
Thèse présentée pour obtenir le titre de

Docteur de l’Université de Strasbourg

Discipline : Physique

Molecular Dynamics Simulations of
Sheared Polymer Brushes

André Galuschko

Thèse soutenue publiquement le 6 septembre 2010

Membres du Jury :

Directeur de thèse : J. Baschnagel
Professeur UDS, ICS, Strasbourg

Co-directeur de thèse : J. Wittmer
Directeur de recherche, ICS, Strasbourg

Examinateur : T. Charitat
Professeur UDS, ICS, Strasbourg

Rapporteur externe : H. Xu
Professeur UPV, LPMD, Metz

Rapporteur externe : J.-P. Ryckaert
Professeur ULB, LPMM, Bruxelles

Invité : T. Kreer
Docteur, Universität Mainz





Abstract
Polymers end-grafted onto surfaces ("polymer brushes") display extraordinary tri-
bological properties. When two polymer-brushes coated surfaces come in contact,
they strongly repel one another and interpenetrate weakly. Thus, opposing brushes
can carry high normal loads, whereas simultaneously lateral sliding resistance may
be extremely small. First experiments on polymer brushes under shear were carried
out by J. Klein [Annu. Rev. Matter. Sci. 26, 581 (1996)] reporting that the re-
sulting friction coefficients may be orders of magnitude smaller than those found in
dry friction. Therefore, polymer brushes have important applications as lubricants.
Due to limitations of the experiments, information about molecular factors causing
the rheological response is not provided, such that the interpretation of the observed
phenomena remain challenging for theoretical description.

The main subject of this thesis is to investigate the complex fluid response utiliz-
ing Molecular Dynamics simulation of the generic bead-spring model by Kremer and
Grest [J. Chem. Phys. 92, 5057 (1990)] as a "high-resolution microscope" to resolve
molecular structure beyond static equilibrium. The model system contains charge-
neutral polymer chains attached to two substrates under good solvent condition,
creating two opposing polymer brushes. Furthermore, explicit solvent molecules
(Lennard-Jones dimers) are added to the system simulating an incompressible fluid.
The Dissipative Particle Dynamics Thermostat is implemented to keep the temper-
ature constant fulfilling Newtons third law, thus assuring momentum conservation
and simulating hydrodynamic correlations correctly. Those systems are compared
to solvent-free counterparts while varying the wall distance between the grafted lay-
ers and their molecular parameters, such as chain length and grafting density.This
work employs the planar Couette flow geometry, where both opposing brushes are
strongly compressed and a simple shear flow is applied by moving the substrates
laterally in opposite directions. Approaching the problem with scaling theory, the
interpenetration length of the compressed bilayer at equilibrium is introduced as a
relevant length scale. This allows to predict the dependence of the critical shear rate,
which separates linear and non-linear behavior, on compression and the molecular
parameters of the bilayer in stationary shear motion. A strong correlation is found
between the microscopic response (e.g. lateral chain extension) and macroscopic
transport properties (e.g. fluid viscosity) beyond Newtonian response. In agree-
ment with the developed theory, the simulation reveals simple power-laws in those



observables. Additionally, a very good agreement with recent experimental data by
Schorr et. al. [Macromolecules 36, 389 (2003)] is demonstrated to substantiate our
study.

Besides the stationary regimes (equilibrium and steady state) the transient regime,
starting from a steady shear situation and inverting the shear direction is explored.
The presence of the explicit solvent, which is carrying extra inertia, is changing
the responses dramatically versus the complementary systems with the continuous
solvent. All these cases are present in the experimental setup in terms of a sin-
gle transitional regime, the oscillatory regime. A connection to all those cases is
established, discussing the reachability of those limits by a standard macroscopic
rheology-like analysis. Finally, the dissertation summarizes and discusses the limi-
tation of the mean field theory and revisits the brushes at static equilibrium. The
interface is defining the frictional properties, a simple Green-Kubo relation intro-
duced by Bocquet and Barrat [Phys. Rev. Lett. 70, 2726 (1993)] evaluates the
fluctuations at the junction. A non-trivial behavior of long time correlations inside
the interface of the double layer is illustrated and will give rise for further studies.
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Résumé
Les polymères greffés sur une surface (“brosse de polymères”) présentent des pro-

priétés tribologiques uniques. Quand deux brosses de polymères sont en contact,
elles se repoussent fortement et on observe une faible interpénétration. De plus ces
brosses peuvent supporter de fortes charges tout en affichant une très faible friction
latérale. Les premières expériences sur les brosses de polymères sous contrainte de
cisaillement ont été réalisées par J. Klein [Annu. Rev. Matter. Sci. 26, 581 (1996)].
Celles-ci ont démontré que les coefficients de friction de ces brosses pouvaient être
de plusieurs ordres de grandeur inférieurs à ceux observés pour le frottement solide.
D’ou le grand potentiel applicatif de ces brosses dans le domaine de la lubrification.
En raison des limitations des expériences réalisées, les phénomènes microscopiques à
l’origine de ces propriétés n’ont pas pu être définis et l’interprétation de ces résultats
par une description théorique reste un important challenge.

Le principal objectif de cette thèse est d’enquêter sur la réponse des brosses po-
lymères à une contrainte de cisaillement par le biais de simulations de dynamique
moléculaire utilisant le modèle générique bille-ressort de Kremer et Grest [J. Chem.
Phys. 92, 5057 (1990)]. Ces simulations peuvent être vues comme un “microscope à
haute résolution” qui va fournir des informations microscopiques au-delà du simple
cas de la description statistique du système à l’équilibre. Le système modèle de
brosses de polymères utilisé lors des simulations numériques est constitué de chaînes
de polymères neutres et monodisperses attachées à deux substrats plans sous condi-
tion de bon solvant. De plus, des molécules de solvant ( dimères Lennard-jones )
sont ajoutés au système pour fournir les propriétés d’un fluide incompressible. Le
thermostat DPD ( Dissipative Particle Dynamics ) est implémenté pour maintenir
la température du système à une valeur donnée tout en assurant la conservation
de la quantité de mouvement et des propriétés hydrodynamiques du système. Ces
systèmes sont comparés à leur équivalent sans solvant explicite tout en faisant varier
la distance entre les substrats, leurs paramètres moléculaires comme la densité et la
longueur des chaines greffées à la surface des substrats. Ces travaux ont employé une
conformation géométrique qui permet un cisaillement de type “écoulement de Couet-
te”. C’est à dire que les deux brosses opposées sont soumises à une forte pression
et un cisaillement simple est appliqué en imprimant des mouvements latéraux de
sens opposés aux deux substrats. Si on interprète le système avec des lois d’échelle,
la distance d’interpénétration des deux brosses sous pression à l’équilibre peut être



utilisée comme une échelle de longueur. Ceci nous permet de prédire la dépendance
de la vitesse de cisaillement critique ( qui sépare les réponses linéaire et non-linéaire
) à la compression et aux paramètres moléculaires pour l’état stationnaire ( cisaille-
ment constant ). Une forte corrélation entre les réponses microscopiques ( extension
latérale des chaines ) et macroscopique de transport ( viscosité du fluide ) a été trou-
vée au delà de la réponse newtonienne. En agrément avec la description théorique
développée, les simulations révèlent une loi de puissance simple qui lie ces phéno-
mènes. De plus un bon agrément a été trouvé avec des expériences récentes réalisées
par Schorr [Macromolecules 36, 389 (2003)].

Au delà du régime stationnaire ( équilibre ou cisaillement constant ) le régime
transitoire, qui part de l’état du système sous cisaillement constant et inverse le sens
du cisaillement a été exploré. La présence du solvant explicite, qui ajoute au système
un terme supplémentaire d’inertie, change dramatiquement la réponse du système
comparé au cas avec solvant implicite. Tout ces cas, en terme de régime transitoire
simple sont présents dans un dispositif expérimental, le régime oscillatoire. Une
connexion entre tout ces cas a été établie et la limite d’accessibilité de ces régimes
par le biais de simulation reproduisant le protocole ces expériences de rhéologiques
a été discutée. Finalement ce document résumera et discutera les limitations de la
théorie de champ moyen et revisitera l’étude de ces systèmes a l’équilibre statique.
Une simple relation de Green-Kubo introduite par Bocquet et Barrat [Phys. Rev.
Lett. 70, 2726 (1993)] évalue les propriétés de friction à partir des fluctuations du
système à l’équilibre au niveau de l’interface entre les brosses. Un comportement
non-trivial des corrélations au temps longs au niveau de l’interface a été observé et
devra faire l’objet d’étude complémentaire.
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Chapter 1

Introduction

Figure 1.1: Egyptians pulling a Colossus, to aid the movement they use lubricant,
domestiques carry vase of water to wetten the sand, El-Bersheh, circa 1800 B.C. [1]

In everyday life we are hardly aware of friction and how it is affecting us. In
many examples friction is needed, e.g. walking, where the bare foot "pushes" with
an angle on the floor, or rubber covered tires become bend due to contact with the
surface. That general case represents static friction or stiction, where a threshold
of parallel force is needed to overcome static adhesion. On the other hand, a force,
called "kinetic friction force", is needed to move two interacting surfaces laterally
with a given velocity. The research field of friction, lubrication and wear is called
"tribology" [2].
In human history many examples are known where friction is reduced by changing
the surface properties [3]. Figure 1.1 shows a wall painting where Egyptians wet the
sand to transport stones or like in the painting large objects like a Colossus [4].
A first systematic study was done by Leonardo da Vinci and later rediscovered by
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Amontons [4]. Their empirical finding connects the load L with the friction force F
via the coefficient of friction

µ =
F

L
. (1.1)

The latter is independent of the contact area and the velocity, in a moderate regime
of velocities [3]. This first observation approaches the problem of dry friction.
In order to reduce the friction force F a surface optimization can be applied, which
may lead to an extremely small friction coefficient. This phenomenon is known as
superlubricity. In such exotic situations, incommensurable contacts between layered
crystals (i.e. graphite) slide past each other, with µ ∼ 10−4 [5]. Such an optimiza-
tion on the nanoscale seems to be challenging when it is applied to mesoscopic or
macroscopic surfaces, although it may work on nanostructures. Furthermore, the
presence of contaminants, i.e. absorbed molecules, and the assumption of almost
infinite rigidity of asperities on such surfaces appears to be more theoretical and
may not be the first choice for a reduction of friction.
A prerequisite for industrial revolution was the usage of lubricants, which helps
to reduce the energy consumption and increases the lifetime of machines by min-
imizing the wear. The surface is covered with organic or inorganic loose matter,
e.g. long-chain carbohydrates like oils or wax, water, molybdenum sulfate or nan-
otubes, minimizing the contact area [6]. One common example for hydrodynamic
lubrication is the effect of aqua planning when a car is driven at high speed on a
wet surface, and the tires are losing traction separating the wheels from the road.
The friction force is determined by the viscous friction of the lubricant. Sliding on
ice is similar. The ice creates a small layer of water between the surfaces resulting
in a weak friction, µ ∼ 10−2 [2]. When the lubricant is based on polymeric liquids
the term "elastohydrodynamic lubrication" suits the same physical argument.
Under excessive loads and low sliding velocities the lubricating film is squeezed out
of the gap and elasto-/hydrodynamic lubrication breaks down. If the lubricant is
completely removed, dry friction will set in, which would imply high friction and
wear. If a thin film remains absorbed, friction between surfaces is strongly reduced
to dry friction. This is called boundary lubrication. One effect of boundary lubrica-
tion is the reduction of adhesion between solids dominated by van der Waals forces,
FvdW. These forces add to the effective load, yielding

F = µ (L+ FvdW) (1.2)
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for the friction force. The lubricant may reduce FvdW leading to reduced load and
therefore a reduced effective friction.
Nature is rich in many solutions minimizing friction, especially thin films of molec-
ular thickness as they are studied in the context of nanotribology [2]. One example
combines both varieties of boundary and hydrodynamic lubrication. Organic suit-
able solvent molecules wet an irregular array of macromolecular chains which are
attached to a substrate, called "polymer brushes" [7]. Opposing brush-covered sur-
faces can carry very high normal loads, where simultaneously the resistance to lateral
sliding motion may be orders of magnitude smaller than in dry friction [8, 9]. Poly-
mer brushes have thus important applications as lubricants, e.g. in machine parts
or artificial joints [10], and in biolubrication, e.g. synovial joints [11]. Experiments
utilize the surface force apparatus (SFA) measuring in an oscillatory manner the
fluids response. In Figure 1.2 such data taken from Ref. [9] are shown. Both normal
and shear forces are measured as a function of compression. The smallest friction
coefficient µ [Eq. 1.1] found is in the order 10−4. While the extremely low fric-
tion forces are well established experimentally, the understanding of the underlying
mechanisms are rather poor.
Tethered polymer chains gained attention in the 1950s preventing flocculation of
colloidal particles [12]. Some of the first quantitative treatments to understand sin-
gle polymer brushes on flat surfaces were done by Alexander [13], de Gennes [14],
and Semenov [15]. At high surface coverage one may find that endgrafted chains
strongly stretch and that this strong stretching implies that fluctuations around the
"classical" path are negligible [16]. Milner et. al. [17] and Zhulina et. al. [18]
independently implemented the idea of the strong stretching limit, which means
that the brush height is much larger than the unperturbed extension of the single
chain. Contrary to Alexander and de Genne not a step-like density brush profile but
a parabolic profile (MWC profile) was found [17]. Many theoretical approaches to
the problem of solvent flow past an endgrafted polymer layer employ the Brinkman
equation [19], where the brush is interpreted as a porous medium. A qualitative
agreement with the experiment of compressed brushes [20] was found by Frederick-
son and Pincus [21]. Another approach via self consistent field calculations of the
monomer density and the solvent velocity profiles was presented by Harden, Cates,
and Aubouy [22]. All studies used a step-like brush profile, the Alexander brush
[14], forecasting a shear induced swelling of the brush. Contrary to the swelling Ra-
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Figure 1.2: Shear and normal forces F between two sliding compressed polymer
brushes in a good solvent. The force and the surface separation D are rescaled for
a wide range of molecular weights, surface densities (s−2), and unperturbed (single)
brush heights (hext). For the case of lowest friction, a kinetic friction coefficient (eq.
1.1) µ ∼ 10−4 is measured. (Rc is the curvature of the substrates). Taken from Ref.
[9].

bin and Alexander [23] predicted an unperturbed brush height. On the other hand,
Milner showed that the hydrodynamic interpenetration into a brush with parabolic
density profile is larger than in a step-like brush [24]. Another study by Joanny [25]
discusses two opposing sheared molten polymer layers, where chains disinterpene-
trate at a finite critical relative velocity and no longer sustain the viscous stress.
Due to experimental difficulties, experiments do not provide sufficiently detailed in-
formation about the molecular factors causing the rheological response to external
stimuli. Computer simulations can be employed as a "high resolution microscope".
They work with idealized models controlling effects of contamination, surface rough-
ness, polydispersity of the chains, and hydrodynamic correlations inside the complex
fluids explaining the large activity in this field.
Several studies utilized self-consistent field solvers implementing hydrodynamics via
the Brinkman equation for solvent- and monomer-flow field [26–31]. Solvent effects
can also be treated implicitly via the Lattice-Boltzmann method [32] or stochastic
rotational dynamics [33]. Several studies used molecular dynamics simulations (MD)
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to simulate sheared polymer brushes without explicitly including solvent molecules
implementing various thermostats and adjusting the interaction potentials between
monomers, see for instance Refs. [34–42]. A small number of investigations were
carried out with explicit solvent [36, 43–47]. The effects of explicit solvent are rarely
studied by a direct comparison to implicit solvent implementations [43]. One of
the main subject of this work, complementary to Ref. [43] is studying the effects
of explicit solvent molecules. In this work, the nanotribological aspects of polymer
brushes under shear using MD simulations of a classical coarse-grained model are
studied. The considered systems consist of two opposing polymer brushes under
good solvent condition. The degree of compression, density, and polymerization of
the grafted chains are varied for systems with and without explicit solvent molecules.
In chapter 2 the coarse-grained model, simulation parameters, and simulation details
are presented. The third chapter contains the equilibrium properties of two oppos-
ing brushes analyzing the influence of solvent molecules on the density profiles. In
the sliding regime most of the energy dissipation takes place in the overlap of the
brushes. To quantify the interfacial zone a well established mean field model for a
single polymer brush is introduced and conveyed to the problem of a compressed
brush bilayer using a scaling theory approach. This theory is tested with simulation
data.
The fourth chapter will carry on with the discussion of the stationary regime, where
the two brushes are sliding with a constant velocity. The scaling theory will be
extended to the non-linear response regime. It is supported by the numerical obser-
vations. Additionally the velocity profiles of brushes and solvent will be discussed.
Chapter 5 will look at the transient regime. First, the equilibrium brushes are set
into motion reaching steady shear regime, and second the shear directions are in-
verted.
Chapter 6 will present the properties when remaining inside the transient oscillatory
process. Usually, the SFA experiment is carried out such the steady state motion
is one limit of the harmonic driving. A standardized rheological analysis will be
performed connecting all the other regimes.
Chapter 7 discusses the fluctuations inside a brush bilayer and the occurrence of
nontrivial long time correlations, which give rise for further theoretical considera-
tions.
The thesis will finish with a summary.



6



Chapter 2

Model

Several methods are available to simulate polymeric systems out-of-equilibrium.
In our case, we are interested in physical properties which involve several polymer
chains, with thousands of atoms. The method of choice is to neglected the fastest
degrees of freedom, like electron movements, and to coarse-grain the chains without
extending the coarse-graining to a continuous description of the fluid. To retain
enough details of the fluid we adopt a method that allows us to keep track of the
behavior of the chains themselves. Many methods are available approximating hy-
drodynamic properties to a certain extent, like Lattice-Boltzmann simulation [32]
and Brownian dynamics simulation with hydrodynamics [48, 49]. A standard simula-
tion model is introduced, utilizing a bead-spring model for polymers and integrating
the equation of motion by the Velocity-Verlet algorithm. In order to maintain hy-
drodynamic correlations of the fluid the internal degrees of freedom are coupled to a
special thermostat that provides momentum conservation and Galilean invariance.

2.1 Simulation model

We performed molecular dynamics (MD) simulations of the Kremer-Grest Model
(KGM) [50], a so-called bead-spring model, where monomers are represented by
Lennard-Jones (LJ) particles coarse graining 3-5 hydrocarbon groups to one effective
monomer. The monomer-monomer interaction is given by the shifted LJ-potential
and is truncated at a cut-off radius rc = 6

√
2σ = rmin,

ULJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6

−
(
σ

rc

)12

+

(
σ

rc

)6
]

for r ≤ rc, (2.1)

7
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Figure 2.1: The shifted and truncated Lennard-Jones potential ULJ(r) [Eq. 2.1], the
FENE-potetnial UFENE(r) [Eq. 2.2] and the sum of both are shown.

where ϵ and σ define the units of energy and length, respectively. Both are set to 1.
The distance between two particles is denoted by r. In order to bind one end of the
chain to the wall the LJ-potential is not shifted, but cut at rc = 2.5σ and the depth
of the potential well set to ϵ = 100.
The connectivity between two adjacent monomers is given by the FENE (finitely
extensible nonlinear elastic) potential of equilibrium distance r0 = 1.5σ and spring
constant k = 30ϵ/σ2 [50],

UFENE(r) = −1

2
kr20 ln

[
1− (r/r0)

2] r ≤ r0. (2.2)

The potentials are displayed in Figure 2.1.
In the following we will use LJ units. As mentioned, ϵ = 1, σ = 1, and mass m = 1.
The temperature is measured in units of ϵ/kB (with the Boltzmann constant kB = 1),
and the time is in units of τ = (mσ2/ϵ)1/2.
The solvent molecules are build up of two LJ particles connected via the FENE
potential.

2.2 Molecular dynamics simulations

Classical molecular dynamics (MD) simulations [51] consists in solving Newton’s
equations of motion for a set of particles interacting via the coarse-grained model
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potentials defined above. The coupled equation of motions need to be solved:

mi
d2r⃗i
dt2

= F⃗i , (2.3)

where r⃗i and F⃗i are respectively the position of the ith monomer and the force
exerted on it. The force F⃗i derives from the potentials describing the interactions

F⃗i = −∂Upot(r1, ..., rN)

∂ri
. (2.4)

Under the assumption that the potential is dominated by the pairwise interactions,
one can imply:

Upot =
N∑
i ̸=j

ULJ(rij), rij = |r⃗i − r⃗j| , (2.5)

where the particle i interacts with particle j. By using a MD simulation scheme,
the positions and velocities of all particles inside the system are calculated for the
overall simulation time, allowing from there on to compute all physical properties. If
the ergodic principle holds, the time-averaged quantities correspond to an ensemble
average [51].

2.2.1 Dissipative particle dynamics (DPD) thermostat

The simulations are performed in an ensemble in which the particle number,
the temperature, and the wall separation are held constant. The following section
explains the usage of the DPD thermostat as a stochastic thermostat in MD simu-
lations [52]. We do not perform dissipative particle dynamics in its original version.
The DPD thermostat controls the temperature, as the Langevin thermostat [53],
by counter-balancing a friction force removing instantaneously extra heat and a
stochastic force pumping energy into the system. These two forces are connected
via the fluctuation-dissipation theorem. Contrary to a Langevin thermostat, the
DPD thermostat conserves local momentum by fulfilling Newton’s third law. Such
a conservation of momentum will treat problems with fluxes and thus hydrodynam-
ics more accurately [54].
The equations of motion [Eq. (2.3)] include now the thermostat by

˙⃗ri =
p⃗i
mi

, (2.6)

˙⃗pi = F⃗i + F⃗D
i + F⃗R

i , (2.7)
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where F⃗D
i is the damping force and F⃗R

i is the random force, acting on particle i.
The DPD forces are now given by the pairwise inter-particle forces:

F⃗D
i =

∑
j ̸=i

F⃗D
ij , F⃗R

i =
∑
j ̸=i

F⃗R
ij . (2.8)

The two forces are acting along the inter atomic axis r⃗ij = r⃗i − r⃗j. Hydrodynamic
correlations are maintained when damping the velocity differences in the DPD de-
scription. Following Warren et al. [54] the damping force is defined as

F⃗D
i = −γDPD

∑
j ̸=i

ωD(rij)(r̂ij · v⃗ij)r̂ij , (2.9)

where γDPD = 5τ−1
LJ defines a local friction constant, v⃗ij = v⃗i − v⃗j is the relative

velocity of particles i and j, and the unit vector along the atomic axis r̂ij = r⃗ij/|r⃗ij|.
The corresponding stochastic force is given by

F⃗R
i = λ

∑
j ̸=i

ωR(rij)θij r̂ij , (2.10)

with λ being the strength of the noise and θij is a Gaussian random variable defined
by the first two moments

⟨θij (t)⟩ = 0 (2.11)

⟨θij (t) θkl (t′)⟩ = (δikδjl + δilδjk) δ(t− t′) . (2.12)

It is pointed out that the DPD thermostat is neither acting between wall particles
nor on wall-fluid interactions.
The fluctuation-dissipation theorem connects the strength of thermal fluctuations
with the damping rate

λ2 = 2kBTγDPD , (2.13)

and their corresponding weight functions[
ωR]2 = ωD . (2.14)

The functional form of ωD can be chosen arbitrarily. Following [54] we chose for all
the simulations

ωD(rij) = (1− rij)
2 , r < rc (2.15)

with the same cut-off radius as the one used for the Lennard-Jones potential. Other
choices are possible.
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2.2.2 Integration of the equation of motion

Since no analytical solution of Eq. (2.3) exists for many-particle systems, an
integration method of the interacting particles is used to follow their trajectories.
There are several algorithms available to do so. All algorithms rely on the Taylor
expansion of the positions at time t+∆t, with ∆t = 2 · 10−3τLJ being a short time
interval or time-step

r⃗i(t+∆t) = r⃗i(t) + ∆tv⃗i(t) +
F⃗ tot
i (t)(∆t)2

2mi

+O(∆t3) , (2.16)

where v⃗i(t) represents the velocity, F⃗ tot
i = F⃗i + F⃗D

i + F⃗R
i the total force, F⃗ tot

i (t)/mi

the acceleration of the particle i at the time t, and O(∆t3) higher order polynomials
of the Taylor expansion. Using the equivalent expression for the first order derivative
r⃗i(t−∆t) one arrives at the Verlet formulation of Eq. (2.3). It gives an extrapolated
position of particle i in time based on known velocities v⃗i(t) and forces F⃗i(t).

Velocity-Verlet algorithm with DPD thermostat

The positions are updated using

r⃗i(t+∆t) = r⃗i(t) + ∆tv⃗i(t) +
1

2mi

F⃗i(t)(∆t)
2 . (2.17)

Next the velocity for half a time step is evaluated

v⃗∗i (t+
∆t

2
) = v⃗i(t) +

1

2mi

∆tF⃗i(t) . (2.18)

Since the forces now depend on the positions and additionally on the velocities the
extrapolated force becomes

F⃗i(t+∆t) = F⃗i

(
r⃗i(t+∆t), v⃗∗i (t+

∆t

2
)

)
, (2.19)

while the velocities for the next time step are obtained by

v⃗i(t+∆t) = v⃗i(t) +
1

2mi

∆t
[
F⃗i(t) + F⃗i(t+∆t)

]
, (2.20)

and the procedure begins again assembling the trajectories for all particles, see
Ref. [55].
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2.3 Simulation procedure

Initial configuration

At the beginning the setup procedure creates two walls at a certain distance D̂z

relatively to each other build up of monomers. Based on the vectors of the fcc
lattice the LJ particles create an egg carton like surface impenetrable for other LJ
particles. Along this highly symmetric surface one end-monomer out of each chain
is positioned randomly in the xy-plane at a small distance from the wall. In order
to ensure that no artificial high symmetric polymer brush configuration is created a
random number generator sets up a random configuration [56]. Based on two positive
random numbers η(0, 1) ≤ 1 drawn from a flat distribution, the end monomer is
positioned in x = η(0, 1)Lx and y = η(0, 1)Ly on the walls. The extension of the
substrates in x and y direction are set to Lx = 41.66σ and Ly = 36.1σ. AllNg grafted
end-monomers are bound with an interaction energy of ϵ = 100 to the wall. From
that starting point the backbone of each chain is created via a random walk placing
the next monomer of that chain via 2 random numbers in x and y directions and
the step in z-direction is fixed to ensure the stretching. The random step distances
is 20% smaller then σ. In order to avoid that the particles initially are set too close
to each other and overlap too strongly, the initial wall distance D̂z is chosen more
than twice the desired wall distance D′

z. The solvent molecules can now be placed
into the system with a higher acceptance rate. When a stable configuration is setup
the fluid is shortly equilibrated (for 100τLJ) and both walls are moved together to
the desired wall distance D′

z. Both wall movements are given by

∆z = vwall
z ∆t , (2.21)

where vwall
z = 0.1 is chosen. Since the wall particles are of size σ, we may define an

effective wall distance by Dz = D′
z − 2 · 21/6σ, which reflects the distance between

the grafted planes, see Figure 3.1.

Equilibration

After the configuration has reached the desired wall distance D′
z the overall den-

sity reaches ρ = 0.9 if the system is filled with brush and solvent molecules. To
incorporate the fluid more correctly the overall density is chosen rather high to
come close to the (ideal) situation of incompressible fluids [57]. A system without
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explicit solvent has naturally a smaller density ρ = N · Ng/(Dz · Lx · Ly). To ob-
tain a numerically stable system the particles must reach a self-assembled maximal
distance to each other maintaining on average a constant energy. To accelerate the
mixing processes the excluded volume is arbitrary chosen to be small at the begin-
ning of the equilibration process. The cut-off radius in Eq. (2.1) increases with time
until it reaches its maximum volume rc. Usually, after 20000∆t the maximal volume
is reached. Afterwards, an equilibration run for 3 · 105∆t with full interaction range
is performed. A system is assumed to be in a stationary state when all observables in
average do not change in time and several observables are symmetric, e.g. density or
velocity profiles. In comparison to the study of Grest [36], where the same polymer
model for polymer brushes under shear with dimer solvent was studied, included the
simpler Langevin thermostat. In shear direction the Langevin noise and frictional
terms were switched off. The Kremer-Grest-Model has been studied extensively for
single end-grafted polymer chains [58] without explicit solvent.
Furthermore, the temperature along the gap is watched carefully to fulfill the ther-
modynamic boundary condition for the NV T ensemble. For two grafting densities
with the shortest chain length N = 30 at a wall separation D′

z = 14.275 the temper-
ature profiles for both components, polymer brush and explicit solvent are shown
in Figure 2.2 at equilibrium. The tethered ends are bound in the minimum of the
steep LJ-potential and are hence less mobile than the rest of the fluid. This leads to
a shallow parabolic temperature profile. For the highest grafting density ρg = 4.4ρ∗g

a reduction of about 2.5% of the desired temperature T0 is measured. For lower
grafting densities the cooling effect is reduced. When the systems are driven into
a constant shear regime a slight temperature increase is observed. For the highest
wall velocity the temperature profile for each component grows by about 4%.

Wall shear protocol

Referring back to the experimental geometry a simple shear flow will be induced
into the fluid by translating the lattice sites associated with wall atoms in the top
and bottom walls in opposite directions by a distance ∆x [59]. The magnitude of
the displacement is determined by the applied shear rate

γ̇ =
2vwall

x

Dz

, (2.22)
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and given by

∆x = ±2γ̇Dz∆t . (2.23)

The pre-factor 2 in Eqs. (2.22) and (2.23) includes the driving of both walls, which
doubles the relative motion.
Figure 2.3 shows a schematic sketch of the wall protocols (except the oscillatory
motion), which we have implemented. Several regimes, two stationaries and a non-
stationary regime, are shown, where the equilibrium and the steady state represent
the stationary ones. The transition protocol for the onset of motion, given by

vwall
x (t) = v0

[
1− cos

(
2π(t− t0)

τonset

)]
, (2.24)

applied for a half of a complete cycle, where v0 denotes the steady state velocity,
t0 the starting point of the transition, and τonset the transition time. Similar to the
onset of motion a smooth function for the inversion vwall

x = −vwall
x is implemented

vwall
x (t) = v0 cos

(
2π(t− t0)

τinv

)
, (2.25)

where τinv denotes the inversion time for the wall, and the transition is carried out
for a half of a cycle. When both times are set to zero the velocities change in a
step-like manner. Such a delta-function type of excitation induces a wide range
frequencies into the flow. The induced responses must die out first before the flow
can be examined. On the other hand, in an SFA experiment the transition works
with finite acceleration, like in Ref. [9]. In the other limit, when the transition times
become very large the brushes have time to relax during the transition. In order
to observe a transition as in the experiment τonset ≪ τbilayer and τinv ≪ τbilayer are
chosen to be much smaller than the relaxation time of the brush bilayer τbilayer. In
chapter 5 this relaxation time is determined.
To ensure that the fluid remains at constant temperature, the second central mo-
ment of the particle’s velocity is carefully observed. The local heat transfer rate
γDPD = 5τ−1

LJ is chosen not too large in order to avoid overdamping of local move-
ments. In the study of Goujon et. al. [44] a higher rate was chosen, γDPD = 12τ−1

LJ

satisfying the thermodynamic boundary in the grand canonical ensemble at much
higher shear rates. When the walls are moving kinetic energy must be dissipated in
the fluid to maintain a constant temperature. The thermostat acts locally whenever
two particles collide, however the heat transfer rate is instantaneously removing the
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extra heat. At a extremely large velocities the heat production rate dominates over
the dissipative rate and the fluid heats up. For the implemented algorithm and
local friction term the maximum wall velocity is set to vwall

x = 0.23σ/τLJ, where the
temperature between the walls increases up to 4% compared to the externally set
temperature T0 = 1.68mσ2/τ 2LJ. Another limit for the maximum wall velocities is
given by the speed of sound of the fluid. For both solvent and solvent-free cases the
speed of sound is measured, vsound ≈ 4σ/τLJ.
The elements of the stress tensor σij, with i, j = 1 . . . 3 being the three independent
spatial directions, is calculated via the Irving-Kirkwood implementation [60]. In the
stationary regimes all components of the stress tensor along the gap must remain
constant due to mechanical stability and constant in time. A second control for me-
chanical stability is given by the forces acting onto the walls, e.g. shear force fx and
normal force fz, which are up to the geometric prefactor equal to the corresponding
stress tensor components (σxz, σzz).



Chapter 3

Two opposing brushes at equilibrium

Figure 3.1: Typical snapshot of two polymer brushes at static equilibrium. The
distance between the surfaces (light blue spheres) is D′

z = 19.75, corresponding to
a distance between grafting planes of Dz = 17.5. Each brush consists of chains
with N = 30 monomers per chain. The grafting density is approximately twice the
critical grafting density, at which the chains overlap. Red and dark blue spheres
represent monomers, and white spheres are solvent molecules. Their size has been
scaled down for clarity.

In the last few decades much effort was made to investigate the behavior of two
opposing surfaces covered with polymers. Here, the theory of Milner, Witten, and
Cates [17] for a single brush and two compressed brushes in static equilibrium will
be revisited. A description for the interface width between the two layers will be
given and compared with simulations.

17
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3.1 Single polymer brush: MWC-Theory
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A grafted polymer layer can be obtained by using a functionalized end group that
adsorbs onto a substrate. The grafting density is defined by

ρg =
Ng

A
, (3.1)

with the number of absorbed end monomers Ng and the surface area A. If the
density ρg is lower than a crossover value ρ∗g, the critical grafting density, the chains
will not interdigitate. The cross-over value ρ∗g follows from the chain extension,
e.g. the radius of gyration

R2
g =

1

N

∑
i

(r⃗i − r⃗cm)
2 , (3.2)

quantifying the extension of one chain (with N monomers) by the relative position
of each monomer r⃗i to the chain’s center of mass position r⃗cm [61]. The critical
grafting density is defined by

ρ∗g = 1/πR2
g , (3.3)

with R2
g taken for an isolated chain in solution. The regime of lower grafting densities

is referred to as the "mushroom" regime [7]. Larger grafting densities lead to a semi-
dilute regime where a polymer brush [13, 14] is formed.
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In the simulation we observe that the chains start to stretch away from the surface to
counterbalance the monomer-monomer repulsive interaction and the entropic elastic
energy of the chains creating a parabolic density profile with an exponential tail at
the free end [58]. Figure 3.2 shows the monomer density profile of a single brush
stretching perpendicular from the surface reaching into the bulk of solvent molecules.
For clarity the critical grafting density always referrers to the shortest chains (N =

30) simulated, e.g. ρg = 1.1ρ∗g where ρ∗g is defined by Eq. (3.3). When the chain
length is doubled, e.g. N = 60, the number of endgrafted chains is mottled keeping
the brush monomer density constant and the critical density is referred to the one
of the shortest chains, N = 30. When any theoretical expressions depending on
chain lengths and grafting densities are shown, the legend will display the grafting
densities in a simplified manner, ρ∗ and not ρ∗g. While systems with explicit solvent
molecules are symbolized by filled symbols, systems without dimeres are shown with
open symbols. The different wall distances are color-coded.

3.1.1 Milner-Witten-Cates brush

The single chains are attached by one end while the other end is freely reaching
into the bulk. The monomers of the chain create a sequence of steps zi(N) (with i

chains, i = 1, . . . , Ng) along the chain’s contour. Figure 3.4 shows the idea that a
single chain conformation corresponds to a classical path of a particle in a potential
U(z). Following Ref. [17] the monomer positions represent a path starting at zi(0)
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and reaching in N monomers or "time" steps the grafted end point zi(N). At
mechanical equilibrium the tension at the chain end becomes zero (for N → ∞),

dz

dn
(zi(0), 0) = 0 (3.4)

leading to a zero initial "velocity", when the monomer index n is identified as the
time.
For each particle to reach the wall it takes N fixed steps or a fixed time, which is
independent of the starting point. The simplest equal-time potential is given by a
harmonic oscillator,

U(z) = Bz2 − A . (3.5)

The mean field assumption connects now the potential linearly with the density
profile via the excluded volume parameter vex,

Φ(z) = −U(z)/vex . (3.6)

The constants A and B can now be calculated. The total number of monomers give

Nρg =

∫ h

0

Φ(z)dz . (3.7)

With Eq. (3.5) and (3.6) we obtain

A = vex
Nρg
h

+
Bh2

3
, (3.8)

where h represents the mean brush height. When the spring constant 2B is inter-
preted as an angular frequency 2

√
2B = 2π/T and the path of the particle corre-

sponds to a quarter of the cycle T = 4N , one gets

B =
π2

8N2
. (3.9)

The density becomes

Φ(z) =
π2

8N2vex
(h2 − z2) . (3.10)
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3.2 Compressed brush bilayer

We may distinguish three regimes for the compressed bilayer. First, for the wall
separations Dz ≫ 2h the brushes do not overlap and most of the liquid flows in
the polymer free region, see Figure 3.2. When the system is now externally driven,
hydrodynamic lubrication will dominate the system’s properties. On the other hand,
as already mention in Chapter 1 the system would not be stable under high loads
extorting the solvent. Increasing the load compresses the bilayer until the separation
becomes of the order of twice the free brush height Dz ≃ 2h, the brushes start to
interpenetrate each other weakly because both profiles are just touching at the outer
fringe. At high compression, when Dz ≪ 2h the profiles overlap strongly, see Figure
3.3. A third compression regime is given when the compression becomes of the order
of the monomer size, Dz ∼ O(a), strong oscillations occur in the density profile. The
system is so strongly compressed that a highly symmetric ordering along the gap
takes place, the liquid solidifies. For further discussion we stay in the regime of
strong compression where a≪ Dz ≪ 2h, both brushes strongly interpenetrate, and
they create a uniform monomer profile

Φ =
Nρg

Dz

. (3.11)

In the case of strong interpenetration both brushes overlap significantly and chains
from one brush enter the other one. Figure 3.3 shows the density profiles of two
brushes at different wall distances. The brushes from opposite surfaces start to
interpenetrate at Dz ≈ 25, where a small overlap is found. The interpenetration can
quantified by the expression [37, 62]

Iov ∼
∫ Dz

0

Φ1(z)Φ2(z)dz, (3.12)

where Φj(z) represents the density profiles of brush j(= 1, 2). The upper right plot
in Figure 3.3 shows the overlap Φ1(z)Φ2(z) for different wall distances. All overlap
densities have a similar shape with a maximum at Dz/2. The sum of both monomer
concentration profiles Φ1(z) + Φ2(z) is shown in the upper left plot of Figure 3.3.
The further the brushes are pressed into each other the more uniform the overall
density becomes. For N = 30, ρg = 2.2ρ∗g, and smallest simulated wall distance
Dz = 12, shown in Figure 3.3, the monomer density becomes uniform along the gap
and is defined as the strong compression regime.
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We now want to calculate the width of the interfacial region. The overlap thickness
can be derived from the work ∆F required to displace a segment of a chain by δ

[63]
∆F

kBT
∼

(
−δ

3

a2
∂U(z)

∂z

)1/2

, (3.13)

where the potential U(z) may be of the classical parabolic form [Eq. 3.10]

U(z) = U0 −
1

2

( πz

2Na

)2

, (3.14)

with constant U0 and a being the effective monomer size.
When the derivative of Eq. (3.13) at z = h is taken, one finds

∆F

kBT
∼

(
δ3π2

8N2a4
h

)1/2

. (3.15)

The height of a brush in a strongly compressed bilayer is half the gap size, i.e. h =

Dz/2, thus leads to
∆F

kBT
∼

(
δ3

a2
π2

N2a2
Dz

)1/2

. (3.16)

Assuming the overlap occurs due to thermal fluctuations, e.g. ∆F ∼ kBT , one gets
for the interpenetration length of the molten brush bilayer

δmelt ∼
(
N2a4

Dz

) 1
3

. (3.17)

Apart from the melt condition, generally two regimes, depending on the concentra-
tion of the polymers, can be considered. In a good solvent condition a single polymer
chain interacts only with itself. When the concentration increases the "coils" start to
interact with each other, intermolecular contributions increase while intramolecular
interactions are partially screened by the surrounding chains. The brush can then be
regarded as dense melt of concentration blobs. The screening length ("blob" size),
above which all excluded volume interactions are screened, depends on the density
as [64]

ξc ∼ a
(
a3Φ

)− ν
3ν−1 , (3.18)

where ν = 0.588 is the Flory exponent. We now rescale the effective monomer size
by

a→ ξc , (3.19)
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with the blob size or correlation length ξc. The number of monomers is rescaled via

N → N/gc , (3.20)

where gc ∼ (ξc/a)
1/ν is the number of monomers inside a blob. The interface

width δsemi in the semi-dilute regime is given by transforming δmelt, Eq. (3.17),
with Eq. (3.19), (3.20), (3.18), and the uniform density concentration into

δsemi ∼ a

[
N2ν

(
ρga

2
)2(1−2ν)

(
a

Dz

)1−ν
] 1

3(3ν−1)

. (3.21)

Another quantity will be used in the further discussion, the lateral extension of the
chains, which in a melt follows Gaussian statistics,

Rg,x(0) ∼ a N1/2 . (3.22)

After renormalization into blobs, one finds

Rg,x(0) ∼ a

[
Nν

(
Dz

ρga3

)2ν−1
] 1

2(3ν−1)

. (3.23)

Figure 3.6 compares the measured overlap width δ of two brushes with Eq. (3.21).
As long as both brushes are interpenetrating their interfacial width is estimated by
the variance of a Gaussian fit of the overlap function Φ1Φ2. For large wall separation
and low polymer density (N = 30, ρg = 1.1ρ∗g) the blob size ξc grows towards the
outer fringe of the brushes [65] and the theory breaks down, as can be seen from the
lower data points in Figure 3.6. For long chains (N = 120) the overlap is dominated
by density oscillations where the Gaussian fit underestimates the actual width, see
upper data set in Figure 3.6. The lateral extension of the chains is compared to
Eq. (3.23), shown in Figure 3.7. In both plots a line is added as a guide to the eye
indicating that the observables are in good agreement with the scaling approach.
The effective monomer size is set to 1. In section 3.3.2 the lateral chain extension
is used to estimate a.
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the compressed brush layer with Eq. (3.23). The color and symbol-coding follows
Figure 3.6.

3.3 Other properties

3.3.1 Diffusion

Observables which are directly accessible in the numerical study are diffusion co-
efficients of the chains and the solvent molecules. Since all molecules are constrained
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inside a non-isotropic space, where the walls are breaking the symmetry of free diffu-
sion in three dimensions, one expects at least for the solvent molecules in z-direction
a saturation. For the brush monomers a stronger constraint applies and one expects
the restriction in all three direction. The mean square displacement(MSD) is used
to calculate the diffusion coefficient via

⟨(r⃗(t)− r⃗(0))2⟩
lim
t→∞
=

1

6
Dt , (3.24)

where r⃗(0) is the starting point of a particle at time t = 0, r⃗(t) its position at time t,
and D being the diffusion coefficient. Figure 3.8 shows the diffusion of all monomers
belonging to brushes starting from the ballistic regime ∼ t2, on intermediate times
the MSD becomes subdiffusive ∼ t1/2, and in the limit of long times the monomers
"feel" the constraint of being attached to the wall, the MSD becomes constant. The
plateau value corresponds to a length scale of the brush, the squared end-to-end
vector, given by

R⃗2
ee = ⟨(r⃗N − r⃗1)

2⟩ , (3.25)

where ⟨⟩ denotes the average over all chains of the brushes.
A similar tracking of the trajectories can be done for the solvent molecules, which
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can diffuse freely in x-, y-direction but are limited in z-direction, see inset Figure
3.8. The constant MSD in z-direction for the solvent does not reach the value for the
geometric boundary, D2

z , but saturates earlier. Following the arguments in Ref. [66],
the perpendicular displacement cannot grow infinitely. In the long-time limit the
probability of finding a particle inside the system of one type is given by its density
distribution. When the brushes are strongly compressed the highest probability
of finding a dimer is in the minimum of the brush-brush density. Towards the
walls the solvent density decreases symmetrically, since brushes are occupying some
volume and create a mesh in which the solvent has to diffuse through creating an
effective boundary. When both densities become uniform in the strong compression
regime the brushes must dominate the mobility of the solvent resulting in a smaller
displacement.
Using the Stokes-Einstein relation [61] the solvent viscosity ηs can be found from

D =
kBT

6πηsr
(3.26)

with r the radius of the spherical particle. The radius of gyration of the dimer,
r ≈ 0.46, is used. For the different compositions different diffusion coefficients are
observed and therefore different solvent viscosities. The higher the compression and
the denser the brushes become the slower the particles diffuse. In Figure 3.9 this
effect is shown, where for the highest compression, Dz = 12, the highest grafting den-
sity ρg = 4.4ρ∗g, and shortest chain length N = 30 the highest viscosity is observed.
When now the wall separation grows more solvent molecules accumulate in between
the brushes increasing the mobility of the solvent. Even changing the molecular
parameters but keeping the brush monomer concentration constant, e.g. ρ = 2.2ρ∗

and N = 60, effects the mobility. For a test system without brushes the explicit
solvent molecules move the fastest, see Figure 3.9, blue solid graph.

3.3.2 Effective monomer size

As the solvent viscosity also the effective monomer size a depends implicitly on
the parameters N , ρg, and Dz. To estimate the effective monomer size a prefactor
A is introduced such that

Rg,x(0) = Aa

[
Nν

(
Dz

ρga3

)2ν−1
] 1

2(3ν−1)

(3.27)
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becomes equal to Eq. (3.23). When that prefactor A is determined its value is
absorbed into a.

3.4 Summary

The problem of two polymer-brush bearing surfaces interdigitating at equilibrium
was introduced. We started with a two single brushes which were so far apart that
no interaction between them took place. The single brush is theoretically described
by the mean field theory of Milner, Witten, and Cates [17]. As the brushes ap-
proach each other they start to penetrate each other by creating an interfacial zone.
The overlap width was evaluated by applying the MWC-theory of molten brushes
and transferred into the semi-dilute regime. Additionally, the lateral extension was
rescaled in a similar fashion. Both equilibrium quantities were tested for the whole
range of parameters sustaining the scaling approach. As long as the sum of the
brush profiles is almost constant along the interpenetration region, the theory can
be confirmed. For short chains and large wall separation, where the brushes just
touch, the theory breaks down.
The relevant length scale δsemi and the parallel chain extension Rg,x(0) will be used
in the next chapter for steady state sliding.
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Chapter 4

Two opposing brushes in steady

shear

Figure 4.1: Snapshot of two polymer brushes with the same parameters as in Fig-
ure 3.1, but now at constant relative shear velocity. The shear rate, γ̇ ≡ 2v0/Dz,
corresponds to a Weissenberg number of Wi ≈ 13.5, i.e. the system is well beyond
linear response.

In this chapter the results of two opposing polymer brushes in steady Couette
flows are presented, which is applied by shearing the substrates with a constant
relative velocity of 2v0 at a fix wall distance Dz.
First, phenomenological observations of rheological responses are used explaining
the responses of the complex fluid. Furthermore, an analytical concept is intro-

29
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solvent free case in steady state is not shown, but the inset shows for both cases the
overlap response.

duced using the interface width of chapter 3 [Eq. (3.21)] and connecting it to one
relaxation time of the system. That relaxation time is used to predict a critical
shear rate, which separates linear and non-linear behavior for a considered system.
Microrheological observables, e.g. interpentration response or chains response, will
be connected to macroscopic shear force responses.

4.1 Rheological observables

A snapshot of a typical configuration at constant shear velocity is depicted in
Figure 4.1. In steady state, most of the chains incline along shear direction. On the
other hand, due to fluctuations some chains tilt in the opposite direction.

4.1.1 Brush-Brush-Interpenetration

An analysis of the monomer and solvent densities, see Figure 4.2, reveals that
solvent molecules accumulate at the substrates [67] and at the interface between



31

10
−4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

γ̇

N
i
n

t
(γ̇

)/
A

 

 

D
z
=12

D
z
=14.75

D
z
=17.5

N=30, ρ
g
=2.2ρ*

g

N=60 ρ
g
=1.1ρ*

g
(N=30)

Figure 4.3: The number of binary inter-
brush contacts per area as a function of
the shear rate.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

Iov(γ̇)

N
i
n

t
(γ̇

)/
A

 

 

D
z
=12

D
z
=14.75

D
z
=17.5

N=30, ρ
g
=2.2ρ*

g

N=60 ρ
g
=1.1ρ*

g
(N=30)

γ̇

Figure 4.4: The number of binary con-
tacts as a function of the overlap integral
[Eq. (3.12)]. The arrow indicates the in-
creasing shear rate.

the two brushes. Under shear the brushes become more dense and squeeze solvent
molecules into the interfacial region between the brushes. The total density of
the confined liquid remains almost constant. A further discussion can be found in
Appendix C. Since only small density fluctuations are observed the systems keeps
its low compressibility. The corresponding solvent-free case exhibits a larger brush
thickness, both in static equilibrium and steady shear, which was already observed in
Ref. [43]. The inset in Figure 4.2 demonstrates that the overlap between the brushes
with explicit solvent is reduced compared to the solvent-free case. Furthermore,
under sufficiently strong shear, in both cases the layer thickness decreases and leads
to a reduced interpenetration between the brushes. Various numerical studies [37,
38, 40, 43, 62] have shown that the overlap between the grafted layers is linked
to the macroscopic transport properties. In principle the overlap integral may be
measurable experimentally. In the simulation the binary inter-brush interaction Nbb

int

is counted too, shown in Figure 4.4. The overlap is correlated with the number of
binary contacts via [38]

Nbb
int ∼ Iov . (4.1)

The number of binary contacts Nbb
int varies over three orders of magnitude at equi-

librium (not shown in Figure 4.3), but the solvent and solvent-free cases respond
to the shear very differently. Interestingly, the cases with solvent respond stronger
than their solvent free counterparts, which almost do not respond at all. Especially
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at large surface distances and small grafting densities solvent effects are important,
when the brushes are dragged through the solvent, the chains will feel stronger forces
than in the solvent-free case.

4.1.2 Kinetic friction coefficient

A qualitatively different behavior of solvent and solvent-free cases can be observed
for the kinetic friction coefficient, µkin. The ratio between shear stress and normal
stress defines µkin via

µkin(γ̇) = −⟨σxz⟩
⟨σzz⟩

, (4.2)

where ⟨⟩ denotes the time average of both stress components, the shear stress σxz and
the normal stress σzz. The stresses are observed in steady state at constant velocity
v and constant wall separation Dz. It was verified that the result is independent on
weather the macroscopic response is measured by forces at the walls or by calculating
elements of the stress tensor via the Irving-Kirkwood formula [60]. All systems keep
their low compressibility even under strong shear. Therefore, fz remains almost
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independent of the shear rate γ̇. For only one solvent-free system at the highest
compression and highest grafting density a small increase is observed. While on the
other hand, for all systems with explicit solvent the normal force increases slightly
by approximately 5% at the highest wall velocity. The kinetic friction coefficient is
shown in Figure 4.5 for the chain length N = 30 at three wall separations Dz =

12, 14.75, 17.5 and all three considered grafting densities. The solvent effects turn out
to be important in polymer-brush lubrication and this observation is in agreement
with the conclusions drawn in Ref. [68]. The presence of explicit solvent leads
to smaller values of µ. In the solvent-free case the normal forces increase with
increasing grafting densities and the ratio Eq. (4.2) decreases. Since both cases merge
at larger values of ρg the kinetic friction coefficient has to increase with grafting
density for systems with solvent. The arrows in Figure 4.5 indicate this behavior.
However, both cases seem to change their behavior for larger shear rates. The
friction coefficient grows not anymore linearly but has a steeper growth. Depending
on their characteristic time scales, which determine the response of a given system
to shear, see next section.

4.2 Zimm Dynamics

In chapter 3 the brushes were transferred into a dense melt of blobs of size ξc
which are now dragged through a viscous medium ηs exhibiting friction. We assume
Zimm dynamics inside the blob [64]. There are Φδsemi/gc blobs per unit area in the
overlap region each having a friction coefficient ηsξc and with a steady state velocity
γ̇Dz, one can write

fx
A

∼ cδsemi

gc
ηsξcγ̇Dz . (4.3)

With Eqs. (3.21) and (3.18) this leads to

fx(γ̇) ∼

[
N8ν

(
ρga

2
)2(1+ν) ( a

Dz

)4(1−ν)
]1/3(3ν−1)

ηsγ̇A (4.4)

in the linear response regime.
In linear response the transverse fluctuations of the free chain ends are equilibrium
fluctuations. Defining the Weissenberg number Wi one may use the ratio of the
work carried per chain to thermal fluctuations

Wi =
fx(γ̇)Rg,x(0)

NgkBT
, (4.5)
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assuming all chains on average are stretched and inside the overlap sustaining the
stress equally.
The Weissenberg number Wi for simple shear flow is defined as the shear rate times
a relaxation time of the system

Wi = γ̇τ . (4.6)

A typical relaxation time, which is used to define the Weissenberg number in single
chain experiments, is the longest relaxation of the end-end distance, as done in
Ref. [69], similarly used in section 6.8.2. It is questionable, whether it can also be
used for a single brush in steady state shear, as done in Ref. [29]. Another lateral
relaxation time relevant for single polymer brushes was introduced in Ref. [27] as τ ∼
N2. The precise scale for Wi is arbitrary, because the brush has a broad spectrum
of relaxation times, which may change when the brushes become compressed. It is
not clear which of them is suited best.
In linear response the Weissenberg number is smaller than unity, while non-linear
effects may take place for larger values. For further discussion the inverse of a
relevant relaxation time of the bilayer is regarded as the critical shear rate, γ̇∗ = 1/τ .
To determine the critical shear rate we require Wi = 1, i.e.

Wi =
γ̇

γ̇∗
=
fx(γ̇)Rg,x(0)

NgkBT
= 1 . (4.7)

Using Eqs. (3.23) and (4.4) yields to

γ̇∗ ∼ kBT

ηsa3

[
N−19ν(ρga

2)20ν−13

(
a

Dz

)14ν−11
]1/6(3ν−1)

. (4.8)

Now the critical shear rate is expressed by all control parameters (ρg, N , Dz),
However, γ̇∗ also depends on the prefactors ηs and a, which are depending implicitly
on Dz, N , and ρg. Inserting Eq. (4.8) into Eq. (4.4) gives

fx(γ̇
∗) ∼ NgkBT

a

[
N−ν

(
ρga

3

Dz

)2ν−1
]1/2(3ν−1)

(4.9)

for the critical shear force. Both expressions Eqs. (4.8) and (4.9) define the transition
between linear and non-linear response of the fluid.

4.2.1 Single chain segment inside the overlap

A more accurate approach takes fluctuations into account, where the stress is not
carried by all chains inside the overlap, but the chains are now able to diffuse out
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of the interfacial zone. The characteristic time scale is given by the residence time
of a chain’s segment in the overlap region. This time is identified as the Rouse time
of that segment, see Appendix D,

τRouse ∼ N2τ0 , (4.10)

where τ0 is the time a monomer needs to diffuse over its own size. Now the Rouse
time is transferred Zimm time

τz ∼
(
N

gΦ

)2

τξ , (4.11)

with τξ ∼ ηsξ
3 the relaxation time of a blob in a viscous medium ηs. With Eqs. (3.19),

(3.20) and (3.18) the inverse diffusion time for a chain segment is given by

1

τz
∼ kBT

ηsa3

[
N−3ν

(
a3ρg

Dz

)3ν−2
] 1

(3ν−1)

. (4.12)

The inverse relaxation time 1/τz is defining a critical shear rate 1/τz = γ̇∗, which will
be derived later in section 4.2, where γ̇∗ is the shear rate that separates the linear
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response from the non-Newtonian behavior. The inverse relaxation time depends
not only on the scaling variables but also on the prefactors ηs and a resulting from
the discussion in section 3.3.1 and 3.3.2. In Figure 3.11 an example is shown, where
the overlap is fitted by a Gaussian function yielding the width δ which is used
to define a box, where in the simulation the life time of the free end is recorded.
This is a mean first passage time problem. The life time distribution is plotted in
Figure 4.6, where the distribution for short times is dominated by short life times
of entering and immediately leaving free ends at the "absorbing" boundary. For
intermediate times the distribution follows a scale free behavior with an exponent
of approximately −1.5 until a noisy cut-off. The first moment giving the mean
relaxation time of all considered systems is compared to Eq. (4.12) in Figure 4.7.
Two strait lines are added to the plot in Figure 4.7 as a guide to the eye, the
black dashed line represents the theoretical expression Eq. (4.12) and the red solid
line implies a different exponent. The measurement assumes that each chain end
contributes uniformly to the overlap, which is not fully true since the overlap is
Gaussian and their contributions become position dependent.

4.3 Shear induced chain deformation

In previous studies microscopic responses of the chains were already reported,
e.g. in Refs. [38, 45, 68]. In Figure 4.8 the extension of chains in shear direction,
characterized by the radius of gyration, Eq. (3.2), is shown for a small selection of
compressions and grafting densities for one chain length N = 30. All systems either
tend to a power law (solvent free cases) others are already on it and tend for high
shear rates to leave it again (high compressions and long chains). For small shear
rates the brushes hardly respond to the shear. At large shear rates the chains stretch
in shear direction, such that Rg,x(γ̇) ∼ N . With Eq. (3.23) we obtain

R2
g,x(γ̇)

R2
g,x(0)

∼ N2−7ν/2(1−3ν) . (4.13)

On the other hand, we find Eq. (4.8)

Wi ∼ 1

γ̇∗
∼ N3(7ν−2)/19ν , (4.14)

such that for Wi≫ 1 we finally obtain
R2

g,x(γ̇)

R2
g,x(0)

∼ Wiβ , (4.15)
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with β ≈ 0.5. Since γ̇∗ depends on the prefectors ηs and a calculating the critical
shear rate with the known controlling parameters may be insufficient to generate a
complete scaling picture. To set the scale for Wi an operational definition is used by
plotting the raw data of Figure 4.8 as the ratio [left hand side of Eq. (4.15)] against
the shear rate γ̇ and shifting the data such that they superimpose onto the master
curve given by Eq. (4.15). Such an approach sorts the raw data in a non-trivial
scaling plot, see Figure 4.9, for all considered parameter combinations.
Additionally, the ratio of the stationary values in gradient (z) direction is added to
Figure 4.9, showing a weak decrease for large Weissenberg numbers. A few systems
exhibit a tendency to saturate for larger Wi due to their finite compressibility. The
data used to create the plot is composed in tabular form in Appendix B. The table
shows, how the systems align due to their intrinsic relaxation time 1/γ̇∗, e.g. the sol-
vent free systems have a smaller relaxation time compared to systems with explicit
solvent leaving linear response earlier due to additional monomer-solvent friction.
A similar observation can be made for the surface separation. The force that drives
the system out of the linear response regime increases with compression, likewise
observed in previous simulations [36] and experiments [26]. Furthermore, the univer-
sal behavior of the structural response in shear direction is independent of whether
the solvent is explicitly included or not. This is attributed to the hydrodynamic
correlations accounted for the DPD thermostat even for solvent-free systems.

4.4 Shear force and shear viscosity

For large shear rates, the chains stretch strongly, such that the shear force is
proportional to the total number of monomers,

fx(γ̇) ∼ NgNγ̇Dz ∼ N . (4.16)

Inserting Eq. (4.4) into Eq. (4.16) yields

fx(γ̇)

fx(γ̇∗)
∼ Wiα , (4.17)

with ν = 0.588 we obtain α = 3(7ν − 2)/19ν ≈ 0.54. The shear viscosity is given
by [70]

η =
σxz
γ̇

. (4.18)

Another scaling plot may be obtained from
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s =
η(γ̇)

η(0)
, (4.19)

where the zero-shear viscosity η(0) has to be examined for each system individually.
Calculating the zero-shear viscosity is a task of its own and computing it is rather
difficult due to the bad signal-to-noise ratio at small shear rates. In principal, η(0)
can be calculated if the Weissenberg number is expressed via Eq. (4.5) and the shear
force being proportional to the shear rate. So one can find in linear response

η(0) =
fx(γ̇)

Aγ̇
(4.20)

leading with Eq. (4.5) to

γ∗ ≈ ρgkBT

η(0)Rg,x(0)
, (4.21)

where ρg = Ng/A has been used. From Eq. (4.21) it is possible to determine the
critical shear rate if the zero-shear viscosity is known, additionally it emphasis the
strong correlation between the chain deformation and the macroscopic response.
The zero-shear viscosity is determined by plotting the viscosity as a function of the
Weissenberg number and shifting the data along the ordinate for systems showing
linear response in such that the ratio (4.19) becomes unity. Several systems reveal
a transitional behavior from linear to non-linear response, especially those systems
with no solvent and high grafting densities, see open symbols in Figure 4.11. The
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data follow a power-law,
η(γ̇)

η(0)
∼ Wi−0.46 . (4.22)

A slight shift appears in the data for Weissenberg numbers larger than unity. Sys-
tems with explicit solvent mostly exhibit the power-law behavior, they do not display
linear response well. The data are carefully shifted onto the data without explicit
solvent, which reveal a transition from linear to non-linear response. However, when
using the same values of γ̇∗ as obtained from Figure 4.9, the transitional region does
not occur at Wi = 1 but slightly later. On the other hand, very diluted solvent-free
systems (lowest grafting density) change the regime exactly at Wi = 1 and follow
the power law. If now the overall density is changed either increasing the grafting
densities with similar wall separations or compressing the same number of chains,
the transition shifts to larger Weissenberg numbers. The origin of the effect is un-
known but is somehow related to the density inside the system.
Experimental observations done in microrheology with non-Newtonian fluids also
exhibit similar shear thinning effects. In literature several phenomenological and
empirical models have been proposed [71]. One possible fit function follows from
the Carreau-Yasuda model, which describes a pseudoelastic flow

η(γ̇) = η∞ + (η0 − η∞)

[
1 +

(
γ̇

γ̇∗

)q]n−1
q

, (4.23)

with five parameters observed experimentally, asymptotic viscosity limits at zero-
shear η0 and infinite shear rate η∞. The exponent n− 1 is known from the scaling
theory, one the other hand q represents the width of the transition region between
η0 and power-law region. The transition parameter depends an the scaling variables
in a non-universal way,

q = q(ρg, N,Dz) . (4.24)

The scaling theory discussed earlier predicts only the behavior for small and for
large Weissenberg numbers and no prediction is made for the transitional region.
Experimental limitations prevent the exploration of equivalently large compressions
and shear rates as they can be studied in simulations. However, some experimen-
tal data that reach the non-Newtonian regime have become available. Schorr et
al. recently measured shear forces in bilayers of polystyrene brushes on mica in a
SFA experiment [26]. In good solvent (toluene), the authors observe linear response
over a wide range of compressions and shear rates. However, at large compression
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(h ≈ 220Å unperturbed brush height, Dz = 95Å) they find a sublinear increase of
the shear force with sliding velocity. At the crossover between linear and non-linear
behavior the critical shear rate γ̇∗ and critical shear force fx(γ̇∗) can be found by
superimposing the data with the theoretically predicted curves. For comparison a
solvent-free system, which is similar to the experimental one (D = 14.75, N = 60,
and ρg = 1.1ρ∗g) with a corresponding compression of 2h/D ≈ 4.1 [58] is shown in
Figure 4.14. Additionally, in the same study, Schorr et. al. performed Brownian
dynamics simulations using a Brinkman type equation to describe the solvent flow.
For their parameters they observe mostly linear behavior but also data following
the scaling law beyond linear response. The simulation example is taken from Ref.
[26] and added to Figure 4.14. A recent study by Goujon et. al. [44] investigated
sheared polymer brushes using MD simulation with a DPD thermostat with larger
intrinsic friction. They operate in the grand-canonical ensemble, allowing the par-
ticle number to fluctuate. That approach guarantees a constant normal pressure
at all shear rates. In Ref. [72] the friction coefficient is given for one example of
parameters. Since fz is constant, the dependence of the friction coefficient and fx on
the Weissenberg number must be similar. The data is shown in Figure 4.14, where
the experimental data and three independent studies follow the theoretical curves
in rather good agreement.

4.5 Other regimes

In chapter 2 the interfacial region was derived from the MWC-brush approach by
transferring the overlap melt into the semi-dilute regime δmelt → δsemi. In section 4.2
hydrodynamic interaction were taken into account, Zimm dynamics inside the blob
was assumed. That hydrodynamic interaction maybe fully screened and that the
monomers obey Rouse dynamics instead of the Zimm dynamics. In this situation
the chains are still swollen and therefore the Flory exponent ν = 0.588 remains. On
the other hand, one may continue with the melt regime where the excluded volume
interactions are screened (ν = 1/2), as well. The general Ansatz for the Stokes force
changes where the number of monomer instead of the number of blobs inside the
overlap region are exhibiting the friction [Eq. 4.3]. For the semi-dilute dynamics
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without hydrodynamics the linear friction is given by

fx(γ̇) ∼ cδsemiψγ̇DzA (4.25)

and for the melt condition

fx(γ̇) ∼ cδmeltψγ̇DzA , (4.26)

where ψ is a friction coefficient.
We follow the same arguments as in section 4.2 and insert for each distinguished case
the relevant overlap expressions. That leads to different values for the exponents α
and β. An overview of all three cases is given in the following table 4.5
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Figure 4.15: The velocity profiles of two opposing brushes and solvent at two dif-
ferent wall velocities. The inset shows the velocity profiles of pure solvent systems
at the same velocities as the brushes. The solvent is not able to follow the wall
velocities due to a slippage at the walls.

4.6 Velocity profile

The fluid components are driven by the boundaries, intrinsic interactions dis-
tribute the acting forces in such that a velocity profile is established reflecting the
minimum rate of energy dissipation [73]. The velocity profiles of both fluid com-
ponents are symmetric around Dz/2, where at the substrate a no-slip boundary
condition is implied by the brushes. The solvent molecules are dragged with the
brushes. In the middle of the channel both components establish a distinct linear
Newtonian-like flow profile, see Figure 4.15. For the choice of parameters all hydro-
dynamic brush flow fields exhibit at the crossover from the wall to the linear profile
a small region, where segments of a chain are faster than the driving velocity. The
origin of this effect is a quasi-cyclic motion of individual chain end, as reported in
Refs. [31, 74, 75]. Since the temperature profile is not constant, the slight cooling
towards the walls may induce small convection amplifying this effect.
The inset in Figure 4.15 shows a flow profile when the attached polymer chains are
removed, but the walls are driven with the same velocity. In this case, a linear
profile along the whole channel is created. Due to the non attractive interaction of
the dimers towards the walls a slip boundary is present, where the walls are moving
slightly faster than the fluid. In chapter 6.8.2 this effect is discussed further.
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Figure 4.16: The velocity profiles of two opposing brushes and solvent. The linear
slopes are extrapolated to the wall velocities defining the hydrodynamic boundary
(dashed blue and green lines). Before the crossover to the linear profile the brushs’
velocity profile reveals a faster flow due to the cyclic tumbling motion of the grafted
molecules in shear flow, see Ref. [76].

The friction depends on the interface between the two brushes, the local interac-
tion and the "slip" of both substrates. In order to incorporate microscopic friction
in a continuum description, the Navier-Stokes equation can be used employing the
Navier boundary condition [77]

η
∂vx(z)

∂z

∣∣∣∣
z=zh

=
η

b
vx(z = zh) , (4.27)

based on the equality of the viscous stress σviscous = η∂vx(z)/∂z and the frictional
stress σfriction = η/bvx(z) at the boundary, vx(z) denotes the flow velocity in x-
direction along z of the liquid parallel to the walls, η the bulk viscosity in linear
response. The boundary condition depends on two parameters b and the position
zh, which are not known a priori. To extract both parameters b and zh Müller
and Pastorino [76] discuss two qualitatively different types of flows, planar shear
flow (Couette flow) and pressure-driven flow (Poiseuille flow). They find that both
flow types have to be studied in order to reveal a consistent determination. Since
the Poiseuille flow along the gap is not studied the slip length cannot be determined
and the discussion will concentrate on the hydrodynamic boundaries for the Couette
flow.
At the center of the channel, the flow is described by the Navier-Stokes equation
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Figure 4.17: Hydrodynamic boundaries zbrush
h (filled symbols) and zsolvent

h (open sym-
bols) as a function of the Weissenberg number. The measured zbrush

h are normalized
by an arbitrary constant c and follow a phenomenological power law zbrush

h ∼ Wi−0.16.
On the other hand, the boundary condition for the solvent does not change with
shear rate.

yielding a linear velocity profile

vlin
x (z) = γ̇(z ± zc) , (4.28)

where zc = Dz/2 is the position of the linear profile extrapolates to zero, at the
middle of the gap. The linear profile is extrapolated to the wall velocities and the
intersection point of wall velocity defines the hydrodynamics boundary zh. For each
system that is driven into steady state with different wall velocities such a profile
is recorded. Since the explicit molecules are only dragged with the brushes, they
establish a slightly different velocity profile and therefore their own hydrodynamic
boundary. The dependence of the hydrodynamic boundary on the shear rate is
shown in Figure 4.17. All measured zh are scaled such that the data assemble
on a master curve. With increasing shear rate the brushes tilt further, the layer
thickness decreases and this influences zbrush

h reducing the effective gap size. On the
other hand, the hydrodynamic boundary of the solvent molecules is not effected by
the shear, zsolvent

h remains almost constant.
The velocity profiles can be fitted with sigmoidal shaped functions, like hyperbolic
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tangent [47] or Gaussian error functions (erf)

ϕ(z) =
1√
2π

∫ z

∞
e−

z′2
2 dz′ . (4.29)

To determine the interpenetration length of both brushes at equilibrium a Gaussian
fit function was used, see Figure 3.11. In steady state the general shape of the
overlap does not change and remains fittable with a Gaussian function. Since the
brushes respond by inclining in shear direction reducing the brush thickness for large
Weissenberg numbers, the overlap becomes a function of the shear rate as well. If
one fits the overlap profile in steady state via a Gaussian function and integrate
it using Eq. (4.29) the resulting sigmodial shaped error function can be used to
fit the resulting brush velocity profiles in steady state for the different shear rates.
In Figure 4.18 three velocity profiles (blue curve corresponds to brush profiles and
green curve correspond to solvent profile) for different wall velocities are fitted with
their corresponding integrated overlap fit. The error functional fit was normalized
and shifted on the ordinate axis. Hypothetically, a shift factor can be introduced
shifting the function on the abscissa to fit the corresponding solvent profile, as well.
The inset shows the slopes of the linear parts for the all velocity profiles [brushes
(blue) and solvent (green)) and the integrated overlap fit (red). We find a strong
correlation between overlap and velocity profiles of the brushes. In the work of F.
Goujon, et. al. [47] a not further specified sigmoidal function, and in the PhD-thesis
of Goujon [72] a hyperbolic tangent function are used to fit the velocity profiles of
both components. A microscopic reasonable motivation for those fits is not given.
To describe the flow field inside the brush one often uses the Brinkman equation
[19, 24]

ηs∇2v⃗ =
ηs

ξ2(ρ)
v⃗ +∇P⃗ . (4.30)

Here, ηs is the solvent viscosity, the screening length ξ may depend on the local
density. The left hand side of the equation is the viscous force due to dissipation
within the flowing liquid, which is balanced by the friction term arising from flow
past the polymer segments and a pressure gradient. For simple shear flow, the
pressure is constant and the gradient (z) component of the velocity satisfies

∂2v(z)

∂z2
=

v(z)

ξ2(z)
. (4.31)
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in steady state are shown. The erf-fits are in very good agreement with the original
brush velocity profiles. The inset compares the slopes of the linear part of the profiles
as a function of the wall velocity [Eq. (4.28)].

Solving Eq. (4.31) by assuming ξ(z) = ξ is constant along the z-direction and the
boundary condition

v(−D/2) = v0 and v(0) = 0 (4.32)

gives

vx(z) =
v0

sinh
(
D
2ξ

) sinh

(
z

ξ

)
for −D/2 < z < 0 . (4.33)

The hyperbolic sinus function is a basic solution that satisfies the Brinkman equa-
tion, which deviates strongly from the functional dependence indicated in Figure
4.18.
In the work of Clement [78] a linear combination of Airy-functions solves the Brinkman
equation for the flow field of a solvent interpenetrating a single brush near the θ-
point, similar to Ref. [24]. The porosity ξ(z) of the single brush follows the parabolic
of mean field density profile, Eq. (3.15).
In the work of Urbakh, et al. [73] the velocity profile of a confined liquid origi-
nates from minimizing Ginzburg-Landau-type free-energy functional resulting in a
Brinkman-type of equation, which is solved for independently acting walls. A linear
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combination of modified Bessel and Hankel functions can be fitted to the velocity
profiles.
Their theoretical studies and the numerical findings may be useful to understand
theoretically the established steady state velocity profiles of both components.

4.7 Summary

The chapter presented the lubrication of two opposing polymer brushes with
rather short chains extending the equilibrium scaling theory of chapter 2. The re-
sponse of two opposing brush covered surfaces to stationary Couette flow of different
shear rates was measured. We varied the compression of the confined fluid, molec-
ular parameters, grafting density, and chain length. Solvent-free systems have been
compared to systems that included explicit solvent molecules.
Very different responses to shear are observed, depending on the considered param-
eter combinations. For small grafting densities, systems with explicit solvent leave
the linear response regime earlier than their solvent-free counterparts and the ki-
netic friction coefficient is significantly smaller, a fluid layer between the brushes is
formed helping to lubricate.
The regime of linear response is left earlier with increasing compression, grafting
densities or chain length. Generally, the non-Newtonian behavior sets in at smaller
shear rates when the density of the system is increased. Several previous computer
studies confirm the small change of the brush thickness, and the stretching of the
polymer chains along the shear direction, which goes along with a non-Newtonian
response of a macroscopic observable, which grows sublinearly with sliding velocity.
The data indicate a swelling of chains in the shear direction that can be described
by a universal power-law increase of chain extension with the Weissenberg number.
Using the shear-induced deformation of chains, one can demonstrate how to estimate
the critical shear rate. This allows to superimpose the data of all considered param-
eter combinations, revealing a strong relation between the chain deformation and
the macroscopic response. Despite their distinct differences, solvent and solvent-free
cases can be described consistently.
The developed scaling theory allows not only to explain the conformational change
of the bilayer but also the macroscopic response to shear. Furthermore, recent ex-
perimental data and results of very different simulation models are reproduced by
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the analytical approach.
The flow of solvent molecules past the compressed bilayer remains open. Usually,
the semi-empirical Brinkman equation is used and the single brush profile describes
the porosity of the brush. When the bilayer becomes compressed the overall density
becomes constant implying a constant mesh size. The solution for constant mesh
size does not fit to the solvent velocity profile. The frictional properties along the
gap result in the components’ velocity distributions. While in the middle a Couette
flow is established with larger effective shear rate, the effective gap size given by
the hydrodynamic boundaries of the brushes becomes smaller. Their position inside
the fluid changes with shear rate and is somehow related to the bilayer thickness.
Since, a major frictional contribution is given by the interfacial zone, the integrated
overlap width of the brushes match well the observed velocity profiles of the brushes.
Slight deviation from the fit appear due to the quasi-cyclic motion of the chain ends
in the flow.



Chapter 5

Two opposing brushes in

non-stationary shear

Finite substrate sizes in real life and fluctuating driving strengths cause the com-
plex fluid to respond to non-stationary motion in a mechanical stable manner, other-
wise instabilities may generate fatigue or failure of the fluid. This chapter deals with
the response to non-stationary conditions, the onset and inversion of motion. At
first the transition from equilibrium to stationary sliding is discussed. The change
of the direction of movement of the walls by changing the pre-sign of the velocity is
considered here as the inversion regime. In terms of large amplitude oscillatory shear
the rapid inversion of the confining substrates offers a unique experimental setup for
testing mechanical stability of the considered material by varying strength and pe-
riod of the external perturbation. Other transient regimes like stress relaxation after
cessation of steady flow or sudden shear displacement are not considered. A scaling
theory is developed where the transition time of the brush bilayer is determined.

5.1 Scaling the time series

Depending on the molecular parameters defining the critical shear rate and there-
fore a critical time scale the brushes respond differently to the shear. For the linear
regime (Wi ≪ 1) the chains do not respond, while for the non-Newtonian regime
(Wi ≫ 1) the chains swell in shear direction. In this driving regime the relaxation
towards the non-equilibrium state is dominated by the driving shear rate, diffusion
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is not relevant. One may argue that the chain extension in steady state is given by

Rg,x(γ̇) ∼ γ̇Dzτbilayer , (5.1)

where τbilayer is the relaxation time to reach the steady state and γ̇Dz the wall
velocity. Therefore, during the transition the chain extension becomes a function
of time, Rg,x(γ̇, t). If the shear rate is large enough one can assume that inertia is
negligible and the transition is dominated by the walls driving

Rg,x(γ̇, t) ∼ γ̇Dzt . (5.2)

In steady state the chains are strongly stretched for Wi ≫ 1, while during the
inversion the extension undergoes a minimum, whereas for the onset of motion the
minimal extension of the chain is given by the equilibrium lateral extension, Rg,x(0).
To describe the transition one can find the Ansatz

Rg,x(γ̇, t)/Rg,x(γ̇) ∼ 1− γ̇Dzt/Rg,x(γ̇) . (5.3)

Inserting Eq. (5.1) into the right side of Eq. (5.3) yields

Rg,x(γ̇, t)/Rg,x(γ̇) ∼ 1− t/τbilayer . (5.4)

In steady state the chain extension is given as a function of the Weissenberg number
Wi [Eq. (4.15)]

R2
g,x(γ̇)

R2
g,x(0)

∼
(
γ̇

γ̇∗

)β

(5.5)
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with β ≈ 0.5, yielding the transition time

τbilayer ∼
Rg,x(0)

Dz

γ̇∗
−β

2 γ̇
β
2 −1

, (5.6)

where R2
g,x(0) is the squared lateral chain extension in equilibrium. The transition

time becomes shear-rate dependent. For each individual system (given by the control
parameters N , ρg, Dz) a bilayer relaxation time τbilayer exists that superimposes the
transition related time series.

5.2 Onset of motion

Following the shear protocol of Figure 5.1 the walls accelerate in a small time
τonset, where the brushes are unable to relax. In Figure 5.2 the transition from
equilibrium towards steady state for the chain extension described by the end-to-end
vector component Ree,x(t), normalized by the steady state value Ree,x(γ̇), is shown
for a variety of systems. The shear rate γ̇ and the transition time τonset = 2500∆t

are the same for all systems. Depending on N and ρg the chains need their intrinsic
time to reach steady state. The brushes with chain length N = 120 take the longest
time. The inset in Figure 5.2 shows the transition depending on the shear rate for
one selected system, where the transition depends on the wall velocity. The fastest
transition is observed for the fastest driving (v = 0.2).
Analog to the transition of the end-to-end vector, the normalized shear stress shown
in Figure 5.3 exhibits the same pathway towards steady state. Interestingly, during
the evolution, σxz does not reach steady state first, but overshoots slightly, when the
systems are driving fast enough. Moreover, for larger chains (N = 60, N = 120) the
normalized shear stress oscillates ones after the overshoot and then becomes unity.
That behavior is not observed in chain specific observables and therefore this effect
may be attributed to the solvent.
Since all control parameters, including the critical shear rate, are known, a rescaling
of the time series is performed. First, the evolution of the end-to-end vector of
Figure 5.2 is rescaled, as shown in Figure 5.4. For a short time all Ree,x(t) match
perfectly on the master curve [Eq. (5.4)] until they crossover to steady state. For
the different driving strengths, all end-to-end vectors superimpose (inset Figure 5.4),
except for the smallest wall velocity, where Eq. (5.4) is not valid. They match nicely
the master curve before they branch to unity.



56

Complementary, the rescaling of times for the shear stress in Figure 5.5 yields for
a short period a master curve, whereas the overshoots become more separated.
Interestingly, for different wall velocities all shear stresses superimpose, which seems
to be a coincidence (inset in Figure 5.5).
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5.2.1 Velocity profile

To analyze how the non-stationary shear effects the fluid during the onset of
motion, the layer resolved velocity profile is examined. While the walls are set
in motion the fluid (the fluid includes both ingredients) remains still for a very
short time. After that short time the drag of the walls is transmitted to the chains
attached to each wall inducing the current velocities of the walls. Since the chains
are not infinitely stiff and exhibit inertia, the shear profile propagates slowly into
the system. Figure 5.6 shows several snapshots of the velocity profile in time (ti).
When the walls almost reached their designated velocities (t1), a few layers above
the substrate are set in motion, while the liquid in the middle of the gap remains
still. At t3 the momentum is distributed such that for a small time a linear velocity
profile is observed. Then the velocity crosses over to the steady state velocity profile
as discussed in section 4.6. Each snapshot in time is connected to an additional
plot (inset), where the shear stress as a function of the strain γ(t) is shown. After a
ballistic behavior [σxz(t) ∼ γ2(t)], related to the acceleration of the wall and a rapid
propagation of momentum into the system, the shear stress grows sublinearly with
the displacement [σxz ∼ γ1/2] indicating viscoelastic behavior [71]. Interestingly, the
stress grows further, even when the steady state profile is already established (t5).
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5.3 Inversion of motion

In this section the second part of the wall protocol (Figure 5.1) is followed. The
surface transits continuously from v0 = −v0 in a very short time τinv = 2500∆t.
For the lateral chain extension, now given by the radius of gyration [Eq. 3.2], un-
dergoes a minimum during the inversion as shown in Figure 5.7. The inversion is
shown for two different chain lengths, two grafting densities, and three wall veloc-
ities. The short chains (N = 30) transit the fastest, moreover, for small velocities
the transition takes longer than for larger velocities. With rescaling the time, see
Figure 5.8, all time series superimpose for a short time on a master curve, except for
the short chains with the slowest wall velocities (v = 0.02). In this case Eq. (5.4) is
expected to fail. The lateral extensions crossover to minima, which are not aligning.
Secondary processes like diffusion are now dominating. At some point the driving
dominates again and the normalized radius of gyration returns to steady state.
The same observation can be made for the corresponding shear stresses. Similar to
Figure 5.7 in Figure 5.9 the shear stresses of those systems are shown. In Figure
5.9 all shear stresses superimpose on a master curve when the time is rescaled. For
larger times the stress crosses over to unity. For the shortest chains and smallest
velocity, the scaling fails as expected for the radius of gyration, (Figure 5.8). For
this particular wall velocity (v = 0.02) the system (N = 30, ρ = 4.4ρ∗, Dz = 17.5)
responses linearly, therefore, Eq. (5.4) must fail.
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5.4 Normal force response
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Figure 5.11: Normal stress response during inversion for solvent and solvent-free
systems. All presented systems respond non-linearly in steady state (Wi≫ 1). All
systems without solvent show a rapid increase of the normal force in this regime,
whereas for more dilute systems (Wi ≪ 1) the response vanishes (not shown). On
the other hand, the complementary systems with solvent indicate a small overshoot
at the beginning of the inversion, but turn rapidly into decrease of pressure passing
a minimum and returning to steady state. The time to return back to steady state
depends only on the brush parameters, neither on the inversion time nor the wall
velocity.

During the non-stationary shear the response of the fluid perpendicular to the
wall shows a response as well. Systematic studies distinguish between systems with
and without solvent. Generally, systems without solvent show a small and rapid
overshoot in the normal stress. The normal pressure jump decays very quickly in
time. For systems that respond linearly in steady state the positive response van-
ishes. On the other hand, the normal component drops for systems with solvent
during the inversion. First, for a short period of time the systems respond simi-
larly to the complementary systems without solvent with a small increase in normal
pressure. The normal pressure drops rapidly below the steady state value passing
a minimum and returning back to its steady state value. The minimum pressure
value of each response stays above the equilibrium pressure. When the turn time
τinv is decreased, the overshoot grows slightly and vice versa vanishes with increasing
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τinv. The decay time depends only on the brush parameters, N and ρg, not on the
shear rate and therefore a rescaling as proposed in section 5.1 does not give satis-
fying results. The presence of the explicit solvent molecules compensates the rapid
jump of the normal pressure. The pressure drop increases for larger chain length,
e.g. N = 60 compared to N = 30. For the longest simulated chain length N = 120

the normal pressure does not decrease anymore.
The effect of pressure reduction must therefore increase if solvent molecules with
larger inertia are used. In the next section the velocity and flow profiles are dis-
cussed, where local rearrangements take place.

5.5 Velocity and flow profile during inversion
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Figure 5.12: Both stress components during the inversion of motion. The upper plot
shows the shear stress transiting from the negative steady state value to its positive
value via a rapid jump from −σxz(γ̇) to zero and slowly crosses over to σxz(γ̇). In
the lower plot the normal stress components are shown during the inversion (blue
line) and the onset (green line) of motion. During the inversion a slight overshoot is
observed, which quickly drops almost to its equilibrium value, shown by the onset
of motion. The lines at ti (i = 1, . . . , 4) connect the stress responses in time with
the velocity and flow profiles in Figure 5.13.

Similar to the observation of the velocity profile during the onset of motion, the
flow of the fluid is analyzed during the inversion. While the velocity profile is ob-
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served layer resolved perpendicular to the walls, the flow profile is observed parallel
to the plates along the shear (x) and gradient (z) directions. In Figure 5.12 the
stress components are shown for a system with N = 30, ρg = 4.4ρg, and Dz = 17.5.
The parallel lines are connecting the stresses with the velocity profiles of the com-
ponents and flow profiles of the solvent in Figure 5.13.
Before the inversion the velocity profiles of both components are in steady state,
see Figure 5.13(a), as discussed in section 4.6. The flow profile, lower plot in Fig-
ure 5.13(a), exhibits small vortices in the middle of the gap indicating a rotational
motion of the solvent. During the inversion at time t2, when both walls pass zero
velocity (Figure 5.13(b)), the particles in the middle of the interface maintain their
flow, while the monomers close to the walls stick to the wall velocity. At that
point strong reorientations occur in the flow, the solvent molecules establish micro-
turbulences with no specific direction of rotation (vorticity). The walls continue to
drag the chains at t3, Figure 5.13(c), pushing the turbulences into the middle and
orient the flow again. At time t4, Figure 5.13(d), when a linear velocity profile is
established along the whole gap, the turbulences died out except for those in the
middle, the vortices switched their rotational direction.
The normal stress response is directly connected to the occurrence of the micro-
turbulences. In steady state the normal pressure is slightly larger than at equi-
librium, due to extra kinetic contributions to the stress tensor. When the driving
stops during the inversion, the additional kinetic contributions carried by the solvent
particles is dissipated into heat and transported out of the system by the thermostat.
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Figure 5.13: A series of snap shots of velocity (upper subplots) and flow profiles
(lower subplots) are show, each one corresponds to a certain time ti in Figure 5.12.
(a) Upper plot: Steady state velocity profiles, (a) Lower plot: the solvent flow
profile with circulating flow in the middle of the gap. During the inversion the
velocity profile follows the wall movement with a slight delay [(b) upper plot], where
at the walls micro-turbulences occur propagating into the middle, see (b) and (c),
lower plots. When a linear shear profile is established again [(d) upper plot], the
turbulences die out, the normal pressure passed its minimum and the shear stress
grows towards its steady state value, Figure 5.12

.
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5.6 Summary

This chapter discussed the transition from equilibrium to steady state, the onset
of motion. Additionally, the transition when the wall movement is inverted smoothly
from v0 to −v0 and faster than the relaxation time of the bilayer τimv ≪ τbilayer, was
introduced. A scaling relation for the lateral chain extension was derived, where the
transition time for each system is shear rate dependent. The scaling approach is
only valid for systems which respond non-linearly to shear, e.g. Wi ≫ 1. For each
system such a τbilayer could be found, such that the evolution of microscopic and
macroscopic observables are superimposed for short times.
Furthermore, a normal pressure response was observed. During the transition sys-
tems with and without explicit solvent exhibit for short times an overshoot in the
normal pressure. A shock wave travelling through the system during that time may
be the origin of that effect. The overshoot vanishes when the inversion time be-
comes broader. On the other hand, the fluid may become unstable if the transition
time becomes delta-like, increasing the overshoot in normal pressure. While the
solvent-free case immediately drops back to its steady state value, the system with
dimers reveal a pressure decrease going back to the equilibrium pressure and rising
to the steady state value again. The decrease in pressure is linked to the solvent
flow, where during the inversion the solvent particles exhibit fast reorientations. In
this turbulent behavior local kinetic contributions to the stress tensor cancel, there-
fore, the overall pressure must decrease until the system is reorganized and transits
back to steady state. The extra inertia of the added matter influences strongly the
non-stationary response.
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Chapter 6

Two opposing brushes in the

oscillatory regime

This chapter will discuss the fluid response to a sinusoidal perturbation, where
strain is imposed and the stress monitored to determine the rheological properties of
the material, e.g. the dynamic shear modulus. Additionally, microscopic observables
will be monitored. Not much is known about the dynamics during an oscillatory
experiment of polymer brushes, but it is essential to understand how the complex
fluid behaves. SFA experiments set certain geometrical limits, e.g. finite substrate
size, compression and sensitivity to force responses. The first section will introduce
the parameters used in the simulations, perturbation amplitudes, and frequencies.
The second section will discuss the viscoelastic properties and, to some extent, the
linear response approximation in terms of the perturbation strength. Generally,
systems with explicit solvent (dimers) at large Weissenberg numbers (Wi ≫ 1) are
considered, because they exhibit a better signal-to-noise ratio experienced in the
previous studies. Utilizing standard rheology like analysis will reveal a character-
istic relaxation time which is related to microscopic and macroscopic responses. A
comprehensive overview about the rheology of non-Newtonian liquids is given in the
book of Ferry [71].

6.1 Sinusoidal wall protocol

In our simulations we apply a sinusoidal shear protocol

v(ω, t) = v0 cosωt , (6.1)

69
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with the amplitude of the wall velocity v0 and a fixed frequency ω to both substrates.
In this situation, the strain becomes a function of ω

γ(ω) =

∫ π
4

0

γ̇dt =

∫ π
4

0

v0
Dz

cos(ωt)dt =
v0
Dzω

. (6.2)

Complementary, in the experiment often the strain amplitude γ0 is fixed and defined
via

γ =
∆x

Dz

, (6.3)

with ∆x being the wall displacement. We now apply the harmonic driving, where
γ becomes time-dependent

γ(t) = γ0 sin(ωt) (6.4)

with a frequency dependent shear rate

γ̇(t) = γ0ω cos(ωt) . (6.5)

In Figure 6.1 expressions (6.2) and (6.5) are shown: for two examples the wall veloc-
ity is fixed (solid lines) and for one example an arbitrarily constant wall displacement
is chosen, where the velocity becomes a function of the frequency (dashed line). As
discussed in chapter 2 the wall velocity can only cover one order of magnitude of
velocities without heating up the fluid too much and that limits the explorable
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frequency space for a fixed γ0. The problem of a constant strain is not further
investigated.

6.2 Viscoelastic observables

Viscoelasticity is studied using dynamic mechanical analysis. For Newtonian
fluids the shear stress σxz is in phase with the shear rate γ̇, so the response of one
caused by the other is immediate, and there are no normal stress responses. For
our polymer brushes a representative example how the considered stress components
evolve in time is shown in Figure 6.2. The shear stress oscillates with the frequency ω
(blue solid line), but it is not in phase with neither the shear strain (green solid line),
nor the shear rate (red solid line). The inset in Figure 6.2 shows the normal stress
response oscillating with twice the frequency 2ω around a above the equilibrium
pressure. For the shear stress one can measure the amplitude and phase shift as a
function of the frequency ω. If we assume that the strain amplitude γ0 is sufficiently
small so that the shear stress is linear in strain, one can write [71]

σxz = −A(ω)γ0 sin(ωt+ δ)−B(ω)γ̇0 cos(ωt− ϕ) . (6.6)

The shear stress now can be identified as a superposition of in-phase and out-of-
phase components. The amplitudes are equivalent to two linear viscoelastic material
functions, G′ and G′′:

σxz = −γ0 [G′(ω) sin(ωt) +G′′(ω) cos(ωt)] , (6.7)

where G′ and G′′ add together to the complex shear modulus

A(ω) =
√
G′2 +G′′2 = |G∗| . (6.8)

The amplitude B(ω) and the phase shift ϕ in Eq. (6.6) are related to the complex
viscosity, η′ and η′′ by

B(ω) =

√
η′2 + η′′2 = |η∗| . (6.9)

The ∗ imply the complex functions including real and imaginary parts. When real
and imaginary parts of either the complex shear modulus or the complex viscosity
are known, the phase shifts can be calculated via

tan δ = G′′/G′ and (6.10)

tanΦ = η′′/η′ . (6.11)
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The phase angle δ between strain and shear stress is normally defined by the loss
tangent, tan δ. The phase angle ϕ between shear rate and shear stress is then found
as ϕ = π/2− δ.

6.2.1 Complex shear modulus and complex viscosity

The complex shear modulus determining the shear stress that is linear in strain
is a linear viscoelastic property. Such observables are important to characterize the
material’s behavior under small strain deformation. G′ = η′′ω is called the storage
modulus and gives information about the elastic character of the fluid or the energy
storage taking place during the deformation.
On the other hand, G′′ = η′ω is known as the loss modulus and tells about the
viscous character of the fluid, or the energy dissipation that occurs in flow.
In the situation of an ideal fluid the shear modulus G′ reacts like a perfectly elastic
solid, G′ = G and G′′ = 0, whereas for Newtonian fluids, η′ is equal to the viscosity
η, and η′′ is zero.
Oscillatory shear and dielectric relaxation are often described and discussed in the
same context due to the similar structure of the underlying equations [79]. A link
can be established between the electromagnetic and rheological susceptibility. Non-
linear responses are well known for the electromagnetic case, much higher optical
frequencies may occur with increasing optical intensity [80].

6.2.2 Non-linear response

With decreasing frequency the strain grows, see Eq. (6.2), the response may
become non-linear [79]. To quantify the non-linearity the power spectral density
(PSD) is used. With the help of Fourier analysis higher frequency components can
be identified hidden inside the original signal. The PSD is defined as

S(ω̃) = X̃(ω̃)× X̃∗(ω̃) , (6.12)

where X̃(ω̃) represents the Fourier transformed time-dependent observable, e.g. σxy(t),
and X̃∗(ω̃) its complex conjugated. ω̃ is given by the numbers of observation time
steps. The signal must contain at least one frequency, the fundamental driving fre-
quency ω of the walls. Depending on the strength of the driving, higher harmonic
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frequencies may appear

ωn = nω with n = 2, 3, . . . (6.13)

Since the stress response depends on the strain applied to the system deforming the
material, the linear response assumption may not hold. The stress can be expressed
as a sum of higher Taylor polynomials

σxz
γ0

=
∑
k

G′ (ωk) sin(kωkt) +G′′ (ωk) cos(kωkt) (6.14)

with k = 1, 3, 5 . . . being the number of higher frequencies and there related am-
plitudes G′(ωk) and G′′(ωk). Two examples of Fourier transformed response signals
are shown in Figure 6.3 for the highest and smallest external driving frequencies
applied to our polymer brushes. While for ω ≫ ω1 (inset) only one frequency peak
appears in the PSD, the situation changes for the smallest frequency, where higher
odd harmonics kω for k = 1, 3, 5, 7 are hidden in the stress’ PSD. Only odd har-
monics appear which is given by the fact that for one, the viscosity is described by
a power-law and independent of the shear direction η(γ̇) = η(−γ̇) = η(|γ̇|), section
4.4, and for small shear rates η can be expanded in terms of the absolute shear rate

η = η0 + a|γ̇|+ b|γ̇2|+ . . . . (6.15)

Secondly, the Fourier analysis allows to express the time dependence of γ̇ as a sum
of higher even harmonic contributions

|γ̇| ∝ a+ b cos(2ω1t) + c cos(4ω1t) . . . , (6.16)

which in the case of oscillatory driving with one odd harmonic leads to a mixture
of higher even harmonics [Eq. (6.16)] and therefore via the trigonometric addition
theorems the multiplication of Eq. (6.16) with Eq. (6.15) results exclusively in a sum
of odd harmonics. To estimate the influence of the higher frequencies the amplitude
can be calculated from the PSD, as well. In general, for all recorded signals, the
third amplitude at 3ω for each shear modulus component is less than 10% of the
driving one [S(ω)] and therefore negligible. The linear response assumption holds in
terms of the strain. In the work of Chen, see Ref. [81], the PSD of the response for
sheared zwitterionic brushes is published, which reveals higher harmonics indicating
a strong non-linear response with respect to the displacement.
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Figure 6.3: Power spectral density of the smallest and (inset) largest frequency
driven stress response.

6.3 Viscoelastic response

In the last section the non-linear response was discussed and a Fourier analysis
indicated that linear response analysis holds, since higher harmonics are negligible.
Figure 6.4 shows the first Fourier amplitudes as a function of the frequency for one
system with a chain length of N = 60, grafting density ρ = 2.2ρ∗, and Dz = 17.5.
One may distinguish three main regions. In the terminal region for small frequencies
G′′ is linear in frequency and G′ ∝ ω2. When those properties are extrapolated to
higher frequencies, thus intersect at some point defining a resonance frequency ω0 of
the fluid [82]. Beyond ω0 both components cross-over to the plateau regime, where
the shear modulus is almost independent of the frequency expressing nearly elastic
behavior, like two sliding solids. Usually, in this regime the loss modulus is larger
than its elastic counterpart. The chains cannot fully relax and this contributes to
the pseudo-elastic response at intermediate frequencies [83]. The regime ω ≫ ω0 is
referred to as the plateau regime, where the shear moduli transit via a power-law
to the glassy regime [71, 82]. In Figure 6.4 a function G ∼ ω0.75 is added as a guide
to the eye. Several experiments studied polymer solutions [71] close to the glassy
regime and they report about an intersection of both viscoelastic components, which
is not explored here. The strain is already so small that the motion of the walls is
of the order of the monomer size, see inset in Figure 6.4.
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Figure 6.4: The shear moduli as a function of ω. The linear extrapolations in the
terminal regime (black dashed lines) intersect and define a resonance frequency (solid
black line). The complex shear modulus grows beyond the plateau regime with a
power-law ω0.75 (dashed line) towards the glassy regime. The inset shows the strain
γ as a function of ω.

In Figure 6.5 the control parameters are changed in order to study the effect of
compression, various brush parameters, and the Weissenberg number. Under high
compression a clear plateau regime appears, compare Figure 6.4 with 6.5(a). When
the brushes become more diluted, see Figure 6.5(b) and 6.5(c), the explicit solvent
dominates the fluid response and recovers the Newtonian fluid properties, as indi-
cated by the black dashed line in Figure 6.5(c). One system is tested in the linear
response regime in terms of the Weissenberg number, see Figure 6.5(d). In this case,
the brushes are able to relax for all strains. Whereas for Wi≫ 1 the loss modulus is
always larger than the storage modulus, forWi≪ 1 in the plateau regime G′ exceeds
G′′. All systems maintain in both frequency limits with its observed power-laws as
seen in Figure 6.4. The complex shear modulus is transformed into its time-domain
transient counterpart, the relaxation modulus, via a fast Fourier transform (FFT),
G(ω)

FFT→ G(t), [performed with MATLAB (2009a, The MathWorks)]. When a se-
quence of small step-strain deformations is considered the superposition of shear
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(c) Dz = 17.5, ρ = 1.1ρ∗, N = 30
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Figure 6.5: Four log-log plots show the complex shear moduli for different parameter
combinations, as indicated in the captions. In general, all shear moduli maintain
for high and small frequencies the same properties as discussed in Figure 6.4.
Figure 6.5(a): The system is strongly compressed and at intermediate frequencies a
smaller pseudo-solid regime is observed than in Figure 6.4
Figure 6.5(b): The wall distance is larger while the brushes still slightly interpene-
trate, but both shear moduli are further seperated.
A similar observation is made in Figure 6.5(c), where the brushes are more dilute,
the response is dominated by the explicit solvent where G′′ is one order of magnitude
smaller than G′. The polymeric time scales, which are susceptible to the harmonic
driving, deviate from the ideal curve (black dashed line). With diluting the system
the properties of a Newtonian fluid are recovered.
In Figure 6.5(d) the response changes. At intermediate times the real part of the
shear modulus becomes larger than the imaginary part, usually the opposite is ob-
served. For small Weissenberg numbers the brushes are able to relax since the driving
is small almost preserving the equilibrium overlap width. The intersection point is
sometimes taken as resonance frequency, but ω0 determined by extrapolations of the
small frequency limit is of the same order.
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Figure 6.6: The stress relaxation in time, after the relaxation time 1/ω0 the stress
relaxes exponentially. The green line represents a simple Maxwell fluid element,
while the red line represent the Rouse approximation [61]. The parameter c is close
to unity. Before the stress relaxes it remains almost constant, for very short times
in the glassy region a jump may occur [82]. The inset shows the mean square
displacement for that system at equilibrium as a function of ω0t. The brushes are
not yet relaxed in terms of the MSD, but the stress has reached its fluid behavior.

responses (Boltzmann Superposition Principle) in a continuous function is given by

σxz(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ , (6.17)

where G(t− t′) represents the shear relaxation modulus, which depends on the past.
The derivative defines the memory function [82]

m(t) = −dG
dt

. (6.18)

Figure 6.6 displays the relaxation modulus for the acquired data in Figure 6.4. If
the fluid can be described as a Maxwell fluid by the superposition of one purely
elastic and one purely viscous element, G(t) for t ≪ 2π/ω0 would follow the green
line where a single relaxation time dominates the response, τ0 = 2π/ω0, such that

G(t) = g0 exp(−t/τ0) . (6.19)

There, g0 represents the relaxation modulus for a simple Maxwell element. Since
G(t) ̸= g0 for t≪ 1/ω0 the single Maxwell element does not describe the fluid.
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As a first approximation the observed stress relaxation modulus is fitted with the
Rouse model [61]

G(t) = (ctω0)
− 1

2 exp(−ctω0) , (6.20)

where c is a free parameter. Equation (6.20) is added to Figure 6.6 (red line), which
works surprisingly well. A second fit given by Zimm dynamics corrects the Eq. (6.20)
by a slightly different power law [61]

G(t) = (ctω0)
− 1

3ν exp(−ctω0) . (6.21)

Much more data points need to be acquired in frequency space to gain better statis-
tics in the time domain and therefore better distinguishable fits. The response be-
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Figure 6.7: A double logarithmic plot of the memory function given by Eq. (6.18).
Since the relaxation modulus in Figure 6.6 decays exponentially, that property is
maintained given by the exponential fit (green line). For short times a long time
behavior is exhibited. The power law indicated with the black solid line is added a
guide to the eye.

comes liquid-like at large times with a fading memory, which decays exponentially,
as indicated by the green line. The inset shows the MSD of the two ingredients
inside the system, one brush displacement component (x-direction) and two solvent
components (x- and z-direction). Recalling from section 3.3.1 the brushes’ MSD
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saturates at large time while the solvent shows free diffusive behavior in the lateral
(x) direction. After the transition from the ballistic regime a subdiffusive behavior is
observed supporting the observation that the relaxation modulus cannot completely
decay. However, when the relaxation modulus enters the terminal region, the MSD
has not yet reached its final plateau.
The memory function displays similar properties as the stress relaxation modulus,
see Figure 6.3. At short times a rather slow decay with a power law behavior is
observed. A power-law is added to the plot as a guide to the eye. Since the stress
relaxation modulus and the memory function for short times are not represented
by one fluid specific relaxation time τ0, other approaches are needed to model the
observed deformation history. For further reference the book of Ferry [71] provides
a comprehensive starting point.
Furthermore, the viscous character of that system is determined by dividing the
shear moduli by the frequency, shown in Figure 6.8. The real part η′ exhibits a
frequency independent plateau for small frequencies and is decreasing continuously
towards higher frequencies. The linear response theory identifies the plateau value
as the zero shear viscosity. As shown in section 3, η(0) is determined by scaling the
dynamic viscosity onto a power law. In the harmonically driven system the zero
shear viscosity in linear response is measurable when ω → 0, the storage modulus
related viscosity yields

lim
ω→0

η′(ω) = η(0) . (6.22)

The linear response analysis holds for decomposing the stress signal but not for
the response in terms of the Weissenberg number Wi. For the designated set of
parameters (N = 60, ρ = 2.2ρ∗, Dz = 17.5, Wi ≫ 1) the steady state viscosity is
found on the non-Newtonian branch, therefore the real part becomes

lim
ω→0

η′(ω) = η(γ̇) . (6.23)

The imaginary part of the complex viscosity exhibits a maximum around the res-
onance frequency ω0, determined from the extrapolation of both shear moduli. If
the explored terminal regime does not allow an extrapolation of the shear moduli
to extract the resonance frequency the observed maximum in η′′ can be used, too.
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Figure 6.8: The complex viscosity as a function of the normalized frequency. In the
limit of ω → 0 the real part of the viscosity does not reach the zero shear viscosity,
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6.3.1 Steady state limit

The response depends on the strain leading usually to a non-linear behavior
inducing higher odd harmonics to the shear stress changing the shape from a simple
sinusoidal curve to a superposition of sinus functions, similar to Eq. (6.14). In Figure
6.9 the shear stress is plotted versus the wall displacement ∆x. A system is chosen
where linear and non-linear shear force responses are observable depending on Wi.
For both cases, when ω ≫ ω0, the stress follows an ellipsoidal shaped curve where
the major axis is inclined (phase δ). With decreasing frequency below the resonance
frequency and growing strain the ellipsoid becomes stretched turning slowly into
trapezoidal shaped curve where the stress becomes constant implying that the shear
stress saturates while the strain increases further. Analogous to the oscillatory
driven systems, where the wall velocity changes smoothly and continuously in a
sinusodial fashion, the inversion of motion in the last chapter may also be seen as a
cyclic movement but with almost zero turn times creating a triangular shaped wall
movement in time. In that case the frequency and the frequency-independent strain
are large. In the literature the expression "large amplitude oscillatory shear" (LAOS)
is generally used [84]. For Wi ≪ 1, Figure 6.9(a), and for Wi ≫ 1, Figure 6.9(b),
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Figure 6.9: Two Lissajous figures are shown for the shear stress vs. the wall displace-
ment [Eq. 2.23]. A single system (N = 30, ρ = 4.4ρ∗, Dz = 17.5) in linear response
(Wi ≪ 1) (a) and beyond (Wi ≫ 1) (b) with three frequencies are shown. Addi-
tionally, for both regimes the response to almost instantaneous inversion of shear
direction is added to the purely oscillatory shear. Above ω0 the shear stress follows
an ellipsoidal curve, below the shape changes and higher odd harmonics contribute
to the curve. When the wall movement passes the equilibrium position the stress
becomes almost constant and saturates at the steady state value. At approximately
ω0 the stress is still below the steady state limit.

the responses during the inversion are added and show sharp more trapezoidal like
transitions. In both cases, when the strain becomes large enough, the shear stress
reaches its maximum value. For analyzing experiments one assumes that steady
state is reached. Therefore, the interpretation of early experiments in Ref. [9],
where the regime of LAOS could not be reached, should be critically reviewed [85].

6.3.2 Shear hysteresis of polymers

Similar to the Lissajous figures in Figure 6.9 now the wall velocity is taken on
the abscissa, see Figure 6.10. For ω ≫ ω0 the curve is ellipsoidal which turns for
decreasing frequency into a hysteresis shaped curve. At the outer fringe, when the
wall velocity reaches its maximum value, the loop closes. The imaginary part of the
dynamic susceptibility is usually interpreted as the dissipation term, which is well
known in spectroscopy. The energy ϵ dissipated per unit volume and cycle of input
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Figure 6.10: The shear stress plotted against the wall velocity shows a hysteresis.
The curves flatten for systems that reach steady state, e.g. ω ≪ ω0.

oscillation is given by [86]

ϵ =

∫ 2π/ω

0

σxz(t)γ̇(t)dt . (6.24)

When Eq. (6.2) and the first Fourier amplitudes of the complex shear modulus are
inserted into Eq. (6.24), the dissipated energy per cycle becomes [87]

ϵ =
πγ0
ω
G′′(ω) . (6.25)

Both equations are compared in Figure 6.11, where the measured values of σxz(t)
and G′′(ω) are used. For small turning cycles (large ω) a lot of energy is dissipated
per cycle, while for large turning cycles (small ω) the heat production is strongly
reduced. The origin of this observation is discussed in the section 6.6. The prefactor
in Eq. (6.25) does not match with the calculated ϵ. An arbitrary prefactor is used
to scale Eq. (6.25) downwards to obtain a qualitative agreement with the observed
data.
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Figure 6.11: The energy dissipation per cycle as a function of the frequency is shown.
At large frequencies ω ≫ ω0 the dissipated energy is dominated by the reorientation
of the fluid. When crossing over to lower frequencies, the relaxation of the brush
dominates, where less energy is dissipated.

6.4 Friction coefficient

The (stationary) friction coefficient defined in section 4.1.2 [Eq. 4.2] as the ratio
of shear over normal stress can also be defined as a time dependent friction coeffi-
cient. Figure 6.12 shows how (also in the experiment) the responses look like and
how the coefficient of friction is determined. The stresses must reach steady state
to provide almost constant frames allowing to obtain a time-independent friction
coefficient. For large frequencies the shear stress exhibits a certain delay to the
driving of the walls and circles on a deformed ellipsoidal loop when plotted against
the wall displacement. When the driving frequency is set below ω0 the shear compo-
nent of the stress tensor saturates and becomes almost constant. Figure 6.13 shows
an example how the friction coefficient changes with frequency. The inset displays
the response of the normal stress. When steady state is observed the z-component
increases slightly as already mentioned in chapter 4. For smaller turning periods the
normal pressure component remains constant at the equilibrium value.
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Figure 6.12: The fluidic responses during oscillation. Upper plot: shear stress and
how it follows the wall displacement (green: sinus function). Middle plot: normal
stress. Lower plot: the ratio of both time series displaying the time-dependent
friction coefficient.
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Figure 6.13: The friction coefficient as a function of ω. The inset shows the normal
stress component as a function of ω. For ω ≪ ω0 the normal stress component grows
up to 6% while for ω ≥ ω0 the equilibrium pressure is attained.

6.5 Microscopic response

The macroscopic response is connected to the chain response. As it is discussed in
chapter 3 the chains respond to the wall movement via inclining, elongating in shear
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sions of the chains as a function of ω are shown and compared to the equilibrium and
steady state shear values (black dashed lines). The equilibrium value is observed
after one system in the oscillatory regime (ω ≫ ω0) was stopped.

direction, and reducing the brush height. In Figure 6.14 lateral (x) and gradient (z)
components of R2

g are shown as a function of ω. For high frequencies the brushes
do not respond in shear direction, since the strain is very small compared to the
typical lateral extension in equilibrium. Interestingly, the chains shrink orthogonal
to the substrate. On the other hand, for large turning times the chain extensions
reach their steady state value.

6.6 Velocity profiles

For a system driven above its resonance frequency the relaxation cannot take
place. The wall movement is propagating into the flow, displacing first only the ma-
terial accumulated at the walls. The momentum propagates quickly into the system
establishing a linear profile. During half a cycle the wall velocity goes sigmoidally
from v0 = −v0, the velocity profile remains almost linear. Small retardation effects
only occur close to the walls, see Figure 6.15(a). With decreasing driving frequency
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Figure 6.15: For three different frequencies a series of velocity profiles during half
a cycle is shown. The arrows indicate the shear directions of the walls. The solid
lines represent the brush profiles, the dashed lines the explicit solvent.

approaching ω0 the situation does not change significantly, a linear profile is observed
always for ω ≥ ω0. Below ω0 a linear profile is still observable. When the linear
profile within the small interpenetration layer between the brushes is extrapolated
to the wall velocity, the hydrodynamic boundary zbrush

z is not found at the walls but
inside the system. For ω ≪ ω0 the effective gap width Dz/2 ± zbrush

z (γ̇) is estab-
lished and throughout the cycle the effective gap size does not change significantly.
In Figure 6.15(b), where ω ≤ ω0 the brushes start to relax indicated by a steepening
linear profile. In Figure 6.15(c) the linear profile is even steeper and the effective
gap width has reached steady state, as discussed in section 4.6. When the brushes
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pass the equilibrium velocity, retardation is observed. The particles further inside
the channel are still moving. In this case, mass is displaced and retardation effects
arise from inertia. Figure 6.15(c) displays the case for large wall amplitudes and
the smallest tested frequency. Here, the displacement rate is so small the brushes
may relax and an steady state shear profile is observed. During the zero crossing of
the wall velocities the shear rate is the large enough that th hamper the relaxation
process. In all three plots the velocity profiles of the solvent has been added. The
arrows in the plots show the direction of the wall movement for half a cycle.
As discussed in section 5.5, during the oscillation the flow profile of the solvent along
the xz-direction is analyzed, but not shown. As long as the linear profile is estab-
lished, strong micro-turbulences are observed, which do not vanish until the brushes
are able to relax into steady state. For large frequencies those turbulences dissipate
more energy per cycle than for small frequencies, which is sustained by Figure 6.11.
Only when the brushes reach steady state sliding the kinetic energy is distributed
homogeneously along the gap increasing the normal pressure, as shown in the inset
of Figure 6.13.
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6.7 Characteristic time scale
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Figure 6.16: All critical shear rates for systems with explicit solvent obtained in
steady state (filled symbols), the resonance frequencies ("+" symbols) and the chain
segment relaxation times are compared to Eq. (4.12). Interestingly, the oscillatory
time and the relaxation time of the Kramers problem match quite well, indicated by
the red solid line, which, on the other hand, indicates a slightly different dependence
on the control parameters.

The characteristic material-dependent time 1/ω0 for strongly compressed brushes
classifies two regimes, terminal or flow region and the pseudo-solid response region,
where the brushes are unable to relax completely.
All measured critical shear rates, the inverse relaxation of an endmonomer of one
chain inside the overlap (section 4.2.1), the critical shear rate (section 4.2), and the
resonance frequencies are compared to Eq. (4.12), are shown in Figure 6.16. Three
major clusters are observed indicating that the chain length N has the strongest
impact, weak deviations occur with different grafting density and compression. The
critical shear rates follow nicely the found theoretical expression (Eq. (4.12) dashed
black line). The deviations from the theoretical prediction may originate from the
prefactors ηs and the effective monomer size a. For chain length N = 30 and N = 60

(right and middle cluster in Figure 6.16) the determined inverse relaxation time
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(open symbols) and resonance frequencies ("+" symbols) sustain nicely to the theory.
The strongest deviations are observed for the longest simulated chains N = 120. The
inverse relaxation time indicates an acceleration of the relaxation at equilibrium
compared to the lateral relaxation in steady state. Here it is suggested that not
the diffusion of the end-monomer but the diffusion of a free end-segment of the
chain inside the overlap may increase the relaxation time. The resonance frequency
is given by the linear extrapolations of the shear moduli in the small frequency
limit, their slopes represent neither the zero-shear viscosity nor zero-compliance but
their corresponding values at large Weissenberg numbers. The Weissenberg number
determined for the tested system (N = 120, ρ = 1.1, Dz = 17.5) at v = 0.2 is
Wi ≈ 103, therefore far from linear response.
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6.8 Single chain in simple oscillatory flow

While a significant contribution towards the understanding of systems with mul-
tiple tethered polymer chains (polymer brushes) is given in this context, single teth-
ered polymer chain dynamics still remain challenging. The ability to visualize single
polymers via fluorescent staining has revealed many nontrivial individual chain dy-
namics providing rich dynamics when exposed to shear. Several studies examined
single tethered DNA-chains in stationary shear flow experimentally [74] and numer-
ically [69, 88]. Numerical investigations of chains in oscillatory flow are rare [89].
The long-time dynamics of a single end-grafted chain under steady and oscillatory
Couette flows is studied. The next section will discuss the simulation details and how
the oscillatory driven dynamics are explored. In the second section the chain will
be treated in a mathematical model as an over-damped harmonic oscillator dragged
through a fluid. The results of the investigation congregate in the last section.

6.8.1 Simulation details

In our simulation, twenty chains with N = 30 are grafted regularly onto the
substrate. The distance between two neighbouring chains is chosen such that the
chains do not interdigitate. Figure 6.17 shows a simulation snapshot of 20 chains at
equilibrium. For clarity, the solvent dimers and the upper boundary wall have been
removed.
In equilibrium, the longest relaxation time τ is determined from the exponential
decay of the autocorrelation function of the lateral position of the center of mass

C(t) =
⟨Ri,cm(0)Ri,cm(t)⟩

⟨R2
i,cm(0)⟩

∼ exp(−t/τ) for i = x, y . (6.26)

For N = 30 a relaxation time of τ ≈ 350τLJ was measured.
The monomer distribution for that simulation model with explicit solvent can be
compared with the study of Kreer et. al. [58], where single endgrafted chains at
equilibrium were studied. Figure 6.18 shows the monomer distribution Φ(z) along
the gap normalized by Φ(z = Rg) versus z/Rg. Starting from the grafting point
(z ≪ Rg) the distribution grows with a power law and decays exponentially for
(z ≫ Rg). The exponential fit in Ref. [58] is qualitatively close to the observed
density profile. The origin of the deviation is the upper substrate, chains would be
able to stretch slightly further than the wall distance is set. Due to computational
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Figure 6.17: Snapshot of regularly end-grafted chains without overlap onto the lower
substrate. For clarity the upper wall and explicit solvent dimers have been removed.
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Figure 6.18: Log-log plot of the normalized monomer density profile Φ(z)/Φ(Rg)
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according to Ref. [38] for z ≪ Rg and for z ≫ Rg are indicated by the green and
red lines.
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Figure 6.19: The wall is driven with a fixed velocity
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Figure 6.20: A snapshot of a sin-
gle polymer chain during shear.
The red dashed line represents
the actual velocity profile, the red
solid line the velocity profile for
the no-slip boundary condition.

time the substrates’ distance is chosen at Dz = 10 limiting the volume for the dimers
to occupy, and hence the number of solvent molecules that have to be simulated at a
given total density, ρ = 0.9. However, the deviations are small and can be neglected
for the further discussion.

6.8.2 Oscillatory wall movement

To the upper wall an oscillatory velocity protocol is applied, see Figure 6.19,

v(ω, t) = v0 cos(ωt) . (6.27)

Similar to the discussion in section 6.1, the strain becomes a function of the driving
frequency ω, Eq. (6.2),

γeff =
veff

Dzω
. (6.28)

All particles are interacting via the purely repulsive part of the LJ-potential [Eq.
(2.1)], which means the solvent does not stick at the wall. Hence, a slip on both walls
is expected. The velocity profile is carefully observed to ensure a linear shear profile
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along the gap despite the slip. In Figure 6.20 the situation is shown, where the wall
induces a steep shear profile (red solid line), while the solvent (dashed red line) does
not follow the wall movement entirely. Figure 6.19 shows the velocity of the wall
and the first solvent layer at the wall, where a slip occurs. The upper inset shows
that the slip is rather constant over a wide frequency range, the slip increases with
higher frequencies, the fluid’s susceptibility to follow the driving decreases. That
limits the exploration of the high frequency regime of the single chains. To overcome
this problem, one may define another boundary interaction, e.g. the upper substrate
could be covered with short end-grafted chains creating a mesh or an attractive LJ-
potential for the fluid-wall interaction could be introduced, which creates a no-slip
boundary condition. None of these ideas were implemented here. Therefore, the wall
induces an effective strain γeff, which is related to the first layer velocity. The lower
inset in Figure 6.19 shows the effective strain of the first layer (green line) compared
to the walls strain (blue line). The first solvent layer induces a linear profile towards
the lower substrate, a small slip occurs there, too, but it is negligible. This may be
attributed to the fact that the grafted chains hamper the slip.

6.8.3 Over-damped harmonic oscillator in shear flow

z

x

z γ
c

Figure 6.21: A sketch of a two-dimensional harmonic oscillator in simple shear flow.
The inclining line represents the strain γ of the flow, which moves the bead attached
at (0, zc) in x and z direction.

To develop a theoretical model the center-of-mass of a single chain is projected
onto a single bead, which is attached at a certain distance zc above the surface, see
Figure 6.21. When now the upper wall induces the Couette flow in x-direction, the
driven medium drags the bead out of its equilibrium position. A spring counterbal-
ances the viscous force pulling the bead back to its anchoring point. The bead has
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also another degree of freedom allowing it to transit along the z-axis in and out of
high velocity gradients. The equations of motion for the bead are given by

ζfluid

(
dx

dt
− γ̇z

)
= −kx (6.29)

and
ζfluid

(
dz

dt

)
= −k(z − zc) , (6.30)

where ζfluid represents the damping constant of the fluid and k the spring constant,
which mimicks an elastic response of the polymer. Both equations of motion may
additionally include a stochastic term, which vanishes after averaging. The coupled
differential equations can be solved by solving first Eq. (6.30)

z(t) = zc + (z0 − zc)e−
t
τ (6.31)

with τ = ζfluid/k the relaxation time of the spring and zc the starting height of the
bead above the lower substrate. Now Eq. (6.29) can be expressed as

x(t) = x0e−
t
τ

+

∫ t

0

dt′γ̇(t′)e−
t−t′
τ

[
zc + (z0 − zc)e−

t′
τ

]
. (6.32)

For constant shear, Eq. (6.32) is solved,

x(t) = x0e−
t
τ + τ γ̇zc(1− e−

t
τ ) + tγ̇(z0 − zc)e−

t
τ . (6.33)

In the limit t→ ∞ the stretching of the spring in the flow becomes

x(t→ ∞) = zcτ γ̇ . (6.34)

Equation (6.33) can be solved for an oscillatory flow

γ̇ = γω cos(ωt) (6.35)

to

x(t) = x0e−
t
τ + (z0 − zc)γe−

t
τ sin(ωt)

+
zcγωτ

1 + (ωτ)2

[
cos(ωt) + ωτ sin(ωt)− e−

t
τ

]
. (6.36)

In the limit of t→ ∞ the beads movement becomes

x(t→ ∞) =
zcγωτ

1 + (ωτ)2
[cos(ωt) + ωτ sin(ωt)] . (6.37)
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Figure 6.22: A double logarithmic plot of both first Fourier amplitudes vs. the
normalized frequency. The intersection of both amplitudes indicate a resonance
frequency of ω0 ≈ 1/τ .

With an addition theorem for trigonometrical functions, Eq. (6.37) yields

x(t) =
zcγωτ√
1 + (ωτ)2

sin(ωt+ Φ) (6.38)

with the phase shift

Φ = cot−1(ωt) . (6.39)

Equation (6.38) can be decomposed into two limits

x(t) = zcγ sin(ωt), for ωτ ≫ 1 (6.40)

x(t) = zcγωτ cos(ωt), for ωτ ≪ 1 . (6.41)

6.8.4 Single chain response

During the simulation the center of mass is recorded. The response of the chain
is decomposed with Fourier analysis into the two leadings terms. One can find both
first Fourier amplitudes via

a1 =
2

M

M∑
i=1

Rcm,x(ti) cos(ωti) , (6.42)

b1 =
2

M

M∑
i=1

Rcm,x(ti) sin(ωti) . (6.43)
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Rcm,x(ti) is the center of mass at ti with i = 1 . . .M observation steps. Figure 6.22
shows both Fourier components as a function of the normalized frequency ωτ . For
lower frequencies the cosine-component of the flow dominates the chains response. It
is emphasized that the intersection point of a1(ω) and b1(ω) represents a resonance
frequency ω0 ≈ 1/τ . Another quantity extracted from the center of mass movement
is the standard deviation around the grafting point of each chain

∆R(t)cm,x =

√
⟨(x(t)− x0)

2⟩ , (6.44)

where ⟨⟩ denotes the average over all chains for a given frequency, x(t) the position
of the center of mass in time relative to the grafting point x0. The difference between
extracting the Fourier amplitudes and the standard deviation is given by the weight
how each point in time contributes to the average quantity. The Fourier amplitudes
weight the center of mass in time depending on the phase of the trigonometrical
functions. On the other hand, in Eq. (6.44) each point in time contributes equally
to the deviation around the grafting point. Due to different weight functions of the
same observable different results are expected. In Figure 6.23 the chain responses
according to Eq. (6.44) and the sum of both Fourier amplitudes as a function of ω are
compared to the expression in Eq. (6.38). For both methods the strain was identified
as the effective strain, Eq. (6.28). Both observables follow for small frequencies the
prediction of the bead model nicely and grow linearly with ω. In the crossover
region ωτ ≈ 1 a plateau is reached. For higher frequencies both quantities deviate,
the Fourier amplitudes decrease and the standard deviation grows linearly with ω.
In contrast, the bead model stays constant for higher frequencies. The model does
not take into account that the chains are made of N monomers with finite inertia.
In the high frequency limit the model therefore breaks down. The inset of Figure
6.23 shows the center of mass parallel to the surface including both limits, steady
state (ωτ → 0) and equilibrium (ωτ → ∞), representing the average position of
the massless bead zc. When the Fourier amplitudes are corrected by this average
z-position,

√
(a21 + b21)/γeffRcm,z, the theory is still off by a factor of 2.

On the other hand, the phase is in rather good agreement with the solution of the
simplistic model. One can derive the phase from the Fourier amplitudes, yielding

ϕ(ω) = tan−1 b1(ω)

a1(ω)
. (6.45)

The phase ϕ is compared with Eq. (6.39) in Figure 6.24. In the free drain limit quasi
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cyclic dynamics are observed. Similar to the experimental observation in Ref. [74],
the PSD does not reveal any specific frequency but single frame analysis of the
trajectory indicate tumbling motion.
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6.9 Summary

This chapter dealt with oscillatory shear of confined liquids. The last section dealt
with the problem of a single chain at equilibrium and in an externally oscillatory
driven flow. The observed density profile in equilibrium was compared to a study of
the same simulation model with implicit instead of explicit solvent. Slight deviations
occur when the system is limited by two walls to confine the added explicit solvent
molecules. Otherwise the observed profile is close to the theoretical description,
the dimer solvent seems to have a marginal effect on the universal stretching of the
single end-grafted chains.
The system was driven by a time-dependent strain,γ(t) = γeff sin(ωt), where γeff
represents the effective strain due to slip at the walls. The first solvent layer and
not the upper wall’s displacement defines the effective strain. The numerical obser-
vations with changing driving frequency ω were compared to an overdamped single
bead-spring model, where the polymer chain is projected onto one bead. The model
is in good agreement with the simulation data. The investigation can be seen as a
starting point for further investigations, where hydrodynamic interactions between
the end-grafted chains may be studied. The mathematical model may be extended
to two coupled chains exhibiting phase-locking or mode coupling.
The first part of this chapter dealt with two compressed brushes, similar to the
SFA geometry. The observed shear stress was decomposed into the first two Fourier
amplitudes, representing the complex shear modulus. Higher odd contributions in
terms of non-linearity were discussed and further on neglected. The complex shear
modulus G∗(ω) and its time-domain counterpart, the relaxation modulus G(t) of
the fluid, exhibit two major regimes, the flow regime and the plateau regime. Both
regimes are separated by the material’s characteristic relaxation time or resonance
frequency.
The resonance frequency was compared to the earlier found characteristic relaxation
times and critical shear rates separating linear from non-linear response with respect
to the Weissenberg number. The resonance frequency seems to be related to the
residence time of a chain segment inside the overlap region, where dissipation takes
place.
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Chapter 7

Fluctuations in the interface

The theory for equilibrium brushes starts with the discussion of the mean field
theory of MWC where local fluctuations are neglected in the limit of strong stretch-
ing, Nρg → ∞. More realistic is finite chain stretching which leads to different
density profiles. In both free brushes and compressed brushes the density profiles
drop exponentially towards the free ends. In the equilibrium study the overlap was
introduced characterizing the brush-brush interface, depending on the system’s pa-
rameters N , ρg and Dz. The width of that interface with its microscopic details
dominate the frictional response to shear. The continuum description in chapter 4
(section 4.6) introduces the slip. According to Refs. [90–92] when all the parameters,
slip length b and the hydrodynamic boundary zh are known, the viscosity can be
extract from a Green-Kubo relation

η

b
=

1

AkBT

∫ ∞

0

dt⟨F∥(0)F∥(t)⟩ , (7.1)

where F∥(t) denotes the parallel force between the substrate and the flow at time t,
and A is the area of the substrate. This relation suggest that the slip length depends
on the interaction, Vwall(z), between wall and fluid like [92]

b ≈ (kBT )
2

S∥(qwall)σ̂
∫∞
0
dzΦ(z)Vwall(z)

, (7.2)

where S∥(qwall) is the structure factor of the liquid at the wave vector, qwall, that
describes the corrugation of the substrate, σ̂ is the particle size, and Φ(z) the local
density. It is pointed out that the theory implies a flow past an ideal interface with
slip. In section 6.6 such a slip occurred along the upper surface. For a flow past
a brush coated surface the Navier slip boundary cannot be formulated consistently
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for both conditions, zh and δ as discussed in Refs. [75, 93]. More interesting appears
the flow of one brush past another one, where both are in contact. Equations (7.1)
and (7.2) are discussed in this context.
In the first section a phenomenological description of local brush height is used
to define a surface of a brush coated surface. The projection method is further
deployed to the compressed brush to define S∥(q) in Eq. (7.2). In the second section
a discussion of the autocorrelation function in Eq. (7.1) is carried out, where the
fluctuations inside to overlap are considered.

7.1 Local structure of a free brush and a compressed

bilayer
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Figure 7.1: A log-log plot of the struc-
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inset shows the density profiles. There is
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therefore the scattering vector is arbitrary
units.
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With the help of neutron scattering the brush profile is known for a single polymer
brush. To extract the spatial fluctuation spectrum we performed a Fourier analysis
in reciprocal space, similar to Eq. (6.12) yielding

S(qi) = ⟨X̃(qi)× X̃∗(qi)⟩ , (7.3)
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where ⟨⟩ denotes the average, X̃(qi) the Fourier transformed of the real space observ-
able, X̃(qi) its complex conjugate, qi the reciprocal wave vector, and i the spacial
direction. In Figure 7.1 the structure factor for both profiles are shown, single brush
and uncompressed bilayer. In agreement with the study [94, 95] the single com-
pressed profile shows structure factor S(qz) ∼ (qz)

−β with β = 2. When the brushes
are compressed, the structure factor given by one of two brushes decays with an
exponent β = 1. To our knowledge no experimental measurements of the structure
factor of a single profile in compressed bi-layers are available. A more sophisticated
experimental setup, where the monomers of one brush are differently chemically
labeled, is needed, such that a single compressed profile can be measured. On the
other hand, it can be shown, that the structure factor of the total monomer profiles,
which is experimentally available, decays even more slowly (with β < 1) as long as
the overall profile is not uniform. The inset in Figure 7.1 shows the monomer densi-
ties of both cases, the green solid line represents the lower brush and green dashed
line the corresponding upper brush. The black dashed line represents the sum of
both profiles, the related Fourier spectrum is not shown. The reciprocal lattice vec-
tor in Figure 7.1 is given by qz = 2πn/nbins with n = 1 . . . nbins the number of bins
perpendicular to the walls, which was chosen arbitrary, therefor qz is in arbitrary
units. The abscissa scales with the size of the bins since no brush specific length
scale was introduced.
A projection method is introduced to visualize the local lateral structure created

by a single brush. The surface in the xy-plane is subdivided into a lattice using the
smallest length scale in the system, the monomer size σ = 1. Each monomer belong-
ing to one brush is projected into a bin of the lattice depending on its xy-position
above the substrate. The number of monomers stacked in one bin is proportional to
the local height defining a local polymer layer height. A visualization of such a "car-
pet" is shown in Figure 7.3. The color bar encodes the local number of monomers
above the substrate. When the position of the monomers are projected in z-direction,
the density profile with its exponential tail of the inset in Figure 7.1 is recovered.
When now the static structure factor is calculated via Fourier transformation of the
"carpet"-like structure, the observed structure factor S(qx) for

2π

L̂x
≤ qx ≤

2π

σ
, (7.4)

where L̂x = 4Lx, mentioned in chapter 2, to obtain a broader wave spectrum. Each
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Figure 7.3: A view on top of a single poly-
mer brush. The color-bar on the left in-
dicates the amount of monomers stacked
above the substrate. A rather homoge-
neous and smooth surface is observed.

Figure 7.4: A top view of a compressed
bilayer onto the lower brush and its
monomer distribution above the lower sur-
face is shown. Irregularities in the lo-
cal distribution appear, clusters of high
(red/yellow) and low (blue) monomer con-
centrations. The color-coding follows the
color-bar in Figure 7.3.

scattering vector qx is equally distributed indicating local uncorrelated statistics. A
recent experiment investigated the surface morphology of single polystyrene brushes
via atomic force microscopy (AFM) and X-ray diffusive scattering [96]. Their struc-
ture factor is in qualitative agreement with the data shown in Figure 7.2. For smaller
qx their spectrum is flat, but decreasing faster towards larger wave vectors by ap-
proximately one order of magnitude of intensity [96]. Such a strong decay is not
observed here. The origin of this different behavior is unknown. A different picture
can be drawn for the interfacial zone of a compressed bilayer. The same projection
method is applied, where we distinguish between the monomers of upper and lower
brush. Simply speaking the upper brush penetrates the lower brush by moving
the monomers of the lower brush to the side. Since the overall density is uniform,
islands of larger and smaller monomer concentrations appear. Inside of the lower
brush valleys appear in the "surface", see Figure 7.4 color-coded in blue, and they
must be compensated by peaks pressing into the upper brush, color-coded in red in
Figure 7.4. Due to thermal fluctuations the picture is not stationary but alternating
in time by turning peaks into valleys and vice versa. An analysis similar to the
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discussion of the single brush surface, the fluctuation spectrum of the compressed
bilayer height profile reveals a power law S(qx) ∼ q

−1/2
x , see Figure 7.2. That in turn

implies long-range height fluctuations.
Due to the system size a variation of the grafting density, chain length, and in-
cluding explicit solvent molecules is quit demanding in terms computational power,
therefore, the discussion will concentrated on system with implicit solvent and short
chains (N = 30). The observed power law in the lateral fluctuation spectrum for
the compressed bilayer may exhibit for small scattering vectors a cut-off, revealing
a length scale inside the system.
Contrary to the theoretical studies by Frederickson [97] where for the static fluctu-
ation spectrum was defined as

S(q∥) ≃ kBT/
[
γ̂q2∥ + 2Gq∥ + 3G/(q2∥h

3)
]
, (7.5)

where q∥ is the in-plane scattering wave vector, γ̂ is the surface tension, G the
frequency independent shear modulus, and h is the film thickness. Regarding to
Eq. (7.5), in the large wave vector limit the fluctuation spectrum must decay with
a power law, S(qz) ∼ q−2

z , which is not observed, neither for a single brush nor for
the compressed bilayer. The deviating observations in Figure 7.2 from Eq. (7.5)
are unknown and may motivate further studies. The lateral structure factor of the
contact surface rises the question which wave vector suits best for Eq. (7.2), when
for the fluctuation spectrum over a wide range a power-law is observed. In the
high compression regime the brushes interpentrate each other building an interface,
where at equilibrium a compromise between the osmotic pressure and the entropy
of each brush is established. The pressure of each brush can be measured in terms
of the overall binary contacts between them. In this case the forces exerted on one
brush by the other can be measure as well, and used in Eq. (7.1). As mentioned
in Ref. [92], the autocorrelation function is usually evaluated numerically, since no
analytic function is known describing the overall interaction. Instead of evaluating
the autocorrelation function the power spectrum can be used, given by the Wiener-
Khinchin theorem, where the autocorrelation function of a stationary process is the
Fourier transform of the PSD.
An unexpected universal behavior is observed when transforming the binary con-
tact number Nbb

int(t) into Fourier space. Other observables related to the number
of contacts are examined as well, i.e. Fx(t) between the brushes and the overlap
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in time Iov(t). In Figure 7.5 several PSDs are plotted in frequency space. Interest-
ingly the integrated overlap [Eq. (4.1)] does reveal Brownian type of noise instead
of pink. The overall shear stress component (σxz(t)) for a system with explicit
solvent exhibits a frequency independent fluctuation spectrum. For all time series
exhibiting colored noise, the observation times are not long enough to reach the
transition to an uncorrelated white noise, but for all observables a flat spectrum for
t → ∞ is expected. Referring back to Eq. (7.1), the integration of the autocorrela-
tion function may become time consuming due to the long time correlation inside
the interface. Generally, for a times series which is driven by white noise one would
expect a constant plateau for the fluctuation spectrum. For intermediate times a
shoulder frequency may occur, where a transition to Brownian noise (1/f2) or an
exponentially decaying correlation function is present. For large frequencies (short
times) a transition to white noise may occur again, due to the uncorrelated thermal
noise imposed by the stochastic thermostat. If such transitions are present that turn
white noise into colored noises, the complex system acts as a band pass filter [98].

7.2 Discussion of the 1-over-f noise

Fluctuations, which have spectral densities varying approximately as 1/f over
a large range of frequencies, have been observed in tremendous variety of different
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physical systems from physics, geophysics, astrophysics sociology and biology. A
wide collection of publications dealing with that phenomenon and their classified
appearance in different fields of science can be found in [99].
The first observation of 1-over-f noise was reported by Johnson [100], where the
release of single electrons from the cathode in a vacuum tube creates a single current
peak. The single spike event in time is described by an exponential relaxing process

N(t) = N0 exp(−
t

τ
) , (7.6)

where each single relaxation process exhibits a Lorentzian power spectrum

S(f) ∼ N0

τ 2 + f 2
, (7.7)

with τ a single relaxation time. When a train of spikes with a uniform multiple
relaxation time spectrum p(τ) between τ1 and τ2 is superimposed [101],

S(f) ∼
∫ τ2

τ1

τp(τ)

τ 2 + f 2
dt (7.8)

one finds

S(f) ∼


c for 0 ≪ f ≪ 1/τ1 ≪ 1/τ2
c

f(1/τ2−1/τ1)
for 1/τ1 ≪ f ≪ 1/τ2

c
f2

for 1/τ2 ≪ f

(7.9)

with the two shoulder frequencies 1/τ1 and 1/τ2 limiting the pink noise spectrum.
Many single relaxation processes contribute to a single response. This ubiqui-
tous noise is present in many electronic devices like resistors and metal-oxide-
semiconductor-field-effect transistors (MOSFET). In the number fluctuation model
introduced by McWhorter [102], it is known that the noise is caused by random trap-
ping and detrapping of the mobile carriers. Each single trapping and detrapping
causes a signal with a Lorentzian or generation-recombination spectrum. Super-
positioning a large number of these signals with the proper time constant results
in a 1/f -noise spectrum. Transferring these arguments to the fluctuations inside
the brush-brush interface one possible explanation may start with a single end-
monomer diffusing in a confined surrounding. One might expect a Lorentzian type
spectrum for a monomer moving along a high dimensional energy landscape inside
the interface becoming trapped and detrapped. It is not known, how the mobility
and therefore the life time of single monomers are behaving. Not only the binary
inter-brush contacts indicate long correlations but also intra-brush contacts behave
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similarly. On the other hand, when the problem of local contacts is explored for
a single uncompressed brush, the intra-brush contacts exhibit a Brownian type of
power spectral density. The system changes completely the filter properties.
After the appearance of power laws in the theory of critical phenomena many sci-
entist believe in a hidden mechanism behind the ubiquitous noise and the exis-
tence of an analogy to the universality exponents in critical phenomena. Other
explanations have been discussed for the universal behavior, which was observed
in quasi one-dimensional sand piles or snow fields exhibiting power law distributed
avalanches abrogating repetitively a critical state of minimal stability and driving
itself back - "Self-organized criticality" [103]. Such abrupt occurrence of extreme
values (avalanches, earthquakes, landslides) is not observed in Nbb

int(t).

7.3 Summary

The unexpected observation of long time correlations inside the brush-brush in-
terface remains challenging. Several models are approaching the problem by su-
perpositioning Lorentzian type of spectra with broadly distributed single relaxation
times originating from local interactions and trapping or clustering mechanisms.
The filter properties of a single uncompressed brush tuning uncorrelated thermal
fluctuations into S(f) ∼ 1/f2 power spectrum seem rather unspectacular. Addi-
tionally, the structure factor of single uncompressed brush, given by the density
profile, exhibits a Brownian spacial noise (S(qz) ∼ q2z) and a flat uncorrelated brush
height fluctuation spectrum.
Significant changes occur when brushes are compressed. The single brush profile
inside the bilayer exhibit S(qz) ∼ qz, while the fluctuation spectrum of the surface
morphology reveals a power law S(qx) ∼ q

1/2
x . Furthermore, the local fluctuation

observed in the inter-brush binary contacts and with it connected observables a pink
noise (S(f) ∼ 1/f), revealing long time correlation, where an upper time limit is not
found. That in return implies that the integration of the autocorrelation function
in Eq. (7.1) does not converge. On the other hand, if a slip between the brushes
occurs and the approximation given by Eq. (7.2) is justified, what wave vector qx
suits best for the surface structure. The self-affine surface morphology may be ap-
proximated by a geometrical surface area eliminating the problem. These questions
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remain open.



110



Chapter 8

Summary

In this work, a complex nano fluid exhibiting unique viscoelastic properties is
studied via Molecular Dynamics simulations. The liquid is composed of classical
coarse-grained polymers in good solvent attached to two opposing substrates. We
varied the compression of the confined layers and their molecular parameters, graft-
ing density and chain length. Solvent-free systems have been compared to systems
that included explicit solvent molecules (dimers). The lubrication properties, rhe-
ological and mechanical responses, and the susceptibility to different shear rates
were studied. As it was suggested by Joanny [25] and others, a separation of time
scales occurs changing the fluidic response to shear, as it is known for complex
non-Newtonian fluids [71].

Static Equilibrium

At static equilibrium the endgrafted chains stretch away from the substrate. With
decreasing wall separation the brushes interpenetrate and establish an interfacial
zone with a certain width δ. The characterization of the overlap width was deter-
mined by utilizing the Milner-Witten-Cates mean field potential, which is interpen-
etrated by an opposing chain segment at the outer fringe. A scaling theory was
introduced which transferred the melt condition into the semi-dilute regime of the
brushes leading to a theoretical description of the interfacial zone. The considered
semi-dilute quantities, e.g. interpenetration depth and lateral extension, are in good
agreement with the simulation results sustaining the scaling approach.
Chain segments carrying the stress exhibit a residence time inside the overlap. In
the simulation "absorbing" boundaries were introduced, which were defined by the
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interpenetration width δ. The approach is similar to the Kramers problem. The
lifetime distribution found is dominated for short times by endmonomers entering
and immediately leaving the zone, for large times a scale-free behavior decaying
with a power-law exponent of −1.5 was observed. In order to understand the origin
of the exponent a different approach in terms of a mean first passage time may be
useful giving rise for further theoretical and numerical studies. The mean residence
time of the chain segment inside the overlap introduces a critical time scale, which
separates the linear from the non-Newtonian response to shear. In chapter 7 the
static equilibrium of single brushes and strongly compressed bilayers were revisited.
Comparing both cases, significant changes of the statistics of local fluctuations were
observed. Not only the fluctuations but also the perpendicular static structure factor
experimentally used to measure the monomer density profile differ significantly. The
spectrum for an uncompressed brush changes from S(qz) ∼ 1/q2z to S(qz) ∼ 1/qz

in the case of a compressed bilayers, due to a non-trivial coupling between the two
brushes. Furthermore, the local contact number changes the statistical properties.
Long time correlations were identified in the power spectral density changing from
Brownian type of noise for the uncompressed brushes to pink noise for the com-
pressed bilayer. The local interactions are linked to the overall forces exerted from
one brush to the other, those forces also exhibit pink noise. The long time correla-
tions cannot be destroyed as long as the two brushes are interpenetrating each other.
The result might be a compelling mechanism for the low frictional forces when both
brushes are sliding on top of each other.

Non-stationary Shear

As in SFA experiments, oscillatory motion is used to study the fluid’s response to
shear. In general, the SFA setup allows to drive the system harmonically by adjust-
ing two independent parameters, the driving amplitude and the driving frequency.
In our simulation the strain is connected to the velocities of the walls and the fre-
quency, sampling the fluid in a slightly different manner compared to experiment.
The mechanical spectroscopy senses the response to extract the complex modulus
G∗(ω) and its time-domain relaxation modulus G(t) to identify transitions corre-
sponding to the internal molecular time and length scales. The material’s response
depends on the excitation separating the response into two basic regimes, the free
flow or terminal regime and the plateau regime. Both regimes are separated by a
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critical inverse time ω0. In the flow regime the brushes are able to relax. Macro-
scopic and microscopic observables are reaching steady state. While for the faster
harmonic driving the relaxation process is suppressed, the relaxation modulus be-
comes dependent on the history of the flow. In terms of large amplitude oscillatory
shear (LAOS) the frequency, as well as the amplitude, become larger changing the
shear protocol from smoothly transition to an almost step-like inversion of the wall
velocity. Due to the fast transition a linear velocity profile for both constituents
(solvent and brushes) is observed.

Stationary Shear

In the limit of LAOS the responses become constant in time providing the sta-
tionary sliding regime. In the simulation, the investigated velocities are fixed and
periodic boundary condition provide "infinite" surfaces such that the entire fluid
reaches steady state. After the onset of motion depending on the internal degrees
of freedom τbilayer the brushes reach steady state. Usually, systems with explicit
solvent respond stronger to shear by squeezing the solvent out forming a fluid layer
between the brushes, the brushes tilt and stretch into shear direction, while on the
other hand, the bilayers reduces its height for large shear rates. Due to the forma-
tion of the fluid layer helping the brushes to lubricate the kinetic friction coefficient
is significantly smaller than their solvent-free counterparts. The developed scaling
theory introduces the Weissenberg number as the ratio between shear rate and a
relevant relaxation time. The inverse of the relaxation time, the critical shear rate
γ̇∗ = 1/τ , separates the response into two general regimes, where first the fluid
response linearly to the sliding strength, and second, the non-Newtonian regime.
For the microscopic observable, e.g. lateral chain extension in steady state R2

g,x(γ̇),
is compared to its equilibrium extension implying a similar response. The scaling
calculation reveals a power-law for the chains extension as a function of the Weis-
senberg number. The numerically gained data were now scaled in such that the
normalized chain extension fits onto the power law by rescaling the shear rate with
the critical shear rate. The found γ̇∗ is also applied to the shear force response
of the fluid, revealing a sublinear increase, which fits nicely to the develop scaling
theory predicting a shear thinning behavior for large shear rate. Furthermore, the
analytical approach is capable of reproducing not only the data stemming from very
different numerical models but also from recent experimental observations. A cen-
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tral result of the scaling approach is that the critical shear rate, at which the linear
response regime is left and non-Newtonian behavior sets in, depends on compression
and molecular parameters as

γ̇∗ ∼ kBT

ηsa3

[
N−19ν(ρga

2)20ν−13

(
a

Dz

)14ν−11
]1/6(3ν−1)

. (8.1)

or, with ν ≈ 0.588,
γ̇∗ ∼ N−2.44ρ−0.27

g D0.6
z , (8.2)

in the limit of strongly compressed, semi-dilute brushes with Zimm dynamics, which
is closely related to the chains tilting and stretching.
The scaling calculating were extended to the other limits, still strongly compressed,
semi-dilute brushes with Rouse dynamics and under melt condition revealing differ-
ent exponents for the microscopic and macroscopic responses.
A more accurate approach which takes into account that the chains may diffuse out
of the overlap. Thus the critical shear rate depends on compression and molecular
parameters as

γ∗ ∼ kBT

ηsa3

[
N−3ν

(
ρga

3

Dz

)3ν−2
]1/(3ν−1)

, (8.3)

or, with ν ≈ 0.588,

γ∗ ∼ N−2.31

(
Dz

ρg

)0.31

. (8.4)

Utilizing dynamic mechanical analysis where the system responses to harmonic driv-
ing reveals a critical time scale 1/ω0 which is closer related to the equilibrium relax-
ation time of the chains segment.
The coarse-grained polymer model revealed microscopic time scales that are relevant
for the transition between Newtonian and non-Newtonian behavior of the polymeric
liquid. The knowledge of that time scales allows expressing the shear force response
in terms of the Weissenberg number, which is growing sublinearly for large shear
rates.



Appendix A

A list of simulation parameters is given which have been considered for this study.

Simulation parameter

energy scale ϵ

length scale σ

mass m
time scale τLJ =

√
mσ2/ϵ

time step ∆t = 2 · 10−3τLJ

temperature T = 1.68ϵ/kB

equilibrium bond length b = 0.98σ

wall distance Dz = 12σ, 14.75σ, 17.5σ

grafting density ρg = Ng/A
polymerization N = 30, 60, 120

DPD damping constant
[√

ϵ/mσ
]

γDPD = 5

Table 2: Overview of simulation parameter
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D N ρg/ρ
∗
g solvent R2

g,x(0) R2
g,z(0) γ̇∗ · 104 fx(γ̇

∗) η0

(N = 30)

12 30 1.1 + 2.78 3.17 10.5 25.5 7.5
30 2.2 + 2.58 3.28 8.70 40.2 16.0
30 4.4 + 2.37 3.42 5.00 69.4 13.8
60 1.1 + 5.41 4.88 0.83 11.8 45.0
60 2.2 + 4.26 4.69 0.57 15.3 90.0
30 1.1 − 3.42 3.80 133 18.6 1.7
30 2.2 − 2.98 3.68 40.0 37.3 11.0
30 4.4 − 2.44 3.48 6.90 72.7 125.0
60 1.1 − 6.58 5.19 6.25 12.7 25.0
60 2.2 − 4.92 4.77 0.87 21.8 270.0

14.75 30 1.1 + 2.71 3.56 12.5 24.2 6.0
30 2.2 + 2.51 3.96 10.5 39.2 12.3
30 4.4 + 2.26 4.50 6.90 66.4 33.0
60 1.1 + 5.11 5.59 0.85 10.5 45.0
60 2.2 + 4.22 5.43 0.63 18.0 85.0
30 1.1 − 3.37 4.59 182 13.9 0.9
30 2.2 − 2.97 4.67 66.7 31.2 6.5
30 4.4 − 2.49 4.66 14.3 72.8 67.0
60 1.1 − 7.16 6.49 10.3 12.7 15.0
60 2.2 − 5.17 5.83 1.82 21.8 145.0

17.5 30 1.1 + 2.56 3.61 15.4 24.6 5.0
30 2.2 + 2.48 4.44 16.7 41.3 8.8
30 4.4 + 2.12 5.57 8.51 66.4 25.0
60 1.1 + 5.40 6.69 1.18 21.8 58.0
60 2.2 + 4.44 6.55 0.74 15.6 85.0
30 1.1 − 3.21 5.44 500 9.6 0.45
30 2.2 − 2.85 5.94 118 27.8 3.9
30 4.4 − 2.49 6.13 25.0 69.4 37.0
60 1.1 − 7.16 7.53 14.8 12.7 10.0
60 2.2 − 5.50 7.02 2.86 21.8 85.0

Table 3: Mean square radius of gyration, R2
g,α(0), in shear (α = x) and gradient

(α = z) directions, critical shear rate, γ̇∗, critical force (see Fig. 4.10), fx(γ̇∗),
and zero shear viscosity (see Fig. 4.11) for the different parameter combinations
under consideration: distance Dz between grafting planes, chain length N , and
ratio between grafting density and (approximate) critical grafting density for chains
of length N = 30 (+ and − respectively denote systems with and without explicit
solvent).



Appendix C

The properties of a two composite fluids are discussed, where one fluid is com-
posed of single polymer brush and a solvent of dimers. The brush is attached to the
lower wall while dimers fill the system to the wall distance Dz to an overall density
ρ = 0.9. Figure C-1 shows the density profile of a single brush with the solvent,
the sum of both densities, and the externally chosen density. The overall density is
given by the number of particles over the volume, ρ = 0.9 (black solid line in Figure
C-1). The sum of both solvent and brush densities do not reach the overall density
due to two effects. The origin of one effect is the highly symmetric walls, where the
monomers are able to align in the minima of the substrates, layering occurs. The
layering reaches into the system until it disappears towards the middle. The second
effect concerns the larger density towards the brush profile, where more solvent is
accumulated inside the brush than outside. The excluded volume per monomer may
be estimated via

vex,mono = 4π

∫ ∞

0

drr2
[
1− exp

(
−U(r)
kBT

)]
, (C-1)

where the interaction potential U(r) includes the LJ-potential and additionally the
connectivity potential is given by

U(r) = ULJ(r) + UFENE(r) . (C-2)

The two connections to the next neighboring monomers of a bead inside the chains
reduces the excluded volume, hence the less connected dimers need more space to
occupy. The effect should be stronger when monomeric solvent is used. The effect
is not only present in the solvent-brush mixture, but also between the two brushes.
When both brushes are driven into steady state and tilt such that the monomer
density of the brushes increases towards the wall, solvent molecules are squeezed
out of the brush. This effect becomes smaller due to the smaller excluded volume
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Figure C-1: Density profile of a single brush with explicit solvent confined between
two walls. The overall density of the system is set to ρ = 0.9. The internal pressure
is uniform along the gap. The excluded volume of the brush is smaller, hence more
particles occupying the volume in this region.
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Figure C-2: The overall density of two states in stationary regime are compared.
The overall density in steady state with our largest sliding velocity v = 0.23 remains
almost constant, implying the low compressibility of the system.
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effect of the brushes, the overall density reduces slightly around the symmetry axis.
In Figure C-2 both overall densities at equilibrium (black dashed line) and steady
state (black solid line) are shown. A slight decrease density is observed under steady
state. Overall the effect is very small and proofs the low compressibility of the
fluid. The thermodynamic boundary in the NVT ensemble is fulfilled by a constant
pressure. Therefore, the pressure in the pure solvent-phase must be smaller than in
brush-solvent composition.
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Appendix D

Equilibrium Description

Throughout we follow the standard Milner-Witten-Cates (MWC)[17] strong stretch-
ing description (an equivalent one was developed by Zhulina and coworkers[18]). In
the MWC theory, a grafted chain part of the brush with its free end located at a
distance ze from the grafting plane can be described by its optimal configuration
only and other paths entering the partition sum can be discarded. This is equivalent
to the classical approximation to quantum mechanics. MWC is expected to fail at
the soft brush edge, a calculation taking into account fluctuations has been pro-
posed to describe this outermost region. The main additional assumption in MWC
is that the tension vanishes at the free chain ends. It follows that in this description
the brush is a highly degenerate system all end locations being equivalent. Free
ends are hence expected to diffuse through the layer and exchange their positions.
Simulataneously, MWC predicts a free end distribution, g(z), which is not flat. As
noted by several authors (see [16] and Refs. therein), MWC is not strictly speaking
a self-consistent (Mean-Field) theory.
Let us recall the brush height, h, the classical concentration profile, ϕ(Z), a small
distance Z ≪ h from the edge, the correlation length in the bulk of the brush, ξc,
and at the edge, ξ0, according to MWC:

h ∼ aN(ρga
2)(1−ν)/2ν , ϕ(Z) ∼ c

(
Z

h

)(6ν−2)/(3−2ν)

,

ξc ∼ a(ca3)ν/(1−3ν), ξ0 ∼ aN2ν/3(ρga
2)−1/6. (D-3)

The length ξ0 describes the soft brush edge for static properties like brush interpen-
etration at contact or linear dynamics like flow penetration at moderate shear rates.
When two brushes slightly overlap their interpenetration length equals ξ0. In the
very opposite limit of strong compression, the concentration profile is almost flat,
ϕ(z) = c ∼ ρgN/Dz. The brushes hence can be described as molten without concen-
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tration fluctuations, provided monomers are renormalized to concentration blobs of
radius ξc and monomer content gc ∼ (ξc/a)

1/ν . For a molten brush (of concentration
c ∼ a−3), the classical end distribution, g(z), and penetration length obey

g(z) ∼ ρgz

h
√
h2 − z2

, L ∼
(
N2a4

h

)1/3

. (D-4)

The end distribution is singular at the brush edge, g(z) ∼ ρg
√

2z/h3, but the ends
are only weakly localized at the edge and remain marginally free. After renormal-
ization to blobs we obtain

g(z) ∼ ρg

√
z

D3
z
,

L ∼ a

[
N2ν(ρga

2)2(1−2ν)

(
a

Dz

)1−ν
]1/3(3ν−1)

. (D-5)

Note that the edge singularity of the end distribution does not change upon renor-
malization to blobs. The end distribution strongly differs from the Alexander-de
Gennes distribution.
It is instructive to estimate the penetration depth L for the upper (Dz ∼ h) and
lower boundary (Dz ∼ L) of the strong compression regime. We obtain L ∼
a[N2ν(ρga

2)1−3ν ]1/(6ν) and L ∼ a[N ν(ρga
2)1−2ν ]1/(4ν−1), respectively. For Dz ∼ L

the penetration depth merges with the isotropic chain radius at the actual brush
concentration. Upon further compression the chains in the brush are not stretched
but rather reflected by the surfaces, obviously the strong stretching approximation
is no longer appropriate. In practice, the brush may become dense (and the equation
of state assumed for the polymer solution fails) before the limit Dz ∼ L is reached.
At the crossover to weak compression, Dz ∼ h, each chain spans the interpenetration
length with (L/ξc)

2gc monomers. Inserting values according to Eqs. (D-3) and (D-5)
we find (L/ξc)

2gc ∼ g0, i.e. the same number as for brushes that are just in contact.
We may conclude that the number of monomers per chain in the interpenetration
layer is almost constant over the whole weak interpenetration regime. Thus, the
weak compression regime (d = 2h − Dz ≪ h) is characterized by the correlation
length

ξd ∼ ξc

(
d

h

)2ν/(2−3ν)

(D-6)

and the interpenetration depth

L ∼
(
g0
gc

)1/2

ξc ∼ ξ0

(
d

ξ0

)(1−2ν)/(3−2ν)

. (D-7)
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Inserting ν ≈ 0.588 the interpenetration is found to slightly decrease upon weak
compression.

Linear Shear Regime The linear shear regime is tightly linked to the previous
section as by definition the brush structure is only slightly disturbed and hence is
assumed to be preserved to leading order.
It is convenient to start out from the case of a single brush sheared through a
solvent layer. This case was thoroughly analysed in Ref. [78]. The penetration
depth of the flow into the brush is ξ0. Assuming that the same chains stay in the
sheared edge all the time and sustain the hydrodynamic force, f , we could naively
apply the fluctuation dissipation theorem and calculate the mean lateral deflection,
⟨Rx⟩ = f⟨R2

x⟩ (kBT ≡ 1). This is not justified as chain ends exchange their position
over time. Rather, a given end typically leaves the sheared layer after the relaxation
time associated with ξ0, τ0 ∼ ηsξ

3
0 . The actual deflection of a chain end depends

on its history, more precisely on the previous visits to the sheared layer. Obviously,
visits done more than one lateral relaxation time ago do not matter. On the other
hand, the response function to the localized shear force only decays as a weak power
of time[78]. What finally matters is the average hydrodynamic force exerted on the
end about one lateral relaxation time ago. An end currently located in the sheared
layer is likely to be most deflected (as compared to those found deeper in the brush).
One lateral relaxation time ago its probability density was spread over one isotropic
radius in depth. Hence, the average force can be estimated as ⟨f⟩ ≈ fξ0/

√
⟨R2

x⟩
yielding

Rx√
⟨R2

x⟩
∼ fξ0 ∼ ηsξ

3
0 γ̇, (D-8)

when we insert the hydrodynamic force, f ∼ ηsξ
2
0 γ̇, exerted on one end within the

sheared layer. The threshold to non-Newtonian behavior corresponds to a deflection
as large as the thermodynamic fluctuation, hence the critical shear rate corresponds
to the relaxation frequency of the last blob, γ̇∗ ∼ 1/ηsξ

3
0 .

The case of two brushes in contact sheared against each other should be very similar.
Formally, there are two sources of dissipation, the drag of the polymers and the
shear flow imposed to the solvent in the interface. Both give contributions scaling
as ηsγ̇hξ0. The drag is that of a blob through a mesh of width similar to its own
size, which only marginally differs from the drag through solvent. The dissipation in
the shear flow corresponds to the effective velocity drop, γ̇h, through the interfacial
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layer of thickness ξ0. Taking into account chain-end exchange yields

Rx√
⟨R2

x⟩
∼ ηsξ

3
0

h

ξ0
γ̇. (D-9)

This result is identical to Eq. (D-8) if we replace γ̇ by the effective shear rate in the
interface, γ̇Dz/ξ0.
In the weak compression regime, the drag force on a chain moving in the interface
of thickness L reads f ∼ ηs(L/ξd)

2ξdγ̇D. Chain-end exchange reduces the force
by a factor of L/

√
⟨R2

x⟩. Collecting all factors we obtain a result very similar to
Eq. (D-9),

Rx√
⟨R2

x⟩
∼ ηs

L4

ξd

Dz

L
γ̇. (D-10)

In analogy to the case of brushes at contact, the relaxation time, ηsL4/ξd, of a section
spanning the interface is multiplied by the effective shear rate in the interface.
In the strong compression regime, Eq. (D-10) remains valid provided ξd is replaced
by ξc. It is nonetheless instructive to recast this formula into the equivalent form,

Rx√
⟨R2

x⟩
∼ ηs

(
N

gc

)2

ξ3c γ̇, (D-11)

showing that the critical shear rate can be understood as the lateral Rouse/Zimm
relaxation frequency of a chain in the brush. Inserting the expression for ξc with
c ∼ Nρg/Dz finally gives

γ∗ ∼ 1

ηsa3

[
N−3ν

(
ρga

3

Dz

)3ν−2
]1/(3ν−1)

, (D-12)

or, with ν ≈ 0.588,

γ∗ ∼ N−2.31

(
Dz

ρg

)0.31

. (D-13)

In the Rouse regime of dry, dense (non-swollen) brushes, we obtain

γ∗ ∼ 1

ψ(Na)2
. (D-14)

.
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