instantaneous ET value at the overpass 
times of satellites to daily or longer time value to make full use of the remote sensing data in 
hydrological and water resources management applications. A number of techniques are proposed to 
extrapolate the instantaneous ET to the longer time values, mainly including sine function, constant 
evaporative fraction (EF), constant reference ET fraction (ETrF). 

1.2.1  Sine function  

Jackson et al. [1983] related the ratio of instantaneous ET to daily value to the diurnal trend of 
solar irradiance with the following equation: 

/ / 2 /( sin( /d i sd siET ET R R N t N ))π π= =                                                              (1.33) 

where subscripts d and i respectively indicate the daily total and instantaneous values. The sine 
function gives a good approximate of the change of diurnal solar irradiance except near sunrise and 
sunset. t is the duration time starting at sunrise. N is the duration of daytime and can be expressed as: 

))365/)10((sin(945.0 2 ++= yDbaN π                                                                 (1.34) 

2 4 2 6 312.0 5.69 10 2.02 10 8.25 10 3.15 10a 7 4λ λ λ− − −= − × − × + × − × λ−                 (1.35) 

4 2 7 3 7 40.123 3.10 10 8.00 10 4.99 10b λ λ λ− −= − × + × + × λ−                                   (1.36) 

in which Dy is the day of year, λ is geographical latitude in degree.  

With Eqs.(1.33-1.36) and time of day (t), day of year (Dy) and geographical latitude between 60o 
S and 60o N, one can scale the one-time measured instantaneous ET to the daily totals. Jackson et al. 
[1977] have shown that when the daytime was always cloud free or the cloud cover was relatively 
constant throughout the daytime, the sine function of Eq.(1.33) could obtain reliable estimates of 
daytime integrated ET. When cloudy days exist, improvements of Eq.(1.33) should be made to take 
account the mount and temporal coverage of the cloud cover. This approach is widely used for daily 
ET estimation and satisfactory results have been produced [Zhang and Lemeur, 1995; Kustas and 
Norman, 1996; Chen et al., 2005; Colaizzi et al., 2006]. Zhang et al. [1995] refined the sine function 
by introducing a parameter to reflect impacts of geographic latitude, solar declination and degree of 
cloudiness on the convexity of the diurnal patterns of solar radiation. 

1.2.2  Constant Evaporative Fraction (EF) 

Sugita and Brutsaert [1991] assumed the evaporative fraction to be constant during the daylight 
hours to determine regional daily ET using data obtained during FIFE in northeastern Kansas. 
Knowing the daytime available energy (Rn-G)d, and assuming that EF is constant during the daytime, 
daily estimate of ETd can therefore be written as: 
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where subscripts i and d are respectively indicative of instantaneous and daytime integrated values. 
The value of EF varies from 0 to 1 under daytime convective conditions with minimal advection and 
represents the fraction of available energy partitioned into latent heat flux [Kustas et al., 1993].  

A great number of papers have used this assumption to calculate the daily ET and examined 
whether the assumption that daytime EF is nearly constant throughout the day is reasonable 
[Shuttleworth et al., 1989; Sugita and Brutsaert, 1991; Hall et al., 1992; Kustas et al., 1993; Nichols 
and Cuenca, 1993; Crago, 1996; Lhomme and Elguero, 1999; Farah et al., 2004; Colaizzi et al., 2006; 
Hoedjesa et al., 2008]. With data from the FIFE and other observations, Crago [1996] has concluded 
that the variability or conservation of EF on individual day was affected by complicated combination 
factors, including weather conditions, soil moisture, topography, biophysical conditions, cloudiness 
and the advections of moisture and temperature directly contributed to the amount of variability of EF 
on a given day. A strong correlation with the coefficient of determination value of 0.89 has been 
demonstrated between the midday and daily average evaporative fractions for data from the Hapex-
Mobilhy program on clear days [Nichols and Cuenca, 1993]. Zhang and Lemeur [1995] using data 
from the Hapex-Mobilhy Experiment in southwestern France compared the sine function with the 
constant EF method and concluded that both methods were accurate to estimate daily total ET for 
cloud-free days and recommended that the sine function was preferable for the purpose of estimating 
ET using remotely sensed data. 

Jackson et al. [1983], Owe and van de Griend [1990] and Kustas et al. [1994] have found that 
nighttime ET could reach as many as about 10 percent of the daily totals. Allen et al. [2007] illustrated 
that the assumption of constant EF during the 24h period could underestimate the overall daily ET 
when afternoon advection and increased wind speed appeared in arid climates. Anderson et al. [1997] 
therefore added this 10 percent of latent heat fluxes into daily integrated ET in Eq. (1.37) using the 
evaporative fraction expressed as follows: 
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−

                                                                     (1.38) 

1.2.3  Constant reference ET fraction (ETrF) 

In the METRIC process, Allen et al. [2007] proposed a constant ETrF, which is believed to be 
better able to capture any impacts of advection and changing wind and humidity conditions during the 
day, to estimate the 24-h total ET. ETrF is defined as the ratio of the computed ETi from each pixel to 
ETr. ETr. is the reference ET over the standardized 0.5 m tall alfalfa and computed from 
meteorological data measured at ground meteorological stations [Allen et al., 2007]: 
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6[2.501 0.00236( 273.15)] 10sL T= − − ×                                        (1.41) 

With the assumption of instant ETrF being same as the average ETrF over the 24 h average and 
the consideration of the sloping effects over terrain areas, ETd can be estimated by [Allen et al., 2007]: 

,( )(d rad r r d )ET C ET F ET=                                                                (1.42) 
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where subscripts i and d indicate instantaneous and daily values respectively; subscripts “pixel” and 
“horizontal” represent respectively the value for a specific pixel at certain slope and aspect conditions 
and value calculated for a horizontal surface. For applications to horizontal areas, Crad=1.0. ETr,d is 
cumulative daily reference ET [Allen et al., 2007]. 

1.3 Problems/issues  

Although great progress has been made since 1970s on a number of methods from an empirical 
simplified equation to a more complex physically based dual-source energy balance model using the 
remote sensing technology to estimate regional surface turbulent fluxes, there are still some problems 
that have not been solved reasonably, which are mainly associated with the parameterization of land 
surface fluxes at regional/global scales, retrieval accuracy and physical interpretation of different 
surface variables retrieved from satellite data, temporal and spatial data/model scaling from one scale 
to other scale, validation of the latent heat flux obtained from models at regional/global scale, etc.. 
These problems will be discussed briefly below. 

1.3.1 Problems related to remotely sensed data itself 

Remotely sensed data are acquired instantaneously and can only provide instantaneous two-
dimensional spatial distribution of land surface variables such as surface albedo, surface vegetation 
fraction, surface temperature, surface net radiation and soil moisture, etc, which are indispensable 
variables to know for remote sensing estimate of land surface ET. This is one of the specialities of 
remote sensing technique, as well as the distinct predominance of remote sensing technique in 
estimating spatial distribution of land surface ET at regional/global scale. These speciality and 
predominance have great impact on the spatial scaling from the "point" to the regional scale. However, 
temporally integrated daily, weekly and monthly ETs at regional and global scales are required for 
many ET-related disciplines. Therefore, temporal scaling, which is one of the weaknesses of remotely 
sensed data, is needed to convert the instantaneously spatial ET to a longer-time value. Moreover, due 
to the effect of cloud coverage, it is impossible to provide the two-dimensional spatial patterns of land 
surface variables under the clouds by the optical remote sensing and consequently impossible to 
estimate the surface instantaneous ET over the areas covered by clouds with optical remote sensing 
data. Nowadays, great progress has been made to convert the instantaneous ET to the daily value on 
clear-sky days while little work or progress has been done on the temporal scaling from instantaneous 
remote sensing ET to weekly/monthly remotely based-ET due to the coarse spatial resolution of 
microwave remote sensing data and the inaccuracy of the surface variables used in remote sensing 
models retrieved from the microwave data, as well as the effects of cloud cover. 
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1.3.2 Uncertainty of the remote sensing ET models 

Over the past 30 years, a variety of remote sensing ET models have been developed to estimate 
the spatial distribution of ET at various scales ranging from the field (simplified empirical equation) to 
regional (single-source or dual-source models) and continental scales (eg. ALEXI). Single-source 
models can be applied with a relatively high accuracy over homogeneous areas (eg. dense vegetation), 
while over the arid and semi-arid areas (eg. partially vegetated cover) two-source models are 
especially required to separately model the heat interactions between soil and atmosphere and between 
vegetation and atmosphere. However, as reviewed in the previous sections, each model developed has 
its advantages and disadvantages (weaknesses) and was applied successfully to some extent to some 
conditions. Since, in the different areas of the world, there exist great differences in the land surface 
characteristics, in the climate and terrain etc., no model developed nowadays can be used everywhere 
in the world without any modification or improvement to estimate the ET from satellite data. A big 
challenge in the development of remote sensing ET model is to develop a new parameterization of 
land surface ET with only land surface variables and parameters directly or indirectly derived from 
satellite data. 

1.3.3 Uncertainties in the accuracy of the retrieved land surface variables (parameters) 

The presence of the atmosphere between land surface and sensors at satellite level disturbs the 
radiances measured by a radiometer at the top of the atmosphere. These radiances result primarily 
from emission/reflection of surface modulated by the effects of absorption, diffusion and emission of 
the atmosphere. The passage of the radiances measured at the top of the atmosphere to the 
macroscopic land surface parameters (variables) and physics of surfaces requires the corrections for 
the atmospheric effects and the connection of the surface parameters (variables) derived directly from 
satellite data to other surface parameters (variables) through physical models.  

Although great progress has been made nowadays to retrieve quantitatively land surface variables 
(parameters) from remotely sensed data, accuracy of some variables (parameters), such as surface 
temperature, LAI, vegetative coverage, plant height, etc., required in remote sensing ET models still 
needs to be improved. In addition, due to the influences of vegetation architecture, sunlit fractional of 
vegetation and solar zenith angle, etc., observational angular effect is a significant factor affecting the 
retrieval of radiometric surface temperature especially over heterogeneous surfaces [Norman et al., 
1995]. Differences in received radiances will occur due to the differing amounts of soil and vegetation 
in the filed of view when sensor viewing changes from one angle to another, while over homogeneous 
dense, well-watered vegetative surfaces, the effect is less important [Carlson et al., 1995a; Anderson et 
al., 1997]. Data obtained during the ISLSCP FIFE program have shown that difference of surface 
temperature obtained at nadir and 60 degrees in zenith angle can reach as large as 5 oC [Anderson et al., 
1997], implying that a large and unaccepted error on ET estimate would be generated if the angular 
effect is neglected. In order to take into account this angular effect in the development of dual-source 
remote sensing ET models, methodologies must be developed to estimate accurately the component 
temperatures of surface (vegetation and ground) from multispectral and multi-angular satellite 
measurements. 
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1.3.4 Lack of the measurements of near-surface meteorological variables 

In most remote sensing data based ET models, whatever the single-source or dual-source models 
are, meteorological data (air temperature, atmospheric pressure, wind speed, relative humidity) at 
PBL-height or at near-surface height at satellite pixel scale are indispensable and spatial interpolation 
method is often used to get these meteorological data at satellite pixel scale from discrete 
meteorological stations. Because the big difference of the climate and terrain conditions may exist in 
the study region and the implementation of meteorological stations is often sparse and irregular in the 
world, accuracy of the non-physics and merely spatial-statistics based interpolation needs to be 
improved either by developing physically static- or dynamic-feedback interpolation methods based on 
remote sensing data or by making use of atmospheric reanalysis data at high spatial-resolution. 
Another approach to improve the accuracy of spatial data interpolation is to integrate the remote 
sensing ET models with atmospheric general circulation models or numerical weather forecast models, 
which maybe one of the promising subjects in the future for the regional ET estimates with remotely 
sensed data. 

1.3.5 Spatial and temporal scaling effects 

Scaling problem is of nature much more fundamental since it implies a conceptual analysis of the 
physical significance of the measured quantities (variables). Indeed, the diversity of continental 
surfaces involves spatial (vertical and horizontal) and radiometric heterogeneities of surface, 
considering the spatial resolution of the current onboard sensors varying from 10-2 to 101 km2, it is 
therefore necessary to be able to define and interpret correctly surface parameters (variables) 
independent of the scale used, as well as the processes necessary to validate this definition. 

Simply speaking, scaling effect in the derivation of surface turbulent fluxes is shown in the form 
of whether functions of parameters and variables obtained over one scale can be used at other scales 
(local/regional/large) [Carlson et al., 1995a]. It seems general that models applicable for deriving 
surface fluxes/parameters at local scale may not be appropriate for applications at a larger scale 
because of the heterogeneities of the surface and non-linearity of the models [Carlson et al., 1995a]. 

Since 1980s, several international field programs have been designed to obtain useful surface 
parameters and study the issue of scaling from point to regional- or global-scale estimates of the 
surface energy fluxes [Carlson et al., 1995a]. The spatial resolution of thermal infrared bands is 
usually coarser than that in visible and near infrared bands, which will lead to a scale difference in the 
land surface parameters indispensable to ET estimates between surface temperature obtained from 
thermal bands and vegetation indices derived from visible and near infrared bands [Courault et al., 
2003; Gowda et al., 2007].  

The possibility of resolving all problems raised by scaling effects may be to a great extent 
associated with the development of the scaling theory and further with the fusion of multi-scale remote 
sensing observations [McCabe and Wood, 2006; Gowda et al., 2007].  

1.3.6 Lack of the land surface ET at satellite pixel scale for the truth validation 

Comparisons between turbulent heat fluxes derived from remote sensing ET models and in-situ 
measured data are required to evaluate the reliability and accuracy of the applied ET models. Although 
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it may be feasible and reasonable to validate pixel-averaged fluxes derived from remote sensing ET 
models with traditional measurements mainly conducted at the "point" scale over uniform areas, 
problems will be encountered when validation is performed over complicated land surface areas.  

Nowadays, several conventional techniques such as Bowen ratio, eddy correlation system and 
weighing lysimeters have been commonly applied to measure the ET at ground level. Lysimeters 
provide the only direct measure of water flux from a vegetated surface. Its measurements can therefore 
be used as a standard for evaluating the performance of other physically based ET models. However, 
data measured by Lysimeters are essentially point data and thus cannot be used for validating the 
regional ET estimates [Kairu, 1991]. Study has shown that measurements from Bowen ratio and large 
weighing lysimeters for irrigated alfalfa during advective conditions can differ by up to 29% [Blad and 
Rosenberg, 1974; Todd et al., 2000]. Eddy correlation technique, based on the principle that 
atmospheric eddies transport the entities of water vapor, CO2, and heat with equal facility, is 
particularly useful for rough surfaces with high coefficients of turbulent exchange [Kairu, 1991]. It has 
overtaken Bowen ratio as being the most preferred micrometeorological technique for ET 
measurements in the past few decades [Farahani et al., 2007]. The source area of an eddy correlation 
system generally represents an upwind distance of about 100 times the sensor height above the surface 
[Campbell and Norman, 1998], which is appropriate to validate the ET at pixel sizes of an order of 
hundred meters. In the past decades, most studies used measurements conducted by the Bowen Ratio 
Energy Balance (BREB) and the eddy correlation system to validate ET at local and regional scales. 
Angus and Watts [1984] showed that LE measured by Bowen ratio was dependent on the range of 
Bowen ratio values. For ET at the potential rate, relative errors of up to 30% in Bowen ratio can 
produce relative errors of 5% in LE. However, as soil water becomes less available, the precision in 
LE will decrease [Kalma and Jupp, 1990]. Energy balance non-closure in eddy correlation, typically 
higher over strongly evaporating surfaces such as irrigated crops [Farahani et al., 2007], can reach up 
to 20% even for non-advective conditions [Gowda et al., 2007]. Measurements from eddy correlation 
system at night under low wind-speed stable conditions can yield large errors and the instrument errors 
and atmospheric stability contribute to the sources of errors [Gurney and Camillo,1984; Shuttleworth, 
2007]. 

Validation of remote sensing ET derived from satellite data at high spatial resolution, such as TM 
and ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) data, was 
generally performed using the measurements made by the BREB and eddy correlation system. 
However, difficulties still remains in validation of ET estimated from low spatial resolution satellite 
data such as MODIS, GOES whose pixel size in thermal bands is a magnitude of an order of 
kilometers [Carlson, et al., 1995a].  

The newly developed (Extra-) Large Aperture Scintillometers (XLAS, LAS) provide a promising 
approach to validate the remote sensing ET at much larger scales [Meijninger et al., 2002; Hoedjes et 
al., 2002; Hemakumara et al., 2003; Hoedjes et al., 2007]. Scintillometers are regarded as the unique 
possibility of measuring the sensible heat flux averaged over horizontal distances comparable to the 
grid size of numerical models and satellite images [Kohsiek et al., 2002] and thus can be employed to 
validate to a certain degree the regional turbulent heat fluxes derived from remote sensing models. One 
limitation of using Scintillometers is the saturation of scintillation, which can be overcome by using 
either large, incoherent transmitter and/or receiver apertures or a longer wavelength [Kohsiek et al., 
2002; Kohsiek et al., 2006].  
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1.4 Main research contents and basic conclusions 

Focused on the issues/problems identified above throughout a complete overview of the regional 
ET estimation from remotely sensed data, this work thus concerns the methodological development 
permitting to determine the regional land surface ET from the MODIS data onboard the polar satellites 
Terra and Aqua. 

This thesis is composed of 6 chapters. 

In the first chapter, the state of the art on the estimate of the regional ET from satellite data is 
presented. An overview of the commonly applied ET models using remotely sensed data is made to 
provide an insight into the estimate of ET over a regional scale from satellite data. The main inputs, 
assumptions, theory, advantages and drawbacks in each model are discussed. Moreover, approaches to 
the extrapolation of instantaneous ET to the daily values are also briefly presented. In the final part, 
associated problems regarding these remotely sensed ET models are analyzed to show objectively the 
limitations and promising aspects of the estimation of regional ET based on remotely sensed data and 
ground-based measurements and the structure of this thesis is also briefly given in this chapter. 

The second chapter of this thesis is devoted to the determination of land surface temperature (LST) 
from the Chinese geostationary meteorological satellite data - FengYun 2C (FY-2C). Land surface 
temperature is recognized to be one of the priority parameters and made special attentions in the study 
of our environment and in the estimate of ET. On the basis of the radiative transfer theory, this chapter 
addresses the retrieval of the LST from the FY-2C data in two thermal infrared channels IR1 (10.3-
11.3μm) and IR2 (11.5-12.5μm), using the Generalized Split-Window (GSW) algorithm. This chapter 
is broken up into 4 parts. The first describes the theory associated with the LST retrieval using the 
GSW algorithm and presents the algorithm development for FY-2C data. The second gives the results 
and the numerical values of the coefficients in the GSW algorithm. The sensitivity and error analyses 
in term of the uncertainty of the Land Surface Emissivity (LSE) and Water Vapor Content (WVC) in 
the atmosphere as well as the instrumental noise are also presented in this part. In addition, in order to 
compare the different formulations of the split-window algorithms, this part gives also the 
intercomparsion of the LSTs estimated by several split-window algorithms. The third part presents the 
main results obtained in this work. The fourth part gives an example of retrieving LST from FY-2C 
satellite data and conclusions of this chapter. 

We approach in the third chapter the restitution of the directional land surface emissivity from the 
combination of the MODIS TIR data and MODIS mid-infrared (MIR) data with emphasis on the 
modeling of the land surface bidirectional reflectivity in MIR channel. The first part of this chapter 
describes the methodology to retrieve directional emissivity and the development of BRDF model in 
MIR region. The second describes the study area, MODIS data and data processing for estimating 
directional emissivity from MODIS data. The third part presents some preliminary results and cross-
validation with the MODIS land surface temperature/emissivity product MYD11B1 data. The last part 
will give the conclusion of this chapter. 

The fourth chapter is devoted to study the impact of spatial heterogeneity of leaf area index (LAI) 
on the estimate of directional gap fraction. Directional gap probability or gap fraction is a basic 
parameter in the optical remote sensing modeling and is closely related to the vegetation fraction 
required by most of the ET models. The first part of this chapter provides the theoretical framework to 
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estimate the scaling effect of directional gap probability raised by two different aggregation schemes 
from local scale to larger scale. In the second part, we present the different types of remotely sensed 
LAI images obtained from VALERI database. In the third part, the scaling effect associated with the 
non-linear relationship between LAI and gap probability is quantified over several types of landscape 
and a new parameter is introduced to compensate the scaling effect. In the last part, a conclusion of 
this chapter is given. 

The fifth chapter is devoted to the estimation of regional ET from MODIS data over arid and 
semi-arid regions. The first part of this chapter recalls the principle of the Ts-VI triangle method and 
highlights the assumptions involved in the methodological development and the advantages and 
disadvantages of the Ts-VI method. The second part is devoted to the development of a practical 
algorithm for quantitative determination of dry and wet edges in the Ts-VI triangle from MODIS/Terra 
data and products. The third part describes the study region and data used in the present study and 
gives a preliminary validation of satellite derived sensible heat flux with the field measurements made 
by the LAS during the Heihe Field Experiment from May 20th to August 21st, 2008. The last part 
gives the conclusion of this chapter.  

The sixth chapter is mainly devoted to the conclusions of this thesis and gives some future trends 
and prospects.  
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Land Surface Temperature (LST) is not only a good indicator of both the energy equilibrium of 
the Earth’s surface and greenhouse effects, but is also one of the key variables controlling fundamental 
biosphere and geosphere interactions between the Earth’s surface and its atmosphere. It can play either 
a direct role such as when estimating longwave fluxes, or indirectly as when estimating latent and 
sensible heat fluxes [Mannstein, 1987; Sellers et al., 1988]. Moreover, many other applications, such 
as evaportranspiration modeling [Serafini, 1987; Bussieres et al., 1990], estimating soil moisture [Price, 
1980], and climatic, hydrological, ecological and biogeochemical studying [Schmugge and André, 
1991; Running et al., 1994] and so on, rely on the knowledge of LST. Consequently, it is crucial to 
have access to reliable estimates of surface temperature over large spatial and temporal scales. It is 
practically impossible to obtain such information from ground based measurements, whereas the 
satellite observations in the Thermal Infra-Red (TIR) appears to be very attractive since it can give 
access to global and temporal estimates of LST. 

However, the retrieval of the LST from satellite data is a very difficult task because, besides the 
radiometric calibration and the cloud screening procedures, three types of corrections have to be made. 
They are emissivity corrections, atmospheric corrections and topography corrections [Price, 1984]. Up 
to now, many algorithms for estimating the LST from satellite observations have been proposed. They 
may be roughly grouped into three categories: the single channel algorithm [Ottlé and Vidal-Madjar, 
1992; Jiménez-Muñoz and Sobrino, 2003], the split window algorithm [McMillin, 1975; Becker and 
Li, 1990] and the triple window algorithm [Sun and Pinker, 2003].  

The single channel method is a simple inversion of the radiative transfer equation providing that 
the Land Surface Emissivities (LSEs) and the atmospheric profiles are known in advance. The triple 
window method combines two thermal window channels and one middle infrared channel to estimate 
the LST for nighttime satellite observations. The split window method is used to retrieve the LST 
based on the differential water vapor absorption in two adjacent infrared channels. This method was 
firstly proposed by McMillin [1975] to estimate sea surface temperature from satellite measurements. 
Since then, a variety of split window algorithm have been developed and modified to retrieve LST, 
and, currently, most of them have been successfully applied to the LST retrieval from the data 
observed by the AVHRR, MODIS, and Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
instruments [Price, 1984; Becker and Li, 1990; Prata and Platt, 1991; Vidal, 1991; Ulivieri et al., 1992; 
Sobrino et al., 1993; Sobrino et al., 1994; Coll and Caselles, 1997; Becker and Li, 1995; Wan and 
Dozier, 1996; Sobrino and Romaguera, 2004].  

The FengYun-2C (FY-2C), a geostationary meteorological satellite developed by Shanghai 
Academy of Space Flight Technology (SAST, also known as 8th Space Academy) and China Academy 
of Space Technology (CAST, also know as 5th Space Academy) and operated by China Meteorological 
Administration (CMA), was launched on 19 October 2004 and is becoming fully operational in 2006. 
The FY-2C is the Chinese first operational meteorological satellite, which was also the fourth satellite 
of the FY series and is located above the Equator at longitude 105° E, and some 35,800 km away. The 
objective of the mission is to monitor the temperature and the clouds above China and neighboring 
areas and also to provide meteorological information for the Asia-Pacific region. The upgraded 
Stretched-Visible and Infrared Spin-Scan Radiometer (S-VISSR) is one of the major payloads onboard 
the FY-2C. This optical imaging radiometer consists of one visible channel and four infrared channels. 
The characteristics of the instrument are shown in Table 2-1. It can acquire one full disc image 
covering the Earth surface from 60° N to 60° S in latitude and from 45° E to 165° E in longitude per 
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hour and 30 min per acquisition for flood season. 

 
Table 2-1. Specifications of S-VISSR channels: spectral range and spatial resolutions. 

Channel no. Channel name Spectral range (μm) Spatial resolution (km) 

1 IR1 10.3-11.3 5 

2 IR2 11.5-12.5 5 

3 IR3 6.3-7.6 5 

4 IR4 3.5-4.0 5 

5 VIS 0.55-0.90 1.25 

 

The work presented in this chapter aims to retrieve LST from the FY-2C satellite data in two 
thermal infrared channels (IR1, 10.3-11.3 mμ  and IR2, 11.5-12.5 mμ ), using the Generalized 

Split-Window (GSW) algorithm proposed by Wan and Dozier [1996]. Section 2.1 describes the 
theory associated with the LST retrieval using the GSW algorithm and presents the algorithm 
development for FY-2C data. Section 2.2 gives the results and the numerical values of the 
coefficients in the GSW algorithm. The sensitivity and error analyses in term of the uncertainty of 
the LSE and Water Vapor Content (WVC) in the atmosphere as well as the instrumental noise are 
also presented in this section. In addition, in order to compare the different formulations of the 
split-window algorithms, this section gives the intercomparsion of the LSTs estimated by several 
split-window algorithms. Section 2.3 gives an example of retrieving LST from FY-2C satellite 
data. The Conclusion is drawn in Section 2.4. 

2.1 Theory 

2.1.1 Radiative transfer for split-window algorithm 

On the basis of the radiative transfer theory, for a cloud-free atmosphere under thermodynamic 
equilibrium, the channel radiance ( )i iB T  measured at the Top Of the Atmosphere (TOA) in a Thermal 

Infra-Red (TIR) channel of the sensor onboard the satellite, is given with a good approximation as [Li 
et al., 2000] 

_( ) ( ) (1 )i i i i s i atm i i atm i iB T B T R R _ε τ ε↑= + + − τ↓                                                       (2.1) 

where  is the channel brightness temperature observed in channel i  at the TOA, iT iB  is the 

Planck function, ( )i sB T  is the radiance measured if the surface was a blackbody with surface 

temperature sT , iε  is the channel emissivity in channel i , iτ  is the total atmospheric transmittance 

along the target to sensor path in channel i ,  is the thermal path atmospheric upwelling radiance 

in channel i , and  is the channel downwelling atmospheric radiance from the whole hemisphere 

_atm iR↑

_atm iR↓
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in channel i divided by π. The first term on the right hand side of Eq. (2.1) represents the surface 
emission that is attenuated by the atmosphere. The second term represents the upwelling atmosphere 
emission toward the sensor and the third term represents the downwelling atmosphere emission that is 
reflected by the surface and reaches the sensor. 

Inverting Eq.(2.1), one can get 

_1 ( ) (1 )
[ i i atm i i atm i i

s
i i

B T R R
T B _ ]

ε τ
ε τ

↑ ↓
− − − −

=                                                    (2.2) 

1in which B−  is the inverse of the Planck function. Once the channel emissivity iε  is known, there are 

two ways to estimate the LST from satellite data. One way is to use Eq. (2.2) with atmospheric 
radiative transfer model such as MODTRAN 4 [Berk et al., 1998] or 4A/OP [Scott and Chédin, 1981], 
if the atmospheric profile is available from either conventional radiosoundings or satellite soundings. 
Another is to employ the split-window algorithm developed on the basis of the differential water vapor 
absorption in two adjacent infrared channels [McMillin, 1975] if the atmospheric profile is not 
available.  

As S-VISSR sensor onboard FY-2C has two adjacent thermal infrared channels (IR1 and IR2), 
the GSW algorithm proposed by Becker and Li [1990] and Wan and Dozier [1996] is adopted to 
estimate the LST from FY-2C satellite data. According to GSW algorithm, the LST can be expressed 
as 

0 1 2 3 4 5 62 2

1 1( ) (
2 2

i j i
s

T T T T
T a a a a a a aε ε ε ε

ε ε ε ε
) j+ −− Δ − Δ

= + + + + + +                      (2.3) 

with ( )i j / 2ε ε ε= +  and i jε ε εΔ = − . Where  and  are the TOA brightness temperatures 

measured in channels i  (11.0 

iT jT

mμ ) and j  (12.0 mμ ), respectively; iε  and jε  are, respectively, the 

land surface emissivities in channels i  and j ; ε  is the averaged emissivity; εΔ  is the emissivity 

difference between the two adjacent channels; and 0a a6−  are unknown coefficients which will be 

derived below from simulated FY-2C data.. 

2.1.2 Algorithm development for FY-2C  

So far, as there is no available database of in situ LST measurements in coincidence with the FY-
2C overpasses, the only possible way to obtain the coefficient in Eq. (2.3) is to use numerical 
simulation for establishing the database used in the statistical regression. To this end, the atmospheric 
radiative transfer model MODTRAN 4 was used to simulate the TOA radiance with the appropriate 
thermal infrared channel response function of the S-VISSR onboard FY-2C. 

Keeping in mind that a practical LST algorithm should accommodate atmospheric variations wide 
enough to cover all possible real situations, two atmospheric profiles databases were taken into 
account in our simulation. One is the latest version of the Thermodynamic Initial Guess Retrieval 
(TIGR) database TIGR2002, which was constructed by the Laboratoire de Meteorologie Dynamique 
(LMD) and represents a worldwide set of atmospheric situations (2311 radiosoundings) from polar to 
tropical atmospheres with varying water vapor amounts ranging from 0.1 to 8 g/cm2 
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(http://ara.lmd.polytechnique.fr/htdocs-public/products/TIGR/TIGR.html). The other is the six 
standard atmospheric profiles (tropical, mid-latitude summer, mid-latitude winter, sub-arctic summer, 
sub-arctic winter, and US76) stored in the MODTRAN 4. For LST retrieval, we only consider 
atmospheric variation in clear-sky conditions. Consequently, the profiles with relative humidity at one 
of levels greater than 90% in TIGR2002 were discarded as this seldom happens under clear-sky 
conditions. Therefore, 1413 representative atmospheric situations were extracted from TIGR2002. 
Fig.2-1 shows a plot of the atmospheric Water Vapor Content (WVC) as function of the atmospheric 
temperature Ta_1st in the first boundary layer of these selected atmospheres. As shown in this Fig. 2-1, 
the Ta_1st varies from 231 K to 315 K and the atmospheric WVC changes from 0.06 g/cm2 to 6.44 
g/cm2. 
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Fig.2-1  Plot of the atmospheric water vapor content as function of atmospheric temperature 
Ta_1st in the first boundary layer of the selected 1413 atmospheric profiles in TIGR2002. 
 

Taking into account the angular dependence of the TOA radiance, six different Viewing Zenith 
Angles (VZAs) (0°, 33.56°, 44.42°, 51.32°, 56.25°, 60°) varying from 0° to 60° were used in 
MODTRAN simulations. With the VZAs and the radiosoundings mentioned above as MODTRAN 

input, we can obtain the channel atmospheric parameters ( iτ , , ) with spectral integration 

of the channel response function for each VZA and each atmospheric profile. 
_atm iR↑

_atm iR↓

In addition, in order to make the simulation more representatives, the reasonable variations of 
LST are varied in a wide range according to the atmospheric temperature Ta_1st in the first boundary 
layer of the atmospheric profiles used. That is, LST varies from Ta_1st -5K to Ta_1st +15K in steps of 5 K 
for Ta_1st ≥290K, and from Ta_1st -5K to Ta_1st +5K in steps of 5 K for Ta_1st ＜290K. Moreover, 
considering the most land covers, the averaged emissivity ε  varies from 0.90 to 1.0 with a step of 
0.02, and the emissivity difference εΔ  varies from -0.025 to 0.015 with a step of 0.005 were used in 
our simulation [Wan and Dozier, 1996].  

Then for a given LST, in combination with the atmospheric parameters ( iτ , , ), LST 

(

_atm iR↑
_atm iR↓

sT ) and LSE ( iε ), the channel brightness temperature  at the TOA can be simulated according to iT
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Eq. (2.1) with the inverse of Planck’s law. At this stage, the sT  is directly related to the TOA 

measured brightness temperatures  and . The coefficients iT jT 0a a6−  in Eq. (2.3) can be obtained 

through statistical regression method. In total, for the TIGR2002 database and the six standard 
MODTRAN 4 atmospheres, 261738 different situations were obtained for each VZA. 

2.2 Results and analysis 

2.2.1 GSW algorithm coefficients 

In order to determine the coefficients a1-a6 in Eq. (2.3), Wan and Dozier [1996] divided the 
averaged emissivity, atmospheric WVC and atmospheric surface temperature into several tractable 
sub-ranges for improving the fitting accuracy. Taking into account the fact that the S-VISSR sensor 
onboard FY-2C has no atmospheric sounding channels, the atmospheric surface temperature is not 
simultaneously available, and thus it will be substituted in this work for the determination of the 
coefficients in Eq. (2.3) by the approximate Land Surface Temperature (LST) as proposed by Jiang 
and Li [2008].  

For different values of the numerical experiments, in order to improve the accuracy of the 
retrieval LST, for each VZA as done in Wan and Dozier [1996] and in Jiang and Li [2008], the 
averaged emissivity was divided into two groups: one varies from 0.90 to 0.96 and the other ranges 
from 0.94 to 1.0. The WVC was divided into six sub-ranges with an overlap of 0.5 g/cm2: [0, 1.5], [1.0, 
2.5], [2.0, 3.5], [3.0, 4.5], [4.0, 5.5], and [5.0, 6.5] g/cm2. The LST, Ts, was divided into five sub-
ranges with an overlap of 5 K:  K, 275280sT ≤ 295sT≤ ≤  K, 290 310sT≤ ≤  K,  

K,  K. Then, the coefficients 

305 325sT≤ ≤

320sT ≥ 0a a6− in Eq.(2.3) can be obtained through statistical 

regressions method for each VZA and each sub-range. 

As an example, Fig.2-2 displays the coefficients of the GSW algorithm as functions of the secant 
VZA for the sub-range with WVC from 1.0 g/cm2 to 2.5 g/cm2, and LST varying from 290 K to 310 K 
for the two emissivity groups. As shown in this Figure, the coefficients 0a a6−  for other VZAs can be 

linearly interpolated in function of the secant VZA. Similar results are obtained for the other sub-
ranges.  

2.2.2 Estimation of LST 

Fig.2-3 shows, respectively, the histogram of the difference between the actual sT  and the sT  

estimated using GSW algorithm with the coefficients corresponding to the sub-range 
, and  for two different emissivity groups and VZA=0°. The 

Root Mean Square Errors (RMSEs) between the actual and estimated 

[1.0,2.5]WVC ∈ [290 ,310 ]sT K∈ K

sT  is 0.37 K for the emissivity 

group [0.94,1.0]ε ∈ , and 0.48 K for the other emissivity group [0.90,0.96]ε ∈ . Similar results 

were obtained for the other VZAs. 
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Fig.2-2  Coefficients of the generalized split-window algorithm for the sub-range with LST varying from 
290 K to 310 K, and WVC from 1.0 g/cm2 to 2.5 g/cm2.(a) for [0.90,0.96]ε ∈  and (b) for 
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Fig.2-3  Histogram of the difference between the actual and estimated sT  for the sub-range with LST varying 

from 290 K to 310 K, and WVC from  1.0 g/cm2 to 2.5 g/cm2. (a) for [0.90,0.96]ε ∈  and (b) for 

[0.94,1.0]ε ∈  
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In addition, Fig.2-4 gives the RMSEs between the actual and estimated sT  as functions of the secant 

VZA for the two emissivity groups with different sub-ranges. Taking into account that, in reality, the lower 
LST usually accompanied with much less WVC, as shown in Fig.2-1, Therefore, for the LST less than 280 
K, the maximum WVC is 2.5 g/cm2, while for the LST between 275 K and 295 K, the maximum WVC is 
5.5 g/cm2. 

From Fig.2-4, one can see that the RMSEs increase with the increase of the VZA. The RMSEs 
are less than 1 K for all sub-ranges with the VZA less than 30°, or for all sub-ranges with the VZA less 
than 60° and the WVC less than 3.5 g/cm2. The RMSEs increase dramatically with the increase of the 
VZA when the WVC larger than 3.0 g/cm2, with the maximum RMSE of 2.7 K for the sub-range 

[0.94,1.0]ε ∈ , , and [5.0,6.5]WVC ∈ [305 ,325 ]sT K K∈ , for VZA=60°. 

It should be pointed out here that, in practice, the LST is estimated in two steps for actual satellite 
data. Firstly, approximate LSTs are estimated using Eq. (2.3) with the coefficients derived for the 
whole range of LST providing that the sub-ranges of emissivity and WVC are known, and then more 
accurate LSTs are estimated once again using Eq. (2.3), but with the coefficients 0 6a a−  

corresponding to the sub-range of LST which is determined according to the approximate LST 
obtained in the first step. Fig.2-4 also shows the RMSEs between the actual sT  and the sT  estimated 

with the coefficients obtained for the whole range of LST. 

Keeping in mind that the GSW algorithm also requires LSE and WVC as model input, the 
following section will present the determination of these two parameters.  
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Fig.2-4  RMSEs between the actual and estimated sT  as functions of the secant VZA for different 

subranges in two different emissivity groups. 
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2.2.3 Determination of the LSEs 

The LSEs in channels IR1 and IR2 of S-VISSR can be estimated from the LSEs in channels 31 
(11 μm) and 32 (12 μm) of MODIS provided by the MODIS LST product MOD11B1 at 5 km 
resolution. To determine the emissivity relationship between S-VISSR channels and MODIS 31 and 
32 channels, two spectral databases, one from the University of California Santa Barbara (UCSB) 
(http://www.icess.ucsb.edu/modis/EMIS/html/em.html) and the other from the Johns Hopkins 
University (JHU) (http://speclib.jpl.nasa.gov/), are used. The emissivities in the two split-window 
channels of MODIS ( 31ε  and 32ε ) and S-VISSR ( 1IRε  and 2IRε ) were calculated by the integrals of 

the spectral emissivity with the channel response functions over the spectral range of the channels. The 
channel response functions of the two split-window channels for MODIS and FY-2C are displayed 
respectively in Fig.2-5. 
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Fig.2-5  S-VISSR and MODIS split-window spectral response functions. 

 

A statistical relationship between MODIS channels and S-VISSR channels was established by a 
linear regression analysis. As a result, the emissivities in S-VISSR channels IR1 and IR2 are, 
respectively, related to the emissivities in MODIS channels 31 and 32 by Eqs. (2.4) and (2.5). 

1 30.0611 1.0614IR 1ε ε= − +                                                                 (2.4) 

2 0.0210 1.0199IR 32ε ε= − +                                                                (2.5) 

Fig.2-6 shows the emissivities and linear regression results. Only the emissivities of soil, 
vegetation, water, and snow/ice in JHU and UCSB databases were included in this work. Some few 
deviated points in this Figure are due to the fact that the spectral ranges of S-VISSR channels IR1 and 
IR2 are broader than those of MODIS channels 31 and 32 as shown in Fig.2-5. However, as shown in 
Fig.2-6, the results of the linear regression are good with the RMSEs within 0.002, which indicates 
that the emissivities in S-VISSR channels IR1 and IR2 can be directly derived from those in MODIS 
channels 31 and 32, respectively. 
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Fig.2-6  Linear fitting relationship of the emissivities between the S-VISSR channels IR1 and IR2 and 
the MODIS channels 31 and 32, respectively. 

 

Alternatively, the emissivities of the S-VISSR IR1 and IR2 channels can be estimated either with 
the land surface classification as did by Sun and Pinker [2003] or using the method developed by Jiang 
et al. [2006] which combined mid-infrared and thermal infrared data of SEVIRI to retrieve LSE. 

2.2.4 Determination of the atmospheric WVC 

The MODIS total precipitable water product MOD05 provides the atmospheric column water 
vapor amounts, which can be used as the model input when the scanning time of the sensors MODIS 
and S-VISSR is closed each other. However, MODIS provides the instantaneous WVC only four times 
per day, which can not meet the temporal resolutions (an hour) of S-VISSR onboard FY-2C. Since the 
atmospheric WVC changes with time, the method developed by Li et al. [2003] can be used to 
determine the WVC from S-VISSR IR1 and IR2 data. 

According to Li et al. [2003], the atmospheric WVC can be derived by the use of the 
transmittance ratio of split-window channels,  

1 2
j

i

WVC c c
τ
τ

= + ×                                                                (2.6) 
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where  and  are unknown coefficients, 1c 2c iτ  and jτ  are the atmospheric transmittances in the split-

window channels i  and j , the subscript k  denotes pixel , and the k iT  and jT  are the TOA mean 

(or the median) channel brightness temperatures of the  neighboring pixels considered for channels 
 and 

N
i j , respectively.  

On the basis of the numerical results obtained in Section 2.1.2, coefficients  and  can be 

respectively derived as functions of secant VZA as 
1c 2c

)(cos/211.3)cos(/996.14104.28 2
1 θθ +−=c                                              (2.9) 

)(cos/026.3)cos(/954.14056.28 2
2 θθ −+−=c                                         (2.10) 

where θ is VZA. 

Fig.2-7 shows the curve fits of the coefficients c1, c2 as functions of secant VZA. As noted, the 
fitting results are quit well with both R-squares equal to 0.999. In addition, with the actual WVC and 
the transmittance ratio of split-window channels IR1 and IR2 obtained in Section 2.1.2, the RMSE 
between the actual WVC and the WVC estimated using Eqs. (2.6), (2.9) and (2.10) is 0.17 g/cm2, 
which indicates that the fitting results are good. 
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Fig.2-7  Curve fits of the coefficients 1c c2−  in Eq. (2.6) as functions of the VZA 

 

2.2.5 Sensitivity analysis 

As Wan and Dozier [Wan and Dozier, 1996] indicated that the errors of LST estimated by the 
GSW algorithm come mainly from the uncertainties of LSEs, atmospheric properties and the 
instrument noises. These three uncertainties of error are taken into account in this investigation. 

2.2.5.1 Sensitivity analysis to instrumental noises (NE∆T) 

In order to see how significant the effect of the instrumental NE∆T on the retrieval of LST, a 
Gaussian random distribution error of 0.1 K, 0.2 K and 0.5 K are, respectively added to the TOA 
brightness temperatures  and iT jT  in Eq. (2.3). Then we estimate the LST using GSW algorithm with 
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the noised TOA brightness temperatures. As an example, compared the actual LST with the estimated 
LST for the sub-range: [0.94,1.0]ε ∈ , [1.0,2.5]WVC ∈ , and [290 ,310 ]sT K K∈ , the RMSE is 

0.38 K for NE∆T=0.1 K, 0.43 K for NE∆T=0.2 K, and 0.67 K for NE∆T=0.5 K. Compared the RMSE 
of 0.37 K for no instrumental noise, the accuracy of retrieval LST can be affected by 3% for 
NE∆T=0.1 K, by 16% for NE∆T=0.2 K, and by 81% for NE∆T=0.5 K. 

2.2.5.2 Sensitivity analysis to LSEs 

According to the Eq. (2.3), the sensitivity of the uncertainties in LSEs is mainly dependent on the 

terms (1 ) /ε ε−  and 2/( )ε εΔ , which can be written as 

2 52 2
i j iT T T T

a aα
+ −

= + j                                                                   (2.11) 

3 62 2
i j iT T T T

a aβ
+ −

= + j                                                                   (2.12) 

Two cases are considered in this investigation. One is the extremely dry atmospheric condition 
( ) and the other is the extremely wet atmospheric condition ( ). 

With the regression coefficients and the  and 

[0.0,1.5]WVC ∈ [5.0,6.5]WVC ∈

iT jT  simulated in Section 2.1.2, using Eqs. (2.11) and 

(2.12) we can obtain the variations of α  and β . Table 2-2 lists the variations of α  and β  for the 

sub-range: [0.94,1.0]ε ∈ , ,WV[290 ,310 ]sT K K∈ [0.0,1.5]C ∈  and the sub-range [0.94,1.0]ε ∈ , 

, WV , for VZA=0°, respectively.  [290 ,310 ]sT K K∈ [5.0,6.5]C ∈

 

Table 2-2. Statistics of the errors due to the uncertainties in LSEs for the sub-range [0.94,1.0]ε ∈ , 

,WV  and the sub-range [290 ,310 ]sT K K∈ [0.0,1.5]C ∈ [0.94,1.0]ε ∈ , , 

, for VZA=0°. 

[290 ,310 ]sT K∈ K

[5.0,6.5]WVC ∈

CONDITIONS [0.94,1.0]ε ∈ , [290 ,310 ]sT K K∈ , VZA=0° 

Water vapor content 
(g/cm2) 

[0.0,1.5]WVC ∈  [5.0,6.5]WVC ∈  

Variable α  β  α  β  

Range of Values (K) [44.80,61.23] [-135.71,-121.05] [11.57, 34.42] [-70.13,-19.48]

Mean (K) 52.39 -127.60 23.29 -45.56 

Standard deviation (K) 3.10 3.06 4.22 9.32 

From table 2-2 one can see that the values of α  and β  in extremely dry atmospheric condition 

(WV ) are nearly two times as large as those of [0.0,1.5]C ∈ α  and β  in extremely wet atmospheric 

condition, ( ), respectively. This means that the sensitivity of (1[5.0,6.5]∈ ) /WVC ε ε−
2/( )

 and 

ε εΔ  to LST for wet atmospheric condition is decreased two times as that for dry atmospheric 
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condition.  

From Eq. (2.3), the LST error LSTδ  due to the uncertainty in (1 ) /ε ε−  and 2/( )ε εΔ can be 

estimated by,  

2 2 2
2

1( ) ( )LST 2ε εδ α δ β δ
ε ε
− Δ

= +                                                     (2.13) 

Assuming that the uncertainties of (1 ) /ε ε−  and 2/( )ε εΔ  are around 1%, the LST error is 

[1.3K, 1.5K] with the mean of 1.4 K for the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K 
for the wet atmosphere.  

2.2.5.3 Sensitivity analysis to the atmospheric WVC 

It is well known that the WVC in the atmosphere is not easily determined from satellite data. In 
order to see how significant the effect of the uncertainty of the WVC on the retrieval of LST in GSW 
algorithm, the wrong sub-range selection of the WVC is investigated in our work. As mentioned above 
in Section 2.2.1, the WVC was divided into six sub-ranges with an overlap of 0.5 g/cm2. The overlap 
WVC could be fallen into two adjacent sub-ranges. That is, it is included by two sub-ranges and 
corresponded to two pairs of coefficients a0 6a− . We aim to analyze the effect of the overlap WVC 

on the retrieval of LST.  

 

 

 

 

 

 

 

 

 

 

Fig.2-8  Histogram of the difference between the actual and estimated sT  for the overlap water vapor 

content WV  using the coefficients of different sub-ranges. [1.0,1.5]C ∈

C ∈ C ∈

C ∈

 

Fig.2-8 gives an example of the uncertainty of the WVC. From Fig.2-8 one can see that the 
overlap water vapor content WV  falling into two sub-ranges WV  and 

. When we estimate the LST with the water vapor content WV  using 

the coefficients corresponding to the sub-range 

[1.0,1.5] [0.0,1.5]
[1.0,2.5]WVC ∈ [1.0,1.5]

[0.94,1.0]ε ∈ , , and [0.0,1.5]WVC ∈
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[290 ,310 ]sT K∈ K , the RMSE between the actual and the estimated sT  is 0.18 K, while using the 

coefficients corresponding to the sub-range [0.94,1.0]ε ∈ , , and 

, the RMSE is 0.43 K.  

[1.0,2.5]WVC ∈

[290 ,310 ]sT K∈ K

2.2.6 Intercomparison of different formulations of the split-window algorithms 

It is well known that the LST retrieval from satellite observations has been ongoing for several 
decades. Many different formulations of the split-window algorithms have been proposed. They are 
somewhat similar in formulation and several of them are directly inspired from Becker and Li’s 
[Becker and Li, 1990] formulation. In order to perform the intercomparison with the recently proposed 
split-window algorithms, different formulations were used to estimate the LST with the same 
simulated FY-2C data in this work. Those formulations are listed in table 2-3: 

 

Table 2-3. Different formulations of split-window algorithms in literatures. 

AUTHORS FORMULATIONS 

Price, 1984 *
0 1 2 3 4( ) ( )(1 )s i i j i jT a a T a T T a T T a Tjε ε= + + − + − − + Δ  

Prata and Platt, 1991 
*

0 1 2 3
1ji

s

TTT a a a a ε
ε ε ε

−
= + + +  

Vidal, 1991 0 1 2 3 4
1( )s i i jT a a T a T T a aε ε

ε ε
− Δ

= + + − + +  

Ulivieri et al., 1992 0 1 2 3 4( ) (1 )s i i jT a a T a T T a aε ε= + + − + − + Δ  

Sobrino et al., 1993 2
0 1 2 3 4 5( ) ( ) (1 )s i i j i jT a a T a T T a T T a aε ε= + + − + − + − + Δ  

Sobrino et al., 1994 0 1 2 3 4( )s i i jT a a T a T T a a εε
ε

Δ
= + + − + +  

Coll and Caselles, 1997 2
0 1 2 3 4( ) ( ) (1 )s i i j i jT T a a T T a T T a aε ε= + + − + − + − + Δ  

* ( )i j / 2ε ε ε= +  and i jε ε εΔ = −  

 

In addition, Becker and Li [1995] further modified their split-window algorithm [Becker and Li, 
1990] by adding atmospheric water vapor correction as 

0 2 2
i j i

s

T T T T
T A P M j+ −

= + +                                               (2.14) 

with ; 0 0 1A a a w= + εεθ Δ+−−++= )()1))(cos(( 65432 waawaaaP ; 

7 8 9 10 11 12( )(1 ) (M a a w a a w a a w)ε ε= + + + − − + Δ  

where ( )i j / 2ε ε ε= +  and i jε ε εΔ = − ,  is the total precipitable water amount, and θw  is the 

Viewing Zenith Angle (VZA).  
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In order to make the intercomparsion more reasonable, the coefficients from the above equations 
have been recalculated using the same simulated FY-2C data within the same sub-ranges in Section 
2.2.1. As an example, table 2-4 depicts the RMSEs between the actual and the estimated sT  versus the 

secant VZA for the sub-range: [0.94,1.0]ε ∈ , [1.0,2.5]WVC ∈ , and [290 ,310 ]sT K K∈ . From 

table2-4, one can see that the RMSEs increase with the increase of the VZA for all algorithms. In 
addition, except for the algorithms proposed by Price [1984], and Prata and Platt [1991], the sT  

estimated using the other algorithms are comparable, which indicates that the split-window algorithm 
can be successfully applied to the LST retrievals from FY-2C data. 

 

Table 2-4. RMSEs between the actual sT  and the sT  estimated using different formulations of the split-

window algorithms for the sub-range [0.94,1.0]ε ∈ , [1.0,2.5]WVC ∈ , and . [290 ,310 ]sT K∈ K

AUTHORS VZA 
(º) GSW Price84 Prata91 Vidal91 Ulivieri92 Sobrino93 Sobrino94 Coll97 BL95

0 0.37 0.73 1.15 0.38 0.38 0.37 0.38 0.38 0.22

33.56 0.41 0.74 1.26 0.43 0.42 0.42 0.42 0.43 0.25

44.42 0.46 0.74 1.35 0.48 0.47 0.47 0.47 0.47 0.28

51.32 0.52 0.75 1.43 0.53 0.53 0.51 0.53 0.52 0.32

56.25 0.57 0.77 1.49 0.58 0.58 0.57 0.58 0.57 0.36

RMSE 
(K) 

60 0.63 0.80 1.54 0.64 0.64 0.62 0.64 0.62 0.41

 

2.3 Application to actual FY-2C satellite data 

The objective of the present work is to estimate the LST from Chinese first operational 
geostationary meteorological satellite FengYun-2C (FY-2C) data for cloud-free skies. Fig.2-9 gives an 
example of the retrieval LST around Beijing in China during FY-2C satellite scanning on May 15, 
2006 at 11:00 local time. The model inputs are the TOA brightness temperatures, VZA, LSEs, and 
WVC. The TOA brightness temperatures  and VZA are directly extracted from the FY-2C satellite 
data. The LSEs are derived from the emissivities in MODIS channels 31 and 32 provided by 
MODIS/Terra LST product MOD11B1, and the WVC are obtained from MODIS total precipitable 
water product MOD05. Symbols A, B, and C located in red, green and baby blue colored areas in 
Fig.2-9 represent bare soil, cultivated surface and sea surface, respectively.  

In addition, table 2-5 lists the values of the VZA, WVC, LSE, TOA brightness temperature, and 
resultant sT  for one representative pixel in each red, green, and baby blue colored areas in Fig.2-9. 
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Fig.2-9  Map of the LST estimated from FY-2C satellite data at 11:00 local time on May 15, 2006. 

 

Table 2-5. Description of symbols A, B and C in Fig.2-9 

 A (RED) B (GREEN) C (BABY BLUE) 

Longitude (o) 120.06 E 116.15 E 122.75 E 

Latitude (o) 43.70 N 33.84 N 38.47 N 

VZA (o) 53.44 41.96 49.14 

WVC (g/cm2) 0.868 1.465 1.217 

1IRε  0.944 0.962 0.986 

2IRε  0.946 0.966 0.99 

1IRT  (K) 309.42 295.24 281.95 

2IRT  (K) 307.32 294.58 282.20 

sT  (K) 318.35 299.74 286.47 
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It should be pointed out here that the LST estimated from the FY-2C satellite data has not been 
validated with in situ measurements since there are no in situ measurements available. In addition, due 
to the extreme difficulty or impossibility to get the LST at ground level representative at 5km*5km, 
we will try to cross validate LST derived from FY-2C data in the future with the well validated LST 
product provided by MODIS data.  

2.4 Conclusions 

In this chapter, we have addressed the retrieval of the Land Surface Temperature (LST) from the 
Chinese first operational geostationary meteorological satellite FengYun-2C (FY-2C) data in two 
thermal infrared channels IR1 (10.3-11.3 mμ ) and IR2 (11.5-12.5 mμ ), using the Generalized Split-

Window (GSW) algorithm proposed by Wan and Dozier [1996]. 

Taking into account the fact that the S-VISSR sensor onboard FY-2C has no atmospheric sounding 
channels, the coefficients in the GSW algorithm were derived by dividing the ranges of the mean 
emissivity, the atmospheric Water Vapor Content (WVC), and the LST into tractable sub-ranges, and 
were recalculated using a statistical regression method from the numerical values simulated with an 
accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of the atmospheric and 
surface conditions. The simulation analysis showed that the LST could be estimated by the GSW 
algorithm with the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with the Viewing 
Zenith Angle (VZA) less than 30° or for the sub-ranges with VZA less than 60° and the atmospheric 
WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities (LSEs) are known. 

As the GSW algorithm requires WVC and LSE as model input, the MODIS total precipitable water 
product MOD05 providing the atmospheric column water vapor amounts, was used to obtain the WVC 
when the scanning time of the sensors MODIS and S-VISSR is closed each other. As for the other 
scanning times of S-VISSR, the atmospheric WVC can be determined using the method developed by 
Li et al. [2003]. As for LSE, the MODIS/Terra LST product MOD11B1 providing the LSEs with 5 km 
resolution for the thermal infrared channels 31 and 32, was used to derive the LSEs in S-VISSR 
channels IR1 and IR2, respectively.  

In addition, the sensitivity and error analyses in term of the uncertainty of the LSE and WVC as 
well as the instrumental noise were also performed in this work. The results show that the accuracy of 
retrieval LST can be affected by 3% for NE∆T=0.1 K, by 16% for NE∆T=0.2 K, and by 81% for 
NE∆T=0.5 K for the sub-range [0.94,1.0]ε ∈ , [1.0,2.5]WVC ∈ , and [290 ,310 ]sT K K∈ ; given 

the uncertainties of (1 ) /ε ε−  and 2/( )ε εΔ  around 1%, the LST error is [1.3K, 1.5K] with the mean 

of 1.4 K for the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K for the wet atmosphere; and 
the effect of the uncertainty of the WVC on the retrieval LST could be around 0.3 K. 

Moreover, in order to compare the different formulations of the split-window algorithm, several 
split-window algorithms were used to estimate the LST with the same simulated FY-2C data. The 
result of the intercomparsion showed that most of the algorithms give comparable results, which 
indicates that the split-window algorithm can be successfully applied to the LST retrievals from FY-
2C data. 
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Chapter 3 

 
Estimation of Land Surface Directional 

Emissivity in Mid-InfraRed Channel 

around 4.0μm from MODIS Data 
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Up to now many Bidirectional Reflectance Distribution Functions (BRDFs) have been developed 
to describe the bidirectional reflectance in visible and near infrared channels as a function of both 
illumination and view geometries [Nilson and Kuusk, 1989; Roujean et al., 1992; Wanner et al., 1995; 
Lucht and Roujean, 2000; Pokrovsky and Roujean, 2002; Lucht, 1998]. The semi-empirical kernel-
driven models [Roujean et al., 1992; Wanner et al., 1995; Lucht and Roujean, 2000; Pokrovsky and 
Roujean, 2002] have been proven successfully in application to AVHRR, Polarization and 
Directionality of Earth Reflectance (POLDER), MODIS, Multi-angle Imaging Spectra-Radiometer 
(MISR), laboratory, and field-measured multi-angular reflectance data and have been shown to fit 
observed BRDF data well [Roujean et al., 1992; Wanner et al., 1995; Lucht, 1998; Lucht and Roujean, 
2000; Pokrovsky and Roujean, 2002]. Only a few works focused on the BRDF modeling in the mid-
infrared region (MIR), but all of them have aimed to estimate the emissivity in MIR from the 
bidirectional reflectance derived from AVHRR and MSG/SEVIRI data [Jiang et al., 2006; Li et al., 
2000; Petitcolin et al., 2002].  

This chapter will be devoted to estimate the land surface directional emissivity in MIR channel 
from the bidirectional reflectance derived from MODIS data in two adjacent MIR channels. Section 
3.1 recalls the methodology to retrieve directional emissivity in MIR channel. Section 3.2 describes 
the study area, MODIS data and data processing. Section 3.3 presents some preliminary results and 
cross-validation with the MODIS land surface temperature/emissivity product MYD11B1 data. Finally, 
conclusions are given in section 3.4. 

3.1 Determination of directional emissivity in MIR channel from MODIS data 

3.1.1 Retrieval of the bidirectional reflectivity in MIR channel from MODIS data 

The instrument MODIS onboard Terra and Aqua satellites has two adjacent MIR channels 22 and 
23 centered at 3.97 um and 4.06 um respectively. Based on the difference in the solar reflection in 
these two channels, and assuming that the surface bidirectional reflectivities are equal in channels 22 
and 23, and that the ground brightness temperatures in these two adjacent channels are the same if the 
contribution of the direct solar radiation is not considered, Tang and Li [2008a] developed a method to 
retrieve the bidirectional reflectivity (ρb) in the MIR channel from MODIS channels 22 and 23 with  

0
_ 22

22

( ) (g
b s

)gB T B T
R

ρ
−

=                                                                                  (3.1) 

where B is the Planck function,  is the daytime ground brightness temperature of MODIS channel 

22, 
_ 22gT

22
sR  is the solar irradiance at ground level in MODIS channel 22, 0

gT  is the MIR ground brightness 

temperature without the contribution of the solar direct beam and can be estimated from the ground 
brightness temperatures  and  in the channels 22 and 23 using _ 22gT 23_gT

( ) ( )2
23_22_323_22_2122_

0
gggggg TTaTTaaTT −+−++=                             (3.2) 

in which the coefficients  are dependent only on the Solar Zenith Angle (SZA). More details 

concerning both the development and the application of this method with MODIS data can be found in 
Tang and Li [2008a]. 

1a a− 3
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3.1.2 Estimation of the directional emissivity in MIR channel from bidirectional reflectivity  

For an opaque medium in thermal equilibrium, the directional emissivity ε(θ) is related to the 
hemispherical directional reflectance ρh(θ) by the Kirchhoff’s law as: 

)(1)( θρθε h−=                                                                               (3.3) 

with 

∫ ∫=
π π

ϕθθθϕθθρθρ
2

0

2/

0
)cos()sin(),,()( dd iiiibh

                                                   (3.4) 

where θ is the viewing zenith angle, θi is the incident radiation angle, φ is the relative azimuth angle 
between the observation and incident directions, and ρb is the bidirectional reflectance of land surface 
in MIR channel retrieved with Eq. (3.1). 

Based on the theory that land surface reflectance typically consists of three components: the 
isotropic scattering, the volumetric scattering and the geometric-optical surface scattering, a kernel-
driven BRDF model, the RossThick-LiSparse-R model, was proposed to describe the non-Lambertian 
reflective behavior of land surface in visible and near-infrared regions [Roujean et al., 1992; Lucht, 
1998; Lucht and Roujean, 2000]:  

),,(),,(),,( ϕθθϕθθϕθθρ igeogeoivolvolisoib fkfkk ++=                                       (3.5) 

where kiso is the isotropic scattering term, kvol is the coefficient of the Roujean’s volumetric kernel fvol, 
and kgeo is the coefficient of the LiSparse-R geometric kernel fgeo. 

For a plane-parallel dense vegetation canopy with uniform leaf angle distribution, and equal leaf 
reflectance and transmittance, the Roujean’s volumetric kernel [Roujean et al., 1992] is given by 

3
1sincos)

2
(

coscos
1

3
4),,( −⎥⎦

⎤
⎢⎣
⎡ +−

+
= ξξξπ

θθπ
ϕθθ

i
ivolf                        (3.6) 

where ξ is the phase angle, related to the conventional angles by 

ϕθθθθξ cossinsincoscoscos ii +=                                                          (3.7) 

Considering the mutual shadowing between different protrusions of vegetation canopy, the 
reciprocal LiSparse geometric kernel fgeo derived by Wanner et al. [1995] and modified by Lucht [1998] 
is employed 

''''' secsec)cos1(
2
1secsec),,( iiigeo Gf θθξθθϕθθ ++−−=                        (3.8) 

where G(θ, θi, φ) is the overlap area between the view and solar shadows and given by 

)sec)(seccossin(1),,( ''
ii tttG θθ

π
ϕθθ +−=                                        (3.9) 

in which 
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with 

ϕθθθθ costantan2tantan '''2'2
iiD −+=  

h/b and b/r are the dimensionless crown relative height and shape parameters, respectively.  

According to Eqs. (3.3), (3.4) and (3.5) and assuming that the BRDF shapes in the MIR spectral 
region are the same as the ones in visible and near-infrared regions [Jiang and Li, 2008], the 
directional emissivity in MODIS MIR channel is given by 

)()(1)( θθπθε geogeovolvoliso IfkIfkk −−−=                                         (3.10) 

with  ∫ ∫=
π π

ϕθθθϕθθθ
2

0

2/

0
)cos()sin(),,()( ddfIf iiiixx

in which the subscription x represents vol or geo. 

As shown in Eq. (3.10), the integrals of Ifvol(θ) and Ifgeo(θ) over the incident radiation angle θi and 
the relative azimuth angle φ are complicated mathematical expressions and can not be analytically 
derived. As used in MODIS BRDF/Albedo products, taking h/b=2 and b/r=1, i.e., the spherical crowns 
are separated from the ground by half their diameter, Jiang and Li [2008] showed numerically that the 
integrals of the Roujean’s volumetric kernel fvol (Eq.(3.6)) and the reciprocal LiSparse geometric 
kernel fgeo (Eq.(3.8)) can be written with a good approximation as 

)4382.21/exp(0128.00299.0)( θθ +−=volIf                                                       (3.11) 

⎥⎦
⎤

⎢⎣
⎡ −
−−−= 2)

8171.68
9545.90(2exp3410.00112.2)( θθgeoIf                                         (3.12) 

It should be noted that if a series of ρb with different angular configurations are retrieved from the 
MODIS data using Eq. (3.1), one can get the parameters kiso, kvol and kgeo from Eq. (3.5). Knowing 
these three parameters, the directional emissivity in MIR channel can be obtained with Eqs. (3.10), 
(3.11) and (3.12). 

3.2 Study area and data processing 

A region of Egypt and Israel with latitude from 28.0° N to 32.0° N and longitude from 30.0° E to 
36.0° E was chosen in this study. Fig.3-1 shows the land use map of this study area generated from 
MODIS land cover type 2004 L3 global 1 km product MOD12Q1 
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(http://edcdaac.usgs.gov/modis/mod12q1v4.asp) and classified by the International Geosphere-
Biosphere Programme (IGBP). From this Figure, we can see that the major land cover types in this 
area are barren or sparsely vegetated, croplands, and open shrubland. Since the classification scheme 
of IGBP does not include bare soil surface, to discriminate from barren or sparsely vegetated, this 
surface type will be used in our following work. The reason to choose this region is that a series of 
cloud-free MODIS data are available over this region from July 12 to July 30 of 2005. Therefore, the 
three parameters kiso, kvol and kgeo in Eq. (3.5) can be determined with the retrieved bidirectional 
reflectivity ρb under the assumption that the land surface remains unchanged during this period. 
 

Water Barren or Sparsely Vegetated 
Open Shrubland Urban and Built_Up 

Croplands 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3-1  Land use map of the study area generated from MODIS land cover type 2004 L3 global 1 km 
product (MOD12Q1) and classified by IGBP classification scheme. 

 

The MYD021KM, MYD03 and MYD35_L2 product files provided by the National Aeronautics 
and Space Administration (NASA) Goddard Space Flight Center (GSFC) Level 1 and Atmosphere 
Archive and Distribution System (LAADS) (http://ladsweb.nas.com.nasa.gov/data/) were used in our 
work. The MYD021KM data, calibrated Earth View data at 1 km resolution by the MODIS 
Characterization and Support Team (MCST), are the Top of Atmosphere (TOA) radiances and 
reflectances. The geolocation dataset, MYD03, provides latitude, longitude, ground elevation, solar 
zenith and azimuth angles, and satellite zenith and azimuth angles for each 1 km sample. The 
MYD35_L2 is a cloud mask product which gives a clear-sky confidence level (clear, probably clear, 
uncertain, cloudy) to each IFOV (Instantaneous Field Of-View). More details about these product files 
can be found in [Wan, 2008]. Ten days MODIS data with cloud-free conditions at the moment of 
MODIS overpasses, from July 12 to July 30 of 2005 were selected. Table 3-1 gives the dates and 
acquisition times of these ten days MODIS data. The European Centre of Median-range Weather 
Forecast (ECMWF) reanalysis (ERA) operational deterministic model data directly obtained from the 
French Meteorological Center with latticed resolution of 0.5° in both latitude and longitude [Uppala et 
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al., 2005] were used to perform atmospheric corrections for MODIS MIR data in this work. In addition, 
taking into account the real atmospheric path length between the surface and the satellite, global DEM 
data at 30 arc-s (1 km) resolutions (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html) were 
also used. 

 

Table 3-1. Date and acquisition time for ten days MODIS data used in this study 

Date 
(dd/mm/year) 

UTC time 
(hh:mm) 

Date 
(dd/mm/year) 

UTC time 
(hh:mm) 

12/07/2005 11:00 23/07/2005 10:40 

14/07/2005 10:45 24/07/2005 11:25 

15/07/2005 11:30 26/07/2005 11:10 

16/07/2005 10:35 28/07/2005 11:00 

19/07/2005 11:05 30/07/2005 10:45 

 

Based on the clear-sky confidence level (clear, probably clear, uncertain, cloudy) assigned to 
each IFOV in MYD35_L2, clear and probably clear pixels were taken as clear, and uncertain and 
cloudy pixels were taken as cloudy in our study. The cloudy pixels assigned in this study were then 
firstly screened out in the retrieval of ρb. Since the satellite instrument measures only the radiances at 
the Top of Atmosphere (TOA), the data acquired by MODIS MIR channels 22 and 23 have to be 
corrected for the atmospheric effects in order to obtain the radiances or brightness temperatures at 
ground level. These atmospheric corrections were performed using the atmospheric radiative transfer 
model-MODTRAN 4 with the ECMWF data and DEM data. Selection of ECMWF output data as 
atmospheric profiles is due to the fact that the MIR channels 22 and 23 are not too sensitive to the 
change of water vapor content in the atmosphere. More details of atmospheric corrections for MODIS 
MIR channels can be found in Tang and Li [2008a]. After having performed the atmospheric 
corrections, the bidirectional reflectances in MODIS MIR channel 22 can be estimated with Eqs. (3.1) 
and (3.2).  

The three parameters kiso, kvol and kgeo in Eq. (3.5) for each pixel are then determined by a 
Levenberg-Marquardt minimization scheme with the retrieved ρb and corresponding illumination and 
view angles extracted from MYD03 data. Finally, the directional emissivities at each view zenith angle 
for MODIS MIR channel are obtained with Eq. (3.10). 
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3.3 Results and validations 

The objective of the present work is to estimate the directional emissivity from MODIS MIR 
channels. Fig.3-2 gives an example of the retrieved directional emissivity map for July 24, 2005 at 
11:25 UTC time.  

As shown in Fig.3-1, points A, B, C, and D marked in Fig.3-2 represent bare soil, open shrubland, 
barren or sparsely vegetated, and croplands surfaces respectively. For the entire study area, the 
directional emissivities in MODIS MIR channel 22 vary from 0.6 to 1.0, and they are usually less than 
0.80 over the bare areas, while the opposite is observed over the vegetated areas. Fig.3-3 illustrates 
histograms of the estimated directional emissivities for the four major land covers (bare soil, open 
shrubland, barren or sparsely vegetated, and croplands surfaces) in the entire study area. As displayed 
in Fig.3-3, the directional emissivity in MIR channel varies from 0.67 to 0.78 with mean=0.73 and 
standard deviation (std)=0.021 for the bare soil surfaces, and from 0.83 to 0.94 with mean=0.89 and 
std=0.019 for the open shrubland, while for barren or sparsely vegetated surfaces the directional 
emissivity in MIR channel ranges from 0.89 to 0.98 with mean value of 0.94 and std=0.013, and for 
croplands, the emissivity in MIR channel is the highest and ranges from 0.92 to 0.99 with mean=0.97 
and std=0.012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3-2  Map of the directional emissivity in MIR channel for July 24, 2005. 
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Fig.3-3  Histogram of the directional emissivity in MIR channel estimated from MODIS data for the 
major land cover types in the study area. Std=standard deviation. 

 

Fig.3-4 displays the sun and satellite zenith and azimuth angles in polar representation at four 
locations for ten clear days from July 12 to July 30 of 2005 which we used to retrieve the directional 
emissivity. For these locations, the sun is in the West direction and coincides nearly with the satellite 
along track direction. The observation directions are almost in the principal plane and lie in the east 
and west directions according to the instrument scanning directions. It should be pointed out here that 
although the change of solar zenith angle is very small during this period for a given pixel, the viewing 
zenith angle of each pixel (location) varies significantly from 0° to 60° from July 12 to July 30. We 
can, consequently, get the parameters kiso, kvol and kgeo using Eq. (3.5) with a series of ρb and different 
angular configurations.  

Fig.3-5(a) shows the comparison of the bidirectional reflectance ρb estimated directly from 
MODIS MIR data (Eq.(3.1)) with ρb modeled using Eq. (3.5) at four locations for the ten clear days. 
The Root Mean Square Error (RMSE) and Mean Error (ME) are respectively 0.005 and zero. From 
this Figure, one can notice that the bidirectional reflectances for locations A and B are larger, while for 
locations C and D, they are relatively smaller. In addition, Fig.3-5(b) gives the histogram of the 
differences between the retrieved and modeled bidirectional reflectances for the entire study area. 
From this Figure, one can see that the difference of the retrieved and modeled ρb ranges from -0.03 to 
0.03 with mean of -0.001 and standard deviation of 0.008. 
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Fig.3-4  Sun and satellite zenith and azimuth angles in polar representation at four locations for ten 
clear days during the period of July 12 to July 30 of 2005. 
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Fig.3-5 Comparison of the bidirectional reflectances estimated using Eq. (3.1) with those modeled 
using Eq. (3.5): (a) for locations A, B, C and D,  (b) for the entire area. 

 

Table 3-2 gives the fitting parameters of kiso, kvol, and kgeo in Eq. (3.5) for locations A, B, C and D. 
In addition, values of the Normalized Difference Vegetation Index (NDVI) derived with the TOA 
reflectances in near-infrared and red channels from MYD021KM data for these four locations on July 
24, 2005, are also given in this table. 
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Table 3-2. Fitting parameters kiso, kvol, and kgeo in Eq. (3.5) for locations A, B, C, and D 

Locations A B C D 

Longitude(°) 32.72 34.31 33.86 31.23 

Latitude(°) 30.27 31.24 28.78 30.61 

kiso 0.0945 0.0034 0.0450 0.0187 

kvol -0.1699 -0.1316 -0.1474 -0.1351 

kgeo 0.0274 -0.0574 0.0312 0.0157 

NDVI 0.12 0.20 0.08 0.63 

 

To preliminarily validate the directional emissivity estimated using the present method, the 
MODIS land surface temperature/emissivity product MYD11B1 data were used in our investigation. 
Taking into account that the MYD11B1 product provides the land surface emissivity values at 5 km 
resolution, the mean value of estimated directional emissivities for 5×5 pixels with 1 km resolution 
was selected to match the one from MYD11B1 data with regard to the nearest latitude and longitude 
coordinates. Fig.3-6(a) displays the directional emissivities estimated using the present method versus 
those extracted from MODIS land surface temperature/emissivity product MYD11B1 data at four 
locations for the ten clear days. From this Fig. we can see that the Mean Error (ME) and the Root 
Mean Square Error (RMSE) are 0.002 and 0.021 respectively. In addition, Fig.3-6(b) shows cross-
comparisons of the estimated directional emissivities and those extracted from MYD11B1 data for the 
entire region for these ten clear days. The ME and RMSE between the directional emissivities 
estimated in this study and those extracted from MYD11B1 data are of -0.007 and 0.024 respectively. 
The result of this comparison shows that, at least for our cases, the method described in this paper for 
estimating the directional emissivity in MIR channel gives results comparable to those in MYD11B1 
product.  
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Fig.3-6  Comparison of the directional emissivities estimated from MODIS MIR channels using Eqs. 
(3.1), (3.5) and (10) with those from MYD11B1 product for ten clear days during July 12 to 30, 2005: 

(a) for four locations (b) for entire regions. 
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3.4 Conclusions  

In this work, the directional emissivity in MODIS MIR channel has been estimated with the 
retrieved bidirectional reflectivity and the RossThick-LiSparse-R model. Ten days of MODIS MIR 
data with cloud-free conditions at the moment of MODIS overpasses, from July 12 to July 30 of 2005 
were used to determine the three parameters kiso, kvol and kgeo in Eq. (3.5) for each pixel. The 
directional emissivities of these days were mapped for a region of Egypt and Israel with latitude 
varying from 28.0° N to 32.0° N and longitude from 30.0° E to 36.0° E. 

In order to show the retrieval accuracy of the proposed method, the MODIS land surface 
temperature/emissivity product MYD11B1 data have been used to cross-validate preliminarily the 
directional emissivities derived directly from MODIS MIR data with the method presented in this 
paper. The results of this comparison showed that, at least for our cases, the proposed method for 
estimating the directional emissivity gives results comparable to those of MYD11B1 product with 
Mean Error =-0.007 and Root Mean Square Error =0.024. 
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Directional gap probability or gap fraction is defined originally as the probability of a beam 
transferring at a given incident zenith angle through the vegetative canopy without any interception. 
As a key variable describing canopy structure and biomass spatial distribution, it is used to simplify 
the 3-D light interception problem to a 1-D problem [Pinty et al., 2004], and has been employed to 
estimate surface component temperatures from multi-spectral and multi-angular measurements 
[Francois et al. , 1997; Li et al., 2001; Francois, 2002; Menenti et al, 2008]. Though gap probability 
can be estimated in situ from optical instrument data such as hemispherical photographs [Leblanc et al., 
2005] and usually used to derive leaf area index (LAI) at local scale in field [Jonckheere et al., 2004; 
Weiss et al., 2004], the field measurements cannot meet the practical demands at large scale. An 
attractive and unique way to map and monitor LAI and directional gap probability at large scale is to 
use the space observation from satellite data in the visible and near-infrared bands. Nowadays LAI is 
widely estimated directly from satellite measurements using different methods [Myneni et al., 1997; 
Weiss and Baret, 1999; Chen et al., 2002; Fernandes et al., 2003] and the directional gap probability P 
is estimated from the spatially retrieved LAI by means of the following relationship [Norman et al., 
1995; Menenti et al., 2001], 

)cos(/),( θθ LAIApeLAIP −=                                                     (4.1) 

where θ is the viewing zenith angle, Ap is the projection of leaf area in perpendicular to incident beam 
and is related to the leaf angle distribution [Wang et al., 2007]. With this relationship, directional gap 
probability can be estimated through vegetation structure information including LAI, leaf angle 
distribution.  

Through observation and studies in different scales including foliage [Rochdi et al., 2006], shoot 
[Smolander and Stenberg, 2003], canopy [Kotz et al., 2004] and landscape [Garrigues et al., 2006a] by 
remote sensing, ecological and agricultural community, scientists have realized spatial heterogeneity is 
universal. Besides the spatial heterogeneity of the land surface, non-linearity of the transfer function is 
another source of uncertainties in the estimation of land surface variables/parameters from remotely 
sensed data [Hall et al., 1992; Friedl et al., 1995; Pelgrum, 2000; Garrigues, 2006b]. We can notice 
that the directional gap probability P estimated from Eq.(4.1) is highly non-linear with respect to LAI, 
which will inevitably induce scaling bias when applied to a coarse pixel. Consequently it is necessary 
to analyze the scaling effect of the directional gap probability at different scales, and to improve the 
retrieval accuracy of directional gap probability, and subsequently to improve the accuracy of land 
surface component temperatures retrieved from multi-spectral and multi-angular satellite data. 
However, up to now, there are no many efforts in literature devoted to study the scaling effect of the 
directional gap probability. 

This study focuses on the analysis of the scaling effect on the directional gap probability by 
means of a simple scaling-up scheme and LAI derived from high resolution spatial data. The section 
4.1 provides the theoretical framework to estimate the scaling effect of directional gap probability 
raised by two different aggregation schemes from local scale to larger scale. In section 4.2, we present 
the different types of remotely sensed LAI images obtained from VALERI (Validation of Land 
European Remote sensing Instruments) database. In section 4.3, the scaling effect associated with the 
non-linear relationship between LAI and gap probability is quantified over several types of landscape. 
In section 4.4, the conclusions of this chapter will be given. 
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4.1 Theoretical framework 

4.1.1  Up-scaling of directional gap probability  

There are two different schemes generally used to aggregate the parameters/variables from the 
local scale to regional or global scale [Pelgrum, 2000], which are depicted in Fig.4-1 and described 
roughly below: 1) The aggregation of the results which are derived from a distributed model f using 

distributed input variables. Spatially distributed variables ( , )p x y ( here i
sub pixelLAI −  ) are input to a 

distributed model f (here Eq.(4.1)), results of the distributed model f are denoted as ( )f p  

(here ), then the aggregative result )(θi
pixelsubP − ( )f p  (here )(θpixelP ) on a larger scale are deduced 

(Eq.(4.2)) from distributed results;(see left flow chart of Fig.4-1). 2) The aggregation of input 
variables before use in an aggregative model F (here Eq.(4.3)), thereby producing an aggregative 

result. Spatially distributed input data ( , )p x y  (here i
sub pixelLAI − ) are first averaged to p (here 

) from local scale to a larger scale, then pixelLAI p is input to aggregative model F (Eq. (4.4)), 

produces aggregative result ( )F p  (herePpixel(θ)). (see right flowchart of Fig.4-1) 

 

 

Fig.4-1  General schemes of two aggregation schemes. 

As it concerned to gap probability, supposing that the pixel whose area is S is composed by N 

homogeneous sub-pixels, each sub-pixel i has an area of si, 
1

N

i
i

S
=

= s∑ , the directional gap probability 

for a given direction (i.e. Viewing Zenith Angle θ) is computed using the first aggregation scheme (see 
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left flowchart of Fig.4-1) with, 

S
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P

N

i
pixelsubi

pixel

∑
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−
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)(
)(

θ
θ                                                         (4.2) 

where i
sub pixelP − is the directional gap probability for sub-pixel i, which can be estimated from Eq.(4.1).  

The directional gap probability can also be aggregated following the second aggregation scheme 
(see right flowchart of Fig.4-1) by 

1

N
i

i sub pixel
i

pixel

s LAI
LAI

S

−
==
∑

,                                                          (4.3) 

Then computing the directional gap probability with help of the same formula as Eq.(4.1) by 

)cos(/)( θθ pixelp LAIA
pixel eP −=                                                    (4.4) 

4.1.2  Scaling bias of directional gap probability 

Since the distributed model related LAI to P is nonlinear (see Eq.(4.1)) and the input LAI data at 

coarse pixel is heterogeneous, there exists a difference between pixelP  and . This difference 

comes from the different aggregations. To assess the scaling effect of the directional gap probability, 
inserting Eq.(4.1) into Eq.(4.2) and neglecting the third and higher order terms of the Taylor series 
expansion, one gets: 

pixelP

2
2

2

)(cos2
)()()( LAI

p
pixelpixelpixel

A
PPP δ

θ
θθθ =−                                          (4.5) 

With δLAI is the standard deviation of LAI inside the coarse pixel, i.e. 
S

LAILAIs
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The relative scaling bias (RE) is therefore obtained 
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−

=                                              (4.6) 

From Eq.(4.6), we notice that the relative scaling bias is only dependent on the Ap, θ and the 
spatial heterogeneity of LAI within a coarse pixel, but independent on the LAI value itself. 

 

4.1.3  Redefinition of clumping index 

In order to take into account the scaling effects of spatial heterogeneity of LAI on estimate of the 
directional gap fraction and to make the estimation of the directional gap fraction independent on the 

 75



observation scale and the aggregation schemes used, a parameter Ĉ is introduced in the formula (4.4) 
so that 

pixelpixelpixelp PLAICA =− ))cos(/ˆexp( θ                                                 (4.7) 

Following the same development made by Wang and Li [2008], combining Eqs(4.4), (4.5) and 
(4.7), one gets: 

2
2

2

)(cos2
1ln()cos(1ˆ

LAI
p

pixelp
pixel

A
LAIA

C δ
θ

θ
+−=                                              (4.8) 

As shown by this equation, the parameter Ĉ is directly proportional to the mean LAI and 

inversely proportional to the spatial heterogeneity of LAI ( ) for given A2
LAIδ p function and direction. 

It should be noted that the parameter Ĉ introduced in Eq.(4.7) compensate not only the scaling 
bias in the estimation of the gap probability, but also has the similar meaning as the so-called leaf 
dispersion parameter or clumping index (Ω). Traditionally, clumping index is generally used to 
quantify the heterogeneity of the foliage distribution based on Beer-Lambert’s law considering a non-
random distribution of foliage in a forest canopy, as vegetation foliage is more often grouped together 
than regularly spaced relative to the random distribution case [Chen, 1996], and vegetative canopies 
have different levels of foliage organizations, which contribute to non-random distribution [Chen, 
1999]. For Ω = 1, canopy elements are randomly distributed. In clumped canopies, Ω is always less 
than unity. The smaller the value of Ω, the more the canopy is clumped.  

Foliage clumping affects the gap probability for the same LAI by delaying the occurrence of the 
saturation in reflectance as LAI increases. There have been some studies mostly concentrated on the 
estimation of clumping index with multi-angular data. Walter et al. [2003] has conducted an 
experiment involving hemispherical photographs of simulated and real forest canopies to determine 
clumping index. Leblanc et al. [2005] and Chen et al. [2005] mapped the foliage clumping index over 
Canada and at the global scale based on the simulated NDHD-clumping index relationships for 
different cover types. But the capability of clumping index for representing spatial heterogeneity and 
eliminating scaling bias is rarely concerned. 

4.2  Description of the data 

The data used here are part of the VALERI database which provides high spatial resolution (20 m) 
SPOT-HRV scenes for several landscapes sampled (including crops, forest, grassland and shrubs) 
around world [Baret et al., 2005]. This wide coverage of landscape makes the conclusion of this study 
more general. Each site has an enough sampling size (about 3km by 3km). Detailed information about 
each site (including land cover type, location and the date of measurement) is given in table 4-1. More 
details on the data set and methodology concerned for leaf area index retrieval is referred to Baret et al 
[ 2005] and the VALERI web site ( www.avignon.inra.fr/valeri ). 
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Table 4-1. Detailed information of remote sensing images used in this research. The last two columns 
represent the mean (m) and the standard deviation (δ) of LAI respectively 

Site name Land cover type Date Lat. Lon. mLAI δLAI

Aekloba-May01 Palm tree plantation 1/Jun./2001 2.63 99.58 3.54 0.671

Alpilles-March01 Crops 15/Mar./2001 43.81 4.74 0.93 1.15

Barrax-July03 Cropland 3/Jul./2003 39.07 -2.10 0.97 1.41

Fundulea-May02 Crops 9/Jun./2002 44.41 26.59 1.53 1.30

Gilching-July02 Crops and forest 8/Jul./2002 48.08 11.32 5.39 1.79

Hirsikangas-August03 Forest 2/Aug./2003 62.64 27.01 2.55 1.14

Jarvselja-June02 Boreal forest 13/Jul./2002 58.30 27.26 4.20 1.09

Laprida-November01 Grassland 3/Nov./2001 -36.99 -60.55 5.66 2.07

Larose-August03 Mixed forest 18/Sep./2003 45.38 -75.21 5.87 2.00

Larzac-July02 Grassland 12/Jul./2002 43.94 3.12 0.81 0.20

Nezer-April02 Pine forest 21/Apr./2002 44.57 -1.04 2.38 1.11

Rovaniemi-June04 Forest 23/Jul./2004 66.46 25.35 1.25 0.52

Turco-August02 Shrubs 29/Aug./2002 -18.24 -68.19 0.04 0.03

 

4.3  Results and Discussion 

4.3.1  Simulation of relative scaling bias of gap probability 

In this study, we adopt a simple formula proposed by Fuchs et al. [1984] to compute the 
projection value of leaf area in perpendicular to incident beam with mean leaf angle, 

)cos( LpA θ=                                                                     (4.9) 

where Lθ  is the mean of leaf inclination angle. 

Inserting Eq.(4.9) into Eq.(4.6), we get relative scaling bias of gap probability,  

2
2

2

)(cos2
)(cos

LAI
LRE δ
θ

θ
= .                                                        (4.10) 

Fig.4-2 displays the results of RE conducted using Eq.(4.10) for θ = 0 and different Ap functions 

through different mean of leaf inclination angles Lθ  given in (4.9). 
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Fig.4-2  Relative scaling bias of gap probability versus the variance of LAI for different mean of 
leaf inclination angles Lθ (0, 30, 45 and 60 degree) and view zenith angle 0=θ  

As shown in Fig.4-2, the relative scaling bias of gap probability is linearly related to the variation 

of LAI inside the coarse pixel for a given mean of leave inclination angle Lθ . As predicted by 

Eq.(4.10), the slope of this linearity is equal to 
)(cos2
)(cos

2

2

θ
θL , and for a given variance of LAI, the larger 

leaf inclination angle is, the smaller relative error of directional gap probability is. On the other hand, 
we can conclude that the relative scaling bias varies seasonally since it has relationship with the 
variance of LAI which is a seasonal variable.   

4.3.2  Spatial scaling bias of gap probability obtained from the VALERI dataset 

In order to see the magnitude of the spatial scaling bias of directional gap probability with real 
scenarios, the VALERI dataset is used in this study. Three assumptions are made in the following 
calculations: 

1) Beer’s law used to retrieve gap probability from LAI (Eq.(4.1)) is assumed without any scaling 
bias at 20 m spatial resolution, because no satellite data are available to us at the spatial resolution 
finer than 20m. 

2) Incident beam is assumed to be vertical, i.e. 1)cos( =θ . 

3) A spherical leaf angle distribution is assumed, i.e. Ap=0.5, which is a reasonable assumption for 
many conifer shoots and closed, broad-leaved canopies [Walter et al., 2003]. 

Following the schemes proposed and showed in Fig.4-1, with the VALERI dataset described in 
table 4-1, we compute relative scaling bias of gap probability for each site at different spatial scales 
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using Eq.(4.6). Fig.4-3 displays the relative scaling bias of gap probability in function of the pixel size 
for different types of land surfaces, such as forest, cropland, grassland and shrubs.  
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Fig.4-3 Relative scaling bias of gap probability against pixel size for different landscapes: six forest 
sites, five crops sites, one grassland site and one shrubs site. 

 

From this figure, we notice that the relative scaling bias of gap probability increases with 
decreasing spatial resolution for most of land cover types. Larger relative bias occurs at crops (104%, 
50%, 26%, 14%, at pixel size of 1280m, respectively) than pure forest sites ( at pixel size of 
1280m except for the mixed forest (Larose-August03) which has relative bias of 120% at pixel size of 
1280m), grassland and shrubs ( at pixel size of 1280m), demonstrating that our crops sites are 
relatively more heterogeneous than forest, grassland and shrubs sites. Previous research conducted by 
Garrigues et al. [2006b] has gained same conclusion. A large bias occurs over mixed forest site 
(Larose-August03) due to large variance of LAI with this site, while very small relative biases occur 
over grassland and shrubs because the variance of LAI over these two sites are small (<0.2) as 
indicated in table 4-1. 
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As a result, a large uncertainty (bias) is introduced in estimate of the gap probability from low 
spatial resolution data such as NOAA-AVHRR or MODIS over large heterogeneous sites if the scaling 
effects are not considered.  

4.3.3  “Clumping index” Ĉ for VALERI sites  

Letting Eq.(4.8) equal to Eq.(4.2), with VALERI dataset, “clumping index” Ĉ introduced in 
Eq.(4.7) can be easily obtained for each site at different spatial scales. Fig.4-4 shows the mean value of 
“clumping index” against the pixel size for different types of land surfaces, such as forest, cropland, 
grassland and shrubs. Since the SPOT-HRV pixel is supposed to be homogeneous at 20m spatial 
resolution, the corresponding “clumping index” Ĉ at original scale is unity (not displayed in Fig.4-4). 
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Fig.4-4  Same as Fig.4-3, but with the mean value of clumping index. 

 

As shown in Fig.4-4, “clumping index” varies much for different land cover types and different 
aggregated sizes. It decreases as aggregative levels increase, indicating that pixel becomes more 
heterogeneous as demonstrated by the analysis of the relative scaling bias of gap probability given 
above. Particularly a relative large variation of “clumping index” occurs at Larose-August03, very 
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similar to the relative scaling bias of gap probability. In addition, “clumping index” varies slowly in 
pure forest, grassland and shrubs sites and more significantly in crops and mixed forest in our cases 
study. The results demonstrate that less scaling effect correction should be performed for forest and 
grass sites than crops sites, which is in good agreement with the result shown in Fig.4-3.  

As far as sites with the same land cover type are concerned, the magnitude of “clumping index” 
also varies at different aggregated sizes, and mostly is inversely proportional to the spatial 

heterogeneity of LAI ( ). For example, among forest sites, “clumping index” is minimum at 

Aekloba-May01, then Rovaniemi-June04, Jarvselja-June02, Nezer-April02, Hirsikangas-August03, 

and maximum is at Larose-August03, whose  are 0.671, 0.52, 1.09, 1.11, 1.14, 2.00, respectively.  

2
LAIδ

2
LAIδ

Therefore “clumping index” redefined by Eq.(4.8) has the capability of representing and 
eliminating scaling bias of directional gap probability induced by the heterogeneity of LAI. 

4.4 Conclusion 

In this study, spatial scaling effect of the gap probability based on Beer’s law for different types 
of land cover is analyzed and corrected for by introducing an extension of the “clumping index”, Ĉ 
which accounts for the spatial heterogeneity.  

Analytical expressions developed in this paper show that: 1) relative scaling bias is only 
dependent on the Ap function and the spatial heterogeneity of LAI, but independent on the LAI value 
itself, and  2) extension of “clumping index” Ĉ is directly proportional to the mean value of LAI and 
inversely proportional to the spatial heterogeneity of LAI for given Ap function and direction. 

With the VALERI dataset, this study shows that relative scaling bias of gap probability increases 
and “clumping index” value decreases with decreasing spatial resolution for most of land cover types. 
Large relative biases and large variation of “clumping index” Ĉ are found for most of crops sites and a 
mixed forest site due to their relative large variance of LAI, while very small biases and small 
variation of clumping index are found for grassland and shrubs sites. 

The parameters introduced in this paper has endowed a new significance to traditional clumping 
index and provided evidence to the utility of clumping index as an improvement of the estimate of gap 
probability from LAI. The results exhibit the capability of clumping index for scaling Beer’ law and 
representing spatial heterogeneity, as well as the feasibility of the inversion approach for gap 
probability from remote sensing data. Meanwhile a simple and feasible method to estimate “clumping 
index” from remote sensing data is also explored from the above experiment, which will provide a 
support to global mapping of the vegetation clumping index. 
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Accurate estimates of spatially averaged Evapotranspiration (ET) over distances of few 
kilometers equivalent to the spatial scale of satellite remote sensing data and the grid size of numerical 
models are of crucial importance in disciplines of hydrology, meteorology and agriculture. Though 
direct measurements of turbulent heat fluxes representative of scales of hundreds and thousands of 
meters can be conducted by the use of either the radiosonde-based vertical profiles of regionally 
averaged atmospheric variables in the planetary boundary layer or the flight-path averaged turbulence 
statistics measured with a turbulence measurement instrument onboard an aircraft [Asanuma and 
Iemoto, 2007], these direct measurements can only be conducted in large scale field programs 
occasionally due to the high cost and discontinuity of these measurements. Remote sensing technology 
can provide land surface parameters such as surface temperature, albedo and vegetation indices, etc 
which are indispensable to remotely sensed ET models for estimating the area averaged turbulent heat 
fluxes at regional scale. It is recognized as the only viable means to map regional, meso- and macro-
scale patterns of ET at the earth’s surface in a globally consistent and economically feasible manner. 

Several remotely sensed ET models with varying complexity have been developed to map 
turbulent heat fluxes at various spatial scales from small "point" scale to large "continental" scale with 
remotely sensed surface temperature retrieved from thermal infrared channels, albedo and vegetation 
indices estimated from visible and near infrared spectral bands, and ground based meteorological 
measurements. These ET models mainly include the simplified empirical method [Jackson et al., 1977], 
surface energy balance based single- and dual-source models [Hatfield, 1983; Norman et al., 1995], 
spatial contexture information based on surface temperature-vegetation indices triangular and 
trapezoidal method [Jiang and Islam, 1999; Moran et al., 1994] and data assimilation techniques [Boni 
et al., 2001]. (See chapter 1 for more details). Overviews of these models and methods have been 
provided by a number of authors since 1990s [Kairu, 1991; Kustas and Norman, 1996; Courault et al., 
2005; Glenn et al., 2007; Kalma et al., 2008; Li et al., 2009]. Although great progress has been made 
on the regional remotely sensed estimate of ET with models incorporating land surface parameters 
retrieved quantitatively from satellite remote sensing data in the past more than 30 years, there are 
several related problems that have not yet been solved properly. On the one hand, for lack of the 
validation ET data at large scale, particularly over heterogeneous surfaces with complex geographic 
terrains and partial vegetative covers, all developed ET models or methods have not been rigorously 
validated and consequently can not be used in confidence. On the other hand, due to the extra 
difficulty presented or the lack of the feasible methods to get the spatially representative of ground-
based measurements at large scale, such as near surface air temperature, wind speed, vapor pressure 
deficit and vegetation height, etc from the limited observation networks on the Earth, most of the 
currently commonly applied remotely sensed ET models can not be used operationally to map ET at 
large scale. 

In order to overcome the latter problem, attempts have been made to develop a parameterization 
of regional ET with only satellite derived surface parameters, such as the so-called Surface 
Temperature - Vegetation Index (Ts-VI) triangle method developed by Jiang and Islam [1999; 2001] 
and improved by Jiang and Islam [2003], Venturini et al. [2004] and Batra et al. [2006]. This type of 
method relies on the triangular shape formed by the scatter plot of surface temperature (Ts) versus 
vegetation index (VI) under a full range of vegetation cover and soil moisture availability within the 
interesting study region to estimate Evaporative Fraction (EF) and ET at satellite pixel scale. The 
success of Ts-VI triangle method on the estimation of EF and ET depends mainly on the correct choice 
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of the dry and wet edges in the Ts-VI triangle space. However, up to now, no rules have been proposed 
to determine these two edges in the Ts-VI triangle space, their determination is somewhat subjective 
and arbitrary leading to a great uncertainty in the estimation of EF and ET.  

The objectives of this work are twofold: (1) to develop an operational algorithm to determine 
automatically and quantitatively the dry and wet edges for the Ts-VI triangular space in arid and semi-
arid areas where wet pixels are not generally easily identified, (2) to validate with the in-situ ET 
measurements made by the Large Aperture Scintillometer (LAS) the ET derived from 
MODIS/TERRA products using the developed algorithm. Section 5.1 recalls the principle of the Ts-VI 
triangle method and highlights the assumptions involved in the methodological development and the 
advantages and disadvantages of the Ts-VI method. Section 5.2 gives the implementation and 
application of the proposed method to MODIS data. Section 5.3 describes the study region and data 
used in the present study and gives a preliminary validation of satellite derived sensible heat flux with 
the field measurements made by the LAS. Finally, the conclusion is given in section 5.4. 

5.1 Methodology 

Ts-VI triangle (see Fig.1-3) method applied in this work is originated from the parameterization 
of Jiang and Islam [1999], in which a simplified Priestley-Taylor formulation [Priestley and Taylor, 
1972] with fully remotely sensed data is utilized to estimate regional ET and EF by interpreting the 
scatter plot constructed from remotely sensed Ts and VI under conditions of full ranges of soil 
moisture availability and vegetation cover. This approach is based on an extension of Priestly-Taylor's 
equation and the existence of physically meaningful relationship between EF and remotely detectable 
surface characteristic parameters (Ts, NDVI, soil moisture, vegetation fraction). The mathematical 
expression of latent heat flux (LE) is taken as follows [Jiang and Islam, 1999]: 

[( ) ]nLE R G
γ

Δ
= Φ −

Δ +
                                                           (5.1) 

and according to the definition of EF, EF can be directly estimated from Eq. (5.2) as: 

n

LEEF
R G γ

Δ
= = Φ

− Δ +
                                                            (5.2) 

and LE, can be wrote as: 

( nLE EF R G)= −                                                                   (5.3) 

with 

70.20(0.00738 0.8072) 0.000116TaΔ = + −                                           (5.4) 

0.00163 / 0.00163[(101.3 0.01055 ) /(2.501 0.002361 )]al aP L H Tγ = = − −                    (5.5) 

where Φ is a combined-effect parameter which accounts for aerodynamic resistance (-), Rn is surface 
net radiation (W/m2), G is soil heat flux (W/m2), Δ is slope of saturated vapor pressure versus air 
temperature (kPa/°C), γ is Psychrometric constant(kPa/°C), P is atmospheric pressure (kPa), L is latent 
heat of vaporization (MJ/kg), is air temperature (℃), is altitude height (m). aT alH
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As shown by Jiang and Islam [1999], the sensitivity of Δ on the variation of temperature is very 
small. Air temperature (Ta) required in Eq. (5.4) and (5.5) to calculate Δ and γ  can be obtained either 

by a linear regression between Ts and Ta or by using mean surface temperature or mean water surface 
temperature as a surrogate [Jiang and Islam, 1999; Venturini et al., 2004]. In this work, taking into 
account and the correlation of Ts with air temperature, remotely sensed Ts will be used to estimate the 
parameter Δ and γ  instead of the use of air temperature. 

Many papers have demonstrated that the Rn and G in Eq. (5.1) can be estimated with only 
satellite data. Therefore, in Eq. (5.1), estimation of LE from satellite data alone is to estimate the Φ 
values from combined Ts and VI measurements after the Rn, G have been determined from remotely 
sensed data. 

Although parameter Φ in Eq. (5.1) looks apparently the same as α in Priestley-Taylor's equation, 
there is a distinct difference in the physical meaning between these two parameters. In Priestley-
Taylor's equation, α is generally interpreted as the ratio of actual evaporation to the equilibrium 
evaporation and a series of paper has demonstrated this parameter with a good approximate to be 1.26 
[Crago and Brutsaert, 1992; Jiang and Islam, 2001]. Priestley-Taylor's equation is generally applicable 
for wet surfaces whereas Eq. (5.1) holds true for a wide range of surface evaporative conditions with Φ 
varying from 0 to (Δ+γ)/Δ when significant advection and convection are absent. Jiang and Islam 
[Jiang and Islam, 1999] have found the upper bound of derived Φ (corresponding to the wet edge in 
the Ts-VI triangle space) for each NDVI value is very closed to 1.26. 

In order to estimate pixel by pixel ET using Eq. (5.1), both dry and wet edges in the Ts-VI space 
have to be first determined. As mentioned above in this chapter, their determination is extreme 
difficult and often arbitrary. Previous papers [Jiang and Islam, 1999; Carlson, 2007] have 
recommended taking the surface temperature of a water body and/or a well-irrigated agricultural field 
as the temperature of wet edge with potential ET. However, these two land surface types can not be 
easily identified or may not exist at all in most arid and semi-arid areas, an automatic and practical 
algorithm needs to be developed to determine the dry and wet edges in the triangular space for these 
areas.  

Taking into account that NDVI is just a surface greenness parameter and dependent on spatial 
resolution of remote sensors [Price, 1990], the commonly employed NDVI in the construction of Ts-VI 
triangle space will be replaced in this work by the fraction of vegetation (Fr) which seems to be more 
representative of the relative proportionality between soil and vegetation within the pixel. As depicted 
in Fig.1-3, once the two edges (dry and wet) in the Ts-Fr space are determined, the value of 
Φ  corresponding to the driest bare soil pixel (at the position Fr=0 and maximum surface temperature 
Ts,max in the dry edge line) is set to 0 (denoted as Φmin=0 at pixel (Fr=0, Ts,max)) and the value of Φ at 
the position Fr=1 and the minimum surface temperature Ts,min in the dry edge line is set to 1.26 
(denoted as Φmax=1.26 at (Fr=1, Ts,min)). A two-step linear interpolation is then used to get the Φ value 
for the pixel i (Fr,i,Ts,i) in the Ts-Fr triangle space： 

1) determining Φmin value in the dry edge line for the pixel i (Φmin,i) by assuming that Φmin,i varies 
linearly with Fr,i between Φmin=0 at (Fr=0, Ts,max) and Φmax=1.26 at (Fr=1, Ts,min), and determining 
Φmax value for the pixel i (Φmax,i) in the wet edge line by assuming that Φmax,i is constant in the wet 
edge line, i.e. Φmax,i=Φmax=1.26 as the wet edge line is defined as Ts=Ts,min. The lower limiting value of 
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Φ for any Fr (Φmin,i) in the dry edge can be first derived by a linear interpolation between Φmin=0 at 
Fr=0 and Φmax=1.26 at Fr=1, namely: 

min, 1.26i FrΦ =                                                                (5.6) 

2) determining Φ value for the pixel i (Φi), by assuming that for given Fr, Φ increases linearly 
with the decrease of Ts between Φmin,i and Φmax,i in the Ts-Fr triangle, i.e., 

max, ,
max, min, min,

max, min,

( )i s i
i i

i i

T T
T Tι i

−
Φ = Φ − Φ + Φ

−
                                         (5.7) 

in which 

max, ,max ,min ,max( )i s r s sT T F T T= + −  

min, ,mini sT T=  

max, max 1.26iΦ = Φ =  

 

5.2 Implementation and application of the method to MODIS data 

To apply the above proposed Ts-Fr triangle method to MODIS data, several steps are needed to 
be performed as shown in Fig.5-1. The input MODIS data and products are MODIS land surface 
temperature/emissivity products (MOD11), NDVI (MOD13), together with MODIS calibrated 
radiances (MOD021KM), MODIS geolocation (MOD03) and MODIS precipitable water product 
(MOD05). The output datasets consist of the derived Rn, G, EF and ET. Below is the description of 
each step involved in the algorithm.  
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Fig.5-1 Flow chart of the proposed algorithm to estimate the regional surface net radiation, soil heat 
flux, evaporative fraction and latent heat flux from MODIS data. 

 

5.2.1 Data downloading 

MODIS land surface temperature/emissivity and NDVI products, MODIS calibrated radiances 
and geolocation products, as well as MODIS atmospheric precipitable water product are downloaded 
from the MODIS data and products centers. In order to establish the Ts-Fr triangle space, MODIS land 
surface temperature/emissivity product (MOD11A1 and MOD11_L2) and NDVI product (MOD13A2) 
are needed to be first downloaded from the Land Processes Distributed Active Archive Center 
(LPDAAC) (https://lpdaac.usgs.gov/). In addition, MODIS calibrated radiances (MOD021KM), 
geolocation (MOD03) and atmospheric precipitable water (MOD05_L2) products are used to estimate 
the surface net radiation Rn and they can be downloaded from the LAADS (Level 1 and Atmosphere 
Archive and Distribution System) web (http://ladsweb.nascom.nasa.gov). 
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5.2.2 Screening out the pixels contaminated by cloud and also the pixels with surface 
elevation far apart from the average of surface elevation in the study area 

Having successfully downloaded all MODIS data and products, some preliminary processing are 
needed to be performed using MODIS Reprojection Tool (MRT) and MODIS Swath Reprojection 
Tool (MRTSwath) so that all data and products are well georeferenced and subset corresponding to the 
study area is easily accomplished. As well known, the cloud affects significantly the satellite-derived 
Ts, pixel contaminated by cloud in the study area are therefore screened out. In order to satisfy the 
assumptions involved in the development of Ts-Fr triangle method described in section 5.1, all pixels 
in the Ts-Fr triangle space should have about the same surface elevation, thus pixels having much 
higher or lower surface elevation with respect to the average of elevation in the study area are also 
removed out.  

It is worth noting that the subset selected should be as large as possible so that the large ranges of 
both soil moisture availability and vegetative coverage could be found in the study area.  

5.2.3 Calculating Φ pixel by pixel 

1) Estimating the fraction of vegetation (Fr) within the pixel for each pixel in the study area. As 
stated in section 5.1, to construct the Ts-VI triangle space, Fr is used in this work to replace the NDVI. 
Pixel by pixel Fr is therefore estimated from MODIS NDVI product using the formula proposed by 
Carlson and Ripley [1997]: 

2min

max min

(r
NDVI NDVIF

NDVI NDVI
)−

=
−

                                                         (5.8) 

where NDVImin and NDVImax are respectively the minimum NDVI corresponding to bare soil (LAI=0) 
and the maximum NDVI corresponding to full vegetated surface (LAI=∞). They are assigned 
respectively to be 0.2 and 0.86 in this work as done by Prihodko and Goward [1997]. 

2) Constructing the Ts-Fr triangle space. Knowing Ts and Fr, a plot of Ts against Fr (Ts 
represents the ordinate axis and Fr represents the abscissa) for all remained pixels after the step 2 (i.e. 
section 5.2.2) in the study area is used to construct the Ts-Fr triangle feature space bounded with an 
upper decreasing envelope (dry edge) and a lower nearly horizontal envelope (wet edge).  

3) Determining automatically the dry and wet edges in the Ts-Fr triangle space. After having 
plotted the pixels in our study region in two-dimensional space (Fr, Ts), one needs to determine 
carefully the dry and wet edges in this Ts-Fr space because accurate determination of these two edges 
has direct impact on the accuracy of the derived EF and turbulent heat fluxes. An iterative process is 
proposed to determine automatically these two edges and is described as follows: (i) Dividing the 
range of Fr in the Ts-Fr triangle space into M intervals evenly (M 20 is recommended) and then ≦

dividing each interval into N subintervals (N 5 is recommended). (ii) For a given interval, finding ≧

and saving the maximum temperature within each subinterval. (iii) The average value (Taver) and 
standard deviation (δ) of the N maximum surface temperatures for N subinterval of this given interval 
are computed as an initial state. (iv) If the maximum surface temperature of each subinterval of this 
given interval is less than Taver-δ, this subinterval is discarded in the following steps. (v) The new 
average value (Taver) and standard deviation (δ) of the maximum surface temperatures of the remaining 
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subintervals after step (iv) are recomputed. (vi) If the number of remaining subintervals in the given 
interval is greater than a given threshold value and δ is larger than a given threshold value, go back to 
step (iv) and repeat the steps (iv)-(vi), otherwise go to step (vii). (vii) Taking Taver as the maximum 
surface temperature of this given interval and going back to step (ii) until all the maximum surface 
temperatures are found for all M intervals. (viii) A linear regression between the maximum surface 
temperature within each Fr interval and Fr value is performed and the Root Mean Square Error (RMSE) 
is computed. (ix) If the maximum surface temperature for a given interval is 2 times RMSE or more 
less than the temperature value in the regressed line, this interval will be discarded and the program 
will go back to step (viii) until the minimum number of intervals is reached or no interval can be 
further discarded. (x) A final linear regression is performed to obtain the dry edge: 

max,iT a b rF= +                                                                 (5.9) 

with the two extreme points ( at Fr=0 and max, ,maxi sT T= max, ,mini sT T=  at Fr=1) depicted in Fig.1-3, one 

gets:  

,maxsa T=  and ,min ,maxs sb T T= −  

As mentioned in section 5.1, this work assumes that the wet edge is the line with a constant 
surface temperature which is equal to that of dry edge at Fr=1, i.e. 

min, ,mini sT T=  

4) Calculating pixel by pixel the combined-effect parameter Φ according to the above-mentioned 
two-step interpolation scheme. After having determined the dry and wet edges in the Ts-Fr triangle 
space, Eqs.(5.6) and (5.7) are used to compute the Φ value for the pixel i (Fr,i,Ts,i).  

5.2.4 Calculating EF pixel by pixel 

Once the combined-effect parameter Φ is obtained, the evaporative fraction (EF) can be 
straightforward estimated using Eq. (5.2) with Δ calculated with Ts instead of Ta. 

5.2.5 Estimation of surface net radiation (Rn) directly from MODIS data and products 

Surface net radiation is defined as the sum of surface net shortwave radiation (Rsw) and net 
longwave radiation (Rlw). In this work, a parameterization of Rsw fully based on MODIS products 
proposed by Tang et al. [2006] is used, namely: 

)''()cos(
2

0 r
D

ER
a

z
sw βαθ

−=                                                   (5.10) 

with 

1 2 3 4' 1 / / (1 exp( ))( ) /x ya a a a wα μ μ μ= − − − − − + μ  

5 6 7' 1 ln za a a wβ μ= + + +  
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where E0 is solar irradiance at Top Of Atmosphere (TOA), θz is the solar zenith angle extracted from 
MODIS geolocation product (MOD03), Da is the earth-sun distance in astronomical unit, r is the 
broadband albedo at TOA, μ is the cosine of solar zenith angle, a1-a7, x, y, z are constants for various 
types of surfaces (Land, Ocean, Snow/Ice) and predefined by Tang et al. [2006] and listed in table 5-1 
in this work, w is the precipitable water extracted from MODIS atmospheric precipitable water product 
(MOD05_L2), b0-b7 are the coefficients depending on the viewing zenith angle and the solar zenith 
angle both retrieved from MOD03, ρi is the TOA narrowband reflectance measured by MODIS band i 
(i=1-7) retrieved from MODIS calibrated radiance product (MOD021KM). 

 

Table5-1. Coefficients for estimating the net surface shortwave radiation from the TOA broadband 
albedos [Tang et al., 2006] 

Surface 
type a1 a2 a3 a4 a5 a6 a7 x y z 

Land −0.011 0.179 −0.980 0.929 −0.701  0.090 0.846 0.478 0.052 −0.020

Ocean  0.003 0.166 −0.774 0.733 −0.511  0.059 0.637 0.342 0.067 −0.034

Snow/ice −0.011 0.163 −0.648 0.631 −0.867 −0.013 0.927 0.510 0.060  0.018

 

Similar to the calculation of surface net shortwave radiation, Tang and Li [2008b] further 
proposed a scheme to directly estimate the downward longwave radiation (Ld) from only radiances 
measured at the TOA by six MODIS thermal infrared channels-28, 29, 31, 33, 34 and 36 and surface 
emitted radiation from the MODIS land surface temperature/emissivity products (MOD11) using the 
following formulae:  

0 1 29 2 34 3 33 4 36 5 28 6 31dL c c M c M c M c M c M c M= + × + × + × + × + × + ×                     (5.11) 

4
lw s d s sR Lε σε= − T                                                              (5.12) 

2
31 31 32 32 320.273 1.778 1.807 1.037 1.774sε ε ε ε ε= + − − + ε                               (5.13) 

where ci (i=0-6) are coefficients depending on the view zenith angle and surface altitude both extracted 
from MOD03, M is the TOA radiance measured by the MODIS thermal infrared channel extracted 
from MOD021KM and the number in the subscript indicates the thermal channel of MODIS sensor, εs 
is the surface emissivity, σ is the Stefan-Boltzmann constant (5.67×10-8 W/(m2 K4)), Ts is surface 
temperature (K), ε31 and ε32 are respectively surface emissivity in MODIS channels 31 and 32 
retrieved with Ts from MOD11. 

Readers are recommended to refer to Tang et al. [2006] and Tang and Li [2008b] for detailed 
information about these algorithms of retrieving surface net radiation from MODIS products. 
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5.2.6 Estimating soil heat flux (G) from MODIS data 

Soil heat flux (G) is the heat energy used to cool or warm the subsurface soil. It is theoretically 
proportional to the thermal conductivity and vertical temperature gradient in the subsurface soil. Since 
it is impossible to measure G at regional scale at ground, a great number of papers has been devoted to 
estimating soil heat flux indirectly from certain land surface parameters accessible to satellite data 
such as Ts, NDVI, LAI, Albedo and Fr [Choudhury, 1989; Bastiaanssen, 2000; Allen et al., 2007]. In 
this work, the ratio of G to Rn ( Г ) is assumed to be linearly decreased from the dry bare soil to full 
vegetation cover with the increase of Fr as proposed by Su [2002]:  

/ (1 )(n v r s vG R FΓ = = Γ + − Γ − Γ )                                                 (5.14) 

where Гv and Гs are respectively fractions for the full vegetation cover and dry bare soil, according to 
the in-situ point measurements, Г=G/Rn ranges from 0.05 for full vegetative cover (Fr=1) to a 
maximum of 0.3 to 0.5 for dry bare soil (Fr=0) depending on the different types of soils [Daughtry et 
al., 1990; Li and Lyons, 1999]. In this work, Гv =0.05 and Гs = 0.4 (average of 0.3 and 0.5) are 
assumed.  

5.2.7 Estimating ET 

Knowing the surface net radiation (Rn), soil heat flux (G) and EF, the ET can be straightforward 
derived using Eq. (5.1) or (5.3). 

5.3 Results and Validation 

5.3.1 Study area 

Our study area is located in the middle reach of Heihe river basin, northwest China, with the 
climate being arid in temperate zone and the latitude ranging from 38.7˚N to 39.8˚N and longitude 
being 98.5˚-102˚E. Heihe river basin is influenced by East Asian Monsoon climate and has 
heterogeneous distribution of precipitation during the year. Mean annual rainfall in this basin is 
approximately 174 mm and more than 73 percent of annual rainfall occurs during the rainfall season 
from June to September. A large and intensive field experiment was conducted in Heihe river basin 
from May 20th to August 21st 2008. This experiment aims to better understand the hydrological and 
related ecological processes at watershed scale and to promote the applicability of quantitative remote 
sensing in watershed science related studies. In the experiment, a very dense network of stations, 
including automatic meteorological stations, hydrological stations, rain gauges, rainfall radar and flux 
towers, etc., has been installed to collect atmospheric and ground data. For further information about 
the Heihe field experiment, readers are referred to Li et al. [2008]. 

The left image in Fig.5-2 is a yearly IGBP land cover classification map in 2004 over the study 
area derived from the MODIS land cover (MOD12Q1). Surface elevation in most areas is 
approximately 1200-1600 m above sea level. A mountain, surface elevation of which is about 3000 m, 
lies in the southwestern part of the study area. The zone where our LAS instrument was set up is 
sparsely vegetated surfaces with short grass and agricultural crops as shown in the right image of 
Fig.5-2.  
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Fig.5-2 A quick view of study area and location of the LAS instrument. The left image is a yearly 
IGBP land cover classification map in 2004 from MOD12Q1. 0=water, 1=evergreen needleleaf forest, 
2=evergreen broadleaf forest, 3=deciduous needleleaf forest, 4=deciduous broadleaf forest, 5=mixed 
forests, 6=closed shrubland, 7=open shrublands, 8=woody savannas, 9=savannas, 10=grasslands, 
11=permanent wetlands, 12=croplands, 13=urban and built-up, 14=cropland/natural vegetation mosaic, 
15=snow and ice, 16=barren or sparsely vegetated; The blue filled rectangle in the left image indicates 
location of the LAS instrument; The right image is the magnified map of the LAS instrument site. 

5.3.2 LAS and meteorological data 

LAS operations were continually conducted during the Heihe field experiment over flat grassland 
with Northeast-Southwest orientation from May 20th to August 21st, 2008. Calibration of LAS 
measurements was made with observations from an Eddy Correlation (EC) system (later dismantled 
for unknown reasons) nearby the transmitter of the LAS during the first several days after LAS was 
installed. Location of the LAS is indicated by the blue filled rectangle in the left image of Fig.5-2 and 
the magnified map of LAS installed area is given in the right image of Fig.5-2. Length path between 
transmitter and receiver of LAS is 1550 m and the surface elevations of the sites of transmitter and 
receiver are respectively 1384 m and 1395 m. Both the transmitter and receiver were installed on two 
tripods fixed with two towers at the heights about 9.25 and 9.1 m respectively above ground. Power 
was supplied by two different solar power panels and a battery. 10-min interval values of both UCn2 
and signal strength, and the variance of UCn2 were stored in a built-in data logger.  

Two meteorological stations surrounding the transmitter of LAS, namely a station jointly setup by 
China and Japan (hereinafter referred to as "China-Japan station") before the field experiment and an 
automatically recorded station (hereinafter referred to as "automatic station") installed during the field 
experiment, equipped with a set of standard meteorological instruments to measure air temperature, wind 
speed and direction, relative humidity and atmospheric pressure, etc. were deployed respectively before 
and during the period of LAS measurements. The meteorological measurements are made respectively at 
10 m for China-Japan station and at 1.5 m for the automatic station and are recorded every ten minutes as 
that of LAS. 

Post-processing of the LAS measured data is performed with the support of WINLAS software 
developed by Kipp and Zonen to calculate sensible heat fluxes representative of spatial averaged 
values. Inputs to the WINLAS mainly include LAS measurements of UCn2 and signal strength and 
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additional meteorological observations of wind speed, atmospheric pressure, air temperature, relative 
humidity and Bowen ratio, surface roughness and displacement height. As Bowen ratio is not a 
constant during the period of LAS operations and no other Bowen ratio data can be acquired, this work 
attempts to first estimate Bowen ratio ( β ) from few-day measurements of the EC system (temporal 

interval also being 10-min) and then to apply the average values of these Bowen ratio data derived 
from the same time among different days when EC system was in operation to fill in the vacancy 
encountered in the subsequent period of measurements of LAS. Since there is no remarkable variation 
visually in the vegetation height during the period of operation of LAS, surface roughness and 
displacement height are respectively assigned to the fixed values using rule of thumb assumptions with 
z0m=0.1m and d=0.5m for simplicity and operational convenience. A sensitivity test is carried out to 
figure out the impacts of both surface roughness and Bowen ratio on the value of sensible heat flux (H) 
measured by LAS and processed by the WINLAS software. As an example, LAS-measured sensible 
heat fluxes calculated with the meteorological measurements at automatic station from 8h to 18h on 
May 30th are used to perform this sensitivity test. In this test, sensible heat fluxes are first calculated 
with both Bowen ratio and surface roughness length and displacement height being increased or 
decreased respectively by 40% to their original values. Then, they are compared with H derived with 
the original β, z0m and d values. Comparison of this test result is given in Table 5-2. From this table, 
one can see that the increase/decrease of β value by 40% results only in the increase/decrease of 
estimated H from LAS by a mean of about 2W/m2 and RMSE less than 2.5W/m2, while the 
increase/decrease of z0m and d values by 40% results in the increase/decrease of estimated H from LAS 
by a mean less than 9W/m2 and RMSE less than 15W/m2 and the impact of errors in z0m and d on the 
derived H from LAS is larger than that of error in β. 

Table 5-2. Sensitivity analysis of LAS-measured sensible heat on two groups of parameters: 
(1) Bowen ratio (β), (2) Surface roughness length for momentum (z0m) and displacement height (d). 

 0.6β 1.4β 0.6z0m and 0.6d 1.4z0m and 1.4d 

Bias(W/m2) -2.1 0.9 -3.8 8.6 

RMSE(W/m2) 2.3 1.0 7.7 14.1 

As two meteorological stations operated near our LAS instrument, one is the China-Japan station 
which was in operation during the whole period of the field experiment and another is the automatic 
station operated only from May 26th to July 16th. Since the LAS instrument can not measure directly 
the sensible heat flux (H), H can only be derived from LAS measured data in combination with Bowen 
ratio, surface roughness length, displacement height and the atmospheric parameters/variables 
measured at meteorological station as described above. Fig.5-3 shows that the sensible heat fluxes 
estimated from LAS data with atmospheric parameters/variables measured at China-Japan station are 
in good agreement with H derived from LAS data using the atmospheric parameters/variables 
measured at automatic station at the time overlapped with MODIS overpass although H estimated 
using automatic station seems slightly larger than that derived using China-Japan station at higher H 
values. The RMSE between them is 9.41W/m2 and R2 is 0.962. Therefore, in the following, only H 
derived from LAS data using atmospheric parameters/variables measured at the China-Japan station 
will be compared with H derived from MODIS data using the Ts-Fr triangle method. 

 95



H using China-Japan station (W/m2)

0 50 100 150 200

H
 u

si
ng

 a
ut

om
at

ic
 s

ta
tio

n 
(W

/m
2 )

0

50

100

150

200

1:1 line

 

Fig.5-3 Comparison of LAS-measured sensible heat fluxes calculated respectively using 
measurements at China-Japan station and automatic station. 

 

In order to evaluate the reliability of inferred LAS-measured sensible heat fluxes H, a comparison 
of H derived respectively from EC (Eddy Correlation) system and LAS measurements on May 20th 
from 8h to 18h. The results showed that relatively good agreement is observed between LAS-
measured and EC-measured H though EC-measured H is slightly higher than that deduced from LAS 
measurements, and LAS-measured H is much more stable in the daytime evolution whereas H derived 
from EC fluctuates seriously with time. 

5.3.3 Remote sensing data 

MODIS data products used in this work are land surface temperature/emissivity (MOD11A1 and 
MOD11_L2), NDVI (MOD13A2), Calibrated radiances (MOD021KM), Geolocation (MOD03), 
Precipitable water (MOD05_L2) products. All 24 clear-sky MODIS data from May 23rd to August 21st 
over our study area are used to estimate the EF, ET and H using the Ts-Fr triangle method/algorithm 
proposed in this work. The overpass time (local solar time) corresponding to the 24 clear-sky MODIS 
data varies approximately from 10:06 to 11:42AM. 

MOD11A1 (MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid) 
and MOD13A2 (MODIS/Terra Vegetation Indices 16- ，Day L3 Global 1km SIN Grid) generated by 
the MODIS Adaptive Processing System (MODAPS) at the U. S. Geological Survey EROS Data 
Center (EDC), are stored as gridded level 3 products in the Integerized Sinusoidal projection with a 
nominal spatial resolution of 1 km (about 926 m) in the HDF (Hierarchical Data Format) format. 
Daytime surface temperature data (LST_Day_1km), daytime overpass time (Day_view_time) and 16-
day NDVI data (1_km_16_days_NDVI) extracted respectively from the MOD11A1 and MOD13A2 
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products are re-projected to Albers Equal Area (AEA) projection with the MRT (MODIS Reprojection 
Tool). The difference between MOD11_L2 and MOD11A1 is the different spatial resolution, in which 
the spatial resolution of MOD11_L2 product is 1000 m same as that of the following three MODIS 
products. 

MOD021KM, MOD03 and MOD05 can be accessed from the LAADS (Level 1 and Atmosphere 
Archive and Distribution System) web. MOD021KM is consisted of calibrated and geolocated TOA 
radiances and reflectances for 36 bands. MOD03 product mainly includes datasets of geodetic 
coordinates (latitude and longitude), solar zenith and azimuth angle, satellite zenith and azimuth angle, 
and ground elevation for each 1-km sample (pixel). MOD05_L2 contains column water-vapor 
amounts over clear land areas and above clouds over both land and ocean.  

5.3.4 Results and Validation 

The algorithm described in section 5.2 is applied to all 24 clear-sky MODIS data acquired over 
our study area. As an example, Fig.5-4 shows a plot of Ts against Fr in the two-dimensional space for 
MODIS data acquired on Julian day 201 and the corresponding dry and wet edges determined 
automatically by the proposed algorithm. This figure confirms the hypothesis that the pixels in the 
study area forms a triangle in the two-dimensional space Ts-Fr and the dry and wet edges can be 
determined on the basis of the triangle space using our proposed algorithm. Similar results are 
obtained for other 23 clear-sky days. 

 

Fig.5-4 A plot of Ts against Fr in the two-dimensional space for MODIS data acquired on day 201 and 
the corresponding dry and wet edges determined automatically by the proposed algorithm. 

 

Fig.5-5 shows the surface net radiation (Rn), soil heat flux (G) and sensible heat flux (H) 
estimated from MODIS data alone on the LAS instrument site using our proposed method and 
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algorithm for 24 clear-sky days at MODIS overpass time. From this figure, one can see that the Rn for 
all 24 clear-sky days varies from about 518 to 739 W/m2 with the mean value of 618 W/m2. The 
minimum and maximum Rn values occur on Julian days 226 and 177 respectively. There is no 
remarkable variation in the soil heat flux as the fractional vegetation cover changes a bit from 0.02 to 
0.29 during this period. The mean, minimum and maximum values of soil heat flux are 209, 172 and 
248W/m2 respectively. In most cases, MODIS-derived sensible heat flux is smaller than the soil heat 
flux at the LAS site. 
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Fig.5-5 Surface net radiation, soil heat flux and sensible heat flux of the LAS site derived from 

MODIS data using our proposed algorithm for 24 clear-sky days. 

 

Fig.5-6 displays EF estimated from MODIS data alone on the LAS site using our proposed 
method and algorithm for 24 clear-sky days at MODIS overpass time. One can see from this figure 
that EF varies from 0.315 (day 144) to 0.832 (day 189) with the mean value of 0.659. EF increases 
rapidly from the end of May to the end of June, Before June 30th, EF is generally lower than 0.55 (an 
exception occurs on Julian day 177 while during the period of July to August, EF varies mainly from 
0.63 to 0.83. This relatively high EF during the period from the end of June to August may be due to 
the fact that this period is within the period of rainfall season in our study area. 
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Fig.5-6 Evaporative fraction of the LAS site estimated from MODIS data using the proposed 

algorithm for 24 clear-sky days 
 

Fig.5-7 illustrates the highest surface temperature (Ts,max) at the dry edge and surface temperature 
for the wet edge (Ts,min, the lowest surface temperature at the dry edge) obtained  using our proposed 
method and algorithm for 24 clear-sky days at MODIS overpass time. These surface temperatures are 
deduced from the determined dry edges for the 24 Ts-Fr triangles. Ts,max varies from 316.8 (Julian day 
222) to 332.2 K (Julian day 204) and Ts,min from 277.8 (Julian day 144) to 308.6 K (Julian day 183). It 
should be noted that full ranges of fractional vegetation cover is of crucial importance for the 
determination of dry and wet edges in our work, which gives a possible explanation to the relatively 
low Ts,min on Julian day 144 over the study area since the variation of Fr is only from 0 to 0.4. R2 for 
the linear fit of the dry edge in all 24 constructed Ts-Fr triangles ranges from 0.829 to 0.982, implying 
that Eq. (5.9) can well depict the relationship between Ts and Fr in the dry edge. 

As a validation, Fig.5-8 shows a comparison of MODIS-derived H using our proposed method 
and algorithm with LAS-measured H for 24 clear-sky days during the period of LAS operation. A very 
good agreement can be found in this figure with RMSE = 25.07 W/m2. MODIS-derived H varies from 
about 75.3 to 226.2 W/m2 with the mean value of 136.7 W/m2. Large discrepancies (ΔH) between 
MODIS-derived H and LAS-measured H occur on Julian days 167 (ΔH=55.3 W/m2), 174 (ΔH=67 
W/m2), 217 (ΔH=-49.7 W/m2), and 226 (ΔH=-40.6 W/m2). On Julian days 165 and 173, heavy 
rainfalls were took place in the study area, leading to an inaccurate determination of dry and wet edges 
(i.e. Ts,max and (Ts,max-Ts,min) decrease), and causing probably an underestimation of EF and an 
overestimation of H on Julian days 167 and 174.  
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Fig.5-7 The highest surface temperature at the dry edge (Ts,max) and surface temperature at the wet 

edge (Ts,min) inferred from MODIS data using our proposed algorithm for 24 clear-sky days. 
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Fig.5-8 Comparisons of sensible heat flux estimated from MODIS data using our proposed algorithm 

with that measured by LAS instrument for 24 clear-sky days 
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Due to the lack of sufficient information, it is not yet possible for us to explain the possible 
reasons for relatively large discrepancies found on Julian days 217 and 226. It might be related to the 
relatively low surface net radiation (Rn=576 W/m2, 518W/m2 for Julian days 217 and 226 respectively) 
derived at MODIS overpass time on these days when compared with values estimated on Julian days 
216 (Rn=710 W/m2) and 225 (Rn=710 W/m2). An advantage in the Ts-Fr triangle method is that 
inaccurate determination of dry and wet edges can also result in an accurate combined-effect 
parameter Φ and evaporative fraction for a given pixel (Ts,i, Fr) as long as the ratio of difference 
between Ts,i and Tmax,i to the difference between Tmax,i and Tmin,i (see Fig.1-3) does not change for a 
given Fr.  

It should be emphasized that uncertainties in the sensible heat flux derived from Ts-Fr triangle is 
partly attributed to the uncertainty related to the estimation of both Rn and G. Tang et al. [2006] 
reported the RMSE of less than 20 W/m2 for clear sky days by comparing the estimated surface net 
shortwave radiation with MODIS products with in-situ measured values at YuCheng field site during 
an extended period of time covering all seasons in 2003. A comparison of estimated surface net 
longwave radiation from Tang and Li [2008b] with field measurements at six sites of the Surface 
Radiation Budget Network in United States has shown a RMSE of approximately 26 W/m2 at MODIS 
overpass time of cloud-free days in 2006. Though G accounts for merely a small portion of Rn over 
partially vegetated areas, it will have more or less influences on the uncertainties of the estimated 
sensible and latent heat fluxes. Unfortunately, as there are no in-situ measurements of both Rn and G 
available at the grassland where LAS was placed from May to August, 2008, it is impossible to further 
investigate the sources of uncertainties in sensible and latent heat fluxes.  

5.4 Conclusions 

A practical algorithm is developed for quantitative determination of dry and wet edges for the Ts-
VI triangle method from MODIS/Terra data and products. This algorithm can provide an estimation of 
surface net radiation, soil heat flux, evaporative fraction and evapotranspiration at regional scale from 
MODIS data and products alone. Advantages of Ts-Fr triangle method over the residual method of 
surface energy balance are that 1) absolute high accuracy in remotely Ts retrieval and atmospheric 
correction are not indispensable and 2) complex parameterization of aerodynamic resistance and 
uncertainty originated from replacement of aerodynamic temperature by remotely sensed Ts is 
bypassed, and 3) no ground-based near surface measurements are needed rather than remotely sensed 
Ts and Fr, 4) a direct calculation of evaporative fraction (EF), defined as the ratio of latent heat flux to 
surface available energy, can be obtained without resort to surface energy balance. Limitations of Ts-
Fr triangle mainly lie in the arbitrary determination of both dry and wet edges and a large number of 
pixels over a flat area with a wide range of soil moisture and fractional vegetation cover are required. 

Determination of dry and wet wedges in Ts-VI triangle space generally involves a large degree of 
subjectivity and uncertainty. The rules and algorithm proposed in this paper give a feasible way to 
estimate the highest surface temperature at each Fr interval and subsequently determine the dry and 
wet edges in arid and semi-arid climate region from the Ts-Fr triangle space. Although assumption of 
two-step linear interpolation scheme involved in the estimation of the combined-effect parameter 
Φ and EF is still　  questionable and not yet verified directly, a very good agreement is found with the 
RMSE = 25.07 W/m2 when sensible heat flux estimated from MODIS data is compared with that 
measured by LAS instrument. 
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To reduce the uncertainty in the estimation of turbulent heat fluxes from the Ts-Fr method, 
further work needs to be carried out to verify the relevant parameters/variables step by step provided 
that data required are available in the future and more validation work needs to be performed in other 
different regions for the proposed algorithm. 
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This chapter presents the general conclusions of this thesis and gives some prospects and 
directions for future improvement of the land surface evapotranspiration estimation. 

6.1 Conclusions 

This work concerns the methodological development permitting to determine the regional land 
surface EvapoTranspiration (ET) from the MODIS data onboard the polar satellite Terra. It focuses 
mainly on the retrieval of land surface temperature (LST), the restitution of the directional land surface 
emissivity, the study of the scaling effects of satellite-derived surface parameters/variables and the 
estimation of regional ET from remote sensing data alone. 

In terms of the retrieval of land surface temperature, on the basis of the radiative transfer theory, 
this work addressed the estimate of LST from the Chinese first operational geostationary 
meteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1, 10.3-
11.3 m and IR2, 11.5　 -12.5 m), using the Generalized Split　 -Window (GSW) algorithm proposed by 
Wan and Dozier (1996). Following conclusions can be made: 1) taking into account the fact that the S-
VISSR sensor onboard FY-2C has no atmospheric sounding channels, the coefficients in the GSW 
algorithm were derived by dividing the ranges of the mean emissivity, the atmospheric Water Vapor 
Content (WVC), and the LST into tractable sub-ranges, and were recalculated using a statistical 
regression method from the numerical values simulated with an accurate atmospheric radiative transfer 
model MODTRAN 4 over a wide range of the atmospheric and surface conditions. The simulation 
analysis showed that the LST could be estimated by the GSW algorithm with the Root Mean Square 
Error (RMSE) less than 1 K for the sub-ranges with the Viewing Zenith Angle (VZA) less than 30° or 
for the sub-ranges with VZA less than 60° and the atmospheric WVC less than 3.5 g/cm2 provided that 
the Land Surface Emissivities (LSEs) are known. 2) as the GSW algorithm requires WVC and LSE as 
model input, the MODIS total precipitable water product MOD05 providing the atmospheric column 
water vapor amounts, was used to obtain the WVC when the scanning times of the sensors MODIS 
and S-VISSR are close to each other. As for the other scanning times of S-VISSR, the atmospheric 
WVC can be determined using the method developed by Li et al. (2003). As for LSE, the 
MODIS/Terra LST product MOD11B1 providing the LSEs with 5 km resolution for the thermal 
infrared channels 31 and 32, was used to derive the LSEs in S-VISSR channels IR1 and IR2, 
respectively. 3) the sensitivities and error analyses in term of the uncertainty of the LSE and WVC as 
well as the instrumental noise showed that the accuracy of retrieval LST can be affected by 3% for 
NEΔT(Noise Equivalent Temperature Difference)=0.1K, by 16% for NEΔT=0.2K, and by 81% for 
NEΔT=0.5K for the sub-range ε [0.94,1.0], WVC [1.0,2.5], and Ts [290K,310K]; given the ∈ ∈ ∈

uncertainties of (1-ε)/ε and Δε/ε2 around 1%, the LST error is [1.3K, 1.5K] with the mean of 1.4 K for 
the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K for the wet atmosphere; and the effect of 
the uncertainty of the WVC on the retrieval LST could be around 0.3 K. 4) in order to compare the 
different formulations of the split-window algorithm, several split-window algorithms were used to 
estimate the LST with the same simulated FY-2C data. The result of the intercomparsion showed that 
most of the algorithms give comparable results, which indicates that the split-window algorithm can be 
successfully applied to the LST retrievals from FY-2C data.  

As for the restitution of the directional land surface emissivity, this work proposed a two steps 
method to estimate the directional emissivity in the mid-infrared (MIR) channel around 4.0 μm from 
MODIS data. The first step is to retrieve the bidirectional reflectivity in MIR channel from two 
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adjacent MIR channels 22 and 23 of MODIS centered at 3.97 um and 4.06 um respectively onboard 
Terra and Aqua satellites. On the basis of the difference in the solar reflection in these two channels, 
and assuming that the surface bidirectional reflectivities are equal in channels 22 and 23, and that the 
ground brightness temperatures in these two adjacent channels are the same if the contribution of the 
direct solar radiation is not considered, the method developed by Tang and Li [2008a] can be used to 
retrieve the bidirectional reflectivity (ρb) in the MIR channel from MODIS channels 22 and 23. The 
second step is then used to estimate the directional emissivity in MIR channel from the bidirectional 
reflectivity with the model developed by Jiang and Li [2008]. In order to show the retrieval accuracy 
of the proposed method, firstly a region of Egypt and Israel with latitude from 28.0° N to 32.0° N and 
longitude from 30.0° E to 36.0° E and its MODIS images were taken as an example to estimate the 
directional emissivity directly from MODIS MIR data using the proposed method, then the MODIS 
land surface temperature/emissivity product MYD11B1 data have been used to cross-validate 
preliminary estimating values. The results of this comparison showed that, at least for our cases, the 
proposed method for estimating the directional emissivity gives results comparable to those of 
MYD11B1 product with Mean Error =-0.007 and Root Mean Square Error =0.024. 

In terms of the study of the scaling effects of satellite-derived surface parameters/variables, this 
work was devoted to study the impact of spatial heterogeneity of leaf area index (LAI) on the estimate 
of directional gap fraction through aggregating the high-resolution directional gap probability (pixel 
size of 20 meters) estimated from LAI images of VALERI (Validation of Land European Remote 
sensing Instruments) database by means of Beer's law. An extension of clumping index, Ĉ, was 
introduced to compensate the scaling bias. The results obtained in this work showed that the scaling 
effect depends on both the surface heterogeneity and the nonlinearity degree of the retrieved function. 
Analytical expressions for the scaling bias of gap probability and Ĉ were established in function of the 
variance of LAI and the mean value of LAI in a coarse pixel. With the VALERI dataset, the study in 
this work showed that relative scaling bias of gap probability increases with decreasing spatial 
resolution for most of land cover types. Large relative biases were found for most of crops sites and a 
mixed forest site due to their relative large variance of LAI, while very small biases occurred over 
grassland and shrubs sites. As for a new parameter Ĉ, it varied slowly in the pure forest, grassland and 
shrubs sites, while more significantly in crops and mixed forest. The parameters Ĉ has endowed a new 
significance to traditional clumping index and provided evidence to the utility of clumping index as an 
improvement of the estimate of gap probability from LAI. The results exhibited also the capability of 
clumping index for scaling Beer’ law and representing spatial heterogeneity, as well as the feasibility 
of the inversion approach for gap probability from remote sensing data. Meanwhile a simple and 
feasible method to estimate “clumping index” from remote sensing data was also explored in this work, 
which would provide a support to global mapping of the vegetation clumping index. 

In terms of the estimation of regional ET from fully remote sensing data, this work was a trial to 
develop a parameterization of regional ET with only satellite derived surface parameters, such as the 
so-called Ts-VI triangle method. This type of method relies on the triangular shape formed by the 
scatter plot of surface temperature (Ts) versus vegetation index (VI) under a full range of vegetation 
cover and soil moisture availability within the interesting study region to estimate EF and ET at 
satellite pixel scale. This algorithm can provide an estimation of surface net radiation, soil heat flux, 
EF and ET at regional scale from MODIS data and products alone. The success of Ts-VI triangle 
method on the estimation of EF and ET depends mainly on the correct choice of the dry and wet edges 
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in the Ts-VI triangle space. An arid and semi-arid area is usually selected to estimate the ET with Ts-
VI triangle method because the dry edge of Ts-VI triangle feature space can be successfully 
determined in such areas where wet pixels are not generally easily identified. The wet edge is assumed 
to be a horizontal straight line in this work. By means of formula derivation, the estimation of ET can 
be converted into the estimation of Φ which represents a combined-effect parameter accounting for 
aerodynamic resistance. Once the two edges (dry and wet) in the Ts-Fr space are determined, the value 
of Φ corresponding to the driest bare soil pixel (at the position Fr=0 and maximum surface 
temperature Ts,max in the dry edge line) is set to 0 (denoted as Φmin=0 at pixel (Fr=0, Ts,max)) and the 
value of Φ at the position Fr=1 and the minimum surface temperature Ts,min in the dry edge line is set 
to 1.26 (denoted as Φmax=1.26 at (Fr=1, Ts,min)). A two-step linear interpolation is then used to get the 
Φ value for the pixel i (Fr,i,Ts,i) in the Ts-Fr triangle space. 

This work gave a preliminary validation of satellite derived sensible heat flux with the field 
measurements made by the LAS during the Heihe Field Experiment from May 20th to August 21st, 
2008. The sensible heat fluxes retrieved using MODIS data from a grassland located in the middle 
reach of Heihe river basin, Northwest China, are in good agreement with those measured from LAS. 
The Root Mean Square Error of this comparison is 25.07 W/m2. It is shown that determination of dry 
and wet edges using the proposed algorithm is accurate enough at least in most cases of our study for 
the estimates of regional surface ET. This work also showed the advantage of the Ts-VI triangle 
method compared to the other methods traditionally employed for the determination of the regional ET 
and proposed methods to calculate land surface temperature and emissivity from the radiances 
measured by the satellites. This work also showed that only from the satellite data with an acceptable 
precision it was possible to estimate ET in arid and semi-arid areas.  

This work opens interesting prospects. In the restitution of regional ET, the exactitude of this 
restitution depends mainly on the exactitude of the dry and wet edges determination in the Ts-VI 
triangle and on the performance of the interpolation model involved in the evaluation of the 
evaporative fraction in the ET estimation model. The performances of the model and the new 
algorithm developed in this study have to be evaluated in the future in a precise and attentive way. 
Determination of dry and wet wedges in Ts-VI triangle space generally involves a large degree of 
subjectivity and uncertainty. The rules and algorithm proposed in this thesis give a feasible way to 
estimate the highest surface temperature at each fractional cover interval and subsequently determine 
the dry and wet edges in arid and semi-arid climate region from the Ts-VI triangle space.  

Although assumption of two-step linear interpolation scheme involved in the estimation of the 
combined-effect parameter Φ and evaporative fraction is still questionable and not yet verified directly, 
a very good agreement is found when sensible heat flux estimated from MODIS data is compared with 
that measured by LAS instrument. To reduce the uncertainty in the estimation of turbulent heat fluxes 
from the Ts-VI method, further work needs to be carried out to verify the relevant parameters/variables 
step by step provided that data required are available in the future and more validation work needs to 
be performed in other different regions for the proposed algorithm. 

6.2 Future trends and prospects 

From what was mentioned previously, if there are no innovated methods in acquisition of 
remotely sensed data and meteorological variables or newly-developed ET models, the main restricting 
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factors in the estimates of actual instantaneous/daily/weekly/monthly ET over regional scale from 
remote sensing techniques are actually the retrieval accuracy and physical interpretation of different 
surface variables retrieved from satellite data, parameterization of land surface fluxes at regional scale, 
temporal and spatial data/model scaling among different scales, validation of the latent heat flux 
obtained from models at regional scale, acquisition of near-surface meteorological data over different 
satellite pixel scales etc.  

As known, the sensors onboard satellites measure only radiances at the top of the atmosphere. 
These measured radiances are in general the quantities integrated over very heterogeneous and large 
surfaces. One can thus ask following questions: Can one extract from these radiances the macroscopic 
parameters (variables) describing such a surface? Do such macroscopic parameters exist? How to 
define them? One can also wonder whether the description of the physical processes at the 
land/atmosphere interface developed at local scale is applicable to the larger (spatial) scale with 
surface parameters (variables) integrated over this surface. The attempts to answer all these questions 
lead to study the fundamental and conceptual aspects of the definition of the macroscopic parameters 
(variables) and the scaling effects. The passage of the radiances measured at the top of the atmosphere 
to the macroscopic parameters (variables) and physics of surfaces requires the corrections for the 
atmospheric effects and the connection of the surface parameters (variables) derived directly from 
satellite data to other surface parameters (variables) through physical models. These problems lead to 
study the methodological aspects of the derivation of the surface parameters (variables) which can not 
be retrieved directly from satellite data and the metrology aspects of the atmospheric corrections 
necessary to the determination of other surface parameters (variables) directly from satellite data. 

Study will be recommended to focus on the following subjects in the future for quantifying 
regional and global ET. 

6.2.1 Modeling of land surface processes at interface of soil-biosphere-atmosphere at 
regional scale 

This modeling aims to formulate the processes of exchanges between soil-biosphere-atmosphere 
in terms of macroscopic parameters which have significant physical meaning at regional scale and are 
measurable from satellites. The required formulation should permit to specify both the physical 
meaning of the measurements by satellite and the passage of local scale to regional and global scales. 
It concerns a semi-phenomenological analysis which could lead to a new method to assimilate 
effectively satellite data for the land surfaces. 

6.2.1.1 Dialectical approach to model the spatial-temporal variations of land surface 
processes at various scales 

Two modeling methods (one is based on the other) are possible to be developed to study what 
occurs at regional and global scales. 

6.2.1.1.1 Integrating method 

This method consists in describing all the elements that compose a pixel, in modeling the 
processes for each one of these elements and extrapolating these models by a process of “surface 
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integration” to deduce what occurs to large scales. It is about a type of up-scaling. Because of the non-
linearity of the processes, this integration is complex and is based on assumptions not always easy to 
control. This method is very useful to understand what occurs, and can direct the research of the 
“integrating” variables (parameters) directly describing the processes at the scale considered. It is, 
however, difficult with this method:  

1) to benefit from “simplifications” which must appear at large scale, due to the fact that one 
cannot measure all the characteristics of the elements composed the pixel. 

2) to highlight “the good” variables representative of the system at large scales.  

This method can lead to models having a very great number of parameters and variables whose 
determination at large scales is not possible without arbitrary, taking into account the extreme local 
variability of these in-situ quantities. 

6.2.1.1.2 “Autonomous” method at large scales 

Although the integrating method is very rich and useful, it must be supplemented, in a dialectical 
way, by a method that analyzes and models (parameterizes) the observations made directly at satellite 
pixel scale. This second method is founded on the principle of “scale autonomy” which implies that 
the processes at a given scale can be described and understood at this scale in an autonomous way and 
without making reference to the phenomena and processes intervening at a lower scale, even if they 
are the consequence. The passage from one scale to others permits to describe the parameters and 
variables defined in a given scale in function of the variables and processes of under systems 
intervening on a lower scale.  

This raises obviously the question about whether this autonomous description with large scales 
exists and whether necessary and sufficient measures are currently available to carry out this study. As 
only satellite measurements are available, the question is whether necessary and sufficient variables 
(parameters) can be defined with these satellite measurements to describe the state of surface and 
processes of the land surface at satellite pixel scale. The answer is not obvious [Morel, 1985] and is 
not really known. However, experiments showed that it is possible to highlight spatial indicators which 
are sensitive to the variations of the state of the biosphere [Rasool, 1987; Roerink and Menenti, 2000; 
Roerink et al., 2000b; Moody and Johnson, 2001]. It is not possible to currently give an exhaustive list 
of these indicators. One can nevertheless quote a certain number of it: surface temperature, temporal 
sums of temperature, vegetation indices, Microwave Polarization Difference Indices (MPDI), complex 
inertia, Albedo, precipitation indices, moisture indices, roughness indices, resistance indices and 
temporal sums of some of these indices, etc  

It was shown that these indices are not independent and it is possible to establish laws between 
their variations. Indeed, recent studies seem to indicate that this method is possible and can constitute 
an original approach of the processes at regional scale or global scale without going into the details of 
the local scale. For example, it was shown that relations NDVI/Ts could be correlated with 
evapotranspiration resistance, with surface moisture [Nemani et al., 1993; Nemani and Running, 1989; 
Whitehead et al., 1986; Carlson et al., 1995b] and that the correlations albedo/Ts could provide an 
indicator permitting to monitor extension of the area affected by the desertification [Becker and Séguin, 
1985; Séguin et al., 1987]. It was also showed that the correlations between visible reflectances and 
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MPDI could characterize the interannual variations of the soil surface due to the hydrous deficit 
[Choudhury, 1990; Choudhury, 1991]. They are yet only the preliminary studies, but they indicate 
nevertheless potential and very interesting research for such an “autonomous” approach.  

Although still very little developed, such an “autonomous” approach is now feasible. Indeed, 
huge space measurements provided by the earth observation satellites are now available to scientists 
and the scientists begin to be able to derive an ensemble of important surface variables (parameters) 
and/or spatial indicators from these measurements. 

6.2.1.2 Reformulation of the energy balance at large scales 

Efforts will be made by introducing “integrating parameters” and a parameterization of the 
diurnal variation of surface temperature with a minimum number of parameters into the reformulation 
of the energy balance at large scales [Goettsche and Olesen, 2001] in order to use the temporal 
information provided by satellite data. To simulate complicated phenomena, one can try to introduce 
measurable parameters from space, such as a complex inertia or complex coefficients of transfer 
[Abdellaoui et al., 1986; Raffy and Becker, 1986] . 

6.2.1.3 Phenomenological analysis of the spatial-temporal variations of the spatial indicators 
characterizing surface states and processes at satellite pixel scale 

The suggested phenomenological analysis will be carried out to allow: 1) description of 
phenomenological relations between surface variables and/or spatial indicators and to reveal possibly 
new parameters characterizing land surface states and processes, to highlight characteristic thresholds 
of the release of certain phenomena (erosion, release of sandstorm, degradation etc.), 2) establishment 
of the laws and properties which take into account these variations, and 3) to study these laws and the 
stability of the processes which they describe in function of the parameters controlling these laws.  

According to the above cases, this analysis could be performed using the signal processing 
methods for nonlinear systems, and one will focus to study the way in which the variations observed 
and modeled change in function of the value of the parameters controlling the equations which will be 
established.  

6.2.1.4 Modeling and assimilation of the data 

A big challenge in the development of remote sensing ET models is to develop a new fully 
remote sensing data-based parameterization of land surface ET with only land surface variables and 
parameters directly or indirectly derived from satellite data.  

Associating the measurements taken from satellites with land surface models is essential to 
connect between measurements and models, the various surface characteristic state variables 
(parameters) (or other relevant parameters), the parameters of process, and the space observations. 
Efforts will be made to introduce modifications of the existed land surface models by assimilating 
satellite data and if possible by introducing a new parameterization of land surface evapotranspiration 
process and evaporative fraction based on the relevant parameters observed from space. This aspect is 
very important to correctly take into account the effects of feedback. Accordingly, it will undoubtedly 
be necessary to reformulate certain equations to introduce parameters directly accessible to space 
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measurement, or to re-compute these parameters from the models.  

6.2.2 Further improvement of the accuracy of land surface variables (parameters) retrieved 
from remotely sensed data 

Land surface temperature is the direct indicator of how much energy and water could be available 
over the land surface and is one of the most key factors affecting the accuracy of the ET estimates. 
Land surface temperature along with other related remotely sensed surface variable (parameters) such 
as surface albedo, emissivity, NDVI, soil moisture, fractional vegetation cover and LAI in the energy 
balance models have significant impact on the precise partition of the four energy components in these 
models and consequently on the accuracy of the retrieved regional ET. Although great progress has 
been made nowadays to retrieve quantitatively land surface variables (parameters) from remotely 
sensed data, accuracy of some surface variables (parameters) required in remote sensing ET models 
still needs to be improved and more attention should be paid also to the physical interpretation of these 
surface variables (parameters) retrieved directly or indirectly from satellite data. 

6.2.3 Research in-depth on the impact of the advection on regional estimates of ET 

Advection is another factor influencing the accuracy of the partition of surface available energy 
into turbulent fluxes. It often occurs in the urban area and desert and directly causes the imbalance of 
surface energy especially over small spatial scales (high spatial-resolution) and is another source of 
energy to evaporate the water from surface. At present, it is still uncertain over what scale advection 
will have to be considered and how the energy is exchanged between neighboring pixels in the 
horizontal direction. 

6.2.4 Calibration of land surface process models with the remote sensing ET to map regional 
and time-integrated ET 

Theoretically, remote sensing ET models can be able to provide relatively accurate spatial 
distributions of instantaneous ET while land surface process models driven by atmospheric forcing 
data, and run with related surface data and physical properties of soil and vegetation as model inputs, 
can simulate the long-term development trend of the turbulent heat fluxes, soil water content and other 
related corresponding physical, chemical and biological processes that might occur over both temporal 
and spatial scales. Land surface process models may help to overcome the limitation of the current 
remote sensing ET models, the latter is merely employed under clear sky conditions and at 
instantaneous scale. However, because of both the low spatial resolution and the uncertainties in the 
model inputs in the land surface process models, it is hard, sometimes impossible to estimate correctly 
the latent heat flux at large scale with land surface process models without adding information 
provided by satellite data. Remote sensing has the unique advantages on the acquisition of spatial land 
surface variables (parameters) needed in the land surface process models from a scale of several 
meters to a scale of several kilometers. It may be an effective way to reduce the uncertainties existing 
in the current land surface process models. Efforts will be made therefore to develop methodologies to 
calibrate the ET simulated by land surface models with remote sensing ET values and use as many as 
possible all the land surface variables (parameters) derived from satellite data under clear sky 
conditions. In addition, with the rapid development of multi-spectral, multi-temporal and multi-spatial 
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satellite technology, computer processing technique and optimization algorithms in the geosciences, 
data assimilation is believed to be another promising way to integrate the models, data and 
optimization methods together to estimate temporal and spatial ET continuously. 

6.2.5 Validation of the ET and land surface variables (parameters) at satellite pixel scale 

Validation is the process of assessing by independent means the uncertainty of the data products 
derived from the system outputs. Without validation, any methods, models, algorithms, and parameters 
derived from remotely sensed data can not be used in confident. Both the fundamental physical 
measurements made by the sensor (e.g. radiance) and the derived geophysical variables (e.g. biomass) 
must be properly validated. Validation is the most key and urgent issue to be dealt with because 
validation can help to understand the combined effects of errors in the remotely sensed data, 
uncertainty in the remote sensing ET models and uncertainty in the retrieved land surface variables 
(parameters), and thus can provide feedback and some clues to optimize models, improve accuracies 
of both the remotely sensed data and the retrieved land surface physical variables (parameters).  

Currently, validation of estimated ET is one of the most troublesome problems mainly because of 
both the scaling effects, i.e., comparisons between remote sensing ET and ground-based ET 
measurements, and the advection effects. Several validation techniques have to be developed. These 
may include comparisons of remote sensing ET with ground-based ET measurements conducted over 
validation test sites, inter-comparisons with ET estimated from satellite data at different spatial 
resolution or estimated using combined various data sources and land surface process models, inter-
comparison of trends derived from independently obtained reference data and remotely sensed data, 
and analysis of process model results which are driven or constrained by remotely sensed data and ET. 
However, due to the surface heterogeneity and scaling effects, it may be questionable to validate the 
turbulent heat fluxes at satellite pixel scale with the “point” scale measurements obtained from the 
Bowen ratio, lysimeter and eddy correlation system over non-uniform and heterogeneous surfaces. The 
newly developed LAS (XLAS) can provide a promising approach to validate the remote sensing ET at 
much larger scales.  
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Nomenclatures 
or Acronyms 

Meanings or Full Names 

ABL Atmospheric Boundary Layer 
AEA Albers Equal Area 

ALEXI Atmosphere-Land Exchange Inverse 
Ap the projection of leaf area in perpendicular to incident beam 

ARM Atmospheric Radiation Measurement 
ASCE American Society of Civil Engineers 
ASL Atmospheric Surface Layer 

ASTER Advanced Space-borne Thermal Emission and Reflection Radiometer 
ATSR Along Track Scanning Radiometer 

AVHRR Advanced Very High Resolution Radiometer 
B Planck function 

BAS Bulk Atmospheric Similarity 
Bi(Ti) Channel radiance measured in channel i at the TOA 

Bi(Ts) Radiance measured in channel i if the surface was a blackbody with surface 
temperature Ts

BRDF Bidirectional Reflectance Distribution Function 
BREB Bowen Ratio Energy Balance 
Ĉ Clumping index at coarse pixel 

CAST China Academy of Space Technology 
CMA China Meteorological Administration 

cp Specific heat of air at constant pressure 
Crad Correction coefficient used in sloping terrain 

CWSI Crop Water Stress Index 
d Zero plane displacement height 

Dy Day of year 
Da Earth-sun distance in astronomical unit 

DEM Digital Elevation Model 
DISALEXI DISaggregated ALEXI 

dT Surface-air temperature difference 
DTD Dual Temperature Difference 
dTdry Surface-air temperature difference at dry pixel 
dTs Surface temperature difference of two times in the morning 

dTwet Surface-air temperature difference at wet pixel 
E0 Solar irradiance at TOA 

EBBR Energy Balance Bowen Ration 
EC Eddy Correlation 

ECMWF European Centre of Median-range Weather Forecast 
EDAS Eta Data Assimilation System 
EDC EROS Data Center 
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Nomenclatures 
or Acronyms 

Meanings or Full Names 

EF Evaporative fraction 
EFi Instantaneous EF 
EFr Relative evaporative fraction 
ET EvapoTranspiration 
ETd Cumulative daily ET 
ETi Instantaneous ET 
ETr Reference ET (over the standardized 0.5m tall alfalfa) 

ETr_d Cumulative daily reference ET 
ETrF Reference ET fraction 
f(θ) vegetation fraction viewed at angle θ 

FIFE First ISLSCP Field Experiment 
Fr Fractional vegetation cover 
Fr,i Fractional vegetation cover for each VI or NDVI interval (i) 
g Acceleration due to gravity of the earth 
G Soil heat flux density 

GOES Geostationary Operational Environmental Satellites 
GSFC Goddard Space Flight Center 
GSW Generalized Split-Window 

H Sensible heat flux 
Hc Sensible heat flux for canopy 

HCMM Heat Capacity Mapping Mission 
HDF Hierarchical Data Format 
Hdry Sensible heat flux at dry limit 
hpbl Height of the PBL 

HRV High Resolution Visible 
Hs Sensible heat flux of bare soil 

Hwet Sensible heat flux at wet limit 
IFOV Instantaneous Field Of-View 
IGBP International Geosphere-Biosphere Programme 
IPCC Intergovernmental Panel on Climate Change 

IR Infra-Red 
ISLSCP International Satellite Land-Surface Climatology Project 

JHU Johns Hopkins University 
k Von Karman’s constant 
L Latent heat of vaporizaiton 

LAADS Level 1 and Atmosphere Archive and Distribution System 
LAI Leaf Area Index 

LAIpixel LAI at coarse pixel 
i

pixelsubLAI −  LAI of sub-pixel i within a coarse pixel 
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Nomenclatures 
or Acronyms 

Meanings or Full Names 

LAS Large Aperture Scintillometer 
LE Latent heat flux density 
LEc Canopy-covered ET 
LEd Daily ET 

LEdry Latent heat flux at dry limit 
LEi Instantaneous LE 
LEp Potential ET 
LEs ET of bare soil 

LEwet Latent heat flux at wet limit 
LMD Laboratoire de Meteorologie Dynamique 

LPDAAC Land Processes Distributed Active Archive Center 
LSE Land Surface Emissivity 
LST Land Surface Temperature 

MCST MODIS Characterization and Support Team 
ME Mean Error 

METRIC Mapping EvapoTranspiration at high Resolution with Internalized Calibration 
MIR Middle InfreRed 

MISR Multi-angle Imaging Spectra-Radiometer 
MODAPS MODIS Adaptive Processing System 
MODIS MODerate resolution Imaging Spectroradiometer 

MODTRAN 
MODerate spectral resolution atmospheric TRANsmittance algorithm and 
computer model 

MRT MODIS Reprojection Tool 
MSG/SEVIRI Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager 

NASA National Aeronautics and Space Administration 
NDVI Normalized Difference Vegetation Index 

NDVImax Maximum Normalized Difference Vegetation Index 
NDVImin Minimum Normalized Difference Vegetation Index 
NEΔT Noise Equivalent Temperature Difference 

NIR Near Infrared 
NOAA National Oceanic and Atmospheric Administration 
NWP Numerical Weather Prediction 

P Directional gap probability 
PBL Planetary Boundary Layer 

POLDER Polarization and Directionality of Earth Reflectance 
r Broadband albedo at TOA 
ra Aerodynamic resistance to heat transfer between surface and reference height 

ra,max Maximum aerodynamic resistance to sensible heat transfer 
ra,min Minimum aerodynamic resistance to sensible heat transfer 
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Nomenclatures 
or Acronyms 

Meanings or Full Names 

rc Canopy-covered aerodynamic resistance to sensible heat transfer 
RE Relative Error 
Rlw Surface net longwave radiation 

RMSE Root Mean Square Error 
Rn Surface net radiation flux density 
Rnd Daily Rn

rs Aerodynamic resistance of bare soil to sensible heat transfer 
Rs Incoming shortwave solar radiation 
Rs,d Cumulative daily Rs

Rs,d,horizontal Cumulative daily Rs for a horizontal surface 
Rs,d,pixel Cumulative daily Rs for a specific pixel 

Rs,i Instantaneous Rs

Rs,i,horizontal Instantaneous Rs for a horizontal surface 
Rs,i,pixel Instantaneous Rs for a specific pixel 

Rsw Surface net shortwave radiation 
S Area of pixel 

SAST Shanghai Academy of Space Flight Technology 
SAVI Soil-Adjusted Vegetation Index 

SEBAL Surface Energy Balance Algorithm for Land 
SEBI Surface Energy Balance Index 
SEBS Surface Energy Balance System 

SEVIRI Spinning Enhanced Visible and Infrared Imager 
SGP Southern Great Plain 

si Area of sub-pixel i 
SPOT Systeme Probatoire d'Observation dela Tarre 

S-SEBI Simplified Surface Energy Balance Index 
SVAT Soil-Vegetation-Atmosphere Transfer 

S-VISSR Stretched-Visible and Infrared Spin-Scan Radiometer 
SZA Solar Zenith Angle 

t Duration time starting at sunrise 
T0 Surface temperature of bare soil 
Ta Air temperature measured at a reference height 

Ta_1st Atmospheric temperature in the first boundary layer of the atmospheric profiles used 
Taero Aerodynamic temperature 
TB(θ) B Brightness temperature viewed at angle θ 

Tc Canopy radiometric temperature 
0

gT  MIR ground brightness temperature without the contribution of the solar direct beam 

Tg_22 Daytime ground brightness temperature of MODIS channel 22 
Tg_23 Daytime ground brightness temperature of MODIS channel 23 
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Nomenclatures 
or Acronyms 

Meanings or Full Names 

Ti Channel brightness temperature observed in channel i at the TOA 

iT  Mean channel brightness temperature of pixels observed in channel i at the TOA 

TIGR Thermodynamic Initial Guess Retrieval 
TIR Thermal InfreRed 

TIROS-N Television Infrared Observation Satellite - N series 
Tj Channel brightness temperature observed in channel j at the TOA 

jT  Mean channel brightness temperature of pixels observed in channel j at the TOA 

TM Thematic Mapper 
TOA Top Of the Atmosphere 
Tpbl Average planetary boundary layer temperature 

TRAD(θ) Directional radiometric surface temperature viewed at angle θ 
Ts Surface radiometric temperature 
Ts,i Surface radiometric temperature for each VI or NDVI interval (i) 

Ts,max Maximum surface temperature 
Ts,max,i Maximum surface temperature for each VI or NDVI interval (i) 
Ts,min Minimum surface temperature 
Ts,mix,i Minimum surface temperature for each VI or NDVI interval (i) 
TSKY Air temperature or equivalent air temperature 
TSM Two-Source (soil+canopy) Model 

TSTIM Two-Source Time Integrated Model 
u Wind speed 
u* Friction velocity 

UCSB University of California Santa Barbara 
UNEP United Nations Environment Program 

VALERI Validation of Land European Remote sensing Instruments 
VI Vegetation Index 

VIT Vegetation Index/Temperature 
VPD Vapor Pressure Deficit 
VZA Viewing Zenith Angle 
WDI Water Deficit Index 

WMO the World Meteorological Organization 
WVC Water Vapor Content 
XLAS eXtra-Large Aperture Scintillometers 

za Measurement height of wind speed and air temperature 
zoh Surface roughness length for heat transfer 
zom Surface roughness length for momentum transfer 
αs Surface shortwave albedo 
β Bowen ratio 
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Nomenclatures 
or Acronyms 

Meanings or Full Names 

γ Psychrometric constant 
Δ Slope of saturated vapor pressure as a function of Ta 
δ Standard deviation 
δLAI Standard deviation of LAI 
δLST LST error 
Δε Difference between εi and εj

ε Emissivity 
ε(θ) Surface emissivity viewed at angle θ 
εa Atmospheric emissivity 
εi Channel emissivity in channel i 
εj Channel emissivity in channel j 
εs Surface emissivity 
θ Viewing angle 
θi Incident radiation angle 
θz Solar zenith angle 

Lθ  Mean of leaf inclination angle 
λ Geographical latitude (expressed in decimal degrees) 
Λ Monin-Obukhov length 
μ Cosine of solar zenith angle 
ξ Phase angle 
ρ Density of a certain entity 
ρb Bidirectional reflectivity 
ρh(θ) Hemispherical directional reflectance at viewing angle θ 
ρh(θVZA) Hemispherical directional reflectance at viewing zenith angle θ 
ρi Narrowband reflectance at the TOA 
ρw Density of water 
σ Stefan-Boltzman constant (5.67×10-8) 
τi Atmospheric transmittance in channel i 
τj Atmospheric transmittance in channel j 
Φ Combined-effects parameter which accounts for aerodynamic resistance 
Φi Φ for each VI or NDVI interval (i) 
Φmax Maximum Φ 
Φmax,i Maximum Φ for each VI or NDVI interval (i) 
Φmin Minimum Φ 
Φmin,i Minimum Φ for each VI or NDVI interval (i) 
φ Relative azimuth angle between the observation and incident directions 
Ψ1 Stability correction function for momentum transfer 
Ψ2 Stability correction function for heat transfer 
Ω Clumping index 

 120



Nomenclatures 
or Acronyms 

Meanings or Full Names 

Г Ratio of G to Rn

Гs Г of bare soil 
Гv Г of full vegetation cover 
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