N° d’ordre : 473

Ecole Doctorale Mathématiques, Sciences de

I'Information et de I'lngénieur
UdS — INSA — ENGEES

THESE

présentée pour obtenir le grade de

Docteur de I’Université de Strasbourg
Discipline : Electronique
Spécialité : Télédétection

par

Yuyun Bl

Estimation de I’évapotranspiration de surface terrestre a
partir des données satellitaires

Soutenue publiqguement le 25 Janvier 2010

Membres du jury
Directeur de these : M. Zhao-Liang Li, CR1, CNRS
Co-Directeur de thése : M. Bin Xu, Professeur, IARRP/CAAS
Rapporteur externe : M. Xiaoguang Jiang, Professeur, GUCAS
Rapporteur externe : M. Liangfu, Chen, DR, IRSA

Examinateur : Mme. Francgoise Nerry, CR1, CNRS
Examinateur : M. Jihad Zallat, Professeur, UdS
Examinateur : M. Guangjian Yan, Professeur, BNU
Examinateur : M. Daolong Wang, DR, IARRP/CAAS

LSHT UMR7005



Acknowledgements

As this thesis is approaching the end, I would like to express my sincere gratitude
to all my supervisors, classmates, colleagues, and friends who have supported and

helped me during the period of my study for a doctorate.

First, I would like to thank particularly my two supervisors - Dr. Li Zhao-Liang
and Prof. Xu Bin who have had hard task to direct my doctoral work. Many exchanges
with them have guided my first steps in the field of remote sensing, and then allowed
me to appreciate their availability and kindness. A few lines here can not be enough to

express my sincere gratitude to them.

I would like to express my gratitude to Prof. Jiang Xiaoguang and Prof. Chen

Liangfu to have accepted the hard task of external reviewer of this thesis.

My gratitude then goes to my classmates, particularly to Dr. Tang Bohui, Mr. Tang
Ronglin, Dr. Zhang Xiaoyu and Dr. Ma Lingling for having provided me a lot of
valuable information and assistances. Many new ideas proposed and developed in this
thesis are the fruits of the collaboration with them. Without their collaboration, this

thesis would not be as it is.

I am very grateful to the head of TRIO (Télédétection Radiométrie Imagerie
Optique) in University of Strasbourg, Dr. Frangoise Nerry, for her helpful attitude in
solving many administrative affaires and to Prof. Jihad Zallat, both for having accepted

to travel so long distance from France to China to attend my doctoral defense.

Grateful thanks are given to Prof. Yan Guangjian for taking time out of his busy

lives to attend my doctoral defense.

Thanks are given to my friends known in Strasbourg. I spent lots of happy time
with them, and I will never forget them. I would like to thank especially Mr. Shen

Qingfeng for having given me a lot of warm-hearted help during my stay in France



and after I came back to China.

Then I would like to express my gratitude to the heads of all offices at the Institute
of Agricultural Resources and Regional Planning (IARRP) for their supports and help
that I can keep my work and study in balance. I am very thankful to Director of the
IARRP - Prof. Wang Daolong for the moral and spiritual encouragements. Thanks are
given to my Chinese colleagues Mr. Gao Chunyu, Dr. Wang Yajing, and Dr. Li Gang.
During my stay in France, they have helped me with a great deal of routine work and
certain research tasks. Gratitude is also expressed to Director Chen Yinjun and all my
colleagues of the Resource Management and Utilization Research Office for having

showed me the warmth of a big family through team work.

I would also say thanks to all of my friends. It is difficult to quote everyone here. I
simply make a point of saying that I appreciate everyone who helped me or gave me

spirit supports.

Finally, I need to thank my family members. All I have belongs to you. I love you

all.

This work was partly supported by the project EAGLE (Exploitation of AnGular
effects in Land surfacE observations from satellites) through contract No.: SST3 CT2003
502057 in the Sixth Framework Program (FP6) of EU and partly funded by the National

Natural Science Foundation of China under Grant 40425012 and 40871169.



Contents

RESUME €N FraNGaIS. .. ...ttt ittt e e e e e e et e e e e e e e ee e

MRABRBRAE (FE) o

Chapter 1 INtrodUCTION. .. ...t e e et e e e e e e e e e ee e e ees

1.1 Overviews of remote sensing-based evapotranspiration models in the

PAST AECAES. ...ttt sttt nbe e nneas
1.1.1 Simplified empirical regression method...................coivi i,
1.1.2 Residual method of surface energy balance................ccoooviiiiiiiniinnnn,
1.1.3 Data assimilation............viiiitiii i e e

1.2 Scaling from instantaneous ET to daytime integrated value...........................
1.2.1 SiNe FUNCHION. .. ..o e e e
1.2.2 Constant Evaporative Fraction (EF)............cccoooiiiiiiii e
1.2.3 Constant reference ET fraction (ETrF)........c.coooiiiiii i,

1.3 ProbDIemS/ISSUEBS. .. ..t e e e e e
1.3.1 Problems related to remotely sensed data itself......................oeiiiiinn,

1.3.2 Uncertainty of the remote sensing ET models............cccoooiiiiiiiiiieene,

1.3.3 Uncertainties in the accuracy of the retrieved land surface variables

(O LU L1 (=] ) SRS
1.3.4 Lack of the measurements of near-surface meteorological variables..........
1.3.5 Spatial and temporal scaling effects.............coeiiiiiiii i,
1.3.6 Lack of the land surface ET at satellite pixel scale for the truth validation

1.4 Main research contents and basic concluSioONS. .. .......c.ovve i,

Chapter 2 Generalized Split-Window Algorithm for Estimate of Land Surface

Temperature from Chinese Geostationary FengYun Meteorological Satellite
(74 O T 10 - 1 -

200 I 1= T
2.1.1 Radiative transfer for split-window algorithm.....................cooo il

2.1.2 Algorithm development for FY-2C....... ..o

33
34
34
34
36



2.2 ReSUILS @nd analySiS. .. ....o.uieiie e et e e e e e e
2.2.1 GSW algorithm COBMICIENTS. ........iieee i
2.2.2 EStIMAtioN OF LST ... ittt e et e e e et e e e
2.2.3 Determination Of the LSES.........ooivitiiiiit i et
2.2.4 Determination of the atmospheric WVC..........coooviiiiiiii e e
2.2.5 SENSITIVILY @NAIYSIS. ... . cii it e e
2.2.6 Intercomparison of different formulations of the split-window algorithms............

2.3 Application to actual FY-2C satellite data...............ccooiiiiiiiiiiii e

2.4 CONCIUSIONS . .. et e e e e e e e e e e e e

Chapter 3 Estimation of Land Surface Directional Emissivity in Mid-InfraRed

Channel around 4.0pm from MODIS Data.............ccoeevvviieiie i ieiieeennen.. 09
3.1 Determination of directional emissivity in MIR channel from MODIS data......... 61
3.1.1 Retrieval of the bidirectional reflectivity in MIR channel from MODIS data......... 61
3.1.2 Estimation of the directional emissivity in MIR channel from bidirectional
RETIECTIVITY ... ... et e e e e e e e e 62
3.2 Study area and data ProCeSSiNg........evueveeverieietierieeeeiecie e e eeniennennenaens. 03
3.3 Results and validations.............c.ooiiiii i e en. .. 06
K I O] 0 [0] U1 (o] o PP 70
Chapter 4 Impact of Spatial LAI Heterogeneity on Estimate of Directional
Gap Fraction from SPOT-Satellite Data............c.ooviii i e e 71
4.1 Theoretical framework..........cc.ooviiiii e (4
4.1.1 Up-scaling of directional gap probability...............ccoooiiiiiii 74
4.1.2 Scaling bias of directional gap probability.............ccoooiiiiiiii 75
4.1.3 Redefinition of clumping iNdeX..........ccoovviiiiiiiii e, 75
4.2 Description of the data.............oeoiiiii i 76
4.3 Results and DISCUSSION..........cuvuiiriieietietetee e ee e e ee e ee e en e e 1
4.3.1 Simulation of relative scaling bias of gap probability.................cccooiiiiiiinn 77
4.3.2 Spatial scaling bias of gap probability obtained from the VALERI dataset............ 78
4.3.3 “Clumping index” C for VALERI SHES..........c.cccevureiiiiieieiee e, 80

A4 CONCIUSION ..ot ot e e e e e e e e e e e e e

81



Chapter 5 Triangle Feature Space Algorithm for Estimating Land Surface
Evapotranspiration from MODIS Data in Arid and Semi-arid Regions................ 83

5.1 Methodology ... ....coovnii i e e en. ... 86
5.2 Implementation and application of the method to MODIS data.......................88

5.2.1 Data doWNIOAAING ... .....uiiiit et et ettt e e e 89
5.2.2 Screening out the pixels contaminated by cloud and also the pixels with surface

elevation far apart from the average of surface elevation in the study area............ 90
5.2.3 Calculating @ pixel by piXel..........ccoooiiiiii e 90
5.2.4 Calculating EF pixel by piXel..........cooiiiii 91
5.2.5 Estimation of surface net radiation (Rn) directly from MODIS data and

PIrOAUCTS. .. et e e e et e et e e e 91
5.2.6 Estimating soil heat flux (G) from MODIS data................ccoovvvviiiiiiiiicee e, 93
5.2.7 ESHIMALING ET ..ot e e e e e 93

5.3 Results and Validation..........ooooe e e .93

5.3.1 STUAY @FBA... ... et ettt et e ettt et e e 93
5.3.2 LAS and meteorological data................cooooiiiiiiii i 94
5.3.3 REMOLE SENSING QALA. .. ... oeeieiee it ettt ettt e e e e 96
5.3.4 Results and Validation..............coooiiiiiiionii e e 97

5.4 CONCIUSIONS. ..ottt e e et e et et e e et e et e e e e e e 101
Chapter 6 Conclusions and ProSPeCTS. .. .......euiieiie it it ee e 103
8.1 CONCIUSIONS. .. .. ettt et et e e e e e et e e et e e e e e e 105
6.2 Future trends and ProSPECES. ... vu i i e e e e e e 107

6.2.1 Modeling of land surface processes at interface of soil-biosphere-atmosphere
at regional SCalE.........cccuvii i 108

6.2.2 Further improvement of the accuracy of land surface variables (parameters)
retrieved from remotely sensed data..............cooouveiiiiiiiiii 111

6.2.3 Research in-depth on the impact of the advection on regional estimates

6.2.4 Calibration of land surface process models with the remote sensing ET
to map regional and time-integrated ET...........ccoooiiiiiiiiiiii i 111

6.2.5 Validation of the ET and land surface variables (parameters) at satellite
PIXEL SCAIE... . e e e e e e 112



Appendix Nomenclatures and Acronyms

References. ....oooe e,



Estimation de I’évapotranspiration de surface
terrestre a partir des données satellitaires
( Résumé)

Au début du 21eme siecle, le réel probléme écologique est le changement climatique global.. Le
réchauffement global de la terre, les catastrophes naturelles comme les extinctions d'espéces en sont
les conséquences surtout si le changement climatique se produit trop rapidement. Le pannel
intergouvernemental sur le changement climatique (PICC) a été établi par I'organisation
météorologique mondial (WMO) ainsi que par le programme d'environnement des Nations Unies
(UNEP) en 1988 pour évaluer le risque du changement climatique provoqué par les activités humaines.
L’évapotranspiration (ET) joue un réle important en hydrologie, météorologie et agriculture, comme
dans la prévision et I'estimation de ruissellement de I'eau a I’échelle régionale, dans la simulation de la
circulation atmosphérique a grande échelle et du changement climatique global ainsi que dans
I'établissement des programmes d’irrigations.

Globalement, I’ET moyenne de la surface terrestre explique 60% de la précipitation moyenne. Il
est donc nécessaire d’avoir une information fiable de I’ET de la surface terrestre pour prévoir les
catastrophes naturelles telles que les inondations et les sécheresses. Cependant, I’'ET de surface
terrestre, qui est aussi importante que la précipitation et I'écoulement dans la modélisation du cycle
d’eau, est I'une des composantes la moins renseignée du cycle hydrologique. L’estimation précise de
I’ET régionale dans la modélisation du bilan hydrologique et du bilan énergétique a différentes
échelles temporelles et spatiales est essentielle dans I'hydrologie, la climatologie et I'agriculture.

La technologie de la télédétection est identifiée comme le seul moyen viable de cartographier ’'ET
de la surface terrestre a I’échelle régionale de fagon globale, cohérente et économiquement raisonnable.
La combinaison des paramétres de surface dérivés des données satellitaires avec des variables
météorologiques de surface et des caractéristiques de végétation permet d’estimer I’ET a I’échelle
régionale et globale. La télédétection peut fournir la distribution spatiale et I'évolution temporelle des
parametres de surface tels que NDVI, LAI (Leaf Area Index), Albédo dérivés des données visibles et
proche infrarouges et la température et I’émissivité de surface restituées a partir des données
infrarouge thermiques. La plupart de ces paramétres est indispensable aux méthodes et aux modéles
utilisés pour estimer I’ET de surface.

La potentialité d'utilisation des données infrarouges thermiques a partir de I'espace pour estimer
I’ET a I’échelle locale et régionale a été intensivement étudiée pendant les 30 derniéres années et des
progrés substantiels ont été accomplis. Les méthodes varient dans leurs complexités, de la régression
empirique simplifiée aux modéles physiquement basés sur du bilan énergétique, sur le triangle
construit par la température de surface (Ts) et I'indice de végétation (VI), et aux techniques
d'assimilation de données a un modele numérique. Cependant, la télédétection satellite ne peut pas
fournir des variables proches de la surface telles que la vitesse du vent, la température de lair,
I'numidité, etc., ce qui limite les applications de I'équation du bilan énergétique aux surfaces
homogénes. De plus, les approches pour déterminer I’'ET de surface terrestre different
considérablement dans la complexité de la structure des modeles, dans les entrées et sorties des



modeéles et dans les avantages et les inconvénients de chaque modele. Par conséquent, en considérant
les caractéristiques des diverses méthodes de détermination de I’ET développées pendant les décennies
passées et I'importance de I’ET pour les hydrologistes, les études de ressource en eau et les ingénieurs
en irrigation, la facon de calculer ou d’estimer avec précision I’ET a I’échelle régionale, en se basant
sur la technologie de la télédétection, est devenu une question cruciale.

Ce travail porte donc sur I’élaboration et la mise au point de méthodes permettant de déterminer
I’évapotranspiration régionale de surface terrestre a partir des données de I’instrument MODIS
embarqué sur les satellites polaires Terra et Aqua. Il s’inscrit dans le projet EAGLE (Exploitation of
AnGular effects in Land surfacE observations from satellites) retenu et financé par la Commission
Européenne dans le cadre du programme FP6 pour une période de 3 ans et demi a partir du 1* février 2004.
et dans le projet « Estimation des parametres de surface a partir des données satellitaires » retenu et
financé par le Ministére de la Science et de la Technologie Chinois pour une période de 3 ans a partir
du ler décembre 2006.

Cette thése comprend 6 chapitres.

Dans le premier chapitre, nous présentons I’état de I’art sur I’estimation de I’évapotranspiration
régionale a partir des données satellitaires. Une vue d'ensemble des modéles utilisant des données
satellitaires est décrite pour en permettre I’analyse et la critique dans I'estimation de I’ET régionale a
partir des données de I’espace. Généralement, ces modeles varient considérablement dans leurs entrées,
dans leurs hypothéses principales et I'exactitude de leurs résultats. Sans compter I’utilisation des
données satellitaires multispectrales du visible au infrarouge thermique, la plupart des modeles doit
avoir recours dans une certaine mesure a des mesures auxiliaires au sol afin d’estimer les flux de
chaleur turbulentes a I’échelle régionale. Nous discutons en détail les entrées, les hypothéses, la
théorie, les avantages et les inconvénients principaux de chaque modele dans ce chapitre. De plus, les
approches de I'extrapolation de valeur instantanée ET aux valeurs quotidiennes sont également
brievement présentées. A la fin de ce chapitre, nous analysons les problémes et perspectives associés
aux modeles d’ET afin de montrer objectivement leurs limitations et les aspects prometteurs de
I'estimation de I’ET régionale et nous décrivons briévement la structure de cette these.

Le deuxiéme chapitre de cette thése est consacré a la détermination de la température de surface
terrestre (LST) a partir des données du satellite Chinois de type géostationnaire — FengYun 2C (FY-
2C). La température de surface est en effet un paramétre commun a plusieurs thématiques et sa
connaissance donne des informations sur les variations spatio-temporelles de I’état d’équilibre de
surface. De ce fait, elle est reconnue comme un des parameétres prioritaires et fait I'objet d'attentions
particuliéres dans I'étude de notre environnement et dans I’estimation de I’ET. Pour obtenir une
analyse régionale et globale, la télédétection infrarouge thermique est donc un outil extrémement
intéressant. La télédétection IRT a essentiellement pour objectif la mesure de la température et de
I’émissivité de surface. En se basant sur la théorie du transfert radiatif, ce chapitre adresse I'estimation
de la température de surface terrestre a partir des données dans les deux canaux infrarouges
thermiques (IR1, 10.3-11.3um et IR2, 11.5-12.5um) embarqués sur le satellite météorologique
Chinois de type géostationnaire — FengYun 2C et en utilisant I'algorithme de type split-window
géneralisé (GSW). Les coefficients de l'algorithme de GSW correspondant & une série de variation de
I'émissivité moyenne, du contenu de vapeur d'eau atmosphérique et de la température de surface ont
été dérivés par une méthode statistique de régression en utilisant les valeurs numériques simulées avec



un modéle de transfert radiatif atmosphérique précis (MODTRAN 4) sur une grande variation de
conditions atmosphériques et des surfaces. Ce chapitre est décomposé en 3 parties. La premiere décrit
la théorie liée a la détermination de la température de surface par l'algorithme de type GSW et
présente le développement de I’algorithme pour les données de FY-2C. La seconde donne les résultats
et les valeurs numériques des coefficients de I'algorithme de GSW. L’erreur sur la température de
surface produite par l'incertitude des émissivités de surface, du contenu de vapeur d'eau dans
I'atmosphére et du bruit instrumental est également présentée dans cette partie. En outre, afin de
comparer les différentes formulations d’algorithmes de type split-window, les températures de surface
estimées par plusieurs algorithmes récemment proposés dans la littérature sont comparées et analysées.
La troisiéme partie présente les principaux résultats obtenus de ce travail et montre que la température
de surface pourrait étre estimée par I'algorithme de GSW avec écart type de l'erreur (RMSE) de moins
de 1 K pour l'angle de visée zénithal (VZA) < 30 degré ou pour les conditions dans lesquelles le VZA
et le contenu de vapeur d'eau atmosphérique sont respectivement inférieures de 60 degre et de 3.5
g/lcm2 a condition que les émissivités de surface soient connues. Le résultat de l'intercomparaison a
prouvé que la plupart des algorithmes donnent des résultats comparables.

Nous abordons dans le troisiéme chapitre la restitution de I’émissivité directionnelle de surface a
partir d’une combinaison des données infrarouge thermique (TIR) et infrarouge moyenne (MIR) de
MODIS en mettant I’accent sur la modélisation de la réflectivité bidirectionnelle de surface terrestre
dans le canal MIR. Jusqu’a ici, de nombreuses fonctions de distribution de réflectivité
bidirectionnelles (BRDF) ont été développées pour décrire la réflectivité bidirectionnelle dans des
canaux visible et proche infrarouge en fonction des géométries d'illumination et d’observation. Les
modeéles semi empiriques a noyaux ont été appliqués avec succes avec les instruments AVHRR,
MODIS et MISR. Tres peu de travaux se sont concentrés sur le développement du modéle BRDF
dans la région MIR, mais tous ont visé a estimer I'émissivité dans MIR a partir de la réflectivité
bidirectionnelle dérivée des données AVHRR et MSG/SEVIRI. Notre travail est ici consacré a estimer
I'émissivité directionnelle de surface terrestre dans les canaux TIR et MIR a partir de la réflectivité
bidirectionnelle dérivée des données de MODIS dans les deux canaux adjacents de MIR de MODIS.
La premiére partie de ce chapitre décrit la méthodologie pour déterminer I'émissivité directionnelle et
le developpement du modele BRDF dans la région MIR. La seconde partie décrit la zone d'étude, les
données MODIS et la procédure pour avoir I’estimation de I’émissivité directionnelle a partir des
données MODIS. La troisieme partie présente certains résultats préliminaires et la validation indirecte
de ces résultats avec le produit de la température et de I’émissivité de surface de MODIS (MYD11B1).
Dans ce travail, dix jours de données MODIS entre le 12 Juillet et le 30 Juillet de 2005 en condition
du ciel clair au moment du passage de satellite sur la région étudiée ont été sélectionnés pour
déterminer les coefficients de trois paramétres du modéle BRDF développé. Les émissivités
directionnelles dans le canal MIR ont été déterminées sur une région de I'Egypte et de I'lsraél avec la
latitude variant de 28.0N a 32.0N et la longitude de 30.0E a 36.0E. Les résultats de la comparaison
entre les émissivités dans le canal MIR obtenues de notre modéle avec celles de produit MODIS
(MYD11B1) ont montré que, au moins pour notre cas d’étude, la méthode proposée pour estimer
I'émissivité directionnelle donne des résultats comparables a ceux du produit MODIS (MYD11B1)
avec une erreur moyenne de -0.007 et un écart type de 0.024.

Le quatrieme chapitre se rapporte a I’étude de I’impact de I"'hétérogénéité spatiale de LAI sur
I'estimation de la fraction directionnelle d'espace (directional gap fraction). La probabilité



directionnelle d'espace ou la fraction d'espace est un paramétre de base dans la modélisation du
transfert radiatif dans le couvet végétal. Bien qu'on ait proposé quelques approches pour estimer cette
probabilité d'espace a partir des mesures satellitaires, peu d'efforts ont été mis sur I’étude des effets de
changement d’échelle sur ce parameétre. De ce fait, nous analysons dans ce chapitre l'effet de
changement d’échelle sur ce parameétre en agrégeant la probabilité directionnelle d’espace estimée a
partir de LAI dérivé du satellite @ haute résolution spatiale a I’aide de la loi Beer et nous avons
introduit un nouveau paramétre C pour compenser I’effet de changement d’échelle de ce paramétre. La
premiére partie de ce chapitre fournit le cadre théorique pour estimer I'effet de changement d’échelle
de la probabilité directionnelle d'espace introduit par deux différents schémas d'agrégation, de
I’échelle locale a la plus grande échelle. Dans la deuxieme partie, nous présentons les différents types
d'images de LAI obtenues a partir des données satellitaires de haute résolution spatiale de la base de
données de la campagne-VALERI et dans la troisieme partie, nous donnons l'effet de changement
d’échelle lié a la non linéarité entre LAI et la probabilité d'espace sur plusieurs types de paysage et
proposons un nouveau paramétre C pour compenser I’effet de changement d’échelle.

Les résultats obtenus de ce travail montrent que I'effet de changement d’échelle dépend non
seulement de I'hétérogénéité de surface et aussi du degré de non linéarité de la fonction qui relie le
paramétre recherché aux mesures (paramétres connus). Des expressions analytiques pour compenser
I’effet de changement d’échelle de la probabilité d'espace sont établies en fonction de la variance de
LAI et de la valeur moyenne de LAI dans un grand pixel. Avec I'ensemble des données de VALERI,
I'étude dans ce chapitre prouve que I’effet de changement d’échelle de la probabilité d'espace
augmente avec la résolution spatiale décroissante pour la plupart de types d’occupation du sol. Un
effet relatif important est trouvé pour la plupart des sites de récoltes et pour un site mixte de forét di a
leur grande variabilité vis-a-vis LA, alors qu’un effet plus réduit se produit sur des sites de prairie et
d'arbustes. Quant au nouveau parametre C, il varie lentement dans les sites de forét, de prairie et
d'arbustes, et de maniére significative dans les sites de récoltes et de forét mixte.

Le cinquiéme chapitre est consacré a I’estimation de I’ET régionale a partir des données MODIS
sur des régions arides et semi-arides. Les objectifs de ce travail sont doubles: (1) développement d’un
algorithme opérationnel pour déterminer quantitativement les limites seche et humide dans l'espace
triangulaire construit par la température de surface (Ts) et I’indice de végétation (V1) sur des régions
arides et semi-arides ou des pixel humides généralement ne sont pas facilement identifiés, (2)
validation de ’ET dérivé des produits de MODIS/TERRA avec I’ET mesurée par I’instrument LAS
(Large Aperture Scintillometer). La premiére partie de ce chapitre rappelle le principe de la méthode
de triangle Ts-VI et met en avant les hypothéses impliquées dans I'élaboration méthodologique ainsi
gue les avantages et les inconvénients de la méthode de triangle Ts-VI. La seconde partie est
consacrée au développement d’un algorithme pratique pour la détermination quantitative des limites
séche et humide dans le triangle Ts-VI. Cet algorithme peut fournir une estimation du rayonnement net,
du flux dans le sol, de la fraction évaporative et de I’ET a I’échelle régionale a partir uniqguement des
données et des produits de MODIS. La troisieme partie décrit la région d’étude et les données utilisées
dans cette étude et donne une validation préliminaire de flux de chaleur sensible dérivé des données
MODIS avec les mesures sur le terrain faites par I’instrument LAS pendant I'expérience sur le terrain
de Heihe du 20 mai au 21 ao(t 2008. Les résultats montrent que les flux de chaleur sensible dérivés
des données MODIS par notre méthode sont en bon accord avec ceux mesurés a partir du LAS. L'écart
type de cette comparaison est de 25.07 W/m®.



Le sixiéme chapitre est la conclusion de cette thése. Ce travail a permis de montrer I’avantage de la
méthode de triangle Ts-VI par rapport aux autres méthodes traditionnellement utilisées pour la
détermination de I’évapotranspiration régionale et de proposer des méthodes permettant de calculer la
température de surface et I’émissivité de surface a partir des luminances mesurées par les satellites. Ce
travail a aussi montré qu’il était possible d’estimer I’ET sur des régions arides et semi-arides a partir
uniquement des données satellitaires avec une précision acceptable.

Ce travail ouvre des perspectives intéressantes. Dans la restitution de I’ET régionale, I'exactitude
de cette restitution dépend principalement de I'exactitude de la détermination quantitative des limites
séche et humide dans le triangle Ts-VI et de la performance du modéle d'interpolation impliqué dans
I'évaluation de la fraction évaporative dans le modele de I’estimation de I’ET. Les performances du
modele et du nouveau algorithme développé dans cette étude devront donc étre évaluées de fagon
précise et attentive.

La détermination des limites seche et humide dans l'espace de triangle Ts-VI implique
généralement un grand degré de subjectivité et d'incertitude. Les régles et I'algorithme proposés dans
cette thése proposent un outil réaliste pour estimer la température de surface la plus élevée a chaque
intervalle de la fraction du couvert végétal et de déterminer ensuite les limites seche et humide dans
I'espace de triangle Ts-VI sur des régions arides et semi-arides. Bien que I’hypothése d'interpolation
linéaire en deux étapes impliquée dans I'estimation de la fraction évaporative soit encore incertaine et
non encore vérifiée directement, un trés bon accord est trouvé quand le flux de chaleur sensible
déterminé a partir des données MODIS est comparé a celui mesuré par I'instrument LAS. Pour réduire
I'incertitude dans l'estimation des flux de chaleur turbulents par la méthode Ts-VI, d'autres travaux
doivent étre menés a bien pour vérifier les paramétres/variables appropriés étape par étape a condition
que les données nécessaires soient alors disponibles. De plus un travail de validation doit étre effectué
dans d'autres régions climatiques pour l'algorithme proposé.
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Chapter 1

Introduction






Generally speaking, EvapoTranspiration (ET) is a term used to describe the loss of water from the
earth’s surface to the atmosphere by the combined process of both evaporation from the open water
bodies, bare soil and plant surfaces, etc. and transpiration from vegetation or any other moisture living
surface. Water in an entity or over an interface and energy needed to convert liquid water to the vapor
form, along with a mechanism to transport water from the land surface to the atmosphere, are
prerequisites to ensure the occurrence of ET. Other factors affecting ET rates mainly include solar
radiation, wind speed, vapor pressure deficit and air temperature, etc..

At the beginning of 21% century, there may be no other environmental problems than global
climate change that can be the issue of the most concern for humans. Global warming, natural hazards
and species extinctions, etc., are several dangerous situations that might happen if the climate change
occurs too rapidly. The Intergovernmental Panel on Climate Chang (IPCC) was established by the
World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP) in
1988 (http://www.ipcc.ch/about/index.htm) to evaluate the risk of climate change caused by human
activity. ET, which governs the water cycle and energy transport among the biosphere, atmosphere and
hydrosphere as a controlling factor, plays an important role in hydrology, meteorology, and agriculture,
such as in prediction and estimation of regional-scale surface runoff and underground water, in
simulation of large-scale atmospheric circulation and global climate change, in the scheduling of field-
scale field irrigations and tillage [Idso et al., 1975a; Su, 2002]. On the global basis, the mean ET from
the land surface accounts for approximately 60% of the mean precipitation. It is therefore
indispensable to have reliable information on the land surface ET when natural hazards such as floods
and droughts are predicted and weather forecasting and climate change modeling are performed
[Brutsaert, 1986]. However, land surface ET, which is as important as precipitation and runoff in the
water cycle modeling, is one of the least understood components of the hydrological cycle. In recent
years, except for a few industrialized countries, most countries have undergone an increase of water
use due to the population and economic growth and expended water supply systems while irrigation
water use accounts for about 70% of water withdrawals worldwide and for more than 90% of the
consumptive water use and irrigation water use has been believed to be the most important cause to the
increase of water use in most countries [Bates et al., 2008]. Estimation of consumptive use of water
based on ET models using remotely sensed data has become one of the hot topics in water resources
planning and management over watersheds due to the competition for water between trans-boundary
water users [Bastiaanssen et al., 2005]. In climate dynamics, continuous progress has been made to
describe the general circulation of the atmosphere and Brutsaert [1986] has shown that the general
circulation models appeared to be quite sensitive to the land surface ET information. For vegetated
land surfaces, ET rates are closely related to the assimilation rates of plants and can be used as an
indicator of plant water stress [Jackon et al., 1981]. Therefore, accurate estimates of regional ET in the
land surface water and energy budget modeling at different temporal and spatial scales are essential in
hydrology, climatology and agriculture.

In various practical applications, there are still no specific ways to directly measure the actual ET
over a watershed [Brutsaert, 1986]. Conventional techniques of ET estimation (i.e., Pan-measurement,
Bowen ratio, Eddy correlation system, and Weighing lysimeter, Scintillometer, Sap flow) are mainly
based on site (field)-measurement and many of those techniques are dependent on the variety of model
complexities. Though they can provide relatively accurate estimates of ET over an homogeneous area,
conventional techniques are of rather limited use because they need a variety of surface accessory
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measurements and land parameters such as air temperature, wind speed, vapor pressure at a reference
height, surface roughness, etc., which are difficult to obtain over large-scale terrain areas and have to
be extrapolated/interpolated to various temporal and spatial scales with limited accuracy in order to
initialize/force those models [Idso et al., 1975a]. Remote sensing technology is recognized as the only
viable means to map regional- and meso-scale patterns of ET at the earth’s surface in a globally
consistent and economically feasible manner and surface temperature helps to establish the direct link
between surface radiances and the components of surface energy balance [Weigand and Bartholic,
1970; Idso et al.,1975b; Idso et al., 1975c; Jackson, 1985; Moran et al., 1989; Caselles et al., 1992;
McCabe and Wood, 2006]. Remote sensing technology has several marked advantages over
conventional “point” measurements: 1) it can provide large and continuous spatial coverage within a
few minutes, 2) it costs less when same spatial information is required, 3) it is particularly conducive
to ungauged areas where man-made measurements are difficult to be conducted or unavailable
[Engman and Gurney, 1991; Rango, 1994]. Remotely sensed surface temperature can provide a
measure of surface from a resolution of a few cm? from a hand-held thermometer to about several km?
from certain satellites [Hatfield, 1983]. Combining surface parameters derived from remote sensing
data with surface meteorological variables and vegetation characteristics allows the evaluation of ET
at local, regional and global-scales. Remote sensing information can provide spatial distribution and
temporal evolution of NDVI (Normalized Difference Vegetation Index), LAl (Leaf Area Index),
surface Albedo from visible and near-infrared bands and surface emissivity and radiometric surface
temperature from MIR (Mid-InfraRed) and TIR (Thermal InfraRed) bands, many of which are
indispensable to most of the methods and models that partition the available energy into sensible and
latent fluxes components [Mauser and Stephan, 1998]. The possibility and ability of using remote
sensing technology to evaluate ET have been recognized and verified since the year 1970 with the help
of hand-held and airborne thermometer. But it was not until 1978 with the launch of HCMM (Heat
Capacity Mapping Mission) and polar orbiting weather satellites-TIROS-N that were data available for
such surface fluxes studies from the spacecrafts [Price, 1980].

The potentiality of using MIR data from space to infer regional and local scale ET has been
extensively studied during the past 30 years and substantial progress has been made [Seguin and ltier,
1983]. The methods vary in complexity from simplified empirical regression to physically based
surface energy balance models, the vegetation index-surface temperature triangle/trapezoid methods,
and finally to data assimilation techniques usually coupled with a numerical model that incorporates
all sources of available information to simulate the flow of heat and water transfer through the soil-
vegetation-atmosphere continuum [Kustas and Norman, 1996]. In 1970s when split-window technique
for surface temperature retrieval was not developed, ET evaluation was often accomplished by
regressing thermal radiances from remote sensors and certain surface meteorological measurement
variables (solar radiation, air temperature) to in-situ ET observations or by simulating a numerical
model of a planetary boundary layer to continuously match the thermal radiances from satellites [Idso
et al., 1975a; Idso et al., 1977; Jackson et al., 1977; Price, 1980]. These methods and the refinements
have been successfully used in mapping ET over local areas.

However, satellite remote sensing cannot provide near-surface variables such as wind speed, air
temperature, humidity, etc., which has to a great extent limited the applications of the energy balance
equation to the homogeneous areas with uniform vegetation, soil moisture and topography [Kustas et
al., 1994]. Moreover, approaches to deriving land surface ET differ greatly in model-structure



complexity, in model input and output and in the advantages and drawbacks when compared to each
other. Therefore, with the consideration of the characteristics of the various ET methods developed
over the past decades and of the significance of land surface ET to hydrologists, water resources and
irrigation engineers, and climatologists, etc., how to calculate the ET over a regional scale or how to
estimate ET precisely based on the remote sensing technology has become a critical question in
various ET-related applications and studies. Summaries and comparisons of different remote sensing-
based ET approaches are urgently required and indispensable for us to better understand the
mechanisms of interactions among the hydrosphere, atmosphere and biosphere of the earth.

This introduction provides an overview of a variety of methods and models that have been
developed to estimate land surface ET on field, regional and large scales based mainly on remotely
sensed data. For each method or model, we shall detail the main theory and assumptions involved in
the model development, and highlight its advantages, drawbacks and potentiality. In latter part,
methods of how to convert instantaneous ET to daily values, the problems and issues are addressed,
and main research contents and organization of this thesis are given.

1.1 Overviews of remote sensing-based ET models in the past decades

Generally, the commonly applied ET models using remote sensing data can be categorized into
two types: (semi-) empirical method and analytical method. (Semi-) empirical method is often
accomplished by employing empirical relationships and making use of data mainly derived from
remote sensing observations with minimum ground-based measurements while analytical method
involves the establishment of the physical processes at the scale of interest with varying complexity
and requires a variety of direct and indirect measurements from the remote sensing technology and
ground-based instruments.

1.1.1 Simplified empirical regression method

The main theory of the simplified empirical regression method firstly proposed by Jackson et al.
[1977] over irrigated wheat at Phoenix, Arizona (U.S.A.) directly relates the daily ET to the difference
between instantaneous surface temperature (Ts) and air temperature (T,) measured near midday at
about 13h30 to 14h00 local time over diverse surfaces with variable vegetation cover [Courault et al.,
2003]. The most general form of the simplified regression method can be expressed mathematically as:

LEd = Rnd - B(Ts _Ta)n (11)

where LEq is daily ET and Rnq is daily surface net radiation. B and n are site-specific regression
coefficients dependent on surface roughness, wind speed and atmospheric stability, etc. [Seguin and
Itier, 1983] , which are determined either by linear least squares fit to data or by simulations based on
a SVAT (Soil-Vegetation-Atmosphere Transfer) model [Carlson et al., 1995a] or on a boundary layer
model [Carlson and Buffum, 1989].

The simplified regression method proposed by Jackson et al. [1977] and its refinements have
attracted great attentions in the subsequent operational applications of ET mapping. For example,
Jackson et al. [1977] firstly have demonstrated parameter B was 0.064 and n was unity by regressing
daily ET from a lysimeter to the daily net radiation and one-time measurement of (T,-T,) while Seguin
et al. [1982] regressed data over large homogeneous areas in France with regression coefficients of



B=0.025 and n=1. Seguin and Itier [1983] discussed the theoretical basis and applications of the
simplified regression method proposed by Jackson et al. [1977], and showed that surface roughness,
wind speed and atmospheric stability were the main contributing factors to the regression coefficients
and finally recommended different sets of parameters of B and n applicable to ‘medium rough’
surfaces for stable and unstable cases respectively. Thus, the imposition of a single value of B and n
may be unacceptable and specific values should be adjusted according to the broad range of surface
roughness, wind speed and atmospheric stability [Caselles et al., 1992]. Carlson et al. [1995a]
theoretically analyzed the implications of the regression coefficients in the simplified equation. They
defined B as an average bulk conductance for the daily integrated sensible heat flux and n as a
correction for non-neutral static stability. A SVAT model was utilized to simulate the relationships
between the coefficients B, n and the fractional vegetation cover (Fr) under variable circumstances
with surface roughness and geostrophic wind speed respectively ranging from 2 to 30 cm and 1 to 8.5
m/s [Carlson et al., 1995a]. The resultant formulae are expressed as:

B =0.0175+0.05Fr (+0.002) (1.2)
n=1.004-0.335Fr (+0.053) (1.3)

This relationship is generally valid at a time period between 12h00 and 14h00 when temperature
varies slowly with time [Carlson et al., 1995a].

The height of measurement of T, in the simplified equation is also not specially specified.
Consequently, Jackson et al. [1977] have used the height of 1.5 m as the measurement level of T,
while Seguin and Itier [1983] utilized 2 m instead. Carlson and Buffum [1989] found that the
simplified equation might be more applicable to regional-scale ET estimations if the air temperature
and wind speed were measured or evaluated at a level of 50 m because at this level the meteorological
variables are insensitive to the surface characteristics. They also suggested that a surface temperature
rise (e.g., between 08h00 and 10h00 local time) in the morning obtained from Meteosat or GOES
(Geostationary Operational Environmental Satellites) could replace the difference between surface and
air temperature, in which the regression coefficients were highly sensitive to wind speed and surface
roughness.

Two implicit assumptions in the simplified equation are that daily soil heat flux can be assumed
to be negligible and instantaneous midday value of sensible heat flux can adequately express the
influence of partitioning daily available energy into turbulent fluxes [Courault et al., 2003; Kairu,
1991]. Several papers have tested and verified this simple procedure to estimate daily ET under
diverse atmospheric conditions and variable vegetation covers [Jackson et al., 1977; Seguin and ltier,
1983; Nieuwenhuis et al., 1985; Carlson and Buffum, 1989; Thunnissen and Nieuwenhuis, 1990;
Caselles et al., 1992; Carlson et al., 1995a]. All the contributions to this work have shown that the
error of the calculated daily ET is about 1 mm/day, which is sufficient to give reliable information to
the water availability over a regional level [Seguin et al., 1994].

The main advantage of this procedure is its simplicity, whose inputs include only one-time
measurements of Ts and T, near midday and the daily net radiation. Thus, it is very convenient for the
simplified empirical equation to be applied so long as these ground-based near midday meteorological
measurements and one-time remotely sensed radiometric surface temperature are available. However,
the site-specific parameters B and n have more or less limited the applications of the simplified



equation method over regional scales with variable surface conditions.
1.1.2 Residual method of surface energy balance

Surface energy balance governs the water exchange and partition of the surface turbulent fluxes
into sensible and latent heat fluxes in the soil-vegetation-atmosphere continuum. Residual method of
surface energy balance is one of the most widely applied approaches to mapping ET at different
temporal and spatial scales. When heat storage of photosynthetic vegetation and surface residuals and
horizontal advective heat flow are not taken into account, the one-dimensional form of surface energy
balance equation at instantaneous time scale can be expressed numerically as:

LE=R -G-H (1.4)

Each of the three components of the energy balance equation, including surface net radiation (R,),
soil heat flux (G) and sensible heat flux (H), can be estimated by combining remote sensing based
parameters of surface radiometric temperature and shortwave albedo from visible, near infrared and
thermal infrared wavebands with a set of ground-based meteorological variables of air temperature,
wind speed and humidity and other ancillary surface measurements (see Fig.1-1).

Remote sensing data Air temperature, humidity,
wind speed, etc.
V
v %
Visible and near Thermal infrared
infrared data data
N
Surface spectral
reflectances
Vv
Vegetation Land Land Land
index surface surface surface
albedo emissivity | | temperature
y NV .
v \
Heat flux of I Sensible heat
s0il (G) Surface net radiation (R;) flux (H)
v
Latent heat flux 2

(LE= L'ET=R,~G-H)

Fig.1-1 Flowchart for estimating ET based on energy balance theory



The residual method of surface energy balance between land and atmosphere can be divided into
two categories: 1) single-source model [Brown and Rosenberg, 1973; Bastiaanssen et al., 1998;
Roerink et al., 2000a; Boni et al., 2001; Su, 2002; Allen et al., 2007], 2) dual-source model [Norman et
al., 1995; Anderson et al., 1997; Kustas and Norman, 1997; Kustas and Norman, 1999; Kustas and
Norman, 2000; Chen et al., 2005] and will be addressed in the following parts.

1.1.2.1 Single-source model

Single-source model, also called as big-leaf model, widely used in the simulation of climatology
and plays an important role on the continent pattern, is the earliest one to quantitatively depict the
conversion process of surface radiation, heat, material etc.. As its name implies, single-source model
just regards the earth surface covered with vegetation as a big leaf, ignoring all the secondary structure
and characteristics. The physical guantities of leaf such as temperature, water content, radiation etc.
represent the corresponding physical quantities of the whole land surface which will constantly
exchange energy, heat and moisture with outside atmosphere.

Single-source model is one of the most simplified one in simulating the land surface process and
the most widely used one in practice. Three components of the energy balance equation used in
equation (1.4) to estimate ET are addressed below.

1.1.2.1.1 Surface net radiation flux (Rn)

Surface net radiation (R,) represents the total heat energy that is partitioned into G, H and LE. It
can be estimated from the sum of the difference between the incoming (Rs) and the reflected outgoing
shortwave solar radiation (0.15 to 5um), and the difference between the downwelling atmospheric and
the surface emitted and reflected longwave radiation (3 to 100um), which can be expressed as
[Jackson, 1985; Kustas and Norman, 1996]:

R,=(1-a)R, +ee,0T," —g.0T.* (1.5)

where « is surface shortwave albedo, usually calculated as a combination of narrow band spectral

reflectance values in the bands used in the remote sensing [Liang, 2004], R, is determined by a

combined factors of solar constant, solar inclination angle, geographical location and time of year,
atmospheric transmissivity, ground elevation, etc. [Allen et al., 2007], ¢, is surface emissivity

evaluated either as a weighted average between bare soil and vegetation [Li and Lyons, 1999] or as a
function of NDVI [Bastiaanssen et al., 1998], ¢

a

is atmospheric emissivity estimated as a function of

vapor pressure and air temperature [Brutsaert, 1975].

Kustas and Norman [1996] reviewed the uncertainties of various methods in estimating the net
shortwave and longwave radiation fluxes and found that a variety of remote sensing methods of
surface net radiation estimation had an uncertainty of 5-10% from comparisons with ground-based
observations at meteorologically temporal scales. Bisht et al. [2005] proposed a simple scheme to
calculate the instantaneous net radiation over large heterogeneous surfaces for clear sky days using
only land and atmospheric products obtained using remote sensing data from MODIS-Terra satellite
over Southern Great Plain (SGP). Allen et al. [2007] detailed an internalized calibration model for



calculating ET as a residual of the surface energy balance from remotely sensed data when surface
slope and aspect information derived from a Digital Elevation Model (DEM) were taken into account.

1.1.2.1.2 Soil heat flux (G)

Soil heat flux (G) is the heat energy used for warming or cooling substrate soil volume. It is
traditionally measured with sensors buried beneath the surface soil and is directly proportional to the
thermal conductivity and the temperature gradient with depth of the topsoil. The one used in SEBAL
(Surface Energy Balance Algorithm for Land) [Bastiaanssen et al., 1998] to estimate the regional-scale
G is expressed as follows

G =0.30(1-0.98NDVI*)R, (1.6)

As G varies considerably from dry bare soil to highly well watered vegetated areas, it is
inappropriate to extrapolate ground-based measurements to values of areal areas. Under current
circumstance, it is still impossible to directly measure G from remote sensing satellite platforms.
Fortunately, the magnitude of G is relatively small compared to R, at the daytime overpass time of
satellites. Estimation error of G will thus have a small effect on the calculated latent heat flux. Many
papers have found the ratio of G to R, ranges from 0.05 for full vegetation cover or wet bare soil to 0.5
for dry bare soil [Price, 1982; Jackson, 1985; Reginato et al., 1985; Daughtry et al., 1990; Choudhury,
1990; Kustas and Norman, 1996; Li and Lyons, 1999] and this ratio is simply related in an exponential
form to LAI [Choudhury, 1989], NDVI [Moran et al., 1989; Bastiaanssen et al., 1998; Allen et al.,
2007], T, [Bastiaanssen, 2000; Allen et al., 2007] and solar zenith angle [Gao et al., 1998] based on
field observations. The value of G has been shown to be variable in both diurnal and yearly cycle over
diverse surface conditions [Kustas and Daughtry, 1990]. However, the assumption that daily value of
G is equal to 0 and can be negligible in the daily energy balance is generally regarded as a good
approximation [Price, 1982]. Comparisons of G between results from these simplified techniques and
observations at micrometeorological scales showed an uncertainty of 20-30% [Kustas and Norman,
1996].

1.1.2.1.3 Sensible heat flux (H)

The sensible heat flux (H) is the heat transfer between ground and atmosphere and is the driving
force to warm/cool the air above the surface. In the single-source energy balance model, it can be
calculated by combining the difference of aerodynamic and air temperatures (Taero-Ta) With the
aerodynamic resistance (r,) from:

H=pc,(T,

aero

-T,)/r, .7

where p is the air density and c, is the specific heat of air at constant pressure.

Aerodynamic resistance r, is affected by a combined factors of surface roughness (vegetation
height, vegetation structure), wind speed and atmospheric stability, etc. Therefore aerodynamic
resistance to heat transfer must be adjusted according to different surface characteristics except when
the water is freely available [Seguin, 1984]. Hatfield et al. [1983] have shown that r, decreased as the
wind speed increased regardless of whether the surface was warmer or cooler than air, and r,
decreased if the surface become rougher. Various methods for calculating r, have been developed



ranging from extremely elementary (a function of wind speed only) to quite rigorous ones (accounting
for atmospheric stability, wind speed, surface “aerodynamic” roughness, etc.) [Monteith, 1973; Seguin
et al., 1982; Hatfield,1983; Choudhury et al., 1986; Moran et al., 1994], with the commonly applied
one being [Brutsaert, 1982]:

. In[(z,-d)/z,, —y,]In[(z, -d)/z,, —v,]
a k2u

(1.8)

where z, is the measurement height of air temperature and wind speed, zon and z,, are surface
roughness length for momentum transfer and heat transfer respectively, d is zero plan displacement

height, k is Von Karman constant, u is the wind speed. y;, and y, are stability correction function for

momentum transfer and heat transfer respectively, with neutral stability, v, =y, =0.

Jackson et al. [1983] found that T¢-T, varied from -10 to +5 °C under medium to low atmospheric
humidity, which shows that neutral stability cannot prevail under a wide range of vegetation cover and
soil moisture conditions. Under stable and unstable atmospheric stability conditions, the Monin-
Obukhov length (A ) [Monin and Obukhov, 1954] was introduced to measure the stability and it needs
to be solved with H iteratively [Choudhury, 1990]:

*3
u cT
A= & (1.9)
kgH
where u* is friction velocity and g is the acceleration due to gravity of the earth. if A <0, unstable
stability; A > 0, stable stability.

For unstable conditions (usually prevailing at daytime) with no predominant free convection, i,

and y, can be expressed as [Paulson, 1970]:

2
v, =2+ In () — 2arctan(x) + % (1.10)
2 2 2
1+ x°
v, =2In(=>) (1.11)
with
X = (1—16%)0'25 (1.12)

For stable conditions (usually prevailing at night-time), the formula proposed by Webb [1970]
and Businger et al. [1971] was adopted to account for the effects of atmospheric stability on r, :
z,—d

A

W, =y,=-5 (1.13)

Hatfield et al. [1983] have shown that ET rates could be over-estimated when the canopy-air
temperature difference is greater than about +2°C if the aerodynamic resistance is not corrected for
atmospheric stability.
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The surface roughness plays a significant role in the determination of sensible heat flux and it
changes apparently with leaf size and the flexibility of petioles and plant stems [Jackson, 1985]. The
effective roughness for momentum z,n, is considered to be some unspecified distance above a zero
plane displacement height where the wind speed is assumed to be zero when log-profile wind speed is
extrapolated downward, rather than at true ground surface [Carlson et al., 1981]. Some papers have
specified zqy is equal to z,n, and can be either a function of vegetation height [Soer, 1980; Gurney and
Camillo, 1984], in which z,y, is typically 5 to 15 percent of vegetation height depending on vegetation
characteristics [Monteith and Unsworth, 1990], or estimated from wind profiles, using an extrapolation
of the standard log-linear wind relationship to zero wind speed [Gurney and Camillo, 1984]. Brutsaert
[1982] showed that the heat transfer was mainly driven by molecular diffusion while the momentum
transfer near the surface was controlled by both viscous shear and pressure forces. Because of the
differences between heat and momentum transfer mechanisms, there is a distinction between z,, and
Zon, Which has caused an additional resistance (often expressed as aerodynamic definition of kB™* (kB
'=In(zom/Zon))  [Li and Lyons, 1999]) to heat transfer [Garratt and Hicks, 1973] or an excess (extra)
resistance [Norman and Becker, 1995]. Kustas et al. [1989] related the kB™ (radiometric definition [Li
and Lyons, 1999]) to the combined factors of wind speed and the difference between Ts and T, in the
following form:

kB™ =S u(T,-T,) (1.14)
where Syg is an empirical coefficient, ranging from 0.05 to 0.25 [Li and Lyons, 1999].

Verhoef et al. [1997] showed that kB was sensitive to the measuring errors both in the
micrometeorological variables and in the roughness length for momentum and its value over bare soil
could be less than zero. Massman [1999] used a physically based “localized near-field” Lagrangian
theory to evaluate the effects of kB™ on the vegetative components in the two-source energy balance
models and on the combined effects of soil and vegetation in a single-source model. Su et al. [2001]
proposed a quadratic weighting based on the fractional coverage of soil and vegetation to calculate the
kB in order to take into account of any situation from full vegetation to bare soil conditions. What
should be noted is that the determination of the surface roughness still remains a challenging issue for
large scale retrieval of the turbulent fluxes in spite of the efforts made in the past.

Klaassen and van den Berg [1985] showed that the measurement (or reference) height should be
set at 50 m instead of 2 m at the bottom of the mixed layer and calculation of ET of crops over rough
surfaces could be improved with increasing reference height.

Taero, the temperature at level of d+z,,, which is the average temperature of all the canopy
elements weighted by the relative contribution of each element to the overall aerodynamic
conductance [Moran et al., 1989], may be estimated from extrapolation of temperature profile down to
z=d+z,, and is recognized as the temperature of the apparent sources or sinks of sensible heat [Kalma
and Jupp, 1990]. A number of papers have utilized remotely sensed surface temperature T instead of
Taero iN Eq. (1.7) to calculate H over a wide range of vegetated surfaces because Tqero is very difficult
to measure [Blad and Rosenberg, 1976; Seguin et al., 1982; Moran et al., 1989; Kalma and Jupp,
1990;]. However, there are problems associated with the assumption that measured T is identical to
Taero [Kalma and Jupp, 1990]. T is found to be lower (higher) than T under stable (unstable)
atmospheric conditions and they are nearly the same only under neutral conditions [Choudhury et al.,
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1986; Kalma and Jupp, 1990]. Kustas and Norman [1996] concluded that the differences between Taero
and T, could range from 2 °C over uniform vegetation cover to 10 °C for partially vegetated areas.
Subsequently dual-source (two-source) models have been developed to account for the differences
between T,ero and T, and thus avoid the needs for adding excess resistance in Eq. (1.7) [Norman et al.,
1995].

The bulk transfer equation (resistance-based model) expressed in Eq.(1.7) has been
predominately applied since 1970s over a local/regional scale with various vegetation covers [Blad
and Rosenberg,1976; Hatfield, 1983; Moran and Jackson,1991]. The average difference of H
estimated by different authors based on the bulk transfer equation is about 15-20%, which is around
the magnitude of uncertainty in eddy correlation and Bowen ratio techniques for determining the
surface fluxes in heterogeneous terrain [Seguin, 1984; Kustas and Norman, 1996].

Generally speaking, energy balance models are theoretically verified and physically based. Single
source models are usually computationally timesaving and require less ground-based measurements
compared to dual-source models. Over homogeneous areas, single-source models can evaluate ET
with a relatively high accuracy. But over partially vegetated areas, there is a strong need to develop a
dual-source model to model separately the heat and water exchange and interaction between soil and
atmosphere and between vegetation and atmosphere, which often deals with a decomposition of
radiometric surface temperature to soil and vegetation component temperatures either from multi-
angular remotely sensed thermal data or from an iteration of respective solution of soil and vegetation
energy balance combined with a Priestly-Taylor equation. A major dilemma with both the physics-
based single and dual-source models lies in the requirements for sufficiently detailed parameterization
of surface soil and vegetation properties and ground-based measurements, such as air temperature,
wind speed, surface roughness, vegetation height, etc., as model inputs.

1.1.2.1.4 Discription of typical Single-source Models for Estimating Sensible Heat Flux (H)

In the single-source surface energy balance models, the main distinction of various methods is
how to estimate the sensible heat flux. Some of them are based on the spatial context information
(emergence of representative dry and wet pixels) of land surface characteristics in the area of interest.
Some of them are not. Below we will review several representative single-source energy balance
models.

(1) SEBI (Surface Energy Balance Index) and SEBS (Surface Energy Balance System)

SEBI, firstly proposed by Menenti and Choudhury [1993], along with its derivatives like SEBAL,
S-SEBI (Simplified-SEBI), SEBS, METRIC (Mapping ET at high Resolution with Internalized
Calibration) etc., is typically a single-source energy balance model based on the contrast between dry
and wet limits to derive pixel by pixel ET and EF from the relative evaporative fraction when
combined with surface parameters derived from remote sensing data and a certain amount of ground-
based variables over local/regional scale surfaces [Gowda et al., 2007]. The dry (wet) limit, no matter
how it was specifically defined, often has the following characteristics: 1) generally maximum
(minimum) surface temperature, 2) usually low or no (high or maximum) ET.

In SEBI method, the dry limit is assumed to have a zero surface ET (latent heat flux) for a given
set of boundary layer characteristics (potential temperature Ty, wind speed and humidity, etc.). So the
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sensible heat flux is then equal to the surface available energy, with the T, inverted from the bulk

S,max

transfer equation being expressed as [Van den Hurk, 2001]:

Ts,max :prl + ra,max H (1-15)
pC,

Correspondingly, the minimum surface temperature can be evaluated from the wet limit, where
the surface is regarded as to evaporate potentially and the potential ET (LE,) is calculated from

Penman-Monteith equation with a zero internal-resistance. The T

s,min

is expressed as [Van den Hurk,

2001]:
anaifs—VPDly
P
Ts,min =prl + 1+pA/}/ (116)

where VPD represents Vapor Pressure Deficit, y is Psychrometric constant.

The relative evaporation fraction can then be calculated by interpolating the observed surface
temperature within the maximum and minimum surface temperature in the following form [Van den
Hurk, 2001]:

LE —1_ ra_l (Ts _prl ) - ra,min_1 (Ts,min _prl)

LEp ra,max_l(-l—s,max _prl ) - ra,min_l(Ts,min _prl)

where the second part of the right hand side of Eq.(1.17) is the so-called SEBI which varies between 0
(actual=potential ET) and 1 (no ET).

(1.17)

Parameterization of SEBI approach was first proposed by defining theoretical pixel-wise ranges
for LE and T, to account for spatial variability of actual evaporation due to albedo and aerodynamic
roughness [Menenti and Choudhury, 1993]. This parameterization was essentially a modification from
CWSI (Crop Water Stress Index) proposed by lIdso et al. [1981] and Jackson et al. [1981; 1988]. The
theoretical CWSI accounted for the effects of the net radiation and wind speed in addition to the
temperature and vapor pressure required by the empirical CWSI. Taking into account the dependence
of external resistance on the atmospheric stratification, Menenti and Choudhury [1993] proposed an
approach to calculate the pixel-wise maximum and minimum surface temperature and redefined CWSI
as a pixel-wise SEBI at given surface reflectance and roughness to derive the regional ET from the
relative evaporative fraction. The CWSI was based on surface meteorological scaling while the SEBI
used Planetary Boundary Layer (PBL) scaling. Subsequently the SEBAL, SEBS and S-SEBI models
have been developed from this conception of SEBI. The main distinction between each of these
models and other commonly applied single-source models is the difference of how to calculate the
sensible heat flux or precisely how to define the dry (maximum sensible heat and minimum latent heat)
and wet (maximum latent heat and minimum sensible heat) limits and how to interpolate between the
defined upper and lower limits to calculate the sensible heat for a given set of boundary layer
parameters of both remotely sensed Ts, Albedo, NDVI, LAI, F, and ground-based air temperature,
wind speed, humidity, vegetation height, etc.. Assumptions in SEBI, SEBAL, S-SEBI, SEBS models
are that there are few or no changes in atmospheric conditions (mainly the surface available energy) in
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space and sufficient surface horizontal variations are required to ensure dry and wet limits exist in the
study region.

The Surface Energy Balance System (SEBS), detailed by Su [2001; 2002; 2005], Su et al. [2003]
with a dynamic model for the thermal roughness and the Bulk Atmospheric Similarity (BAS) theory
for PBL scaling and the Monin-Obukhov Atmospheric Surface Layer (ASL) similarity for surface
layer scaling, is an extension from the concept of SEBI for the estimation of land surface energy
balance using remotely sensed data in a more complex framework. SEBS consists of 1) a set of tools
for the calculations of land surface physical parameters, 2) calculation of roughness length for heat
transfer, 3) estimation of the evaporative fraction based on energy balance at limiting cases [Su, 2002].
In SEBS, at the dry limit, latent heat flux is assumed to be zero due to the limitation of soil moisture
which means sensible heat flux reaches its maximum value (i.e., Hg,=Rq-G). At the wet limit, ET takes
place at potential rate (LE.), (i.e. ET is limited only by the energy available under the given surface
and atmospheric conditions, which can be calculated by a combination equation similar to the
Penman-Monteith combination equation [Monteith, 1965] assuming that the bulk internal resistance is
zero), the sensible heat flux reaches its minimum value, Hye. The sensible heat flux at dry and wet
limits can be expressed as:

H, =R -G (1.18)

ry n

pC, VPD

Hwet :((Rn_G)_ -
r, V4

)ia+2) (1.19)
V4

where r, is dependent on the Obukhov length, which in turn is a function of the friction velocity and
sensible heat flux.

The EF, and EF then can be expressed as:

H- Hwet

EF, =1-
H,, —H

(1.20)

dry — " Twet

_ER-LE.
R, -G

EF (1.21)

H can be solved using a combination of a dynamic model for thermal roughness [Su, 2001] and
the BAS theory of Brutsaert [1999] for PBL scaling and the Monin-Obukhov ASL similarity for
surface layer scaling [Monin and Obukhov, 1954].

In SEBS, distinction is made between the ABL (Atmospheric Boundary Layer) or PBL (Planetary
Boundary Layer) and the ASL similarity. Inputs to the SEBS include remote sensing data-derived land
parameters and ground-based meteorological measurements, such as land surface temperature, LAI,
fractional vegetation cover, albedo, wind speed, humidity, air temperature. Jia et al. [2003] described a
modified version of SEBS using remote sensing data from ATSR (Along Track Scanning Radiometer)
and ground data from a Numerical Weather Prediction model and validated the estimated sensible heat
flux with large aperture scintillometers located at three sites in Spain. With the surface meteorology
derived from the Eta Data Assimilation System (EDAS), Wood et al. [2003] applied SEBS to the SGP
region of the United States where the ARM (Atmospheric Radiation Measurement) program had been
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carried out by the U.S. Department of Energy. Derived latent heat fluxes were compared with the
measurements from the EBBR (Energy Balance Bowen Ration) sites and results indicated that the
SEBS approach had promise in estimating surface heat flux from space for data assimilation purposes.
SEBS has been used to estimate daily, monthly and annual evaporation in a semi-arid environment [Su
et al., 2003]. Su [2002] showed that SEBS could be used for both local scaling and regional scaling
under all atmospheric stability regimes.

Advantages of the SEBS are that 1) uncertainty from the surface temperature or meteorological
variables in SEBS can be limited with consideration of the energy balance at the limiting cases, 2) new
formulation of the roughness height for heat transfer is developed in SEBS instead of using fixed
values, 3) a priori knowledge of the actual turbulent heat fluxes is not required. However, too many
required parameters and relatively complex solution of the turbulent heat fluxes in SEBS have brought
more or less inconveniences when data are not readily available.

(2) S-SEBI

A new method, called the S-SEBI developed by Roerink et al. [2000a] to derive the surface
energy balance, has been tested and validated with data from a small field campaign conducted during
August 1997. The main theory of S-SEBI is based on the contrast between a reflectance (albedo)
dependent maximum surface temperature for dry limit and a reflectance (albedo) dependent minimum
surface temperature for wet limit to partition available energy into sensible and latent heat fluxes.

A theoretical explanation to S-SEBI, when a wide range of surface characteristics changing from
dry/dark soil to wet/bright pixels exist, can be given: 1) at low reflectance (albedo), surface
temperature keeps almost unchangeable because of the sufficient water available under these
conditions, such as over open water or irrigated lands, 2) at higher reflectance (albedo), surface
temperature increases to a certain point with the increases of reflectance due to the decrease of ET
resulting from the less water availability, which is termed as “evaporation controlled”, 3) after the
inflexion, the surface temperature will decrease with the increases of surface reflectance (albedo),
which is called the “radiation controlled” (see Fig.1-2).
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Fig.1-2 Theoretically schematic relationship between surface temperature

and alebdo in the S-SEBI (after [Roerink et al., 2000a])

In S-SEBI, the evaporative fraction is bounded by the dry and wet limits and formulated by
interpolating the reflectance (albedo) dependent surface temperature between the reflectance (albedo)
dependent maximum surface temperature and the reflectance (albedo) dependent minimum surface
temperature, which can be expressed as:

EF = s,max s 1.22
T — T, 22

S, max s,min

where Tsmax COrresponds to the minimum latent heat flux (LEqy=0) and maximum sensible heat flux
(Han,=Rn-G) (the upper decreasing envelope when T is plotted against surface reflectance (albedo)),
Tsmin iS indicative of the maximum latent heat flux (LE..=Rn-G) and minimum sensible heat flux
(Hwet=0) (the lower increasing envelope when T is plotted against surface reflectance). Tsmax and T min
are regressed to the surface reflectance (albedo):

T, e = B + B e (1.23)

s,max

T

s,min

=a,, +h,« (1.24)

min s

where amax, bmax: a8min @and by are empirical coefficients estimated from the scatter plot of T and
over study area.
Inserting Egs.(1.23-1.24) into Eq.(1.22), EF can be derived by
ama>< + bmaxas _Ts
amax - a‘min + (bmax _bmin)as

EF = (1.25)

If the atmospheric conditions over the study area can be regarded as constant and sufficient
variations in surface hydrological conditions are present, the turbulent fluxes then can be calculated
with S-SEBI without any further information than the remote sensing image itself. Results from
Roerink et al. [2000a] have shown that measured and estimated evaporative fraction values had a
maximum relative difference of 8% when measurements obtained from a small field campaign during
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1997 in Italy were compared with the S-SEBI derived outputs.

The major advantage of this S-SEBI is that 1) besides the parameters of the surface temperature
and reflectance (albedo) derived from remote sensing data no additional ground-based measurement is
needed to derive the EF if the surface extremes are present in the remotely sensed imagery, 2) the
extreme temperatures in the S-SEBI for the wet and dry conditions vary with changing reflectance
(albedo) values, whereas other methods like SEBAL try to determine a fixed temperature for wet and
dry conditions. However, it should be noted that atmospheric corrections to retrieve T, and ¢ from
satellite data and determination of the extreme temperatures for the wet and dry conditions are
location-specific when atmospheric conditions over larger areas are not constant any more.

(3) SEBAL and METRIC

SEBAL, developed by Bastiaanssen [1995] and Bastiaanssen et al. [1998] with minimum ground-
based measurements to evaluate ET, has been tested at both field and catchments scales under several
climatic conditions in more than 30 countries worldwide, with the typical accuracy at field scale being
85% and 95% at daily and seasonal scales respectively [Bastiaanssen et al., 1998; Bastiaanssen, 2000;
Allen et al., 2001; Bastiaanssen et al., 2005].

One of the main considerations in SEBAL, when evaluating pixel by pixel sensible and latent
heat fluxes, is to establish the linear relationships between T, and the surface-air temperature
difference dT (dT=T,-T,) on each pixel with the coefficients of the linear expressions determined from
the extremely dry (hot) and wet (cold) points. The dT can be approximated as a relatively simple linear
relation of T, expressed as:

dT =a+bT, (1.26)

where a and b are empirical coefficients derived from two anchor points (dry and wet points).

At the dry (hot) pixel, latent heat flux is assumed to be zero and the surface-air temperature
difference at this pixel is obtained by inverting the single-source bulk aerodynamic transfer equation:
H, xr

dT,, =—2— 1.27
dry pcp ( )

where Hgry is equal to R,-G.

At the wet (cold) pixel, latent heat flux is assigned a value of R,-G (or a reference ET), which
means sensible heat flux under this condition is equal to zero (when reference ET is applied, both H
and dT at this pixel will not equal zero any more). Obviously, the surface-air temperature difference

at this point is also zero (dT,.. =0).

wet —

After calculating surface-air temperature differences at both dry (hot) and wet (cold) points,
coefficients a and b in Eq. (1.26) can be obtained. Providing that a and b are known, the surface-air
temperature difference dT at each pixel over the study area is estimated with T, using Eq. (1.26).
Finally, H can be obtained iteratively with r, corrected for stability using Eq. (1.7). This procedure
requires wind speed measured at ground to be extrapolated to a blending height of about 100 to 200 m
where wind speed at this level is assumed to be not affected by surface variations.

SEBAL has been applied for ET estimation, calculation of crop coefficients and evaluation of
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basin wide irrigation performance under various agro-climatic conditions in several countries
including Spain, Sri Lanka, China, and the United States, etc. [Bastiaanssen et al., 2005; Singh et al.,
2008]. Timmermans et al. [2007] compared the spatially distributed surface energy fluxes derived
from SEBAL with a dual-source energy balance model using data from two large scale field
experiments covering sub-humid grassland (Southern Great Plains '97) and semi-arid rangeland
(Monsoon '90). Norman et al. [2005] showed that the assumption of linearity between surface
temperature and the air temperature gradient used in defining the sensible heat fluxes did not generally
hold true for strongly heterogeneous landscape. The selection of dry pixel and wet pixel can have a
significant impact on the heat flux distribution from SEBAL.

One of the assumptions made in SEBAL model is that full hydrological contrast (i.e., wet and dry
pixels) is present in the area of interest. The most key aspect in the SEBAL is to identify the dry pixel
while wet pixel is often determined over a relatively large calm water surface or at a location of well-
watered areas. The advantages of the SEBAL over previous approaches to estimate land surface fluxes
from thermal remote sensing data are: 1) it requires minimum ancillary ground-based data, 2) it does
not require a strict correction of atmospheric effects on surface temperature thanks to its automatic
internal calibration, and 3) internal calibration can be done within each analyzed image. However,
SEBAL has several drawbacks: 1) it requires subjective specifications of representative hot/dry and
wet/cool pixels within the scene to determine model parameters a and b, 2) it is often applied over flat
surfaces. When SEBAL is applied over mountainous areas, adjustments based on a DEM need to be
made to Ts and u to account for the lapse rate, 3) errors in surface temperatures or surface-air
temperature differences have great impacts on H estimate, 4) radiometer viewing angle effects, which
can cause variation in Ts of several degrees for some scenes, have not been taken into account.

To avoid the limitations of the SEBAL in mapping regional ET over more complicated surfaces,
Allen et al. [2005a; 2005b; 2007] highlighted a similar SEBAL-based approach, named as METRIC,
to derive ET from remotely sensed data in the visible, near-infrared and thermal infrared spectral
regions along with ground-based wind speed and near surface dew point temperature. In METRIC, an
automatic internal calibration method similar to SEBAL (linearly relating Ts to the surface-air
temperature difference) is used to calculate the sensible and latent heat fluxes.

Main distinctions between METRIC and SEBAL are: 1) METRIC does not assume H,=0 or
LE=R,-G at the wet pixel, instead a daily surface soil water balance is run to confirm that for the hot
pixel, ET is equal to zero, and for the wet pixel, ET is set to 1.05ET,, where ET, is the hourly (or
shorter time interval) tall reference (like alfalfa) ET calculated using the standardized ASCE
(American Society of Civil Engineers) Penman-Monteith equation, 2) wet pixel in METRIC is
selected in an agricultural setting where the cold pixel should have biophysical characteristics similar
to the reference crop (alfalfa), 3) the interpolation (extrapolation) of instantaneous ET to daily value is
based on the alfalfa ET,F (defined as the ratio of instantaneous ET to the reference ET, that is
computed from meteorological station data at satellite overpass time) instead of the actual evaporative
fraction, which can better account for the impacts of advection and changing wind and humidity
conditions during the day.

(4) VI-Ts Triangle/Trapezoidal feature space

VI-T; triangle feature space, derived from the contextual information of remotely sensed surface
temperature T and Vegetation Index (VI), was firstly proposed by Goward et al. [1985], and

18



subsequently was utilized to study the soil water content, surface resistance, land use and land cover
change, drought monitoring and regional ET [Nemani and Running, 1989; Nemani et al., 1993;
Lambin and Ehrlich, 1996; Jiang and Islam, 1999; Jiang and Islam, 2001; Jiang and Islam, 2003] while
the trapezoidal space was derived from a simple CWSI [Jackson et al., 1981; Idso et al., 1981].

The T-VI triangle/trapezoidal feature space established under the conditions of full ranges of soil
moisture content and vegetation is characteristic of being bounded with an upper decreasing envelope
(dry edge, defined as the locus of the highest surface temperatures under differing amounts of
vegetation cover at a given atmospheric forcing, which is assumed to represent pixels of unavailability
of soil moisture content) and a lower nearly horizontal envelope (wet edge, defined as the locus of the
lowest surface temperatures under differing amounts of vegetation cover, which is regarded to describe
pixels in the potential ET at the given atmospheric forcing) with increasing vegetation cover and the
two envelopes ultimately intersect at a (truncated) point at full vegetation cover (see Fig.1-3).
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Fig.1-3 The simplified VI-T, triangular space (after [Lambin and Ehrlich, 1996])

The principal rationale of the T¢-VI triangle and trapezoid to be applied to evaluate ET at regional
scale will be addressed respectively as follows.

i) Triangle method

A simplicity of Priestley-Taylor formulation with fully remotely sensed data proposed by Jiang
and Islam [1999; 2001; 2003] representatively based on the interpretations of the remotely sensed T.-
NDVI triangle feature space, has been employed to estimate regional EF and ET, which can be
expressed as:

A

LE =®[(R, - G)
A+y

(1.28)

where ® ranges from 0 to 1.26, A is slope of saturated vapor pressure as function of T,. In Eq.(1.28),
all terms in the right-hand side can be calculated using remotely sensed data [Jiang and Islam1999].

Solution of parameter @ in Eq.(1.28) generally involves a certain degree of simplicity and some
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assumptions, including 1) a complete range of soil moisture and vegetation coverage at satellite pixel
scale should be ensured, 2) contaminations of clouds and atmospheric effects have to be removed, 3)
two-step linear interpolation scheme [Jiang and Islam, 1999; Carlson, 2007; Stisen et al., 2008] is used
to get the value of @ in Eq. (1.28) based on the Ts-NDV!1 triangle feature space as displayed in Fig.1-3.
This two-step linear interpolation is realized in the following manner: 1) a global minimum and

maximum & are respectively set to @ ;. =0 on the driest bare soil pixel and @, =1.26 on the pixel

with largest NDVI and lowest T, and @ for each NDVI interval (i) is linearly interpolated with

min,i

and ® for each NDVI (i) is calculated using the lowest surface

—®,, =1.26), 2) D,

NDVI between @ . and ©

max ! max,i

temperature within that NDVI interval (generally, one assumes that @

max,i

within each NDVI interval is linearly increased with the decrease of Tsbetween @ and @

min,i max,i *

The triangular (trapezoidal) feature space (Ts-VI) constructed by plotting the remotely sensed
surface temperature (or temperature difference, or a scaled surface temperature) against the vegetation
indices (e.g., NDVI, SAVI - Soil-Adjusted Vegetation Index, a scaled NDVI, or F, - fractional
vegetation cover) for a full range of variability in surface soil moisture and fractional vegetation cover
has been found in a series of papers to derive surface soil moisture, and surface fluxes [Goward et al.,
1985; Hope, 1988; Nemani and Running, 1989; Price, 1990; Nemani et al., 1993; Choudhury, 1994;
Moran et al., 1994; Carlson et al., 1995a; Gillies and Carlson, 1995; Moran et al., 1996; Jiang and
Islam, 1999; Jiang and Islam, 2001; Jiang and Islam, 2003; Venturini et al., 2004; Batra et al., 2006;
Wang et al., 2006; Carlson, 2007; Stisen et al., 2008] and has been verified using measurements
collected during the MONSOON 90 [Kustas et al., 1991] and FIFE 1987 and 1989 field programs
[Sellers et al., 1992]. Jiang and Islam [1999] proposed the NDVI-T triangle scheme to estimate
surface ET over large heterogeneous areas from AVHRR data over the Southern Great Plain. The
proposed approach appeared to be more reliable and easily applicable for operational estimate of ET
over large areas. Gillies and Carlson [1995] and Carlson [2007] have examined the triangular patterns
of Ts plotted against VI using the simulated surface temperature and NDVI with a SVAT model on a
theoretical basis and analyzed the spatial distributions of surface soil moisture availability and EF in
the triangle feature space. Batra et al. [2006] have analyzed the effects of spatial resolution of different
remote sensing data on the VI-T triangle with MODIS, NOAA16 and NOAA14 data in the Southern
Great Plain in USA. Wang et al. [2006] combined the advantages of both the thermal inertia method
and the Ts,-NDVI spatial variation method to develop a day-night Ts difference-NDVI approach and
satisfactory results have been obtained at the Southern Great Plain of the United States from April
2001 to May 2005 when compared with the ground-based observations collected by Energy Balance
Bowen Ratio Systems. The triangle method, proposed by Jiang and Islam [1999], was modified by
Stisen et al. [2008] to take into account of the non-linear interpolation between @ and the surface
temperature to estimate surface fluxes based entirely on remotely sensed data from MSG/SEVIRI
(Meteosat Second Generation / Spinning Enhanced Visible and Infrared Imager) sensor. Carlson et al.
[1995a] have showed that the emergence of the triangle shape when the scatter plots of T versus VI
were plotted under the same coordinate system seemed to depend more on the number of pixels rather
than just the spatial resolutions. Thus the triangle/trapezoid can be found from T and VI data derived
from satellites/sensors of different scales, such as the higher-resolution TM and the lower-resolution
GOES data [Diak et al., 1995].
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Implications in the so-called triangle/trapezoidal method are that 1) the sensitivity of surface
temperature to canopy and soil differs and canopy temperature is insensitive to surface/deep-layer soil
moisture content, which contributes to the (truncated) vertex at full vegetation cover, 2) variations in
the VI-T; triangle space are not primarily caused by differences in atmospheric conditions but by the
variations in available soil water content.

The major assets of the remotely sensed VI-T; triangle method are that 1) it allows for accurate
estimate of regional ET with no ancillary atmospheric or ground data besides the remotely sensed
surface temperature and vegetation indices, 2) it is relatively insensitive to the correction of
atmospheric effects. The limitations are that 1) determination of the dry and wet edges requires a
certain degree of subjectivity, 2) a large number of pixels over a flat area with a wide range of soil
wetness and fractional vegetation cover are required to make sure that the dry and wet limits exist in
the VI-T; triangle space.

ii) Trapezoid method

On the basis of CWSI [Jackson et al., 1981], Moran et al. [1994] introduced a Water Deficit
Index (WDI, defined as 1 minus the ratio of actual to potential ET) for ET estimate based on the
Vegetation Index/Temperature (VIT) trapezoid to extend the application of CWSI over fully to
partially vegetated surface areas. The ground-based inputs to the trapezoid method include vapor
pressure, air temperature, wind speed, maximum and minimum stomatal resistances, etc.. One of the
assumptions in the trapezoid approach is that values of T-T, vary linearly with vegetation cover along
crop extreme conditions edges while all the intermediary conditions relating Ts-T, to a vegetation
index are included within the constructed trapezoid. In order to calculate the WDI value of pixels of
intermediate vegetation cover and soil moisture content for a specific time, four vertices of the
trapezoid, corresponding to (1) well watered full-cover vegetation, (2) water-stress full-cover
vegetation, (3) saturated bare soil, and (4) dry bare soil, should be computed firstly combined with the
CWSI theory and Penman-Monteith equation (see Fig.1-4).
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Fig.1-4 The hypothetical trapezoidal space between T¢-T, and F; (after [Moran et al., 1994])
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Moran et al. [1994] defined/assumed the dry edge and wet edge respectively as the linear line
connecting vertex (2) with vertex (4) and the linear line linking vertices between vertex (1) and vertex
(3), as displayed in Fig.1-4. WDI within each VI from bare soil to full vegetation cover in the
trapezoid is linearly related to the maximum and minimum temperature differences (Ts-T,) and values
of WDI equal to 0 and 1 respectively correspond to minimum and maximum temperature differences.
Therefore, for a partially vegetated surface, WDI can be defined as:

WDI =1-LE/LE, =[(T, - T,) in — (T, =T, VI(T, = T.) i — (T = T2) e ] (1.29)

The trapezoid method is in essence an extension of CWSI developed by Idso et al. [1981] and
Jackson et al. [1981]. CWSI is a commonly used index for detection of plant water stress based on the
difference between canopy and air temperature and is only appropriate to apply for full-cover
vegetated areas and bare soils at local and regional scales [Moran et al., 1994]. Idso et al. [1981]
proposed an empirical CWSI to quantify canopy stress by determining ‘non-water-stressed baselines’
for crops, in which the baselines represented the lower limit of the difference of canopy to air
temperature when the plants are transpiring at the potential rate. Shortly, Jackson et al. [1981; 1988]
defined the theoretical CWSI by ratioing the difference between the measured canopy temperature and
the lower limit (corresponding to canopy transpiring potentially) to the difference between the upper
(corresponding to non-transpiring canopy) and lower limits. The trapezoid method ((Ts-T,)-SAVI) is a
method to measure the surface water stress based on the formed trapezoid given a full range of surface
vegetation cover and soil moisture content when the difference between surface and air temperature is
plotted against a vegetation index [Moran et al., 1994; 1996]. Kustas and Norman [1996] have found
that this trapezoid method permitted the concept of CWSI applicable to both heterogeneous and
uniform areas and did not require the range of VI and surface temperature in the scene of interest as
that proposed by Carlson et al. [1990] and Price [1990]. Luquet et al. [2004] evaluated the impact of
complex thermal infrared directional effects on the application of WDI using multidirectional crop
surface temperatures and reflectance data acquired on a row-cotton crop with different water and cover
conditions in Montpellier (France). Results from the work of Moran et al. [1994] showed that the WDI
provided accurate estimates of field ET rates and relative field water deficit for both full cover and
partially vegetated sites.

One of the advantages in the VI-T, trapezoidal space over the triangular space is that the VI-T;
trapezoidal space does not require as large number of pixels to be existent as that in the triangular
space. Instead, the intermediate values in the trapezoidal space are determined by the four limiting
vertices. However, the relatively more ground-based parameters in the VI-T, trapezoidal space than
that in the triangular space have constrained the broad applications of the trapezoidal space. Some
limitations have also emerged in WDI although this new index offers large opportunity than CWSI
[Luquet et al., 2004], including that 1) there are no consideration of heat exchanges between soil and
vegetation, which may be not valid when soil and vegetation are at different temperatures, 2) water
stress does not have instantaneous effect on vegetation cover, 3) WDI method does not separate plant
transpiration from soil evaporation.

1.1.2.2 Dual-source model

Dual-source model is also called Two-source model.
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Although single-source energy balance models may provide reliable estimates of turbulent heat
fluxes, they often need field calibration and hence may be unable to be applied over diverse range of
surface conditions. Kustas and Daughtry [1990] have shown that single-source models had serious
limitations over partially vegetative surfaces though some adjustments to r, can be made but such
adjustments are not generally applicable to all circumstances. Errors in sensor calibration, atmospheric
corrections, and the specification of the surface emissivity have been detrimental to methods that rely
on absolute surface temperature or surface-air temperature difference to derive regional surface energy
balance [Mecikalski et al., 1999]. Furthermore, air temperature measured at a shelter-level as an upper
boundary condition suffers significantly from the interpolations over large heterogeneous areas
[Mecikalski et al., 1999]. Dual-source models require no a priori calibration and do not need additional
ground-based information as that required in a single-source model and therefore have a wider range
of applicability without resorting to any additional input data. Anderson et al. [1997] showed that
dual-source models represented an advance over single-source surface models that treated the earth’s
surface as a single, uniform layer. However, assumptions on and solution of dual-source energy
balance models generally involve an estimation of the divergence of surface energy balance inside the
canopy and the way to account for the clumped vegetation, which affects both the wind speed profile
and radiation penetration and radiative surface temperature partitioning between soil and vegetation
[Kustas and Norman, 2000].

Generally speaking, the solution of a dual-source energy balance model is to implement the
decomposition of the soil and canopy component temperatures either by iterating latent heat fluxes
with the assumption that the vegetation is unstressed and transpiring at the potential rate or by
acquiring remote sensing data of surface temperatures at multiple angles for the calculation of the
component energy balance of soil and vegetation respectively.

The ensemble directional radiometric surface temperature (Trap(0)) is determined by the
respective fraction of soil and vegetation viewed by a radiometer, which can be expressed as:

Trap @) =[f (Q)TCM +(1-f (9))T0M ]UM (2.30)

where M is usually set to 4 for 8-14 um and 10-12 um wavelength bands. f(6) is vegetation fraction
viewed at angle &, T, and T, are component of vegetation and soil temperature respectively.

If the surface emissivity and sky conditions are known, the directional radiometric temperature
can be calculated from the brightness temperature (Tg(6)) from the following formula:

Tg(0) =[£(0)(Teno (‘9))M + (1= &(0) Ty ]UM (1.31)

With the assumption that the flux of soil surface is in parallel with the flux of leaves of canopy, and
with a first-guess estimate of canopy transpiration (LE.) using Priestly-Taylor equation, which often
leads an over-prediction in semiarid and arid ecosystems, H in a two source model can be divided into
two parts of energy component of soil and vegetation:

Teap (0) - T, T,-T +T -T

=H;+H =pc ((—2+-—-—2) (1.32)
I ro+r, r

a

H=pc,

Inputs to dual-source energy balance models generally include directional brightness temperature,
viewing angle, fractional vegetation cover or leaf area index, vegetation height and approximate leaf
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size, net radiation, air temperature and wind speed. If measurements of T,, u, measurement heights,
Trap(6) measured simultaneously at two viewing angles (e.g., data available from ATSR), canopy
height (h), approximate leaf size, and fraction of vegetative cover (F,) or LAI are given, T, To, Hc, Hs,
LE. and LE; can then be solved directly with the dual-source surface energy balance models without
resorting to empirically determined ‘adjustment’ factors for “excess” resistance [Kustas and Norman,
1997; 1999].

A series of papers have concentrated on the respective temperature and radiation components of
both soil and vegetation through a set of applications, validations and modifications to the dual-source
energy balance models over various landscapes over the past years [Shuttleworth and Wallace, 1985;
Shuttleworth and Gurney, 1990; Norman et al., 1995; Kustas and Norman, 1997; 1999; Norman et al.,
2000; Norman et al., 2003; Anderson et al., 2004; Mecikalski et al., 2005; Anderson et al., 2005; Li et
al., 2005; Sanchez et al., 2008]. The increase of surface temperature in the morning was also found to
be highly sensitive to the change of surface soil moisture (and thus ET) [Idso et al., 1975c; Price, 1980;
Carlson and Buffum, 1989; Carlson et al., 1981, Wetzel et al., 1984; Diak, 1990; Franks and Beven,
1997] and an utilization of rate of surface temperature rise in the form of simplified equation has also
been shown by Carlson and Buffum [1989] to estimate daily ET with the advantages of no need for
absolute surface temperature retrievals from satellite data. Wetzel et al. [1984] and Diak [1990] have
attempted to compute surface energy balance by using the rate of rise of T from a geostationary
satellite with an atmospheric boundary layer model. Norman et al. [1995] developed a TSM (Two-
Source (soil+canopy) Model) to accommodate the difference between radiometric surface and
aerodynamic temperatures to partition surface energy balance into energy components of both soil and
vegetation using data either from a single view angle or from multiple view angles. Subsequently, on
the basis of that work, Anderson et al. [1997] examined and tested the TSTIM (Two-Source Time
Integrated Model, subsequently was named as ALEXI: Atmosphere-Land Exchange Inverse
[Mecikalski et al., 1999]) relating the morning rise of surface temperature acquired at 1.5 and 5.5
hours past sunrise to the growth of a planetary boundary layer through an estimate of sensible heat
using data collected during ISLSCP (the International Satellite Land-Surface Climatology Project) and
Monsoon ‘90 experiments. Lhomme and Elguero [1999] have commented on the assumption on the
parallel transfer of heat from canopy and soil and assumed the scale to be a determinant of whether a
dual-source model should be coupled or not. Since 1999, ALEXI has been applicable over a wide
variety of landscape, agricultural and land-surface-atmosphere interactions [Mecikalski et al., 2005]. It
removes the need for the measurements of near-surface air temperature and is relatively insensitive to
uncertainties in surface emissivity and atmospheric corrections on the remotely sensed surface
temperatures. Kustas and Norman [2000] made four modifications, which had largest impacts on dual-
source flux predictions under sparse canopy-covered conditions to the TSM developed by Norman et
al. [1995], involving: 1) the estimation of the divergence of net radiation with a more physically-based
algorithm, 2) use of a simple model to account for the effects of clumped vegetation, 3) application of
an adjusted Priestley-Taylor [Priestley and Taylor, 1972] coefficient, 4) computation of soil resistance
to sensible heat flux transfer with a new formulation. Norman et al. [2000] developed a variation of
TSM called DTD (Dual-temperature-difference) method using time rate of change in T and T, to
derive surface turbulent fluxes and this DTD method is simpler than other modifications of TSM in
that it requires minimal ground-based data and does not require modeling boundary layer development.
On the basis of TSTIM, a two-step approach called DISALEXI (Disaggregated ALEXI) model has
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been proposed to estimate surface ET with the combination of low- and high-resolution remotely
sensed data without a need for local observations [Norman et al., 2000; Kustas et al., 2003]. Anderson
et al. [2005] have found that consideration of vegetation clumping within the thermal model could
significantly improve the estimates of turbulent heat fluxes at both local and watershed scales when
observations from eddy covariance data collected by aircraft and a ground-based tower network are
compared. Li et al. [2005] compared two resistance network formulations that are used in a dual-
source model for parameterizing soil and canopy energy exchanges over a wide range of soybean and
corn crop cover and soil moisture conditions during the Soil Moisture—Atmosphere Coupling
Experiment. In the two resistance formulations, the parallel resistance formulation does not consider
interaction between the soil and canopy fluxes while the series resistance algorithms provide
interaction via the computation of a within-air canopy temperature. Results from Li et al. [2005]
showed that both the parallel and series resistance formulations produced basically similar estimates
compared with the tower-based flux observations while the parallel resistance formulation was more
able to achieve the balance of the component temperature and heat fluxes of soil and canopy.

Compared to other types of remote sensing ET formulations, dual-source energy balance models
have been shown to be robust for a wide range of landscape and hydro-meteorological conditions
[Kustas and Norman, 1997]. The ALEXI approach is believed to be a practical means to operational
estimates of surface fluxes over continental scales with the spatial resolution of 5- to 10-km.

The main advantages of the dual-source models over single-source models are that 1) they avoids
the need for precise atmospheric corrections, emissivity estimations and high accuracy in sensor
calibration, 2) ground-based measurement of T, is not indispensable when dual-source models are
coupled with a PBL [Kustas and Norman, 1996] and thus is much better suitable to applications over
large-scale regions than single-source models and other algorithms [Anderson et al. 1997], 3) they
generally incorporate effects of view geometry, 4) they avoid empirical corrections for the ‘excess
resistance’. However, applications of the aforementioned models of both directly relating surface
turbulent fluxes to temperature difference measured at two times and imbedding the morning
temperature rise into a dual-source energy balance coupled with a PBL (Planetary Boundary Layer)
generally require a geo-stationary satellite, which is less suitable for high latitudes due to the
suboptimal viewing orientation and coarse spatial resolution to provide a series of cloud-free images
[Van den Hurk, 2001]. The new MSG/SEVIRI sensor has provided a good promise with its relatively
small pixel size and high observation frequency for applications in Europe and Africa.

1.1.3 Data assimilation

Results from remote sensing ET models are generally either instantaneous (daily) values using
data from polar-orbiting satellites or coarse spatial resolution values from geostationary satellites,
which can not provide temporally continuous values and thus can not meet the requirements in most
hydrological and numerical prediction models. One possible means to overcome this dilemma is to use
data assimilation technique to map ET, which can take advantage of the synergy of multisensor/
multiplatform observations [Boni et al., 2001; Reichle, 2008].

Data assimilation has been firstly used by meteorologist to construct daily weather maps,
displaying variations of environmental variables such as pressure and wind velocity over space and
time [McLaughlin, 1995]. Simply speaking, data assimilation technique is the process in which all
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available information is used in order to estimate objective variables as accurately as possible
[Talagrand, 1997; Bouttier and Courtier, 1999]. A data assimilation system is generally consisted of
three components: a set of observations, a dynamic model and a data assimilation technique [Robinson
and Lermusiaux, 2000]. All existing assimilation algorithms can be described as more or less an
approximate of statistical linear estimation [Rabier et al., 1993]. Data assimilation schemes are often
statistically optimal by minimizing the errors in estimates derived from merging noisy observations
and uncertainty of models in a statistical sense.

Data assimilation techniques for ET estimate can assimilate all available information but it
generally has to rely on a numerical model which may need a lot of atmospheric forcing and is
relatively computationally demanding than remote sensing ET models [Mclaughlin et al., 2006; Kumar
et al., 2008]. Selection of a data assimilation technique is essentially to achieve a balance between
making the best use of all available information (optimality) and computational efficiency, flexibility,
and robustness. However, compromises have to be made to adapt to specific goals because these
evaluation criteria often conflict [Margulis et al., 2002]. The principle of any data assimilation scheme
is to minimize the mismatch between the observations and models by adjusting components under the
fundamental physical constraints.

Nowadays, data assimilation techniques are generally put into two categories, including
sequential assimilation (e.g., Ensemble Kalman Filter and optimal interpolation) [Anderson, 2001;
Reichle et al., 2002; Reichle, 2002; Caparrini et al., 2004; Crow and Kustas, 2005; Margulis et al.,
2005; Huang et al., 2008] and un-sequential/variational/retrospective assimilation (e.g., 4-dimentional
variational assimilation) [Zupanski and Mesinger, 1995; Courtier et al., 1998; Margulis and Entekhabi,
2003; Seo et al., 2003; Caparrini and Castelli, 2004]. One of the distinctions between sequential and
variational assimilations is that in sequential assimilation each individual observation influences the
estimated state of the flow only at later times and not at previous times while variational assimilation
aims at adjusting the model solution globally to all the observations available over the assimilation
period [Talagrand, 1997]. Several papers have attempted to use data assimilation techniques combined
with a numerical model to estimate regional surface turbulent heat fluxes [Boni et al., 2001; Caparrini
et al., 2004; Crow and Kustas, 2005; Margulis et al., 2005; Pipunic et al., 2008]. Boni et al. [2001]
developed a land data assimilation system to estimate latent heat flux and surface control on
evaporation with the dynamic equations for surface temperature as the constraint. In this assimilation
system, satellite remotely sensed surface temperatures are assimilated within the Southern Great Plain
1997 hydrology field experiment. Factors characterizing land surface influences on evaporation and
surface heat fluxes are estimated through assimilation of radiometric surface temperature sequences
with a land surface energy balance as a constraint and this approach has been tested using data from
the ISLSCP FIFE (International Satellite Land Surface Climatology Project) [Caparrini et al., 2004].
Caparrini et al. [2003] proposed a land data assimilation scheme with sequences of multi-satellite
remotely sensed surface temperature measurements and data from surface micrometeorological
stations to estimate the surface energy balance components in a basin with varying surface conditions.
Margulis et al. [2005] compared the VI-Ts triangle method to variational data assimilation method for
estimating surface turbulent fluxes from radiometric surface temperature observations. Results from a
set of synthetic experiments and an application of data from ISLSCP FIFE site have shown that the
assimilation approach performs slightly better than the VI-Ts triangle method.

Data assimilation approach to map surface energy fluxes often has some advantages over
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traditional retrieval methods, including 1) assimilation procedure estimates not only latent heat flux
but also the various intermediate variables related to the turbulent heat fluxes in a numerical model, 2)
estimates of the turbulent heat fluxes are continuous in time and space since the dynamic models used
in the assimilation procedure interpolate the measurements taken at discrete sampling times, 3) the
data assimilation procedure can produce estimates at a much finer resolution, 4) data assimilation
scheme can merge spatially distributed information obtained from many data sources with different
resolutions, coverage, and uncertainties [Margulis et al., 2002]. The main drawback of data
assimilation technique to retrieve regional ET with a numerical model is that it is relatively
computationally demanding than the remote sensing ET models.

Above mentioned sub-sections detail the theory, advantages and weaknesses of the various
remote sensing ET models from the simplified empirical regression method applied over a field scale
to the relatively complex dual-source surface energy balance models employed at both regional and
continental scales. Data assimilation approaches can assimilate all available data sources to provide the
spatially and temporally continuous surface turbulent heat fluxes. Comparisons of the different remote
sensing ET models reviewed above are recapitulated in Table 1-1.
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Table 1-1. Comparisons of a variety of commonly applied remote sensing ET methods

METHODS | REFS. EQS. II\I/I\@IUNTS MAIN ASSUMPTIONS ADVANTAGES DISADVANTAGES
1) Daily soil heat flux is
[Seguin and negligible;
Simplified Itier, 1983] 2) Instantaneous H at midday can Lo . .
Equation [Jackson et al., Ea.(L) Rua, Ts, Ta express the influence of Simplicity Site-specific
1977] partitioning daily available
energy into turbulent fluxes.
1) Complete range of both soil
moisture and vegetation coverage
exists within the study area at 1) Difficult to determine the dry
. satellite pixel scale; and wet edges;
VI. Ts [Jiang and Eq.(1.28) Ry, G, Ts 2) cloud contaminations are No ground-based 2) VI-Ts triangle form is not easy
Triangle Islam, 1999] VI : X measurements are needed . . .
discarded and atmospheric effects recognized with coarse spatial
are removed; resolution data
3) EF varies linearly with Ts for a
given VI
1) Dry and wet edges are linear . 1) Uncertainty in the determination
VI-Ts [Moran et al., TaVPD, U, lines and vary linearly with VI Wh_ole range of VI and soil of dry and wet edges;
. Eq.(1.29) T, VI, Ry, o . moisture in the scene of
Trapezoid 1994] 2) EF varies linearly with Ts fora | . : L 2) lot of ground - based
G ! interest is not required;
given VI. measurements are needed.
[Menenti and 1) Dry limit has a zero surface
SEB| Choudhury, Eq.(1.17) Toon, hpoiy U, | ET; . Directly relating the effects of | Ground-based measurements are
1993] T, R0, G 2) Wet limit evaporates Tsand ryon LE. needed.
potentially.
1) Linear relationship between Ts 1) Minimum ground
. measurements . )
[Bastiaanssen et th Zas and dT, . S 2) Automatic internal 1) Applled_over flat surfaces., .
SEBAL Eq.(1.26) Ts, VI, Ry, | 2) ET of the driest pixel is 0; Lo 2) Uncertainty in the determination
al., 1998] - calibration; :
G 3) ETwet is set to the surface . of anchor pixels.
3 3) Accurate atmospheric
available energy. X
corrections are not needed
S-SEB| [Roerink et al., Eq.(1.25) T, a5, Ry, 1) EF varies linearly with Ts for a | No ground-based Extreme temperatures have to be
2000a] g G given surface albedo. measurements are needed location specific.
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MAIN

METHODS | REFS. EQS. INPUTS MAIN ASSUMPTIONS ADVANTAGES DISADVANTAGES
2) Tsmax COrresponds to the
minimum LE.
3) Tsmin COrresponds to the
maximum LE.
1) Uncertainty in SEBS from
Ts and meteorological
__ 1) At the dry limit, ET is set to O; \r/:(;:]a::bel(? can be limited and rlng?roe (;nany parameters are
ar a i) H H 1
SEBS [Su, 2002] Eq.(1.20) T, R, G 2) Atthe wet I|_m|t, ET takes 2) Computing explicitly the 2) Solution of the turbulent heat
place at potential rate. : . .
roughness height for heat fluxes is relatively complex.
transfer instead of using fixed
values.
[Allen et al., 0z, 1) For the hot pixel, ET is equal Same as SEBAL but surface o o
2007] to zero Uncertainty in the determination of
METRIC Eq.(1.26) Ts, VI, Ry, . . slope and aspect can be -
[Allen et al., G 2) For the wet pixel, LE is set to considered anchor pixels.
2005] ' 1.05ET,. '
1) Fluxes of soil surfaces are in 1) Effects of view geometr
Soil and parallel or in series with fluxes of . 9 . y 1) Many ground measurements are
U, z; Ty, } are taken into account;
[Normanetal., | canopy canopy leaves; L - needed.
TSM T, T, Fror : . 2) Empirical corrections for .
1995] energy 2) Priestly-Taylor Eq. is . - , 2) Component temperatures of soil
LALL R, G . . the ‘excess resistance’ are not . .
budgets employed to give the first-guess needed: and vegetation are required.
of canopy transpiration '
Soil and u, Za Surface temperature changes Errors due to atmospheric Determination of an optimal pair of
TSTIM/ [Mecikalski et canopy dTs, F, or linearly with the time during the corrections and surface thermal observation times for the
ALEXI al., 1999] energy LAL Ry, morning hours of the sensible emissivity specification are linear rise in sensible heating is
budgets G. heating significantly reduced; needed.
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1.2 Scaling from instantaneous ET to daytime integrated value

Most of the aforementioned ET models using remotely sensed data produce only instantaneous
ET values. Obviously, it is necessary to convert essentially instantaneous ET value at the overpass
times of satellites to daily or longer time value to make full use of the remote sensing data in
hydrological and water resources management applications. A number of techniques are proposed to
extrapolate the instantaneous ET to the longer time values, mainly including sine function, constant
evaporative fraction (EF), constant reference ET fraction (ETrF).

1.2.1 Sine function

Jackson et al. [1983] related the ratio of instantaneous ET to daily value to the diurnal trend of
solar irradiance with the following equation:

ET,/ET =R, /R, = 2N /(zsin(zt/N)) (1.33)

where subscripts d and i respectively indicate the daily total and instantaneous values. The sine
function gives a good approximate of the change of diurnal solar irradiance except near sunrise and
sunset. t is the duration time starting at sunrise. N is the duration of daytime and can be expressed as:

N =0.945(a + bsin?((D, +10)/365)) (1.34)
a=12.0-5.69x107°1—-2.02x10" 1% +8.25x10° 1> -3.15x10" 1* (1.35)
b=0.1231-3.10x10" 1% +8.00x107" 1> +4.99x10" A* (1.36)

in which Dy is the day of year, A is geographical latitude in degree.

With Egs.(1.33-1.36) and time of day (t), day of year (D,) and geographical latitude between 60°
S and 60° N, one can scale the one-time measured instantaneous ET to the daily totals. Jackson et al.
[1977] have shown that when the daytime was always cloud free or the cloud cover was relatively
constant throughout the daytime, the sine function of Eq.(1.33) could obtain reliable estimates of
daytime integrated ET. When cloudy days exist, improvements of Eq.(1.33) should be made to take
account the mount and temporal coverage of the cloud cover. This approach is widely used for daily
ET estimation and satisfactory results have been produced [Zhang and Lemeur, 1995; Kustas and
Norman, 1996; Chen et al., 2005; Colaizzi et al., 2006]. Zhang et al. [1995] refined the sine function
by introducing a parameter to reflect impacts of geographic latitude, solar declination and degree of
cloudiness on the convexity of the diurnal patterns of solar radiation.

1.2.2 Constant Evaporative Fraction (EF)

Sugita and Brutsaert [1991] assumed the evaporative fraction to be constant during the daylight
hours to determine regional daily ET using data obtained during FIFE in northeastern Kansas.
Knowing the daytime available energy (R,-G)g, and assuming that EF is constant during the daytime,
daily estimate of ET4 can therefore be written as:
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LE,

LE, =(R,~C), ER =(R,~C)y iz

(1.37)
where subscripts i and d are respectively indicative of instantaneous and daytime integrated values.
The value of EF varies from 0 to 1 under daytime convective conditions with minimal advection and
represents the fraction of available energy partitioned into latent heat flux [Kustas et al., 1993].

A great number of papers have used this assumption to calculate the daily ET and examined
whether the assumption that daytime EF is nearly constant throughout the day is reasonable
[Shuttleworth et al., 1989; Sugita and Brutsaert, 1991; Hall et al., 1992; Kustas et al., 1993; Nichols
and Cuenca, 1993; Crago, 1996; Lhomme and Elguero, 1999; Farah et al., 2004; Colaizzi et al., 2006;
Hoedjesa et al., 2008]. With data from the FIFE and other observations, Crago [1996] has concluded
that the variability or conservation of EF on individual day was affected by complicated combination
factors, including weather conditions, soil moisture, topography, biophysical conditions, cloudiness
and the advections of moisture and temperature directly contributed to the amount of variability of EF
on a given day. A strong correlation with the coefficient of determination value of 0.89 has been
demonstrated between the midday and daily average evaporative fractions for data from the Hapex-
Mobilhy program on clear days [Nichols and Cuenca, 1993]. Zhang and Lemeur [1995] using data
from the Hapex-Mobilhy Experiment in southwestern France compared the sine function with the
constant EF method and concluded that both methods were accurate to estimate daily total ET for
cloud-free days and recommended that the sine function was preferable for the purpose of estimating
ET using remotely sensed data.

Jackson et al. [1983], Owe and van de Griend [1990] and Kustas et al. [1994] have found that
nighttime ET could reach as many as about 10 percent of the daily totals. Allen et al. [2007] illustrated
that the assumption of constant EF during the 24h period could underestimate the overall daily ET
when afternoon advection and increased wind speed appeared in arid climates. Anderson et al. [1997]
therefore added this 10 percent of latent heat fluxes into daily integrated ET in Eq. (1.37) using the
evaporative fraction expressed as follows:

1.2.3 Constant reference ET fraction (ETrF)

In the METRIC process, Allen et al. [2007] proposed a constant ET,F, which is believed to be
better able to capture any impacts of advection and changing wind and humidity conditions during the
day, to estimate the 24-h total ET. ET,F is defined as the ratio of the computed ET; from each pixel to
ET, ET, is the reference ET over the standardized 0.5 m tall alfalfa and computed from
meteorological data measured at ground meteorological stations [Allen et al., 2007]:

ETF = En (1.39)
ET

r

LE

ET, =3600
Lxp,

(1.40)
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L =[2.501—0.00236(T, — 273.15)]x10° (1.41)

With the assumption of instant ET,F being same as the average ETF over the 24 h average and
the consideration of the sloping effects over terrain areas, ET4 can be estimated by [Allen et al., 2007]:

ET, =C (ET.F)(ET,4) (1.42)

R . .
s,d, pixel (143)

s,d, Horizontal

_ Rs,i ,Horizontal

C_ =
rad R

R

s,i, pixel

where subscripts i and d indicate instantaneous and daily values respectively; subscripts “pixel” and
“horizontal” represent respectively the value for a specific pixel at certain slope and aspect conditions
and value calculated for a horizontal surface. For applications to horizontal areas, Cq=1.0. ET,4 is
cumulative daily reference ET [Allen et al., 2007].

1.3 Problems/issues

Although great progress has been made since 1970s on a number of methods from an empirical
simplified equation to a more complex physically based dual-source energy balance model using the
remote sensing technology to estimate regional surface turbulent fluxes, there are still some problems
that have not been solved reasonably, which are mainly associated with the parameterization of land
surface fluxes at regional/global scales, retrieval accuracy and physical interpretation of different
surface variables retrieved from satellite data, temporal and spatial data/model scaling from one scale
to other scale, validation of the latent heat flux obtained from models at regional/global scale, etc..
These problems will be discussed briefly below.

1.3.1 Problems related to remotely sensed data itself

Remotely sensed data are acquired instantaneously and can only provide instantaneous two-
dimensional spatial distribution of land surface variables such as surface albedo, surface vegetation
fraction, surface temperature, surface net radiation and soil moisture, etc, which are indispensable
variables to know for remote sensing estimate of land surface ET. This is one of the specialities of
remote sensing technique, as well as the distinct predominance of remote sensing technique in
estimating spatial distribution of land surface ET at regional/global scale. These speciality and
predominance have great impact on the spatial scaling from the "point"” to the regional scale. However,
temporally integrated daily, weekly and monthly ETs at regional and global scales are required for
many ET-related disciplines. Therefore, temporal scaling, which is one of the weaknesses of remotely
sensed data, is needed to convert the instantaneously spatial ET to a longer-time value. Moreover, due
to the effect of cloud coverage, it is impossible to provide the two-dimensional spatial patterns of land
surface variables under the clouds by the optical remote sensing and consequently impossible to
estimate the surface instantaneous ET over the areas covered by clouds with optical remote sensing
data. Nowadays, great progress has been made to convert the instantaneous ET to the daily value on
clear-sky days while little work or progress has been done on the temporal scaling from instantaneous
remote sensing ET to weekly/monthly remotely based-ET due to the coarse spatial resolution of
microwave remote sensing data and the inaccuracy of the surface variables used in remote sensing
models retrieved from the microwave data, as well as the effects of cloud cover.
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1.3.2 Uncertainty of the remote sensing ET models

Over the past 30 years, a variety of remote sensing ET models have been developed to estimate
the spatial distribution of ET at various scales ranging from the field (simplified empirical equation) to
regional (single-source or dual-source models) and continental scales (eg. ALEXI). Single-source
models can be applied with a relatively high accuracy over homogeneous areas (eg. dense vegetation),
while over the arid and semi-arid areas (eg. partially vegetated cover) two-source models are
especially required to separately model the heat interactions between soil and atmosphere and between
vegetation and atmosphere. However, as reviewed in the previous sections, each model developed has
its advantages and disadvantages (weaknesses) and was applied successfully to some extent to some
conditions. Since, in the different areas of the world, there exist great differences in the land surface
characteristics, in the climate and terrain etc., no model developed nowadays can be used everywhere
in the world without any modification or improvement to estimate the ET from satellite data. A big
challenge in the development of remote sensing ET model is to develop a new parameterization of
land surface ET with only land surface variables and parameters directly or indirectly derived from
satellite data.

1.3.3 Uncertainties in the accuracy of the retrieved land surface variables (parameters)

The presence of the atmosphere between land surface and sensors at satellite level disturbs the
radiances measured by a radiometer at the top of the atmosphere. These radiances result primarily
from emission/reflection of surface modulated by the effects of absorption, diffusion and emission of
the atmosphere. The passage of the radiances measured at the top of the atmosphere to the
macroscopic land surface parameters (variables) and physics of surfaces requires the corrections for
the atmospheric effects and the connection of the surface parameters (variables) derived directly from
satellite data to other surface parameters (variables) through physical models.

Although great progress has been made nowadays to retrieve quantitatively land surface variables
(parameters) from remotely sensed data, accuracy of some variables (parameters), such as surface
temperature, LAI, vegetative coverage, plant height, etc., required in remote sensing ET models still
needs to be improved. In addition, due to the influences of vegetation architecture, sunlit fractional of
vegetation and solar zenith angle, etc., observational angular effect is a significant factor affecting the
retrieval of radiometric surface temperature especially over heterogeneous surfaces [Norman et al.,
1995]. Differences in received radiances will occur due to the differing amounts of soil and vegetation
in the filed of view when sensor viewing changes from one angle to another, while over homogeneous
dense, well-watered vegetative surfaces, the effect is less important [Carlson et al., 1995a; Anderson et
al., 1997]. Data obtained during the ISLSCP FIFE program have shown that difference of surface
temperature obtained at nadir and 60 degrees in zenith angle can reach as large as 5 °C [Anderson et al.,
1997], implying that a large and unaccepted error on ET estimate would be generated if the angular
effect is neglected. In order to take into account this angular effect in the development of dual-source
remote sensing ET models, methodologies must be developed to estimate accurately the component
temperatures of surface (vegetation and ground) from multispectral and multi-angular satellite
measurements.
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1.3.4 Lack of the measurements of near-surface meteorological variables

In most remote sensing data based ET models, whatever the single-source or dual-source models
are, meteorological data (air temperature, atmospheric pressure, wind speed, relative humidity) at
PBL-height or at near-surface height at satellite pixel scale are indispensable and spatial interpolation
method is often used to get these meteorological data at satellite pixel scale from discrete
meteorological stations. Because the big difference of the climate and terrain conditions may exist in
the study region and the implementation of meteorological stations is often sparse and irregular in the
world, accuracy of the non-physics and merely spatial-statistics based interpolation needs to be
improved either by developing physically static- or dynamic-feedback interpolation methods based on
remote sensing data or by making use of atmospheric reanalysis data at high spatial-resolution.
Another approach to improve the accuracy of spatial data interpolation is to integrate the remote
sensing ET models with atmospheric general circulation models or numerical weather forecast models,
which maybe one of the promising subjects in the future for the regional ET estimates with remotely
sensed data.

1.3.5 Spatial and temporal scaling effects

Scaling problem is of nature much more fundamental since it implies a conceptual analysis of the
physical significance of the measured quantities (variables). Indeed, the diversity of continental
surfaces involves spatial (vertical and horizontal) and radiometric heterogeneities of surface,
considering the spatial resolution of the current onboard sensors varying from 102 to 10* km?, it is
therefore necessary to be able to define and interpret correctly surface parameters (variables)
independent of the scale used, as well as the processes necessary to validate this definition.

Simply speaking, scaling effect in the derivation of surface turbulent fluxes is shown in the form
of whether functions of parameters and variables obtained over one scale can be used at other scales
(local/regional/large) [Carlson et al., 1995a]. It seems general that models applicable for deriving
surface fluxes/parameters at local scale may not be appropriate for applications at a larger scale
because of the heterogeneities of the surface and non-linearity of the models [Carlson et al., 1995a].

Since 1980s, several international field programs have been designed to obtain useful surface
parameters and study the issue of scaling from point to regional- or global-scale estimates of the
surface energy fluxes [Carlson et al., 1995a]. The spatial resolution of thermal infrared bands is
usually coarser than that in visible and near infrared bands, which will lead to a scale difference in the
land surface parameters indispensable to ET estimates between surface temperature obtained from
thermal bands and vegetation indices derived from visible and near infrared bands [Courault et al.,
2003; Gowda et al., 2007].

The possibility of resolving all problems raised by scaling effects may be to a great extent
associated with the development of the scaling theory and further with the fusion of multi-scale remote
sensing observations [McCabe and Wood, 2006; Gowda et al., 2007].

1.3.6 Lack of the land surface ET at satellite pixel scale for the truth validation
Comparisons between turbulent heat fluxes derived from remote sensing ET models and in-situ

measured data are required to evaluate the reliability and accuracy of the applied ET models. Although
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it may be feasible and reasonable to validate pixel-averaged fluxes derived from remote sensing ET
models with traditional measurements mainly conducted at the "point" scale over uniform areas,
problems will be encountered when validation is performed over complicated land surface areas.

Nowadays, several conventional techniques such as Bowen ratio, eddy correlation system and
weighing lysimeters have been commonly applied to measure the ET at ground level. Lysimeters
provide the only direct measure of water flux from a vegetated surface. Its measurements can therefore
be used as a standard for evaluating the performance of other physically based ET models. However,
data measured by Lysimeters are essentially point data and thus cannot be used for validating the
regional ET estimates [Kairu, 1991]. Study has shown that measurements from Bowen ratio and large
weighing lysimeters for irrigated alfalfa during advective conditions can differ by up to 29% [Blad and
Rosenberg, 1974; Todd et al., 2000]. Eddy correlation technique, based on the principle that
atmospheric eddies transport the entities of water vapor, CO,, and heat with equal facility, is
particularly useful for rough surfaces with high coefficients of turbulent exchange [Kairu, 1991]. It has
overtaken Bowen ratio as being the most preferred micrometeorological technique for ET
measurements in the past few decades [Farahani et al., 2007]. The source area of an eddy correlation
system generally represents an upwind distance of about 100 times the sensor height above the surface
[Campbell and Norman, 1998], which is appropriate to validate the ET at pixel sizes of an order of
hundred meters. In the past decades, most studies used measurements conducted by the Bowen Ratio
Energy Balance (BREB) and the eddy correlation system to validate ET at local and regional scales.
Angus and Watts [1984] showed that LE measured by Bowen ratio was dependent on the range of
Bowen ratio values. For ET at the potential rate, relative errors of up to 30% in Bowen ratio can
produce relative errors of 5% in LE. However, as soil water becomes less available, the precision in
LE will decrease [Kalma and Jupp, 1990]. Energy balance non-closure in eddy correlation, typically
higher over strongly evaporating surfaces such as irrigated crops [Farahani et al., 2007], can reach up
to 20% even for non-advective conditions [Gowda et al., 2007]. Measurements from eddy correlation
system at night under low wind-speed stable conditions can yield large errors and the instrument errors
and atmospheric stability contribute to the sources of errors [Gurney and Camillo,1984; Shuttleworth,
2007].

Validation of remote sensing ET derived from satellite data at high spatial resolution, such as TM
and ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) data, was
generally performed using the measurements made by the BREB and eddy correlation system.
However, difficulties still remains in validation of ET estimated from low spatial resolution satellite
data such as MODIS, GOES whose pixel size in thermal bands is a magnitude of an order of
kilometers [Carlson, et al., 1995a].

The newly developed (Extra-) Large Aperture Scintillometers (XLAS, LAS) provide a promising
approach to validate the remote sensing ET at much larger scales [Meijninger et al., 2002; Hoedjes et
al., 2002; Hemakumara et al., 2003; Hoedjes et al., 2007]. Scintillometers are regarded as the unique
possibility of measuring the sensible heat flux averaged over horizontal distances comparable to the
grid size of numerical models and satellite images [Kohsiek et al., 2002] and thus can be employed to
validate to a certain degree the regional turbulent heat fluxes derived from remote sensing models. One
limitation of using Scintillometers is the saturation of scintillation, which can be overcome by using
either large, incoherent transmitter and/or receiver apertures or a longer wavelength [Kohsiek et al.,
2002; Kohsiek et al., 2006].
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1.4 Main research contents and basic conclusions

Focused on the issues/problems identified above throughout a complete overview of the regional
ET estimation from remotely sensed data, this work thus concerns the methodological development
permitting to determine the regional land surface ET from the MODIS data onboard the polar satellites
Terra and Aqua.

This thesis is composed of 6 chapters.

In the first chapter, the state of the art on the estimate of the regional ET from satellite data is
presented. An overview of the commonly applied ET models using remotely sensed data is made to
provide an insight into the estimate of ET over a regional scale from satellite data. The main inputs,
assumptions, theory, advantages and drawbacks in each model are discussed. Moreover, approaches to
the extrapolation of instantaneous ET to the daily values are also briefly presented. In the final part,
associated problems regarding these remotely sensed ET models are analyzed to show objectively the
limitations and promising aspects of the estimation of regional ET based on remotely sensed data and
ground-based measurements and the structure of this thesis is also briefly given in this chapter.

The second chapter of this thesis is devoted to the determination of land surface temperature (LST)
from the Chinese geostationary meteorological satellite data - FengYun 2C (FY-2C). Land surface
temperature is recognized to be one of the priority parameters and made special attentions in the study
of our environment and in the estimate of ET. On the basis of the radiative transfer theory, this chapter
addresses the retrieval of the LST from the FY-2C data in two thermal infrared channels IR1 (10.3-
11.3um) and IR2 (11.5-12.5um), using the Generalized Split-Window (GSW) algorithm. This chapter
is broken up into 4 parts. The first describes the theory associated with the LST retrieval using the
GSW algorithm and presents the algorithm development for FY-2C data. The second gives the results
and the numerical values of the coefficients in the GSW algorithm. The sensitivity and error analyses
in term of the uncertainty of the Land Surface Emissivity (LSE) and Water Vapor Content (WVC) in
the atmosphere as well as the instrumental noise are also presented in this part. In addition, in order to
compare the different formulations of the split-window algorithms, this part gives also the
intercomparsion of the LSTs estimated by several split-window algorithms. The third part presents the
main results obtained in this work. The fourth part gives an example of retrieving LST from FY-2C
satellite data and conclusions of this chapter.

We approach in the third chapter the restitution of the directional land surface emissivity from the
combination of the MODIS TIR data and MODIS mid-infrared (MIR) data with emphasis on the
modeling of the land surface bidirectional reflectivity in MIR channel. The first part of this chapter
describes the methodology to retrieve directional emissivity and the development of BRDF model in
MIR region. The second describes the study area, MODIS data and data processing for estimating
directional emissivity from MODIS data. The third part presents some preliminary results and cross-
validation with the MODIS land surface temperature/emissivity product MYD11B1 data. The last part
will give the conclusion of this chapter.

The fourth chapter is devoted to study the impact of spatial heterogeneity of leaf area index (LAI)
on the estimate of directional gap fraction. Directional gap probability or gap fraction is a basic
parameter in the optical remote sensing modeling and is closely related to the vegetation fraction
required by most of the ET models. The first part of this chapter provides the theoretical framework to
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estimate the scaling effect of directional gap probability raised by two different aggregation schemes
from local scale to larger scale. In the second part, we present the different types of remotely sensed
LAI images obtained from VALERI database. In the third part, the scaling effect associated with the
non-linear relationship between LAI and gap probability is quantified over several types of landscape
and a new parameter is introduced to compensate the scaling effect. In the last part, a conclusion of
this chapter is given.

The fifth chapter is devoted to the estimation of regional ET from MODIS data over arid and
semi-arid regions. The first part of this chapter recalls the principle of the T-VI triangle method and
highlights the assumptions involved in the methodological development and the advantages and
disadvantages of the Ts-VI method. The second part is devoted to the development of a practical
algorithm for quantitative determination of dry and wet edges in the T-V1 triangle from MODIS/Terra
data and products. The third part describes the study region and data used in the present study and
gives a preliminary validation of satellite derived sensible heat flux with the field measurements made
by the LAS during the Heihe Field Experiment from May 20th to August 21st, 2008. The last part
gives the conclusion of this chapter.

The sixth chapter is mainly devoted to the conclusions of this thesis and gives some future trends
and prospects.
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Chapter 2

Generalized Split-Window Algorithm for
Estimate of Land Surface Temperature
from Chinese Geostationary FengYun

Meteorological Satellite (FY-2C) Data
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Land Surface Temperature (LST) is not only a good indicator of both the energy equilibrium of
the Earth’s surface and greenhouse effects, but is also one of the key variables controlling fundamental
biosphere and geosphere interactions between the Earth’s surface and its atmosphere. It can play either
a direct role such as when estimating longwave fluxes, or indirectly as when estimating latent and
sensible heat fluxes [Mannstein, 1987; Sellers et al., 1988]. Moreover, many other applications, such
as evaportranspiration modeling [Serafini, 1987; Bussieres et al., 1990], estimating soil moisture [Price,
1980], and climatic, hydrological, ecological and biogeochemical studying [Schmugge and André,
1991; Running et al., 1994] and so on, rely on the knowledge of LST. Consequently, it is crucial to
have access to reliable estimates of surface temperature over large spatial and temporal scales. It is
practically impossible to obtain such information from ground based measurements, whereas the
satellite observations in the Thermal Infra-Red (TIR) appears to be very attractive since it can give
access to global and temporal estimates of LST.

However, the retrieval of the LST from satellite data is a very difficult task because, besides the
radiometric calibration and the cloud screening procedures, three types of corrections have to be made.
They are emissivity corrections, atmospheric corrections and topography corrections [Price, 1984]. Up
to now, many algorithms for estimating the LST from satellite observations have been proposed. They
may be roughly grouped into three categories: the single channel algorithm [Ottlé and Vidal-Madjar,
1992; Jiménez-Mufioz and Sobrino, 2003], the split window algorithm [McMillin, 1975; Becker and
Li, 1990] and the triple window algorithm [Sun and Pinker, 2003].

The single channel method is a simple inversion of the radiative transfer equation providing that
the Land Surface Emissivities (LSEs) and the atmospheric profiles are known in advance. The triple
window method combines two thermal window channels and one middle infrared channel to estimate
the LST for nighttime satellite observations. The split window method is used to retrieve the LST
based on the differential water vapor absorption in two adjacent infrared channels. This method was
firstly proposed by McMillin [1975] to estimate sea surface temperature from satellite measurements.
Since then, a variety of split window algorithm have been developed and modified to retrieve LST,
and, currently, most of them have been successfully applied to the LST retrieval from the data
observed by the AVHRR, MODIS, and Spinning Enhanced Visible and Infrared Imager (SEVIRI)
instruments [Price, 1984; Becker and Li, 1990; Prata and Platt, 1991; Vidal, 1991; Ulivieri et al., 1992;
Sobrino et al., 1993; Sobrino et al., 1994; Coll and Caselles, 1997; Becker and Li, 1995; Wan and
Dozier, 1996; Sobrino and Romaguera, 2004].

The FengYun-2C (FY-2C), a geostationary meteorological satellite developed by Shanghai
Academy of Space Flight Technology (SAST, also known as 8" Space Academy) and China Academy
of Space Technology (CAST, also know as 5" Space Academy) and operated by China Meteorological
Administration (CMA), was launched on 19 October 2004 and is becoming fully operational in 2006.
The FY-2C is the Chinese first operational meteorological satellite, which was also the fourth satellite
of the FY series and is located above the Equator at longitude 105° E, and some 35,800 km away. The
objective of the mission is to monitor the temperature and the clouds above China and neighboring
areas and also to provide meteorological information for the Asia-Pacific region. The upgraded
Stretched-Visible and Infrared Spin-Scan Radiometer (S-VISSR) is one of the major payloads onboard
the FY-2C. This optical imaging radiometer consists of one visible channel and four infrared channels.
The characteristics of the instrument are shown in Table 2-1. It can acquire one full disc image
covering the Earth surface from 60° N to 60° S in latitude and from 45° E to 165° E in longitude per
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hour and 30 min per acquisition for flood season.

Table 2-1. Specifications of S-VISSR channels: spectral range and spatial resolutions.

Channel no. Channel name Spectral range (um) Spatial resolution (km)
1 IR1 10.3-11.3 5
2 IR2 11.5-12.5 5
3 IR3 6.3-7.6 5
4 IR4 3.5-4.0 5
5 VIS 0.55-0.90 1.25

The work presented in this chapter aims to retrieve LST from the FY-2C satellite data in two
thermal infrared channels (IR1, 10.3-11.3 gm and IR2, 11.5-12.5 ym), using the Generalized
Split-Window (GSW) algorithm proposed by Wan and Dozier [1996]. Section 2.1 describes the
theory associated with the LST retrieval using the GSW algorithm and presents the algorithm
development for FY-2C data. Section 2.2 gives the results and the numerical values of the
coefficients in the GSW algorithm. The sensitivity and error analyses in term of the uncertainty of
the LSE and Water Vapor Content (WVC) in the atmosphere as well as the instrumental noise are
also presented in this section. In addition, in order to compare the different formulations of the
split-window algorithms, this section gives the intercomparsion of the LSTs estimated by several
split-window algorithms. Section 2.3 gives an example of retrieving LST from FY-2C satellite
data. The Conclusion is drawn in Section 2.4,

2.1 Theory

2.1.1 Radiative transfer for split-window algorithm

On the basis of the radiative transfer theory, for a cloud-free atmosphere under thermodynamic
equilibrium, the channel radiance B,(T;) measured at the Top Of the Atmosphere (TOA) in a Thermal

Infra-Red (TIR) channel of the sensor onboard the satellite, is given with a good approximation as [Li
etal., 2000]

B,(T,) = £B,(T.)7, + Rl + (L= &)Rn 17, 2.1)

atm _i

where T, is the channel brightness temperature observed in channel i at the TOA, B, is the
Planck function, B,(T) is the radiance measured if the surface was a blackbody with surface

temperature T, & is the channel emissivity in channel i, 7; is the total atmospheric transmittance

along the target to sensor path in channel i, R

atm _i

is the thermal path atmospheric upwelling radiance
"

atm _i

in channel i, and R is the channel downwelling atmospheric radiance from the whole hemisphere
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in channel idivided by =. The first term on the right hand side of Eq. (2.1) represents the surface
emission that is attenuated by the atmosphere. The second term represents the upwelling atmosphere
emission toward the sensor and the third term represents the downwelling atmosphere emission that is
reflected by the surface and reaches the sensor.

Inverting Eq.(2.1), one can get

T = B—l[Bi (T)- R;m_i -(1- 8i)Ritm_iTi

S

] (2.2)

&7,

in which B is the inverse of the Planck function. Once the channel emissivity &, is known, there are

two ways to estimate the LST from satellite data. One way is to use Eq. (2.2) with atmospheric
radiative transfer model such as MODTRAN 4 [Berk et al., 1998] or 4A/OP [Scott and Chédin, 1981],
if the atmospheric profile is available from either conventional radiosoundings or satellite soundings.
Another is to employ the split-window algorithm developed on the basis of the differential water vapor
absorption in two adjacent infrared channels [McMillin, 1975] if the atmospheric profile is not
available.

As S-VISSR sensor onboard FY-2C has two adjacent thermal infrared channels (IR1 and IR2),
the GSW algorithm proposed by Becker and Li [1990] and Wan and Dozier [1996] is adopted to
estimate the LST from FY-2C satellite data. According to GSW algorithm, the LST can be expressed
as

1-¢

Ag Ti +Tj l1-¢ Ag T -T.
T, =a0+(al+a2—+a3—2)
& &

> +(a4+a5—(9 +r:16?)—'2 ‘ (2.3)

with ¢ =(& +¢;)/2 and Ac=¢ —&; . Where T, and T, are the TOA brightness temperatures

measured in channels i (11.0 #m) and j (12.0 um), respectively; & and &; are, respectively, the
land surface emissivities in channels i1 and j; & is the averaged emissivity; Ae is the emissivity

difference between the two adjacent channels; and a, —a, are unknown coefficients which will be

derived below from simulated FY-2C data..
2.1.2 Algorithm development for FY-2C

So far, as there is no available database of in situ LST measurements in coincidence with the FY-
2C overpasses, the only possible way to obtain the coefficient in Eq. (2.3) is to use numerical
simulation for establishing the database used in the statistical regression. To this end, the atmospheric
radiative transfer model MODTRAN 4 was used to simulate the TOA radiance with the appropriate
thermal infrared channel response function of the S-VISSR onboard FY-2C.

Keeping in mind that a practical LST algorithm should accommodate atmospheric variations wide
enough to cover all possible real situations, two atmospheric profiles databases were taken into
account in our simulation. One is the latest version of the Thermodynamic Initial Guess Retrieval
(TIGR) database TIGR2002, which was constructed by the Laboratoire de Meteorologie Dynamique
(LMD) and represents a worldwide set of atmospheric situations (2311 radiosoundings) from polar to
tropical atmospheres with varying water vapor amounts ranging from 0.1 to 8 g/cm?
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(http://ara.Imd.polytechnique.fr/htdocs-public/products/TIGR/TIGR.html). The other is the six
standard atmospheric profiles (tropical, mid-latitude summer, mid-latitude winter, sub-arctic summer,
sub-arctic winter, and US76) stored in the MODTRAN 4. For LST retrieval, we only consider
atmospheric variation in clear-sky conditions. Consequently, the profiles with relative humidity at one
of levels greater than 90% in TIGR2002 were discarded as this seldom happens under clear-sky
conditions. Therefore, 1413 representative atmospheric situations were extracted from TIGR2002.
Fig.2-1 shows a plot of the atmospheric Water Vapor Content (WVC) as function of the atmospheric
temperature T, 15 in the first boundary layer of these selected atmospheres. As shown in this Fig. 2-1,
the T, 1« varies from 231 K to 315 K and the atmospheric WVC changes from 0.06 g/cm? to 6.44
glem?.

Water vapor content (g/cmz)

220 ' 2210 ' ZEISO ' 2;30 ' 3(I)O ' 350
T, K
Fig.2-1 Plot of the atmospheric water vapor content as function of atmospheric temperature
Ta 15t in the first boundary layer of the selected 1413 atmospheric profiles in TIGR2002.

Taking into account the angular dependence of the TOA radiance, six different Viewing Zenith
Angles (VZAs) (0°, 33.56°, 44.42°, 51.32°, 56.25°, 60°) varying from 0° to 60° were used in

MODTRAN simulations. With the VZAs and the radiosoundings mentioned above as MODTRAN
1

input, we can obtain the channel atmospheric parameters (z;, R, ;. R;m_i ) with spectral integration

of the channel response function for each VZA and each atmospheric profile.

In addition, in order to make the simulation more representatives, the reasonable variations of
LST are varied in a wide range according to the atmospheric temperature T, 15 in the first boundary
layer of the atmospheric profiles used. That is, LST varies from T, 15:-5K t0 T, 15t +15K in steps of 5 K
for Ta st =290K, and from T, 14 -5K to T, 15 +5K in steps of 5 K for T, 1¢ <<290K. Moreover,
considering the most land covers, the averaged emissivity ¢ varies from 0.90 to 1.0 with a step of
0.02, and the emissivity difference Ag varies from -0.025 to 0.015 with a step of 0.005 were used in
our simulation [Wan and Dozier, 1996].

Then for a given LST, in combination with the atmospheric parameters (z;, R! R;m_i ), LST

atm_i

(T,) and LSE (&), the channel brightness temperature T, at the TOA can be simulated according to
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Eq. (2.1) with the inverse of Planck’s law. At this stage, the T_ is directly related to the TOA

S

measured brightness temperatures T, and Tj. The coefficients a, —a, in Eqg. (2.3) can be obtained

through statistical regression method. In total, for the TIGR2002 database and the six standard
MODTRAN 4 atmospheres, 261738 different situations were obtained for each VZA.

2.2 Results and analysis

2.2.1 GSW algorithm coefficients

In order to determine the coefficients a;-as in Eq. (2.3), Wan and Dozier [1996] divided the
averaged emissivity, atmospheric WVC and atmospheric surface temperature into several tractable
sub-ranges for improving the fitting accuracy. Taking into account the fact that the S-VISSR sensor
onboard FY-2C has no atmospheric sounding channels, the atmospheric surface temperature is not
simultaneously available, and thus it will be substituted in this work for the determination of the
coefficients in Eq. (2.3) by the approximate Land Surface Temperature (LST) as proposed by Jiang
and Li [2008].

For different values of the numerical experiments, in order to improve the accuracy of the
retrieval LST, for each VZA as done in Wan and Dozier [1996] and in Jiang and Li [2008], the
averaged emissivity was divided into two groups: one varies from 0.90 to 0.96 and the other ranges
from 0.94 to 1.0. The WVC was divided into six sub-ranges with an overlap of 0.5 g/cm?: [0, 1.5], [1.0,
2.5], [2.0, 3.5], [3.0, 4.5], [4.0, 5.5], and [5.0, 6.5] g/cmz. The LST, Ts, was divided into five sub-

ranges with an overlap of 5 K: T, <280 K, 275<T <295 K, 290<T, <310 K, 305< T, <325
K, T, >320 K. Then, the coefficients a,—a, in Eq.(2.3) can be obtained through statistical

regressions method for each VZA and each sub-range.

As an example, Fig.2-2 displays the coefficients of the GSW algorithm as functions of the secant
VZA for the sub-range with WVC from 1.0 g/cm® to 2.5 g/cm?, and LST varying from 290 K to 310 K

for the two emissivity groups. As shown in this Figure, the coefficients a, —a, for other VZAs can be

linearly interpolated in function of the secant VZA. Similar results are obtained for the other sub-
ranges.

2.2.2 Estimation of LST

Fig.2-3 shows, respectively, the histogram of the difference between the actual T, and the T,
estimated using GSW algorithm with the coefficients corresponding to the sub-range
WVC €[1.0,2.5], and T, € [290K,310K] for two different emissivity groups and VZA=0°. The
Root Mean Square Errors (RMSEs) between the actual and estimated T, is 0.37 K for the emissivity

group £ €[0.94,1.0], and 0.48 K for the other emissivity group & €[0.90,0.96]. Similar results
were obtained for the other VZAs.
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Fig.2-2 Coefficients of the generalized split-window algorithm for the sub-range with LST varying from
290 K to 310 K, and WVC from 1.0 g/cm® to 2.5 g/cm?.(a) for & €[0.90,0.96] and (b) for
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Fig.2-3 Histogram of the difference between the actual and estimated T for the sub-range with LST varying

from 290 K to 310 K, and WVC from 1.0 g/em? to 2.5 glcm?. (a) for & < [0.90,0.96] and (b) for
£ [0.94,1.0]
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In addition, Fig.2-4 gives the RMSEs between the actual and estimated T as functions of the secant

VZA for the two emissivity groups with different sub-ranges. Taking into account that, in reality, the lower
LST usually accompanied with much less WVC, as shown in Fig.2-1, Therefore, for the LST less than 280
K, the maximum WVC is 2.5 g/cmz, while for the LST between 275 K and 295 K, the maximum WVC is
5.5 g/cm?.

From Fig.2-4, one can see that the RMSEs increase with the increase of the VZA. The RMSEs
are less than 1 K for all sub-ranges with the VZA less than 30°, or for all sub-ranges with the VZA less
than 60° and the WVC less than 3.5 g/cm?®. The RMSEs increase dramatically with the increase of the
VZA when the WVC larger than 3.0 g/cm? with the maximum RMSE of 2.7 K for the sub-range

£<[0.94,1.0], WC €[5.0,6.5], and T, e [305K,325K ], for VZA=60°.

It should be pointed out here that, in practice, the LST is estimated in two steps for actual satellite
data. Firstly, approximate LSTs are estimated using Eq. (2.3) with the coefficients derived for the
whole range of LST providing that the sub-ranges of emissivity and WVC are known, and then more

accurate LSTs are estimated once again using Eq. (2.3), but with the coefficients a,—a;

corresponding to the sub-range of LST which is determined according to the approximate LST
obtained in the first step. Fig.2-4 also shows the RMSEs between the actual T, and the T, estimated

with the coefficients obtained for the whole range of LST.

Keeping in mind that the GSW algorithm also requires LSE and WVC as model input, the
following section will present the determination of these two parameters.
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Fig.2-4 RMSEs between the actual and estimated T, as functions of the secant VZA for different

subranges in two different emissivity groups.
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2.2.3 Determination of the LSEs

The LSEs in channels IR1 and IR2 of S-VISSR can be estimated from the LSEs in channels 31
(11 pwm) and 32 (12 pum) of MODIS provided by the MODIS LST product MOD11B1 at 5 km
resolution. To determine the emissivity relationship between S-VISSR channels and MODIS 31 and
32 channels, two spectral databases, one from the University of California Santa Barbara (UCSB)
(http://www.icess.ucsb.edu/modis/EMIS/html/em.html) and the other from the Johns Hopkins
University (JHU) (http://speclib.jpl.nasa.gov/), are used. The emissivities in the two split-window

channels of MODIS (&, and &,,) and S-VISSR (&, and &;,) were calculated by the integrals of

the spectral emissivity with the channel response functions over the spectral range of the channels. The
channel response functions of the two split-window channels for MODIS and FY-2C are displayed
respectively in Fig.2-5.

MODIS 31  MODIS 32

10-. { \
N £

FY-2C IR1

0.8
FY-2C IR2
0.6 -

0.4+

0.2+

Spectral response function

0.0+

9:5 ' 10|.0 ' lOI.5 ' 1i.0 ' l£.5 ' 12|.0 ' 12|.5 ' 13|.0 ' 13:.5 '
Wavelength (um)
Fig.2-5 S-VISSR and MODIS split-window spectral response functions.

A statistical relationship between MODIS channels and S-VISSR channels was established by a
linear regression analysis. As a result, the emissivities in S-VISSR channels IR1 and IR2 are,
respectively, related to the emissivities in MODIS channels 31 and 32 by Egs. (2.4) and (2.5).

£ =—0.0611+1.0614¢,, (2.4)

£y =—0.0210+1.0199¢,, (2.5)

Fig.2-6 shows the emissivities and linear regression results. Only the emissivities of soil,
vegetation, water, and snow/ice in JHU and UCSB databases were included in this work. Some few
deviated points in this Figure are due to the fact that the spectral ranges of S-VISSR channels IR1 and
IR2 are broader than those of MODIS channels 31 and 32 as shown in Fig.2-5. However, as shown in
Fig.2-6, the results of the linear regression are good with the RMSEs within 0.002, which indicates
that the emissivities in S-VISSR channels IR1 and IR2 can be directly derived from those in MODIS
channels 31 and 32, respectively.
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Fig.2-6 Linear fitting relationship of the emissivities between the S-VISSR channels IR1 and IR2 and
the MODIS channels 31 and 32, respectively.

Alternatively, the emissivities of the S-VISSR IR1 and IR2 channels can be estimated either with
the land surface classification as did by Sun and Pinker [2003] or using the method developed by Jiang
et al. [2006] which combined mid-infrared and thermal infrared data of SEVIRI to retrieve LSE.

2.2.4 Determination of the atmospheric WVC

The MODIS total precipitable water product MODO5 provides the atmospheric column water
vapor amounts, which can be used as the model input when the scanning time of the sensors MODIS
and S-VISSR is closed each other. However, MODIS provides the instantaneous WV C only four times
per day, which can not meet the temporal resolutions (an hour) of S-VISSR onboard FY-2C. Since the
atmospheric WVC changes with time, the method developed by Li et al. [2003] can be used to
determine the WVC from S-VISSR IR1 and IR2 data.

According to Li et al. [2003], the atmospheric WVC can be derived by the use of the
transmittance ratio of split-window channels,

T.
WVC =c, +c¢, x— (2.6)
with
T :
d-AR, @.7)
T
and

ST -T)T, -T,)

R, =+l (2.8)

Z(Ti,k _Ti)2

k=1
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where €, and C, are unknown coefficients, 7, and z; are the atmospheric transmittances in the split-

window channels i and j, the subscript k denotes pixel k, and the 'IT, and 'I'_J are the TOA mean
(or the median) channel brightness temperatures of the N neighboring pixels considered for channels
i and j, respectively.

On the basis of the numerical results obtained in Section 2.1.2, coefficients ¢, and C, can be

respectively derived as functions of secant VZA as

C, = 28.104 —14.996/cos(@) + 3.211/ cos’ (H) (2.9)

¢, =—28.056 +14.954/ cos(d) — 3.026/ cos*(8) (2.10)

where 6 is VZA.

Fig.2-7 shows the curve fits of the coefficients c,, ¢, as functions of secant VZA. As noted, the
fitting results are quit well with both R-squares equal to 0.999. In addition, with the actual WVC and
the transmittance ratio of split-window channels IR1 and IR2 obtained in Section 2.1.2, the RMSE
between the actual WVC and the WVC estimated using Egs. (2.6), (2.9) and (2.10) is 0.17 g/cm?,
which indicates that the fitting results are good.

17 4 -10+

€,=28.104-14.996/cos(VZA)+3.211/cos*(VZA) ¢,=-28.056+14.954/cos(VZA)-3.206/cos*(VZA)
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Fig.2-7 Curve fits of the coefficients ¢, —C, in Eq. (2.6) as functions of the VZA

2.2.5 Sensitivity analysis

As Wan and Dozier [Wan and Dozier, 1996] indicated that the errors of LST estimated by the
GSW algorithm come mainly from the uncertainties of LSEs, atmospheric properties and the
instrument noises. These three uncertainties of error are taken into account in this investigation.

2.2.5.1 Sensitivity analysis to instrumental noises (NEAT)

In order to see how significant the effect of the instrumental NEAT on the retrieval of LST, a
Gaussian random distribution error of 0.1 K, 0.2 K and 0.5 K are, respectively added to the TOA

brightness temperatures T, and Tj in Eq. (2.3). Then we estimate the LST using GSW algorithm with
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the noised TOA brightness temperatures. As an example, compared the actual LST with the estimated
LST for the sub-range: £ €[0.94,1.0], WVC €[1.0,2.5], and T, €[290K,310K], the RMSE is

0.38 K for NEAT=0.1 K, 0.43 K for NEAT=0.2 K, and 0.67 K for NEAT=0.5 K. Compared the RMSE
of 0.37 K for no instrumental noise, the accuracy of retrieval LST can be affected by 3% for
NEAT=0.1 K, by 16% for NEAT=0.2 K, and by 81% for NEAT=0.5 K.

2.2.5.2 Sensitivity analysis to LSES

According to the Eqg. (2.3), the sensitivity of the uncertainties in LSEs is mainly dependent on the

terms (1—¢)/& and Ae/(g?), which can be written as

T+T, T-T,

a=a,- e (2.11)
T+T, _T-T,

poa-tra (212)

Two cases are considered in this investigation. One is the extremely dry atmospheric condition
(WVC €[0.0,1.5]) and the other is the extremely wet atmospheric condition (WVC €[5.0,6.5]).
With the regression coefficients and the T, and T; simulated in Section 2.1.2, using Egs. (2.11) and
(2.12) we can obtain the variations of o and f. Table 2-2 lists the variations of  and g for the
sub-range: ¢ €[0.94,1.0], T, €[290K,310K],WVC €[0.0,1.5] and the sub-range & €[0.94,1.0],

T, €[290K,310K], WVC €[5.0,6.5], for VZA=0°, respectively.

Table 2-2. Statistics of the errors due to the uncertainties in LSEs for the sub-range & €[0.94,1.0],
T, €[290K,310K] ,WVC €[0.0,1.5] and the sub-range & €[0.94,1.0], T, € [290K,310K],
WVC €[5.0,6.5], for VZA=0°.

CONDITIONS £<[0.94,1.0], T, € [290K,310K], VZA=0°
Water vapor content WVC [0.0,1.5] WVC <[5.0,6.5]
(g/cm?)
Variable o p a p

Range of Values (K) | [44.80,61.23] | [-135.71,-121.05] | [11.57,34.42] | [-70.13,-19.48]

Mean (K) 52.39 -127.60 23.29 -45.56

Standard deviation (K) 3.10 3.06 4.22 9.32

From table 2-2 one can see that the values of & and £ in extremely dry atmospheric condition
(WVC €[0.0,1.5]) are nearly two times as large as those of & and £ in extremely wet atmospheric
condition, (WVC €[5.0,6.5] ), respectively. This means that the sensitivity of (1—&)/& and

Agl(s%) to LST for wet atmospheric condition is decreased two times as that for dry atmospheric
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Frequence

condition.

From Eq. (2.3), the LST error SLST due to the uncertainty in (1—&)/& and Ag/(&?)can be

estimated by,

SLST = \/a25(1_—8)
&

2 +ﬂ25(A—f)2
&

(2.13)

Assuming that the uncertainties of (1—&)/¢ and Ag/(¢®) are around 1%, the LST error is
[1.3K, 1.5K] with the mean of 1.4 K for the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K

for the wet atmosphere.

2.2.5.3 Sensitivity analysis to the atmospheric WVC

It is well known that the WVC in the atmosphere is not easily determined from satellite data. In
order to see how significant the effect of the uncertainty of the WVC on the retrieval of LST in GSW
algorithm, the wrong sub-range selection of the WVC is investigated in our work. As mentioned above
in Section 2.2.1, the WVC was divided into six sub-ranges with an overlap of 0.5 g/cm® The overlap
WVC could be fallen into two adjacent sub-ranges. That is, it is included by two sub-ranges and

corresponded to two pairs of coefficients a, —a,. We aim to analyze the effect of the overlap WVC

on the retrieval of LST.

using coefficients of sub-range:

£€[0.94, 1.0] WVCg]0.0, 1.5] Tse[290K, 310K]
600 | 4
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Fig.2-8 Histogram of the difference between the actual and estimated T, for the overlap water vapor

content WVC €[1.0,1.5] using the coefficients of different sub-ranges.

Fig.2-8 gives an example of the uncertainty of the WVC. From Fig.2-8 one can see that the
overlap water vapor content WVC €[1.0,1.5] falling into two sub-ranges WVC €[0.0,1.5] and

WVC €[1.0,2.5]. When we estimate the LST with the water vapor content WVC e[1.0,1.5] using
the coefficients corresponding to the sub-range &€[0.94,1.0] , WVC €[0.0,1.5] , and
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T, €[290K,310K], the RMSE between the actual and the estimated T, is 0.18 K, while using the
coefficients corresponding to the sub-range &£€[0.94,1.0] , WVCe[1.0,25] , and
T, €[290K,310K], the RMSE is 0.43 K.

2.2.6 Intercomparison of different formulations of the split-window algorithms

It is well known that the LST retrieval from satellite observations has been ongoing for several
decades. Many different formulations of the split-window algorithms have been proposed. They are
somewhat similar in formulation and several of them are directly inspired from Becker and Li’s
[Becker and Li, 1990] formulation. In order to perform the intercomparison with the recently proposed
split-window algorithms, different formulations were used to estimate the LST with the same
simulated FY-2C data in this work. Those formulations are listed in table 2-3:

Table 2-3. Different formulations of split-window algorithms in literatures.

AUTHORS FORMULATIONS
Price, 1984 T.=a,+aT +a,(T,-T,)+a,(T,-T))1-¢)+a,T,As
T Tj 1—8*
Prata and Platt, 1991 T, =a,+a—++a,—+a,
& & &
1- A
Vidal, 1991 T, =a,+aT, +a,(T; —Tj)+a3—g+a4—g
& &
Ulivieri et al., 1992 To=a,+aT +a,(T,-T))+a,(1-¢) +a,Ae
Sobrino et al., 1993 To=a,+aT +a,(T,-T)+a,(T,-T,)’ +a,(1-¢) +aA¢
. Ag
Sobrino et al., 1994 To=a,+aT +a,(T,-T))+a,ec+a,—
&
Coll and Caselles, 1997 T =T+a,+a,(T,-T)+a,(T,—T,)* +a,(1- &) +a,A¢

*e=(g+¢&)/2 and A =¢ —¢;

In addition, Becker and Li [1995] further modified their split-window algorithm [Becker and Li,
1990] by adding atmospheric water vapor correction as
+T T -T.

T )
T=A+P—L+M -1 2.14

with Ay =a,+a,w; P=a, +(a, +a,wcos(9))1—-¢)—(a; +a;W)As;
M =a, +a,w+(a, +a,,W)(1-¢) —(a, +a,W)Ae

where &= (g +¢;)/2 and Ae=¢ —&;, W is the total precipitable water amount, and 6 is the

Viewing Zenith Angle (VZA).

j 1
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In order to make the intercomparsion more reasonable, the coefficients from the above equations
have been recalculated using the same simulated FY-2C data within the same sub-ranges in Section

2.2.1. As an example, table 2-4 depicts the RMSEs between the actual and the estimated T, versus the
secant VZA for the sub-range: & €[0.94,1.0], WVC €[1.0,2.5], and T, €[290K,310K]. From

table2-4, one can see that the RMSEs increase with the increase of the VZA for all algorithms. In
addition, except for the algorithms proposed by Price [1984], and Prata and Platt [1991], the T,

estimated using the other algorithms are comparable, which indicates that the split-window algorithm
can be successfully applied to the LST retrievals from FY-2C data.

Table 2-4. RMSEs between the actual T, and the T, estimated using different formulations of the split-
window algorithms for the sub-range & €[0.94,1.0], WVC €[1.0,2.5], and T, € [290K, 310K].

VZA AUTHORS
(®) | GSW | Price84 | Prata9l1 | Vidal9l | Ulivieri92 | Sobrino93 | Sobrino94 | Coll97 | BL95
0 0.37 0.73 1.15 0.38 0.38 0.37 0.38 0.38 | 0.22
RMSE| 33.56 | 0.41 0.74 1.26 0.43 0.42 0.42 0.42 043 | 0.25
(K) 4442 | 0.46 0.74 1.35 0.48 0.47 0.47 0.47 0.47 | 0.28
51.32| 0.52 0.75 1.43 0.53 0.53 0.51 0.53 052 | 0.32
56.25| 0.57 0.77 1.49 0.58 0.58 0.57 0.58 0.57 | 0.36
60 | 0.63 0.80 1.54 0.64 0.64 0.62 0.64 0.62 | 041

2.3 Application to actual FY-2C satellite data

The objective of the present work is to estimate the LST from Chinese first operational
geostationary meteorological satellite FengYun-2C (FY-2C) data for cloud-free skies. Fig.2-9 gives an
example of the retrieval LST around Beijing in China during FY-2C satellite scanning on May 15,
2006 at 11:00 local time. The model inputs are the TOA brightness temperatures, VZA, LSEs, and
WVC. The TOA brightness temperatures and VZA are directly extracted from the FY-2C satellite
data. The LSEs are derived from the emissivities in MODIS channels 31 and 32 provided by
MODIS/Terra LST product MOD11B1, and the WVC are obtained from MODIS total precipitable
water product MODO05. Symbols A, B, and C located in red, green and baby blue colored areas in
Fig.2-9 represent bare soil, cultivated surface and sea surface, respectively.

In addition, table 2-5 lists the values of the VZA, WVC, LSE, TOA brightness temperature, and
resultant T, for one representative pixel in each red, green, and baby blue colored areas in Fig.2-9.
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Beijing

Fig.2-9 Map of the LST estimated from FY-2C satellite data at 11:00 local time on May 15, 2006.

Table 2-5. Description of symbols A, B and C in Fig.2-9

A (RED) B (GREEN) C (BABY BLUE)
Longitude (°) 120.06 E 116.15E 122.75E
Latitude (°) 43.70 N 33.84 N 38.47 N
VZA () 53.44 41.96 49.14
WVC (g/cm?) 0.868 1.465 1.217
£y 0.944 0.962 0.986
E1ry 0.946 0.966 0.99
Ty (K) 309.42 295.24 281.95
Ty, (K) 307.32 294.58 282.20
T. (K) 318.35 299.74 286.47
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It should be pointed out here that the LST estimated from the FY-2C satellite data has not been
validated with in situ measurements since there are no in situ measurements available. In addition, due
to the extreme difficulty or impossibility to get the LST at ground level representative at Skm*5km,
we will try to cross validate LST derived from FY-2C data in the future with the well validated LST
product provided by MODIS data.

2.4 Conclusions

In this chapter, we have addressed the retrieval of the Land Surface Temperature (LST) from the
Chinese first operational geostationary meteorological satellite FengYun-2C (FY-2C) data in two
thermal infrared channels IR1 (10.3-11.3 #zm) and IR2 (11.5-12.5 #m), using the Generalized Split-

Window (GSW) algorithm proposed by Wan and Dozier [1996].

Taking into account the fact that the S-VISSR sensor onboard FY-2C has no atmospheric sounding
channels, the coefficients in the GSW algorithm were derived by dividing the ranges of the mean
emissivity, the atmospheric Water Vapor Content (WVC), and the LST into tractable sub-ranges, and
were recalculated using a statistical regression method from the numerical values simulated with an
accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of the atmospheric and
surface conditions. The simulation analysis showed that the LST could be estimated by the GSW
algorithm with the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with the Viewing
Zenith Angle (VZA) less than 30° or for the sub-ranges with VZA less than 60° and the atmospheric
WVC less than 3.5 g/cm? provided that the Land Surface Emissivities (LSEs) are known.

As the GSW algorithm requires WVC and LSE as model input, the MODIS total precipitable water
product MODO5 providing the atmospheric column water vapor amounts, was used to obtain the WVC
when the scanning time of the sensors MODIS and S-VISSR is closed each other. As for the other
scanning times of S-VISSR, the atmospheric WVC can be determined using the method developed by
Li et al. [2003]. As for LSE, the MODIS/Terra LST product MOD11B1 providing the LSEs with 5 km
resolution for the thermal infrared channels 31 and 32, was used to derive the LSEs in S-VISSR
channels IR1 and IR2, respectively.

In addition, the sensitivity and error analyses in term of the uncertainty of the LSE and WVC as
well as the instrumental noise were also performed in this work. The results show that the accuracy of
retrieval LST can be affected by 3% for NEAT=0.1 K, by 16% for NEAT=0.2 K, and by 81% for

NEAT=0.5 K for the sub-range ¢ €[0.94,1.0], WVC €[1.0,2.5], and T, €[290K,310K]; given

the uncertainties of (1—&)/& and As /() around 1%, the LST error is [1.3K, 1.5K] with the mean

of 1.4 K for the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K for the wet atmosphere; and
the effect of the uncertainty of the WVC on the retrieval LST could be around 0.3 K.

Moreover, in order to compare the different formulations of the split-window algorithm, several
split-window algorithms were used to estimate the LST with the same simulated FY-2C data. The
result of the intercomparsion showed that most of the algorithms give comparable results, which
indicates that the split-window algorithm can be successfully applied to the LST retrievals from FY-
2C data.
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Chapter 3

Estimation of Land Surface Directional
Emissivity in Mid-InfraRed Channel

around 4.0um from MODIS Data
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Up to now many Bidirectional Reflectance Distribution Functions (BRDFs) have been developed
to describe the bidirectional reflectance in visible and near infrared channels as a function of both
illumination and view geometries [Nilson and Kuusk, 1989; Roujean et al., 1992; Wanner et al., 1995;
Lucht and Roujean, 2000; Pokrovsky and Roujean, 2002; Lucht, 1998]. The semi-empirical kernel-
driven models [Roujean et al., 1992; Wanner et al., 1995; Lucht and Roujean, 2000; Pokrovsky and
Roujean, 2002] have been proven successfully in application to AVHRR, Polarization and
Directionality of Earth Reflectance (POLDER), MODIS, Multi-angle Imaging Spectra-Radiometer
(MISR), laboratory, and field-measured multi-angular reflectance data and have been shown to fit
observed BRDF data well [Roujean et al., 1992; Wanner et al., 1995; Lucht, 1998; Lucht and Roujean,
2000; Pokrovsky and Roujean, 2002]. Only a few works focused on the BRDF modeling in the mid-
infrared region (MIR), but all of them have aimed to estimate the emissivity in MIR from the
bidirectional reflectance derived from AVHRR and MSG/SEVIRI data [Jiang et al., 2006; Li et al.,
2000; Petitcolin et al., 2002].

This chapter will be devoted to estimate the land surface directional emissivity in MIR channel
from the bidirectional reflectance derived from MODIS data in two adjacent MIR channels. Section
3.1 recalls the methodology to retrieve directional emissivity in MIR channel. Section 3.2 describes
the study area, MODIS data and data processing. Section 3.3 presents some preliminary results and
cross-validation with the MODIS land surface temperature/emissivity product MYD11B1 data. Finally,
conclusions are given in section 3.4.

3.1 Determination of directional emissivity in MIR channel from MODIS data

3.1.1 Retrieval of the bidirectional reflectivity in MIR channel from MODIS data

The instrument MODIS onboard Terra and Aqua satellites has two adjacent MIR channels 22 and
23 centered at 3.97 um and 4.06 um respectively. Based on the difference in the solar reflection in
these two channels, and assuming that the surface bidirectional reflectivities are equal in channels 22
and 23, and that the ground brightness temperatures in these two adjacent channels are the same if the
contribution of the direct solar radiation is not considered, Tang and Li [2008a] developed a method to
retrieve the bidirectional reflectivity (pp) in the MIR channel from MODIS channels 22 and 23 with

B(T,_»,) - B(T,)

: (3.1)
R22

P =

where B is the Planck function, T, ,, is the daytime ground brightness temperature of MODIS channel
22, R}, is the solar irradiance at ground level in MODIS channel 22, T is the MIR ground brightness

temperature without the contribution of the solar direct beam and can be estimated from the ground
brightness temperatures T, ,, and T, ,, in the channels 22 and 23 using

Tgo =Ty »+3 +a2(Tg_22 _Tg_23)+ a3(Tg_22 _Tg_23)2 (3.2)

in which the coefficients a, —a, are dependent only on the Solar Zenith Angle (SZA). More details

concerning both the development and the application of this method with MODIS data can be found in
Tang and Li [2008a].
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3.1.2 Estimation of the directional emissivity in MIR channel from bidirectional reflectivity

For an opaque medium in thermal equilibrium, the directional emissivity () is related to the
hemispherical directional reflectance p,(6) by the Kirchhoff’s law as:

£(0) =1- p,(6) (33)

with

712

2 @)= [ [ p,(0.6, 0)sin(6) cos(8,)dGdp (3.4)

0

where @is the viewing zenith angle, 6; is the incident radiation angle, ¢ is the relative azimuth angle
between the observation and incident directions, and py is the bidirectional reflectance of land surface
in MIR channel retrieved with Eq. (3.1).

Based on the theory that land surface reflectance typically consists of three components: the
isotropic scattering, the volumetric scattering and the geometric-optical surface scattering, a kernel-
driven BRDF model, the RossThick-LiSparse-R model, was proposed to describe the non-Lambertian
reflective behavior of land surface in visible and near-infrared regions [Roujean et al., 1992; Lucht,
1998; Lucht and Roujean, 2000]:

pb (9’ HI ! w) = kiSO + I(VOI fvol (9’ HI ’ (0) + kgeo fgeo (9! 6| ’ (0) (35)

where ki, is the isotropic scattering term, ko is the coefficient of the Roujean’s volumetric kernel f,q,
and kg, is the coefficient of the LiSparse-R geometric kernel fge.

For a plane-parallel dense vegetation canopy with uniform leaf angle distribution, and equal leaf
reflectance and transmittance, the Roujean’s volumetric kernel [Roujean et al., 1992] is given by

4 1 T . 1
fvo|(9’9i’(ﬂ)—gm{(z—f)costrsmf}—g (3.6)

where & is the phase angle, related to the conventional angles by
cos& =cosdcosd, +singsin 6, cosgp (3.7)

Considering the mutual shadowing between different protrusions of vegetation canopy, the
reciprocal LiSparse geometric kernel fge, derived by Wanner et al. [1995] and modified by Lucht [1998]
is employed

foeo =G(6,6,,0) —secd —sech, + %(1+ cos&)secd sech, (3.8)
where G(6, 6;, ) is the overlap area between the view and solar shadows and given by
1 . , :
G(6,6,,¢p) =—(t —sintcost)(secd +secd,) (3.9
T

in which
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0 = tan‘l(gtane ), 6 = tan‘l(Etan )
r r

cosé =cosd cosd, +sin @ sin g, cosp

h \/DZ +(tan @ tan 4 sin p)?

t=cos™ : :
b secd +secé,

with

D= \/tanz 0 +tan®* @ —2tand tan o cosg

h/b and b/r are the dimensionless crown relative height and shape parameters, respectively.

According to Egs. (3.3), (3.4) and (3.5) and assuming that the BRDF shapes in the MIR spectral
region are the same as the ones in visible and near-infrared regions [Jiang and Li, 2008], the
directional emissivity in MODIS MIR channel is given by

£(0) = 1= 7K, — Ky I,y (6) = Koo o0 (6) (3.10)

with 1£,(0) = [ [ £,(60.6,,9)sin(8) cos(6))d O dgy

in which the subscription x represents vol or geo.

As shown in Eq. (3.10), the integrals of If,,(6) and Ify,(6) over the incident radiation angle 6; and
the relative azimuth angle ¢ are complicated mathematical expressions and can not be analytically
derived. As used in MODIS BRDF/Albedo products, taking h/b=2 and b/r=1, i.e., the spherical crowns
are separated from the ground by half their diameter, Jiang and Li [2008] showed numerically that the
integrals of the Roujean’s volumetric kernel f,, (EQ.(3.6)) and the reciprocal LiSparse geometric
kernel fye, (EQ.(3.8)) can be written with a good approximation as

If,., (6) = —0.0299 + 0.0128 exp(6 / 21.4382) (3.11)

(3.12)

0 —90.9545
If o, () = —2.0112 - 0.3410 exp[— 2(—)2}

68.8171

It should be noted that if a series of p, with different angular configurations are retrieved from the
MODIS data using Eq. (3.1), one can get the parameters Kis,, Kot and kgeo from Eq. (3.5). Knowing
these three parameters, the directional emissivity in MIR channel can be obtained with Egs. (3.10),
(3.11) and (3.12).

3.2 Study area and data processing

A region of Egypt and Israel with latitude from 28.0° N to 32.0° N and longitude from 30.0° E to
36.0° E was chosen in this study. Fig.3-1 shows the land use map of this study area generated from
MODIS land cover type 2004 L3  global 1 km  product MOD12Q1
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(http://edcdaac.usgs.gov/modis/mod12qglv4.asp) and classified by the International Geosphere-
Biosphere Programme (IGBP). From this Figure, we can see that the major land cover types in this
area are barren or sparsely vegetated, croplands, and open shrubland. Since the classification scheme
of IGBP does not include bare soil surface, to discriminate from barren or sparsely vegetated, this
surface type will be used in our following work. The reason to choose this region is that a series of
cloud-free MODIS data are available over this region from July 12 to July 30 of 2005. Therefore, the
three parameters Kis, kiot and Kgeo in EQ. (3.5) can be determined with the retrieved bidirectional
reflectivity p, under the assumption that the land surface remains unchanged during this period.

[0R

Fig.3-1 Land use map of the study area generated from MODIS land cover type 2004 L3 global 1 km
product (MOD12Q1) and classified by IGBP classification scheme.

The MYD021KM, MYDO03 and MYD35_L2 product files provided by the National Aeronautics
and Space Administration (NASA) Goddard Space Flight Center (GSFC) Level 1 and Atmosphere
Archive and Distribution System (LAADS) (http://ladsweb.nas.com.nasa.gov/data/) were used in our
work. The MYDO021KM data, calibrated Earth View data at 1 km resolution by the MODIS
Characterization and Support Team (MCST), are the Top of Atmosphere (TOA) radiances and
reflectances. The geolocation dataset, MYDO3, provides latitude, longitude, ground elevation, solar
zenith and azimuth angles, and satellite zenith and azimuth angles for each 1 km sample. The
MYD35_L2 is a cloud mask product which gives a clear-sky confidence level (clear, probably clear,
uncertain, cloudy) to each IFOV (Instantaneous Field Of-View). More details about these product files
can be found in [Wan, 2008]. Ten days MODIS data with cloud-free conditions at the moment of
MODIS overpasses, from July 12 to July 30 of 2005 were selected. Table 3-1 gives the dates and
acquisition times of these ten days MODIS data. The European Centre of Median-range Weather
Forecast (ECMWF) reanalysis (ERA) operational deterministic model data directly obtained from the
French Meteorological Center with latticed resolution of 0.5° in both latitude and longitude [Uppala et
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al., 2005] were used to perform atmospheric corrections for MODIS MIR data in this work. In addition,
taking into account the real atmospheric path length between the surface and the satellite, global DEM
data at 30 arc-s (1 km) resolutions (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html) were
also used.

Table 3-1. Date and acquisition time for ten days MODIS data used in this study

Date UTC time Date UTC time

(dd/mml/year) (hh:mm) (dd/mml/year) (hh:mm)
12/07/2005 11:00 23/07/2005 10:40
14/07/2005 10:45 24/07/2005 11:25
15/07/2005 11:30 26/07/2005 11:10
16/07/2005 10:35 28/07/2005 11:00
19/07/2005 11:05 30/07/2005 10:45

Based on the clear-sky confidence level (clear, probably clear, uncertain, cloudy) assigned to
each IFOV in MYD35_L2, clear and probably clear pixels were taken as clear, and uncertain and
cloudy pixels were taken as cloudy in our study. The cloudy pixels assigned in this study were then
firstly screened out in the retrieval of py. Since the satellite instrument measures only the radiances at
the Top of Atmosphere (TOA), the data acquired by MODIS MIR channels 22 and 23 have to be
corrected for the atmospheric effects in order to obtain the radiances or brightness temperatures at
ground level. These atmospheric corrections were performed using the atmospheric radiative transfer
model-MODTRAN 4 with the ECMWEF data and DEM data. Selection of ECMWF output data as
atmospheric profiles is due to the fact that the MIR channels 22 and 23 are not too sensitive to the
change of water vapor content in the atmosphere. More details of atmospheric corrections for MODIS
MIR channels can be found in Tang and Li [2008a]. After having performed the atmospheric
corrections, the bidirectional reflectances in MODIS MIR channel 22 can be estimated with Egs. (3.1)
and (3.2).

The three parameters Kis, Kvor and Kgeo in Eq. (3.5) for each pixel are then determined by a
Levenberg-Marquardt minimization scheme with the retrieved p, and corresponding illumination and
view angles extracted from MYDO03 data. Finally, the directional emissivities at each view zenith angle
for MODIS MIR channel are obtained with Eq. (3.10).
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3.3 Results and validations

The objective of the present work is to estimate the directional emissivity from MODIS MIR
channels. Fig.3-2 gives an example of the retrieved directional emissivity map for July 24, 2005 at
11:25 UTC time.

As shown in Fig.3-1, points A, B, C, and D marked in Fig.3-2 represent bare soil, open shrubland,
barren or sparsely vegetated, and croplands surfaces respectively. For the entire study area, the
directional emissivities in MODIS MIR channel 22 vary from 0.6 to 1.0, and they are usually less than
0.80 over the bare areas, while the opposite is observed over the vegetated areas. Fig.3-3 illustrates
histograms of the estimated directional emissivities for the four major land covers (bare soil, open
shrubland, barren or sparsely vegetated, and croplands surfaces) in the entire study area. As displayed
in Fig.3-3, the directional emissivity in MIR channel varies from 0.67 to 0.78 with mean=0.73 and
standard deviation (std)=0.021 for the bare soil surfaces, and from 0.83 to 0.94 with mean=0.89 and
std=0.019 for the open shrubland, while for barren or sparsely vegetated surfaces the directional
emissivity in MIR channel ranges from 0.89 to 0.98 with mean value of 0.94 and std=0.013, and for
croplands, the emissivity in MIR channel is the highest and ranges from 0.92 to 0.99 with mean=0.97
and std=0.012.

Fig.3-2 Map of the directional emissivity in MIR channel for July 24, 2005.
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Fig.3-3 Histogram of the directional emissivity in MIR channel estimated from MODIS data for the
major land cover types in the study area. Std=standard deviation.

Fig.3-4 displays the sun and satellite zenith and azimuth angles in polar representation at four
locations for ten clear days from July 12 to July 30 of 2005 which we used to retrieve the directional
emissivity. For these locations, the sun is in the West direction and coincides nearly with the satellite
along track direction. The observation directions are almost in the principal plane and lie in the east
and west directions according to the instrument scanning directions. It should be pointed out here that
although the change of solar zenith angle is very small during this period for a given pixel, the viewing
zenith angle of each pixel (location) varies significantly from 0° to 60° from July 12 to July 30. We
can, consequently, get the parameters Kiso, Kvor and Kgeo Using Eq. (3.5) with a series of py, and different
angular configurations.

Fig.3-5(a) shows the comparison of the bidirectional reflectance p, estimated directly from
MODIS MIR data (Eq.(3.1)) with p, modeled using Eq. (3.5) at four locations for the ten clear days.
The Root Mean Square Error (RMSE) and Mean Error (ME) are respectively 0.005 and zero. From
this Figure, one can notice that the bidirectional reflectances for locations A and B are larger, while for
locations C and D, they are relatively smaller. In addition, Fig.3-5(b) gives the histogram of the
differences between the retrieved and modeled bidirectional reflectances for the entire study area.
From this Figure, one can see that the difference of the retrieved and modeled py, ranges from -0.03 to
0.03 with mean of -0.001 and standard deviation of 0.008.
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Fig.3-4 Sun and satellite zenith and azimuth angles in polar representation at four locations for ten
clear days during the period of July 12 to July 30 of 2005.
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Fig.3-5 Comparison of the bidirectional reflectances estimated using Eqg. (3.1) with those modeled
using Eq. (3.5): (a) for locations A, B, C and D, (b) for the entire area.

Table 3-2 gives the fitting parameters of K, kyor, and Kgeo in EQ. (3.5) for locations A, B, C and D.
In addition, values of the Normalized Difference Vegetation Index (NDVI) derived with the TOA
reflectances in near-infrared and red channels from MYDO021KM data for these four locations on July
24, 2005, are also given in this table.
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Table 3-2. Fitting parameters kiso, kyo, and Kqeo in EQ. (3.5) for locations A, B, C, and D

Locations A B C D
Longitude(°®) 32.72 34.31 33.86 31.23
Latitude(®) 30.27 31.24 28.78 30.61
Kiso 0.0945 0.0034 0.0450 0.0187
Kvol -0.1699 -0.1316 -0.1474 -0.1351
Kgeo 0.0274 -0.0574 0.0312 0.0157
NDVI 0.12 0.20 0.08 0.63

To preliminarily validate the directional emissivity estimated using the present method, the
MODIS land surface temperature/emissivity product MYD11B1 data were used in our investigation.
Taking into account that the MYD11B1 product provides the land surface emissivity values at 5 km
resolution, the mean value of estimated directional emissivities for 5x5 pixels with 1 km resolution
was selected to match the one from MYD11B1 data with regard to the nearest latitude and longitude
coordinates. Fig.3-6(a) displays the directional emissivities estimated using the present method versus
those extracted from MODIS land surface temperature/emissivity product MYD11B1 data at four
locations for the ten clear days. From this Fig. we can see that the Mean Error (ME) and the Root
Mean Square Error (RMSE) are 0.002 and 0.021 respectively. In addition, Fig.3-6(b) shows cross-
comparisons of the estimated directional emissivities and those extracted from MYD11B1 data for the
entire region for these ten clear days. The ME and RMSE between the directional emissivities
estimated in this study and those extracted from MYD11B1 data are of -0.007 and 0.024 respectively.
The result of this comparison shows that, at least for our cases, the method described in this paper for
estimating the directional emissivity in MIR channel gives results comparable to those in MYD11B1

product.
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Fig.3-6 Comparison of the directional emissivities estimated from MODIS MIR channels using Egs.
(3.1), (3.5) and (10) with those from MYD11B1 product for ten clear days during July 12 to 30, 2005:

(a) for four locations (b) for entire regions.
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3.4 Conclusions

In this work, the directional emissivity in MODIS MIR channel has been estimated with the
retrieved bidirectional reflectivity and the RossThick-LiSparse-R model. Ten days of MODIS MIR
data with cloud-free conditions at the moment of MODIS overpasses, from July 12 to July 30 of 2005
were used to determine the three parameters kiso, kvol and kgeo in Eq. (3.5) for each pixel. The
directional emissivities of these days were mapped for a region of Egypt and Israel with latitude
varying from 28.0° N to 32.0° N and longitude from 30.0° E to 36.0° E.

In order to show the retrieval accuracy of the proposed method, the MODIS land surface
temperature/emissivity product MYD11B1 data have been used to cross-validate preliminarily the
directional emissivities derived directly from MODIS MIR data with the method presented in this
paper. The results of this comparison showed that, at least for our cases, the proposed method for
estimating the directional emissivity gives results comparable to those of MYD11B1 product with
Mean Error =-0.007 and Root Mean Square Error =0.024.
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Chapter 4

Impact of Spatial LAl Heterogeneity on
Estimate of Directional Gap Fraction from

SPOT-Satellite Data
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Directional gap probability or gap fraction is defined originally as the probability of a beam
transferring at a given incident zenith angle through the vegetative canopy without any interception.
As a key variable describing canopy structure and biomass spatial distribution, it is used to simplify
the 3-D light interception problem to a 1-D problem [Pinty et al., 2004], and has been employed to
estimate surface component temperatures from multi-spectral and multi-angular measurements
[Francois et al. , 1997; Li et al., 2001; Francois, 2002; Menenti et al, 2008]. Though gap probability
can be estimated in situ from optical instrument data such as hemispherical photographs [Leblanc et al.,
2005] and usually used to derive leaf area index (LAI) at local scale in field [Jonckheere et al., 2004;
Weiss et al., 2004], the field measurements cannot meet the practical demands at large scale. An
attractive and unique way to map and monitor LAI and directional gap probability at large scale is to
use the space observation from satellite data in the visible and near-infrared bands. Nowadays LAI is
widely estimated directly from satellite measurements using different methods [Myneni et al., 1997;
Weiss and Baret, 1999; Chen et al., 2002; Fernandes et al., 2003] and the directional gap probability P
is estimated from the spatially retrieved LAI by means of the following relationship [Norman et al.,
1995; Menenti et al., 2001],

P(@, LA ) _ e—ApLAI /cos(0) @.1)

where @ is the viewing zenith angle, A, is the projection of leaf area in perpendicular to incident beam
and is related to the leaf angle distribution [Wang et al., 2007]. With this relationship, directional gap
probability can be estimated through vegetation structure information including LAI, leaf angle
distribution.

Through observation and studies in different scales including foliage [Rochdi et al., 2006], shoot
[Smolander and Stenberg, 2003], canopy [Kotz et al., 2004] and landscape [Garrigues et al., 2006a] by
remote sensing, ecological and agricultural community, scientists have realized spatial heterogeneity is
universal. Besides the spatial heterogeneity of the land surface, non-linearity of the transfer function is
another source of uncertainties in the estimation of land surface variables/parameters from remotely
sensed data [Hall et al., 1992; Friedl et al., 1995; Pelgrum, 2000; Garrigues, 2006b]. We can notice
that the directional gap probability P estimated from Eq.(4.1) is highly non-linear with respect to LA,
which will inevitably induce scaling bias when applied to a coarse pixel. Consequently it is necessary
to analyze the scaling effect of the directional gap probability at different scales, and to improve the
retrieval accuracy of directional gap probability, and subsequently to improve the accuracy of land
surface component temperatures retrieved from multi-spectral and multi-angular satellite data.
However, up to now, there are no many efforts in literature devoted to study the scaling effect of the
directional gap probability.

This study focuses on the analysis of the scaling effect on the directional gap probability by
means of a simple scaling-up scheme and LAI derived from high resolution spatial data. The section
4.1 provides the theoretical framework to estimate the scaling effect of directional gap probability
raised by two different aggregation schemes from local scale to larger scale. In section 4.2, we present
the different types of remotely sensed LAI images obtained from VALERI (Validation of Land
European Remote sensing Instruments) database. In section 4.3, the scaling effect associated with the
non-linear relationship between LAI and gap probability is quantified over several types of landscape.
In section 4.4, the conclusions of this chapter will be given.
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4.1 Theoretical framework

4.1.1 Up-scaling of directional gap probability

There are two different schemes generally used to aggregate the parameters/variables from the
local scale to regional or global scale [Pelgrum, 2000], which are depicted in Fig.4-1 and described
roughly below: 1) The aggregation of the results which are derived from a distributed model f using

distributed input variables. Spatially distributed variables p(X,y) ( here LAI;ub—pixel ) are input to a
distributed model f (here Eq.(4.1)), results of the distributed model f are denoted as f(p)

(here Psiub_pixel (8)), then the aggregative result ?( %) (here P piel (6)) on a larger scale are deduced

(Eq.(4.2)) from distributed results;(see left flow chart of Fig.4-1). 2) The aggregation of input
variables before use in an aggregative model F (here Eq.(4.3)), thereby producing an aggregative

result. Spatially distributed input data p(X,y) (here LAI;ub_pixel) are first averaged to B (here
LAl ), ) from local scale to a larger scale, then E is input to aggregative model F (Eq. (4.4)),

produces aggregative result F(p) (herePpixei(0)). (see right flowchart of Fig.4-1)

Fig.4-1 General schemes of two aggregation schemes.

As it concerned to gap probability, supposing that the pixel whose area is S is composed by N
N
homogeneous sub-pixels, each sub-pixel i has an area of s;, S = zsi , the directional gap probability

i=1
for a given direction (i.e. Viewing Zenith Angle 6) is computed using the first aggregation scheme (see
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left flowchart of Fig.4-1) with,

N

Z si Psub— pixel (9)

Epixel (9) =1t S (42)

where P!

sub— pixe

 Is the directional gap probability for sub-pixel i, which can be estimated from Eq.(4.1).

The directional gap probability can also be aggregated following the second aggregation scheme
(see right flowchart of Fig.4-1) by

N
i
Z Si LAI sub— pixel
i=1

LAL o = S , (4.3)
Then computing the directional gap probability with help of the same formula as Eq.(4.1) by
— A, LAl iy /COS(8)
I:)pixel (0) =e "™ (4.4)

4.1.2 Scaling bias of directional gap probability

Since the distributed model related LAI to P is nonlinear (see Eq.(4.1)) and the input LAI data at

coarse pixel is heterogeneous, there exists a difference between I3pixel and P This difference

pixel *
comes from the different aggregations. To assess the scaling effect of the directional gap probability,
inserting Eq.(4.1) into Eq.(4.2) and neglecting the third and higher order terms of the Taylor series
expansion, one gets:

2

= A
P pixel (0) - I:)pixel (0) = I:)pixel (Q)Wg(g)éfm (4-5)

N
zsi(LAIi - LAl pixel)2
With J4, is the standard deviation of LAI inside the coarse pixel, i.e. 5L2A, = S

The relative scaling bias (RE) is therefore obtained

_Pua(@-Pua®) A,

RE =
I:)pixel (0) 2 COSZ (9) A

(4.6)

From Eq.(4.6), we notice that the relative scaling bias is only dependent on the A,, 6 and the
spatial heterogeneity of LAI within a coarse pixel, but independent on the LAI value itself.

4.1.3 Redefinition of clumping index

In order to take into account the scaling effects of spatial heterogeneity of LAI on estimate of the
directional gap fraction and to make the estimation of the directional gap fraction independent on the
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observation scale and the aggregation schemes used, a parameter C is introduced in the formula (4.4)
so that
eXP(=A,C et LAl i /€0S(0)) = P pive 4.7
Following the same development made by Wang and Li [2008], combining Eqs(4.4), (4.5) and
(4.7), one gets:

cos(6) A
o =1— In(L+ 5 4.8
pixel A LAI ( 2cos?(0) (48)

pixel

As shown by this equation, the parameter C is directly proportional to the mean LAl and

inversely proportional to the spatial heterogeneity of LAI (5L2A| ) for given A, function and direction.

It should be noted that the parameter C introduced in Eq.(4.7) compensate not only the scaling
bias in the estimation of the gap probability, but also has the similar meaning as the so-called leaf
dispersion parameter or clumping index (). Traditionally, clumping index is generally used to
quantify the heterogeneity of the foliage distribution based on Beer-Lambert’s law considering a non-
random distribution of foliage in a forest canopy, as vegetation foliage is more often grouped together
than regularly spaced relative to the random distribution case [Chen, 1996], and vegetative canopies
have different levels of foliage organizations, which contribute to non-random distribution [Chen,
1999]. For Q = 1, canopy elements are randomly distributed. In clumped canopies, Q is always less
than unity. The smaller the value of Q, the more the canopy is clumped.

Foliage clumping affects the gap probability for the same LAI by delaying the occurrence of the
saturation in reflectance as LAI increases. There have been some studies mostly concentrated on the
estimation of clumping index with multi-angular data. Walter et al. [2003] has conducted an
experiment involving hemispherical photographs of simulated and real forest canopies to determine
clumping index. Leblanc et al. [2005] and Chen et al. [2005] mapped the foliage clumping index over
Canada and at the global scale based on the simulated NDHD-clumping index relationships for
different cover types. But the capability of clumping index for representing spatial heterogeneity and
eliminating scaling bias is rarely concerned.

4.2 Description of the data

The data used here are part of the VALERI database which provides high spatial resolution (20 m)
SPOT-HRYV scenes for several landscapes sampled (including crops, forest, grassland and shrubs)
around world [Baret et al., 2005]. This wide coverage of landscape makes the conclusion of this study
more general. Each site has an enough sampling size (about 3km by 3km). Detailed information about
each site (including land cover type, location and the date of measurement) is given in table 4-1. More
details on the data set and methodology concerned for leaf area index retrieval is referred to Baret et al
[ 2005] and the VALERI web site ( www.avignon.inra.fr/ivaleri ).
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Table 4-1. Detailed information of remote sensing images used in this research. The last two columns
represent the mean (m) and the standard deviation (8) of LAI respectively

Site name Land cover type Date Lat. Lon. My Al OLAl
Aekloba-May01 Palm tree plantation 1/Jun./2001 2.63 99.58 | 3.54 | 0.671
Alpilles-March01 Crops 15/Mar./2001 | 43.81 4,74 093 | 1.15
Barrax-July03 Cropland 3/Jul./2003 39.07 | -2.10 | 0.97 | 141
Fundulea-May02 Crops 9/Jun./2002 4441 | 2659 | 153 | 1.30
Gilching-July02 Crops and forest 8/Jul./2002 48.08 | 11.32 | 539 | 1.79
Hirsikangas-August03 Forest 2/Aug./2003 62.64 | 27.01 | 255 | 1.14
Jarvselja-June02 Boreal forest 13/Jul./2002 58.30 | 27.26 | 4.20 | 1.09
Laprida-NovemberQ1 Grassland 3/Nov./2001 | -36.99 | -60.55 | 5.66 | 2.07
Larose-August03 Mixed forest 18/Sep./2003 | 45.38 | -75.21 | 5.87 | 2.00
Larzac-July02 Grassland 12/Jul./2002 | 43.94 3.12 0.81 | 0.20
Nezer-April02 Pine forest 21/Apr./2002 | 4457 | -1.04 | 238 | 1.11
Rovaniemi-June04 Forest 23/Jul./2004 | 66.46 | 25.35 | 1.25 | 0.52
Turco-August02 Shrubs 29/Aug./2002 | -18.24 | -68.19 | 0.04 | 0.03

4.3 Results and Discussion

4.3.1 Simulation of relative scaling bias of gap probability

In this study, we adopt a simple formula proposed by Fuchs et al. [1984] to compute the
projection value of leaf area in perpendicular to incident beam with mean leaf angle,

A, =cos(6,) (4.9)
where . is the mean of leaf inclination angle.
Inserting Eq.(4.9) into Eq.(4.6), we get relative scaling bias of gap probability,

_ cos® (G_L) 2

~ 2cos?(9) (4.10)

Fig.4-2 displays the results of RE conducted using Eq.(4.10) for 8= 0 and different A, functions

through different mean of leaf inclination angles A given in (4.9).
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Relative scaling bias
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Fig.4-2 Relative scaling bias of gap probability versus the variance of LAI for different mean of

leaf inclination angles &, (0, 30, 45 and 60 degree) and view zenith angle & =0

As shown in Fig.4-2, the relative scaling bias of gap probability is linearly related to the variation
of LAI inside the coarse pixel for a given mean of leave inclination angle O.. As predicted by

, —
- . cos” (6, . .
Eq.(4.10), the slope of this linearity is equal to # and for a given variance of LA, the larger
2¢0s°(0)
leaf inclination angle is, the smaller relative error of directional gap probability is. On the other hand,
we can conclude that the relative scaling bias varies seasonally since it has relationship with the

variance of LAI which is a seasonal variable.
4.3.2 Spatial scaling bias of gap probability obtained from the VALERI dataset

In order to see the magnitude of the spatial scaling bias of directional gap probability with real
scenarios, the VALERI dataset is used in this study. Three assumptions are made in the following
calculations:

1)Beer’s law used to retrieve gap probability from LAI (Eq.(4.1)) is assumed without any scaling
bias at 20 m spatial resolution, because no satellite data are available to us at the spatial resolution
finer than 20m.

2) Incident beam is assumed to be vertical, i.e.cos(8) =1.

3) A spherical leaf angle distribution is assumed, i.e. A;=0.5, which is a reasonable assumption for
many conifer shoots and closed, broad-leaved canopies [Walter et al., 2003].

Following the schemes proposed and showed in Fig.4-1, with the VALERI dataset described in
table 4-1, we compute relative scaling bias of gap probability for each site at different spatial scales
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using Eq.(4.6). Fig.4-3 displays the relative scaling bias of gap probability in function of the pixel size
for different types of land surfaces, such as forest, cropland, grassland and shrubs.
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Fig.4-3 Relative scaling bias of gap probability against pixel size for different landscapes: six forest
sites, five crops sites, one grassland site and one shrubs site.

From this figure, we notice that the relative scaling bias of gap probability increases with
decreasing spatial resolution for most of land cover types. Larger relative bias occurs at crops (104%,
50%, 26%, 14%, at pixel size of 1280m, respectively) than pure forest sites (< 20% at pixel size of
1280m except for the mixed forest (Larose-August03) which has relative bias of 120% at pixel size of
1280m), grassland and shrubs (< 0.5% at pixel size of 1280m), demonstrating that our crops sites are
relatively more heterogeneous than forest, grassland and shrubs sites. Previous research conducted by
Garrigues et al. [2006b] has gained same conclusion. A large bias occurs over mixed forest site
(Larose-August03) due to large variance of LAI with this site, while very small relative biases occur
over grassland and shrubs because the variance of LAI over these two sites are small (<0.2) as
indicated in table 4-1.

79



As a result, a large uncertainty (bias) is introduced in estimate of the gap probability from low
spatial resolution data such as NOAA-AVHRR or MODIS over large heterogeneous sites if the scaling
effects are not considered.

4.3.3 “Clumping index” C for VALERI sites

Letting Eq.(4.8) equal to Eq.(4.2), with VALERI dataset, “clumping index” C introduced in
Eq.(4.7) can be easily obtained for each site at different spatial scales. Fig.4-4 shows the mean value of
“clumping index” against the pixel size for different types of land surfaces, such as forest, cropland,
grassland and shrubs. Since the SPOT-HRV pixel is supposed to be homogeneous at 20m spatial
resolution, the corresponding “clumping index” C at original scale is unity (not displayed in Fig.4-4).
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Fig.4-4 Same as Fig.4-3, but with the mean value of clumping index.

As shown in Fig.4-4, “clumping index” varies much for different land cover types and different
aggregated sizes. It decreases as aggregative levels increase, indicating that pixel becomes more
heterogeneous as demonstrated by the analysis of the relative scaling bias of gap probability given
above. Particularly a relative large variation of “clumping index” occurs at Larose-August03, very
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similar to the relative scaling bias of gap probability. In addition, “clumping index” varies slowly in
pure forest, grassland and shrubs sites and more significantly in crops and mixed forest in our cases
study. The results demonstrate that less scaling effect correction should be performed for forest and
grass sites than crops sites, which is in good agreement with the result shown in Fig.4-3.

As far as sites with the same land cover type are concerned, the magnitude of “clumping index”

also varies at different aggregated sizes, and mostly is inversely proportional to the spatial

heterogeneity of LAI (5L2A, ). For example, among forest sites, “clumping index” is minimum at

Aekloba-May01, then Rovaniemi-June04, Jarvselja-June02, Nezer-April02, Hirsikangas-August03,
and maximum is at Larose-August03, whose 5L2A, are 0.671, 0.52,1.09, 1.11, 1.14, 2.00, respectively.

Therefore “clumping index” redefined by EQ.(4.8) has the capability of representing and
eliminating scaling bias of directional gap probability induced by the heterogeneity of LAL.

4.4 Conclusion

In this study, spatial scaling effect of the gap probability based on Beer’s law for different types
of land cover is analyzed and corrected for by introducing an extension of the “clumping index”, C
which accounts for the spatial heterogeneity.

Analytical expressions developed in this paper show that: 1) relative scaling bias is only
dependent on the A, function and the spatial heterogeneity of LAI, but independent on the LAI value
itself, and 2) extension of “clumping index” C is directly proportional to the mean value of LAl and
inversely proportional to the spatial heterogeneity of LAI for given A, function and direction.

With the VALERI dataset, this study shows that relative scaling bias of gap probability increases
and “clumping index” value decreases with decreasing spatial resolution for most of land cover types.
Large relative biases and large variation of “clumping index” C are found for most of crops sites and a
mixed forest site due to their relative large variance of LAI, while very small biases and small
variation of clumping index are found for grassland and shrubs sites.

The parameters introduced in this paper has endowed a new significance to traditional clumping
index and provided evidence to the utility of clumping index as an improvement of the estimate of gap
probability from LAI. The results exhibit the capability of clumping index for scaling Beer’ law and
representing spatial heterogeneity, as well as the feasibility of the inversion approach for gap
probability from remote sensing data. Meanwhile a simple and feasible method to estimate “clumping
index” from remote sensing data is also explored from the above experiment, which will provide a
support to global mapping of the vegetation clumping index.
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Chapter 5

Triangle Feature Space Algorithm for
Estimating Land Surface
Evapotranspiration from MODIS Data in

Arid and Semi-arid Regions
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Accurate estimates of spatially averaged Evapotranspiration (ET) over distances of few
kilometers equivalent to the spatial scale of satellite remote sensing data and the grid size of numerical
models are of crucial importance in disciplines of hydrology, meteorology and agriculture. Though
direct measurements of turbulent heat fluxes representative of scales of hundreds and thousands of
meters can be conducted by the use of either the radiosonde-based vertical profiles of regionally
averaged atmospheric variables in the planetary boundary layer or the flight-path averaged turbulence
statistics measured with a turbulence measurement instrument onboard an aircraft [Asanuma and
lemoto, 2007], these direct measurements can only be conducted in large scale field programs
occasionally due to the high cost and discontinuity of these measurements. Remote sensing technology
can provide land surface parameters such as surface temperature, albedo and vegetation indices, etc
which are indispensable to remotely sensed ET models for estimating the area averaged turbulent heat
fluxes at regional scale. It is recognized as the only viable means to map regional, meso- and macro-
scale patterns of ET at the earth’s surface in a globally consistent and economically feasible manner.

Several remotely sensed ET models with varying complexity have been developed to map
turbulent heat fluxes at various spatial scales from small "point" scale to large "continental” scale with
remotely sensed surface temperature retrieved from thermal infrared channels, albedo and vegetation
indices estimated from visible and near infrared spectral bands, and ground based meteorological
measurements. These ET models mainly include the simplified empirical method [Jackson et al., 1977],
surface energy balance based single- and dual-source models [Hatfield, 1983; Norman et al., 1995],
spatial contexture information based on surface temperature-vegetation indices triangular and
trapezoidal method [Jiang and Islam, 1999; Moran et al., 1994] and data assimilation techniques [Boni
et al., 2001]. (See chapter 1 for more details). Overviews of these models and methods have been
provided by a number of authors since 1990s [Kairu, 1991; Kustas and Norman, 1996; Courault et al.,
2005; Glenn et al., 2007; Kalma et al., 2008; Li et al., 2009]. Although great progress has been made
on the regional remotely sensed estimate of ET with models incorporating land surface parameters
retrieved quantitatively from satellite remote sensing data in the past more than 30 years, there are
several related problems that have not yet been solved properly. On the one hand, for lack of the
validation ET data at large scale, particularly over heterogeneous surfaces with complex geographic
terrains and partial vegetative covers, all developed ET models or methods have not been rigorously
validated and consequently can not be used in confidence. On the other hand, due to the extra
difficulty presented or the lack of the feasible methods to get the spatially representative of ground-
based measurements at large scale, such as near surface air temperature, wind speed, vapor pressure
deficit and vegetation height, etc from the limited observation networks on the Earth, most of the
currently commonly applied remotely sensed ET models can not be used operationally to map ET at
large scale.

In order to overcome the latter problem, attempts have been made to develop a parameterization
of regional ET with only satellite derived surface parameters, such as the so-called Surface
Temperature - Vegetation Index (Ts-VI) triangle method developed by Jiang and Islam [1999; 2001]
and improved by Jiang and Islam [2003], Venturini et al. [2004] and Batra et al. [2006]. This type of
method relies on the triangular shape formed by the scatter plot of surface temperature (Ts) versus
vegetation index (VI) under a full range of vegetation cover and soil moisture availability within the
interesting study region to estimate Evaporative Fraction (EF) and ET at satellite pixel scale. The
success of Ts-VI triangle method on the estimation of EF and ET depends mainly on the correct choice
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of the dry and wet edges in the Ts-VI triangle space. However, up to now, no rules have been proposed
to determine these two edges in the Ts-VI triangle space, their determination is somewhat subjective
and arbitrary leading to a great uncertainty in the estimation of EF and ET.

The objectives of this work are twofold: (1) to develop an operational algorithm to determine
automatically and quantitatively the dry and wet edges for the Ts-VI triangular space in arid and semi-
arid areas where wet pixels are not generally easily identified, (2) to validate with the in-situ ET
measurements made by the Large Aperture Scintillometer (LAS) the ET derived from
MODIS/TERRA products using the developed algorithm. Section 5.1 recalls the principle of the Ts-VI
triangle method and highlights the assumptions involved in the methodological development and the
advantages and disadvantages of the Ts-VI method. Section 5.2 gives the implementation and
application of the proposed method to MODIS data. Section 5.3 describes the study region and data
used in the present study and gives a preliminary validation of satellite derived sensible heat flux with
the field measurements made by the LAS. Finally, the conclusion is given in section 5.4,

5.1 Methodology

Ts-VI triangle (see Fig.1-3) method applied in this work is originated from the parameterization
of Jiang and Islam [1999], in which a simplified Priestley-Taylor formulation [Priestley and Taylor,
1972] with fully remotely sensed data is utilized to estimate regional ET and EF by interpreting the
scatter plot constructed from remotely sensed Ts and VI under conditions of full ranges of soil
moisture availability and vegetation cover. This approach is based on an extension of Priestly-Taylor's
equation and the existence of physically meaningful relationship between EF and remotely detectable
surface characteristic parameters (Ts, NDVI, soil moisture, vegetation fraction). The mathematical
expression of latent heat flux (LE) is taken as follows [Jiang and Islam, 1999]:

LE = ®[(R, —G)ALW] (5.1)

and according to the definition of EF, EF can be directly estimated from Eq. (5.2) as:

EF = RnL_EG S Aﬁy (5.2)
and LE, can be wrote as:
LE =EF(R,-G) (5.3)
with
A =0.20(0.00738Ta +0.8072)" —0.000116 (5.4)
y =0.00163P/L =0.00163[(101.3—-0.01055H ) /(2.501—-0.002361T,)] (5.5)

where @ is a combined-effect parameter which accounts for aerodynamic resistance (-), R, is surface
net radiation (W/m?), G is soil heat flux (W/m?), A is slope of saturated vapor pressure versus air
temperature (kPa/°C), v is Psychrometric constant(kPa/°C), P is atmospheric pressure (kPa), L is latent
heat of vaporization (MJ/kg), T, is air temperature (‘C), H,, is altitude height (m).
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As shown by Jiang and Islam [1999], the sensitivity of A on the variation of temperature is very
small. Air temperature (Ta) required in Eq. (5.4) and (5.5) to calculate A and y can be obtained either

by a linear regression between Ts and Ta or by using mean surface temperature or mean water surface
temperature as a surrogate [Jiang and Islam, 1999; Venturini et al., 2004]. In this work, taking into
account and the correlation of Ts with air temperature, remotely sensed Ts will be used to estimate the
parameter A and y instead of the use of air temperature.

Many papers have demonstrated that the Rn and G in Eg. (5.1) can be estimated with only
satellite data. Therefore, in Eq. (5.1), estimation of LE from satellite data alone is to estimate the ©
values from combined Ts and VI measurements after the Rn, G have been determined from remotely
sensed data.

Although parameter @ in Eq. (5.1) looks apparently the same as o in Priestley-Taylor's equation,
there is a distinct difference in the physical meaning between these two parameters. In Priestley-
Taylor's equation, o is generally interpreted as the ratio of actual evaporation to the equilibrium
evaporation and a series of paper has demonstrated this parameter with a good approximate to be 1.26
[Crago and Brutsaert, 1992; Jiang and Islam, 2001]. Priestley-Taylor's equation is generally applicable
for wet surfaces whereas Eqg. (5.1) holds true for a wide range of surface evaporative conditions with ®
varying from 0 to (A+y)/A when significant advection and convection are absent. Jiang and Islam
[Jiang and Islam, 1999] have found the upper bound of derived ® (corresponding to the wet edge in
the Ts-VI triangle space) for each NDVI value is very closed to 1.26.

In order to estimate pixel by pixel ET using Eq. (5.1), both dry and wet edges in the Ts-VI space
have to be first determined. As mentioned above in this chapter, their determination is extreme
difficult and often arbitrary. Previous papers [Jiang and Islam, 1999; Carlson, 2007] have
recommended taking the surface temperature of a water body and/or a well-irrigated agricultural field
as the temperature of wet edge with potential ET. However, these two land surface types can not be
easily identified or may not exist at all in most arid and semi-arid areas, an automatic and practical
algorithm needs to be developed to determine the dry and wet edges in the triangular space for these
areas.

Taking into account that NDVI is just a surface greenness parameter and dependent on spatial
resolution of remote sensors [Price, 1990], the commonly employed NDVI in the construction of Ts-VI
triangle space will be replaced in this work by the fraction of vegetation (Fr) which seems to be more
representative of the relative proportionality between soil and vegetation within the pixel. As depicted
in Fig.1-3, once the two edges (dry and wet) in the Ts-Fr space are determined, the value of
@ corresponding to the driest bare soil pixel (at the position Fr=0 and maximum surface temperature
Tsmax iN the dry edge line) is set to 0 (denoted as ®i,=0 at pixel (Fr=0, Tsmax)) and the value of @ at
the position Fr=1 and the minimum surface temperature Tsmin in the dry edge line is set to 1.26
(denoted as ®n=1.26 at (Fr=1, Tsmin)). A two-step linear interpolation is then used to get the ® value
for the pixel i (Fr,;, Ts;) in the Ts-Fr triangle space:

1) determining ®p,, value in the dry edge line for the pixel i (®pmin;) by assuming that @, ; varies
linearly with F,; between ®y,=0 at (Fr=0, Tsmax) and ®@pa=1.26 at (Fr=1, Tsmin), and determining
®pax value for the pixel i (Onmax;) in the wet edge line by assuming that @ iS constant in the wet
edge line, i.e. @y i=DPmax=1.26 as the wet edge line is defined as Ts=Tsmir. The lower limiting value of
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@ for any Fr (®min;) in the dry edge can be first derived by a linear interpolation between ®,;,=0 at
Fr=0 and ®,;,=1.26 at Fr=1, namely:

@ =126Fr (5.6)

min, i

2) determining @ value for the pixel i (®;), by assuming that for given Fr, ® increases linearly
with the decrease of Ts between ®in; and Oy in the Ts-Fr triangle, i.e.,

) :M(QDWi -O . )+ . (5.7)
Traxi = Tmini ’ ’ ’
in which
Traxi = Tomae + e (To min = T max)
Toini = Tsmin
D i =D, =126

5.2 Implementation and application of the method to MODIS data

To apply the above proposed Ts-Fr triangle method to MODIS data, several steps are needed to
be performed as shown in Fig.5-1. The input MODIS data and products are MODIS land surface
temperature/emissivity products (MOD11), NDVI (MOD13), together with MODIS calibrated
radiances (MODO021KM), MODIS geolocation (MODO03) and MODIS precipitable water product
(MODO05). The output datasets consist of the derived R,, G, EF and ET. Below is the description of
each step involved in the algorithm.
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Fig.5-1 Flow chart of the proposed algorithm to estimate the regional surface net radiation, soil heat
flux, evaporative fraction and latent heat flux from MODIS data.

5.2.1 Data downloading

MODIS land surface temperature/emissivity and NDVI products, MODIS calibrated radiances
and geolocation products, as well as MODIS atmospheric precipitable water product are downloaded
from the MODIS data and products centers. In order to establish the Ts-Fr triangle space, MODIS land
surface temperature/emissivity product (MOD11A1 and MOD11_L2) and NDVI product (MOD13A2)
are needed to be first downloaded from the Land Processes Distributed Active Archive Center
(LPDAAC) (https://Ipdaac.usgs.gov/). In addition, MODIS calibrated radiances (MODO021KM),
geolocation (MODO03) and atmospheric precipitable water (MODO5_L2) products are used to estimate
the surface net radiation R, and they can be downloaded from the LAADS (Level 1 and Atmosphere
Archive and Distribution System) web (http://ladsweb.nascom.nasa.gov).
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5.2.2 Screening out the pixels contaminated by cloud and also the pixels with surface
elevation far apart from the average of surface elevation in the study area

Having successfully downloaded all MODIS data and products, some preliminary processing are
needed to be performed using MODIS Reprojection Tool (MRT) and MODIS Swath Reprojection
Tool (MRTSwath) so that all data and products are well georeferenced and subset corresponding to the
study area is easily accomplished. As well known, the cloud affects significantly the satellite-derived
Ts, pixel contaminated by cloud in the study area are therefore screened out. In order to satisfy the
assumptions involved in the development of Ts-Fr triangle method described in section 5.1, all pixels
in the Ts-Fr triangle space should have about the same surface elevation, thus pixels having much
higher or lower surface elevation with respect to the average of elevation in the study area are also
removed out.

It is worth noting that the subset selected should be as large as possible so that the large ranges of
both soil moisture availability and vegetative coverage could be found in the study area.

5.2.3 Calculating @ pixel by pixel

1) Estimating the fraction of vegetation (Fr) within the pixel for each pixel in the study area. As
stated in section 5.1, to construct the Ts-VI triangle space, Fr is used in this work to replace the NDVI.
Pixel by pixel Fr is therefore estimated from MODIS NDVI product using the formula proposed by
Carlson and Ripley [1997]:

NDVI — NDVI

F = min )7 5.8
f (NDVImaX—NDVImm) 58)

where NDV lyin and NDV . are respectively the minimum NDVI corresponding to bare soil (LAI=0)
and the maximum NDVI corresponding to full vegetated surface (LAl=w). They are assigned
respectively to be 0.2 and 0.86 in this work as done by Prihodko and Goward [1997].

2) Constructing the Ts-Fr triangle space. Knowing Ts and Fr, a plot of Ts against Fr (Ts
represents the ordinate axis and Fr represents the abscissa) for all remained pixels after the step 2 (i.e.
section 5.2.2) in the study area is used to construct the Ts-Fr triangle feature space bounded with an
upper decreasing envelope (dry edge) and a lower nearly horizontal envelope (wet edge).

3) Determining automatically the dry and wet edges in the Ts-Fr triangle space. After having
plotted the pixels in our study region in two-dimensional space (Fr, Ts), one needs to determine
carefully the dry and wet edges in this Ts-Fr space because accurate determination of these two edges
has direct impact on the accuracy of the derived EF and turbulent heat fluxes. An iterative process is
proposed to determine automatically these two edges and is described as follows: (i) Dividing the
range of Fr in the Ts-Fr triangle space into M intervals evenly (M =20 is recommended) and then
dividing each interval into N subintervals (N=5 is recommended). (ii) For a given interval, finding
and saving the maximum temperature within each subinterval. (iii) The average value (Taer) and
standard deviation (8) of the N maximum surface temperatures for N subinterval of this given interval
are computed as an initial state. (iv) If the maximum surface temperature of each subinterval of this
given interval is less than T..-9, this subinterval is discarded in the following steps. (v) The new
average value (Ta.yr) and standard deviation (8) of the maximum surface temperatures of the remaining
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subintervals after step (iv) are recomputed. (vi) If the number of remaining subintervals in the given
interval is greater than a given threshold value and 6 is larger than a given threshold value, go back to
step (iv) and repeat the steps (iv)-(vi), otherwise go to step (vii). (vii) Taking Taver as the maximum
surface temperature of this given interval and going back to step (ii) until all the maximum surface
temperatures are found for all M intervals. (viii) A linear regression between the maximum surface
temperature within each Fr interval and Fr value is performed and the Root Mean Square Error (RMSE)
is computed. (ix) If the maximum surface temperature for a given interval is 2 times RMSE or more
less than the temperature value in the regressed line, this interval will be discarded and the program
will go back to step (viii) until the minimum number of intervals is reached or no interval can be
further discarded. (x) A final linear regression is performed to obtain the dry edge:

Thaxi =@ +D0F, (5.9)
with the two extreme points (T, .; =T, .. atFr=0and T __. =T, . atFr=1) depicted in Fig.1-3, one
gets:

a= Ts,max and b= Ts,min _Ts,max

As mentioned in section 5.1, this work assumes that the wet edge is the line with a constant
surface temperature which is equal to that of dry edge at Fr=1, i.e.

T..=T

min,i s,min

4) Calculating pixel by pixel the combined-effect parameter @ according to the above-mentioned
two-step interpolation scheme. After having determined the dry and wet edges in the Ts-Fr triangle
space, Egs.(5.6) and (5.7) are used to compute the @ value for the pixel i (Fr,;, Ts;).

5.2.4 Calculating EF pixel by pixel

Once the combined-effect parameter @ is obtained, the evaporative fraction (EF) can be
straightforward estimated using Eq. (5.2) with A calculated with Ts instead of Ta.

5.2.5 Estimation of surface net radiation (Rn) directly from MODIS data and products

Surface net radiation is defined as the sum of surface net shortwave radiation (Rs,) and net
longwave radiation (Ry). In this work, a parameterization of R, fully based on MODIS products
proposed by Tang et al. [2006] is used, namely:

— EO COS(@Z)

st D 2

(a'=B'r) (5.10)
with
a'=1-a,/pu—a,l u" - (1-exp(-u))(a; +aw’)/ u

p'=1l+a,+a,Inu+a,w
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r=>b,+ ibipi
i=1

where E, is solar irradiance at Top Of Atmosphere (TOA), 6, is the solar zenith angle extracted from
MODIS geolocation product (MODO3), D, is the earth-sun distance in astronomical unit, r is the
broadband albedo at TOA, p is the cosine of solar zenith angle, a;-a7, X, y, z are constants for various
types of surfaces (Land, Ocean, Snow/Ice) and predefined by Tang et al. [2006] and listed in table 5-1
in this work, w is the precipitable water extracted from MODIS atmospheric precipitable water product
(MODO05_L2), bg-b; are the coefficients depending on the viewing zenith angle and the solar zenith
angle both retrieved from MODQO3, p; is the TOA narrowband reflectance measured by MODIS band i
(i=1-7) retrieved from MODIS calibrated radiance product (MODO021KM).

Table5-1. Coefficients for estimating the net surface shortwave radiation from the TOA broadband
albedos [Tang et al., 2006]

Surface
type dg do ds dg dsg dg az X Yy VA
Land —0.011 | 0.179 | —-0.980 | 0.929 | —0.701 | 0.090 | 0.846 | 0.478 | 0.052 | —0.020

Ocean 0.003 | 0.166 | —0.774 | 0.733 | —0.511 | 0.059 | 0.637 | 0.342 | 0.067 | —0.034

Snow/ice | —0.011 | 0.163 | —0.648 | 0.631 | —0.867 | —0.013 | 0.927 | 0.510 | 0.060 | 0.018

Similar to the calculation of surface net shortwave radiation, Tang and Li [2008b] further
proposed a scheme to directly estimate the downward longwave radiation (Lg) from only radiances
measured at the TOA by six MODIS thermal infrared channels-28, 29, 31, 33, 34 and 36 and surface
emitted radiation from the MODIS land surface temperature/emissivity products (MOD11) using the
following formulae:

Ly =Co+C xMyg +C, x My, +Cy x Mgy +C, X Mg + G x Mg + G x My, (5.11)
RlW =& Ld - 085T54 (5.12)
g, =0.273+1.778¢, —1.807¢,.&,, —1.037¢,, + 1.774&,," (5.13)

where ¢; (i=0-6) are coefficients depending on the view zenith angle and surface altitude both extracted
from MODO03, M is the TOA radiance measured by the MODIS thermal infrared channel extracted
from MODO021KM and the number in the subscript indicates the thermal channel of MODIS sensor, &
is the surface emissivity, o is the Stefan-Boltzmann constant (5.67x10° W/(m® K*%), Ts is surface
temperature (K), €3 and e3, are respectively surface emissivity in MODIS channels 31 and 32
retrieved with Ts from MOD11.

Readers are recommended to refer to Tang et al. [2006] and Tang and Li [2008b] for detailed
information about these algorithms of retrieving surface net radiation from MODIS products.
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5.2.6 Estimating soil heat flux (G) from MODIS data

Soil heat flux (G) is the heat energy used to cool or warm the subsurface soil. It is theoretically
proportional to the thermal conductivity and vertical temperature gradient in the subsurface soil. Since
it is impossible to measure G at regional scale at ground, a great number of papers has been devoted to
estimating soil heat flux indirectly from certain land surface parameters accessible to satellite data
such as Ts, NDVI, LAI, Albedo and Fr [Choudhury, 1989; Bastiaanssen, 2000; Allen et al., 2007]. In
this work, the ratio of G to R, (I") is assumed to be linearly decreased from the dry bare soil to full
vegetation cover with the increase of Fr as proposed by Su [2002]:

r=G/R,=T,+@1-F)T,-T,) (5.14)

where T', and T's are respectively fractions for the full vegetation cover and dry bare soil, according to
the in-situ point measurements, I'=G/Rn ranges from 0.05 for full vegetative cover (Fr=1) to a
maximum of 0.3 to 0.5 for dry bare soil (Fr=0) depending on the different types of soils [Daughtry et
al., 1990; Li and Lyons, 1999]. In this work, T'y =0.05 and Ty = 0.4 (average of 0.3 and 0.5) are
assumed.

5.2.7 Estimating ET

Knowing the surface net radiation (Rn), soil heat flux (G) and EF, the ET can be straightforward
derived using Eq. (5.1) or (5.3).

5.3 Results and Validation

5.3.1 Study area

Our study area is located in the middle reach of Heihe river basin, northwest China, with the
climate being arid in temperate zone and the latitude ranging from 38.7°N to 39.8°N and longitude
being 98.5°-102°E. Heihe river basin is influenced by East Asian Monsoon climate and has
heterogeneous distribution of precipitation during the year. Mean annual rainfall in this basin is
approximately 174 mm and more than 73 percent of annual rainfall occurs during the rainfall season
from June to September. A large and intensive field experiment was conducted in Heihe river basin
from May 20th to August 21st 2008. This experiment aims to better understand the hydrological and
related ecological processes at watershed scale and to promote the applicability of quantitative remote
sensing in watershed science related studies. In the experiment, a very dense network of stations,
including automatic meteorological stations, hydrological stations, rain gauges, rainfall radar and flux
towers, etc., has been installed to collect atmospheric and ground data. For further information about
the Heihe field experiment, readers are referred to Li et al. [2008].

The left image in Fig.5-2 is a yearly IGBP land cover classification map in 2004 over the study
area derived from the MODIS land cover (MOD12Q1). Surface elevation in most areas is
approximately 1200-1600 m above sea level. A mountain, surface elevation of which is about 3000 m,
lies in the southwestern part of the study area. The zone where our LAS instrument was set up is
sparsely vegetated surfaces with short grass and agricultural crops as shown in the right image of
Fig.5-2.
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Fig.5-2 A quick view of study area and location of the LAS instrument. The left image is a yearly
IGBP land cover classification map in 2004 from MOD12Q1. O=water, 1=evergreen needleleaf forest,
2=evergreen broadleaf forest, 3=deciduous needleleaf forest, 4=deciduous broadleaf forest, 5=mixed
forests, 6=closed shrubland, 7=open shrublands, 8=woody savannas, 9=savannas, 10=grasslands,
11=permanent wetlands, 12=croplands, 13=urban and built-up, 14=cropland/natural vegetation mosaic,
15=snow and ice, 16=barren or sparsely vegetated; The blue filled rectangle in the left image indicates
location of the LAS instrument; The right image is the magnified map of the LAS instrument site.

5.3.2 LAS and meteorological data

LAS operations were continually conducted during the Heihe field experiment over flat grassland
with Northeast-Southwest orientation from May 20" to August 21%, 2008. Calibration of LAS
measurements was made with observations from an Eddy Correlation (EC) system (later dismantled
for unknown reasons) nearby the transmitter of the LAS during the first several days after LAS was
installed. Location of the LAS is indicated by the blue filled rectangle in the left image of Fig.5-2 and
the magnified map of LAS installed area is given in the right image of Fig.5-2. Length path between
transmitter and receiver of LAS is 1550 m and the surface elevations of the sites of transmitter and
receiver are respectively 1384 m and 1395 m. Both the transmitter and receiver were installed on two
tripods fixed with two towers at the heights about 9.25 and 9.1 m respectively above ground. Power
was supplied by two different solar power panels and a battery. 10-min interval values of both UCn?
and signal strength, and the variance of UCn® were stored in a built-in data logger.

Two meteorological stations surrounding the transmitter of LAS, namely a station jointly setup by
China and Japan (hereinafter referred to as "China-Japan station") before the field experiment and an
automatically recorded station (hereinafter referred to as "automatic station™) installed during the field
experiment, equipped with a set of standard meteorological instruments to measure air temperature, wind
speed and direction, relative humidity and atmospheric pressure, etc. were deployed respectively before
and during the period of LAS measurements. The meteorological measurements are made respectively at
10 m for China-Japan station and at 1.5 m for the automatic station and are recorded every ten minutes as
that of LAS.

Post-processing of the LAS measured data is performed with the support of WINLAS software
developed by Kipp and Zonen to calculate sensible heat fluxes representative of spatial averaged
values. Inputs to the WINLAS mainly include LAS measurements of UCn? and signal strength and
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additional meteorological observations of wind speed, atmospheric pressure, air temperature, relative
humidity and Bowen ratio, surface roughness and displacement height. As Bowen ratio is not a
constant during the period of LAS operations and no other Bowen ratio data can be acquired, this work
attempts to first estimate Bowen ratio (/) from few-day measurements of the EC system (temporal

interval also being 10-min) and then to apply the average values of these Bowen ratio data derived
from the same time among different days when EC system was in operation to fill in the vacancy
encountered in the subsequent period of measurements of LAS. Since there is no remarkable variation
visually in the vegetation height during the period of operation of LAS, surface roughness and
displacement height are respectively assigned to the fixed values using rule of thumb assumptions with
Zom=0.1m and d=0.5m for simplicity and operational convenience. A sensitivity test is carried out to
figure out the impacts of both surface roughness and Bowen ratio on the value of sensible heat flux (H)
measured by LAS and processed by the WINLAS software. As an example, LAS-measured sensible
heat fluxes calculated with the meteorological measurements at automatic station from 8h to 18h on
May 30™ are used to perform this sensitivity test. In this test, sensible heat fluxes are first calculated
with both Bowen ratio and surface roughness length and displacement height being increased or
decreased respectively by 40% to their original values. Then, they are compared with H derived with
the original B, zoy, and d values. Comparison of this test result is given in Table 5-2. From this table,
one can see that the increase/decrease of B value by 40% results only in the increase/decrease of
estimated H from LAS by a mean of about 2W/m? and RMSE less than 2.5W/m? while the
increase/decrease of zoy, and d values by 40% results in the increase/decrease of estimated H from LAS
by a mean less than 9W/m? and RMSE less than 15W/m? and the impact of errors in zo, and d on the
derived H from LAS is larger than that of error in f.

Table 5-2. Sensitivity analysis of LAS-measured sensible heat on two groups of parameters:
(1) Bowen ratio (B), (2) Surface roughness length for momentum (zo,) and displacement height (d).

0.6B 1.4B 0.6Zom and 0.6d 1.4zom and 1.4d
Bias(W/m?) 2.1 0.9 -3.8 8.6
RMSE(W/m?) 2.3 1.0 7.7 14.1

As two meteorological stations operated near our LAS instrument, one is the China-Japan station
which was in operation during the whole period of the field experiment and another is the automatic
station operated only from May 26" to July 16™. Since the LAS instrument can not measure directly
the sensible heat flux (H), H can only be derived from LAS measured data in combination with Bowen
ratio, surface roughness length, displacement height and the atmospheric parameters/variables
measured at meteorological station as described above. Fig.5-3 shows that the sensible heat fluxes
estimated from LAS data with atmospheric parameters/variables measured at China-Japan station are
in good agreement with H derived from LAS data using the atmospheric parameters/variables
measured at automatic station at the time overlapped with MODIS overpass although H estimated
using automatic station seems slightly larger than that derived using China-Japan station at higher H
values. The RMSE between them is 9.41W/m? and R? is 0.962. Therefore, in the following, only H
derived from LAS data using atmospheric parameters/variables measured at the China-Japan station
will be compared with H derived from MODIS data using the Ts-Fr triangle method.
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Fig.5-3 Comparison of LAS-measured sensible heat fluxes calculated respectively using
measurements at China-Japan station and automatic station.

In order to evaluate the reliability of inferred LAS-measured sensible heat fluxes H, a comparison
of H derived respectively from EC (Eddy Correlation) system and LAS measurements on May 20"
from 8h to 18h. The results showed that relatively good agreement is observed between LAS-
measured and EC-measured H though EC-measured H is slightly higher than that deduced from LAS
measurements, and LAS-measured H is much more stable in the daytime evolution whereas H derived
from EC fluctuates seriously with time.

5.3.3 Remote sensing data

MODIS data products used in this work are land surface temperature/emissivity (MOD11A1 and
MOD11_L2), NDVI (MOD13A2), Calibrated radiances (MOD021KM), Geolocation (MODOQ3),
Precipitable water (MODO5_L2) products. All 24 clear-sky MODIS data from May 23" to August 21%
over our study area are used to estimate the EF, ET and H using the Ts-Fr triangle method/algorithm
proposed in this work. The overpass time (local solar time) corresponding to the 24 clear-sky MODIS
data varies approximately from 10:06 to 11:42AM.

MOD11A1 (MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid)
and MOD13A2 (MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid), generated by
the MODIS Adaptive Processing System (MODAPS) at the U. S. Geological Survey EROS Data
Center (EDC), are stored as gridded level 3 products in the Integerized Sinusoidal projection with a
nominal spatial resolution of 1 km (about 926 m) in the HDF (Hierarchical Data Format) format.
Daytime surface temperature data (LST_Day_1km), daytime overpass time (Day_view_time) and 16-
day NDVI data (1_km_16 days NDVI) extracted respectively from the MOD11A1 and MOD13A2
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products are re-projected to Albers Equal Area (AEA) projection with the MRT (MODIS Reprojection
Tool). The difference between MOD11 L2 and MOD11A1 is the different spatial resolution, in which
the spatial resolution of MOD11 L2 product is 1000 m same as that of the following three MODIS
products.

MOD021KM, MODO03 and MODO5 can be accessed from the LAADS (Level 1 and Atmosphere
Archive and Distribution System) web. MODO021KM s consisted of calibrated and geolocated TOA
radiances and reflectances for 36 bands. MODO03 product mainly includes datasets of geodetic
coordinates (latitude and longitude), solar zenith and azimuth angle, satellite zenith and azimuth angle,
and ground elevation for each 1-km sample (pixel). MODO5_L2 contains column water-vapor
amounts over clear land areas and above clouds over both land and ocean.

5.3.4 Results and Validation

The algorithm described in section 5.2 is applied to all 24 clear-sky MODIS data acquired over
our study area. As an example, Fig.5-4 shows a plot of Ts against Fr in the two-dimensional space for
MODIS data acquired on Julian day 201 and the corresponding dry and wet edges determined
automatically by the proposed algorithm. This figure confirms the hypothesis that the pixels in the
study area forms a triangle in the two-dimensional space Ts-Fr and the dry and wet edges can be
determined on the basis of the triangle space using our proposed algorithm. Similar results are
obtained for other 23 clear-sky days.
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Fig.5-4 A plot of Ts against Fr in the two-dimensional space for MODIS data acquired on day 201 and
the corresponding dry and wet edges determined automatically by the proposed algorithm.

Fig.5-5 shows the surface net radiation (Rn), soil heat flux (G) and sensible heat flux (H)
estimated from MODIS data alone on the LAS instrument site using our proposed method and
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algorithm for 24 clear-sky days at MODIS overpass time. From this figure, one can see that the Rn for
all 24 clear-sky days varies from about 518 to 739 W/m? with the mean value of 618 W/m?. The
minimum and maximum Rn values occur on Julian days 226 and 177 respectively. There is no
remarkable variation in the soil heat flux as the fractional vegetation cover changes a bit from 0.02 to
0.29 during this period. The mean, minimum and maximum values of soil heat flux are 209, 172 and
248W/m? respectively. In most cases, MODIS-derived sensible heat flux is smaller than the soil heat
flux at the LAS site.
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Fig.5-5 Surface net radiation, soil heat flux and sensible heat flux of the LAS site derived from
MODIS data using our proposed algorithm for 24 clear-sky days.

Fig.5-6 displays EF estimated from MODIS data alone on the LAS site using our proposed
method and algorithm for 24 clear-sky days at MODIS overpass time. One can see from this figure
that EF varies from 0.315 (day 144) to 0.832 (day 189) with the mean value of 0.659. EF increases
rapidly from the end of May to the end of June, Before June 30th, EF is generally lower than 0.55 (an
exception occurs on Julian day 177 while during the period of July to August, EF varies mainly from
0.63 to 0.83. This relatively high EF during the period from the end of June to August may be due to
the fact that this period is within the period of rainfall season in our study area.
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Fig.5-6 Evaporative fraction of the LAS site estimated from MODIS data using the proposed
algorithm for 24 clear-sky days

Fig.5-7 illustrates the highest surface temperature (Tsmax) at the dry edge and surface temperature
for the wet edge (Tsmin, the lowest surface temperature at the dry edge) obtained using our proposed
method and algorithm for 24 clear-sky days at MODIS overpass time. These surface temperatures are
deduced from the determined dry edges for the 24 Ts-Fr triangles. Tsmax varies from 316.8 (Julian day
222) to 332.2 K (Julian day 204) and T min from 277.8 (Julian day 144) to 308.6 K (Julian day 183). It
should be noted that full ranges of fractional vegetation cover is of crucial importance for the
determination of dry and wet edges in our work, which gives a possible explanation to the relatively
low Tsmin 00 Julian day 144 over the study area since the variation of Fr is only from 0 to 0.4. R? for
the linear fit of the dry edge in all 24 constructed Ts-Fr triangles ranges from 0.829 to 0.982, implying
that Eq. (5.9) can well depict the relationship between Ts and Fr in the dry edge.

As a validation, Fig.5-8 shows a comparison of MODIS-derived H using our proposed method
and algorithm with LAS-measured H for 24 clear-sky days during the period of LAS operation. A very
good agreement can be found in this figure with RMSE = 25.07 W/m?. MODIS-derived H varies from
about 75.3 to 226.2 W/m? with the mean value of 136.7 W/m®. Large discrepancies (A H) between
MODIS-derived H and LAS-measured H occur on Julian days 167 (A H=55.3 W/m?), 174 (A H=67
W/m?), 217 (A H=-49.7 W/m?), and 226 (A H=-40.6 W/m?. On Julian days 165 and 173, heavy
rainfalls were took place in the study area, leading to an inaccurate determination of dry and wet edges

(i.e. Tsmax and (Tsmax-Tsmin) decrease), and causing probably an underestimation of EF and an
overestimation of H on Julian days 167 and 174.
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Fig.5-7 The highest surface temperature at the dry edge (Tsmax) and surface temperature at the wet
edge (Tsmin) inferred from MODIS data using our proposed algorithm for 24 clear-sky days.
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Fig.5-8 Comparisons of sensible heat flux estimated from MODIS data using our proposed algorithm
with that measured by LAS instrument for 24 clear-sky days
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Due to the lack of sufficient information, it is not yet possible for us to explain the possible
reasons for relatively large discrepancies found on Julian days 217 and 226. It might be related to the
relatively low surface net radiation (R,=576 W/m? 518W/m?for Julian days 217 and 226 respectively)
derived at MODIS overpass time on these days when compared with values estimated on Julian days
216 (Rn=710 W/m? and 225 (Rn=710 W/m?). An advantage in the Ts-Fr triangle method is that
inaccurate determination of dry and wet edges can also result in an accurate combined-effect
parameter ® and evaporative fraction for a given pixel (Ts;, Fr) as long as the ratio of difference
between Ts; and Taxi to the difference between Thaxi and Tuini (See Fig.1-3) does not change for a
given Fr.

It should be emphasized that uncertainties in the sensible heat flux derived from Ts-Fr triangle is
partly attributed to the uncertainty related to the estimation of both R, and G. Tang et al. [2006]
reported the RMSE of less than 20 W/m? for clear sky days by comparing the estimated surface net
shortwave radiation with MODIS products with in-situ measured values at YuCheng field site during
an extended period of time covering all seasons in 2003. A comparison of estimated surface net
longwave radiation from Tang and Li [2008b] with field measurements at six sites of the Surface
Radiation Budget Network in United States has shown a RMSE of approximately 26 W/m? at MODIS
overpass time of cloud-free days in 2006. Though G accounts for merely a small portion of R, over
partially vegetated areas, it will have more or less influences on the uncertainties of the estimated
sensible and latent heat fluxes. Unfortunately, as there are no in-situ measurements of both R, and G
available at the grassland where LAS was placed from May to August, 2008, it is impossible to further
investigate the sources of uncertainties in sensible and latent heat fluxes.

5.4 Conclusions

A practical algorithm is developed for quantitative determination of dry and wet edges for the Ts-
VI triangle method from MODIS/Terra data and products. This algorithm can provide an estimation of
surface net radiation, soil heat flux, evaporative fraction and evapotranspiration at regional scale from
MODIS data and products alone. Advantages of Ts-Fr triangle method over the residual method of
surface energy balance are that 1) absolute high accuracy in remotely Ts retrieval and atmospheric
correction are not indispensable and 2) complex parameterization of aerodynamic resistance and
uncertainty originated from replacement of aerodynamic temperature by remotely sensed Ts is
bypassed, and 3) no ground-based near surface measurements are needed rather than remotely sensed
Ts and Fr, 4) a direct calculation of evaporative fraction (EF), defined as the ratio of latent heat flux to
surface available energy, can be obtained without resort to surface energy balance. Limitations of Ts-
Fr triangle mainly lie in the arbitrary determination of both dry and wet edges and a large number of
pixels over a flat area with a wide range of soil moisture and fractional vegetation cover are required.

Determination of dry and wet wedges in Ts-VI triangle space generally involves a large degree of
subjectivity and uncertainty. The rules and algorithm proposed in this paper give a feasible way to
estimate the highest surface temperature at each Fr interval and subsequently determine the dry and
wet edges in arid and semi-arid climate region from the Ts-Fr triangle space. Although assumption of
two-step linear interpolation scheme involved in the estimation of the combined-effect parameter
® and EF is still questionable and not yet verified directly, a very good agreement is found with the
RMSE = 25.07 W/m2 when sensible heat flux estimated from MODIS data is compared with that
measured by LAS instrument.
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To reduce the uncertainty in the estimation of turbulent heat fluxes from the Ts-Fr method,
further work needs to be carried out to verify the relevant parameters/variables step by step provided
that data required are available in the future and more validation work needs to be performed in other
different regions for the proposed algorithm.
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Chapter 6

Conclusions and Prospects
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This chapter presents the general conclusions of this thesis and gives some prospects and
directions for future improvement of the land surface evapotranspiration estimation.

6.1 Conclusions

This work concerns the methodological development permitting to determine the regional land
surface EvapoTranspiration (ET) from the MODIS data onboard the polar satellite Terra. It focuses
mainly on the retrieval of land surface temperature (LST), the restitution of the directional land surface
emissivity, the study of the scaling effects of satellite-derived surface parameters/variables and the
estimation of regional ET from remote sensing data alone.

In terms of the retrieval of land surface temperature, on the basis of the radiative transfer theory,
this work addressed the estimate of LST from the Chinese first operational geostationary
meteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1, 10.3-
11.3 mand IR2, 11.5-12.5 m), using the Generalized Split-Window (GSW) algorithm proposed by
Wan and Dozier (1996). Following conclusions can be made: 1) taking into account the fact that the S-
VISSR sensor onboard FY-2C has no atmospheric sounding channels, the coefficients in the GSW
algorithm were derived by dividing the ranges of the mean emissivity, the atmospheric Water Vapor
Content (WVC), and the LST into tractable sub-ranges, and were recalculated using a statistical
regression method from the numerical values simulated with an accurate atmospheric radiative transfer
model MODTRAN 4 over a wide range of the atmospheric and surface conditions. The simulation
analysis showed that the LST could be estimated by the GSW algorithm with the Root Mean Square
Error (RMSE) less than 1 K for the sub-ranges with the Viewing Zenith Angle (VZA) less than 30° or
for the sub-ranges with \VZA less than 60° and the atmospheric WVC less than 3.5 g/cm? provided that
the Land Surface Emissivities (LSES) are known. 2) as the GSW algorithm requires WVC and LSE as
model input, the MODIS total precipitable water product MODO5 providing the atmospheric column
water vapor amounts, was used to obtain the WVC when the scanning times of the sensors MODIS
and S-VISSR are close to each other. As for the other scanning times of S-VISSR, the atmospheric
WVC can be determined using the method developed by Li et al. (2003). As for LSE, the
MODIS/Terra LST product MOD11B1 providing the LSEs with 5 km resolution for the thermal
infrared channels 31 and 32, was used to derive the LSEs in S-VISSR channels IR1 and IR2,
respectively. 3) the sensitivities and error analyses in term of the uncertainty of the LSE and WVC as
well as the instrumental noise showed that the accuracy of retrieval LST can be affected by 3% for
NEAT(Noise Equivalent Temperature Difference)=0.1K, by 16% for NEAT=0.2K, and by 81% for
NEAT=0.5K for the sub-range ¢€[0.94,1.0], WVC&[1.0,2.5], and Ts€[290K,310K]; given the
uncertainties of (1-g)/e and Ae/e? around 1%, the LST error is [1.3K, 1.5K] with the mean of 1.4 K for
the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K for the wet atmosphere; and the effect of
the uncertainty of the WVC on the retrieval LST could be around 0.3 K. 4) in order to compare the
different formulations of the split-window algorithm, several split-window algorithms were used to
estimate the LST with the same simulated FY-2C data. The result of the intercomparsion showed that
most of the algorithms give comparable results, which indicates that the split-window algorithm can be
successfully applied to the LST retrievals from FY-2C data.

As for the restitution of the directional land surface emissivity, this work proposed a two steps
method to estimate the directional emissivity in the mid-infrared (MIR) channel around 4.0 pum from
MODIS data. The first step is to retrieve the bidirectional reflectivity in MIR channel from two
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adjacent MIR channels 22 and 23 of MODIS centered at 3.97 um and 4.06 um respectively onboard
Terra and Aqua satellites. On the basis of the difference in the solar reflection in these two channels,
and assuming that the surface bidirectional reflectivities are equal in channels 22 and 23, and that the
ground brightness temperatures in these two adjacent channels are the same if the contribution of the
direct solar radiation is not considered, the method developed by Tang and Li [2008a] can be used to
retrieve the bidirectional reflectivity (pp) in the MIR channel from MODIS channels 22 and 23. The
second step is then used to estimate the directional emissivity in MIR channel from the bidirectional
reflectivity with the model developed by Jiang and Li [2008]. In order to show the retrieval accuracy
of the proposed method, firstly a region of Egypt and Israel with latitude from 28.0° N to 32.0° N and
longitude from 30.0° E to 36.0° E and its MODIS images were taken as an example to estimate the
directional emissivity directly from MODIS MIR data using the proposed method, then the MODIS
land surface temperature/emissivity product MYD11B1 data have been used to cross-validate
preliminary estimating values. The results of this comparison showed that, at least for our cases, the
proposed method for estimating the directional emissivity gives results comparable to those of
MYD11B1 product with Mean Error =-0.007 and Root Mean Square Error =0.024.

In terms of the study of the scaling effects of satellite-derived surface parameters/variables, this
work was devoted to study the impact of spatial heterogeneity of leaf area index (LAI) on the estimate
of directional gap fraction through aggregating the high-resolution directional gap probability (pixel
size of 20 meters) estimated from LAI images of VALERI (Validation of Land European Remote
sensing Instruments) database by means of Beer's law. An extension of clumping index, C, was
introduced to compensate the scaling bias. The results obtained in this work showed that the scaling
effect depends on both the surface heterogeneity and the nonlinearity degree of the retrieved function.
Analytical expressions for the scaling bias of gap probability and C were established in function of the
variance of LAI and the mean value of LAI in a coarse pixel. With the VALERI dataset, the study in
this work showed that relative scaling bias of gap probability increases with decreasing spatial
resolution for most of land cover types. Large relative biases were found for most of crops sites and a
mixed forest site due to their relative large variance of LAI, while very small biases occurred over
grassland and shrubs sites. As for a new parameter C, it varied slowly in the pure forest, grassland and
shrubs sites, while more significantly in crops and mixed forest. The parameters C has endowed a new
significance to traditional clumping index and provided evidence to the utility of clumping index as an
improvement of the estimate of gap probability from LAI. The results exhibited also the capability of
clumping index for scaling Beer’ law and representing spatial heterogeneity, as well as the feasibility
of the inversion approach for gap probability from remote sensing data. Meanwhile a simple and
feasible method to estimate “clumping index” from remote sensing data was also explored in this work,
which would provide a support to global mapping of the vegetation clumping index.

In terms of the estimation of regional ET from fully remote sensing data, this work was a trial to
develop a parameterization of regional ET with only satellite derived surface parameters, such as the
so-called Ts-VI triangle method. This type of method relies on the triangular shape formed by the
scatter plot of surface temperature (Ts) versus vegetation index (V1) under a full range of vegetation
cover and soil moisture availability within the interesting study region to estimate EF and ET at
satellite pixel scale. This algorithm can provide an estimation of surface net radiation, soil heat flux,
EF and ET at regional scale from MODIS data and products alone. The success of Ts-VI triangle
method on the estimation of EF and ET depends mainly on the correct choice of the dry and wet edges
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in the Ts-VI triangle space. An arid and semi-arid area is usually selected to estimate the ET with Ts-
VI triangle method because the dry edge of Ts-VI triangle feature space can be successfully
determined in such areas where wet pixels are not generally easily identified. The wet edge is assumed
to be a horizontal straight line in this work. By means of formula derivation, the estimation of ET can
be converted into the estimation of ® which represents a combined-effect parameter accounting for
aerodynamic resistance. Once the two edges (dry and wet) in the Ts-Fr space are determined, the value
of ® corresponding to the driest bare soil pixel (at the position Fr=0 and maximum surface
temperature Tgmax in the dry edge line) is set to 0 (denoted as ®,,;,=0 at pixel (Fr=0, Tsmax)) and the
value of @ at the position Fr=1 and the minimum surface temperature Tsmi, in the dry edge line is set
to 1.26 (denoted as ®max=1.26 at (Fr=1, Tsmin)). A two-step linear interpolation is then used to get the
® value for the pixel i (Fr,;, Ts;) in the Ts-Fr triangle space.

This work gave a preliminary validation of satellite derived sensible heat flux with the field
measurements made by the LAS during the Heihe Field Experiment from May 20" to August 21%,
2008. The sensible heat fluxes retrieved using MODIS data from a grassland located in the middle
reach of Heihe river basin, Northwest China, are in good agreement with those measured from LAS.
The Root Mean Square Error of this comparison is 25.07 W/m?. It is shown that determination of dry
and wet edges using the proposed algorithm is accurate enough at least in most cases of our study for
the estimates of regional surface ET. This work also showed the advantage of the Ts-VI triangle
method compared to the other methods traditionally employed for the determination of the regional ET
and proposed methods to calculate land surface temperature and emissivity from the radiances
measured by the satellites. This work also showed that only from the satellite data with an acceptable
precision it was possible to estimate ET in arid and semi-arid areas.

This work opens interesting prospects. In the restitution of regional ET, the exactitude of this
restitution depends mainly on the exactitude of the dry and wet edges determination in the Ts-VI
triangle and on the performance of the interpolation model involved in the evaluation of the
evaporative fraction in the ET estimation model. The performances of the model and the new
algorithm developed in this study have to be evaluated in the future in a precise and attentive way.
Determination of dry and wet wedges in Ts-VI triangle space generally involves a large degree of
subjectivity and uncertainty. The rules and algorithm proposed in this thesis give a feasible way to
estimate the highest surface temperature at each fractional cover interval and subsequently determine
the dry and wet edges in arid and semi-arid climate region from the Ts-VI triangle space.

Although assumption of two-step linear interpolation scheme involved in the estimation of the
combined-effect parameter ® and evaporative fraction is still questionable and not yet verified directly,
a very good agreement is found when sensible heat flux estimated from MODIS data is compared with
that measured by LAS instrument. To reduce the uncertainty in the estimation of turbulent heat fluxes
from the Ts-VI method, further work needs to be carried out to verify the relevant parameters/variables
step by step provided that data required are available in the future and more validation work needs to
be performed in other different regions for the proposed algorithm.

6.2 Future trends and prospects

From what was mentioned previously, if there are no innovated methods in acquisition of
remotely sensed data and meteorological variables or newly-developed ET models, the main restricting
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factors in the estimates of actual instantaneous/daily/weekly/monthly ET over regional scale from
remote sensing techniques are actually the retrieval accuracy and physical interpretation of different
surface variables retrieved from satellite data, parameterization of land surface fluxes at regional scale,
temporal and spatial data/model scaling among different scales, validation of the latent heat flux
obtained from models at regional scale, acquisition of near-surface meteorological data over different
satellite pixel scales etc.

As known, the sensors onboard satellites measure only radiances at the top of the atmosphere.
These measured radiances are in general the quantities integrated over very heterogeneous and large
surfaces. One can thus ask following questions: Can one extract from these radiances the macroscopic
parameters (variables) describing such a surface? Do such macroscopic parameters exist? How to
define them? One can also wonder whether the description of the physical processes at the
land/atmosphere interface developed at local scale is applicable to the larger (spatial) scale with
surface parameters (variables) integrated over this surface. The attempts to answer all these questions
lead to study the fundamental and conceptual aspects of the definition of the macroscopic parameters
(variables) and the scaling effects. The passage of the radiances measured at the top of the atmosphere
to the macroscopic parameters (variables) and physics of surfaces requires the corrections for the
atmospheric effects and the connection of the surface parameters (variables) derived directly from
satellite data to other surface parameters (variables) through physical models. These problems lead to
study the methodological aspects of the derivation of the surface parameters (variables) which can not
be retrieved directly from satellite data and the metrology aspects of the atmospheric corrections
necessary to the determination of other surface parameters (variables) directly from satellite data.

Study will be recommended to focus on the following subjects in the future for quantifying
regional and global ET.

6.2.1 Modeling of land surface processes at interface of soil-biosphere-atmosphere at
regional scale

This modeling aims to formulate the processes of exchanges between soil-biosphere-atmosphere
in terms of macroscopic parameters which have significant physical meaning at regional scale and are
measurable from satellites. The required formulation should permit to specify both the physical
meaning of the measurements by satellite and the passage of local scale to regional and global scales.
It concerns a semi-phenomenological analysis which could lead to a new method to assimilate
effectively satellite data for the land surfaces.

6.2.1.1 Dialectical approach to model the spatial-temporal variations of land surface
processes at various scales

Two modeling methods (one is based on the other) are possible to be developed to study what
occurs at regional and global scales.

6.2.1.1.1 Integrating method

This method consists in describing all the elements that compose a pixel, in modeling the
processes for each one of these elements and extrapolating these models by a process of “surface
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integration” to deduce what occurs to large scales. It is about a type of up-scaling. Because of the non-
linearity of the processes, this integration is complex and is based on assumptions not always easy to
control. This method is very useful to understand what occurs, and can direct the research of the
“integrating” variables (parameters) directly describing the processes at the scale considered. It is,
however, difficult with this method:

1) to benefit from “simplifications” which must appear at large scale, due to the fact that one
cannot measure all the characteristics of the elements composed the pixel.

2) to highlight “the good” variables representative of the system at large scales.

This method can lead to models having a very great humber of parameters and variables whose
determination at large scales is not possible without arbitrary, taking into account the extreme local
variability of these in-situ quantities.

6.2.1.1.2 “Autonomous” method at large scales

Although the integrating method is very rich and useful, it must be supplemented, in a dialectical
way, by a method that analyzes and models (parameterizes) the observations made directly at satellite
pixel scale. This second method is founded on the principle of “scale autonomy” which implies that
the processes at a given scale can be described and understood at this scale in an autonomous way and
without making reference to the phenomena and processes intervening at a lower scale, even if they
are the consequence. The passage from one scale to others permits to describe the parameters and
variables defined in a given scale in function of the variables and processes of under systems
intervening on a lower scale.

This raises obviously the question about whether this autonomous description with large scales
exists and whether necessary and sufficient measures are currently available to carry out this study. As
only satellite measurements are available, the question is whether necessary and sufficient variables
(parameters) can be defined with these satellite measurements to describe the state of surface and
processes of the land surface at satellite pixel scale. The answer is not obvious [Morel, 1985] and is
not really known. However, experiments showed that it is possible to highlight spatial indicators which
are sensitive to the variations of the state of the biosphere [Rasool, 1987; Roerink and Menenti, 2000;
Roerink et al., 2000b; Moody and Johnson, 2001]. It is not possible to currently give an exhaustive list
of these indicators. One can nevertheless quote a certain number of it: surface temperature, temporal
sums of temperature, vegetation indices, Microwave Polarization Difference Indices (MPDI), complex
inertia, Albedo, precipitation indices, moisture indices, roughness indices, resistance indices and
temporal sums of some of these indices, etc

It was shown that these indices are not independent and it is possible to establish laws between
their variations. Indeed, recent studies seem to indicate that this method is possible and can constitute
an original approach of the processes at regional scale or global scale without going into the details of
the local scale. For example, it was shown that relations NDVI/Ts could be correlated with
evapotranspiration resistance, with surface moisture [Nemani et al., 1993; Nemani and Running, 1989;
Whitehead et al., 1986; Carlson et al., 1995b] and that the correlations albedo/Ts could provide an
indicator permitting to monitor extension of the area affected by the desertification [Becker and Séguin,
1985; Séguin et al., 1987]. It was also showed that the correlations between visible reflectances and
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MPDI could characterize the interannual variations of the soil surface due to the hydrous deficit
[Choudhury, 1990; Choudhury, 1991]. They are yet only the preliminary studies, but they indicate
nevertheless potential and very interesting research for such an “autonomous” approach.

Although still very little developed, such an “autonomous” approach is now feasible. Indeed,
huge space measurements provided by the earth observation satellites are now available to scientists
and the scientists begin to be able to derive an ensemble of important surface variables (parameters)
and/or spatial indicators from these measurements.

6.2.1.2 Reformulation of the energy balance at large scales

Efforts will be made by introducing “integrating parameters” and a parameterization of the
diurnal variation of surface temperature with a minimum number of parameters into the reformulation
of the energy balance at large scales [Goettsche and Olesen, 2001] in order to use the temporal
information provided by satellite data. To simulate complicated phenomena, one can try to introduce
measurable parameters from space, such as a complex inertia or complex coefficients of transfer
[Abdellaoui et al., 1986; Raffy and Becker, 1986] .

6.2.1.3 Phenomenological analysis of the spatial-temporal variations of the spatial indicators
characterizing surface states and processes at satellite pixel scale

The suggested phenomenological analysis will be carried out to allow: 1) description of
phenomenological relations between surface variables and/or spatial indicators and to reveal possibly
new parameters characterizing land surface states and processes, to highlight characteristic thresholds
of the release of certain phenomena (erosion, release of sandstorm, degradation etc.), 2) establishment
of the laws and properties which take into account these variations, and 3) to study these laws and the
stability of the processes which they describe in function of the parameters controlling these laws.

According to the above cases, this analysis could be performed using the signal processing
methods for nonlinear systems, and one will focus to study the way in which the variations observed
and modeled change in function of the value of the parameters controlling the equations which will be
established.

6.2.1.4 Modeling and assimilation of the data

A big challenge in the development of remote sensing ET models is to develop a new fully
remote sensing data-based parameterization of land surface ET with only land surface variables and
parameters directly or indirectly derived from satellite data.

Associating the measurements taken from satellites with land surface models is essential to
connect between measurements and models, the various surface characteristic state variables
(parameters) (or other relevant parameters), the parameters of process, and the space observations.
Efforts will be made to introduce modifications of the existed land surface models by assimilating
satellite data and if possible by introducing a new parameterization of land surface evapotranspiration
process and evaporative fraction based on the relevant parameters observed from space. This aspect is
very important to correctly take into account the effects of feedback. Accordingly, it will undoubtedly
be necessary to reformulate certain equations to introduce parameters directly accessible to space
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measurement, or to re-compute these parameters from the models.

6.2.2 Further improvement of the accuracy of land surface variables (parameters) retrieved
from remotely sensed data

Land surface temperature is the direct indicator of how much energy and water could be available
over the land surface and is one of the most key factors affecting the accuracy of the ET estimates.
Land surface temperature along with other related remotely sensed surface variable (parameters) such
as surface albedo, emissivity, NDVI, soil moisture, fractional vegetation cover and LAI in the energy
balance models have significant impact on the precise partition of the four energy components in these
models and consequently on the accuracy of the retrieved regional ET. Although great progress has
been made nowadays to retrieve quantitatively land surface variables (parameters) from remotely
sensed data, accuracy of some surface variables (parameters) required in remote sensing ET models
still needs to be improved and more attention should be paid also to the physical interpretation of these
surface variables (parameters) retrieved directly or indirectly from satellite data.

6.2.3 Research in-depth on the impact of the advection on regional estimates of ET

Advection is another factor influencing the accuracy of the partition of surface available energy
into turbulent fluxes. It often occurs in the urban area and desert and directly causes the imbalance of
surface energy especially over small spatial scales (high spatial-resolution) and is another source of
energy to evaporate the water from surface. At present, it is still uncertain over what scale advection
will have to be considered and how the energy is exchanged between neighboring pixels in the
horizontal direction.

6.2.4 Calibration of land surface process models with the remote sensing ET to map regional
and time-integrated ET

Theoretically, remote sensing ET models can be able to provide relatively accurate spatial
distributions of instantaneous ET while land surface process models driven by atmospheric forcing
data, and run with related surface data and physical properties of soil and vegetation as model inputs,
can simulate the long-term development trend of the turbulent heat fluxes, soil water content and other
related corresponding physical, chemical and biological processes that might occur over both temporal
and spatial scales. Land surface process models may help to overcome the limitation of the current
remote sensing ET models, the latter is merely employed under clear sky conditions and at
instantaneous scale. However, because of both the low spatial resolution and the uncertainties in the
model inputs in the land surface process models, it is hard, sometimes impossible to estimate correctly
the latent heat flux at large scale with land surface process models without adding information
provided by satellite data. Remote sensing has the unique advantages on the acquisition of spatial land
surface variables (parameters) needed in the land surface process models from a scale of several
meters to a scale of several kilometers. It may be an effective way to reduce the uncertainties existing
in the current land surface process models. Efforts will be made therefore to develop methodologies to
calibrate the ET simulated by land surface models with remote sensing ET values and use as many as
possible all the land surface variables (parameters) derived from satellite data under clear sky
conditions. In addition, with the rapid development of multi-spectral, multi-temporal and multi-spatial
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satellite technology, computer processing technique and optimization algorithms in the geosciences,
data assimilation is believed to be another promising way to integrate the models, data and
optimization methods together to estimate temporal and spatial ET continuously.

6.2.5 Validation of the ET and land surface variables (parameters) at satellite pixel scale

Validation is the process of assessing by independent means the uncertainty of the data products
derived from the system outputs. Without validation, any methods, models, algorithms, and parameters
derived from remotely sensed data can not be used in confident. Both the fundamental physical
measurements made by the sensor (e.g. radiance) and the derived geophysical variables (e.g. biomass)
must be properly validated. Validation is the most key and urgent issue to be dealt with because
validation can help to understand the combined effects of errors in the remotely sensed data,
uncertainty in the remote sensing ET models and uncertainty in the retrieved land surface variables
(parameters), and thus can provide feedback and some clues to optimize models, improve accuracies
of both the remotely sensed data and the retrieved land surface physical variables (parameters).

Currently, validation of estimated ET is one of the most troublesome problems mainly because of
both the scaling effects, i.e., comparisons between remote sensing ET and ground-based ET
measurements, and the advection effects. Several validation techniques have to be developed. These
may include comparisons of remote sensing ET with ground-based ET measurements conducted over
validation test sites, inter-comparisons with ET estimated from satellite data at different spatial
resolution or estimated using combined various data sources and land surface process models, inter-
comparison of trends derived from independently obtained reference data and remotely sensed data,
and analysis of process model results which are driven or constrained by remotely sensed data and ET.
However, due to the surface heterogeneity and scaling effects, it may be questionable to validate the
turbulent heat fluxes at satellite pixel scale with the “point” scale measurements obtained from the
Bowen ratio, lysimeter and eddy correlation system over non-uniform and heterogeneous surfaces. The
newly developed LAS (XLAS) can provide a promising approach to validate the remote sensing ET at
much larger scales.
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Nomenclatures
or Acronyms

Meanings or Full Names

ABL Atmospheric Boundary Layer
AEA Albers Equal Area
ALEXI Atmosphere-Land Exchange Inverse
Ay the projection of leaf area in perpendicular to incident beam
ARM Atmospheric Radiation Measurement
ASCE American Society of Civil Engineers
ASL Atmospheric Surface Layer
ASTER Advanced Space-borne Thermal Emission and Reflection Radiometer
ATSR Along Track Scanning Radiometer
AVHRR Advanced Very High Resolution Radiometer
B Planck function
BAS Bulk Atmospheric Similarity
Bi(Ti) Channel radiance measured in channel i at the TOA
Bi(T.) Radiance measured in channel i if the surface was a blackbody with surface
temperature T,
BRDF Bidirectional Reflectance Distribution Function
BREB Bowen Ratio Energy Balance
C Clumping index at coarse pixel
CAST China Academy of Space Technology
CMA China Meteorological Administration
Cp Specific heat of air at constant pressure
Crad Correction coefficient used in sloping terrain
CWwWsSI Crop Water Stress Index
d Zero plane displacement height
Dy Day of year
D, Earth-sun distance in astronomical unit
DEM Digital Elevation Model
DISALEXI DISaggregated ALEXI
dT Surface-air temperature difference
DTD Dual Temperature Difference
dTary Surface-air temperature difference at dry pixel
dTs Surface temperature difference of two times in the morning
dT et Surface-air temperature difference at wet pixel
Eo Solar irradiance at TOA
EBBR Energy Balance Bowen Ration
EC Eddy Correlation
ECMWF European Centre of Median-range Weather Forecast
EDAS Eta Data Assimilation System
EDC EROS Data Center
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Nomenclatures
or Acronyms

Meanings or Full Names

EF Evaporative fraction
EF; Instantaneous EF
EF, Relative evaporative fraction
ET EvapoTranspiration
ETq Cumulative daily ET
ET; Instantaneous ET
ET, Reference ET (over the standardized 0.5m tall alfalfa)
ETr g Cumulative daily reference ET
ET.F Reference ET fraction
f(0) vegetation fraction viewed at angle ¢
FIFE First ISLSCP Field Experiment
F, Fractional vegetation cover
Fri Fractional vegetation cover for each VI or NDVI interval (i)
g Acceleration due to gravity of the earth
G Soil heat flux density
GOES Geostationary Operational Environmental Satellites
GSFC Goddard Space Flight Center
GSW Generalized Split-Window
H Sensible heat flux
H. Sensible heat flux for canopy
HCMM Heat Capacity Mapping Mission
HDF Hierarchical Data Format
Hary Sensible heat flux at dry limit
Ngor Height of the PBL
HRV High Resolution Visible
H, Sensible heat flux of bare soil
Huet Sensible heat flux at wet limit
IFOV Instantaneous Field Of-View
IGBP International Geosphere-Biosphere Programme
IPCC Intergovernmental Panel on Climate Change
IR Infra-Red
ISLSCP International Satellite Land-Surface Climatology Project
JHU Johns Hopkins University
k Von Karman’s constant
L Latent heat of vaporizaiton
LAADS Level 1 and Atmosphere Archive and Distribution System
LAI Leaf Area Index
LAixer LAI at coarse pixel
LAISiub_pixel LAI of sub-pixel i within a coarse pixel
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Nomenclatures
or Acronyms

Meanings or Full Names

LAS Large Aperture Scintillometer
LE Latent heat flux density
LE. Canopy-covered ET
LE4 Daily ET
LEqr Latent heat flux at dry limit
LE; Instantaneous LE
LE, Potential ET
LE, ET of bare soil
LE et Latent heat flux at wet limit
LMD Laboratoire de Meteorologie Dynamique
LPDAAC Land Processes Distributed Active Archive Center
LSE Land Surface Emissivity
LST Land Surface Temperature
MCST MODIS Characterization and Support Team
ME Mean Error
METRIC Mapping EvapoTranspiration at high Resolution with Internalized Calibration
MIR Middle InfreRed
MISR Multi-angle Imaging Spectra-Radiometer
MODAPS MODIS Adaptive Processing System
MODIS MODerate resolution Imaging Spectroradiometer
MODTRAN MODerate spectral resolution atmospheric TRANsmittance algorithm and
computer model
MRT MODIS Reprojection Tool
MSG/SEVIRI Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NDVnax Maximum Normalized Difference Vegetation Index
NDVlin Minimum Normalized Difference Vegetation Index
NEAT Noise Equivalent Temperature Difference
NIR Near Infrared
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
P Directional gap probability
PBL Planetary Boundary Layer
POLDER Polarization and Directionality of Earth Reflectance
r Broadband albedo at TOA
ra Aerodynamic resistance to heat transfer between surface and reference height
2 max Maximum aerodynamic resistance to sensible heat transfer
Famin Minimum aerodynamic resistance to sensible heat transfer
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Nomenclatures
or Acronyms

Meanings or Full Names

re Canopy-covered aerodynamic resistance to sensible heat transfer
RE Relative Error

Riw Surface net longwave radiation

RMSE Root Mean Square Error

R, Surface net radiation flux density

Rnd Daily R,

s Aerodynamic resistance of bare soil to sensible heat transfer

Rs Incoming shortwave solar radiation
Rsd Cumulative daily Rs

Rs,d,horizontal

Cumulative daily R, for a horizontal surface

Rs,d,pixel

Cumulative daily R for a specific pixel

Rsi

Instantaneous Ry

Rs,i,horizontal

Instantaneous R; for a horizontal surface

Rs,i pixel Instantaneous R, for a specific pixel
Rew Surface net shortwave radiation
S Area of pixel
SAST Shanghai Academy of Space Flight Technology
SAVI Soil-Adjusted Vegetation Index
SEBAL Surface Energy Balance Algorithm for Land
SEBI Surface Energy Balance Index
SEBS Surface Energy Balance System
SEVIRI Spinning Enhanced Visible and Infrared Imager
SGP Southern Great Plain
S; Area of sub-pixel i
SPOT Systeme Probatoire d'Observation dela Tarre
S-SEBI Simplified Surface Energy Balance Index
SVAT Soil-Vegetation-Atmosphere Transfer
S-VISSR Stretched-Visible and Infrared Spin-Scan Radiometer
SZA Solar Zenith Angle
t Duration time starting at sunrise
To Surface temperature of bare soil
Ta Air temperature measured at a reference height
Ta_1st Atmospheric temperature in the first boundary layer of the atmospheric profiles used
Taero Aerodynamic temperature
Te(0) Brightness temperature viewed at angle 6
T. Canopy radiometric temperature
Tg0 MIR ground brightness temperature without the contribution of the solar direct beam
Ty 22 Daytime ground brightness temperature of MODIS channel 22
T 23 Daytime ground brightness temperature of MODIS channel 23
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Nomenclatures
or Acronyms

Meanings or Full Names

T; Channel brightness temperature observed in channel i at the TOA
'Ti Mean channel brightness temperature of pixels observed in channel i at the TOA
TIGR Thermodynamic Initial Guess Retrieval
TIR Thermal InfreRed
TIROS-N Television Infrared Observation Satellite - N series
T Channel brightness temperature observed in channel j at the TOA
'|TJ- Mean channel brightness temperature of pixels observed in channel j at the TOA
™ Thematic Mapper
TOA Top Of the Atmosphere
Tooi Average planetary boundary layer temperature
Tran(0) Directional radiometric surface temperature viewed at angle 6
Ts Surface radiometric temperature
Tsi Surface radiometric temperature for each VI or NDVI interval (i)
Tsmax Maximum surface temperature
Tsmaxi Maximum surface temperature for each VI or NDVI interval (i)
Tsmin Minimum surface temperature
Tsmixi Minimum surface temperature for each VI or NDVI interval (i)
Teky Air temperature or equivalent air temperature
TSM Two-Source (soil+canopy) Model
TSTIM Two-Source Time Integrated Model
u Wind speed
u Friction velocity
UCSB University of California Santa Barbara
UNEP United Nations Environment Program
VALERI Validation of Land European Remote sensing Instruments
Vi Vegetation Index
VIT Vegetation Index/Temperature
VPD Vapor Pressure Deficit
VZA Viewing Zenith Angle
WDI Water Deficit Index
WMO the World Meteorological Organization
WVC Water Vapor Content
XLAS eXtra-Large Aperture Scintillometers
Za Measurement height of wind speed and air temperature
Zon Surface roughness length for heat transfer
Zom Surface roughness length for momentum transfer
Ol Surface shortwave albedo
B Bowen ratio
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Nomenclatures
or Acronyms

Meanings or Full Names

Y Psychrometric constant
A Slope of saturated vapor pressure as a function of Ta
) Standard deviation
OLAl Standard deviation of LAI
SLST LST error
Age Difference between ¢; and g;
€ Emissivity
e(0) Surface emissivity viewed at angle 6
€ Atmospheric emissivity
g Channel emissivity in channel i
g Channel emissivity in channel j
& Surface emissivity
0 Viewing angle
; Incident radiation angle
0, Solar zenith angle
oL Mean of leaf inclination angle
A Geographical latitude (expressed in decimal degrees)
A Monin-Obukhov length
u Cosine of solar zenith angle
& Phase angle
p Density of a certain entity
Db Bidirectional reflectivity
G Hemispherical directional reflectance at viewing angle 6
pn(Bvza) Hemispherical directional reflectance at viewing zenith angle 6
pi Narrowband reflectance at the TOA
Pw Density of water
o Stefan-Boltzman constant (5.67x107)
T Atmospheric transmittance in channel i
T Atmospheric transmittance in channel j
@ Combined-effects parameter which accounts for aerodynamic resistance
D @ for each VI or NDVI interval (i)
Drnax Maximum @
Draxi Maximum @ for each VI or NDVI interval (i)
Drjin Minimum @
Din.i Minimum @ for each VI or NDVI interval (i)
o) Relative azimuth angle between the observation and incident directions
¥, Stability correction function for momentum transfer
¥, Stability correction function for heat transfer
Q Clumping index
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Nomenclatures
or Acronyms

Meanings or Full Names

r Ratio of G to R,
I I' of bare soil
Iy I" of full vegetation cover
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